F-_"

= ysupL G

TONY GADDIS




STARTING OUT WITH

Visual C#°
2012

Tony Gaddis

Haywood Community College

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sdo Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo



Editorial Director, ECS: Marcia Horton Cover Designer: Joyce Wells

Acquisitions Editor: Matt Goldstein Manager, Rights and Permissions: Michael Joyce
Editorial Assistant: Jenah Blitz-Stoehr Text Permission Coordinator: Jackie Bates, GEX
Director of Marketing: Christy Lesko Cover Image: Dimitar Todorov/Alamy
Marketing Manager: Yezan Alayan Media Project Manager: Renata Butera

Senior Marketing Coordinator: Kathryn Ferranti Full-Service Project Management:

Director of Production: Erin Gregg Mohinder Singh/Aptara®, Inc.

Senior Managing Editor: Scott Disanno Composition: Aptara®, Inc.

Production Project Manager: Kayla Smith-Tarbox Printer/Binder: Edwards Brothers
Manufacturing Buyer: Lisa McDowell Cover Printer: Edwards Brothers

Art Director: Anthony Gemellaro Text Font: Sabon LT Std

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the
appropriate page within text.

Credit: Figure B.11: WebBrowser Demo application http://www.pearsonhighered.com/gaddisbooks

Copyright © 2012 by Microsoft Corporation. Used with permission from Microsoft. Microsoft and/or its respective suppliers
make no representations about the suitability of the information contained in the documents and related graphics published as
part of the services for any purpose. All such documents and related graphics are provided “as is” without warranty of any kind.
Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including
all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and
non-infringement. in no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential
damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or
other tortious action, arising out of or in connection with the use or performance of information available from the services.
The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are
periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes
in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within the
software version specified.

Copyright © 2014, 2011, 2008 Pearson Education, Inc., publishing as Addison-Wesley. All rights reserved. Printed in the United
States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request

to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax
your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

The programs and applications presented in this book have been included for their instructional value. They have been tested
with care, but are not guaranteed for any particular purpose. The publisher does not offer any warranties or representations,
nor does it accept any liabilities with respect to the programs or applications.

Library of Congress Cataloging-in-Publication Data
Gaddis, Tony.
Starting out with Visual C# 2012 / Tony Gaddis, Haywood Community College.—Third edition.

pages cm
Includes index. Proudly sourced and uploaded by [StormRG]

ISBN-13: 978-0-13-312945-8 Kickass Torrents | TPB | ET | h33t

ISBN-10: 0-13-312945-4

1. C# (Computer program language) 2. Visual programming languages (Computer science) 1. Title.
QA76.73.C154G33 2014

005.13°3—dc23 2012051581

10987654321

PEARSON ISBN 13: 978-0-13-312945-8
ISBN 10:  0-13-312945-4


http://www.pearsonhighered.com/gaddisbooks
Firestorm
Typewritten Text

Firestorm
Typewritten Text
Proudly sourced and uploaded by [StormRG]
    Kickass Torrents | TPB | ET | h33t


Locations of VideoNotes

www.pearsonhighered.com/gaddis

u Chapter 1 Tutorial 1-1: Starting Visual Studio and Setting
_ Up the Environment. ......... ... ... .. ... ... ..... 28
fraetiors Tutorial 1-2: Starting a New Visual C# Project. . . ........... 31
Tutorial 1-3: Saving and Closing a Project. . . .............. 33
Tutorial 1-4: Opening an Existing Project . .. .............. 41
Tutorial 1-5: Getting Familiar with the Visual
Studio Environment ... ... ... L oL oo 43
Chapter 2 Tutorial 2-1: Creating the GUI for the Hello World Application. . 63
Tutorial 2-2: Writing Code for the Hello World Application . ... 77
Tutorial 2-3: Creating the Language Translator Application. ... 88
Tutorial 2-4: Creating the Flags Application ............... 96
Tutorial 2-5: Creating the Card Flip Application. . .......... 100
Solving the Clickable Number Images Problem ........... 115
Chapter 3 Tutorial 3-1: The Birth Date String Application. .. .......... 128
Tutorial 3-2: Calculating Fuel Economy ................. 148
Tutorial 3-3: Creating the Sale Price Calculator Application
with Currency Formatting ........... ... ... ... ..... 154
Tutorial 3-4: Creating the Test Average Application with
Exception Handling . ........ ... ... .. . . .. 162
Tutorial 3-5: Creating the Change Counter Application . . . . .. 171
Solving the Tip, Tax, and Total Problem................. 192
Chapter 4 Tutorial 4-1: Completing the Test Score Average Application .. 202
Tutorial 4-2: Completing the Payroll with Overtime Application. 208
Tutorial 4-3: Completing the Loan Qualifier Application . . . . . 214
Tutorial 4-4: Calculating Fuel Economy . ................ 237
Tutorial 4-5: Creating the Color Theme Application. . ....... 246
Tutorial 4-6: Creating the Time Zone Application .......... 253
Solving the Mass and Weight Problem . . ................ 262
Chapter 5 Tutorial 5-1: Using a Loop to Calculate an Account Balance .. 273
Tutorial 5-2: Enhancing the Ending Balance Application . . ... 276
Tutorial 5-3: Using the for Loop .. .................... 286
Tutorial 5-4: Writing Data toa TextFile .. ............... 297
Tutorial 5-5: Appending Data to the Friend.txt File. .. ... ... 302
Tutorial 5-6: Using a Loop to Read to the End of a File . . . . .. 310
Tutorial 5-7: Calculating a Running Total .. .............. 314
Tutorial 5-8: Simulating Coin Tosses. ... ................ 325
Tutorial 5-9: Creating a Load Event Handler . . ... ......... 329
Solving the Celsius-to-Fahrenheit Table Problem .......... 336
Chapter 6 Tutorial 6-1: Creating and Calling Methods . ............. 345

Tutorial 6-2: Passing an Argument to a Method . . ... ...... 352

iii


www.pearsonhighered.com/gaddis

iv

Locations of VideoNotes

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Tutorial 6-3: Using an Output Parameter ................ 363
Tutorial 6-4: Writing a Value-Returning Method . ... ....... 372
Tutorial 6-5: Modularizing Input Validation with a

Boolean Method. . . ... .. .. ... L 375
Solving the Kinetic Energy Problem . ................... 384
Tutorial 7-1: Using an Array to Hold a List of Random

Lottery Numbers . ... ... ... i 399
Tutorial 7-2: Processingan Array . ..................... 424
Tutorial 7-3: Completing the Seating Chart Application . . ... 439
Tutorial 7-4: Completing the Test Score List Application . . . .. 452
Solving the Total Sales Problem .. ..................... 461

Tutorial 8-1: Completing the Password Validation Application. 471
Tutorial 8-2: Completing the Telephone Format Application .. 484
Tutorial 8-3: Completing the Telephone Unformat Application 488

Tutorial 8-4: Completing the CSV Reader Application ... .... 494
Tutorial 8-5: Completing the Phonebook Application ... .... 509
Tutorial 8-6: Completing the Color Spectrum Application . ... 517
Tutorial 8-7: Completing the Random Card Application . . . .. 524
Solving the Sum of Numbers in a String Problem. ... ... ... 531
Tutorial 9-1: Creating and Using the coin Class . ... ... .. .. 542
Tutorial 9-2: Creating and Using the cellPhone Class . . .. .. 550
Tutorial 9-3: Creating and Using the BankAccount Class . ... 556
Tutorial 9-4: Completing the Cell Phone Inventory Application 564
Tutorial 9-5: Creating an Application with Two Forms ... ... 581
Solving the Pet Class Problem. . .. .................. ... 590
Tutorial 10-1: Creating and Testing the savingsAccount and
CDAccount Classes . ..., 603
Tutorial 10-2: Completing the Polymorphism Application . ... 616
Tutorial 10-3: Completing the Computer Science Student
Application. ... ... . .. 623
Solving the Employee and ProductionWorker

Classes Problem . .. ... .. ... . 631

Tutorial 11-1: Starting the Phone Book Application and

Creating the Phonelist. mdf Database . .................. 639
Tutorial 11-2: Completing the Phone Book Application . . . . .. 648
Tutorial 11-3: Creating the Products Application and

Usinga Details View. . ... ... ..o i 657
Tutorial 11-4: Creating the Product Lookup Application. . . ... 669
Tutorial 11-5: Creating the Multiform Products Application ... 672
Tutorial 11-6: Creating the Product Queries Application. . . . .. 684
Tutorial 11-7: Creating the Product Queries Application. . . . .. 693
Tutorial 11-8: Creating the Product Search Application . . .. .. 697

Solving the Personnel Database Problem .. .............. 707



Brief Contents

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Appendix A
Appendix B
Appendix C
Appendix D

Introduction to Computers and Programming
Introduction to Visual C#

Processing Data

Making Decisions

Loops, Files, and Random Numbers
Modularizing Your Code with Methods
Arrays and Lists

More about Processing Data

Classes and Multiform Projects
Inheritance and Polymorphism
Databases

C# Primitive Data Types

Additional User Interface Controls
ASCIll/Unicode Characters

Answers to Checkpoint Questions

53
119
197
267
339
389
465
535
593
633
709
711
731
733



vi

Contents

Chapter 1

Chapter 2

Preface xi

Attention Students xvi

Introduction to Computers and Programming 1

T.T INrOAUCHION .ttt e e 1
1.2 Hardware and SOftWare.............ccoviiiiiiiiiiiniiee e 2
1.3 How Computers Store Data..........cccccceeiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee 7
1.4 HOW a Program WOTKS ........ccoeeruiiiiieeriiiiiiiee et eiiieeee et e e ee e 11
1.5 Graphical User INterfaces........cc.eeeeviiiimiiieiiiiiiiieiiee e 18
1.6 ODJECES ettt 21
1.7 The Program Development ProCeSS ..........uvveeeeiiniiireeeeiniiiiieeeeeeieeeee e 23
1.8 Getting Started with the Visual Studio Environment ............ccccceevviiieeeeennne. 27
TUTORIAL 1-1: Starting Visual Studio and Setting Up the Environment..................... 28
TUTORIAL 1-2: Starting a New Visual C# Project .....ceevveeerieernieennieennieenireeeieeesnnns 31
TUTORIAL 1-3: Saving and Closing a Project ....c.veveveeerieeeeieeiiieeeiieeeieeeireeeceee e 33
TUTORIAL 1-4: Opening an EXISting Project .....eeiiuiiriiiieeiieieeeiieeeieeeeeeeee e 41
TUTORIAL 1-5: Getting Familiar with the Visual Studio Environment .......cc.ccceveen.ee. 43

Key Terms 44 o Review Questions 45 ® Programming Problems 50

Introduction to Visual C# 53

2.1 Getting Started with Forms and Controls ............ccceevrviieeeeeinniiieeeeeeennee 53
2.2 Creating the GUI for Your First Visual C# Application:

The Hello World Application. . ... ... . i 62
TUTORIAL 2-1: Creating the GUI for the Hello World Application.........cccccveeeuvenee. 63
2.3 Introduction t0 C# COE ....uuuviiiiiiiiiiiiiieeeeeeeeee ettt e e e e 67
2.4 Writing Code for the Hello World Application. . .......... ... ... .... 77
TUTORIAL 2-2: Writing Code for the Hello World Application ........cccccveevvuveeecueeennnn. 77
2.5 Label CONrOIS ..cccooummiiiiiiiiiiiiiee et 80
TUTORIAL 2-3: Creating the Language Translator Application.......c.ceeeveeevuveeeceveennne. 88
2.6 Making Sense of INtelliSENSE. ......cccoviuiiiiiiiiiiiiieee et 91
2.7 PictureBox Controls. . .. ... .. . 92
TUTORIAL 2-4: Creating the Flags Application. .. ..., 96
TUTORIAL 2-5: Creating the Card Flip Application . ....................... 100
2.8 Comments, Blank Lines, and Indentation ......................... 104
2.9 Writing the Code to Close an Application’sForm ................... 106
2.10 Dealing with Syntax Errors .. ... ... .. ... i 107

Key Terms 109 e Review Questions 109 ® Programming Problems 114



Chapter 3

Chapter 4

Chapter 5

Contents
Processing Data 119
3.1 Reading Input with TextBox Controls .. ............ ... ... ....... 119
3.2 AFirstLookatVariables. .. ..... ... ... ... 121
TUTORIAL 3-1: The Birth Date String Application .. ..., 128
3.3 Numeric Data Types and Variables . ........ ... ... ... ... . ...... 133
3.4 Performing Calculations .. ....... ... .. .. i 138
3.5 Inputting and Outputting Numeric Values . ....................... 143
TUTORIAL 3-2: Calculating Fuel Economy . ....... ... .. .. .. .. ... .. .. 148
3.6 Formatting Numbers with the TostringMethod ... ................ 151
TUTORIAL 3-3: Creating the Sale Price Calculator Application with
Currency Formatting. . . ... ..o e 154
3.7 Simple ExceptionHandling . . ......... ... ... . .. i .. 158
TUTORIAL 3-4: Creating the Test Average Application with Exception Handling. . 162
3.8 UsingNamed Constants .. .............. it 166
3.9 Declaring Variablesas Fields . . ........ ... .. ... . . .. 167
TUTORIAL 3-5: Creating the Change Counter Application .. ................. 171
3.10 Using the Math Class. . . ..ot tiieeeeeee 175
31T More GUI Details. . . ... 177

Key Terms 187 o Review Questions 187 ® Programming Problems 192

Making Decisions 197

4.1 Decision Structures and the if Statement........... ... ... ... ... 197
TUTORIAL 4-1: Completing the Test Score Average Application. .............. 202
4.2 Theif-elseStatement ......... ... ... ittt 206
TUTORIAL 4-2: Completing the Payroll with Overtime Application . ........... 208
4.3 Nested Decision Structures . ... ...ttt 212
TUTORIAL 4-3: Completing the Loan Qualifier Application. ... .............. 214
4.4 Logical Operators . . ... ...ttt e 223
4.5 boolVariablesand Flags. ... ..... ... . . i, 228
4.6 Comparing StriNgs . . ..ttt e 228
4.7 Preventing Data Conversion Exceptions with the Tryparse Methods . . . .232
TUTORIAL 4-4: Calculating Fuel Economy . .......... ... ... ... ... ... ..... 237
4.8 InputValidation ......... .. ... 240
4.9 Radio Buttons and Check Boxes . ........... ..., 241
TUTORIAL 4-5: Creating the Color Theme Application. .. ................... 246
4.10 The switch Statement . ... ... . . ... i 248
4.17 Introduction to List Boxes . . . ... 251
TUTORIAL 4-6: Creating the Time Zone Application ....................... 253

Key Terms 257 ® Review Questions 257 ® Programming Problems 261

Loops, Files, and Random Numbers 267

5.1 MoreaboutListBoxes ....... ... ... . .. i 267
5.2 Thewhile LOOP . ... .ttt e e e 269
TUTORIAL 5-1: Using a Loop to Calculate an Account Balance ............... 273

TUTORIAL 5-2: Enhancing the Ending Balance Application . ................. 276

vii



viii

Contents

Chapter 6

Chapter 7

5.3 The++and ——operators .. ...... ...ttt 280
54 The for LOOp .. oot 281
TUTORIAL 5-3: Using the for Loop .. ... ..o e 286
5.5 Thedo-while LOOP . ... .ttt e i 289
5.6 Using Files for Data Storage. .. ....... .. ... i 291
TUTORIAL 5-4: Writing Datatoa Text File .......... ... ... ... ... ....... 297
TUTORIAL 5-5: Appending Data to the Friend.txtFile ...................... 302
TUTORIAL 5-6: Using a Loop to Read tothe Endof aFile .. ................. 310
TUTORIAL 5-7: Calculating a Running Total .. ... ... ... ... ... ... .... 314
5.7 The OpenfFileDialog and SaveFileDialog Controls ................... 317
5.8 Random Numbers. .. ... ... .. 323
TUTORIAL 5-8: Simulating Coin TOSSES . . v\ vttt nt e en i 325
59 Theload Event. ... ... ... .. . i 328
TUTORIAL 5-9: Creating a Load Event Handler .. ........ .. ... ... ... .... 329

Key Terms 332 ® Review Questions 332 e Programming Problems 335

Modularizing Your Code with Methods 339

6.1 IntroductiontoMethods. . ....... ... ... .. ... i i 339
6.2 voidMethods. . ... ... ... . . 341
TUTORIAL 6-1: Creating and Calling Methods . . .......................... 345
6.3 Passing Arguments to Methods. . ......... ... .. ... . . . . ... 349
TUTORIAL 6-2: Passing an Argumenttoa Method . .......... ... ... ... .. ... 352
6.4 Passing Arguments by Reference. ......... ... .. ... . ... .. 360
TUTORIAL 6-3: Using an Output Parameter .. ......... ... .. .. ... v.... 363
6.5 Value-ReturningMethods .. ........ ... . . . 367
TUTORIAL 6-4: Writing a Value-Returning Method . ......... ... ... ... .. ... 372
TUTORIAL 6-5: Modularizing Input Validation with a Boolean Method. ... ... .. 375

Key Terms 381 ® Review Questions 381 ® Programming Problems 384

Arrays and Lists 389

7.1 Value Types and Reference Types .. ........ .. ... ... 389
7.2 Array BasiCs. ... ... 392
TUTORIAL 7-1: Using an Array to Hold a List of Random Lottery Numbers . . . .. 399
7.3 Working with Filesand Arrays . . .......... .. ... 404
7.4 Passing Arrays as Arguments to Methods. . . ....... ... ... ... ... 407
7.5 Some Useful Array Algorithms. . ........ .. . . i 414
TUTORIAL 7-2: Processing an Array . . ... .cou e i it eeiiieieee e 424
7.6 Advanced Algorithms for Sorting and Searching Arrays. . ............. 429
7.7 Two-Dimensional Arrays . . ...t 436
TUTORIAL 7-3: Completing the Seating Chart Application................... 439
7.8 Jagged Arrays . .. ..o e 445
7.9 Therist Collection . ... ... .. . i 446
TUTORIAL 7-4: Completing the Test Score List Application.................. 452

Key Terms 458 o Review Questions 458 e Programming Problems 461



Chapter 8

Chapter 9

Chapter 10

Chapter 11

Contents
More about Processing Data 465
8.1 Introduction . ... ... . 465
8.2 String and Character Processing ... ..., 465
TUTORIAL 8-1: Completing the Password Validation Application .. ........... 471
TUTORIAL 8-2: Completing the Telephone Format Application . .............. 484
TUTORIAL 8-3: Completing the Telephone Unformat Application . ............ 488
TUTORIAL 8-4: Completing the CSV Reader Application ... ................. 494
8.3 Structures . ... ... ... . 499
TUTORIAL 8-5: Completing the Phonebook Application. .................... 509
8.4 Enumerated TYpes. . . .o oottt e 514
TUTORIAL 8-6: Completing the Color Spectrum Application ................. 517
8.5 ThelmageListControl. . ...... ... .. . . ... i 522
TUTORIAL 8-7: Completing the Random Card Application .................. 524

Key Terms 527 o Review Questions 527 ® Programming Problems 531

Classes and Multiform Projects 535

9.1 Introductionto Classes .. ........... i, 535
TUTORIAL 9-1: Creating and Using the Coin Class. . ......... ... ... ..., 542
9.2 Properties . . ..o e 547
TUTORIAL 9-2: Creating and Using the CellPhone Class.................... 550
9.3 Parameterized Constructors and Overloading . . .................... 555
TUTORIAL 9-3: Creating and Using the BankAccount Class. ................. 556
9.4 Storing Class Type Objects in Arraysand Lists .................... 562
TUTORIAL 9-4: Completing the Cell Phone Inventory Application............. 564
9.5 Finding the Classes and Their Responsibilities in a Problem . . ... ....... 568
9.6 Creating Multiple FormsinaProject........... .. ... ... ... . .... 576
TUTORIAL 9-5: Creating an Application with Two Forms ................... 581

Key Terms 586 ® Review Questions 586 ® Programming Problems 590

Inheritance and Polymorphism 593

10.T Inheritance . . ... oo 593
TUTORIAL 10-1: Creating and Testing the SavingsAccount and

CDAccount Classes . . ...ttt e 603
10.2 Polymorphism. . .. ..o e 611
TUTORIAL 10-2: Completing the Polymorphism Application .. ............... 616
10.3 Abstract Classes. . . . ... . 621
TUTORIAL 10-3: Completing the Computer Science Student Application ........ 623

Key Terms 628 ® Review Questions 628 ® Programming Problems 631

Databases 633

11.1 Introduction to Database Management Systems . . .................. 633
11.2 Tables, Rows, and Columns. . . ... . e 635
11.3 Creating a Database in Visual Studio. .. ........... ... ... .. ..... 638

ix



Contents

TUTORIAL 11-1: Starting the Phone Book Application and Creating the

Phonelist.mdf Database. .. ...t 639
11.4 The DataGridView Control . ....... ... ... ... .. . ... 648
TUTORIAL 11-2: Completing the Phone Book Application .. ................. 648
11.5 Connecting to an Existing Database and Using Details View Controls . . . . 656
TUTORIAL 11-3: Creating the Products Application and Using a Details View . ... 657
11.6 More about Data-Bound Controls. .. ........ ... ... ... ... ..... 665
TUTORIAL 11-4: Creating the Product Lookup Application . . ................ 669
TUTORIAL 11-5: Creating the Multiform Products Application ............... 672
11.7 Selecting Data with the SQL select Statement..................... 677
TUTORIAL 11-6: Creating the Product Queries Application . ................. 684
TUTORIAL 11-7: Creating the Product Queries Application ... ............... 693
TUTORIAL 11-8: Creating the Product Search Application . .................. 697

Key Terms 703 o Review Questions 703 ® Programming Problems 707

Appendix A C# PrimitiveData Types. . ..........ciiiiiiienann 709
Appendix B Additional User Interface Controls .................. 711
Appendix C ASCll/Unicode Characters ..............cccvvuunnn. 731
Appendix D Answers to Checkpoint Questions . . ................. 733



Preface

-\- R / elcome to Starting Out with Visual C# 2012, Third Edition. This book is in-

tended for an introductory programming course and is ideal for students with
no prior experience. Students who are new to programming will appreciate the clear,
down-to-earth explanations and the detailed walk-throughs that are provided by the

hands-on tutorials. More experienced students will appreciate the depth of detail as they
learn about the .NET Framework, databases, and other topics.

As with all the books in the Starting Out With series, the hallmark of this text is its clear,
friendly, and easy-to-understand writing. In addition, it is rich in example programs that
are concise and practical. The programs in this book include short examples that high-
light specific programming topics, as well as more involved examples that focus on prob-
lem solving. Each chapter provides numerous hands-on tutorials that guide the student
through each step of the development of an application. In addition to detailed, step-by-
step instructions, the tutorials also provide the application’s completed code and screen
captures of the completed forms.

New to This Edition

This edition has been revised to be compatible with Visual C# 2012 and the Visual Studio
2012 environment. In addition, a full set of VideoNotes has been developed to accom-
pany each tutorial in the book. Students can follow along with the author as he works
through each tutorial in the videos. Also, one programming exercise at the end of each
chapter has an accompanying VideoNote that shows the student how to create the
solution. The VideoNotes are available on the book’s companion Web site, at www.
pearsonhighered.com/gaddis.

A GUI-Based Approach

Beginning students are more motivated to learn programming when their applications
have some sort of graphical element, such as a graphical user interface. Students using this
book will learn to create GUI-based, event-driven, Visual C# applications. The Visual Stu-
dio (or Visual Studio Express for Windows Desktop) environment is used to create forms
that are rich with user interface controls and graphical images.

Learn to Use Objects Early, Learn to Write Classes Later

This book explains what objects are very early and shows the student how to create
objects from classes that are provided by the NET Framework. It then introduces the
student to the fundamentals of input and output, control structures, methods, arrays and
lists, and file I/O. Then the student learns to write his or her own classes and explores the
topics of inheritance and polymorphism.

Visual Studio and Visual Studio Express for
Windows Desktop
The book can be used with either Visual Studio 2012 or Visual Studio 2012 Express

for Windows Desktop. The book is bundled with Microsoft’s Visual Studio 2012 Ex-
press for Windows Desktop—a streamlined product that captures the best elements of

xi


www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

|45

=2

Preface

Visual Studio in an ideal format for learning programming. The Express Edition offers an
impressive set of tools for developing and debugging applications, including those that
work with databases and use SQL.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming. This chapter begins
by giving a very concrete and easy-to-understand explanation of how computers work,
how data is stored and manipulated, and why we write programs in high-level languages.
In this chapter, the student learns what an object is and sees several examples by studying
the objects that make up a program’s graphical user interface. The chapter discusses steps
in the programming development cycle. It also gives an introduction to the Visual Studio
or Visual Studio Express environment.

Chapter 2: Introduction to Visual C#. In this chapter the student learns to create
forms with labels, buttons, and picture boxes and learns to modify control properties.
The student is introduced to C# code and learns the organizational structure of name-
spaces, classes, and methods. The student learns to write simple event-driven applications
that respond to button clicks or provide interaction through clickable images. The impor-
tance of commenting code is also discussed.

Chapter 3: Processing Data. This chapter introduces variables and data types. It
discusses the use of local variables and variables declared as fields within a form class.
The student learns to create applications that read input from TextBox controls, perform
mathematical operations, and produce formatted output. The student learns about the
exceptions that can occur when the user enters invalid data into a TextBox and learns to
write simple exception-handling code to deal with those problems. Named constants are
introduced as a way of representing unchanging values and creating self-documenting,
maintainable code. The student also learns more intricacies of creating graphical user
interfaces.

Chapter 4: Making Decisions. In this chapter the student learns about relational op-
erators and Boolean expressions and is shown how to control the flow of a program with
decision structures. The if, if-else, and if-else-if statements are covered. Nested
decision structures, logical operators, and the switch statement are also discussed. The
student learns to use the TryParse family of methods to validate input and prevent ex-
ceptions. Radio buttons, check boxes, and list boxes are introduced as ways to let the user
select items in a GUI.

Chapter 5: Loops, Files, and Random Numbers. This chapter shows the student
how to use loops to create repetition structures. The while loop, the for loop, and the
do-while loop are presented. Counters, accumulators, and running totals are also dis-
cussed. This chapter also introduces sequential file input and output and using text files.
The student learns various programming techniques for writing data to text files and
reading the contents of test files. The chapter concludes with a discussion of pseudoran-
dom numbers, their applications, and how to generate them.

Chapter 6: Modularizing Your Code with Methods. In this chapter the student
first learns how to write and call void methods. The chapter shows the benefits of using
methods to modularize programs and discusses the top-down design approach. Then, the
student learns to pass arguments to methods. Passing by value, by reference, and output
parameters are discussed. Finally, the student learns to write value-returning methods.

Chapter 7: Arrays and Lists. Arrays and lists are reference-type objects in C#, so this
chapter begins by discussing the difference between value type and reference type objects
in the C# language. Then, the student learns to create and work with single-dimensional
and two-dimensional arrays. The student learns to pass arrays as arguments to methods,



Preface

transfer data between arrays and files, work with partially filled arrays, and create jagged
arrays. Many examples of array processing are provided including examples of finding
the sum, average, highest, and lowest values in an array. Finally, the student learns to
create List objects and store data in them.

Chapter 8: More about Processing Data. This chapter presents several diverse top-
ics. Now that the student has studied the fundamentals of Visual C# programming, he
or she can use the topics presented in this chapter to perform more advanced operations.
First, various string and character processing techniques are introduced. Then the student
learns to use structures to encapsulate several variables into a single item. The student
next learns to create and use enumerated types. Last, the student learns about the Image-
List control, a data structure for storing and retrieving images.

Chapter 9: Classes and Multiform Projects. Up to this point, the student has ex-
tensively used objects that are instances of .NET Framework classes. In this chapter the
student learns to write classes to create his or her own objects. The student learns to cre-
ate fields, methods, and constructors and learns to implement properties. Creating arrays
of objects and storing objects in a List are also discussed. A primer on finding the classes
in a problem as well as their responsibilities is provided. Finally, the chapter shows the
student how to create multiple form classes in a project, instantiate those classes, and
display them.

Chapter 10: Inheritance and Polymorphism. The study of classes continues in
this chapter with the subjects of inheritance and polymorphism. The topics covered
include base classes, derived classes, how constructors functions work in inheritance,
method overriding, and polymorphism. Abstract classes and abstract methods are also
discussed.

Chapter 11: Databases. This chapter introduces the student to basic database con-
cepts. The student first learns about tables, rows, and columns and how to create an SQL
Server database in Visual Studio. The student then learns how to connect a database to a
Visual C# application and display a table in a DataGridView control, a Details view, and
other data-bound controls. Finally, the student learns how to write SQL Select statements
to retrieve data from a table.

Appendix A: C# Primitive Data Types. This appendix gives an overview of the
primitive data types available in C#.

Appendix B: Additional User Interface Controls. This appendix shows how to
create a variety of controls such as ToolTips, combo boxes, scroll bars, TabControls,
WebBrowser controls, ErrorProvider components, and menu systems.

Appendix C: ASCll/Unicode Characters. This appendix lists the ASCII (American
Standard Code for Information Interchange) character set, which is also the Latin Subset
of Unicode.

Appendix D: Answers to Checkpoint Questions. This appendix provides the an-
swers to the Checkpoint questions that appear throughout each chapter in the book.

Organization of the Text

The text teaches Visual C# step by step. Each chapter covers a major set of program-
ming topics, introduces controls and GUI elements, and builds knowledge as the student
progresses through the book. Although the chapters can be easily taught in their existing
sequence, there is some flexibility. Figure P-1 shows the chapter dependencies. As shown
in the figure, Chapters 1-7 present the fundamentals of Visual C# programming and
should be covered in sequence. Then, you can move directly to Chapter 8, Chapter 9, or
Chapter 11. Chapter 10 should be covered after Chapter 9.

xiii



xiv

Preface

020 ©

D

VideoNote

Figure P-1 Chapter dependencies

Chapters 1 -7 (Cover in Order)
Programming and
Visual C# Fundamentals

T

Depend On

Chapter 8 Chapter 9 Chapter 11
More about Classes and
. . . Databases
Processing Data Multiform Projects

Depends On

Chapter 10

Inheritance and
Polymorphism

Features of the Text

Concept Statements. Each major section of the text starts with a concept statement.
This statement concisely summarizes the main point of the section.

Tutorials. Each chapter has several hands-on tutorials that guide the student through
the development of an application. Each tutorial provides detailed, step-by-step instruc-
tions, as well as the application’s completed code and screen captures of the completed
forms.

Example Programs. Each chapter has an abundant number of code examples designed
to highlight the current topic.

Notes. Notes appear at several places throughout the text. They are short explanations
of interesting or often misunderstood points relevant to the topic at hand.

Tips. Tips advise the student on the best techniques for approaching different program-
ming or animation problems.

Warnings. Warnings caution students about programming techniques or practices that
can lead to malfunctioning programs or lost data.

Checkpoints. Checkpoints are questions placed at intervals throughout each chapter.
They are designed to query the student’s knowledge quickly after learning a new topic.
The answers to the Checkpoint questions can be found in Appendix D.

Review Questions. Each chapter presents a thorough and diverse set of Review
Questions. They include Multiple Choice, True/False, Algorithm Workbench, and Short
Answer.

Programming Problems. Each chapter offers a pool of Programming Problems de-
signed to solidify the student’s knowledge of the topics currently being studied.

VideoNotes. Each tutorial in the book has an accompanying online VideoNote that
can be accessed on the book’s companion Web site, at www.pearsonhighered.com/
gaddis. Students can follow along with the author as he works through each tutorial in
the videos. Also, one programming problem at the end of each chapter has an accompany-
ing VideoNote that shows the student how to create the solution.


www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

Preface XV

Supplements
Student. The following supplementary material is available with the book:

e Source code and files required for the chapter tutorials are available at www.
pearsonhighered.com/gaddis

e A DVD containing Microsoft Visual Studio 2012 Express for Windows Desktop
comes bundled with all new copies of this book.

Instructor. The following supplements are available to qualified instructors:

e Answers to all Review Questions in the text

e Solutions for all Programming Problems in the text
e Completed versions of all tutorials

e PowerPoint presentation slides for every chapter

e Test bank

For information on how to access these supplements, visit the Pearson Education Instructor
Resource Center at www.pearsonhighered.com/irc or e-mail computing@pearson.com.

Acknowledgments

I would like to thank my family and friends for their love and support in all my many
projects. Thanks also go to Chris Rich for his work on the supplements. I am extremely
fortunate to have Matt Goldstein as my editor and Jenah Blitz-Stoehr as editorial assist-
ant. Matt and Jenah’s support and encouragement make it a pleasure to write chapters
and meet deadlines. I am also fortunate to have Yez Alayan as marketing manager and
Kathryn Ferranti as marketing coordinator. They do a great job getting my books out
to the academic community. I had a great production team, led by Kayla Smith-Tarbox,
working tirelessly to bring this book from manuscript to print. Thanks to you all!

About the Author

Tony Gaddis is the principal author of the Starting Our With series of textbooks. Tony
has nearly 20 years experience teaching computer science courses at Haywood Commu-
nity College in North Carolina. He is a highly acclaimed instructor who was previously
selected as the North Carolina Community College Teacher of the Year and has received
the Teaching Excellence award from the National Institute for Staff and Organizational
Development.

The Starting Out With series includes introductory books using the C++ programming
language, the Java™ programming language, Microsoft® Visual Basic®, Microsoft® C#®,
Python, Programming Logic and Design, and Alice, all published by the Addison-Wesley
imprint of Pearson Education.


www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis
www.pearsonhighered.com/irc

Attention Students

Installing Visual C#

To complete the tutorials and programming problems in this book, you need to install
Visual C# 2012 on your computer. When purchased new, this textbook is packaged with
a Microsoft DVD that contains Visual Studio 2012 Express for Windows Desktop. Install
this on your computer before starting any of the book’s tutorials.

If your book does not have the accompanying Microsoft DVD, you can download Visual
Studio 2012 Express for Windows Destktop from the following Web site:

http://www.microsoft.com/express/Downloads/

Q NOTE: If you are working in your school’s computer lab, there is a good chance that

Microsoft Visual Studio has been installed, rather than Visual Studio Express. If this
is the case, your instructor will show you how to start Visual Studio. The tutorials
in this book can be completed with either Visual Studio 2012 or Visual Studio 2012
Express for Windows Desktop.

Installing the Student Sample Program Files

The Student Sample Program files that accompany this book are available for download
from the book’s companion Web site at:

http://www.pearsonhighered.com/gaddis

These files are required for many of the book’s tutorials. Simply download the Student
Sample Program files to a location on your hard drive where you can easily access them.

xvi


http://www.microsoft.com/express/Downloads/
http://www.pearsonhighered.com/gaddis

) e
1Oaadonn
OoOooooano
1joooooaaa

Introduction to Computers
and Programming

o
(WN]
—
o
<
I
)

TOPICS

1.1 Introduction 1.6 Objects

1.2 Hardware and Software 1.7 The Program Development Process
1.3 How Computers Store Data 1.8 Getting Started with the Visual

1.4 How a Program Works Studio Environment

1.5 Graphical User Interfaces

)|

1.1 Introduction

[\

Think about some of the different ways that people use computers. In school, students
use computers for tasks such as writing papers, searching for articles, sending e-mail, and
participating in online classes. At work, people use computers to analyze data, make pres-
entations, conduct business transactions, communicate with customers and coworkers,
control machines in manufacturing facilities, and do many other things. At home, people
use computers for tasks such as paying bills, shopping online, staying connected with
friends and family, and playing computer games. And don’t forget that smart phones,
iPods®, car navigation systems, and many other devices are computers as well. The uses
of computers are almost limitless in our everyday lives.

Computers can do such a wide variety of things because they can be programmed, which
means that computers are designed not to do just one job, but to do any job that their pro-
grams tell them to do. A program is a set of instructions that a computer follows to perform a
task. For example, Figure 1-1 shows screens from two commonly used Microsoft programs:
Word and PowerPoint. Word is a word processing program that allows you to create, edit,
and print documents. PowerPoint allows you to create graphical slides and use them as part
of a presentation.

Programs are commonly referred to as software. Software is essential to a computer because
without software, a computer can do nothing. All the software that makes our computers use-
ful is created by individuals known as programmers, or software developers. A programmer,
or software developer, is a person with the training and skills necessary to design, create, and
test computer programs. Computer programming is an exciting and rewarding career. Today,
programmers work in business, medicine, government, law enforcement, agriculture, academ-
ics, entertainment, and almost every other field.



2

Chapter 1

Introduction to Computers and Programming

Figure 1-1 A word processing program and a presentation program

What s the purpose o

‘What encoding schame s extensive 1o represent all the charscters of all the
Ranguager inthe werld?
What do the berres “digital dats” and “Sgitsl device” mean?

How & Program Works

- (A [ |”11]' i L_J‘_l‘ Pr
(8 2 Uk 88 (A | [EEF @@ 5| e ange cua

=
4adsCel AaBb( [a.n,cc[I[ :

Alln
Unsbars  oesbngl | 1 hemat P.;:ﬁ-v

1%t Quarter

Contept: A computer's CPU can only understond Instructions that are weirten In

maching

Sales

eple f v o
languoge, other vguages have been

invented

Earlier, the CPU I3 the por component Aer becaune

Bk the part of the comguter

“computes”s brain,” and is described a1 being “smart.” Although these are comman
mtaghon, you should undentand thet the CPU s rot » brain, srd ith not smart. The
CPU I an electronic device that | designed to do specific things. In particular, the CPU I
designed to perform operations such a3 tha following:

Reading a piece of data from main memory

Adding two numbers

Subtracting one number from another number
Mutiphying two numbers

Dividing one number by another rasmber
Maning & piace of data from one memery location ta arcther
Determining whether one value is equal to snother value

And so forth .

that runs programs. Sometimes the CPU b called the

Aay list, the CPU oy s en ploces of data. The
CPU o nothing on 1ts own, howver. It has 1o be told what 1o da, srd that's the

Click to add notes

0y

This book introduces you to the fundamental concepts of computer programming using
the C# programming language. Before we begin exploring those concepts, you need to
understand a few basic things about computers and how they work. This chapter provides
a solid foundation of knowledge that you will continually rely on as you study computer
science. First, we discuss the physical components that computers are commonly made of.
Then, we look at how computers store data and execute programs. Next, we introduce
you to two fundamental elements of modern software design: graphical user interfaces and
objects. Finally, we give a quick introduction to the software used to write C# programs.

Hardware and Software

CONCEPT: The physical devices that a computer is made of are referred to as the
computer’s hardware. The programs that run on a computer are referred
to as software.

Hardware

Hardware refers to all the physical devices, or components, of which a computer is made. A
computer is not one single device but is a system of devices that all work together. Like the
different instruments in a symphony orchestra, each device in a computer plays its own part.

If you have ever shopped for a computer, you have probably seen sales literature listing
components such as microprocessors, memory, disk drives, video displays, graphics cards,
and so on. Unless you already know a lot about computers or at least have a friend who
does, understanding what these different components do can be confusing. As shown in
Figure 1-2, a typical computer system consists of the following major components:

e The central processing unit (CPU)
e Main memory

e Secondary storage devices

e Input devices

e Output devices

Let’s take a closer look at each of these components.



1.2 Hardware and Software

Figure 1-2 Typical components of a computer system

e/
. — Central Processing .
Unit
Output g
\ﬂf?i‘{‘» Devices LN
tl]"“"‘r‘;“'w‘\i‘\‘\“ |
XN

Input
Devices

\ Main Memory
(RAM)

¢ Secondary

< Storage Devices
=]
?-&;?\e/e

N/

The CPU

When a computer is performing the tasks that a program tells it to do, we say that the
computer is running or executing the program. The central processing unit, or CPU, is the
part of a computer that actually runs programs. The CPU is the most important compo-
nent in a computer because without it, the computer could not run software.

In the earliest computers, CPUs were huge devices made of electrical and mechanical
components such as vacuum tubes and switches. Figure 1-3 shows such a device. The two

Figure 1-3 The ENIAC computer

AUAL LI
B8P NGE

'éld‘.ll AL NL AL AL
. \

HEHHN

.
-
a
—
5

e




4

Chapter 1

Introduction to Computers and Programming

women in the photo are working with the historic ENIAC computer. The ENIAC, consid-
ered by many to be the world’s first programmable electronic computer, was built in 1945
to calculate artillery ballistic tables for the U.S. Army. This machine, which was primarily
one big CPU, was 8 feet tall and 100 feet long and weighed 30 tons.

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo of a
lab technician holding a modern-day microprocessor. In addition to being much smaller
than the old electromechanical CPUs in early computers, microprocessors are also much
more powerful.

Figure 1-4 A lab technician holds a modern microprocessor

Main Memory

You can think of main memory as the computer’s work area. This is where the computer
stores a program while the program is running, as well as the data that the program is
working with. For example, suppose you are using a word processing program to write an
essay for one of your classes. While you do this, both the word processing program and
the essay are stored in main memory.

Main memory is commonly known as random-access memory, or RAM. It is called this
because the CPU is able to quickly access data stored at any random location in RAM.
RAM is usually a volatile type of memory that is used only for temporary storage while
a program is running. When the computer is turned off, the contents of RAM are erased.
Inside your computer, RAM is stored in chips, similar to the ones shown in Figure 1-5.

Secondary Storage Devices

Secondary storage is a type of memory that can hold data for long periods of time, even
when there is no power to the computer. Programs are normally stored in secondary
memory and loaded into main memory as needed. Important data, such as word process-
ing documents, payroll data, and inventory records, is saved to secondary storage as well.

The most common type of secondary storage device is the disk drive. A disk drive stores
data by magnetically encoding it onto a circular disk. Most computers have a disk drive
mounted inside their case. External disk drives, which connect to one of the computer’s



1.2 Hardware and Software

Figure 1-5 Memory chips

communication ports, are also available. External disk drives can be used to create backup
copies of important data or to move data to another computer.

In addition to external disk drives, many types of devices have been created for copy-
ing data and for moving it to other computers. For many years floppy disk drives were
popular. A floppy disk drive records data onto a small floppy disk, which can be removed
from the drive. Floppy disks have many disadvantages, however. For example, they have
limited storage capacity and are slow to access data. The use of floppy disk drives has de-
clined dramatically in recent years in favor of superior devices such as USB drives. Uni-
versal serial bus (USB) drives are small devices that plug into the computer’s USB port and
appear to the system as disk drives. These drives do not actually contain a disk, however.
They store data in a special type of memory known as flash memory. USB drives, which
are also known as memory sticks and flash drives, are inexpensive, reliable, and small
enough to be carried in a pocket.

Optical devices such as the compact disc (CD) and the digital versatile disc (DVD) are
also popular for data storage. Data is not recorded magnetically on an optical disc but is
encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect
the pits and thus read the encoded data. Optical discs hold large amounts of data, and
because recordable CD and DVD drives are now commonplace, they are good mediums
for creating backup copies of data.

Input Devices

Input is any data the computer collects from people and from other devices. The compo-
nent that collects the data and sends it to the computer is called an input device. Common
input devices are the keyboard, mouse, scanner, microphone, and digital camera. Disk
drives and optical drives can also be considered input devices because programs and data
are retrieved from them and loaded into the computer’s memory.

Output Devices

Output is any data the computer produces for people or for other devices. It might be
a sales report, a list of names, or a graphic image. The data is sent to an output device,
which formats and presents it. Common output devices are video displays and printers.
Disk drives and CD or DVD recorders can also be considered output devices because the
system sends data to them in order to be saved.



6

Chapter 1

Introduction to Computers and Programming

Software

If a computer is to function, software is not optional. Everything that a computer does,
from the time you turn the power switch on until you shut the system down, is under the
control of software. There are two general categories of software: system software and
application software. Most computer programs clearly fit into one of these two catego-
ries. Let’s take a closer look at each.

System Software

The programs that control and manage the basic operations of a computer are generally
referred to as system software. System software typically includes the following types of
programs:

Operating Systems

An operating system is the most fundamental set of programs on a computer. The op-
erating system controls the internal operations of the computer’s hardware, manages
all the devices connected to the computer, allows data to be saved to and retrieved
from storage devices, and allows other programs to run on the computer.

Utility Programs

A utility program performs a specialized task that enhances the computer’s operation
or safeguards data. Examples of utility programs are virus scanners, file-compression
programs, and data-backup programs.

Software Development Tools

The software tools that programmers use to create, modify, and test software are re-
ferred to as software development tools. Assemblers, compilers, and interpreters, which
are discussed later in this chapter, are examples of programs that fall into this category.

Application Software

Programs that make a computer useful for everyday tasks are known as application soft-
ware. These are the programs that people normally spend most of their time running on
their computers. Figure 1-1, at the beginning of this chapter, shows screens from two
commonly used applications—Microsoft Word, a word processing program, and Microsoft
Powerpoint, a presentation program. Some other examples of application software are
spreadsheet programs, e-mail programs, Web browsers, and game programs.

Checkpoint

1.1 What is a program?

1.2 What is hardware?

1.3 List the five major components of a computer system.
1.4 What part of the computer actually runs programs?

1.5 What part of the computer serves as a work area to store a program and its data
while the program is running?

1.6 What part of the computer holds data for long periods of time, even when there is
no power to the computer?

1.7 What part of the computer collects data from people and from other devices?

1.8 What part of the computer formats and presents data for people or other devices?



1.3 How Computers Store Data

1.9 What fundamental set of programs control the internal operations of the computer’s
hardware?

1.10 What do you call a program that performs a specialized task, such as a virus
scanner, a file-compression program, or a data-backup program?

1.11 Word processing programs, spreadsheet programs, e-mail programs, Web
browsers, and game programs belong to what category of software?

How Computers Store Data

CONCEPT: All data stored in a computer is converted to sequences of Os and 1s.

A computer’s memory is divided into tiny storage locations known as bytes. One byte is
enough memory to store only a letter of the alphabet or a small number. In order to do
anything meaningful, a computer has to have lots of bytes. Most computers today have
millions, or even billions, of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term bit
stands for binary digit. Computer scientists usually think of bits as tiny switches that can
be either on or off. Bits aren’t actual “switches,” however, at least not in the conventional
sense. In most computer systems, bits are tiny electrical components that can hold either a
positive or a negative charge. Computer scientists think of a positive charge as a switch in
the on position and a negative charge as a switch in the off position. Figure 1-6 shows the
way that a computer scientist might think of a byte of memory: as a collection of switches
that are each flipped to either the on or the off position.

Figure 1-6 A byte thought of as eight switches

When a piece of data is stored in a byte, the computer sets the eight bits to an on/off pattern
that represents the data. For example, the pattern shown on the left in Figure 1-7 shows how
the number 77 would be stored in a byte, and the pattern on the right shows how the letter
A would be stored in a byte. In a moment you will see how these patterns are determined.

Figure 1-7 Bit patterns for the number 77 and the letter A

The number 77 stored in a byte. The letter A stored in a byte.



8

Chapter 1

Introduction to Computers and Programming

Storing Numbers

A bit can be used in a very limited way to represent numbers. Depending on whether the
bit is turned on or off, it can represent one of two different values. In computer systems,
a bit that is turned off represents the number 0 and a bit that is turned on represents
the number 1. This corresponds perfectly to the binary numbering system. In the binary
numbering system (or binary, as it is usually called), all numeric values are written as
sequences of Os and 1s. Here is an example of a number that is written in binary:

10011101
The position of each digit in a binary number has a value assigned to it. Starting with the
rightmost digit and moving left, the position values are 202122 23 and so forth, as shown

in Figure 1-8. Figure 1-9 shows the same diagram with the position values calculated. Start-
ing with the rightmost digit and moving left, the position values are 1, 2, 4, 8, and so forth.

Figure 1-8 The values of binary digits as powers of 2

10011101

T

23
24
25
26
27

Figure 1-9 The values of binary digits

1001110

A TLL

To determine the value of a binary number, you simply add up the position values of all
the 1s. For example, in the binary number 10011101, the position values of the 1s are
1,4, 8, 16, and 128. This is shown in Figure 1-10. The sum of all these position values is
157. So, the value of the binary number 10011101 is 157.

Figure 1-10 Determining the value of 10011101

10011101

A T—L1

1+4+8+16+128=157



1.3 How Computers Store Data

Figure 1-11 shows how you can picture the number 157 stored in a byte of memory. Each
1 is represented by a bit in the on position, and each 0 is represented by a bit in the off
position.

Figure 1-11 The bit pattern for 157

Position
values

128+16+8+4+1=157

When all the bits in a byte are set to 0 (turned off), then the value of the byte is 0. When
all the bits in a byte are set to 1 (turned on), then the byte holds the largest value that can
be stored in it. The largest value that can be stored in a byteis 1 +2 +4 + 8 + 16 + 32 +
64 + 128 = 255. This limit exists because there are only eight bits in a byte.

What if you need to store a number larger than 255? The answer is simple: use more than
1 byte. For example, suppose we put 2 bytes together. That gives us 16 bits. The position
values of those 16 bits would be 2°, 21, 22, 23 and so forth, up through 2'°. As shown
in Figure 1-12, the maximum value that can be stored in 2 bytes is 65,535. If you need to
store a number larger than this, then more bytes are necessary.

Figure 1-12 Two bytes used for a large number

Position
values

0101010101060
OO IO

32768 + 16384 + 8192 + 4096 + 2048 + 1024 + 512 + 256 + 128 + 64 +32+ 16 +8 +4+ 2+ 1 =65535

<4

TIP: In case you're feeling overwhelmed by all this, relax! You will not have to
actually convert numbers to binary while programming. Knowing that this process is
taking place inside the computer will help you as you learn, and in the long term this
knowledge will make you a better programmer.

Storing Characters

Any piece of data that is stored in a computer’s memory must be stored as a binary
number. That includes characters such as letters and punctuation marks. When a charac-
ter is stored in memory, it is first converted to a numeric code. The numeric code is then
stored in memory as a binary number.



10 Chapter 1 Introduction to Computers and Programming

Over the years, different coding schemes have been developed to represent characters in
computer memory. Historically, the most important of these coding schemes is ASCII,
which stands for the American Standard Code for Information Interchange. ASCII is a set
of 128 numeric codes that represent the English letters, various punctuation marks, and
other characters. For example, the ASCII code for the uppercase letter A is 65. When you
type an uppercase A on your computer keyboard, the number 65 is stored in memory (as
a binary number, of course). This is shown in Figure 1-13.

Figure 1-13 The letter A stored in memory as the number 65

A —-es— FRICHEINN

TIP: The acronym ASCII is pronounced “askee.”

<

In case you are curious, the ASCII code for uppercase B is 66, for uppercase C is 67, and
so forth. Appendix C shows all the ASCII codes and the characters they represent.

The ASCII character set was developed in the early 1960s and was eventually adopted by
almost all computer manufacturers. ASCII is limited, however, because it defines codes
for only 128 characters. To remedy this, the Unicode character set was developed in the
early 1990s. Unicode is an extensive encoding scheme that is compatible with ASCII and
can also represent the characters of many of the world’s languages. Today, Unicode is
quickly becoming the standard character set used in the computer industry.

Advanced Number Storage

Earlier you saw how numbers are stored in memory. Perhaps it occurred to you then that
the binary numbering system can be used to represent only integer numbers, beginning
with 0. Negative numbers and real numbers (such as 3.14159) cannot be represented
using the simple binary numbering technique we discussed.

Computers are able to store negative numbers and real numbers in memory, but to do
so they use encoding schemes along with the binary numbering system. Negative num-
bers are encoded using a technique known as two’s complement, and real numbers are
encoded in floating-point notation. You don’t need to know how these encoding schemes
work, only that they are used to convert negative numbers and real numbers to binary
format.

Other Types of Data

Computers are often referred to as digital devices. The term digital can be used to describe
anything that uses binary numbers. Digital data is data that is stored in binary, and a
digital device is any device that works with binary data. In this section we have discussed
how numbers and characters are stored in binary, but computers also work with many
other types of digital data.

For example, consider the pictures that you take with your digital camera. These images are
composed of tiny dots of color known as pixels. (The term pixel stands for picture element.)



1.4 How a Program Works

As shown in Figure 1-14, each pixel in an image is converted to a numeric code that repre-
sents the pixel’s color. The numeric code is stored in memory as a binary number.

Figure 1-14 A digital image stored in binary format

The music that you play on your CD player, iPod, or MP3 player is also digital. A digital
song is broken into small pieces known as samples. Each sample is converted to a binary
number, which can be stored in memory. The more samples that a song is divided into,
the more it sounds like the original music when it is played back. A CD-quality song is
divided into more than 44,000 samples per second!

Checkpoint

1.12 What amount of memory is enough to store a letter of the alphabet or a small
number?

1.13 What do you call a tiny “switch” that can be set to either on or off?
1.14 In what numbering system are all numeric values written as sequences of Os and 1s?
1.15 What is the purpose of ASCII?

1.16 What encoding scheme is extensive enough to represent all the characters of many
of the languages in the world?

1.17 What do the terms digital data and digital device mean?

N
1.4 ) How a Program Works

1CONCEPT: A computer’s CPU can understand only instructions written in machine
language. Because people find it very difficult to write entire programs in
machine language, other programming languages have been invented.

Earlier, we stated that the CPU is the most important component in a computer because it
is the part of the computer that runs programs. Sometimes the CPU is called the “computer’s
brain” and is described as being “smart.” Although these are common metaphors, you
should understand that the CPU is not a brain, and it is not smart. The CPU is an elec-
tronic device that is designed to do specific things. In particular, the CPU is designed to
perform operations such as the following:

¢ Reading a piece of data from main memory

¢ Adding two numbers

e Subtracting one number from another number

e Multiplying two numbers

¢ Dividing one number by another number

® Moving a piece of data from one memory location to another
¢ Determining whether one value is equal to another value.



12

Chapter 1

Introduction to Computers and Programming

As you can see from this list, the CPU performs simple operations on pieces of data. The
CPU does nothing on its own, however. It has to be told what to do, which is the purpose
of a program. A program is nothing more than a list of instructions that cause the CPU to
perform operations.

Each instruction in a program is a command that tells the CPU to perform a specific op-
eration. Here’s an example of an instruction that might appear in a program:

10110000

To you and me, this is only a series of Os and 1s. To a CPU, however, this is an instruc-
tion to perform an operation.! It is written in Os and 1s because CPUs understand only
instructions that are written in machine language, and machine language instructions are
always written in binary.

A machine language instruction exists for each operation that a CPU is capable of per-
forming. For example, there is an instruction for adding numbers; there is an instruction
for subtracting one number from another; and so forth. The entire set of instructions that
a CPU can execute is known as the CPU’s instruction set.

NOTE: There are several microprocessor companies today that manufacture CPUs.
Some of the more well-known microprocessor companies are Intel, AMD, and
Motorola. If you look carefully at your computer, you might find a tag showing a
logo for its microprocessor.

Each brand of microprocessor has its own unique instruction set, which is typically
understood only by microprocessors of the same brand. For example, Intel micro-
processors understand the same instructions, but they do not understand instructions
for Motorola microprocessors.

The machine language instruction that was previously shown is an example of only
one instruction. It takes a lot more than one instruction, however, for the computer to
do anything meaningful. Because the operations that a CPU knows how to perform are
so basic in nature, a meaningful task can be accomplished only if the CPU performs
many operations. For example, if you want your computer to calculate the amount of
interest that you will earn from your savings account this year, the CPU will have to
perform a large number of instructions, carried out in the proper sequence. It is not
unusual for a program to contain thousands or even a million or more machine lan-
guage instructions.

Programs are usually stored on a secondary storage device such as a disk drive. When you
install a program on your computer, the program is typically copied to your computer’s
disk drive from a CD-ROM or perhaps downloaded from a Web site.

Although a program can be stored on a secondary storage device such as a disk drive,
it has to be copied into main memory, or RAM, each time the CPU executes it. For ex-
ample, suppose you have a word processing program on your computer’s disk. To ex-
ecute the program, you use the mouse to double-click the program’s icon. This causes
the program to be copied from the disk into main memory. Then, the computer’s CPU
executes the copy of the program that is in main memory. This process is illustrated in
Figure 1-15.

The example shown is an actual instruction for an Intel microprocessor. It tells the microprocessor to move a
value into the CPU.



1.4 How a Program Works
Figure 1-15 A program being copied into main memory and then executed

: ) 101 1 10111 1001111
The program is copied 0100001 10111000 19011110 The CPU executes
from secondary storage th i
to main memory. mzigr;irrfgr;]

Main memory
(RAM)

Disk drive

CPU

When a CPU executes the instructions in a program, it is engaged in a process that is
known as the fetch-decode-execute cycle. This cycle, which consists of three steps, is re-
peated for each instruction in the program. The steps are as follows:

1. Fetch A program is a long sequence of machine language instructions. The first step
of the cycle is to fetch, or read, the next instruction from memory into the CPU.

2. Decode A machine language instruction is a binary number that represents a com-
mand that tells the CPU to perform an operation. In this step the CPU decodes the
instruction that was just fetched from memory, to determine which operation it
should perform.

3. Execute The last step in the cycle is to execute, or perform, the operation.

Figure 1-16 illustrates these steps.
Figure 1-16 The fetch-decode-execute cycle

10100001
Fetch the next instruction
in the program.
10100001

10111000 Decode the instruction

10011110 @ to determine which
00011010 operation to perform.
11011100 )

CPU

and so forth...
Execute the instruction
(perform the operation).

Main memory
(RAM)

From Machine Language to Assembly Language

Computers can execute only programs that are written in machine language. As previously
mentioned, a program can have thousands or even a million or more binary instructions,
and writing such a program would be very tedious and time consuming. Programming
in machine language would also be very difficult because putting a 0 or a 1 in the wrong
place would cause an error.

Although a computer’s CPU understands only machine language, it is impractical for
people to write programs in machine language. For this reason, assembly language was

13



14

Chapter 1

Introduction to Computers and Programming

created in the early days of computing” as an alternative to machine language. Instead
of using binary numbers for instructions, assembly language uses short words that are
known as mnemonics. For example, in assembly language, the mnemonic add typically
means to add numbers, mul typically means to multiply numbers, and mov typically means
to move a value to a location in memory. When a programmer uses assembly language to
write a program, he or she can write short mnemonics instead of binary numbers.

NOTE: There are many different versions of assembly language. It was mentioned
earlier that each brand of CPU has its own machine language instruction set. Each
brand of CPU typically has its own assembly language as well.

Assembly language programs cannot be executed by the CPU, however. The CPU under-
stands only machine language, so a special program known as an assembler is used to
translate an assembly language program to a machine language program. This process is
shown in Figure 1-17. The CPU can then execute the machine language program that the
assembler creates.

Figure 1-17 An assembler translating an assembly language program to a machine
language program

Assembly Language Machine Language
Program Program
mov eax, 2 10100001
add eax, 2
mov Y, eax 10111000
— Assembler —
and so forth... 10011110
and so forth...

High-Level Languages

Although assembly language makes it unnecessary to write binary machine language in-
structions, it is not without difficulties. Assembly language is primarily a direct substitute
for machine language, and like machine language, it requires that you know a lot about
the CPU. Assembly language also requires that you write a large number of instructions
for even the simplest program. Because assembly language is so close in nature to machine
language, it is referred to as a low-level language.

In the 1950s, a new generation of programming languages known as high-level lan-
guages began to appear. A high-level language allows you to create powerful and complex
programs without knowing how the CPU works and without writing large numbers of
low-level instructions. In addition, most high-level languages use words that are easy to
understand. For example, if a programmer were using COBOL (which was one of the
early high-level languages created in the 1950s), he or she would write the following in-
struction to display the message Hello world on the computer screen:

DISPLAY “Hello world”

The first assembly language was most likely developed in the 1940s at Cambridge University for use with a
historical computer known as the EDSAC.



1.4 How a Program Works

Doing the same thing in assembly language would require several instructions and an
intimate knowledge of how the CPU interacts with the computer’s video circuitry. As you
can see from this example, high-level languages allow programmers to concentrate on the
tasks they want to perform with their programs rather than the details of how the CPU
will execute those programs.

Since the 1950s, thousands of high-level languages have been created. Table 1-1 lists sev-
eral of the more well-known languages.

Table 1-1 Programming languages

Language Description

Ada Ada was created in the 1970s, primarily for applications used by the U.S.
Department of Defense. The language is named in honor of Countess Ada
Lovelace, an influential and historical figure in the field of computing.

BASIC Beginners All-purpose Symbolic Instruction Code is a general-purpose language
that was originally designed in the early 1960s to be simple enough for beginners
to learn. Today, there are many different versions of BASIC.

FORTRAN FORmula TRANGslator was the first high-level programming language. It was
designed in the 1950s for performing complex mathematical calculations.

COBOL Common Business-Oriented Language was created in the 1950s and was designed
for business applications.

Pascal Pascal was created in 1970 and was originally designed for teaching programming.
The language was named in honor of the mathematician, physicist, and
philosopher Blaise Pascal.

C and C++ C and C++ (pronounced “c plus plus”) are powerful, general-purpose languages
developed at Bell Laboratories. The C language was created in 1972, and the C++
language was created in 1983.

C# Pronounced “c sharp,” this language was created by Microsoft around the year
2000 for developing applications based on the Microsoft .NET platform.

Java Java was created by Sun Microsystems in the early 1990s. It can be used to develop
programs that run on a single computer or over the Internet from a Web server.

JavaScript JavaScript, created in the 1990s, can be used in Web pages. Despite its name,
JavaScript is not related to Java.

Python Python is a general-purpose language created in the early 1990s. It has become
popular in business and academic applications.

Ruby Ruby is a general-purpose language that was created in the 1990s. It is increasingly

Visual Basic

becoming a popular language for programs that run on Web servers.

Visual Basic (commonly known as VB) is a Microsoft programming language and
software development environment that allows programmers to create Windows-
based applications quickly. VB was originally created in the early 1990s.

Keywords, Operators, and Syntax: An Overview

Each high-level language has its own set of predefined words that the programmer must use
to write a program. The words that make up a high-level programming language are known
as keywords or reserved words. Each keyword has a specific meaning and cannot be used
for any other purpose. Table 1-2 shows the keywords in the C# programming language.

15



16

Chapter 1

Introduction to Computers and Programming

Table 1-2 The C# keywords

abstract as base bool
break byte case catch
char checked class const
continue decimal default delegate
do double else enum
event explicit extern false
finally fixed float for
foreach goto if implicit
in in int interface
internal is lock long
namespace new null object
out override operator params
private protected public readonly
ref return sbyte sealed
short sizeof stackalloc static
string struct switch this
throw true try typeof
uint ulong unchecked unsafe
ushort using virtual void
volatile while

In addition to keywords, programming languages have operators that perform various
operations on data. For example, all programming languages have math operators that
perform arithmetic. In C#, as well as most other languages, the + sign is an operator that
adds two numbers. The following adds 12 and 75:

12 + 75

There are numerous other operators in the C# language, many of which you will learn
about as you progress through this text.

In addition to keywords and operators, each language also has its own syntax, which is
a set of rules that must be strictly followed when writing a program. The syntax rules
dictate how keywords, operators, and various punctuation characters must be used in
a program. When you are learning a programming language, you must learn the syntax
rules for that particular language.

The individual instructions that you use to write a program in a high-level programming
language are called statements. A programming statement can consist of keywords,
operators, punctuation, and other allowable programming elements, arranged in the
proper sequence to perform an operation.

Compilers and Interpreters

Because the CPU understands only machine language instructions, programs that are
written in a high-level language must be translated into machine language. Depending
on the language in which a program has been written, the programmer will use either a
compiler or an interpreter to make the translation.

A compiler is a program that translates a high-level language program into a separate ma-
chine language program. The machine language program can then be executed any time it



1.4 How a Program Works

is needed. This is shown in Figure 1-18. As shown in the figure, compiling and executing
are two different processes.

Figure 1-18 Compiling a high-level program and executing it

High-level language Machine language
program program
@ The compiler is used Display "Hello, 10100001
to translate the high-level Earthling" ) 10111000
language programto a g — Compiler — 10011110
machine language program. | qndso forth... and so forth...

Machine language
program

CPU
The machine language 10100001
@ program can be executed 10111000 —
at any time, without using 10011110

the compiler.

and so forth...

Some programming languages use an interpreter, which is a program that both translates
and executes the instructions in a high-level language program. As the interpreter reads
each individual instruction in the program, it converts it to a machine language instruc-
tion and then immediately executes it. This process repeats for every instruction in the
program. This process is illustrated in Figure 1-19. Because interpreters combine transla-
tion and execution, they typically do not create separate machine language programs.

Figure 1-19 Executing a high-level program with an interpreter

High-level language

CPU
program Machine language
Display "Hello, instruction
Earthling" — Interpreter — 10100001 —
A
and so forth... :

The interpreter translates each high-level instruction to
its equivalent machine language instructions and
immediately executes them.

This process is repeated for each high-level instruction.

The statements that a programmer writes in a high-level language are called source code,
or simply code. Typically, the programmer types a program’s code into a text editor and
then saves the code in a file on the computer’s disk. Next, the programmer uses a compiler
to translate the code into a machine language program or an interpreter to translate and
execute the code. If the code contains a syntax error, however, it cannot be translated.
A syntax error is a mistake such as a misspelled keyword, a missing punctuation charac-
ter, or the incorrect use of an operator. When this happens, the compiler or interpreter
displays an error message, indicating that the program contains a syntax error. The pro-
grammer corrects the error and then attempts once again to translate the program.

17



18

Chapter 1

©

|
1.5

Introduction to Computers and Programming

NOTE: Human languages also have syntax rules. Do you remember when you took
your first English class and you learned all those rules about commas, apostrophes,
capitalization, and so forth? You were learning the syntax of the English language.

Although people commonly violate the syntax rules of their native language when
speaking and writing, other people usually understand what they mean. Unfortu-
nately, compilers and interpreters do not have this ability. If even a single syntax error
appears in a program, the program cannot be compiled or executed.

Checkpoint

1.18 A CPU understands instructions that are written only in what language?

1.19 A program has to be copied into what type of memory each time the CPU executes
it?

1.20 When a CPU executes the instructions in a program, it is engaged in what process?
1.21 What is assembly language?

1.22 What type of programming language allows you to create powerful and complex
programs without knowing how the CPU works?

1.23 Each language has a set of rules that must be strictly followed when writing a
program. What is this set of rules called?

1.24 What do you call a program that translates a high-level language program into a
separate machine language program?

1.25 What do you call a program that both translates and executes the instructions in a
high-level language program?

1.26 What type of mistake is usually caused by a misspelled keyword, a missing
punctuation character, or the incorrect use of an operator?

Graphical User Interfaces

1(0 NCEPT: A graphical user interface allows the user to interact with a program using

graphical elements such as icons, buttons, and dialog boxes.

Programmers commonly use the term user to describe any hypothetical person that
might be using a computer and its programs. A computer’s user interface is the part
of the computer with which the user interacts. One part of the user interface consists
of hardware devices, such as the keyboard and the video display. Another part of the
user interface involves the way that the computer’s operating system and application
software accepts commands from the user. For many years, the only way that the user
could interact with a computer was through a command line interface. A command
line interface, which is also known as a console interface, requires the user to type
commands. If a command is typed correctly, it is executed and the results are dis-
played. If a command is not typed correctly, an error message is displayed. Figure 1-20
shows the Windows command prompt window, which is an example of a command
line interface.



1.5 Graphical User Interfaces

Figure 1-20 A command line interface

..... =] E e |

C:sUsersiTonysImages >div
Uolume in drive € has no lahel.
Uolume Serdial Number is 2414-GF@A8

Dirvectory of C:slUsersiTonyslmages

A3 -84,2610 AM <DIR> &

H3.-04.-2010 <DIR> i

A% .22 /2088 M 73.165 Beach.jpy

2 ./17-2008 263.212 Boston.jpy
230,454 Dog.bmp
921 .654 Mountains.bmp
221.654 Snow.bmp
921.654 Station.bmp
3.331.793 hytes

40,247 _.824,.384 hytes free

G UsersnTonyxImages >

Many computer users, especially beginners, find command line interfaces difficult to use. This
is because there are many commands to be learned, and each command has its own syntax,
much like a programming statement. If a command isn’t entered correctly, it will not work.

In the 1980s, a new type of interface known as a graphical user interface came into use in
commercial operating systems. A graphical user interface, or GUI (pronounced “gooey”),
allows the user to interact with the operating system and application programs through
graphical elements on the screen. GUIs also popularized the use of the mouse as an input
device. Instead of requiring the user to type commands on the keyboard, GUIs allow the
user to point at graphical elements and click the mouse button to activate them.

Much of the interaction with a GUI is done through windows that display information
and allow the user to perform actions. Figure 1-21 shows an example of a window that
allows the user to change the system’s Internet settings. Instead of typing cryptic com-
mands, the user interacts with graphical elements such as icons, buttons, and slider bars.

Figure 1-21 A window in a graphical user interface

&) Internet Properties P |-

General | Security |Pri\c'ac3-I | Content | Connections | Programs | Advanced |

Select a zone to view or change security settings.

@ @ v O

Gi=f-s  Localintranet Trusted sites  Restricted
sites

Internet

G This zone is for Internet websites, e
except those listed in trusted and
restricted zones.

Security level for this zone
Allowed levels for this zone: Medium to High
Medium-high
- Appropriate for most websites
) - Prompts before downloading potentially unsafe

content
- Unsigned ActiveX controls will not be downloaded

' [#] Enable Protected Mode (requires restarting Internet Explorer)

Custom level... | De

19



20

Chapter 1

Introduction to Computers and Programming

Event-Driven GUI Programs

In a text-based environment, such as a command line interface, programs determine the
order in which things happen. For example, Figure 1-22 shows the interaction that has
taken place in a text environment with a program that calculates an employee’s gross pay.
First, the program told the user to enter the number of hours worked. In the figure, the
user entered 40 and pressed the key. Next, the program told the user to enter his or
her hourly pay rate. In the figure, the user entered 50.00, and pressed the key. Then,
the program displayed the user’s gross pay. As the program was running, the user had no
choice but to enter the data in the order requested.

Figure 1-22 Interaction with a program in a text environment

2 N
B C\Windows)system3Z\cmd.exe ﬂlﬁ
E

In a GUI environment, however, the user determines the order in which things happen.
For example, Figure 1-23 shows a GUI program that calculates an employee’s gross pay.
Notice that there are boxes in which the user enters the number of hours worked and
the hourly pay rate. The user can enter the hours and the pay rate in any order he or she
wishes. If the user makes a mistake, the user can erase the data that was entered and re-
type it. When the user is ready to calculate the area, he or she uses the mouse to click the
Calculate Gross Pay button and the program performs the calculation.

Figure 1-23 A GUI program

) a2 Wage Calculator =] =]

Number of Hours Worked

Hourly Pay Rate

Calculate
Gross Pay

st

Because GUI programs must respond to the actions of the user, they are said to be event
driven. The user causes events, such as the clicking of a button, and the program responds
to those events.

This book focuses exclusively on the development of GUI applications using the C# pro-
gramming language. As you work through this book, you will learn to create applications
that interact with the user through windows containing graphical objects. You will also
learn how to program your applications to respond to the events that take place as the
user interacts with them.

Checkpoint

1.27 What is a user interface?

1.28 How does a command line interface work?



1.6 Objects 21

1.29 When the user runs a program in a text-based environment, such as the command
line, what determines the order in which things happen?

1.30 What is an event-driven program?

—
1.6 Objects

1( ONCEPT: An objectis a program component that contains data and performs opera-
tions. Programs use objects to perform specific tasks.

Have you ever driven a car? If so, you know that a car is made of a lot of components. A
car has a steering wheel, an accelerator pedal, a brake pedal, a gear shifter, a speedometer,
and numerous other devices with which the driver interacts. There are also a lot of com-
ponents under the hood, such as the engine, the battery, the radiator, and so forth. A car
is not just one single object, but rather a collection of objects that work together.

This same notion also applies to computer programming. Most programming languages
that are used today are object oriented. When you use an object-oriented language, you
create programs by putting together a collection of objects. In programming, an object
is not a physical device, however, like a steering wheel or a brake pedal. Instead, it is a
software component that exists in the computer’s memory. In software, an object has two
general capabilities:

* An object can store data. The data stored in an object are commonly called fields, or
properties.

* An object can perform operations. The operations that an object can perform are
called methods.

When you write a program using an object-oriented language, you use objects to accom-
plish specific tasks. Some objects have a visual part that can be seen on the screen. For
example, Figure 1-24 shows the wage-calculator program that we discussed in the previ-
ous section. The graphical user interface is made of the following objects:

Form object A window that is displayed on the screen is called a Form object.
Figure 1-24 shows a Form object that contains several other graph-
ical objects.

Label objects A Label object displays text on a form. The form shown in Figure
1-24 contains two Label objects. One of the Label objects displays
the text Number of Hours Worked and the other Label object dis-
plays the text Hourly Pay Rate.

Figure 1-24 Objects used in a GUI

Form object \

£ Wage Calculator E=nioE x|
Number of Hours Workced T—\
Ly
Label objects ——| |~ TextBox objects
I Hourty Pay Rate -

Calculate 4
Gross Pay el ‘

Button objects




22

Chapter 1

Introduction to Computers and Programming

TextBox objects A TextBox object appears as a rectangular region that can ac-
cept keyboard input from the user. The form shown in Figure
1-24 has two TextBox objects: one in which the user enters the
number of hours worked and another in which the user enters
the hourly pay rate.

Button objects A Button object appears on a form as a button with a caption
written across its face. When the user clicks a Button object with
the mouse, an action takes place. The form in Figure 1-24 has
two Button objects. One shows the caption Calculate Gross Pay.
When the user clicks this button, the program calculates and
displays the gross pay. The other button shows the caption Exit.
When the user clicks this button, the program ends.

Forms, Labels, TextBoxes, and Buttons are just a few of the objects that you will learn
to use in C#. As you study this book, you will create applications that incorporate many
different types of objects.

Visible versus Invisible Objects

Objects that are visible in a program’s graphical user interface are commonly referred to
as controls. We could say that the form shown in Figure 1-24 contains two Label controls,
two TextBox controls, and two Button controls. When an object is referred to as a con-
trol, it simply means that the object plays a role in a program’s graphical user interface.

Not all objects can be seen on the screen, however. Some objects exist only in memory for
the purpose of helping your program perform some task. For example, there are objects
that read data from files, objects that generate random numbers, objects that store and
sort large collections of data, and so forth. These types of objects help your program per-
form tasks, but they do not directly display anything on the screen. When you are writing
a program, you will use objects that can help your program perform its tasks. Some of
the objects that you use will be controls (visible in the program’s GUI), and other objects
will be invisible.

Classes: Where Objects Come From

Objects are very useful, but they don’t just magically appear in your program. Before a
specific type of object can be used, that object has to be created in memory. And, before
an object can be created in memory, you must have a class for the object.

A class is code that describes a particular type of object. It specifies the data that an object
can hold (the object’s fields and properties), and the actions that an object can perform
(the object’s methods). You will learn much more about classes as you progress through
this book, but for now, just think of a class as a code “blueprint” that can be used to cre-
ate a particular type of object.

The .NET Framework

C# is a very popular programming language, but there are a lot of things it cannot do by
itself. For example, you cannot use C# alone to create a graphical user interface, read data
from files, work with databases, or many of the other things that programs commonly
need to do. C# provides only the basic keywords and operators that you need to construct
a program.

So, if the C# language doesn’t provide the classes and other code necessary for creating
GUIs and performing many other advanced operations, where do those classes and code



1.7 The Program Development Process

come from? The answer is the NET Framework. The .NET Framework is a collection of
classes and other code that can be used, along with a programming language such as C#,
to create programs for the Windows operating system. For example, the .NET Frame-
work provides classes to create Forms, TextBoxes, Labels, Buttons, and many other types
of objects.

When you use Visual C# to write programs, you are using a combination of the C# lan-
guage and the .NET Framework. As you work through this book you will not only learn
C#, but you will also learn about many of the classes and other features provided by the
NET Framework.

Writing Your Own Classes

The .NET Framework provides many prewritten classes ready for use in your programs.
There will be times, however, that you will wish you had an object to perform a specific
task, and no such class will exist in the .NET Framework. This is not a problem because
in C# you can write your own classes that have the specific fields, properties, and methods
that you need for any situation. In Chapter 9 you will learn to create classes for the spe-
cific objects that you need in your programs.

Checkpoint

1.31 What is an object?

1.32 What type of language is used to create programs by putting together a collection
of objects?

1.33 What two general capabilities does an object have?

1.34 What term is commonly used to refer to objects such as TextBoxes, Labels, and
Buttons that are visible in a program’s graphical user interface?

1.35 What is the purpose of an object that cannot be seen on the screen and exists only
in memory?

1.36 What is a class?
1.37 What is the .NET Framework?

1.38 Why might you need to write your own classes?

=
1.7 ) The Program Development Process

4—(:ON(ZEPT: Creating a program requires several steps, which include designing the
program’s logic, creating the user interface, writing code, testing, and
debugging.

The Program Development Cycle

Previously in this chapter you learned that programmers typically use high-level languages
such as C# to create programs. There is much more to creating a program than writing
code, however. The process of creating a program that works correctly typically requires
the six phases shown in Figure 1-25. The entire process is known as the program develop-
ment cycle.



24

Chapter 1

Introduction to Computers and Programming

Figure 1-25 The program development cycle

Understand the
Program's Purpose

Program's GUI Program's Logic Errors Correct Logic Errors

I

Design the » Design the » Write the Code » Correct Syntax » Test the Program &

Let’s take a closer look at each stage in the cycle.

1. Understand the Program’s Purpose

When beginning a new programming project, it is essential that you understand what
the program is supposed to do. Most programs perform the following three-step
process:

Step 1. Input is received.
Step 2. Some process is performed on the input.
Step 3. Output is produced.

Input is any data that the program receives while it is running. Once input is received,
some process, such as a mathematical calculation, is usually performed on it. The
results of the process are then sent out of the program as output. If you can identify
these three elements of a program (input, process, and output), then you are on your
way to understanding what the program is supposed to do.

For example, suppose you have been asked to write a program to calculate and dis-
play the gross pay for an hourly paid employee. Here is a summary of the program’s
input, process, and output:

Input:

e Input the number of hours that the employee worked.
e Input the employee’s hourly pay rate.

Process:

e Multiply the number of hours worked by the hourly pay rate. The result is the
employee’s gross pay.

Output:

e Display the employee’s gross pay on the screen.

. Design the Graphical User Interface (GUI)

Once you clearly understand what the program is supposed to do, you can begin de-
signing its graphical user interface. Often, you will find it helpful to draw a sketch of
each form that the program displays. For example, if you are designing a program that
calculates gross pay, Figure 1-26 shows how you might sketch the program’s form.

Notice that the sketch identifies each type of control (GUI object) that will appear on
the form. The TextBox controls will allow the user to enter input. The user will type the
number of hours worked into one of the TextBoxes and the employee’s hourly pay rate
into the other TextBox. Notice that Label controls are placed on the form to tell the
user what data to enter. When the user clicks the Button control that reads Calculate
Gross Pay, the program will display the employee’s gross pay on the screen in a pop-up
window. When the user clicks the Button control that reads Exit, the program will end.

Once you are satisfied with the sketches that you have created for the program’s
forms, you can begin creating the actual forms on the computer. As a Visual C# pro-
grammer, you have a powerful environment known as Visual Studio at your disposal.
Visual Studio gives you a “what you see is what you get” editor that allows you to
visually design a program’s forms. You can use Visual Studio to create the program’s



1.7 The Program Development Process

Figure 1-26 Form sketch

TextBox control
Label control /
\\—ﬂ Number of Hours Worked :(/

TextBox control
| —

Calculate Exit
L Gross Pay

2 R

Label control —|

Button control Button control

forms, place all the necessary controls on the forms, and set each control’s properties
so it has the desired appearance. For example, Figure 1-27 shows the actual form
that you might create for the wage-calculator program, which calculates gross pay.

Figure 1-27 Form for the wage-calculator program

5 Wage Calculator ==

MNumber of Hours Worked

Hourly Pay Rate

Calculate
Gross Pay

st

3. Design the Program’s Logic

In this phase you break down each task that the program must perform into a series
of logical steps. For example, if you look back at Figure 1-27, notice that the pay-
calculating program’s form has a Button control that reads Calculate Gross Pay.
When the user clicks this button, you want the program to display the employee’s
gross pay. Here are the steps that the program should take to perform that task:

Step 1. Get the number of hours worked from the appropriate TextBox.

Step 2. Get the hourly pay rate from the appropriate TextBox.

Step 3. Calculate the gross pay as the number of hours worked times the hourly pay
rate.

Step 4. Display the gross pay in a pop-up window.

This is an example of an algorithm, which is a set of well-defined, logical steps that
must be taken to perform a task. An algorithm that is written out in this manner,
in plain English statements, is called pseudocode. (The word pseudo means fake, so
pseudocode is fake code.) The process of informally writing out the steps of an algo-
rithm in pseudocode before attempting to write any actual code is very helpful when



26

Chapter 1

Introduction to Computers and Programming

you are designing a program. Because you do not have to worry about breaking any
syntax rules, you can focus on the logical steps that the program must perform.

Flowcharting is another tool that programmers use to design programs. A flowchart
is a diagram that graphically depicts the steps of an algorithm. Figure 1-28 shows
how you might create a flowchart for the wage-calculator algorithm. Notice that
there are three types of symbols in the flowchart: ovals, parallelograms, and a rect-
angle. Each of these symbols represents a step in the algorithm, as described here:

e The ovals, which appear at the top and bottom of the flowchart, are called termi-
nal symbols. The Start terminal symbol marks the program’s starting point and
the End terminal symbol marks the program’s ending point.

e Parallelograms are used as input symbols and output symbols. They represent
steps in which the program reads input or displays output.

® Rectangles are used as processing symbols. They represent steps in which the pro-
gram performs some process on data, such as a mathematical calculation.

Figure 1-28 Flowchart for the wage-calculator program

Start

/

Get the hours worked
from the appropriate
TextBox

/

Get the hourly pay rate
from the appropriate
TextBox

/

Calculate the gross pay as the
number of hours worked
times the hourly pay rate

/

Display the gross pay
in a pop-up window

End

The symbols are connected by arrows that represent the “flow” of the program. To
step through the symbols in the proper order, you begin at the Start terminal and
follow the arrows until you reach the End terminal.

. Write the Code

Once you have created a program’s GUI and designed algorithms for the program’s
tasks, you are ready to start writing code. During this process, you will refer to the

pseudocode or flowcharts that you created in Step 3 and use Visual Studio to write
C# code.



1.8 Getting Started with the Visual Studio Environment 27

5. Correct Syntax Errors

You previously learned in this chapter that a programming language such as C# has
rules, known as syntax, that must be followed when writing a program. A language’s
syntax rules dictate things such as how keywords, operators, and punctuation char-
acters can be used. A syntax error occurs if the programmer violates any of these
rules. If the program contains a syntax error or even a simple mistake such as a mis-
spelled keyword, the program cannot be compiled or executed.

Virtually all code contains syntax errors when it is first written, so the programmer
will typically spend some time correcting these. Once all the syntax errors and simple
typing mistakes have been corrected, the program can be compiled and translated
into an executable program.

6. Test the Program and Correct Logic Errors

Once the code is in an executable form, you must then test it to determine whether
any logic errors exist. A logic error is a mistake that does not prevent the program
from running but causes it to produce incorrect results. (Mathematical mistakes are
common causes of logic errors.) If the program produces incorrect results, the pro-
grammer must debug the code. This means that the programmer finds and corrects
logic errors in the program. Sometimes, during this process, the programmer discov-
ers that the program’s original design must be changed. In this event, the program
development cycle starts over and continues until no errors can be found.

Checkpoint

1.39 List the six steps in the program development cycle.
1.40 What is an algorithm?

1.41 What is pseudocode?

1.42 What is a flowchart?

1.43 What do each of the following symbols mean in a flowchart?

e Oval
¢ Parallelogram
e Rectangle

—
1.8 | Getting Started with the Visual
Studio Environment

ONCEPT: Visual Studio and Visual Studio Express for Windows Desktop consist of
tools that you use to build Visual C# applications. The first step in using
Visual C# is learning about these tools.

To follow the tutorials in this book, and create Visual C# applications, you will need to
install either Visual Studio 2012 or Visual Studio 2012 Express for Windows Desktop on
your computer. Visual Studio 2012 is a professional integrated development environment
(IDE), which means that it provides all the necessary tools for creating, testing, and de-
bugging software. It can be used to create applications not only with Visual C#, but also
with other languages such as Visual Basic and C++. If you are using a school’s computer
lab, there’s a good chance that Visual Studio 2012 has been installed.



28

Chapter 1

Introduction to Computers and Programming

If you do not have access to Visual Studio 2012, you can install Visual Studio 2012
Express for Windows Desktop, a free programming environment that is available for
download from the Microsoft Web site. (When this book is purchased new, it has an
accompanying Microsoft DVD that contains Visual Studio 2012 Express for Windows
Desktop.)

For the purposes of this book, it does not matter whether you are using Visual Studio
2012 or Visual Studio 2012 Express for Windows Desktop. Both products look very
similar and work in a similar manner. When there are differences, the book will alert
you. To keep things simple, this book will use the term Visual Studio to refer to either
Visual Studio 2012 or Visual Studio 2012 Express for Windows Desktop. When you are
instructed to use Visual Studio to perform some task, use the system that is installed on
your computer.

Visual Studio is a customizable environment. If you are working in your school’s compu-
ter lab, there’s a chance that someone else has customized the programming environment
to suit his or her own preferences. If this is the case, the screens that you see may not
match exactly the ones shown in this book. For that reason it’s a good idea to reset the
programming environment before you create a Visual C# application. Tutorial 1-1 guides
you through the process.

>

VideoNote
Tutorial 1-1:
Starting
Visual Studio
and Setting
Up the
Environment

Tutorial 1-1:
Starting Visual Studio and Setting Up the Environment

Step 1: Find out from your instructor whether you are using Visual Studio 2012 or
Visual Studio 2012 Express for Windows Desktop. Then, click the Start button,
open the All Programs menu, and perform one of the following:

e If you are using Visual Studio, open the Microsoft Visual Studio 2012 pro-
gram group and then execute Visual Studio 2012.

e If you are using Visual Studio 2012 Express for Windows Desktop, open the
Microsoft Visual Studio 2012 Express program group and then execute VS
Express for Desktop.

@ NOTE: The first time you run Visual Studio, you will see a window entitled
Choose Default Environment Settings. Select Visual C# Development Settings
from the list and click the Start Visual Studio button.

Step 2: Figure 1-29 shows the Visual Studio environment. The screen shown in the fig-
ure is known as the Start Page. By default, the Start Page is displayed when you
start Visual Studio, but you may not see it because it can be disabled.

Notice the check box in the bottom left corner of the Start Page that reads Show
page on startup. If this box is not checked, the Start Page will not be displayed
when you start Visual Studio. If you do not see the Start Page, you can always
display it by clicking VIEW on the menu bar at the top of the screen and then
clicking Start Page.



1.8 Getting Started with the Visual Studio Environment

Figure 1-29 Visual Studio Start Page

D start Page - Microsoft Visual Studio Quick Launch (Ctrl+Q) p - O x
FLE EDT VEW DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP

B - - @ | » Attach.. - A

ol stort Page = % ~  Solution Explorer -1 X
g &

Recent

Step 3:

Step 4:

GET STARTED LATEST NEWS

Welcome W\

Windows Phon

' E o
.:n What's New
What's new in Visual Studio

What's new in NET Framework

oﬂ Getting Started

Getting started with Visual Studio

Getting started with Blend

Learn more about Visual Studio

Discover extensions, add-ons and samples

r:) Manage your projects in the cloud
» Leam how to st up your project and connect it to Visual Studio
See what's new, or sign up for an account

m Learning Resources

i} Visual Studic troubleshocting and support
Visual Studio videos on Channel 9
What is an MSDN subscription?

Solution Explorer | Team Explorer

In a school computer lab, it is possible that the Visual Studio environment has
been set up for a programming language other than Visual C#. To make sure
that Visual Studio looks and behaves as described in this book, you should
make sure that Visual C# is selected as the programming environment. Perform
the following:

As shown in Figure 1-30, click TOOLS on the menu bar and then click -
port and Export Settings. . . .

On the screen that appears next, select Reset all settings and click the

Next > button.

On the screen that appears next, select No, just reset settings, overwriting
my current settings. If you are using Visual Studio Express, click the Finish
button at this point, and proceed to Step 4 of the tutorial. If you are using
Visual Studio, click the Next > button.

If you are using Visual Studio, the window shown in Figure 1-31 should ap-
pear next. Select Visual C# Development Settings and then click the Finish
button. After a moment you should see a Reset Complete window. Click the
Close button and continue with the next step in the tutorial.

Now you will reset Visual Studio’s window layout to the default configura-
tion. As shown in Figure 1-32, click WINDOW on the menu bar and then
click Reset Window Layout. Next you will see a dialog box asking Are you
sure you want to restore the default window layout for the environment?
Click Yes.

29



30

Chapter 1

Introduction to Computers and Programming

The Visual Studio environment is now set up so you can follow the remaining
tutorials in this book. If you are working in your school’s computer lab, it is
probably a good idea to go through these steps each time you start Visual Studio.
If you are continuing with the next tutorial, leave Visual Studio running. You can
exit Visual Studio at any time by clicking FILE on the menu bar and then click-
ing Exit.

Figure 1-30 Selecting Tools and then Import and Export Settings ...

B B %

fo)

D start Page - Microsoft Visual Studio
FILE EDIT VIEW DEBUG  TEAM

Attach to Process...

Connect to Database...
Connect to Server...

Add SharePoint Connection...
Code Snippets Manager...
Choose Toolbox Items...
Add-in Manager...

Library Package Manager

i, Extensions and Updates...

PreEmptive Dotfuscator and Analytics
Spy++ (x64)

WCF Service Configuration Editor
External Tools..,

Import and Export Settings... N
Customize...

Options...

SQL | TOOLS

Chrl+Alt+P

Ctrl+K, Ctrl+B

TEST  ANALYZE WINDOW  HELP
Attach... -

LATEST
GET ST,

Welcome

Figure 1-31 Selecting Visual C# Development Settings

Import and Export Settings Wizard

Pl
53 Choose a Default Collection of Settings

Which collection of settings do you want to reset to?

£+ General Development Settings
£} JavaScript for Windows 8 Apps
£} LightSwitch Development Settings
erver Development Settings
SQL Server Development Setting
£F Visual Basic Development Settings
| ¥ Visual C# Development Settings |
isual C++ DevelopmerlgSettings
Visual C++ Develop g
isual evelopment Settings
Visual F# Development Setting
‘eb Development
Web Developr
eb Development {Code On|
Web Development {Code Only)

Description:
Customnizes the environment to maximize
code editor screen space and improve the
visibility of commands specific to C&.
Increases productivity with keyboard
shortcuts that are designed to be easy to
leam and use,




>

VideoNote

Tutorial 1-2:

Starting a
New Visual
C# Project

1.8 Getting Started with the Visual Studio Environment

Figure 1-32 Resetting the window layout

O Stert Page - Microsoft Visual Studio

FILE EDIT VIEW DEBUG
3 - o

E StartPage # X

T

2

Recent

TEAM SQL  TOOLS TEST  ANALYZE
P Atte e
Float
™ Hide
¥ PinTab
Auto Hide All
B Close All Documents
Reset Window Layout b
1 Start Page
Windows...

WINDOW

o

Getting Started
Getting started with Visual Studio
Getting started with Blend

HELP

Studio

ramework

Starting a New Project

Each Visual C# application that you create is called a project. When you are ready to cre-
ate a new application, you start a new project. Tutorial 1-2 leads you through the steps of
starting a new Visual C# project.

Tutorial 1-2:

Starting a New Visual C# Project

Step 1:
Step 2:

If Visual Studio is not already running, start it as you did in Tutorial 1-1.

If you are using Visual Studio 2012: Click FILE on the menu bar at the top of

the screen, then select New, and then select Project. After doing this, the New
Project window shown in Figure 1-33 should be displayed.

Figure 1-33 The New Project window

New Ps t | 2
o B i
¥ Recent NET Framework 4.5 " Sortby: Default = earch Inst P~
4 Installed . -
s I oo Fome Application Vasual C2 Type: Viual C¥
Make sure 4 Templates » A project for creating an applicaticn with a
Visual C# is l-fJ WPF Application Visual C2 Windows Forms user interface
selected LightSwitch "‘{_ Select Windows
b Other Languages n Console Apphication Forms Application  yiusice
b Othes Project Types
Sampiles ;‘_] ASP.NET Web Forms Application Visual C#
b Online ~Ecr
5"5! Class Library Visual C2
ol =53
‘g! Portable Class Library Visual C2
]
;_] ASP.NET MVC 3 Web Apphcation Visual C2
:_] ASPNET MVC 4 Web Application Visual C#
L5
@ Sitverlight Apphication Visual C2
cn
gll Sibverlight Class Library Visual C#
e
@ Saverlight Business Application Visual C2
" .
BN WCF RIA Services Class Library Viswal C# v
Mame: WindowsApphcation]
Location: Ci\Users\Teny\Documents\Visual Studio 2012\Projects) Browse...

Solution name:

WindowsApphcationl

[ Create directory for seluticn

[[] Add to source contral
=
O |

Cancel |

31



32 Chapter 1 Introduction to Computers and Programming

If you are using Visual Studio 2012 Express: Click FILE on the menu bar at the
top of the screen and then select New Project. After doing this, a New Project
window similar to Figure 1-33 should be displayed. (With Visual Studio Express,
the window will have fewer items than shown in the figure.)

Step 3: At the left side of the window, under Installed Templates, make sure Visual
C# is selected. Then, select Windows Forms Application, as shown in Fig-
ure 1-33.

Step 4: At the bottom of the New Project window, you see a Name text box. This
is where you enter the name of your project. The Name text box will be au-
tomatically filled in with a default name. In Figure 1-33 the default name is
WindowsApplicationl. Change the project name to My First Project, as shown
in Figure 1-34.

Figure 1-34 Changing the project name to My First Project

Change the project name to cn
My First Project ———— @ Silverlight Business Apphcation Visual C#
co _
S WCF RIA Services Class Libeary ViualCz ¥

Name: My First Project

Location: C\Users\\ Tony\Documents\Visual Studio 2017\Projects!, = Browse... | \

Solution name: My First Project [#] Create directory for solution

[C] Add to source control
oK Cancel
e | e

If you are using Visual Studio 2012: Just below the Name text box you will see
a Location text box and a Solution name text box.

e The Location text box shows where a folder will be created to hold the proj-
ect. If you wish to change the location, click the Browse button and select the
desired location.

e A solution is a container that holds a project, and the Solution name text box
shows the name of the solution that will hold this project. By default, the
solution name is the same as the project name. For all the projects that you
create in this book, you should keep the solution name the same as the project
name.

@ NOTE: As you work through this book you will create a lot of Visual C#

projects. As you do, you will find that default names such as Windows-
Application] do not help you remember what each project does. Therefore,
you should always change the name of a new project to something that de-
scribes the project’s purpose.

Step 5: Click the OK button to create the project. It might take a moment for the project
to be created. Once it is, the Visual Studio environment should appear, similar
to Figure 1-35. Notice that the name of the project, My First Project, is dis-
played in the title bar at the top of the Visual Studio window.

Leave Visual Studio running and complete the next tutorial.



>

VideoNote

Tutorial 1-3:

Saving and
Closing a
Project

1.8 Getting Started with the Visual Studio Environment

Figure 1-35 The Visual Studio environment with a new project open

fa Solution "My First Project’ (1 project)
4 My First Project
F My Project
1 App.config
14 Forml.vb

n My First Project - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = o x
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL FORMAT TOOLS TEST ANALYZE WINDOW  HELP
fe-0 B-a@ MWW 9 -C - p St Debug - | A :
g_' Forml.vb [Design] & X + Solution Explorer

$ e @ o-e :

=] a5 Forml 3| Search Solution Explorer (Ctrl+;) P~
¢

=

B

Solution Explorer | Team Explorer

o w BX

Properties =

Form1 System.Windows.Forms.Form -

:[][A# | #

Size 300, 300 -
SizeGripStyle Auto

StartPosition WindowsDefaultLoc

Tag

Text Form1

TopMost False -
Text

The text associated with the control.

Ready

Tutorial 1-3:
Saving and Closing a Project

As you work on a project, you should get into the habit of saving it often. In this tutorial
you will save the My First Project application and then close it.

Step 1: Visual Studio should still be running from the previous tutorial. To save the
project that is currently open, click FILE on the menu bar and then select
Save All.

Step 2: To close the project, click FILE on the menu bar and then click Close Solution.

The Visual Studio Environment

The Visual Studio environment consists of a number of windows that you will use on
a regular basis. Figure 1-36 shows the locations of the following windows that appear
within the Visual Studio environment: the Designer window, the Solution Explorer win-
dow, and the Properties window. Here is a brief summary of each window’s purpose:

e The Designer Window

You use the Designer window to create an application’s graphical user interface.
The Designer window shows the application’s form and allows you to visually

33



34 Chapter 1 Introduction to Computers and Programming

Figure 1-36 The Designer window, Solution Explorer window, and Properties window

Dq WindowsFormsApplication®d - Microsoft Visual Studie Quick Launch (Ctri+ Q) P = B X
FLE EDIT WVIEW PROJECT BULD DEBUG TEAM 5SQL FORMAT TOOLS TEST ANALYZE WINDOW  HELP
B - « O «| b Stat - Debug - M _ i
E Forml.cs [Design] € X =  Solution Explorer i x
& 2 : .
g o= . @ NN
o | % Formi == Eoh = Solution Explorer  search Solution Explorer (Ctris p-
4 i W —-
0 windo &1 Solution "WindowsFormsApplication99'
£ 4 [ WindowsFormsApplication99
i P M Properties
b =8 References
8 App.config
b B Formlcs
Designer window ———— P b Program.cs
1 »
Solution Explorer  Team Explorer
Properties i X
Form1 System.Windows.Forms.Form
Properties window —= __ & 1
i ED(EAIE N
9 L ShowlnTaskbar  True -
B Size 300, 300

SizeGripStyle Auto

StartPosition WindowsDefaultloc
Tag

Text Form1 -

Text
The text associated with the control,

design its appearance by placing the desired controls that will appear on the form
when the application executes.

e The Solution Explorer Window

A solution is a container for holding Visual C# projects. (We discuss solutions in
greater detail in a moment.) When you create a new C# project, a new solution is
automatically created to contain it. The Solution Explorer window allows you to
navigate among the files in a Visual C# project.

® The Properties Window

A control’s appearance and other characteristics are determined by the control’s
properties. When you are creating a Visual C# application, you use the Properties
window to examine and change a control’s properties.

Remember that Visual Studio is a customizable environment. You can move the
various windows around, so they may not appear in the exact locations shown in
Figure 1-36 on your system.

Displaying the Solution Explorer and Properties Windows

If you do not see the Solution Explorer or the Properties window, you can follow these
steps to make them visible:

e If you do not see the Solution Explorer window, click VIEW on the menu bar. On
the View menu, click Solution Explorer.

e If you do not see the Properties window, click VIEW on the menu bar. On the View
menu, click Properties.

Using Auto Hide

Many windows in Visual Studio have a feature known as Auto Hide. When you see the push-
pin icon in a window’s title bar, as shown in Figure 1-37, you know that the window has
Auto Hide capability. You click the pushpin icon to turn Auto Hide on or off for a window.



1.8 Getting Started with the Visual Studio Environment

Figure 1-37 Auto Hide pushpin icon

Quick Leunch [Ctrl+ Q) P2 = 0O x
TEST ANALYZE WINDOW  HELP

@ o-f#0AM0
Search Solution Explorer (Ctrs;) ¥

[3] Solution 'My First Project’ (1 project)

4 [E5 My First Project

& My Project
9 App.config

Pushpin icon

b B3 Formlvb

Solution Explorer | Teamn Bxplorer

Froperties 3 x
My First Project Progect Properties

o

HAEO R

Project File My First Project.vbproy
Project Folder CA\Users\Tony\Docume

When Auto Hide is turned on, the window is displayed only as a tab along one of the
edges of the Visual Studio environment. This feature gives you more room to view your
application’s forms and code. Figure 1-38 shows how the Solution Explorer and Proper-
ties windows appear when their Auto Hide feature is turned on. Notice the tabs that read
Solution Explorer and Properties along the right edge of the screen. (Figure 1-38 also
shows a Team Explorer tab. You might see this tab if you are using Visual Studio 2012.

We do not discuss the Team Explorer in this book.)

Figure 1-38 The Solution Explorer and Properties windows hidden

M My First Project - Microsoft Visual Studio

FLE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL FORMAT TOOLS TEST ANALYZE WINDOW  HELP

. i3 - - e I P Start - Debug

Forml.wb [Design] + X

Quick Launch (Ctrl+Q) P = a b

-]

-

532IN0S RIRQ  X0G|OO]

Solution Explorer tab ————»

Properties tab ————»

saipadold Jauojdig wea|  sasojdig uonnjos .

35



36

Chapter 1

Introduction to Computers and Programming

The Menu Bar and the Standard Toolbar

You’ve already used the Visual Studio menu bar several times. This is the bar at the top of
the Visual Studio window that provides menus such as FILE, EDIT, VIEW, PROJECT,
and so forth. As you progress through this book, you will become familiar with many of
the menus.

Below the menu bar is the standard toolbar. The standard toolbar contains buttons that
execute frequently used commands. All commands that are displayed on the toolbar may
also be executed from a menu, but the standard toolbar gives you quicker access to them.
Figure 1-39 identifies the standard toolbar buttons that you will use most often, and
Table 1-3 gives a brief description of each.

Figure 1-39 Visual Studio toolbar buttons

Navigate New Open 5
Backward Project File SaveAll D(‘bl::rr;ing Find
\ Y ¥ A Y Y
0 - - - P Start ~ Debug ~ A _ .
A A A A A
Navigate Save Undo Redo Solution

Forward

Configuration

Table 1-3 Visual Studio toolbar buttons

Toolbar Button Description

Navigate Backward Moves to the previously active tab in the Designer
window

Navigate Forward Moves to the next active tab in the Designer window

New Project Starts a new project

Open File Opens an existing file

Save Saves the file named by filename

Save All Saves all the files in the current project

Undo Undoes the most recent operation

Redo Redoes the most recently undone operation

Start Debugging Starts debugging (running) your program

Solution Configurations Configures your project’s executable code

Find Searches for text in your application code

The Toolbox

The Toolbox is a window that allows you to select the controls that you want to use in an
application’s user interface. When you want to place a Button, Label, TextBox, or other
control on an application’s form, you select it in the Toolbox. You will use the Toolbox
extensively as you develop Visual C# applications.

The Toolbox typically appears on the left side of the Visual Studio environment. If the
Toolbox is in Auto Hide mode, its tab will appear as shown in Figure 1-40. Figure 1-41
shows the Toolbox opened, with Auto Hide turned off.



1.8 Getting Started with the Visual Studio Environment

Figure 1-40 The Toolbox tab (Auto Hide turned on)

n My First Project - Microsolt Visual Studic

FALE  EMT VIEW PROJECT BULD DEBUG TEAM SQL  FORMAT
B - B Stat - Debug - | M _
g x
Toolbox tab ———- =
g
g
£
[}
b
. .
Figure 1-41 The Toolbox opened (Auto Hide turned off)
n My First Project - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = 8 x
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW  HELP
8- i - - W < | pStat- Debug - | A _: .
& Toolbox s v X | Formlyb [Design] H X ~ Solution Explorer :::: R x
‘é‘ Search Toolbox P~ @ -0 aiE
@ b AllWindows Forms = | ad Forml =R Seatch Solution Explorer (Ctil+:) -
4 Common Controls
A Pointer ] Solution 'My First Project' (1 project)
4 My First Project
i Hutton & My Project
CheckBox 0 App.config
8=  CheckedListBox b Forml.vb
B ComboBox
DateTimePicker
A Label
A LinkLabel Solution Explorer  Team Explorer
s ListView My First Project Project Properties -
(- MaskedTextBox % 5
MonthCalendar
& Nofifyicon s My First Project.vbproj
B N e Project Folder CihUsers\Tony\Docurmt
! umericUpDown
El  PictureBox
ED  ProgressBar
@ RadioButton
= RichTextBox
TextBox
= ToolTip Project File
a— . The name of the file containing build,
= Jreeliew - configuration, and other information abo...
L B T
Ready

NOTE: If you do not see the Toolbox or its tab along the side of the Visual Studio
environment, click VIEW on the menu bar and then click Toolbox. (In Visual Studio
Express, click VIEW on the menu bar, then click Other Windows, and then click
Toolbox.)

The Toolbox is divided into sections, and each section has a name. In Figure 1-41 you can
see the All Windows Forms and Common Controls sections. If you scroll the Toolbox,
you will see many other sections. Each section can be opened or closed.

37



38

Chapter 1

Q NOTE: A window cannot float if its Auto Hide feature is turned on.

S

Introduction to Computers and Programming

If you want to open a section of the Toolbox, you simply click on its name tab. To close
the section, click on its name tab again. In Figure 1-41, the Common Controls section is
open. You use the Common Controls section to access controls that you frequently need,
such as Buttons, Labels, and TextBoxes. You can move any section to the top of the list
by dragging its name with the mouse.

Using ToolTips

A ToolTip is a small rectangular box that pops up when you hover the mouse pointer
over a button on the toolbar or in the Toolbox for a few seconds. The ToolTip box con-
tains a short description of the button’s purpose. Figure 1-42 shows the ToolTip that ap-
pears when the cursor is left sitting on the Save All button. Use a ToolTip whenever you
cannot remember a particular button’s function.

Figure 1-42 Save All ToolTip

w My First Project - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG  TEAMN
B - i G - - | P Start - D

To I X Formlwb [Design] +
Seart ls) P~ :
I> All Windows Forms a
4 Common Controls

k  Pointer

Button

CheckBox

S33IN0S B3R

Docked and Floating Windows

Figure 1-41 shows the Toolbox, Solution Explorer, and Properties windows when they
are docked, which means they are attached to one of the edges of the Visual Studio win-
dow. Alternatively, the windows can be floating. You can control whether a window is
docked or floating as follows:

e To change a window from docked to floating, right-click its title bar and select
Float.

® To change a window from floating to docked, right-click its title bar and select
Dock.

Figure 1-43 shows Visual Studio with the Toolbox, Solution Explorer, and Properties
windows floating. When a window is floating, you can click and drag it by its title bar
around the screen. You may use whichever style you prefer—docked or floating. When
windows are floating, they behave as normal windows. You may move or resize them to
suit your preference.

"

TIP: Remember, you can always reset the window layout by clicking WINDOW on
the menu bar and then selecting Reset Window Layout. If you accidentally close the
Designer window, the Solution Explorer window, or the Properties window, you can
use the VIEW menu to redisplay them.




1.8 Getting Started with the Visual Studio Environment

Figure 1-43 Toolbox, Solution Explorer, and Properties windows floating

B

2 u [ o > 6 6l i ©

EBifeo B EHEREE

Search Toolbox

= & My Project
I All Windows Forms = 1 App.config
4 Comman Controls b Formlwvb

D My First Project - Microsoft Visual Studio Quick Launch (Ctrl+ Q) PI=ER G
FILE EDIT VIEW PROJECT BULD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW  HELP

0-0 P-aEkud| 9 -C | pStat - Debug - | F _E =t | T

Formlwb [Design] # X

Solution Explorer 1
i P
B Forml ===l @ e-20dD

Search Solution Explorer (Ctrl+:) L~

sannog eeq

E_ Solution "My First Project’ (1 project)
4 [vE] My First Project

Pointer

Button
CheckBox
CheckedListBox

ComboBox

Solution Explorer | Team Explorer

DateTimePicker

Label Properties =+ e B X
LinkLabel 8 Form1 System.Windows.Forms.Form
ListBox = 5| &

ListView Showlcon True -
MaskedTextBox ShowInTaskbar  True

MonthCalendar Size 300, 300

Notifylcon SizeGripStyle Auto

NumericUpDown StartPosition WindowsDefaultLoc
PictureBox
Text Form1

TonMaost Falze

ProgressBar

RadioButton
RichTextBox
TextBox

The text associated with the control.

Projects and Solutions

As you learn to program in Visual C#, you will see the terms project and solution used
often. These terms do not mean the same thing, but they are sometimes used interchange-
ably. Let’s briefly discuss the difference between a project and a solution.

Each Visual C# application that you create is called a project. A Visual C# project consists of
several files. You can think of a project as a collection of files that belong to a single application.

A solution is a container that holds one or more Visual C# projects. If you are developing
applications for a large organization, you might find it convenient to store several related
projects together in the same solution.

Although it is possible for a solution to hold more than one project, each project that
you will create in this book will be saved in its own solution. Each time you create a new
project, you will also create a new solution to hold it. Figure 1-44 illustrates this concept.
Typically, the solution will be given the same name as the project.

Figure 1-44 Solution and project organization

Solution

Project

| Files Belonging
to the Project

L7l

39



40 Chapter 1 Introduction to Computers and Programming

Typical Organization of Solutions
and Projects on the Disk

When you create a new project, you specify the project’s name, the solution’s name, and
a location on the disk where the solution should be stored. If you are using Visual Studio,
you specify this information at the bottom of the New Project window, as shown in Fig-
ure 1-45. If you are using Visual Studio Express, you specify this information in the Save
Project window the first time you save the project.

Figure 1-45 Specifying the project name, solution name, and location

c=
Project name @ Silverlight Business Application Visual C#
s I
n-ns.! WCF RIA Services Class Library Visual C& >
Name: My First Project
Location: C:\Users\Tony\Documents\Visual Studio 2012\Projects\ - l
Solution name: My First Project Create directory for solution
[] Add to source control
[ ok [ cancel |
A I LY 4
7 \
Solution name This is where the solution folder will be created

Let’s use Figure 1-45 to see an example of how the files for the My First Project solution
and project will be organized on the disk. Notice that in Figure 1-45, the following loca-
tion is shown for the solution:

C:\Users\Tony\Documents\Visual Studio 2012\Projects\

On your system, the location will not be exactly the same as this, but it will be some-
thing similar. At this location, a solution folder named My First Project will be created.
If we use Windows to look inside that folder, we will see the two items shown in Figure
1-46. Notice that one of the items is another folder named My First Project. That is the
project folder, which contains various files related to the project. The other item is the
solution file. In Windows, you can double-click the solution file to open the project in
Visual Studio.

Figure 1-46 Contents of the My First Project solution folder

=Ny ~==)
@Qvl |, « Visual Studio 2012 » Projects b My First Project » w43 | Search MyE. P
Fie Edit View Took Help N
Organize » | Sherewith v Bum  New folder E~ [ @

Documents library

Amangeby:  Folder =

My First Project
. Marr 2 Typ
Project folder || "™ ype
4. My First Project File folder
= 2 My First Project.sin Microsoft Visual Studio Solution

Solution file =]

' 2 items State: 3R Shared




1.8 Getting Started with the Visual Studio Environment

Opening an Existing Project

If Visual Studio is already running, you can perform the following steps to open an exist-
ing project:

e Click FILE on the Visual Studio menu bar, then select Open, and then select
Project/Solution. . . .

e The Open Project window will appear. Navigate to the desired solution folder, se-
lect the solution file, and click Open.

In Visual Studio Express, perform the following steps to open an existing project:

e Click FILE on the Visual Studio menu bar and then select Open Project. . . .
e The Open Project window will appear. Navigate to the desired solution folder, se-
lect the solution file, and click Open.

5 Tutorial 1-4:
Opening an Existing Project

D

VideoNote
Tutorial 1-4:
Opening

an Existing
Project

In this tutorial you will reopen the My First Project application that you created in
Tutorial 1-2.

Step 1: Visual Studio should still be running from the previous tutorial. Perform one of
the following operations to reopen My First Project:

If you are using Visual Studio:

Click FILE on the menu bar; select Open and then select Project/Solution....
The Open Project window will appear. Navigate to the My First Project solu-
tion, select the solution file, and click the Open button.

If you are using Visual Studio Express:

Click FILE on the menu bar, and then select Open Project.... The Open Project
window will appear. Navigate to the My First Project solution, select the solu-
tion file, and click the Open button.

After performing this step, My First Project should be opened. If you plan to
complete the next tutorial, leave Visual Studio running with My First Project
opened.

Displaying the Designer (When It Does Not

Automatically Appear)

Sometimes when you open an existing project, the project’s form will not be automatically
displayed in the Designer. Figure 1-47 shows an example of the Visual Studio environ-

ment with an opened project but no form displayed in the Designer. When this happens,
perform the following steps to display the project’s form in the Designer:

e Asshown in Figure 1-48, right-click Form1.cs in the Solution Explorer.
e Click View Designer in the pop-up menu.

Accessing the Visual Studio Documentation

You can access the documentation for Visual Studio by Clicking HELP on the menu bar,
and then selecting View Help. (Or, you can press (Ctrl]+(F1 ), and then press (V] on the
keyboard.) This launches your Web browser and opens the online Microsoft Developer

41



42

Chapter 1

Introduction to Computers and Programming

Figure 1-47 A project opened with no form displayed in the Designer

n My First Project - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = = x
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM 5QL TOOLS TEST ANALYZE WINDOW  HELP
o4 B-@ W - - P Start - Debug -~ §=
Solution Explorer = » I X
AR R o

4
=]
a
o
2
g
o
&
v
=]
=
fad
&

Search Solution Explorer (¢ 2 ~
&1 Solution 'My First Project’ (¢
4 My First Project

& My Project
¥ App.config
4 Forml.vb

1 4
Solution Expl... | Team Explorer

Properties

My First Project Project Prog -

= 3] £
M= aal My First Project.v

Project Fole C:\Users\ Tony\D¢

Project File
The name of the file
containing build, cenfigurati...

Figure 1-48 Using the Solution Explorer to open a form in the Designer

| Studio
unp

Quick Launch (Ctrl+Q) P = 0O Xx
DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW  HELP
B Start - Debug - M _

Search Solution Explorer (1  ~

R Solution "My First Project’ [
4 [7®] My First Project

& My Project
9 Appconfig Right-click Form1.cs in
the Solution Explorer
@ Open P
Open With... »
<> View Code F7 jon Expl... | Team Explorer
[&  View Designer Shift+F7 = T X @ Click View Designer
#3  View Class Diagram Lvb File Properties =
Scope to This E 3
& New Solution Explorer View id Actiol Compile &
Exclude From Project lpy to Ou Do not copy
¥ cm Culex  fom .Tr"
jstom To
C
g s s g Name Forml.wvb
M Delete Del e T
X2 Rename Action
: the file relates to the
& Properties Alt+Enter and depl proces...

Network (MSDN) Library. The MSDN Library provides complete documentation for Vis-
ual C# as well as the other programming languages included in Visual Studio. You will also
find code samples, tutorials, articles, and access to tutorial videos.



p

D

VideoNote
Tutorial 1-5:
Getting
Familiar
with the
Visual Studio
Environment

1.8 Getting Started with the Visual Studio Environment

Tutorial 1-5:
Getting Familiar with the Visual Studio Environment

This exercise will give you practice interacting with the Solution Explorer window, the
Properties window, and the Toolbox.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

If Visual Studio is still running on your computer from the previous tutorial,
continue to Step 2. If Visual Studio is not running on your computer, repeat the
steps in Tutorial 1-4 to open My First Project.

Practice turning the Auto Hide feature on and off for the Solution Explorer win-
dow, the Properties window, and the Toolbox. Recall from our previous discus-
sion that clicking the pushpin icon in each window’s title bar turns Auto Hide
on and off. When you are finished practicing, make sure Auto Hide is turned off
for each of these windows. Your screen should look like Figure 1-41.

Practice floating and docking the Solution Explorer window, the Properties
window, and the Toolbox. Recall from our previous discussion that you can
make any of these windows float by right-clicking its title bar and selecting
Float. You dock a floating window by right-clicking its title bar and selecting
Dock.

The Toolbox, Solution Explorer, and Properties windows each have a Close
button (EJ) in their upper-right corner. Close each of these windows by clicking
its Close button.

Do you remember which buttons on the toolbar restore the Solution Explorer,
Properties window, and Toolbox? If not, move your mouse cursor over any
button on the toolbar and leave it there until the ToolTip appears. Repeat this
procedure on different buttons until you find the ones whose ToolTips read
Solution Explorer, Properties Window, and Toolbox. (Refer to Figure 1-39 and
Table 1-3 for further assistance.)

Click the appropriate buttons on the toolbar to restore the Solution Explorer,
the Properties window, and the Toolbox.

Exit Visual Studio by clicking FILE on the menu bar and then clicking Exit.
You may see a dialog box asking whether you wish to save changes to a number
of items. Click Yes.

Checkpoint

1.44 Briefly describe the purpose of the Solution Explorer window.

1.45 Briefly describe the purpose of the Properties window.

1.46 Briefly describe the purpose of the standard toolbar.
1.47 What is the difference between the toolbar and the Toolbox?

1.48 What is a ToolTip?

1.49 What is a project?

1.50 What is a solution?

43



44

Chapter 1

Introduction to Computers and Programming

Key Terms

algorithm
American Standard Code for

Information Interchange (ASCII)

application software

assembler

assembly language

Auto Hide

binary

binary digit

binary numbering system

bit

Button

byte

central processing unit (CPU)

class

code

command line interface

compact disc (CD)

compiler

console interface

controls

debug

Designer window

digital

digital data

digital device

digital versatile disc (DVD)

disk drive

docked (window)

End terminal

ENIAC

event driven

executing

fetch-decode-execute cycle

fields

floating (window)

floating-point notation

floppy disk drive

flowchart

Form

graphical user interface (GUI)

hardware

high-level languages

input

input device

input symbols

instruction set

integrated development
environment (IDE)

interpreter

keywords

Label

logic error
low-level language
machine language
main memory
methods
MICroprocessors
mnemonics

NET Framework
object oriented
operating system
operators

output

output device
output symbols
picture element
pixel

processing symbols
program

program development cycle

programmer
project

project folder
properties
Properties window
pseudocode

random-access memory (RAM)

reserved words
running

samples

secondary storage
software

software developer

software development tools

solution

Solution Explorer window

solution file
solution folder
source code
standard toolbar
start terminal
statements
syntax

syntax error
system software
terminal symbol
TextBox
Toolbox
ToolTip

two’s complement
Unicode



Review Questions

universal serial bus (USB) volatile

user Visual Studio

user interface Visual Studio 2012

utility program Visual Studio 2012 Express

Review Questions
Multiple Choice

1. A(n) is a set of instructions that a computer follows to perform a task.
a. compiler
b. program
c. Interpreter
d. programming language

2. The physical devices that a computer is made of are referred to as

a. hardware

b. software

c. the operating system
d. tools

3. The part of a computer that runs programs is called

a. RAM
b. secondary storage
¢c. main memory

d. the CPU
4. Today, CPUs are small chips known as
ENIACs
microprocessors

memory chips
operating systems

o0 o

5. The computer stores a program while the program is running, as well as the data
that the program is working with, in

a. secondary storage
b. the CPU

C. main memory

d. the microprocessor

6. is a volatile type of memory that is used only for temporary storage
while a program is running.
a. RAM
b. secondary storage
c. the disk drive
d. the USB drive

7. A type of memory that can hold data for long periods of time—even when there is
no power to the computer—is called

RAM

main memory
secondary storage
CPU storage

oo o

45



46

Chapter 1

Introduction to Computers and Programming

10.

11.

12.

13.

14.

15.

16.

A component that collects data from people or other devices and sends it to the
computer is called

a. an output device

b. an input device

c. asecondary storage device
d. main memory

A video display is a(n) device.

a. output device

b. input device

c. secondary storage device

d. main memory

A is enough memory to store a letter of the alphabet or a small number.
a. byte

b. bit

c. switch

d. transistor

A byte is made up of eight

a. CPUs

b. instructions

c. variables

d. bits

In the numbering system, all numeric values are written as sequences of
Os and 1s.

a. hexadecimal

b. binary

c. octal

d. decimal

A bit that is turned off represents the following value:

a. 1

b. -1

c. 0

d. “no”

A set of 128 numeric codes that represent the English letters, various punctuation
marks, and other characters is

a. binary numbering

b. ASCII
c.  Unicode
d. ENIAC

An extensive encoding scheme that can represent the characters of many of the lan-
guages in the world is

a. binary numbering

b. ASCII

c. Unicode

d. ENIAC

Negative numbers are encoded using the technique.

a. two’s complement
b. floating point
c. ASCII
d

Unicode



17.

18.

19.

20.

21.

27

223

24.

25.

Review Questions

Real numbers are encoded using the technique.

a. two’s complement
b. floating point

c. ASCI

d. Unicode

The tiny dots of color that digital images are composed of are called
a. bits

b. bytes

c. color packets

d. pixels

If you were to look at a machine language program, you would see

a. C# code

b. a stream of binary numbers
c. English words

d. circuits

In the part of the fetch-decode-execute cycle, the CPU determines which
operation it should perform.

a. fetch

b. decode

c. execute
d. immediately after the instruction is executed

Computers can execute only programs that are written in

C#

assembly language
machine language
Java

o0 o

The translates an assembly language program to a machine language
program.

a. assembler

b. compiler

c. translator

d. interpreter

The words that make up a high-level programming language are called

a. binary instructions

b. mnemonics

c. commands

d. keywords

The rules that must be followed when writing a program are called

a. syntax

b. punctuation

c. keywords

d. operators

A(n) is a program that translates a high-level language program into a

separate machine language program.

a. assembler
b. compiler
c. translator
d. utility

47



48 Chapter 1 Introduction to Computers and Programming

26. A is any hypothetical person using a program and providing input for
it.
a. designer
b. user
C. guinea pig
d. test subject

27. A error does not prevent the program from running but causes it to
produce incorrect results.

a. syntax
b. hardware
c. logic
d. fatal
28. A(n) is a set of well-defined logical steps that must be taken to perform
a task.

a. logarithm
b. plan of action
c. logic schedule
d. algorithm

29. An informal language that has no syntax rules and is not meant to be compiled or
executed is called

a. faux code
b. pseudocode
c. C#
d. a flowchart
30. A is a diagram that graphically depicts the steps that take place in a
program.

a. flowchart

b. step chart

c. code graph

d. program graph

31. Objects that are visible in a program’s graphical user interface are commonly re-
ferred to as

a. Dbuttons
b. controls
c. forms
d. windows
32. A is code that describes a particular type of object.
a. namespace
b. blueprint
c. schema
d. class
33. The is a collection of classes and other code that can be used, along with
a programming language such as C#, to create programs for the Windows operating
system.

a. .NET framework

b. Standard Template Library
c.  GUI framework

d. MSDN Library



34.

35.

36.

Review Questions

The is the part of a computer with which the user interacts.

a. central processing unit
b. user interface

c. control system

d. interactivity system

Before GUIs became popular, the interface was the most commonly
used.
a. command line
b. remote terminal
c. sensory
d. event-driven
programs are usually event driven.
a. command line
b. text-based
c. GUI
d. procedural

True or False

1.

10.

11.

12.

Today, CPUs are huge devices made of electrical and mechanical components such
as vacuum tubes and switches.

Main memory is also known as RAM.

Any piece of data that is stored in a computer’s memory must be stored as a binary
number.

Images, such as the ones you make with your digital camera, cannot be stored as
binary numbers.

Machine language is the only language that a CPU understands.
Assembly language is considered a high-level language.

An interpreter is a program that both translates and executes the instructions in a
high-level language program.

A syntax error does not prevent a program from being compiled and executed.
Windows, Linux, UNIX, and Mac OS are all examples of application software.

Word processing programs, spreadsheet programs, e-mail programs, Web browsers,
and games are all examples of utility programs.

Programmers must be careful not to make syntax errors when writing pseudocode
programs.

C# provides only the basic keywords and operators that you need to construct a
program.

Short Answer

1.
2

Why is the CPU the most important component in a computer?

What number does a bit that is turned on represent? What number does a bit that is
turned off represent?

What would you call a device that works with binary data?

What are the words that make up a high-level programming language called?

49



50

Chapter 1

Introduction to Computers and Programming

O ® N A wn

11.

12.

13.
14.

15.
16.

What are the short words that are used in assembly language called?

What is the difference between a compiler and an interpreter?

What type of software controls the internal operations of the computer’s hardware?
What is pseudocode? What is a flowchart?

When a program runs in a text-based environment, such as a command line interface,
what determines the order in which things happen?

What does a class specify about an object?

Can you use C# alone to perform advanced operations such as creating GUISs, reading
data from a file, or working with databases? Why or why not?

Figure 1-49 shows the Visual Studio IDE. What are the names of the four areas that
are indicated in the figure?

What is the purpose of the Toolbox in the Visual Studio environment?

How can you access the documentation for Visual Studio? What resources are provided
by the MSDN Library?

What steps must you take to open an existing project?

How can you view the project’s form if it is not automatically displayed in the
Designer?

Figure 1-49 The Visual Studio IDE

@

B My First Project - Micrasoft Visual Studic Juick Launch (Ctrle Q) p = 8 x
FALE EDIT VIEW PRONCT BULD DEBUG TEAM 5O TOOLS TEST AMALYZE WINDOW  HELP
[ il P Start = Debug |- M _
o Tocito BES Formiuh [Design] = X = Solution Exploser -3 x
b D~ 2 @& e-e0 "
= b All Windows Farms - u Forml v =8 ol E] axich Solution Bplorir [[ £
"4 Common Controks
o et B Sclution ‘My First Project’ [
4 [ My First Project < @
®_> g Button & My Project
ChickBos A App.config
[E  CheckedlistBox b [ Formlvb
B ComboBen L
S DateTimePicker ” .
A Label Solution Expl. | Team Explorer
A Linklabel
Properbes - x
@ istBes
B ListView Foarm1 System.Windews.Forr »
Ch MaskedTetBox = TR 4—@
B MonthCalendar SizeGripStyl Auto ~
e Notifyicon o =l StartPositic WindowsDefa:
B NumencUpDown Tag
B Pictureox e Fm)
TopMost  False
B PiogressBer kel e -
® RadicButton Text
B RichTedBox The text associated with the
BE TedtBox - contral.

Programming Problems

il

Use what you’ve learned about the binary numbering system in this chapter to con-
vert the following decimal numbers to binary:

11
65
100
255



Programming Problems

Use what you’ve learned about the binary numbering system in this chapter to con-
vert the following binary numbers to decimal:

1101
1000
101011

Look at the ASCII chart in Appendix C and determine the codes for each letter of
your first name.

Suppose your instructor gives three exams during the semester and you want to
write a program that calculates your average exam score. Answer the following:

a. What items of input must the user enter?
b. Once the input has been entered, how will the program determine the average?
c.  What output will the program display?

51



This page intentionally left blank



Introduction to Visual C#

CHAPTER

2.1 Getting Started with Forms and 2.6 Making Sense of IntelliSense
Controls 2.7  PictureBox Controls

2.2 Creating the GUI for Your First Visual > 8 Comments, Blank Lines, and
C# Application: The Hello World Indentation
Application 2.9 Writing the Code to Close an

2.3 Introduction to C# Code Application’s Form

2.4 Writing Code for the Hello World 2.10 Dealing with Syntax Errors
Application

2.5 Label Controls

Getting Started with Forms and Controls

CONCEPT: The first step in creating a Visual C# application is creating the applica-
tion’s GUL You use the Visual Studio Designer, Toolbox, and Properties
window to build the application’s form with the desired controls and set
each control’s properties.

In this chapter you will create your first Visual C# application. Before you start, however,
you need to learn some fundamental concepts about creating a GUI in Visual Studio. This
section shows the basics of editing forms and creating controls.

The Application’s Form

When you start a new Visual C# project, Visual Studio automatically creates an empty
form and displays it in the Designer. Figure 2-1 shows an example. Think of the empty
form as a blank canvas that can be used to create the application’s user interface. You can
add controls to the form, change the form’s size, and modify many of its characteristics.
When the application runs, the form will be displayed on the screen.

53



54 Chapter 2

Introduction to Visual C#

Figure 2-1 A new project with a blank form displayed in the Designer

The project’s form

D Ecample Project - Microsoft Visual Studio Quick Launch (Ctri+Q) Pl = O x
FLE EDIT VIEW PROJCT BULD DEBUG TEAM SOL FORMAT TOOLS TEST ANALVZE WINDOW  HELP

Bl B Stat - Debug - A _

~ Solution Explorer * 3 x
@ -0 7

Search Solution Explorer ({ O =

—
=5 HoE

&1 Solution "Example Project’ (
4 ] Example Project

b Properties

b =W References

9 App.config

3 Forml.cs

b € Program.cs
4 3
Solution Expl.. | Team Explorer

¥0q|00] SUNOS KR

Properties * i x
Form1 System.Windows.Forr =

w0 F |

8 Size 300, 300 =
SizeGripStyle Auto
StartPositior WindowsDefi

Tag

Text Form1

TopMost  False ek
Text

The text associated with the
control.

If you take a closer look at the form, you will notice that it is enclosed by a thin dotted
line, known as a bounding box. As shown in Figure 2-2, the bounding box has small sizing
handles, which appear on the form’s right edge, bottom edge, and lower-right corner.
When a bounding box appears around an object in the Designer, it indicates that the
object is selected and is ready for editing.

Figure 2-2 The form’s bounding box and sizing handles

’/ Thin dotted line (bounding box)

a-! Forml

lolle /==

-«— Sizing handle

1) -+—— Sizing handle

T

Sizing handle

Initially the form’s size is 300 pixels wide by 300 pixels high. You can easily resize the
form with the mouse. When you position the mouse cursor over any edge or corner that
has a sizing handle, the cursor changes to a two-headed arrow (¢=). Figure 2-3 shows
examples. When the mouse cursor becomes a two-headed arrow, you can click and drag
the mouse to resize form.



n

2.1 Getting Started with Forms and Controls

Figure 2-3 Using the mouse to resize the form

G

Identifying Forms and Controls by Their Names

An application’s GUI is made of forms and various controls. Each form and control in an
application’s GUI must have a name that identifies it. The blank form that Visual Studio
initially creates in a new project is named Form1.

NOTE: Later in this book you will learn how to change a form’s name, but for now,
you will keep the default name, Form1.

The Properties Window

The appearance and other characteristics of a GUI object are determined by the object’s
properties. When you select an object in the Designer, that object’s properties are dis-
played in the Properties window. For example, when the Form1 form is selected, it’s
properties are displayed in the Properties window, as shown in Figure 2-4.

TIP: Recall from Chapter 1 that if the Properties window is in Auto Hide mode,
you can click its tab to open it. If you do not see the Properties window, click VIEW
on the menu bar. On the VIEW menu, click Properties. (In Visual Studio Express,
click VIEW, Other Windows, Properties.)

The area at the top of the Properties window shows the name of the object that is cur-
rently selected. You can see in Figure 2-4 that the name of the selected object is Form1.
Below that is a scrollable list of properties. The list of properties has two columns: The
left column shows each property’s name, and the right column shows each property’s
value. For example, look at the form’s Size property in Figure 2-4. Its value is 300, 300.
This means that the form’s size is 300 pixels wide by 300 pixels high. Next, look at
the form’s Text property. The Text property determines the text that is displayed in the
form’s title bar (the bar that appears at the top of the form). Its current value is Form1, so
the text Form1 is displayed in the form’s title bar.

When a form is created, its Text property is initially set to the same value as the form’s
name. When you start a new project, the blank form that appears in the Designer will
always be named Form1, so the text Form1 will always appear in the form’s title bar. In
most cases you want to change the value of the form’s Text property to something more
meaningful. For example, assume the Form1 form is currently selected. You can perform
the following steps to change its Text property to My First Program.

55



56 Chapter 2 Introduction to Visual C#

Figure 2-4 The Properties window, showing the selected object’s properties

~*—— When an object is selected you
can use the Properties window
to view and change its properties.

Properties

Name of the @ ystem. Windows.Forms.Form -

selected object o, @ £ |5

B Size 300, 300 -

SizeGripStyle Auto
e L S e
; g Tag
List of properties o SEeih

TopMost False
TransparencyKey O
UseWaitCursor False -

Text

The text associated with the control.

Step 1: In the Properties window, locate the Text property.

Step 2: Double-click the word Form1 that currently appears as the Text property’s
value, and then use the key to delete it.

Step 3: Type My First Program in its place and press the key. The text My First
Program will now appear in the form’s title bar, as shown in Figure 2-5.

Q NOTE: Changing an object’s Text property does not change the object’s name. For

example, if you change the Form1 form’s Text property to My First Program, the
form’s name is still Form1. You have changed only the text that is displayed in the
form’s title bar.

Figure 2-5 The form’s Text property value displayed in the form’s title bar

300, 300 -~
Auto
WindowsDefaultLocati

TopMost False

TransparencyKey D

UseWaitCursor False -
Text

The text associated with the control.




n

2.1 Getting Started with Forms and Controls

Earlier we discussed how to use the mouse to resize a form in the Designer. An alternative
method is to change the form’s Size property in the Properties window. For example, as-
sume the Form1 form is currently selected. You can perform the following steps to change
its size to 400 pixels wide by 100 pixels high.

Step 1: In the Properties window, locate the Size property.

Step 2: Click inside the area that holds the Size property’s value, and then delete the
current value.

Step 3: Type 400, 100 in its place and press the key. The form will be resized as
shown in Figure 2-6.

Figure 2-6 The form's size changed to 400 by 100

o' My First Program = Eon )

o i=
\ Properties * 43X
i Form1 System.Windows.Forms.Form -
The form’s size has been changed to s
hateia e [0 [D]5
400 pixels wide by 100 pixels high = |27 ]| ¥=]
> o T <. 100 .
SizeGripStyle Auto
StartPosition WindowsDefaultLocati
Tag
Text My First Program
TopMost False
TransparencyKey |__—|
UseWaitCursor False -
Size
The size of the control in pixels.

NOTE: Notice in Figure 2-6 that the Alphabetical button (%) is selected near the
top of the Properties window. This causes the properties to be displayed in alphabeti-
cal order. Alternatively, the Categorized button () can be selected, which causes the
properties to be displayed in groups. The alphabetical listing is the default selection,
and most of the time, it makes it is easier to locate specific properties.

Adding Controls to a Form

When you are ready to create controls on the application’s form, you use the Toolbox.
Recall from Chapter 1 that the Toolbox usually appears on the left side of the Visual
Studio environment. If the Toolbox is in Auto Hide mode, you can click its tab to open
it. Figure 2-7 shows an example of how the Toolbox typically appears when it is open.

TIP: Recall from Chapter 1 that if you do not see the Toolbox or its tab, click
VIEW on the menu bar and then click Toolbox.

The Toolbox shows a scrollable list of controls that you can add to a form. To add a
control to a form, you simply find it in the Toolbox and then double-click it. The control
will be created on the form. For example, suppose you want to create a Button control on
the form. You find it in the Toolbox, as shown in Figure 2-8, double-click it, and a Button
control will appear on the form.

57



58

Chapter 2

Introduction to Visual C#

Figure 2-7 The Toolbox

Toolbox
Search Toolbox PR
B All Windows Forms -
k  Pointer
E Button
CheckBox
E=  CheckedListBox
B ComboBox
DateTimePicker
A Label
A LinkLabel
E5 ListBox
ii-  ListView
(.-  MaskedTextBox
MonthCalendar
b= Motifylcon
EE MNumericpDown
B PictureBox
ED  ProgressBar
® FRadicButton
B RichTextBox
B TexdBox
B  ToolTip -

Figure 2-8 Creating a Button control

n Example Project - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM 5SQL TOOLS TEST ANALYZE WIN

8- < - b Start - Debug - M _

g" " AR Bl Forml.cs [Design]” & X

¥ Search Toolbox P~ 3
c

E b All Windows Forms A @@

4 Common Controls

" Pointer
Double-click the ;

Button tool...

] CheckBox
= CheckedListBox

And a Button control will

be created on the form.
ComboBox

B

B8  DateTimePicker
A Label

A LinkLabel

[E ListBox

i ListView

)} MaskedTextBox
MonthCalendar

ke Motifylcon

)

@: TIP: You can also click and drag controls from the Toolbox onto the form.

Resizing and Moving Controls

Take a closer look at the Button control that is shown on the form in Figure 2-8. Notice that
it is enclosed in a bounding box with sizing handles. This indicates that the control is cur-
rently selected. When a control is selected, you can use the mouse to resize it in the same way
that you learned to resize a form earlier. You can also use the mouse to move a control to a



2.1 Getting Started with Forms and Controls

new location on the form. Position the mouse cursor inside the control, and when the mouse
cursor becomes a four-headed arrow (&), you can click and drag the control to a new
location. Figure 2-9 shows a form with a Button control that has been enlarged and moved.

Figure 2-9 A Button control resized and moved

a5’ My First Program ==

Deleting a Control

Deleting a control is simple: you select it and then press the key on the keyboard.

More about Button Controls

You learned earlier that each form and each control in an application’s GUI must have
a name that identifies it. When you create Button controls, they are automatically given
default names such as buttoni, button2, and so forth.

Button controls have a Text property, which holds the text that is displayed on the face
of the button. When a Button control is created, its Text property is initially set to the
same value as the Button control’s name. As a result, when you create a Button control,
its name will be displayed on the face of the button. For example, the form in Figure 2-10
contains three Button controls named button1, button2, and button3.

Figure 2-10 A form with three Button controls

o2 MyFistProgam [ ] @ [

[ button 1 ] [ button2 ]

After you create a Button control, you should always change its Text property. The text
that is displayed on a button should indicate what the button will do when it is clicked.
For example, a button that calculates an average might have the text Calculate Average
displayed on it, and a button that prints a report might have the text Print Report dis-
played on it. Here are the steps you perform to change a Button control’s Text property:

Step 1: Make sure the Button control is selected. (If you don’t see the bounding box
and sizing handles around the control, just click the control to select it.)

Step 2: In the Properties window, locate the Text property.

Step 3: Click inside the area that holds the Text property’s value, and then delete the
current value. Then, type the new text in its place and press the key. The
new text will be displayed on the button.

59



60

Chapter 2

Introduction to Visual C#

Figure 2-11 shows an example of how changing a Button control’s Text property changes
the text displayed on the face of the button.

Figure 2-11 A Button control’s Text property changed

Properties v 3 x
buttonl System.Windows.Forms.Button -

& My FirstProgam [ ][ @ ][ |

@ Padding 0,0,0,0 -
RightTolLeft No
Size 75,23

Tablndex
kStop

Text
The text associated with the control.

Changing a Control’s Name

A control’s name identifies the control in the application’s code and in the Visual Studio
environment. When you create a control on an application’s form, you should always
change the control’s name to something that is more meaningful than the default name
that Visual Studio gives it. A control’s name should reflect the purpose of the control.

For example, suppose you’ve created a Button control to calculate an amount of tax. A
default name such as buttonl does not convey the button’s purpose. A name such as
calculateTaxButton would be much better. When you are working with the applica-
tion’s code and you see the name calculateTaxButton, you will know precisely which
button the code is referring to.

You can change a control’s name by changing its Name property. Here are the steps:

Step 1: Make sure the control is selected. (If you do not see the bounding box and
sizing handles around the control, just click the control to select it.)

Step 2: In the Properties window, scroll up to the top of the list of properties. You
should see the Name property, as shown in Figure 2-12. (The Name property
is enclosed in parentheses to make it appear near the top of the alphabetical
list of properties. This makes it easier to find.)

Step 3: Click inside the area that holds the Name property’s value and then delete the
current name. Then, type the new name in its place and press the key.
You have successfully changed the name of the control.

Figure 2-12 The Name property

buttonl System.Windows.Forms.Button -

=n0F

(ApplicationSettings -
(DataBindings)

I buttont

AccessibleDescriptio

AccessibleName
AccessibleRole Default

AllowDrop False
Anchor Top, Left 2
(Name)

Indicates the name used in code to identify
the object.




2.1 Getting Started with Forms and Controls

Figure 2-13 shows the Properties window after a Button control’s name has been changed
to calculateTaxButton.

Figure 2-13 The Name property changed to calculateTaxButton

Properiies - 1 x

calculateTaxButton System.Windows.FormsB ~

(ApplicationSettings) -
(DataBindings)
calculateTaxButton
AccessibleDescription

AccessibleMame

AccessibleRole Default

AllowDrop False

Anchor Top, Left N
(Name)

Indicates the name used in code to identify the
object.

Rules for Naming Controls

Control names are also known as identifiers. When naming a control, you must follow
these rules for C# identifiers:

e The first character must be one of the letters a through z or A through Z or an un-
derscore character ().

o After the first character, you may use the letters a through z or A through Z, the
digits O through 9, or underscores.

¢ The name cannot contain spaces.

Table 2-1 lists some identifiers that might be used for Button control names and indicates
whether each is a legal or illegal identifier in C#.

Table 2-1 Legal and illegal identifiers

Identifier Legal or Illegal?

showDayOfWeekButton Legal

3rdQuarterButton Illegal because identifiers cannot begin with a digit.
change*color*Button Illegal because the * character is not allowed.
displayTotalButton Legal

calculate Tax Button Illegal because identifiers cannot contain spaces.

Because a control’s name should reflect the control’s purpose, programmers often find
themselves creating names that are made of multiple words. For example, consider the
following Button control names:

calculatetaxbutton
printreportbutton
displayanimationbutton

Unfortunately, these names are not easily read by the human eye because the words are
not separated. Because we cannot have spaces in control names, we need to find another
way to separate the words in a multiword control name to make it more readable to the
human eye.

61



62

Chapter 2

\
“

)|

2.2

[\

Introduction to Visual C#

Most C# programmers address this problem by using the camelCase naming convention
for controls. camelCase names are written in the following manner:

® You begin writing the name with lowercase letters.
o The first character of the second and subsequent words is written in uppercase.

For example, the following control names are written in camelCase:

calculateTaxButton
printReportButton
displayAnimationButton

NOTE: This style of naming is called camelCase because the uppercase characters
that appear in a name are sometimes reminiscent of a camel’s humps.

Checkpoint
2.1 When you start a new Visual C# project, what is automatically created and
displayed in the Designer?
2.2 How can you tell that an object is selected and ready for editing in the Designer?
2.3 What is the purpose of an object’s sizing handles?
2.4 What must each form and control in an application’s GUI have to identify it?
2.5 What is the purpose of the Properties window?

2.6 What does the Alphabetical button do when it is selected in the Properties
window?

2.7 What does the Categorized button do when it is selected in the Properties window?
2.8 What does a form’s Text property determine?
2.9 What does a form’s Size property determine?

2.10 What is shown in the Toolbox?

2.11 How do you add a control to a form?

2.12 What should the text that is displayed on a button indicate?

2.13 What are the rules for naming controls?

2.14 What naming convention do most C# programmers use to separate words in a
multiword identifier?

Creating the GUI for Your First Visual C#
Application: The Hello World Application

When a student is learning computer programming, it is traditional to start by learning to
write a Hello World program. A Hello World program is a simple program that merely
displays the words “Hello World” on the screen. In this chapter you will create your first
Visual C# application, which will be an event-driven Hello World program. When the
finished application runs, it will display the form shown on the left in Figure 2-14. Notice
that the form contains a button that reads Display Message. When you click the button,
the window shown on the right in the figure will appear.



2.2 Creating the GUI for Your First Visual C# Application: The Hello World Application

Figure 2-14 Screens displayed by the completed Hello World program

ol My First Program l = | S l&]
Helle World
Display
Message

A\

When you click this button... /
this window will appear.

The process of creating this application is divided into two parts. First, you will create the
application’s GUI, and second, you will write the code that causes the Hello World mes-
sage to appear when the user clicks the Display Message button. Tutorial 2-1 leads you
through the process of creating the GUI.

>

VideoNote

Tutorial 2-1:
Creating the
GUI for the
Hello World
Application

Tutorial 2-1:
Creating the GUI for the Hello World Application

Step 1:
Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Start Visual Studio (or Visual Studio Express).
Start a new project by performing one of the following actions:

e If you are using Visual Studio, click FILE on the menu bar, then select New,
and then select Project....

e If you are using Visual Studio Express, click FILE on the menu bar and then
select New Project...

The New Project window should appear. At the left side of the window, under
Installed > Templates, make sure Visual C# is selected. Then, select Windows
Forms Application as the type of application. In the Name text box (at the bot-
tom of the window), change the name of the project to Hello World, and then
click the Ok button.

Make sure the Toolbox, the Solution Explorer, and the Properties window are
visible and that Auto Hide is turned off for each of these windows. The Visual
Studio environment should appear as shown in Figure 2-15.

Change the Form1 form’s Text property to My First Program, as shown in
Figure 2-16.

The form’s default size is too large for this application, so you need to make it
smaller. Use the technique discussed in the previous section to adjust the form’s
size with the mouse. The form should appear similar to that shown in Figure
2-17. (Don’t worry about the form’s exact size. Just make it appear similar to
Figure 2-17.)

Now you are ready to add a Button control to the form. Locate the Button tool
in the Toolbox and double-click it. A Button control should appear on the form,
as shown in Figure 2-18. Move the Button control so it appears approximately
in the center of the form, as shown in Figure 2-19.

63



64

Chapter 2

Introduction to Visual C#

Figure 2-15 The Visual Studio environment

N Hello World - Microsoft Visual Studio
FILE  EDIT  VIEW

* - | P Start - Debug

:w B X |Forml.cs[Design] &= X

PROJECT BUILD DEBUG TEAM  SQL

a2 Forml

Le-0 8-k Z
5 b
:‘;‘ Search Toolbox P
E I All Windows Forms o
4 Common Controls
&k Pointer
E Button
CheckBox
= CheckedListBox
™ ComboBox
DateTimePicker
A Label
A LinkLabel
ER ListBox
ListView
() MaskedTextBox
Bd MonthCalendar
E Notifylcon
[B NumericUpDown
El PictureBox
E2 ProgressBar
® RadioButton
85 RichTedBox
e -

Quick Launch (Ctrl+Q) P = 0 X

TEST  ANALYZE  WINDOW  HELP

bl Solution Explorer

SR e-rendm
Search Solution Explorer (Ctrl+;) P-
T Salution ‘Hello World' (1 project)
4 [E Hello World

b Properties

b =8 References

& App.config
3 Forml.cs
b Program.cs

Solution Explorer | Team Explorer
Properties s w X
Hello World Project Properties -
W] #
Project File
Project Folder

Hello Waorld.csproj
Ci\Users\Tony\Docum

Project File
The name of the file containing build,
configuration, and other information ab...

Figure 2-16 The form’s Text property changed to My First Program

Figure 2-17 The form resized

v X
Form1 System.Windows.Forms.Form -
&®[als »
300, 300 =
Auto
WindowsDefaultLocati

TopMost False

TransparencyKey |:|

UseWaitCursor False -
Text

The text associated with the control.




2.2 Creating the GUI for Your First Visual C# Application: The Hello World Application

Figure 2-18 A Button control created on the form

Forml.cs [Design]” & X

Figure 2-19 The Button control moved

Forml.cs [Design]” & X

Step 8: Change the value of the Button control’s Text property to Display Message.
After doing this, notice that the text displayed on the button has changed, as
shown in Figure 2-20.

Figure 2-20 The Button control’s Text property changed

& My Pt Program (= [ &][ )

Properties *+ QX
buttonl System.Windows.Forms.Button

Text
The text associated with the control.

Step 9: The Button control isn’t quite large enough to accommodate all of the text that
you typed into its Text property, so enlarge the Button control, as shown in
Figure 2-21.

Figure 2-21 The Button control enlarged

ol My FirstProgram [ || B[ 5] |

o G

65



66

Chapter 2

Introduction to Visual C#

Step 10: As discussed in the previous section, a control’s name should reflect the
purpose of the control. The Button control that you created in this applica-
tion will cause a message to be displayed when it is clicked. The name but-
tonl does not convey that purpose, however. Change the Button control’s
Name property to messageButton. The Properties window should appear as

shown in Figure 2-22.

Figure 2-22 The Button control’s Name property changed to messageButton

Step 11: Click FILE on the Visual Studio menu bar and then click Save All to save the

project.

Step 12: You’re only partially finished with the application, but you can run it now to
see how the GUI looks on the screen. To run the application, press the key
on the keyboard or click the Start Debugging button (¥ ) on the toolbar. This
causes the application to be compiled and executed. You will notice the ap-
pearance of the Visual Studio environment change somewhat, and you will see
the application’s form appear on the screen as shown in Figure 2-23.

messageButton System.Windows.Forms.BL -

§ |5
(ApplicationSetting =
(DataBindings)
messageButton
AccessibleDescripti
AccessibleMame -

(Name)
Indicates the name used in code to identify
the object.

Figure 2-23 The application running

Although the application is running, it is not capable of doing anything other than dis-
playing the form. If you click the Display Message button, nothing will happen. That is
because you have not yet written the code that executes when the button is clicked. You
will do that in the next tutorial. To end the application, click the standard Windows close

Click here to end
the application.

ol My First Program l‘:' [HEL ﬁ

Display
Message

button (Ed) in the form’s upper-right corner.




—
23

2.3 Introduction to C# Code

Introduction to C# Code

1CONCEPT: You use the Visual Studio code editor to write an application’s code.

Much of the code that you will write in an application will be event han-
dlers. Event handlers respond to specific events that take place while an
application is running.

In the previous sections of this chapter, you learned the basics of creating an applica-
tion’s GUL. An application is more than a user interface, however. If you want your
application to perform any meaningful actions, you have to write code. This section
introduces you to Visual C# code and shows how to program an application to respond
to button clicks.

A file that contains program code is called a source code file. When you start a C# Win-
dows Forms Application project, Visual Studio automatically creates several source code
files and adds them to the project. If you look at the Solution Explorer, as shown in Fig-
ure 2-24, you will see the names of two source code files: Form1.cs and Program.cs. (C#
source code files always end with the .cs extension.)

Figure 2-24 Source code files shown in the Solution Explorer

Solution Explorer * 0 x
N o-2am &
Search Solution Explorer (Ctri+;) P~

fa] Solution 'Hello World' {1 project)
4 Hello World

b S Properties

P =B References

¥ App.config | — Form1.cs contains code associatied with the Form1 form.

b EH Forml.cs |
P € Program.cs -~ ||

—— Program.cs contains the application’s startup code.,

Here is a brief description of the two files:

e The Program.cs file contains the application’s start-up code, which executes when
the application runs. The code in this file performs behind-the-scenes initialization
tasks that are necessary to get the application up and running. It is important that
you do not modify the contents of this file because doing so could prevent the ap-
plication from executing.

e The Form1.cs file contains code that is associated with the Form1 form. When you
write code that defines some action related to Form1 (such as responding to a but-
ton click), you will write the code in this file.

NOTE: You might see additional source code files in the Solution Explorer, other
than those shown in Figure 2-24.

The Form1.cs file already contains code that was generated by Visual Studio when the
project was created. You can think of this auto-generated code as an outline to which you
can add your own code as you develop the application.

67



68 Chapter 2 Introduction to Visual C#

Let’s take a look at the code. If you still have the Hello World project open from the pre-
vious tutorial, right-click Form1.cs in the Solution Explorer. A pop-up menu will appear,
as shown in Figure 2-25. On the pop-up menu, click View Code. The file’s contents will

be displayed in the Visual Studio code editor, as shown in Figure 2-26.

Figure 2-25 Opening Form1.cs in the code editor

UV

Open

Open With...

View Code

View Designer k

View Class Diagram
Scope to This

New Solution Explorer View
Exclude From Project

Cut

Copy
Delete

B 2acl

Rename

Properties

» TX Bk

stion Explorer

@ e-20dB o

Search Solution Explorer (Ctrl+;) P~
fa] Solution 'Hello World' {1 project)
4 [c=] Hello World

b & Properties

p = References

3] ApE,cnnﬁg

Program.cs
F7 -<
Shift+F7
plorer | Team Explorer
- 0 x
ile Properties -
b
Crl+X ion Compile
Ctrl+C Output Dir Do not copy
Del Tool
Tool Nami
c e Forml.cs
QIREEDtes C\Users\Tony\Documer

Figure 2-26 Form1.cs code displayed in the Visual Studio code editor

Right-click Form1.csin
the Solution Explorer

@ Click View Code

w Hello World - Microsoft Visual Studio

Quick Launch (Ctrl+Q)

FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW  HELP
P -0 | B-a |9 | pStat-Debug - | AN o
§ (WP Forml.cs [Design] ~ Solution Explorer = +w 00X
é" # Hello_World.Forml - @ Forml() - oM e-enal o
A Flusing System; + ;
& using Systemi(ollections .Generic; Seaichiolution Bplotss (i) 2=
— using System.ComponentModel; ] Solution 'Hello World' {1 project)
% us:i.ng System_Data_i 4 [c#] Hello World
2 us:!.ng System_[)r.‘awlng; b S Properties
usinE iys:em__ll:llr:, p =B References
using System.Text; :
using System.Threading.Tasks; £ App.config
using System.Windows.Forms; 4 Forml.cs
b € Program.cs
Elnamespace Hello World
=] public partial class Forml : Form Solution Explorer | Team Explorer
| T
= public Forml() it
InitializeComponent(); BE
3 ’ ‘E- &
}
}
w

100% -~ 4




2.3 Introduction to C# Code

At this point, it’s not necessary for you to understand the meaning of the statements that
you see in this code. It will be helpful for you to know how this code is organized, how-
ever, because later you will add your own code to this file. C# code is primarily organized
in three ways: namespaces, classes, and methods. Here’s a summary:

A namespace is a container that holds classes.

A class is a container that holds methods (among other things).

A method is a group of one or more programming statements that performs some
operation.

So, C# code is organized as methods, which are contained inside classes, which are
contained inside namespaces. With this organizational structure in mind, look at
Figure 2-27.

Figure 2-27 Organization of the Form1.cs code

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

namespace Hello_World
{

public partial class Forml : Form

{
public Forml()
InitializeComponent(); T Zl

The figure shows four different sections of the code, marked with the numbers 1, 2, 3, and
4. Let’s discuss each section of code.

@

©)

®

Recall from Chapter 1 that C# applications rely heavily on the .NET Framework,
which is a collection of classes and other code. The code in the .NET Framework is
organized into namespaces. The series of using directives that appears at the top of
a C# source code file indicate which namespaces in the NET Framework the pro-
gram will use.

This section of code creates a namespace for the project. The line that reads
namespace Hello World marks the beginning of a namespace named Hello
World. Notice that the next line contains an opening brace ({) and that the last
line in the file contains a corresponding closing brace (}). All the code that appears
between these braces is inside the Hello World namespace.

This section of code is a class declaration. The line that reads public partial
class, and so forth, marks the beginning of the class. The next line contains an
opening brace ({), and the last line in this section of code contains a correspond-
ing closing brace (3). All the code that appears between these braces is inside
the class.

This section of code is a method. The line that reads public Forml ()marks the
beginning of the method. The next line contains an opening brace ({), and the last
line in this section of code contains a corresponding closing brace (3). The code that
appears between these braces is inside the method.

It’s important to point out that code containers, such as namespaces, classes, and meth-
ods, use braces ({}) to enclose code. Each opening brace ({) must have a corresponding

69



70

Chapter 2

Introduction to Visual C#

closing brace (}) at some later point in the program. Figure 2-28 shows how the braces in
Form1.cs are paired.

Figure 2-28 Corresponding braces

namespace Hello World
public partial class Forml : Fo
ublic Forml()

InitializeComponent();

_@

Switching between the Code Editor and the Designer

When you open the code editor, it appears in the same part of the screen as the Designer.
While developing a Visual C# application, you will often find yourself needing to switch
back and forth between the Designer and the code editor. One way to quickly switch be-
tween the two windows is to use the tabs shown in Figure 2-29. In the figure, notice that
the leftmost tab reads Forml.cs. That is the tab for the code editor. The rightmost tab
reads Form1.cs [Design]. That is the tab for the Designer. (The tabs may not always ap-
pear in this order.) To switch between the Designer and the code editor, you simply click
the tab for the desired window.

Figure 2-29 Code editor and Designer tabs

w Hello World - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST

o - B-a@ld D pstat- Debug - A = 0fE
;E Forml.cs [Design]
=]
% _World.Forml * @ Forml()
E 'I_bsing System;
- | using System.CoMlections.Generic;
= using System.ComponentModel;
% using System.Data
] using System.Drawi

using System.Ling;
using System.Text;
using System.Threadink.Tasks;
| using System.Windows.Fyrms;

Code editor tab Designer tab

You can also detach the code editor and move it to another part of the screen. This allows
you to see the code editor and the Designer at the same time. As shown in Figure 2-30,
click the code editor tab and drag it to the desired location on the screen. (If you have
multiple monitors connected to your computer, you can even drag the code editor to a
different monitor.) To return the code editor to its position within the IDE, right-click the
tab for the source code file in the code editor window and select Move to Main Document
Group. This is shown in Figure 2-31.



2.3 Introduction to C# Code

Figure 2-30 Detaching the code editor by clicking and dragging

n Hello World - Microseft Visuil Studic Quick Launch (Clile Q) b - =] x
FLE EDIT VIEW PROJECT BUND DEBUG TEAM SOL  TOOLS TEST ANAIYZE WINDOW HELP
o0 B-@EP DT Pt Debug - | M BT VD R TN

< = Sobufioey Eapharer WA - % DY rieic wedd = o %

[F
cod b-20dEH o
Search Sl inn Fuplorer (Cirl+:) o- * Hello_WorldForml =@ Formli)
Clusing Systesm; +
using System.Collections. Generic; -
using System, ComponentModel; i
wsing System.Data;
using System.Drawing:
using System.Ling;
using Systesm Text;
using System. Threading. Tasks;
using System.Windows.Forms;

Einamespoce Helle World
i
e — :|| public partial class Forml @ Form
:|| pubilic Forml)
oln

TnitializeComponent();

Figure 2-31 Returning the code editor to its docked position

d HelloWorld

S o

20aBm o e B SaveForml.cs Ctrl+5
rer (Ctrl+:) L~ le= GRS
_ i Close All Documents

Norld' {1 project)

Close All But This
5 Copy Full Path
_5 Open Containing Folder
ig - -
— Fot
s X PinTab

Mave to Main Document Group .

g

1S
public partial class Forml : Form

e
=]

| |
=]

|

public Forml()
1

Adding Your Own Code to a Project

Now you are ready to learn how to add your own code to a project. Suppose you have
created a project named Code Demo and set up the project’s form with a Button control,
as shown in Figure 2-32. The Button control’s name is myButton, and its Text property
is set to Click Me!.

Suppose you want the application to display the message Thanks for clicking the button!
when the user clicks the button. To accomplish that, you need to write a special type of
method known as an event handler. An event handler is a method that executes when
a specific event takes place while an application is running. In this project you need to
write an event handler that will execute when the user clicks the myButton control. To
create the event handler, you double-click the myButton control in the Designer. This
opens the Form1.cs file in the code editor, as shown in Figure 2-33, with some new code

added to it.

71



72 Chapter 2 Introduction to Visual C#

Figure 2-32 A form with a Button control

n Code Demo - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = 0 X
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW  HELP
@-0 H-G W D | pstat- Debug - | A s i e e [ - " :

& Forml.cs[Design]* & X ~ Solution Explorer v X
g co@ e-2uddm o
E 85 Code Demo EI Search Solution Explorer (Ctrl+;) P
= fa] Solution 'Code Demo' (1 project) i
E 4 [t#] Code Demo

2 b J Properties

b =8 References
1 App.config
4 Forml.cs
b 13 Forml Designer.cs
13 Formil.resx
b #3 Forml

Solution _E;plorer Team Explorer

myButton System.Windows.Forms.Button -

:[[als | #

Tablndex o o
TabStop True
Tag
N cicvet 5]
TextAlign MiddleCenter
TextimageRelation Owverlay )
i i T e o o

Text

The text associated with the control.

Figure 2-33 The code window opened with event handler code generated

ﬂ Code Demo - Microsoft Visual Studio Quick Launch (Ctrl+ Q) P = g x
FILE EDIT VIEW PROJECT BUILLD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW  HELP
-0 B-@RWP D-C- pstat-Debug - A_ Wi % K 90w
g P Formi.cs [Design]* ~ Solution Explorer :scticcsssaiasics
-
@ %3 Code_Demo.Forml - @, myButton_Click(object sender, EventArgse = O - Q]
c
a Hlusing System;
& usin: s;stn.Callections .Generic; T Search Solution Explorer (Ctrl+)
5 using System.ComponentModel; fa] Solution 'Code Demo' (1 project) -
% using System.Data; 4 Code Demo
2 using System.Drawing; b S Properties
usj:ng System.Ling; b =B References
using System.Text; DA e
using System.Threading.Tasks; pp.cantg
| using System.Windows.Forms; 4 [ Forml.cs
b 1) Forml.Designer.cs
Finamespace Code_Demo 1) Forml.resx
b *3 Forml =
=] bli rtial cl Forml : F e ity
|;u A PRESS RS RO o Solution Explorer | Teamn Explorer
El public Forml() Properties - 0 X%
InitializeComponent(); .
}
=) private void myButton_Click(object sender, EventArgs e)
{
}
}

i

This code was automatically added.




2.3 Introduction to C# Code

When an application is running and the user clicks a control, we say that a Click event has
occurred on the control. The code that has been added to the Form1.cs file (shown in Fig-
ure 2-33) is an event handler that will execute when a Click event occurs on the myButton
control. For now you do not need to understand all parts of the event handler code. At
this point you need to understand only the following concepts:

e As shown in Figure 2-34, the event handler’s name is myButton_Click. The
"myButton" portion of the name indicates that the event handler is associated with
the myButton control, and the "click" portion of the name indicates that the event
handler responds to Click events. This is the typical naming convention that Vis-
ual Studio uses when it generates event handler code. When you see the name
myButton_Click, you understand that it is an event handler that executes when a
Click event occurs on the myButton control.

Figure 2-34 A closer look at the event handler code

The event handler’s name

[

private void myButton Click(object sender,

S

Your code goes here, between the braces.

Nt

e The event handler that Visual Studio generates doesn’t actually do anything. You
can think of it as an empty container to which you can add your own code. Notice
that the second line of the event handler is an opening brace ({) and the last line is a
closing brace (}). Any code that you want executed when the user clicks the myButton
control must be written between these braces.

Now you know how to create an empty Click event handler for a Button control. But
what code do you write inside the event handler? In this example we write code that
displays the message Thanks for clicking the button! in a message box, which is a small
pop-up window.

Message Boxes

A message box is a small window, sometimes referred to as a dialog box, that displays a
message. Figure 2-35 shows an example of a message box displaying the message Thanks
for clicking the button! Notice that the message box also has an OK button. When the
user clicks the OK button, the message box closes.

Figure 2-35 A message box

Thanks for clicking the button!

o]

73



74

Chapter 2

Introduction to Visual C#

The .NET Framework provides a method named MessageBox.Show that you can use
in Visual C# to display a message box. If you want to execute the MessageBox.Show
method, you write a statement known as a method call. (Programmers refer to the act of
executing a method as calling the method.) The following statement shows an example of
how you would call the MessageBox.Show method to display the message box shown in
Figure 2-35:

MessageBox.Show("Thanks for clicking the button!");

When you call the MessageBox.Show method, you write a string of characters inside the
parentheses. (In programming we use the term string to mean string of characters.) The
string that is written inside the parentheses will be displayed in the message box. In this
example the string "Thanks for clicking the button!" is written inside the paren-
theses.

Notice that the string is enclosed in double quotation marks in the code. When the mes-
sage is displayed (as shown in Figure 2-35), however, the double quotation marks do not
appear. The double quotation marks are required in the code to indicate the beginning
and the end of the string.

Also notice that a semicolon appears at the end of the statement. This is required by C#
syntax. Just as a period marks the end of a sentence, a semicolon marks the end of a pro-
gramming statement in C#.

Getting back to our Code Demo example project, Figure 2-36 shows how you can call
the MessageBox.Show method from the myButton_cClick event handler. After typing the
statement as shown in the figure, you can press the key on the keyboard, or click the
Start Debugging button (J) on the toolbar to compile and run the application. When the
application runs, it will display the form shown on the left in Figure 2-37. When you click
the button, the message box shown on the right in the figure will appear. You can click
the OK button on the message box to close it.

Figure 2-36 Event handler code for displaying a message box

Forml.cs [Design]®

%2 Code Demo.Forml - Eaﬂ myButton_Click{ohject sender, EventArgs.
Flusing System;

'using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

namespace Code Demo

public partial class Forml : Form

{
public Formil()
{
InitializeComponent();
}
|
= private void myButton_Click(object sender, EventArgs e)
I {
| MessageBox.Show("Thanks for clicking the hutton!")ﬂ
L ¥
[}
L



2.3 Introduction to C# Code

Figure 2-37 The Code Demo project running

i - T
o= Cade Demo | = | = ﬂ lﬂ
e Thanks for clicking the button!
| Click Me! |
[ ok
When you click this button... J

this message box will appear. /‘

NOTE: When writing a Click event handler for a Button control, you might be
wondering if it is necessary to first double-click the Button control in the Designer,
creating the empty event handler code. After all, couldn’t you just skip this step and
instead open the code editor and write all the event handler code yourself? The an-
swer is no, you cannot skip this step. When you double-click a control in the
Designer, Visual Studio not only creates an empty event handler, but it also writes
some code that you don’t see elsewhere in the project. This other code is necessary for
the event handler to properly function.

String Literals

Programs almost always work with data of some type. For example, the code shown in
Figure 2-36 uses the following string when it calls the MessageBox. Show method:

"Thanks for clicking the button!"

This string is the data that is displayed by the program. When a piece of data is written
into a program’s code, it’s called a literal (because the data is literally written into the
program). When a string is written into a program’s code, it’s called a string literal. In C#,
string literals must be enclosed in double quotation marks.

NOTE: Programmers sometimes say that literals are values that are hard coded into
a program because the value of a literal cannot change while the program is running.

Multiple Buttons with Event Handlers

The Code Demo project previously shown has only one button with a Click event han-
dler. Many of the applications that you will develop will have multiple buttons, each with
its own Click event handler. For example, the form shown in Figure 2-38 has three Button
controls. As shown in the figure, the controls are named firstButton, secondButton,
and thirdButton.

Figure 2-38 A form with multiple Button controls

o= Multiple Buttons | == ﬂ

| First Buttor | | Second Button | | Third Button |
A

firstButton secondButton thirdButton

75



76

Chapter 2

Introduction to Visual C#

To create Click event handlers for the buttons, you simply double-click each Button control
in the Designer and an empty event handler will be created in the form’s source code file.
The names of the Click event handlers will be firstButton Click, secondButton_Click,
and thirdButton_ Click. Figure 2-39 shows an example of the form’s source code after
the three event handlers have been created and a MessageBox.Show statement has been
added to each one.

Figure 2-39 Source code with three Click event handlers

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

namespace Multiple_Buttons

‘ public partial class Forml : Form
{

public Forml()

{
InitializeComponent();

}

private void firstButton_Click(object sender, EuenEE:E;_;s__

{ Click event handler
MessageBox.Show("You clicked the first button."); [ forfirstButton

}

private void secondButton_Click(object sender, EventArgs e) |

{ Click event handler
MessageBox.Show("You clicked the second button."); [ forsecondButton

}

private void thirdButton Click(object sender, EventArgs e) |

{ Click event handler
MessageBox.Show("You clicked the third button."); [ for thirdButton

}

}
}

Design Time and Run Time

When you have a project open in Visual Studio, the time during which you build the GUI
and write the application’s code is referred to as design time. During design time, you
can use the Designer and the Toolbox to place controls on the form, use the Properties
window to set property values, use the code editor to write code, and so forth. This is the
phase during which you create or modify the application.

When you are ready to run a project that you have open in Visual Studio, you press the
key on the keyboard or click the Start Debugging button () on the toolbar. The
project will be compiled, and if there were no errors, it will be executed. The time during
which an application is executing is referred to as run time. During run time, you can in-
teract with the running application, but you cannot use the Designer, the Toolbox, the
Properties window, the code editor, or parts of Visual Studio to make changes to it.



—

2.4 Writing Code for the Hello World Application

NOTE: In computing literature and on the Web, you will see the term run time also
spelled as runtime or run-time. All these variations typically mean the same thing.

Checkpoint

2.15
2.16

2.17
2.18
2.19
2.20
2.21

2.22
2.23
2.24
2.25
2.26
2.27
2.28

A file that contains program code is known as what type of file?

What must you do if you want your application to perform any meaningful
actions?

What does the Program.cs file contain?
What does the Form1.cs file contain?
How is C# code organized?

What is a namespace?

What characters do code containers, such as namespaces, classes, and methods,
use to enclose code?

How do you switch between the Designer and the code editor?
How do you create an event handler for a button?

What is a Click event?

What method do you use in Visual C# to display a message box?
What is a literal?

What are string literals enclosed in?

How do you run a project that you have open in Visual Studio?

2.4 Writing Code for the Hello World Application

e Now you know everything necessary to complete the Hello World project. In Tutorial 2-2
you will open the project and add a Click event handler for the messageButton control.
The event handler will call the MessageBox.Show method to display a message box with
the message Hello World.

p

VideoNote
Tutorial 2-2:
Writing
Code for the
Hello World
Application

Tutorial 2-2:

Writing Code for the Hello World Application

Step 1: If Visual Studio (or Visual Studio Express) is not already running, start it. Open

the Hello World project that you started in Tutorial 2-1.

Step 2: Make sure the Form1 form is visible in the Designer, as shown in Figure 2-40.

If it is not, right-click Form1.cs in the Solution Explorer and then select View
Designer from the pop-up menu.

Step 3: In the Designer, double-click the messageButton control. This should cause

the code editor to appear as shown in Figure 2-41. Notice that an empty event
handler named messageButton_Click has been created.

77



78 Chapter 2 Introduction to Visual C#

Figure 2-40 The Hello World project loaded with Form1 shown in the Designer

n Hello World - Microsoft Visual Studio Quick Launch (Ctrl+Q) L2 = 0 x
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL FORMAT TOOLS TEST ANALYZE WINDOW  HELP

i@-0 B-@ W 9T | pstat- Debug - A

E Forml.cs [Design] + ~ Solution Explorer
5
néﬂ WM -2l o
E Search Solution Explorer (Ctrl+;) P~
E‘ m Solution 'Hello World' (1 project)
e 4 [c#] Hello World
2 b & Properties

P =B References

& App.config
b (= Forml.cs

P © Program.cs

Solution Explorer  Team Explorer

v 1 x

Properties
Forml System.Windows.Forms.Form -

Size 240,114 =
SizeGrip5tyle Auto
StartPosition WindowsDefaultLoca
Tag
Text My First Program

Text

The text associated with the control.

Figure 2-41 Code editor with an empty event handler

n Hello World - Microsoft Visual Studio Quick Launch (Ctrl+Q) L = 0O X
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE  WINDOW  HELP
-0 B-a Wl 90 - pStt-Debug - A_BIFE VH R o

E Forml.cs® R Forml.cs [Design]™ * Solution Explorer ° F L
w  *3 Hello World.Forml - W, messageButton_Click{object sender, Eventérg - O e-r2naim
=2
a Elusing System; = & z %
i3 using System.Collections.Generic; Sesich Suluior Biplocer (Cutss) D
= using System.ComponentModel; fa] Solution 'Hello World' (1 project)
2 using System.Data; 4 [&#] Hello World
2 us::lng System.[)r.‘awing; b S Properties

using System.Ling; b =B References

using System.Text; :

using System.Threading.Tasks; &1 App.config

using System.Windows.Forms; b _ Forml.cs
b ¢ Program.cs

namespace Hello World

=]

| % Solution Explorer | Team Explorer

E public partial class Forml : Form

| »* 0 X
El

public Forml() =

23] #

{ Properties -

InitializeComponent();

}

El private void messageButton_Click(object sender, EventArgs e)




Step 4:

2.4 Writing Code for the Hello World Application

Inside the messageButton_click event handler, type the following statement
exactly as it is shown:

MessageBox.Show("Hello World");

Don’t forget to type the semicolon at the end of the statement! When you have
finished, the code window should look like Figure 2-42.

Figure 2-42 Statement written inside the event handler

Forml.cs [Design]® -

#= Helle_Waorld.Forml = Y messageButton_Click{object sender, EventArg -
Elusing System; T
using System.Collections.Generic; -

using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

Elnamespace Hello World

(1
—| public partial class Forml : Form
| i
=) public Forml()
{
InitializeComponent();
| }
!
B private void messageButton Click(object sender, EventArgs e)
{
MessageBox. Show("Hello World");
. }
[ 3
LT
100% = 4 b

Step 5:
Step 6:

Save the project.

Press the key on the keyboard, or click the Start Debugging button (i) on
the toolbar to compile and run the application.

©

NOTE: If you typed the statement correctly inside the messageButton_
Click event handler (in Step 4), the application should run. If you did not type
the statement correctly, however, a window will appear reporting build errors.
If that happens, click the No button in the window and then correct the state-
ment so it appears exactly as shown in Figure 2-42.

When the application runs, it will display the form shown on the left in Figure 2-43.
When you click the Display Message button, the message box shown on the right in the
figure will appear. You can click the OK button on the message box to close it.

79



80

Chapter 2

—

Introduction to Visual C#

Figure 2-43 The Hello World application running
rni_J My First Program l =| = i&‘ ( l&r

Hello World

‘ Display

)

When you click this button... /‘
this message box will appear.

2.5 Label Controls

1(0 NCEPT: A label control displays text on a form. Label controls have various prop-

erties that affect the control’s appearance. Label controls can be used to
display unchanging text, or program output.

When you want to display text on a form, you use a Label control. Figure 2-44 shows an
example of a form with two Label controls. Once you have placed a Label control on a
form, you set its Text property to the text that you want to display. For example, in Fig-
ure 2-44, the upper Label control’s Text property is set to Number of Hours Worked, and
the lower Label control’s Text property is set to Hourly Pay Rate.

Figure 2-44 A form with Label controls

ol Wage Calculator |:||ﬁ

Ly Mumber of Hours Worked
Label controls =]
T Houry Pay Rate

Calculate
Gross Pay

e

You’ll find the Label control tool in the Common Controls group of the Toolbox, as
shown in Figure 2-45. To create a Label control on a form, you double-click the Label
control tool in the Toolbox. As shown in Figure 2-45, a Label control will be created on
the form. (Alternatively, you can click and drag the Label control tool from the Toolbox
onto the form.) Notice that a bounding box appears around the Label control in the fig-
ure. This indicates that the control is currently selected.

When you create Label controls, they are automatically given default names such as
labell, label2, and so forth. A Label control’s Text property is initially set to the same
value as the Label control’s name. So, a Label control will display its own name when
it is created, as shown by the example in Figure 2-45. When a Label control is selected
in the Designer, you can use the Properties window to change its Text property. Figure
2-46 shows a Label control after its Text property has been changed to Programming in
Visual C# is fun!



Figure 2-45 Creating a Label control

2.5 Label Controls

s33unos g2

Toolbox
Search Toolbox
P All Windows Forms

4 Common Controls

k
@

Double-click the
Label control tool...

Pointer

Button
CheckBox
CheckedListBox
ComboBox
DateTimePicker
Label

LinkLabel
ListBox

ListView
MaskedTextBox
MonthCalendar
Notifylcon

NumericUpDown

cw 00X

Forml.cs [Design]™

ye

-

And a Label control will
be created on the form.

Figure 2-46 A Label control displaying a message

Forml.cs [Design]” & X

You can also use the Properties window to change a Label control’s name. It’s always
a good idea to change a control’s name to something that is more meaningful than the

E Programming in Visual C#is fun! |

default name that Visual Studio gives it.

The Font Property

If you want to change the appearance of a Label control’s text, you can change the con-
trol’s Font property. The Font property allows you to set the font, font style, and size
of the control’s text. When you select the Font property in the Properties window, you
will notice that an ellipses button ([z)) appears next to the property’s value, as shown in
Figure 2-47. When you click the ellipses button, the Font dialog box appears, as shown

Figure 2-47 The Font property

Properties

labell System.Windows.Forms.Label

SIE PSR

~  Click here to change the Font property.

Enabled True
FlatStyle Standard
Microsoft Sans Serif, 8.25pt
ForeColor Il ControlText
GenerateMember  True
Image I:l (none)
ImageAlign MiddleCenter
Imagelndex I:l (none) -
Font

The font used to display text in the control.

81



82

Chapter 2

Introduction to Visual C#

in Figure 2-48. Select a font, font style, and size, and click OK. The text displayed by the
control will be updated with the selected attributes. For example, Figure 2-49 shows a
Label control with the following Font property attributes:

Font: Lucida Handwriting

Font Style: Ttalic

Size: 10 point

Figure 2-48 The Font dialog box

-
Font (=)
Font; Fortt style: Size;

Microsoft Sana Ser| Regular 8 aK
Microsoft Sans Serifls : -

Minten Pro

Strlceout
[ Underiine

AaBbYyZz

L& o

c Programming in Visual C¥ i find |

The BorderStyle Property

Label controls have a BorderStyle property that allows you to display a border around
the control’s text. The BorderStyle property may have one of three values: None, FixedS-
ingle, or Fixed3D. The property is set to None by default, which means that no border
will appear around the control’s text. If the BorderStyle property is set to FixedSingle,
the control’s text will be outlined with a thin border. If the BorderStyle property is set
to Fixed3D, the control’s text will have a recessed 3D appearance. Figure 2-50 shows an
example of Label controls with each BorderStyle setting.

Figure 2-50 BorderStyle examples

BorderStyle set to None

[ BorderStyle set to FiedSingle |

[BorderStyle set to Fued3D




2.5 Label Controls

To change the BorderStyle property, select it in the Properties window and then click the
down-arrow button ([x]) that appears next to the property’s value. As shown in Figure
2-51, a drop-down list will appear containing the three possible values for this property.
Select the desired value and the control’s text will be updated.

Figure 2-51 BorderStyle selections

Properties - 0 x
labell System.Windows.Forms.Label -
B=:
£

AutoSize True e

BackColor |:| Control

BorderStyle None

CausesValidati
ContextMenuSt FixedSingle

Cursor Fixed3D

Dock TNGnE

Enabled True v
BorderStyle

Determines if the label has a visible border,

The AutoSize Property

Label controls have an AutoSize property that controls the way they can be resized. The
AutoSize property is a Boolean property, which means that it can be set to one of two
possible values: True or False. By default, a Label control’s AutoSize property is set to
True, which means that the control automatically resizes itself to accommodate the size
of the text it displays. For example, look at the three Label controls in Figure 2-52. Each
of the controls displays different amounts of text at different font sizes. Because each con-
trol’s BorderStyle property is set to FixedSingle, you can see that each control is just large
enough to accommodate its text.

Figure 2-52 Label controls with AutoSize set to True

=

o Forml ==y~

[A medium amount of text |

| A rather large amount of text |

When a Label control’s AutoSize property is set to True, you cannot manually change
the size of the control by clicking and dragging its bounding box. If you want to manu-
ally change the size of a Label control, you have to set its AutoSize property to False.
When AutoSize is set to False, sizing handles will appear around the control, allowing
you to click and drag the bounding box to resize the control. Figure 2-53 shows an
example. In the figure, the Label control has been resized so it is much larger than the
text it displays.

83



84

Chapter 2

Introduction to Visual C#

Figure 2-53 Label control with AutoSize set to False

52! Formi E=S SR

| Visual C# programming is fun!

NOTE: When a Label control’s AutoSize property is set to True, the label’s text will
always appear on one line. When the AutoSize property is set to False, the label’s text
will wrap across multiple lines if it is too long to fit on one line.

The TextAlign Property

When you set a Label control’s AutoSize property to False and then manually resize the
control, it sometimes becomes necessary to change the way the label’s text is aligned. By
default, a label’s text is aligned with the top and left edges of the label’s bounding box.
For example, look at the label shown in Figure 2-53. Notice how the text is positioned in
the label’s upper-left corner.

What if we want the text to be aligned differently within the label? For example, what if
we want the text to be centered in the label or positioned in the lower-right corner? We
can change the text’s alignment in the label with the TextAlign property. The TextAlign
property may be set to any of the following values: TopLeft, TopCenter, TopRight, Mid-
dleLeft, MiddleCenter, MiddleRight, BottomLeft, BottomCenter, or BottomRight. Figure
2-54 shows nine Label controls, each with a different TextAlign value.

Figure 2-54 Text alignments

This is TopLeft This is TopCenter This is TopRight
This iz MiddleLeft Thiz iz MiddleCenter Thiz iz MiddleRight
This iz Bottom Left This iz BottomCenter This is BottomRight

To change the TextAlign property, select it in the Properties window and then click the
down-arrow button ([=]) that appears next to its value. This causes a dialog box with nine
buttons, as shown in the left image in Figure 2-55, to appear. As shown in the right image
in the figure, the nine buttons represent the valid settings of the TextAlign property.

Using Code to Display Output in a Label Control

In addition to displaying unchanging text on a form, Label controls are also useful for dis-
playing output while an application is running. For example, suppose you are creating an
application that performs a calculation and you want to display the result of the calcula-



2.5 Label Controls

Figure 2-55 Setting the TextAlign property

Properties ok s e LN
labell Systern.Windows.Forms.Label 7

¥ | # TopCenter

Tablndex 0 - l MiddleCenter

Tag Y i

Text Visual C# programming ToplLeft _.E] [ J D._ TopRight

MiddleLeft —»f | ij | H=— MiddleRight

UseCompatible] .
BottomLeft —'El B--— BottomRight

BottomCenter

UseMnemonic

UseWaitCursor

Visible
TextAlign

Determines the position of the text within the
label,

tion at a specific location on the form. Using a Label control to display the output would
be an ideal solution. Here are the general steps that you would follow:

Step 1: While creating the application’s GUI, you place a Label control on the form
at the location where you want the result to be displayed. Then, in the
Properties window, you erase the contents of the Label control’s Text prop-
erty. Because the control’s Text property is empty, the control will not initially
display anything when the application runs.

Step 2: In the application’s code, you write the necessary statements to perform the cal-
culation and then you store the result of the calculation in the Label control’s Text
property. This causes the result to be displayed on the form in the Label control.

NOTE: We do not discuss calculations until Chapter 3, so in this chapter we look at
examples that display nonmathematical data as output in Label controls.

In code, you use an assignment statement to store a value in a control’s property. For example,
suppose you have created a Label control and named it outputLabel. The following assign-
ment statement stores the string "Thank you very much" in the control’s Text property.

outputLabel.Text = "Thank you very much";

The equal sign (=) is known as the assignment operator. It assigns the value that appears
on its right side to the item that appears on its left side. In this example, the item on the
left side of the assignment operator is the expression outputLabel.Text. This is simply
the outputLabel control’s Text property. The value on the right side of the assignment
operator is the string "Thank you very much". When this statement executes, the string
"Thank you very much" is assigned to the outputLabel control’s Text property. When
this statement executes, the text Thank you very much is displayed in the Label control.

WARNING! When writing assignment statements, remember that the item receiv-
ing the value must be on the left side of the = operator. The following statement, for
example, is wrong and will cause an error when you compile the program:

"Thank you very much" = outputLabel; <— ERROR!

NOTE: The standard notation for referring to a control’s property in code is:

ControlName.PropertyName

85



86 Chapter 2 Introduction to Visual C#

Let’s look at an example application that uses a Label control to display output. Make
sure you have downloaded the student sample programs from the book’s companion Web
site (at www.pearsonhighered.com/gaddis). In the Chap02 folder, you will find a project
named Presidential Trivia. The purpose of the application is to display a trivia question
about a former U.S. president. When the user clicks a button, the answer to the trivia
question is displayed on the form. The project’s form appears as shown in Figure 2-56.

Figure 2-56 Presidential Trivia form

Forml.cs [Design]” # X

a2l Presidential Trivia o e =]

questionLabel

What former U.S. president is known for
going on an African safari? —-—-——j

-~
-.-_;_\

| Show the Answer answerLabel

showAnswerButton

As shown in the figure, the form has the three controls:

e A Label control named questionLabel. This label displays the trivia question.

e A Label control named answerLabel. This label initially appears empty, but will be
used to display the answer to the trivia question.

e A Button control named showAnswerButton. When the user clicks this button, the
answer to the trivia question is displayed.

Table 2-2 lists the property settings for each control of which you should take note.

Table 2-2 Control property settings

Control Name Control Type Property Settings

questionLabel Label AutoSize: False
BorderStyle: None
Font: Microsoft Sans Serif (Style: Regular, Size: 10 point)
Text: What former U.S. president is known for going on
an African safari?
TextAlign: MiddleCenter

answerLabel Label AutoSize: False
BorderStyle: FixedSingle
Font: Microsoft Sans Serif (Style: Bold, Size: 10 point)
Text: (The contents of the Text property have been erased.)
TextAlign: MiddleCenter

showAnswerButton Button Size: 110, 23
Text: Show the Answer

If we open the Form1.cs file in the code editor, we see the code shown in Figure 2-57.
(To open the file in the code window, right-click Form1.cs in the Solution Explorer
and then select View Code.) Notice the method named showAnswerButton_Click.


www.pearsonhighered.com/gaddis

Figure 2-57 Form1.cs code

2.5 Label Controls

Elusing System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Lling;

using System.Text;

using System.Threading.Tasks;

| using System.Windows.Forms;

Elnamespace Presidential Trivia

private woid showAnswerButton Click{object sender, EventArgs e}

K
= public partial class Forml : Form
1
= public Forml()
1
InitializeComponent();
¥
=l
1
answerLabel.Text = "Theodore Roosewvelt”;
¥
I b
L}

This is the Click event handler for the showAnswerButton control. It contains the fol-
lowing statement:

answerLabel.Text = "Theodore Roosevelt";

When this statement executes, it assigns the string "Theodore Roosevelt" to the
answerLabel control’s Text property. As a result, Theodore Roosevelt is displayed in
the label control.

When you run the application, the form appears as shown on the left in Figure 2-58. Click
the Show the Answer button and the answer to the trivia question appears as shown on
the right in the figure.

Figure 2-58 The Presidential Trivia application running

P

u-l Presidential Trivia

-
ol Presidential Trivia

What former U.S. president is known for
going on an African safari?

What former U.S. presidentis known for
going on an African safari?

Theodore Roosevelt

The Text Property Accepts Strings Only

It is important to point out that the Label control’s Text property can accept strings only.
You cannot assign a number to the Text property. For example, let’s assume that an

87



88 Chapter 2

>

VideoNote

Tutorial 2-3:

Creating the
Language
Translator
Application

Introduction to Visual C#

application has a Label control named resultLabel. The following statement will cause
an error because it is attempting to store the number 5 in the resultLabel control’s Text

property:

resultLabel.Text = 5; <« ERROR!

This does not mean that you cannot display a number in a label, however. If you put quo-
tation marks around the number, it becomes a string. The following statement will work:

resultLabel.Text = "5";

Clearing a Label

In code, if you want to clear the text that is displayed in a Label control, simply assign an
empty string (" ") to the control’s Text property, as shown here:

answerLabel.Text = "";

In Tutorial 2-3 you will work with some of the Label control properties that we have
discussed in this section.

Tutorial 2-3:
Creating the Language Translator Application

In this tutorial you will create an application that displays the phrase “Good Morning”
in different languages. The form will have three buttons: one for Italian, one for Spanish,
and one for German. When the user clicks any of these buttons, the translated phrase will
appear in a Label control.

Step 1:

Step 2:

Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms
Application project named Language Translator.

Set up the application’s form as shown in Figure 2-59. Notice that the form’s
Text property is set to Language Translator. The form has two Label controls
and three Button controls. The names of the controls are shown in the figure.
As you place each of the controls on the form, refer to Table 2-3 for the relevant
property settings.

Figure 2-59 The Language Translator form

Step 3:

ol Language Translatar l =] G

]

| — instructionLabel
Select a language and | will sy Good Moming.

| *

| ltalian | | Spanish | | Geman |

A A AN

™~ translationLabel

italianButton spanishButton germanButton

Once you have the form and its controls set up, you can create the Click event
handlers for the Button controls. In the Designer, double-click the italian-
Button control. This will open the code editor, and you will see an empty event
handler named italianButton Click. Write the following statement inside
the event handler:

translationLabel.Text = "Buongiorno";



2.5 Label Controls

Table 2-3 Control property settings

Control Name Control Type Property Settings

instructionLabel Label Text: Select a language and I will say
Good Morning.

translationLabel Label AutoSize: False

BorderStyle: FixedSingle

Font: Microsoft Sans Serif (Style: Bold, Size:
10 point)

Text: (The contents of the Text property
have been erased.)

TextAlign: MiddleCenter

italianButton Button Text: Italian
spanishButton Button Text: Spanish
germanButton Button Text: German
Step 4: Switch your view back to the Designer and double-click the spanishBut-

Step 5:

Step 6:

ton control. In the code editor you will see an empty event handler named
spanishButton_Click. Write the following statement inside the event handler:

translationLabel.Text = "Buenos Dias";

Switch your view back to the Designer and double-click the germanBut-
ton control. In the code editor you will see an empty event handler named
germanButton_Click. Write the following statement inside the event handler:

translationLabel.Text = "Guten Morgen";

The form’s code should now appear as shown in Program 2-1. Note that the
line numbers are not part of the code. The line numbers are shown so that
you and your instructor can more easily refer to different parts of the pro-
gram. The lines that appear in boldface are the ones that you typed. Make
sure the code you typed appears exactly as shown here. (Don’t forget the
semicolons!)

Program 2-1 Completed Form1 code for the Language Translator application

0 o0 Ul b WN P

e
N R O W

13
14
15
16
17
18

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

namespace Language Translator

{

public partial class Forml : Form

{
public Forml ()

{

InitializeComponent();

89



20

Chapter 2

Introduction to Visual C#

19
20 private void italianButton_Click(object sender, EventArgs e)
21 {
22 translationLabel.Text "Buongiorno";
23}
24
25 private void spanishButton Click(object sender, EventArgs e)
26 {
27 translationLabel.Text = "Buenos Dias";
28}
29
30 private void germanButton Click(object sender, EventArgs e)
31 {
32 translationLabel.Text = "Guten Morgen";
33}
34}
35 }
Step 7: Save the project. Then, press the key on the keyboard or click the Start

Debugging button () on the toolbar to compile and run the application.

©

previously shown.

NOTE: If you typed the statements correctly inside the event handlers, the ap-
plication should run. If you did not type the statements correctly inside the event
handlers, a window will appear reporting build errors. If that happens, click
the No button in the window and then correct the code so it appears exactly as

Figure 2-60 shows the application’s form when it starts running and after you have
clicked each of the Button controls. After you have tested each button, close the applica-

tion’s form.

Figure 2-60 The Language Translator application running

ol Language Translatar l =5 ﬂ :

.

= | B et

ol Language Translator

-

Select a language and | will say Good Moming.

| ltalian | | Spanish | | German |

Select a language and | will say Good Moming.

| Buongiomo |

| ftalian N | Spanish | | German |

i |

|| E |t

ol Language Translatar

.

o | B

ol Language Translator

Select a language and | will say Good Moming.

| Buenos [has |

| ltalian ‘ | Spanishb\[\fl | German |

Select a language and | will say Good Moming.

| Guten Morgen |

| ftalian | Spanish | | Geman |
) .

-




2.6 Making Sense of IntelliSense

'/ Checkpoint

2.29 In which group of the Toolbox can you find the Label control tool?

2.30 Once you have placed a Label control on a form, which property do you use to set
the text that you want to display?

2.31 What property can you use to change the appearance of a Label control’s text?
2.32 What is the default value of a label’s BorderStyle property?

2.33 How do you change the BorderStyle property of a control in the Properties
window?

2.34 What property determines whether a label can be resized?
2.35 What property determines the way text is aligned in a Label control?
2.36 How can you use a Label control to display output while a program is running?

2.37 What happens if you assign an empty string to a control’s Text property in code?

—
2.6 | Making Sense of IntelliSense

1CONCEPT: As you type code in the Visual Studio code editor, IntelliSense boxes
pop up to assist you. You can use the IntelliSense boxes to automati-
cally complete some programming statements after typing only the first
few characters.

IntelliSense is a feature of Visual Studio that provides automatic code completion
as you write programming statements. Once you learn how to use IntelliSense, it helps
you write code faster. If you’ve worked through the previous tutorials in this chapter,
you’ve already encountered IntelliSense. For example, in Step 3 of Tutorial 2-3, you
were instructed to write the following statement in the italianButton_Click event

handler:
translationLabel.Text = "Buongiorno";

Did you notice that as soon as you started typing the statement, a box popped up on the
screen? This is known as an IntelliSense list box. The contents of the list box changes as you
type. Figure 2-61 shows the IntelliSense list box after you have typed the characters tra.

Figure 2-61 IntelliSense list box displayed

{—

private woid italianButtom Click({object sender, EventArgs e}

i
teal
Fop Language_Translator -
@, RtiTranslateAlignment
@, RtiTranslateContent
@, RtTranslateHorizontal
@, RtiTranslateleftRight
#3 TrackBar
#3 TrackBarRenderer

L8 translationLabel

& Transparencyley -



92

Chapter 2

—
2.7

Introduction to Visual C#

The IntelliSense system is anticipating what you are about to type, and as you type char-
acters, the content of the list box is reduced. The list box shown in Figure 2-61 shows all
the names starting with tra that might be a candidate for the statement you are typing.
Notice that translationLabel is selected in the list box. With that item selected, you
can press the key on the keyboard, and the tra that you previously typed becomes
translationLabel.

Next, when you type a period, an IntelliSense list pops up showing every property and
method belonging to the translationLabel control. Type te and the Text property
becomes selected, as shown in Figure 2-62. When you press the key to select the
Text property, your statement automatically becomes translationLabel.Text. At this
point, you can continue typing until you have completed the statement.

Figure 2-62 IntelliSense list box after typing “.te”

|
=l private void italianButton_Click(object sender, Eventfrgs e)

i
translationtabel.td
¥ @ ResetTedt
¢ &

& TextAlign

£ TextAlignChanged

¥ TextChanged

#& UseCompatibleTextRendering

Now that you have an idea of how IntelliSense works, you are encouraged to experi-
ment with it as you write code in future projects. With a little practice, it will become
intuitive.

PictureBox Controls

1(0 NCEPT: A PictureBox control displays a graphic image on a form. PictureBox con-

trols have properties for controlling the way the image is displayed. A
PictureBox control can have a Click event handler that responds when the
user clicks the control at run time.

You can use a PictureBox control to display a graphic image on a form. A PictureBox
control can display images that have been saved in the bitmap, GIF, JPEG, metafile, or
icon graphics formats.

In the Toolbox, the PictureBox tool is located in the Common Controls group. When
you double-click the tool, an empty PictureBox control is created on the form, as
shown in Figure 2-63. Although the control does not yet display an image, it has a
bounding box that shows its size and location, as well as sizing handles. When you
create PictureBox controls, they are automatically given default names such as
pictureBox1, pictureBox2, and so forth. You should always change the default
name to something more meaningful.



2.7 PictureBox Controls

Figure 2-63 An empty PictureBox control

Once you have created a PictureBox control, you use its Image property to specify the
image that it will display. Follow these steps:

Step 1:

Step 2:

Click the Image property in the Properties window. An ellipses button ([.}) will
appear, as shown on the left in Figure 2-64.

Click the ellipses button and the Select Resource window, shown on the right
in Figure 2-64, will appear.

Figure 2-64 The Image property’s Select Resource window

pictureBox1 System.Windows.Forms ~

AR

Enabled True -

Errorimage  [<] System.Drawi
GenerateMemb: True

EXTNC] o

Imagelocation
M Initiallmage System.Drawi
E Location 33,86

Locked False
B Margin 3,333
B MaximumSize 0,0
B MinimumSize 0,0 %
Image

The image displayed in the PictureBox.

Step 3:

Step 4:

Step 5:

-
Select Resource

Resource context
) Local resource:

I Import.. | | Clear l

@ Project resource file:

[Fmpetﬁs\kgmmrm_ x ]

In the Select Resource window, click the Import button. An Open dialog box
will appear. Use the dialog box to locate and select the image file that you
want to display.

After you select an image file, you will see its contents displayed in the Select
Resource window. This indicates that the image has been imported into the
project. Figure 2-65 shows an example of the Select Resource window after
we have selected and imported an image.

Click the OK button in the Select Resource window, and the selected image
will appear in the PictureBox control. Figure 2-66 shows an example.
Depending on the size of the image, you might see only part of it displayed.
This is the case in Figure 2-66 because the image is larger than the PictureBox
control. Your next step is to set the SizeMode property and adjust the size of
the control.

23



94 Chapter 2 Introduction to Visual C#

Figure 2-65 An image selected and imported

Select Rgsnurce

Resource context

1 Local resource;

| import. || Gl |

@ Project resource file:
mepelﬁas\ﬁvunum.-m ."-l

(none)

oKk ][ Cancel

Figure 2-66 The image displayed in the PictureBox control

The SizeMode Property

The PictureBox control’s SizeMode property specifies how the control’s image is to be
displayed. It can be set to one of the following values:
e Normal

Normal is the default value. The image will be positioned in the upper-left corner of
the PictureBox control. If the image is too big to fit in the PictureBox control, it will
be clipped.

e StretchImage

StretchImage resizes the image both horizontally and vertically to fit in the Picture-
Box control. If the image is resized more in one direction than the other, it will ap-
pear stretched.

e AutoSize

With AutoSize, the PictureBox control is automatically resized to fit the size of the
image.



2.7 PictureBox Controls

e (CenterImage

CenterImage centers the image in the PictureBox control without resizing it.

e Zoom

Zoom uniformly resizes the image to fit in the PictureBox without losing its origi-
nal aspect ratio. (Aspect ratio is the image’s width to height ratio.) This causes the
image to be resized without appearing stretched.

Figure 2-67 shows an example of an image displayed in a PictureBox control. The con-
trol’s SizeMode is set to Zoom, so it can be resized without appearing stretched.

Figure 2-67 An image resized with SizeMode set to Zoom

a2 Forml = =R =

NOTE: PictureBox controls also have a BorderStyle property that works just like a
Label control’s BorderStyle property.

Creating Clickable Images

Buttons aren’t the only controls that can respond to Click events. PictureBox controls
can, too. That means an application can display an image and perform some action when
the user clicks the image.

To make an image clickable, you simply have to create a Click event handler for
the PictureBox control that displays the image. You create a Click event handler for a
PictureBox control in the same way that you create a Click event handler for a Button
control:

* You double-click the PictureBox control in the Designer. This creates an empty
Click event handler in the form’s source code file.

¢ In the code editor you write statements inside the event handler that you want to
execute when the image is clicked.

As an example, look at the Cat project that is in the Chap02 folder of the Student Sample
Programs that accompany this textbook. Figure 2-68 shows the application’s form. The
PictureBox control’s name is catPictureBox. Its image is the Cat.jpg file, which is also
found in the Chap02 folder of the Student Sample Programs. The SizeMode property is
set to Zoom, and the BorderStyle property is set to FixedSingle.

Open the Form1.cs file in the code editor and you will see that we have already created
a Click event handler for the catPictureBox control, as shown in Figure 2-69. If you
run the application and click the PictureBox, a message box will appear displaying the
string Meow.

95



%26

Chapter 2 Introduction to Visual C#

Figure 2-68 The Cat form

(42 cat ESYE=Sc=)

Click the Catl

Figure 2-69 Code for the Cat project’s Form1.cs file

Flusing System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Ling;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

[{
| .
| {
}
{
}
-
}

Tutorial 2-4 gives you a chance to practice using PictureBox controls. In the tutorial, you
will create an application with three clickable PictureBox controls, displaying images that

public partial class Forml : Form

] public Formil()

|namespace Cat

Click event handler for the
catPictureBox control

InitializeComponent();

Bl private void catPictureBox_Click(object sender, EventArgs e)

MessageBox. Show("Meow") ;

are provided in the Student Sample Program files that accompany this book.

Tutorial 2-4:

Creating the Flags Application

\E\lote In this tutorial you will create an application that displays the flags of Finland, France,
Tutorial 2-4:  and Germany in PictureBox controls. When the user clicks any of these PictureBoxes, the
Creating name of that flag’s country will appear in a Label control.

the Flags

Application

Step 1: Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms
Application project named Flags.



2.7 PictureBox Controls

Step 2:  Set up the application’s form as shown in Figure 2-70. Notice that the form’s
Text property is set to Flags. The names of the controls are shown in the figure.
Refer to Table 2-4 for each control’s relevant property settings.

Figure 2-70 The Flags form

ul Flags (= [ E s
instructionLabel » Click aflagto see the name ofthe country
finlandPictureBox —I>E l] 54»—— germanyPictureBox
francePictureBox | v |
A
countryLabel

Table 2-4 Control property settings

Control Name Control Type Property Settings

instructionLabel Label Text: Click a flag to see the name of the
country.

finlandPictureBox  PictureBox Image: Select and import the Finland.bmp

file from the Chap02 folder of the Student
Sample Programs.

BorderStyle: FixedSingle

SizeMode: AutoSize

francePictureBox PictureBox Image: Select and import the France.bmp
file from the Chap02 folder of the Student
Sample Programs.
BorderStyle: FixedSingle
SizeMode: AutoSize

germanyPictureBox  PictureBox Image: Select and import the Germany.bmp
file from the Chap02 folder of the Student
Sample Programs.
BorderStyle: FixedSingle
SizeMode: AutoSize

countryLabel Label AutoSize: False
BorderStyle: FixedSingle
Font: Microsoft Sans Serif (Style: Bold, Size:
10 point)
Text: (The contents of the Text property
have been erased.)
TextAlign: MiddleCenter

Step 3: Once you have the form and its controls set up, you can create the Click event
handlers for the PictureBox controls. In the Designer, double-click the
finlandPictureBox control. This will open the code editor, and you will see
an empty event handler named finlandPictureBox_Click. Write the follow-
ing statement inside the event handler:

countryLabel.Text = "Finland";



928

Chapter 2

Introduction to Visual C#

Step 4:

Step 5:

Step 6:

Switch your view back to the Designer and double-click the francePicture-
Box control. This will open the code editor, and you will see an empty event
handler named francePictureBox Click. Write the following statement in-
side the event handler:

countryLabel.Text = "France";

Switch your view back to the Designer and double-click the germanyPicture-
Box control. This will open the code editor, and you will see an empty event
handler named germanyPictureBox_Click. Write the following statement in-
side the event handler:

countryLabel.Text = "Germany";

The form’s code should now appear as shown in Program 2-2. As was men-
tioned in the previous tutorial, the line numbers are shown for reference only,
and are not part of the code. The lines that appear in boldface are the ones that
you typed. Make sure the code you typed appears exactly as shown here. (Don’t
forget the semicolons!)

Program 2-2 Completed Form1 code for the flags application

0 JOo U WN P

(el

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

namespace Flags

{
public partial class Forml : Form
{
public Forml()
{
InitializeComponent();
}
private void finlandPictureBox Click(object sender, EventArgs e)
{
countryLabel.Text = "Finland";
}
private void francePictureBox Click(object sender, EventArgs e)
{
countryLabel.Text = "France";
}
private void germanyPictureBox Click(object sender, EventArgs e)
{
countryLabel.Text = "Germany";
}
}

}




2.7 PictureBox Controls

Step 7: Save the project. Then, press the key on the keyboard, or click the Start
Debugging button () on the toolbar to compile and run the application.

Q NOTE: If you typed the statements correctly inside the event handlers, the ap-

plication should run. If you did not type the statements inside the event handlers
correctly, a window will appear reporting build errors. If that happens, click the
No button in the window, then correct the code so it appears exactly as previ-
ously shown.

Figure 2-71 shows the application’s form when it starts running and then after
you have clicked each of the PictureBox controls. After you have clicked each
flag to make sure the application works correctly, close the form.

Figure 2-71 The Flags application running

4l Flags (=[5 [ ol Flags [= [ E
Click a flag to see the name ofthe country. Click a flag to see the name ofthe country.
| | | Finland |
adl Flags [= [ B [ - Flags [= [
Click a flag to see the name ofthe country. Click a flag to see the name ofthe country.
| France | | Germany |

The Visible Property

Most controls have a Visible property that determines whether the control is visible on the
form at run time. The Visible property is a Boolean property, which means it can be set only
to the values True or False. If a control’s Visible property is set to True, the control will be
visible on the form at run time. If a control’s Visible property is set to False, however, the
control will not be visible at run time. By default, the Visible property is set to True.

When you use the Properties window to change a control’s Visible property at design time,
the control will still be visible in the Designer. When you run the application, however, the
control will not be visible on the form. For example, the image on the left in Figure 2-72
shows a form in the Designer. The PictureBox control’s Visible property is set to False, but
the control can still be seen in the Designer. The image on the right shows the form while
the application is running. At run time, the control is not visible.

A control’s Visible property can also be modified in code by an assignment statement,
which makes it possible to hide or display a control while the application is running. For
example, the PictureBox control shown in Figure 2-72 is named spiderPictureBox. The
following statement sets the control’s Visible property to true:

spiderPictureBox.Visible = true;

29



100 Chapter 2 Introduction to Visual C#

Figure 2-72 A PictureBox control with its Visible property set to False

The form in the Designer The form at run time
riﬂ Forml M
spiderPictureBox System.Windows.F -
Enalf #
B MinimumSize 0,0 -
Modifiers Private
B Padding 0,000
M Size 260, 224 \ J
SizeMode Stretchlmage
Tag
UseWaitCursor False
False [~
WaitOnlLoad  False =
Visible
The Visible property is set to False. Determines whether the control is

visible or hidden.

When this statement executes, the spiderPictureBox control will become visible. Like-
wise, the following statement sets the control’s Visible property to false:

spiderPictureBox.Visible = false;

When this statement executes, the spiderPictureBox control will become invisible.

@ NOTE: When you write the values true and false in code, as shown in the previ-

ous assignment statement, they must be written in all lowercase letters. The words
true and false are C# keywords, and an error will occur if you don’t write them in
lowercase. However, when you use the Properties window to set a Boolean property,
such as Visible, the values True and False will be shown with an initial capital. Try
not to let this inconsistency confuse you!

In Tutorial 2-5 you will create an application that uses the Visible property of two
PictureBox controls to simulate a card being flipped over.

Tutorial 2-5:
Creating the Card Flip Application

\E\lm In this tutorial you will create an application that simulates a card being flipped over.
Tutorial 2-5:  When the application runs, it will display the form shown on the left in Figure 2-73. The
Creating the form initially displays the back of a poker card. When the user clicks the Show the Card
Card Flip Face button, the card will be flipped over to show its face, as shown in the form on the
Application right. When the user clicks the Show the Card Back button, the card is flipped back over

to show its back.



2.7 PictureBox Controls 101

The simulation of the card being flipped will be accomplished using the following
logic:

e When the user clicks the Show the Card Face button, the PictureBox showing the
card’s back will be made invisible and the PictureBox showing the card’s face will be
made visible.

e When the user clicks the Show the Card Back button, the PictureBox showing the
card’s face will be made invisible and the PictureBox showing the card’s back will be
made visible.

Figure 2-73 The Card Flip application
[z Card Flip =] ) (o Card Flip =5 )

A
Q%
v

Show the ‘ ‘ Show the

IR ot
aetlle

e
s 8880008

Show the

Show the
Card Face

Card Back

Card Back Card Face

Step 1: Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms
Application project named Card Flip.

Step 2: Set up the application’s form as shown in Figure 2-74. Notice that the form’s
Text property is set to Card Flip. The names of the controls are shown in the
figure. Use the Properties window to make the property settings shown in Table
2-5. (In particular, note that the cardBackPictureBox control’s Visible prop-
erty is set to True, and the cardFacePictureBox control’s Visible property is
set to False.)

Figure 2-74 The Card Flip form

ol Card Flip =8 E=H| T

SES5888
Yraiondog

cardBackPictureBox cardFacePictureBox

.
.
.
.
.
o | b
o
48
.
.
.
.
.

vanenn e
s BEEBOBE

Show the Show the
Card Back Card Face

/ \

showBackButton showFaceButton



102

Chapter 2

Introduction to Visual C#

Table 2-5 Control property settings

Control Name Control Type Property Settings

cardBackPictureBox  PictureBox Image: Select and import the Backface_

Blue.jpg file from the Chap02 folder
of the Student Sample Programs.
Size: 100, 140

SizeMode: Zoom

Visible: True

cardFacePictureBox  PictureBox Image: Select and import the Ace_Spades.

jpg file from the Chap02 folder of the
Student Sample Programs.

Size: 100, 140

SizeMode: Zoom

Visible: False

showBackButton Button Text: Show the Card Back

(Manually resize the button to
accommodate the text, as shown in
Figure 2-74.)

showFaceButton Button Text: Show the Card Face (Manually

resize the button to accommodate the text,
as shown in Figure 2-74.)

Step 3:

Step 4:

Step 5:

Once you have the form and its controls set up, you can create the Click event
handlers for the Button controls. In the Designer, double-click the showBack-
Button control. This will open the code editor, and you will see an empty event
handler named showBackButton_click. Write the following statements inside
the event handler:

cardBackPictureBox.Visible = true;
cardFacePictureBox.Visible = false;

Switch your view back to the Designer and double-click the showFaceButton
control. This will open the code editor, and you will see an empty event han-
dler named showFaceButton_click. Write the following statements inside the
event handler:

cardBackPictureBox.Visible
cardFacePictureBox.Visible

false;
true;

The form’s code should now appear as shown in Program 2-3. Remember, the
line numbers are shown for reference only and are not part of the code. The
lines that appear in boldface are the ones that you typed. Make sure the code
you typed appears exactly as shown here. (Don’t forget the semicolons!)

Program 2-3 Completed Form1 code for the Card Flip application

0 o0 U W -

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;



2.7 PictureBox Controls

9 using System.Windows.Forms;
10
11 namespace Card Flip
12 {
13 public partial class Forml : Form
14 {
15 public Forml ()
16 {
17 InitializeComponent();
18 }
19
20 private void showBackButton Click(object sender, EventArgs e)
21 {
22 cardBackPictureBox.Visible = true;
23 cardFacePictureBox.Visible = false;
24 }
25
26 private void showFaceButton Click(object sender, EventArgs e)
27 {
28 cardBackPictureBox.Visible = false;
29 cardFacePictureBox.Visible = true;
30 }
31 }
32 3
Step 6: Save the project. Then, press the key on the keyboard, or click the Start

Debugging button () on the toolbar to compile and run the application.

Test the application by clicking the buttons. When you click the Show the Card
Face button you should see the card’s face (and the back of the card should be
invisible). When you click the Show the Card Back button you should see the
card’s back (and the card’s face should be invisible). When you are finished,
close the application.

©

NOTE: If you typed the statements correctly inside the event handlers, the ap-
plication should run. If you did not type the statements inside the event handlers
correctly, a window will appear reporting build errors. If that happens, click
the No button in the window and then correct the code so it appears exactly as
previously shown.

NOTE: In addition to PictureBoxes, many other types of controls have a Visible
property. For example, you can make a Label control visible or invisible by setting the
value of its Visible property.

Sequential Execution of Statements

In Tutorial 2-5, the event handlers that you created each contained more than one state-

ment. For example, here is the showBackButton Click method:

private void showBackButton Click(object sender, EventArgs e)

{

cardBackPictureBox.Visible = true;

cardFacePictureBox.Visible

false;

103



104

Chapter 2

"
2.8

Introduction to Visual C#

This method has two assignment statements. When the method executes, the statements
in the method execute in the order that they appear, from the beginning of the method to
the end of the method. This statement executes first:

cardBackPictureBox.Visible = true;
Then this statement executes:
cardFacePictureBox.Visible = false;

When the application is running, however, you can’t really tell that the statements are ex-
ecuting in this order simply by watching the action take place on the screen. When you click
the showBackButton control, the Click event handler executes so quickly that it appears as
though both statements execute simultaneously. It’s important for you to understand, how-
ever, that the statements execute one at a time, in the order that they appear in the method.

In this particular method, it doesn’t really matter which assignment statement is written first.
If we reverse the order of the statements, we will not be able to see the difference on the screen
because the application executes so quickly. In most applications, however, the order in which
you write the statements in the event handlers is critically important. In Chapter 3 you will
start writing event handlers that perform several steps, and in most cases, the steps must be
performed in a specific order. Otherwise, the program will not produce the correct results.

Checkpoint

2.38 What is a PictureBox control used for?

2.39 Where is the PictureBox tool located in the Toolbox?

2.40 How do you display an image in the PictureBox?

2.41 What is the default value of the PictureBox control’s SizeMode property?

2.42 How does setting the SizeMode property to Zoom affect the image that is to be
displayed in the PictureBox control?

2.43 How do you create a clickable image?

2.44 Does the value of a control’s Visible property change how the image appears at run
time and design time?

Comments, Blank Lines, and Indentation

1CONCEPT: Comments are brief notes that are placed in a program’s source code

to explain how parts of the program work. Programmers commonly
use blank lines and indentation in program code to give the code visual
organization and make it easier to read.

Comments

Comments are short notes that are placed in different parts of a program, explaining how
those parts of the program work. Comments are not intended for the compiler. They are
intended for any person who is reading the code and trying to understand what it does.

In C# there are three types of comments: line comments, block comments, and documen-
tation comments. A line comment appears on one line in a program. You begin a line



2.8 Comments, Blank Lines, and Indentation 105

comment with two forward slashes (//). Everything written after the slashes, to the end of
the line, is ignored by the compiler. The following code sample shows how we might use
line comments in the showBackButton_Click event handler from Tutorial 2-5. Each line
comment explains what the very next line of code does.

private void showBackButton_Click(object sender, EventArgs e)

{
// Make the image of the back of the card visible.
cardBackPictureBox.Visible = true;
// Make the image of the face of the card invisible.
cardFacePictureBox.Visible = false;

}

A line comment does not have to occupy an entire line. Anything appearing after the //
symbol, to the end of the line, is ignored. So, a comment can appear after an executable
statement. The following code sample shows an example.

private void showBackButton Click(object sender, EventArgs e)
{
cardBackPictureBox.Visible = true; // Show the card back.
cardFacePictureBox.Visible = false; // Hide the card face.

}

A block comment can occupy multiple consecutive lines in a program. A block comment
starts with /* (a forward slash followed by an asterisk) and ends with */ (an asterisk fol-
lowed by a forward slash). Everything between these markers is ignored. The following
code sample shows how block comments may be used.

/* Click event handler for the showBackButton control.
This method makes the image of the back of the card
visible and makes the image of the card’s face
invisible.

*/

private void showBackButton_Click(object sender, EventArgs e)

{

cardBackPictureBox.Visible true; // Show the card back.
cardFacePictureBox.Visible = false; // Hide the card face.

}

The first five lines in this code sample are a block comment that explains what the
showBackButton_Click method does. Block comments make it easier to write long
explanations because you do not have to mark every line with a comment symbol.

Remember the following advice when using block comments:

e Be careful not to reverse the beginning symbol (/*) with the ending symbol (*/).
¢ Do not forget the ending symbol.

Each of these mistakes can be difficult to track down and will prevent the program from
compiling correctly.

The third type of comment is known as a documentation comment. Documentation com-
ments are used by professional programmers to embed extensive documentation in a
program’s source code. Visual Studio can extract information from the documentation
comments and generate external documentation files. Single-line documentation com-
ments begin with three forward slashes (///). Block documentation comments begin with
/** and end with */. Although documentation comments are useful for professional
programmers, we do not use them in this book.

As a beginning programmer, you might resist the idea of writing a lot of comments
in your programs. After all, it’s a lot more interesting to write code that actually does
something. However, it’s crucial that you take the extra time to write comments. They



106

Chapter 2

—
29

Introduction to Visual C#

will almost certainly save you time in the future when you have to modify or debug the
program. Even large and complex programs can be made easy to read and understand if
they have proper comments.

Using Blank Lines and Indentation to Make Your Code
Easier to Read

Programmers commonly use blank lines and indentations in their code to create a sense
of visual organization. This is similar to the way that authors visually arrange the text
on the pages of a book. Instead of writing each chapter as one long series of sentences,
they break the text into paragraphs that are visually separated on the page. This does not
change the information in the book, but it makes it easier to read.

For example, in the following code sample, we have inserted a blank line inside the
method to visually separate the code into two sets of statements. The blank line is not
required, but it makes the code easier for humans to read.

private void showBackButton Click(object sender, EventArgs e)

{
// Make the image of the back of the card visible.
cardBackPictureBox.Visible = true;
// Make the image of the face of the card invisible.
cardFacePictureBox.Visible = false;

}

Programmers also use indentation to visually organize code. You may have noticed that
in the code editor, all the statements that appear inside a set of braces ({}) are indented.
For example, all the statements inside a namespace are indented, all the statements inside
a class are indented, and all the statements inside a method are indented. In fact, Visual
Studio is normally set up to automatically indent the code that you write in this fashion.

Although the indentation is not required, it makes your code much easier to read. By indent-
ing the statements inside a method, you visually set them apart. As a result, you can tell at a
glance which statements are inside the method. The same is true for classes and namespaces.
This practice of indentation is a convention that virtually all programmers follow.

Checkpoint

2.45 What purpose do comments serve?
2.46 How are line comments and block comments different?

2.47 What should you be careful to remember about the beginning and ending symbols
of block comments?

2.48 Why do programmers insert blank lines and indentations in their code?

Writing the Code to Close an Application’s Form

1CONCEPT: To close an application’s form in code, you use the statement this.

Close();

All the applications that you created in this chapter’s tutorials required the user to click
the standard Windows close button () to close the application. The standard Win-
dows close button appears in the upper-right corner of almost every window. In many



2.10 Dealing with Syntax Errors 107

applications, however, you will want to give the user an alternative way to close the ap-
plication. For example, you might want to create an Exit button that closes the applica-
tion when it is clicked.

To close an application’s form, you execute the following statement:
this.Close();

Let’s look at an example of how this statement can be used. Figure 2-75 shows the form
and code from a project named Exit Button Demo. The Button control that you see on
the form is named exitButton. In the form’s code you can see that we have created a
Click event handler for the button. When the user clicks the button, it closes the form,
thus closing the application.

Figure 2-75 A form with an Exit button

o .+ LY

#3 Exit_Button_Demo,Forml -2, exitButton_Click{object sender, EventArgs €)

—lusing System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
oy Exit Button Demo @Eﬂ using System.Ovawing;
using System.Ling;
| |using System.Text;
Exit using System.Threading.Tasks;
using System.Windows.Forms;

A

—inamespace Exit_Button_Demo

: = public partial class Forml : Form
exitButton

{
= public Forml()
InitializeComponent();
}
. , = private void exitButton_Click(object sender, EventArgs e)
The exitButton control’s {
Click event handler // Close the form.

this.Close();

—
2.10 Dealing with Syntax Errors

1CONCEPT: The Visual Studio code editor examines each statement as you type it and
reports any syntax errors that are found. This allows you to quickly cor-
rect syntax errors.

Writing code requires a lot of precision. Even small errors, such as using an uppercase
letter where you are supposed to use a lowercase letter or forgetting to end a statement
with a semicolon, will prevent an application’s code from compiling and executing. Recall
from Chapter 1 that these types of mistakes are known as syntax errors.

The Visual Studio code editor does a good job of reporting syntax errors soon after you
type them. When you enter a statement into the editor, Visual Studio analyzes it, and if a
syntax error is found, it is underlined with a jagged line. Figure 2-76 shows an example.
If you hold the mouse cursor over the jagged a line, a description of the error will pop up
in a ToolTip window. The description usually gives you enough information to determine
the cause of the error and how to fix it.



108

Chapter 2

Introduction to Visual C#

Figure 2-76 Error underlined

private wvoid messageButton Click(object sender, Eventirgs e)

1

“essageBox.Sho("Hello World");

} \

This jagged line indicates an error.

If a syntax error exists in a project’s code and you attempt to compile and execute it
(by pressing the key on the keyboard, or clicking the Start Debugging button (F)
on the toolbar), you will see the window shown in Figure 2-77, reporting build er-
rors. Click the No button to close the window, and you will see the Error List shown
in Figure 2-78.

Figure 2-77 Window reporting build errors

s = R)
Microsoft Visual Studio o]

= There were build errors, Would you like to continue and run the last
successful build?

Yes ] [ ha ]
[7] Do not show this dialog again
W A
Figure 2-78 Error List window
e ! 0Warnings 0 Messages Search Error List P~
Description File = Line = Column = Project «
€31 ‘Systern.Windows.Forms.MessageBox' does not contain a definition for 'Sho'  Forml.cs 22 24 Hello Waorld

Notice that the Error List window shows a description of the error, the source code file
that contains the error, the line number and column number of the error, and the name
of the project. If you double-click the error message that is displayed in the Error List
window, the code editor will highlight the code that caused the error.

'/ Checkpoint

2.49 What statement do you use to close an application’s form in code?
2.50 How can you tell that Visual Studio has found a syntax error?
2.51 What happens if you hold the mouse cursor over a jagged line in the code editor?

2.52 What happens if you attempt to compile and execute a program that contains
syntax errors?



Key Terms

Alphabetical button
aspect ratio
assignment operator
assignment statement
AutoSize property
block comment
Boolean

BorderStyle property
bounding box

braces

camelCase
Categorized button
Click event

design time

dialog box
documentation comments

Review Questions

Hello World
identifiers

Image property
IntelliSense

Label control

line comment
message box
method call
namespace
PictureBox control
Program.cs file
run time
semicolon
SizeMode property
sizing handles
source code file

event handler string
Font property TextAlign property
Form1.cs file Visible property
Review Questions
Multiple Choice
1. A(n) is the thin dotted line that encloses an object in the Designer.

a. selection marker
b. control binder
c. bounding box
d. object container

2. The small squares that appear on the right edge, bottom edge, and lower-right cor-

ner of a form’s bounding box are called

a. sizing hooks
b. form edges

c. bounding tags
d. sizing handles

3. is the name of the blank form that Visual Studio initially creates in a
new project.
a. Forml
b. Main
c. Newl
d. Blank
4. The property holds the text that is displayed on the face of the button.
a. Name
b. Text
c. Tag
d. Face

5. A file that contains program code is called a(n)

a. destination code file

b. executable file

109



110 Chapter 2 Introduction to Visual C#

c. machine language file
d. source code file

6. A namespace is container that holds

a. methods

b. names
c. spaces
d. classes
7. A(n) is a method that executes when a specific event takes place while

an application is running.

a. action process
b. event handler
c. runtime procedure
d. event method

8. The statement MessageBox.Show("Hello World"); is an example of a(n)

method call
namespace
Click event
event handler

an o

9. In programming we use the term string to mean

a. many lines of code
b. parallel memory locations
c. string of characters
d. virtually anything
10. A(n) marks the end of a programming statement in C#.
a. semicolon
b. period
c. hyphen
d. underscore
11. A piece of data that is written into a program’s code is a(n)
a. identifier
b. specifier
c. keyword
d. literal

12. The time during which you build the GUI and write the application’s code is re-
ferred to as

a. run time
b. design time
c. code time

d. planning
13. The time during which an application is executing is referred to as
a. go time
b. design time
c. execution
d. run time
14. When you want to display text on a form, you use a control.
a. Button

b. PictureBox



158

16.

17.

18.

19.

20.

21.

272

23.

Review Questions

c. Label

d. TextBox

The property allows you to set the font, font style, and size of the con-
trol’s text.

a. Style

b. AutoSize

c. Text

d. Font

A property can be set to one of two possible values: True or False.

a. Boolean

b. Logical

c. Binary

d. Dual

Label controls have a(n) property that controls the way they can be resized.
a. Stretch

b. AutoSize

c. Dimension

d. Fixed

The property can be used to change the text’s alignment in the label.

a. TextPosition
b. AutoAlign

c. TextCenter
d. TextAlign

In code, you use a(n) to store a value in a control’s property.
a. Click event

b. method call

c. assignment statement

d. Boolean value

The equal sign (=) is known as the
a. equality symbol

b. assignment operator

c. equality operator

d. property position

The standard notation for referring to a control’s property in code is

a. ControlName.PropertyName
b ControlName=PropertyName
C. PropertyName.ControlName
d PropertyName=ControlName

is a feature of Visual Studio that provides automatic code completion as
you write programming statements.
a. AutoCode
b. AutoComplete
c. IntelliSense

d. IntelliCode
You can use a(n) control to display a graphic image on a form.

a. Graphics
b. PictureBox

111



112 Chapter 2 Introduction to Visual C#

c. Drawing
d. ImageBox

24. Once you have created a PictureBox control, you use its property to
specify the image that it will display.
a. Image
b. Source
c. DrawSource
d. ImageList

25. The PictureBox control’s property specifies how the control’s image is
to be displayed.
a. RenderMode
b. DrawMode
c. SizeMode
d. TImageMode
26. is the image’s width to height ratio.
a. Aspect ratio
b. Size ratio
c. Projection ratio
d. Area ratio
27. Most controls have a property that determines whether the control is
visible on the form at run time.
a. Render
b. Viewable
c. Visible
d. Draw
28. A(an) appears on one line in a program.
a. inline comment
b. line comment
c. forward comment
d. block comment
29. A can occupy multiple consecutive lines in a program.
a. block comment
b. square comment
c. multiline comment
d. machine comment
30. Programmers commonly use blank lines and indentations in their code to create a
sense of
a. logic
b. visual organization
c. documentation
d. program flow

31. To close an application’s form in code, you use the statement

a. Close();

b. cClose.This();
C. Close()

d. this.Close();



Review Questions

True or False

O

10.

11.

12,
13.

14.

15.
16.

17.

18.

19.
20.

Changing an object’s Text property also changes the object’s name.

When a form is created, its Text property is initially set to the same value as the
form’s name.

The form’s title is displayed in the bar along the top of a form.
C# source code files always end with the .cs extension.
You add your own code to the Progam.cs file as you develop an application.

C# code is organized as methods, which are contained inside classes, which are con-
tained inside namespaces.

In C# code, each opening brace must have a corresponding closing brace at some
point later in the program.

When you double-click a control in the Designer, Visual Studio not only creates an
empty event handler, but it also writes some code that you don’t see, elsewhere in
the project that is necessary for the event handler to properly function.

A Label control’s Text property is initially set to the same value as the Label con-
trol’s name.

When a Label control’s AutoSize property is set to True, you cannot manually
change the size of the control by clicking and dragging its bounding box.

By default, a label’s text is aligned with the bottom and right edges of the label’s
bounding box.

Label controls are useful for displaying output while an application is running.

The assignment operator assigns the value that appears on its left side to the item
that appears on its right side.

PictureBox controls also have a BorderStyle property that works just like a Label
control’s BorderStyle property.

Buttons are the only controls that can respond to Click events.

The Visible property is a Binary property, which means it can be set only to the val-
ues 1 and 0.

When you write the values true or false in code, they must be written in all low-
ercase letters.

In C# there are three types of comments: line comments, block comments, and doc-
umentation comments.

To close an application’s form in code, you use the statement Close.This();

The Visual Studio code editor examines each statement as you type it, and reports
any syntax errors that are found.

Short Answer

What does a bounding box indicate about an object in the Designer?

What happens when you position the mouse cursor over an edge or corner of a
bounding box that has sizing handles?

What determines an object’s appearance and other characteristics?

113



114

Chapter 2

Introduction to Visual C#

10.
11.

12.
13.

14.
15.
16.
17.
18.
19.
20.

What is shown by each column in the Properties window?
What steps must you perform to change a form’s Text property?

What steps must you perform to change a form’s Size property in the Properties
window?

How do you move a control to a new location on the form using the mouse?
What steps do you perform to change a Button control’s Text property?
Briefly describe the contents of the Form1.cs file.

In code, what characters do you enclose a string literal in?

When creating an event handler for a button, is it possible to skip a step by
opening the code editor and writing all the event handler code yourself? Why or
why not?

Briefly describe the difference between design time and run time.

Describe the appearance of a Label control that’s BorderStyle property is set to
Fixed3D.

What does it mean when a Label control’s AutoSize property is set to True?
What are the values that the TextAlign property may be set to?

How do you clear the text that is displayed in a Label control in code?

What are the different image formats that a PictureBox control can display?
List the values that the SizeMode property of a PictureBox control can be set to.
What are the three types of comments you can use in Visual C#?

How does Visual Studio help you to quickly correct syntax errors?

Algorithm Workbench

il
2y
3.

What statement would you write to display Good Afternoon in a message box?
What statement would you write to display your name in a message box?

Suppose an application’s GUI has a Label control named dogLabel. Write a state-
ment that causes Fido to be displayed in the dogLabel control.

Suppose an application’s GUI has a Label control named outputLabel. Write a
statement that clears any text that happens to be displayed by the control.

Suppose an application’s GUI has a PictureBox control named myPicture. Write a
statement that makes the control invisible.

Programming Problems

1.

Latin Translator

Look at the following list of Latin words and their meanings.

Latin English
sinister left
dexter right

medium center



>

VideoNote
Solving the
Clickable
Number
Images
Problem

Programming Problems

Create an application that translates the Latin words to English. The form should
have three buttons, one for each Latin word. When the user clicks a button, the ap-
plication should display the English translation in a Label control.

Clickable Number Images

In the Chap02 folder, in the Student Sample Program files, you will find the
image files shown in Figure 2-79. Create an application that displays these
images in PictureBox controls. The application should perform the following
actions:

e When the user clicks the 1 image, the application should display the word One
in a message box.

¢  When the user clicks the 2 image, the application should display the word Two
in a message box.

e When the user clicks the 3 image, the application should display the word Three
in a message box.

e When the user clicks the 4 image, the application should display the word Four
in a message box.

e When the user clicks the 5 image, the application should display the word Five
in a message box.

Figure 2-79 Image files

1 12| 3| 4 |9

One.bmp Two.bmp  Three.omp Fourbmp  Five.bmp

Card Identifier

In the Student Sample Programs that accompany this book, you will find a folder
named Images\Cards\Poker Large. In that folder you will find JPEG image files
for a complete deck of poker cards. Create an application with five PictureBox
controls. Each PictureBox should display a different card from the set of images.
When the user clicks any of the PictureBox controls, the name of the card should
be displayed in a Label control. Figure 2-80 shows an example of the application
running. The image on the left shows the application’s form when it starts run-
ning. The image on the right shows the form after the user has clicked the two of
clubs card.

Figure 2-80 Card Identifier application

o2l Card Identifier (=)= ] = Card Identifier (== ]

Click a Card to See lis Name Click a Card to See lis Name

JOKER
LYY Y)

‘ ‘ Two of Clubs ‘

g
g

115



116

Chapter 2

Introduction to Visual C#

Joke and Punch line

A joke typically has two parts: a setup and a punch line. For example, this might be
the setup for a joke:

How many programmers does it take to change a lightbulb?
And this is the punch line:
None. That’s a hardware problem.

Think of your favorite joke and identify its setup and punch line. Then, create an
application that has a Label and two buttons on a form. One of the buttons should
read “Setup” and the other button should read “Punch line.” When the Setup but-
ton is clicked, display the joke’s setup in the Label control. When the Punch line but-
ton is clicked, display the joke’s punch line in the Label control.

Heads or Tails

In the Student Sample Programs that accompany this book you will find a folder
named Images\Coins that contains images showing the heads and tails sides of a
coin. Create an application with a Show Heads button and a Show Tails button.
When the user clicks the Show Heads button, an image of the heads side of a coin
should appear. When the user clicks the Show Tails button, an image of the tails side
of a coin should appear. Figure 2-81 shows examples of how the application’s form
might appear.

Figure 2-81 The Heads or Tails application

ol Heads or Tails |ﬂ|&] ol Heads or Tails |£I£—hj

‘ Show

|
i ‘ Show Tails

| 1
2 Show | 4
‘ Exit ‘ ‘ a5 ‘ | Show Tails

Heads

Orion Constellation

Orion is one of the most famous constellations in the night sky. In the Chap02 folder
of the Student Sample Programs that accompany this book, you will find an image
file named Orion.bmp, which contains a diagram of the Orion constellation. Create
an application that displays the Orion image in a PictureBox control, as shown on
the left in Figure 2-82. The application should have a button that, when clicked,
displays the names of each of the stars, as shown on the right in Figure 2-82. The
application should have another button that, when clicked, hides the star names.
The names of the stars are Betelgeuse, Meissa, Alnitak, Alnilam, Mintaka, Saiph,
and Rigel.

Hint: Place the PictureBox control with the Orion image on the form. Then, place
Label controls containing the star names on top of the PictureBox. Use the Prop-
erties window to set each of the Label control’s Visible property to False. That
will cause the labels to be invisible when the application runs. The Show Star
Names button will set each of the Label control’s Visible property to true, and
the Hide Star Names button will set each of the Label control’s Visible property
to false.



Programming Problems 117

Figure 2-82 The Orion Constellation application

o=l Crion Constellation l = | = &J a-! Crion Constellation o | B [
Betelgeuse
Meissa
Mintaka
Alnitak Alnilam
Rigel
Saiph
Showe Star Hide Star 7 Showe Star Hide Star ;
‘ MNames ‘ Names l £ ‘ ‘ MNames ‘ Names l L ‘




This page intentionally left blank



100
i i
0
i i
o o
5 ) i O
ol o

—
3.1

-t

0 OE
ooooo
ooooo
ooooo

Processing Data

o
(WN]
—
o
<
I
)

TOPICS
3.1 Reading Input with TextBox Controls 3.7 Simple Exception Handling
3.2 AfFirst Look at Variables 3.8 Using Named Constants
3.3 Numeric Data Types and Variables 3.9 Declaring Variables as Fields
3.4 Performing Calculations 3.10 Using the Math Class
3.5 Inputting and Outputting Numeric 3.11 More GUI Details

Values

3.6 Formatting Numbers with the
ToString Method

Reading Input with TextBox Controls

CONCEPT: The TextBox control is a rectangular area that can accept keyboard input
from the user.

Many of the programs that you will write from this point forward will require the user
to enter data. The data entered by the user will then be used in some sort of operation.
One of the primary controls that you will use to get data from the user is the TextBox
control.

A TextBox control appears as a rectangular area on a form. When the application is run-
ning, the user can type text into a TextBox control. The program can then retrieve the text
that the user entered and use that text in any necessary operations.

In the Toolbox, the TextBox tool is located in the Common Controls group. When you
double-click the tool, a TextBox control is created on the form, as shown in Figure 3-1.
When you create TextBox controls, they are automatically given default names such as
textBoxl, textBox2, and so forth. As you learned in Chapter 2, you should always
change a control’s default name to something more meaningful.

When the user types into a TextBox control, the text is stored in the control’s Text prop-
erty. In code, if you want to retrieve the data that has been typed into a TextBox, you
simply retrieve the contents of the control’s Text property.

119



120

Chapter 3

Processing Data

Figure 3-1 A TextBox control

2 Form

=L
o

NOTE: When you retrieve the contents of the Text property, you always get a string.
Any operation that can be performed on a string can be performed on a control’s Text

property.

Let’s look at an example. Make sure you have downloaded the student sample pro-
grams from the book’s companion Web site (at www.pearsonhighered.com/gaddis). In
the Chap03 folder, you will find a project named TextBox Demo. Figure 3-2 shows the
form, with most of the control names specified, and Figure 3-3 shows the form’s code. (In
Figure 3-3, to conserve space on the page, we have scrolled past the using directives that
appear at the top of the code file.)

Notice in Figure 3-3 that the readInputButton control’s Click event handler performs
the following assignment statement:

outputLabel.Text = nameTextBox.Text;

This statement assigns the value of the nameTextBox control’s Text property to the
outputLabel control’s Text property. In other words, it gets any text that has been
entered by the user into the nameTextBox control and displays it in the outputLabel
control. If you run the application, Figure 3-4 shows an example of how the form appears
after you have entered Kathryn Smith and clicked the readInputButton control.

Figure 3-2 The TextBox Demo application

ol TextBox Demo =
Erter your name: | - nameTextBox
You ertered: -t outputLabel
| Read Input | | Exit |
/ S
readInputButton exitButton

Clearing the Contents of a TextBox Control

You can clear the contents of a TextBox control in the same way that you clear the con-
tents of a Label control: you assign an empty string ("") to the control’s Text property.
For example, the following statement clears the contents of the nameTextBox control:

nameTextBox.Text = "";


www.pearsonhighered.com/gaddis

3.2 AFirst Look at Variables

Figure 3-3 The form’s code (excluding the using directives)

Formles 1 X

%3 TextBox_Demo.Forml - @ Forml() -
Elnamespace TextBox_Demo %
Rt <
=] public partial class Forml : Form
| €
B public Forml()

!
InitializeComponent(};
I ¥
=] private void readInputButton_Click(object sender, Eventhrgs e)
1 // Assign the name entered by the user to the
// outputlabel control's Text property.
outputlabel.Text = nameTextBox.Text;
I ¥
=] private void exitButton Click(object sender, EventhArgs e)
1
// Close the form.
this.Close();
i ¥
I
L}
w
100% = 4 4

Figure 3-4 The user’s name displayed in the label

-
! TextBox Demo

Enteryourname:  Kathryn Smith

o

(Resaiea) [ B2

When this statement executes, the nameTextBox control will appear empty on the appli-
cation’s form.

'/ Checkpoint

3.1 What control can be used to gather text input from the user?
3.2 In code, how do you retrieve data that has been typed into a TextBox control?
3.3 What type of data does a control’s Text property always contain?

3.4 How do you clear the contents of a TextBox control?

"
3.2 A First Look at Variables

1 CONCEPT: A variable is a storage location in memory that is represented by a name.

Most programs store data in the computer’s memory and perform operations on that
data. For example, consider the typical online shopping experience: you browse a Web

121



122

Chapter 3

Processing Data

site and add the items that you want to purchase to the shopping cart. As you add items
to the shopping cart, data about those items is stored in memory. Then, when you click
the checkout button, a program running on the Web site’s computer calculates the cost
of all the items you have in your shopping cart, applicable sales taxes, shipping costs, and
the total of all these charges. When the program performs these calculations, it stores the
results in the computer’s memory.

Programs use variables to store data in memory. A variable is a storage location in mem-
ory that is represented by a name. For example, a program that manages a company’s cus-
tomer mailing list might use a variable named lastName to hold a customer’s last name, a
variable named firstName to hold the customer’s first name, a variable named address
to hold the customer’s mailing address, and so on.

In C#, you must declare a variable in a program before you can use it to store data. You
do this with a variable declaration, which specifies two things about the variable:

1. The variable’s data type, which is the type of data the variable will hold
2. The variable’s name

A variable declaration statement is written in this general format:
DataType VariableName;

Let’s take a closer look at each of these.

Data Type

A variable’s data type indicates the type of data that the variable will hold. Before you
declare a variable, you need to think about the type of value that will be stored in the vari-
able. For example, will the variable hold a string or a number? If it will hold a number,
what kind of number will it be, an integer or a real number? When you have determined
the kind of data that the variable will hold, you select one of the data types that C# pro-
vides for a variable.

The C# language provides many data types for storing fundamental types of data, such as
strings, integers, and real numbers. These data types are known as primitive data types.
We will look at several of them in this chapter.

Variable Name

A variable name identifies a variable in the program code. When naming a variable, you
should always choose a meaningful name that indicates what the variable is used for.
For example, a variable that holds the temperature might be named temperature, and
a variable that holds a car’s speed might be named speed. You may be tempted to give
variables short, nondescript names such as x or b2, but names such as these give no clue
as to the purpose of the variable.

In addition, there are some specific rules that you must follow when naming a variable.
The same rules for identifiers that apply to control names also apply to variable names.
We discussed these rules in Chapter 2, but we review them now:

e The first character must be one of the letters a through z or A through Z or an
underscore character (_ ).

o After the first character, you may use the letters a through z or A through Z, the
digits 0 through 9, or underscores.

e The name cannot contain spaces.

When naming variables, we use the same camelCase naming convention that we intro-
duced in Chapter 2 for control names. For example, if we are declaring a variable to hold



3.2 AFirst Look at Variables

an employee’s gross pay, we might name it grossPay. Or, if are declaring a variable to a
customer number, we might name it customerNumber.

string Variables

The first primitive data type we consider is the string data type. A variable of the string
data type can hold any string of characters, such as a person’s name, address, password,
and so on. Here is an example of a statement that declares a string variable named
productDescription:

string productDescription;

After the variable has been declared, you can use the assignment operator (=) to store a
value in the variable. Here is an example:

productDescription = "Italian Espresso Machine";

When this statement executes, the string literal "Italian Espresso Machine" is as-
signed to the productDescription variable. When writing an assignment statement,
remember that the assignment operator assigns the value that appears on its right side to
the variable that appears on its left side.

Once you have assigned a value to a variable, you can use the variable in other opera-
tions. For example, assume productLabel is the name of a Label control. The following
statement assigns the productDescription string to the productLabel control’s Text

property:
productLabel.Text = productDescription;

After this statement executes, the string that is stored in the productDescription variable
is displayed in the productLabel control. The following statement shows another example:

MessageBox.Show(productDescription);

When this statement executes, the string that is stored in the productbDescription vari-
able is displayed in a message box.

String Concatenation

A common operation that performed on strings is concatenation, or appending one string
to the end of another string. In C# you use the + operator to concatenate strings. The +
operator produces a string that is the combination of the two strings used as its operands.
The following code shows an example:

string message;
message = "Hello " + "world";
MessageBox.Show(message) ;

The first statement declares a string variable named message. The second statement
combines the strings "Hello " and "world" to produce the string "Hello world". The
string "Hello world" is then assigned to the message variable. The third statement dis-
plays the contents of the message variable in a message box. When the message box is
displayed, it shows the string Hello world.

Let’s look at an application that further demonstrates string concatenation. In the
Chap03 folder of this book’s student sample programs (available for download at www.
pearsonhighered.com/gaddis), you will find a project named String Variable Demo. Fig-
ure 3-5 shows the form, with most of the control names specified, and Figure 3-6 shows
the form’s code. (In Figure 3-6, to conserve space on the page, we have scrolled past the
using directives that appear at the top of the code file.)

123


www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

124 Chapter 3

Processing Data

Figure 3-5 The String Variable Demo application

-

ol String Variable Demo = | B
Entter your fist name: | < firstNameTextBox
Enter your last name: -t lastNameTextBox
This is your full name: -t fullNameLabel

| Show MName | | Exit |
4 b
/ \
showNameButton exitButton

Figure 3-6 The form’s code (excluding the using directives)

Forml.cs & X

#3 String_Variable_Demo.Forml « @ Forml()
Elnamespace String_Variable Demo
{
=] public partial class Forml : Form
| {
B public Forml()
{
InitializeComponent();
}

l~;: private void showNameButton_Click(object sender, EventArgs e)

// Declare a string variable to hold the full name.
@—b- string fullName;

// Combine the names, with a space between them. Assign the
// result to the fullName variable.
@—P fullName = firstNameTextBox.Text + “ " + lastNameTextBox.Text;
// Display the fullName variable in the fullNameLabel control.
@—b fullNameLabel.Text = fullName;
}

— private void exitButton_Click(object sender, EventArgs e)

// Close the form.
this.Close();

In Figure 3-6, three statements in the showNameButton_Click event handler are pointed

out:

O]
©)

This statement is a variable declaration. It declares a string variable named
fullName.

This statement assigns the result of a string concatenation to the fullName
variable. The string that is assigned to the variable begins with the value of the
firstNameTextBox control’s Text property, followed by a space (" "), followed
by the value of the lastNameTextBox control’s Text property. For example, if
the user has entered Joe into the firstNameTextBox control and Smith into the
lastNameTextBox control, this statement will assign the string "Joe smith" to the
fullName variable.

This statement assigns the fullName variable to the fullNameLabel control’s Text
property. As a result, the string that is stored in the fullName variable is displayed
in the fullNameLabel control.



3.2 AFirst Look at Variables

If you run the application, Figure 3-7 shows an example of how the form appears after
you have entered Chris for the first name and Jones for the last name and clicked the
showNameButton control.

Figure 3-7 The user’s full name displayed in the label

I =0 —
8 String Variable Demo (o3, (IS
Enter your first name: d‘lﬁs
Erteryour last name: Jones
This is your full name:;
 Show Name § [ Exit ]
L #

Declaring Variables before Using Them

The purpose of a variable declaration statement is to tell the compiler that you plan to use
a variable of a specified name to store a particular type of data in the program. A variable
declaration statement causes the variable to be created in memory. For this reason, a vari-
able’s declaration statement must appear before any other statements in the method that
use the variable. This makes perfect sense because you cannot store a value in a variable if
the variable has not been created in memory.

Local Variables

Notice that the fullName variable in Figure 3-6 is declared inside the event handler
method. Variables that are declared inside a method are known as local variables. A local
variable belongs to the method in which it is declared, and only statements inside that
method can access the variable. (The term local is meant to indicate that the variable can
be used only locally, within the method in which it is declared.)

An error will occur if a statement in one method tries to access a local variable that be-
longs to another method. For example, let’s go over the sample code shown in Figure 3-8:

(1) This statement declares a string variable named myName. The variable is declared
inside the firstButton_cClick event handler, so it is local to that method.

(2) This statement, which is also in the firstButton_Click event handler, assigns the
nameTextBox control’s Text property to the myName variable.

Figure 3-8 One method trying to access a variable that is local to another method

private woid firstButton Click(object sender, Eventirgs e)

{

/ Declare a string variable.

®—> string myName;

Assign the nameText control's Text property

// to the myllame varia

@—> myName = nameTextBox.Text;

}

private woid secondButton_Click(object sender, Eventérgs e)

{

issign the myMame variable to the outputiabel
!/ control's Text property.

®—> ;:rutput'Label,Text = myName; -«——— ERROR!
I

125



126

Chapter 3

Processing Data

(3) This statement, which is in the secondButton_cClick event handler, attempts to
assign the myName variable to the outputLabel control’s Text property. This
statement will not work, however, because the myName variable is local to the
firstButton_Click event handler, and statements in the secondButton_Click
event handler cannot access it.

Scope of a Variable

Programmers use the term scope to describe the part of a program in which a variable
may be accessed. A variable is visible only to statements inside the variable’s scope.

A local variable’s scope begins at the variable’s declaration and ends at the end of the
method in which the variable is declared. As you saw in the previous example, a local
variable cannot be accessed by statements that are outside the method. In addition, a local
variable cannot be accessed by code that is inside the method but before the variable’s
declaration.

Lifetime of a Variable

A variable’s lifetime is the time period during which the variable exists in memory while
the program is executing. A local variable is created in memory when the method in
which it is declared starts executing. When the method ends, all the method’s local vari-
ables are destroyed. So, a local variable’s lifetime is the time during which the method in
which it is declared is executing.

Duplicate Variable Names

You cannot declare two variables with the same name in the same scope. For example,
if you declare a variable named productDescription in an event handler, you cannot
declare another variable with that name in the same event handler. You can, however,
have variables of the same name declared in different methods.

Assignment Compatibility

You can assign a value to a variable only if the value is compatible with the variable’s
data type. Only strings are compatible with the string data type, so all the assignments
in the following code sample work:

// Declare and initialize a string variable.
string productDescription = "Chocolate Truffle";

// Declare another string variable.
string myFavoriteProduct;

// Assign a value to a string variable.
myFavoriteProduct = productDescription;

// Assign a value from a TextBox to a string variable.
productDescription = userInputTextBox.Text;

M O WVWoo NG WN K~

~ =

The following comments explain these lines of code:

e In line 2 we initialize a string variable with a string literal. This works because
string literals are assignment compatible with string variables.

e Inline 8 we assign a string variable to another string variable. This works for the
obvious reason that string variables are compatible with other string variables.



©

3.2 AFirst Look at Variables

Assume that the application has a TextBox control named userInputTextBox. In
line 11 we assign the value of the TextBox control’s Text property to a string vari-
able. This works because the value in a control’s Text property is always a string.

The following code will not work, however, because it attempts to assign a nonstring value
to a string variable:

1
2
3
4
5

In lin
not a

// Declare a string variable.
string employeelID;

// Assign a value to the variable. Will this work?
employeeID = 125; < ERROR!

e 5 we are attempting to assign the number 125 to a string variable. Numbers are
ssignment compatible with string variables, so this statement will cause an error

when the code is compiled.

NOTE: Although you cannot store the number 125 in a string variable, you can
store the string literal "125" in a string variable.

A Variable Holds One Value at a Time

Variables can hold different values while a program is running, but they can hold only
one value at a time. When you assign a value to a variable, that value will remain in the
variable until you assign a different value to the variable. For example, look at the follow-
ing code sample:

O NN WN R

)

10
11
12
13
14

// Declare a string variable.
string productDescription;

// Assign a value to the variable.
productDescription = "Large Medium-Roast Coffee";

// Display the variable's value.
MessageBox.Show(productDescription);

// Assign a different value to the variable.
productDescription = "Chocolate Truffle";

// Display the variable's value.
MessageBox.Show(productDescription);

The following comments explain what we did:

Line 2 declares a string variable named productbescription.

Line 5 assignsthestring "Large Medium-Roast Cof fee" totheproductDescription
variable.

Line 8 displays the value of the productbDescription variable in a message box.
(The message box will display Large Medium-Roast Coffee.)

Line 11 assigns a different value to the productDescription variable. After
this statement executes, the productDescription variable will hold the string
"Chocolate Truffle".

Line 14 displays the value of the productbDescription variable in a message box.
(The message box will display Chocolate Truffle.)

127



128

Chapter 3

D

VideoNote

Tutorial 3-1:

The Birth
Date String
Application

Processing Data

This code sample illustrates two important characteristics of variables:

e A variable holds only one value at a time.
e When you store a value in a variable, that value replaces the previous value that was
in the variable.

Tutorial 3-1 gives you some practice using variables. You will create an application that
uses TextBox controls to get input values, stores those values in variables, and uses the
variables in operations.

Tutorial 3-1:
The Birth Date String Application

In this tutorial you create an application that lets the user enter the following information
about his or her birthdate:

® The day of the week (Monday, Tuesday, etc.)

e The name of the month (January, February, etc.)
e The numeric day of the month

e The year

Figure 3-9 shows the application’s form, along with the names of all the controls. When the
application runs, the user enters each piece of data into a separate TextBox. When the user
clicks the Show Date button, the application concatenates the contents of the TextBoxes
into a string such as Friday, June 1, 1990. The string is displayed in the dateoutputLabel
control. When the user clicks the Clear button, the contents of the TextBoxes and the
dateoOutputLabel control are cleared. The Exit button closes the application’s form.

Figure 3-9 The Birth Date String form

atl Birth Date String =] E et
dayOfWeekPromptLabel ®- Enterthe day of the week dayOfWeekTextBox
monthPromptLabel = Enterthe name of the month monthTextBox
dayOfmonthPromptLabel Entter the numeric day of the morth dayOfMonthTextBox
yearPromptLabel - Enterthe year yearTextBox
| i dateOutputLabel
| Show Date | | Clear | | Exit |
W /I \\\ 4
showDateButton clearButton exitButton

Step 1: Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms
Application project named Birth Date String.

Step 2: Set up the application’s form as shown in Figure 3-9. Notice that the form’s
Text property is set to Birth Date String. The names of the controls are shown
in the figure. As you place each control on the form, refer to Table 3-1 for the
relevant property settings.

Step 3: Once you have set up the form with its controls, you can create the Click event
handlers for the Button controls. At the end of this tutorial, Program 3-1 shows
the completed code for the form. You will be instructed to refer to Program 3-1



3.2 AFirst Look at Variables

Table 3-1 Control property settings

Control Name Control Type Property Settings
dayOfWeekPromptLabel Label Text: Enter the day of the week
monthPromptLabel Label Text: Enter the name of the month
dayOfMonthPromptLabel Label Text: Enter the numeric day of the
month
yearPromptLabel Label Text: Enter the year
dayOfWeekTextBox TextBox No properties changed
monthTextBox TextBox No properties changed
dayOfMonthTextBox TextBox No properties changed
yearTextBox TextBox No properties changed
dateOutputLabel Label AutoSize: False

BorderStyle: FixedSingle

Text: (The contents of the Text
property have been erased.)
TextAlign: MiddleCenter

showDateButton Button Text: Show Date
clearButton Button Text: Clear
exitButton Button Text: Exit

Step 4:

as you write the event handlers. (Remember, the line numbers that are shown in
Program 3-1 are not part of the program. They are shown for reference only.)

In the Designer, double-click the showbateButton control. This will open the
code editor, and you will see an empty event handler named showDateButton
Click. Complete the showbDateButton Click event handler by typing the code
shown in lines 22-32 in Program 3-1.

Let’s take a closer look at the code:
Line 23: This statement declares a string variable named output.

Lines 26-29: These lines are actually one long statement, broken up into mul-
tiple lines. The statement concatenates the Text properties of the TextBox con-
trols, along with appropriately placed commas and spaces, to create the date
string. The resulting string is assigned to the output variable.

For example, suppose the user has entered the following input:

® Friday in the dayofWeekTextBox control.
® June in the monthTextBox control.

¢ ] in the dayofMonthTextBox control.

® 1990 in the yearTextBox control.

The concatenation in this statement produces the string “June 1, 19907; it is
assigned to the output variable.

Line 32: This statement assigns the output variable to the dateoutputLabel con-
trol’s Text property. When this statement executes, the contents of the output
variable are displayed in the dateoutputLabel control.

Switch your view back to the Designer and double-click the clearButton
control. In the code editor, you will see an empty event handler named

129



130

Chapter 3

Processing Data

Step 5:

Step 6:

clearButton Click. Complete the clearButton Click event handler by typ-
ing the code shown in lines 37-44 in Program 3-1.

Let’s take a closer look at the code:

Lines 38-41: Each statement assigns an empty string ("") to the Text property
of one of the TextBox controls. When these statements have finished executing,
the TextBox controls will appear empty.

Line 44: This statement assigns an empty string ("") to the dateOutputLabel
control’s Text property. After the statement has executed, the label appears empty.

Switch your view back to the Designer and double-click the exitButton
control. In the code editor, you will see an empty event handler named
exitButton Click. Complete the exitButton Click event handler by typing
the code shown in lines 49-50 in Program 3-1.

Save the project. Then, press the key on the keyboard, or click the Start
Debugging button (Jr) on the toolbar to compile and run the application. The
form will appear as shown in the image on the left in Figure 3-10. Test the ap-
plication by entering values into the TextBoxes and clicking the Show Date
button. The date should be displayed, similar to the image shown on the right
in the figure. Click the Clear button, and the contents of the TextBoxes and the
Label control should clear. Click the Exit button and the form should close.

Figure 3-10 The Birth Date String application

p
4 Birth Date String =0 4l Birth Date String =Bl

™ " ™y

Enter the name of the month Enter the name of the month  june
Enter the numeric day of the month Enter the numeric day of the month 1
Enter the year Enterthe year 1930

Erter the day of the week Enterthe day of the week  Friday

I Friday, June 1, 1390 |

(ShowDate | [ Cear |[ B | fShowDate § [ Cear |[ Eat |

Program 3-1 Completed Form1 code for the Birth Date String application

1 using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Ling;
using System.Text;

2
3
4
5 using System.Drawing;
6
7
8

using System.Threading.Tasks;
9 using System.Windows.Forms;

11 namespace Birth Date String

12 {

13

public partial class Forml : Form

{
public Forml()



3.2 AFirst Look at Variables

16 {
17 InitializeComponent();

18 }

19

20 private void showDateButton Click(object sender, EventArgs e)
21 {

22 // Declare a string variable.

23 string output;

24

25 // Concatenate the input and build the output string.
26 output = dayOfWeekTextBox.Text + ", " +

27 monthTextBox.Text + " " +

28 dayOfMonthTextBox.Text + ", " +

29 yearTextBox.Text;

30

31 // Display the output string in the Label control.

32 dateOutputLabel.Text = output;

33 }

34

35 private void clearButton Click(object sender, EventArgs e)
36 {

37 // Clear the TextBoxes.

38 dayOfWeekTextBox.Text = "";

39 monthTextBox.Text = "";

40 dayOfMonthTextBox.Text = "";

41 yearTextBox.Text = "";

42

43 // Clear the dateOutputLabel control.

44 dateOutputLabel.Text = "";

45 }

46

47 private void exitButton_Click(object sender, EventArgs e)
48 {

49 // Close the form.

50 this.Close();

51 }

52 }

53 }

NOTE: In Tutorial 3-1, the statement in lines 26-29 shows an example of how you
can break up a statement into multiple lines. Quite often, you will find yourself writ-
ing statements that are too long to fit entirely inside the Code window. Your code
will be hard to read if you have to horizontally scroll the Code window to view long
statements. In addition, if you or your instructor chooses to print your code, the state-
ments that are too long to fit on one line of the page will wrap around to the next line
and make your code look unorganized. For these reasons, it is usually best to break a
long statement into multiple lines.

When typing most statements, you can simply press the Enter key when you reach an
appropriate point to continue the statement on the next line. Remember, however,
that you cannot break up a keyword, a quoted string, or an identifier (such as a vari-
able name or a control name).

131



132

Chapter 3

Processing Data

Initializing Variables

In C#, a variable must be assigned a value before it can be used. For example, look at this
code:

string productDescription;
MessageBox.Show(productDescription);

This code declares a string variable named productbDescription and then tries to dis-
play the variable’s value in a message box. The only problem is that we have not assigned
a value to the variable. When we compile the application containing this code, we will get
an error message such as Use of unassigned local variable ‘productDescription’. The C#
compiler will not compile code that tries to use an unassigned variable.

One way to make sure that a variable has been assigned a value is to initialize the vari-
able with a value when you declare it. For example, the following statement declares a
string variable named productDescription and immediately assigns the string literal
"Chocolate Truffle" to it:

string productDescription = "Chocolate Truffle";

We say that this statement initializes the productDescription variable with the string
"Chocolate Truffle". Here is another example:

string lastName = lastNameTextBox.Text;

Assume that this statement belongs to an application that has a TextBox named
lastNameTextBox. The statement declares a string variable named lastName and ini-
tializes it with the value of the 1astNameTextBox control’s Text property.

Declaring Multiple Variables with One Statement

You can declare multiple variables of the same data type with one declaration statement.
Here is an example:

string lastName, firstName, middleName;

This statement declares three string variables named lastName, firstName, and
middleName. Notice that commas separate the variable names. Here is an example of
how we can declare and initialize the variables with one statement:

string lastName = "Jones", firstName = "Jill", middleName = "Rebecca";

Remember, you can break up a long statement so it spreads across two or more lines.
Sometimes you will see long variable declarations written across multiple lines, like
this:

string lastName = "Jones",
firstName = "Jill",
middleName = "Rebecca";
Checkpoint

3.5 What is the purpose of a variable?

3.6 Give an example of a variable declaration that will store the name of your favorite

food.



3.3 Numeric Data Types and Variables 133

3.7 For each of the following items, determine whether the data type should be an
integer, string, or real number.
a. pet name
b. sales tax
c. mailing address
d. video game score

3.8 Indicate whether each of the following is a legal variable name. If it is not, explain
why.
a. pay_Rate
b.speed of sound

C. totalCost
d. 2ndPlaceName

3.9 What will be stored in the message variable after the following statement is
executed?

string message = "He" + "11" + "o!";
3.10 What is the lifetime of a variable that is declared inside of a Click event handler?

3.11 Assuming the variable greeting has not been assigned a value, what will be the
result of the following statement?

MessageBox.Show(greeting);

3.12 Will the following statement cause an error? Why or why not?
string luckyNumber = 7;

3.13 Write a single declaration statement for the variables name, city, and state.

=
3.3 Numeric Data Types and Variables

1 CONCEPT: If you need to store a number in a variable and use that number in a
mathematical operation, the variable must be of a numeric data type. You
select a numeric data type that is appropriate for the type of number that
you need to store.

In the previous section you read about string variables. Variables of the string data
type can be used to store text, but they cannot store numeric data for the purpose of per-
forming mathematical operations. If you need to store numbers and perform mathemati-
cal operations on them, you have to use a numeric data type.

The C# language provides several primitive data types. You can read about all the C#
primitive data types in Appendix A. Many of the data types provided by C# are for spe-
cialized purposes beyond the scope of this book. When it comes to numeric data, most of
the time you will use the three numeric primitive data types described in Table 3-2.

Here are examples of declaring variables of each data type:

int speed;
double distance;
decimal grossPay;

The first statement declares an int variable named speed. The second example declares
a double variable named distance. The third statement declares a decimal variable
named grossPay.



134 Chapter 3

Processing Data

Table 3-2 The primitive numeric data types that you will use most often

Data Type

Description

int

double

decimal

A variable of the int data type can hold whole numbers only. For
example, an int variable can hold values such as 42, 0, and —99. An
int variable cannot hold numbers with a fractional part, such as
22.1 or —4.9.

The int data type is the primary data type for storing integers. We
use it in this book any time we need to store and work with integers.
An int variable uses 32 bits of memory and can hold an integer
number in the range of —2,147,483,648 through 2,147,483,647.

A variable of the double data type can hold real numbers, such as
3.5, —87.95, or 3.0. A number that is stored in a double variable is
rounded to 15 digits of precision.

We use variables of the double data type to store any number that
might have a fractional part. The double data type is especially useful
for storing extremely great or extremely small numbers.

In memory a double variable uses 64 bits of memory. It is stored in a
format that programmers call double precision floating-point notation.
Variables of the double data type can hold numbers in the range of
*5.0 X 10%32% to =1.7 x 10°%%.

A variable of the decimal data type can hold real numbers with
greater precision than the double data type. A number that is stored in
a decimal variable is rounded to 28 digits of precision.

Because decimal variables store real numbers with a great deal of
precision, they are most commonly used in financial applications.
In this book we typically use the decimal data type when storing
amounts of money.

In memory a decimal variable uses 128 bits of memory. It is stored
in a format that programmers call decimal notation. Variables of the
decimal data type can hold numbers in the range of =1.0 x 10228
to £7.9 x 10%%.

Numeric Literals

You learned in Chapter 2 that a literal is a piece of data written into a program’s code.
When you know, at the time that you are writing a program’s code, that you want to
store a specific value in a variable, you can assign that value as a literal to the variable.

A numeric literal is a number that is written into a program’s code. For example, the fol-
lowing statement declares an int variable named hoursworked and initializes it with the
value 40:

int hoursWorked = 40;

In this statement, the number 40 is a numeric literal. The following shows another
example:

double temperature = 87.6;

This statement declares a double variable named temperature and initializes it with the
value 87.6. The number 87.6 is a numeric literal.



W

3.3 Numeric Data Types and Variables 135

When you write a numeric literal in a program’s code, the numeric literal is assigned a
data type. In C#, if a numeric literal is an integer (not written with a decimal point) and
it fits within the range of an int (see Table 3-2 for the minimum and maximum values),
then the numeric literal is treated as an int. A numeric literal that is treated as an int is
called an integer literal. For example, each of the following statements initializes a vari-
able with an integer literal:

int hoursWorked = 40;
int unitsSold = 650;
int score = -23;

If a numeric literal is written with a decimal point and it fits within the range of a
double (see Table 3-2 for the minimum and maximum values), then the numeric literal
is treated as a double. A numeric literal that is treated as a double is called a double
literal. For example, each of the following statements initializes a variable with a
double literal:

double distance = 28.75;
double speed = 87.3;
double temperature = -10.0;

When you append the letter M or m to a numeric literal, it is treated as a decimal and is
referred to as a decimal literal. Here are some examples:

decimal payRate = 28.75m;
decimal price = 8.95M;
decimal profit = -50m;

TIP: Because decimal is the preferred data type for storing monetary amounts,
remembering that “m” stands for “money” might help you to remember that decimal
literals must end with the letter M or m.

Assignment Compatibility for int Variables

You can assign int values to int variables, but you cannot assign double or decimal
values to int variables. For example, look at the following declarations.

int hoursWorked = 40; <« This works
int unitsSold = 650m; <« ERROR!
int score = -25.5; < ERROR!

The first declaration works because we are initializing an int variable with an int value.
The second declaration causes an error, however, because you cannot assign a decimal
value to an int variable. The third declaration also causes an error because you cannot
assign a double value to an int variable.

You cannot assign a double or a decimal value to an int variable because such an as-
signment could result in a loss of data. Here are the reasons:

¢ The double and decimal values may be fractional, but int variables can hold only
integers. If you were allowed to store a fractional value in an int variable, the frac-
tional part of the value would have to be discarded.



136

Chapter 3

Processing Data

® The double and decimal values may be much larger or much smaller than allowed
by the range of an int variable. A double or a decimal number can potentially be
so large or so small that it will not fit in an int variable.

Assignment Compatibility for double Variables

You can assign either double or int values to double variables, but you cannot assign
decimal values to double variables. For example, look at the following declarations.

double distance = 28.75; « This works
double speed = 75; <« This works
double sales = 6500.0m; <« ERROR!

The first declaration works because we are initializing a double variable with a double
value. The second declaration works because we are initializing a double variable with
an int value. The third declaration causes an error, however, because you cannot assign
a decimal value to a double variable.

It makes sense that you are allowed to assign an int value to a double variable because
any number that can be stored as an int can be converted to a double with no loss of
data. When you assign an int value to a double variable, the int value is implicitly con-
verted to a double.

You cannot assign a decimal value to a double variable because the decimal data
type allows for much greater precision than the double data type. A decimal value
can have up to 28 digits of precision, whereas a double can provide only 15 digits of
precision. Storing a decimal value in a double variable could potentially result in a
loss of data.

Assignment Compatibility for decimal Variables

You can assign either decimal or int values to decimal variables, but you cannot assign
double values to decimal variables. For example, look at the following declarations.

decimal balance = 9280.73m; <« This works
decimal price = 50; <« This works
decimal sales = 6500.0; < ERROR!

The first declaration works because we are initializing a decimal variable with a decimal
value. The second declaration works because we are initializing a decimal variable with
an int value. When you assign an int value to a decimal variable, the int value is
implicitly converted to a decimal with no loss of data. The third declaration causes an
error, however, because you cannot assign a double value to a decimal variable. A
double value can potentially be much larger or much smaller than allowed by the range
of a decimal.

Explicitly Converting Values with Cast Operators

Let’s consider a hypothetical situation. Suppose you’ve written an application that uses
a double variable, and for some reason, you need to assign the contents of the double
variable to an int variable. In this particular situation, you know that the double vari-
able’s value is something that can be safely converted to an int without any loss of data
(such as 3.0, or 98.0). However, the C# compiler will not allow you to make the assign-
ment because double values are not assignment compatible with int variables. Isn’t
there a way to override the C# rules in this particular situation and make the assignment
anyway?



3.3 Numeric Data Types and Variables 137

The answer is yes, there is a way. You can use a cast operator to explicitly convert a
value from one numeric data type to another, even if the conversion might result in a loss
of data. A cast operator is the name of the desired data type, written inside parentheses
and placed to the left of the value that you want to convert. The following code sample
demonstrates:

// Declare an int variable.
int wholeNumber;

// Declare a double variable.
double realNumber = 3.0;

// Assign the double to the int.
wholeNumber = (int)realNumber;

W NN WN R

The following points describe the code:

e Line 2 declares an int variable named wholeNumber.

e Line 5 declares a double variable named realNumber, initialized with the value 3.0.

e Line 8 uses a cast operator to convert the value of realNumber to an int and as-
signs the converted value to wholeNumber. After this statement executes, the
wholeNumber variable is assigned the value 3.

Table 3-3 shows other code examples involving different types of cast operators.

Table 3-3 Examples of uses of cast operators

Code Example Description

int wholeNumber; The (int) cast operator converts the value of the
decimal moneyNumber = 4500m; moneyNumber variable to an int. The converted
wholeNumber = (int)moneyNumber; value is assigned to the wholeNumber variable.
double realNumber; The (double) cast operator converts the value of the
decimal moneyNumber = 625.70m; moneyNumber variable to a double. The converted
realNumber = (double)moneyNumber; value is assigned to the realNumber variable.
decimal moneyNumber; The (decimal) cast operator converts the value of
double realNumber = 98.9; the realNumber variable to a decimal. The converted
moneyNumber = (decimal)realNumber; value is assigned to the moneyNumber variable.

When you use a cast operator, you are essentially telling the compiler that you know what
you are doing and you are willing to accept the consequences of the conversion. It is still
possible that a loss of data can occur. For example, look at the following code sample:

int wholeNumber;
double realNumber = 8.9;
wholeNumber = (int)realNumber;

In this example, the double variable contains a fractional number. When the cast opera-
tor converts the fractional number to an int, the part of the number that appears after
the decimal point is dropped. The process of dropping a number’s fractional part is called
truncation. After this code executes, the wholeNumber variable contains the value 8.

It’s important to realize that when a cast operator is applied to a variable, it does not
change the contents of the variable. The cast operator merely returns the value that is
stored in the variable, converted to the specified data type. In the previous code sample,
when the (int) cast operator is applied to the realNumber variable, the cast operator
returns the value 8. The realNumber variable remains unchanged, however, still contain-
ing the value 8.9.



138

Chapter 3

|

3.4

Processing Data

Checkpoint

3.14 Specify the appropriate primitive numeric data type to use for each of the following
values.
a. 24 dollars
b. 12 bananas
c. 14.5 inches
d. 83 cents

e. 2 concert tickets

3.15 Which of the following variable declarations will cause an error? Why?

a. decimal payRate = 24m;

b. int playerScore = 1340.5;
C. double boxWidth = 205.25;
d. string lastName = "Holm";

3.16 Write a programming statement that will convert the following decimal variable
to an int and store the result in an int variable named dollars:

decimal deposit = 976.54m;

3.17 What value will the wholePieces variable contain after the following code

executes?
double totalPieces = 6.5;
int wholePieces = (int)totalPieces;

Performing Calculations

{ CONCEPT: You can use math operators to perform simple calculations. Math

expressions can be written using the math operators and parentheses as
grouping symbols. The result of a math expression can be assigned to a
variable.

Most programs require calculations of some sort to be performed. A programmer’s tools

for performing calculations are math operators. C# provides the math operators shown
in Table 3-4.

Table 3-4 Math operators

Operator ~ Name of the Operator  Description
+ Addition Adds two numbers
- Subtraction Subtracts one number from another
* Multiplication Multiplies one number by another
/ Division Divides one number by another and gives the quotient
2 Modulus Divides one integer by another and gives the remainder

Programmers use the operators shown in Table 3-4 to create math expressions. A math
expression performs a calculation and gives a value. The following is an example of a
simple math expression:

12 * 2



3.4 Performing Calculations

The values on the right and left of the * operator are called operands. These are val-
ues that the * operator multiplies together. The value that is given by this expression
is 24.

Variables may also be used in a math expression. For example, suppose we have two
variables named hoursWorked and payRate. The following math expression uses the *
operator to multiply the value in the hoursWorked variable by the value in the payRate
variable:

hoursWorked * payRate

When we use a math expression to calculate a value, we have to do something with the
value. Normally we want to save the value in memory so we can use it again in the pro-
gram. We do this with an assignment statement. For example, suppose we have another
variable named grossPay. The following statement assigns the value hoursWorked times
payRate to the grossPay variable:

grossPay = hoursWorked * payRate;

Here are some other examples of statements that assign the result of a math expression
to a variable:

total = price + tax;

sale = price — discount;
commission = sales * percent;
half = number / 2;

The modulus operator (¢) performs division between two integers, but instead of
returning the quotient, it returns the remainder. The following statement assigns 2 to
leftOver:

leftOver = 17 % 3;

This statement assigns 2 to leftover because 17 divided by 3 is 5 with a remainder of 2.
You will not use the modulus operator frequently, but it is useful in some situations. It is
commonly used in calculations that detect odd or even numbers, determine the day of the
week, or measure the passage of time and in other specialized operations.

The Order of Operations

You can write mathematical expressions with several operators. The following statement
assigns the sum of 17, the variable x, 21, and the variable y to the variable answer.

answer = 17 + x + 21 + y;

Some expressions are not that straightforward, however. Consider the following
statement:

outcome = 12 + 6 / 3;

What value will be stored in outcome? The number 6 is used as an operand for both
the addition and division operators. The outcome variable could be assigned either 6
or 14, depending on when the division takes place. The answer is 14 because the order
of operations dictates that the division operator works before the addition operator
does.

The order of operations can be summarized as follows:

1. Perform any operations that are enclosed in parentheses.

2. Perform any multiplications, divisions, or modulus operations as they appear from
left to right.

3. Perform any additions or subtractions as they appear from left to right.

139



140

Chapter 3

Processing Data

Mathematical expressions are evaluated from left to right. Multiplication and division are
always performed before addition and subtraction, so the statement

outcome = 12 + 6 / 3;
works like this:

1. 6 is divided by 3, yielding a result of 2.
2. 12 is added to 2, yielding a result of 14.

It could be diagrammed as shown in Figure 3-11.

Table 3-5 shows some other sample expressions with their values.

Figure 3-11 The order of operations at work

outcome = 12 + 6 / 3;
outcome = 12 + 2;
outcome = 14;

Table 3-5 Some math expressions and their values

Expression Value
54+ 2 * 4 13
10 /2 — 3 2
8 + 12 % 2 — 4 28
6 — 3 *2+7 — 1 6

Grouping with Parentheses

Parts of a mathematical expression may be grouped with parentheses to force some opera-
tions to be performed before others. In the following statement, the variables a and b are
added together, and their sum is divided by 4:

result = (a + b) / 4;
But what if we left the parentheses out, as shown here?
result = a + b / 4;

We would get a different result. Without the parentheses, b would be divided by 4 and
the result added to a. Table 3-6 shows some math expressions that use parentheses and
their values.

Table 3-6 More expressions and their values

Expression Value
(5 +2) * 4 28
10 / (5 — 3) 5
8 + 12 * (6 — 2) 56

(6 — 3) * (2 +7) /3 9




3.4 Performing Calculations

Mixing Data Types in a Math Expression

When you perform a math operation on two operands, the data type of the result will
depend on the data type of the operands. If the operands are of the same data type, the
result will also be of that data type. For example:

e When an operation is performed on two int values, the result will be an int.

e When an operation is performed on two double values, the result will be a
double.

e When an operation is performed on two decimal values, the result will be a
decimal.

It’s not uncommon, however, for a math expression to have operands of different data
types. C# handles operations involving int, double, and decimal operands in the fol-
lowing ways:

e When a math expression involves an int and a double, the int is temporarily con-
verted to a double, and the result is a double.

e When a math expression involves an int and a decimal, the int is temporarily
converted to a decimal, and the result is a decimal.

e Math expressions involving a double and a decimal are not allowed unless a cast
operator is used to convert one of the operands.

For example, suppose a pay-calculating program has the following variable declarations:

int hoursWorked; // To hold the number of hours worked
decimal payRate; // To hold the hourly pay rate
decimal grossPay; // To hold the gross pay

Then, later in the program this statement appears:
grossPay = hoursWorked * payRate;

The math expression on the right side of the = operator multiplies an int by a decimal.
When the statement executes, the value of the hoursWorked variable is temporarily con-
verted to a decimal and then multiplied by the payRate variable. The result is a decimal
and is assigned to the grossPay variable.

When possible, you should avoid math operations that use a mixture of double
and decimal operands. C# does not allow operations involving these two types un-
less you use a cast operator to explicitly convert one of the operands. For example,
suppose a program that calculates the cost of a product has the following variable
declarations:

double weight; // The product weight
decimal pricePerPound; // The price per pound
decimal total; // The total cost

Later in the program you need to calculate the total cost, like this:
total = weight * pricePerPound; <— ERROR!

The compiler will not allow this statement because weight is a double and
pricePerPound is a decimal. To fix the statement, you can insert a cast operator, as
shown here:

total = (decimal)weight * pricePerPound;

The cast operator converts the value of the weight variable to a decimal, and the con-
verted value is multiplied by pricePerPound. The result of the expression is a decimal
and is assigned to total.

141



142

Chapter 3

Processing Data

Integer Division

When you divide an integer by an integer in C#, the result is always given as an integer.
If the result has a fractional part, it is truncated. For example, look at the following code:

int length; // Declare length as an int
double half; // Declare half as a double
length = 75; // Assign 75 to length

half = length / 2; // Calculate half the length

The last statement divides the value of length by 2 and assigns the result to half. Math-
ematically, the result of 75 divided by 2 is 37.5. However, that is not the result that we get
from the math expression. The length variable is an int, and it is being divided by the
numeric literal 2, which is also treated as an int. The result of the division is truncated,
giving the value 37. This is the value that is assigned to the half variable. It does not
matter that the half variable is declared as a double. The fractional part of the result is
truncated before the assignment takes place.

Combined Assignment Operators

Sometimes you want to increase a variable’s value by a certain amount. For example, sup-
pose you have a variable named number and you want to increase its value by 1. You can
accomplish that with the following statement:

number = number + 1;

The expression on the right side of the assignment operator calculates the value of number
plus 1. The result is then assigned to number, replacing the value that was previously
stored there. This statement effectively adds 1 to number. For example, if number is equal
to 6 before this statement executes, it is equal to 7 after the statement executes.

Similarly, the following statement subtracts 5 from number:
number = number — 5;

If number is equal to 15 before this statement executes, it is equal to 10 after the statement
executes. Here’s another example. The following statement doubles the value of the
number variable:

number = number * 2;

If number is equal to 4 before this statement executes, it is equal to 8 after the statement
executes.

These types of operations are very common in programming. For convenience, C# offers
a special set of operators known as combined assignment operators that are designed
specifically for these jobs. Table 3-7 shows the combined assignment operators.

Table 3-7 Combined assignment operators

Operator Example Usage Equivalence
+= X += 5; x =x + 5;
w y == 2; Y=y — 2;
*= *= 10; =z * 10;
/= a /= b; a=a/ b;




3.5 Inputting and Outputting Numeric Values 143

As you can see, the combined assignment operators do not require the programmer to
type the variable name twice. Also, they give a clear indication of what is happening in
the statement.

Checkpoint

3.18 List the operands for the following math expression.
length * width
3.19 Summarize the mathematical order of operations.

3.20 Rewrite the following code segment so that it does not cause an error.

decimal pricePerFoot = 2.99m;
double boardLength = 10.5;
decimal totalCost = boardLength * pricePerFoot;

3.21 Assume result is a double variable. When the following statement executes,
what value will be stored in result?

result = 4 + 10 / 2;

3.22 Assume result is an int variable. When the following statement executes, what
value will be stored in result?
result = (2 + 5) * 10;

3.23 Assume result is a double variable. When the following statement executes,
what value will be stored in result?

result = 5 / 2;

3.24 Rewrite the following statements using combined assignment operators:

count = count + 1;

. amount amount — 5;
radius = radius * 10;
. length length / 2;

oo o
o

|
3.5 Inputting and Outputting Numeric Values

1 CONCEPT: If the user has entered a number into a TextBox, the number will be
stored as a string in the TextBox’s Text property. If you want to store that
number in a numeric variable, you have to convert it to the appropriate
numeric data type. When you want to display the value of a numeric vari-
able in a Label control or a message box, you have to convert it to a string.

Getting a Number from a TextBox

GUI applications typically use TextBox controls to read keyboard input. Any data that
the user enters into a TextBox control is stored in the control’s Text property as a string,
even if it is a number. For example, if the user enters the number 72 into a TextBox con-
trol, the input is stored as the string "72" in the control’s Text property.

If the user has entered a numeric value into a TextBox control and you want to assign that
value to a numeric variable, you have to convert the control’s Text property to the desired
numeric data type. Unfortunately, you cannot use a cast operator to convert a string to a
numeric type.



144

Chapter 3

Processing Data

To convert a string to any of the numeric data types, we use a family of methods in the
.NET Framework known as the Parse methods. In computer science, the term parse
typically means to analyze a string of characters for some purpose. The Parse methods
are used to convert a string to a specific data type. There are several Parse methods in
the .NET Framework, but because we are primarily using the int, double, and decimal
numeric data types, we need only three of them:

e We use the int.Parse method to convert a string to an int.
e We use the double.Parse method to convert a string to a double.
e We use the decimal.Parse method to convert a string to a decimal.

When you call one of the Parse methods, you pass a piece of data known as an argument
into the method, and the method returns a piece of data back to you. The argument that
you pass to the method is the string that you want to convert, and the piece of data that
the method returns back to you is the converted value. Figure 3-12 illustrates this concept
using the int.Parse method as an example.

Figure 3-12 The int.Parse method

Argument
(the string you want to convert)

An int value is returned «——— int .Parse (string)

The following code sample shows how to use the int.Parse method to convert a con-
trol’s Text property to an int. Assume that hoursWorkedTextBox is the name of a Text-
Box control.

// Declare an int variable to hold the hours worked.
int hoursWorked;

1
2
3
4 // Get the hours worked from the TextBox.

5 hoursWorked = int.Parse(hoursWorkedTextBox.Text);

Let’s assume that the user has entered the value 40 into the hoursWorkedTextBox con-
trol. In line 5 of the code sample, on the right side of the = operator is the expression
int.Parse(hoursWorkedTextBox.Text). This expression calls the int.Parse method,
passing the value of hoursWorkedTextBox.Text as an argument. Because the user has
entered 40 into the TextBox, the string "40" is the value that is passed as the argument.
The method converts the string "40" to the int value 40. The int value 40 is returned
from the method and the = operator assigns it to the hoursworked variable. Figure 3-13
illustrates this process.

The following code sample demonstrates the double.Parse method. Assume that
temperatureTextBox is the name of a TextBox control.

// Declare a double variable to hold the temperature.
double temperature;

// Get the temperature from the TextBox.
temperature = double.Parse(temperatureTextBox.Text);

O N W N R

Line 5 passes temperatureTextBox.Text as an argument to the double.Parse method.
That value is converted to a double, returned from the double.parse method, and as-
signed to the temperature variable.

The following code sample demonstrates the decimal.Parse method. Assume that
moneyTextBox is the name of a TextBox control.



3.5 Inputting and Outputting Numeric Values

Figure 3-13 Converting TextBox input to an int

The user enters 40 into the
hoursWorkedTextBox control.

o (= © ]

Ertter the number of hours worked: 40

The string "40" is stored
in the control’s Text

property.

40 o
VR L

hoursWorked = int.Parse (hoursWorkedTextBox.Text) ;

The int value 40 is returned
from the int . Parse method
and assigned to the hoursWorked
variable.

1 // Declare a decimal variable to hold an amount of money.
2 decimal money;

3

4 // Get an amount from the TextBox.

5 money = decimal.Parse(moneyTextBox.Text);

Line 5 passes moneyTextBox.Text as an argument to the decimal.Parse method. That
value is converted to a decimal, returned from the decimal.parse method, and assigned
to the money variable.

NOTE: If you look at the top of a form’s source code in the code editor, you should
see a directive that reads using System;. That directive is required for any program
that uses the Parse methods.

Invalid Conversions

The Parse methods work only if the string that is being converted contains a valid nu-
meric value. If the string contains invalid characters or contains a number that cannot be
converted to the specified data type, an error known as an exception occurs. An exception
is an unexpected error that occurs while a program is running, causing the program to
halt if the error is not properly dealt with.

For example, assume that hoursWorked is an int variable and hoursWworkedTextBox is
a TextBox control. Suppose the user has entered xyz into the TextBox and the following
statement executes:

hoursWorked = int.Parse(hoursWorkedTextBox.Text);

Obviously, the string "xyz" cannot be converted to an int, so an exception occurs.
(When an exception occurs, programmers say an exception is “thrown.”) Depending on
how you execute the application, you will see one of the windows displayed in Figure 3-14
or Figure 3-15.

e If you see the window in Figure 3-14, you can stop the application by clicking the
Stop Debugging button (1), or by pressing + (F5 ], or by clicking Debug and
then Stop Debugging.

e When you see the window shown in Figure 3-15, in most situations you should click
the Quit button to stop the application.

145



146

Chapter 3

Processing Data

Figure 3-14 Exception reported

FormatException was unhandled x

Input string was not in a correct format.

Troubleshooting tips:

{When converting a string to Datelime, parse the string to take the date before putting each vanable into the DateTime object. | «

Make sure your method arguments are in the right format. E‘
1l

Get general help for this exception,

Search for more Help Online...

Exception settings:
[7] Break when this exception type is thrown

Actions:
View Detail...

Copy exception detail to the clipboard

Open exception settings

Figure 3-15 Exception reported

[ N
Microsoft .NET Framework ﬂ

— Unhandled exception has occumed in your application. f you click
|'6‘| Continue, the application will ignore this emor and attempt to continue.
‘S you click Quit, the application will close immediately.

Input string was not in a comect format.

[ Comowe J[ ow |

Later in this chapter you will learn how to catch errors like this and prevent the program
from halting.

Displaying Numeric Values

Suppose an application has a decimal variable named grossPay and a Label control named
grossPayLabel. You want to display the variable’s value in the Label control. To accom-
plish this, you must somehow get the value of the grossPay variable into the grossPayLabel
control’s Text property. The following assignment statement will not work, however:

grossPayLabel.Text = grossPay; <— ERROR!

You cannot assign a numeric value to a control’s Text property because only strings can
be assigned to the Text property. If you want to display the value of a numeric variable in
a Label control, you have to convert the variable’s value to a string.

Luckily, all variables have a Tostring method that you can call to convert the variable’s
value to a string. You call the Tostring method using the following general format:

variableName.ToString()

In the general format, variableName is the name of any variable. The expression returns
the variable’s value as a string. Here is a code sample that demonstrates:

decimal grossPay = 1550.0m;
grossPayLabel.Text = grossPay.ToString();

The first statement declares a decimal variable named grossPay initialized with
the value 1,550.0. In the second statement, the expression on the right side of the =
operator calls the grossPay variable’s Tostring method. The method returns the string



3.5 Inputting and Outputting Numeric Values

"1550.0". The = operator then assigns the string "1550.0" to the grossPayLabel con-
trol’s Text property. As a result, the value 1550.0 is displayed in the grossPayLabel
control. This process is illustrated in Figure 3-16.

Figure 3-16 Displaying numeric data in a Label control

decimal grossPay = 1550.0m;
grossPayLabel.Text = grossPay.ToString() ;

o = "1550.0"

Your gross pay is

You must also convert a numeric variable to a string before passing it to the
MessageBox.Show method. The following example shows how an int variable’s value
can be converted to a string and displayed in a message box:

int myNumber = 123;
MessageBox.Show (myNumber.ToString());

The first statement declares an int variable named myNumber, initialized with the value
123. In the second statement the following takes place:

¢ The myNumber variable’s Tostring method is called. The method returns the string
"123".

e The string "123" is passed to the MessageBox.Show method. As a result, the value
123 is displayed in a message box.

Implicit String Conversion with the + Operator

In this chapter you’ve learned that the + operator has two uses: string concatenation
and numeric addition. If you write an expression using the + operator and both oper-
ands are strings, the + operator concatenates the strings. If both operands are numbers
of compatible types, then the + operator adds the two numbers. But what happens
if one operand is a string and the other operand is a number? The number will be
implicitly converted to a string, and both operands will be concatenated. Here’s an
example:

int idNumber = 1044;
string output = "Your ID number is " + idNumber;

In the second statement, the string variable output is initialized with the string "Your
ID number is 1044". Here is another example:

double testScore = 88.5;
MessageBox.Show("Your test score is " + testScore);

The second statement displays a message box showing the string "Your test score is
88.5".

In Tutorial 3-2 you will use some of the techniques discussed in this section. You will cre-
ate an application that reads numeric input from TextBox controls, and displays numeric
output in a Label control.

147



148

Chapter 3

D

VideoNote

Tutorial 3-2:

Calculating
Fuel
Economy

Processing Data

Tutorial 3-2:
Calculating Fuel Economy

In the United States, a car’s fuel economy is measured in miles per gallon, or MPG. You
use the following formula to calculate a car’s MPG:

MPG = Miles driven ~ Gallons of gas used

In this tutorial you will create an application that lets the user enter the number of miles
he or she has driven and the gallons of gas used. The application will calculate and display
the car’s MPG.

Figure 3-17 shows the application’s form, with the names of all the controls. When the
application runs, the user enter the number of miles driven into the milesTextBox con-
trol and the gallons of gas used into the gallonsTextBox control. When the user clicks
the calculateButton control, the application calculates the car’s MPG and displays the
result in the mpgLabel control. The exitButton control closes the application’s form.

Figure 3-17 The Fuel Economy form

o' Fuel Economy l = | B (S
milesPromptLabel Enter the number of miles driveri: | - milesTextBox
gallonsPromptLabel » Enter the gallons of gas used: -t gallonsTextBox

outputDescriptionLabel - Your cars MPG: % mpgLabel

Calculate -
e || e |
4 \
/ \
calculateButton exitButton

Step 1: Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms
Application project named Fuel Economy.

Step 2: Set up the application’s form as shown in Figure 3-17. Notice that the form’s
Text property is set to Fuel Economy. The names of the controls are shown in
the figure. As you place each of the controls on the form, refer to Table 3-8 for
the relevant property settings.

Step 3: Once you have set up the form with its controls, you can create the Click event
handlers for the Button controls. At the end of this tutorial, Program 3-2 shows the
completed code for the form. You will be instructed to refer to Program 3-2 as you
write the event handlers. (Remember, the line numbers that are shown in Program
3-2 are not part of the program. They are shown for reference only.)

In the Designer, double-click the calculateButton control. This opens the
code editor, and you will see an empty event handler named calculateButton
click. Complete the calculateButton Click event handler by typing the
code shown in lines 22-38 in Program 3-2.

Let’s take a closer look at the code:

Line 22: This statement declares a double variable named miles. This variable
is used to hold the number of miles driven.

Line 23: This statement declares a double variable named gallons. This vari-
able is used to hold the number of gallons used.



3.5 Inputting and Outputting Numeric Values

Table 3-8 Control property settings

Control Name Control Type Property Settings

milesPromptLabel Label Text: Enter the number of miles driven:
gasPromptLabel Label Text: Enter the gallons of gas used:
outputDescriptionLabel Label Text: Your car’s MPG:

milesTextBox TextBox No properties changed
gallonsTextBox TextBox No properties changed

mpgLabel Label AutoSize: False

BorderStyle: FixedSingle

Text: (The contents of the Text property
have been erased.)

TextAlign: MiddleCenter

calculateButton Button Text: Calculate MPG

exitButton Button Text: Exit

Step 4:

Step 5:

Line 24: This statement declares a double variable named mpg. This variable is
used to hold the MPG, which will be calculated.

Line 28: This statement converts the milesTextBox control’s Text property to
a double and assigns the result to the miles variable.

Line 32: This statement converts the gallonsTextBox control’s Text property
to a double and assigns the result to the gallons variable.

Line 35: This statement calculates MPG. It divides the miles variable by the
gallons variable and assigns the result to the mpg variable.

Line 38: This statement converts the mpg variable to a string and assigns the
result to the mpgLabel control’s Text property. This causes the value of the mpg
variable to be displayed in the mpgLabel control.

Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you will see an empty event handler named exitButton_
Click. Complete the exitButton Click event handler by typing the code
shown in lines 43— 44 in Program 3-2.

Save the project. Then, press the key on the keyboard or click the Start
Debugging button (J) on the toolbar to compile and run the application. Test
the application by entering values into the TextBoxes and clicking the Calculate
MPG button. The MPG should be displayed, similar to Figure 3-18. Click the
Exit button and the form should close.

Figure 3-18 The fuel Economy application

! Fuel Economy )

Enter the number of miles diven: 350

Enter the gallons of gas used: 16

Your car's MPG: 21875

| Calculate | -
[ MPG l B l

149



150 Chapter 3 Processing Data

Program 3-2 Completed Form1 code for the Fuel Economy application

1 using System;
2 using System.Collections.Generic;
3 using System.ComponentModel;
4 using System.Data;
5 using System.Drawing;
6 using System.Ling;
7 using System.Text;
8 using System.Threading.Tasks;
9 using System.Windows.Forms;
10
11 namespace Fuel Economy
12 {
13 public partial class Forml : Form
14 {
15 public Forml()
16 {
17 InitializeComponent();
18 }
19
20 private void calculateButton Click(object sender, EventArgs e)
21 {
22 double miles; // To hold miles driven
23 double gallons; // To hold gallons used
24 double mpg; // To hold MPG
25
26 // Get the miles driven and assign it to
27 // the miles variable.
28 miles = double.Parse(milesTextBox.Text);
29
30 // Get the gallons used and assign it to
31 // the gallons variable.
32 gallons = double.Parse(gallonsTextBox.Text);
33
34 // Calculate MPG.
35 mpg = miles / gallons;
36
37 // Display the MPG in the mpgLabel control.
38 mpgLabel.Text = mpg.ToString();
39 }
40
41 private void exitButton_Click(object sender, EventArgs e)
42 {
43 // Close the form.
44 this.Close();
45 }
46 }

47 }




3.6 Formatting Numbers with the ToString Method 151

Checkpoint

3.25 What method converts the string literal "40" to a value of the int data type?

3.26 Write a statement that converts each of the following string values to the decimal
data type using the decimal.Parse method.

a. "9.05"
b. grandTotal
C, " 5 0 n

d. priceTextBox.Text

3.27 Suppose an application has a decimal variable named total and a Label control
named totalLabel. What will be the result when the following assignment
statement is executed?

totalLabel.Text = total;

3.28 Write a statement that displays each of the following numeric variables in a
message box.
a. grandTotal
b. highScore
Cc. sum
d. width

3.29 Write a statement that will store the value of an int variable named result in the
Text property of a Label control named resultLabel.

"
3.6 Formatting Numbers with the
1 ToString Method

CONCEPT: The Tostring method can optionally format a number to appear in a
specific way.

When you display large numbers, you usually want to format them with commas so they
are easy to read. For example, 487,634,789.0 is easier to read than 487634789.0. Also,
when you display amounts of money, you usually want to round them to two decimal
places and display a currency symbol, such as a dollar sign ($).

When you call the Tostring method, you can optionally pass a formatting string as an
argument to the method. The formatting string indicates that you want the number to
appear formatted in a specific way when it is returned as a string from the method. For
example, when you pass the formatting string "c" to the Tostring method, the number
is returned formatted as currency. Assuming that you are in the United States, numbers
formatted as currency are preceded by a dollar sign ($), are rounded to two decimal
places, and have comma separators inserted as necessary. The following code sample
demonstrates:

decimal amount = 123456789.45678m;
MessageBox.Show(amount.ToString("c"));

Notice in the second statement that the "c" formatting string is passed to the amount
variable’s Tostring method. The message box that the statement displays appears as
shown in Figure 3-19.

There are several other format strings that you can use with the Tostring method, and
each produces a different type of formatting. Table 3-9 shows a few of them.



152

Chapter 3

Processing Data

Figure 3-19 A number formatted as currency

£123,456,780 .46

Table 3-9 A few of the formatting strings

Format String Description

"N" or "n" Number format

"F" or "f" Fixed-point scientific format
"E" or "e" Exponential scientific format
"C" or "c" Currency format

"P" or "p" Percent format

Number Format

Number format ("n" or "N") displays numeric values with comma separators and a deci-
mal point. By default, two digits display to the right of the decimal point. Negative values
are displayed with a leading minus sign. An example is —2,345.67.

Fixed-Point Format

Fixed-point format ("£" or "F") displays numeric values with no thousands separator and
a decimal point. By default, two digits display to the right of the decimal point. Negative
values are displayed with a leading minus (-) sign. An example is —2345.67.

Exponential Format

Exponential format ("e" or "E") displays numeric values in scientific notation. The number
is displayed with a single digit to the left of the decimal point. The letter e appears in front
of the exponent, and the exponent has a leading + or — sign. By default, six digits display
to the right of the decimal point, and a leading minus sign is used if the number is negative.

An example is —2.345670e+003.

Currency Format

Currency format ("c" or "c") displays a leading currency symbol (such as $), digits,
comma separators, and a decimal point. By default, two digits display to the right of the
decimal point. Negative values are surrounded by parentheses. An example of a negative
value is ($2,345.67).

Using Percent Format

Percent format ("p" or "P") causes the number to be multiplied by 100 and displayed
with a trailing space and % sign. By default, two digits display to the right of the decimal



3.6 Formatting Numbers with the ToString Method

point. Negative values are displayed with a leading minus sign. For example, the number
0.125 would be formatted as 12.5 % and the number —0.2345 would be formatted
as —23.45 %.

Specifying the Precision

Each numeric format string can optionally be followed by an integer that indicates how
many digits to display after the decimal point. For example, the format "n3" displays
three digits after the decimal point. Table 3-10 shows a variety of numeric formatting
examples, based on the North American locale.

Table 3-10 Numeric formatting examples (North American locale)

Number Format String ToString( ) Return Value

12.3 "n3" 12.300

12.348 "n2" 12.35

1234567.1 "N" 1,234,567.10

123456.0 "f2" 123456.00

123456.0 "e3" 1.235e+005

.234 "p" 23.40 %

-1234567.8 "c" ($1,234,567.80)
Rounding

Rounding can occur when the number of digits you have specified after the decimal point
in the format string is smaller than the precision of the numeric value. Suppose, for exam-
ple, that the value 1.235 were displayed with a format string of "n2". Then the displayed
value would be 1.24. If the next digit after the last displayed digit is 5 or higher, the last
displayed digit is rounded away from zero. Table 3-11 shows examples of rounding using
a format string of "n2".

Table 3-11 Rounding examples using the "n2" display format string

Number Formatted As
1.234 1.23

1.235 1.24

1.238 1.24

-1.234 -1.23
-1.235 -1.24
-1.238 -1.24

Using Leading Zeros with Integer Values

You can use the "d" or "D" formatting strings with integers to specify the minimum width
for displaying the number. Leading zeros are inserted if necessary. Table 3-12 shows
examples.

In Tutorial 3-3 you will create an application that uses currency formatting to display a
dollar amount.

153



154

Chapter 3

D

VideoNote

Tutorial 3-3:

Creating the
Sale Price
Calculator
Application
with
Currency
Formatting

Processing Data

Table 3-12 Formatting integers using the "d" or "b" formatting strings

Integer Value Format String Formatted As
23 "d" 23

23 "d4" 0023

1 "d2" 01

Tutorial 3-3:
Creating the Sale Price Calculator Application with
Currency Formatting

If you are writing a program that works with a percentage, you have to make sure that the
percentage’s decimal point is in the correct location before doing any math with the per-
centage. This is especially true when the user enters a percentage as input. Most users will
enter the number 50 to mean 50 percent, 20 to mean 20 percent, and so forth. Before you
perform any calculations with such a percentage, you have to divide it by 100 to move its
decimal point to the left two places.

Suppose a retail business is planning to have a storewide sale in which the prices of all
items will be reduced by a specified percentage. In this tutorial you will create an appli-
cation to calculate the sale price of an item after the discount is subtracted. Here is the
algorithm, expressed as pseudocode:

1. Get the original price of the item.

2. Get the discount percentage. (For example, 20 is entered for 20 percent.)

3. Divide the percentage amount by 100 to move the decimal point to the correct
location.

4. Multiply the percentage by the original price. This is the amount of the discount.

5. Subtract the discount from the original price. This is the sale price.

6. Display the sale price.

Figure 3-20 shows the application’s form, with the names of all the controls. When the
application runs, the user enters an item’s original price into the originalPriceTextBox
control and the discount percentage into the discountPercentageTextBox control. When
the user clicks the calculateButton control, the application calculates the item’s sale price
and displays the result in the salePriceLabel control. The exitButton control closes the
application’s form.

Figure 3-20 The Sale Price Calculator form

—
ol Sale Price Calculator l | [ S
originalPricePromptLabel ® Enterthe item’s original price - originalPriceTextBox
discPercentagePromptLabel —# Erterthe discourt percentage - discountPercentageTextBox
outputDescriptionLabel - Sale price ]]= salePriceLabel
Calculate :
‘ Sale Price ‘ Bt ‘

/ \

calculateButton exitButton



Step 1:

Step 2:

3.6 Formatting Numbers with the ToString Method

Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms
Application project named Sale Price Calculator.

Set up the application’s form, as shown in Figure 3-20. Notice that the form’s
Text property is set to Sale Price Calculator. The names of the controls are
shown in the figure. As you place each of the controls on the form, refer to
Table 3-13 for the relevant property settings.

Table 3-13 Control property settings

Control Name Control Type Property Settings
originalPricePromptLabel  Label Text: Enter the item’s original price:
discPercentagePromptLabel Label Text: Enter the discount percentage:
outputDescriptionLabel Label Text: Sale price:
originalPriceTextBox TextBox No properties changed
discountPercentageTextBox TextBox No properties changed
salePriceLabel Label AutoSize: False

BorderStyle: FixedSingle
Text: (The contents of the Text

property have been erased.)
TextAlign: MiddleCenter

calculateButton Button Text: Calculate Sale Price
exitButton Button Text: Exit
Step 3: Once you have set up the form with its controls, you can create the Click event

handlers for the Button controls. At the end of this tutorial, Program 3-3 shows
the completed code for the form. You will be instructed to refer to Program 3-3
as you write the event handlers. (Remember, the line numbers that are shown
in Program 3-3 are not part of the program. They are shown for reference
only.)

In the Designer, double-click the calculateButton control. This will open the
code editor, and you will see an empty event handler named calculateButton_
click. Complete the calculateButton_Click event handler by typing the
code shown in lines 22-43 in Program 3-3.

Let’s take a closer look at the code:

Line 22: This statement declares a decimal variable named originalPrice.
This variable will hold the item’s original price.

Line 23: This statement declares a decimal variable named discountPercentage.
This variable will hold the discount percentage.

Line 24: This statement declares a decimal variable named discountAmount.
This variable will hold the amount of discount that will be taken from the item’s
original price. This amount will be calculated.

Line 25: This statement declares a decimal variable named salePrice. This
variable will hold the item’s sale price. This amount will be calculated.

Line 28: This statement converts the originalPriceTextBox control’s
Text property to a decimal and assigns the result to the originalPrice
variable.

155



156

Chapter 3

Processing Data

Step 4:

Step 5:

Line 31: This statement converts the discountPercentageTextBox control’s
Text property to a decimal and assigns the result to the discountPercentage
variable.

Line 34: This statement divides discountPercentage by 100 and stores the
result back in discountPercentage. This moves the decimal point in the
discountPercentage variable to the left two places.

Line 37: This statement calculates the amount of the discount. It multi-
plies originalPrice by discountPercentage and assigns the result to
discountAmount.

Line 40: This statement calculates the item’s sale price. It subtracts the
discountAmount variable from the originalPrice variable and assigns the re-
sult to the salePrice variable.

Line 43: This statement displays the item’s sale price as a currency amount.
It converts the salePrice variable to a string and assigns the result to the
salePriceLabel control’s Text property. Notice that the format string "c" is
passed to the salePrice variable’s Tostring method.

Switch your view back to the Designer and double-click the exitButton
control. In the code editor you will see an empty event handler named
exitButton Click. Complete the exitButton Click event handler by typing
the code shown in lines 48—49 in Program 3-3.

Save the project. Then, press the key on the keyboard or click the Start
Debugging button () on the toolbar to compile and run the application. Test
the application by entering values into the TextBoxes and clicking the Calculate
Sale Price button. The sale price is displayed, similar to Figure 3-21. Click the
Exit button and the form closes.

Figure 3-21 The Sale Price Calculator application

p
u-! Sale Price Calculator = | =

Enterthe item’s oniginal price: 100
Enterthe discount percentage: 29

Calculate
Sale Price

Program 3-3 Completed Form1 code for the Sale Price Calculator application

1 using System;
2 using System.Collections.Generic;

= O WOV 00 J o U b W

o

using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

namespace Sale Price Calculator



3.6 Formatting Numbers with the ToString Method

12 {
13 public partial class Forml : Form
14 {
15 public Forml()
16 {
17 InitializeComponent();
18 }
19
20 private void calculateButton Click(object sender, EventArgs e)
21 {
22 decimal originalPrice; // The item's original price
23 decimal discountPercentage; // The discount percentage
24 decimal discountAmount; // The amount of discount
25 decimal salePrice; // The item's sale price
26
27 // Get the item's original price.
28 originalPrice = decimal.Parse(originalPriceTextBox.Text);
29
30 // Get the discount percentage.
31 discountPercentage = decimal.Parse(discountPercentageTextBox.Text);
32
33 // Move the percentage's decimal point left two spaces.
34 discountPercentage = discountPercentage / 100;
35
36 // Calculate the amount of the discount.
37 discountAmount = originalPrice * discountPercentage;
38
39 // Calculate the sale price.
40 salePrice = originalPrice — discountAmount;
41
42 // Display the sale price.
43 salePriceLabel.Text = salePrice.ToString("c");
44 }
45
46 private void exitButton Click(object sender, EventArgs e)
47 {
48 // Close the form.
49 this.Close();
50 }
51 }
52 3}

Checkpoint

3.30 Write a programming statement that displays the string value of a variable named

3.31

salary in a message box using currency format.

The following variable names give an indication of the data each stores. For each
variable, specify the format string that you think is most appropriate.

. discountPercentage
. atomicWeight
retailPrice

. quantityPurchased
degreesKelvin

o oo o

157



158

Chapter 3

"

Processing Data

3.32 What value will be displayed in the message box when the following code segment
is executed?

double apples = 12.0;
MessageBox.Show(apples.ToString("n0"));

3.33 Examine the following integer variables and specify the number of leading zeros to
use with the d or D format strings so that all the numbers are equal in width.

int valueA = 234, valueB = 56, valueC = 7, valueD = 89123;
3.34 Write a programming statement that uses the Tostring method of a variable

named millimeters so that it displays a precision of four digits after the decimal
point in fixed-point scientific format.

3.7 Simple Exception Handling

1 CONCEPT: An exception is an unexpected error that happens while a program is run-

ning. If an exception is not handled by the program, the program will
abruptly halt.

An exception is an unexpected error that occurs while a program is running, causing
the program to halt if the error is not properly dealt with. Exceptions are usually caused
by circumstances that are beyond the programmer’s control. For example, suppose the
user has entered a value into a TextBox, and that value is expected to be a number. The
program uses one of the Parse methods to convert the control’s Text property to a nu-
meric data type, but the string contains invalid characters and it cannot be converted. The
Parse method cannot continue, so an exception occurs. (To use the proper terminology,
we say that a method throws an exception when an unexpected error occurs and it cannot
continue operating.)

Let’s look at an example. If you have completed the Fuel Economy project from Tutorial
3-2, open it in Visual Studio and then either click the Start Debugging button (J) or press
to run the application. On the application’s form, enter 300 for the number of miles
driven and then enter a nonnumeric sequence of characters for the gallons of gas used.
Figure 3-22 shows an example where the user has entered wxyz. Then, click the Calculate
MPG button. Because the invalid string that you entered for the gallons of gas cannot be
converted to a double, an exception is thrown. The application stops running and Visual
Studio goes into a special mode known as break mode. The window shown in Figure 3-23

is displayed, and the line of code that was executing when the exception was thrown is
highlighted.

Figure 3-22 Invalid data entered for gallons

S Fuel Economy =] =]

Enter the number of miles diven: 300

Enterthe gallons of gas used:  wiyz

t Calculate H = l

MPG




3.7 Simple Exception Handling

Figure 3-23 Exception reported

// Get the gallons used and assign it to
// the gallons variable.
gallons = double.Parse(gallonsTextBox.Text);

/7 calculate MPG.
mpg = miles / gallens;
! FormatException was unhandled x

// Display the MPG in tf Input string was not in a correct format.
mpglabel.Text = mpg.Tos1

} Troubleshooting tips:
tWhen converting a string to DateTime, parse the string to take the daie before putting each variable into the DateTime object.} «
?rnra’te void exitButton Clic Make sure your method arguments are in the right format. El
/ Clos r Get general help for this exception, =
// Close the form. 9 B p

this.Close(); Search for more Help Online...

}
Exception settings:
[T] Break when this exception type is thrown

Actions:
View Detail...
Copy exception detail to the clipboard

Open exception settings

The exception window that is shown in Figure 3-23 displays a lot of information, but if
you look at the line just below the window’s title bar, you see the message Input string was
not in a correct format. That is a description of what happened to cause the exception. To
get out of break mode, click the Stop Debugging button (i), or press + (F5 ). Visual
Studio then returns to its normal mode.

Handling Exceptions

C#, like most modern programming languages, allows you to write code that responds to
exceptions when they are thrown and prevents the program from abruptly crashing. Such
code is called an exception handler, and is written with the try-catch statement. There
are several ways to write a try-catch statement, but the following general format is the
simplest variation:

try
{

statement;
statement;
etc.

}

catch

{

statement;
statement;
etc.

}

First the key word try appears, followed by a group of one or more statements that ap-
pears inside a set of braces. This group of statements is known as a try block. One or
more of the statements inside the try block can potentially throw an exception.

After the try block, a catch clause appears. The catch clause is followed by a group of
one or more statements enclosed inside a set of braces. This group of statements is known
as a catch block.

When a try-catch statement executes, the statements in the try block are executed in the
order that they appear. If a statement in the try block throws an exception, the program
immediately jumps to the catch clause and executes the statements in the catch block. If
all the statements in the try block execute with no exception, the catch block is skipped.

159



160

Chapter 3

Processing Data

Let’s see how a try-catch statement can be used in the Fuel Economy application. Here
is a modified version of the application’s calculateButton Click event handler:

1 private void calculateButton Click(object sender, EventArgs e)
2 A
3 try
4 {
5 double miles; // To hold miles driven
6 double gallons; // To hold gallons used
7 double mpg; // To hold MPG
8
9 // Get the miles driven and assign it to
10 // the miles variable.
11 miles = double.Parse(milesTextBox.Text);
12
13 // Get the gallons used and assign it to
14 // the gallons variable.
15 gallons = double.Parse(gallonsTextBox.Text);
16
17 // Calculate MPG.
18 mpg = miles / gallons;
19
20 // Display the MPG in the mpgLabel control.
21 mpgLabel.Text = mpg.ToString();
22 }
23 catch
24 {
25 // Display an error message.
26 MessageBox.Show("Invalid data was entered.");
27 }
28 }

When you write a try-catch statement, you put all the code that might throw an excep-
tion inside the try block. In this version of the event handler, the try block appears in
lines 5-21. (In this example, we have put all the statements that previously appeared in
the event handler inside the try block.) If any statement inside the try block throws an
exception, the program will immediately jump to the catch clause in line 23. Then, the
statements in the catch block (lines 25-26) will execute.

Let’s say that the application is running and the user enters invalid input into the
milesTextBox control. When the event handler executes, the statement in line 11 throws
an exception because the double.Parse method is not able to convert the control’s Text
property to a double. The program will immediately jump to the catch clause in line 23
and then execute the statements inside the catch block. Line 26 displays a message box
with an error message. Figure 3-24 illustrates this process.

On the other hand, if all the statements inside the try block execute and no exceptions are
thrown, the catch block will be skipped.

Displaying an Exception’s Default Error Message

When an exception is thrown, an object known as an exception object is created in memory.
The exception object has various properties that contain data about the exception. When you
write a catch clause, you can optionally assign a name to the exception object, as shown here:

catch (Exception ex)

The expression that appears inside the parentheses specifies that we are assigning the
name ex to the exception object. (There is nothing special about the name ex. That is sim-
ply the name that we’ve chosen for the examples. You can use any name that you wish.)



3.7 Simple Exception Handling

Figure 3-24 Handling an exception

private void calculateButton Click(object sender, EventArgs e)

{

try

{
double miles; // To hold miles driven
double gallons; // To hold gallons used
double mpg; // To hold MPG

thssmtgmentﬂwows // Get the miles driven and assign it to
an exception... \\\\ﬂ; // the miles variable.
miles = double.Parse (milesTextBox.Text) ;

// Get the gallons used and assign it to

The program jumps // the gallons variable.

to the catch clause gallons = double.Parse(gallonsTextBox.Text) ;
and executes the

statements in the // Calculate MPG.

catch block. mpg = miles / gallons;

// Display the MPG in the mpgLabel control.
mpgLabel.Text = mpg.ToString() ;

}

catch

{

// Display an error message.
MessageBox.Show ("Invalid data was entered.");

Inside the catch block, we can use the name ex to access the exception object’s properties.
One of these is the Message property, which contains the exception’s default error mes-
sage. The following code shows how this can be done. This is another modification of the
Fuel Economy project’s calculateButton_ Click event handler.

1 private void calculateButton Click(object sender, EventArgs e)
2 A
3 try
4 {
5 double miles; // To hold miles driven
6 double gallons; // To hold gallons used
7 double mpg; // To hold MPG
8
9 // Get the miles driven and assign it to
10 // the miles variable.
11 miles = double.Parse(milesTextBox.Text);
12
13 // Get the gallons used and assign it to
14 // the gallons variable.
15 gallons = double.Parse(gallonsTextBox.Text);
16
17 // Calculate MPG.
18 mpg = miles / gallons;
19
20 // Display the MPG in the mpgLabel control.
21 mpgLabel.Text = mpg.ToString();
22 }
23 catch (Exception ex)
24 {
25 // Display the default error message.
26 MessageBox.Show(ex.Message);
27 }

28 }

161



162

Chapter 3

>

VideoNote
Tutorial 3-4:
Creating the
Test Average
Application
with
Exception
Handling

Processing Data

The statement in line 26 simply passes the exception object’s Message property to the
MessageBox.Show method. This causes the default error message to be displayed in a mes-
sage box. Figure 3-25 shows an example of the message that is displayed as a result of the
user entering invalid input for either the milesTextBox or the gallonsTextBox controls.

Figure 3-25 A message box showing an exception’s default error message

Input string was not in a correct format.

oK

In Tutorial 3-4 you create an application that uses a try-catch statement to handle ex-
ceptions that are thrown when the user enters invalid data into a TextBox control.

Tutorial 3-4:
Creating the Test Average Application with Exception Handling

Determining the average of a group of values is a simple calculation: You add all the val-
ues and then divide the sum by the number of values. Although this is a straightforward
calculation, it is easy to make a mistake when writing a program that calculates an aver-
age. For example, let’s assume that the variables a, b, and ¢ each hold a value and we
want to calculate the average of those values. If we are careless, we might write a state-
ment such as the following to perform the calculation:

average = a + b + ¢ / 3.0;

Can you see the error in this statement? When it executes, the division will take place first.
The value in ¢ will be divided by 3, and then the result will be added to a + b. That is not
the correct way to calculate an average. To correct this error we need to put parentheses
around a + b + c, as shown here:

average = (a + b + ¢c) / 3.0;
In this tutorial you will create an application that calculates the average of three test

scores. Figure 3-26 shows the application’s form, with the names of all the controls. When

Figure 3-26 The Test Average form

e 5
ol Test Average =@ &J

testlPromptLabel - Test 1: -t testlTextBox
test2PromptLabel - Test 2: I test2TextBox

; -t test3TextBox
test3PromptLabel o Test 3:

outputDescriptionLabel - Average Test Scome: }—‘ averageLabel

‘ Calculate H Clear ‘ ‘ Exdt ‘
Average

/ N

. 7L

/ \

calculateButton clearButton exitButton

4




3.7 Simple Exception Handling

the application runs, the user will enter the test scores into the TextBox controls. When
the user clicks the calculateButton control, the application will calculate the average
test score and display the result in the averageLabel control. The clearButton control
will clear the contents of the TextBoxes and the averageLabel control. The exitButton
control closes the application’s form.

Step 1:

Step 2:

Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms
Application project named Test Average.

Set up the application’s form as shown in Figure 3-26. Notice that the form’s
Text property is set to Test Average. The names of the controls are shown in the
figure. As you place each of the controls on the form, refer to Table 3-14 for the
relevant property settings.

Table 3-14 Control property settings

Control Name Control Type Property Settings
testlPromptLabel Label Text: Test 1:
test2PromptLabel Label Text: Test 2:
test3PromptLabel Label Text: Test 3:
outputDescriptionLabel Label Text: Average Test Score:
testlTextBox TextBox No properties changed
test2TextBox TextBox No properties changed
test3TextBox TextBox No properties changed
averageLabel Label AutoSize: False

BorderStyle: FixedSingle

Text: (The contents of the Text
property have been erased.)
TextAlign: MiddleCenter

calculateButton Button Text: Calculate Sale Price
clearButton Button Text: Clear
exitButton Button Text: Exit

Step 3:

Once you have set up the form with its controls, you can create the Click event
handlers for the Button controls. At the end of this tutorial, Program 3-4 shows
the completed code for the form. You will be instructed to refer to Program 3-4
as you write the event handlers. (Remember, the line numbers that are shown
in Program 3-4 are not part of the program. They are shown for reference
only.)

In the Designer, double-click the calculateButton control. This will open the
code editor, and you will see an empty event handler named calculateButton
click. Complete the calculateButton Click event handler by typing
the code shown in lines 22-45 in Program 3-4. Let’s take a closer look at the
code:

Line 22: This is the beginning of a try-catch statement. The try block appears
in lines 24-39, and the catch block appears in lines 43-44.

Lines 24-27: These statements declare the following double variables: test1,
test2, test3, and average. The variables will hold the three test scores and
the average test score.

163



164

Chapter 3

Processing Data

Step 4:

Step 5:

Step 6:

Figure

Line 30: This statement converts the test1TextBox control’s Text property to
a double and assigns the result to the test1 variable.

Line 31: This statement converts the test2TextBox control’s Text property to
a double and assigns the result to the test2 variable.

Line 32: This statement converts the test3TextBox control’s Text property to
a double and assigns the result to the test3 variable.

Line 35: This statement calculates the average of the test1, test2, and test3
variables and assigns the result to the average variable.

Line 39: This statement converts the average variable to a string and assigns
the result to the averageLabel control’s Text property. Notice that the "n1"
format string is passed as an argument to the Tostring method. This causes the
number to be rounded to one decimal point.

Switch your view back to the Designer and double-click the clearButton
control. In the code editor you will see an empty event handler named
clearButton_Click. Complete the clearButton Click event handler by typ-
ing the code shown in lines 50-54 in Program 3-4.

Lines 51-53: Each of these statements assigns an empty string ("") to the Text
property of one of the TextBox controls. When these statements have finished
executing, the TextBox controls appear empty.

Line 54: This statement assigns an empty string ("") to the averageLabel
control’s Text property. After the statement has executed, the label appears
empty.

Switch your view back to the Designer and double-click the exitButton
control. In the code editor you will see an empty event handler named
exitButton Click. Complete the exitButton Click event handler by typing
the code shown in lines 59-60 in Program 3-4.

Save the project. Then, press the key on the keyboard or click the Start
Debugging button (¥) on the toolbar to compile and run the application.

First, test the application by entering valid numeric values into the TextBoxes
and clicking the Calculate Average button. A test average should be displayed,
similar to the image shown on the left in Figure 3-27.

3-27 The Test Average application

Test scores entered and Invalid input given and

an average displayed. an exception reported.

o

ol Test Average =@ &J " -l Test Average [=]® &J -

r ~
Average Test Score: 95.0 Average Test § [ﬁ]

Test1: 100 Test1: asdf
Test 2: Test 2:

Test3: Test 2

I
o .‘ Clear H Bt ‘
§ Average §

Input string was not in a correct format.

OK




Next, click the Clear button to clear the TextBoxes and the average. Then enter
a nonnumeric value for test 1, and click the Calculate Average button. An ex-
ception will be thrown, and you should see the message box shown in the image

3.7 Simple Exception Handling

on the right in Figure 3-27.

Continue to test the application as you wish. When you are finished, click the

Exit button and the form should close.

Program 3-4 Completed Form1 code for the Test Average application

o Ul WN

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

using
using
using
using
using
using
using
using
using

System

.
’

System.
System.
System.
System.
System.
System.
System.
System.

Collections.Generic;
ComponentModel;
Data;

Drawing;

Ling;

Text;
Threading.Tasks;
Windows.Forms;

namespace Test Average

{

public partial class Forml : Form

{

public Forml()

private void calculateButton Click(object sender, EventArgs e)

try

InitializeComponent();

double testl; // To hold test score #1
double test2; // To hold test score #2
double test3; // To hold test score #3

double average; // To hold the average test score

// Get the three test scores.

testl double.Parse(testlTextBox.Text);
test2 double.Parse(test2TextBox.Text);
test3 = double.Parse(test3TextBox.Text);

// Calculate the average test score.
average = (testl + test2 + test3) / 3.0;

// Display the average test score, with
// the output rounded to 1 decimal point.
averageLabel.Text = average.ToString("nl");

catch (Exception ex)

{

}

{
{
}
{
}

¥

// Display the default error message.
MessageBox.Show(ex.Message) ;

private void clearButton Click(object sender, EventArgs

e)

165



166

Chapter 3

ey

Processing Data

49 {
50 // Clear the input and output controls.
51 testlTextBox.Text = "";
52 test2TextBox.Text = "";
53 test3TextBox.Text = "";
54 averageLabel.Text = "";
55 }
56
57 private void exitButton Click(object sender, EventArgs e)
58 {
59 // Close the form.
60 this.Close();
61 }
62 }
63 }
Checkpoint

3.35 What can cause an application to throw an exception?
3.36 How do you get out of break mode when an exception is thrown?
3.37 What kind of code does the try block of a try-catch statement contain?

3.38 What causes the program to jump to the catch clause and execute the catch block
of a try-catch statement?

3.39 How can you display the default error message when an exception is thrown?

3.40 Write a try-catch statement for an application that calculates the sum of two
whole numbers and displays the result. The application uses two TextBox controls
named valuelTextBox and value2TextBox to gather the input and a Label
control named sumLabel to display the result.

3.8 Using Named Constants

1 CONCEPT: A named constant is a name that represents a value that cannot be changed

during the program’s execution.

Assume that the following statement appears in a banking program that calculates data
pertaining to loans:

amount = balance * 0.069;

In such a program, two potential problems arise. First, it is not clear to anyone other than
the original programmer what 0.069 is. It appears to be an interest rate, but in some situa-
tions there are fees associated with loan payments. How can the purpose of this statement
be determined without painstakingly checking the rest of the program?

The second problem occurs if this number is used in other calculations throughout the
program and must be changed periodically. Assuming the number is an interest rate, what
if the rate changes from 6.9 percent to 7.2 percent? The programmer would have to
search through the source code for every occurrence of the number.



3.9 Declaring Variables as Fields 167

Both these problems can be addressed by using named constants. A named constant is a
name that represents a value that cannot be changed during the program’s execution. The
following is an example of how you can declare a named constant in C#:

const double INTEREST RATE = 0.129;

This statement declares a named constant named INTEREST RATE initialized with the
value 0.129. It looks like a regular variable declaration, except that the word const ap-
pears before the data type name and the name of the variable is written in uppercase char-
acters. The keyword const is a qualifier that tells the compiler to make the variable read
only. If a statement attempts to change the constant’s value, an error will occur when the
program is being compiled. When you declare a named constant, an initialization value
is required.

It is not required that the constant name be written in uppercase letters, but many pro-
grammers prefer to write them this way so they are easily distinguishable from regular
variable names. When you are reading a program’s code and you see an uppercase identi-
fier, you know instantly that it is a constant.

@ NOTE: Writing the names of constants in uppercase letters is traditional in many

programming languages, and that practice is followed in this book. Within the C#
community, some programmers adhere to this practice and some do not. In the class-
room, you should use the naming convention that your instructor prefers.

An advantage of using named constants is that they make programs more self-explanatory.
The statement

amount = balance * 0.069;
can be changed to read
amount = balance * INTEREST_ RATE;

A new programmer can read the second statement and know what is happening. It is
evident that balance is being multiplied by the interest rate. Another advantage to this
approach is that widespread changes can easily be made to the program. Let’s say the
interest rate appears in a dozen different statements throughout the program. When the
rate changes, the initialization value in the declaration of the named constant is the only
value that needs to be modified. If the rate increases to 7.2 percent, the declaration can be
changed to the following:

const double INTEREST RATE = 0.072;

The new value of 0.072 will then be used in each statement that uses the INTEREST RATE
constant. In Tutorial 3-5 you will create an application that uses named constants.

—
3.9 Declaring Variables as Fields

1 CONCEPT: A field is a variable that is declared at the class level. A field’s scope is the
entire class.

So far in this chapter, all the variables with which we have worked have been local vari-
ables. A local variable is declared inside a method and is visible only to statements in that
method. Another type of variable is a field, which is a variable that is declared inside a



168

Chapter 3

Processing Data

class but not inside of any method. A field’s scope is the entire class, so when you declare
a field, all the methods in the class can access the variable.

Typically, fields are declared at the top of a class declaration, before any methods. Figure
3-28 shows where you would write field declarations inside a form class. When you are
about to write a field declaration, you can insert some blank lines after the class’s opening
brace ({) and write the field declaration in that space.

Figure 3-28 Where to insert field declarations

Slusing System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Ling;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

—Inamespace Example Project

{

public partial class Forml : Form
{
< Insert field declarations here.

public Formi()

InfitializeComponent();

Let’s look at an example of a field declaration. Assume that the following statement ap-
pears inside a class declaration but not inside any methods. This statement declares an
int field named number, initialized with the value 0:

private int number = 0;

Field declarations are written like any other variable declaration, except that an access
modifier usually appears before the data type. In this example, the keyword private is
the access modifier. An access modifier specifies how a class member can be accessed by
code outside the class. When you use the private access modifier in a field declaration,
the field cannot be accessed by code outside the class. It can be accessed only by the meth-
ods that are inside the class.

It is a good programming practice to make fields private because private fields are
hidden from code outside the class. That prevents code outside the class from changing
the values of a class’s fields and helps prevent bugs from creeping into your program. You
will learn more about this in Chapter 10. Until then, if you declare fields in a class, you
should get in the habit of making them private.

NOTE: There are other access modifiers, as you will learn later in this book. If
you don’t write an access modifier in a field declaration, C# will automatically
make the field private. It is still a good idea to write the private access modi-
fier because it makes it evident to anyone reading the code that the field is indeed
private.




3.9 Declaring Variables as Fields

In the previous field-declaration example, the number field is initialized with the value 0.
If a field is a variable of a numeric data type (such as int, double, or decimal), it will
be initialized to 0 by default if you do not explicitly initialize it with a value. It is always
a good idea to explicitly initialize a field, however, even if you want it to begin with the
value 0. This clearly indicates the field’s starting value for anyone reading the code.

WARNING! If you do not initialize a string field, it begins with a special value
known as null. An error will occur if you attempt to use a string that is set to null.

In a form, fields are useful for storing pieces of data that must be shared among the
form’s event handlers. For example, in the Chap03 folder of this book’s student sample
programs (available for download at www.pearsonhighered.com/gaddis), you will find
a project named Field Demo. Figure 3-29 shows the application’s form, along with the
names of the Button controls.

Figure 3-29 The Field Demo form

W Field Demo L | ). ]

showNameButton | Shaw Name ‘
Change Name Change Mame
to Chris to Camen
/ \
chrisButton carmenButton

Program 3-5 shows the Form1 code. Notice that in line 16 a string variable named name
is declared as a field and initialized with the value "charles". Next look at the button
event handlers:

e In the showNameButton Click event handler, line 25 displays a message box
showing the value of the name variable.

e In the chrisButton_Click event handler, line 30 changes the value of the name
variable to "Chris".

¢ In the carmenButton_Click event handler, line 35 changes the value of the name
variable to "carmen".

As you can see, all of the event handlers in the Form1 class have access to the name vari-
able. If you run the application and click the Show Name button, a message box will ap-
pear displaying Charles, which is the name field’s initial value. If you click the Change
Name to Chris button and then click the Show Name button, a message box will appear
displaying Chris. If you click the Change Name to Carmen button and then click the
Show Name button, a message box will appear displaying Carmen.

Program 3-5 Form1 code for the Field Demo application

=

using
using
using
using
using
using
using
using
using

O W oo oL & WN

=

System;
System.Collections.Generic;
System.ComponentModel;
System.Data;
System.Drawing;
System.Ling;

System.Text;
System.Threading.Tasks;
System.Windows.Forms;

169


www.pearsonhighered.com/gaddis

170

Chapter 3

Processing Data

11 namespace Field Demo

12 {

13 public partial class Forml : Form

14 {

15 // Declare a private field to hold a name.

16 private string name = "Charles";

17

18 public Forml()

19 {

20 InitializeComponent();

21 }

22

23 private void showNameButton Click(object sender, EventArgs e)
24 {

25 MessageBox.Show(name) ;

26 }

27

28 private void chrisButton Click(object sender, EventArgs e)
29 {

30 name = "Chris";

31 }

32

33 private void carmenButton_Click(object sender, EventArgs e)
34 {

35 name = "Carmen";

36 }

37 }

38 }

The Lifetime of a Field in a Form Class

When you declare a field in a form class, the field’s lifetime is the time during which the
form exists. This means that the field will exist in memory as long as the form exists.
This is different than the lifetime of a local variable, which exists only while the method
in which it is declared is executing. Local variables come and go in memory, but a form’s
fields exist as long as the form exists.

You can see this in the Field Demo application. The name field is created in memory when
the Form1 form is created, and it continues to exist as long as Form1 exists. When one
of the event handlers stores a value in the field, that value remains in the field until it is
changed again, perhaps by a different event handler. So, fields give you a way of storing
values that must not disappear when a particular method ends.

Precautions

Although fields make it easy to share data among the methods in a class, you should be
careful about using them. The overuse of fields can make debugging a class’s code dif-
ficult, especially if the class has many methods. If an incorrect value is being stored in a
field, you will have to track down every statement in the class that accesses the field to
determine where the incorrect value is coming from. In most cases, fields should be used
only for data that must be shared among multiple methods and must continue to exist in
memory when the methods are not executing.

Constant Fields

A constant field is a field that cannot be changed by any statement in the class. An error
will occur if the compiler finds a statement that tries to change the value of a constant



3.9 Declaring Variables as Fields

171

field. A constant field is declared with the const keyword and initialized with a value.

Here is an example:

private const decimal INTEREST RATE =

0.075m;

This statement declares a constant decimal field named INTEREST RATE, initialized with
the value 0.075. Constant fields are typically used to represent unchanging values that are
needed by many of a class’s methods. For example, suppose a banking program uses a
constant field to represent an interest rate. If the interest rate is used in several methods,
it is easier to create a constant field, rather than a local named constant in each method.
This also simplifies maintenance of the code. If the interest rate changes, only the declara-
tion of the constant field has to be changed, instead of several local declarations.

NOTE: Because a constant field’s value cannot be changed by other statements in
the class, you do not have to worry about many of the potential debugging problems
that are associated with the overuse of regular, nonconstant fields.

In Tutorial 3-5 you will create an application that uses a field in a form class to hold data,
as well as constant fields to represent nonchanging values.

Tutorial 3-5:

Creating the Change Counter Application

In this tutorial you will create the Change Counter application. The application displays
images of four coins, having the values 5 cents, 10 cents, 25 cents, and 50 cents. Each time
the user clicks on a coin image, the value of that coin is added to a total, and the total is
displayed. Figure 3-30 shows the application’s form, with the names of all the controls.

Figure 3-30 The Change Counter form

fiveCentsPictureBox

twentyFiveCentsPictureBox

Step 1:

%2 Change Counter (o] B [
Click the Coins -
¢ ¢ Total g
[
B |
i
exijgutton

Application project named Sale Price Calculator.

Step 2:

instructionLabel

tenCentsPictureBox

outputDescriptionLabel

- totalLabel

fiftyCentsPictureBox

Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms

Set up the application’s form as shown in Figure 3-30. Notice that the form’s

Text property is set to Change Counter. The names of the controls are shown in



172 Chapter 3 Processing Data

the figure. As you place each of the controls on the form, refer to Table 3-15 for
the relevant property settings.

Table 3-15 Control property settings

Control Name Control Type Property Settings

instructionLabel Label Font: Microsoft Sans Serif (Style:

Bold, Size: 10 point)
Text: Click the Coins

fiveCentsPictureBox PictureBox Image: Select and import the

Scents.png file from the Chap02 folder
of the Student Sample Programs.
SizeMode: AutoSize

tenCentsPictureBox PictureBox Image: Select and import the

10cents.png file from the Chap02
folder of the Student Sample Programs.
SizeMode: AutoSize

twentyFiveCentsPictureBox PictureBox Image: Select and import the

25cents.png file from the Chap02
folder of the Student Sample Programs.
SizeMode: AutoSize

fiftyCentsPictureBox PictureBox Image: Select and import the

50cents.png file from the Chap02
folder of the Student Sample Programs.
SizeMode: AutoSize

outputDescriptionLabel Label Font: Microsoft Sans Serif (Style: Bold,
Size: 10 point)
Text: Total

totalLabel Label AutoSize: False

BorderStyle: FixedSingle

Text: (The contents of the Text
property have been erased.)
TextAlign: MiddleCenter

exitButton Button Text: Exit

Step 3:

Once you have set up the form with its controls, you can begin writing code.
At the end of this tutorial, Program 3-6 shows the completed code for the form.
You will be instructed to refer to Program 3-6 as you write the form’s code.
(Remember, the line numbers that are shown in Program 3-6 are not part of the
program. They are shown for reference only.)

First, you write the declarations for the fields. Switch your view to the code editor
(right-click Form1.cs in the Solution Explorer and select View Code from the pop-
up menu). Write the declarations shown in lines 16-23 in Program 3-6. Let’s take
a closer look at the code:

Line 16: This statement declares a constant decimal field named
FIVE_CENTS_VALUE, initialized with the value 0.05. This constant represents
the value of the 5-cent coin.

Line 17: This statement declares a constant decimal field named
TEN_CENTS_VALUE, initialized with the value 0.10. This constant represents the
value of the 10-cent coin.



Step 4:

Step 5:

Step 6:

Step 7:

3.9 Declaring Variables as Fields

Line 18: This statement declares a constant decimal field named
TWENTY_FIVE CENTS_VALUE, initialized with the value 0.25. This constant rep-
resents the value of the 25-cent coin.

Line 19: This statement declares a constant decimal field named
FIFTY CENTS_VALUE, initialized with the value 0.50. This constant represents
the value of the 50-cent coin.

Line 23: This statement declares a decimal field named total, initialized with
the value 0. This field is used to keep the total value of the coins that the user
clicks.

Now you can create the Click event handlers for the PictureBox controls. Switch
your view back to the Designer and double-click the fiveCentsPictureBox con-
trol. This opens the code editor, and you will see an empty event handler named
fiveCentsPictureBox_Click. Complete the fiveCentsPictureBox Click
event handler by typing the code shown in lines 32-36 in Program 3-6. Let’s take a
closer look at the code:

Line 33: This statement adds the value of the FIVE CENTS_VALUE constant to
the total field.

Line 36: This statement converts the total variable to a string and assigns the
result to the totalLabel control’s Text property. The "c" format string causes
the number to be formatted as currency.

Switch your view back to the Designer and double-click the tencentsPictureBox
control. This opens the code editor, and you will see an empty event handler named
tenCentsPictureBox_Click. Complete the tenCentsPictureBox Click event
handler by typing the code shown in lines 41-45 in Program 3-6. Let’s take a closer
look at the code:

Line 42: This statement adds the value of the TEN CENTS VALUE constant to the
total field.

Line 45: This statement converts the total variable to a string and assigns the
result to the totalLabel control’s Text property. The "c" format string causes
the number to be formatted as currency.

Switch your view back to the Designer and double-click the
twentyFiveCentsPictureBox control. This opens the code editor, and you will see
an empty event handler named twentyFiveCentsPictureBox Click. Complete
the twentyFiveCentsPictureBox Click event handler by typing the code shown
in lines 50-54 in Program 3-6. Let’s take a closer look at the code:

Line 51: This statement adds the value of the TWENTY FIVE CENTS_ VALUE con-
stant to the total field.

Line 54: This statement converts the total variable to a string and assigns the
result to the totalLabel control’s Text property. The "c" format string causes
the number to be formatted as currency.

Switch your view back to the Designer and double-click the
fiftyCentsPictureBox control. This opens the code editor, and you will see
an empty event handler named fiftyCentsPictureBox_Click. Complete the
fiftyCentsPictureBox Click event handler by typing the code shown in lines
59-63 in Program 3-6. Let’s take a closer look at the code:

Line 60: This statement adds the value of the FIFTY CENTS_VALUE constant to
the total field.

Line 63: This statement converts the total variable to a string and assigns the
result to the totalLabel control’s Text property. The "c" format string causes
the number to be formatted as currency.

173



174 Chapter 3 Processing Data

Step 8: Now you write the event handler for the Exit button. Switch your view back
to the Designer and double-click the exitButton control. This opens the code
editor, and you will see an empty event handler named exitButton Click.
Complete the exitButton Click event handler by typing the code shown in
lines 68-69 in Program 3-6.

Step 9: Save the project. Then, press the key on the keyboard or click the Start
Debugging button (}) on the toolbar to compile and run the application. Test
the application by clicking the coin images in any order you wish. The total
shown on the form should update by the correct amount each time you click
a coin. When you are finished, click the Exit button and the form should
close.

Program 3-6 Completed Form1 code for the Change Counter application

1 using System;

2 using System.Collections.Generic;

3 using System.ComponentModel;

4 using System.Data;

5 using System.Drawing;

6 using System.Ling;

7 using System.Text;

8 using System.Threading.Tasks;

9 using System.Windows.Forms;

10

11 namespace Change_Counter

12 {

13 public partial class Forml : Form

14 {

15 // Constant fields

16 const decimal FIVE CENTS VALUE = 0.05m;

17 const decimal TEN CENTS VALUE = 0.10m;

18 const decimal TWENTY_FIVE CENTS_VALUE = 0.25m;
19 const decimal FIFTY CENTS VALUE = 0.50m;

20

21 // Field variable to hold the total,

22 // initialized with O.

23 private decimal total = Om;

24

25 public Forml ()

26 {

27 InitializeComponent();

28 }

29

30 private void fiveCentsPictureBox Click(object sender, EventArgs e)
31 {

32 // Add the value of 5 cents to the total.
33 total += FIVE_CENTS_VALUE;

34

35 // Display the total, formatted as currency.
36 totalLabel.Text = total.ToString("c");

37 }

38

39 private void tenCentsPictureBox Click(object sender, EventArgs e)
40 {

41 // Add the value of 10 cents to the total.
42 total += TEN_CENTS_VALUE;

43



3.10 Using the Math Class 175

44 // Display the total, formatted as currency.
45 totalLabel.Text = total.ToString("c");
46 }
47
48 private void twentyFiveCentsPictureBox Click(object sender, EventArgs e)
49 {
50 // Add the value of 25 cents to the total.
51 total += TWENTY FIVE CENTS VALUE;
52
53 // Display the total, formatted as currency.
54 totalLabel.Text = total.ToString("c");
55 }
56
57 private void fiftyCentsPictureBox Click(object sender, EventArgs e)
58 {
59 // Add the value of 50 cents to the total.
60 total += FIFTY CENTS VALUE;
61
62 // Display the total, formatted as currency.
63 totalLabel.Text = total.ToString("c");
64 }
65
66 private void exitButton Click(object sender, EventArgs e)
67 {
68 // Close the form.
69 this.Close();
70 }
71
72 }
Checkpoint

3.41 What are two advantages of using named constants?

3.42 Write a programming statement that declares a named constant for a 10 percent
discount.

3.43 Where should you place field declarations in a program?

3.44 What access modifier should you use when declaring a field? Why?

3.45 How is the lifetime of a field different from the lifetime of a local variable?

3.46 Write a programming statement that declares a constant field for a 5.9 percent
interest rate.

—

3.10 Using the Math Class

1 CONCEPT: The .NET Framework’s Math class provides several methods for perform-

ing complex mathematical calculations.

The .NET Framework provides a class named Math, which contains numerous methods
that are useful for performing advanced mathematical operations. Table 3-16 gives a sum-
mary of several of the Math class methods. (For a comprehensive list of all the methods



176

Chapter 3

Processing Data

Table 3-16 Many of the Math class methods

Math Class Method Description

Math.Abs (x) Returns the absolute value of x.

Math.Acos (x) Returns the arccosine of x, in radians. The argument x is a double,
and the value that is returned is a double.

Math.Asin(x) Returns the arcsine of x, in radians. The argument x is a double, and
the value that is returned is a double.

Math.Atan (x) Returns the arctangent of x, in radians. The argument x is a double,
and the value that is returned is a double.

Math.Ceiling(x) Returns the least integer that is greater than or equal to x (a decimal
or a double).

Math.Cos (x) Returns the cosine of x in radians. The argument x is a double, and
the value that is returned is a double.

Math.Exp (X) Returns e*. The argument x is a double, and the value that is
returned is a double.

Math.Floor (Xx) Returns the greatest integer that is less than or equal to x (a decimal
or a double).

Math.Log (x) Returns the natural logarithm of x. The argument x is a double, and
the value that is returned is a double.

Math.Logl0(x) Returns the base-10 logarithm of x. The argument x is a double, and
the value that is returned is a double.

Math.Max(x, Y) Returns the greater of the two values x and y.

Math.Min(x, ) Returns the lesser of the two values x and y.

Math.Pow(x, ) Returns the value of x (a double) raised to the power of y (also a
double). The value that is returned is a double.

Math.Round (x) Returns the value of x (a double or a decimal) rounded to the
nearest integer.

Math.Sin(x) Returns the sine of x in radians.

Math.Sqrt(x) Returns the square root of x (a double). The value that is returned is
a double.

Math.Tan(x) Returns the tangent of x in radians. The argument x is a double, and

the value that is returned is a double.

Math.Truncate(x) Returns the integer part of x (a double or a decimal).

provided by the Math class and more details on any of the methods, just search for Math
class in the MSDN help system.)

These methods typically accept one or more values as arguments, perform a mathematical
operation using the arguments, and return the result. For example, the Math.Pow method
raises a number to a power. Here is an example of how the method is called:

double result;
result = Math.Sqrt(4.0, 2.0);

The method takes two double arguments. It raises the first argument to the power of the
second argument and returns the result as a double. In this example, 4.0 is raised to the
power of 2.0. This statement is equivalent to the following algebraic statement:

result = 42



=
3.11
el

3.11 More GUI Details

The following code sample shows another example of a statement using the Math.Pow
method. It assigns 3 times 6° to x:

double x;
x = 3 * Math.pow(6.0, 3.0);

The Math.sqrt method accepts an argument and returns the square root of the argu-
ment. Here is an example of how it is used:

double result;
result = Math.Sqrt(16.0);

The statement that calls the Math.Sqrt method passes 16.0 as an argument. The method
returns the square root of 16.0 (as a double), which is then assigned to the result
variable.

The Math.PI and Math.E Named Constants

The Math class also provides two predefined named constants, Math.PI and Math.E,
which are assigned mathematical values for pi and e. You can use these variables in equa-
tions that require their values. For example, the following statement, which calculates the
area of a circle, uses Math.PI.

area = Math.PI * radius * radius;

NOTE: If you look at the top of a form’s source code in the code editor, you should
see a directive that reads using System;. That directive is required for any program
that uses the Math class.

Checkpoint

3.47 Write a programming statement that uses the Math.Pow method to square the
number 12 and store the result in a double variable named product.

3.48 What method of the Math class can be used to determine the larger of two
values?

3.49 What method of the Math class can be used to determine the smaller of two
values?

More GUI Details

In Chapter 2 you learned the basics of creating a GUI by placing controls on a form and
setting various properties. In this section you learn to fine-tune many aspects of an ap-
plication’s GUL.

Controlling a Form’s Tab Order

When an application is running and a form is displayed, one of the form’s controls always
has the focus. The control having the focus is the one that receives the user’s keyboard
input. For example, when a TextBox control has the focus, it receives the characters that
the user enters on the keyboard. When a button has the focus, pressing the Enter key ex-
ecutes the button’s Click event handler.

177



178

Chapter 3

©

Processing Data

NOTE: Only controls capable of receiving some sort of input, such as text boxes
and buttons, may have the focus.

You can tell which control has the focus by looking at the form at run time. When a
TextBox control has the focus, a blinking text cursor appears inside it, or the text inside
the TextBox control might appear highlighted. When a button has the focus, a thin dotted
line usually appears around the control.

When an application is running, pressing the Tab key changes the focus from one con-
trol to another. The order in which controls receive the focus is called the tab order.
When you place controls on a form in Visual C#, the tab order is in the same sequence
in which you created the controls. In many cases this is the tab order you want, but
sometimes you rearrange controls on a form, delete controls, and add new ones. These
modifications often lead to a disorganized tab order, which can confuse and irritate the
users of your application.

Users want to tab smoothly from one control to the next, in a logical sequence. You can
modify the tab order by changing a control’s TabIndex property. The TabIndex property
contains a numeric value, which indicates the control’s position in the tab order. When
you create a control, Visual C# automatically assigns a value to its TabIndex property.
The first control you create on a form has a TabIndex of 0, the second has a TabIndex of
1, and so on. The control with a TabIndex of 0 is the first control in the tab order. The
next control in the tab order is the one with a TabIndex of 1. The tab order continues in
this sequence.

You may change the tab order of a form’s controls by selecting them, one by one, and
changing their TabIndex property in the Properties window. An easier method, however,
is to click VIEW on the Visual Studio menu bar and then click Tab Order. This causes
the form to be displayed in tab order selection mode. The image on the left in Figure 3-31
shows a form in the normal view, and the image on the right shows the form in tab order
selection mode. We have also inserted the names of the TextBox and Button controls in
the image on the right for reference purposes.

Figure 3-31 A form displayed in tab order selection mode

Normal view Tab order selection mode
Forml.cs [Design] & X Forml.cs [Design] & X
| o2 Tab Order Demo [ [0 fasa] a2 Tab Order Demo [-c-|[-=)- i
| Py f Bm; a -ﬂ—-.— nameTextBox
Address: [Eress: B <«—1— addressTextBox
Giy: E,: E =—— cityTextBox
u} u}
State: Em; n -—— sta teTextBox
ZIP: m B -—— zipTextBox
B o
. | 7 :
o - 5 | — b oy

clearButton

In tab order selection mode, each control’s existing TabIndex value is displayed in a small
box in the control’s upper-left corner. Notice the following in the image on the right in
Figure 3-31:



3.11 More GUI Details

e The nameTextBox control’s Tablndex is 2.

e The addressTextBox control’s TabIndex is 3.
e The cityTextBox control’s Tablndex is 0.

e The stateTextBox control’s TabIndex is 4.

e The zipTextBox control’s Tablndex is 1.

e The clearButton control’s Tablndex is 8.

NOTE: Although the Label controls have TabIndex values, those values are irrel-
evant in this example because Label controls cannot receive the focus.

As you look at Figure 3-31, think about the order in which the controls will receive the
focus when the application runs.

e The cityTextBox control has the lowest TabIndex value (0), so it will receive the
focus first.

e If you press the Tab key, the focus will jump to the zipTextBox control because it
has the next lowest TabIndex value (1).

e Press the Tab key again and the focus will jump to the nameTextBox control
(TablIndex is set to 2).

e Press the Tab key again and the focus will jump to the addressTextBox control
(TablIndex is set to 3).

e Press the Tab key again and the focus will jump to the stateTextBox control
(TablIndex is set to 4).

e Press the Tab key again and the focus will jump to the clearButton control
(TablIndex is set to 8).

This is a very confusing tab order and should be rearranged. When a form is displayed in
tab order selection mode, you establish a new tab order by simply clicking the controls
with the mouse in the order you want. To fix the disorganized tab order shown in Figure
3-31, we perform the following:

e First, click the nameTextBox control. The control’s TabIndex value changes to 0.

e Next, click the addressTextBox control. The control’s TabIndex value changes to 1.
e Then, click the cityTextBox control. The control’s TabIndex value changes to 2.

e Next, click the stateTextBox control. The control’s TabIndex value changes to 3.
e Then, click the zipTextBox control. The control’s TabIndex value changes to 4.

¢ Finally, click the clearButton control. The control’s TabIndex value changes to 5.
When you are finished, exit tab order selection mode by pressing the Esc key. Now when
the application runs, the focus will shift smoothly in an order that makes sense to the user.

Changing the Focus with the Focus Method

Often, you want to make sure a particular control has the focus. For example, look at
the form shown in Figure 3-31. The purpose of the Clear button is to clear any input that
the user has entered and reset the form so it is ready to accept a new set of input. When
the Clear button is clicked, the TextBox controls should be cleared and the focus should
return to the nameTextBox control. This would make it unnecessary for the user to click
the TextBox control in order to start entering another set of information.

In code, you move the focus to a control by calling the Focus method. The method’s
general syntax is:

ControlName.Focus();

179



180

Chapter 3

Processing Data

where controlName is the name of the control. For instance, you move the focus to the
nameTextBox control with this statement:

nameTextBox.Focus();

After the statement executes, the nameTextBox control will have the focus. Here is an
example of how the clearButton control’s Click event handler could be written:

1 private void clearButton_Click(object sender, EventArgs e)
2 A

3 // Clear the TextBox controls.

4 nameTextBox.Text = "";

5 addressTextBox.Text = "";

6 cityTextBox.Text = "";

7 stateTextBox.Text = "";

8 zipTextBox.Text = "";

9
10 // Set the focus to nameTextBox.
11 nameTextBox.Focus();
12 3}

The statements in lines 4-8 clear the contents of the TextBox controls. Then, the state-
ment in line 11 sets the focus to the nameTextBox control.

Assigning Keyboard Access Keys to Buttons

An access key, also known as a mnemonic, is a key that is pressed in combination with the
Alt key to access quickly a control such as a button. When you assign an access key to a
button, the user can trigger a Click event either by clicking the button with the mouse or
by using the access key. Users who are quick with the keyboard prefer to use access keys
instead of the mouse.

You assign an access key to a button through its Text property. For example, assume an
application has a button whose Text property is set to Exit. You wish to assign the access
key + (X] to the button so the user may trigger the button’s Click event by pressing
+ (XJ on the keyboard. To make the assignment, place an ampersand (&) before the
letter x in the button’s Text property: Eaxit. Figure 3-32 shows how the Text property
appears in the Properties window.

Figure 3-32 Text property Eaxit

Properties * @ x

exitButton System Windows.Forms.Bu -

Size 75,23 2
Tablndex o
TabStop True
Tag
Tedt Eduxit
TextAlign MiddleCenter
TextlmageRelati Overlay >
Text

The text associated with the control.




3.11 More GUI Details

Although the ampersand is part of the Button control’s Text property, it is not displayed
on the button. With the ampersand in front of the letter x, the letter will appear under-
lined as shown in Figure 3-33. This indicates that the button may be clicked by pressing
+ (X on the keyboard. (You will see the underlining at design time. At run time, how-
ever, the underlining may not appear until the user presses the Alt key.)

Figure 3-33 Button control with Esxit Text property

NOTE: Access keys do not distinguish between uppercase and lowercase characters.

There is no difference between +(X)and +X.

Suppose we store the value &Exit in the button’s Text property. The ampersand is in
front of the letter E, so + (B becomes the access key. The button will appear as shown
in Figure 3-34.

Figure 3-34 Button control with sExit Text property

Assigning the Same Access Key to Multiple Buttons

Be careful not to assign the same access key to two or more buttons on the same form. If
two or more buttons share the same access key, a Click event is triggered for the first but-
ton created when the user presses the access key.

Displaying the & Character on a Button

If you want to display an ampersand character on a button, use two ampersands (&&) in
the Text property. Using two ampersands causes a single ampersand to display and does
not define an access key. For example, if a button’s Text property is set to Save && Exit,
the button will appear as shown in Figure 3-35.

Figure 3-35 Button control with save s& Exit Text property

Accept Buttons and Cancel Buttons

An accept button is a button on a form that is automatically clicked when the user presses
the Enter key. A cancel button is a button on a form that is automatically clicked when
the user presses the Esc key. Forms have two properties, AcceptButton and CancelButton,
which allow you to designate an accept button and a cancel button. When you select these
properties in the Properties window, a down-arrow button ([x]) appears, which displays a
drop-down list when clicked. The list contains the names of all the buttons on the form.
You select the button that you want to designate as the accept button or cancel button.

Any button that is frequently clicked should probably be selected as the accept button.
This will allow keyboard users to access the button quickly and easily. Exit or Cancel but-
tons are likely candidates to become cancel buttons.

181



182

Chapter 3

Processing Data

The BackColor Property

Forms and most controls have a BackColor property that allows you to change the ob-
ject’s background color. When you select an object’s BackColor property in the Properties
window, a down-arrow button ((=]) appears, which displays a drop-down list of available
colors when clicked, as shown in Figure 3-36.

The drop-down list has three tabs: Custom, Web, and System. The System tab lists colors
defined in the current Windows configuration. The Web tab lists colors displayed with
consistency in Web browsers. The Custom tab displays a color palette. Select a color from
one of the tabs and the object’s background color will be set to that color.

The ForeColor Property

Controls that display text have a ForeColor property that allows you to change the color
of the text. When you select a control’s ForeColor property in the Properties window, a
down-arrow button ([x)) appears, which displays the drop-down list of available colors
shown in Figure 3-36 when clicked. Select a color from one of the tabs and the text that is
displayed by the control will be set to that color.

Figure 3-36 Drop-down list of colors

| Custom | Web | System

ActiveBorder

ActiveCaption

B ActiveCaptionText =
B AppWorkspace

[ ButtonFace =
[ ButtonHighlight

B ButtonShadow

B ControlDark

B ControlDarkDark

[ CentrolLight

[ ControlLightLight -

Setting Colors in Code

In addition to using the Properties window, you can also set the values of the BackColor
and ForeColor properties with code. The .NET Framework provides numerous values
that represent colors and can be assigned to the ForeColor and BackColor properties in
code. The following are a few of the values:

Color.Black
Color.Blue
Color.Cyan
Color.Green
Color.Magenta
Color.Red
Color.White
Color.Yellow

For example, assume an application has a Label control named messageLabel. The fol-
lowing code sets the label’s background color to black and foreground color to yellow:

messageLabel.BackColor
messageLabel.ForeColor

Color.Black;
Color.Yellow;



3.11 More GUI Details

The .NET Framework also provides values that represent default colors on your system.
For example, the value systemColors.Control represents the default control back-
ground color and SystemColors.ControlText represents the default control text color.
The following statements set the messageLabel control’s background and foreground to
the default colors.

messageLabel.BackColor = SystemColors.Control
messageLabel.ForeColor = SystemColors.ControlText

NOTE: If you have an event handler in a form’s source code file and you want the
event handler to change the form’s BackColor property, use the this keyword to
refer to the form. For example, the following statement changes the color of the form
to blue:

this.BackColor = Color.Blue;

Background Images for Forms

In Chapter 2 you learned about displaying images with PictureBox controls. An image
can also be displayed as the background for a form. Forms have a property named Back-
groundImage that allows you to import and display an image on the form. If you know
how to use the PictureBox control’s Image property, then you already know how to use a
form’s Backgroundlmage property. They both work the same way:

Click the BackgroundImage property in the Properties window. An ellipses button
([)) will appear.

Click the ellipses button and the Select Resource window will appear.

In the Select Resource window, click the Import button. An Open dialog box will
appear. Use the dialog box to locate and select the image file that you want to dis-
play.

Click the OK button in the Select Resource window, and the selected image will ap-
pear as the form’s background.

A form’s BackgroundImageLayout property is similar to the PictureBox control’s Size-
Mode property. It specifies how the background image is to be displayed. It can be set to
one of the following values:

None

The image is positioned in the upper-left corner of the form. If the image is too big
to fit in the form, it is clipped.

Tile

This is the default value. The image is tiled (repeatedly displayed) across the form.
Center

The image is centered in the form without being resized.

Stretch

The image is resized both horizontally and vertically to fit in the form. If the image
is resized more in one direction than the other, it appears stretched.

Zoom

The image is uniformly resized to fit in the form without losing its original aspect
ratio. This causes the image to be resized without appearing stretched.

Figure 3-37 shows examples of each of these settings.

183



184 Chapter 3 Processing Data

Figure 3-37 Different settings for the Backgroundimagelayout property

Backgroundimagelayout set to None BackgroundimagelLayout set to Tile BackgroundimageLayout set to Center

(s ESNEER™) ' ((a =6 s

Backgroundlmagelayout set to Stretch Backgroundimagelayout set to Zoom
rue m@ﬂ ) rng D@&J )

Organizing Controls with GroupBoxes and Panels

A GroupBox control is a rectangular control that appears with a thin border and an op-
tional title in its upper-left corner. It is a container that can hold other controls. You can
use GroupBoxes to create a sense of visual organization on a form.

The GroupBox control is found in the Toolbox, in the Containers section. When you cre-
ate a GroupBox control, you can set its Title property to the text that you want displayed
in the GroupBox’s upper-left corner. If you don’t want a title displayed on the GroupBox,
you can clear the contents of its Text property.

Figure 3-38 shows a GroupBox control. The control’s Text property is set to Personal
Data, and several other controls are inside the GroupBox.

Figure 3-38 A GroupBox containing other controls

- === )
o5l GroupBox Example l":'-' Eg

Personal Data

Last Name:
First Name:

Telephone:




3.11 More GUI Details

Creating a Group Box and Adding Controls to It

Suppose you’ve just created a GroupBox control. To add another control to the Group-
Box, select the GroupBox control and then double-click the desired tool in the Toolbox to
place another control inside the group box.

Moving an Existing Control to a Group Box

If an existing control is not inside a GroupBox but you want to move it to the GroupBox,
follow these steps:

1. Select the control you wish to add to the GroupBox.
2. Cut the control to the clipboard.

3. Select the GroupBox.

4. Paste the control.

Moving and Resizing a GroupBox

If a GroupBox is selected in the Designer, a four-headed arrow (G%D) will appear in the
GroupBox’s upper-left corner. Click and drag the four-headed arrow to move the Group-
Box. Any controls inside the GroupBox move with it.

Deleting a GroupBox

To delete a GroupBox, simply select it in the Designer and then press the key. Any
controls inside the GroupBox are deleted as well.

Group Box Tab Order

The value of a control’s TabIndex property is handled differently when the control is
placed inside a GroupBox control. GroupBox controls have their own TabIndex prop-
erty, and the TabIndex value of the controls inside the group box are relative to the
GroupBox control’s TabIlndex property. For example, Figure 3-39 shows a GroupBox
control displayed in tab order selection mode. As you can see, the GroupBox control’s
Tablndex is set to 0. The TabIndex of the controls inside the group box is displayed as
0.0, 0.1, 0.2, and so on.

Figure 3-39 GroupBox Tablndex values

Forml.cs [Design] & X

Eaa

] GroupBox Bample

Earsonal Data

m\lame: m
mName: m
0.2 N 0.5]

NOTE: The TabIndex properties of the controls inside the group box will not ap-
pear this way in the Properties window. They will appear as 0, 1, 2, and so on.

185



186

Chapter 3

Processing Data

A Panel control is a rectangular container for other controls, like a GroupBox. There are
several primary differences between a Panel and GroupBox:

A Panel cannot display a title and does not have a Text property.

A Panel’s border can be specified by its BorderStyle property. The available settings
are None, FixedSingle, and Fixed3D. The property is set to None by default, which
means that no border will appear. If the BorderStyle property is set to FixedSingle,
the control will be outlined with a thin border. If the BorderStyle property is set to
Fixed3D, the control will have a recessed 3D appearance.

Figure 3-40 shows an example of a form with a Panel. The Panel’s BorderStyle property

is set

to Fixed3D.

Figure 3-40 A Panel containing other controls

2 5 ™
! Panel Example li‘ﬂlﬁ

Last Name:
First Name:

Telephone:

Checkpoint

3.50
3.51

3.52

3.53
3.54
3.55

3.56
3.57
3.58
3.59

What happens if you press the Enter key while a Button control has the focus?

How do you display a form in tab order selection mode? How do you exit tab
order selection mode?

Write a programming statement that gives the focus to a TextBox control named
numberTextBox.

How do you assign an access key to a Button control?
How do you display an ampersand (&) character on a Button control?

Write the code that will change the BackColor property of a Label control named
resultLabel to the color white and the ForeColor property to the color red.

List the different values of a form’s BackgroundImageLayout property.
When a GroupBox control is deleted, what happens to the controls that are inside?
How are the TabIndex properties of the controls inside the group box organized?

How is a Panel control different from a GroupBox control?



Key Terms

accept button

access key

access modifier
argument

BackColor property
break mode

cancel button

cast operator

catch block

catch clause
combined assignment operators
concatenation
constant field

data type

decimal literal
decimal.Parse method
double literal
double.Parse method
exception

exception handler
exception object

field

focus

Focus method
ForeColor

formatting string
GroupBox Control
initialize

Review Questions

Review Questions

int.Parse method
integer literal
lifetime

local variable

math expression
math operators
mnemonic

named constant
numeric literal
operands

order of operations
Panel control

parse

Parse methods
primitive data types
scope

tab order

tab order selection mode
Tablndex property
TextBox control
ToString method
truncation

try block
try-catch statement
variable

variable declaration
variable name

1. When the user types into a TextBox control, the text is stored in the control’s

property.
a. Input
b. Text
c. String
d. Data
2. A
a. mnemonic
b. data type
c. namespace
d. wvariable

3. In C#, you must

a. cite
b. associate
c. declare
d

instance

is a storage location in memory that is represented by a name.

a variable before you can use it to store data.

187



188

Chapter 3

Processing Data

10.

11.

A variable’s indicates the type of data that the variable will hold.
a. name

b. data type

c. scope

d. wvalue

Fundamental types of data, such as strings, integers, and real numbers, are known
as

primitive data types
fundamental variables
logical digits

literal data types

identifies a variable in the program code.

binary number
variable name

unique global identifier
hexadecimal value

a0 T® > oo

A common operation performed on strings is
to the end of another string.

, or appending one string

a. addition

b. merging

c. concatenation

d. tying

A belongs to the method in which it is declared, and only statements

inside that method can access the variable.

a. method variable

b. primitive variable
c. temporary variable
d. local variable

Programmers use the term to describe the part of a program in which a

variable may be accessed.

a. range

b. scope

c. focus

d. field

A variable’s is the time period during which the variable exists in mem-
ory while the program is executing.

a. lifetime

b. run time

c. time to live

d. half life

One way to make sure that a variable has been assigned a value is to the

variable with a value when you declare it.

a. concatenate
b. initialize

c. delimit

d. restrict



12.

13.

14.

15.

16.

17.

18.

19.

Review Questions

You can use a to explicitly convert a value from one numeric data type
to another, even if the conversion might result in a loss of data.

a. transpose statement
b. cast operator

c. conversion operator
d. literal conversion

The process of dropping a number’s fractional part is called

a. shifting

b. twos complement
c. numeric rounding
d. truncation

A programmer’s tools for performing calculations are

a. math operators

b. numeric literals

c. local variables

d. parsed literals

A performs a calculation and gives a value.

a. numeric literal

b. math expression

c. machine instruction

d. programming statement

C# offers a special set of operators known as that are designed specifi-

cally for changing the value of a variable without having to type the variable name
twice.

a. combined assignment operators

b. advanced math operators

c. variable modifiers

d. assignment sequencers

In computer science, the term typically means to analyze a string of

characters for some purpose.

a. compile
b. compute

c. debug

d. parse

A(n) is a piece of data that is passed into a method.

a. variable

b. argument

c. string

d. literal

A(n) is an unexpected error that occurs while a program is running,

causing the program to halt if the error is not properly dealt with.

a. breakpoint
b. bug

C. syntax error
d. exception

189



190

Chapter 3

Processing Data

20.

21.

22.

23.

24.

2S.

26.

27.

The indicates that you want the number to appear formatted in a spe-
cific way when it is returned as a string from the ToString method.

a. formatting string
b. insert method
c. data type

d. variable name

You have started an application by clicking the start Debugging button () or by
pressing on the keyboard. If an exception is thrown, the application stops run-
ning and Visual Studio goes into a special mode known as

a. exception mode
b. break mode
c. debug mode
d. crash mode

Code that responds to exceptions when they are thrown and prevents the program
from abruptly crashing is called a(n)

a. exit strategy

b. fail safe

c. event handler

d. exception handler

is a name that represents a value that cannot be changed during the
program’s execution.

a. named literal

b. named constant

c. variable signature

d. key term

A is a variable that is declared inside a class but not inside any method.
a. term

b. class variable

c. field

d. mnemonic

A(n) specifies how a class member can be accessed by code outside the
class.

a. namespace
b. access modifier
c. scope delimiter
d. class directive
A

is a field that cannot be changed by any statement in the class.
static field

a.

b. class name

c. key field

d. constant field

The .NET Framework provides a class named , which contains numer-

ous methods that are useful for performing advanced mathematical operations.

a. Math
b. calc
c. Trig
d. Ling



28.

29.

30.

Review Questions

When a control has the , it receives the user’s keyboard input.
a. text

b. tab order

c. focus

d. input allocator

The order in which controls receive the focus is called the

a. order of operations
b. program flow
c. execution sequence

d. tab order

The contains a numeric value, which indicates the control’s position in
the tab order.

a. IndexOf property

b. TablIndex property

c. ControlOrder property
d. TabOrder property

True or False

1.

10.

You can clear the contents of a TextBox control in the same way that you clear the
contents of a Label control.

In C#, you must declare a variable in a program before you can use it to store data.
You can declare multiple variables of different data types with one declaration.

When you append the letter D or d to a numeric literal, it is treated as a decimal and
is referred to as a decimal literal.

The order of operations dictates that the division operator works before the addi-
tion operator does.

All variables have a Tostring method that you can call to convert the variable’s
value to a string.

When you pass the formatting string "C" or "c" to the ToString method, the
number is returned formatted as currency.

When you declare a named constant, an initialization value is required.

An error will occur if the compiler finds a statement that tries to change the value of
a constant field.

Forms and most controls have a Preferences property that allows you to change the
object’s background color.

Short Answer

Ny o> I

In the Toolbox, in which group is the TextBox tool located?

What two things does a variable declaration specify about a variable?

Give an example of a programming statement that uses string concatenation.
What is the term used for a number that is written into a program’s code?
Write a programming statement that assigns an integer literal to a variable.
What are the values on the right and left of an operator called?

Name the family of methods in the .NET Framework that can be used to convert a
string to any of the numeric data types.

191



192

Chapter 3

>

VideoNote
Solving the
Tip, Tax,
and Total
Problem

Processing Data

8.

9.
10.

11.
12.

What object is created in memory when an exception is thrown and has various
properties that contain data about the exception?

What is the purpose of a try-catch statement?

Which class in the .NET Framework provides predefined named constants that are
assigned the mathematical values for pi and e?

In code, what function do you call to move the focus to a control?

What property allows you to change the color of a control’s text?

Programming Problems

il,

Name Formatter

Create an application that lets the user enter the following pieces of data:
e The user’s first name

e The user’s middle name

e The user’s last name

e The user’s preferred title (Mr., Mrs., Ms., Dr., etc.)

Assume the user has entered the following data:

e  First name: Kelly
Middle name: Jane
e Last name: Smith
Title: Ms.

The application should have buttons that display the user’s name formatted in the
following ways:

Ms. Kelly Jane Smith
Kelly Jane Smith
Kelly Smith

Smith, Kelly Jane, Ms.
Smith, Kelly Jane
Smith, Kelly

Tip, Tax, and Total

Create an application that lets the user enter the food charge for a meal at a res-
taurant. When a button is clicked, the application should calculate and display the
amount of a 15 percent tip, 7 percent sales tax, and the total of all three amounts.

Distance Traveled
Assuming there are no accidents or delays, the distance that a car travels down an
interstate highway can be calculated with the following formula:

Distance = Speed X Time

Create an application that allows the user to enter a car’s speed in miles per hour.
The application should have buttons that display the following:

e The distance the car will travel in 5 hours
e The distance the car will travel in 8 hours
o The distance the car will travel in 12 hours

Sales Tax and Total

Create an application that allows the user to enter the amount of a purchase. The
program should then calculate the state and county sales tax. Assume the state sales
tax is 4 percent and the county sales tax is 2 percent. The program should display



Programming Problems 193

the amount of the purchase, the state sales tax, the county sales tax, the total sales
tax, and the total of the sale (which is the sum of the amount of purchase plus the
total sales tax).

5. Celsius and Fahrenheit Temperature Converter
Assuming that C is a Celsius temperature, the following formula converts the tem-
perature to Fahrenheit:
F=2C+32
S
Assuming that F is a Fahrenheit temperature, the following formula converts the
temperature to Celsius:

C=§(F—32)

Create an application that allows the user to enter a temperature. The application
should have Button controls described as follows:

e A button that reads Conwvert to Fahrenbeit. If the user clicks this button, the ap-
plication should treat the temperature that is entered as a Celsius temperature
and convert it to Fahrenheit.

* A button that reads Conwvert to Celsius. If the user clicks this button, the appli-
cation should treat the temperature that is entered as a Fahrenheit temperature,
and convert it to Celsius.

6. Body Mass Index

Create an application that lets the user enter his or her weight (in pounds) and
height (in inches). The application should display the user’s body mass index (BMI).
The BMI is often used to determine whether a person is overweight or underweight
for his or her height. A person’s BMI is calculated with the following formula:

BMI = weight X 703 + height®
7. Sentence Builder

The form in Figure 3-41 contains buttons showing various words, phrases, and
punctuation. Create an application with a form similar to this one. When the ap-
plication runs, the user clicks the buttons to build a sentence, which is shown in a
Label control. You can use the same buttons as shown in the figure or make up your
own. The Reset button should clear the sentence so the user can start over.

Figure 3-41 The Sentence Builder form

P 5 ™y

o5l Sentence Builder =R
(2] (o) (A ] [an ] [T0e ] [the ]
[ man ][woman] I dog ] | cat ] | car ] [bic:ycle]
[ beaurtiful J [ big l [ small l I strange l
[Iookedat | [ rode I [spok.eto ] I laughed at | I drove I

Gpace) | [ ][]

The strange man drove the small car,

Clear | | Exit




194

Chapter 3

Processing Data

10.

How Much Insurance?

Many financial experts advise that property owners should insure their homes or build-
ings for at least 80 percent of the amount it would cost to replace the structure. Create
an application that lets the user enter the replacement cost of a building and then dis-
plays the minimum amount of insurance he or she should buy for the property.

Cookie Calories

A bag of cookies holds 40 cookies. The calorie information on the bag claims that
there are 10 servings in the bag and that a serving equals 300 calories. Create an
application that lets the user enter the number of cookies he or she actually ate and
then reports the number of total calories consumed.

Calorie Counter

Create an application with a form that resembles Figure 3-42. The PictureBox con-
trols display the images of four fruits (a banana, an apple, an orange, and a pear)
and each fruit’s calories. You can find these images in the Chap03 folder of the Stu-
dent Sample Programs.

When the application starts, the total calories displayed should be zero. Each time
the user clicks one of the PictureBoxes, the calories for that fruit should be added
to the total calories, and the total calories should be displayed. When the user
clicks the Reset button, the total calories should be reset to zero.

Figure 3-42 Calorie Counter form

11.

12.

ol Calorie Counter = ]

i Total Calories

80 Calories

e

F y
;‘”’ [ Resst |

90 Calories 120 Calories

Automobile Costs

Create an application that lets the user enter the monthly costs for the following
expenses incurred from operating his or her automobile: loan payment, insurance,
gas, oil, tires, and maintenance. The program should then display the total monthly
cost of these expenses and the total annual cost of these expenses.

Paint Job Estimator

A painting company has determined that for every 115 square feet of wall space,
1 gallon of paint and 8 hours of labor will be required. The company charges $20.00
per hour for labor. Create an application that allows the user to enter the square
feet of wall space to be painted and the price of the paint per gallon. The program
should display the following data:

e The number of gallons of paint required

e The hours of labor required



13.

14.

Programming Problems

e The cost of the paint
e The labor charges
e The total cost of the paint job

Property Tax

If you own real estate in a particular county, the property tax that you owe each
year is calculated as 64 cents per $100 of the property’s value. For example, if the
property’s value is $10,000, then the property tax is calculated as follows:

Tax = $10,000 + 100 X 0.64

Create an application that allows the user to enter a property’s value and displays
the sales tax on that property.

Stadium Seating

There are three seating categories at an athletic stadium. For a baseball game, Class
A seats cost $15 each, Class B seats cost $12 each, and Class C seats cost $9 each.
Create an application that allows the user to enter the number of tickets sold for
each class. The application should be able to display the amount of income gener-
ated from each class of ticket sales and the total revenue generated. The applica-
tion’s form should resemble the one shown in Figure 3-43.

Figure 3-43 Stadium Seating form

P

okl Stadium Seating = | E

Tickets Sold Revenue Generasted

Enter the number of tickets sold

for each class of seats. Class A: I:l
Class B: Class C: I:l

Calculate
Revenue

‘ Clear ‘ ‘ = ‘

Use the following sets of test data to determine if the application is calculating properly:

Ticket Sales Revenue
Class A: 320 Class A: $4,800.00
Class B: 570 Class B: $6,840.00
Class C: 890 Class C: $8,010.00
Total Revenue: $19,650.00
Class A: 500 Class A: $7,500.00
Class B: 750 Class B: $9,000.00
Class C: 1,200 Class C: $10,800.00
Total Revenue: $27,300.00
Class A: 100 Class A: $1,500.00
Class B: 300 Class B: $3,600.00
Class C: 500 Class C: $4,500.00

Total Revenue: $9,600.00

195



This page intentionally left blank



=20
OO0
1088
1000
Y
1000
d0on

—
4.1

1

) e
Oooooo
ooooo
oooano

ViRl Making Decisions

o
(WN]
—
o
<
I
)

TOPICS

4.1 Decision Structures and the if 4.7 Preventing Data Conversion
Statement Exceptions with the TryParse

4.2 The if-else Statement Methods

4.3 Nested Decision Structures 4.8 Input Validation

4.4 Logical Operators 4.9 Radio Buttons and Check Boxes

4.5 bool Variables and Flags 4.10 The switch Statement

4.6 Comparing Strings 4.11 Introduction to List Boxes

Decision Structures and the if Statement

CONCEPT: A decision structure allows a program to perform actions only under certain
conditions. In code, you can use the if statement to write a simple decision
structure.

A control structure is a logical design that controls the order in which a set of statements
execute. So far in this book we have used only the simplest type of control structure: the
sequence structure. A sequence structure is a set of statements that execute in the order
that they appear. For example, the following code sample is a sequence structure because
the statements execute from top to bottom.

int ageInYears, ageInDays;

ageInYears = int.Parse(ageTextBox.Text);
ageInDays = agelInYears * 365;

daysLabel = ageInDays.ToString();

Although the sequence structure is heavily used in programming, it cannot handle every
type of task. Some problems simply cannot be solved by performing a set of ordered
steps, one after the other. For example, consider a pay-calculating program that deter-
mines whether an employee has worked overtime. If the employee has worked more
than 40 hours, he or she gets paid extra for all hours over 40. Otherwise, the overtime
calculation should be skipped. Programs like this require a different type of control
structure: one that can execute a set of statements only under certain circumstances.
This can be accomplished with a decision structure. (Decision structures are also known
as selection structures.)

197



198

Chapter 4

Making Decisions

In a decision structure’s simplest form, a specific action is performed only if a certain con-
dition exists. If the condition does not exist, the action is not performed. The flowchart
shown in Figure 4-1 shows how the logic of an everyday decision can be diagrammed as a
decision structure. The diamond symbol represents a true-false condition. If the condition
is true, we follow one path, which leads to an action being performed. If the condition is
false, we follow another path, which skips the action.

Figure 4-1 A simple decision structure

Cold
outside

\i

Wear a coat.

- |

False

In the flowchart, the diamond symbol indicates some condition that must be tested. In
this case, we are determining whether the condition Cold outside is true or false. If this
condition is true, the action Wear a coat is performed. If the condition is false, the action
is skipped. The action is conditionally executed because it is performed only when a certain
condition is true.

Programmers call the type of decision structure shown in Figure 4-1 a single-alternative
decision structure because it provides only one alternative path of execution. If the condi-
tion in the diamond symbol is true, we take the alternative path. Otherwise, we exit the
structure. Figure 4-2 shows a more elaborate example, where three actions are taken only
when it is cold outside.

Figure 4-2 A decision structure that performs three actions if it is cold outside

Cold True
outside

\J

Wear a coat.
False

i
Wear a hat.
Wear gloves.

\j



4.1 Decision Structures and the if Statement 199

In C#, you use the if statement to write a single-alternative decision structure. Here is the
general format of the if statement:

if (expression)

{
statement;
statement;
etc.

}

The statement begins with the word if, followed by an expression enclosed in a set of
parentheses. Beginning on the next line is a set of statements enclosed in curly braces.

The expression that appears inside the parentheses is a Boolean expression. A Boolean
expression is an expression that can be evaluated as either true or false. When the if
statement executes, the Boolean expression is tested. If it is true, the statements that
appear inside the curly braces are executed. If the Boolean expression is false, however,
the statements inside the curly braces are skipped. We say that the statements inside the
curly braces are conditionally executed because they are executed only if the Boolean
expression is true.

If you are writing an if statement that has only one conditionally executed statement,
you do not have to enclose the conditionally executed statement inside curly braces. Such
an if statement can be written in the following general format:

if (expression)
statement;

When an if statement written in this format executes, the Boolean expression is tested.
If it is true, the one statement that appears on the next line is executed. If the Boolean
expression is false, however, that one statement is skipped.

Although the curly braces are not required when there is only one conditionally executed
statement, it is still a good idea to use them, as shown in the following general format:

if (expression)

{

statement;

}

This is a good style for writing if statements because it minimizes errors. Remember,
if you have more than one conditionally executed statement, those statements must be
enclosed in curly braces. If you get into the habit of always enclosing the conditionally
executed statements in a set of curly braces, it’s less likely that you will forget them.

Boolean Expressions and Relational Operators

Boolean expressions are named in honor of the English mathematician George Boole. In
the 1800s, Boole invented a system of mathematics in which the abstract concepts of true
and false can be used in computations.

Typically, the Boolean expression that is tested by an if statement is formed with a rela-
tional operator. A relational operator determines whether a specific relationship exists
between two values. For example, the greater than operator (>) determines whether one
value is greater than another. The equal to operator (==) determines whether two values
are equal. Table 4-1 lists the relational operators that are available in C#.

The following is an example of an expression that uses the greater than (>) operator to
compare two variables, length and width:

length > width



200

Chapter 4

Making Decisions

Table 4-1 Relational operators

Operator Meaning
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
== Equal to

1= Not equal to

This expression determines whether the value of the length variable is greater than the
value of the width variable. If length is greater than width, the value of the expression
is true. Otherwise, the value of the expression is false. The following expression uses the
less than operator (<) to determine whether length is less than width:

length < width

Table 4-2 shows examples of several Boolean expressions that compare the variables x
and y.

Table 4-2 Boolean expressions using relational operators

Expression Meaning

X >y Is x greater than y?

X <y Is x less than y?

X >=y Is x greater than or equal to y?
X <= y Is x less than or equal to y?

X ==y Is x equal to y?

x I=y Is x not equal to y?

The >= and <= Operators

Two of the operators, >= and <=, test for more than one relationship. The >= operator
determines whether the operand on its left is greater than or equal to the operand on its
right. The <= operator determines whether the operand on its left is less than or equal to
the operand on its right.

For example, assume the variable a is assigned 4. All the following expressions are true:

a >= 4
a >= 2
8 >= a
a <=4
a <=9
4 <= a

The == Operator

The == operator determines whether the operand on its left is equal to the operand on its
right. If the values of both operands are the same, the expression is true. Assuming that a is
4, the expression a == 4 is true and the expression a == 2 is false.



4.1 Decision Structures and the if Statement

NOTE: The equality operator is two = symbols together. Don’t confuse this operator
with the assignment operator, which is one = symbol.

The != Operator

The 1= operator is the not equal to operator. It determines whether the operand on its left
is not equal to the operand on its right, which is the opposite of the == operator. As before,
assuming a is 4, b is 6, and c is 4, both a != band b != c are true because a is not equal
to b and b is not equal to c. However, a != c is false because a is equal to c.

Putting It All Together

Let’s look at the following example of the if statement:

if (sales > 50000)
{

bonus = 500;

}

This statement uses the > operator to determine whether sales is greater than 50,000. If
the expression sales > 50000 is true, the variable bonus is assigned 500. If the expres-
sion is false, however, the assignment statement is skipped. Figure 4-3 shows a flowchart
for this section of code.

Figure 4-3 Example decision structure

sales > 50000

Yy
bonus =500

False

The following code sample conditionally executes three statements. Figure 4-4 shows a
flowchart for this section of code.

if (sales > 50000)

{

bonus = 500;

commissionRate = 0.12;

MessageBox.Show("You met your sales quota!");
}

When you write an if statement, Visual Studio automatically indents the conditionally
executed statements, as shown in the previous examples. The indentation is not required,
but it makes the code easier to read and debug. By indenting the conditionally executed
statements, you visually set them apart from the surrounding code. This allows you to tell
at a glance what part of the program is controlled by the if statement. Most program-
mers use this style of indentation when writing if statements.

201



202

Chapter 4

D

VideoNote
Tutorial 4-1:
Completing
the Test
Score
Average
application

Making Decisions

Figure 4-4 Example decision structure

Y
sales > 50000 True
Y
bonus =500
False
Y
commissionRate = 0.12

Y

Display message: “You
met your sales quota!”

- |

Tutorial 4-1:
Completing the Test Score Average Application
In this tutorial you will complete an application that allows the user to enter three test

scores and calculates the average of the test scores. If the average is greater than 95, the
application also displays a message congratulating the user.

To save time, the project has already been started for you, and the application’s form has
already been created. To complete the project, follow the steps in this tutorial.

Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Test
Score Average in the Chap04 folder of this book’s Student Sample Programs,
available for download at www.pearsonhighered.com/gaddis.

Step 2:  Open the Form1 form in the Designer. The form is shown, along with the names
of the important controls, in Figure 4-5.

Figure 4-5 The Test Score Average form

e —
-l Test Score Average l SRR X

Erter Three Test Scores

Test Score #1 -t testlTextBox

Test Score #2 = test2TextBox

Test Score #3 -t test3TextBox
Average [::::::::]: averageLabel
Calculate I&I‘ clearButton
i O a— exitButton

3

calculateButton


www.pearsonhighered.com/gaddis

Step 3:

Step 4:

Step 5:

4.1 Decision Structures and the if Statement

Now you will create the Click event handlers for the Button controls. At the end
of this tutorial, Program 4-1 shows the completed code for the form. You will
be instructed to refer to Program 4-1 as you write the event handlers.

In the Designer, double-click the calculateButton control. This will open the
code editor, and you see an empty event handler named calculateButton Click.
Complete the calculateButton Click event handler by typing the code shown
in lines 22-49 in Program 4-1.

Let’s take a closer look at the code:

Line 22: This is the beginning of a try-catch statement. The try block appears
in lines 24-43, and the catch block appears in lines 47—48. The purpose of this
try-catch statement is to gracefully respond if the user enters invalid input for
any of the test scores. If any of the statements in lines 28, 29, and 30 throw an
exception, the program does not crash. Instead, it jumps to the catch block, and
line 48 displays an error message.

Line 24: This statement declares a constant double named HIGH_ SCORE, set to
the value 95.0. We use this constant to determine whether the average is high.
If the average is greater than this constant, the program displays a message con-
gratulating the user.

Line 25: This statement declares the following double variables: test1, test2,
test3, and average. The variables hold the three test scores and the average
test score.

Line 28: This statement converts the test1TextBox control’s Text property to a
double and assigns the result to the test1 variable.

Line 29: This statement converts the test2TextBox control’s Text property to a
double and assigns the result to the test2 variable.

Line 30: This statement converts the test3TextBox control’s Text property to a
double and assigns the result to the test3 variable.

Line 33: This statement calculates the average of the test1, test2, and test3
variables and assigns the result to the average variable.

Line 36: This statement converts the average variable to a string (rounded to 1
decimal place) and assigns the result to the averageLabel control’s Text property.

Line 40: This if statement determines whether average is greater than HIGH
SCORE. If it is, the statement in line 42 is executed, displaying a message box
with a congratulatory message. If average is not greater than HIGH_SCORE, the
statement in line 42 is skipped.

Switch your view back to the Designer and double-click the clearButton control.
In the code editor you will see an empty event handler named clearButton Click.
Complete the clearButton Click event handler by typing the code shown in lines
54-61 in Program 4-1.

Lines 55-57: Each of these statements assigns an empty string ("") to the Text
property of one of the TextBox controls. When these statements have finished
executing, the TextBox controls appear empty.

Line 58: This statement assigns an empty string ("") to the averageLabel con-
trol’s Text property. After the statement has executed, the label appears empty.

Line 61: This statement sets the focus to the test1TextBox control. This makes
it more convenient for the user to start entering a new set of test scores.

Switch your view back to the Designer and double-click the exitButton
control. In the code editor you will see an empty event handler named
exitButton Click. Complete the exitButton Click event handler by typing
the code shown in lines 66—67 in Program 4-1.

203



204 Chapter 4 Making Decisions

Step 6: Save the project. Then, press on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application.

First, enter the following test scores in the TextBoxes: 80, 90, and 75. Click the
Calculate Average button and the average should appear as shown in Figure 4-6.

Figure 4-6 Average displayed

i

al Test Score Average

Enter Three Test Scores
Test Score #1 80
Test Score H2 30

Test Score #3 75

Average 87

Calculate ey

Average [ﬁ
Bt

N &

Next, click the Clear button to clear the TextBoxes and the average. Now, enter
the following test scores in the TextBoxes: 100, 97, and 99. Click the Calculate
Average button. This time, in addition to displaying the average, the application
displays the message box shown in Figure 4-7.

Figure 4-7 Average and message displayed

-
8 Test Score Average M

Enter Three Test Scores

Test Score #1 100
Test Score #2 97

Test Score #3 99

-
r | g |1

Calculate [ Glear |

Average C ea |
| Bat Congratulations! Great job!

LG J

Continue to test the application as you wish. When you are finished, click the
Exit button, and the form should close.

Program 4-1 Completed Form1 code for the Test Score Average application

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

~N oUW N



4.1 Decision Structures and the if Statement

8 using System.Threading.Tasks;
9 using System.Windows.Forms;

10

11 namespace Test_Score Average

12 {

13 public partial class Forml : Form

14 {

15 public Forml ()

16 {

17 InitializeComponent();

18 }

19

20 private void calculateButton Click(object sender, EventArgs e)
21 {

22 try

23 {

24 const double HIGH_SCORE =95.0; // High Score value
25 double testl, test2, test3, average; // Variables

26

27 // Get the test scores from the TextBoxes.

28 testl = double.Parse(testlTextBox.Text);

29 test2 = double.Parse(test2TextBox.Text);

30 test3 = double.Parse(test3TextBox.Text);

31

32 // Calculate the average test score.

33 average = (testl + test2 + test3) / 3.0;

34

35 // Display the average, rounded to 2 decimal places.
36 averageLabel.Text = average.ToString("nl");

37

38 // If the average is a high score, congratulate
39 // the user with a message box.

40 if (average > HIGH_SCORE)

41 {

42 MessageBox.Show("Congratulations! Great job!");
43 }

44 }

45 catch (Exception ex)

46 {

47 // Display the default error message.

48 MessageBox.Show(ex.Message) ;

49 }

50 }

51

52 private void clearButton Click(object sender, EventArgs e)
53 {

54 // Clear the TextBoxes and the averageLabel control.
55 testlTextBox.Text = "";

56 test2TextBox.Text = "";

57 test3TextBox.Text = "";

58 averageLabel.Text = "";

59

60 // Reset the focus to testl.

61 testlTextBox.Focus();

62 }

63

64 private void exitButton Click(object sender, EventArgs e)
65 {

66 // Close the form.

205



206 Chapter 4 Making Decisions

67 this.Close();
68 }

69 }

70 }

Checkpoint

4.1 What is a control structure?

4.2 What is a decision structure?

4.3 What is a single-alternative decision structure?
4.4 What is a Boolean expression?

4.5 What types of relationships between numeric values can you test with relational
operators?

4.6 Write an if statement that determines whether the variable y is equal to 20. If it is,
assign O to the variable x.

4.7 Write an if statement that determines whether the variable sales is greater than
or equal to 10,000. If it is, assign 0.2 to the variable commissionRate.

- |
4.2 The if-else Statement

1(0 NCEPT: An if-else statement will execute one block of statements if its Boolean
expression is true or another block if its Boolean expression is false.

The previous section introduced the single-alternative decision structure (the if statement),
which has one alternative path of execution. Now we will look at the dual-alternative
decision structure, which has two possible paths of execution—one path is taken if the
Boolean expression is true, and the other path is taken if the Boolean expression is false.
Figure 4-8 shows an example flowchart for a dual-alternative decision structure.

Figure 4-8 A dual-alternative decision structure

'

temperature
<40

Display "Nice weather
we're having.'

Display "A little cold,
isn'tit?"




4.2 The if-else Statement

The decision structure in the flowchart tests the expression temperature < 40. If this
expression is true, the message “A little cold, isn’t it?” is displayed. If the expression is
false, the message “Nice weather we’re having.” is displayed.

In code we write a dual-alternative decision structure as an if-else statement. Here is
the general format of the if-else statement:

if (expression)

statement; -
statement- If the Boolean expression is true,
otc ’ this set of statements is executed.

} _

else

{ —
statement; If the Boolean expression is false,
s;atement, this set of statements is executed.
etc.

An if-else statement has two parts: an if clause and an else clause. Just like a regular
if statement, the if-else statement tests a Boolean expression. If the Boolean expression
is true, the set of statements following the if clause is executed. If the Boolean expression
is false, the set of statements following the else clause is executed.

The if-else statement has two sets of conditionally executed statements. One set is ex-
ecuted only under the condition that the Boolean expression is true, and the other set is
executed only under the condition that the Boolean expression is false. Under no circum-
stances are both sets of conditionally executed statements executed.

If either set of conditionally executed statements contains only one statement, the curly
braces are not required. For example, the following general format shows only one state-
ment following the if clause and only one statement following the else clause:
if (expression)
statement;

else
statement;

Although the curly braces are not required when there is only one conditionally executed
statement, it is still a good idea to use them, as shown in the following general format:

if (expression)

{

statement;
}
else
{

statement;
}

When we discussed the regular if statement, we mentioned that this is a good style of
programming because it cuts down on errors. If there is more than one conditionally
executed statement following either the if clause or the else clause, those statements
must be enclosed in curly braces. If you get into the habit of always enclosing the
conditionally executed statements in a set of curly braces, it’s less likely that you will
forget them.

In Tutorial 4-2 you will complete an application that uses an if-else statement.

207



208

Chapter 4 Making Decisions

5 Tutorial 4-2:
Completing the Payroll with Overtime Application

>

Vdeonion At a particular business, if an employee works more than 40 hours in a week, it is said
ideoNote

Tutorial 4-2: that the employee has worked overtime. For example, an employee that has worked 45
Completing hours in a week has worked 5 overtime hours. Employees that work overtime get paid
the Payroll their regular hourly pay rate for the first 40 hours plus 1.5 times their regular hourly pay
with rate for all hours over 40. In this tutorial you will complete a payroll application that
Overtime calculates an employee’s gross pay, including overtime pay.

application

The application allows the user to enter the number of hours worked and the hourly pay
rate into TextBoxes. When the user clicks a button, the gross pay is calculated in the fol-
lowing manner:

If the hours worked is greater than 40:

base pay = hourly pay rate X 40

overtime hours = hours worked — 40

overtime pay = overtime hours X hourly pay rate X 1.5
gross pay = base pay + overtime pay

Else:

gross pay = hours worked X hourly pay rate

To save time, the project has already been started for you, and the application’s form has
already been created. To complete the project, follow the steps in this tutorial.

Step 1: Start Visual Studio (or Visual Studio Express). Open the project named
Payroll with Overtime in the Chap04 folder of this book’s Student Sample
Programs.

Step 2:  Open the Form1 form in the Designer. The form is shown, along with the names
of the important controls, in Figure 4-9.

Figure 4-9 The Payroll with Overtime form

e —
o= Payroll with Overtime | = |-E] &J
Hours worked: | - hoursWorkedTextBox
Houry pay rate: B hourlyPayRateTextBox
Gross pay: l:l<—— grossPaylLabel
Calculate -
‘ Gross Pay ‘ Clear ‘ ‘ Exit ‘
calculateButton clearButton exitButton

Step 3: Now you will create the Click event handlers for the Button controls. At the end
of this tutorial, Program 4-2 shows the completed code for the form. You will
be instructed to refer to Program 4-2 as you write the event handlers.

In the Designer, double-click the calculateButton control. This opens the code
editor, and you see an empty event handler named calculateButton Click.
Complete the calculateButton_Click event handler by typing the code shown
in lines 22— 69 in Program 4-2.



Step 4:

4.2 The if-else Statement

Let’s take a closer look at the code:

Line 22: This is the beginning of a try-catch statement. The try block appears
in lines 24-63, and the catch block appears in lines 67—68. The purpose of this
try-catch statement is to gracefully respond if the user enters invalid input.
If an exception is thrown by any statement inside the try block, the program
jumps to the catch block, and line 68 displays an error message.

Lines 25-26: These statements declare the following named constants:

* BASE_HOURS, a constant decimal set to the value 40. This is the number of
hours an employee can work in a week without getting overtime pay.

® OT MULTIPLIER, a constant decimal set to the value 1.5. This is the pay rate
multiplier for overtime hours.

Lines 29-34: These statements declare the following variables:

hoursWorked, a decimal variable to hold the number of hours worked
hourlyPayRate, a decimal variable to hold the hourly pay rate

basePay, a decimal variable to hold the pay for 40 or less hours
overtimeHours, a decimal variable to hold the number of overtime hours
worked

® overtimePay, a decimal variable to hold the amount of overtime pay

® grossPay, a decimal variable to hold the gross pay

Line 37: This statement converts the hoursWorkedTextBox control’s Text
property to a decimal and assigns the result to the hoursWorked variable.

Line 38: This statement converts the hourlyPayRateTextBox control’s Text
property to a decimal and assigns the result to the hourlyPayRate variable.

Line 41: This if statement determines whether hoursworked is greater than
BASE HOURS (40). If so, the statements in lines 43—-54 are executed. Otherwise,
the statements in lines 58-59 are executed.

Lines 43-54: These statements, which are executed only if the hours worked are
greater than 40, make all the necessary calculations to determine gross pay with
overtime:

e Line 44 calculates the base pay, which is the amount of pay for the first
40 hours.

e Line 47 calculates the number of overtime hours, which is the number of
hours over 40.

e Lines 50 and 51 calculate the amount of overtime pay, which is the pay for
the hours over 40.

e Line 54 calculates the gross pay, which is the amount of base pay plus the
amount of overtime pay. The result is assigned to the grossPay variable.

Line 59: This statement, which is executed only if the hours worked are 40 or
less, calculates the gross pay and assigns the result to the grossPay variable.

Line 63: This statement converts the value of the grossPay variable to a string,
formatted as currency, and assigns the result to the grossPayLabel control’s
Text property.

Switch your view back to the Designer and double-click the clearButton control.
In the code editor you see an empty event handler named clearButton_Click.
Complete the clearButton_Click event handler by typing the code shown
in lines 74-80 in Program 4-2. These statements clear the TextBoxes and
the grossPayLabel control and sets the focus to the hoursWorkedTextBox
control.

209



210

Chapter 4

Making Decisions

Step 5:

Step 6:

Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you see an empty event handler named exitButton
click. Complete the exitButton click event handler by typing the code
shown in lines 85-86 in Program 4-2.

Save the project and run the application. First, enter 40 for the number of hours
worked and 20 for the hourly pay rate. Click the Calculate Gross Pay button, and
the application should display $800.00 as the gross pay. No overtime hours were
worked, so the gross pay is simply calculated as hours worked X hourly pay rate.

Click the Clear button. Enter 50 for the number of hours worked and 20 for the
hourly pay rate. Click the Calculate Gross Pay button, and the application
should display $1,100.00 as the gross pay. This time, more than 40 hours were
worked, so the application calculated the gross pay to include overtime pay.

Continue to test the application as you wish. When you are finished, click the
Exit button and the form should close.

Program 4-2 Completed Form1 code for the Payroll with Overtime application

00 ~J o Ul b WN

o

10

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

11 namespace Payroll with Overtime

12 {
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

public partial class Forml : Form

{
public Forml ()

{

InitializeComponent();

b

private void calculateButton Click(object sender, EventArgs e)

{
try

// Named constants
const decimal BASE_HOURS = 40m;
const decimal OT MULTIPLIER = 1.5m;

// Local variables

decimal hoursWorked; // Number of hours worked
decimal hourlyPayRate; // Hourly pay rate

decimal basePay; // Pay not including overtime
decimal overtimeHours; // overtime hours worked
decimal overtimePay; // overtime pay

decimal grossPay; // total gross pay

// Get the hours worked and hourly pay rate.
hoursWorked = decimal.Parse (hoursWorkedTextBox.Text);
hourlyPayRate = decimal.Parse(hourlyPayRateTextBox.Text);



4.2 The if-else Statement

39

40 // Determine the gross pay.

41 if (hoursWorked > BASE_HOURS)

42 {

43 // Calculate the base pay (without overtime).
44 basePay = hourlyPayRate * BASE_HOURS;

45

46 // Calculate the number of overtime hours.
47 overtimeHours = hoursWorked - BASE HOURS;
48

49 // Calculate the overtime pay.

50 overtimePay = overtimeHours * hourlyPayRate *
51 OT MULTIPLIER;

52

53 // Calculate the gross pay.

54 grossPay = basePay + overtimePay;

55 }

56 else

57 {

58 // Calculate the gross pay.

59 grossPay = hoursWorked * hourlyPayRate;
60 }

61

62 // Display the gross pay.

63 grossPayLabel.Text = grossPay.ToString("c");
64 }

65 catch (Exception ex)

66 {

67 // Display an error message.

68 MessageBox.Show(ex.Message) ;

69 }

70 }

71

72 private void clearButton_Click(object sender, EventArgs e)
73 {

74 // Clear the TextBoxes and gross pay label.

75 hoursWorkedTextBox.Text = "";

76 hourlyPayRateTextBox.Text = "";

77 grossPayLabel.Text = "";

78

79 // Reset the focus.

80 hoursWorkedTextBox.Focus () ;

81 }

82

83 private void exitButton Click(object sender, EventArgs e)
84 {

85 // Close the form.

86 this.Close();

87 }

88 }

89 }

Checkpoint

4.8 Describe how a dual alternative decision structure works.

4.9 In an if-else statement, under what circumstances do the statements that appear
after the else clause execute?

211



212 Chapter 4 Making Decisions

4.10 Write an if-else statement that works like this: If the sales variable is greater-
than or equal-to 50,000, the commissionRate variable should be assigned the value
0.2. Otherwise, the commissionRate variable should be assigned the value 0.1.

—
4.3 Nested Decision Structures

1 CONCEPT: To test more than one condition, a decision structure can be nested inside
another decision structure.

In Section 4.1, we mentioned that a control structure determines the order in which a set
of statements execute. Programs are usually designed as combinations of different control
structures. For example, Figure 4-10 shows a flowchart that combines a decision structure
with two sequence structures.

Figure 4-10 Combining sequence structures with a decision structure

Start

Go to the window.

Sequence structure -----+ ¢

! Read thermometer.

Cold
outside
Decision structure -----+

Wear a coat.

False

-

E Open the door.

Sequence structure -----4 ¢

! Go outside.

End



4.3 Nested Decision Structures

The flowchart in Figure 4-10 starts with a sequence structure. Assuming you have an out-
door thermometer in your window, the first step is Go to the window, and the next step is
Read thermometer. A decision structure appears next, testing the condition Cold outside.
If this is true, the action Wear a coat is performed. Another sequence structure appears
next. The step Open the door is performed, followed by Go outside.

Quite often, structures must be nested inside other structures. For example, look at the
partial flowchart in Figure 4-11. It shows a decision structure with a sequence structure
nested inside. The decision structure tests the condition Cold outside. If that condition is
true, the steps in the sequence structure are executed.

Figure 4-11 A sequence structure nested inside a decision structure

;
'
'
'
|
: Cold True
'
:
:
'
'

outside
______ 1
|
Wear a coat. !
Decision ! False |
- 1
structure ! \ :
|
, : Sequence
' Wear a hat. beaa
' ' structure
' * '
'’ 1
! |
! |
' i
! Wear gloves. '
1 N A
|
|
|
|

You can also have nested decision structures, which are decision structures that ap-
pear inside other decision structures. This is commonly done in programs that need
to test more than one condition. For example, consider a program that determines
whether a bank customer qualifies for a loan. To qualify, two conditions must exist:
(1) The customer must earn at least $40,000 per year, and (2) the customer must
have been employed at his or her current job for at least 2 years. Figure 4-12 shows
a flowchart for an algorithm that could be used in such a program. Assume that
the salary variable contains the customer’s annual salary, and the yearsonJob
variable contains the number of years that the customer has worked on his or her
current job.

If we follow the flow of execution, we see that the Boolean expression salary >= 40000
is tested. If this expression is false, there is no need to perform further tests; we
know that the customer does not qualify for the loan. If the expression is true,
however, we need to test the second condition. This is done with a nested decision
structure that tests the Boolean expression yearsonJob >= 2. If this expression is
true, then the customer qualifies for the loan. If this expression is false, then the
customer does not qualify. In Tutorial 4-3 you create an application that performs
this algorithm.

213



214

Chapter 4

Making Decisions

Figure 4-12 A nested decision structure

\

False True

salary >= 40000

/

Display "Minimum salary
requirement not met."

yearsOnJob >=2

\i Y

Display "Minimum years Display "You qualify for
at current job not met.” the loan."

End

D

VideoNote

Tutorial 4-3:
Completing
the Loan
Qualifier

application

Tutorial 4-3:
Completing the Loan Qualifier Application

In this tutorial you complete an application that determines whether a person qualifies for
a loan. To qualify for the loan, the person must earn a salary of at least $40,000 and must
have been employed at his or her current job for at least 2 years.

To save time, the project has already been started for you, and the application’s form has
already been created. To complete the project, follow the steps in this tutorial.

Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Loan
Qualifier in the Chap04 folder of this book’s Student Sample Programs.

Step 2:  Open the Form1 form in the Designer. The form is shown, along with the names
of the important controls, in Figure 4-13.

Step 3: Now you will create the Click event handlers for the Button controls. At the end
of this tutorial, Program 4-3 shows the completed code for the form. You will
be instructed to refer to Program 4-3 as you write the event handlers.



4.3 Nested Decision Structures 215

Figure 4-13 The Loan Qualifier form

o Loan Qualifier l = | B [ S
Annual salary: - salaryTextBox

Years at cument job: -t yearsTextBox

Loan decision:

| i decisionLabel
Check =

‘ Qualifications ‘ Clear | ‘ Bdt ‘

A AN
- 4
checkButton clearButton exitButton

In the Designer, double-click the checkButton control. This opens the code
editor, and you see an empty event handler named checkButton Click. Com-
plete the checkButton_Click event handler by typing the code shown in lines
22-62 in Program 4-3. Let’s take a closer look at the code:

Line 22: This is the beginning of a try-catch statement. The try block appears
in lines 24-56, and the catch block appears in lines 60-61. The purpose of this
try-catch statement is to gracefully respond if the user enters invalid input.
If an exception is thrown by any statement inside the try block, the program
jumps to the catch block, and line 61 displays an error message.

Lines 25-26: These statements declare the following named constants:

e MINIMUM SALARY, a constant decimal set to the value 40,000, which is the
minimum salary a person must earn to qualify for the loan

e MINIMUM YEARS ON_JOB, a constant int set to the value 2, which is the min-
imum number of years a person must have been at his or her current job to
qualify for the loan

Lines 29-30: These statements declare the following variables:

® salary, a decimal variable to hold the salary
® yearsOnJob, an int variable to hold the number of years at the current job

Lines 33-34: These statements get the salary and years at the current job from the
TextBox controls and assign those values to the salary and yearsonJob variables.

Line 37: This if statement determines whether salary is greater than or equal to
MINIMUM SALARY. If so, the program continues at line 39. Otherwise, the program
jumps to the else clause in line 51, and in lines 5455 the string “Minimum salary
requirement not met.” is assigned to the decisionLabel control’s Text property.

Line 39: This if statement determines whether yearsonJob is greater than
or equal to MINIMUM YEARS ON_JOB. If so, the program continues at line 42,
where the string “You qualify for the loan.” is assigned to the decisionLabel
control’s Text property. Otherwise, the program jumps to the else clause in
line 44, and in lines 47-48 the string “Minimum years at current job not met.”
is assigned to the decisionLabel control’s Text property.

Step 4: Switch your view back to the Designer and double-click the clearButton con-
trol. In the code editor you see an empty event handler named clearButton
click. Complete the clearButton Click event handler by typing the code
shown in lines 67-73 in Program 4-3.



216

Chapter 4

Making Decisions

Step 5:

Step 6:

Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you see an empty event handler named exitButton
click. Complete the exitButton click event handler by typing the code
shown in lines 78-79 in Program 4-3.

Save the project and run the application. First, enter 45000 for the salary and 1
for the years at current job. Click the Check Qualifications button, and the ap-
plication should display the message “Minimum years at current job not met.”

Click the Clear button. Enter 35000 for the salary and 5 for the years at current
job. Click the Check Qualifications button, and the application should display
the message “Minimum salary requirement not met.”

Click the Clear button. Enter 45000 for the salary and 5 for the years at current
job. Click the Check Qualifications button, and the application should display
the message “You qualify for the loan.”

Continue to test the application as you wish. When you are finished, click the
Exit button and the form should close.

Program 4-3 Completed Form1 code for the Loan Qualifier application

0 o U WN -

]

10

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

11 namespace Loan Qualifier

12 {
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

public partial class Forml : Form
{
public Forml ()
{
InitializeComponent();

}

private void checkButton Click(object sender, EventArgs e)

{
try

// Names constants
const decimal MINIMUM_SALARY = 40000m;
const int MINIMUM YEARS ON_JOB = 2;

// Local variables
decimal salary;
int yearsOnJob;

// Get the salary and years on the job.
salary = decimal.Parse(salaryTextBox.Text);
yearsOnJob = int.Parse(yearsTextBox.Text);

// Determine whether the user qualifies.
if (salary >= MINIMUM_ SALARY)



38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82 }

4.3 Nested Decision Structures

{
if (yearsOnJob >= MINIMUM YEARS ON_JOB)
{
// The user qualifies.
decisionLabel.Text = "You qualify for the loan.";
}
else
{
// The user does not qualify.
decisionLabel.Text = "Minimum years at current " +
"job not met.";
}
}
else
{
// The user does not qualify.
decisionLabel.Text = "Minimum salary requirement " +
"not met.";
}
}
catch (Exception ex)
{
// Display an error message.
MessageBox.Show(ex.Message) ;
}

}

private void clearButton Click(object sender, EventArgs e)

{

// Clear the TextBoxes and the decisionLabel.

salaryTextBox.Text = "";
yearsTextBox.Text = "";
decisionLabel.Text = "";

// Reset the focus.
salaryTextBox.Focus();

}

private void exitButton_Click(object sender, EventArgs e)
{

// Close the form.

this.Close();

Indentation and Alignment in Nested
Decision Structures

For debugging purposes, it’s important to use proper alignment and indentation in a

nested if statement. This makes it easier to see which actions are performed by each part

of the structure. For example, the following code is functionally equivalent to lines 37-56

in Program 4-3. Although this code is logically correct, it would be very difficult to debug

because it is not properly indented.

217



218 Chapter 4 Making Decisions

if (salary >= MINIMUM SALARY)

{

if (yearsOnJob >= MINIMUM YEARS ON_JOB)

{

// The user qualifies.

decisionLabel.Text = "You qualify for the loan.";

}

else

{

// The user does not qualify.

decisionLabel.Text = "Minimum years at current " +
"job not met.";

}

}

else

{

// The user does not qualify.

decisionLabel.Text = "Minimum salary requirement " +
"not met.";

}

Fortunately, Visual Studio automatically indents and aligns the statements in a decision
structure. Proper indentation and alignment makes it easier to see which if and else
clauses belong together, as shown in Figure 4-14.

Figure 4-14 Alignment of if and else clauses

— w»if (salary >= MINIMUM SALARY)

{
—» if (yearsOnJob >= MINIMUM YEARS ON_JOB)
. {
This 1£ // The user qualifies.
andelse — decisionLabel.Text = "You qualify for the loan.";
. go together.
This if }
andelse — —» else
go together. {
// The user does not qualify.
decisionLabel.Text = "Minimum years at current " +
"job not met.";
}
}
_ melse
{
// The user does not qualify.
decisionLabel.Text = "Minimum salary requirement " +
"not met.";
}

Testing a Series of Conditions

In Tutorial 4-3 you saw how a program can use nested decision structures to test more
than one Boolean expression. It is not uncommon for a program to have a series of
Boolean expressions to test and then perform an action, depending on which expression
is true. One way to accomplish this it to have a decision structure with numerous other
decision structures nested inside it. For example, look at the Grader application in the
Chap04 folder of this book’s Student Sample Programs.

Figure 4-15 shows the application’s form, with the names of several controls. When
you run the application, you enter a numeric test score into the testScoreTexBox
control and click the determineGradeButton control; a grade is then displayed in the
gradeLabel control.



4.3 Nested Decision Structures

Figure 4-15 The Grader application’s form

ot Grader | = | & ﬂ :
Ertter your test score: ~t testScoreTextBox
Your grade: -t gradeLabel
Determine 2
‘ Grade ‘ bt ‘
. \ &
determineGradeButton exitButton

The following 10-point grading scale is used to determine the grade:

Test Score Grade
90 and above A
80-89 B
70-79 C
60-69 D
Below 60 F

The logic of determining the grade can be expressed like this:

If the test score is less than 60, then the grade is “F.”
Otherwise, if the test score is less than 70, then the grade is “D.”
Otherwise, if the test score is less than 80, then the grade is “C.”
Otherwise, if the test score is less than 90, then the grade is “B.”
Otherwise, the grade is “A.”

This logic requires several nested decision structures, as shown in the flowchart in Figure 4-16.

Figure 4-16 Nested decision structure to determine a grade

Display "Your

False grade is F"

Display "Your

False True gradeis D"

score
<80

Display "Your

False True gradeis C"

score
<90

Display "Your
grade is B

Display "Your
gradeis A"

219



220 Chapter 4 Making Decisions

Open the code editor and look at the determineGradeButton Click event handler,
shown in the following code sample. The nested decision structure appears in lines

12-41.
1 private void determineGradeButton Click(object sender, EventArgs e)
2 A
3 try
4 {
5 // Variable to hold the test score.
6 double testScore;
7
8 // Get the test score.
9 testScore = double.Parse(testScoreTextBox.Text);
10
11 // Determine the grade.
12 if (testScore < 60)
13 {
14 gradelLabel.Text = "F";
15 }
16 else
17 {
18 if (testScore < 70)
19 {
20 gradeLabel.Text = "D";
21 }
22 else
23 {
24 if (testScore < 80)
25 {
26 gradeLabel.Text = "C";
27 }
28 else
29 {
30 if (testScore < 90)
31 {
32 gradelLabel.Text = "B";
33 }
34 else
35 {
36 gradelLabel.Text = "A";
37 }
38 }
39 }
40 }
41 }
42 catch (Exception ex)
43 {
44 // Display an error message.
45 MessageBox.Show(ex.Message);
46 }
47 3

The if-else-if Statement

Even though the Grader application previously shown is a simple example, the logic
of the nested decision structure is fairly complex. C# provides a special version of the
decision structure known as the if-else-if statement, which makes this type of logic
simpler to write. You write the if-else-if statement using the following general
format:



4.3 Nested Decision Structures

if (BooleanExpression 1)
{ [
statement ; If BooleanExpression_1 is true, this

zfrzfeme”ti set of statements is executed.

} |

else if (BooleanExpression_2)

{ —
statement ;
statement ;
etc.

} —1

If BooleanExpression_2 is true, this
set of statements is executed.

Insert as many else 1if clauses as necessary...

else

{
statement ; This set of statements is executed if
statement ; none of the Boolean expressions
etc. are true.

When the statement executes, BooleanExpression_1 is tested. If BooleanExpression 1 is
true, the set of statements that immediately follows is executed, and the rest of the structure is
skipped. If BooleanExpression_1 is false, however, the program jumps to the very next else
if clause and tests BooleanExpression_ 2. If it is true, the set of statements that immediately
follows is executed, and the rest of the structure is then skipped. This process continues until
a Boolean expression is found to be true, or no more else if clauses are left. If none of the
Boolean expressions are true, the set of statements following the final else clause is executed.

For example, look at the Grader2 application in the Chap04 folder of this book’s Student
Sample Programs. This application works just like the Grader application that was previ-
ously discussed. The user enters a numeric test score, and the application displays a grade. Its
form is identical to the form shown in Figure 4-15. The Grader2 application, however, uses an
if-else-if statement to determine the grade instead of nested if-else statements. The
Grader2 application’s determineGradeButton_Click event handler is shown here:

1 private void determineGradeButton Click(object sender, EventArgs e)

2 A

3 try

4 {

5 // Variable to hold the test score.
6 double testScore;

7

8 // Get the test score.

9 testScore = double.Parse(testScoreTextBox.Text);
10

11 // Determine the grade.

12 if (testScore < 60)

13 {

14 gradelLabel.Text = "F";
15 }

16 else if (testScore < 70)
17 {

18 gradelLabel.Text = "D";
19 }

20 else if (testScore < 80)
21 {

22 gradelLabel.Text = "C";
23 }

24 else if (testScore < 90)
25 {

26 gradeLabel.Text = "B";
27 }

28 else

221



222

Chapter 4

Making Decisions

29 {

30 gradeLabel.Text = "A";
31 }

32 }

33 catch (Exception ex)

34 {

35 // Display an error message.
36 MessageBox.Show(ex.Message);
37 }

38 %}

Notice the alignment and indentation that is used with the if-else-if statement: The
if, else if, and else clauses are all aligned, and the conditionally executed statements
are indented.

You never have to use the if-else-if statement because its logic can be coded with
nested if-else statements. However, a long series of nested if-else statements has two
particular disadvantages when you are debugging code:

e The code can grow complex and become difficult to understand.

® Because indenting is important in nested statements, a long series of nested if-else
statements can become too long to be displayed on the computer screen without
horizontal scrolling. Also, long statements tend to wrap around when printed on
paper, making the code even more difficult to read.

The logic of an if-else-if statement is usually easier to follow than a long series of
nested if-else statements. And, because all the clauses are aligned in an if-else-if
statement, the lengths of the lines in the statement tend to be shorter.

Checkpoint
4.11 Convert the following set of nested if-else statements to an if-else if
statement:
if (number == 1)
{
MessageBox.Show("One") ;
}
else
{
if (number == 2)
{
MessageBox.Show("Two" ) ;
}
else
{
if (number == 3)
{
MessageBox.Show("Three");
}
else
{
MessageBox.Show("Unknown");
}
}



—

4.4 Logical Operators

44 Logical Operators

1 CONCEPT: The logical AND operator (&&) and the logical OR operator (| |) allow

you to connect multiple Boolean expressions to create a compound
expression. The logical NOT operator (!) reverses the truth of a Boolean
expression.

The C# language provides a set of operators known as logical operators, which you can
use to create complex Boolean expressions. Table 4-3 describes these operators.

Table 4-3 Logical operators

Operator

Meaning

&&

This is the logical AND operator. It connects two Boolean
expressions into one compound expression. Both subexpressions
must be true for the compound expression to be true.

This is the logical OR operator. It connects two Boolean expressions
into one compound expression. One or both subexpressions must be
true for the compound expression to be true. It is necessary for only
one of the subexpressions to be true, and it does not matter which.

This is the logical NOT operator. It is a unary operator, meaning

it works with only one operand. The operand must be a Boolean
expression. The not operator reverses the truth of its operand. If it is
applied to an expression that is true, the operator returns false. If it is
applied to an expression that is false, the operator returns true.

Table 4-4 shows examples of several compound Boolean expressions that use logical

operators.

Table 4-4 Compound Boolean expressions using logical operators

Expression Meaning

X>y && a<b Is x greater than y AND is a less than b?
x =y || x == Is x equal to y OR is x equal to z?

1 (x > y) Is the expression x > y NOT true?

The && Operator

The s& operator is the logical AND operator. It takes two Boolean expressions as oper-
ands and creates a compound Boolean expression that is true only when both subexpres-
sions are true. The following is an example of an if statement that uses the && operator:

if (temperature < 20 && minutes > 12)

{

MessageBox.Show("The temperature is in the danger zone.");

}

In this statement, the two Boolean expressions temperature < 20 and minutes > 12 are
combined into a compound expression. The MessageBox. Show statement is executed only
if temperature is less than 20 gnd minutes is greater than 12. If either of the Boolean
subexpressions is false, the compound expression is false and the message is not displayed.

223



224

Chapter 4

Making Decisions

Table 4-5 shows a truth table for the && operator. The truth table lists expressions show-
ing all the possible combinations of true and false connected with the && operator. The
resulting values of the expressions are also shown.

Table 4-5 Truth table for the AND operator

Expression Value of the Expression
true && false false
false && true false
false && false false
true && true true

As the table shows, both sides of the && operator must be true for the operator to return
a true value.

The | | Operator

The | | operator is the logical OR operator. It takes two Boolean expressions as operands
and creates a compound Boolean expression that is true when either of the subexpressions
is true. The following is an example of an if statement that uses the | | operator:

if (temperature < 20 || temperature > 100)

{
MessageBox.Show("The temperature is in the danger zone.");

}

The MessageBox.Show statement executes only if temperature is less than 20 or
temperature is greater than 100. If either subexpression is true, the compound expres-
sion is true. Table 4-6 shows a truth table for the | | operator.

Table 4-6 Truth table for the | | operator

Expression Value of the Expression
true || false true

false || true true

false || false false

true || true true

All it takes for an | | expression to be true is for one side of the | | operator to be true. It
doesn’t matter if the other side is false or true.

Short-Circuit Evaluation

Both the && and | | operators perform short-circuit evaluation. Here is how it works with
the && operator: if the expression on the left side of the s& operator is false, the expression
on the right side is not checked. Because the compound expression is false if only one of
the subexpressions is false, it would waste CPU time to check the remaining expression.
So, when the && operator finds that the expression on its left is false, it short-circuits and
does not evaluate the expression on its right.

Here’s how short-circuit evaluation works with the | | operator: if the expression on the
left side of the | | operator is true, the expression on the right side is not checked. Because
it is necessary for only one of the expressions to be true, it would waste CPU time to check
the remaining expression.



4.4 Logical Operators

The ! Operator

The ! operator is the logical NOT operator. It is a unary operator that takes a Boolean
expression as its operand and reverses its logical value. In other words, if the expression is
true, the ! operator returns false, and if the expression is false, the ! operator returns true.
The following is an if statement using the NOT operator:

if ( !(temperature > 100) )
{

MessageBox.Show("This is below the maximum temperature.");

}

First, the expression (temperature > 100) is tested and a value of either true or false is
the result. Then the ! operator is applied to that value. If the expression (temperature >
100) is true, the ! operator returns false. If the expression (temperature > 100) is false,
the ! operator returns true. The previous code is equivalent to asking “Is the temperature
not greater than 100?”

Notice that in this example, we have put parentheses around the expression temperature >
100. This is necessary because the ! operator has higher precedence than the relational opera-
tors. If we do not put the parentheses around the expression temperature > 100, the !
operator will be applied just to the temperature variable.

Table 4-7 shows a truth table for the ! operator.

Table 4-7 Truth table for the ! operator

Expression Value of the Expression
! true false
! false true

Precedence of the Logical Operators

We mentioned earlier that the ! operator has higher precedence than the relational opera-
tors. The && and | | logical operators have lower precedence than the relational operators.
For example, look at the following expression:

creditScore > 700 || accountBalance > 9000

When this expression is evaluated, the > operators work first, and then the || operator
works. The expression is the same as the following;:

(creditScore > 700) || (accountBalance > 9000)

Many programmers choose to enclose the expressions that are to the left and the right of a
logical operator in parentheses, as shown here. Even though the parentheses are not required
in many situations, using them makes the compound expression easier to understand.

Checking Numeric Ranges with Logical Operators

Sometimes you need to write code that determines whether a numeric value is within a
specific range of values or outside a specific range of values. When determining whether a
number is inside a range, it is best to use the && operator. For example, the following if
statement checks the value in x to determine whether it is in the range of 20 through 40:

if (x > 20 && x < 40)
{

MessageBox.Show("The value is in the acceptable range.");

225



226

Chapter 4

Making Decisions

The compound Boolean expression being tested by this statement is true only when x is
greater than 20 and less than 40. The value in x must be between the values of 20 and 40
for this compound expression to be true.

When determining whether a number is outside a range, it is best to use the | | operator.
The following statement determines whether x is outside the range of 20 through 40:

if (x < 20 || x > 40)
{

MessageBox.Show("The value is outside the acceptable range.");

}

It is important not to get the logic of the logical operators confused when testing for a
range of numbers. For example, the compound Boolean expression in the following code
would never test true:

// This is an error!
if (x < 20 && x > 40)
{

MessageBox.Show("The value is outside the acceptable range.");

}
Obviously, x cannot be less than 20 and at the same time be greater than 40.

Let’s look at an example application that checks the range of a value entered by the
user. Open the Range Checker application in the Chap04 folder of this book’s Stu-
dent Sample Programs. Figure 4-17 shows the application’s form, along with the names
of some of the controls. When you run the application, you enter an integer into the
inputTexBox control and click the checkButton control. If you enter a number in
the range of 1 through 10, a message box appears letting you know that the number
is acceptable. Otherwise, a message box appears letting you know that the number is
not acceptable.

Figure 4-17 The Range Checker application’s form

r -.
o=l Range Checker l SRR X

Enter an integer in the range of 1 through 10.
-t inputTextBox
Checle ;
‘ Value | ‘ B ‘
W \ )
checkButton exitButton

The following code sample shows the checkButton_cClick event handler. Line 7 declares
an int variable named number, initialized with the value that has been entered into the
inputTextBox control. The if statement that begins in line 10 determines whether
number is greater than or equal to 1 AND number is less than or equal to 10. If the
Boolean expression is true, the statement in line 12 executes. Otherwise, the statement in
line 16 executes.

1 private void checkButton_Click(object sender, EventArgs e)
2 A

3 try

4 {

5 // Declare a variable and initialize it with

6 // the user's input.



4.4 Logical Operators

7 int number = int.Parse(inputTextBox.Text);
8
9 // Check the number's range.
10 if (number >= 1 && number <= 10)
11 {
12 MessageBox.Show("That number is acceptable.");
13 }
14 else
15 {
16 MessageBox.Show("That number is NOT acceptable.");
17 }
18 }
19 catch (Exception ex)
20 {
21 // Display an error message.
22 MessageBox.Show(ex.Message);
23 }
24 %
Checkpoint
4.12 What is a compound Boolean expression?

4.13

4.14

4.15
4.16

4.17

The following truth table shows various combinations of the values true and
false connected by a logical operator. Complete the table by circling T or F to
indicate whether the result of such a combination is true or false.

Logical Expression Result (circle T or F)
true && false T F
true && true T F
false && true T F
false && false T F
true || false T F
true || true T F
false || true T F
false || false T F
! true T F
! false T F

Assume the variables a =2, b =4, and ¢ = 6. Circle T or F for each of the following
conditions to indicate if it is true or false.

a == || b > 2 T F
6 <=c && a > 3 T F
1 !=Db && c != 3 T F
a> -1 || a<=b T F
1(a > 2) T F

Explain how short-circuit evaluation works with the && and | | operators.

Write an if statement that displays the message “The number is valid” in a
message box if the variable speed is within the range 0 through 200.

Write an if statement that displays the message “The number is not valid” in a
message box if the variable speed is outside the range 0 through 200.

227



228 Chapter 4 Making Decisions

—
4.5 bool Variables and Flags

{CONCEPT: You can store the values true and false in bool variables, which are
commonly used as flags.

The C# language provides the bool data type that you can use to create variables that
hold true or false values. Here is an example of the declaration of a bool variable:
bool grandMaster;

This declares a bool variable named grandMaster. In the program we can assign the
values true or false to the variable, as shown here:

if (points > 5000)

{

grandMaster = true;
¥
else
{

grandMaster = false;
}

Variables of the bool data type are commonly used as flags. A flag is a variable that sig-
nals when some condition exists in the program. When the flag variable is set to false,
it indicates that the condition does not yet exist. When the flag variable is set to true, it
means the condition does exist. For example, the previous code might be used in a game
to determine whether the user is a “grand master.” If he or she has earned more than
5,000 points, we set the grandMaster variable to true. Otherwise, we set the variable to
false. Later in the program we can test the grandMaster variable, like this:

if (grandMaster)
{

powerLevel += 500;

}

This code performs the following: if grandMaster is true, add 500 to powerLevel. Here
is another example:

if (!grandMaster)
{

powerLevel = 100;

}

This code performs the following: if grandMaster is not true, set powerLevel to 100.

Checkpoint

4.18 What special values can you store in a bool variable?

4.19 What is a flag variable?

=]
4.6 | Comparing Strings

1 CONCEPT: You can use certain relational operators and methods to compare
strings.



4.6 Comparing Strings

You can use the == operator to compare two strings. For example, look at the following
code sample:

string namel = "Mary";
string name2 = "Mark";
if (namel == name2)
{
MessageBox.Show("The names are the same.");
}
else
{
MessageBox.Show("The names are NOT the same.");
}

The == operator compares namel and name2 to determine whether they are equal. Be-
cause the strings “Mary” and “Mark” are not equal, the else clause displays the message
“The names are NOT the same.”

You can compare string variables with string literals as well. Assume month is a string
variable. The following code sample uses the != operator to determine whether month is
not equal to "October".

if (month != "October")
{

statement;
}

Look at the Secret Word application in the Chap04 folder of this book’s Student
Sample Programs. Figure 4-18 shows the application’s form, with the names of some of
the controls. The form prompts you to enter the secret word into the inputTexBox con-
trol. When you click the checkButton control, the application compares the string that
you entered to "Ariel."

Figure 4-18 The Secret Word application’s form

- '\
ot Secret Word |2 = —E—hj

Enter the Secret Word.

- inputTextBox

Checkthe | :
Word ‘ =i ‘

L \

checkButton exitButton

The following code sample shows the checkButton_Click event handler. Line 5 declares
a string variable named secretWord, initialized with the value that has been entered
into the inputTextBox control. The if statement that begins in line 8 compares the
secretWord variable to the string literal "aAriel". If the two are equal, the statement in
line 10 executes. Otherwise, the statement in line 14 executes.

1 private void checkButton_Click(object sender, EventArgs e)
// Declare a string variable and initialize it with

// the user's input.
string secretWord = inputTextBox.Text;

// Did the user enter the correct secret word?
if (secretWord == "Ariel")

NSO W
~

229



230

Chapter 4

Making Decisions

9 {

10 MessageBox.Show("That is the correct secret word.");

11 }

12 else

13 {

14 MessageBox.Show("Sorry, that is NOT the secret word.");
15 }

16 }

Other String Comparisons

In addition to determining whether strings are equal or not equal, you can use the
String.Compare method to determine whether one string is greater than or less than
another string. This is a useful capability because sometimes you need to sort strings in
some order. Before we look at how the method works, we should review how characters
are stored in memory.

Recall from Chapter 1 that computers do not actually store characters, such as A, B, C,
and so on, in memory. Instead, they store numeric codes that represent the characters. We
mentioned in Chapter 1 that C# uses Unicode to represent characters. Here are some facts
about the Unicode system:

e The uppercase characters A through Z are represented by the numbers 65
through 90.

e The lowercase characters a through z are represented by the numbers 97
through 122.

e When the digits 0 through 9 are stored in memory as characters, they are repre-
sented by the numeric codes 48 through 57. (For example, the string “abc123” is
stored in memory as the codes 97, 98, 99, 49, 50, and 51.)

® A blank space is represented by the number 32.

In addition to establishing a set of numeric codes to represent characters in memory, Uni-
code also establishes an order for characters. The character A comes before the character
B, which comes before the character C, and so on.

When a program compares characters, it actually compares the codes for the characters.
The character A would be considered less than the character B because the character A’s
numeric code is less than the character B’s numeric code.

Let’s look at how strings containing more than one character are compared. Suppose we
have the strings “Mary” and “Mark” stored in memory, as follows:

string namel = "Mary";
string name2 = "Mark";

Figure 4-19 shows how the strings “Mary” and “Mark” are stored in memory using
character codes.

Figure 4-19 Character codes for the strings “Mary” and “Mark”
M a r vy M a r k
77 |97 (114121 | 77 |97 |114|107

When you compare these strings in a program, they are compared character-by-character,
beginning with the first, or leftmost, characters. This is shown in Figure 4-20.




4.6 Comparing Strings

Figure 4-20 Comparing each character in a string

M a roy

77 | 97 {114 {121

A A4 A
YvYyyvy

77 | 97 {114 (107

M a r k

Here is how the comparison takes place:

1. The M in “Mary” is compared with the M in “Mark.” These are the same, so the
next characters are compared.

2. The ain “Mary” is compared with the a in “Mark.” Because these are the same, the
next characters are compared.

3. The rin “Mary” is compared with the 7 in “Mark.” These are the same, so the next
characters are compared.

4. Theyin “Mary” is compared with the k in “Mark.” Because these are not the same,
the two strings are not equal. The character y has a higher character code (121) than
k (107), so it is determined that the string “Mary” is greater than the string “Mark.”

If one of the strings in a comparison is shorter than the other, only the corresponding char-
acters are compared. If the corresponding characters are identical, then the shorter string
is considered less than the longer string. For example, suppose the strings “High” and
“Hi” are compared. The string “Hi” is considered less than “High” because it is shorter.

In C# you cannot use relational operators to determine whether one string is greater than
or less than another string. Instead, you use the String.Compare method. You use the
following general format to call the method:

String.Compare(stringl, string2)

In the general format, stringl and string2 are the strings that are being compared. The
method returns an integer value indicating the result of the comparison. The integer value
will be one of the following:

e Greater than zero if stringl is greater than string2.
e Zero if stringl is equal to string2.
e Less than zero if stringl is less than string2.

Here is a code sample that uses the method to display two names in alphabetical order:

string strl = "Joe";
string str2 = "Kerry";

1
2
3
4 if (String.Compare(strl, str2) < 0)
5 H
6
7
8
9

MessageBox.Show(strl + " " + str2);
}
else
{
10 MessageBox.Show(str2 + " " + strl);

11 %

The if statement in line 4 calls the string.Compare method, passing strl and str2
as arguments. If we execute this code, the method will return a value that is less than 0
because the string “Joe” is less than the string “Kerry”. As a result, the statement in line
6 will display Joe Kerry.

The string.compare method performs a case sensitive comparison, which means that
uppercase characters are not considered the same as their lowercase counterparts. For

231



232 Chapter 4 Making Decisions

example, the strings “Joe” and “joe” are not equal because the case of the first character
is different in each. You can pass the Boolean value true as an optional third argument
to the string.Compare method if you want it to perform a case insensitive comparison.
Here is an example:

1 string strl = "JOE";

2 string str2 = "joe";

3

4 if (String.Compare(strl, str2, true) == 0)

5

6 MessageBox.Show(strl + " and " + str2 + " are equal.");
7}

8 else

94

10 MessageBox.Show(strl + " and " + str2 + " are NOT equal.");
11 %

Notice that the if statement in line 4 passes true as the third argument to the string.
compare method. This specifies that we want a case insensitive comparison. As a re-
sult, the method will return 0 and the statement in line 6 will display JOE and joe are
equal.

Checkpoint

4.20 If the following code were part of a complete program, what would it display?

if (String.Compare("z", "a") < 0)

{
MessageBox.Show("z is less than a.");
}
else
{
MessageBox.Show("z is not less than a.");
}
4.21 If the following code were part of a complete program, what would it display?
string sl = "New York";
string s2 = "Boston";
if (String.Compare(sl, s2) > 0)
{

MessageBox.Show(s2);
MessageBox.Show(sl);

}
else
{
MessageBox.Show(sl);
MessageBox.Show(s2);
¥

—

4.7  Preventing Data Conversion Exceptions
with the TryParse Methods

CONCEPT: Exceptions should be prevented when possible. You can use the
TryParse methods to prevent exceptions as a result of the user entering
invalid data.



4.7 Preventing Data Conversion Exceptions with the TryParse Methods

In Chapter 3 you learned that the Parse methods throw an exception when you try to
use them to convert nonnumeric data to a numeric data type. If you use one of the parse
methods to convert a TextBox control’s Text property to a number, there is always the
possibility of an exception being thrown. After all, the user is free to enter anything he or
she wants into a TextBox control. To handle the exceptions that are caused by the parse
methods, we have been using the try-catch statement.

Although many exceptions happen for reasons that the programmer cannot anticipate (such
as a system malfunction), some exceptions are predictable. For example, you know that
using a Parse method to convert nonnumeric input to a numeric data type will throw an ex-
ception. In situations like that, where an exception is predictable, you should write your code
to prevent the exception. It is a better programming practice to prevent an exception instead
of allowing it to happen and then letting a try-catch statement react to it. You should use
try-catch statements primarily for those exceptions that are beyond your control.

NOTE: Until now, we’ve simply been allowing exceptions to happen and letting a
try-catch statement respond to them. After reading the previous paragraph, you
might be wondering why we haven’t been preventing exceptions all along. The reason
is that you need to know how to write if statements to perform the techniques that
we discuss in this section. Now that you know how to write if statements, you can
add more sophistication to your code.

Now that you know how to write if statements, you can use a family of methods in the
.NET Framework known as the TryParse methods. With the TryParse methods, you can
determine whether a string (such as a control’s Text property) contains a value that can
be converted to a specific data type before it is converted to that data type. The TryParse
methods do not throw an exception, so you can use them without a try-catch statement.

There are several TryParse methods in the .NET Framework. For now, we are using the
int, double, and decimal numeric data types, so we will discuss three of them:

e We use the int.TryParse method to convert a string to an int.
e We use the double.TryParse method to convert a string to a double.
e We use the decimal.TryParse method to convert a string to a decimal.

When you call one of the TryParse methods, you pass two arguments: (1) the string that
you want to convert, and (2) the name of the variable in which you want to store the con-
verted value. First, let’s look at the int.TryParse method. Here is the general format of
how the int.TryParse method is called:

int.TryParse(string, out targetVariable)

In the general format, string is the string that you want to convert, and targetvariable
is the name of an int variable. The method tries to convert the string argument to an
int. If the conversion is successful, the converted value is stored in the targetvariable,
and the method returns the Boolean value true to indicate that the conversion was suc-
cessful. If the conversion is not successful, the method does not throw an exception. In-
stead, it stores O in the targetVariable and returns the Boolean value false to indicate
that the string could not be converted.

Look carefully at the general format and notice that the word out appears before the
targetVariable. The out keyword is required, and it specifies that the targetvariable
is an output variable. An output variable is a variable that is passed as an argument to a
method, and when the method is finished, a value is stored in the variable.

Because the TryParse methods return either true or false, they are commonly called as
the Boolean expression in an if statement. The following code shows an example using

233



234

Chapter 4

Making Decisions

the int.TryParse method. In the example, assume that inputTextBox is the name of a
TextBox control.

int number;

if (int.TryParse(inputTextBox.Text, out number))
{

MessageBox.Show("Success!");

else

{

1

2

3

4

5
6}
7

8

9 MessageBox.Show("Enter a valid integer.");
0

10 }

The purpose of this code sample is to convert the value of the inputTextBox control’s
Text property to an int and assign that value to the number variable. In line 3, the if
statement calls the int.TryParse method, passing inputTextBox.Text as argument 1
and number as argument 2. Here’s what happens:

e If inputTextBox.Text is successfully converted to an int, the resulting value is as-
signed to the number variable, and the method returns true. That causes the state-
ment in line 5 to execute.

e If inputTextBox.Text cannot be converted to an int, the value 0 is assigned to the
number variable, and the method returns false. That causes the statement in line 9
(after the else clause) to execute.

The other TryParse methods work in a similar manner. Here is the general format of
ho“lduidouble.TryParseInethodiscaﬂed:

double.TryParse(string, out targetVariable)

In the general format, string is the string that you want to convert, and targetVariable
is the name of a double variable. If the string can be converted to a double, its value is
stored in the targetvVariable, and the method returns the Boolean value true to indi-
cate that the conversion was successful. If the conversion was not successful, the method
stores O in the targetVariable and returns the Boolean value false to indicate that the
string could not be converted.

The following code shows an example using the double.TryParse method. In the exam-
ple, assume that inputTextBox is the name of a TextBox control.

double number;

if (double.TryParse(inputTextBox.Text, out number))
{

MessageBox.Show("Success!");

else

{

1

2

3

4

5

6 }
7

8

9 MessageBox.Show("Enter a valid double.");
0

10 }

Here is the general format of how the decimal.TryParse method is called:

decimal.TryParse(string, out targetVariable)

In the general format, string is the string that you want to convert, and targetVariable
is the name of a decimal variable. If the string can be converted to a decimal, its value
is stored in the targetvariable, and the method returns the Boolean value true to indi-
cate that the conversion was successful. If the conversion was not successful, the method
stores O in the targetVariable and returns the Boolean value false to indicate that the
string could not be converted.



4.7 Preventing Data Conversion Exceptions with the TryParse Methods

The following code shows an example using the decimal.TryParse method. In the ex-
ample, assume that inputTextBox is the name of a TextBox control.

decimal number;

if (decimal.TryParse(inputTextBox.Text, out number))

{

MessageBox.Show("Success!");

else

{

1

2

3

4

5

6 }
7

8

9 MessageBox.Show("Enter a valid decimal.");
0

10 }

Validating the Data in Multiple TextBoxes

If a form has multiple TextBoxes, then the user has multiple opportunities to enter an
invalid piece of data. A well-designed program should validate the contents of each Text-
Box individually. When a piece of invalid data is found, the program should display an
error message that tells the user specifically which TextBox contains the bad input.

This technique requires a set of nested if statements. For example, suppose a form has
two TextBoxes. The following pseudocode shows the logic for validating each TextBox.
(In the pseudocode, a set of dotted lines connects each If statement with its corresponding
Else clause and its ending.)

e If the data in the first TextBox is good, then
: If the data in the second TextBox is good, then
Process the data in both TextBoxes

‘ Display an error message about the second TextBox
i End if

: Display an error message about the first TextBox
- End if

Let’s see how that logic looks in actual C# code. In the Chap04 folder of this book’s
Student Sample Programs, you will find a project named Add Two Numbers. The applica-
tion’s form is shown in Figure 4-21. When you run the application, enter an integer into
each of the TextBox controls and then click the Add button. A message box will appear
showing the sum of the two numbers. If you enter anything other than an integer into
either TextBox, an error message will appear telling you which TextBox contains the
invalid data.

Figure 4-21 The Add Two Numbers form

o=l Add Two Numbers l = &

Enter Two Numbers
(Integers Only Please)

-t firstTextBox

-t secondTextBox

[ A |

A

addButton

235



236 Chapter 4 Making Decisions

Here
1

~
O L ®NO G W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Let’s

is the code for the addButton_click event handler:
private void addButton_Click(object sender, EventArgs e)
{
// Local variables
int first, second, sum;
if (int.TryParse(firstTextBox.Text, out first))
{
if (int.TryParse(secondTextBox.Text, out second))
{
// Add the two numbers and display the sum.
sum = first + second;
MessageBox.Show(sum.ToString());
}
else
{
// Display an error message about the second TextBox.
MessageBox.Show("The second TextBox contains invalid data.");
}
}
else
{
// Display an error message about the first TextBox.
MessageBox.Show("The first TextBox contains invalid data.");
}
}

take a closer look:

Line 4 declares three int variables: first, second, and sum.

The if statement in line 6 tries to convert firstTextBox.Text to an int. If the
conversion is successful, the result is stored in the £irst variable, and the program
continues executing at line 8. If the conversion is not successful, the program jumps
to the else clause in line 20, and line 23 displays an error message regarding the
first TextBox control.

The if statement in line 8 tries to convert secondTextBox.Text to an int. If the
conversion is successful, the result is stored in the second variable, and the pro-
gram continues executing at line 10. If the conversion is not successful, the program
jumps to the else clause in line 14, and line 17 displays an error message regarding
the second TextBox control.

The statements in lines 11 and 12 execute only if both TextBox controls contain
valid integer values. These statements add the first and second variables and dis-
play their sum.

If you need to validate three TextBox controls, you will write a set of three nested if
statements. Here’s the pseudocode:

e If the data in the first TextBox is good, then
e If the data in the second TextBox is good, then
i . If the data in the third TextBox is good, then
‘ Process the data in all three TextBoxes

Display an error message about the third TextBox
- End if

: Display an error message about the second TextBox
o End if

: Display an error message about the first TextBox
Lo End if



4.7 Preventing Data Conversion Exceptions with the TryParse Methods

In Tutorial 4-4 you will complete an application that uses the TryParse methods to vali-
date data entered into two TextBox controls.

D

VideoNote

Tutorial 4-4:
Calculating
Fuel
Economy

Tutorial 4-4:
Calculating Fuel Economy

In Tutorial 3-2, you created an application that calculates a car’s fuel economy in miles per
gallon (MPG). Recall that the application lets the user enter the number of miles he or she
has driven and the gallons of gas used. The application calculates and displays the car’s
MPG. In this tutorial you will create a new version of the application that validates the
data entered by the user.

To save time, the project has already been started for you, and the application’s form has
already been created. To complete the project, follow the steps in this tutorial.

Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Fuel
Economy with TryParse in the Chap04 folder of this book’s Student Sample
Programs.

Step 2:  Open the Form1 form in the Designer. The form is shown, along with the names
of the important controls, in Figure 4-22.

Figure 4-22 The Fuel Economy form

" ™
o-! Fuel Economy l = | S
Enter the number of miles driven: -t milesTextBox

Erter the gallons of gas used: - gallonsTextBox

Your car's MPG: % mpgLabel

Calculate g

S | = |

4 1N

/ \
calculateButton exitButton

Step 3: Now you will create the Click event handlers for the Button controls. At the end
of this tutorial, Program 4-4 shows the completed code for the form. You will
be instructed to refer to Program 4-4 as you write the event handlers.

In the Designer, double-click the calculateButton control. This will open the
code editor, and you see an empty event handler named calculateButton
click. Complete the calculateButton Click event handler by typing the
code shown in lines 22-48 in Program 4-4.

Let’s take a closer look at the code:

Lines 22-24: These lines declare the double variables miles, gallons, and
mpg. The variables hold the miles driven, the gallons of gas used, and the MPG,
respectively.

Line 27: This if statement tries to convert milesTextBox.Text to a double.
If the conversion is successful, the result is stored in the miles variable, and the
program continues executing at line 29. If the conversion is not successful, the
program jumps to the else clause in line 44, and line 47 displays the error mes-
sage “Invalid input for miles.”

237



238

Chapter 4

Making Decisions

Step 4:

Step 5:

Line 30: This if statement tries to convert gallonsTextBox.Text to a double.
If the conversion is successful, the result is stored in the gallons variable, and
the program continues executing at line 32. If the conversion is not successful,
the program jumps to the else clause in line 38, and line 41 displays the error
message “Invalid input for gallons.”

Lines 32-36: These lines are executed only if both the milesTextBox and
gallonsTextBox contain valid data. Line 33 calculates MPG and assigns the
result to the mpg variable, and line 36 displays the value of the mpg variable in
the mpgLabel control.

Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you see an empty event handler named exitButton
click. Complete the exitButton Click event handler by typing the code
shown in lines 53-54 in Program 4-4.

Save the project and run the application. First, enter 300 for the miles and 10
for the gallons. Click the Calculate MPG button, and the application should
display 30.0 as the MPG.

Now change the miles to an invalid entry, such as 123xyz, and click the Calcu-
late MPG button. The message “Invalid input for miles.” should appear in a
message box, as shown on the left in Figure 4-23.

Figure 4-23 Invalid input entered and the resulting error messages

[ s
ug Fuel Economy =re o Fuel Economy LEJM
Enter the number of miles driven: 123z Enter the number of miles driven: 300
Enter the gallons of gas used: 10 Enter the gallons of gas used: 123z
r ™y F
Your car's M g Your car's M| M
Invalid input for miles. " Coicvinte Invalid input for gallons.
MPG

.

) ‘
- J

&

Now change the miles back to 300, change the gallons to an invalid entry, such
as 123xyz, and click the Calculate MPG button. The message “Invalid input for
gallons.” should appear in a message box, as shown on the right in Figure 4-23.

Continue to test the application as you wish. When you are finished, click the
Exit button and the form should close.

Program 4-4 Completed Form1 code for the Fuel Economy with TryParse application

0 oUW

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;

9 using

System.Windows.Forms;

11 namespace Fuel Economy with TryParse

12 {



4.7 Preventing Data Conversion Exceptions with the TryParse Methods

13 public partial class Forml : Form

14 {

15 public Forml()

16 {

17 InitializeComponent();

18 }

19

20 private void calculateButton Click(object sender, EventArgs e)
21 {

22 double miles; // To hold miles driven

23 double gallons; // To hold gallons used

24 double mpg; // To hold MPG

25

26 // Validate the milesTextBox control.

27 if (double.TryParse(milesTextBox.Text, out miles))

28 {

29 // Validate the gallonsTextBox control.

30 if (double.TryParse(gallonsTextBox.Text, out gallons))
31 {

32 // Calculate MPG.

33 mpg = miles / gallons;

34

35 // Display the MPG in the mpgLabel control.
36 mpgLabel.Text = mpg.ToString("nl");

37 }

38 else

39 {

40 // Display an error message for gallonsTextBox.
41 MessageBox.Show("Invalid input for gallons.");
42 }

43 }

44 else

45 {

46 // Display an error message for milesTextBox.

47 MessageBox.Show("Invalid input for miles.");

48 }

49 }

50

51 private void exitButton_Click(object sender, EventArgs e)
52 {

53 // Close the form.

54 this.Close();

55 }

56 }

57 }

Checkpoint

4.22 What value does a TryParse method return if the string argument is successfully
converted? What value does it return if the string is not converted?

4.23 If a TryParse method successfully converts the string argument, where is the result
stored?

4.24 If a TryParse method cannot convert the string argument, what is stored in the
second argument?

4.25 What does the keyword out mean when it is written before an argument to a
method call?

239



240

Chapter 4

—
4.8

1

Making Decisions

Input Validation

CONCEPT: Input validation is the process of inspecting data that has been input to a
program to make sure it is valid before it is used in a computation.

In the previous section you learned about using the TryParse methods to validate the
type of data entered by the user. You should also validate the accuracy of the data that
is entered by the user. One of the most famous sayings among computer programmers is
“garbage in, garbage out.” This saying, sometimes abbreviated as GIGO, refers to the
fact that computers cannot tell the difference between good input and bad input. If a user
provides bad data as input to a program, the program will process that bad data and, as a
result, will produce bad data as output.

For example, consider a payroll program that accepts the number of hours that an employee
has worked in a given week as input. If the payroll clerk accidentally enters 400 hours in-
stead of 40 hours, an unusually large check will be written because there are less than 400
hours in a week! The computer, however, is unaware of this fact, and unless the program is
written to catch such errors, it will process the bad data just as if it were good data.

Sometimes stories are reported in the news about computer errors that mistakenly cause
people to be charged thousands of dollars for small purchases or to receive large tax re-
funds to which they were not entitled. These “computer errors” are rarely caused by a
computer, however; they are more commonly caused by software bugs or bad data that
was read into a program as input.

The integrity of a program’s output is only as good as the integrity of its input. For this
reason, you should write your programs in such a way that bad input is never accepted.
When input is given to a program, it should be inspected before it is processed. If the
input is invalid, the program should discard it and prompt the user to enter the correct
data. This process is known as input validation.

For example, in a payroll program we might validate the number of hours worked like this:

1 if (int.TryParse(hoursWorkedTextBox.Text, out hours))

2 A

3 if (hours > 0 && hours <= 168)

4 {

5 // Continue to process the input.

6 }

7 else

8 {

9 MessageBox.Show("Invalid number of hours entered.");
10 }

11 %

12 else

13 {

14 MessageBox.Show("The hours worked must be an integer.");
15 3}

Let’s assume the application uses a TextBox named hoursWorkedTextBox to get the hours
worked. Also assume that the variable hours has already been declared as an int. The
outer if statement (line 1) uses the int.TryParse method to make sure the user has en-
tered an integer. If so, the value is stored in the hours variable and the program continues
to the inner if statement (line 3). The inner if statement ensures that we process the input
only if hours is greater than 0 and hours is less than or equal to 168. This is because we
cannot write a paycheck for 0 hours worked, and 168 is the maximum number of hours
in a week.



m—
4.9
1

4.9 Radio Buttons and Check Boxes

Let’s look at another example. The following code comes from an application that gets a
test score as input. A valid test score is an integer in the range of 0 through 100.

1 if (int.TryParse(testScoreTextBox.Text, out testScore))

2 A

3 if (testScore >= 0 && testScore <= 100)

4 {

5 // Continue to process the input.

6 }

7 else

8 {

9 MessageBox.Show("Test score must be in the range 0 - 100.");
10 }

11 %

12 else

13 {

14 MessageBox.Show("The test score must be an integer.");
15 }

Let’s assume the application uses a TextBox named testScoreTextBox to get the test score.
Also assume that the variable testScore has already been declared as an int. The outer
if statement (line 1) uses the int.TryParse method to make sure the user has entered an
integer. If so, the value is stored in the testScore variable and the program continues to
the inner if statement (line 3). The inner if statement ensures that we process the input
only if testScore is greater than or equal to 0 and testScore is less than or equal to 100.

Radio Buttons and Check Boxes

CONCEPT: GUIs commonly use radio buttons and check boxes to let the user select
items.

Radio Buttons

Radio buttons are useful when you want the user to select one choice from several pos-
sible choices. Figure 4-24 shows a form with a group of three radio buttons. The radio
buttons in the figure allow the user to select Coffee, Tea, or Soft Drink.

Figure 4-24 Radio buttons

ut! Radio Buttons l‘:'| =] g

@ Coffee
C) Tea

) Soft Drink

% =

A radio button may be either selected or deselected. Each radio button has a small circle
that appears filled in when the radio button is selected, and appears empty when the radio
button is deselected. In Figure 4-24, the Coffee radio button is selected and the other
radio buttons are deselected.

At run time, only one radio button in a group may be selected at a time. Clicking on a
radio button selects it, and automatically deselects any other radio button in the same
group. We call this mutually exclusive selection.

241



242

Chapter 4

©

Making Decisions

NOTE: The name radio button refers to the old car radios that had push buttons for
selecting stations. Only one button could be pushed in at a time. When you pushed a
button, it automatically popped out the currently selected button.

When you want to create a group of radio buttons on a form, you use the RadioButton
control, which is found in the Common Controls section of the Toolbox. RadioButton
controls are normally grouped in one of the following ways:

® You place them inside a GroupBox control. All RadioButton controls that are inside
a GroupBox are members of the same group.

® You place them inside a Panel control. All RadioButton controls that are inside a
Panel are members of the same group.

® You place them on a form but not inside a GroupBox or a Panel. All RadioButton
controls that are on a form but not inside a GroupBox or Panel are members of the
same group.

Figure 4-25 shows a form with two groups of RadioButton controls. The group on the
left is inside a GroupBox control, and the group on the right is inside a Panel control.
When the application runs, the user will be able to select only one RadioButton from
each group. In the figure, Coffee is selected in the left group and Lunch is selected in
the right group.

Figure 4-25 A form with two groups of RadioButton controls

- N
ol Radio Buttons @M
Drinks
@ Coffee () Breakfast
® Tea @ Lunch
(7) Soft Drink () Dinner

The RadioButton Control’s Text Property

RadioButton controls have a Text property, which holds the text that is displayed next to
the radio button’s circle. For example, the radio buttons shown in Figure 4-24 have their
Text properties set to Coffee, Tea, and Soft Drink.

The RadioButton Control’s Checked Property

RadioButton controls have a Checked property that determines whether the control is
selected or deselected. The Checked property is a Boolean property, which means that
it may be set to either True or False. When the Checked property is set to True, the
RadioButton is selected, and when the Checked property is set to False, the RadioButton
is deselected. By default, the Checked property is set to False.

You can use the Properties window to set the initial value of a RadioButton control’s
Checked property. Keep in mind that the Checked property of only one RadioButton in a
group can be set to True at a given time. When you set a RadioButton control’s Checked
property to True in the Properties window, the Checked properties of all the other Radi-
oButtons in the same group automatically are set to False.



"

4.9 Radio Buttons and Check Boxes

TIP: When you create a group of RadioButton controls, you should always set
one of the control’s Checked property to True in the Properties window. If all the
RadioButtons in a group have their Checked property set to False, then the Checked
property of the RadioButton with the lowest TabIndex value will automatically be set
to True when you run the application.

Working with Radio Buttons in Code

In code, you can determine whether a RadioButton control is selected by testing its
Checked property. For example, suppose a form has a RadioButton control named
choicelRadioButton. The following if statement determines whether it is selected:

if (choicelRadioButton.Checked)
{

MessageBox.Show("You selected Choice 1");

}

Notice that we did not have to use the == operator to explicitly compare the Checked
property to the value true. This code is equivalent to the following:

if (choicelRadioButton.Checked == true)
{

MessageBox.Show("You selected Choice 1.");

}

Let’s look at an example using multiple RadioButton controls. Open the RadioButton
project in the Chap04 folder of this book’s Student Sample Programs. The application’s
form is shown in Figure 4-26. When you run the application, select one of the radio
buttons and then click the OK button. A message box appears showing the sport that you
selected.

Figure 4-26 The RadioButton Example form
f ol RadioButton Example l =) Bl ﬁ‘

Select Your Favorte Sport

© Foothall - footballRadioButton

| Baskethall - basketballRadioButton
) Baseball baseballRadioButton

Lok

okButton

Here is the code for the okButton_click event handler:

1 private void okButton Click(object sender, EventArgs e)

if (footballRadioButton.Checked)
{

MessageBox.Show("You selected Football.");

else if (basketballRadioButton.Checked)

{
MessageBox.Show("You selected Basketball.");

}

2 A

3

4

5

6 }
7

8

9

0

1 else if (baseballRadioButton.Checked)

1
1

243



244

Chapter 4

Making Decisions

12 {

13 MessageBox.Show("You selected Baseball.");
14 }

15 %

When the event handler executes, the if statement in line 3 determines whether the
footballRadioButton control’s Checked property is true. If it is, the message You
selected Football. is displayed in line 5. Otherwise, line 7 determines whether the
basketballRadioButton control’s Checked property is true. If it is, the message
You selected Basketball. is displayed in line 9. Otherwise, line 11 determines whether
the baseballRadioButton control’s Checked property is true. If it is, the message
You selected Baseball. is displayed in line 13.

Check Boxes

A check box appears as a small box with some accompanying text. Figure 4-27 shows
an example. They are called check boxes because clicking on an empty check box causes
a check mark to appear in it. If a check mark already appears in a check box, clicking it
removes the check mark.

Figure 4-27 A check box

[C] Pepperoni

Check boxes are similar to radio buttons, except that check boxes are not mutually ex-
clusive. You can have one or more check boxes in a group, and any number of them can
be selected at any given time. When you want to create a check box on a form, you use
the CheckBox control, which is found in the Common Controls section of the Toolbox.

The CheckBox Control’s Text Property

CheckBox controls have a Text property, which holds the text that is displayed next to
the check box. For example, the CheckBox control shown in Figure 4-27 has its Text
property set to Pepperoni.

The CheckBox Control’s Checked Property

Like radio buttons, CheckBox controls have a Checked property. When a CheckBox con-
trol is selected, or checked, its Checked property is set to True. When a CheckBox control
is deselected, or unchecked, its Checked property is set to False.

Working with CheckBox Controls in Code

In code, you can determine whether a CheckBox control is selected by testing its Checked
property. For example, suppose a form has a CheckBox control named optionlCheckBox.
The following if statement determines whether it is selected:

if (optionlCheckBox.Checked)
{

MessageBox.Show("You selected Option 1.");

}

Let’s look at an example program. Open the CheckBox Example project in the Chap04
folder of this book’s Student Sample Programs. The application’s form is shown in Fig-
ure 4-28. When you run the application, select any of the check boxes and then click the OK
button. One or more message boxes will appear, showing you the items that you selected.



4.9 Radio Buttons and Check Boxes

Figure 4-28 The CheckBox Example form

ol CheckBox Example | =] E]

Select Your Pizza Toppings

[] Pepperoni pepperoniCheckBox
Cheese cheeseCheckBox

[ Anchaovies anchoviesCheckBox
[ ok |
okButton

Here is the code for the okButton_click event handler:

1 private void okButton_Click(object sender, EventArgs e)
2 A

3 if (pepperoniCheckBox.Checked)

4 {

5 MessageBox.Show("You selected Pepperoni.");
6 }

7

8 if (cheeseCheckBox.Checked)

9 {

10 MessageBox.Show("You selected Cheese.");

11 }

12

13 if (anchoviesCheckBox.Checked)

14 {

15 MessageBox.Show("You selected Anchovies.");
16 }

17 %

Notice that we have three separate if statements. The if statement in line 3 determines
whether the pepperonicheckBox control is selected. If so, line 5 displays the message You
selected Pepperoni. The if statement in line 8 determines whether the cheeseCheckBox
control is selected. If so, line 10 displays the message You selected Cheese. The if state-
ment in line 13 determines whether the anchoviesCheckBox control is selected. If so, line
15 displays the message You selected Anchovies.

The CheckedChanged Event

Any time a RadioButton or a CheckBox control’s Checked property changes, a Checked-
Changed event happens for that control. If you want some action to immediately take
place when the user selects (or deselects) a RadioButton or CheckBox control, you can
create a CheckedChanged event handler for the control and write the desired code in that
event handler.

To create a CheckedChanged event handler for a RadioButton or a CheckBox, simply
double-click the control in the Designer. An empty CheckedChanged event handler is
created in the code editor. You can then write code inside the event handler. Tutorial 4-5
leads you through the process.

245



246 Chapter 4 Making Decisions

6 Tutorial 4-5:
Creating the Color Theme Application

Eote In this tutorial you create an application that allows the user to select a color using RadioBut-
ton controls. When the user selects a color, the form’s background color is changed to that

Tutorial 4-5:
Creating the color immediately. Figure 4-29 shows the application’s form, with the names of all the controls.

Color Theme 5
S Figure 4-29 The Color Theme form
application
a-! Color Theme |ﬂlﬂ—hj
colorGroupBox Select a Background Color
Yellow yellowRadioButton
Red redRadioButton
| White whiteRadioButton
© Back to Nomal normalRadioButton
[ Bz |
exitButton

Step 1: Start Visual Studio (or Visual Studio Express) and begin a new Windows
Forms Application project named Color Theme.

Step 2: Set up the application’s form as shown in Figure 4-29. Notice that the form’s
Text property is set to Color Theme. The names of the controls are shown in
the figure. As you place each of the controls on the form, refer to Table 4-8
for the relevant property settings.

Table 4-8 Control property settings

Control Name Control Type Property Settings
colorGroupBox GroupBox Text: Select a Background Color
yellowRadioButton RadioButton Text: Yellow

Checked: False
redRadioButton RadioButton Text: Red

Checked: False
whiteRadioButton RadioButton Text: White

Checked: False
normalRadioButton RadioButton Text: Back to Normal

Checked: True
exitButton Button Text: Exit

Step 3: Once you have set up the form with its controls, you can create the Checked-
Changed event handlers for the RadioButton controls. At the end of this tuto-
rial, Program 4-5 shows the completed code for the form. You will be instructed
to refer to Program 4-5 as you write the event handlers.

In the Designer, double-click the yellowRadioButton control. This opens the
code editor, and you see an empty event handler named yellowRadioButton
CheckedChanged. Complete the yellowRadioButton CheckedChanged event
handler by typing the code shown in lines 22-25 in Program 4-5.



Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

4.9 Radio Buttons and Check Boxes

The event handler is easy to understand. The if statement in line 22 deter-
mines whether the yellowRadioButton control is checked. If so, line 24 sets
the form’s background to yellow.

Switch your view back to the Designer and double-click the redRadioButton
control. This opens the code editor, and you see an empty event handler
named redRadioButton CheckedChanged. Complete the redRadioButton
CheckedChanged event handler by typing the code shown in lines 30-33 in
Program 4-5.

Switch your view back to the Designer and double-click the whiteRadioBut-
ton control. This opens the code editor, and you see an empty event handler
named whiteRadioButton CheckedChanged. Complete the whiteRadioButton
CheckedChanged event handler by typing the code shown in lines 38-41 in
Program 4-5.

Switch your view back to the Designer and double-click the
normalRadioButton control. This opens the code editor, and you see an
empty event handler named normalRadioButton CheckedChanged. Complete
the normalRadioButton_CheckedChangedeventhandkx bytyphu;thecode
shown in lines 46-49 in Program 4-5.

Switch your view back to the Designer and double-click the exitButton
control. In the code editor you see an empty event handler named
exitButton Click. Complete the exitButton Click event handler by typing
the code shown in lines 54-55 in Program 4-5.

Save the project and run the application. Notice that the Back to Normal radio
button is initially selected. That’s because you set its Checked property to True
in the Properties window. Click the other Radio buttons and notice that the
form’s background color changes immediately. When you are finished testing
the application, click the Exit button to close it.

Program 4-5 Completed Form1 code for the Color Theme application

using
using
using
using
using
using
using
using
using

0 N0 U WN P

{(e]

10

System;
System.Collections.Generic;
System.ComponentModel;
System.Data;
System.Drawing;
System.Ling;

System.Text;
System.Threading.Tasks;
System.Windows.Forms;

11 namespace Color_Theme

12 {

13 public partial class Forml : Form

14 {
15
16
17
18
19
20
21
22

public Forml()
{

InitializeComponent();

private void yellowRadioButton CheckedChanged(object sender, EventArgs e)

{
if (yellowRadioButton.Checked)

247



248 Chapter 4 Making Decisions

23 {

24 this.BackColor = Color.Yellow;

25 }

26 }

27

28 private void redRadioButton CheckedChanged(object sender, EventArgs e)
29 {

30 if (redRadioButton.Checked)

31 {

32 this.BackColor = Color.Red;

33 }

34 }

35

36 private void whiteRadioButton CheckedChanged(object sender, EventArgs e)
37 {

38 if (whiteRadioButton.Checked)

39 {

40 this.BackColor = Color.White;

41 }

42 }

43

44 private void normalRadioButton CheckedChanged(object sender, EventArgs e)
45 {

46 if (normalRadioButton.Checked)

47 {

48 this.BackColor = SystemColors.Control;

49 }

50 }

51

52 private void exitButton Click(object sender, EventArgs e)
53 {

54 // Close the form.

55 this.Close();

56 }

57 }

58 }

Checkpoint

4.26 1If several RadioButton controls have been created in the same GroupBox, how
many of them may be selected at one time?

4.27 1If several CheckBox controls have been created in the same GroupBox, how many
of them may be selected at one time?

4.28 In code, how do you determine whether a RadioButton or a CheckBox control has
been selected?

=
4.10 The switch Statement

1 CONCEPT: The switch statement lets the value of a variable or an expression deter-
mine which path of execution the program will take.

The switch statement is a multiple-alternative decision structure. It allows you to test the
value of a variable or an expression and then use that value to determine which statement



4.10 The switch Statement

or set of statements to execute. Figure 4-30 shows an example of how a multiple alterna-
tive decision structure looks in a flowchart.

Figure 4-30 A multiple alternative decision structure

1Y 2y 3y Default ¥

. " " ’ " " . " " Display "Error:
/Dlsplay January/ /D|splay February // Display "March / / Invalid month" /

:

In the flowchart, the diamond symbol shows month, which is the name of a variable. If
the month variable contains the value 1, the program displays “January.” If the month
variable contains the value 2, the program displays “February.” If the month variable
contains the value 3, the program displays “March.” If the month variable contains none
of these values, the action that is labeled Default is executed. In this case, the program
displays “Error: Invalid month.”

Here is the general format of a switch statement in C# code:

The testExpressionis
a variable or expression.

switch (testExpression)
{
case value 1:
statement;
statement;
etc.
break;

These statements are executed
ifthe test Expressionis
equalto value 1.

case value 2:
statement; These statements are executed
statement; ifthe test Expressionis

etc. equalto value 2.
break;

Insert as many case sections as necessary.

case value N:

statement; These statements are executed
statement; | ifthe testExpressionis
etc. equalto value N.
break; |

default:
statement; | These statements are executed
statement; ifthe testExpressionis
etc. | notequal to any of the case
break; ] values.

249



250

Chapter 4

Making Decisions

The first line of the statement starts with the word switch, followed by a testExpres-
sion, which is enclosed in parentheses. The testExpression is a variable or an expres-
sion that gives an integer, string, or bool value. (Several other data types that we have not
discussed yet are also permissible. The important thing to remember is that the testEx-
pression cannot be a floating-point or decimal value.)

Beginning at the next line is a block of code enclosed in curly braces. Inside this block of
code are one or more case sections. A case section begins with the word case, followed
by a value, followed by a colon. Each case section contains one or more statements, fol-
lowed by a break statement. Each case section must end with a break statement. At the
end is an optional default section. The default section must also end with a break
statement.

When the switch statement executes, it compares the value of the testExpression
with the values that follow each of the case statements (from top to bottom). When
it finds a case value that matches the testExpression’s value, the program branches
to the case statement. The statements that follow the case statement are executed,
until a break statement is encountered. At that point the program jumps out of the
switch statement. If the testExpression does not match any of the case values,
the program branches to the default statement and executes the statements that
immediately follow it.

For example, the following code performs the same operation as the flowchart in
Figure 4-30:

switch (month)

{

case 1:
MessageBox.Show("January");
break;

case 2:
MessageBox.Show("February");
break;

case 3:
MessageBox.Show("March");
break;

default:
MessageBox.Show("Error: Invalid month");
break;

}

In this example the testExpression is the month variable. If the value in the month
variable is 1, the program branches to the case 1: section and executes the
MessageBox.Show("January") statement that immediately follows it. If the value in
the month variable is 2, the program branches to the case 2: section and executes the
MessageBox.Show("February") statement that immediately follows it. If the value
in the month variable is 3, the program branches to the case 3: section and executes
the MessageBox.Show("March") statement that immediately follows it. If the value
in the month variable is not 1, 2, or 3, the program branches to the default: section
and executes the MessageBox.Show("Error: Invalid month") statement that im-
mediately follows it.

The switch statement can be used as an alternative to an if-else-if statement that
tests the same variable or expression for several different values. For example, the previously
shown switch statement works like this if-else-if statement:



4.11 Introduction to List Boxes

if (month == 1)
{
MessageBox.Show("January");
}
else if (month == 2)
{
MessageBox.Show("February");
}
else if (month == 3)
{
MessageBox.Show("March");
}
else
{
MessageBox.Show("Error: Invalid month");
}

To see an application that uses a switch statement, look at the Switch Example project in
the Chap04 folder of this book’s Student Sample Programs.

Checkpoint
4.29 Convert the following if-else-if code to a switch statement.
if (choice == 1)
{
MessageBox.Show("You chose 1.");
}
else if (choice == 2)
{
MessageBox.Show("You chose 2.");
}
else if (choice == 3)
{
MessageBox.Show("You chose 3.");
}
else
{

MessageBox.Show("Make another choice.");

—
4.11 Introduction to List Boxes

1 CONCEPT: List boxes display a list of items and allow the user to select an item from
the list.

A list box displays a list of items and allows the user to select one or more items from the
list. In Visual C# you use the ListBox control to create a list box on an application’s form.
Figure 4-31 shows a form with two ListBox controls. At run time, the user may select one
of the items, causing the item to appear selected.

The topmost ListBox in Figure 4-31 does not have a scroll bar, but the bottom one does.
A scroll bar appears when a ListBox contains more items than can be displayed in the

251



252

Chapter 4

Making Decisions

Figure 4-31 ListBox examples

e T
w5l ListBox Examples (= D

Dogs

Poodle

Great Dane
German Shepherd
Temier

Cats
Siamese
Persian
Bobtail
Bumese

Bl

1

space provided. In the figure, the top ListBox has four items (Poodle, Great Dane, Ger-
man Shepherd, and Terrier), and all items are displayed. The bottom ListBox shows four
items (Siamese, Persian, Bobtail, and Burmese), but because it has a scroll bar, we know
there are more items in the ListBox than those four.

You will find the ListBox control in the Common Controls section of the Toolbox. Once
you create a ListBox control, you add items to its Items property. The items that you add
to a ListBox’s Items property are displayed in the ListBox.

To store values in the Items property at design time, follow these steps:

1.
2.

Select the ListBox control in the Designer window.

In the Properties window, the setting for the Items property is displayed as (Collec-
tion). When you select the Items property, an ellipsis button ([)) appears.

Click the ellipsis button. The String Collection Editor dialog box appears, as shown
in Figure 4-32.

. Type the values that are to appear in the ListBox into the String Collection Editor

dialog box. Type each value on a separate line by pressing the Enter key after each
entry.

. When you have entered all the values, click the OK button.

Figure 4-32 The String Collection Editor dialog box

String Collection Editor

Enter the strings in the collection {one per fine):

¥

oK ] [ Cancel

NOTE: Once you acquire the necessary skills, you will be able to fill the Items col-
lection of list boxes from external data sources (such as databases).




4.11 Introduction to List Boxes

The Selecteditem Property

When the user selects an item in a ListBox, the item is stored in the ListBox’s
SelectedItem property. For example, suppose an application has a ListBox control named
fruitListBox and a string variable named selectedFruit. The fruitListBox con-
trol contains the items Apples, Pears, and Bananas. If the user has selected Pears, the fol-
lowing statement assigns the string "Pears" to the variable selectedFruit:

selectedFruit = fruitListBox.SelectedItem.ToString();

Notice that you have to call the SelectedItem property’s Tostring method to retrieve the
value as a string.

Determining Whether an Item Is Selected

An exception will occur if you try to get the value of a ListBox’s SelectedItem property
when no item is selected in the ListBox. For that reason, you should always make sure
that an item is selected before reading the SelectedItem property. You do this with the
SelectedIndex property.

The items that are stored in a ListBox each have an index. The index is simply a number
that identifies the item’s position in the ListBox. The first item has the index 0, the next
has the index 1, and so on. The last index value is # — 1, where # is the number of items
in the ListBox. When the user selects an item in a ListBox, the item’s index is stored in the
ListBox’s SelectedIndex property. If no item is selected in the ListBox, the SelectedIndex
property is set to —1.

You can use the SelectedIndex property to make sure that an item is selected in a ListBox
before you try to get the value of the Selectedltem property. You simply make sure the
SelectedIndex property is not set to —1 before trying to read the SelectedItem property.
Here is an example:

if (fruitListBox.SelectedIndex != -1)

{
selectedFruit = fruitListBox.SelectedItem.ToString();

}

In Tutorial 4-6 you will create an application that lets the user select an item from a
ListBox control.

>

VideoNote

Tutorial 4-6:
Creating the
Time Zone
application

Tutorial 4-6:
Creating the Time Zone Application

In this tutorial you create an application that allows the user to select a city from a List-
Box control. When the user clicks a button, the application displays the name of the city’s
time zone. Figure 4-33 shows the application’s form, with the names of all the controls.

Step 1: Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms
Application project named Time Zone.

Step 2:  Set up the application’s form, as shown in Figure 4-33. Notice that the form’s
Text property is set to Time Zone. The names of the controls are shown in the
figure. As you place each of the controls on the form, refer to Table 4-9 for the
relevant property settings.

253



254

Chapter 4

Making Decisions

Figure 4-33 The Color Theme form

ol Time Zone = BER X
promptLabel Select a city and | will give you the time zone.
[Denver i . .
Honolulu cityListBox
Minneapolis
New York
San Francisco
outputDescriptionLabel » Time Zone: |:| <3 timeZoneLabel
[ ok J[ B |
A A
okButton exitButton

Table 4-9 Control property settings

Control Name Control Type Property Settings
promptLabel Label Text: Select a city and I will give

you the time zone.
cityListBox ListBox Items:

Denver

Honolulu

Minneapolis

New York

San Francisco
outputDescriptionLabel Label Text: Time Zone:
timeZoneLabel Label AutoSize: False

BorderStyle: FixedSingle

Text: (The contents of the Text
property have been erased.)
TextAlign: MiddleCenter

okButton Button Text: OK
exitButton Button Text: Exit
Step 3: Once you have set up the form with its controls, you can create the Click event

handlers for the Button controls. At the end of this tutorial, Program 4-6 shows
the completed code for the form. You will be instructed to refer to Program 4-6
as you write the event handlers.

In the Designer, double-click the okButton control. This opens the code editor,
and you see an empty event handler named okButton_click. Complete the
okButton_Click event handler by typing the code shown in lines 22-53 in
Program 4-6. Let’s take a closer look at the code:

Line 22: This line declares a string variable named city. It is used to hold the
name of the city that the user selects from the ListBox.

Line 24: This if statement determines whether the user has selected an item
in the cityListBox control. If an item is selected, the control’s SelectedIndex
property is set to the item’s index (a value of O or greater), and the program
continues to line 26. If no item is selected, however, the control’s SelectedIndex
property is set to —1, and the program jumps to the else clause in line 49.



4.11 Introduction to List Boxes

Line 27: This statement gets the selected item from the ListBox and assigns it to
the city variable.

Line 30: This switch statement tests the city variable and branches to one of its
case statements, depending on the variable’s value:

e If the city variable equals "Honolulu", the program jumps to the case
statement in line 32.

e If the city variable equals "San Francisco", the program jumps to the
case statement in line 35.

e If the city variable equals "Denver", the program jumps to the case state-
ment in line 38.

e If the city variable equals "Minneapolis", the program jumps to the case
statement in line 41.

o If the city variable equals "New York", the program jumps to the case state-
ment in line 44.

Step 4: Switch your view back to the Designer and double-click the exitButton

control. In the code editor you see an empty event handler named
exitButton click. Complete the exitButton Click event handler by
typing the code shown in lines 58-59 in Program 4-6.

Step 5: Save the project and run the application. Select a city in the ListBox control

and click the OK button to see its time zone. Test each city, and when you are
finished, click the Exit button and the form should close.

Program 4-6 Completed Form1 code for the Time Zone application

0 J o Ul WNBEP

(]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

namespace Time_ Zone

{
public partial class Forml : Form
{
public Forml()
{
InitializeComponent();
}
private void okButton Click(object sender, EventArgs e)
{
string city; // To hold the name of a city
if (cityListBox.SelectedIndex != -1)
{

// Get the selected item.
city = cityListBox.SelectedItem.ToString();

// Determine the time zone.

255



256 Chapter 4 Making Decisions

30 switch (city)

31 {

32 case "Honolulu":

33 timeZonelLabel.Text = "Hawaii-Aleutian";
34 break;

35 case "San Francisco":

36 timeZoneLabel.Text = "Pacific";
37 break;

38 case "Denver":

39 timeZoneLabel.Text = "Mountain";
40 break;

41 case "Minneapolis":

42 timeZoneLabel.Text = "Central";
43 break;

44 case "New York":

45 timeZonelLabel.Text = "Eastern";
46 break;

47 }

48 }

49 else

50 {

51 // No city was selected.

52 MessageBox.Show("Select a city.");

53 }

54 }

55

56 private void exitButton Click(object sender, EventArgs e)
57 {

58 // Close the form.

59 this.Close();

60 }

61 }

62 }

Checkpoint

4.30 How do you add items to a ListBox control using the Properties window?
4.31 How do you get the item that is selected in a ListBox?

4.32 How can you determine whether an item has been selected in a ListBox?



Key Terms

! operator

&& operator

| | operator

bool data type

Boolean expression

check box

CheckBox control
Checked property
CheckedChanged event
conditionally executed
control structure
decimal.TryParse method
decision structure
double.TryParse method
dual-alternative decision structure
flag

if-else statement
if-else-if statement
index

input validation
int.Tryparse method
Items property

ListBox control

Review Questions
Multiple Choice

Review Questions

logical AND operator
logical NOT operator
logical operator

logical OR operator
multiple-alternative decision
structure

mutually exclusive selection
nested decision structure
out keyword

output variable

radio buttons

RadioButton control
relational operator
SelectedIndex property
SelectedItem property
selection structure

sequence structure
short-circuit evaluation
single-alternative decision structure
switch statement
TryParse method

1. A structure executes a set of statements only under certain circum-
stances
a. sequence
b. circumstantial
c. decision
d. Boolean
2. A structure provides one alternative path of execution.
a. sequence
b. single-alternative decision
c. one-path alternative
d. single-execution decision
3. A(n) expression has a value of either true or false.
a. binary

b. decision
c. unconditional
d. Boolean

4. The symbols >, <, and == are all

relational

b. logical

c. conditional
d. ternary

8

operators.

257



258

Chapter 4

Making Decisions

S

10.

11.

12.

13.

A structure tests a condition and then takes one path if the condition is
true or another path if the condition is false.

a. multibranch statement

b. single-alternative decision
c. dual-alternative decision
d. sequence

You use a(n) statement to write a single-alternative decision structure.
a. test-jump

b. if

c. if-else

d. if-call

You use a(n) statement to write a dual alternative decision structure.
a. test-jump

b. if

c. if-else

d. if-call

A decision structure is written inside another decision structure.

a. nested

b. tiered

c. dislodged

d. hierarchical

&&, | |, and ! are operators.

a. relational

b. logical

c. conditional

d. ternary

A compound Boolean expression created with the operator is true only

if both of its subexpressions are true.

a. &s&

b. ||

c. !

d. both

A compound Boolean expression created with the operator is true if

either of its subexpressions is true.

a. &&

b. ||

S U

d. either

The operator takes a Boolean expression as its operand and reverses its

logical value.
a. &s&

b. |

c. !

d. either
A is a Boolean variable that signals when some condition exists in the
program.

a. flag
b. signal



14.

15.

16.

17.

18.

19.

20.

Review Questions

c. sentinel
d. siren

The family of methods can be used to convert a string to a specific data
type without throwing an exception.

a. TryConvert
b. Parse

C. TryParse

d. safeConvert

If several controls exist in a GroupBox, only one of them may be se-
lected at a time.

a. CheckBox

b. RadioButton

c. ListBox

d. SelectionButton

You use the statement to create a multiple alternative decision structure.
a. menu

b. branch

C. select

d. switch

The section of a switch statement is branched to if none of the case

values match the test expression.

a. else
b. default
Cc. case

d. otherwise

A ListBox’s index numbering starts at

a. 0

b. 1

c. —1

d. any value you specify

You can use the property to determine whether an item is selected in a
ListBox.

a. Index

b. SelectedItem
c. SelectedIndex
d. Items.SelectedIndex

The property holds the item that is selected in a ListBox control.
a. Index

b. SelectedItem

c. SelectedIndex

d. TItems.SelectedIndex

True or False

You can write any program using only sequence structures.

A single-alternative decision structure tests a condition and then takes one path if
the condition is true or another path if the condition is false.

The if-else statement is a dual-alternative decision structure.

259



260

Chapter 4

Making Decisions

10.

A decision structure can be nested inside another decision structure.

A compound Boolean expression created with the && operator is true only when
both subexpressions are true.

The TryParse methods throw an exception if the string argument cannot be
converted.

Multiple CheckBox controls in the same GroupBox can be selected at the same time.
The test expression in a switch statement can be a double or a decimal value.

If an item is not selected in a ListBox, the control’s SelectedIndex property will be
set to 0.

To store items in a ListBox, you add them to the control’s Text property.

Short Answer

il
2

What is meant by the term conditionally executed?

You need to test a condition and then execute one set of statements if the condition
is true. If the condition is false, you need to execute a different set of statements.
What structure will you use?

Briefly describe how the && operator works.
Briefly describe how the | | operator works.

When determining whether a number is inside a range, which logical operator is it
best to use?

What is a flag and how does it work?
What are the two arguments that you pass to a TryParse method?

How do you determine in code whether a RadioButton control or a CheckBox
control is selected?

How do you add items to a ListBox using the Properties window?

How can you read the selected item from a ListBox while preventing an exception
from occurring if no item is selected?

Algorithm Workbench

il

Write an if statement that assigns 20 to the variable y and assigns 40 to the variable
z if the variable x is greater than 100.

Write an if statement that assigns O to the variable b and assigns 1 to the variable
c if the variable a is less than 10.

Write an if-else statement that assigns O to the variable b if the variable a is less
than 10. Otherwise, it should assign 99 to the variable b.

Write nested decision structures that perform the following: if amount1 is greater
than 10 and amount2 is less than 100, display the greater of amount1 and amount2.

Write an if-else statement that displays “Speed is normal” if the value of the
speed variable is at least 24 but no more than 56. If the speed variable’s value is
outside this range, display “Speed is abnormal.”

Write an if-else statement that determines whether the value of the points vari-
able is less than 9 or greater than 51. If this is true, display “Invalid points.” Other-
wise, display “Valid points.”



Programming Problems

Assume pointsTextBox is the name of a TextBox control and points is the name
of an int variable. Write an if-else statement that uses one of the TryParse
methods to convert the pointsTextBox control’s Text property to an int and
stores the result in the points variable. If the conversion is not successful, display
an error message in a message box.

Rewrite the following if-else-if statement as a switch statement.

if (selection == 1)
{
MessageBox.Show("You selected 1.");
}
else if (selection == 2)
{
MessageBox.Show("You selected 2.");
}
else if (selection == 3)
{
MessageBox.Show("You selected 3.");
}
else if (selection == 4)
{
MessageBox.Show("You selected 4.");
}
else
{
MessageBox.Show("Not good with numbers, eh?");
}

Assume nameListBox is a ListBox control. Write code that reads the selected item
from the ListBox. Be sure to prevent an exception from occurring in case no item
has been selected.

Programming Problems

1.

Roman Numeral Converter

Create an application that allows the user to enter an integer between 1 and 10 into
a TextBox control. The program should display the Roman numeral version of that
number. If the number is outside the range of 1 through 10, the program should
display an error message.

The following table lists the Roman numerals for the numbers 1 through 10.

Number Roman Numeral
1 I
2 11
3 11T
4 1A\Y
) A%
6 VI
7 VII
8 VIII
9 IX

10 X

261



262

Chapter 4

D
VideoNote
Solving the
Mass and
Weight
Problem

Making Decisions

Mass and Weight

Scientists measure an object’s mass in kilograms and its weight in Newtons. If you
know the amount of mass of an object, you can calculate its weight, in Newtons,
with the following formula:

Weight = Mass X 9.8

Create an application that lets the user enter an object’s mass and then calculates its
weight. If the object weighs more than 1000 Newtons, display a message indicating
that it is too heavy. If the object weighs less than 10 Newtons, display a message
indicating that it is too light.

Magic Dates

The date June 10, 1960, is special because when it is written in the following format,
the month times the day equals the year:

6/10/60

Create an application that lets the user enter a month (in numeric form), a day, and
a two-digit year. The program should then determine whether the month times the
day equals the year. If so, it should display a message saying the date is magic. Oth-
erwise, it should display a message saying the date is not magic.

Color Mixer

The colors red, blue, and yellow are known as the primary colors because they can-
not be made by mixing other colors. When you mix two primary colors, you get a
secondary color, as shown here:

e  When you mix red and blue, you get purple.

e  When you mix red and yellow, you get orange.

e  When you mix blue and yellow, you get green.

Create an application that lets the user select two primary colors from two differ-
ent sets of Radio buttons. The form should also have a Mix button. When the user
clicks the Mix button, the form’s background should change to the color that you
get when you mix the two selected primary colors. Figure 4-34 shows an example of
how the form should appear.

Figure 4-34 The Color Mixer form

ol Color Mixer =
Select the First Color Select the Second Color
@ Fed @ Fed
(™ Blue ) Blue
1 Yellow 1 Yellow
Mx || Bt

Note: If the user picks the same color from both sets of Radio buttons, set the form’s
background to that color.

Distance Converter

In the English measurement system, 1 yard equals 3 feet and 1 foot equals 12 inches.
Use this information to create an application that lets the user convert distances to
and from inches, feet, and yards.



Programming Problems 263

Figure 4-35 shows an example of how the application’s form might appear. In the
example, the user enters the distance to be converted into a TextBox. A ListBox
allows the user to select the units being converted from, and another ListBox allows
the user to select the units being converted to.

Figure 4-35 The Distance Converter form

sl Distance Converter |ﬂ|&
Enter a distance to convert:
From To
Inches Inches
Feet Feet
Yards Yards
Converted Distance:
| Convert ] | Bt |

Note: Be sure to handle the situation where the user picks the same units from both
list boxes. The converted value will be the same as the value entered.

6. Book Club Points

Serendipity Booksellers has a book club that awards points to its customers based
on the number of books purchased each month. The points are awarded as follows:
e If a customer purchases 0 books, he or she earns 0 points.

e If a customer purchases 1 book, he or she earns 5 points.

e If a customer purchases 2 books, he or she earns 15 points.

e If a customer purchases 3 books, he or she earns 30 points.

e If a customer purchases 4 or more books, he or she earns 60 points.

Create an application that lets the user enter the number of books that he or she has
purchased this month and displays the number of points awarded.
7. Software Sales

A software company sells a package that retails for $99. Quantity discounts are
given according to the following table:

Quantity Discount
10-19 20%
20-49 30%
50-99 40%
100 or more 50%

Create an application that lets the user enter the number of packages purchased.
The program should then display the amount of the discount (if any) and the total
amount of the purchase after the discount.

8. Body Mass Index Program Enhancement

In Programming Problem 6 in Chapter 3, you were asked to create an application
that calculates a person’s body mass index (BMI). Recall from that exercise that the
BMI is often used to determine whether a person is overweight or underweight for
their height. A person’s BMI is calculated with the following formula:

BMI = Weight X 703 + Height”

In the formula, weight is measured in pounds and height is measured in inches.
Enhance the program so it displays a message indicating whether the person has
optimal weight, is underweight, or is overweight. A person’s weight is considered



264

Chapter 4

Making Decisions

10.

11.

to be optimal if his or her BMI is between 18.5 and 25. If the BMI is less than 18.5,
the person is considered to be underweight. If the BMI value is greater than 235, the
person is considered to be overweight.

Change for a Dollar Game

Create a change-counting game that gets the user to enter the number of coins re-
quired to make exactly one dollar. The program should let the user enter the number
of pennies, nickels, dimes, and quarters. If the total value of the coins entered is
equal to one dollar, the program should congratulate the user for winning the game.
Otherwise, the program should display a message indicating whether the amount
entered was more than or less than one dollar.

Fat Percentage Calculator

One gram of fat has 9 calories. If you know the number of fat grams in a particular
food, you can use the following formula to calculate the number of calories that
come from fat in that food:

Calories from fat = Fat grams X 9

If you know the food’s total calories, you can use the following formula to calculate
the percentage of calories from fat:

Percentage of calories from fat = Calories from fat + Total calories

Create an application that allows the user to enter:

e The total number of calories for a food item
e The number of fat grams in that food item

The application should calculate and display:

e The number of calories from fat
e The percentage of calories that come from fat

Also, the application’s form should have a CheckBox that the user can check if he or
she wants to know whether the food is considered low fat. (If the calories from fat
are less than 30% of the total calories of the food, the food is considered low fat.)

Use the following test data to determine if the application is calculating properly:

Calories and Fat Percentage Fat

200 calories, 8 fat grams Percentage of calories from fat: 36%

150 calories, 2 fat grams Percentage of calories from fat: 12% (a low-fat food)
500 calories, 30 fat grams Percentage of calories from fat: 54%

Note: Make sure the number of calories and fat grams are not less than 0. Also,
the number of calories from fat cannot be greater than the total number of calories.
If that happens, display an error message indicating that either the calories or fat
grams were incorrectly entered.

Time Calculator

Create an application that lets the user enter a number of seconds and works as

follows:

e There are 60 seconds in a minute. If the number of seconds entered by the user
is greater than or equal to 60, the program should display the number of min-
utes in that many seconds.

e There are 3,600 seconds in an hour. If the number of seconds entered by the
user is greater than or equal to 3,600, the program should display the number
of hours in that many seconds.

e There are 86,400 seconds in a day. If the number of seconds entered by the user
is greater than or equal to 86,400, the program should display the number of
days in that many seconds.



Programming Problems 265

12. Workshop Selector

The following table shows a training company’s workshops, the number of days of
each, and their registration fees.

Workshop Number of Days Registration Fee
Handling Stress 3 $1,000

Time Management 3 $800
Supervision Skills 3 $1,500
Negotiation 5 $1,300

How to Interview 1 $500

The training company conducts its workshops in the six locations shown in the
following table. The table also shows the lodging fees per day at each location.

Location Lodging Fees per Day
Austin $150
Chicago $225
Dallas $175
Orlando $300
Phoenix $175
Raleigh $150

When a customer registers for a workshop, he or she must pay the registration fee
plus the lodging fees for the selected location. For example, here are the charges to
attend the Supervision Skills workshop in Orlando:

Registration: $1,500

Lodging: $300 X 3 days = $900

Total: $2,400

Create an application that lets the user select a workshop from one ListBox and
a location from another ListBox. When the user clicks a button, the application
should calculate and display the registration cost, the lodging cost, and the total
cost.



This page intentionally left blank



100
i i
0
i i
o o
5 ) i O
ol o

—
5.1

1

0 OE
ooooo
ooooo
ooooo

Loops, Files, and
Random Numbers

o
(WN]
—
o
<
I
)

TOPICS

5.1  More about ListBoxes 5.6 Using Files for Data Storage
5.2 Thewhile Loop 5.7 The OpenFileDialog and
5.3 The ++ and -- operators SaveFileDialog Controls

5.4  The for Loop 5.8 Random Numbers

5.5 The do-while Loop 5.9 The Load Event

More about ListBoxes

CONCEPT: ListBox controls have various methods and properties that you can use in
code to manipulate the ListBox’s contents.

In Chapter 4 we introduced the ListBox control, which displays a list of items and allows
the user to select one or more items from the list. In this chapter we use ListBox controls
to display output. Many of the algorithms that you will see in this chapter generate lists of
data and then display those lists in ListBox controls.

Recall from Chapter 4 that you add items to a ListBox control’s Items property, and those
items are displayed in the ListBox. At design time, you can use the Properties window to
add items to the control’s Items property. You can also write code that adds items to a
ListBox control at run time. To add an item to a ListBox control with code, you call the
control’s Items.Add method. Here is the method’s general format:

ListBoxName.Items.Add(Item);

ListBoxName is the name of the ListBox control. Ttem is the value to be added to
the Items property. For example, in the Chap05 folder of this book’s Student Sample
Programs, you will find a project named Name List. Figure 5-1 shows the applica-
tion’s form. As shown in the image on the left, the ListBox’s name is nameListBox and
the Button control’s name is addButton. At run time, when you click the addButton
control, the names shown in the image on the right are added to the nameListBox
control.

267



268 Chapter 5 Loops, Files, and Random Numbers

Figure 5-1 The Name List application

o Name List =] B [ o Name List =] B [

Chris
. Alicia
namesListBox Justin
Holby

addButton | Add Names | Add Name_s_|

Here is the code for the addButton_click event handler:

private void addButton_Click(object sender, EventArgs e)
{

1

2

3 namesListBox.Items.Add("Chris");
4 namesListBox.Items.Add("Alicia");
5 namesListBox.Items.Add("Justin");
6 namesListBox.Items.Add("Holly");
7}

You can add values of other types as well. In the Chap05 folder of the book’s Student
Sample Programs, you will find a project named Number List. Figure 5-2 shows the ap-
plication’s form. As shown in the image on the left, the ListBox’s name is numberListBox
and the Button control’s name is addButton. At run time, when you click the addButton
control, the numbers shown in the image on the right are added to the numberListBox
control.

Figure 5-2 The Number List application

ol Mumber List Box lﬂlﬁ ol Mumber List Box |£Iﬁ
10
) 20
numberListBox 70
40
addButton = | Add Add

Here is the code for the addButton_click event handler:

private void addButton_Click(object sender, EventArgs e)
{

1

2

3 numberListBox.Items.Add(10);
4 numberListBox.Items.Add(20);
5 numberListBox.Items.Add(30);
6 numberListBox.Items.Add(40);
7}

The Items.Count Property

ListBox controls have an Items.Count property that reports the number of items stored
in the ListBox. If the ListBox is empty, the Items.Count property equals 0. For example,



5.2 The while Loop 269

assume an application has a ListBox control named employeesListBox. The following
if statement displays a message box if there are no items in the ListBox:

if (employeesListBox.Items.Count == 0)

{

MessageBox.Show("There are no items in the list!");

}

The Items.Count property holds an integer value. Assuming numEmployees is an int
variable, the following statement assigns the number of items in the employeesListBox
to the numEmployees variable:

numEmployees = employeesListBox.Items.Count;

The Items.Clear Method

ListBox controls have an Items.Clear method that erases all the items in the Items prop-
erty. Here is the method’s general format:

ListBoxName.Items.Clear();

For example, assume an application has a ListBox control named employeesListBox.
The following statement clears all the items in the list.

employeesListBox.Items.Clear();

Checkpoint

5.1 In code, how do you add an item to a ListBox control?
5.2 How do you determine the number of items that are stored in a ListBox control?

5.3 How do you erase the contents of a ListBox control?

=
5.2) The while Loop

1 CONCEPT: The while loop causes a statement or set of statements to repeat as long
as a Boolean expression is true.

The while loop gets its name from the way it works: While a Boolean expression is true,
do some task. The loop has two parts: (1) a Boolean expression that is tested for a true or
false value and (2) a statement or set of statements that is repeated as long as the Boolean
expression is true. Figure 5-3 shows the logic of a while loop.

Figure 5-3 The logic of a while loop

Boolean
Expression

Statement(s)




270

Chapter 5

Loops, Files, and Random Numbers

The diamond symbol represents the Boolean expression that is tested. Notice what hap-
pens if the expression is true: One or more statements are executed and the program’s ex-
ecution flows back to the point just above the diamond symbol. The Boolean expression
is tested again, and if it is true, the process repeats. If the Boolean expression is false, the
program exits the loop. Each time the loop executes its statement or statements, we say
the loop is iterating, or performing an iteration.

Here is the general format of the while loop:

while (BooleanExpression)

{

statement; This set of statements is repeated
sl;atement, while the Boolean expression is true.
etc.

We refer to the first line as the while clause. The while clause begins with the word
while, followed by a Boolean expression that is enclosed in parentheses. Beginning on the
next line is a set of statements enclosed in curly braces. This block of statements is known
as the body of the loop.

When the while loop executes, the Boolean expression is tested. If the Boolean expres-
sion is true, the statements that appear in the body of the loop are executed, and then the
loop starts over. If the Boolean expression is false, the loop ends and the program resumes
execution at the statement immediately following the loop.

We say that the statements in the body of the loop are conditionally executed because they
are executed only under the condition that the Boolean expression is true. If you are writ-
ing a while loop that has only one statement in its body, you do not have to enclose the
statement inside curly braces. Such a loop can be written in the following general format:

while (BooleanExpression)
statement;

When a while loop written in this format executes, the Boolean expression is tested. If
it is true, the one statement that appears on the next line is executed, and then the loop
starts over. If the Boolean expression is false, however, the loop ends.

Although the curly braces are not required when there is only one statement in the loop’s
body, it is still a good idea to use them, as shown in the following general format:

while (BooleanExpression)

{

statement;

}

When we discussed the various if statements in Chapter 4, we mentioned that this is a
good style of programming because it cuts down on errors. If you have more than one
statement in the body of a loop, those statements must be enclosed in curly braces. If you
get into the habit of always enclosing the conditionally executed statements in a set of
curly braces, it’s less likely that you will forget them.

You should also notice that the statements in the body of the loop are indented. As with
if statements, this indentation makes the code easier to read and debug. By indenting
the statements in the body of the loop, you visually set them apart from the surrounding
code.

Let’s look at an example. In the Chap05 folder of this book’s Student Sample Programs,
you will find a project named while Loop Demo. Figure 5-4 shows the application’s form.
As shown in the image on the left, the Button control’s name is goButton. At run time,
when you click the goButton control, the message box shown in the image on the right



5.2 The while Loop

Figure 5-4 The while Loop Demo application

ol while Loop Demo |M ol while Loop Demo lﬂl&

is displayed. When you click the OK button to close the message box, another identical
message box is displayed. The message box is displayed a total of five times.

Here is the code for the goButton_click event handler:

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15 3}

private void goButton Click(object sender, EventArgs e)
{

// Declare a variable to count the loop iterations.
int count = 1;

// Display "Hello" in a message box five times.
while (count <= 5)

{
// Display the message box.
MessageBox.Show("Hello");
// Add one to count.
count = count + 1;

}

Let’s take a closer look at this code. In line 4 an int variable named count is declared
and initialized with the value 1. A while loop begins in line 7. Notice that the while loop
tests the expression count <= 5. The statements in the body of the while loop repeat as
long as the count variable is less than or equal to 5. Inside the body of the loop, line 10
displays “Hello” in a message box, and then line 13 adds one to the count variable. This
is the last statement in the body of the loop, so after it executes, the loop starts over. It
tests the Boolean expression again, and if it is true, the statements in the body of the loop
are executed. This cycle repeats until the Boolean expression count <= 5 is false, as il-
lustrated in Figure 5-5. A flowchart for the loop is shown in Figure 5-6.

Figure 5-5 The while Loop

@ Test this Boolean expression.

while (count <= 5)

{

@After executing the // Display the message box. @ If the Boolean expression
body of the loop, MessageBox.Show ("Hello") ; is true, perform these
start over. statements. Otherwise,

// Add one to count. the loop ends.
count = count + 1;

271



272

Chapter 5

Loops, Files, and Random Numbers

Figure 5-6 Flowchart for the while Loop

True

Display “Hello” B Add 1 to count

False

The while Loop Is a Pretest Loop

The while loop is known as a pretest loop, which means it tests its condition before per-
forming an iteration. Because the test is done at the beginning of the loop, you usually
have to perform some steps prior to the loop to make sure that the loop executes at least
once. Notice the declaration of the count variable in the while Loop Demo program:

int count = 1;

The count variable is initialized with the value 1. If count had been initialized with a
value that is greater than 5, as shown in the following program sample, the loop would
never execute:

1 private void goButton Click(object sender, EventArgs e)
2 A

3 // Declare a variable to count the loop iterations.
4 int count = 6;

5

6 // This loop will never iterate!

7 while (count <= 5)

8 {

9 // Display the message box.
10 MessageBox.Show("Hello");
11
12 // Add one to count.
13 count = count + 1;
14 }
15 %

An important characteristic of the while loop is that the loop will never iterate if the
Boolean expression is false to start with. If you want to be sure that a while loop executes
the first time, you must initialize the relevant data in such a way that the Boolean expres-
sion starts out as true.

Counter Variables

In the while Loop Demo application, the variable count is initialized with the value 1,
and then 1 is added to the variable count during each loop iteration. The loop executes as
long as count is less than or equal to 5. The variable count is used as a counter variable,
which means it is regularly incremented in each loop iteration. In essence, the count vari-
able keeps count of the number of iterations the loop has performed. Counter variables
are commonly used to control the number of times that a loop iterates.

Tutorial 5-1 will give you some practice writing a loop and using a counter variable. In
the tutorial you will write a while loop that calculates the amount of interest earned by a
bank account each month for a number of months.



D

VideoNote

Tutorial 5-1:

Using a
Loop to
Calculate
an Account
Balance

5.2 The while Loop

Tutorial 5-1:
Using a Loop to Calculate an Account Balance

In this tutorial you complete the Ending Balance application. The project has already
been started for you and is located in the Chap05 folder of this book’s Student Sample
Programs. The application’s form is shown in Figure 5-7.

Figure 5-7 The Ending Balance form

ol Ending Balance | = | -
Starting Balance: -t startingBalTextBox
Number of Marths: < monthsTextBox
Ending Balance: <1 endingBalanceLabel
| Calculate | | Clear || Exit |
A

calculateButton clearButton exitButton

When you complete the application, it will allow the user to enter an account’s starting
balance into the startingBalTextBox control and the number of months that the ac-
count will be left to earn interest into the monthsTextBox control. When the user clicks
the calculateButton control, the application calculates the account’s balance at the end
of the time period. The account’s monthly interest rate is 0.005, and the interest is com-
pounded monthly.

Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Ending
Balance in the Chap035 folder of this book’s Student Sample Programs.

Step 2:  Open the Form1 form in the Designer. The form is shown, along with the names
of the important controls, in Figure 5-7.

Step 3: Now you will create the Click event handlers for the Button controls. At the end
of this tutorial, Program 5-1 shows the completed code for the form. You will
be instructed to refer to Program 5-1 as you write the event handlers.

In the Designer, double-click the calculateButton control. This opens the
code editor, and you will see an empty event handler named calculateButton
click. Complete the calculateButton Click event handler by typing
the code shown in lines 22-59 in Program 5-1. Let’s take a closer look at
the code:

Line 23: This statement declares a constant decimal named INTEREST RATE,
set to the value 0.005. This is the monthly interest rate.

Lines 26-28: These statements declare the following variables:

® balance, a decimal variable to hold the account balance.

e months, an int variable to hold the number of months that the account will
be left to earn interest.

® count, an int that is used to count the months as a loop iterates. Notice that
the count variable is initialized with the value 1.

273



274

Chapter 5

Loops, Files, and Random Numbers

Step 4:

Step 5:

Step 6:

Line 31: This if statement tries to convert startingBalTextBox.Text to a
decimal. If the conversion is successful, the result is stored in the balance vari-
able, and the program continues executing at line 33. If the conversion is not
successful, the program jumps to the else clause in line 55, and line 58 displays
the error message Invalid value for starting balance.

Line 34: This if statement tries to convert monthsTextBox.Text to an int. If
the conversion is successful, the result is stored in the months variable, and the
program continues executing at line 36. If the conversion is not successful, the
program jumps to the else clause in line 49, and line 52 displays the error mes-
sage Invalid value for months.

Line 37: This is the beginning of a while loop. The loop executes as long as the
expression count <= months is true.

Lines 39-43: These statements are the body of the loop. Line 40 calculates the
monthly interest and adds it to the balance variable. Line 43 adds 1 to the
count variable.

Line 47: This statement executes after the loop has finished all of its iterations.
It converts the value of the balance variable to a string (formatted as currency)
and assigns the resulting string to the endingBalanceLabel control’s Text
property.

Switch your view back to the Designer and double-click the clearButton control.
In the code editor you will see an empty event handler named clearButton Click.
Complete the clearButton_Click event handler by typing the code shown in lines
64-70 in Program 5-1.

Switch your view back to the Designer and double-click the exitButton control.
In the code editor you will see an empty event handler named exitButton Click.
Complete the exitButton Click event handler by typing the code shown in
lines 75-76 in Program 5-1.

Save the project. Then, press on the keyboard, or click the Start Debugging
button (j#) on the toolbar to compile and run the application.

First, enter 1000 as the starting balance and 48 as the number of months.
Click the Calculate Average button and $1,270.49 should appear as the
ending balance. Think about the value that you entered for the number of
months. How many times did the while loop in line 36 iterate? (Answer:
48 times.)

Next, click the Clear button to clear the TextBoxes and the ending balance.
Now, enter 100 as the starting balance and 1 as the number of months. Click
the Calculate Average button and $100.50 should appear as the ending bal-
ance. How many times did the while loop iterate this time? (Answer: 1 time.)

Continue to test the application as you wish. When you are finished, click the
Exit button and the form should close. (If you plan to continue to the next
tutorial, leave this project open in Visual Studio.)

Program 5.1 Completed Form1 code for the Ending Balance application

1 using System;

U s W N

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;



6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

5.2 The while Loop

using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

namespace Ending_ Balance

{

public partial class Forml : Form

{

public Forml()

{

}

InitializeComponent();

private void calculateButton Click(object sender, EventArgs e)

{

}

// Constant for the monthly interest rate.
const decimal INTEREST RATE = 0.005m;

// Local variables

decimal balance; // The account balance
int months; // The number of months
int count = 1; // Loop counter, initialized with 1

// Get the starting balance.
if (decimal.TryParse(startingBalTextBox.Text, out balance))
{

// Get the number of months.

if (int.TryParse(monthsTextBox.Text, out months))

{
// The following loop calculates the ending balance.
while (count <= months)
{
// Add this month's interest to the balance.
balance = balance + (INTEREST RATE * balance);
// Add one to the loop counter.
count = count + 1;
}
// Display the ending balance.
endingBalanceLabel.Text = balance.ToString("c");
}
else
{
// Invalid number of months was entered.
MessageBox.Show("Invalid value for months.");
}
}
else
{
// Invalid starting balance was entered.
MessageBox.Show("Invalid value for starting balance.");
}

private void clearButton Click(object sender, EventArgs e)

{

// Clear the TextBoxes and the endingBalanceLabel control.

2758



276 Chapter 5 Loops, Files, and Random Numbers

65 startingBalTextBox.Text = "";
66 monthsTextBox.Text = "";

67 endingBalanceLabel.Text = "";
68

69 // Reset the focus.

70 startingBalTextBox.Focus();
71 }

72

73 private void exitButton_Click(object sender, EventArgs e)
74 {

75 // Close the form.

76 this.Close();

77 }

78 }

79 }

Tutorial 5-2:
Enhancing the Ending Balance Application

D In this tutorial you enhance the Ending Balance application that you created in Tutorial
VideoNote 5-1. First, add a ListBox control to the application’s form, as shown in Figure 5-8. Then
Tutorial 5-2:  modify the calculateButton Click event handler so it displays each month’s ending
Enhancing balance in the ListBox. Figure 5-9 shows an example of how the form will appear when
the Ending the user has entered 1000 for the starting balance and 8 for the months.

Balance

Application

Figure 5-8 The modified Ending Balance form

I B
o-! Ending Balance | = | ] S

Starting Balance:

MNumber of Morths:

-t detaillListBox

Ending Balance: |:|

Calculate | | Clear | | Exit |

Step 1: Start Visual Studio (or Visual Studio Express) and open the Ending Balance
project that you completed in Tutorial 5-1.

Step 2: Enlarge the form so it is roughly the size shown in Figure 5-8. (310 pixels
wide by 325 pixels high should be sufficient.)

Step 3: Create a ListBox control named detailListBox. Resize the ListBox as
shown in Figure 5-8.



5.2 The while Loop

Figure 5-9 Example output

Step 4:

Step 5:

Step 6:

ul Ending Balance = = ﬁg‘l

Starting Balance: 1000

Number of Months: &

The ending balance for month 1is $1,005.00
The ending balance for month 2is $1,010.03
The ending balance for month 3is $1,015.08
The ending balance formonth 4 is $1,020.15
The ending balance for month 5is $1,025.25
The ending balance for month §is §1,030.38
The ending balance for month 7is $1,035.53
The ending balance formonth 8is 31,040.71

Ending Balance: £1.040.71

[ Caleulate | | Clear | | Exit |

Switch to the code editor and insert the code shown in lines 42-45 in Program
5-2. (The new lines of code are shown in bold.) The statement in lines 43-45
adds a string to the detailListBox control. If you examine the statement care-
fully, you will see that it uses concatenation to create a string in the following
format:

The ending balance for month count is balance.

In the actual string that is created, count will be the value of the count variable
and balance will be the value of the balance variable, formatted as currency.

Find the clearButton_click event handler in the code editor. Update the
comment as shown in lines 69-70, and insert the line of code shown in line 74.
(The lines are shown in bold.) The statement in line 74 clears the contents of the
detailListBox control.

Save the project. Then, press on the keyboard or click the Start Debugging
button (j¢) on the toolbar to compile and run the application.

As shown in Figure 5-9, enter 1000 as the starting balance and 8 as the number
of months. Click the Calculate Average button. Your output should look like
that shown in Figure 5-9. Click the Clear button and enter any other values you
wish to test the application further. When you are finished, click the Exit button
and the form should close.

Program 5.2 Completed Form1 code for the Ending Balance application

0 o Ul b WN P

((e]

10

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

11 namespace Ending Balance

12 {

277



278 Chapter 5 Loops, Files, and Random Numbers

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

public partial class Forml : Form
{
public Forml ()
{
InitializeComponent();
}
private void calculateButton Click(object sender, EventArgs e)
{
// Constant for the monthly interest rate.
const decimal INTEREST RATE = 0.005m;
// Local variables
decimal balance; // The account balance
int months; // The number of months
int count = 1; // Loop counter, initialized with 1
// Get the starting balance.
if (decimal.TryParse(startingBalTextBox.Text, out balance))
{
// Get the number of months.
if (int.TryParse(monthsTextBox.Text, out months))
{
// The following loop calculates the ending balance.
while (count <= months)
{
// Add this month's interest to the balance.
balance = balance + (INTEREST RATE * balance);
// Display this month's ending balance.
detailListBox.Items.Add("The ending balance " +
"for month " + count + " is " +
balance.ToString("c"));
// Add one to the loop counter.
count = count + 1;
}
// Display the ending balance.
endingBalanceLabel.Text = balance.ToString("c");
}
else
{
// Invalid number of months was entered.
MessageBox.Show("Invalid value for months.");
}
}
else
{
// Invalid starting balance was entered.
MessageBox.Show("Invalid value for starting balance.");
}
}

private void clearButton Click(object sender, EventArgs e)

{

// Clear the TextBoxes, the endingBalanceLabel control,
// and the ListBox.



5.2 The while Loop

71 startingBalTextBox.Text = "";
72 monthsTextBox.Text = "";

73 endingBalanceLabel.Text = "";
74 detailListBox.Items.Clear();
75

76 // Reset the focus.

77 startingBalTextBox.Focus();
78 }

79

80 private void exitButton Click(object sender, EventArgs e)
81 {

82 // Close the form.

83 this.Close();

84 }

85 }

86 }

Infinite Loops

In all but rare cases, loops must contain a way to terminate within themselves. This means
that something inside the loop must eventually make the loop’s Boolean expression false.
The loop in Program 5-2 stops when the expression count <= months is false. If a loop
does not have a way of stopping, it is called an infinite loop. An infinite loop continues to
repeat until the program is interrupted. Infinite loops usually occur when the programmer
forgets to write code inside the loop that makes the test condition false. In most circum-
stances you should avoid writing infinite loops.

The following code sample demonstrates an infinite loop. In line 1 the count variable is
declared and initialized with the value 1. The while loop that begins in line 5 executes
as long as count is less than or equal to 5. There is no code inside the loop to change the
count variable’s value, so the expression count <= 5 in line 5 is always true. As a conse-
quence, the loop has no way of stopping.

1 // Declare a variable to count the loop iterations.
2 int count = 1;
3
4 // How many times will this loop iterate?
5 while (count <= 5)
6 {
7 // Display the message box.
8 MessageBox.Show("Hello");
9}
Checkpoint

5.4 What is a loop iteration?

5.5 What is a counter variable?

5.6 What is a pretest loop?

5.7 Does the while loop test its condition before or after it performs an iteration?

5.8 What is an infinite loop?

279



280

Chapter 5

=
53

Loops, Files, and Random Numbers

The ++ and —- operators

1 CONCEPT: To increment a variable means to increase its value, and to decrement a

variable means to decrease its value. C# provides special operators to incre-
ment and decrement variables.

To increment a variable means to increase its value and to decrement a variable means to
decrease its value. Both of the following statements increment the variable num by 1:

num = num + 1;
num += 1;

And num is decremented by 1 in both the following statements:

num = num - 1;
num -= 1;

Incrementing and decrementing is so commonly done in programs that C# provides a set
of simple unary operators designed just for incrementing and decrementing variables. The
increment operator is ++, and the decrement operator is —-. The following statement uses
the ++ operator to add 1 to num:

num++;

After this statement executes, the value of num is increased by 1. The following statement
uses the —- operator to subtract 1 from num:

num--;

NOTE: The ++ operator is pronounced “plus plus,” and the -- operator is pronounced
“minus minus.” The expression num++ is pronounced “num plus plus,” and the
expression num-- is pronounced “num minus minus.”

In these examples, we have written the ++ and -- operators after their operands (or, on
the right side of their operands). This is called postfix mode. The operators can also be
written before (or, on the left side) of their operands, which is called prefix mode. Here
are examples:

++num;
--num;

When you write a simple statement to increment or decrement a variable, such as the ones
shown here, it doesn’t matter if you use prefix mode or postfix mode. The operators do
the same thing in either mode. However, if you write statements that mix these operators
with other operators or with other operations, there is a difference in the way the two
modes work. Such complex code can be difficult to understand and debug. When we use
the increment and decrement operators, we will do so only in ways that are straightfor-
ward and easy to understand, such as the statements previously shown.

We introduce these operators at this point because they are commonly used in loops. The
following code segment shows an example. In the code, the count variable is initialized
with the value 1. The while loop that begins in line 5 iterates as long as count is less than
or equal to 5. The statement in line 11 increments count. The loop will iterate 5 times.

1 // Declare a variable to count the loop iterations.
2 int count = 1;



5.4 The for Loop 281

3

4 // Display "Hello" in a message box five times.
5 while (count <= 5)

6 {

7 // Display the message box.

8 MessageBox.Show("Hello");

9
10 // Increment count.
11 count++;
12 %

In the next section, which discusses the for loop, you will see these operators used often.

Checkpoint
5.9 What messages will the following code sample display?
int number = 5;
number++;

MessageBox.Show(number.ToString());
number--;
MessageBox.Show(number.ToString());

5.10 How many times will the following loop iterate?

int count = 0;
while (count < 4)

{
MessageBox.Show(count.ToString());
count++;

=
5.4 The for Loop

1 CONCEPT: The for loop is ideal for performing a known number of iterations.

The for loop is specifically designed for situations requiring a counter variable to control
the number of times that a loop iterates. When you write a for loop, you specify three
actions:

¢ Initialization: This action takes place when the loop begins. It happens only once.

e Test: A Boolean expression is tested. If the expression is true, the loop iterates.
Otherwise, the loop stops.

e Update: This action takes place at the end of each loop iteration.

Figure 5-10 shows how these three actions are used in the logic of a for loop.
Here is the general format of the for loop:

for (InitializationExpression; TestExpression; UpdateExpression)

{
statement;
statement;
etc.

}

The statements that appear inside the curly braces are the body of the loop. These are the
statements that are executed each time the loop iterates. As with other control structures,



282 Chapter 5 Loops, Files, and Random Numbers

Figure 5-10 Logic of a for loop

'

Initialization

Boolean expression

Y

Statement(s)

Update

]

the curly braces are optional if the body of the loop contains only one statement, as shown
in the following general format:

for (InitializationExpression; TestExpression; UpdateExpression)
statement;

The first line of the for loop is the loop header. After the key word for, there are three
expressions inside the parentheses, separated by semicolons. (Notice that there is not a
semicolon after the third expression.)

The first expression is the initialization expression. It is normally used to initialize a
counter variable to its starting value. This is the first action performed by the loop, and it
is only done once. The second expression is the test expression. This is a Boolean expres-
sion that controls the execution of the loop. As long as this expression is true, the body
of the for loop will repeat. The for loop is a pretest loop, so it evaluates the test expres-
sion before each iteration. The third expression is the update expression. It executes at
the end of each iteration. Typically, this is a statement that increments the loop’s counter
variable.

Let’s assume that count is an int variable that has already been declared. Here is an ex-
ample of a simple for loop that displays “Hello” in a message box 5 times:

for (count = 1; count <= 5; count++)

{

MessageBox.Show("Hello");

}

In this loop, the initialization expression is count = 1, the test expression is count <= 5,
and the increment expression is count++. The body of the loop has one statement, which



5.4 The for Loop

is the call to MessageBox.Show method. This is a summary of what happens when this
loop executes:

1. The initialization expression count = 1 is executed. This assigns 1 to the count
variable.

2. The expression count <= 5 is tested. If the expression is true, continue with Step 3.
Otherwise, the loop is finished.

3. The statement MessageBox.Show("Hello"); is executed.

4. The update expression count++ is executed. This adds 1 to the count variable.

5. Go back to Step 2.

Figure 5-11 illustrates this sequence of events. Notice that Steps 2—4 are repeated as long
as the test expression is true. Figure 5-12 shows the logic of the loop as a flowchart.

Figure 5-11 Sequence of events in the for loop

Step 1: Perform the initialization. Step 2: Evaluate the test expression. If
it is true, go to step 3. Otherwise, the
loop stops.

for (count = 1; count <= 5; count++)

{
MessageBox.Show ("Hello") ; PR Step 3: Execute the body
} of the loop.

Step 4: Perform the update expression,
then go back to step 2.

Figure 5-12 Logic of the for loop

:

counter=1

True
Display "Hello" Add 1 to counter

False

Let’s look at a complete application that uses a for loop. In the Chap05 folder of this
book’s Student Sample Programs, you will find a project named Squares. The purpose of
the application is to display the numbers 1-10 and their squares. Figure 5-13 shows the
application’s form. As shown in the image on the left, the ListBox’s name is outputList-
Box and the Button control’s name is goButton. At run time, when you click the goBut-
ton control, the outputListBox control displays the program’s output, as shown in the
image on the right.

283



284

Chapter 5

Loops, Files, and Random Numbers

Figure 5-13 The Squares application

Here

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

- 7 ~ Is n N
o=l Sguares | = | & iﬁ] o=l Sguares | == iﬁ]

The square of 1is 1
The square of 2is 4
The square of 3is 5
The square of 41z 16
The square of 5is 25
The square of Gis 36
The square of 7is 45
The square of 8is 64
The square of 3is 81
The square of 10is 100

goButton > Go | G |

outputListBox -

is the code for the goButton_click event handler:

private void goButton_Click(object sender, EventArgs e)
{

// Constant for the maximum number
const int MAX VALUE = 10;

// Loop counter
int number;

// Display the list of numbers and their squares.

for (number = 1; number <= MAX VALUE; number++)
{
outputListBox.Items.Add("The square of " +
number + " is " + (number * number));
¥

}

Let’s take a closer look at the code:

Line 4 declares an int constant named MAX VALUE, set to the value 10. This is the
maximum number that we will use to calculate a square.

Line 7 declares an int variable named number. This variable is used both as a coun-
ter variable and in the calculation of squares.

Line 10 is the beginning of a for loop. You can see from this line that the loop
works in the following way:

Initialization: The number variable is initialized with the value 1.

Test: The expression number <= MAX VALUE is tested at the beginning of each
iteration.

Update: The expression number++ is executed at the end of each iteration.

Since the MAX_VALUE constant is set to the value 10, the number variable will be as-
signed the values 1 through 10 as the loop iterates.

Lines 12 and 13: This statement adds a line to the ListBox showing the current value
of the number variable, and the square of that value.

The for Loop Is a Pretest Loop

Because the for loop tests its Boolean expression before it performs an iteration, it is a
pretest loop. It is possible to write a for loop in such a way that it will never iterate. Here
is an example:

for (count = 6;

{

count <= 5; count++)

MessageBox.Show("Hello");



5.4 The for Loop 285

Because the variable count is initialized to a value that makes the Boolean expression
false from the beginning, this loop terminates as soon as it begins.

Declaring the Counter Variable
in the Initialization Expression

Not only may the counter variable be initialized in the initialization expression, but it may
also be declared there. The following code shows an example:

for (int count = 1; count <= 5; count++)

{

MessageBox.Show("Hello");

}

In this loop, the count variable is both declared and initialized in the initialization expres-
sion. If the variable is used only in the loop, it makes sense to define it in the loop header.
This makes the variable’s purpose clearer.

When a variable is declared in the initialization expression of a for loop, the scope of the
variable is limited to the loop. This means you cannot access the variable in statements
outside the loop. For example, the following code would cause a compiler error because
the statement in line 6 cannot access the count variable.

1 for (int count = 1; count <= 5; count++)

2 A

3 MessageBox.Show("Hello");

4}

5
6 MessageBox.Show("The value of count is " + count);

Other Forms of the Update Expression

In the update expression, the counter variable is typically incremented by 1. This makes it
convenient to use the ++ operator in the increment expression. This is not a requirement,
however. You can write virtually any expression you wish as the update expression. For
example, the following loop increments count by 10.

for (int count = 0; count <= 100; count += 10)

{

MessageBox.Show(count.ToString());

}

Notice that in this example the increment expression is count += 10. This means that at
the end of each iteration, 10 is added to count. During the first iteration count is set to 0,
during the second iteration count is set to 10, during the third iteration count is set to 20,
and so forth.

Counting Backward by Decrementing
the Counter Variable

Although the counter variable is usually incremented in a count-controlled loop, you can
alternatively decrement the counter variable. For example, look at the following code:

for (int count = 10; count >= 0; count--)

{

MessageBox.Show(count.ToString());

}
MessageBox.Show("Blastoff!");

In this loop the count variable is initialized with the value 10. The loop iterates as long as
count is greater than or equal to 0. At the end of each iteration, count is decremented by 1.



286

Chapter 5

Loops, Files, and Random Numbers

During the first iteration count is 10, during the second iteration count is 9, and so forth.
If this were in an actual program, it would display the numbers 10, 9, 8, and so forth,
down to 0, and then display Blastoff!

Avoiding Modifying the Counter Variable
in the Body of the for Loop

Be careful not to place a statement that modifies the counter variable in the body of the for
loop. All modifications of the control variable should take place in the update expression,
which is automatically executed at the end of each iteration. If a statement in the body of
the loop also modifies the counter variable, the loop probably will not terminate when you
expect it to. The following loop, for example, increments count twice for each iteration:

for (int count = 1; count <= 10; count++)

{

MessageBox.Show(count.ToString());
count++; // Wrong!

}

You have seen several examples of the for loop. Tutorial 5-3 gives you an opportunity to
write one. In the tutorial you will complete an application that uses a for loop to convert
a series of measurements from the metric system to the English system.

>

VideoNote

Tutorial 5-3:
Using the
for Loop

Tutorial 5-3:
Using the for Loop

Your friend Amanda just inherited a European sports car from her uncle. Amanda lives in
the United States, and she is afraid she will get a speeding ticket because the car’s speed-
ometer works in kilometers per hour. She has asked you to write a program that displays
a table of speeds in kilometers per hour with their values converted to miles per hour. The
formula for converting kilometers per hour to miles per hour is:

MPH = KPH * 0.6214

In the formula, MPH is the speed in miles per hour and KPH is the speed in kilometers
per hour.

The table that your program displays should show speeds from 60 kilometers per hour
through 130 kilometers per hour, in increments of 10, along with their values converted
to miles per hour. The table should look something like this:

KPH MPH
60 37.284
70 43.498
80 49.712
etes ..

After thinking about this table of values, you decide that you will write a for loop that
uses a counter variable to hold the kilometers-per-hour speeds. The counter’s starting
value will be 60, its ending value will be 130, and you will increase its value by 10 in the
update expression. Inside the loop you will use the counter variable to calculate a speed
in miles per hour.



5.4 The for Loop

The project, which is named Speed Converter, has already been started for you. It is
located in the Chap035 folder of this book’s Student Sample Programs. The application’s
form is shown in Figure 5-14. The image on the left in the figure shows the names of the
controls. The image on the right shows how the form appears after the user clicks the
Display Speeds button.

Figure 5-14 The Speed Converter form

ol Speed Converter = RN X ol Speed Converter = EEN X

-| | 6 KPH is the same as 37.284 MPH
70 KPH is the same as 424358 MPH
80 KPH is the same as 45.712 MPH
50 KPH is the same as 55.926 MPH
100 KPH is the same as 62.14 MPH
110 KPH is the same as 68.354 MPH
120 KPH is the same as 74.568 MPH
130 KPH is the same as 80.782 MPH

outputListBox

Display : | Display :
‘ Speeds H Ext ‘ | Speeds Ext

displayButton exitButton

Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Speed
Conwverter in the Chap035 folder of this book’s Student Sample Programs.

Step 2: Open the Form1 form in the Designer.

Step 3: In the Designer, double-click the displayButton control. This opens the code
editor, and you will see an empty event handler named displayButton Click.
Complete the displayButton Click event handler by typing the code shown
in lines 22-41 in Program 5-3 (at the end of this tutorial). Let’s take a closer
look at the code:

Lines 23-26: These statements declare the following named constants:

® START SPEED, an int constant set to 60. This is the starting speed for the
list of conversions and the value with which the loop’s counter variable is
initialized.

® END_SPEED, an int constant set to 130. This is the ending speed for the
list of conversions. When the counter variable exceeds this value, the loop
stops.

® INTERVAL, an int constant set to 10. This is the amount that you add to loop’s
counter variable after each iteration.

® CONVERSION FACTOR, a double constant set to 0.6214. This is the conversion
factor that you use in the formula to convert KPH to MPH.

Lines 29-30: These statements declare the following variables:

® kph, an int variable to hold the speed in kilometers per hour.

® mph, a double variable to hold the speed in miles per hour.

Line 33: This is the beginning of a for loop that works in the following way:

Initialization: The kph variable is initialized with the value of START SPEED,
which is 60.

Test: The expression kph <= END_SPEED is tested at the beginning of each
iteration.

287



288

Chapter 5

Loops, Files, and Random Numbers

Step 4:

Step 5:

Update: The expression kph += INTERVAL is executed at the end of each itera-
tion. This adds the value of INTERVAL (which is 10) to the kph variable.

As the loop iterates, the kph variable is assigned the values 60, 70, 80, and so
forth, through 130.

Line 36: This statement converts the value of the kph variable to miles per hour
and assigns the result to the mph variable.

Lines 39-40: This statement adds a line to the outputListBox control showing
the current value of the kph variable and the equivalent value in miles per hour.

Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you will see an empty event handler named exitButton_
click. Complete the exitButton_ Click event handler by typing the code
shown in lines 4647 in Program 5-3.

Save the project. Then, press on the keyboard or click the Start Debugging
button ([#) on the toolbar to compile and run the application. Click the Display
Speeds button, and you should see the output shown in the image on the right in
Figure 5-14. Click the Exit button to close the form.

Program 5-3 Completed Form1 code for the Speed Converter application

00 J o Ul & W N

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;

9 using System.Windows.Forms;

10

11 namespace Speed_Converter

12 {

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

public partial class Forml : Form

{
public Forml()
{
InitializeComponent();
}

private void displayButton Click(object sender, EventArgs e)
{

// Constants

const int START SPEED = 60;

const int END SPEED = 130;

const int INTERVAL = 10;

const double CONVERSION FACTOR = 0.6214;

// Variables
int kph; // Kilometers per hour
double mph; // Miles per hour

// Display the table of speeds.
for (kph = START SPEED; kph <= END_SPEED; kph += INTERVAL)
{



35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

5.5 The do-while Loop

// Calculate miles per hour.
mph = kph * CONVERSION FACTOR;

// Display the conversion.
outputListBox.Items.Add(kph + " KPH is the same as " +
mph + " MPH");

}

private void exitButton Click(object sender, EventArgs e)
{

// Close the form.

this.Close();

50 }

Checkpoint

5.11

5.12

5.13

Name the three expressions that appear inside the parentheses in the first line of a
for loop.

You want to write a for loop that displays I love to program 50 times. Assume
that you will use a variable named count as the counter variable.

a. What initialization expression will you use?

b. What test expression will you use?

c. What update expression will you use?

d. Write the loop.

What would the following code display?

for (int count = 1; count <= 5; count++)

{

MessageBox.Show(count.ToString());

}

5.14 What would the following code display?

|

for (int count = 0; count <= 500; count += 100)

{

MessageBox.Show(count.ToString());

5.5 The do-while Loop

1 CONCEPT: The do-while loop is a posttest loop, which means it performs an itera-

tion before testing its Boolean expression.

You have learned that the while loop and the for are pretest loops, which means they
test their Boolean expressions before performing an iteration. The do-while loop is a
posttest loop. This means it performs an iteration before testing its Boolean expression.
As a result, the do-while loop always performs at least one iteration, even if its Boolean
expression is false to begin with. The logic of a do-while loop is shown in Figure 5-15.

289



290

Chapter 5

Loops, Files, and Random Numbers

Figure 5-15 The logic of a do-while loop

¢<—

Statement(s)

Boolean
Expression

In the flowchart, one or more statements are executed, and then a Boolean expression is
tested. If the Boolean expression is true, the program’s execution flows back to the point
just above the first statement in the body of the loop, and this process repeats. If the
Boolean expression is false, the program exits the loop.

In code, the do-while loop looks something like an inverted while loop. Here is the
general format of the do-while loop:

do

{
statement;
statement;
etc.

} while (BooleanExpression);

As with the while loop, the braces are optional if there is only one statement in the body
of the loop. This is the general format of the do-while loop with only one conditionally
executed statement:

do
statement;
while (BooleanExpression);

Notice that a semicolon appears at the very end of the do-while statement. This semico-
lon is required; leaving it out is a common error.

The do-while loop is a posttest loop. This means it does not test its Boolean expression
until it has completed an iteration. As a result, the do-while loop always performs at
least one iteration, even if the expression is false to begin with. This differs from the be-
havior of a while loop. For example, in the following while loop, the statement that calls
MessageBox.Show will not execute at all:

int number = 1;
while (number < 0)
{

MessageBox.Show(number.ToString