

 STARTING OUT WITH

 Visual C# ®
2012

 Third Edition

 Tony Gaddis
 Haywood Community College

 Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

 Editorial Director, ECS: Marcia Horton
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Jenah Blitz-Stoehr
Director of Marketing: Christy Lesko
Marketing Manager: Yezan Alayan
Senior Marketing Coordinator: Kathryn Ferranti
Director of Production: Erin Gregg
Senior Managing Editor: Scott Disanno
Production Project Manager: Kayla Smith-Tarbox
Manufacturing Buyer: Lisa McDowell
Art Director: Anthony Gemellaro

Cover Designer: Joyce Wells
Manager, Rights and Permissions: Michael Joyce
Text Permission Coordinator: Jackie Bates, GEX
Cover Image: Dimitar Todorov/Alamy
Media Project Manager: Renata Butera
Full-Service Project Management:
 Mohinder Singh/Aptara®, Inc.
Composition: Aptara®, Inc.
Printer/Binder: Edwards Brothers
Cover Printer: Edwards Brothers
Text Font: Sabon LT Std

 ISBN 13: 978-0-13-312945-8
 ISBN 10: 0-13-312945-4

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the
appropriate page within text.

Credit: Figure B.11: WebBrowser Demo application http://www.pearsonhighered.com/gaddisbooks

 Copyright © 2012 by Microsoft Corporation. Used with permission from Microsoft. Microsoft and/or its respective suppliers
make no representations about the suitability of the information contained in the documents and related graphics published as
part of the services for any purpose. All such documents and related graphics are provided “as is” without warranty of any kind.
Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including
all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and
non-infringement. in no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential
damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or
other tortious action, arising out of or in connection with the use or performance of information available from the services.
The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are
periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes
in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within the
software version specified.

Copyright © 2014, 2011, 2008 Pearson Education, Inc., publishing as Addison-Wesley. All rights reserved. Printed in the United
States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request
to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax
your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

The programs and applications presented in this book have been included for their instructional value. They have been tested
with care, but are not guaranteed for any particular purpose. The publisher does not offer any warranties or representations,
nor does it accept any liabilities with respect to the programs or applications.

 Library of Congress Cataloging-in-Publication Data
Gaddis, Tony.
 Starting out with Visual C# 2012 / Tony Gaddis, Haywood Community College.—Third edition.
 pages cm
 Includes index.
 ISBN-13: 978-0-13-312945-8
 ISBN-10: 0-13-312945-4
 1. C# (Computer program language) 2. Visual programming languages (Computer science) I. Title.
 QA76.73.C154G33 2014
 005.13’3—dc23 2012051581

10 9 8 7 6 5 4 3 2 1

http://www.pearsonhighered.com/gaddisbooks
Firestorm
Typewritten Text

Firestorm
Typewritten Text
Proudly sourced and uploaded by [StormRG]
 Kickass Torrents | TPB | ET | h33t

iii

Chapter 1 Tutorial 1-1: Starting Visual Studio and Setting
Up the Environment . 28
Tutorial 1-2: Starting a New Visual C# Project. 31
Tutorial 1-3: Saving and Closing a Project. 33
Tutorial 1-4: Opening an Existing Project 41
Tutorial 1-5: Getting Familiar with the Visual
Studio Environment . 43

Chapter 2 Tutorial 2-1: Creating the GUI for the Hello World Application. . 63
Tutorial 2-2: Writing Code for the Hello World Application 77
Tutorial 2-3: Creating the Language Translator Application 88
Tutorial 2-4: Creating the Flags Application 96
Tutorial 2-5: Creating the Card Flip Application. 100
Solving the Clickable Number Images Problem 115

Chapter 3 Tutorial 3-1: The Birth Date String Application. 128
Tutorial 3-2: Calculating Fuel Economy 148
Tutorial 3-3: Creating the Sale Price Calculator Application
with Currency Formatting . 154
Tutorial 3-4: Creating the Test Average Application with
Exception Handling . 162
Tutorial 3-5: Creating the Change Counter Application 171
Solving the Tip, Tax, and Total Problem 192

Chapter 4 Tutorial 4-1: Completing the Test Score Average Application . . 202
Tutorial 4-2: Completing the Payroll with Overtime Application. 208
Tutorial 4-3: Completing the Loan Qualifier Application 214
Tutorial 4-4: Calculating Fuel Economy 237
Tutorial 4-5: Creating the Color Theme Application 246
Tutorial 4-6: Creating the Time Zone Application 253
Solving the Mass and Weight Problem 262

Chapter 5 Tutorial 5-1: Using a Loop to Calculate an Account Balance . . 273
Tutorial 5-2: Enhancing the Ending Balance Application 276
Tutorial 5-3: Using the for Loop . 286
Tutorial 5-4: Writing Data to a Text File 297
Tutorial 5-5: Appending Data to the Friend.txt File. 302
Tutorial 5-6: Using a Loop to Read to the End of a File 310
Tutorial 5-7: Calculating a Running Total 314
Tutorial 5-8: Simulating Coin Tosses. 325
Tutorial 5-9: Creating a Load Event Handler 329
Solving the Celsius-to-Fahrenheit Table Problem 336

Chapter 6 Tutorial 6-1: Creating and Calling Methods 345
Tutorial 6-2: Passing an Argument to a Method 352

Locations of VideoNotes
www.pearsonhighered.com/gaddis

VideoNote

www.pearsonhighered.com/gaddis

Tutorial 6-3: Using an Output Parameter 363
Tutorial 6-4: Writing a Value-Returning Method 372
Tutorial 6-5: Modularizing Input Validation with a
Boolean Method. 375
Solving the Kinetic Energy Problem . 384

Chapter 7 Tutorial 7-1: Using an Array to Hold a List of Random
Lottery Numbers . 399
Tutorial 7-2: Processing an Array . 424
Tutorial 7-3: Completing the Seating Chart Application 439
Tutorial 7-4: Completing the Test Score List Application 452
Solving the Total Sales Problem . 461

Chapter 8 Tutorial 8-1: Completing the Password Validation Application . 471
Tutorial 8-2: Completing the Telephone Format Application . . 484
Tutorial 8-3: Completing the Telephone Unformat Application 488
Tutorial 8-4: Completing the CSV Reader Application 494
Tutorial 8-5: Completing the Phonebook Application 509
Tutorial 8-6: Completing the Color Spectrum Application 517
Tutorial 8-7: Completing the Random Card Application 524
Solving the Sum of Numbers in a String Problem 531

Chapter 9 Tutorial 9-1: Creating and Using the Coin Class 542
Tutorial 9-2: Creating and Using the CellPhone Class 550
Tutorial 9-3: Creating and Using the BankAccount Class 556
Tutorial 9-4: Completing the Cell Phone Inventory Application 564
Tutorial 9-5: Creating an Application with Two Forms 581
Solving the Pet Class Problem. 590

Chapter 10 Tutorial 10-1: Creating and Testing the SavingsAccount and
CDAccount Classes . 603
Tutorial 10-2: Completing the Polymorphism Application 616
Tutorial 10-3: Completing the Computer Science Student
Application. 623
Solving the Employee and ProductionWorker
Classes Problem . 631

Chapter 11 Tutorial 11-1: Starting the Phone Book Application and
Creating the Phonelist.mdf Database 639
Tutorial 11-2: Completing the Phone Book Application 648
Tutorial 11-3: Creating the Products Application and
Using a Details View . 657
Tutorial 11-4: Creating the Product Lookup Application 669
Tutorial 11-5: Creating the Multiform Products Application . . . 672
Tutorial 11-6: Creating the Product Queries Application. 684
Tutorial 11-7: Creating the Product Queries Application. 693
Tutorial 11-8: Creating the Product Search Application 697
Solving the Personnel Database Problem 707

iv Locations of VideoNotes

v

 Brief Contents

 Chapter 1 Introduction to Computers and Programming 1

 Chapter 2 Introduction to Visual C# 53

 Chapter 3 Processing Data 119

 Chapter 4 Making Decisions 197

 Chapter 5 Loops, Files, and Random Numbers 267

 Chapter 6 Modularizing Your Code with Methods 339

 Chapter 7 Arrays and Lists 389

 Chapter 8 More about Processing Data 465

 Chapter 9 Classes and Multiform Projects 535

 Chapter 10 Inheritance and Polymorphism 593

 Chapter 11 Databases 633

 Appendix A C# Primitive Data Types 709

 Appendix B Additional User Interface Controls 711

 Appendix C ASCII/Unicode Characters 731

 Appendix D Answers to Checkpoint Questions 733

 Contents

 Preface xi

 Attention Students xvi

 Chapter 1 Introduction to Computers and Programming 1

 1.1 Introduction .. 1
 1.2 Hardware and Software ... 2
 1.3 How Computers Store Data ... 7
 1.4 How a Program Works .. 11
 1.5 Graphical User Interfaces ... 18
 1.6 Objects ... 21
 1.7 The Program Development Process ... 23
 1.8 Getting Started with the Visual Studio Environment 27
 TUTORIAL 1-1: Starting Visual Studio and Setting Up the Environment 28
 TUTORIAL 1-2: Starting a New Visual C# Project .. 31
 TUTORIAL 1-3: Saving and Closing a Project ... 33
 TUTORIAL 1-4: Opening an Existing Project .. 41
 TUTORIAL 1-5: Getting Familiar with the Visual Studio Environment 43

 Key Terms 44 • Review Questions 45 • Programming Problems 50

 Chapter 2 Introduction to Visual C# 53

 2.1 Getting Started with Forms and Controls .. 53
 2.2 Creating the GUI for Your First Visual C# Application:
 The Hello World Application . 62
 TUTORIAL 2-1: Creating the GUI for the Hello World Application 63
 2.3 Introduction to C# Code ... 67
 2.4 Writing Code for the Hello World Application . 77
 TUTORIAL 2-2: Writing Code for the Hello World Application 77
 2.5 Label Controls ... 80
 TUTORIAL 2-3: Creating the Language Translator Application 88
 2.6 Making Sense of IntelliSense .. 91
 2.7 PictureBox Controls . 92
 TUTORIAL 2-4: Creating the Flags Application . 96
 TUTORIAL 2-5: Creating the Card Flip Application . 100
 2.8 Comments, Blank Lines, and Indentation . 104
 2.9 Writing the Code to Close an Application’s Form 106
 2.10 Dealing with Syntax Errors . 107

 Key Terms 109 • Review Questions 109 • Programming Problems 114

vi

 Chapter 3 Processing Data 119

 3.1 Reading Input with TextBox Controls . 119
 3.2 A First Look at Variables . 121
 TUTORIAL 3-1: The Birth Date String Application . 128
 3.3 Numeric Data Types and Variables . 133
 3.4 Performing Calculations . 138
 3.5 Inputting and Outputting Numeric Values . 143
 TUTORIAL 3-2: Calculating Fuel Economy . 148
 3.6 Formatting Numbers with the ToString Method 151
 TUTORIAL 3-3: Creating the Sale Price Calculator Application with

Currency Formatting . 154
 3.7 Simple Exception Handling . 158
 TUTORIAL 3-4: Creating the Test Average Application with Exception Handling . . 162
 3.8 Using Named Constants . 166
 3.9 Declaring Variables as Fields . 167
 TUTORIAL 3-5: Creating the Change Counter Application 171
 3.10 Using the Math Class . 175
 3.11 More GUI Details . 177

 Key Terms 187 • Review Questions 187 • Programming Problems 192

 Chapter 4 Making Decisions 197

 4.1 Decision Structures and the if Statement . 197
 TUTORIAL 4-1: Completing the Test Score Average Application 202
 4.2 The if-else Statement . 206
 TUTORIAL 4-2: Completing the Payroll with Overtime Application 208
 4.3 Nested Decision Structures . 212
 TUTORIAL 4-3: Completing the Loan Qualifier Application 214
 4.4 Logical Operators . 223
 4.5 bool Variables and Flags . 228
 4.6 Comparing Strings . 228
 4.7 Preventing Data Conversion Exceptions with the TryParse Methods 232
 TUTORIAL 4-4: Calculating Fuel Economy . 237
 4.8 Input Validation . 240
 4.9 Radio Buttons and Check Boxes . 241
 TUTORIAL 4-5: Creating the Color Theme Application . 246
 4.10 The switch Statement . 248
 4.11 Introduction to List Boxes . 251
 TUTORIAL 4-6: Creating the Time Zone Application . 253

 Key Terms 257 • Review Questions 257 • Programming Problems 261

 Chapter 5 Loops, Files, and Random Numbers 267

 5.1 More about ListBoxes . 267
 5.2 The while Loop . 269
 TUTORIAL 5-1: Using a Loop to Calculate an Account Balance 273
 TUTORIAL 5-2: Enhancing the Ending Balance Application 276

 Contents vii

 5.3 The ++ and − − operators . 280
 5.4 The for Loop . 281
 TUTORIAL 5-3: Using the for Loop . 286
 5.5 The do-while Loop . 289
 5.6 Using Files for Data Storage . 291
 TUTORIAL 5-4: Writing Data to a Text File . 297
 TUTORIAL 5-5: Appending Data to the Friend.txt File . 302
 TUTORIAL 5-6: Using a Loop to Read to the End of a File 310
 TUTORIAL 5-7: Calculating a Running Total . 314
 5.7 The OpenFileDialog and SaveFileDialog Controls 317
 5.8 Random Numbers . 323
 TUTORIAL 5-8: Simulating Coin Tosses . 325
 5.9 The Load Event . 328
 TUTORIAL 5-9: Creating a Load Event Handler . 329

 Key Terms 332 • Review Questions 332 • Programming Problems 335

 Chapter 6 Modularizing Your Code with Methods 339

 6.1 Introduction to Methods . 339
 6.2 void Methods . 341
 TUTORIAL 6-1: Creating and Calling Methods . 345
 6.3 Passing Arguments to Methods . 349
 TUTORIAL 6-2: Passing an Argument to a Method . 352
 6.4 Passing Arguments by Reference . 360
 TUTORIAL 6-3: Using an Output Parameter . 363
 6.5 Value-Returning Methods . 367
 TUTORIAL 6-4: Writing a Value-Returning Method . 372
 TUTORIAL 6-5: Modularizing Input Validation with a Boolean Method 375

 Key Terms 381 • Review Questions 381 • Programming Problems 384

 Chapter 7 Arrays and Lists 389

 7.1 Value Types and Reference Types . 389
 7.2 Array Basics . 392
 TUTORIAL 7-1: Using an Array to Hold a List of Random Lottery Numbers 399
 7.3 Working with Files and Arrays . 404
 7.4 Passing Arrays as Arguments to Methods . 407
 7.5 Some Useful Array Algorithms . 414
 TUTORIAL 7-2: Processing an Array . 424
 7.6 Advanced Algorithms for Sorting and Searching Arrays 429
 7.7 Two-Dimensional Arrays . 436
 TUTORIAL 7-3: Completing the Seating Chart Application 439
 7.8 Jagged Arrays . 445
 7.9 The List Collection . 446
 TUTORIAL 7-4: Completing the Test Score List Application 452

 Key Terms 458 • Review Questions 458 • Programming Problems 461

viii Contents

 Contents ix

 Chapter 8 More about Processing Data 465

 8.1 Introduction . 465
 8.2 String and Character Processing . 465
 TUTORIAL 8-1: Completing the Password Validation Application 471
 TUTORIAL 8-2: Completing the Telephone Format Application 484
 TUTORIAL 8-3: Completing the Telephone Unformat Application 488
 TUTORIAL 8-4: Completing the CSV Reader Application . 494
 8.3 Structures . 499
 TUTORIAL 8-5: Completing the Phonebook Application . 509
 8.4 Enumerated Types . 514
 TUTORIAL 8-6: Completing the Color Spectrum Application 517
 8.5 The ImageList Control . 522
 TUTORIAL 8-7: Completing the Random Card Application 524

 Key Terms 527 • Review Questions 527 • Programming Problems 531

 Chapter 9 Classes and Multiform Projects 535

 9.1 Introduction to Classes . 535
 TUTORIAL 9-1: Creating and Using the Coin Class . 542
 9.2 Properties . 547
 TUTORIAL 9-2: Creating and Using the CellPhone Class . 550
 9.3 Parameterized Constructors and Overloading . 555
 TUTORIAL 9-3: Creating and Using the BankAccount Class 556
 9.4 Storing Class Type Objects in Arrays and Lists . 562
 TUTORIAL 9-4: Completing the Cell Phone Inventory Application 564
 9.5 Finding the Classes and Their Responsibilities in a Problem 568
 9.6 Creating Multiple Forms in a Project . 576
 TUTORIAL 9-5: Creating an Application with Two Forms 581
 Key Terms 586 • Review Questions 586 • Programming Problems 590

 Chapter 10 Inheritance and Polymorphism 593

 10.1 Inheritance . 593
 TUTORIAL 10-1: Creating and Testing the SavingsAccount and

 CDAccount Classes . 603
 10.2 Polymorphism . 611
 TUTORIAL 10-2: Completing the Polymorphism Application 616
 10.3 Abstract Classes . 621
 TUTORIAL 10-3: Completing the Computer Science Student Application 623

 Key Terms 628 • Review Questions 628 • Programming Problems 631

 Chapter 11 Databases 633

 11.1 Introduction to Database Management Systems . 633
 11.2 Tables, Rows, and Columns . 635
 11.3 Creating a Database in Visual Studio . 638

x Contents

 TUTORIAL 11-1: Starting the Phone Book Application and Creating the
Phonelist.mdf Database . 639

 11.4 The DataGridView Control . 648
 TUTORIAL 11-2: Completing the Phone Book Application 648
 11.5 Connecting to an Existing Database and Using Details View Controls 656
 TUTORIAL 11-3: Creating the Products Application and Using a Details View 657
 11.6 More about Data-Bound Controls . 665
 TUTORIAL 11-4: Creating the Product Lookup Application 669
 TUTORIAL 11-5: Creating the Multiform Products Application 672
 11.7 Selecting Data with the SQL Select Statement . 677
 TUTORIAL 11-6: Creating the Product Queries Application 684
 TUTORIAL 11-7: Creating the Product Queries Application 693
 TUTORIAL 11-8: Creating the Product Search Application 697

 Key Terms 703 • Review Questions 703 • Programming Problems 707

 Appendix A C# Primitive Data Types . 709

 Appendix B Additional User Interface Controls 711

 Appendix C ASCII/Unicode Characters . 731

 Appendix D Answers to Checkpoint Questions 733

 Index . 753

xi

 Preface

 Welcome to Starting Out with Visual C# 2012, Third Edition. This book is in-
tended for an introductory programming course and is ideal for students with

no prior experience. Students who are new to programming will appreciate the clear,
down-to-earth explanations and the detailed walk-throughs that are provided by the
hands-on tutorials. More experienced students will appreciate the depth of detail as they
learn about the .NET Framework, databases, and other topics.

 As with all the books in the Starting Out With series, the hallmark of this text is its clear,
friendly, and easy-to-understand writing. In addition, it is rich in example programs that
are concise and practical. The programs in this book include short examples that high-
light specific programming topics, as well as more involved examples that focus on prob-
lem solving. Each chapter provides numerous hands-on tutorials that guide the student
through each step of the development of an application. In addition to detailed, step-by-
step instructions, the tutorials also provide the application’s completed code and screen
captures of the completed forms.

 New to This Edition
 This edition has been revised to be compatible with Visual C# 2012 and the Visual Studio
2012 environment. In addition, a full set of VideoNotes has been developed to accom-
pany each tutorial in the book. Students can follow along with the author as he works
through each tutorial in the videos. Also, one programming exercise at the end of each
chapter has an accompanying VideoNote that shows the student how to create the
solution. The VideoNotes are available on the book’s companion Web site, at www.
pearsonhighered.com/gaddis .

 A GUI-Based Approach
 Beginning students are more motivated to learn programming when their applications
have some sort of graphical element, such as a graphical user interface. Students using this
book will learn to create GUI-based, event-driven, Visual C# applications. The Visual Stu-
dio (or Visual Studio Express for Windows Desktop) environment is used to create forms
that are rich with user interface controls and graphical images.

 Learn to Use Objects Early, Learn to Write Classes Later
 This book explains what objects are very early and shows the student how to create
objects from classes that are provided by the .NET Framework. It then introduces the
student to the fundamentals of input and output, control structures, methods, arrays and
lists, and file I/O. Then the student learns to write his or her own classes and explores the
topics of inheritance and polymorphism.

 Visual Studio and Visual Studio Express for
Windows Desktop
 The book can be used with either Visual Studio 2012 or Visual Studio 2012 Express
for Windows Desktop. The book is bundled with Microsoft’s Visual Studio 2012 Ex-
press for Windows Desktop—a streamlined product that captures the best elements of

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

xii Preface

Visual Studio in an ideal format for learning programming. The Express Edition offers an
 impressive set of tools for developing and debugging applications, including those that
work with databases and use SQL.

 Brief Overview of Each Chapter

 Chapter 1 : Introduction to Computers and Programming. This chapter begins
by giving a very concrete and easy-to-understand explanation of how computers work,
how data is stored and manipulated, and why we write programs in high-level languages.
In this chapter, the student learns what an object is and sees several examples by studying
the objects that make up a program’s graphical user interface. The chapter discusses steps
in the programming development cycle. It also gives an introduction to the Visual Studio
or Visual Studio Express environment.

 Chapter 2 : Introduction to Visual C#. In this chapter the student learns to create
forms with labels, buttons, and picture boxes and learns to modify control properties.
The student is introduced to C# code and learns the organizational structure of name-
spaces, classes, and methods. The student learns to write simple event-driven applications
that respond to button clicks or provide interaction through clickable images. The impor-
tance of commenting code is also discussed.

 Chapter 3 : Processing Data. This chapter introduces variables and data types. It
discusses the use of local variables and variables declared as fields within a form class.
The student learns to create applications that read input from TextBox controls, perform
mathematical operations, and produce formatted output. The student learns about the
exceptions that can occur when the user enters invalid data into a TextBox and learns to
write simple exception-handling code to deal with those problems. Named constants are
introduced as a way of representing unchanging values and creating self-documenting,
maintainable code. The student also learns more intricacies of creating graphical user
interfaces.

 Chapter 4 : Making Decisions. In this chapter the student learns about relational op-
erators and Boolean expressions and is shown how to control the flow of a program with
decision structures. The if , if-else , and if-else-if statements are covered. Nested
decision structures, logical operators, and the switch statement are also discussed. The
student learns to use the TryParse family of methods to validate input and prevent ex-
ceptions. Radio buttons, check boxes, and list boxes are introduced as ways to let the user
select items in a GUI.

 Chapter 5 : Loops, Files, and Random Numbers. This chapter shows the student
how to use loops to create repetition structures. The while loop, the for loop, and the
 do-while loop are presented. Counters, accumulators, and running totals are also dis-
cussed. This chapter also introduces sequential file input and output and using text files.
The student learns various programming techniques for writing data to text files and
reading the contents of test files. The chapter concludes with a discussion of pseudoran-
dom numbers, their applications, and how to generate them.

 Chapter 6 : Modularizing Your Code with Methods. In this chapter the student
first learns how to write and call void methods. The chapter shows the benefits of using
methods to modularize programs and discusses the top-down design approach. Then, the
student learns to pass arguments to methods. Passing by value, by reference, and output
parameters are discussed. Finally, the student learns to write value-returning methods.

 Chapter 7 : Arrays and Lists. Arrays and lists are reference-type objects in C#, so this
chapter begins by discussing the difference between value type and reference type objects
in the C# language. Then, the student learns to create and work with single-dimensional
and two-dimensional arrays. The student learns to pass arrays as arguments to methods,

transfer data between arrays and files, work with partially filled arrays, and create jagged
arrays. Many examples of array processing are provided including examples of finding
the sum, average, highest, and lowest values in an array. Finally, the student learns to
create List objects and store data in them.

 Chapter 8 : More about Processing Data. This chapter presents several diverse top-
ics. Now that the student has studied the fundamentals of Visual C# programming, he
or she can use the topics presented in this chapter to perform more advanced operations.
First, various string and character processing techniques are introduced. Then the student
learns to use structures to encapsulate several variables into a single item. The student
next learns to create and use enumerated types. Last, the student learns about the Image-
List control, a data structure for storing and retrieving images.

 Chapter 9 : Classes and Multiform Projects. Up to this point, the student has ex-
tensively used objects that are instances of .NET Framework classes. In this chapter the
student learns to write classes to create his or her own objects. The student learns to cre-
ate fields, methods, and constructors and learns to implement properties. Creating arrays
of objects and storing objects in a List are also discussed. A primer on finding the classes
in a problem as well as their responsibilities is provided. Finally, the chapter shows the
student how to create multiple form classes in a project, instantiate those classes, and
display them.

 Chapter 10 : Inheritance and Polymorphism. The study of classes continues in
this chapter with the subjects of inheritance and polymorphism. The topics covered
include base classes, derived classes, how constructors functions work in inheritance,
method overriding, and polymorphism. Abstract classes and abstract methods are also
discussed.

 Chapter 11 : Databases. This chapter introduces the student to basic database con-
cepts. The student first learns about tables, rows, and columns and how to create an SQL
Server database in Visual Studio. The student then learns how to connect a database to a
Visual C# application and display a table in a DataGridView control, a Details view, and
other data-bound controls. Finally, the student learns how to write SQL Select statements
to retrieve data from a table.

 Appendix A : C# Primitive Data Types. This appendix gives an overview of the
primitive data types available in C#.

 Appendix B : Additional User Interface Controls. This appendix shows how to
create a variety of controls such as ToolTips, combo boxes, scroll bars, TabControls,
WebBrowser controls, ErrorProvider components, and menu systems.

 Appendix C : ASCII/Unicode Characters. This appendix lists the ASCII (American
Standard Code for Information Interchange) character set, which is also the Latin Subset
of Unicode.

 Appendix D : Answers to Checkpoint Questions. This appendix provides the an-
swers to the Checkpoint questions that appear throughout each chapter in the book.

 Organization of the Text
 The text teaches Visual C# step by step. Each chapter covers a major set of program-
ming topics, introduces controls and GUI elements, and builds knowledge as the student
progresses through the book. Although the chapters can be easily taught in their existing
sequence, there is some flexibility. Figure P-1 shows the chapter dependencies. As shown
in the figure, Chapters 1 – 7 present the fundamentals of Visual C# programming and
should be covered in sequence. Then, you can move directly to Chapter 8 , Chapter 9 , or
 Chapter 11 . Chapter 10 should be covered after Chapter 9 .

 Preface xiii

 Features of the Text
 Concept Statements. Each major section of the text starts with a concept statement.
This statement concisely summarizes the main point of the section.

 Tutorials. Each chapter has several hands-on tutorials that guide the student through
the development of an application. Each tutorial provides detailed, step-by-step instruc-
tions, as well as the application’s completed code and screen captures of the completed
forms.

 Example Programs. Each chapter has an abundant number of code examples designed
to highlight the current topic.

 Notes. Notes appear at several places throughout the text. They are short explanations
of interesting or often misunderstood points relevant to the topic at hand.

 Tips. Tips advise the student on the best techniques for approaching different program-
ming or animation problems.

 Warnings. Warnings caution students about programming techniques or practices that
can lead to malfunctioning programs or lost data.

 Checkpoints. Checkpoints are questions placed at intervals throughout each chapter.
They are designed to query the student’s knowledge quickly after learning a new topic.
The answers to the Checkpoint questions can be found in Appendix D.

 Review Questions. Each chapter presents a thorough and diverse set of Review
 Questions. They include Multiple Choice, True/False, Algorithm Workbench, and Short
Answer.

 Programming Problems. Each chapter offers a pool of Programming Problems de-
signed to solidify the student’s knowledge of the topics currently being studied.

 VideoNotes. Each tutorial in the book has an accompanying online VideoNote that
can be accessed on the book’s companion Web site, at www.pearsonhighered.com/
gaddis . Students can follow along with the author as he works through each tutorial in
the videos. Also, one programming problem at the end of each chapter has an accompany-
ing VideoNote that shows the student how to create the solution.

xiv Preface

Chapters 1 - 7 (Cover in Order)
Programming and

Visual C# Fundamentals

Depend On

Chapter 8
More about

Processing Data

Chapter 9
Classes and

Multiform Projects

Chapter 11
Databases

Chapter 10
Inheritance and
Polymorphism

Depends On

 Figure P-1 Chapter dependencies

VideoNote

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

 Supplements
 Student. The following supplementary material is available with the book:

 • Source code and files required for the chapter tutorials are available at www.
pearsonhighered.com/gaddis

 • A DVD containing Microsoft Visual Studio 2012 Express for Windows Desktop
comes bundled with all new copies of this book.

 Instructor. The following supplements are available to qualified instructors:

 • Answers to all Review Questions in the text
 • Solutions for all Programming Problems in the text
 • Completed versions of all tutorials
 • PowerPoint presentation slides for every chapter
 • Test bank

 For information on how to access these supplements, visit the Pearson Education Instructor
Resource Center at www.pearsonhighered.com/irc or e-mail computing@pearson.com .

 Acknowledgments
 I would like to thank my family and friends for their love and support in all my many
projects. Thanks also go to Chris Rich for his work on the supplements. I am extremely
fortunate to have Matt Goldstein as my editor and Jenah Blitz-Stoehr as editorial assist-
ant. Matt and Jenah’s support and encouragement make it a pleasure to write chapters
and meet deadlines. I am also fortunate to have Yez Alayan as marketing manager and
Kathryn Ferranti as marketing coordinator. They do a great job getting my books out
to the academic community. I had a great production team, led by Kayla Smith-Tarbox,
working tirelessly to bring this book from manuscript to print. Thanks to you all!

 About the Author
 Tony Gaddis is the principal author of the Starting Out With series of textbooks. Tony
has nearly 20 years experience teaching computer science courses at Haywood Commu-
nity College in North Carolina. He is a highly acclaimed instructor who was previously
selected as the North Carolina Community College Teacher of the Year and has received
the Teaching Excellence award from the National Institute for Staff and Organizational
Development.

 The Starting Out With series includes introductory books using the C++ programming
language, the Java™ programming language, Microsoft ® Visual Basic ® , Microsoft ® C# ® ,
Python, Programming Logic and Design, and Alice, all published by the Addison-Wesley
imprint of Pearson Education.

 Preface xv

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis
www.pearsonhighered.com/irc

xvi

Attention Students

Installing Visual C#
To complete the tutorials and programming problems in this book, you need to install
Visual C# 2012 on your computer. When purchased new, this textbook is packaged with
a Microsoft DVD that contains Visual Studio 2012 Express for Windows Desktop. Install
this on your computer before starting any of the book’s tutorials.

If your book does not have the accompanying Microsoft DVD, you can download Visual
Studio 2012 Express for Windows Destktop from the following Web site:

http://www.microsoft.com/express/Downloads/

NOTE: If you are working in your school’s computer lab, there is a good chance that
Microsoft Visual Studio has been installed, rather than Visual Studio Express. If this
is the case, your instructor will show you how to start Visual Studio. The tutorials
in this book can be completed with either Visual Studio 2012 or Visual Studio 2012
Express for Windows Desktop.

Installing the Student Sample Program Files
The Student Sample Program files that accompany this book are available for download
from the book’s companion Web site at:

http://www.pearsonhighered.com/gaddis

These files are required for many of the book’s tutorials. Simply download the Student
Sample Program files to a location on your hard drive where you can easily access them.

http://www.microsoft.com/express/Downloads/
http://www.pearsonhighered.com/gaddis

 TOPICS

 Introduction to Computers
and Programming C

H
A

P
T

E
R

 1.1 Introduction

 1.2 Hardware and Software

 1.3 How Computers Store Data

 1.4 How a Program Works

 1.5 Graphical User Interfaces

 1.6 Objects

 1.7 The Program Development Process

 1.8 Getting Started with the Visual
Studio Environment

1

1

 1.1 Introduction
 Think about some of the different ways that people use computers. In school, students
use computers for tasks such as writing papers, searching for articles, sending e-mail, and
participating in online classes. At work, people use computers to analyze data, make pres-
entations, conduct business transactions, communicate with customers and coworkers,
control machines in manufacturing facilities, and do many other things. At home, people
use computers for tasks such as paying bills, shopping online, staying connected with
friends and family, and playing computer games. And don’t forget that smart phones,
iPods ® , car navigation systems, and many other devices are computers as well. The uses
of computers are almost limitless in our everyday lives.

 Computers can do such a wide variety of things because they can be programmed, which
means that computers are designed not to do just one job, but to do any job that their pro-
grams tell them to do. A program is a set of instructions that a computer follows to perform a
task. For example, Figure 1-1 shows screens from two commonly used Microsoft programs:
Word and PowerPoint. Word is a word processing program that allows you to create, edit,
and print documents. PowerPoint allows you to create graphical slides and use them as part
of a presentation.

 Programs are commonly referred to as software . Software is essential to a computer because
without software, a computer can do nothing. All the software that makes our computers use-
ful is created by individuals known as programmers, or software developers. A programmer ,
or software developer , is a person with the training and skills necessary to design, create, and
test computer programs. Computer programming is an exciting and rewarding career. Today,
programmers work in business, medicine, government, law enforcement, agriculture, academ-
ics, entertainment, and almost every other field.

2 Chapter 1 Introduction to Computers and Programming

 This book introduces you to the fundamental concepts of computer programming using
the C# programming language. Before we begin exploring those concepts, you need to
understand a few basic things about computers and how they work. This chapter provides
a solid foundation of knowledge that you will continually rely on as you study computer
science. First, we discuss the physical components that computers are commonly made of.
Then, we look at how computers store data and execute programs. Next, we introduce
you to two fundamental elements of modern software design: graphical user interfaces and
objects. Finally, we give a quick introduction to the software used to write C# programs.

 Figure 1-1 A word processing program and a presentation program

 1.2 Hardware and Software

 CONCEPT: The physical devices that a computer is made of are referred to as the
computer’s hardware. The programs that run on a computer are referred
to as software.

 Hardware
 Hardware refers to all the physical devices, or components, of which a computer is made. A
computer is not one single device but is a system of devices that all work together. Like the
different instruments in a symphony orchestra, each device in a computer plays its own part.

 If you have ever shopped for a computer, you have probably seen sales literature listing
components such as microprocessors, memory, disk drives, video displays, graphics cards,
and so on. Unless you already know a lot about computers or at least have a friend who
does, understanding what these different components do can be confusing. As shown in
 Figure 1-2 , a typical computer system consists of the following major components:

 • The central processing unit (CPU)
 • Main memory
 • Secondary storage devices
 • Input devices
 • Output devices

 Let’s take a closer look at each of these components.

 1.2 Hardware and Software 3

 The CPU

 When a computer is performing the tasks that a program tells it to do, we say that the
computer is running or executing the program. The central processing unit , or CPU , is the
part of a computer that actually runs programs. The CPU is the most important compo-
nent in a computer because without it, the computer could not run software.

 In the earliest computers, CPUs were huge devices made of electrical and mechanical
components such as vacuum tubes and switches. Figure 1-3 shows such a device. The two

Input
Devices

Output
Devices

Secondary
Storage Devices

Central Processing
Unit

Main Memory
(RAM)

 Figure 1-2 Typical components of a computer system

 Figure 1-3 The ENIAC computer

4 Chapter 1 Introduction to Computers and Programming

women in the photo are working with the historic ENIAC computer. The ENIAC , consid-
ered by many to be the world’s first programmable electronic computer, was built in 1945
to calculate artillery ballistic tables for the U.S. Army. This machine, which was primarily
one big CPU, was 8 feet tall and 100 feet long and weighed 30 tons.

 Today, CPUs are small chips known as microprocessors . Figure 1-4 shows a photo of a
lab technician holding a modern-day microprocessor. In addition to being much smaller
than the old electromechanical CPUs in early computers, microprocessors are also much
more powerful.

 Figure 1-4 A lab technician holds a modern microprocessor

 Main Memory

 You can think of main memory as the computer’s work area. This is where the computer
stores a program while the program is running, as well as the data that the program is
working with. For example, suppose you are using a word processing program to write an
essay for one of your classes. While you do this, both the word processing program and
the essay are stored in main memory.

 Main memory is commonly known as random-access memory , or RAM . It is called this
because the CPU is able to quickly access data stored at any random location in RAM.
RAM is usually a volatile type of memory that is used only for temporary storage while
a program is running. When the computer is turned off, the contents of RAM are erased.
Inside your computer, RAM is stored in chips, similar to the ones shown in Figure 1-5 .

 Secondary Storage Devices

 Secondary storage is a type of memory that can hold data for long periods of time, even
when there is no power to the computer. Programs are normally stored in secondary
memory and loaded into main memory as needed. Important data, such as word process-
ing documents, payroll data, and inventory records, is saved to secondary storage as well.

 The most common type of secondary storage device is the disk drive. A disk drive stores
data by magnetically encoding it onto a circular disk. Most computers have a disk drive
mounted inside their case. External disk drives, which connect to one of the computer’s

 1.2 Hardware and Software 5

communication ports, are also available. External disk drives can be used to create backup
copies of important data or to move data to another computer.

 In addition to external disk drives, many types of devices have been created for copy-
ing data and for moving it to other computers. For many years floppy disk drives were
popular. A floppy disk drive records data onto a small floppy disk, which can be removed
from the drive. Floppy disks have many disadvantages, however. For example, they have
limited storage capacity and are slow to access data. The use of floppy disk drives has de-
clined dramatically in recent years in favor of superior devices such as USB drives. Uni-
versal serial bus (USB) drives are small devices that plug into the computer’s USB port and
appear to the system as disk drives. These drives do not actually contain a disk, however.
They store data in a special type of memory known as flash memory. USB drives, which
are also known as memory sticks and flash drives, are inexpensive, reliable, and small
enough to be carried in a pocket.

 Optical devices such as the compact disc (CD) and the digital versatile disc (DVD) are
also popular for data storage. Data is not recorded magnetically on an optical disc but is
encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect
the pits and thus read the encoded data. Optical discs hold large amounts of data, and
because recordable CD and DVD drives are now commonplace, they are good mediums
for creating backup copies of data.

 Input Devices

 Input is any data the computer collects from people and from other devices. The compo-
nent that collects the data and sends it to the computer is called an input device . Common
input devices are the keyboard, mouse, scanner, microphone, and digital camera. Disk
drives and optical drives can also be considered input devices because programs and data
are retrieved from them and loaded into the computer’s memory.

 Output Devices

 Output is any data the computer produces for people or for other devices. It might be
a sales report, a list of names, or a graphic image. The data is sent to an output device ,
which formats and presents it. Common output devices are video displays and printers.
Disk drives and CD or DVD recorders can also be considered output devices because the
system sends data to them in order to be saved.

 Figure 1-5 Memory chips

6 Chapter 1 Introduction to Computers and Programming

 Software
 If a computer is to function, software is not optional. Everything that a computer does,
from the time you turn the power switch on until you shut the system down, is under the
control of software. There are two general categories of software: system software and
application software. Most computer programs clearly fit into one of these two catego-
ries. Let’s take a closer look at each.

 System Software

 The programs that control and manage the basic operations of a computer are generally
referred to as system software . System software typically includes the following types of
programs:

 Operating Systems

 An operating system is the most fundamental set of programs on a computer. The op-
erating system controls the internal operations of the computer’s hardware, manages
all the devices connected to the computer, allows data to be saved to and retrieved
from storage devices, and allows other programs to run on the computer.

 Utility Programs

 A utility program performs a specialized task that enhances the computer’s operation
or safeguards data. Examples of utility programs are virus scanners, file-compression
programs, and data-backup programs.

 Software Development Tools

 The software tools that programmers use to create, modify, and test software are re-
ferred to as software development tools . Assemblers, compilers, and interpreters, which
are discussed later in this chapter, are examples of programs that fall into this category.

 Application Software

 Programs that make a computer useful for everyday tasks are known as application soft-
ware . These are the programs that people normally spend most of their time running on
their computers. Figure 1-1 , at the beginning of this chapter, shows screens from two
commonly used applications—Microsoft Word, a word processing program, and Microsoft
Powerpoint, a presentation program. Some other examples of application software are
spreadsheet programs, e-mail programs, Web browsers, and game programs.

 Checkpoint

 1.1 What is a program?

 1.2 What is hardware?

 1.3 List the five major components of a computer system.

 1.4 What part of the computer actually runs programs?

 1.5 What part of the computer serves as a work area to store a program and its data
while the program is running?

 1.6 What part of the computer holds data for long periods of time, even when there is
no power to the computer?

 1.7 What part of the computer collects data from people and from other devices?

 1.8 What part of the computer formats and presents data for people or other devices?

 1.3 How Computers Store Data 7

 1.9 What fundamental set of programs control the internal operations of the computer’s
hardware?

 1.10 What do you call a program that performs a specialized task, such as a virus
scanner, a file-compression program, or a data-backup program?

 1.11 Word processing programs, spreadsheet programs, e-mail programs, Web
browsers, and game programs belong to what category of software?

 1.3 How Computers Store Data

 CONCEPT: All data stored in a computer is converted to sequences of 0s and 1s.

 A computer’s memory is divided into tiny storage locations known as bytes. One byte is
enough memory to store only a letter of the alphabet or a small number. In order to do
anything meaningful, a computer has to have lots of bytes. Most computers today have
millions, or even billions, of bytes of memory.

 Each byte is divided into eight smaller storage locations known as bits. The term bit
stands for binary digit . Computer scientists usually think of bits as tiny switches that can
be either on or off. Bits aren’t actual “switches,” however, at least not in the conventional
sense. In most computer systems, bits are tiny electrical components that can hold either a
positive or a negative charge. Computer scientists think of a positive charge as a switch in
the on position and a negative charge as a switch in the off position. Figure 1-6 shows the
way that a computer scientist might think of a byte of memory: as a collection of switches
that are each flipped to either the on or the off position.

OFF

ON

OFF OFFOFF

ON ON ON

 Figure 1-6 A byte thought of as eight switches

 When a piece of data is stored in a byte, the computer sets the eight bits to an on/off pattern
that represents the data. For example, the pattern shown on the left in Figure 1-7 shows how
the number 77 would be stored in a byte, and the pattern on the right shows how the letter
A would be stored in a byte. In a moment you will see how these patterns are determined.

The number 77 stored in a byte. The letter A stored in a byte.

OFF

ON

OFF OFFOFF

ON ON ON

OFF

ON

OFF OFF OFF OFF OFF

ON

 Figure 1-7 Bit patterns for the number 77 and the letter A

8 Chapter 1 Introduction to Computers and Programming

 Storing Numbers
 A bit can be used in a very limited way to represent numbers. Depending on whether the
bit is turned on or off, it can represent one of two different values. In computer systems,
a bit that is turned off represents the number 0 and a bit that is turned on represents
the number 1. This corresponds perfectly to the binary numbering system . In the binary
numbering system (or binary , as it is usually called), all numeric values are written as
sequences of 0s and 1s. Here is an example of a number that is written in binary:

 10011101

 The position of each digit in a binary number has a value assigned to it. Starting with the
rightmost digit and moving left, the position values are 2 0 , 2 1 , 2 2 , 2 3 , and so forth, as shown
in Figure 1-8 . Figure 1-9 shows the same diagram with the position values calculated. Start-
ing with the rightmost digit and moving left, the position values are 1, 2, 4, 8, and so forth.

1 0 0 1 1 1 0 1
2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 7

 Figure 1-8 The values of binary digits as powers of 2

 1
 2
 4
 8
 16
 32
 64
128

1 0 0 1 1 1 0 1

 Figure 1-9 The values of binary digits

 To determine the value of a binary number, you simply add up the position values of all
the 1s. For example, in the binary number 10011101, the position values of the 1s are
1, 4, 8, 16, and 128. This is shown in Figure 1-10 . The sum of all these position values is
157. So, the value of the binary number 10011101 is 157.

1 0 0 1 1 1 0 1
 1

 4
 8
 16

128

1 + 4 + 8 + 16 + 128 = 157

 Figure 1-10 Determining the value of 10011101

 1.3 How Computers Store Data 9

 Figure 1-11 shows how you can picture the number 157 stored in a byte of memory. Each
1 is represented by a bit in the on position, and each 0 is represented by a bit in the off
position.

128 + 16 + 8 + 4 + 1 = 157

1

128 64 32 16 8 4 2 1Position
values

1

0

11 1 1

0 0

 Figure 1-11 The bit pattern for 157

 When all the bits in a byte are set to 0 (turned off), then the value of the byte is 0. When
all the bits in a byte are set to 1 (turned on), then the byte holds the largest value that can
be stored in it. The largest value that can be stored in a byte is 1 + 2 + 4 + 8 + 16 + 32 +
64 + 128 = 255. This limit exists because there are only eight bits in a byte.

 What if you need to store a number larger than 255? The answer is simple: use more than
1 byte. For example, suppose we put 2 bytes together. That gives us 16 bits. The position
values of those 16 bits would be 2 0 , 2 1 , 2 2 , 2 3 , and so forth, up through 2 15 . As shown
in Figure 1-12 , the maximum value that can be stored in 2 bytes is 65,535. If you need to
store a number larger than this, then more bytes are necessary.

32768 + 16384 + 8192 + 4096 + 2048 + 1024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 65535

128 64 32 16 8 4 2 116384 8192 4096 2048 512 256102432768Position
values

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Figure 1-12 Two bytes used for a large number

 TIP: In case you’re feeling overwhelmed by all this, relax! You will not have to
actually convert numbers to binary while programming. Knowing that this process is
taking place inside the computer will help you as you learn, and in the long term this
knowledge will make you a better programmer.

 Storing Characters
 Any piece of data that is stored in a computer’s memory must be stored as a binary
number. That includes characters such as letters and punctuation marks. When a charac-
ter is stored in memory, it is first converted to a numeric code. The numeric code is then
stored in memory as a binary number.

10 Chapter 1 Introduction to Computers and Programming

 Over the years, different coding schemes have been developed to represent characters in
computer memory. Historically, the most important of these coding schemes is ASCII ,
which stands for the American Standard Code for Information Interchange . ASCII is a set
of 128 numeric codes that represent the English letters, various punctuation marks, and
other characters. For example, the ASCII code for the uppercase letter A is 65. When you
type an uppercase A on your computer keyboard, the number 65 is stored in memory (as
a binary number, of course). This is shown in Figure 1-13 .

65A
00

1

0

1

0 0 0

 Figure 1-13 The letter A stored in memory as the number 65

 TIP: The acronym ASCII is pronounced “askee.”

 In case you are curious, the ASCII code for uppercase B is 66, for uppercase C is 67, and
so forth. Appendix C shows all the ASCII codes and the characters they represent.

 The ASCII character set was developed in the early 1960s and was eventually adopted by
almost all computer manufacturers. ASCII is limited, however, because it defines codes
for only 128 characters. To remedy this, the Unicode character set was developed in the
early 1990s. Unicode is an extensive encoding scheme that is compatible with ASCII and
can also represent the characters of many of the world’s languages. Today, Unicode is
quickly becoming the standard character set used in the computer industry.

 Advanced Number Storage
 Earlier you saw how numbers are stored in memory. Perhaps it occurred to you then that
the binary numbering system can be used to represent only integer numbers, beginning
with 0. Negative numbers and real numbers (such as 3.14159) cannot be represented
using the simple binary numbering technique we discussed.

 Computers are able to store negative numbers and real numbers in memory, but to do
so they use encoding schemes along with the binary numbering system. Negative num-
bers are encoded using a technique known as two’s complement , and real numbers are
encoded in floating-point notation . You don’t need to know how these encoding schemes
work, only that they are used to convert negative numbers and real numbers to binary
format.

 Other Types of Data
 Computers are often referred to as digital devices. The term digital can be used to describe
anything that uses binary numbers. Digital data is data that is stored in binary, and a
 digital device is any device that works with binary data. In this section we have discussed
how numbers and characters are stored in binary, but computers also work with many
other types of digital data.

 For example, consider the pictures that you take with your digital camera. These images are
composed of tiny dots of color known as pixels . (The term pixel stands for picture element .)

 1.4 How a Program Works 11

As shown in Figure 1-14 , each pixel in an image is converted to a numeric code that repre-
sents the pixel’s color. The numeric code is stored in memory as a binary number.

100
10101110100010101101

 Figure 1-14 A digital image stored in binary format

 The music that you play on your CD player, iPod, or MP3 player is also digital. A digital
song is broken into small pieces known as samples . Each sample is converted to a binary
number, which can be stored in memory. The more samples that a song is divided into,
the more it sounds like the original music when it is played back. A CD-quality song is
divided into more than 44,000 samples per second!

 Checkpoint

 1.12 What amount of memory is enough to store a letter of the alphabet or a small
number?

 1.13 What do you call a tiny “switch” that can be set to either on or off?

 1.14 In what numbering system are all numeric values written as sequences of 0s and 1s?

 1.15 What is the purpose of ASCII?

 1.16 What encoding scheme is extensive enough to represent all the characters of many
of the languages in the world?

 1.17 What do the terms digital data and digital device mean?

 1.4 How a Program Works

 CONCEPT: A computer’s CPU can understand only instructions written in machine
language. Because people find it very difficult to write entire programs in
machine language, other programming languages have been invented.

 Earlier, we stated that the CPU is the most important component in a computer because it
is the part of the computer that runs programs. Sometimes the CPU is called the “computer’s
brain” and is described as being “smart.” Although these are common metaphors, you
should understand that the CPU is not a brain, and it is not smart. The CPU is an elec-
tronic device that is designed to do specific things. In particular, the CPU is designed to
perform operations such as the following:

 • Reading a piece of data from main memory
 • Adding two numbers
 • Subtracting one number from another number
 • Multiplying two numbers
 • Dividing one number by another number
 • Moving a piece of data from one memory location to another
 • Determining whether one value is equal to another value.

12 Chapter 1 Introduction to Computers and Programming

 As you can see from this list, the CPU performs simple operations on pieces of data. The
CPU does nothing on its own, however. It has to be told what to do, which is the purpose
of a program. A program is nothing more than a list of instructions that cause the CPU to
perform operations.

 Each instruction in a program is a command that tells the CPU to perform a specific op-
eration. Here’s an example of an instruction that might appear in a program:

 10110000

 To you and me, this is only a series of 0s and 1s. To a CPU, however, this is an instruc-
tion to perform an operation. 1 It is written in 0s and 1s because CPUs understand only
instructions that are written in machine language , and machine language instructions are
always written in binary.

 A machine language instruction exists for each operation that a CPU is capable of per-
forming. For example, there is an instruction for adding numbers; there is an instruction
for subtracting one number from another; and so forth. The entire set of instructions that
a CPU can execute is known as the CPU’s instruction set .

 1 The example shown is an actual instruction for an Intel microprocessor. It tells the microprocessor to move a
value into the CPU.

 NOTE: There are several microprocessor companies today that manufacture CPUs.
Some of the more well-known microprocessor companies are Intel, AMD, and
Motorola. If you look carefully at your computer, you might find a tag showing a
logo for its microprocessor.

 Each brand of microprocessor has its own unique instruction set, which is typically
understood only by microprocessors of the same brand. For example, Intel micro-
processors understand the same instructions, but they do not understand instructions
for Motorola microprocessors.

 The machine language instruction that was previously shown is an example of only
one instruction. It takes a lot more than one instruction, however, for the computer to
do anything meaningful. Because the operations that a CPU knows how to perform are
so basic in nature, a meaningful task can be accomplished only if the CPU performs
many operations. For example, if you want your computer to calculate the amount of
interest that you will earn from your savings account this year, the CPU will have to
perform a large number of instructions, carried out in the proper sequence. It is not
unusual for a program to contain thousands or even a million or more machine lan-
guage instructions.

 Programs are usually stored on a secondary storage device such as a disk drive. When you
install a program on your computer, the program is typically copied to your computer’s
disk drive from a CD-ROM or perhaps downloaded from a Web site.

 Although a program can be stored on a secondary storage device such as a disk drive,
it has to be copied into main memory, or RAM, each time the CPU executes it. For ex-
ample, suppose you have a word processing program on your computer’s disk. To ex-
ecute the program, you use the mouse to double-click the program’s icon. This causes
the program to be copied from the disk into main memory. Then, the computer’s CPU
executes the copy of the program that is in main memory. This process is illustrated in
 Figure 1-15 .

 1.4 How a Program Works 13

 When a CPU executes the instructions in a program, it is engaged in a process that is
known as the fetch-decode-execute cycle . This cycle, which consists of three steps, is re-
peated for each instruction in the program. The steps are as follows:

 1. Fetch A program is a long sequence of machine language instructions. The first step
of the cycle is to fetch, or read, the next instruction from memory into the CPU.

 2. Decode A machine language instruction is a binary number that represents a com-
mand that tells the CPU to perform an operation. In this step the CPU decodes the
instruction that was just fetched from memory, to determine which operation it
should perform.

 3. Execute The last step in the cycle is to execute, or perform, the operation.

 Figure 1-16 illustrates these steps.

Main memory
(RAM)

Disk drive CPU

The program is copied
from secondary storage

to main memory.

The CPU executes
the program in
main memory.

 Figure 1-15 A program being copied into main memory and then executed

CPU

Main memory
(RAM)

10111000
10100001

10011110
00011010
11011100

and so forth...

10100001
1 Fetch the next instruction

in the program.

Decode the instruction
to determine which
operation to perform.

3 Execute the instruction
(perform the operation).

2

 Figure 1-16 The fetch-decode-execute cycle

 From Machine Language to Assembly Language
 Computers can execute only programs that are written in machine language. As previously
mentioned, a program can have thousands or even a million or more binary instructions,
and writing such a program would be very tedious and time consuming. Programming
in machine language would also be very difficult because putting a 0 or a 1 in the wrong
place would cause an error.

 Although a computer’s CPU understands only machine language, it is impractical for
people to write programs in machine language. For this reason, assembly language was

14 Chapter 1 Introduction to Computers and Programming

created in the early days of computing 2 as an alternative to machine language. Instead
of using binary numbers for instructions, assembly language uses short words that are
known as mnemonics . For example, in assembly language, the mnemonic add typically
means to add numbers, mul typically means to multiply numbers, and mov typically means
to move a value to a location in memory. When a programmer uses assembly language to
write a program, he or she can write short mnemonics instead of binary numbers.

 2 The fi rst assembly language was most likely developed in the 1940s at Cambridge University for use with a
historical computer known as the EDSAC.

 NOTE: There are many different versions of assembly language. It was mentioned
earlier that each brand of CPU has its own machine language instruction set. Each
brand of CPU typically has its own assembly language as well.

 Assembly language programs cannot be executed by the CPU, however. The CPU under-
stands only machine language, so a special program known as an assembler is used to
translate an assembly language program to a machine language program. This process is
shown in Figure 1-17 . The CPU can then execute the machine language program that the
assembler creates.

mov eax, Z
add eax, 2
mov Y, eax

and so forth...
Assembler

10111000

10100001

10011110
and so forth...

Assembly Language
Program

Machine Language
Program

 Figure 1-17 An assembler translating an assembly language program to a machine
language program

 High-Level Languages
 Although assembly language makes it unnecessary to write binary machine language in-
structions, it is not without difficulties. Assembly language is primarily a direct substitute
for machine language, and like machine language, it requires that you know a lot about
the CPU. Assembly language also requires that you write a large number of instructions
for even the simplest program. Because assembly language is so close in nature to machine
language, it is referred to as a low-level language .

 In the 1950s, a new generation of programming languages known as high-level lan-
guages began to appear. A high-level language allows you to create powerful and complex
programs without knowing how the CPU works and without writing large numbers of
low-level instructions. In addition, most high-level languages use words that are easy to
understand. For example, if a programmer were using COBOL (which was one of the
early high-level languages created in the 1950s), he or she would write the following in-
struction to display the message Hello world on the computer screen:

 DISPLAY “Hello world”

 1.4 How a Program Works 15

 Doing the same thing in assembly language would require several instructions and an
intimate knowledge of how the CPU interacts with the computer’s video circuitry. As you
can see from this example, high-level languages allow programmers to concentrate on the
tasks they want to perform with their programs rather than the details of how the CPU
will execute those programs.

 Since the 1950s, thousands of high-level languages have been created. Table 1-1 lists sev-
eral of the more well-known languages.

 Table 1-1 Programming languages

 Keywords, Operators, and Syntax: An Overview
 Each high-level language has its own set of predefined words that the programmer must use
to write a program. The words that make up a high-level programming language are known
as keywords or reserved words . Each keyword has a specific meaning and cannot be used
for any other purpose. Table 1-2 shows the keywords in the C# programming language.

 Language Description

 Ada Ada was created in the 1970s, primarily for applications used by the U.S.
Department of Defense. The language is named in honor of Countess Ada
Lovelace, an influential and historical figure in the field of computing.

 BASIC B eginners A ll-purpose S ymbolic I nstruction C ode is a general-purpose language
that was originally designed in the early 1960s to be simple enough for beginners
to learn. Today, there are many different versions of BASIC.

 FORTRAN FOR mula TRAN slator was the first high-level programming language. It was
designed in the 1950s for performing complex mathematical calculations.

 COBOL C ommon B usiness- O riented L anguage was created in the 1950s and was designed
for business applications.

 Pascal Pascal was created in 1970 and was originally designed for teaching programming.
The language was named in honor of the mathematician, physicist, and
philosopher Blaise Pascal.

 C and C++ C and C++ (pronounced “c plus plus”) are powerful, general-purpose languages
developed at Bell Laboratories. The C language was created in 1972, and the C++
language was created in 1983.

 C# Pronounced “c sharp,” this language was created by Microsoft around the year
2000 for developing applications based on the Microsoft .NET platform.

 Java Java was created by Sun Microsystems in the early 1990s. It can be used to develop
programs that run on a single computer or over the Internet from a Web server.

 JavaScript JavaScript, created in the 1990s, can be used in Web pages. Despite its name,
JavaScript is not related to Java.

 Python Python is a general-purpose language created in the early 1990s. It has become
popular in business and academic applications.

 Ruby Ruby is a general-purpose language that was created in the 1990s. It is increasingly
becoming a popular language for programs that run on Web servers.

 Visual Basic Visual Basic (commonly known as VB) is a Microsoft programming language and
software development environment that allows programmers to create Windows-
based applications quickly. VB was originally created in the early 1990s.

16 Chapter 1 Introduction to Computers and Programming

 In addition to keywords, programming languages have operators that perform various
operations on data. For example, all programming languages have math operators that
perform arithmetic. In C#, as well as most other languages, the + sign is an operator that
adds two numbers. The following adds 12 and 75:

 12 + 75

 There are numerous other operators in the C# language, many of which you will learn
about as you progress through this text.

 In addition to keywords and operators, each language also has its own syntax , which is
a set of rules that must be strictly followed when writing a program. The syntax rules
dictate how keywords, operators, and various punctuation characters must be used in
a program. When you are learning a programming language, you must learn the syntax
rules for that particular language.

 The individual instructions that you use to write a program in a high-level programming
language are called statements . A programming statement can consist of keywords,
operators, punctuation, and other allowable programming elements, arranged in the
proper sequence to perform an operation.

 Compilers and Interpreters
 Because the CPU understands only machine language instructions, programs that are
written in a high-level language must be translated into machine language. Depending
on the language in which a program has been written, the programmer will use either a
compiler or an interpreter to make the translation.

 A compiler is a program that translates a high-level language program into a separate ma-
chine language program. The machine language program can then be executed any time it

 Table 1-2 The C# keywords

 abstract as base bool
 break byte case catch
 char checked class const
 continue decimal default delegate
 do double else enum
 event explicit extern false
 finally fixed float for
 foreach goto if implicit
 in in int interface
 internal is lock long
 namespace new null object
 out override operator params
 private protected public readonly
 ref return sbyte sealed
 short sizeof stackalloc static
 string struct switch this
 throw true try typeof
 uint ulong unchecked unsafe
 ushort using virtual void
 volatile while

 1.4 How a Program Works 17

is needed. This is shown in Figure 1-18 . As shown in the figure, compiling and executing
are two different processes.

Display "Hello,
Earthling"

and so forth...

High-level language
program

Compiler
10111000
10100001

10011110
and so forth...

10111000
10100001

10011110
and so forth...

Machine language
program

Machine language
program

CPU

The compiler is used
to translate the high-level

language program to a
machine language program.

The machine language
program can be executed
at any time, without using

the compiler.

1

2

 Figure 1-18 Compiling a high-level program and executing it

 Some programming languages use an interpreter , which is a program that both translates
and executes the instructions in a high-level language program. As the interpreter reads
each individual instruction in the program, it converts it to a machine language instruc-
tion and then immediately executes it. This process repeats for every instruction in the
program. This process is illustrated in Figure 1-19 . Because interpreters combine transla-
tion and execution, they typically do not create separate machine language programs.

The interpreter translates each high-level instruction to
its equivalent machine language instructions and

immediately executes them.

This process is repeated for each high-level instruction.

Display "Hello,
Earthling"

and so forth...

program

Interpreter 10100001

Machine language
instruction

CPU

 Figure 1-19 Executing a high-level program with an interpreter

 The statements that a programmer writes in a high-level language are called source code ,
or simply code . Typically, the programmer types a program’s code into a text editor and
then saves the code in a file on the computer’s disk. Next, the programmer uses a compiler
to translate the code into a machine language program or an interpreter to translate and
execute the code. If the code contains a syntax error, however, it cannot be translated.
A syntax error is a mistake such as a misspelled keyword, a missing punctuation charac-
ter, or the incorrect use of an operator. When this happens, the compiler or interpreter
displays an error message, indicating that the program contains a syntax error. The pro-
grammer corrects the error and then attempts once again to translate the program.

18 Chapter 1 Introduction to Computers and Programming

 Checkpoint

 1.18 A CPU understands instructions that are written only in what language?

 1.19 A program has to be copied into what type of memory each time the CPU executes
it?

 1.20 When a CPU executes the instructions in a program, it is engaged in what process?

 1.21 What is assembly language?

 1.22 What type of programming language allows you to create powerful and complex
programs without knowing how the CPU works?

 1.23 Each language has a set of rules that must be strictly followed when writing a
program. What is this set of rules called?

 1.24 What do you call a program that translates a high-level language program into a
separate machine language program?

 1.25 What do you call a program that both translates and executes the instructions in a
high-level language program?

 1.26 What type of mistake is usually caused by a misspelled keyword, a missing
punctuation character, or the incorrect use of an operator?

 NOTE: Human languages also have syntax rules. Do you remember when you took
your first English class and you learned all those rules about commas, apostrophes,
capitalization, and so forth? You were learning the syntax of the English language.

 Although people commonly violate the syntax rules of their native language when
speaking and writing, other people usually understand what they mean. Unfortu-
nately, compilers and interpreters do not have this ability. If even a single syntax error
appears in a program, the program cannot be compiled or executed.

 1.5 Graphical User Interfaces

 CONCEPT: A graphical user interface allows the user to interact with a program using
graphical elements such as icons, buttons, and dialog boxes.

 Programmers commonly use the term user to describe any hypothetical person that
might be using a computer and its programs. A computer’s user interface is the part
of the computer with which the user interacts. One part of the user interface consists
of hardware devices, such as the keyboard and the video display. Another part of the
user interface involves the way that the computer’s operating system and application
software accepts commands from the user. For many years, the only way that the user
could interact with a computer was through a command line interface. A command
line interface , which is also known as a console interface , requires the user to type
commands. If a command is typed correctly, it is executed and the results are dis-
played. If a command is not typed correctly, an error message is displayed. Figure 1-20
shows the Windows command prompt window, which is an example of a command
line interface.

 1.5 Graphical User Interfaces 19

 Many computer users, especially beginners, find command line interfaces difficult to use. This
is because there are many commands to be learned, and each command has its own syntax,
much like a programming statement. If a command isn’t entered correctly, it will not work.

 In the 1980s, a new type of interface known as a graphical user interface came into use in
commercial operating systems. A graphical user interface , or GUI (pronounced “gooey”),
allows the user to interact with the operating system and application programs through
graphical elements on the screen. GUIs also popularized the use of the mouse as an input
device. Instead of requiring the user to type commands on the keyboard, GUIs allow the
user to point at graphical elements and click the mouse button to activate them.

 Much of the interaction with a GUI is done through windows that display information
and allow the user to perform actions. Figure 1-21 shows an example of a window that
allows the user to change the system’s Internet settings. Instead of typing cryptic com-
mands, the user interacts with graphical elements such as icons, buttons, and slider bars.

 Figure 1-20 A command line interface

 Figure 1-21 A window in a graphical user interface

20 Chapter 1 Introduction to Computers and Programming

 Event-Driven GUI Programs
 In a text-based environment, such as a command line interface, programs determine the
order in which things happen. For example, Figure 1-22 shows the interaction that has
taken place in a text environment with a program that calculates an employee’s gross pay.
First, the program told the user to enter the number of hours worked. In the figure, the
user entered 40 and pressed the e key. Next, the program told the user to enter his or
her hourly pay rate. In the figure, the user entered 50.00, and pressed the e key. Then,
the program displayed the user’s gross pay. As the program was running, the user had no
choice but to enter the data in the order requested.

 Figure 1-22 Interaction with a program in a text environment

 In a GUI environment, however, the user determines the order in which things happen.
For example, Figure 1-23 shows a GUI program that calculates an employee’s gross pay.
Notice that there are boxes in which the user enters the number of hours worked and
the hourly pay rate. The user can enter the hours and the pay rate in any order he or she
wishes. If the user makes a mistake, the user can erase the data that was entered and re-
type it. When the user is ready to calculate the area, he or she uses the mouse to click the
 Calculate Gross Pay button and the program performs the calculation.

 Figure 1-23 A GUI program

 Because GUI programs must respond to the actions of the user, they are said to be event
driven . The user causes events, such as the clicking of a button, and the program responds
to those events.

 This book focuses exclusively on the development of GUI applications using the C# pro-
gramming language. As you work through this book, you will learn to create applications
that interact with the user through windows containing graphical objects. You will also
learn how to program your applications to respond to the events that take place as the
user interacts with them.

 Checkpoint

 1.27 What is a user interface?

 1.28 How does a command line interface work?

 1.6 Objects 21

 1.29 When the user runs a program in a text-based environment, such as the command
line, what determines the order in which things happen?

 1.30 What is an event-driven program?

 1.6 Objects

 CONCEPT: An object is a program component that contains data and performs opera-
tions. Programs use objects to perform specific tasks.

 Have you ever driven a car? If so, you know that a car is made of a lot of components. A
car has a steering wheel, an accelerator pedal, a brake pedal, a gear shifter, a speedometer,
and numerous other devices with which the driver interacts. There are also a lot of com-
ponents under the hood, such as the engine, the battery, the radiator, and so forth. A car
is not just one single object, but rather a collection of objects that work together.

 This same notion also applies to computer programming. Most programming languages
that are used today are object oriented . When you use an object-oriented language, you
create programs by putting together a collection of objects. In programming, an object
is not a physical device, however, like a steering wheel or a brake pedal. Instead, it is a
software component that exists in the computer’s memory. In software, an object has two
general capabilities:

 • An object can store data. The data stored in an object are commonly called fields , or
 properties .

 • An object can perform operations. The operations that an object can perform are
called methods .

 When you write a program using an object-oriented language, you use objects to accom-
plish specific tasks. Some objects have a visual part that can be seen on the screen. For
example, Figure 1-24 shows the wage-calculator program that we discussed in the previ-
ous section. The graphical user interface is made of the following objects:

 Form object A window that is displayed on the screen is called a Form object .
 Figure 1-24 shows a Form object that contains several other graph-
ical objects.

 Label objects A Label object displays text on a form. The form shown in Figure
 1-24 contains two Label objects. One of the Label objects displays
the text Number of Hours Worked and the other Label object dis-
plays the text Hourly Pay Rate .

TextBox objectsLabel objects

Button objects

Form object

 Figure 1-24 Objects used in a GUI

22 Chapter 1 Introduction to Computers and Programming

 TextBox objects A TextBox object appears as a rectangular region that can ac-
cept keyboard input from the user. The form shown in Figure
 1-24 has two TextBox objects: one in which the user enters the
number of hours worked and another in which the user enters
the hourly pay rate.

 Button objects A Button object appears on a form as a button with a caption
written across its face. When the user clicks a Button object with
the mouse, an action takes place. The form in Figure 1-24 has
two Button objects. One shows the caption Calculate Gross Pay .
When the user clicks this button, the program calculates and
displays the gross pay. The other button shows the caption Exit .
When the user clicks this button, the program ends.

 Forms, Labels, TextBoxes, and Buttons are just a few of the objects that you will learn
to use in C#. As you study this book, you will create applications that incorporate many
different types of objects.

 Visible versus Invisible Objects
 Objects that are visible in a program’s graphical user interface are commonly referred to
as controls . We could say that the form shown in Figure 1-24 contains two Label controls,
two TextBox controls, and two Button controls. When an object is referred to as a con-
trol, it simply means that the object plays a role in a program’s graphical user interface.

 Not all objects can be seen on the screen, however. Some objects exist only in memory for
the purpose of helping your program perform some task. For example, there are objects
that read data from files, objects that generate random numbers, objects that store and
sort large collections of data, and so forth. These types of objects help your program per-
form tasks, but they do not directly display anything on the screen. When you are writing
a program, you will use objects that can help your program perform its tasks. Some of
the objects that you use will be controls (visible in the program’s GUI), and other objects
will be invisible.

 Classes: Where Objects Come From
 Objects are very useful, but they don’t just magically appear in your program. Before a
specific type of object can be used, that object has to be created in memory. And, before
an object can be created in memory, you must have a class for the object.

 A class is code that describes a particular type of object. It specifies the data that an object
can hold (the object’s fields and properties), and the actions that an object can perform
(the object’s methods). You will learn much more about classes as you progress through
this book, but for now, just think of a class as a code “blueprint” that can be used to cre-
ate a particular type of object.

 The .NET Framework
 C# is a very popular programming language, but there are a lot of things it cannot do by
itself. For example, you cannot use C# alone to create a graphical user interface, read data
from files, work with databases, or many of the other things that programs commonly
need to do. C# provides only the basic keywords and operators that you need to construct
a program.

 So, if the C# language doesn’t provide the classes and other code necessary for creating
GUIs and performing many other advanced operations, where do those classes and code

 1.7 The Program Development Process 23

come from? The answer is the .NET Framework. The .NET Framework is a collection of
classes and other code that can be used, along with a programming language such as C#,
to create programs for the Windows operating system. For example, the .NET Frame-
work provides classes to create Forms, TextBoxes, Labels, Buttons, and many other types
of objects.

 When you use Visual C# to write programs, you are using a combination of the C# lan-
guage and the .NET Framework. As you work through this book you will not only learn
C#, but you will also learn about many of the classes and other features provided by the
.NET Framework.

 Writing Your Own Classes
 The .NET Framework provides many prewritten classes ready for use in your programs.
There will be times, however, that you will wish you had an object to perform a specific
task, and no such class will exist in the .NET Framework. This is not a problem because
in C# you can write your own classes that have the specific fields, properties, and methods
that you need for any situation. In Chapter 9 you will learn to create classes for the spe-
cific objects that you need in your programs.

 Checkpoint

 1.31 What is an object?

 1.32 What type of language is used to create programs by putting together a collection
of objects?

 1.33 What two general capabilities does an object have?

 1.34 What term is commonly used to refer to objects such as TextBoxes, Labels, and
Buttons that are visible in a program’s graphical user interface?

 1.35 What is the purpose of an object that cannot be seen on the screen and exists only
in memory?

 1.36 What is a class?

 1.37 What is the .NET Framework?

 1.38 Why might you need to write your own classes?

 1.7 The Program Development Process

 CONCEPT: Creating a program requires several steps, which include designing the
program’s logic, creating the user interface, writing code, testing, and
debugging.

 The Program Development Cycle
 Previously in this chapter you learned that programmers typically use high-level languages
such as C# to create programs. There is much more to creating a program than writing
code, however. The process of creating a program that works correctly typically requires
the six phases shown in Figure 1-25 . The entire process is known as the program develop-
ment cycle .

24 Chapter 1 Introduction to Computers and Programming

 Let’s take a closer look at each stage in the cycle.

 1. Understand the Program’s Purpose

 When beginning a new programming project, it is essential that you understand what
the program is supposed to do. Most programs perform the following three-step
process:

 Step 1. Input is received.
 Step 2. Some process is performed on the input.
 Step 3. Output is produced.

 Input is any data that the program receives while it is running. Once input is received,
some process, such as a mathematical calculation, is usually performed on it. The
results of the process are then sent out of the program as output. If you can identify
these three elements of a program (input, process, and output), then you are on your
way to understanding what the program is supposed to do.

 For example, suppose you have been asked to write a program to calculate and dis-
play the gross pay for an hourly paid employee. Here is a summary of the program’s
input, process, and output:

 Input:

 • Input the number of hours that the employee worked.
 • Input the employee’s hourly pay rate.

 Process:

 • Multiply the number of hours worked by the hourly pay rate. The result is the
employee’s gross pay.

 Output:

 • Display the employee’s gross pay on the screen.

 2. Design the Graphical User Interface (GUI)

 Once you clearly understand what the program is supposed to do, you can begin de-
signing its graphical user interface. Often, you will find it helpful to draw a sketch of
each form that the program displays. For example, if you are designing a program that
calculates gross pay, Figure 1-26 shows how you might sketch the program’s form.

 Notice that the sketch identifies each type of control (GUI object) that will appear on
the form. The TextBox controls will allow the user to enter input. The user will type the
number of hours worked into one of the TextBoxes and the employee’s hourly pay rate
into the other TextBox. Notice that Label controls are placed on the form to tell the
user what data to enter. When the user clicks the Button control that reads Calculate
Gross Pay , the program will display the employee’s gross pay on the screen in a pop-up
window. When the user clicks the Button control that reads Exit , the program will end.

 Once you are satisfied with the sketches that you have created for the program’s
forms, you can begin creating the actual forms on the computer. As a Visual C# pro-
grammer, you have a powerful environment known as Visual Studio at your disposal.
Visual Studio gives you a “what you see is what you get” editor that allows you to
visually design a program’s forms. You can use Visual Studio to create the program’s

Understand the
Program's Purpose

Design the
Program's GUI

Design the
Program's Logic Write the Code Correct Syntax

Errors
Test the Program &
Correct Logic Errors

 Figure 1-25 The program development cycle

 1.7 The Program Development Process 25

forms, place all the necessary controls on the forms, and set each control’s properties
so it has the desired appearance. For example, Figure 1-27 shows the actual form
that you might create for the wage-calculator program, which calculates gross pay.

Number of Hours Worked

Hourly Pay Rate

Calculate
Gross Pay Exit

TextBox control

TextBox control

Button control Button control

Label control

Label control

 Figure 1-26 Form sketch

 Figure 1-27 Form for the wage-calculator program

 3. Design the Program’s Logic

 In this phase you break down each task that the program must perform into a series
of logical steps. For example, if you look back at Figure 1-27 , notice that the pay-
calculating program’s form has a Button control that reads Calculate Gross Pay .
When the user clicks this button, you want the program to display the employee’s
gross pay. Here are the steps that the program should take to perform that task:

 Step 1. Get the number of hours worked from the appropriate TextBox.
 Step 2. Get the hourly pay rate from the appropriate TextBox.
 Step 3. Calculate the gross pay as the number of hours worked times the hourly pay
rate.
 Step 4. Display the gross pay in a pop-up window.

 This is an example of an algorithm , which is a set of well-defined, logical steps that
must be taken to perform a task. An algorithm that is written out in this manner,
in plain English statements, is called pseudocode . (The word pseudo means fake, so
pseudocode is fake code.) The process of informally writing out the steps of an algo-
rithm in pseudocode before attempting to write any actual code is very helpful when

26 Chapter 1 Introduction to Computers and Programming

you are designing a program. Because you do not have to worry about breaking any
syntax rules, you can focus on the logical steps that the program must perform.

 Flowcharting is another tool that programmers use to design programs. A flowchart
is a diagram that graphically depicts the steps of an algorithm. Figure 1-28 shows
how you might create a flowchart for the wage-calculator algorithm. Notice that
there are three types of symbols in the flowchart: ovals, parallelograms, and a rect-
angle. Each of these symbols represents a step in the algorithm, as described here:

 • The ovals, which appear at the top and bottom of the fl owchart, are called termi-
nal symbols . The Start terminal symbol marks the program’s starting point and
the End terminal symbol marks the program’s ending point.

 • Parallelograms are used as input symbols and output symbols . They represent
steps in which the program reads input or displays output.

 • Rectangles are used as processing symbols . They represent steps in which the pro-
gram performs some process on data, such as a mathematical calculation.

End

Start

Calculate the gross pay as the
number of hours worked
times the hourly pay rate

Get the hours worked
from the appropriate

TextBox

Display the gross pay
in a pop-up window

Get the hourly pay rate
from the appropriate

TextBox

 Figure 1-28 Flowchart for the wage-calculator program

 The symbols are connected by arrows that represent the “flow” of the program. To
step through the symbols in the proper order, you begin at the Start terminal and
follow the arrows until you reach the End terminal.

 4. Write the Code

 Once you have created a program’s GUI and designed algorithms for the program’s
tasks, you are ready to start writing code. During this process, you will refer to the
pseudocode or flowcharts that you created in Step 3 and use Visual Studio to write
C# code.

 1.8 Getting Started with the Visual Studio Environment 27

 5. Correct Syntax Errors

You previously learned in this chapter that a programming language such as C# has
rules, known as syntax, that must be followed when writing a program. A language’s
syntax rules dictate things such as how keywords, operators, and punctuation char-
acters can be used. A syntax error occurs if the programmer violates any of these
rules. If the program contains a syntax error or even a simple mistake such as a mis-
spelled keyword, the program cannot be compiled or executed.

 Virtually all code contains syntax errors when it is first written, so the programmer
will typically spend some time correcting these. Once all the syntax errors and simple
typing mistakes have been corrected, the program can be compiled and translated
into an executable program.

 6. Test the Program and Correct Logic Errors

 Once the code is in an executable form, you must then test it to determine whether
any logic errors exist. A logic error is a mistake that does not prevent the program
from running but causes it to produce incorrect results. (Mathematical mistakes are
common causes of logic errors.) If the program produces incorrect results, the pro-
grammer must debug the code. This means that the programmer finds and corrects
logic errors in the program. Sometimes, during this process, the programmer discov-
ers that the program’s original design must be changed. In this event, the program
development cycle starts over and continues until no errors can be found.

 Checkpoint

 1.39 List the six steps in the program development cycle.

 1.40 What is an algorithm?

 1.41 What is pseudocode?

 1.42 What is a flowchart?

 1.43 What do each of the following symbols mean in a flowchart?

 • Oval
 • Parallelogram
 • Rectangle

 1.8 Getting Started with the Visual
Studio Environment

 CONCEPT: Visual Studio and Visual Studio Express for Windows Desktop consist of
tools that you use to build Visual C# applications. The first step in using
Visual C# is learning about these tools.

 To follow the tutorials in this book, and create Visual C# applications, you will need to
install either Visual Studio 2012 or Visual Studio 2012 Express for Windows Desktop on
your computer. Visual Studio 2012 is a professional integrated development environment
(IDE) , which means that it provides all the necessary tools for creating, testing, and de-
bugging software. It can be used to create applications not only with Visual C#, but also
with other languages such as Visual Basic and C++. If you are using a school’s computer
lab, there’s a good chance that Visual Studio 2012 has been installed.

28 Chapter 1 Introduction to Computers and Programming

 If you do not have access to Visual Studio 2012, you can install Visual Studio 2012
Express for Windows Desktop, a free programming environment that is available for
download from the Microsoft Web site. (When this book is purchased new, it has an
accompanying Microsoft DVD that contains Visual Studio 2012 Express for Windows
Desktop.)

 For the purposes of this book, it does not matter whether you are using Visual Studio
2012 or Visual Studio 2012 Express for Windows Desktop. Both products look very
similar and work in a similar manner. When there are differences, the book will alert
you. To keep things simple, this book will use the term Visual Studio to refer to either
Visual Studio 2012 or Visual Studio 2012 Express for Windows Desktop. When you are
instructed to use Visual Studio to perform some task, use the system that is installed on
your computer.

 Visual Studio is a customizable environment. If you are working in your school’s compu-
ter lab, there’s a chance that someone else has customized the programming environment
to suit his or her own preferences. If this is the case, the screens that you see may not
match exactly the ones shown in this book. For that reason it’s a good idea to reset the
programming environment before you create a Visual C# application. Tutorial 1-1 guides
you through the process.

 Tutorial 1-1:
Starting Visual Studio and Setting Up the Environment

 Step 1: Find out from your instructor whether you are using Visual Studio 2012 or
Visual Studio 2012 Express for Windows Desktop. Then, click the Start button,
open the All Programs menu, and perform one of the following:

 • If you are using Visual Studio, open the Microsoft Visual Studio 2012 pro-
gram group and then execute Visual Studio 2012.

 • If you are using Visual Studio 2012 Express for Windows Desktop, open the
Microsoft Visual Studio 2012 Express program group and then execute VS
Express for Desktop.

 NOTE: The first time you run Visual Studio, you will see a window entitled
 Choose Default Environment Settings . Select Visual C# Development Settings
from the list and click the Start Visual Studio button.

 Step 2: Figure 1-29 shows the Visual Studio environment. The screen shown in the fig-
ure is known as the Start Page . By default, the Start Page is displayed when you
start Visual Studio, but you may not see it because it can be disabled.

 Notice the check box in the bottom left corner of the Start Page that reads Show
page on startup . If this box is not checked, the Start Page will not be displayed
when you start Visual Studio. If you do not see the Start Page , you can always
display it by clicking VIEW on the menu bar at the top of the screen and then
clicking Start Page .

 Tutorial 1-1:
Starting
Visual Studio
and Setting
Up the
Environment

VideoNote

 1.8 Getting Started with the Visual Studio Environment 29

 Step 3: In a school computer lab, it is possible that the Visual Studio environment has
been set up for a programming language other than Visual C#. To make sure
that Visual Studio looks and behaves as described in this book, you should
make sure that Visual C# is selected as the programming environment. Perform
the following:

 • As shown in Figure 1-30 , click TOOLS on the menu bar and then click Im-
port and Export Settings. . . .

 • On the screen that appears next, select Reset all settings and click the
 Next > button.

 • On the screen that appears next, select No, just reset settings, overwriting
my current settings . If you are using Visual Studio Express, click the Finish
button at this point, and proceed to Step 4 of the tutorial. If you are using
Visual Studio, click the Next > button.

 • If you are using Visual Studio, the window shown in Figure 1-31 should ap-
pear next. Select Visual C# Development Settings and then click the Finish
button. After a moment you should see a Reset Complete window. Click the
 Close button and continue with the next step in the tutorial.

 Step 4: Now you will reset Visual Studio’s window layout to the default configura-
tion. As shown in Figure 1-32 , click WINDOW on the menu bar and then
click Reset Window Layout . Next you will see a dialog box asking Are you
sure you want to restore the default window layout for the environment?
Click Yes .

 Figure 1-29 Visual Studio Start Page

30 Chapter 1 Introduction to Computers and Programming

 The Visual Studio environment is now set up so you can follow the remaining
tutorials in this book. If you are working in your school’s computer lab, it is
probably a good idea to go through these steps each time you start Visual Studio.
If you are continuing with the next tutorial, leave Visual Studio running. You can
exit Visual Studio at any time by clicking FILE on the menu bar and then click-
ing Exit .

 Figure 1-30 Selecting Tools and then Import and Export Settings …

 Figure 1-31 Selecting Visual C# Development Settings

 1.8 Getting Started with the Visual Studio Environment 31

 Figure 1-32 Resetting the window layout

 Starting a New Project
 Each Visual C# application that you create is called a project . When you are ready to cre-
ate a new application, you start a new project. Tutorial 1-2 leads you through the steps of
starting a new Visual C# project.

 Tutorial 1-2:
Starting a
New Visual
C# Project

Make sure
Visual C# is
selected

1

 Figure 1-33 The New Project window

 Tutorial 1-2:
Starting a New Visual C# Project

 Step 1: If Visual Studio is not already running, start it as you did in Tutorial 1-1 .

 Step 2: If you are using Visual Studio 2012: Click FILE on the menu bar at the top of
the screen, then select New , and then select Project . After doing this, the New
Project window shown in Figure 1-33 should be displayed.

VideoNote

32 Chapter 1 Introduction to Computers and Programming

 If you are using Visual Studio 2012 Express: Click FILE on the menu bar at the
top of the screen and then select New Project . After doing this, a New Project
window similar to Figure 1-33 should be displayed. (With Visual Studio Express,
the window will have fewer items than shown in the fi gure.)

 Step 3: At the left side of the window, under Installed Templates , make sure Visual
C# is selected. Then, select Windows Forms Application , as shown in Fig-
ure 1-33 .

 Step 4: At the bottom of the New Project window, you see a Name text box. This
is where you enter the name of your project. The Name text box will be au-
tomatically filled in with a default name. In Figure 1-33 the default name is
 WindowsApplication1 . Change the project name to My First Project , as shown
in Figure 1-34 .

Change the project name to
My First Project

 Figure 1-34 Changing the project name to My First Project

 If you are using Visual Studio 2012: Just below the Name text box you will see
a Location text box and a Solution name text box.

 • The Location text box shows where a folder will be created to hold the proj-
ect. If you wish to change the location, click the Browse button and select the
desired location.

 • A solution is a container that holds a project, and the Solution name text box
shows the name of the solution that will hold this project. By default, the
solution name is the same as the project name. For all the projects that you
create in this book, you should keep the solution name the same as the project
name.

 NOTE: As you work through this book you will create a lot of Visual C#
projects. As you do, you will find that default names such as Windows-
Application1 do not help you remember what each project does. Therefore,
you should always change the name of a new project to something that de-
scribes the project’s purpose.

 Step 5: Click the OK button to create the project. It might take a moment for the project
to be created. Once it is, the Visual Studio environment should appear, similar
to Figure 1-35 . Notice that the name of the project, My First Project , is dis-
played in the title bar at the top of the Visual Studio window.

 Leave Visual Studio running and complete the next tutorial.

 1.8 Getting Started with the Visual Studio Environment 33

 Figure 1-35 The Visual Studio environment with a new project open

 Tutorial 1-3:
Saving and Closing a Project

 As you work on a project, you should get into the habit of saving it often. In this tutorial
you will save the My First Project application and then close it.

 Step 1: Visual Studio should still be running from the previous tutorial. To save the
project that is currently open, click FILE on the menu bar and then select
 Save All .

 Step 2: To close the project, click FILE on the menu bar and then click Close Solution .

 Tutorial 1-3:
 Saving and
Closing a
Project

 The Visual Studio Environment
 The Visual Studio environment consists of a number of windows that you will use on
a regular basis. Figure 1-36 shows the locations of the following windows that appear
within the Visual Studio environment: the Designer window , the Solution Explorer win-
dow , and the Properties window . Here is a brief summary of each window’s purpose:

 • The Designer Window

 You use the Designer window to create an application’s graphical user interface.
The Designer window shows the application’s form and allows you to visually

VideoNote

34 Chapter 1 Introduction to Computers and Programming

design its appearance by placing the desired controls that will appear on the form
when the application executes.

 • The Solution Explorer Window

 A solution is a container for holding Visual C# projects. (We discuss solutions in
greater detail in a moment.) When you create a new C# project, a new solution is
automatically created to contain it. The Solution Explorer window allows you to
navigate among the files in a Visual C# project.

 • The Properties Window

 A control’s appearance and other characteristics are determined by the control’s
properties. When you are creating a Visual C# application, you use the Properties
window to examine and change a control’s properties.

 Remember that Visual Studio is a customizable environment. You can move the
various windows around, so they may not appear in the exact locations shown in
 Figure 1-36 on your system.

 Displaying the Solution Explorer and Properties Windows

 If you do not see the Solution Explorer or the Properties window, you can follow these
steps to make them visible:

 • If you do not see the Solution Explorer window, click VIEW on the menu bar. On
the View menu, click Solution Explorer .

 • If you do not see the Properties window, click VIEW on the menu bar. On the View
menu, click Properties .

 Using Auto Hide
 Many windows in Visual Studio have a feature known as Auto Hide . When you see the push-
pin icon in a window’s title bar, as shown in Figure 1-37 , you know that the window has
Auto Hide capability. You click the pushpin icon to turn Auto Hide on or off for a window.

 Figure 1-36 The Designer window, Solution Explorer window, and Properties window

 1.8 Getting Started with the Visual Studio Environment 35

 Figure 1-37 Auto Hide pushpin icon

 When Auto Hide is turned on, the window is displayed only as a tab along one of the
edges of the Visual Studio environment. This feature gives you more room to view your
application’s forms and code. Figure 1-38 shows how the Solution Explorer and Proper-
ties windows appear when their Auto Hide feature is turned on. Notice the tabs that read
 Solution Explorer and Properties along the right edge of the screen. (Figure 1-38 also
shows a Team Explorer tab. You might see this tab if you are using Visual Studio 2012.
We do not discuss the Team Explorer in this book.)

 Figure 1-38 The Solution Explorer and Properties windows hidden

36 Chapter 1 Introduction to Computers and Programming

 The Menu Bar and the Standard Toolbar
 You’ve already used the Visual Studio menu bar several times. This is the bar at the top of
the Visual Studio window that provides menus such as FILE , EDIT , VIEW , PROJECT ,
and so forth. As you progress through this book, you will become familiar with many of
the menus.

 Below the menu bar is the standard toolbar. The standard toolbar contains buttons that
execute frequently used commands. All commands that are displayed on the toolbar may
also be executed from a menu, but the standard toolbar gives you quicker access to them.
 Figure 1-39 identifies the standard toolbar buttons that you will use most often, and
 Table 1-3 gives a brief description of each.

 Table 1-3 Visual Studio toolbar buttons

 Figure 1-39 Visual Studio toolbar buttons

 The Toolbox
 The Toolbox is a window that allows you to select the controls that you want to use in an
application’s user interface. When you want to place a Button, Label, TextBox, or other
control on an application’s form, you select it in the Toolbox . You will use the Toolbox
extensively as you develop Visual C# applications.

 The Toolbox typically appears on the left side of the Visual Studio environment. If the
 Toolbox is in Auto Hide mode, its tab will appear as shown in Figure 1-40 . Figure 1-41
shows the Toolbox opened, with Auto Hide turned off.

 Toolbar Button Description

 Navigate Backward Moves to the previously active tab in the Designer
window

 Navigate Forward Moves to the next active tab in the Designer window

 New Project Starts a new project

 Open File Opens an existing file

 Save Saves the file named by filename

 Save All Saves all the files in the current project

 Undo Undoes the most recent operation

 Redo Redoes the most recently undone operation

 Start Debugging Starts debugging (running) your program

 Solution Configurations Configures your project’s executable code

 Find Searches for text in your application code

 1.8 Getting Started with the Visual Studio Environment 37

 Figure 1-40 The Toolbox tab (Auto Hide turned on)

 Figure 1-41 The Toolbox opened (Auto Hide turned off)

 NOTE: If you do not see the Toolbox or its tab along the side of the Visual Studio
environment, click VIEW on the menu bar and then click Toolbox . (In Visual Studio
Express, click VIEW on the menu bar, then click Other Windows , and then click
 Toolbox .)

 The Toolbox is divided into sections, and each section has a name. In Figure 1-41 you can
see the All Windows Forms and Common Controls sections. If you scroll the Toolbox ,
you will see many other sections. Each section can be opened or closed.

38 Chapter 1 Introduction to Computers and Programming

 If you want to open a section of the Toolbox , you simply click on its name tab. To close
the section, click on its name tab again. In Figure 1-41 , the Common Controls section is
open. You use the Common Controls section to access controls that you frequently need,
such as Buttons, Labels, and TextBoxes. You can move any section to the top of the list
by dragging its name with the mouse.

 Using ToolTips
 A ToolTip is a small rectangular box that pops up when you hover the mouse pointer
over a button on the toolbar or in the Toolbox for a few seconds. The ToolTip box con-
tains a short description of the button’s purpose. Figure 1-42 shows the ToolTip that ap-
pears when the cursor is left sitting on the Save All button. Use a ToolTip whenever you
cannot remember a particular button’s function.

 Figure 1-42 Save All ToolTip

 Docked and Floating Windows
 Figure 1-41 shows the Toolbox , Solution Explorer, and Properties windows when they
are docked , which means they are attached to one of the edges of the Visual Studio win-
dow. Alternatively, the windows can be floating . You can control whether a window is
docked or floating as follows:

 • To change a window from docked to floating, right-click its title bar and select
 Float .

 • To change a window from floating to docked, right-click its title bar and select
 Dock .

 Figure 1-43 shows Visual Studio with the Toolbox , Solution Explorer, and Properties
windows floating. When a window is floating, you can click and drag it by its title bar
around the screen. You may use whichever style you prefer—docked or floating. When
windows are floating, they behave as normal windows. You may move or resize them to
suit your preference.

 NOTE: A window cannot float if its Auto Hide feature is turned on.

 TIP: Remember, you can always reset the window layout by clicking WINDOW on
the menu bar and then selecting Reset Window Layout . If you accidentally close the
Designer window, the Solution Explorer window, or the Properties window, you can
use the VIEW menu to redisplay them.

 1.8 Getting Started with the Visual Studio Environment 39

 Projects and Solutions
 As you learn to program in Visual C#, you will see the terms project and solution used
often. These terms do not mean the same thing, but they are sometimes used interchange-
ably. Let’s briefly discuss the difference between a project and a solution.

 Each Visual C# application that you create is called a project. A Visual C# project consists of
several files. You can think of a project as a collection of files that belong to a single application.

 A solution is a container that holds one or more Visual C# projects. If you are developing
applications for a large organization, you might find it convenient to store several related
projects together in the same solution.

 Although it is possible for a solution to hold more than one project, each project that
you will create in this book will be saved in its own solution. Each time you create a new
project, you will also create a new solution to hold it. Figure 1-44 illustrates this concept.
Typically, the solution will be given the same name as the project.

 Figure 1-43 Toolbox , Solution Explorer, and Properties windows floating

Solution

Project

Files Belonging
to the Project

 Figure 1-44 Solution and project organization

40 Chapter 1 Introduction to Computers and Programming

 Typical Organization of Solutions
and Projects on the Disk
 When you create a new project, you specify the project’s name, the solution’s name, and
a location on the disk where the solution should be stored. If you are using Visual Studio,
you specify this information at the bottom of the New Project window, as shown in Fig-
ure 1-45 . If you are using Visual Studio Express, you specify this information in the Save
Project window the first time you save the project.

 Figure 1-45 Specifying the project name, solution name, and location

 Let’s use Figure 1-45 to see an example of how the files for the My First Project solution
and project will be organized on the disk. Notice that in Figure 1-45 , the following loca-
tion is shown for the solution:

 C:\Users\Tony\Documents\Visual Studio 2012\Projects\

 On your system, the location will not be exactly the same as this, but it will be some-
thing similar. At this location, a solution folder named My First Project will be created.
If we use Windows to look inside that folder, we will see the two items shown in Figure
 1-46 . Notice that one of the items is another folder named My First Project . That is the
 project folder , which contains various files related to the project. The other item is the
 solution file . In Windows, you can double-click the solution file to open the project in
Visual Studio.

 Figure 1-46 Contents of the My First Project solution folder

 1.8 Getting Started with the Visual Studio Environment 41

 Opening an Existing Project
 If Visual Studio is already running, you can perform the following steps to open an exist-
ing project:

 • Click FILE on the Visual Studio menu bar, then select Open , and then select
 Project / Solution. . . .

 • The Open Project window will appear. Navigate to the desired solution folder, se-
lect the solution file, and click Open .

 In Visual Studio Express, perform the following steps to open an existing project:

 • Click FILE on the Visual Studio menu bar and then select Open Project. . . .
 • The Open Project window will appear. Navigate to the desired solution folder, se-

lect the solution file, and click Open .

 Tutorial 1-4:
 Opening
an Existing
Project

 Tutorial 1-4:
Opening an Existing Project

 In this tutorial you will reopen the My First Project application that you created in
 Tutorial 1-2 .

 Step 1: Visual Studio should still be running from the previous tutorial. Perform one of
the following operations to reopen My First Project :

 If you are using Visual Studio:

 Click FILE on the menu bar; select Open and then select Project/Solution .…
The Open Project window will appear. Navigate to the My First Project solu-
tion, select the solution fi le, and click the Open button.

 If you are using Visual Studio Express:

 Click FILE on the menu bar, and then select Open Project .… The Open Project
window will appear. Navigate to the My First Project solution, select the solu-
tion fi le, and click the Open button.

 After performing this step, My First Project should be opened. If you plan to
complete the next tutorial, leave Visual Studio running with My First Project
opened.

 Displaying the Designer (When It Does Not
Automatically Appear)
 Sometimes when you open an existing project, the project’s form will not be automatically
displayed in the Designer . Figure 1-47 shows an example of the Visual Studio environ-
ment with an opened project but no form displayed in the Designer . When this happens,
perform the following steps to display the project’s form in the Designer :

 • As shown in Figure 1-48 , right-click Form1.cs in the Solution Explorer .
 • Click View Designer in the pop-up menu.

 Accessing the Visual Studio Documentation
 You can access the documentation for Visual Studio by Clicking HELP on the menu bar,
and then selecting View Help . (Or, you can press ∏+!, and then press V on the
keyboard.) This launches your Web browser and opens the online Microsoft Developer

VideoNote

42 Chapter 1 Introduction to Computers and Programming

 Figure 1-47 A project opened with no form displayed in the Designer

 Figure 1-48 Using the Solution Explorer to open a form in the Designer

Network (MSDN) Library . The MSDN Library provides complete documentation for Vis-
ual C# as well as the other programming languages included in Visual Studio. You will also
find code samples, tutorials, articles, and access to tutorial videos.

 1.8 Getting Started with the Visual Studio Environment 43

 Tutorial 1-5:
Getting Familiar with the Visual Studio Environment

 This exercise will give you practice interacting with the Solution Explorer window, the
 Properties window, and the Toolbox .

 Step 1: If Visual Studio is still running on your computer from the previous tutorial,
continue to Step 2. If Visual Studio is not running on your computer, repeat the
steps in Tutorial 1-4 to open My First Project .

 Step 2: Practice turning the Auto Hide feature on and off for the Solution Explorer win-
dow, the Properties window, and the Toolbox . Recall from our previous discus-
sion that clicking the pushpin icon in each window’s title bar turns Auto Hide
on and off. When you are finished practicing, make sure Auto Hide is turned off
for each of these windows. Your screen should look like Figure 1-41 .

 Step 3: Practice floating and docking the Solution Explorer window, the Properties
window, and the Toolbox . Recall from our previous discussion that you can
make any of these windows float by right-clicking its title bar and selecting
 Float . You dock a floating window by right-clicking its title bar and selecting
 Dock .

 Step 4: The Toolbox, Solution Explorer , and Properties windows each have a Close
button () in their upper-right corner. Close each of these windows by clicking
its Close button.

 Step 5: Do you remember which buttons on the toolbar restore the Solution Explorer ,
 Properties window, and Toolbox ? If not, move your mouse cursor over any
button on the toolbar and leave it there until the ToolTip appears. Repeat this
procedure on different buttons until you find the ones whose ToolTips read
 Solution Explorer , Properties Window , and Toolbox . (Refer to Figure 1-39 and
 Table 1-3 for further assistance.)

 Step 6: Click the appropriate buttons on the toolbar to restore the Solution Explorer ,
the Properties window, and the Toolbox .

 Step 7: Exit Visual Studio by clicking FILE on the menu bar and then clicking Exit .
You may see a dialog box asking whether you wish to save changes to a number
of items. Click Yes .

 Checkpoint

 1.44 Briefly describe the purpose of the Solution Explorer window.

 1.45 Briefly describe the purpose of the Properties window.

 1.46 Briefly describe the purpose of the standard toolbar.

 1.47 What is the difference between the toolbar and the Toolbox ?

 1.48 What is a ToolTip?

 1.49 What is a project?

 1.50 What is a solution?

 Tutorial 1-5:
 Getting
Familiar
with the
Visual Studio
Environment

VideoNote

44 Chapter 1 Introduction to Computers and Programming

 Key Terms

 algorithm
 American Standard Code for
 Information Interchange (ASCII)
 application software
 assembler
 assembly language
 Auto Hide
 binary
 binary digit
 binary numbering system
 bit
 Button
 byte
 central processing unit (CPU)
 class
 code
 command line interface
 compact disc (CD)
 compiler
 console interface
 controls
 debug
 Designer window
 digital
 digital data
 digital device
 digital versatile disc (DVD)
 disk drive
 docked (window)
 End terminal
 ENIAC
 event driven
 executing
 fetch-decode-execute cycle
 fields
 floating (window)
 floating-point notation
 floppy disk drive
 flowchart
 Form
 graphical user interface (GUI)
 hardware
 high-level languages
 input
 input device
 input symbols
 instruction set
 integrated development
 environment (IDE)
 interpreter
 keywords

 Label
 logic error
 low-level language
 machine language
 main memory
 methods
 microprocessors
 mnemonics
 .NET Framework
 object oriented
 operating system
 operators
 output
 output device
 output symbols
 picture element
 pixel
 processing symbols
 program
 program development cycle
 programmer
 project
 project folder
 properties
 Properties window
 pseudocode
 random-access memory (RAM)
 reserved words
 running
 samples
 secondary storage
 software
 software developer
 software development tools
 solution
 Solution Explorer window
 solution file
 solution folder
 source code
 standard toolbar
 start terminal
 statements
 syntax
 syntax error
 system software
 terminal symbol
 TextBox
 Toolbox
 ToolTip
 two’s complement
 Unicode

 Review Questions 45

 universal serial bus (USB)
 user
 user interface
 utility program

 volatile
 Visual Studio
 Visual Studio 2012
 Visual Studio 2012 Express

 Review Questions
 Multiple Choice

 1. A(n) __________ is a set of instructions that a computer follows to perform a task.

 a. compiler
 b. program
 c. interpreter
 d. programming language

 2. The physical devices that a computer is made of are referred to as __________.

 a. hardware
 b. software
 c. the operating system
 d. tools

 3. The part of a computer that runs programs is called __________.

 a. RAM
 b. secondary storage
 c. main memory
 d. the CPU

 4. Today, CPUs are small chips known as __________.

 a. ENIACs
 b. microprocessors
 c. memory chips
 d. operating systems

 5. The computer stores a program while the program is running, as well as the data
that the program is working with, in __________.

 a. secondary storage
 b. the CPU
 c. main memory
 d. the microprocessor

 6. __________ is a volatile type of memory that is used only for temporary storage
while a program is running.

 a. RAM
 b. secondary storage
 c. the disk drive
 d. the USB drive

 7. A type of memory that can hold data for long periods of time—even when there is
no power to the computer—is called __________.

 a. RAM
 b. main memory
 c. secondary storage
 d. CPU storage

46 Chapter 1 Introduction to Computers and Programming

 8. A component that collects data from people or other devices and sends it to the
computer is called __________.

 a. an output device
 b. an input device
 c. a secondary storage device
 d. main memory

 9. A video display is a(n) __________ device.

 a. output device
 b. input device
 c. secondary storage device
 d. main memory

 10. A __________ is enough memory to store a letter of the alphabet or a small number.

 a. byte
 b. bit
 c. switch
 d. transistor

 11. A byte is made up of eight __________.

 a. CPUs
 b. instructions
 c. variables
 d. bits

 12. In the __________ numbering system, all numeric values are written as sequences of
0s and 1s.

 a. hexadecimal
 b. binary
 c. octal
 d. decimal

 13. A bit that is turned off represents the following value: __________.

 a. 1
 b. −1
 c. 0
 d. “no”

 14. A set of 128 numeric codes that represent the English letters, various punctuation
marks, and other characters is __________.

 a. binary numbering
 b. ASCII
 c. Unicode
 d. ENIAC

 15. An extensive encoding scheme that can represent the characters of many of the lan-
guages in the world is __________.

 a. binary numbering
 b. ASCII
 c. Unicode
 d. ENIAC

 16. Negative numbers are encoded using the __________ technique.

 a. two’s complement
 b. floating point
 c. ASCII
 d. Unicode

 Review Questions 47

 17. Real numbers are encoded using the __________ technique.

 a. two’s complement
 b. floating point
 c. ASCII
 d. Unicode

 18. The tiny dots of color that digital images are composed of are called __________.

 a. bits
 b. bytes
 c. color packets
 d. pixels

 19. If you were to look at a machine language program, you would see __________.

 a. C# code
 b. a stream of binary numbers
 c. English words
 d. circuits

 20. In the __________ part of the fetch-decode-execute cycle, the CPU determines which
operation it should perform.

 a. fetch
 b. decode
 c. execute
 d. immediately after the instruction is executed

 21. Computers can execute only programs that are written in __________.

 a. C#
 b. assembly language
 c. machine language
 d. Java

 22. The __________ translates an assembly language program to a machine language
program.

 a. assembler
 b. compiler
 c. translator
 d. interpreter

 23. The words that make up a high-level programming language are called __________.

 a. binary instructions
 b. mnemonics
 c. commands
 d. keywords

 24. The rules that must be followed when writing a program are called __________.

 a. syntax
 b. punctuation
 c. keywords
 d. operators

 25. A(n) __________ is a program that translates a high-level language program into a
separate machine language program.

 a. assembler
 b. compiler
 c. translator
 d. utility

48 Chapter 1 Introduction to Computers and Programming

 26. A __________ is any hypothetical person using a program and providing input for
it.

 a. designer
 b. user
 c. guinea pig
 d. test subject

 27. A __________ error does not prevent the program from running but causes it to
produce incorrect results.

 a. syntax
 b. hardware
 c. logic
 d. fatal

 28. A(n) __________ is a set of well-defined logical steps that must be taken to perform
a task.

 a. logarithm
 b. plan of action
 c. logic schedule
 d. algorithm

 29. An informal language that has no syntax rules and is not meant to be compiled or
executed is called __________.

 a. faux code
 b. pseudocode
 c. C#
 d. a flowchart

 30. A __________ is a diagram that graphically depicts the steps that take place in a
program.

 a. flowchart
 b. step chart
 c. code graph
 d. program graph

 31. Objects that are visible in a program’s graphical user interface are commonly re-
ferred to as __________.

 a. buttons
 b. controls
 c. forms
 d. windows

 32. A __________ is code that describes a particular type of object.

 a. namespace
 b. blueprint
 c. schema
 d. class

 33. The __________ is a collection of classes and other code that can be used, along with
a programming language such as C#, to create programs for the Windows operating
system.

 a. .NET framework
 b. Standard Template Library
 c. GUI framework
 d. MSDN Library

 Review Questions 49

 34. The __________ is the part of a computer with which the user interacts.

 a. central processing unit
 b. user interface
 c. control system
 d. interactivity system

 35. Before GUIs became popular, the __________ interface was the most commonly
used.

 a. command line
 b. remote terminal
 c. sensory
 d. event-driven

 36. __________ programs are usually event driven.

 a. command line
 b. text-based
 c. GUI
 d. procedural

 True or False

 1. Today, CPUs are huge devices made of electrical and mechanical components such
as vacuum tubes and switches.

 2. Main memory is also known as RAM.

 3. Any piece of data that is stored in a computer’s memory must be stored as a binary
number.

 4. Images, such as the ones you make with your digital camera, cannot be stored as
binary numbers.

 5. Machine language is the only language that a CPU understands.

 6. Assembly language is considered a high-level language.

 7. An interpreter is a program that both translates and executes the instructions in a
high-level language program.

 8. A syntax error does not prevent a program from being compiled and executed.

 9. Windows, Linux, UNIX, and Mac OS are all examples of application software.

 10. Word processing programs, spreadsheet programs, e-mail programs, Web browsers,
and games are all examples of utility programs.

 11. Programmers must be careful not to make syntax errors when writing pseudocode
programs.

 12. C# provides only the basic keywords and operators that you need to construct a
program.

 Short Answer

 1. Why is the CPU the most important component in a computer?

 2. What number does a bit that is turned on represent? What number does a bit that is
turned off represent?

 3. What would you call a device that works with binary data?

 4. What are the words that make up a high-level programming language called?

50 Chapter 1 Introduction to Computers and Programming

 5. What are the short words that are used in assembly language called?

 6. What is the difference between a compiler and an interpreter?

 7. What type of software controls the internal operations of the computer’s hardware?

 8. What is pseudocode? What is a flowchart?

 9. When a program runs in a text-based environment, such as a command line interface,
what determines the order in which things happen?

 10. What does a class specify about an object?

 11. Can you use C# alone to perform advanced operations such as creating GUIs, reading
data from a file, or working with databases? Why or why not?

 12. Figure 1-49 shows the Visual Studio IDE. What are the names of the four areas that
are indicated in the figure?

 13. What is the purpose of the Toolbox in the Visual Studio environment?

 14. How can you access the documentation for Visual Studio? What resources are provided
by the MSDN Library?

 15. What steps must you take to open an existing project?

 16. How can you view the project’s form if it is not automatically displayed in the
 Designer ?

1 3

4

2

 Figure 1-49 The Visual Studio IDE

 Programming Problems
 1. Use what you’ve learned about the binary numbering system in this chapter to con-

vert the following decimal numbers to binary:

 11

 65

 100

 255

 Programming Problems 51

 2. Use what you’ve learned about the binary numbering system in this chapter to con-
vert the following binary numbers to decimal:

 1101

 1000

 101011

 3. Look at the ASCII chart in Appendix C and determine the codes for each letter of
your first name.

 4. Suppose your instructor gives three exams during the semester and you want to
write a program that calculates your average exam score. Answer the following:

 a. What items of input must the user enter?
 b. Once the input has been entered, how will the program determine the average?
 c. What output will the program display?

This page intentionally left blank

 TOPICS

 2.1 Getting Started with Forms and
Controls

 2.2 Creating the GUI for Your First Visual
C# Application: The Hello World
Application

 2.3 Introduction to C# Code

 2.4 Writing Code for the Hello World
Application

 2.5 Label Controls

 2.6 Making Sense of IntelliSense

 2.7 PictureBox Controls

 2.8 Comments, Blank Lines, and
Indentation

 2.9 Writing the Code to Close an
Application’s Form

 2.10 Dealing with Syntax Errors

 2.1 Getting Started with Forms and Controls

 CONCEPT: The first step in creating a Visual C# application is creating the applica-
tion’s GUI. You use the Visual Studio Designer, Toolbox, and Properties
window to build the application’s form with the desired controls and set
each control’s properties.

 In this chapter you will create your first Visual C# application. Before you start, however,
you need to learn some fundamental concepts about creating a GUI in Visual Studio. This
section shows the basics of editing forms and creating controls.

 The Application’s Form
 When you start a new Visual C# project, Visual Studio automatically creates an empty
form and displays it in the Designer . Figure 2-1 shows an example. Think of the empty
form as a blank canvas that can be used to create the application’s user interface. You can
add controls to the form, change the form’s size, and modify many of its characteristics.
When the application runs, the form will be displayed on the screen.

5353

 Introduction to Visual C#

C
H

A
P

T
E

R

2

54 Chapter 2 Introduction to Visual C#

 If you take a closer look at the form, you will notice that it is enclosed by a thin dotted
line, known as a bounding box . As shown in Figure 2-2 , the bounding box has small sizing
handles , which appear on the form’s right edge, bottom edge, and lower-right corner.
When a bounding box appears around an object in the Designer , it indicates that the
 object is selected and is ready for editing.

 Figure 2-1 A new project with a blank form displayed in the Designer

Sizing handle

Sizing handle

Sizing handle

Thin dotted line (bounding box)

 Figure 2-2 The form’s bounding box and sizing handles

 Initially the form’s size is 300 pixels wide by 300 pixels high. You can easily resize the
form with the mouse. When you position the mouse cursor over any edge or corner that
has a sizing handle, the cursor changes to a two-headed arrow (). Figure 2-3 shows
examples. When the mouse cursor becomes a two-headed arrow, you can click and drag
the mouse to resize form.

 2.1 Getting Started with Forms and Controls 55

 The Properties Window
 The appearance and other characteristics of a GUI object are determined by the object’s
properties. When you select an object in the Designer , that object’s properties are dis-
played in the Properties window. For example, when the Form1 form is selected, it’s
properties are displayed in the Properties window, as shown in Figure 2-4 .

 Figure 2-3 Using the mouse to resize the form

 Identifying Forms and Controls by Their Names
 An application’s GUI is made of forms and various controls. Each form and control in an
application’s GUI must have a name that identifies it. The blank form that Visual Studio
initially creates in a new project is named Form1.

 NOTE: Later in this book you will learn how to change a form’s name, but for now,
you will keep the default name, Form1.

 TIP: Recall from Chapter 1 that if the Properties window is in Auto Hide mode,
you can click its tab to open it. If you do not see the Properties window, click VIEW
on the menu bar. On the VIEW menu, click Properties . (In Visual Studio Express,
click VIEW , Other Windows , Properties.)

 The area at the top of the Properties window shows the name of the object that is cur-
rently selected. You can see in Figure 2-4 that the name of the selected object is Form1 .
Below that is a scrollable list of properties. The list of properties has two columns: The
left column shows each property’s name, and the right column shows each property’s
value. For example, look at the form’s Size property in Figure 2-4 . Its value is 300 , 300 .
This means that the form’s size is 300 pixels wide by 300 pixels high. Next, look at
the form’s Text property. The Text property determines the text that is displayed in the
form’s title bar (the bar that appears at the top of the form). Its current value is Form1, so
the text Form1 is displayed in the form’s title bar.

 When a form is created, its Text property is initially set to the same value as the form’s
name. When you start a new project, the blank form that appears in the Designer will
always be named Form1, so the text Form1 will always appear in the form’s title bar. In
most cases you want to change the value of the form’s Text property to something more
meaningful. For example, assume the Form1 form is currently selected. You can perform
the following steps to change its Text property to My First Program .

56 Chapter 2 Introduction to Visual C#

 Figure 2-4 The Properties window, showing the selected object’s properties

Step 1: In the Properties window, locate the Text property.
 Step 2: Double-click the word Form1 that currently appears as the Text property’s

value, and then use the ∂ key to delete it.
 Step 3: Type My First Program in its place and press the e key. The text My First

Program will now appear in the form’s title bar, as shown in Figure 2-5 .

 Figure 2-5 The form’s Text property value displayed in the form’s title bar

 NOTE: Changing an object’s Text property does not change the object’s name. For
example, if you change the Form1 form’s Text property to My First Program , the
form’s name is still Form1. You have changed only the text that is displayed in the
form’s title bar.

 2.1 Getting Started with Forms and Controls 57

 Earlier we discussed how to use the mouse to resize a form in the Designer . An alternative
method is to change the form’s Size property in the Properties window. For example, as-
sume the Form1 form is currently selected. You can perform the following steps to change
its size to 400 pixels wide by 100 pixels high.

 Step 1: In the Properties window, locate the Size property.
 Step 2: Click inside the area that holds the Size property’s value, and then delete the

current value.
 Step 3: Type 400, 100 in its place and press the e key. The form will be resized as

shown in Figure 2-6 .

 Figure 2-6 The form’s size changed to 400 by 100

 Adding Controls to a Form
 When you are ready to create controls on the application’s form, you use the Toolbox .
Recall from Chapter 1 that the Toolbox usually appears on the left side of the Visual
Studio environment. If the Toolbox is in Auto Hide mode, you can click its tab to open
it. Figure 2-7 shows an example of how the Toolbox typically appears when it is open.

 NOTE: Notice in Figure 2-6 that the Alphabetical button () is selected near the
top of the Properties window. This causes the properties to be displayed in alphabeti-
cal order. Alternatively, the Categorized button () can be selected, which causes the
properties to be displayed in groups. The alphabetical listing is the default selection,
and most of the time, it makes it is easier to locate specific properties.

 TIP: Recall from Chapter 1 that if you do not see the Toolbox or its tab, click
 VIEW on the menu bar and then click Toolbox .

 The Toolbox shows a scrollable list of controls that you can add to a form. To add a
control to a form, you simply find it in the Toolbox and then double-click it. The control
will be created on the form. For example, suppose you want to create a Button control on
the form. You find it in the Toolbox , as shown in Figure 2-8 , double-click it, and a Button
control will appear on the form.

58 Chapter 2 Introduction to Visual C#

 Figure 2-7 The Toolbox

 Figure 2-8 Creating a Button control

 Resizing and Moving Controls

 Take a closer look at the Button control that is shown on the form in Figure 2-8 . Notice that
it is enclosed in a bounding box with sizing handles. This indicates that the control is cur-
rently selected. When a control is selected, you can use the mouse to resize it in the same way
that you learned to resize a form earlier. You can also use the mouse to move a control to a

 TIP: You can also click and drag controls from the Toolbox onto the form.

 2.1 Getting Started with Forms and Controls 59

new location on the form. Position the mouse cursor inside the control, and when the mouse
cursor becomes a four-headed arrow (), you can click and drag the control to a new

 Figure 2-9 A Button control resized and moved

 Deleting a Control

 Deleting a control is simple: you select it and then press the ∂ key on the keyboard.

 More about Button Controls
 You learned earlier that each form and each control in an application’s GUI must have
a name that identifies it. When you create Button controls, they are automatically given
default names such as button1 , button2 , and so forth.

 Button controls have a Text property, which holds the text that is displayed on the face
of the button. When a Button control is created, its Text property is initially set to the
same value as the Button control’s name. As a result, when you create a Button control,
its name will be displayed on the face of the button. For example, the form in Figure 2-10
contains three Button controls named button1 , button2 , and button3 .

 Figure 2-10 A form with three Button controls

 After you create a Button control, you should always change its Text property. The text
that is displayed on a button should indicate what the button will do when it is clicked.
For example, a button that calculates an average might have the text Calculate Average
displayed on it, and a button that prints a report might have the text Print Report dis-
played on it. Here are the steps you perform to change a Button control’s Text property:

 Step 1: Make sure the Button control is selected. (If you don’t see the bounding box
and sizing handles around the control, just click the control to select it.)

 Step 2: In the Properties window, locate the Text property.
 Step 3: Click inside the area that holds the Text property’s value, and then delete the

current value. Then, type the new text in its place and press the e key. The
new text will be displayed on the button.

location. Figure 2-9 shows a form with a Button control that has been enlarged and moved.

60 Chapter 2 Introduction to Visual C#

 Figure 2-11 shows an example of how changing a Button control’s Text property changes
the text displayed on the face of the button.

 Figure 2-11 A Button control’s Text property changed

 Changing a Control’s Name
 A control’s name identifies the control in the application’s code and in the Visual Studio
environment. When you create a control on an application’s form, you should always
change the control’s name to something that is more meaningful than the default name
that Visual Studio gives it. A control’s name should reflect the purpose of the control.

 For example, suppose you’ve created a Button control to calculate an amount of tax. A
default name such as button1 does not convey the button’s purpose. A name such as
 calculateTaxButton would be much better. When you are working with the applica-
tion’s code and you see the name calculateTaxButton , you will know precisely which
button the code is referring to.

 You can change a control’s name by changing its Name property. Here are the steps:

 Step 1: Make sure the control is selected. (If you do not see the bounding box and
sizing handles around the control, just click the control to select it.)

 Step 2: In the Properties window, scroll up to the top of the list of properties. You
should see the Name property, as shown in Figure 2-12 . (The Name property
is enclosed in parentheses to make it appear near the top of the alphabetical
list of properties. This makes it easier to find.)

 Step 3: Click inside the area that holds the Name property’s value and then delete the
current name. Then, type the new name in its place and press the e key.
You have successfully changed the name of the control.

 Figure 2-12 The Name property

 2.1 Getting Started with Forms and Controls 61

 Figure 2-13 shows the Properties window after a Button control’s name has been changed
to calculateTaxButton .

 Figure 2-13 The Name property changed to calculateTaxButton

 Rules for Naming Controls
 Control names are also known as identifiers . When naming a control, you must follow
these rules for C# identifiers:

 • The first character must be one of the letters a through z or A through Z or an un-
derscore character (_).

 • After the first character, you may use the letters a through z or A through Z, the
digits 0 through 9, or underscores.

 • The name cannot contain spaces.

 Table 2-1 lists some identifiers that might be used for Button control names and indicates
whether each is a legal or illegal identifier in C#.

 Table 2-1 Legal and illegal identifiers

 Identifier Legal or Illegal?

 showDayOfWeekButton Legal

 3rdQuarterButton Illegal because identifiers cannot begin with a digit.

 change*color*Button Illegal because the * character is not allowed.

 displayTotalButton Legal

 calculate Tax Button Illegal because identifiers cannot contain spaces.

 Because a control’s name should reflect the control’s purpose, programmers often find
themselves creating names that are made of multiple words. For example, consider the
following Button control names:

 calculatetaxbutton
 printreportbutton
 displayanimationbutton

 Unfortunately, these names are not easily read by the human eye because the words are
not separated. Because we cannot have spaces in control names, we need to find another
way to separate the words in a multiword control name to make it more readable to the
human eye.

62 Chapter 2 Introduction to Visual C#

 Most C# programmers address this problem by using the camelCase naming convention
for controls. camelCase names are written in the following manner:

 • You begin writing the name with lowercase letters.
 • The first character of the second and subsequent words is written in uppercase.

 For example, the following control names are written in camelCase:

 calculateTaxButton
 printReportButton
 displayAnimationButton

 NOTE: This style of naming is called camelCase because the uppercase characters
that appear in a name are sometimes reminiscent of a camel’s humps.

 Checkpoint

 2.1 When you start a new Visual C# project, what is automatically created and
displayed in the Designer ?

 2.2 How can you tell that an object is selected and ready for editing in the Designer ?

 2.3 What is the purpose of an object’s sizing handles?

 2.4 What must each form and control in an application’s GUI have to identify it?

 2.5 What is the purpose of the Properties window?

 2.6 What does the Alphabetical button do when it is selected in the Properties
window?

 2.7 What does the Categorized button do when it is selected in the Properties window?

 2.8 What does a form’s Text property determine?

 2.9 What does a form’s Size property determine?

 2.10 What is shown in the Toolbox ?

 2.11 How do you add a control to a form?

 2.12 What should the text that is displayed on a button indicate?

 2.13 What are the rules for naming controls?

 2.14 What naming convention do most C# programmers use to separate words in a
multiword identifier?

 2.2 Creating the GUI for Your First Visual C#
Application: The Hello World Application
 When a student is learning computer programming, it is traditional to start by learning to
write a Hello World program. A Hello World program is a simple program that merely
displays the words “Hello World” on the screen. In this chapter you will create your first
Visual C# application, which will be an event-driven Hello World program. When the
finished application runs, it will display the form shown on the left in Figure 2-14 . Notice
that the form contains a button that reads Display Message . When you click the button,
the window shown on the right in the figure will appear.

 2.2 Creating the GUI for Your First Visual C# Application: The Hello World Application 63

When you click this button...

this window will appear.

 Figure 2-14 Screens displayed by the completed Hello World program

 The process of creating this application is divided into two parts. First, you will create the
application’s GUI, and second, you will write the code that causes the Hello World mes-
sage to appear when the user clicks the Display Message button. Tutorial 2-1 leads you
through the process of creating the GUI.

 Tutorial 2-1:
 Creating the GUI for the Hello World Application

 Step 1: Start Visual Studio (or Visual Studio Express).

 Step 2: Start a new project by performing one of the following actions:

 • If you are using Visual Studio, click FILE on the menu bar, then select New ,
and then select Project .…

 • If you are using Visual Studio Express, click FILE on the menu bar and then
select New Project …

 Step 3: The New Project window should appear. At the left side of the window, under
 Installed > Templates , make sure Visual C# is selected. Then, select Windows
Forms Application as the type of application. In the Name text box (at the bot-
tom of the window), change the name of the project to Hello World , and then
click the Ok button.

 Step 4: Make sure the Toolbox , the Solution Explorer , and the Properties window are
visible and that Auto Hide is turned off for each of these windows. The Visual
Studio environment should appear as shown in Figure 2-15 .

 Step 5: Change the Form1 form’s Text property to My First Program, as shown in
 Figure 2-16 .

 Step 6: The form’s default size is too large for this application, so you need to make it
smaller. Use the technique discussed in the previous section to adjust the form’s
size with the mouse. The form should appear similar to that shown in Figure
 2-17 . (Don’t worry about the form’s exact size. Just make it appear similar to
 Figure 2-17 .)

 Step 7: Now you are ready to add a Button control to the form. Locate the Button tool
in the Toolbox and double-click it. A Button control should appear on the form,
as shown in Figure 2-18 . Move the Button control so it appears approximately
in the center of the form, as shown in Figure 2-19 .

Tutorial 2-1:
Creating the
GUI for the
 Hello World
Application

VideoNote

64 Chapter 2 Introduction to Visual C#

 Figure 2-15 The Visual Studio environment

 Figure 2-16 The form’s Text property changed to My First Program

 Figure 2-17 The form resized

 2.2 Creating the GUI for Your First Visual C# Application: The Hello World Application 65

 Figure 2-18 A Button control created on the form

 Figure 2-19 The Button control moved

 Step 8: Change the value of the Button control’s Text property to Display Message .
After doing this, notice that the text displayed on the button has changed, as
shown in Figure 2-20 .

 Figure 2-20 The Button control’s Text property changed

 Step 9: The Button control isn’t quite large enough to accommodate all of the text that
you typed into its Text property, so enlarge the Button control, as shown in
 Figure 2-21 .

 Figure 2-21 The Button control enlarged

66 Chapter 2 Introduction to Visual C#

 Step 10: As discussed in the previous section, a control’s name should reflect the
purpose of the control. The Button control that you created in this applica-
tion will cause a message to be displayed when it is clicked. The name but-
ton1 does not convey that purpose, however. Change the Button control’s
Name property to messageButton . The Properties window should appear as
shown in Figure 2-22 .

 Figure 2-22 The Button control’s Name property changed to messageButton

 Step 11: Click FILE on the Visual Studio menu bar and then click Save All to save the
project.

 Step 12: You’re only partially finished with the application, but you can run it now to
see how the GUI looks on the screen. To run the application, press the % key
on the keyboard or click the Start Debugging button () on the toolbar. This
causes the application to be compiled and executed. You will notice the ap-
pearance of the Visual Studio environment change somewhat, and you will see
the application’s form appear on the screen as shown in Figure 2-23 .

Click here to end
the application.

 Figure 2-23 The application running

 Although the application is running, it is not capable of doing anything other than dis-
playing the form. If you click the Display Message button, nothing will happen. That is
because you have not yet written the code that executes when the button is clicked. You
will do that in the next tutorial. To end the application, click the standard Windows close
button () in the form’s upper-right corner.

 2.3 Introduction to C# Code 67

 2.3 Introduction to C# Code

 CONCEPT: You use the Visual Studio code editor to write an application’s code.
Much of the code that you will write in an application will be event han-
dlers. Event handlers respond to specific events that take place while an
application is running.

 In the previous sections of this chapter, you learned the basics of creating an applica-
tion’s GUI. An application is more than a user interface, however. If you want your
application to perform any meaningful actions, you have to write code. This section
introduces you to Visual C# code and shows how to program an application to respond
to button clicks.

 A file that contains program code is called a source code file . When you start a C# Win-
dows Forms Application project, Visual Studio automatically creates several source code
files and adds them to the project. If you look at the Solution Explorer , as shown in Fig-
ure 2-24 , you will see the names of two source code files: Form1.cs and Program.cs. (C#
source code files always end with the .cs extension.)

 Figure 2-24 Source code files shown in the Solution Explorer

 Here is a brief description of the two files:

 • The Program.cs file contains the application’s start-up code, which executes when
the application runs. The code in this file performs behind-the-scenes initialization
tasks that are necessary to get the application up and running. It is important that
you do not modify the contents of this file because doing so could prevent the ap-
plication from executing.

 • The Form1.cs file contains code that is associated with the Form1 form. When you
write code that defines some action related to Form1 (such as responding to a but-
ton click), you will write the code in this file.

 NOTE: You might see additional source code files in the Solution Explorer, other
than those shown in Figure 2-24 .

 The Form1.cs file already contains code that was generated by Visual Studio when the
project was created. You can think of this auto-generated code as an outline to which you
can add your own code as you develop the application.

68 Chapter 2 Introduction to Visual C#

 Let’s take a look at the code. If you still have the Hello World project open from the pre-
vious tutorial, right-click Form1.cs in the Solution Explorer . A pop-up menu will appear,
as shown in Figure 2-25 . On the pop-up menu, click View Code . The file’s contents will
be displayed in the Visual Studio code editor, as shown in Figure 2-26 .

 Figure 2-25 Opening Form1.cs in the code editor

 Figure 2-26 Form1.cs code displayed in the Visual Studio code editor

 2.3 Introduction to C# Code 69

 At this point, it’s not necessary for you to understand the meaning of the statements that
you see in this code. It will be helpful for you to know how this code is organized, how-
ever, because later you will add your own code to this file. C# code is primarily organized
in three ways: namespaces, classes, and methods. Here’s a summary:

 • A namespace is a container that holds classes.
 • A class is a container that holds methods (among other things).
 • A method is a group of one or more programming statements that performs some

operation.

 So, C# code is organized as methods, which are contained inside classes, which are
contained inside namespaces. With this organizational structure in mind, look at
 Figure 2-27 .

 Figure 2-27 Organization of the Form1.cs code

 The figure shows four different sections of the code, marked with the numbers 1, 2, 3, and
4. Let’s discuss each section of code.

 1 Recall from Chapter 1 that C# applications rely heavily on the .NET Framework,
which is a collection of classes and other code. The code in the .NET Framework is
organized into namespaces. The series of using directives that appears at the top of
a C# source code file indicate which namespaces in the .NET Framework the pro-
gram will use.

 2 This section of code creates a namespace for the project. The line that reads
 namespace Hello_World marks the beginning of a namespace named Hello_
World . Notice that the next line contains an opening brace ({) and that the last
line in the file contains a corresponding closing brace (}). All the code that appears
between these braces is inside the Hello_World namespace.

 3 This section of code is a class declaration. The line that reads public partial
class , and so forth, marks the beginning of the class. The next line contains an
opening brace ({), and the last line in this section of code contains a correspond-
ing closing brace (}). All the code that appears between these braces is inside
the class.

 4 This section of code is a method. The line that reads public Form1() marks the
beginning of the method. The next line contains an opening brace ({), and the last
line in this section of code contains a corresponding closing brace (}). The code that
appears between these braces is inside the method.

 It’s important to point out that code containers, such as namespaces, classes, and meth-
ods, use braces ({}) to enclose code. Each opening brace ({) must have a corresponding

70 Chapter 2 Introduction to Visual C#

 Switching between the Code Editor and the Designer
 When you open the code editor, it appears in the same part of the screen as the Designer .
While developing a Visual C# application, you will often find yourself needing to switch
back and forth between the Designer and the code editor. One way to quickly switch be-
tween the two windows is to use the tabs shown in Figure 2-29 . In the figure, notice that
the leftmost tab reads Form1 . cs . That is the tab for the code editor. The rightmost tab
reads Form1 . cs [Design]. That is the tab for the Designer . (The tabs may not always ap-
pear in this order.) To switch between the Designer and the code editor, you simply click
the tab for the desired window.

 Figure 2-28 Corresponding braces

 Figure 2-29 Code editor and Designer tabs

 You can also detach the code editor and move it to another part of the screen. This allows
you to see the code editor and the Designer at the same time. As shown in Figure 2-30 ,
click the code editor tab and drag it to the desired location on the screen. (If you have
multiple monitors connected to your computer, you can even drag the code editor to a
different monitor.) To return the code editor to its position within the IDE, right-click the
tab for the source code file in the code editor window and select Move to Main Document
Group . This is shown in Figure 2-31 .

closing brace (}) at some later point in the program. Figure 2-28 shows how the braces in
Form1.cs are paired.

 2.3 Introduction to C# Code 71

 Figure 2-30 Detaching the code editor by clicking and dragging

 Figure 2-31 Returning the code editor to its docked position

 Adding Your Own Code to a Project
 Now you are ready to learn how to add your own code to a project. Suppose you have
created a project named Code Demo and set up the project’s form with a Button control,
as shown in Figure 2-32 . The Button control’s name is myButton , and its Text property
is set to Click Me! .

 Suppose you want the application to display the message Thanks for clicking the button!
when the user clicks the button. To accomplish that, you need to write a special type of
method known as an event handler. An event handler is a method that executes when
a specific event takes place while an application is running. In this project you need to
write an event handler that will execute when the user clicks the myButton control. To
create the event handler, you double-click the myButton control in the Designer . This
opens the Form1.cs file in the code editor, as shown in Figure 2-33 , with some new code
added to it.

72 Chapter 2 Introduction to Visual C#

 Figure 2-32 A form with a Button control

 Figure 2-33 The code window opened with event handler code generated

 2.3 Introduction to C# Code 73

 When an application is running and the user clicks a control, we say that a Click event has
occurred on the control. The code that has been added to the Form1.cs file (shown in Fig-
ure 2-33) is an event handler that will execute when a Click event occurs on the myButton
control. For now you do not need to understand all parts of the event handler code. At
this point you need to understand only the following concepts:

 • As shown in Figure 2-34 , the event handler’s name is myButton_Click . The
 "myButton" portion of the name indicates that the event handler is associated with
the myButton control, and the "Click" portion of the name indicates that the event
handler responds to Click events. This is the typical naming convention that Vis-
ual Studio uses when it generates event handler code. When you see the name
 myButton_Click , you understand that it is an event handler that executes when a
Click event occurs on the myButton control.

The event handler’s name

Your code goes here, between the braces.

 Figure 2-34 A closer look at the event handler code

 • The event handler that Visual Studio generates doesn’t actually do anything. You
can think of it as an empty container to which you can add your own code. Notice
that the second line of the event handler is an opening brace ({) and the last line is a
closing brace (}). Any code that you want executed when the user clicks the myButton
control must be written between these braces.

 Now you know how to create an empty Click event handler for a Button control. But
what code do you write inside the event handler? In this example we write code that
displays the message Thanks for clicking the button! in a message box, which is a small
pop-up window.

 Message Boxes
 A message box is a small window, sometimes referred to as a dialog box , that displays a
message. Figure 2-35 shows an example of a message box displaying the message Thanks
for clicking the button! Notice that the message box also has an OK button. When the
user clicks the OK button, the message box closes.

 Figure 2-35 A message box

74 Chapter 2 Introduction to Visual C#

 The .NET Framework provides a method named MessageBox.Show that you can use
in Visual C# to display a message box. If you want to execute the MessageBox.Show
method, you write a statement known as a method call . (Programmers refer to the act of
executing a method as calling the method.) The following statement shows an example of
how you would call the MessageBox.Show method to display the message box shown in
 Figure 2-35 :

 MessageBox.Show("Thanks for clicking the button!");

 When you call the MessageBox.Show method, you write a string of characters inside the
parentheses. (In programming we use the term string to mean string of characters.) The
string that is written inside the parentheses will be displayed in the message box. In this
example the string "Thanks for clicking the button!" is written inside the paren-
theses.

 Notice that the string is enclosed in double quotation marks in the code. When the mes-
sage is displayed (as shown in Figure 2-35), however, the double quotation marks do not
appear. The double quotation marks are required in the code to indicate the beginning
and the end of the string.

 Also notice that a semicolon appears at the end of the statement. This is required by C#
syntax. Just as a period marks the end of a sentence, a semicolon marks the end of a pro-
gramming statement in C#.

 Getting back to our Code Demo example project, Figure 2-36 shows how you can call
the MessageBox.Show method from the myButton_Click event handler. After typing the
statement as shown in the figure, you can press the % key on the keyboard, or click the
 Start Debugging button () on the toolbar to compile and run the application. When the
application runs, it will display the form shown on the left in Figure 2-37 . When you click
the button, the message box shown on the right in the figure will appear. You can click
the OK button on the message box to close it.

 Figure 2-36 Event handler code for displaying a message box

 2.3 Introduction to C# Code 75

 String Literals
 Programs almost always work with data of some type. For example, the code shown in
 Figure 2-36 uses the following string when it calls the MessageBox.Show method:

 "Thanks for clicking the button!"

 This string is the data that is displayed by the program. When a piece of data is written
into a program’s code, it’s called a literal (because the data is literally written into the
program). When a string is written into a program’s code, it’s called a string literal . In C#,
string literals must be enclosed in double quotation marks.

When you click this button...

this message box will appear.

 Figure 2-37 The Code Demo project running

 NOTE: When writing a Click event handler for a Button control, you might be
wondering if it is necessary to first double-click the Button control in the Designer ,
creating the empty event handler code. After all, couldn’t you just skip this step and
instead open the code editor and write all the event handler code yourself? The an-
swer is no, you cannot skip this step. When you double-click a control in the
 Designer , Visual Studio not only creates an empty event handler, but it also writes
some code that you don’t see elsewhere in the project. This other code is necessary for
the event handler to properly function.

 NOTE: Programmers sometimes say that literals are values that are hard coded into
a program because the value of a literal cannot change while the program is running.

 Multiple Buttons with Event Handlers
 The Code Demo project previously shown has only one button with a Click event han-
dler. Many of the applications that you will develop will have multiple buttons, each with
its own Click event handler. For example, the form shown in Figure 2-38 has three Button
controls. As shown in the figure, the controls are named firstButton , secondButton ,
and thirdButton .

firstButton secondButton thirdButton

 Figure 2-38 A form with multiple Button controls

76 Chapter 2 Introduction to Visual C#

 To create Click event handlers for the buttons, you simply double-click each Button control
in the Designer and an empty event handler will be created in the form’s source code file.
The names of the Click event handlers will be firstButton_Click , secondButton_Click ,
and thirdButton_Click . Figure 2-39 shows an example of the form’s source code after
the three event handlers have been created and a MessageBox.Show statement has been
added to each one.

 Figure 2-39 Source code with three Click event handlers

 Design Time and Run Time
 When you have a project open in Visual Studio, the time during which you build the GUI
and write the application’s code is referred to as design time . During design time, you
can use the Designer and the Toolbox to place controls on the form, use the Properties
window to set property values, use the code editor to write code, and so forth. This is the
phase during which you create or modify the application.

 When you are ready to run a project that you have open in Visual Studio, you press the
% key on the keyboard or click the Start Debugging button () on the toolbar. The
project will be compiled, and if there were no errors, it will be executed. The time during
which an application is executing is referred to as run time . During run time, you can in-
teract with the running application, but you cannot use the Designer , the Toolbox , the
 Properties window, the code editor, or parts of Visual Studio to make changes to it.

 2.4 Writing Code for the Hello World Application 77

 NOTE: In computing literature and on the Web, you will see the term run time also
spelled as runtime or run - time . All these variations typically mean the same thing.

 Tutorial 2-2:
Writing Code for the Hello World Application

 Step 1: If Visual Studio (or Visual Studio Express) is not already running, start it. Open
the Hello World project that you started in Tutorial 2-1 .

 Step 2: Make sure the Form1 form is visible in the Designer, as shown in Figure 2-40 .
If it is not, right-click Form1.cs in the Solution Explorer and then select View
Designer from the pop-up menu.

 Step 3: In the Designer , double-click the messageButton control. This should cause
the code editor to appear as shown in Figure 2-41 . Notice that an empty event
handler named messageButton_Click has been created.

 Checkpoint

 2.15 A file that contains program code is known as what type of file?

 2.16 What must you do if you want your application to perform any meaningful
actions?

 2.17 What does the Program.cs file contain?

 2.18 What does the Form1.cs file contain?

 2.19 How is C# code organized?

 2.20 What is a namespace?

 2.21 What characters do code containers, such as namespaces, classes, and methods,
use to enclose code?

 2.22 How do you switch between the Designer and the code editor?

 2.23 How do you create an event handler for a button?

 2.24 What is a Click event?

 2.25 What method do you use in Visual C# to display a message box?

 2.26 What is a literal?

 2.27 What are string literals enclosed in?

 2.28 How do you run a project that you have open in Visual Studio?

 2.4 Writing Code for the Hello World Application
 Now you know everything necessary to complete the Hello World project. In Tutorial 2-2
you will open the project and add a Click event handler for the messageButton control.
The event handler will call the MessageBox.Show method to display a message box with
the message Hello World .

Tutorial 2-2:
Writing
Code for the
Hello World
Application

VideoNote

78 Chapter 2 Introduction to Visual C#

 Figure 2-40 The Hello World project loaded with Form1 shown in the Designer

 Figure 2-41 Code editor with an empty event handler

 2.4 Writing Code for the Hello World Application 79

 Step 4: Inside the messageButton_Click event handler, type the following statement
exactly as it is shown:

 MessageBox.Show("Hello World");

 Don’t forget to type the semicolon at the end of the statement! When you have
finished, the code window should look like Figure 2-42 .

 Figure 2-42 Statement written inside the event handler

 Step 5: Save the project.

 Step 6: Press the % key on the keyboard, or click the Start Debugging button () on
the toolbar to compile and run the application.

 NOTE: If you typed the statement correctly inside the messageButton_
Click event handler (in Step 4), the application should run. If you did not type
the statement correctly, however, a window will appear reporting build errors.
If that happens, click the No button in the window and then correct the state-
ment so it appears exactly as shown in Figure 2-42 .

 When the application runs, it will display the form shown on the left in Figure 2-43 .
When you click the Display Message button, the message box shown on the right in the
figure will appear. You can click the OK button on the message box to close it.

80 Chapter 2 Introduction to Visual C#

 2.5 Label Controls

 CONCEPT: A label control displays text on a form. Label controls have various prop-
erties that affect the control’s appearance. Label controls can be used to
display unchanging text, or program output.

 When you want to display text on a form, you use a Label control . Figure 2-44 shows an
example of a form with two Label controls. Once you have placed a Label control on a
form, you set its Text property to the text that you want to display. For example, in Fig-
ure 2-44 , the upper Label control’s Text property is set to Number of Hours Worked , and
the lower Label control’s Text property is set to Hourly Pay Rate .

When you click this button...

this message box will appear.

 Figure 2-43 The Hello World application running

Label controls

 Figure 2-44 A form with Label controls

 You’ll find the Label control tool in the Common Controls group of the Toolbox , as
shown in Figure 2-45 . To create a Label control on a form, you double-click the Label
control tool in the Toolbox . As shown in Figure 2-45 , a Label control will be created on
the form. (Alternatively, you can click and drag the Label control tool from the Toolbox
onto the form.) Notice that a bounding box appears around the Label control in the fig-
ure. This indicates that the control is currently selected.

 When you create Label controls, they are automatically given default names such as
 label1 , label2 , and so forth. A Label control’s Text property is initially set to the same
value as the Label control’s name. So, a Label control will display its own name when
it is created, as shown by the example in Figure 2-45 . When a Label control is selected
in the Designer, you can use the Properties window to change its Text property. Figure
 2-46 shows a Label control after its Text property has been changed to Programming in
Visual C# is fun!

 2.5 Label Controls 81

 You can also use the Properties window to change a Label control’s name. It’s always
a good idea to change a control’s name to something that is more meaningful than the
 default name that Visual Studio gives it.

 The Font Property
 If you want to change the appearance of a Label control’s text, you can change the con-
trol’s Font property. The Font property allows you to set the font, font style, and size
of the control’s text. When you select the Font property in the Properties window, you
will notice that an ellipses button () appears next to the property’s value, as shown in
 Figure 2-47 . When you click the ellipses button, the Font dialog box appears, as shown

 Figure 2-45 Creating a Label control

 Figure 2-46 A Label control displaying a message

Click here to change the Font property.

 Figure 2-47 The Font property

82 Chapter 2 Introduction to Visual C#

in Figure 2-48 . Select a font, font style, and size, and click OK . The text displayed by the
control will be updated with the selected attributes. For example, Figure 2-49 shows a
Label control with the following Font property attributes:

 Font: Lucida Handwriting

 Font Style: Italic

 Size: 10 point

 Figure 2-48 The Font dialog box

 Figure 2-49 A label’s appearance with altered font attributes

 The BorderStyle Property
 Label controls have a BorderStyle property that allows you to display a border around
the control’s text. The BorderStyle property may have one of three values: None, FixedS-
ingle, or Fixed3D. The property is set to None by default, which means that no border
will appear around the control’s text. If the BorderStyle property is set to FixedSingle,
the control’s text will be outlined with a thin border. If the BorderStyle property is set
to Fixed3D, the control’s text will have a recessed 3D appearance. Figure 2-50 shows an
example of Label controls with each BorderStyle setting.

 Figure 2-50 BorderStyle examples

 2.5 Label Controls 83

 To change the BorderStyle property, select it in the Properties window and then click the
down-arrow button () that appears next to the property’s value. As shown in Figure
 2-51 , a drop-down list will appear containing the three possible values for this property.
Select the desired value and the control’s text will be updated.

 Figure 2-51 BorderStyle selections

 The AutoSize Property
 Label controls have an AutoSize property that controls the way they can be resized. The
AutoSize property is a Boolean property, which means that it can be set to one of two
possible values: True or False. By default, a Label control’s AutoSize property is set to
True, which means that the control automatically resizes itself to accommodate the size
of the text it displays. For example, look at the three Label controls in Figure 2-52 . Each
of the controls displays different amounts of text at different font sizes. Because each con-
trol’s BorderStyle property is set to FixedSingle, you can see that each control is just large
enough to accommodate its text.

 Figure 2-52 Label controls with AutoSize set to True

 When a Label control’s AutoSize property is set to True, you cannot manually change
the size of the control by clicking and dragging its bounding box. If you want to manu-
ally change the size of a Label control, you have to set its AutoSize property to False.
When AutoSize is set to False, sizing handles will appear around the control, allowing
you to click and drag the bounding box to resize the control. Figure 2-53 shows an
example. In the figure, the Label control has been resized so it is much larger than the
text it displays.

84 Chapter 2 Introduction to Visual C#

 Figure 2-53 Label control with AutoSize set to False

 NOTE: When a Label control’s AutoSize property is set to True, the label’s text will
always appear on one line. When the AutoSize property is set to False, the label’s text
will wrap across multiple lines if it is too long to fit on one line.

 The TextAlign Property
 When you set a Label control’s AutoSize property to False and then manually resize the
control, it sometimes becomes necessary to change the way the label’s text is aligned. By
default, a label’s text is aligned with the top and left edges of the label’s bounding box.
For example, look at the label shown in Figure 2-53 . Notice how the text is positioned in
the label’s upper-left corner.

 What if we want the text to be aligned differently within the label? For example, what if
we want the text to be centered in the label or positioned in the lower-right corner? We
can change the text’s alignment in the label with the TextAlign property . The TextAlign
property may be set to any of the following values: TopLeft, TopCenter, TopRight, Mid-
dleLeft, MiddleCenter, MiddleRight, BottomLeft, BottomCenter, or BottomRight. Figure
 2-54 shows nine Label controls, each with a different TextAlign value.

 Figure 2-54 Text alignments

 To change the TextAlign property, select it in the Properties window and then click the
down-arrow button () that appears next to its value. This causes a dialog box with nine
buttons, as shown in the left image in Figure 2-55 , to appear. As shown in the right image
in the figure, the nine buttons represent the valid settings of the TextAlign property.

 Using Code to Display Output in a Label Control
 In addition to displaying unchanging text on a form, Label controls are also useful for dis-
playing output while an application is running. For example, suppose you are creating an
application that performs a calculation and you want to display the result of the calcula-

 2.5 Label Controls 85

tion at a specific location on the form. Using a Label control to display the output would
be an ideal solution. Here are the general steps that you would follow:

 Step 1: While creating the application’s GUI, you place a Label control on the form
at the location where you want the result to be displayed. Then, in the
 Properties window, you erase the contents of the Label control’s Text prop-
erty. Because the control’s Text property is empty, the control will not initially
display anything when the application runs.

 Step 2: In the application’s code, you write the necessary statements to perform the cal-
culation and then you store the result of the calculation in the Label control’s Text
property. This causes the result to be displayed on the form in the Label control.

TopCenter
MiddleCenter

TopLeft

MiddleLeft

BottomLeft

TopRight

MiddleRight

BottomRight

BottomCenter

 Figure 2-55 Setting the TextAlign property

 NOTE: We do not discuss calculations until Chapter 3 , so in this chapter we look at
examples that display nonmathematical data as output in Label controls.

 In code, you use an assignment statement to store a value in a control’s property. For example,
suppose you have created a Label control and named it outputLabel . The following assign-
ment statement stores the string "Thank you very much" in the control’s Text property.

 outputLabel.Text = "Thank you very much";

 The equal sign (=) is known as the assignment operator . It assigns the value that appears
on its right side to the item that appears on its left side. In this example, the item on the
left side of the assignment operator is the expression outputLabel.Text . This is simply
the outputLabel control’s Text property. The value on the right side of the assignment
operator is the string "Thank you very much" . When this statement executes, the string
 "Thank you very much" is assigned to the outputLabel control’s Text property. When
this statement executes, the text Thank you very much is displayed in the Label control.

 WARNING! When writing assignment statements, remember that the item receiv-
ing the value must be on the left side of the = operator. The following statement, for
example, is wrong and will cause an error when you compile the program:

 "Thank you very much" = outputLabel; d ERROR!

 NOTE: The standard notation for referring to a control’s property in code is:

 ControlName.PropertyName

86 Chapter 2 Introduction to Visual C#

 Let’s look at an example application that uses a Label control to display output. Make
sure you have downloaded the student sample programs from the book’s companion Web
site (at www.pearsonhighered.com/gaddis). In the Chap02 folder, you will find a project
named Presidential Trivia. The purpose of the application is to display a trivia question
about a former U.S. president. When the user clicks a button, the answer to the trivia
question is displayed on the form. The project’s form appears as shown in Figure 2-56 .

 Figure 2-56 Presidential Trivia form

 As shown in the figure, the form has the three controls:

 • A Label control named questionLabel . This label displays the trivia question.
 • A Label control named answerLabel . This label initially appears empty, but will be

used to display the answer to the trivia question.
 • A Button control named showAnswerButton . When the user clicks this button, the

answer to the trivia question is displayed.

 Table 2-2 lists the property settings for each control of which you should take note.

 Table 2-2 Control property settings

 Control Name Control Type Property Settings

 questionLabel Label AutoSize: False
 BorderStyle : None
 Font : Microsoft Sans Serif (Style: Regular, Size: 10 point)
 Text : What former U.S. president is known for going on
an African safari?
 TextAlign : MiddleCenter

 answerLabel Label AutoSize : False
 BorderStyle : FixedSingle
 Font : Microsoft Sans Serif (Style: Bold, Size: 10 point)
 Text : (The contents of the Text property have been erased.)
 TextAlign : MiddleCenter

 showAnswerButton Button Size : 110, 23
 Text : Show the Answer

 If we open the Form1.cs file in the code editor, we see the code shown in Figure 2-57 .
(To open the file in the code window, right-click Form1.cs in the Solution Explorer
and then select View Code .) Notice the method named showAnswerButton_Click .

www.pearsonhighered.com/gaddis

 2.5 Label Controls 87

This is the Click event handler for the showAnswerButton control. It contains the fol-
lowing statement:

 answerLabel.Text = "Theodore Roosevelt";

 When this statement executes, it assigns the string "Theodore Roosevelt" to the
 answerLabel control’s Text property. As a result, Theodore Roosevelt is displayed in
the label control.

 When you run the application, the form appears as shown on the left in Figure 2-58 . Click
the Show the Answer button and the answer to the trivia question appears as shown on
the right in the figure.

 Figure 2-57 Form1.cs code

 Figure 2-58 The Presidential Trivia application running

 The Text Property Accepts Strings Only

 It is important to point out that the Label control’s Text property can accept strings only.
You cannot assign a number to the Text property. For example, let’s assume that an

88 Chapter 2 Introduction to Visual C#

application has a Label control named resultLabel . The following statement will cause
an error because it is attempting to store the number 5 in the resultLabel control’s Text
property:

 resultLabel.Text = 5; d ERROR!

 This does not mean that you cannot display a number in a label, however. If you put quo-
tation marks around the number, it becomes a string. The following statement will work:

 resultLabel.Text = "5";

 Clearing a Label

 In code, if you want to clear the text that is displayed in a Label control, simply assign an
empty string ("") to the control’s Text property, as shown here:

 answerLabel.Text = "";

 In Tutorial 2-3 you will work with some of the Label control properties that we have
discussed in this section.

 Tutorial 2-3:
Creating the Language Translator Application

 In this tutorial you will create an application that displays the phrase “Good Morning”
in different languages. The form will have three buttons: one for Italian, one for Spanish,
and one for German. When the user clicks any of these buttons, the translated phrase will
appear in a Label control.

 Step 1: Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms
Application project named Language Translator.

 Step 2: Set up the application’s form as shown in Figure 2-59 . Notice that the form’s
Text property is set to Language Translator . The form has two Label controls
and three Button controls. The names of the controls are shown in the figure.
As you place each of the controls on the form, refer to Table 2-3 for the relevant
property settings.

instructionLabel

translationLabel

italianButton spanishButton germanButton

 Figure 2-59 The Language Translator form

 Step 3: Once you have the form and its controls set up, you can create the Click event
handlers for the Button controls. In the Designer , double-click the italian-
Button control. This will open the code editor, and you will see an empty event
handler named italianButton_Click . Write the following statement inside
the event handler:

 translationLabel.Text = "Buongiorno";

 Tutorial 2-3:
Creating the
Language
Translator
Application

VideoNote

 2.5 Label Controls 89

 Table 2-3 Control property settings

 Control Name Control Type Property Settings

 instructionLabel Label Text : Select a language and I will say
Good Morning.

 translationLabel Label AutoSize : False
 BorderStyle : FixedSingle
 Font : Microsoft Sans Serif (Style: Bold, Size:
10 point)
 Text : (The contents of the Text property
have been erased.)
 TextAlign : MiddleCenter

 italianButton Button Text : Italian

 spanishButton Button Text : Spanish

 germanButton Button Text : German

 Step 4: Switch your view back to the Designer and double-click the spanishBut-
ton control. In the code editor you will see an empty event handler named
 spanishButton_Click . Write the following statement inside the event handler:

 translationLabel.Text = "Buenos Dias";

 Step 5: Switch your view back to the Designer and double-click the germanBut-
ton control. In the code editor you will see an empty event handler named
 germanButton_Click . Write the following statement inside the event handler:

 translationLabel.Text = "Guten Morgen";

 Step 6: The form’s code should now appear as shown in Program 2-1. Note that the
line numbers are not part of the code. The line numbers are shown so that
you and your instructor can more easily refer to different parts of the pro-
gram. The lines that appear in boldface are the ones that you typed. Make
sure the code you typed appears exactly as shown here. (Don’t forget the
semicolons!)

 Program 2-1 Completed Form1 code for the Language Translator application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Language_Translator
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }

90 Chapter 2 Introduction to Visual C#

 19
 20 private void italianButton_Click(object sender, EventArgs e)
 21 {
 22 translationLabel.Text = "Buongiorno";
 23 }
 24
 25 private void spanishButton_Click(object sender, EventArgs e)
 26 {
 27 translationLabel.Text = "Buenos Dias";
 28 }
 29
 30 private void germanButton_Click(object sender, EventArgs e)
 31 {
 32 translationLabel.Text = "Guten Morgen";
 33 }
 34 }
 35 }

 Step 7: Save the project. Then, press the % key on the keyboard or click the Start
Debugging button () on the toolbar to compile and run the application.

 Figure 2-60 The Language Translator application running

 NOTE: If you typed the statements correctly inside the event handlers, the ap-
plication should run. If you did not type the statements correctly inside the event
handlers, a window will appear reporting build errors. If that happens, click
the No button in the window and then correct the code so it appears exactly as
previously shown.

 Figure 2-60 shows the application’s form when it starts running and after you have
clicked each of the Button controls. After you have tested each button, close the applica-
tion’s form.

 2.6 Making Sense of IntelliSense 91

 Checkpoint

 2.29 In which group of the Toolbox can you find the Label control tool?

 2.30 Once you have placed a Label control on a form, which property do you use to set
the text that you want to display?

 2.31 What property can you use to change the appearance of a Label control’s text?

 2.32 What is the default value of a label’s BorderStyle property?

 2.33 How do you change the BorderStyle property of a control in the Properties
window?

 2.34 What property determines whether a label can be resized?

 2.35 What property determines the way text is aligned in a Label control?

 2.36 How can you use a Label control to display output while a program is running?

 2.37 What happens if you assign an empty string to a control’s Text property in code?

 2.6 Making Sense of IntelliSense

 CONCEPT: As you type code in the Visual Studio code editor, IntelliSense boxes
pop up to assist you. You can use the IntelliSense boxes to automati-
cally complete some programming statements after typing only the first
few characters.

 IntelliSense is a feature of Visual Studio that provides automatic code completion
as you write programming statements. Once you learn how to use IntelliSense, it helps
you write code faster. If you’ve worked through the previous tutorials in this chapter,
you’ve already encountered IntelliSense. For example, in Step 3 of Tutorial 2-3 , you
were instructed to write the following statement in the italianButton_Click event
handler:

 translationLabel.Text = "Buongiorno";

 Did you notice that as soon as you started typing the statement, a box popped up on the
screen? This is known as an IntelliSense list box. The contents of the list box changes as you
type. Figure 2-61 shows the IntelliSense list box after you have typed the characters tra .

 Figure 2-61 IntelliSense list box displayed

92 Chapter 2 Introduction to Visual C#

 The IntelliSense system is anticipating what you are about to type, and as you type char-
acters, the content of the list box is reduced. The list box shown in Figure 2-61 shows all
the names starting with tra that might be a candidate for the statement you are typing.
Notice that translationLabel is selected in the list box. With that item selected, you
can press the t key on the keyboard, and the tra that you previously typed becomes
 translationLabel .

 Next, when you type a period, an IntelliSense list pops up showing every property and
method belonging to the translationLabel control. Type te and the Text property
becomes selected, as shown in Figure 2-62 . When you press the t key to select the
Text property, your statement automatically becomes translationLabel.Text . At this
point, you can continue typing until you have completed the statement.

 Figure 2-62 IntelliSense list box after typing “.te”

 Now that you have an idea of how IntelliSense works, you are encouraged to experi-
ment with it as you write code in future projects. With a little practice, it will become
intuitive.

 2.7 PictureBox Controls

 CONCEPT: A PictureBox control displays a graphic image on a form. PictureBox con-
trols have properties for controlling the way the image is displayed. A
PictureBox control can have a Click event handler that responds when the
user clicks the control at run time.

 You can use a PictureBox control to display a graphic image on a form. A PictureBox
control can display images that have been saved in the bitmap, GIF, JPEG, metafile, or
icon graphics formats.

 In the Toolbox , the PictureBox tool is located in the Common Controls group. When
you double-click the tool, an empty PictureBox control is created on the form, as
shown in Figure 2-63 . Although the control does not yet display an image, it has a
bounding box that shows its size and location, as well as sizing handles. When you
create PictureBox controls, they are automatically given default names such as
 pictureBox1 , pictureBox2 , and so forth. You should always change the default
name to something more meaningful.

 2.7 PictureBox Controls 93

 Once you have created a PictureBox control, you use its Image property to specify the
image that it will display. Follow these steps:

 Step 1: Click the Image property in the Properties window. An ellipses button () will
appear, as shown on the left in Figure 2-64 .

 Step 2: Click the ellipses button and the Select Resource window, shown on the right
in Figure 2-64 , will appear.

 Figure 2-63 An empty PictureBox control

 Figure 2-64 The Image property’s Select Resource window

 Step 3: In the Select Resource window, click the Import button. An Open dialog box
will appear. Use the dialog box to locate and select the image file that you
want to display.

 Step 4: After you select an image file, you will see its contents displayed in the Select
Resource window. This indicates that the image has been imported into the
project. Figure 2-65 shows an example of the Select Resource window after
we have selected and imported an image.

 Step 5: Click the OK button in the Select Resource window, and the selected image
will appear in the PictureBox control. Figure 2-66 shows an example.
Depending on the size of the image, you might see only part of it displayed.
This is the case in Figure 2-66 because the image is larger than the PictureBox
control. Your next step is to set the SizeMode property and adjust the size of
the control.

94 Chapter 2 Introduction to Visual C#

 Figure 2-65 An image selected and imported

 Figure 2-66 The image displayed in the PictureBox control

 The SizeMode Property
 The PictureBox control’s SizeMode property specifies how the control’s image is to be
displayed. It can be set to one of the following values:

 • Normal

 Normal is the default value. The image will be positioned in the upper-left corner of
the PictureBox control. If the image is too big to fit in the PictureBox control, it will
be clipped.

 • StretchImage

 StretchImage resizes the image both horizontally and vertically to fit in the Picture-
Box control. If the image is resized more in one direction than the other, it will ap-
pear stretched.

 • AutoSize

 With AutoSize, the PictureBox control is automatically resized to fit the size of the
image.

 2.7 PictureBox Controls 95

 • CenterImage

 CenterImage centers the image in the PictureBox control without resizing it.

 • Zoom

 Zoom uniformly resizes the image to fit in the PictureBox without losing its origi-
nal aspect ratio. (Aspect ratio is the image’s width to height ratio.) This causes the
image to be resized without appearing stretched.

 Figure 2-67 shows an example of an image displayed in a PictureBox control. The con-
trol’s SizeMode is set to Zoom, so it can be resized without appearing stretched.

 Figure 2-67 An image resized with SizeMode set to Zoom

 Creating Clickable Images
 Buttons aren’t the only controls that can respond to Click events. PictureBox controls
can, too. That means an application can display an image and perform some action when
the user clicks the image.

 To make an image clickable, you simply have to create a Click event handler for
the PictureBox control that displays the image. You create a Click event handler for a
PictureBox control in the same way that you create a Click event handler for a Button
control:

 • You double-click the PictureBox control in the Designer . This creates an empty
Click event handler in the form’s source code file.

 • In the code editor you write statements inside the event handler that you want to
execute when the image is clicked.

 As an example, look at the Cat project that is in the Chap02 folder of the Student Sample
Programs that accompany this textbook. Figure 2-68 shows the application’s form. The
PictureBox control’s name is catPictureBox . Its image is the Cat.jpg file, which is also
found in the Chap02 folder of the Student Sample Programs. The SizeMode property is
set to Zoom, and the BorderStyle property is set to FixedSingle.

 Open the Form1.cs file in the code editor and you will see that we have already created
a Click event handler for the catPictureBox control, as shown in Figure 2-69 . If you
run the application and click the PictureBox, a message box will appear displaying the
string Meow .

 NOTE: PictureBox controls also have a BorderStyle property that works just like a
Label control’s BorderStyle property.

96 Chapter 2 Introduction to Visual C#

 Tutorial 2-4 gives you a chance to practice using PictureBox controls. In the tutorial, you
will create an application with three clickable PictureBox controls, displaying images that
are provided in the Student Sample Program files that accompany this book.

 Figure 2-68 The Cat form

 Figure 2-69 Code for the Cat project’s Form1.cs file

 Tutorial 2-4:
Creating the Flags Application

 In this tutorial you will create an application that displays the flags of Finland, France,
and Germany in PictureBox controls. When the user clicks any of these PictureBoxes, the
name of that flag’s country will appear in a Label control.

 Step 1: Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms
Application project named Flags.

Tutorial 2-4:
Creating
the Flags
Application

VideoNote

 2.7 PictureBox Controls 97

germanyPictureBox

countryLabel

instructionLabel

finlandPictureBox

francePictureBox

 Figure 2-70 The Flags form

 Table 2-4 Control property settings

 Control Name Control Type Property Settings

 instructionLabel Label Text : Click a flag to see the name of the
country.

 finlandPictureBox PictureBox Image : Select and import the Finland.bmp
file from the Chap02 folder of the Student
Sample Programs.
 BorderStyle : FixedSingle
 SizeMode : AutoSize

 francePictureBox PictureBox Image : Select and import the France.bmp
file from the Chap02 folder of the Student
Sample Programs.
 BorderStyle : FixedSingle
 SizeMode : AutoSize

 germanyPictureBox PictureBox Image : Select and import the Germany.bmp
file from the Chap02 folder of the Student
Sample Programs.
 BorderStyle : FixedSingle
 SizeMode : AutoSize

 countryLabel Label AutoSize : False
 BorderStyle : FixedSingle
 Font : Microsoft Sans Serif (Style: Bold, Size:
10 point)
 Text : (The contents of the Text property
have been erased.)
 TextAlign : MiddleCenter

 Step 3: Once you have the form and its controls set up, you can create the Click event
handlers for the PictureBox controls. In the Designer , double-click the
 finlandPictureBox control. This will open the code editor, and you will see
an empty event handler named finlandPictureBox_Click . Write the follow-
ing statement inside the event handler:

 countryLabel.Text = "Finland";

 Step 2: Set up the application’s form as shown in Figure 2-70 . Notice that the form’s
Text property is set to Flags . The names of the controls are shown in the figure.
Refer to Table 2-4 for each control’s relevant property settings.

98 Chapter 2 Introduction to Visual C#

 Step 4: Switch your view back to the Designer and double-click the francePicture-
Box control. This will open the code editor, and you will see an empty event
handler named francePictureBox_Click . Write the following statement in-
side the event handler:

 countryLabel.Text = "France";

 Step 5: Switch your view back to the Designer and double-click the germanyPicture-
Box control. This will open the code editor, and you will see an empty event
handler named germanyPictureBox_Click . Write the following statement in-
side the event handler:

 countryLabel.Text = "Germany";

 Step 6: The form’s code should now appear as shown in Program 2-2. As was men-
tioned in the previous tutorial, the line numbers are shown for reference only,
and are not part of the code. The lines that appear in boldface are the ones that
you typed. Make sure the code you typed appears exactly as shown here. (Don’t
forget the semicolons!)

 Program 2-2 Completed Form1 code for the Flags application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Flags
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void finlandPictureBox_Click(object sender, EventArgs e)
 21 {
 22 countryLabel.Text = "Finland";
 23 }
 24
 25 private void francePictureBox_Click(object sender, EventArgs e)
 26 {
 27 countryLabel.Text = "France";
 28 }
 29
 30 private void germanyPictureBox_Click(object sender, EventArgs e)
 31 {
 32 countryLabel.Text = "Germany";
 33 }
 34 }
 35 }

 2.7 PictureBox Controls 99

 Step 7: Save the project. Then, press the % key on the keyboard, or click the Start
Debugging button () on the toolbar to compile and run the application.

 NOTE: If you typed the statements correctly inside the event handlers, the ap-
plication should run. If you did not type the statements inside the event handlers
correctly, a window will appear reporting build errors. If that happens, click the
 No button in the window, then correct the code so it appears exactly as previ-
ously shown.

 Figure 2-71 shows the application’s form when it starts running and then after
you have clicked each of the PictureBox controls. After you have clicked each
flag to make sure the application works correctly, close the form.

 Figure 2-71 The Flags application running

 The Visible Property
 Most controls have a Visible property that determines whether the control is visible on the
form at run time. The Visible property is a Boolean property, which means it can be set only
to the values True or False. If a control’s Visible property is set to True, the control will be
visible on the form at run time. If a control’s Visible property is set to False, however, the
control will not be visible at run time. By default, the Visible property is set to True.

 When you use the Properties window to change a control’s Visible property at design time,
the control will still be visible in the Designer . When you run the application, however, the
control will not be visible on the form. For example, the image on the left in Figure 2-72
shows a form in the Designer . The PictureBox control’s Visible property is set to False, but
the control can still be seen in the Designer . The image on the right shows the form while
the application is running. At run time, the control is not visible.

 A control’s Visible property can also be modified in code by an assignment statement,
which makes it possible to hide or display a control while the application is running. For
example, the PictureBox control shown in Figure 2-72 is named spiderPictureBox . The
following statement sets the control’s Visible property to true :

 spiderPictureBox.Visible = true;

100 Chapter 2 Introduction to Visual C#

 When this statement executes, the spiderPictureBox control will become visible. Like-
wise, the following statement sets the control’s Visible property to false :

 spiderPictureBox.Visible = false;

 When this statement executes, the spiderPictureBox control will become invisible.

 Figure 2-72 A PictureBox control with its Visible property set to False

 NOTE: When you write the values true and false in code, as shown in the previ-
ous assignment statement, they must be written in all lowercase letters. The words
 true and false are C# keywords, and an error will occur if you don’t write them in
lowercase. However, when you use the Properties window to set a Boolean property,
such as Visible, the values True and False will be shown with an initial capital. Try
not to let this inconsistency confuse you!

 In Tutorial 2-5 you will create an application that uses the Visible property of two
PictureBox controls to simulate a card being flipped over.

 Tutorial 2-5:
Creating the Card Flip Application

 In this tutorial you will create an application that simulates a card being flipped over.
When the application runs, it will display the form shown on the left in Figure 2-73 . The
form initially displays the back of a poker card. When the user clicks the Show the Card
Face button, the card will be flipped over to show its face, as shown in the form on the
right. When the user clicks the Show the Card Back button, the card is flipped back over
to show its back.

Tutorial 2-5:
Creating the
Card Flip
Application

VideoNote

 2.7 PictureBox Controls 101

 The simulation of the card being flipped will be accomplished using the following
logic:

 • When the user clicks the Show the Card Face button, the PictureBox showing the
card’s back will be made invisible and the PictureBox showing the card’s face will be
made visible.

 • When the user clicks the Show the Card Back button, the PictureBox showing the
card’s face will be made invisible and the PictureBox showing the card’s back will be
made visible.

 Figure 2-73 The Card Flip application

 Step 1: Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms
Application project named Card Flip.

 Step 2: Set up the application’s form as shown in Figure 2-74 . Notice that the form’s
Text property is set to Card Flip . The names of the controls are shown in the
figure. Use the Properties window to make the property settings shown in Table
 2-5 . (In particular, note that the cardBackPictureBox control’s Visible prop-
erty is set to True, and the cardFacePictureBox control’s Visible property is
set to False.)

cardBackPictureBox cardFacePictureBox

showBackButton showFaceButton

 Figure 2-74 The Card Flip form

102 Chapter 2 Introduction to Visual C#

 Table 2-5 Control property settings

 Control Name Control Type Property Settings

 cardBackPictureBox PictureBox Image : Select and import the Backface_
Blue.jpg file from the Chap02 folder
of the Student Sample Programs.
 Size: 100, 140
 SizeMode : Zoom
 Visible: True

 cardFacePictureBox PictureBox Image : Select and import the Ace_Spades.
jpg file from the Chap02 folder of the
Student Sample Programs.
 Size: 100, 140
 SizeMode : Zoom
 Visible: False

 showBackButton Button Text: Show the Card Back
 (Manually resize the button to
accommodate the text, as shown in
 Figure 2-74 .)

 showFaceButton Button Text: Show the Card Face (Manually
resize the button to accommodate the text,
as shown in Figure 2-74 .)

 Step 3: Once you have the form and its controls set up, you can create the Click event
handlers for the Button controls. In the Designer , double-click the showBack-
Button control. This will open the code editor, and you will see an empty event
handler named showBackButton_Click . Write the following statements inside
the event handler:

 cardBackPictureBox.Visible = true;
 cardFacePictureBox.Visible = false;

 Step 4: Switch your view back to the Designer and double-click the showFaceButton
control. This will open the code editor, and you will see an empty event han-
dler named showFaceButton_Click . Write the following statements inside the
event handler:

 cardBackPictureBox.Visible = false;
 cardFacePictureBox.Visible = true;

 Step 5: The form’s code should now appear as shown in Program 2-3. Remember, the
line numbers are shown for reference only and are not part of the code. The
lines that appear in boldface are the ones that you typed. Make sure the code
you typed appears exactly as shown here. (Don’t forget the semicolons!)

 Program 2-3 Completed Form1 code for the Card Flip application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;

 2.7 PictureBox Controls 103

 9 using System.Windows.Forms;
 10
 11 namespace Card_Flip
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void showBackButton_Click(object sender, EventArgs e)
 21 {
 22 cardBackPictureBox.Visible = true;
 23 cardFacePictureBox.Visible = false;
 24 }
 25
 26 private void showFaceButton_Click(object sender, EventArgs e)
 27 {
 28 cardBackPictureBox.Visible = false;
 29 cardFacePictureBox.Visible = true;
 30 }
 31 }
 32 }

 Step 6: Save the project. Then, press the % key on the keyboard, or click the Start
Debugging button () on the toolbar to compile and run the application.

 Test the application by clicking the buttons. When you click the Show the Card
Face button you should see the card’s face (and the back of the card should be
invisible). When you click the Show the Card Back button you should see the
card’s back (and the card’s face should be invisible). When you are finished,
close the application.

 NOTE: If you typed the statements correctly inside the event handlers, the ap-
plication should run. If you did not type the statements inside the event handlers
correctly, a window will appear reporting build errors. If that happens, click
the No button in the window and then correct the code so it appears exactly as
previously shown.

 NOTE: In addition to PictureBoxes, many other types of controls have a Visible
property. For example, you can make a Label control visible or invisible by setting the
value of its Visible property.

 Sequential Execution of Statements
 In Tutorial 2-5 , the event handlers that you created each contained more than one state-
ment. For example, here is the showBackButton_Click method:

 private void showBackButton_Click(object sender, EventArgs e)
 {
 cardBackPictureBox.Visible = true;
 cardFacePictureBox.Visible = false;
 }

104 Chapter 2 Introduction to Visual C#

 This method has two assignment statements. When the method executes, the statements
in the method execute in the order that they appear, from the beginning of the method to
the end of the method. This statement executes first:

 cardBackPictureBox.Visible = true;

 Then this statement executes:

 cardFacePictureBox.Visible = false;

 When the application is running, however, you can’t really tell that the statements are ex-
ecuting in this order simply by watching the action take place on the screen. When you click
the showBackButton control, the Click event handler executes so quickly that it appears as
though both statements execute simultaneously. It’s important for you to understand, how-
ever, that the statements execute one at a time, in the order that they appear in the method.

 In this particular method, it doesn’t really matter which assignment statement is written first.
If we reverse the order of the statements, we will not be able to see the difference on the screen
because the application executes so quickly. In most applications, however, the order in which
you write the statements in the event handlers is critically important. In Chapter 3 you will
start writing event handlers that perform several steps, and in most cases, the steps must be
performed in a specific order. Otherwise, the program will not produce the correct results.

 Checkpoint

 2.38 What is a PictureBox control used for?

 2.39 Where is the PictureBox tool located in the Toolbox ?

 2.40 How do you display an image in the PictureBox?

 2.41 What is the default value of the PictureBox control’s SizeMode property?

 2.42 How does setting the SizeMode property to Zoom affect the image that is to be
displayed in the PictureBox control?

 2.43 How do you create a clickable image?

 2.44 Does the value of a control’s Visible property change how the image appears at run
time and design time?

 2.8 Comments, Blank Lines, and Indentation

 CONCEPT: Comments are brief notes that are placed in a program’s source code
to explain how parts of the program work. Programmers commonly
use blank lines and indentation in program code to give the code visual
organization and make it easier to read.

 Comments
 Comments are short notes that are placed in different parts of a program, explaining how
those parts of the program work. Comments are not intended for the compiler. They are
intended for any person who is reading the code and trying to understand what it does.

 In C# there are three types of comments: line comments, block comments, and documen-
tation comments. A line comment appears on one line in a program. You begin a line

 2.8 Comments, Blank Lines, and Indentation 105

comment with two forward slashes (//). Everything written after the slashes, to the end of
the line, is ignored by the compiler. The following code sample shows how we might use
line comments in the showBackButton_Click event handler from Tutorial 2-5 . Each line
comment explains what the very next line of code does.

 private void showBackButton_Click(object sender, EventArgs e)
 {
 // Make the image of the back of the card visible.
 cardBackPictureBox.Visible = true;
 // Make the image of the face of the card invisible.
 cardFacePictureBox.Visible = false;
 }

 A line comment does not have to occupy an entire line. Anything appearing after the //
symbol, to the end of the line, is ignored. So, a comment can appear after an executable
statement. The following code sample shows an example.

 private void showBackButton_Click(object sender, EventArgs e)
 {
 cardBackPictureBox.Visible = true; // Show the card back.
 cardFacePictureBox.Visible = false; // Hide the card face.
 }

 A block comment can occupy multiple consecutive lines in a program. A block comment
starts with /* (a forward slash followed by an asterisk) and ends with */ (an asterisk fol-
lowed by a forward slash). Everything between these markers is ignored. The following
code sample shows how block comments may be used.

 /* Click event handler for the showBackButton control.
 This method makes the image of the back of the card
 visible and makes the image of the card’s face
 invisible.
 */
 private void showBackButton_Click(object sender, EventArgs e)
 {
 cardBackPictureBox.Visible = true; // Show the card back.
 cardFacePictureBox.Visible = false; // Hide the card face.
 }

 The first five lines in this code sample are a block comment that explains what the
 showBackButton_Click method does. Block comments make it easier to write long
explanations because you do not have to mark every line with a comment symbol.

 Remember the following advice when using block comments:

 • Be careful not to reverse the beginning symbol (/*) with the ending symbol (*/).
 • Do not forget the ending symbol.

 Each of these mistakes can be difficult to track down and will prevent the program from
compiling correctly.

 The third type of comment is known as a documentation comment. Documentation com-
ments are used by professional programmers to embed extensive documentation in a
program’s source code. Visual Studio can extract information from the documentation
comments and generate external documentation files. Single-line documentation com-
ments begin with three forward slashes (///). Block documentation comments begin with
 /** and end with */ . Although documentation comments are useful for professional
 programmers, we do not use them in this book.

 As a beginning programmer, you might resist the idea of writing a lot of comments
in your programs. After all, it’s a lot more interesting to write code that actually does
something. However, it’s crucial that you take the extra time to write comments. They

106 Chapter 2 Introduction to Visual C#

will almost certainly save you time in the future when you have to modify or debug the
program. Even large and complex programs can be made easy to read and understand if
they have proper comments.

 Using Blank Lines and Indentation to Make Your Code
Easier to Read
 Programmers commonly use blank lines and indentations in their code to create a sense
of visual organization. This is similar to the way that authors visually arrange the text
on the pages of a book. Instead of writing each chapter as one long series of sentences,
they break the text into paragraphs that are visually separated on the page. This does not
change the information in the book, but it makes it easier to read.

 For example, in the following code sample, we have inserted a blank line inside the
method to visually separate the code into two sets of statements. The blank line is not
required, but it makes the code easier for humans to read.

 private void showBackButton_Click(object sender, EventArgs e)
 {
 // Make the image of the back of the card visible.
 cardBackPictureBox.Visible = true;
 // Make the image of the face of the card invisible.
 cardFacePictureBox.Visible = false;
 }

 Programmers also use indentation to visually organize code. You may have noticed that
in the code editor, all the statements that appear inside a set of braces ({}) are indented.
For example, all the statements inside a namespace are indented, all the statements inside
a class are indented, and all the statements inside a method are indented. In fact, Visual
Studio is normally set up to automatically indent the code that you write in this fashion.

 Although the indentation is not required, it makes your code much easier to read. By indent-
ing the statements inside a method, you visually set them apart. As a result, you can tell at a
glance which statements are inside the method. The same is true for classes and namespaces.
This practice of indentation is a convention that virtually all programmers follow.

 Checkpoint

 2.45 What purpose do comments serve?

 2.46 How are line comments and block comments different?

 2.47 What should you be careful to remember about the beginning and ending symbols
of block comments?

 2.48 Why do programmers insert blank lines and indentations in their code?

 2.9 Writing the Code to Close an Application’s Form

 CONCEPT: To close an application’s form in code, you use the statement this.
Close();

 All the applications that you created in this chapter’s tutorials required the user to click
the standard Windows close button () to close the application. The standard Win-
dows close button appears in the upper-right corner of almost every window. In many

 2.10 Dealing with Syntax Errors 107

 applications, however, you will want to give the user an alternative way to close the ap-
plication. For example, you might want to create an Exit button that closes the applica-
tion when it is clicked.

 To close an application’s form, you execute the following statement:

 this.Close();

 Let’s look at an example of how this statement can be used. Figure 2-75 shows the form
and code from a project named Exit Button Demo. The Button control that you see on
the form is named exitButton . In the form’s code you can see that we have created a
Click event handler for the button. When the user clicks the button, it closes the form,
thus closing the application.

 Figure 2-75 A form with an Exit button

 2.10 Dealing with Syntax Errors

 CONCEPT: The Visual Studio code editor examines each statement as you type it and
reports any syntax errors that are found. This allows you to quickly cor-
rect syntax errors.

 Writing code requires a lot of precision. Even small errors, such as using an uppercase
letter where you are supposed to use a lowercase letter or forgetting to end a statement
with a semicolon, will prevent an application’s code from compiling and executing. Recall
from Chapter 1 that these types of mistakes are known as syntax errors.

 The Visual Studio code editor does a good job of reporting syntax errors soon after you
type them. When you enter a statement into the editor, Visual Studio analyzes it, and if a
syntax error is found, it is underlined with a jagged line. Figure 2-76 shows an example.
If you hold the mouse cursor over the jagged a line, a description of the error will pop up
in a ToolTip window. The description usually gives you enough information to determine
the cause of the error and how to fix it.

108 Chapter 2 Introduction to Visual C#

 If a syntax error exists in a project’s code and you attempt to compile and execute it
(by pressing the % key on the keyboard, or clicking the Start Debugging button ()
on the toolbar), you will see the window shown in Figure 2-77 , reporting build er-
rors. Click the No button to close the window, and you will see the Error List shown
in Figure 2-78 .

This jagged line indicates an error.

 Figure 2-76 Error underlined

 Figure 2-78 Error List window

 Figure 2-77 Window reporting build errors

 Notice that the Error List window shows a description of the error, the source code file
that contains the error, the line number and column number of the error, and the name
of the project. If you double-click the error message that is displayed in the Error List
window, the code editor will highlight the code that caused the error.

 Checkpoint

 2.49 What statement do you use to close an application’s form in code?

 2.50 How can you tell that Visual Studio has found a syntax error?

 2.51 What happens if you hold the mouse cursor over a jagged line in the code editor?

 2.52 What happens if you attempt to compile and execute a program that contains
syntax errors?

 Review Questions 109

 Key Terms

 Alphabetical button
 aspect ratio
 assignment operator
 assignment statement
 AutoSize property
 block comment
 Boolean
 BorderStyle property
 bounding box
 braces
 camelCase
 Categorized button
 Click event
 design time
 dialog box
 documentation comments
 event handler
 Font property
 Form1.cs file

 Hello World
 identifiers
 Image property
 IntelliSense
 Label control
 line comment
 message box
 method call
 namespace
 PictureBox control
 Program.cs file
 run time
 semicolon
 SizeMode property
 sizing handles
 source code file
 string
 TextAlign property
 Visible property

 Review Questions
 Multiple Choice

 1. A(n) __________ is the thin dotted line that encloses an object in the Designer .

 a. selection marker
 b. control binder
 c. bounding box
 d. object container

 2. The small squares that appear on the right edge, bottom edge, and lower-right cor-
ner of a form’s bounding box are called __________.

 a. sizing hooks
 b. form edges
 c. bounding tags
 d. sizing handles

 3. __________ is the name of the blank form that Visual Studio initially creates in a
new project.

 a. Form1
 b. Main
 c. New1
 d. Blank

 4. The __________ property holds the text that is displayed on the face of the button.

 a. Name
 b. Text
 c. Tag
 d. Face

 5. A file that contains program code is called a(n) __________.

 a. destination code file
 b. executable file

110 Chapter 2 Introduction to Visual C#

 c. machine language file
 d. source code file

 6. A namespace is container that holds __________.

 a. methods
 b. names
 c. spaces
 d. classes

 7. A(n) __________ is a method that executes when a specific event takes place while
an application is running.

 a. action process
 b. event handler
 c. runtime procedure
 d. event method

 8. The statement MessageBox.Show("Hello World") ; is an example of a(n)
__________.

 a. method call
 b. namespace
 c. Click event
 d. event handler

 9. In programming we use the term string to mean __________.

 a. many lines of code
 b. parallel memory locations
 c. string of characters
 d. virtually anything

 10. A(n) __________ marks the end of a programming statement in C#.

 a. semicolon
 b. period
 c. hyphen
 d. underscore

 11. A piece of data that is written into a program’s code is a(n) ___________.

 a. identifier
 b. specifier
 c. keyword
 d. literal

 12. The time during which you build the GUI and write the application’s code is re-
ferred to as __________.

 a. run time
 b. design time
 c. code time
 d. planning

 13. The time during which an application is executing is referred to as __________.

 a. go time
 b. design time
 c. execution
 d. run time

 14. When you want to display text on a form, you use a __________ control.

 a. Button
 b. PictureBox

 Review Questions 111

 c. Label
 d. TextBox

 15. The __________ property allows you to set the font, font style, and size of the con-
trol’s text.

 a. Style
 b. AutoSize
 c. Text
 d. Font

 16. A __________ property can be set to one of two possible values: True or False.

 a. Boolean
 b. Logical
 c. Binary
 d. Dual

 17. Label controls have a(n) __________ property that controls the way they can be resized.

 a. Stretch
 b. AutoSize
 c. Dimension
 d. Fixed

 18. The __________ property can be used to change the text’s alignment in the label.

 a. TextPosition
 b. AutoAlign
 c. TextCenter
 d. TextAlign

 19. In code, you use a(n) __________ to store a value in a control’s property.

 a. Click event
 b. method call
 c. assignment statement
 d. Boolean value

 20. The equal sign (=) is known as the __________.

 a. equality symbol
 b. assignment operator
 c. equality operator
 d. property position

 21. The standard notation for referring to a control’s property in code is __________.

 a. ControlName . PropertyName
 b. ControlName = PropertyName
 c. PropertyName . ControlName
 d. PropertyName = ControlName

 22. __________ is a feature of Visual Studio that provides automatic code completion as
you write programming statements.

 a. AutoCode
 b. AutoComplete
 c. IntelliSense
 d. IntelliCode

 23. You can use a(n) __________ control to display a graphic image on a form.

 a. Graphics
 b. PictureBox

112 Chapter 2 Introduction to Visual C#

 c. Drawing
 d. ImageBox

 24. Once you have created a PictureBox control, you use its __________ property to
specify the image that it will display.

 a. Image
 b. Source
 c. DrawSource
 d. ImageList

 25. The PictureBox control’s __________ property specifies how the control’s image is
to be displayed.

 a. RenderMode
 b. DrawMode
 c. SizeMode
 d. ImageMode

 26. __________ is the image’s width to height ratio.

 a. Aspect ratio
 b. Size ratio
 c. Projection ratio
 d. Area ratio

 27. Most controls have a __________ property that determines whether the control is
visible on the form at run time.

 a. Render
 b. Viewable
 c. Visible
 d. Draw

 28. A(an) __________ appears on one line in a program.

 a. inline comment
 b. line comment
 c. forward comment
 d. block comment

 29. A __________ can occupy multiple consecutive lines in a program.

 a. block comment
 b. square comment
 c. multiline comment
 d. machine comment

 30. Programmers commonly use blank lines and indentations in their code to create a
sense of __________.

 a. logic
 b. visual organization
 c. documentation
 d. program flow

 31. To close an application’s form in code, you use the statement __________.

 a. Close();
 b. Close.This();
 c. Close()
 d. this.Close();

 Review Questions 113

 True or False

 1. Changing an object’s Text property also changes the object’s name.

 2. When a form is created, its Text property is initially set to the same value as the
form’s name.

 3. The form’s title is displayed in the bar along the top of a form.

 4. C# source code files always end with the .cs extension.

 5. You add your own code to the Progam.cs file as you develop an application.

 6. C# code is organized as methods, which are contained inside classes, which are con-
tained inside namespaces.

 7. In C# code, each opening brace must have a corresponding closing brace at some
point later in the program.

 8. When you double-click a control in the Designer , Visual Studio not only creates an
empty event handler, but it also writes some code that you don’t see, elsewhere in
the project that is necessary for the event handler to properly function.

 9. A Label control’s Text property is initially set to the same value as the Label con-
trol’s name.

 10. When a Label control’s AutoSize property is set to True, you cannot manually
change the size of the control by clicking and dragging its bounding box.

 11. By default, a label’s text is aligned with the bottom and right edges of the label’s
bounding box.

 12. Label controls are useful for displaying output while an application is running.

 13. The assignment operator assigns the value that appears on its left side to the item
that a ppears on its right side.

 14. PictureBox controls also have a BorderStyle property that works just like a Label
control’s BorderStyle property.

 15. Buttons are the only controls that can respond to Click events.

 16. The Visible property is a Binary property, which means it can be set only to the val-
ues 1 and 0.

 17. When you write the values true or false in code, they must be written in all low-
ercase letters.

 18. In C# there are three types of comments: line comments, block comments, and doc-
umentation comments.

 19. To close an application’s form in code, you use the statement Close.This();

 20. The Visual Studio code editor examines each statement as you type it, and reports
any syntax errors that are found.

 Short Answer

 1. What does a bounding box indicate about an object in the Designer ?

 2. What happens when you position the mouse cursor over an edge or corner of a
bounding box that has sizing handles?

 3. What determines an object’s appearance and other characteristics?

114 Chapter 2 Introduction to Visual C#

 4. What is shown by each column in the Properties window?

 5. What steps must you perform to change a form’s Text property?

 6. What steps must you perform to change a form’s Size property in the Properties
window?

 7. How do you move a control to a new location on the form using the mouse?

 8. What steps do you perform to change a Button control’s Text property?

 9. Briefly describe the contents of the Form1.cs file.

 10. In code, what characters do you enclose a string literal in?

 11. When creating an event handler for a button, is it possible to skip a step by
opening the code editor and writing all the event handler code yourself? Why or
why not?

 12. Briefly describe the difference between design time and run time.

 13. Describe the appearance of a Label control that’s BorderStyle property is set to
Fixed3D.

 14. What does it mean when a Label control’s AutoSize property is set to True?

 15. What are the values that the TextAlign property may be set to?

 16. How do you clear the text that is displayed in a Label control in code?

 17. What are the different image formats that a PictureBox control can display?

 18. List the values that the SizeMode property of a PictureBox control can be set to.

 19. What are the three types of comments you can use in Visual C#?

 20. How does Visual Studio help you to quickly correct syntax errors?

 Algorithm Workbench

 1. What statement would you write to display Good Afternoon in a message box?

 2. What statement would you write to display your name in a message box?

 3. Suppose an application’s GUI has a Label control named dogLabel . Write a state-
ment that causes Fido to be displayed in the dogLabel control.

 4. Suppose an application’s GUI has a Label control named outputLabel . Write a
statement that clears any text that happens to be displayed by the control.

 5. Suppose an application’s GUI has a PictureBox control named myPicture . Write a
statement that makes the control invisible.

 Programming Problems

 1. Latin Translator

 Look at the following list of Latin words and their meanings.

 Latin English
 sinister left
 dexter right
 medium center

 Programming Problems 115

 Create an application that translates the Latin words to English. The form should
have three buttons, one for each Latin word. When the user clicks a button, the ap-
plication should display the English translation in a Label control.

 2. Clickable Number Images

 In the Chap02 folder, in the Student Sample Program files, you will find the
image files shown in Figure 2-79 . Create an application that displays these
images in PictureBox controls. The application should perform the following
actions:

 • When the user clicks the 1 image, the application should display the word One
in a message box.

 • When the user clicks the 2 image, the application should display the word Two
in a message box.

 • When the user clicks the 3 image, the application should display the word Three
in a message box.

 • When the user clicks the 4 image, the application should display the word Four
in a message box.

 • When the user clicks the 5 image, the application should display the word Five
in a message box.

 Figure 2-80 Card Identifier application

 3. Card Identifier

 In the Student Sample Programs that accompany this book, you will find a folder
named Images \ Cards \ Poker Large . In that folder you will find JPEG image files
for a complete deck of poker cards. Create an application with five PictureBox
controls. Each PictureBox should display a different card from the set of images.
When the user clicks any of the PictureBox controls, the name of the card should
be displayed in a Label control. Figure 2-80 shows an example of the application
running. The image on the left shows the application’s form when it starts run-
ning. The image on the right shows the form after the user has clicked the two of
clubs card.

 Figure 2-79 Image files

 Solving the
Clickable
Number
Images
Problem

VideoNote

116 Chapter 2 Introduction to Visual C#

 4. Joke and Punch line

 A joke typically has two parts: a setup and a punch line. For example, this might be
the setup for a joke:

 How many programmers does it take to change a lightbulb?

 And this is the punch line:

 None. That’s a hardware problem.

 Think of your favorite joke and identify its setup and punch line. Then, create an
application that has a Label and two buttons on a form. One of the buttons should
read “Setup” and the other button should read “Punch line.” When the Setup but-
ton is clicked, display the joke’s setup in the Label control. When the Punch line but-
ton is clicked, display the joke’s punch line in the Label control.

 5. Heads or Tails

 In the Student Sample Programs that accompany this book you will find a folder
named Images \ Coins that contains images showing the heads and tails sides of a
coin. Create an application with a Show Heads button and a Show Tails button.
When the user clicks the Show Heads button, an image of the heads side of a coin
should appear. When the user clicks the Show Tails button, an image of the tails side
of a coin should appear. Figure 2-81 shows examples of how the application’s form
might appear.

 Figure 2-81 The Heads or Tails application

 6. Orion Constellation

 Orion is one of the most famous constellations in the night sky. In the Chap02 folder
of the Student Sample Programs that accompany this book, you will find an image
file named Orion.bmp, which contains a diagram of the Orion constellation. Create
an application that displays the Orion image in a PictureBox control, as shown on
the left in Figure 2-82 . The application should have a button that, when clicked,
 displays the names of each of the stars, as shown on the right in Figure 2-82 . The
 application should have another button that, when clicked, hides the star names.
The names of the stars are Betelgeuse , Meissa , Alnitak , Alnilam , Mintaka , Saiph ,
and Rigel .

 Hint: Place the PictureBox control with the Orion image on the form. Then, place
Label controls containing the star names on top of the PictureBox. Use the Prop-
erties window to set each of the Label control’s Visible property to False. That
will cause the labels to be invisible when the application runs. The Show Star
Names button will set each of the Label control’s Visible property to true , and
the Hide Star Names button will set each of the Label control’s Visible property
to false .

 Programming Problems 117

 Figure 2-82 The Orion Constellation application

This page intentionally left blank

 TOPICS

 Processing Data

 C
H

A
P

T
E

R

 3.1 Reading Input with TextBox Controls

 3.2 A First Look at Variables

 3.3 Numeric Data Types and Variables

 3.4 Performing Calculations

 3.5 Inputting and Outputting Numeric
Values

 3.6 Formatting Numbers with the
 ToString Method

 3.7 Simple Exception Handling

 3.8 Using Named Constants

 3.9 Declaring Variables as Fields

 3.10 Using the Math Class

 3.11 More GUI Details

3

119

 3.1 Reading Input with TextBox Controls

 CONCEPT: The TextBox control is a rectangular area that can accept keyboard input
from the user.

 Many of the programs that you will write from this point forward will require the user
to enter data. The data entered by the user will then be used in some sort of operation.
One of the primary controls that you will use to get data from the user is the TextBox
control.

 A TextBox control appears as a rectangular area on a form. When the application is run-
ning, the user can type text into a TextBox control. The program can then retrieve the text
that the user entered and use that text in any necessary operations.

 In the Toolbox , the TextBox tool is located in the Common Controls group. When you
double-click the tool, a TextBox control is created on the form, as shown in Figure 3-1 .
When you create TextBox controls, they are automatically given default names such as
 textBox1 , textBox2 , and so forth. As you learned in Chapter 2 , you should always
change a control’s default name to something more meaningful.

 When the user types into a TextBox control, the text is stored in the control’s Text prop-
erty. In code, if you want to retrieve the data that has been typed into a TextBox, you
simply retrieve the contents of the control’s Text property.

120 Chapter 3 Processing Data

 Let’s look at an example. Make sure you have downloaded the student sample pro-
grams from the book’s companion Web site (at www.pearsonhighered.com/gaddis). In
the Chap03 folder, you will find a project named TextBox Demo. Figure 3-2 shows the
form, with most of the control names specified, and Figure 3-3 shows the form’s code. (In
 Figure 3-3 , to conserve space on the page, we have scrolled past the using directives that
appear at the top of the code file.)

 Notice in Figure 3-3 that the readInputButton control’s Click event handler performs
the following assignment statement:

 outputLabel.Text = nameTextBox.Text;

 This statement assigns the value of the nameTextBox control’s Text property to the
 outputLabel control’s Text property. In other words, it gets any text that has been
entered by the user into the nameTextBox control and displays it in the outputLabel
control. If you run the application, Figure 3-4 shows an example of how the form appears
after you have entered Kathryn Smith and clicked the readInputButton control.

 Figure 3-1 A TextBox control

 NOTE: When you retrieve the contents of the Text property, you always get a string.
Any operation that can be performed on a string can be performed on a control’s Text
property.

nameTextBox

outputLabel

readInputButton exitButton

 Figure 3-2 The TextBox Demo application

 Clearing the Contents of a TextBox Control
 You can clear the contents of a TextBox control in the same way that you clear the con-
tents of a Label control: you assign an empty string ("") to the control’s Text property.
For example, the following statement clears the contents of the nameTextBox control:

 nameTextBox.Text = "";

www.pearsonhighered.com/gaddis

 3.2 A First Look at Variables 121

 When this statement executes, the nameTextBox control will appear empty on the appli-
cation’s form.

 Checkpoint

 3.1 What control can be used to gather text input from the user?

 3.2 In code, how do you retrieve data that has been typed into a TextBox control?

 3.3 What type of data does a control’s Text property always contain?

 3.4 How do you clear the contents of a TextBox control?

 Figure 3-4 The user’s name displayed in the label

 Figure 3-3 The form’s code (excluding the using directives)

 3.2 A First Look at Variables

 CONCEPT: A variable is a storage location in memory that is represented by a name.

 Most programs store data in the computer’s memory and perform operations on that
data. For example, consider the typical online shopping experience: you browse a Web

122 Chapter 3 Processing Data

site and add the items that you want to purchase to the shopping cart. As you add items
to the shopping cart, data about those items is stored in memory. Then, when you click
the checkout button, a program running on the Web site’s computer calculates the cost
of all the items you have in your shopping cart, applicable sales taxes, shipping costs, and
the total of all these charges. When the program performs these calculations, it stores the
results in the computer’s memory.

 Programs use variables to store data in memory. A variable is a storage location in mem-
ory that is represented by a name. For example, a program that manages a company’s cus-
tomer mailing list might use a variable named lastName to hold a customer’s last name, a
variable named firstName to hold the customer’s first name, a variable named address
to hold the customer’s mailing address, and so on.

 In C#, you must declare a variable in a program before you can use it to store data. You
do this with a variable declaration , which specifies two things about the variable:

 1. The variable’s data type, which is the type of data the variable will hold
 2. The variable’s name

 A variable declaration statement is written in this general format:

 DataType VariableName;

 Let’s take a closer look at each of these.

 Data Type
 A variable’s data type indicates the type of data that the variable will hold. Before you
declare a variable, you need to think about the type of value that will be stored in the vari-
able. For example, will the variable hold a string or a number? If it will hold a number,
what kind of number will it be, an integer or a real number? When you have determined
the kind of data that the variable will hold, you select one of the data types that C# pro-
vides for a variable.

 The C# language provides many data types for storing fundamental types of data, such as
strings, integers, and real numbers. These data types are known as primitive data types .
We will look at several of them in this chapter.

 Variable Name
 A variable name identifies a variable in the program code. When naming a variable, you
should always choose a meaningful name that indicates what the variable is used for.
For example, a variable that holds the temperature might be named temperature , and
a variable that holds a car’s speed might be named speed . You may be tempted to give
variables short, nondescript names such as x or b2 , but names such as these give no clue
as to the purpose of the variable.

 In addition, there are some specific rules that you must follow when naming a variable.
The same rules for identifiers that apply to control names also apply to variable names.
We discussed these rules in Chapter 2 , but we review them now:

 • The first character must be one of the letters a through z or A through Z or an
 underscore character (_).

 • After the first character, you may use the letters a through z or A through Z, the
digits 0 through 9, or underscores.

 • The name cannot contain spaces.

 When naming variables, we use the same camelCase naming convention that we intro-
duced in Chapter 2 for control names. For example, if we are declaring a variable to hold

 3.2 A First Look at Variables 123

an employee’s gross pay, we might name it grossPay . Or, if are declaring a variable to a
customer number, we might name it customerNumber .

 string Variables
 The first primitive data type we consider is the string data type. A variable of the string
data type can hold any string of characters, such as a person’s name, address, password,
and so on. Here is an example of a statement that declares a string variable named
 productDescription :

 string productDescription;

 After the variable has been declared, you can use the assignment operator (=) to store a
value in the variable. Here is an example:

 productDescription = "Italian Espresso Machine";

 When this statement executes, the string literal "Italian Espresso Machine" is as-
signed to the productDescription variable. When writing an assignment statement,
remember that the assignment operator assigns the value that appears on its right side to
the variable that appears on its left side.

 Once you have assigned a value to a variable, you can use the variable in other opera-
tions. For example, assume productLabel is the name of a Label control. The following
statement assigns the productDescription string to the productLabel control’s Text
property:

 productLabel.Text = productDescription;

 After this statement executes, the string that is stored in the productDescription variable
is displayed in the productLabel control. The following statement shows another example:

 MessageBox.Show(productDescription);

 When this statement executes, the string that is stored in the productDescription vari-
able is displayed in a message box.

 String Concatenation
 A common operation that performed on strings is concatenation , or appending one string
to the end of another string. In C# you use the + operator to concatenate strings. The +
operator produces a string that is the combination of the two strings used as its operands.
The following code shows an example:

 string message;
 message = "Hello " + "world";
 MessageBox.Show(message);

 The first statement declares a string variable named message . The second statement
combines the strings "Hello " and "world" to produce the string "Hello world" . The
string "Hello world" is then assigned to the message variable. The third statement dis-
plays the contents of the message variable in a message box. When the message box is
displayed, it shows the string Hello world .

 Let’s look at an application that further demonstrates string concatenation. In the
 Chap03 folder of this book’s student sample programs (available for download at www.
pearsonhighered.com/gaddis), you will find a project named String Variable Demo. Fig-
ure 3-5 shows the form, with most of the control names specified, and Figure 3-6 shows
the form’s code. (In Figure 3-6 , to conserve space on the page, we have scrolled past the
 using directives that appear at the top of the code file.)

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

124 Chapter 3 Processing Data

 In Figure 3-6 , three statements in the showNameButton_Click event handler are pointed
out:

 1 This statement is a variable declaration. It declares a string variable named
 fullName .

 2 This statement assigns the result of a string concatenation to the fullName
variable. The string that is assigned to the variable begins with the value of the
 firstNameTextBox control’s Text property, followed by a space (" "), followed
by the value of the lastNameTextBox control’s Text property. For example, if
the user has entered Joe into the firstNameTextBox control and Smith into the
 lastNameTextBox control, this statement will assign the string "Joe Smith" to the
 fullName variable.

 3 This statement assigns the fullName variable to the fullNameLabel control’s Text
property. As a result, the string that is stored in the fullName variable is displayed
in the fullNameLabel control.

firstNameTextBox

lastNameTextBox

showNameButton exitButton

fullNameLabel

 Figure 3-5 The String Variable Demo application

 Figure 3-6 The form’s code (excluding the using directives)

 3.2 A First Look at Variables 125

 If you run the application, Figure 3-7 shows an example of how the form appears after
you have entered Chris for the first name and Jones for the last name and clicked the
 showNameButton control.

 Figure 3-7 The user’s full name displayed in the label

 Declaring Variables before Using Them
 The purpose of a variable declaration statement is to tell the compiler that you plan to use
a variable of a specified name to store a particular type of data in the program. A variable
declaration statement causes the variable to be created in memory. For this reason, a vari-
able’s declaration statement must appear before any other statements in the method that
use the variable. This makes perfect sense because you cannot store a value in a variable if
the variable has not been created in memory.

 Local Variables
 Notice that the fullName variable in Figure 3-6 is declared inside the event handler
method. Variables that are declared inside a method are known as local variables. A local
variable belongs to the method in which it is declared, and only statements inside that
method can access the variable. (The term local is meant to indicate that the variable can
be used only locally, within the method in which it is declared.)

 An error will occur if a statement in one method tries to access a local variable that be-
longs to another method. For example, let’s go over the sample code shown in Figure 3-8 :

 1 This statement declares a string variable named myName . The variable is declared
inside the firstButton_Click event handler, so it is local to that method.

 2 This statement, which is also in the firstButton_Click event handler, assigns the
 nameTextBox control’s Text property to the myName variable.

 Figure 3-8 One method trying to access a variable that is local to another method

1

2

3 ERROR!

126 Chapter 3 Processing Data

 3 This statement, which is in the secondButton_Click event handler, attempts to
assign the myName variable to the outputLabel control’s Text property. This
statement will not work, however, because the myName variable is local to the
 firstButton_Click event handler, and statements in the secondButton_Click
event handler cannot access it.

 Scope of a Variable
 Programmers use the term scope to describe the part of a program in which a variable
may be accessed. A variable is visible only to statements inside the variable’s scope.

 A local variable’s scope begins at the variable’s declaration and ends at the end of the
method in which the variable is declared. As you saw in the previous example, a local
variable cannot be accessed by statements that are outside the method. In addition, a local
variable cannot be accessed by code that is inside the method but before the variable’s
declaration.

 Lifetime of a Variable
 A variable’s lifetime is the time period during which the variable exists in memory while
the program is executing. A local variable is created in memory when the method in
which it is declared starts executing. When the method ends, all the method’s local vari-
ables are destroyed. So, a local variable’s lifetime is the time during which the method in
which it is declared is executing.

 Duplicate Variable Names
 You cannot declare two variables with the same name in the same scope. For example,
if you declare a variable named productDescription in an event handler, you cannot
declare another variable with that name in the same event handler. You can, however,
have variables of the same name declared in different methods.

 Assignment Compatibility
 You can assign a value to a variable only if the value is compatible with the variable’s
data type. Only strings are compatible with the string data type, so all the assignments
in the following code sample work:

 1 // Declare and initialize a string variable.
 2 string productDescription = "Chocolate Truffle";
 3
 4 // Declare another string variable.
 5 string myFavoriteProduct;
 6
 7 // Assign a value to a string variable.
 8 myFavoriteProduct = productDescription;
 9
 10 // Assign a value from a TextBox to a string variable.
 11 productDescription = userInputTextBox.Text;

 The following comments explain these lines of code:

 • In line 2 we initialize a string variable with a string literal. This works because
string literals are assignment compatible with string variables.

 • In line 8 we assign a string variable to another string variable. This works for the
obvious reason that string variables are compatible with other string variables.

 3.2 A First Look at Variables 127

 • Assume that the application has a TextBox control named userInputTextBox . In
line 11 we assign the value of the TextBox control’s Text property to a string vari-
able. This works because the value in a control’s Text property is always a string.

 The following code will not work, however, because it attempts to assign a nonstring value
to a string variable:

 1 // Declare a string variable.
 2 string employeeID;
 3
 4 // Assign a value to the variable. Will this work?
 5 employeeID = 125; d ERROR!

 In line 5 we are attempting to assign the number 125 to a string variable. Numbers are
not assignment compatible with string variables, so this statement will cause an error
when the code is compiled.

 NOTE: Although you cannot store the number 125 in a string variable, you can
store the string literal "125" in a string variable.

 A Variable Holds One Value at a Time
 Variables can hold different values while a program is running, but they can hold only
one value at a time. When you assign a value to a variable, that value will remain in the
variable until you assign a different value to the variable. For example, look at the follow-
ing code sample:

 1 // Declare a string variable.
 2 string productDescription;
 3
 4 // Assign a value to the variable.
 5 productDescription = "Large Medium-Roast Coffee";
 6
 7 // Display the variable's value.
 8 MessageBox.Show(productDescription);
 9
 10 // Assign a different value to the variable.
 11 productDescription = "Chocolate Truffle";
 12
 13 // Display the variable's value.
 14 MessageBox.Show(productDescription);

 The following comments explain what we did:

 • Line 2 declares a string variable named productDescription .
 • Line 5 assigns the string "Large Medium-Roast Coffee" to the productDescription

variable.
 • Line 8 displays the value of the productDescription variable in a message box.

(The message box will display Large Medium-Roast Coffee .)
 • Line 11 assigns a different value to the productDescription variable. After

this statement executes, the productDescription variable will hold the string
 " Chocolate Truffle" .

 • Line 14 displays the value of the productDescription variable in a message box.
(The message box will display Chocolate Truffle .)

128 Chapter 3 Processing Data

 This code sample illustrates two important characteristics of variables:

 • A variable holds only one value at a time.
 • When you store a value in a variable, that value replaces the previous value that was

in the variable.

 Tutorial 3-1 gives you some practice using variables. You will create an application that
uses TextBox controls to get input values, stores those values in variables, and uses the
variables in operations.

 Tutorial 3-1:
 The Birth Date String Application

 In this tutorial you create an application that lets the user enter the following information
about his or her birthdate:

 • The day of the week (Monday, Tuesday, etc.)
 • The name of the month (January, February, etc.)
 • The numeric day of the month
 • The year

 Figure 3-9 shows the application’s form, along with the names of all the controls. When the
application runs, the user enters each piece of data into a separate TextBox. When the user
clicks the Show Date button, the application concatenates the contents of the TextBoxes
into a string such as Friday, June 1, 1990 . The string is displayed in the dateOutputLabel
control. When the user clicks the Clear button, the contents of the TextBoxes and the
 dateOutputLabel control are cleared. The Exit button closes the application’s form.

dayOfWeekTextBox

monthTextBox

showDateButton exitButton

dayOfMonthTextBox

yearTextBox

dateOutputLabel

clearButton

dayOfWeekPromptLabel

monthPromptLabel

dayOfmonthPromptLabel

yearPromptLabel

 Figure 3-9 The Birth Date String form

 Step 1: Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms
Application project named Birth Date String .

 Step 2: Set up the application’s form as shown in Figure 3-9 . Notice that the form’s
Text property is set to Birth Date String . The names of the controls are shown
in the figure. As you place each control on the form, refer to Table 3-1 for the
relevant property settings.

 Step 3: Once you have set up the form with its controls, you can create the Click event
handlers for the Button controls. At the end of this tutorial, Program 3-1 shows
the completed code for the form. You will be instructed to refer to Program 3-1

 Tutorial 3-1:
The Birth
Date String
Application

VideoNote

 3.2 A First Look at Variables 129

 Table 3-1 Control property settings

 Control Name Control Type Property Settings

 dayOfWeekPromptLabel Label Text : Enter the day of the week

 monthPromptLabel Label Text : Enter the name of the month

 dayOfMonthPromptLabel Label Text : Enter the numeric day of the
month

 yearPromptLabel Label Text : Enter the year

 dayOfWeekTextBox TextBox No properties changed

 monthTextBox TextBox No properties changed

 dayOfMonthTextBox TextBox No properties changed

 yearTextBox TextBox No properties changed

 dateOutputLabel Label AutoSize : False
 BorderStyle : FixedSingle
 Text : (The contents of the Text
property have been erased.)
 TextAlign : MiddleCenter

 showDateButton Button Text : Show Date

 clearButton Button Text : Clear

 exitButton Button Text : Exit

as you write the event handlers. (Remember, the line numbers that are shown in
 Program 3-1 are not part of the program. They are shown for reference only.)

 In the Designer , double-click the showDateButton control. This will open the
code editor, and you will see an empty event handler named showDateButton_
Click . Complete the showDateButton_Click event handler by typing the code
shown in lines 22–32 in Program 3-1 .

 Let’s take a closer look at the code:

 Line 23: This statement declares a string variable named output .

 Lines 26–29: These lines are actually one long statement, broken up into mul-
tiple lines. The statement concatenates the Text properties of the TextBox con-
trols, along with appropriately placed commas and spaces, to create the date
string. The resulting string is assigned to the output variable.

 For example, suppose the user has entered the following input:

 • Friday in the dayOfWeekTextBox control.
 • June in the monthTextBox control.

 • 1 in the dayOfMonthTextBox control.

 • 1990 in the yearTextBox control.

 The concatenation in this statement produces the string “June 1, 1990”; it is
assigned to the output variable.

 Line 32: This statement assigns the output variable to the dateOutputLabel con-
trol’s Text property. When this statement executes, the contents of the output
variable are displayed in the dateOutputLabel control.

 Step 4: Switch your view back to the Designer and double-click the clearButton
control. In the code editor, you will see an empty event handler named

130 Chapter 3 Processing Data

 clearButton_Click . Complete the clearButton_Click event handler by typ-
ing the code shown in lines 37–44 in Program 3-1 .

 Let’s take a closer look at the code:

 Lines 38–41: Each statement assigns an empty string ("") to the Text property
of one of the TextBox controls. When these statements have finished executing,
the TextBox controls will appear empty.

 Line 44: This statement assigns an empty string ("") to the dateOutputLabel
control’s Text property. After the statement has executed, the label appears empty.

 Step 5: Switch your view back to the Designer and double-click the exitButton
 control. In the code editor, you will see an empty event handler named
 exitButton_Click . Complete the exitButton_Click event handler by typing
the code shown in lines 49–50 in Program 3-1 .

 Step 6: Save the project. Then, press the % key on the keyboard, or click the Start
Debugging button () on the toolbar to compile and run the application. The
form will appear as shown in the image on the left in Figure 3-10 . Test the ap-
plication by entering values into the TextBoxes and clicking the Show Date
button. The date should be displayed, similar to the image shown on the right
in the figure. Click the Clear button, and the contents of the TextBoxes and the
Label control should clear. Click the Exit button and the form should close.

 Figure 3-10 The Birth Date String application

 Program 3-1 Completed Form1 code for the Birth Date String application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Birth_Date_String
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()

 3.2 A First Look at Variables 131

 NOTE: In Tutorial 3-1 , the statement in lines 26–29 shows an example of how you
can break up a statement into multiple lines. Quite often, you will find yourself writ-
ing statements that are too long to fit entirely inside the Code window. Your code
will be hard to read if you have to horizontally scroll the Code window to view long
statements. In addition, if you or your instructor chooses to print your code, the state-
ments that are too long to fit on one line of the page will wrap around to the next line
and make your code look unorganized. For these reasons, it is usually best to break a
long statement into multiple lines.

 When typing most statements, you can simply press the Enter key when you reach an
appropriate point to continue the statement on the next line. Remember, however,
that you cannot break up a keyword, a quoted string, or an identifier (such as a vari-
able name or a control name).

 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void showDateButton_Click(object sender, EventArgs e)
 21 {
 22 // Declare a string variable.
 23 string output;
 24
 25 // Concatenate the input and build the output string.
 26 output = dayOfWeekTextBox.Text + ", " +
 27 monthTextBox.Text + " " +
 28 dayOfMonthTextBox.Text + ", " +
 29 yearTextBox.Text;
 30
 31 // Display the output string in the Label control.
 32 dateOutputLabel.Text = output;
 33 }
 34
 35 private void clearButton_Click(object sender, EventArgs e)
 36 {
 37 // Clear the TextBoxes.
 38 dayOfWeekTextBox.Text = "";
 39 monthTextBox.Text = "";
 40 dayOfMonthTextBox.Text = "";
 41 yearTextBox.Text = "";
 42
 43 // Clear the dateOutputLabel control.
 44 dateOutputLabel.Text = "";
 45 }
 46
 47 private void exitButton_Click(object sender, EventArgs e)
 48 {
 49 // Close the form.
 50 this.Close();
 51 }
 52 }
 53 }

132 Chapter 3 Processing Data

 Initializing Variables
 In C#, a variable must be assigned a value before it can be used. For example, look at this
code:

 string productDescription;
 MessageBox.Show(productDescription);

 This code declares a string variable named productDescription and then tries to dis-
play the variable’s value in a message box. The only problem is that we have not assigned
a value to the variable. When we compile the application containing this code, we will get
an error message such as Use of unassigned local variable ‘productDescription’ . The C#
compiler will not compile code that tries to use an unassigned variable.

 One way to make sure that a variable has been assigned a value is to initialize the vari-
able with a value when you declare it. For example, the following statement declares a
 string variable named productDescription and immediately assigns the string literal
 " Chocolate Truffle" to it:

 string productDescription = "Chocolate Truffle";

 We say that this statement initializes the productDescription variable with the string
 "Chocolate Truffle" . Here is another example:

 string lastName = lastNameTextBox.Text;

 Assume that this statement belongs to an application that has a TextBox named
 lastNameTextBox . The statement declares a string variable named lastName and ini-
tializes it with the value of the lastNameTextBox control’s Text property.

 Declaring Multiple Variables with One Statement
 You can declare multiple variables of the same data type with one declaration statement.
Here is an example:

 string lastName, firstName, middleName;

 This statement declares three string variables named lastName , firstName , and
 middleName . Notice that commas separate the variable names. Here is an example of
how we can declare and initialize the variables with one statement:

 string lastName = "Jones", firstName = "Jill", middleName = "Rebecca";

 Remember, you can break up a long statement so it spreads across two or more lines.
Sometimes you will see long variable declarations written across multiple lines, like
this:

 string lastName = "Jones",
 firstName = "Jill",
 middleName = "Rebecca";

 Checkpoint

 3.5 What is the purpose of a variable?

 3.6 Give an example of a variable declaration that will store the name of your favorite
food.

 3.3 Numeric Data Types and Variables 133

 3.7 For each of the following items, determine whether the data type should be an
integer, string, or real number.
 a. pet name
 b. sales tax
 c. mailing address
 d. video game score

 3.8 Indicate whether each of the following is a legal variable name. If it is not, explain
why.
 a. pay_Rate
 b. speed of sound
 c. totalCost
 d. 2ndPlaceName

 3.9 What will be stored in the message variable after the following statement is
executed?

 string message = "He" + "ll" + "o!";

 3.10 What is the lifetime of a variable that is declared inside of a Click event handler?

 3.11 Assuming the variable greeting has not been assigned a value, what will be the
result of the following statement?

 MessageBox.Show(greeting);

 3.12 Will the following statement cause an error? Why or why not?

 string luckyNumber = 7;

 3.13 Write a single declaration statement for the variables name , city , and state .

 3.3 Numeric Data Types and Variables

 CONCEPT: If you need to store a number in a variable and use that number in a
mathematical operation, the variable must be of a numeric data type. You
select a numeric data type that is appropriate for the type of number that
you need to store.

 In the previous section you read about string variables. Variables of the string data
type can be used to store text, but they cannot store numeric data for the purpose of per-
forming mathematical operations. If you need to store numbers and perform mathemati-
cal operations on them, you have to use a numeric data type.

 The C# language provides several primitive data types. You can read about all the C#
primitive data types in Appendix A. Many of the data types provided by C# are for spe-
cialized purposes beyond the scope of this book. When it comes to numeric data, most of
the time you will use the three numeric primitive data types described in Table 3-2 .

 Here are examples of declaring variables of each data type:

 int speed;
 double distance;
 decimal grossPay;

 The first statement declares an int variable named speed . The second example declares
a double variable named distance . The third statement declares a decimal variable
named grossPay .

134 Chapter 3 Processing Data

 Numeric Literals
 You learned in Chapter 2 that a literal is a piece of data written into a program’s code.
When you know, at the time that you are writing a program’s code, that you want to
store a specific value in a variable, you can assign that value as a literal to the variable.

 A numeric literal is a number that is written into a program’s code. For example, the fol-
lowing statement declares an int variable named hoursWorked and initializes it with the
value 40:

 int hoursWorked = 40;

 In this statement, the number 40 is a numeric literal. The following shows another
 example:

 double temperature = 87.6;

 This statement declares a double variable named temperature and initializes it with the
value 87.6. The number 87.6 is a numeric literal.

 Table 3-2 The primitive numeric data types that you will use most often

 Data Type Description

 int A variable of the int data type can hold whole numbers only. For
example, an int variable can hold values such as 42, 0, and −99. An
 int variable cannot hold numbers with a fractional part, such as
22.1 or −4.9.

 The int data type is the primary data type for storing integers. We
use it in this book any time we need to store and work with integers.
An int variable uses 32 bits of memory and can hold an integer
number in the range of −2,147,483,648 through 2,147,483,647.

 double A variable of the double data type can hold real numbers, such as
3.5, −87.95, or 3.0. A number that is stored in a double variable is
rounded to 15 digits of precision.

 We use variables of the double data type to store any number that
might have a fractional part. The double data type is especially useful
for storing extremely great or extremely small numbers.

 In memory a double variable uses 64 bits of memory. It is stored in a
format that programmers call double precision floating-point notation .
Variables of the double data type can hold numbers in the range of
±5.0 × 10 2324 to ±1.7 × 10 308 .

 decimal A variable of the decimal data type can hold real numbers with
greater precision than the double data type. A number that is stored in
a decimal variable is rounded to 28 digits of precision.

 Because decimal variables store real numbers with a great deal of
precision, they are most commonly used in financial applications.
In this book we typically use the decimal data type when storing
amounts of money.

 In memory a decimal variable uses 128 bits of memory. It is stored
in a format that programmers call decimal notation . Variables of the
 decimal data type can hold numbers in the range of ±1.0 × 10 228
to ±7.9 × 10 28 .

 3.3 Numeric Data Types and Variables 135

 When you write a numeric literal in a program’s code, the numeric literal is assigned a
data type. In C#, if a numeric literal is an integer (not written with a decimal point) and
it fits within the range of an int (see Table 3-2 for the minimum and maximum values),
then the numeric literal is treated as an int . A numeric literal that is treated as an int is
called an integer literal . For example, each of the following statements initializes a vari-
able with an integer literal:

 int hoursWorked = 40;
 int unitsSold = 650;
 int score = -23;

 If a numeric literal is written with a decimal point and it fits within the range of a
 double (see Table 3-2 for the minimum and maximum values), then the numeric literal
is treated as a double . A numeric literal that is treated as a double is called a double
literal . For example, each of the following statements initializes a variable with a
 double literal:

 double distance = 28.75;
 double speed = 87.3;
 double temperature = -10.0;

 When you append the letter M or m to a numeric literal, it is treated as a decimal and is
referred to as a decimal literal . Here are some examples:

 decimal payRate = 28.75m;
 decimal price = 8.95M;
 decimal profit = -50m;

 TIP: Because decimal is the preferred data type for storing monetary amounts,
 remembering that “m” stands for “money” might help you to remember that decimal
literals must end with the letter M or m .

 Assignment Compatibility for int Variables
 You can assign int values to int variables, but you cannot assign double or decimal
values to int variables. For example, look at the following declarations.

 int hoursWorked = 40; d This works
 int unitsSold = 650m; d ERROR!
 int score = -25.5; d ERROR!

 The first declaration works because we are initializing an int variable with an int value.
The second declaration causes an error, however, because you cannot assign a decimal
value to an int variable. The third declaration also causes an error because you cannot
assign a double value to an int variable.

 You cannot assign a double or a decimal value to an int variable because such an as-
signment could result in a loss of data. Here are the reasons:

 • The double and decimal values may be fractional, but int variables can hold only
integers. If you were allowed to store a fractional value in an int variable, the frac-
tional part of the value would have to be discarded.

136 Chapter 3 Processing Data

 • The double and decimal values may be much larger or much smaller than allowed
by the range of an int variable. A double or a decimal number can potentially be
so large or so small that it will not fit in an int variable.

 Assignment Compatibility for double Variables
 You can assign either double or int values to double variables, but you cannot assign
 decimal values to double variables. For example, look at the following declarations.

 double distance = 28.75; d This works
 double speed = 75; d This works
 double sales = 6500.0m; d ERROR!

 The first declaration works because we are initializing a double variable with a double
value. The second declaration works because we are initializing a double variable with
an int value. The third declaration causes an error, however, because you cannot assign
a decimal value to a double variable.

 It makes sense that you are allowed to assign an int value to a double variable because
any number that can be stored as an int can be converted to a double with no loss of
data. When you assign an int value to a double variable, the int value is implicitly con-
verted to a double .

 You cannot assign a decimal value to a double variable because the decimal data
type allows for much greater precision than the double data type. A decimal value
can have up to 28 digits of precision, whereas a double can provide only 15 digits of
precision. Storing a decimal value in a double variable could potentially result in a
loss of data.

 Assignment Compatibility for decimal Variables
 You can assign either decimal or int values to decimal variables, but you cannot assign
 double values to decimal variables. For example, look at the following declarations.

 decimal balance = 9280.73m; d This works
 decimal price = 50; d This works
 decimal sales = 6500.0; d ERROR!

 The first declaration works because we are initializing a decimal variable with a decimal
value. The second declaration works because we are initializing a decimal variable with
an int value. When you assign an int value to a decimal variable, the int value is
implicitly converted to a decimal with no loss of data. The third declaration causes an
error, however, because you cannot assign a double value to a decimal variable. A
 double value can potentially be much larger or much smaller than allowed by the range
of a decimal .

 Explicitly Converting Values with Cast Operators
 Let’s consider a hypothetical situation. Suppose you’ve written an application that uses
a double variable, and for some reason, you need to assign the contents of the double
variable to an int variable. In this particular situation, you know that the double vari-
able’s value is something that can be safely converted to an int without any loss of data
(such as 3.0, or 98.0). However, the C# compiler will not allow you to make the assign-
ment because double values are not assignment compatible with int variables. Isn’t
there a way to override the C# rules in this particular situation and make the assignment
anyway?

 3.3 Numeric Data Types and Variables 137

 The answer is yes, there is a way. You can use a cast operator to explicitly convert a
value from one numeric data type to another, even if the conversion might result in a loss
of data. A cast operator is the name of the desired data type, written inside parentheses
and placed to the left of the value that you want to convert. The following code sample
demonstrates:

 1 // Declare an int variable.
 2 int wholeNumber;
 3
 4 // Declare a double variable.
 5 double realNumber = 3.0;
 6
 7 // Assign the double to the int.
 8 wholeNumber = (int)realNumber;

 The following points describe the code:

 • Line 2 declares an int variable named wholeNumber .
 • Line 5 declares a double variable named realNumber , initialized with the value 3.0.
 • Line 8 uses a cast operator to convert the value of realNumber to an int and as-

signs the converted value to wholeNumber . After this statement executes, the
 wholeNumber variable is assigned the value 3.

 Table 3-3 shows other code examples involving different types of cast operators.

 Table 3-3 Examples of uses of cast operators

 Code Example Description

 int wholeNumber;
 decimal moneyNumber = 4500m;
 wholeNumber = (int)moneyNumber;

 The (int) cast operator converts the value of the
 moneyNumber variable to an int . The converted
value is assigned to the wholeNumber variable.

 double realNumber;
 decimal moneyNumber = 625.70m;
 realNumber = (double)moneyNumber;

 The (double) cast operator converts the value of the
 moneyNumber variable to a double . The converted
value is assigned to the realNumber variable.

 decimal moneyNumber;
 double realNumber = 98.9;
 moneyNumber = (decimal)realNumber;

 The (decimal) cast operator converts the value of
the realNumber variable to a decimal . The converted
value is assigned to the moneyNumber variable.

 When you use a cast operator, you are essentially telling the compiler that you know what
you are doing and you are willing to accept the consequences of the conversion. It is still
possible that a loss of data can occur. For example, look at the following code sample:

 int wholeNumber;
 double realNumber = 8.9;
 wholeNumber = (int)realNumber;

 In this example, the double variable contains a fractional number. When the cast opera-
tor converts the fractional number to an int , the part of the number that appears after
the decimal point is dropped. The process of dropping a number’s fractional part is called
 truncation . After this code executes, the wholeNumber variable contains the value 8.

 It’s important to realize that when a cast operator is applied to a variable, it does not
change the contents of the variable. The cast operator merely returns the value that is
stored in the variable, converted to the specified data type. In the previous code sample,
when the (int) cast operator is applied to the realNumber variable, the cast operator
returns the value 8. The realNumber variable remains unchanged, however, still contain-
ing the value 8.9.

138 Chapter 3 Processing Data

 Checkpoint

 3.14 Specify the appropriate primitive numeric data type to use for each of the following
values.
 a. 24 dollars
 b. 12 bananas
 c. 14.5 inches
 d. 83 cents
 e. 2 concert tickets

 3.15 Which of the following variable declarations will cause an error? Why?
 a. decimal payRate = 24m;
 b. int playerScore = 1340.5;
 c. double boxWidth = 205.25;
 d. string lastName = "Holm";

 3.16 Write a programming statement that will convert the following decimal variable
to an int and store the result in an int variable named dollars :

 decimal deposit = 976.54m;

 3.17 What value will the wholePieces variable contain after the following code
executes?
 double totalPieces = 6.5;
 int wholePieces = (int)totalPieces;

 3.4 Performing Calculations

 CONCEPT: You can use math operators to perform simple calculations. Math
 expressions can be written using the math operators and parentheses as
grouping symbols. The result of a math expression can be assigned to a
variable.

 Most programs require calculations of some sort to be performed. A programmer’s tools
for performing calculations are math operators . C# provides the math operators shown
in Table 3-4 .

 Table 3-4 Math operators

 Operator Name of the Operator Description

 + Addition Adds two numbers

 - Subtraction Subtracts one number from another

 * Multiplication Multiplies one number by another

 / Division Divides one number by another and gives the quotient

 % Modulus Divides one integer by another and gives the remainder

 Programmers use the operators shown in Table 3-4 to create math expressions. A math
expression performs a calculation and gives a value. The following is an example of a
simple math expression:

 12 * 2

 3.4 Performing Calculations 139

 The values on the right and left of the * operator are called operands . These are val-
ues that the * operator multiplies together. The value that is given by this expression
is 24.

 Variables may also be used in a math expression. For example, suppose we have two
variables named hoursWorked and payRate . The following math expression uses the *
operator to multiply the value in the hoursWorked variable by the value in the payRate
variable:

 hoursWorked * payRate

 When we use a math expression to calculate a value, we have to do something with the
value. Normally we want to save the value in memory so we can use it again in the pro-
gram. We do this with an assignment statement. For example, suppose we have another
variable named grossPay . The following statement assigns the value hoursWorked times
 payRate to the grossPay variable:

 grossPay = hoursWorked * payRate;

 Here are some other examples of statements that assign the result of a math expression
to a variable:

 total = price + tax;
 sale = price − discount;
 commission = sales * percent;
 half = number / 2;

 The modulus operator (%) performs division between two integers, but instead of
 returning the quotient, it returns the remainder. The following statement assigns 2 to
 leftOver :

 leftOver = 17 % 3;

 This statement assigns 2 to leftover because 17 divided by 3 is 5 with a remainder of 2.
You will not use the modulus operator frequently, but it is useful in some situations. It is
commonly used in calculations that detect odd or even numbers, determine the day of the
week, or measure the passage of time and in other specialized operations.

 The Order of Operations
 You can write mathematical expressions with several operators. The following statement
assigns the sum of 17, the variable x , 21, and the variable y to the variable answer .

 answer = 17 + x + 21 + y;

 Some expressions are not that straightforward, however. Consider the following
 statement:

 outcome = 12 + 6 / 3;

 What value will be stored in outcome ? The number 6 is used as an operand for both
the addition and division operators. The outcome variable could be assigned either 6
or 14, depending on when the division takes place. The answer is 14 because the order
of operations dictates that the division operator works before the addition operator
does.

 The order of operations can be summarized as follows:

 1. Perform any operations that are enclosed in parentheses.
 2. Perform any multiplications, divisions, or modulus operations as they appear from

left to right.
 3. Perform any additions or subtractions as they appear from left to right.

140 Chapter 3 Processing Data

 Mathematical expressions are evaluated from left to right. Multiplication and division are
always performed before addition and subtraction, so the statement

 outcome = 12 + 6 / 3;

 works like this:

 1. 6 is divided by 3, yielding a result of 2.
 2. 12 is added to 2, yielding a result of 14.

 It could be diagrammed as shown in Figure 3-11 .

 Table 3-5 shows some other sample expressions with their values.

 Grouping with Parentheses
 Parts of a mathematical expression may be grouped with parentheses to force some opera-
tions to be performed before others. In the following statement, the variables a and b are
added together, and their sum is divided by 4:

 result = (a + b) / 4;

 But what if we left the parentheses out, as shown here?

 result = a + b / 4;

 We would get a different result. Without the parentheses, b would be divided by 4 and
the result added to a . Table 3-6 shows some math expressions that use parentheses and
their values.

 Figure 3-11 The order of operations at work

 outcome = 12 + 6 / 3;

 outcome = 14;

 outcome = 12 + 2;

 Table 3-5 Some math expressions and their values

 Expression Value

 5 + 2 * 4 13

 10 / 2 − 3 2

 8 + 12 * 2 − 4 28

 6 − 3 * 2 + 7 − 1 6

 Table 3-6 More expressions and their values

 Expression Value

 (5 + 2) * 4 28

 10 / (5 − 3) 5

 8 + 12 * (6 − 2) 56

 (6 − 3) * (2 + 7) / 3 9

 3.4 Performing Calculations 141

 Mixing Data Types in a Math Expression
 When you perform a math operation on two operands, the data type of the result will
depend on the data type of the operands. If the operands are of the same data type, the
result will also be of that data type. For example:

 • When an operation is performed on two int values, the result will be an int .
 • When an operation is performed on two double values, the result will be a

 double .
 • When an operation is performed on two decimal values, the result will be a

 decimal .

 It’s not uncommon, however, for a math expression to have operands of different data
types. C# handles operations involving int , double , and decimal operands in the fol-
lowing ways:

 • When a math expression involves an int and a double , the int is temporarily con-
verted to a double , and the result is a double .

 • When a math expression involves an int and a decimal , the int is temporarily
converted to a decimal , and the result is a decimal .

 • Math expressions involving a double and a decimal are not allowed unless a cast
operator is used to convert one of the operands.

 For example, suppose a pay-calculating program has the following variable declarations:

 int hoursWorked; // To hold the number of hours worked
 decimal payRate; // To hold the hourly pay rate
 decimal grossPay; // To hold the gross pay

 Then, later in the program this statement appears:

 grossPay = hoursWorked * payRate;

 The math expression on the right side of the = operator multiplies an int by a decimal .
When the statement executes, the value of the hoursWorked variable is temporarily con-
verted to a decimal and then multiplied by the payRate variable. The result is a decimal
and is assigned to the grossPay variable.

 When possible, you should avoid math operations that use a mixture of double
and decimal operands. C# does not allow operations involving these two types un-
less you use a cast operator to explicitly convert one of the operands. For example,
suppose a program that calculates the cost of a product has the following variable
declarations:

 double weight; // The product weight
 decimal pricePerPound; // The price per pound
 decimal total; // The total cost

 Later in the program you need to calculate the total cost, like this:

 total = weight * pricePerPound; d ERROR!

 The compiler will not allow this statement because weight is a double and
 pricePerPound is a decimal . To fix the statement, you can insert a cast operator, as
shown here:

 total = (decimal)weight * pricePerPound;

 The cast operator converts the value of the weight variable to a decimal , and the con-
verted value is multiplied by pricePerPound . The result of the expression is a decimal
and is assigned to total .

142 Chapter 3 Processing Data

 Integer Division
 When you divide an integer by an integer in C#, the result is always given as an integer.
If the result has a fractional part, it is truncated. For example, look at the following code:

int length; // Declare length as an int
 double half; // Declare half as a double
 length = 75; // Assign 75 to length
 half = length / 2; // Calculate half the length

 The last statement divides the value of length by 2 and assigns the result to half. Math-
ematically, the result of 75 divided by 2 is 37.5. However, that is not the result that we get
from the math expression. The length variable is an int , and it is being divided by the
numeric literal 2, which is also treated as an int . The result of the division is truncated,
giving the value 37. This is the value that is assigned to the half variable. It does not
matter that the half variable is declared as a double . The fractional part of the result is
truncated before the assignment takes place.

 Combined Assignment Operators
 Sometimes you want to increase a variable’s value by a certain amount. For example, sup-
pose you have a variable named number and you want to increase its value by 1. You can
accomplish that with the following statement:

 number = number + 1;

 The expression on the right side of the assignment operator calculates the value of number
plus 1. The result is then assigned to number , replacing the value that was previously
stored there. This statement effectively adds 1 to number . For example, if number is equal
to 6 before this statement executes, it is equal to 7 after the statement executes.

 Similarly, the following statement subtracts 5 from number :

 number = number − 5;

 If number is equal to 15 before this statement executes, it is equal to 10 after the statement
executes. Here’s another example. The following statement doubles the value of the
 number variable:

 number = number * 2;

 If number is equal to 4 before this statement executes, it is equal to 8 after the statement
executes.

 These types of operations are very common in programming. For convenience, C# offers
a special set of operators known as combined assignment operators that are designed
 specifically for these jobs. Table 3-7 shows the combined assignment operators.

 Table 3-7 Combined assignment operators

 Operator Example Usage Equivalence

 += x += 5; x = x + 5;

 -= y −= 2; y = y − 2;

 *= z *= 10; z = z * 10;

 /= a /= b; a = a / b;

 %= c %= 3; c = c % 3;

 3.5 Inputting and Outputting Numeric Values 143

 As you can see, the combined assignment operators do not require the programmer to
type the variable name twice. Also, they give a clear indication of what is happening in
the statement.

 Checkpoint

 3.18 List the operands for the following math expression.

 length * width

 3.19 Summarize the mathematical order of operations.

 3.20 Rewrite the following code segment so that it does not cause an error.
 decimal pricePerFoot = 2.99m;
 double boardLength = 10.5;
 decimal totalCost = boardLength * pricePerFoot;

 3.21 Assume result is a double variable. When the following statement executes,
what value will be stored in result ?

 result = 4 + 10 / 2;

 3.22 Assume result is an int variable. When the following statement executes, what
value will be stored in result ?

 result = (2 + 5) * 10;

 3.23 Assume result is a double variable. When the following statement executes,
what value will be stored in result ?

 result = 5 / 2;

 3.24 Rewrite the following statements using combined assignment operators:
 a. count = count + 1;
 b. amount = amount – 5;
 c. radius = radius * 10 ;
 d. length = length / 2;

 3.5 Inputting and Outputting Numeric Values

 CONCEPT: If the user has entered a number into a TextBox, the number will be
stored as a string in the TextBox’s Text property. If you want to store that
number in a numeric variable, you have to convert it to the appropriate
numeric data type. When you want to display the value of a numeric vari-
able in a Label control or a message box, you have to convert it to a string.

 Getting a Number from a TextBox
 GUI applications typically use TextBox controls to read keyboard input. Any data that
the user enters into a TextBox control is stored in the control’s Text property as a string,
even if it is a number. For example, if the user enters the number 72 into a TextBox con-
trol, the input is stored as the string "72" in the control’s Text property.

 If the user has entered a numeric value into a TextBox control and you want to assign that
value to a numeric variable, you have to convert the control’s Text property to the desired
numeric data type. Unfortunately, you cannot use a cast operator to convert a string to a
numeric type.

144 Chapter 3 Processing Data

 To convert a string to any of the numeric data types, we use a family of methods in the
.NET Framework known as the Parse methods . In computer science, the term parse
typically means to analyze a string of characters for some purpose. The Parse methods
are used to convert a string to a specific data type. There are several Parse methods in
the .NET Framework, but because we are primarily using the int , double , and decimal
numeric data types, we need only three of them:

 • We use the int.Parse method to convert a string to an int .
 • We use the double.Parse method to convert a string to a double .
 • We use the decimal.Parse method to convert a string to a decimal .

 When you call one of the Parse methods, you pass a piece of data known as an argument
into the method, and the method returns a piece of data back to you. The argument that
you pass to the method is the string that you want to convert, and the piece of data that
the method returns back to you is the converted value. Figure 3-12 illustrates this concept
using the int.Parse method as an example.

 Figure 3-12 The int.Parse method

int.Parse(string)

Argument
(the string you want to convert)

An int value is returned

 The following code sample shows how to use the int.Parse method to convert a con-
trol’s Text property to an int . Assume that hoursWorkedTextBox is the name of a Text-
Box control.

 1 // Declare an int variable to hold the hours worked.
 2 int hoursWorked;
 3
 4 // Get the hours worked from the TextBox.
 5 hoursWorked = int.Parse(hoursWorkedTextBox.Text);

 Let’s assume that the user has entered the value 40 into the hoursWorkedTextBox con-
trol. In line 5 of the code sample, on the right side of the = operator is the expression
 int.Parse(hoursWorkedTextBox.Text) . This expression calls the int.Parse method,
passing the value of hoursWorkedTextBox.Text as an argument. Because the user has
entered 40 into the TextBox, the string "40" is the value that is passed as the argument.
The method converts the string "40" to the int value 40. The int value 40 is returned
from the method and the = operator assigns it to the hoursWorked variable. Figure 3-13
illustrates this process.

 The following code sample demonstrates the double.Parse method. Assume that
 temperatureTextBox is the name of a TextBox control.

 1 // Declare a double variable to hold the temperature.
 2 double temperature;
 3
 4 // Get the temperature from the TextBox.
 5 temperature = double.Parse(temperatureTextBox.Text);

 Line 5 passes temperatureTextBox.Text as an argument to the double.Parse method.
That value is converted to a double , returned from the double.parse method, and as-
signed to the temperature variable.

 The following code sample demonstrates the decimal.Parse method. Assume that
 moneyTextBox is the name of a TextBox control.

 3.5 Inputting and Outputting Numeric Values 145

 1 // Declare a decimal variable to hold an amount of money.
 2 decimal money;
 3
 4 // Get an amount from the TextBox.
 5 money = decimal.Parse(moneyTextBox.Text);

 Line 5 passes moneyTextBox.Text as an argument to the decimal.Parse method. That
value is converted to a decimal , returned from the decimal.parse method, and assigned
to the money variable.

 Figure 3-13 Converting TextBox input to an int

hoursWorked = int.Parse(hoursWorkedTextBox.Text);

"40"
40

The user enters 40 into the
hoursWorkedTextBox control.

The string "40" is stored
in the control’s Text

property.

The int value 40 is returned
from the int.Parse method

and assigned to the hoursWorked
variable.

 NOTE: If you look at the top of a form’s source code in the code editor, you should
see a directive that reads using System; . That directive is required for any program
that uses the Parse methods.

 Invalid Conversions

 The Parse methods work only if the string that is being converted contains a valid nu-
meric value. If the string contains invalid characters or contains a number that cannot be
converted to the specified data type, an error known as an exception occurs. An exception
is an unexpected error that occurs while a program is running, causing the program to
halt if the error is not properly dealt with.

 For example, assume that hoursWorked is an int variable and hoursWorkedTextBox is
a TextBox control. Suppose the user has entered xyz into the TextBox and the following
statement executes:

 hoursWorked = int.Parse(hoursWorkedTextBox.Text);

 Obviously, the string "xyz" cannot be converted to an int , so an exception occurs.
(When an exception occurs, programmers say an exception is “thrown.”) Depending on
how you execute the application, you will see one of the windows displayed in Figure 3-14
or Figure 3-15 .

 • If you see the window in Figure 3-14 , you can stop the application by clicking the
Stop Debugging button (), or by pressing s + %, or by clicking Debug and
then Stop Debugging .

 • When you see the window shown in Figure 3-15 , in most situations you should click
the Quit button to stop the application.

146 Chapter 3 Processing Data

 Later in this chapter you will learn how to catch errors like this and prevent the program
from halting.

 Displaying Numeric Values
 Suppose an application has a decimal variable named grossPay and a Label control named
 grossPayLabel . You want to display the variable’s value in the Label control. To accom-
plish this, you must somehow get the value of the grossPay variable into the grossPayLabel
control’s Text property. The following assignment statement will not work, however:

 grossPayLabel.Text = grossPay; d ERROR!

 You cannot assign a numeric value to a control’s Text property because only strings can
be assigned to the Text property. If you want to display the value of a numeric variable in
a Label control, you have to convert the variable’s value to a string.

 Luckily, all variables have a ToString method that you can call to convert the variable’s
value to a string. You call the ToString method using the following general format:

 variableName .ToString()

 In the general format, variableName is the name of any variable. The expression returns
the variable’s value as a string. Here is a code sample that demonstrates:

 decimal grossPay = 1550.0m;
 grossPayLabel.Text = grossPay.ToString();

 The first statement declares a decimal variable named grossPay initialized with
the value 1,550.0. In the second statement, the expression on the right side of the =
operator calls the grossPay variable’s ToString method. The method returns the string

 Figure 3-15 Exception reported

 Figure 3-14 Exception reported

 3.5 Inputting and Outputting Numeric Values 147

 "1550.0" . The = operator then assigns the string "1550.0" to the grossPayLabel con-
trol’s Text property. As a result, the value 1550.0 is displayed in the grossPayLabel
control. This process is illustrated in Figure 3-16 .

 Figure 3-16 Displaying numeric data in a Label control

decimal grossPay = 1550.0m;
grossPayLabel.Text = grossPay.ToString();

"1550.0"

 You must also convert a numeric variable to a string before passing it to the
 MessageBox.Show method. The following example shows how an int variable’s value
can be converted to a string and displayed in a message box:

 int myNumber = 123;
 MessageBox.Show(myNumber.ToString());

 The first statement declares an int variable named myNumber , initialized with the value
123. In the second statement the following takes place:

 • The myNumber variable’s ToString method is called. The method returns the string
 "123" .

 • The string "123" is passed to the MessageBox.Show method. As a result, the value
 123 is displayed in a message box.

 Implicit String Conversion with the + Operator
 In this chapter you’ve learned that the + operator has two uses: string concatenation
and numeric addition. If you write an expression using the + operator and both oper-
ands are strings, the + operator concatenates the strings. If both operands are numbers
of compatible types, then the + operator adds the two numbers. But what happens
if one operand is a string and the other operand is a number? The number will be
implicitly converted to a string, and both operands will be concatenated. Here’s an
example:

 int idNumber = 1044;
 string output = "Your ID number is " + idNumber;

 In the second statement, the string variable output is initialized with the string "Your
ID number is 1044" . Here is another example:

 double testScore = 88.5;
 MessageBox.Show("Your test score is " + testScore);

 The second statement displays a message box showing the string "Your test score is
88.5" .

 In Tutorial 3-2 you will use some of the techniques discussed in this section. You will cre-
ate an application that reads numeric input from TextBox controls, and displays numeric
output in a Label control.

148 Chapter 3 Processing Data

 Tutorial 3-2:
 Calculating Fuel Economy

 In the United States, a car’s fuel economy is measured in miles per gallon, or MPG. You
use the following formula to calculate a car’s MPG:

 MPG = Miles driven ÷ Gallons of gas used

 In this tutorial you will create an application that lets the user enter the number of miles
he or she has driven and the gallons of gas used. The application will calculate and display
the car’s MPG.

 Figure 3-17 shows the application’s form, with the names of all the controls. When the
application runs, the user enter the number of miles driven into the milesTextBox con-
trol and the gallons of gas used into the gallonsTextBox control. When the user clicks
the calculateButton control, the application calculates the car’s MPG and displays the
result in the mpgLabel control. The exitButton control closes the application’s form.

 Tutorial 3-2:
Calculating
Fuel
Economy

VideoNote

calculateButton exitButton

milesTextBox

gallonsTextBox

mpgLabel

gallonsPromptLabel

milesPromptLabel

outputDescriptionLabel

 Figure 3-17 The Fuel Economy form

 Step 1: Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms
Application project named Fuel Economy .

 Step 2: Set up the application’s form as shown in Figure 3-17 . Notice that the form’s
Text property is set to Fuel Economy . The names of the controls are shown in
the figure. As you place each of the controls on the form, refer to Table 3-8 for
the relevant property settings.

 Step 3: Once you have set up the form with its controls, you can create the Click event
handlers for the Button controls. At the end of this tutorial, Program 3-2 shows the
completed code for the form. You will be instructed to refer to Program 3-2 as you
write the event handlers. (Remember, the line numbers that are shown in Program
 3-2 are not part of the program. They are shown for reference only.)

 In the Designer , double-click the calculateButton control. This opens the
code editor, and you will see an empty event handler named calculateButton_
Click . Complete the calculateButton_Click event handler by typing the
code shown in lines 22–38 in Program 3-2 .

 Let’s take a closer look at the code:

 Line 22: This statement declares a double variable named miles . This variable
is used to hold the number of miles driven.

 Line 23: This statement declares a double variable named gallons . This vari-
able is used to hold the number of gallons used.

 3.5 Inputting and Outputting Numeric Values 149

 Line 24: This statement declares a double variable named mpg . This variable is
used to hold the MPG, which will be calculated.

 Line 28: This statement converts the milesTextBox control’s Text property to
a double and assigns the result to the miles variable.

 Line 32: This statement converts the gallonsTextBox control’s Text property
to a double and assigns the result to the gallons variable.

 Line 35: This statement calculates MPG. It divides the miles variable by the
 gallons variable and assigns the result to the mpg variable.

 Line 38: This statement converts the mpg variable to a string and assigns the
result to the mpgLabel control’s Text property. This causes the value of the mpg
variable to be displayed in the mpgLabel control.

 Step 4: Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you will see an empty event handler named exitButton_
Click . Complete the exitButton_Click event handler by typing the code
shown in lines 43– 44 in Program 3-2 .

 Step 5: Save the project. Then, press the % key on the keyboard or click the Start
Debugging button () on the toolbar to compile and run the application. Test
the application by entering values into the TextBoxes and clicking the Calculate
MPG button. The MPG should be displayed, similar to Figure 3-18 . Click the
 Exit button and the form should close.

 Table 3-8 Control property settings

 Control Name Control Type Property Settings

 milesPromptLabel Label Text : Enter the number of miles driven:

 gasPromptLabel Label Text : Enter the gallons of gas used:

 outputDescriptionLabel Label Text : Your car’s MPG:

 milesTextBox TextBox No properties changed

 gallonsTextBox TextBox No properties changed

 mpgLabel Label AutoSize : False
 BorderStyle : FixedSingle
 Text : (The contents of the Text property
have been erased.)
 TextAlign : MiddleCenter

 calculateButton Button Text : Calculate MPG

 exitButton Button Text : Exit

 Figure 3-18 The Fuel Economy application

150 Chapter 3 Processing Data

 Program 3-2 Completed Form1 code for the Fuel Economy application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Fuel_Economy
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void calculateButton_Click(object sender, EventArgs e)
 21 {
 22 double miles; // To hold miles driven
 23 double gallons; // To hold gallons used
 24 double mpg; // To hold MPG
 25
 26 // Get the miles driven and assign it to
 27 // the miles variable.
 28 miles = double.Parse(milesTextBox.Text);
 29
 30 // Get the gallons used and assign it to
 31 // the gallons variable.
 32 gallons = double.Parse(gallonsTextBox.Text);
 33
 34 // Calculate MPG.
 35 mpg = miles / gallons;
 36
 37 // Display the MPG in the mpgLabel control.
 38 mpgLabel.Text = mpg.ToString();
 39 }
 40
 41 private void exitButton_Click(object sender, EventArgs e)
 42 {
 43 // Close the form.
 44 this.Close();
 45 }
 46 }
 47 }

 3.6 Formatting Numbers with the ToString Method 151

 Checkpoint

 3.25 What method converts the string literal "40" to a value of the int data type?

 3.26 Write a statement that converts each of the following string values to the decimal
data type using the decimal.Parse method.
 a. "9.05"
 b. grandTotal
 c. "50"
 d. priceTextBox.Text

 3.27 Suppose an application has a decimal variable named total and a Label control
named totalLabel . What will be the result when the following assignment
statement is executed?

 totalLabel.Text = total;

 3.28 Write a statement that displays each of the following numeric variables in a
message box.
 a. grandTotal
 b. highScore
 c. sum
 d. width

 3.29 Write a statement that will store the value of an int variable named result in the
Text property of a Label control named resultLabel .

 3.6 Formatting Numbers with the
 ToString Method

 CONCEPT: The ToString method can optionally format a number to appear in a
specific way.

 When you display large numbers, you usually want to format them with commas so they
are easy to read. For example, 487,634,789.0 is easier to read than 487634789.0. Also,
when you display amounts of money, you usually want to round them to two decimal
places and display a currency symbol, such as a dollar sign ($).

 When you call the ToString method, you can optionally pass a formatting string as an
argument to the method. The formatting string indicates that you want the number to
appear formatted in a specific way when it is returned as a string from the method. For
example, when you pass the formatting string "c" to the ToString method, the number
is returned formatted as currency. Assuming that you are in the United States, numbers
formatted as currency are preceded by a dollar sign ($), are rounded to two decimal
places, and have comma separators inserted as necessary. The following code sample
demonstrates:

 decimal amount = 123456789.45678m;
 MessageBox.Show(amount.ToString("c"));

 Notice in the second statement that the "c" formatting string is passed to the amount
variable’s ToString method. The message box that the statement displays appears as
shown in Figure 3-19 .

 There are several other format strings that you can use with the ToString method, and
each produces a different type of formatting. Table 3-9 shows a few of them.

152 Chapter 3 Processing Data

 Number Format
 Number format ("n" or "N") displays numeric values with comma separators and a deci-
mal point. By default, two digits display to the right of the decimal point. Negative values
are displayed with a leading minus sign. An example is −2,345.67.

 Fixed-Point Format
 Fixed-point format ("f" or "F") displays numeric values with no thousands separator and
a decimal point. By default, two digits display to the right of the decimal point. Negative
values are displayed with a leading minus (-) sign. An example is −2345.67.

 Exponential Format
 Exponential format ("e" or "E") displays numeric values in scientific notation. The number
is displayed with a single digit to the left of the decimal point. The letter e appears in front
of the exponent, and the exponent has a leading + or − sign. By default, six digits display
to the right of the decimal point, and a leading minus sign is used if the number is negative.

 An example is −2.345670e+003.

 Currency Format
 Currency format ("c" or "C") displays a leading currency symbol (such as $), digits,
comma separators, and a decimal point. By default, two digits display to the right of the
decimal point. Negative values are surrounded by parentheses. An example of a negative
value is ($2,345.67).

 Using Percent Format
 Percent format ("p" or "P") causes the number to be multiplied by 100 and displayed
with a trailing space and % sign. By default, two digits display to the right of the decimal

 Figure 3-19 A number formatted as currency

 Table 3-9 A few of the formatting strings

 Format String Description

 "N" or "n" Number format

 "F" or "f" Fixed-point scientific format

 "E" or "e" Exponential scientific format

 "C" or "c" Currency format

 "P" or "p" Percent format

 3.6 Formatting Numbers with the ToString Method 153

point. Negative values are displayed with a leading minus sign. For example, the number
0.125 would be formatted as 12.5 % and the number −0.2345 would be formatted
as − 23.45 % .

 Specifying the Precision
 Each numeric format string can optionally be followed by an integer that indicates how
many digits to display after the decimal point. For example, the format "n3" displays
three digits after the decimal point. Table 3-10 shows a variety of numeric formatting
examples, based on the North American locale.

 Table 3-10 Numeric formatting examples (North American locale)

 Number Format String ToString() Return Value

 12.3 "n3" 12.300

 12.348 "n2" 12.35

 1234567.1 "N" 1,234,567.10

 123456.0 "f2" 123456.00

 123456.0 "e3" 1.235e+005

 .234 "P" 23.40 %

 -1234567.8 "C" ($1,234,567.80)

 Rounding
 Rounding can occur when the number of digits you have specified after the decimal point
in the format string is smaller than the precision of the numeric value. Suppose, for exam-
ple, that the value 1.235 were displayed with a format string of "n2" . Then the displayed
value would be 1.24. If the next digit after the last displayed digit is 5 or higher, the last
displayed digit is rounded away from zero . Table 3-11 shows examples of rounding using
a format string of "n2" .

 Table 3-11 Rounding examples using the "n2" display format string

 Number Formatted As

 1.234 1.23

 1.235 1.24

 1.238 1.24

 -1.234 -1.23

 -1.235 -1.24

 -1.238 -1.24

 Using Leading Zeros with Integer Values
 You can use the "d" or "D" formatting strings with integers to specify the minimum width
for displaying the number. Leading zeros are inserted if necessary. Table 3-12 shows
 examples.

 In Tutorial 3-3 you will create an application that uses currency formatting to display a
dollar amount.

154 Chapter 3 Processing Data

 Table 3-12 Formatting integers using the "d" or "D" formatting strings

 Integer Value Format String Formatted As

 23 "d" 23

 23 "d4" 0023

 1 "d2" 01

 Tutorial 3-3:
Creating the
 Sale Price
Calculator
Application
with
Currency
Formatting

VideoNote

 Tutorial 3-3:
 Creating the Sale Price Calculator Application with
Currency Formatting

 If you are writing a program that works with a percentage, you have to make sure that the
percentage’s decimal point is in the correct location before doing any math with the per-
centage. This is especially true when the user enters a percentage as input. Most users will
enter the number 50 to mean 50 percent, 20 to mean 20 percent, and so forth. Before you
perform any calculations with such a percentage, you have to divide it by 100 to move its
decimal point to the left two places.

 Suppose a retail business is planning to have a storewide sale in which the prices of all
items will be reduced by a specified percentage. In this tutorial you will create an appli-
cation to calculate the sale price of an item after the discount is subtracted. Here is the
algorithm, expressed as pseudocode:

 1. Get the original price of the item.
 2. Get the discount percentage. (For example, 20 is entered for 20 percent.)
 3. Divide the percentage amount by 100 to move the decimal point to the correct

 location.
 4. Multiply the percentage by the original price. This is the amount of the discount.
 5. Subtract the discount from the original price. This is the sale price.
 6. Display the sale price.

 Figure 3-20 shows the application’s form, with the names of all the controls. When the
application runs, the user enters an item’s original price into the originalPriceTextBox
control and the discount percentage into the discountPercentageTextBox control. When
the user clicks the calculateButton control, the application calculates the item’s sale price
and displays the result in the salePriceLabel control. The exitButton control closes the
application’s form.

 Figure 3-20 The Sale Price Calculator form

discPercentagePromptLabel

originalPricePromptLabel

outputDescriptionLabel

originalPriceTextBox

discountPercentageTextBox

salePriceLabel

calculateButton exitButton

 3.6 Formatting Numbers with the ToString Method 155

 Step 1: Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms
Application project named Sale Price Calculator .

 Step 2: Set up the application’s form, as shown in Figure 3-20 . Notice that the form’s
Text property is set to Sale Price Calculator . The names of the controls are
shown in the figure. As you place each of the controls on the form, refer to
 Table 3-13 for the relevant property settings.

 Table 3-13 Control property settings

 Control Name Control Type Property Settings

 originalPricePromptLabel Label Text : Enter the item’s original price:

 discPercentagePromptLabel Label Text : Enter the discount percentage:

 outputDescriptionLabel Label Text : Sale price:

 originalPriceTextBox TextBox No properties changed

 discountPercentageTextBox TextBox No properties changed

 salePriceLabel Label AutoSize : False
 BorderStyle : FixedSingle
 Text : (The contents of the Text
property have been erased.)
 TextAlign : MiddleCenter

 calculateButton Button Text : Calculate Sale Price

 exitButton Button Text : Exit

 Step 3: Once you have set up the form with its controls, you can create the Click event
handlers for the Button controls. At the end of this tutorial, Program 3-3 shows
the completed code for the form. You will be instructed to refer to Program 3-3
as you write the event handlers. (Remember, the line numbers that are shown
in Program 3-3 are not part of the program. They are shown for reference
only.)

 In the Designer , double-click the calculateButton control. This will open the
code editor, and you will see an empty event handler named calculateButton_
Click . Complete the calculateButton_Click event handler by typing the
code shown in lines 22–43 in Program 3-3 .

 Let’s take a closer look at the code:

 Line 22: This statement declares a decimal variable named originalPrice .
This variable will hold the item’s original price.

 Line 23: This statement declares a decimal variable named discountPercentage .
This variable will hold the discount percentage.

 Line 24: This statement declares a decimal variable named discountAmount .
This variable will hold the amount of discount that will be taken from the item’s
original price. This amount will be calculated.

 Line 25: This statement declares a decimal variable named salePrice . This
variable will hold the item’s sale price. This amount will be calculated.

 Line 28: This statement converts the originalPriceTextBox control’s
Text property to a decimal and assigns the result to the originalPrice
variable.

156 Chapter 3 Processing Data

 Line 31: This statement converts the discountPercentageTextBox control’s
Text property to a decimal and assigns the result to the discountPercentage
variable.

 Line 34: This statement divides discountPercentage by 100 and stores the
result back in discountPercentage . This moves the decimal point in the
 discountPercentage variable to the left two places.

 Line 37: This statement calculates the amount of the discount. It multi-
plies originalPrice by discountPercentage and assigns the result to
 discountAmount .

 Line 40: This statement calculates the item’s sale price. It subtracts the
 discountAmount variable from the originalPrice variable and assigns the re-
sult to the salePrice variable.

 Line 43: This statement displays the item’s sale price as a currency amount.
It converts the salePrice variable to a string and assigns the result to the
 salePriceLabel control’s Text property. Notice that the format string "c" is
passed to the salePrice variable’s ToString method.

 Step 4: Switch your view back to the Designer and double-click the exitButton
control. In the code editor you will see an empty event handler named
 exitButton_Click . Complete the exitButton_Click event handler by typing
the code shown in lines 48–49 in Program 3-3 .

 Step 5: Save the project. Then, press the % key on the keyboard or click the Start
Debugging button () on the toolbar to compile and run the application. Test
the application by entering values into the TextBoxes and clicking the Calculate
Sale Price button. The sale price is displayed, similar to Figure 3-21 . Click the
 Exit button and the form closes.

 Figure 3-21 The Sale Price Calculator application

 Program 3-3 Completed Form1 code for the Sale Price Calculator application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Sale_Price_Calculator

 3.6 Formatting Numbers with the ToString Method 157

 Checkpoint

 3.30 Write a programming statement that displays the string value of a variable named
 salary in a message box using currency format.

 3.31 The following variable names give an indication of the data each stores. For each
variable, specify the format string that you think is most appropriate.
 a. discountPercentage
 b. atomicWeight
 c. retailPrice
 d. quantityPurchased
 e. degreesKelvin

 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void calculateButton_Click(object sender, EventArgs e)
 21 {
 22 decimal originalPrice; // The item's original price
 23 decimal discountPercentage; // The discount percentage
 24 decimal discountAmount; // The amount of discount
 25 decimal salePrice; // The item's sale price
 26
 27 // Get the item's original price.
 28 originalPrice = decimal.Parse(originalPriceTextBox.Text);
 29
 30 // Get the discount percentage.
 31 discountPercentage = decimal.Parse(discountPercentageTextBox.Text);
 32
 33 // Move the percentage's decimal point left two spaces.
 34 discountPercentage = discountPercentage / 100;
 35
 36 // Calculate the amount of the discount.
 37 discountAmount = originalPrice * discountPercentage;
 38
 39 // Calculate the sale price.
 40 salePrice = originalPrice − discountAmount;
 41
 42 // Display the sale price.
 43 salePriceLabel.Text = salePrice.ToString("c");
 44 }
 45
 46 private void exitButton_Click(object sender, EventArgs e)
 47 {
 48 // Close the form.
 49 this.Close();
 50 }
 51 }
 52 }

158 Chapter 3 Processing Data

 3.32 What value will be displayed in the message box when the following code segment
is executed?
 double apples = 12.0;
 MessageBox.Show(apples.ToString("n0"));

 3.33 Examine the following integer variables and specify the number of leading zeros to
use with the d or D format strings so that all the numbers are equal in width.

 int valueA = 234, valueB = 56, valueC = 7, valueD = 89123;

 3.34 Write a programming statement that uses the ToString method of a variable
named millimeters so that it displays a precision of four digits after the decimal
point in fixed-point scientific format.

 3.7 Simple Exception Handling

 CONCEPT: An exception is an unexpected error that happens while a program is run-
ning. If an exception is not handled by the program, the program will
abruptly halt.

 An exception is an unexpected error that occurs while a program is running, causing
the program to halt if the error is not properly dealt with. Exceptions are usually caused
by circumstances that are beyond the programmer’s control. For example, suppose the
user has entered a value into a TextBox, and that value is expected to be a number. The
program uses one of the Parse methods to convert the control’s Text property to a nu-
meric data type, but the string contains invalid characters and it cannot be converted. The
 Parse method cannot continue, so an exception occurs. (To use the proper terminology,
we say that a method throws an exception when an unexpected error occurs and it cannot
continue operating.)

 Let’s look at an example. If you have completed the Fuel Economy project from Tutorial
 3-2 , open it in Visual Studio and then either click the Start Debugging button () or press
% to run the application. On the application’s form, enter 300 for the number of miles
driven and then enter a nonnumeric sequence of characters for the gallons of gas used.
 Figure 3-22 shows an example where the user has entered wxyz . Then, click the Calculate
MPG button. Because the invalid string that you entered for the gallons of gas cannot be
converted to a double , an exception is thrown. The application stops running and Visual
Studio goes into a special mode known as break mode . The window shown in Figure 3-23
is displayed, and the line of code that was executing when the exception was thrown is
highlighted.

 Figure 3-22 Invalid data entered for gallons

 3.7 Simple Exception Handling 159

 The exception window that is shown in Figure 3-23 displays a lot of information, but if
you look at the line just below the window’s title bar, you see the message Input string was
not in a correct format . That is a description of what happened to cause the exception. To
get out of break mode, click the Stop Debugging button (), or press s + %. Visual
Studio then returns to its normal mode.

 Handling Exceptions
 C#, like most modern programming languages, allows you to write code that responds to
exceptions when they are thrown and prevents the program from abruptly crashing. Such
code is called an exception handler , and is written with the try-catch statement . There
are several ways to write a try - catch statement, but the following general format is the
simplest variation:

 try
 {
 statement ;
 statement ;
 etc.
 }
 catch
 {
 statement ;
 statement ;
 etc.
 }

 First the key word try appears, followed by a group of one or more statements that ap-
pears inside a set of braces. This group of statements is known as a try block . One or
more of the statements inside the try block can potentially throw an exception.

 After the try block, a catch clause appears. The catch clause is followed by a group of
one or more statements enclosed inside a set of braces. This group of statements is known
as a catch block .

 When a try - catch statement executes, the statements in the try block are executed in the
order that they appear. If a statement in the try block throws an exception, the program
immediately jumps to the catch clause and executes the statements in the catch block. If
all the statements in the try block execute with no exception, the catch block is skipped.

 Figure 3-23 Exception reported

160 Chapter 3 Processing Data

 Let’s see how a try - catch statement can be used in the Fuel Economy application. Here
is a modified version of the application’s calculateButton_Click event handler:

 1 private void calculateButton_Click(object sender, EventArgs e)
 2 {
 3 try
 4 {
 5 double miles; // To hold miles driven
 6 double gallons; // To hold gallons used
 7 double mpg; // To hold MPG
 8
 9 // Get the miles driven and assign it to
 10 // the miles variable.
 11 miles = double.Parse(milesTextBox.Text);
 12
 13 // Get the gallons used and assign it to
 14 // the gallons variable.
 15 gallons = double.Parse(gallonsTextBox.Text);
 16
 17 // Calculate MPG.
 18 mpg = miles / gallons;
 19
 20 // Display the MPG in the mpgLabel control.
 21 mpgLabel.Text = mpg.ToString();
 22 }
 23 catch
 24 {
 25 // Display an error message.
 26 MessageBox.Show("Invalid data was entered.");
 27 }
 28 }

 When you write a try - catch statement, you put all the code that might throw an excep-
tion inside the try block. In this version of the event handler, the try block appears in
lines 5–21. (In this example, we have put all the statements that previously appeared in
the event handler inside the try block.) If any statement inside the try block throws an
exception, the program will immediately jump to the catch clause in line 23. Then, the
statements in the catch block (lines 25–26) will execute.

 Let’s say that the application is running and the user enters invalid input into the
 milesTextBox control. When the event handler executes, the statement in line 11 throws
an exception because the double.Parse method is not able to convert the control’s Text
property to a double . The program will immediately jump to the catch clause in line 23
and then execute the statements inside the catch block. Line 26 displays a message box
with an error message. Figure 3-24 illustrates this process.

 On the other hand, if all the statements inside the try block execute and no exceptions are
thrown, the catch block will be skipped.

 Displaying an Exception’s Default Error Message
 When an exception is thrown, an object known as an exception object is created in memory.
The exception object has various properties that contain data about the exception. When you
write a catch clause, you can optionally assign a name to the exception object, as shown here:

 catch (Exception ex)

 The expression that appears inside the parentheses specifies that we are assigning the
name ex to the exception object. (There is nothing special about the name ex . That is sim-
ply the name that we’ve chosen for the examples. You can use any name that you wish.)

 3.7 Simple Exception Handling 161

Inside the catch block, we can use the name ex to access the exception object’s properties.
One of these is the Message property, which contains the exception’s default error mes-
sage. The following code shows how this can be done. This is another modification of the
 Fuel Economy project’s calculateButton_Click event handler.

 1 private void calculateButton_Click(object sender, EventArgs e)
 2 {
 3 try
 4 {
 5 double miles; // To hold miles driven
 6 double gallons; // To hold gallons used
 7 double mpg; // To hold MPG
 8
 9 // Get the miles driven and assign it to
 10 // the miles variable.
 11 miles = double.Parse(milesTextBox.Text);
 12
 13 // Get the gallons used and assign it to
 14 // the gallons variable.
 15 gallons = double.Parse(gallonsTextBox.Text);
 16
 17 // Calculate MPG.
 18 mpg = miles / gallons;
 19
 20 // Display the MPG in the mpgLabel control.
 21 mpgLabel.Text = mpg.ToString();
 22 }
 23 catch (Exception ex)
 24 {
 25 // Display the default error message.
 26 MessageBox.Show(ex.Message);
 27 }
 28 }

 Figure 3-24 Handling an exception

private void calculateButton_Click(object sender, EventArgs e)
{
 try
 {
 double miles; // To hold miles driven
 double gallons; // To hold gallons used
 double mpg; // To hold MPG

 // Get the miles driven and assign it to
 // the miles variable.
 miles = double.Parse(milesTextBox.Text);

 // Get the gallons used and assign it to
 // the gallons variable.
 gallons = double.Parse(gallonsTextBox.Text);

 // Calculate MPG.
 mpg = miles / gallons;

 // Display the MPG in the mpgLabel control.
 mpgLabel.Text = mpg.ToString();
 }
 catch
 {
 // Display an error message.
 MessageBox.Show("Invalid data was entered.");
 }
}

If this statement throws
an exception...

The program jumps
to the catch clause
and executes the
statements in the
catch block.

162 Chapter 3 Processing Data

 The statement in line 26 simply passes the exception object’s Message property to the
 MessageBox.Show method. This causes the default error message to be displayed in a mes-
sage box. Figure 3-25 shows an example of the message that is displayed as a result of the
user entering invalid input for either the milesTextBox or the gallonsTextBox controls.

 Figure 3-25 A message box showing an exception’s default error message

 In Tutorial 3-4 you create an application that uses a try-catch statement to handle ex-
ceptions that are thrown when the user enters invalid data into a TextBox control.

 Tutorial 3-4:
Creating the
 Test Average
Application
with
Exception
Handling

VideoNote

 Tutorial 3-4:
 Creating the Test Average Application with Exception Handling

 Determining the average of a group of values is a simple calculation: You add all the val-
ues and then divide the sum by the number of values. Although this is a straightforward
calculation, it is easy to make a mistake when writing a program that calculates an aver-
age. For example, let’s assume that the variables a , b , and c each hold a value and we
want to calculate the average of those values. If we are careless, we might write a state-
ment such as the following to perform the calculation:

 average = a + b + c / 3.0;

 Can you see the error in this statement? When it executes, the division will take place first.
The value in c will be divided by 3, and then the result will be added to a + b . That is not
the correct way to calculate an average. To correct this error we need to put parentheses
around a + b + c , as shown here:

 average = (a + b + c) / 3.0;

 In this tutorial you will create an application that calculates the average of three test
scores. Figure 3-26 shows the application’s form, with the names of all the controls. When

calculateButton exitButtonclearButton

test1TextBox

test2TextBox

test3TextBox

averageLabel

test1PromptLabel

test2PromptLabel

test3PromptLabel

outputDescriptionLabel

 Figure 3-26 The Test Average form

 3.7 Simple Exception Handling 163

the application runs, the user will enter the test scores into the TextBox controls. When
the user clicks the calculateButton control, the application will calculate the average
test score and display the result in the averageLabel control. The clearButton control
will clear the contents of the TextBoxes and the averageLabel control. The exitButton
control closes the application’s form.

 Step 1: Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms
Application project named Test Average .

 Step 2: Set up the application’s form as shown in Figure 3-26 . Notice that the form’s
Text property is set to Test Average . The names of the controls are shown in the
figure. As you place each of the controls on the form, refer to Table 3-14 for the
relevant property settings.

 Table 3-14 Control property settings

 Control Name Control Type Property Settings

 test1PromptLabel Label Text : Test 1:

 test2PromptLabel Label Text : Test 2:

 test3PromptLabel Label Text : Test 3:

 outputDescriptionLabel Label Text : Average Test Score:

 test1TextBox TextBox No properties changed

 test2TextBox TextBox No properties changed

 test3TextBox TextBox No properties changed

 averageLabel Label AutoSize : False
 BorderStyle : FixedSingle
 Text : (The contents of the Text
property have been erased.)
 TextAlign : MiddleCenter

 calculateButton Button Text : Calculate Sale Price

 clearButton Button Text : Clear

 exitButton Button Text : Exit

 Step 3: Once you have set up the form with its controls, you can create the Click event
handlers for the Button controls. At the end of this tutorial, Program 3-4 shows
the completed code for the form. You will be instructed to refer to Program 3-4
as you write the event handlers. (Remember, the line numbers that are shown
in Program 3-4 are not part of the program. They are shown for reference
only.)

 In the Designer , double-click the calculateButton control. This will open the
code editor, and you will see an empty event handler named calculateButton_
Click . Complete the calculateButton_Click event handler by typing
the code shown in lines 22–45 in Program 3-4 . Let’s take a closer look at the
code:

 Line 22: This is the beginning of a try - catch statement. The try block appears
in lines 24–39, and the catch block appears in lines 43–44.

 Lines 24–27: These statements declare the following double variables: test1 ,
 test2 , test3 , and average . The variables will hold the three test scores and
the average test score.

164 Chapter 3 Processing Data

 Line 30: This statement converts the test1TextBox control’s Text property to
a double and assigns the result to the test1 variable.

 Line 31: This statement converts the test2TextBox control’s Text property to
a double and assigns the result to the test2 variable.

 Line 32: This statement converts the test3TextBox control’s Text property to
a double and assigns the result to the test3 variable.

 Line 35: This statement calculates the average of the test1 , test2 , and test3
variables and assigns the result to the average variable.

 Line 39: This statement converts the average variable to a string and assigns
the result to the averageLabel control’s Text property. Notice that the "n1"
format string is passed as an argument to the ToString method. This causes the
number to be rounded to one decimal point.

 Step 4: Switch your view back to the Designer and double-click the clearButton
 control. In the code editor you will see an empty event handler named
 clearButton_Click . Complete the clearButton_Click event handler by typ-
ing the code shown in lines 50–54 in Program 3-4 .

 Lines 51–53: Each of these statements assigns an empty string ("") to the Text
property of one of the TextBox controls. When these statements have finished
executing, the TextBox controls appear empty.

 Line 54: This statement assigns an empty string ("") to the averageLabel
 control’s Text property. After the statement has executed, the label appears
empty.

 Step 5: Switch your view back to the Designer and double-click the exitButton
control. In the code editor you will see an empty event handler named
 exitButton_Click . Complete the exitButton_Click event handler by typing
the code shown in lines 59–60 in Program 3-4 .

 Step 6: Save the project. Then, press the % key on the keyboard or click the Start
Debugging button () on the toolbar to compile and run the application.

 First, test the application by entering valid numeric values into the TextBoxes
and clicking the Calculate Average button. A test average should be displayed,
similar to the image shown on the left in Figure 3-27 .

Test scores entered and
an average displayed.

Invalid input given and
an exception reported.

 Figure 3-27 The Test Average application

 3.7 Simple Exception Handling 165

 Next, click the Clear button to clear the TextBoxes and the average. Then enter
a nonnumeric value for test 1, and click the Calculate Average button. An ex-
ception will be thrown, and you should see the message box shown in the image
on the right in Figure 3-27 .

 Continue to test the application as you wish. When you are finished, click the
 Exit button and the form should close.

 Program 3-4 Completed Form1 code for the Test Average application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Test_Average
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void calculateButton_Click(object sender, EventArgs e)
 21 {
 22 try
 23 {
 24 double test1; // To hold test score #1
 25 double test2; // To hold test score #2
 26 double test3; // To hold test score #3
 27 double average; // To hold the average test score
 28
 29 // Get the three test scores.
 30 test1 = double.Parse(test1TextBox.Text);
 31 test2 = double.Parse(test2TextBox.Text);
 32 test3 = double.Parse(test3TextBox.Text);
 33
 34 // Calculate the average test score.
 35 average = (test1 + test2 + test3) / 3.0;
 36
 37 // Display the average test score, with
 38 // the output rounded to 1 decimal point.
 39 averageLabel.Text = average.ToString("n1");
 40 }
 41 catch (Exception ex)
 42 {
 43 // Display the default error message.
 44 MessageBox.Show(ex.Message);
 45 }
 46 }
 47
 48 private void clearButton_Click(object sender, EventArgs e)

166 Chapter 3 Processing Data

 Checkpoint

 3.35 What can cause an application to throw an exception?

 3.36 How do you get out of break mode when an exception is thrown?

 3.37 What kind of code does the try block of a try - catch statement contain?

 3.38 What causes the program to jump to the catch clause and execute the catch block
of a try - catch statement?

 3.39 How can you display the default error message when an exception is thrown?

 3.40 Write a try - catch statement for an application that calculates the sum of two
whole numbers and displays the result. The application uses two TextBox controls
named value1TextBox and value2TextBox to gather the input and a Label
control named sumLabel to display the result.

 3.8 Using Named Constants

 CONCEPT: A named constant is a name that represents a value that cannot be changed
during the program’s execution.

 Assume that the following statement appears in a banking program that calculates data
pertaining to loans:

 amount = balance * 0.069;

 In such a program, two potential problems arise. First, it is not clear to anyone other than
the original programmer what 0.069 is. It appears to be an interest rate, but in some situa-
tions there are fees associated with loan payments. How can the purpose of this statement
be determined without painstakingly checking the rest of the program?

 The second problem occurs if this number is used in other calculations throughout the
program and must be changed periodically. Assuming the number is an interest rate, what
if the rate changes from 6.9 percent to 7.2 percent? The programmer would have to
search through the source code for every occurrence of the number.

 49 {
 50 // Clear the input and output controls.
 51 test1TextBox.Text = "";
 52 test2TextBox.Text = "";
 53 test3TextBox.Text = "";
 54 averageLabel.Text = "";
 55 }
 56
 57 private void exitButton_Click(object sender, EventArgs e)
 58 {
 59 // Close the form.
 60 this.Close();
 61 }
 62 }
 63 }

 3.9 Declaring Variables as Fields 167

 Both these problems can be addressed by using named constants. A named constant is a
name that represents a value that cannot be changed during the program’s execution. The
following is an example of how you can declare a named constant in C#:

 const double INTEREST_RATE = 0.129;

 This statement declares a named constant named INTEREST_RATE initialized with the
value 0.129. It looks like a regular variable declaration, except that the word const ap-
pears before the data type name and the name of the variable is written in uppercase char-
acters. The keyword const is a qualifier that tells the compiler to make the variable read
only. If a statement attempts to change the constant’s value, an error will occur when the
program is being compiled. When you declare a named constant, an initialization value
is required.

 It is not required that the constant name be written in uppercase letters, but many pro-
grammers prefer to write them this way so they are easily distinguishable from regular
variable names. When you are reading a program’s code and you see an uppercase identi-
fier, you know instantly that it is a constant.

 NOTE: Writing the names of constants in uppercase letters is traditional in many
programming languages, and that practice is followed in this book. Within the C#
community, some programmers adhere to this practice and some do not. In the class-
room, you should use the naming convention that your instructor prefers.

 An advantage of using named constants is that they make programs more self- explanatory.
The statement

 amount = balance * 0.069;

 can be changed to read

 amount = balance * INTEREST_RATE;

 A new programmer can read the second statement and know what is happening. It is
evident that balance is being multiplied by the interest rate. Another advantage to this
approach is that widespread changes can easily be made to the program. Let’s say the
interest rate appears in a dozen different statements throughout the program. When the
rate changes, the initialization value in the declaration of the named constant is the only
value that needs to be modified. If the rate increases to 7.2 percent, the declaration can be
changed to the following:

 const double INTEREST_RATE = 0.072;

 The new value of 0.072 will then be used in each statement that uses the INTEREST_RATE
constant. In Tutorial 3-5 you will create an application that uses named constants.

 3.9 Declaring Variables as Fields

 CONCEPT: A field is a variable that is declared at the class level. A field’s scope is the
entire class.

 So far in this chapter, all the variables with which we have worked have been local vari-
ables. A local variable is declared inside a method and is visible only to statements in that
method. Another type of variable is a field , which is a variable that is declared inside a

168 Chapter 3 Processing Data

class but not inside of any method. A field’s scope is the entire class, so when you declare
a field, all the methods in the class can access the variable.

 Typically, fields are declared at the top of a class declaration, before any methods. Figure
 3-28 shows where you would write field declarations inside a form class. When you are
about to write a field declaration, you can insert some blank lines after the class’s opening
brace ({) and write the field declaration in that space.

 Figure 3-28 Where to insert field declarations

 Let’s look at an example of a field declaration. Assume that the following statement ap-
pears inside a class declaration but not inside any methods. This statement declares an
 int field named number , initialized with the value 0:

 private int number = 0;

 Field declarations are written like any other variable declaration, except that an access
modifier usually appears before the data type. In this example, the keyword private is
the access modifier. An access modifier specifies how a class member can be accessed by
code outside the class. When you use the private access modifier in a field declaration,
the field cannot be accessed by code outside the class. It can be accessed only by the meth-
ods that are inside the class.

 It is a good programming practice to make fields private because private fields are
hidden from code outside the class. That prevents code outside the class from changing
the values of a class’s fields and helps prevent bugs from creeping into your program. You
will learn more about this in Chapter 10 . Until then, if you declare fields in a class, you
should get in the habit of making them private .

 NOTE: There are other access modifiers, as you will learn later in this book. If
you don’t write an access modifier in a field declaration, C# will automatically
make the field private . It is still a good idea to write the private access modi-
fier because it makes it evident to anyone reading the code that the field is indeed
 private .

 3.9 Declaring Variables as Fields 169

 In the previous field-declaration example, the number field is initialized with the value 0.
If a field is a variable of a numeric data type (such as int , double , or decimal), it will
be initialized to 0 by default if you do not explicitly initialize it with a value. It is always
a good idea to explicitly initialize a field, however, even if you want it to begin with the
value 0. This clearly indicates the field’s starting value for anyone reading the code.

 WARNING! If you do not initialize a string field, it begins with a special value
known as null . An error will occur if you attempt to use a string that is set to null .

 In a form, fields are useful for storing pieces of data that must be shared among the
form’s event handlers. For example, in the Chap03 folder of this book’s student sample
programs (available for download at www.pearsonhighered.com/gaddis), you will find
a project named Field Demo . Figure 3-29 shows the application’s form, along with the
names of the Button controls.

 Figure 3-29 The Field Demo form

showNameButton

chrisButton carmenButton

 Program 3-5 shows the Form1 code. Notice that in line 16 a string variable named name
is declared as a field and initialized with the value "Charles" . Next look at the button
event handlers:

 • In the showNameButton_Click event handler, line 25 displays a message box
 showing the value of the name variable.

 • In the chrisButton_Click event handler, line 30 changes the value of the name
variable to "Chris" .

 • In the carmenButton_Click event handler, line 35 changes the value of the name
variable to "Carmen" .

 As you can see, all of the event handlers in the Form1 class have access to the name vari-
able. If you run the application and click the Show Name button, a message box will ap-
pear displaying Charles , which is the name field’s initial value. If you click the Change
Name to Chris button and then click the Show Name button, a message box will appear
displaying Chris . If you click the Change Name to Carmen button and then click the
 Show Name button, a message box will appear displaying Carmen .

 Program 3-5 Form1 code for the Field Demo application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10

www.pearsonhighered.com/gaddis

170 Chapter 3 Processing Data

 11 namespace Field_Demo
 12 {
 13 public partial class Form1 : Form
 14 {
 15 // Declare a private field to hold a name.
 16 private string name = "Charles";
 17
 18 public Form1()
 19 {
 20 InitializeComponent();
 21 }
 22
 23 private void showNameButton_Click(object sender, EventArgs e)
 24 {
 25 MessageBox.Show(name);
 26 }
 27
 28 private void chrisButton_Click(object sender, EventArgs e)
 29 {
 30 name = "Chris";
 31 }
 32
 33 private void carmenButton_Click(object sender, EventArgs e)
 34 {
 35 name = "Carmen";
 36 }
 37 }
 38 }

 The Lifetime of a Field in a Form Class
 When you declare a field in a form class, the field’s lifetime is the time during which the
form exists. This means that the field will exist in memory as long as the form exists.
This is different than the lifetime of a local variable, which exists only while the method
in which it is declared is executing. Local variables come and go in memory, but a form’s
fields exist as long as the form exists.

 You can see this in the Field Demo application. The name field is created in memory when
the Form1 form is created, and it continues to exist as long as Form1 exists. When one
of the event handlers stores a value in the field, that value remains in the field until it is
changed again, perhaps by a different event handler. So, fields give you a way of storing
values that must not disappear when a particular method ends.

 Precautions
 Although fields make it easy to share data among the methods in a class, you should be
careful about using them. The overuse of fields can make debugging a class’s code dif-
ficult, especially if the class has many methods. If an incorrect value is being stored in a
field, you will have to track down every statement in the class that accesses the field to
determine where the incorrect value is coming from. In most cases, fields should be used
only for data that must be shared among multiple methods and must continue to exist in
memory when the methods are not executing.

 Constant Fields
 A constant field is a field that cannot be changed by any statement in the class. An error
will occur if the compiler finds a statement that tries to change the value of a constant

 3.9 Declaring Variables as Fields 171

field. A constant field is declared with the const keyword and initialized with a value.
Here is an example:

 private const decimal INTEREST_RATE = 0.075m;

 This statement declares a constant decimal field named INTEREST_RATE , initialized with
the value 0.075. Constant fields are typically used to represent unchanging values that are
needed by many of a class’s methods. For example, suppose a banking program uses a
constant field to represent an interest rate. If the interest rate is used in several methods,
it is easier to create a constant field, rather than a local named constant in each method.
This also simplifies maintenance of the code. If the interest rate changes, only the declara-
tion of the constant field has to be changed, instead of several local declarations.

 NOTE: Because a constant field’s value cannot be changed by other statements in
the class, you do not have to worry about many of the potential debugging problems
that are associated with the overuse of regular, nonconstant fields.

 Tutorial 3-5:
Creating
the Change
Counter
Application

VideoNote

 Tutorial 3-5:
 Creating the Change Counter Application

 In this tutorial you will create the Change Counter application. The application displays
images of four coins, having the values 5 cents, 10 cents, 25 cents, and 50 cents. Each time
the user clicks on a coin image, the value of that coin is added to a total, and the total is
displayed. Figure 3-30 shows the application’s form, with the names of all the controls.

 In Tutorial 3-5 you will create an application that uses a field in a form class to hold data,
as well as constant fields to represent nonchanging values.

 Figure 3-30 The Change Counter form

exitButton

totalLabel
outputDescriptionLabel

instructionLabel

tenCentsPictureBox

fiftyCentsPictureBox

fiveCentsPictureBox

twentyFiveCentsPictureBox

 Step 1: Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms
Application project named Sale Price Calculator .

 Step 2: Set up the application’s form as shown in Figure 3-30 . Notice that the form’s
Text property is set to Change Counter . The names of the controls are shown in

172 Chapter 3 Processing Data

the figure. As you place each of the controls on the form, refer to Table 3-15 for
the relevant property settings.

 Table 3-15 Control property settings

 Control Name Control Type Property Settings

 instructionLabel Label Font : Microsoft Sans Serif (Style:
Bold, Size: 10 point)
 Text : Click the Coins

 fiveCentsPictureBox PictureBox Image : Select and import the
5cents.png file from the Chap02 folder
of the Student Sample Programs.
 SizeMode : AutoSize

 tenCentsPictureBox PictureBox Image : Select and import the
10cents.png file from the Chap02
folder of the Student Sample Programs.
 SizeMode : AutoSize

 twentyFiveCentsPictureBox PictureBox Image : Select and import the
25cents.png file from the Chap02
folder of the Student Sample Programs.
 SizeMode : AutoSize

 fiftyCentsPictureBox PictureBox Image : Select and import the
50cents.png file from the Chap02
folder of the Student Sample Programs.
 SizeMode : AutoSize

 outputDescriptionLabel Label Font : Microsoft Sans Serif (Style: Bold,
Size: 10 point)
 Text : Total

 totalLabel Label AutoSize : False
 BorderStyle : FixedSingle
 Text : (The contents of the Text
property have been erased.)
 TextAlign : MiddleCenter

 exitButton Button Text : Exit

 Step 3: Once you have set up the form with its controls, you can begin writing code.
At the end of this tutorial, Program 3-6 shows the completed code for the form.
You will be instructed to refer to Program 3-6 as you write the form’s code.
(Remember, the line numbers that are shown in Program 3-6 are not part of the
program. They are shown for reference only.)

 First, you write the declarations for the fields. Switch your view to the code editor
(right-click Form1 . cs in the Solution Explorer and select View Code from the pop-
up menu). Write the declarations shown in lines 16–23 in Program 3-6 . Let’s take
a closer look at the code:

 Line 16: This statement declares a constant decimal field named
 FIVE_CENTS_VALUE , initialized with the value 0.05. This constant represents
the value of the 5-cent coin.

 Line 17: This statement declares a constant decimal field named
 TEN_CENTS_VALUE , initialized with the value 0.10. This constant represents the
value of the 10-cent coin.

 3.9 Declaring Variables as Fields 173

 Line 18: This statement declares a constant decimal field named
 TWENTY_FIVE_CENTS_VALUE , initialized with the value 0.25. This constant rep-
resents the value of the 25-cent coin.
 Line 19: This statement declares a constant decimal field named
 FIFTY_CENTS_VALUE , initialized with the value 0.50. This constant represents
the value of the 50-cent coin.
 Line 23: This statement declares a decimal field named total , initialized with
the value 0. This field is used to keep the total value of the coins that the user
clicks.

 Step 4: Now you can create the Click event handlers for the PictureBox controls. Switch
your view back to the Designer and double-click the fiveCentsPictureBox con-
trol. This opens the code editor, and you will see an empty event handler named
 fiveCentsPictureBox_Click . Complete the fiveCentsPictureBox_Click
event handler by typing the code shown in lines 32–36 in Program 3-6 . Let’s take a
closer look at the code:
 Line 33: This statement adds the value of the FIVE_CENTS_VALUE constant to
the total field.
 Line 36: This statement converts the total variable to a string and assigns the
result to the totalLabel control’s Text property. The "c" format string causes
the number to be formatted as currency.

 Step 5: Switch your view back to the Designer and double-click the tenCentsPictureBox
control. This opens the code editor, and you will see an empty event handler named
 tenCentsPictureBox_Click . Complete the tenCentsPictureBox_Click event
handler by typing the code shown in lines 41–45 in Program 3-6 . Let’s take a closer
look at the code:
 Line 42: This statement adds the value of the TEN_CENTS_VALUE constant to the
 total field.
 Line 45: This statement converts the total variable to a string and assigns the
result to the totalLabel control’s Text property. The "c" format string causes
the number to be formatted as currency.

 Step 6: Switch your view back to the Designer and double-click the
 twentyFiveCentsPictureBox control. This opens the code editor, and you will see
an empty event handler named twentyFiveCentsPictureBox_Click . Complete
the twentyFiveCentsPictureBox_Click event handler by typing the code shown
in lines 50–54 in Program 3-6 . Let’s take a closer look at the code:
 Line 51: This statement adds the value of the TWENTY_FIVE_CENTS_VALUE con-
stant to the total field.
 Line 54: This statement converts the total variable to a string and assigns the
result to the totalLabel control’s Text property. The "c" format string causes
the number to be formatted as currency.

 Step 7: Switch your view back to the Designer and double-click the
 fiftyCentsPictureBox control. This opens the code editor, and you will see
an empty event handler named fiftyCentsPictureBox_Click . Complete the
 fiftyCentsPictureBox_Click event handler by typing the code shown in lines
59–63 in Program 3-6 . Let’s take a closer look at the code:
 Line 60: This statement adds the value of the FIFTY_CENTS_VALUE constant to
the total field.
 Line 63: This statement converts the total variable to a string and assigns the
result to the totalLabel control’s Text property. The "c" format string causes
the number to be formatted as currency.

174 Chapter 3 Processing Data

 Step 8: Now you write the event handler for the Exit button. Switch your view back
to the Designer and double-click the exitButton control. This opens the code
editor, and you will see an empty event handler named exitButton_Click .
Complete the exitButton_Click event handler by typing the code shown in
lines 68–69 in Program 3-6 .

 Step 9: Save the project. Then, press the % key on the keyboard or click the Start
Debugging button () on the toolbar to compile and run the application. Test
the application by clicking the coin images in any order you wish. The total
shown on the form should update by the correct amount each time you click
a coin. When you are finished, click the Exit button and the form should
close.

 Program 3-6 Completed Form1 code for the Change Counter application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Change_Counter
 12 {
 13 public partial class Form1 : Form
 14 {
 15 // Constant fields
 16 const decimal FIVE_CENTS_VALUE = 0.05m;
 17 const decimal TEN_CENTS_VALUE = 0.10m;
 18 const decimal TWENTY_FIVE_CENTS_VALUE = 0.25m;
 19 const decimal FIFTY_CENTS_VALUE = 0.50m;
 20
 21 // Field variable to hold the total,
 22 // initialized with 0.
 23 private decimal total = 0m;
 24
 25 public Form1()
 26 {
 27 InitializeComponent();
 28 }
 29
 30 private void fiveCentsPictureBox_Click(object sender, EventArgs e)
 31 {
 32 // Add the value of 5 cents to the total.
 33 total += FIVE_CENTS_VALUE;
 34
 35 // Display the total, formatted as currency.
 36 totalLabel.Text = total.ToString("c");
 37 }
 38
 39 private void tenCentsPictureBox_Click(object sender, EventArgs e)
 40 {
 41 // Add the value of 10 cents to the total.
 42 total += TEN_CENTS_VALUE;
 43

 3.10 Using the Math Class 175

 Checkpoint

 3.41 What are two advantages of using named constants?

 3.42 Write a programming statement that declares a named constant for a 10 percent
discount.

 3.43 Where should you place field declarations in a program?

 3.44 What access modifier should you use when declaring a field? Why?

 3.45 How is the lifetime of a field different from the lifetime of a local variable?

 3.46 Write a programming statement that declares a constant field for a 5.9 percent
interest rate.

 44 // Display the total, formatted as currency.
 45 totalLabel.Text = total.ToString("c");
 46 }
 47
 48 private void twentyFiveCentsPictureBox_Click(object sender, EventArgs e)
 49 {
 50 // Add the value of 25 cents to the total.
 51 total += TWENTY_FIVE_CENTS_VALUE;
 52
 53 // Display the total, formatted as currency.
 54 totalLabel.Text = total.ToString("c");
 55 }
 56
 57 private void fiftyCentsPictureBox_Click(object sender, EventArgs e)
 58 {
 59 // Add the value of 50 cents to the total.
 60 total += FIFTY_CENTS_VALUE;
 61
 62 // Display the total, formatted as currency.
 63 totalLabel.Text = total.ToString("c");
 64 }
 65
 66 private void exitButton_Click(object sender, EventArgs e)
 67 {
 68 // Close the form.
 69 this.Close();
 70 }
 71 }
 72 }

 3.10 Using the Math Class

 CONCEPT: The .NET Framework’s Math class provides several methods for perform-
ing complex mathematical calculations.

 The .NET Framework provides a class named Math , which contains numerous methods
that are useful for performing advanced mathematical operations. Table 3-16 gives a sum-
mary of several of the Math class methods. (For a comprehensive list of all the methods

176 Chapter 3 Processing Data

provided by the Math class and more details on any of the methods, just search for Math
class in the MSDN help system.)

 These methods typically accept one or more values as arguments, perform a mathematical
operation using the arguments, and return the result. For example, the Math.Pow method
raises a number to a power. Here is an example of how the method is called:

 double result;
 result = Math.Sqrt(4.0, 2.0);

 The method takes two double arguments. It raises the first argument to the power of the
second argument and returns the result as a double . In this example, 4.0 is raised to the
power of 2.0. This statement is equivalent to the following algebraic statement:

 result = 4 2

 Table 3-16 Many of the Math class methods

 Math Class Method Description

 Math.Abs(x) Returns the absolute value of x .

 Math.Acos(x) Returns the arccosine of x , in radians . The argument x is a double ,
and the value that is returned is a double .

 Math.Asin(x) Returns the arcsine of x , in radians . The argument x is a double , and
the value that is returned is a double .

 Math.Atan(x) Returns the arctangent of x , in radians . The argument x is a double ,
and the value that is returned is a double .

 Math.Ceiling(x) Returns the least integer that is greater than or equal to x (a decimal
or a double).

 Math.Cos(x) Returns the cosine of x in radians. The argument x is a double , and
the value that is returned is a double .

 Math.Exp(x) Returns e x . The argument x is a double , and the value that is
returned is a double .

 Math.Floor(x) Returns the greatest integer that is less than or equal to x (a decimal
or a double).

 Math.Log(x) Returns the natural logarithm of x . The argument x is a double , and
the value that is returned is a double .

 Math.Log10(x) Returns the base-10 logarithm of x . The argument x is a double , and
the value that is returned is a double .

 Math.Max(x , y) Returns the greater of the two values x and y .

 Math.Min(x , y) Returns the lesser of the two values x and y .

 Math.Pow(x , y) Returns the value of x (a double) raised to the power of y (also a
 double). The value that is returned is a double .

 Math.Round(x) Returns the value of x (a double or a decimal) rounded to the
nearest integer.

 Math.Sin(x) Returns the sine of x in radians.

 Math.Sqrt(x) Returns the square root of x (a double). The value that is returned is
a double .

 Math.Tan(x) Returns the tangent of x in radians. The argument x is a double , and
the value that is returned is a double .

 Math.Truncate(x) Returns the integer part of x (a double or a decimal).

 3.11 More GUI Details 177

 The following code sample shows another example of a statement using the Math.Pow
method. It assigns 3 times 6 3 to x :

 double x;
 x = 3 * Math.pow(6.0, 3.0);

 The Math.Sqrt method accepts an argument and returns the square root of the argu-
ment. Here is an example of how it is used:

 double result;
 result = Math.Sqrt(16.0);

 The statement that calls the Math.Sqrt method passes 16.0 as an argument. The method
returns the square root of 16.0 (as a double), which is then assigned to the result
 variable.

 The Math.PI and Math.E Named Constants
 The Math class also provides two predefined named constants, Math.PI and Math.E ,
which are assigned mathematical values for pi and e . You can use these variables in equa-
tions that require their values. For example, the following statement, which calculates the
area of a circle, uses Math.PI .

 area = Math.PI * radius * radius;

 NOTE: If you look at the top of a form’s source code in the code editor, you should
see a directive that reads using System; . That directive is required for any program
that uses the Math class.

 Checkpoint

 3.47 Write a programming statement that uses the Math.Pow method to square the
number 12 and store the result in a double variable named product .

 3.48 What method of the Math class can be used to determine the larger of two
values?

 3.49 What method of the Math class can be used to determine the smaller of two
values?

 3.11 More GUI Details
 In Chapter 2 you learned the basics of creating a GUI by placing controls on a form and
setting various properties. In this section you learn to fine-tune many aspects of an ap-
plication’s GUI.

 Controlling a Form’s Tab Order
 When an application is running and a form is displayed, one of the form’s controls always
has the focus. The control having the focus is the one that receives the user’s keyboard
input. For example, when a TextBox control has the focus, it receives the characters that
the user enters on the keyboard. When a button has the focus, pressing the Enter key ex-
ecutes the button’s Click event handler.

178 Chapter 3 Processing Data

 You can tell which control has the focus by looking at the form at run time. When a
TextBox control has the focus, a blinking text cursor appears inside it, or the text inside
the TextBox control might appear highlighted. When a button has the focus, a thin dotted
line usually appears around the control.

 When an application is running, pressing the Tab key changes the focus from one con-
trol to another. The order in which controls receive the focus is called the tab order .
When you place controls on a form in Visual C#, the tab order is in the same sequence
in which you created the controls. In many cases this is the tab order you want, but
 sometimes you rearrange controls on a form, delete controls, and add new ones. These
modifications often lead to a disorganized tab order, which can confuse and irritate the
users of your application.

 Users want to tab smoothly from one control to the next, in a logical sequence. You can
modify the tab order by changing a control’s TabIndex property. The TabIndex property
contains a numeric value, which indicates the control’s position in the tab order. When
you create a control, Visual C# automatically assigns a value to its TabIndex property.
The first control you create on a form has a TabIndex of 0, the second has a TabIndex of
1, and so on. The control with a TabIndex of 0 is the first control in the tab order. The
next control in the tab order is the one with a TabIndex of 1. The tab order continues in
this sequence.

 You may change the tab order of a form’s controls by selecting them, one by one, and
changing their TabIndex property in the Properties window. An easier method, however,
is to click VIEW on the Visual Studio menu bar and then click Tab Order . This causes
the form to be displayed in tab order selection mode . The image on the left in Figure 3-31
shows a form in the normal view, and the image on the right shows the form in tab order
selection mode. We have also inserted the names of the TextBox and Button controls in
the image on the right for reference purposes.

 NOTE: Only controls capable of receiving some sort of input, such as text boxes
and buttons, may have the focus.

 Figure 3-31 A form displayed in tab order selection mode

 In tab order selection mode, each control’s existing TabIndex value is displayed in a small
box in the control’s upper-left corner. Notice the following in the image on the right in
 Figure 3-31 :

 3.11 More GUI Details 179

 • The nameTextBox control’s TabIndex is 2.
 • The addressTextBox control’s TabIndex is 3.
 • The cityTextBox control’s TabIndex is 0.
 • The stateTextBox control’s TabIndex is 4.
 • The zipTextBox control’s TabIndex is 1.
 • The clearButton control’s TabIndex is 8.

 NOTE: Although the Label controls have TabIndex values, those values are irrel-
evant in this example because Label controls cannot receive the focus.

 As you look at Figure 3-31 , think about the order in which the controls will receive the
focus when the application runs.

 • The cityTextBox control has the lowest TabIndex value (0), so it will receive the
focus first.

 • If you press the Tab key, the focus will jump to the zipTextBox control because it
has the next lowest TabIndex value (1).

 • Press the Tab key again and the focus will jump to the nameTextBox control
 (TabIndex is set to 2).

 • Press the Tab key again and the focus will jump to the addressTextBox control
(TabIndex is set to 3).

 • Press the Tab key again and the focus will jump to the stateTextBox control
 (TabIndex is set to 4).

 • Press the Tab key again and the focus will jump to the clearButton control
 (TabIndex is set to 8).

 This is a very confusing tab order and should be rearranged. When a form is displayed in
tab order selection mode, you establish a new tab order by simply clicking the controls
with the mouse in the order you want. To fix the disorganized tab order shown in Figure
 3-31 , we perform the following:

 • First, click the nameTextBox control. The control’s TabIndex value changes to 0.
 • Next, click the addressTextBox control. The control’s TabIndex value changes to 1.
 • Then, click the cityTextBox control. The control’s TabIndex value changes to 2.
 • Next, click the stateTextBox control. The control’s TabIndex value changes to 3.
 • Then, click the zipTextBox control. The control’s TabIndex value changes to 4.
 • Finally, click the clearButton control. The control’s TabIndex value changes to 5.

 When you are finished, exit tab order selection mode by pressing the Esc key. Now when
the application runs, the focus will shift smoothly in an order that makes sense to the user.

 Changing the Focus with the Focus Method
 Often, you want to make sure a particular control has the focus. For example, look at
the form shown in Figure 3-31 . The purpose of the Clear button is to clear any input that
the user has entered and reset the form so it is ready to accept a new set of input. When
the Clear button is clicked, the TextBox controls should be cleared and the focus should
return to the nameTextBox control. This would make it unnecessary for the user to click
the TextBox control in order to start entering another set of information.

 In code, you move the focus to a control by calling the Focus method . The method’s
general syntax is:

 ControlName .Focus();

180 Chapter 3 Processing Data

 where ControlName is the name of the control. For instance, you move the focus to the
 nameTextBox control with this statement:

 nameTextBox.Focus();

 After the statement executes, the nameTextBox control will have the focus. Here is an
example of how the clearButton control’s Click event handler could be written:

 1 private void clearButton_Click(object sender, EventArgs e)
 2 {
 3 // Clear the TextBox controls.
 4 nameTextBox.Text = "";
 5 addressTextBox.Text = "";
 6 cityTextBox.Text = "";
 7 stateTextBox.Text = "";
 8 zipTextBox.Text = "";
 9
 10 // Set the focus to nameTextBox.
 11 nameTextBox.Focus();
 12 }

 The statements in lines 4–8 clear the contents of the TextBox controls. Then, the state-
ment in line 11 sets the focus to the nameTextBox control.

 Assigning Keyboard Access Keys to Buttons
 An access key , also known as a mnemonic , is a key that is pressed in combination with the
Alt key to access quickly a control such as a button. When you assign an access key to a
button, the user can trigger a Click event either by clicking the button with the mouse or
by using the access key. Users who are quick with the keyboard prefer to use access keys
instead of the mouse.

 You assign an access key to a button through its Text property. For example, assume an
application has a button whose Text property is set to Exit . You wish to assign the access
key a + X to the button so the user may trigger the button’s Click event by pressing
a + X on the keyboard. To make the assignment, place an ampersand (&) before the
letter x in the button’s Text property: E&xit . Figure 3-32 shows how the Text property
appears in the Properties window.

 Figure 3-32 Text property E&xit

 3.11 More GUI Details 181

 Although the ampersand is part of the Button control’s Text property, it is not displayed
on the button. With the ampersand in front of the letter x , the letter will appear under-
lined as shown in Figure 3-33 . This indicates that the button may be clicked by pressing
a + X on the keyboard. (You will see the underlining at design time. At run time, how-
ever, the underlining may not appear until the user presses the Alt key.)

 Figure 3-34 Button control with &Exit Text property

 Figure 3-33 Button control with E&xit Text property

 Suppose we store the value &Exit in the button’s Text property. The ampersand is in
front of the letter E , so a + E becomes the access key. The button will appear as shown
in Figure 3-34 .

 NOTE: Access keys do not distinguish between uppercase and lowercase characters.
There is no difference between a + X and a + X.

 Assigning the Same Access Key to Multiple Buttons

 Be careful not to assign the same access key to two or more buttons on the same form. If
two or more buttons share the same access key, a Click event is triggered for the first but-
ton created when the user presses the access key.

 Displaying the & Character on a Button

 If you want to display an ampersand character on a button, use two ampersands (&&) in
the Text property. Using two ampersands causes a single ampersand to display and does
not define an access key. For example, if a button’s Text property is set to Save && Exit ,
the button will appear as shown in Figure 3-35 .

 Figure 3-35 Button control with Save && Exit Text property

 Accept Buttons and Cancel Buttons
 An accept button is a button on a form that is automatically clicked when the user presses
the Enter key. A cancel button is a button on a form that is automatically clicked when
the user presses the Esc key. Forms have two properties, AcceptButton and CancelButton,
which allow you to designate an accept button and a cancel button. When you select these
properties in the Properties window, a down-arrow button () appears, which displays a
drop-down list when clicked. The list contains the names of all the buttons on the form.
You select the button that you want to designate as the accept button or cancel button.

 Any button that is frequently clicked should probably be selected as the accept button.
This will allow keyboard users to access the button quickly and easily. Exit or Cancel but-
tons are likely candidates to become cancel buttons.

182 Chapter 3 Processing Data

 The BackColor Property
 Forms and most controls have a BackColor property that allows you to change the ob-
ject’s background color. When you select an object’s BackColor property in the Properties
window, a down-arrow button () appears, which displays a drop-down list of available
colors when clicked, as shown in Figure 3-36 .

 The drop-down list has three tabs: Custom , Web , and System . The System tab lists colors
defined in the current Windows configuration. The Web tab lists colors displayed with
consistency in Web browsers. The Custom tab displays a color palette. Select a color from
one of the tabs and the object’s background color will be set to that color.

 The ForeColor Property
 Controls that display text have a ForeColor property that allows you to change the color
of the text. When you select a control’s ForeColor property in the Properties window, a
down-arrow button () appears, which displays the drop-down list of available colors
shown in Figure 3-36 when clicked. Select a color from one of the tabs and the text that is
displayed by the control will be set to that color.

 Figure 3-36 Drop-down list of colors

 Setting Colors in Code
 In addition to using the Properties window, you can also set the values of the BackColor
and ForeColor properties with code. The .NET Framework provides numerous values
that represent colors and can be assigned to the ForeColor and BackColor properties in
code. The following are a few of the values:

 Color.Black
 Color.Blue
 Color.Cyan
 Color.Green
 Color.Magenta
 Color.Red
 Color.White
 Color.Yellow

 For example, assume an application has a Label control named messageLabel . The fol-
lowing code sets the label’s background color to black and foreground color to yellow:

 messageLabel.BackColor = Color.Black;
 messageLabel.ForeColor = Color.Yellow;

 3.11 More GUI Details 183

 The .NET Framework also provides values that represent default colors on your system.
For example, the value SystemColors.Control represents the default control back-
ground color and SystemColors.ControlText represents the default control text color.
The following statements set the messageLabel control’s background and foreground to
the default colors.

 messageLabel.BackColor = SystemColors.Control
 messageLabel.ForeColor = SystemColors.ControlText

 NOTE: If you have an event handler in a form’s source code file and you want the
event handler to change the form’s BackColor property, use the this keyword to
refer to the form. For example, the following statement changes the color of the form
to blue:

 this.BackColor = Color.Blue;

 Background Images for Forms
 In Chapter 2 you learned about displaying images with PictureBox controls. An image
can also be displayed as the background for a form. Forms have a property named Back-
groundImage that allows you to import and display an image on the form. If you know
how to use the PictureBox control’s Image property, then you already know how to use a
form’s BackgroundImage property. They both work the same way:

 • Click the BackgroundImage property in the Properties window. An ellipses button
() will appear.

 • Click the ellipses button and the Select Resource window will appear.
 • In the Select Resource window, click the Import button. An Open dialog box will

appear. Use the dialog box to locate and select the image file that you want to dis-
play.

 • Click the OK button in the Select Resource window, and the selected image will ap-
pear as the form’s background.

 A form’s BackgroundImageLayout property is similar to the PictureBox control’s Size-
Mode property. It specifies how the background image is to be displayed. It can be set to
one of the following values:

 • None

 The image is positioned in the upper-left corner of the form. If the image is too big
to fit in the form, it is clipped.

 • Tile

 This is the default value. The image is tiled (repeatedly displayed) across the form.

 • Center

 The image is centered in the form without being resized.

 • Stretch

 The image is resized both horizontally and vertically to fit in the form. If the image
is resized more in one direction than the other, it appears stretched.

 • Zoom

 The image is uniformly resized to fit in the form without losing its original aspect
ratio. This causes the image to be resized without appearing stretched.

 Figure 3-37 shows examples of each of these settings.

184 Chapter 3 Processing Data

 Organizing Controls with GroupBoxes and Panels
 A GroupBox control is a rectangular control that appears with a thin border and an op-
tional title in its upper-left corner. It is a container that can hold other controls. You can
use GroupBoxes to create a sense of visual organization on a form.

 The GroupBox control is found in the Toolbox , in the Containers section. When you cre-
ate a GroupBox control, you can set its Title property to the text that you want displayed
in the GroupBox’s upper-left corner. If you don’t want a title displayed on the GroupBox,
you can clear the contents of its Text property.

 Figure 3-38 shows a GroupBox control. The control’s Text property is set to Personal
Data , and several other controls are inside the GroupBox.

 Figure 3-37 Different settings for the BackgroundImageLayout property

BackgroundImageLayout set to None BackgroundImageLayout set to Tile BackgroundImageLayout set to Center

BackgroundImageLayout set to Stretch BackgroundImageLayout set to Zoom

 Figure 3-38 A GroupBox containing other controls

 3.11 More GUI Details 185

 Creating a Group Box and Adding Controls to It

 Suppose you’ve just created a GroupBox control. To add another control to the Group-
Box, select the GroupBox control and then double-click the desired tool in the Toolbox to
place another control inside the group box.

 Moving an Existing Control to a Group Box

 If an existing control is not inside a GroupBox but you want to move it to the GroupBox,
follow these steps:

 1. Select the control you wish to add to the GroupBox.
 2. Cut the control to the clipboard.
 3. Select the GroupBox.
 4. Paste the control.

 Moving and Resizing a GroupBox

 If a GroupBox is selected in the Designer , a four-headed arrow () will appear in the
GroupBox’s upper-left corner. Click and drag the four-headed arrow to move the Group-
Box. Any controls inside the GroupBox move with it.

 Deleting a GroupBox

 To delete a GroupBox, simply select it in the Designer and then press the ∂ key. Any
controls inside the GroupBox are deleted as well.

 Group Box Tab Order

 The value of a control’s TabIndex property is handled differently when the control is
placed inside a GroupBox control. GroupBox controls have their own TabIndex prop-
erty, and the TabIndex value of the controls inside the group box are relative to the
GroupBox control’s TabIndex property. For example, Figure 3-39 shows a GroupBox
control displayed in tab order selection mode. As you can see, the GroupBox control’s
TabIndex is set to 0. The TabIndex of the controls inside the group box is displayed as
0.0, 0.1, 0.2, and so on.

 Figure 3-39 GroupBox TabIndex values

 NOTE: The TabIndex properties of the controls inside the group box will not ap-
pear this way in the Properties window. They will appear as 0, 1, 2, and so on.

186 Chapter 3 Processing Data

 A Panel control is a rectangular container for other controls, like a GroupBox. There are
several primary differences between a Panel and GroupBox:

 • A Panel cannot display a title and does not have a Text property.
 • A Panel’s border can be specified by its BorderStyle property. The available settings

are None, FixedSingle, and Fixed3D. The property is set to None by default, which
means that no border will appear. If the BorderStyle property is set to FixedSingle,
the control will be outlined with a thin border. If the BorderStyle property is set to
Fixed3D, the control will have a recessed 3D appearance.

 Figure 3-40 shows an example of a form with a Panel. The Panel’s BorderStyle property
is set to Fixed3D.

 Figure 3-40 A Panel containing other controls

 Checkpoint

 3.50 What happens if you press the Enter key while a Button control has the focus?

 3.51 How do you display a form in tab order selection mode? How do you exit tab
order selection mode?

 3.52 Write a programming statement that gives the focus to a TextBox control named
 numberTextBox .

 3.53 How do you assign an access key to a Button control?

 3.54 How do you display an ampersand (&) character on a Button control?

 3.55 Write the code that will change the BackColor property of a Label control named
 resultLabel to the color white and the ForeColor property to the color red.

 3.56 List the different values of a form’s BackgroundImageLayout property.

 3.57 When a GroupBox control is deleted, what happens to the controls that are inside?

 3.58 How are the TabIndex properties of the controls inside the group box organized?

 3.59 How is a Panel control different from a GroupBox control?

 Review Questions 187

 Key Terms

 accept button
 access key
 access modifier
 argument
 BackColor property
 break mode
 cancel button
 cast operator
 catch block
 catch clause
 combined assignment operators
 concatenation
 constant field
 data type
 decimal literal
 decimal.Parse method
 double literal
 double.Parse method
 exception
 exception handler
 exception object
 field
 focus
 Focus method
 ForeColor
 formatting string
 GroupBox Control
 initialize

 int.Parse method
 integer literal
 lifetime
 local variable
 math expression
 math operators
 mnemonic
 named constant
 numeric literal
 operands
 order of operations
 Panel control
 parse
 Parse methods
 primitive data types
 scope
 tab order
 tab order selection mode
 TabIndex property
 TextBox control
 ToString method
 truncation
 try block
 try-catch statement
 variable
 variable declaration
 variable name

 Review Questions
 1. When the user types into a TextBox control, the text is stored in the control’s

__________ property.

 a. Input
 b. Text
 c. String
 d. Data

 2. A __________ is a storage location in memory that is represented by a name.

 a. mnemonic
 b. data type
 c. namespace
 d. variable

 3. In C#, you must __________ a variable before you can use it to store data.

 a. cite
 b. associate
 c. declare
 d. instance

188 Chapter 3 Processing Data

 4. A variable’s __________ indicates the type of data that the variable will hold.

 a. name
 b. data type
 c. scope
 d. value

 5. Fundamental types of data, such as strings, integers, and real numbers, are known
as __________.

 a. primitive data types
 b. fundamental variables
 c. logical digits
 d. literal data types

 6. A __________ identifies a variable in the program code.

 a. binary number
 b. variable name
 c. unique global identifier
 d. hexadecimal value

 7. A common operation performed on strings is __________, or appending one string
to the end of another string.

 a. addition
 b. merging
 c. concatenation
 d. tying

 8. A __________ belongs to the method in which it is declared, and only statements
inside that method can access the variable.

 a. method variable
 b. primitive variable
 c. temporary variable
 d. local variable

 9. Programmers use the term __________ to describe the part of a program in which a
variable may be accessed.

 a. range
 b. scope
 c. focus
 d. field

 10. A variable’s __________ is the time period during which the variable exists in mem-
ory while the program is executing.

 a. lifetime
 b. run time
 c. time to live
 d. half life

 11. One way to make sure that a variable has been assigned a value is to __________ the
variable with a value when you declare it.

 a. concatenate
 b. initialize
 c. delimit
 d. restrict

 Review Questions 189

 12. You can use a __________ to explicitly convert a value from one numeric data type
to another, even if the conversion might result in a loss of data.

 a. transpose statement
 b. cast operator
 c. conversion operator
 d. literal conversion

 13. The process of dropping a number’s fractional part is called __________.

 a. shifting
 b. twos complement
 c. numeric rounding
 d. truncation

 14. A programmer’s tools for performing calculations are __________.

 a. math operators
 b. numeric literals
 c. local variables
 d. parsed literals

 15. A __________ performs a calculation and gives a value.

 a. numeric literal
 b. math expression
 c. machine instruction
 d. programming statement

 16. C# offers a special set of operators known as __________ that are designed specifi-
cally for changing the value of a variable without having to type the variable name
twice.

 a. combined assignment operators
 b. advanced math operators
 c. variable modifiers
 d. assignment sequencers

 17. In computer science, the term __________ typically means to analyze a string of
characters for some purpose.

 a. compile
 b. compute
 c. debug
 d. parse

 18. A(n) __________ is a piece of data that is passed into a method.

 a. variable
 b. argument
 c. string
 d. literal

 19. A(n) __________ is an unexpected error that occurs while a program is running,
causing the program to halt if the error is not properly dealt with.

 a. breakpoint
 b. bug
 c. syntax error
 d. exception

190 Chapter 3 Processing Data

 20. The __________ indicates that you want the number to appear formatted in a spe-
cific way when it is returned as a string from the ToString method.

 a. formatting string
 b. insert method
 c. data type
 d. variable name

 21. You have started an application by clicking the start Debugging button () or by
pressing % on the keyboard. If an exception is thrown, the application stops run-
ning and Visual Studio goes into a special mode known as __________.

 a. exception mode
 b. break mode
 c. debug mode
 d. crash mode

 22. Code that responds to exceptions when they are thrown and prevents the program
from abruptly crashing is called a(n) __________.

 a. exit strategy
 b. fail safe
 c. event handler
 d. exception handler

 23. A __________ is a name that represents a value that cannot be changed during the
program’s execution.

 a. named literal
 b. named constant
 c. variable signature
 d. key term

 24. A __________ is a variable that is declared inside a class but not inside any method.

 a. term
 b. class variable
 c. field
 d. mnemonic

 25. A(n) __________ specifies how a class member can be accessed by code outside the
class.

 a. namespace
 b. access modifier
 c. scope delimiter
 d. class directive

 26. A __________ is a field that cannot be changed by any statement in the class.

 a. static field
 b. class name
 c. key field
 d. constant field

 27. The .NET Framework provides a class named __________, which contains numer-
ous methods that are useful for performing advanced mathematical operations.

 a. Math
 b. Calc
 c. Trig
 d. Linq

 Review Questions 191

 28. When a control has the __________, it receives the user’s keyboard input.

 a. text
 b. tab order
 c. focus
 d. input allocator

 29. The order in which controls receive the focus is called the __________.

 a. order of operations
 b. program flow
 c. execution sequence
 d. tab order

 30. The __________ contains a numeric value, which indicates the control’s position in
the tab order.

 a. IndexOf property
 b. TabIndex property
 c. ControlOrder property
 d. TabOrder property

 True or False

 1. You can clear the contents of a TextBox control in the same way that you clear the
contents of a Label control.

 2. In C#, you must declare a variable in a program before you can use it to store data.

 3. You can declare multiple variables of different data types with one declaration.

 4. When you append the letter D or d to a numeric literal, it is treated as a decimal and
is referred to as a decimal literal.

 5. The order of operations dictates that the division operator works before the addi-
tion operator does.

 6. All variables have a ToString method that you can call to convert the variable’s
value to a string.

 7. When you pass the formatting string "C" or "c" to the ToString method, the
number is returned formatted as currency.

 8. When you declare a named constant, an initialization value is required.

 9. An error will occur if the compiler finds a statement that tries to change the value of
a constant field.

 10. Forms and most controls have a Preferences property that allows you to change the
object’s background color.

 Short Answer

 1. In the Toolbox , in which group is the TextBox tool located?

 2. What two things does a variable declaration specify about a variable?

 3. Give an example of a programming statement that uses string concatenation.

 4. What is the term used for a number that is written into a program’s code?

 5. Write a programming statement that assigns an integer literal to a variable.

 6. What are the values on the right and left of an operator called?

 7. Name the family of methods in the .NET Framework that can be used to convert a
string to any of the numeric data types.

192 Chapter 3 Processing Data

 8. What object is created in memory when an exception is thrown and has various
properties that contain data about the exception?

 9. What is the purpose of a try-catch statement?

 10. Which class in the .NET Framework provides predefined named constants that are
assigned the mathematical values for pi and e ?

 11. In code, what function do you call to move the focus to a control?

 12. What property allows you to change the color of a control’s text?

 Programming Problems

 1. Name Formatter

 Create an application that lets the user enter the following pieces of data:
 • The user’s first name
 • The user’s middle name
 • The user’s last name
 • The user’s preferred title (Mr., Mrs., Ms., Dr., etc.)

 Assume the user has entered the following data:

 • First name: Kelly
 • Middle name: Jane
 • Last name: Smith
 • Title: Ms .

 The application should have buttons that display the user’s name formatted in the
following ways:

 Ms. Kelly Jane Smith
 Kelly Jane Smith
 Kelly Smith
 Smith, Kelly Jane, Ms.
 Smith, Kelly Jane
 Smith, Kelly

 2. Tip, Tax, and Total

 Create an application that lets the user enter the food charge for a meal at a res-
taurant. When a button is clicked, the application should calculate and display the
amount of a 15 percent tip, 7 percent sales tax, and the total of all three amounts.

 3. Distance Traveled

 Assuming there are no accidents or delays, the distance that a car travels down an
interstate highway can be calculated with the following formula:

 Distance = Speed × Time

 Create an application that allows the user to enter a car’s speed in miles per hour.

 The application should have buttons that display the following:

 • The distance the car will travel in 5 hours
 • The distance the car will travel in 8 hours
 • The distance the car will travel in 12 hours

 4. Sales Tax and Total

 Create an application that allows the user to enter the amount of a purchase. The
program should then calculate the state and county sales tax. Assume the state sales
tax is 4 percent and the county sales tax is 2 percent. The program should display

 Solving the
Tip, Tax,
and Total
Problem

VideoNote

 Programming Problems 193

the amount of the purchase, the state sales tax, the county sales tax, the total sales
tax, and the total of the sale (which is the sum of the amount of purchase plus the
total sales tax).

 5. Celsius and Fahrenheit Temperature Converter

 Assuming that C is a Celsius temperature, the following formula converts the tem-
perature to Fahrenheit:

 F = 9
5

C + 32

 Assuming that F is a Fahrenheit temperature, the following formula converts the
temperature to Celsius:

 C = 5
9

(F − 32)

 Create an application that allows the user to enter a temperature. The application
should have Button controls described as follows:

 • A button that reads Convert to Fahrenheit . If the user clicks this button, the ap-
plication should treat the temperature that is entered as a Celsius temperature
and convert it to Fahrenheit.

 • A button that reads Convert to Celsius . If the user clicks this button, the appli-
cation should treat the temperature that is entered as a Fahrenheit temperature,
and convert it to Celsius.

 6. Body Mass Index

 Create an application that lets the user enter his or her weight (in pounds) and
height (in inches). The application should display the user’s body mass index (BMI).
The BMI is often used to determine whether a person is overweight or underweight
for his or her height. A person’s BMI is calculated with the following formula:

 BMI = weight × 703 ÷ height2

 7. Sentence Builder

 The form in Figure 3-41 contains buttons showing various words, phrases, and
punctuation. Create an application with a form similar to this one. When the ap-
plication runs, the user clicks the buttons to build a sentence, which is shown in a
Label control. You can use the same buttons as shown in the figure or make up your
own. The Reset button should clear the sentence so the user can start over.

 Figure 3-41 The Sentence Builder form

194 Chapter 3 Processing Data

 8. How Much Insurance?

 Many financial experts advise that property owners should insure their homes or build-
ings for at least 80 percent of the amount it would cost to replace the structure. Create
an application that lets the user enter the replacement cost of a building and then dis-
plays the minimum amount of insurance he or she should buy for the property.

 9. Cookie Calories

 A bag of cookies holds 40 cookies. The calorie information on the bag claims that
there are 10 servings in the bag and that a serving equals 300 calories. Create an
application that lets the user enter the number of cookies he or she actually ate and
then reports the number of total calories consumed.

 10. Calorie Counter

 Create an application with a form that resembles Figure 3-42 . The PictureBox con-
trols display the images of four fruits (a banana, an apple, an orange, and a pear)
and each fruit’s calories. You can find these images in the Chap03 folder of the Stu-
dent Sample Programs.

 When the application starts, the total calories displayed should be zero. Each time
the user clicks one of the PictureBoxes, the calories for that fruit should be added
to the total calories, and the total calories should be displayed. When the user
clicks the Reset button, the total calories should be reset to zero.

 Figure 3-42 Calorie Counter form

 11. Automobile Costs

 Create an application that lets the user enter the monthly costs for the following
expenses incurred from operating his or her automobile: loan payment, insurance,
gas, oil, tires, and maintenance. The program should then display the total monthly
cost of these expenses and the total annual cost of these expenses.

 12. Paint Job Estimator

 A painting company has determined that for every 115 square feet of wall space,
1 gallon of paint and 8 hours of labor will be required. The company charges $20.00
per hour for labor. Create an application that allows the user to enter the square
feet of wall space to be painted and the price of the paint per gallon. The program
should display the following data:
 • The number of gallons of paint required
 • The hours of labor required

 Programming Problems 195

 • The cost of the paint
 • The labor charges
 • The total cost of the paint job

 13. Property Tax

 If you own real estate in a particular county, the property tax that you owe each
year is calculated as 64 cents per $100 of the property’s value. For example, if the
property’s value is $10,000, then the property tax is calculated as follows:

 Tax = $10,000 ÷ 100 × 0.64

 Create an application that allows the user to enter a property’s value and displays
the sales tax on that property.

 14. Stadium Seating

 There are three seating categories at an athletic stadium. For a baseball game, Class
A seats cost $15 each, Class B seats cost $12 each, and Class C seats cost $9 each.
Create an application that allows the user to enter the number of tickets sold for
each class. The application should be able to display the amount of income gener-
ated from each class of ticket sales and the total revenue generated. The applica-
tion’s form should resemble the one shown in Figure 3-43 .

 Figure 3-43 Stadium Seating form

 Use the following sets of test data to determine if the application is calculating properly:

 Ticket Sales Revenue
 Class A: 320 Class A: $4,800.00
 Class B: 570 Class B: $6,840.00
 Class C: 890 Class C: $8,010.00
 Total Revenue : $19,650.00
 Class A: 500 Class A: $7,500.00
 Class B: 750 Class B: $9,000.00
 Class C: 1,200 Class C: $10,800.00
 Total Revenue : $27,300.00
 Class A: 100 Class A: $1,500.00
 Class B: 300 Class B: $3,600.00
 Class C: 500 Class C: $4,500.00
 Total Revenue : $9,600.00

This page intentionally left blank

197

 4.1 Decision Structures and the if Statement

 CONCEPT: A decision structure allows a program to perform actions only under certain
conditions. In code, you can use the if statement to write a simple decision
structure.

 A control structure is a logical design that controls the order in which a set of statements
execute. So far in this book we have used only the simplest type of control structure: the
sequence structure. A sequence structure is a set of statements that execute in the order
that they appear. For example, the following code sample is a sequence structure because
the statements execute from top to bottom.

 int ageInYears, ageInDays;
 ageInYears = int.Parse(ageTextBox.Text);
 ageInDays = ageInYears * 365;
 daysLabel = ageInDays.ToString();

 Although the sequence structure is heavily used in programming, it cannot handle every
type of task. Some problems simply cannot be solved by performing a set of ordered
steps, one after the other. For example, consider a pay-calculating program that deter-
mines whether an employee has worked overtime. If the employee has worked more
than 40 hours, he or she gets paid extra for all hours over 40. Otherwise, the overtime
calculation should be skipped. Programs like this require a different type of control
structure: one that can execute a set of statements only under certain circumstances.
This can be accomplished with a decision structure . (Decision structures are also known
as selection structures .)

 4.1 Decision Structures and the if
Statement

 4.2 The if-else Statement

 4.3 Nested Decision Structures

 4.4 Logical Operators

 4.5 bool Variables and Flags

 4.6 Comparing Strings

 4.7 Preventing Data Conversion
Exceptions with the TryParse
Methods

 4.8 Input Validation

 4.9 Radio Buttons and Check Boxes

 4.10 The switch Statement

 4.11 Introduction to List Boxes

 TOPICS

 Making Decisions 4 C
H

A
P

T
E

R

198 Chapter 4 Making Decisions

 In a decision structure’s simplest form, a specific action is performed only if a certain con-
dition exists. If the condition does not exist, the action is not performed. The flowchart
shown in Figure 4-1 shows how the logic of an everyday decision can be diagrammed as a
decision structure. The diamond symbol represents a true-false condition. If the condition
is true, we follow one path, which leads to an action being performed. If the condition is
false, we follow another path, which skips the action.

Cold
outside

True

False
Wear a coat.

 Figure 4-1 A simple decision structure

 In the flowchart, the diamond symbol indicates some condition that must be tested. In
this case, we are determining whether the condition Cold outside is true or false. If this
condition is true, the action Wear a coat is performed. If the condition is false, the action
is skipped. The action is conditionally executed because it is performed only when a certain
condition is true.

 Programmers call the type of decision structure shown in Figure 4-1 a single-alternative
decision structure because it provides only one alternative path of execution. If the condi-
tion in the diamond symbol is true, we take the alternative path. Otherwise, we exit the
structure. Figure 4-2 shows a more elaborate example, where three actions are taken only
when it is cold outside.

Cold
outside

True

False
Wear a coat.

Wear a hat.

Wear gloves.

 Figure 4-2 A decision structure that performs three actions if it is cold outside

 4.1 Decision Structures and the if Statement 199

 In C#, you use the if statement to write a single-alternative decision structure. Here is the
general format of the if statement:

 if (expression)
 {
 statement;
 statement;
 etc.
 }

 The statement begins with the word if , followed by an expression enclosed in a set of
parentheses. Beginning on the next line is a set of statements enclosed in curly braces.

 The expression that appears inside the parentheses is a Boolean expression. A Boolean
expression is an expression that can be evaluated as either true or false. When the if
statement executes, the Boolean expression is tested. If it is true, the statements that
appear inside the curly braces are executed. If the Boolean expression is false, however,
the statements inside the curly braces are skipped. We say that the statements inside the
curly braces are conditionally executed because they are executed only if the Boolean
expression is true.

 If you are writing an if statement that has only one conditionally executed statement,
you do not have to enclose the conditionally executed statement inside curly braces. Such
an if statement can be written in the following general format:

 if (expression)
 statement ;

 When an if statement written in this format executes, the Boolean expression is tested.
If it is true, the one statement that appears on the next line is executed. If the Boolean
expression is false, however, that one statement is skipped.

 Although the curly braces are not required when there is only one conditionally executed
statement, it is still a good idea to use them, as shown in the following general format:

 if (expression)
 {
 statement ;
 }

 This is a good style for writing if statements because it minimizes errors. Remember,
if you have more than one conditionally executed statement, those statements must be
enclosed in curly braces. If you get into the habit of always enclosing the conditionally
executed statements in a set of curly braces, it’s less likely that you will forget them.

 Boolean Expressions and Relational Operators
 Boolean expressions are named in honor of the English mathematician George Boole. In
the 1800s, Boole invented a system of mathematics in which the abstract concepts of true
and false can be used in computations.

 Typically, the Boolean expression that is tested by an if statement is formed with a rela-
tional operator. A relational operator determines whether a specific relationship exists
between two values. For example, the greater than operator (>) determines whether one
value is greater than another. The equal to operator (==) determines whether two values
are equal. Table 4-1 lists the relational operators that are available in C#.

 The following is an example of an expression that uses the greater than (>) operator to
compare two variables, length and width :

 length > width

200 Chapter 4 Making Decisions

 This expression determines whether the value of the length variable is greater than the
value of the width variable. If length is greater than width , the value of the expression
is true. Otherwise, the value of the expression is false. The following expression uses the
less than operator (<) to determine whether length is less than width :

 length < width

 Table 4-2 shows examples of several Boolean expressions that compare the variables x
and y .

 Table 4-1 Relational operators

 Operator Meaning

 > Greater than

 < Less than

 >= Greater than or equal to

 <= Less than or equal to

 == Equal to

 != Not equal to

 Table 4-2 Boolean expressions using relational operators

 Expression Meaning

 x > y Is x greater than y ?

 x < y Is x less than y ?

 x >= y Is x greater than or equal to y ?

 x <= y Is x less than or equal to y ?

 x == y Is x equal to y ?

 x != y Is x not equal to y ?

 The >= and <= Operators

 Two of the operators, >= and <= , test for more than one relationship. The >= operator
determines whether the operand on its left is greater than or equal to the operand on its
right. The <= operator determines whether the operand on its left is less than or equal to
the operand on its right.

 For example, assume the variable a is assigned 4. All the following expressions are true:

 a >= 4
 a >= 2
 8 >= a
 a <= 4
 a <= 9
 4 <= a

 The == Operator

 The == operator determines whether the operand on its left is equal to the operand on its
right. If the values of both operands are the same, the expression is true. Assuming that a is
4, the expression a == 4 is true and the expression a == 2 is false.

 4.1 Decision Structures and the if Statement 201

 The != Operator

 The != operator is the not equal to operator. It determines whether the operand on its left
is not equal to the operand on its right, which is the opposite of the == operator. As before,
assuming a is 4, b is 6, and c is 4, both a != b and b != c are true because a is not equal
to b and b is not equal to c . However, a != c is false because a is equal to c .

 Putting It All Together
 Let’s look at the following example of the if statement:

 if (sales > 50000)
 {
 bonus = 500;
 }

 This statement uses the > operator to determine whether sales is greater than 50,000. If
the expression sales > 50000 is true, the variable bonus is assigned 500. If the expres-
sion is false, however, the assignment statement is skipped. Figure 4-3 shows a flowchart
for this section of code.

 NOTE: The equality operator is two = symbols together. Don’t confuse this operator
with the assignment operator, which is one = symbol.

sales > 50000

bonus = 500

True

False

 Figure 4-3 Example decision structure

 The following code sample conditionally executes three statements. Figure 4-4 shows a
flowchart for this section of code.

 if (sales > 50000)
 {
 bonus = 500;
 commissionRate = 0.12;
 MessageBox.Show("You met your sales quota!");
 }

 When you write an if statement, Visual Studio automatically indents the conditionally
executed statements, as shown in the previous examples. The indentation is not required,
but it makes the code easier to read and debug. By indenting the conditionally executed
statements, you visually set them apart from the surrounding code. This allows you to tell
at a glance what part of the program is controlled by the if statement. Most program-
mers use this style of indentation when writing if statements.

202 Chapter 4 Making Decisions

sales > 50000

bonus = 500

True

False

commissionRate = 0.12

Display message: “You
met your sales quota!”

 Figure 4-4 Example decision structure

 Tutorial 4-1 :
 Completing
the Test
Score
Average
application

 Tutorial 4-1:
 Completing the Test Score Average Application

 In this tutorial you will complete an application that allows the user to enter three test
scores and calculates the average of the test scores. If the average is greater than 95, the
application also displays a message congratulating the user.

 To save time, the project has already been started for you, and the application’s form has
already been created. To complete the project, follow the steps in this tutorial.

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Test
Score Average in the Chap04 folder of this book’s Student Sample Programs,
available for download at www.pearsonhighered.com/gaddis.

 Step 2: Open the Form1 form in the Designer . The form is shown, along with the names
of the important controls, in Figure 4-5 .

test1TextBox

test2TextBox

averageLabel

test3TextBox

clearButton

exitButton

calculateButton

 Figure 4-5 The Test Score Average form

VideoNote

www.pearsonhighered.com/gaddis

 4.1 Decision Structures and the if Statement 203

 Step 3: Now you will create the Click event handlers for the Button controls. At the end
of this tutorial, Program 4-1 shows the completed code for the form. You will
be instructed to refer to Program 4-1 as you write the event handlers.

 In the Designer , double-click the calculateButton control. This will open the
code editor, and you see an empty event handler named calculateButton_Click .
Complete the calculateButton_Click event handler by typing the code shown
in lines 22–49 in Program 4-1 .

 Let’s take a closer look at the code:

 Line 22: This is the beginning of a try-catch statement. The try block appears
in lines 24–43, and the catch block appears in lines 47–48. The purpose of this
 try-catch statement is to gracefully respond if the user enters invalid input for
any of the test scores. If any of the statements in lines 28, 29, and 30 throw an
exception, the program does not crash. Instead, it jumps to the catch block, and
line 48 displays an error message.

 Line 24: This statement declares a constant double named HIGH_SCORE , set to
the value 95.0. We use this constant to determine whether the average is high.
If the average is greater than this constant, the program displays a message con-
gratulating the user.

 Line 25: This statement declares the following double variables: test1 , test2 ,
 test3 , and average . The variables hold the three test scores and the average
test score.

 Line 28: This statement converts the test1TextBox control’s Text property to a
 double and assigns the result to the test1 variable.

 Line 29: This statement converts the test2TextBox control’s Text property to a
 double and assigns the result to the test2 variable.

 Line 30: This statement converts the test3TextBox control’s Text property to a
 double and assigns the result to the test3 variable.

 Line 33: This statement calculates the average of the test1 , test2 , and test3
variables and assigns the result to the average variable.

 Line 36: This statement converts the average variable to a string (rounded to 1
decimal place) and assigns the result to the averageLabel control’s Text property.

 Line 40: This if statement determines whether average is greater than HIGH_
SCORE . If it is, the statement in line 42 is executed, displaying a message box
with a congratulatory message. If average is not greater than HIGH_SCORE , the
statement in line 42 is skipped.

 Step 4: Switch your view back to the Designer and double-click the clearButton control.
In the code editor you will see an empty event handler named clearButton_Click .
Complete the clearButton_Click event handler by typing the code shown in lines
54–61 in Program 4-1 .

 Lines 55–57: Each of these statements assigns an empty string ("") to the Text
property of one of the TextBox controls. When these statements have finished
executing, the TextBox controls appear empty.

 Line 58: This statement assigns an empty string ("") to the averageLabel con-
trol’s Text property. After the statement has executed, the label appears empty.

 Line 61: This statement sets the focus to the test1TextBox control. This makes
it more convenient for the user to start entering a new set of test scores.

 Step 5: Switch your view back to the Designer and double-click the exitButton
 control. In the code editor you will see an empty event handler named
exitButton_Click . Complete the exitButton_Click event handler by typing
the code shown in lines 66–67 in Program 4-1 .

204 Chapter 4 Making Decisions

 Step 6: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application.

 First, enter the following test scores in the TextBoxes: 80 , 90 , and 75 . Click the
 Calculate Average button and the average should appear as shown in Figure 4-6 .

 Figure 4-6 Average displayed

 Next, click the Clear button to clear the TextBoxes and the average. Now, enter
the following test scores in the TextBoxes: 100 , 97 , and 99 . Click the Calculate
Average button. This time, in addition to displaying the average, the application
displays the message box shown in Figure 4-7 .

 Figure 4-7 Average and message displayed

 Continue to test the application as you wish. When you are fi nished, click the
 Exit button, and the form should close.

 Program 4-1 Completed Form1 code for the Test Score Average application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;

 4.1 Decision Structures and the if Statement 205

 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Test_Score_Average
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void calculateButton_Click(object sender, EventArgs e)
 21 {
 22 try
 23 {
 24 const double HIGH_SCORE = 95.0; // High Score value
 25 double test1, test2, test3, average; // Variables
 26
 27 // Get the test scores from the TextBoxes.
 28 test1 = double.Parse(test1TextBox.Text);
 29 test2 = double.Parse(test2TextBox.Text);
 30 test3 = double.Parse(test3TextBox.Text);
 31
 32 // Calculate the average test score.
 33 average = (test1 + test2 + test3) / 3.0;
 34
 35 // Display the average, rounded to 2 decimal places.
 36 averageLabel.Text = average.ToString("n1");
 37
 38 // If the average is a high score, congratulate
 39 // the user with a message box.
 40 if (average > HIGH_SCORE)
 41 {
 42 MessageBox.Show("Congratulations! Great job!");
 43 }
 44 }
 45 catch (Exception ex)
 46 {
 47 // Display the default error message.
 48 MessageBox.Show(ex.Message);
 49 }
 50 }
 51
 52 private void clearButton_Click(object sender, EventArgs e)
 53 {
 54 // Clear the TextBoxes and the averageLabel control.
 55 test1TextBox.Text = "";
 56 test2TextBox.Text = "";
 57 test3TextBox.Text = "";
 58 averageLabel.Text = "";
 59
 60 // Reset the focus to test1.
 61 test1TextBox.Focus();
 62 }
 63
 64 private void exitButton_Click(object sender, EventArgs e)
 65 {
 66 // Close the form.

206 Chapter 4 Making Decisions

 Checkpoint

 4.1 What is a control structure?

 4.2 What is a decision structure?

 4.3 What is a single-alternative decision structure?

 4.4 What is a Boolean expression?

 4.5 What types of relationships between numeric values can you test with relational
operators?

 4.6 Write an if statement that determines whether the variable y is equal to 20. If it is,
assign 0 to the variable x .

 4.7 Write an if statement that determines whether the variable sales is greater than
or equal to 10,000. If it is, assign 0.2 to the variable commissionRate .

 67 this.Close();
 68 }
 69 }
 70 }

 4.2 The if-else Statement

 CONCEPT: An if-else statement will execute one block of statements if its Boolean
expression is true or another block if its Boolean expression is false.

 The previous section introduced the single-alternative decision structure (the if statement),
which has one alternative path of execution. Now we will look at the dual-alternative
decision structure , which has two possible paths of execution—one path is taken if the
Boolean expression is true, and the other path is taken if the Boolean expression is false.
 Figure 4-8 shows an example flowchart for a dual-alternative decision structure.

temperature
< 40

Display "Nice weather
we're having."

Display "A little cold,
isn't it?"

TrueFalse

 Figure 4-8 A dual-alternative decision structure

 4.2 The if-else Statement 207

 The decision structure in the flowchart tests the expression temperature < 40 . If this
expression is true, the message “A little cold, isn’t it?” is displayed. If the expression is
false, the message “Nice weather we’re having.” is displayed.

 In code we write a dual-alternative decision structure as an if-else statement . Here is
the general format of the if-else statement:

if (expression)
{

statement;
statement;
etc.

}
else
{

statement;
statement;
etc.

}

If the Boolean expression is true,
this set of statements is executed.

If the Boolean expression is false,
this set of statements is executed.

 An if-else statement has two parts: an if clause and an else clause. Just like a regular
 if statement, the if-else statement tests a Boolean expression. If the Boolean expression
is true, the set of statements following the if clause is executed. If the Boolean expression
is false, the set of statements following the else clause is executed.

 The if-else statement has two sets of conditionally executed statements. One set is ex-
ecuted only under the condition that the Boolean expression is true, and the other set is
executed only under the condition that the Boolean expression is false. Under no circum-
stances are both sets of conditionally executed statements executed.

 If either set of conditionally executed statements contains only one statement, the curly
braces are not required. For example, the following general format shows only one state-
ment following the if clause and only one statement following the else clause:

 if (expression)
 statement;
 else
 statement;

 Although the curly braces are not required when there is only one conditionally executed
statement, it is still a good idea to use them, as shown in the following general format:

 if (expression)
 {
 statement;
 }
 else
 {
 statement;
 }

 When we discussed the regular if statement, we mentioned that this is a good style of
programming because it cuts down on errors. If there is more than one conditionally
executed statement following either the if clause or the else clause, those statements
 must be enclosed in curly braces. If you get into the habit of always enclosing the
conditionally executed statements in a set of curly braces, it’s less likely that you will
forget them.

 In Tutorial 4-2 you will complete an application that uses an if-else statement.

208 Chapter 4 Making Decisions

 Tutorial 4-2:
 Completing the Payroll with Overtime Application

 At a particular business, if an employee works more than 40 hours in a week, it is said
that the employee has worked overtime . For example, an employee that has worked 45
hours in a week has worked 5 overtime hours. Employees that work overtime get paid
their regular hourly pay rate for the first 40 hours plus 1.5 times their regular hourly pay
rate for all hours over 40. In this tutorial you will complete a payroll application that
calculates an employee’s gross pay, including overtime pay.

 The application allows the user to enter the number of hours worked and the hourly pay
rate into TextBoxes. When the user clicks a button, the gross pay is calculated in the fol-
lowing manner:

 If the hours worked is greater than 40:

 base pay = hourly pay rate × 40
 overtime hours = hours worked − 40
 overtime pay = overtime hours × hourly pay rate × 1.5
 gross pay = base pay + overtime pay

 Else:

 gross pay = hours worked × hourly pay rate

 To save time, the project has already been started for you, and the application’s form has
already been created. To complete the project, follow the steps in this tutorial.

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named
 Payroll with Overtime in the Chap04 folder of this book’s Student Sample
Programs.

 Step 2: Open the Form1 form in the Designer . The form is shown, along with the names
of the important controls, in Figure 4-9 .

 Tutorial 4-2 :
 Completing
the Payroll
with
Overtime
application

VideoNote

clearButton exitButtoncalculateButton

hoursWorkedTextBox

hourlyPayRateTextBox

grossPayLabel

 Figure 4-9 The Payroll with Overtime form

 Step 3: Now you will create the Click event handlers for the Button controls. At the end
of this tutorial, Program 4-2 shows the completed code for the form. You will
be instructed to refer to Program 4-2 as you write the event handlers.

 In the Designer , double-click the calculateButton control. This opens the code
editor, and you see an empty event handler named calculateButton_Click .
Complete the calculateButton_Click event handler by typing the code shown
in lines 22– 69 in Program 4-2 .

 4.2 The if-else Statement 209

 Let’s take a closer look at the code:

 Line 22: This is the beginning of a try-catch statement. The try block appears
in lines 24–63, and the catch block appears in lines 67–68. The purpose of this
 try-catch statement is to gracefully respond if the user enters invalid input.
If an exception is thrown by any statement inside the try block, the program
jumps to the catch block, and line 68 displays an error message.

 Lines 25–26: These statements declare the following named constants:

 • BASE_HOURS , a constant decimal set to the value 40. This is the number of
hours an employee can work in a week without getting overtime pay.

 • OT_MULTIPLIER , a constant decimal set to the value 1.5. This is the pay rate
multiplier for overtime hours.

 Lines 29–34: These statements declare the following variables:

 • hoursWorked , a decimal variable to hold the number of hours worked
 • hourlyPayRate , a decimal variable to hold the hourly pay rate
 • basePay , a decimal variable to hold the pay for 40 or less hours
 • overtimeHours , a decimal variable to hold the number of overtime hours

worked
 • overtimePay , a decimal variable to hold the amount of overtime pay
 • grossPay , a decimal variable to hold the gross pay

 Line 37: This statement converts the hoursWorkedTextBox control’s Text
property to a decimal and assigns the result to the hoursWorked variable.

 Line 38: This statement converts the hourlyPayRateTextBox control’s Text
property to a decimal and assigns the result to the hourlyPayRate variable.

 Line 41: This if statement determines whether hoursWorked is greater than
 BASE_HOURS (40). If so, the statements in lines 43–54 are executed. Otherwise,
the statements in lines 58–59 are executed.

 Lines 43–54: These statements, which are executed only if the hours worked are
greater than 40, make all the necessary calculations to determine gross pay with
overtime:

 • Line 44 calculates the base pay, which is the amount of pay for the first
40 hours.

 • Line 47 calculates the number of overtime hours, which is the number of
hours over 40.

 • Lines 50 and 51 calculate the amount of overtime pay, which is the pay for
the hours over 40.

 • Line 54 calculates the gross pay, which is the amount of base pay plus the
amount of overtime pay. The result is assigned to the grossPay variable.

 Line 59: This statement, which is executed only if the hours worked are 40 or
less, calculates the gross pay and assigns the result to the grossPay variable.

 Line 63: This statement converts the value of the grossPay variable to a string,
formatted as currency, and assigns the result to the grossPayLabel control’s
Text property.

 Step 4: Switch your view back to the Designer and double-click the clearButton control.
In the code editor you see an empty event handler named clearButton_Click .
Complete the clearButton_Click event handler by typing the code shown
in lines 74–80 in Program 4-2 . These statements clear the TextBoxes and
the grossPayLabel control and sets the focus to the hoursWorkedTextBox
control.

210 Chapter 4 Making Decisions

 Step 5: Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you see an empty event handler named exitButton_
Click . Complete the exitButton_Click event handler by typing the code
shown in lines 85–86 in Program 4-2 .

 Step 6: Save the project and run the application. First, enter 40 for the number of hours
worked and 20 for the hourly pay rate. Click the Calculate Gross Pay button, and
the application should display $800.00 as the gross pay. No overtime hours were
worked, so the gross pay is simply calculated as hours worked × hourly pay rate.

 Click the Clear button. Enter 50 for the number of hours worked and 20 for the
hourly pay rate. Click the Calculate Gross Pay button, and the application
should display $1,100.00 as the gross pay. This time, more than 40 hours were
worked, so the application calculated the gross pay to include overtime pay.

 Continue to test the application as you wish. When you are fi nished, click the
 Exit button and the form should close.

 Program 4-2 Completed Form1 code for the Payroll with Overtime application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Payroll_with_Overtime
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void calculateButton_Click(object sender, EventArgs e)
 21 {
 22 try
 23 {
 24 // Named constants
 25 const decimal BASE_HOURS = 40m;
 26 const decimal OT_MULTIPLIER = 1.5m;
 27
 28 // Local variables
 29 decimal hoursWorked; // Number of hours worked
 30 decimal hourlyPayRate; // Hourly pay rate
 31 decimal basePay; // Pay not including overtime
 32 decimal overtimeHours; // overtime hours worked
 33 decimal overtimePay; // overtime pay
 34 decimal grossPay; // total gross pay
 35
 36 // Get the hours worked and hourly pay rate.
 37 hoursWorked = decimal.Parse(hoursWorkedTextBox.Text);
 38 hourlyPayRate = decimal.Parse(hourlyPayRateTextBox.Text);

 4.2 The if-else Statement 211

 39
 40 // Determine the gross pay.
 41 if (hoursWorked > BASE_HOURS)
 42 {
 43 // Calculate the base pay (without overtime).
 44 basePay = hourlyPayRate * BASE_HOURS;
 45
 46 // Calculate the number of overtime hours.
 47 overtimeHours = hoursWorked - BASE_HOURS;
 48
 49 // Calculate the overtime pay.
 50 overtimePay = overtimeHours * hourlyPayRate *
 51 OT_MULTIPLIER;
 52
 53 // Calculate the gross pay.
 54 grossPay = basePay + overtimePay;
 55 }
 56 else
 57 {
 58 // Calculate the gross pay.
 59 grossPay = hoursWorked * hourlyPayRate;
 60 }
 61
 62 // Display the gross pay.
 63 grossPayLabel.Text = grossPay.ToString("c");
 64 }
 65 catch (Exception ex)
 66 {
 67 // Display an error message.
 68 MessageBox.Show(ex.Message);
 69 }
 70 }
 71
 72 private void clearButton_Click(object sender, EventArgs e)
 73 {
 74 // Clear the TextBoxes and gross pay label.
 75 hoursWorkedTextBox.Text = "";
 76 hourlyPayRateTextBox.Text = "";
 77 grossPayLabel.Text = "";
 78
 79 // Reset the focus.
 80 hoursWorkedTextBox.Focus();
 81 }
 82
 83 private void exitButton_Click(object sender, EventArgs e)
 84 {
 85 // Close the form.
 86 this.Close();
 87 }
 88 }
 89 }

 Checkpoint

 4.8 Describe how a dual alternative decision structure works.

 4.9 In an if-else statement, under what circumstances do the statements that appear
after the else clause execute?

212 Chapter 4 Making Decisions

 4.10 Write an if-else statement that works like this: If the sales variable is greater-
than or equal-to 50,000, the commissionRate variable should be assigned the value
0.2. Otherwise, the commissionRate variable should be assigned the value 0.1.

 4.3 Nested Decision Structures

 CONCEPT: To test more than one condition, a decision structure can be nested inside
another decision structure.

 In Section 4.1 , we mentioned that a control structure determines the order in which a set
of statements execute. Programs are usually designed as combinations of different control
structures. For example, Figure 4-10 shows a flowchart that combines a decision structure
with two sequence structures.

Wear a coat.

Cold
outside

True

False

Open the door.

Go outside.

Read thermometer.

Go to the window.

End

Start

Sequence structure

Sequence structure

Decision structure

 Figure 4-10 Combining sequence structures with a decision structure

 4.3 Nested Decision Structures 213

 The flowchart in Figure 4-10 starts with a sequence structure. Assuming you have an out-
door thermometer in your window, the first step is Go to the window , and the next step is
 Read thermometer . A decision structure appears next, testing the condition Cold outside .
If this is true, the action Wear a coat is performed. Another sequence structure appears
next. The step Open the door is performed, followed by Go outside .

 Quite often, structures must be nested inside other structures. For example, look at the
partial flowchart in Figure 4-11 . It shows a decision structure with a sequence structure
nested inside. The decision structure tests the condition Cold outside . If that condition is
true, the steps in the sequence structure are executed.

Wear a coat.

Cold
outside

True

False

Wear a hat.

Wear gloves.

Sequence
structure

Decision
structure

 Figure 4-11 A sequence structure nested inside a decision structure

 You can also have nested decision structures , which are decision structures that ap-
pear inside other decision structures. This is commonly done in programs that need
to test more than one condition. For example, consider a program that determines
whether a bank customer qualifies for a loan. To qualify, two conditions must exist:
(1) The customer must earn at least $40,000 per year, and (2) the customer must
have been employed at his or her current job for at least 2 years. Figure 4-12 shows
a flowchart for an algorithm that could be used in such a program. Assume that
the salary variable contains the customer’s annual salary, and the yearsOnJob
variable contains the number of years that the customer has worked on his or her
current job.

 If we follow the flow of execution, we see that the Boolean expression salary >= 40000
is tested. If this expression is false, there is no need to perform further tests; we
know that the customer does not qualify for the loan. If the expression is true,
however, we need to test the second condition. This is done with a nested decision
structure that tests the Boolean expression yearsOnJob >= 2 . If this expression is
true, then the customer qualifies for the loan. If this expression is false, then the
customer does not qualify. In Tutorial 4-3 you create an application that performs
this algorithm.

214 Chapter 4 Making Decisions

salary >= 40000

Display "Minimum salary
requirement not met."

TrueFalse

yearsOnJob >= 2

Display "Minimum years
at current job not met."

Display "You qualify for
the loan."

TrueFalse

End

 Figure 4-12 A nested decision structure

 Tutorial 4-3:
 Completing the Loan Qualifier Application

 In this tutorial you complete an application that determines whether a person qualifies for
a loan. To qualify for the loan, the person must earn a salary of at least $40,000 and must
have been employed at his or her current job for at least 2 years.

 To save time, the project has already been started for you, and the application’s form has
already been created. To complete the project, follow the steps in this tutorial.

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Loan
Qualifier in the Chap04 folder of this book’s Student Sample Programs.

 Step 2: Open the Form1 form in the Designer . The form is shown, along with the names
of the important controls, in Figure 4-13 .

 Step 3: Now you will create the Click event handlers for the Button controls. At the end
of this tutorial, Program 4-3 shows the completed code for the form. You will
be instructed to refer to Program 4-3 as you write the event handlers.

 Tutorial 4-3 :
 Completing
the Loan
Qualifier
application

VideoNote

 4.3 Nested Decision Structures 215

 In the Designer , double-click the checkButton control. This opens the code
editor, and you see an empty event handler named checkButton_Click . Com-
plete the checkButton_Click event handler by typing the code shown in lines
22–62 in Program 4-3 . Let’s take a closer look at the code:

 Line 22: This is the beginning of a try-catch statement. The try block appears
in lines 24–56, and the catch block appears in lines 60–61. The purpose of this
 try-catch statement is to gracefully respond if the user enters invalid input.
If an exception is thrown by any statement inside the try block, the program
jumps to the catch block, and line 61 displays an error message.

 Lines 25–26: These statements declare the following named constants:

 • MINIMUM_SALARY , a constant decimal set to the value 40,000, which is the
minimum salary a person must earn to qualify for the loan

 • MINIMUM_YEARS_ON_JOB , a constant int set to the value 2, which is the min-
imum number of years a person must have been at his or her current job to
qualify for the loan

 Lines 29–30: These statements declare the following variables:

 • salary , a decimal variable to hold the salary
 • yearsOnJob , an int variable to hold the number of years at the current job

 Lines 33–34: These statements get the salary and years at the current job from the
TextBox controls and assign those values to the salary and yearsOnJob variables.

 Line 37: This if statement determines whether salary is greater than or equal to
 MINIMUM_SALARY . If so, the program continues at line 39. Otherwise, the program
jumps to the else clause in line 51, and in lines 54–55 the string “Minimum salary
requirement not met.” is assigned to the decisionLabel control’s Text property.

 Line 39: This if statement determines whether yearsOnJob is greater than
or equal to MINIMUM_YEARS_ON_JOB . If so, the program continues at line 42,
where the string “You qualify for the loan.” is assigned to the decisionLabel
control’s Text property. Otherwise, the program jumps to the else clause in
line 44, and in lines 47–48 the string “Minimum years at current job not met.”
is assigned to the decisionLabel control’s Text property.

 Step 4: Switch your view back to the Designer and double-click the clearButton con-
trol. In the code editor you see an empty event handler named clearButton_
Click . Complete the clearButton_Click event handler by typing the code
shown in lines 67–73 in Program 4-3 .

salaryTextBox

yearsTextBox

decisionLabel

clearButton exitButtoncheckButton

 Figure 4-13 The Loan Qualifier form

216 Chapter 4 Making Decisions

 Step 5: Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you see an empty event handler named exitButton_
Click . Complete the exitButton_Click event handler by typing the code
shown in lines 78–79 in Program 4-3 .

 Step 6: Save the project and run the application. First, enter 45000 for the salary and 1
for the years at current job. Click the Check Qualifications button, and the ap-
plication should display the message “Minimum years at current job not met.”

 Click the Clear button. Enter 35000 for the salary and 5 for the years at current
job. Click the Check Qualifi cations button, and the application should display
the message “Minimum salary requirement not met.”

 Click the Clear button. Enter 45000 for the salary and 5 for the years at current
job. Click the Check Qualifi cations button, and the application should display
the message “You qualify for the loan.”

 Continue to test the application as you wish. When you are fi nished, click the
 Exit button and the form should close.

 Program 4-3 Completed Form1 code for the Loan Qualifier application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Loan_Qualifier
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void checkButton_Click(object sender, EventArgs e)
 21 {
 22 try
 23 {
 24 // Names constants
 25 const decimal MINIMUM_SALARY = 40000m;
 26 const int MINIMUM_YEARS_ON_JOB = 2;
 27
 28 // Local variables
 29 decimal salary;
 30 int yearsOnJob;
 31
 32 // Get the salary and years on the job.
 33 salary = decimal.Parse(salaryTextBox.Text);
 34 yearsOnJob = int.Parse(yearsTextBox.Text);
 35
 36 // Determine whether the user qualifies.
 37 if (salary >= MINIMUM_SALARY)

 4.3 Nested Decision Structures 217

 38 {
 39 if (yearsOnJob >= MINIMUM_YEARS_ON_JOB)
 40 {
 41 // The user qualifies.
 42 decisionLabel.Text = "You qualify for the loan.";
 43 }
 44 else
 45 {
 46 // The user does not qualify.
 47 decisionLabel.Text = "Minimum years at current " +
 48 "job not met.";
 49 }
 50 }
 51 else
 52 {
 53 // The user does not qualify.
 54 decisionLabel.Text = "Minimum salary requirement " +
 55 "not met.";
 56 }
 57 }
 58 catch (Exception ex)
 59 {
 60 // Display an error message.
 61 MessageBox.Show(ex.Message);
 62 }
 63 }
 64
 65 private void clearButton_Click(object sender, EventArgs e)
 66 {
 67 // Clear the TextBoxes and the decisionLabel.
 68 salaryTextBox.Text = "";
 69 yearsTextBox.Text = "";
 70 decisionLabel.Text = "";
 71
 72 // Reset the focus.
 73 salaryTextBox.Focus();
 74 }
 75
 76 private void exitButton_Click(object sender, EventArgs e)
 77 {
 78 // Close the form.
 79 this.Close();
 80 }
 81 }
 82 }

 Indentation and Alignment in Nested
Decision Structures
 For debugging purposes, it’s important to use proper alignment and indentation in a
nested if statement. This makes it easier to see which actions are performed by each part
of the structure. For example, the following code is functionally equivalent to lines 37–56
in Program 4-3 . Although this code is logically correct, it would be very difficult to debug
because it is not properly indented.

218 Chapter 4 Making Decisions

 if (salary >= MINIMUM_SALARY)
 {
 if (yearsOnJob >= MINIMUM_YEARS_ON_JOB)
 {
 // The user qualifies.
 decisionLabel.Text = "You qualify for the loan.";
 }
 else
 {
 // The user does not qualify.
 decisionLabel.Text = "Minimum years at current " +
 "job not met.";
 }
 }
 else
 {
 // The user does not qualify.
 decisionLabel.Text = "Minimum salary requirement " +
 "not met.";
 }

 Fortunately, Visual Studio automatically indents and aligns the statements in a decision
structure. Proper indentation and alignment makes it easier to see which if and else
clauses belong together, as shown in Figure 4-14 .

if (salary >= MINIMUM_SALARY)
{
 if (yearsOnJob >= MINIMUM_YEARS_ON_JOB)
 {
 // The user qualifies.
 decisionLabel.Text = "You qualify for the loan.";
 }
 else
 {
 // The user does not qualify.
 decisionLabel.Text = "Minimum years at current " +
 "job not met.";
 }
}
else
{
 // The user does not qualify.
 decisionLabel.Text = "Minimum salary requirement " +
 "not met.";
}

This if
and else

go together.
This if

and else
go together.

 Figure 4-14 Alignment of if and else clauses

 Testing a Series of Conditions
 In Tutorial 4-3 you saw how a program can use nested decision structures to test more
than one Boolean expression. It is not uncommon for a program to have a series of
Boolean expressions to test and then perform an action, depending on which expression
is true. One way to accomplish this it to have a decision structure with numerous other
decision structures nested inside it. For example, look at the Grader application in the
 Chap04 folder of this book’s Student Sample Programs.

 Figure 4-15 shows the application’s form, with the names of several controls. When
you run the application, you enter a numeric test score into the testScoreTexBox
control and click the determineGradeButton control; a grade is then displayed in the
 gradeLabel control.

 4.3 Nested Decision Structures 219

 The following 10-point grading scale is used to determine the grade:

 Test Score Grade
 90 and above A
 80–89 B
 70–79 C
 60–69 D
 Below 60 F

 The logic of determining the grade can be expressed like this:

 If the test score is less than 60, then the grade is “F.”

 Otherwise, if the test score is less than 70, then the grade is “D.”

 Otherwise, if the test score is less than 80, then the grade is “C.”

 Otherwise, if the test score is less than 90, then the grade is “B.”

 Otherwise, the grade is “A.”

 This logic requires several nested decision structures, as shown in the flowchart in Figure 4-16 .

testScoreTextBox

gradeLabel

determineGradeButton exitButton

 Figure 4-15 The Grader application’s form

TrueFalse
score
< 60

TrueFalse
score
< 70

TrueFalse
score
< 80

False True
score
< 90

Display "Your
grade is B."

Display "Your
grade is A."

Display "Your
grade is C."

Display "Your
grade is D."

Display "Your
grade is F."

 Figure 4-16 Nested decision structure to determine a grade

220 Chapter 4 Making Decisions

 Open the code editor and look at the determineGradeButton_Click event handler,
shown in the following code sample. The nested decision structure appears in lines
12–41.

 1 private void determineGradeButton_Click(object sender, EventArgs e)
 2 {
 3 try
 4 {
 5 // Variable to hold the test score.
 6 double testScore;
 7
 8 // Get the test score.
 9 testScore = double.Parse(testScoreTextBox.Text);
 10
 11 // Determine the grade.
 12 if (testScore < 60)
 13 {
 14 gradeLabel.Text = "F";
 15 }
 16 else
 17 {
 18 if (testScore < 70)
 19 {
 20 gradeLabel.Text = "D";
 21 }
 22 else
 23 {
 24 if (testScore < 80)
 25 {
 26 gradeLabel.Text = "C";
 27 }
 28 else
 29 {
 30 if (testScore < 90)
 31 {
 32 gradeLabel.Text = "B";
 33 }
 34 else
 35 {
 36 gradeLabel.Text = "A";
 37 }
 38 }
 39 }
 40 }
 41 }
 42 catch (Exception ex)
 43 {
 44 // Display an error message.
 45 MessageBox.Show(ex.Message);
 46 }
 47 }

 The if-else-if Statement
 Even though the Grader application previously shown is a simple example, the logic
of the nested decision structure is fairly complex. C# provides a special version of the
decision structure known as the if-else-if statement , which makes this type of logic
simpler to write. You write the if-else-if statement using the following general
format:

 4.3 Nested Decision Structures 221

 When the statement executes, BooleanExpression_1 is tested. If BooleanExpression_1 is
true, the set of statements that immediately follows is executed, and the rest of the structure is
skipped. If BooleanExpression_1 is false, however, the program jumps to the very next else
 if clause and tests BooleanExpression_2 . If it is true, the set of statements that immediately
follows is executed, and the rest of the structure is then skipped. This process continues until
a Boolean expression is found to be true, or no more else if clauses are left. If none of the
Boolean expressions are true, the set of statements following the final else clause is executed.

 For example, look at the Grader2 application in the Chap04 folder of this book’s Student
 Sample Programs. This application works just like the Grader application that was previ-
ously discussed. The user enters a numeric test score, and the application displays a grade. Its
form is identical to the form shown in Figure 4-15 . The Grader2 application, however, uses an
 if-else-if statement to determine the grade instead of nested if-else statements. The
 Grader2 application’s determineGradeButton_Click event handler is shown here:

 1 private void determineGradeButton_Click(object sender, EventArgs e)
 2 {
 3 try
 4 {
 5 // Variable to hold the test score.
 6 double testScore;
 7
 8 // Get the test score.
 9 testScore = double.Parse(testScoreTextBox.Text);
 10
 11 // Determine the grade.
 12 if (testScore < 60)
 13 {
 14 gradeLabel.Text = "F";
 15 }
 16 else if (testScore < 70)
 17 {
 18 gradeLabel.Text = "D";
 19 }
 20 else if (testScore < 80)
 21 {
 22 gradeLabel.Text = "C";
 23 }
 24 else if (testScore < 90)
 25 {
 26 gradeLabel.Text = "B";
 27 }
 28 else

if (BooleanExpression_1)
{

statement;
statement;
etc.

}
else if (BooleanExpression_2)
{

statement;
statement;
etc.

}

Insert as many else if clauses as necessary…

else
{

statement;
statement;
etc.

}

If BooleanExpression_1 is true, this
set of statements is executed.

If BooleanExpression_2 is true, this
set of statements is executed.

This set of statements is executed if
none of the Boolean expressions
are true.

222 Chapter 4 Making Decisions

 29 {
 30 gradeLabel.Text = "A";
 31 }
 32 }
 33 catch (Exception ex)
 34 {
 35 // Display an error message.
 36 MessageBox.Show(ex.Message);
 37 }
 38 }

 Notice the alignment and indentation that is used with the if-else-if statement: The
 if , else if , and else clauses are all aligned, and the conditionally executed statements
are indented.

 You never have to use the if-else-if statement because its logic can be coded with
nested if-else statements. However, a long series of nested if-else statements has two
particular disadvantages when you are debugging code:

 • The code can grow complex and become difficult to understand.
 • Because indenting is important in nested statements, a long series of nested if-else

statements can become too long to be displayed on the computer screen without
horizontal scrolling. Also, long statements tend to wrap around when printed on
paper, making the code even more difficult to read.

 The logic of an if-else-if statement is usually easier to follow than a long series of
nested if-else statements. And, because all the clauses are aligned in an if-else-if
statement, the lengths of the lines in the statement tend to be shorter.

 Checkpoint

 4.11 Convert the following set of nested if-else statements to an if-else if
statement:
 if (number == 1)
 {
 MessageBox.Show("One");
 }
 else
 {
 if (number == 2)
 {
 MessageBox.Show("Two");
 }
 else
 {
 if (number == 3)
 {
 MessageBox.Show("Three");
 }
 else
 {
 MessageBox.Show("Unknown");
 }
 }
 }

 4.4 Logical Operators 223

 4.4 Logical Operators

 CONCEPT: The logical AND operator (&&) and the logical OR operator (||) allow
you to connect multiple Boolean expressions to create a compound
expression. The logical NOT operator (!) reverses the truth of a Boolean
expression.

 The C# language provides a set of operators known as logical operators , which you can
use to create complex Boolean expressions. Table 4-3 describes these operators.

 Table 4-3 Logical operators

 Operator Meaning

 && This is the logical AND operator. It connects two Boolean
expressions into one compound expression. Both subexpressions
must be true for the compound expression to be true.

 || This is the logical OR operator. It connects two Boolean expressions
into one compound expression. One or both subexpressions must be
true for the compound expression to be true. It is necessary for only
one of the subexpressions to be true, and it does not matter which.

 ! This is the logical NOT operator. It is a unary operator, meaning
it works with only one operand. The operand must be a Boolean
expression. The not operator reverses the truth of its operand. If it is
applied to an expression that is true, the operator returns false. If it is
applied to an expression that is false, the operator returns true.

 Table 4-4 shows examples of several compound Boolean expressions that use logical
operators.

 Table 4-4 Compound Boolean expressions using logical operators

 Expression Meaning

 x > y && a < b Is x greater than y AND is a less than b ?

 x == y || x == z Is x equal to y OR is x equal to z ?

 ! (x > y) Is the expression x > y NOT true?

 The && Operator
 The && operator is the logical AND operator . It takes two Boolean expressions as oper-
ands and creates a compound Boolean expression that is true only when both subexpres-
sions are true. The following is an example of an if statement that uses the && operator:

 if (temperature < 20 && minutes > 12)
 {
 MessageBox.Show("The temperature is in the danger zone.");
 }

 In this statement, the two Boolean expressions temperature < 20 and minutes > 12 are
combined into a compound expression. The MessageBox.Show statement is executed only
if temperature is less than 20 and minutes is greater than 12. If either of the Boolean
subexpressions is false, the compound expression is false and the message is not displayed.

224 Chapter 4 Making Decisions

 Table 4-5 shows a truth table for the && operator. The truth table lists expressions show-
ing all the possible combinations of true and false connected with the && operator. The
resulting values of the expressions are also shown.

 Table 4-5 Truth table for the AND operator

 Expression Value of the Expression

 true && false false

 false && true false

 false && false false

 true && true true

 As the table shows, both sides of the && operator must be true for the operator to return
a true value.

 The || Operator
 The || operator is the logical OR operator . It takes two Boolean expressions as operands
and creates a compound Boolean expression that is true when either of the subexpressions
is true. The following is an example of an if statement that uses the || operator:

 if (temperature < 20 || temperature > 100)
 {
 MessageBox.Show("The temperature is in the danger zone.");
 }

 The MessageBox.Show statement executes only if temperature is less than 20 or
 temperature is greater than 100. If either subexpression is true, the compound expres-
sion is true. Table 4-6 shows a truth table for the || operator.

 Table 4-6 Truth table for the || operator

 Expression Value of the Expression

 true || false true

 false || true true

 false || false false

 true || true true

 All it takes for an || expression to be true is for one side of the || operator to be true. It
doesn’t matter if the other side is false or true.

 Short-Circuit Evaluation
 Both the && and || operators perform short-circuit evaluation . Here is how it works with
the && operator: if the expression on the left side of the && operator is false, the expression
on the right side is not checked. Because the compound expression is false if only one of
the subexpressions is false, it would waste CPU time to check the remaining expression.
So, when the && operator finds that the expression on its left is false, it short-circuits and
does not evaluate the expression on its right.

 Here’s how short-circuit evaluation works with the || operator: if the expression on the
left side of the || operator is true, the expression on the right side is not checked. Because
it is necessary for only one of the expressions to be true, it would waste CPU time to check
the remaining expression.

 4.4 Logical Operators 225

 The ! Operator
 The ! operator is the logical NOT operator . It is a unary operator that takes a Boolean
expression as its operand and reverses its logical value. In other words, if the expression is
true, the ! operator returns false, and if the expression is false, the ! operator returns true.
The following is an if statement using the NOT operator:

 if (!(temperature > 100))
 {
 MessageBox.Show("This is below the maximum temperature.");
 }

 First, the expression (temperature > 100) is tested and a value of either true or false is
the result. Then the ! operator is applied to that value. If the expression (temperature >
100) is true, the ! operator returns false. If the expression (temperature > 100) is false,
the ! operator returns true. The previous code is equivalent to asking “Is the temperature
not greater than 100?”

 Notice that in this example, we have put parentheses around the expression temperature >
100 . This is necessary because the ! operator has higher precedence than the relational opera-
tors. If we do not put the parentheses around the expression temperature > 100 , the !
operator will be applied just to the temperature variable.

 Table 4-7 shows a truth table for the ! operator.

 Table 4-7 Truth table for the ! operator

 Expression Value of the Expression

 ! true false

 ! false true

 Precedence of the Logical Operators
 We mentioned earlier that the ! operator has higher precedence than the relational opera-
tors. The && and || logical operators have lower precedence than the relational operators.
For example, look at the following expression:

 creditScore > 700 || accountBalance > 9000

 When this expression is evaluated, the > operators work first, and then the || operator
works. The expression is the same as the following:

 (creditScore > 700) || (accountBalance > 9000)

 Many programmers choose to enclose the expressions that are to the left and the right of a
logical operator in parentheses, as shown here. Even though the parentheses are not required
in many situations, using them makes the compound expression easier to understand.

 Checking Numeric Ranges with Logical Operators
 Sometimes you need to write code that determines whether a numeric value is within a
specific range of values or outside a specific range of values. When determining whether a
number is inside a range, it is best to use the && operator. For example, the following if
statement checks the value in x to determine whether it is in the range of 20 through 40:

 if (x > 20 && x < 40)
 {
 MessageBox.Show("The value is in the acceptable range.");
 }

226 Chapter 4 Making Decisions

 The compound Boolean expression being tested by this statement is true only when x is
greater than 20 and less than 40. The value in x must be between the values of 20 and 40
for this compound expression to be true.

 When determining whether a number is outside a range, it is best to use the || operator.
The following statement determines whether x is outside the range of 20 through 40:

 if (x < 20 || x > 40)
 {
 MessageBox.Show("The value is outside the acceptable range.");
 }

 It is important not to get the logic of the logical operators confused when testing for a
range of numbers. For example, the compound Boolean expression in the following code
would never test true:

 // This is an error!
 if (x < 20 && x > 40)
 {
 MessageBox.Show("The value is outside the acceptable range.");
 }

 Obviously, x cannot be less than 20 and at the same time be greater than 40.

 Let’s look at an example application that checks the range of a value entered by the
user. Open the Range Checker application in the Chap04 folder of this book’s Stu-
dent Sample Programs. Figure 4-17 shows the application’s form, along with the names
of some of the controls. When you run the application, you enter an integer into the
 inputTexBox control and click the checkButton control. If you enter a number in
the range of 1 through 10, a message box appears letting you know that the number
is acceptable. Otherwise, a message box appears letting you know that the number is
 not acceptable.

inputTextBox

checkButton exitButton

 Figure 4-17 The Range Checker application’s form

 The following code sample shows the checkButton_Click event handler. Line 7 declares
an int variable named number , initialized with the value that has been entered into the
 inputTextBox control. The if statement that begins in line 10 determines whether
 number is greater than or equal to 1 AND number is less than or equal to 10. If the
Boolean expression is true, the statement in line 12 executes. Otherwise, the statement in
line 16 executes.

 1 private void checkButton_Click(object sender, EventArgs e)
 2 {
 3 try
 4 {
 5 // Declare a variable and initialize it with
 6 // the user's input.

 4.4 Logical Operators 227

 7 int number = int.Parse(inputTextBox.Text);
 8
 9 // Check the number's range.
 10 if (number >= 1 && number <= 10)
 11 {
 12 MessageBox.Show("That number is acceptable.");
 13 }
 14 else
 15 {
 16 MessageBox.Show("That number is NOT acceptable.");
 17 }
 18 }
 19 catch (Exception ex)
 20 {
 21 // Display an error message.
 22 MessageBox.Show(ex.Message);
 23 }
 24 }

 Checkpoint

 4.12 What is a compound Boolean expression?

 4.13 The following truth table shows various combinations of the values true and
 false connected by a logical operator. Complete the table by circling T or F to
indicate whether the result of such a combination is true or false .

 Logical Expression Result (circle T or F)
 true && false T F
 true && true T F
 false && true T F
 false && false T F
 true || false T F
 true || true T F
 false || true T F
 false || false T F
 ! true T F
 ! false T F

 4.14 Assume the variables a = 2, b = 4, and c = 6. Circle T or F for each of the following
conditions to indicate if it is true or false.

 a == 4 || b > 2 T F
 6 <= c && a > 3 T F
 1 != b && c != 3 T F
 a >= -1 || a <= b T F
 !(a > 2) T F

 4.15 Explain how short-circuit evaluation works with the && and || operators.

 4.16 Write an if statement that displays the message “The number is valid” in a
message box if the variable speed is within the range 0 through 200.

 4.17 Write an if statement that displays the message “The number is not valid” in a
message box if the variable speed is outside the range 0 through 200.

228 Chapter 4 Making Decisions

 4.5 bool Variables and Flags

 CONCEPT: You can store the values true and false in bool variables, which are
commonly used as flags.

 The C# language provides the bool data type that you can use to create variables that
hold true or false values. Here is an example of the declaration of a bool variable:

 bool grandMaster;

 This declares a bool variable named grandMaster . In the program we can assign the
values true or false to the variable, as shown here:

 if (points > 5000)
 {
 grandMaster = true;
 }
 else
 {
 grandMaster = false;
 }

 Variables of the bool data type are commonly used as flags. A flag is a variable that sig-
nals when some condition exists in the program. When the flag variable is set to false ,
it indicates that the condition does not yet exist. When the flag variable is set to true , it
means the condition does exist. For example, the previous code might be used in a game
to determine whether the user is a “grand master.” If he or she has earned more than
5,000 points, we set the grandMaster variable to true . Otherwise, we set the variable to
 false . Later in the program we can test the grandMaster variable, like this:

 if (grandMaster)
 {
 powerLevel += 500;
 }

 This code performs the following: if grandMaster is true , add 500 to powerLevel . Here
is another example:

 if (!grandMaster)
 {
 powerLevel = 100;
 }

 This code performs the following: if grandMaster is not true , set powerLevel to 100.

 Checkpoint

 4.18 What special values can you store in a bool variable?

 4.19 What is a flag variable?

 4.6 Comparing Strings

 CONCEPT: You can use certain relational operators and methods to compare
strings.

 4.6 Comparing Strings 229

 You can use the == operator to compare two strings. For example, look at the following
code sample:

 string name1 = "Mary";
 string name2 = "Mark";

 if (name1 == name2)
 {
 MessageBox.Show("The names are the same.");
 }
 else
 {
 MessageBox.Show("The names are NOT the same.");
 }

 The == operator compares name1 and name2 to determine whether they are equal. Be-
cause the strings “Mary” and “Mark” are not equal, the else clause displays the message
“The names are NOT the same.”

 You can compare string variables with string literals as well. Assume month is a string
variable. The following code sample uses the != operator to determine whether month is
not equal to "October" .

 if (month != "October")
 {
 statement;
 }

 Look at the Secret Word application in the Chap04 folder of this book’s Student
Sample Programs. Figure 4-18 shows the application’s form, with the names of some of
the controls. The form prompts you to enter the secret word into the inputTexBox con-
trol. When you click the checkButton control, the application compares the string that
you entered to "Ariel."

inputTextBox

checkButton exitButton

 Figure 4-18 The Secret Word application’s form

 The following code sample shows the checkButton_Click event handler. Line 5 declares
a string variable named secretWord , initialized with the value that has been entered
into the inputTextBox control. The if statement that begins in line 8 compares the
 secretWord variable to the string literal "Ariel" . If the two are equal, the statement in
line 10 executes. Otherwise, the statement in line 14 executes.

 1 private void checkButton_Click(object sender, EventArgs e)
 2 {
 3 // Declare a string variable and initialize it with
 4 // the user's input.
 5 string secretWord = inputTextBox.Text;
 6
 7 // Did the user enter the correct secret word?
 8 if (secretWord == "Ariel")

230 Chapter 4 Making Decisions

 9 {
 10 MessageBox.Show("That is the correct secret word.");
 11 }
 12 else
 13 {
 14 MessageBox.Show("Sorry, that is NOT the secret word.");
 15 }
 16 }

 Other String Comparisons
 In addition to determining whether strings are equal or not equal, you can use the
 String.Compare method to determine whether one string is greater than or less than
another string. This is a useful capability because sometimes you need to sort strings in
some order. Before we look at how the method works, we should review how characters
are stored in memory.

 Recall from Chapter 1 that computers do not actually store characters, such as A , B , C ,
and so on, in memory. Instead, they store numeric codes that represent the characters. We
mentioned in Chapter 1 that C# uses Unicode to represent characters. Here are some facts
about the Unicode system:

 • The uppercase characters A through Z are represented by the numbers 65
through 90.

 • The lowercase characters a through z are represented by the numbers 97
through 122.

 • When the digits 0 through 9 are stored in memory as characters, they are repre-
sented by the numeric codes 48 through 57. (For example, the string “abc123” is
stored in memory as the codes 97, 98, 99, 49, 50, and 51.)

 • A blank space is represented by the number 32.

 In addition to establishing a set of numeric codes to represent characters in memory, Uni-
code also establishes an order for characters. The character A comes before the character
 B , which comes before the character C, and so on.

 When a program compares characters, it actually compares the codes for the characters.
The character A would be considered less than the character B because the character A ’s
numeric code is less than the character B ’s numeric code.

 Let’s look at how strings containing more than one character are compared. Suppose we
have the strings “Mary” and “Mark” stored in memory, as follows:

 string name1 = "Mary";
 string name2 = "Mark";

 Figure 4-19 shows how the strings “Mary” and “Mark” are stored in memory using
character codes.

M a r y

77 97 114 121 77 97 114 107

M a r k

 Figure 4-19 Character codes for the strings “Mary” and “Mark”

 When you compare these strings in a program, they are compared character-by-character,
beginning with the first, or leftmost, characters. This is shown in Figure 4-20 .

 4.6 Comparing Strings 231

 Here is how the comparison takes place:

 1. The M in “Mary” is compared with the M in “Mark.” These are the same, so the
next characters are compared.

 2. The a in “Mary” is compared with the a in “Mark.” Because these are the same, the
next characters are compared.

 3. The r in “Mary” is compared with the r in “Mark.” These are the same, so the next
characters are compared.

 4. The y in “Mary” is compared with the k in “Mark.” Because these are not the same,
the two strings are not equal. The character y has a higher character code (121) than
 k (107), so it is determined that the string “Mary” is greater than the string “Mark.”

 If one of the strings in a comparison is shorter than the other, only the corresponding char-
acters are compared. If the corresponding characters are identical, then the shorter string
is considered less than the longer string. For example, suppose the strings “High” and
“Hi” are compared. The string “Hi” is considered less than “High” because it is shorter.

 In C# you cannot use relational operators to determine whether one string is greater than
or less than another string. Instead, you use the String.Compare method. You use the
following general format to call the method:

 String.Compare(string1, string2)

 In the general format, string1 and string2 are the strings that are being compared. The
method returns an integer value indicating the result of the comparison. The integer value
will be one of the following:

 • Greater than zero if string1 is greater than string2 .
 • Zero if string1 is equal to string2 .
 • Less than zero if string1 is less than string2 .

 Here is a code sample that uses the method to display two names in alphabetical order:

 1 string str1 = "Joe";
 2 string str2 = "Kerry";
 3
 4 if (String.Compare(str1, str2) < 0)
 5 {
 6 MessageBox.Show(str1 + " " + str2);
 7 }
 8 else
 9 {
 10 MessageBox.Show(str2 + " " + str1);
 11 }

 The if statement in line 4 calls the String.Compare method, passing str1 and str2
as arguments. If we execute this code, the method will return a value that is less than 0
because the string “Joe” is less than the string “Kerry”. As a result, the statement in line
6 will display Joe Kerry .

 The String.Compare method performs a case sensitive comparison, which means that
uppercase characters are not considered the same as their lowercase counterparts. For

77 97 114 121

77 97 114 107

M a r k

M a r y

 Figure 4-20 Comparing each character in a string

232 Chapter 4 Making Decisions

example, the strings “Joe” and “joe” are not equal because the case of the first character
is different in each. You can pass the Boolean value true as an optional third argument
to the String.Compare method if you want it to perform a case insensitive comparison.
Here is an example:

 1 string str1 = "JOE";
 2 string str2 = "joe";
 3
 4 if (String.Compare(str1, str2, true) == 0)
 5 {
 6 MessageBox.Show(str1 + " and " + str2 + " are equal.");
 7 }
 8 else
 9 {
 10 MessageBox.Show(str1 + " and " + str2 + " are NOT equal.");
 11 }

 Notice that the if statement in line 4 passes true as the third argument to the String.
Compare method. This specifies that we want a case insensitive comparison. As a re-
sult, the method will return 0 and the statement in line 6 will display JOE and joe are
equal .

 Checkpoint

 4.20 If the following code were part of a complete program, what would it display?
 if (String.Compare("z", "a") < 0)
 {
 MessageBox.Show("z is less than a.");
 }
 else
 {
 MessageBox.Show("z is not less than a.");
 }

 4.21 If the following code were part of a complete program, what would it display?
 string s1 = "New York";
 string s2 = "Boston";
 if (String.Compare(s1, s2) > 0)
 {
 MessageBox.Show(s2);
 MessageBox.Show(s1);
 }
 else
 {
 MessageBox.Show(s1);
 MessageBox.Show(s2);
 }

 4.7 Preventing Data Conversion Exceptions
with the TryParse Methods

 CONCEPT: Exceptions should be prevented when possible. You can use the
 TryParse methods to prevent exceptions as a result of the user entering
invalid data.

 4.7 Preventing Data Conversion Exceptions with the TryParse Methods 233

 In Chapter 3 you learned that the Parse methods throw an exception when you try to
use them to convert nonnumeric data to a numeric data type. If you use one of the Parse
methods to convert a TextBox control’s Text property to a number, there is always the
possibility of an exception being thrown. After all, the user is free to enter anything he or
she wants into a TextBox control. To handle the exceptions that are caused by the Parse
methods, we have been using the try-catch statement.

 Although many exceptions happen for reasons that the programmer cannot anticipate (such
as a system malfunction), some exceptions are predictable. For example, you know that
using a Parse method to convert nonnumeric input to a numeric data type will throw an ex-
ception. In situations like that, where an exception is predictable, you should write your code
to prevent the exception. It is a better programming practice to prevent an exception instead
of allowing it to happen and then letting a try-catch statement react to it. You should use
 try-catch statements primarily for those exceptions that are beyond your control.

 NOTE: Until now, we’ve simply been allowing exceptions to happen and letting a
 try-catch statement respond to them. After reading the previous paragraph, you
might be wondering why we haven’t been preventing exceptions all along. The reason
is that you need to know how to write if statements to perform the techniques that
we discuss in this section. Now that you know how to write if statements, you can
add more sophistication to your code.

 Now that you know how to write if statements, you can use a family of methods in the
.NET Framework known as the TryParse methods. With the TryParse methods , you can
determine whether a string (such as a control’s Text property) contains a value that can
be converted to a specific data type before it is converted to that data type. The TryParse
methods do not throw an exception, so you can use them without a try-catch statement.

 There are several TryParse methods in the .NET Framework. For now, we are using the
 int , double , and decimal numeric data types, so we will discuss three of them:

 • We use the int.TryParse method to convert a string to an int .
 • We use the double.TryParse method to convert a string to a double .
 • We use the decimal.TryParse method to convert a string to a decimal .

 When you call one of the TryParse methods, you pass two arguments: (1) the string that
you want to convert, and (2) the name of the variable in which you want to store the con-
verted value. First, let’s look at the int.TryParse method. Here is the general format of
how the int.TryParse method is called:

 int.TryParse(string , out targetVariable)

 In the general format, string is the string that you want to convert, and targetVariable
is the name of an int variable. The method tries to convert the string argument to an
 int . If the conversion is successful, the converted value is stored in the targetVariable ,
and the method returns the Boolean value true to indicate that the conversion was suc-
cessful. If the conversion is not successful, the method does not throw an exception. In-
stead, it stores 0 in the targetVariable and returns the Boolean value false to indicate
that the string could not be converted.

 Look carefully at the general format and notice that the word out appears before the
 targetVariable . The out keyword is required, and it specifies that the targetVariable
is an output variable. An output variable is a variable that is passed as an argument to a
method, and when the method is finished, a value is stored in the variable.

 Because the TryParse methods return either true or false , they are commonly called as
the Boolean expression in an if statement. The following code shows an example using

234 Chapter 4 Making Decisions

the int.TryParse method. In the example, assume that inputTextBox is the name of a
TextBox control.

 1 int number;
 2
 3 if (int.TryParse(inputTextBox.Text, out number))
 4 {
 5 MessageBox.Show("Success!");
 6 }
 7 else
 8 {
 9 MessageBox.Show("Enter a valid integer.");
 10 }

 The purpose of this code sample is to convert the value of the inputTextBox control’s
Text property to an int and assign that value to the number variable. In line 3, the if
statement calls the int.TryParse method, passing inputTextBox.Text as argument 1
and number as argument 2. Here’s what happens:

 • If inputTextBox.Text is successfully converted to an int , the resulting value is as-
signed to the number variable, and the method returns true . That causes the state-
ment in line 5 to execute.

 • If inputTextBox.Text cannot be converted to an int , the value 0 is assigned to the
 number variable, and the method returns false . That causes the statement in line 9
(after the else clause) to execute.

 The other TryParse methods work in a similar manner. Here is the general format of
how the double.TryParse method is called:

 double.TryParse(string , out targetVariable)

 In the general format, string is the string that you want to convert, and targetVariable
is the name of a double variable. If the string can be converted to a double , its value is
stored in the targetVariable , and the method returns the Boolean value true to indi-
cate that the conversion was successful. If the conversion was not successful, the method
stores 0 in the targetVariable and returns the Boolean value false to indicate that the
 string could not be converted.

 The following code shows an example using the double.TryParse method. In the exam-
ple, assume that inputTextBox is the name of a TextBox control.

 1 double number;
 2
 3 if (double.TryParse(inputTextBox.Text, out number))
 4 {
 5 MessageBox.Show("Success!");
 6 }
 7 else
 8 {
 9 MessageBox.Show("Enter a valid double.");
 10 }

 Here is the general format of how the decimal.TryParse method is called:

 decimal.TryParse(string , out targetVariable)

 In the general format, string is the string that you want to convert, and targetVariable
is the name of a decimal variable. If the string can be converted to a decimal , its value
is stored in the targetVariable , and the method returns the Boolean value true to indi-
cate that the conversion was successful. If the conversion was not successful, the method
stores 0 in the targetVariable and returns the Boolean value false to indicate that the
 string could not be converted.

 4.7 Preventing Data Conversion Exceptions with the TryParse Methods 235

 The following code shows an example using the decimal.TryParse method. In the ex-
ample, assume that inputTextBox is the name of a TextBox control.

 1 decimal number;
 2
 3 if (decimal.TryParse(inputTextBox.Text, out number))
 4 {
 5 MessageBox.Show("Success!");
 6 }
 7 else
 8 {
 9 MessageBox.Show("Enter a valid decimal.");
 10 }

 Validating the Data in Multiple TextBoxes
 If a form has multiple TextBoxes, then the user has multiple opportunities to enter an
invalid piece of data. A well-designed program should validate the contents of each Text-
Box individually. When a piece of invalid data is found, the program should display an
error message that tells the user specifically which TextBox contains the bad input.

 This technique requires a set of nested if statements. For example, suppose a form has
two TextBoxes. The following pseudocode shows the logic for validating each TextBox.
(In the pseudocode, a set of dotted lines connects each If statement with its corresponding
Else clause and its ending.)

 If the data in the second TextBox is good, then
If the data in the first TextBox is good, then

 Process the data in both TextBoxes
 Else
 Display an error message about the second TextBox

 Display an error message about the first TextBox

 End if
Else

End if

 Let’s see how that logic looks in actual C# code. In the Chap04 folder of this book’s
 Student Sample Programs, you will find a project named Add Two Numbers . The applica-
tion’s form is shown in Figure 4-21 . When you run the application, enter an integer into
each of the TextBox controls and then click the Add button. A message box will appear
showing the sum of the two numbers. If you enter anything other than an integer into
either TextBox, an error message will appear telling you which TextBox contains the
invalid data.

firstTextBox

secondTextBox

addButton

 Figure 4-21 The Add Two Numbers form

236 Chapter 4 Making Decisions

 Here is the code for the addButton_Click event handler:

 1 private void addButton_Click(object sender, EventArgs e)
 2 {
 3 // Local variables
 4 int first, second, sum;
 5
 6 if (int.TryParse(firstTextBox.Text, out first))
 7 {
 8 if (int.TryParse(secondTextBox.Text, out second))
 9 {
 10 // Add the two numbers and display the sum.
 11 sum = first + second;
 12 MessageBox.Show(sum.ToString());
 13 }
 14 else
 15 {
 16 // Display an error message about the second TextBox.
 17 MessageBox.Show("The second TextBox contains invalid data.");
 18 }
 19 }
 20 else
 21 {
 22 // Display an error message about the first TextBox.
 23 MessageBox.Show("The first TextBox contains invalid data.");
 24 }
 25 }

 Let’s take a closer look:

 • Line 4 declares three int variables: first , second , and sum .
 • The if statement in line 6 tries to convert firstTextBox.Text to an int . If the

conversion is successful, the result is stored in the first variable, and the program
continues executing at line 8. If the conversion is not successful, the program jumps
to the else clause in line 20, and line 23 displays an error message regarding the
first TextBox control.

 • The if statement in line 8 tries to convert secondTextBox.Text to an int . If the
conversion is successful, the result is stored in the second variable, and the pro-
gram continues executing at line 10. If the conversion is not successful, the program
jumps to the else clause in line 14, and line 17 displays an error message regarding
the second TextBox control.

 • The statements in lines 11 and 12 execute only if both TextBox controls contain
valid integer values. These statements add the first and second variables and dis-
play their sum.

 If you need to validate three TextBox controls, you will write a set of three nested if
statements. Here’s the pseudocode:

 If the data in the second TextBox is good, then
If the data in the first TextBox is good, then

 If the data in the third TextBox is good, then
 Process the data in all three TextBoxes
 Else
 Display an error message about the third TextBox
 End if
 Else
 Display an error message about the second TextBox
 End if
Else

End if
Display an error message about the first TextBox

 4.7 Preventing Data Conversion Exceptions with the TryParse Methods 237

 In Tutorial 4-4 you will complete an application that uses the TryParse methods to vali-
date data entered into two TextBox controls.

 Tutorial 4-4 :
 Calculating
Fuel
Economy

VideoNote

 Tutorial 4-4:
 Calculating Fuel Economy

 In Tutorial 3-2 , you created an application that calculates a car’s fuel economy in miles per
gallon (MPG). Recall that the application lets the user enter the number of miles he or she
has driven and the gallons of gas used. The application calculates and displays the car’s
MPG. In this tutorial you will create a new version of the application that validates the
data entered by the user.

 To save time, the project has already been started for you, and the application’s form has
already been created. To complete the project, follow the steps in this tutorial.

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Fuel
Economy with TryPars e in the Chap04 folder of this book’s Student Sample
Programs.

 Step 2: Open the Form1 form in the Designer . The form is shown, along with the names
of the important controls, in Figure 4-22 .

calculateButton exitButton

milesTextBox

gallonsTextBox

mpgLabel

 Figure 4-22 The Fuel Economy form

 Step 3: Now you will create the Click event handlers for the Button controls. At the end
of this tutorial, Program 4-4 shows the completed code for the form. You will
be instructed to refer to Program 4-4 as you write the event handlers.

 In the Designer , double-click the calculateButton control. This will open the
code editor, and you see an empty event handler named calculateButton_
Click . Complete the calculateButton_Click event handler by typing the
code shown in lines 22–48 in Program 4-4 .

 Let’s take a closer look at the code:

 Lines 22–24: These lines declare the double variables miles , gallons , and
 mpg . The variables hold the miles driven, the gallons of gas used, and the MPG,
respectively.

 Line 27: This if statement tries to convert milesTextBox.Text to a double .
If the conversion is successful, the result is stored in the miles variable, and the
program continues executing at line 29. If the conversion is not successful, the
program jumps to the else clause in line 44, and line 47 displays the error mes-
sage “Invalid input for miles.”

238 Chapter 4 Making Decisions

 Line 30: This if statement tries to convert gallonsTextBox.Text to a double .
If the conversion is successful, the result is stored in the gallons variable, and
the program continues executing at line 32. If the conversion is not successful,
the program jumps to the else clause in line 38, and line 41 displays the error
message “Invalid input for gallons.”

 Lines 32–36: These lines are executed only if both the milesTextBox and
 gallonsTextBox contain valid data. Line 33 calculates MPG and assigns the
result to the mpg variable, and line 36 displays the value of the mpg variable in
the mpgLabel control.

 Step 4: Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you see an empty event handler named exitButton_
Click . Complete the exitButton_Click event handler by typing the code
shown in lines 53–54 in Program 4-4 .

 Step 5: Save the project and run the application. First, enter 300 for the miles and 10
for the gallons. Click the Calculate MPG button, and the application should
display 30.0 as the MPG.

 Now change the miles to an invalid entry, such as 123xyz , and click the Calcu-
late MPG button. The message “Invalid input for miles.” should appear in a
message box, as shown on the left in Figure 4-23 .

 Figure 4-23 Invalid input entered and the resulting error messages

 Now change the miles back to 300, change the gallons to an invalid entry, such
as 123xyz , and click the Calculate MPG button. The message “Invalid input for
gallons.” should appear in a message box, as shown on the right in Figure 4-23 .

 Continue to test the application as you wish. When you are fi nished, click the
 Exit button and the form should close.

 Program 4-4 Completed Form1 code for the Fuel Economy with TryPars e application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Fuel_Economy_with_TryParse
 12 {

 4.7 Preventing Data Conversion Exceptions with the TryParse Methods 239

 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void calculateButton_Click(object sender, EventArgs e)
 21 {
 22 double miles; // To hold miles driven
 23 double gallons; // To hold gallons used
 24 double mpg; // To hold MPG
 25
 26 // Validate the milesTextBox control.
 27 if (double.TryParse(milesTextBox.Text, out miles))
 28 {
 29 // Validate the gallonsTextBox control.
 30 if (double.TryParse(gallonsTextBox.Text, out gallons))
 31 {
 32 // Calculate MPG.
 33 mpg = miles / gallons;
 34
 35 // Display the MPG in the mpgLabel control.
 36 mpgLabel.Text = mpg.ToString("n1");
 37 }
 38 else
 39 {
 40 // Display an error message for gallonsTextBox.
 41 MessageBox.Show("Invalid input for gallons.");
 42 }
 43 }
 44 else
 45 {
 46 // Display an error message for milesTextBox.
 47 MessageBox.Show("Invalid input for miles.");
 48 }
 49 }
 50
 51 private void exitButton_Click(object sender, EventArgs e)
 52 {
 53 // Close the form.
 54 this.Close();
 55 }
 56 }
 57 }

 Checkpoint

 4.22 What value does a TryParse method return if the string argument is successfully
converted? What value does it return if the string is not converted?

 4.23 If a TryParse method successfully converts the string argument, where is the result
stored?

 4.24 If a TryParse method cannot convert the string argument, what is stored in the
second argument?

 4.25 What does the keyword out mean when it is written before an argument to a
method call?

240 Chapter 4 Making Decisions

 4.8 Input Validation

 CONCEPT: Input validation is the process of inspecting data that has been input to a
program to make sure it is valid before it is used in a computation.

 In the previous section you learned about using the TryParse methods to validate the
type of data entered by the user. You should also validate the accuracy of the data that
is entered by the user. One of the most famous sayings among computer programmers is
“garbage in, garbage out.” This saying, sometimes abbreviated as GIGO , refers to the
fact that computers cannot tell the difference between good input and bad input. If a user
provides bad data as input to a program, the program will process that bad data and, as a
result, will produce bad data as output.

 For example, consider a payroll program that accepts the number of hours that an employee
has worked in a given week as input. If the payroll clerk accidentally enters 400 hours in-
stead of 40 hours, an unusually large check will be written because there are less than 400
hours in a week! The computer, however, is unaware of this fact, and unless the program is
written to catch such errors, it will process the bad data just as if it were good data.

 Sometimes stories are reported in the news about computer errors that mistakenly cause
people to be charged thousands of dollars for small purchases or to receive large tax re-
funds to which they were not entitled. These “computer errors” are rarely caused by a
computer, however; they are more commonly caused by software bugs or bad data that
was read into a program as input.

 The integrity of a program’s output is only as good as the integrity of its input. For this
reason, you should write your programs in such a way that bad input is never accepted.
When input is given to a program, it should be inspected before it is processed. If the
input is invalid, the program should discard it and prompt the user to enter the correct
data. This process is known as input validation .

 For example, in a payroll program we might validate the number of hours worked like this:

 1 if (int.TryParse(hoursWorkedTextBox.Text, out hours))
 2 {
 3 if (hours > 0 && hours <= 168)
 4 {
 5 // Continue to process the input.
 6 }
 7 else
 8 {
 9 MessageBox.Show("Invalid number of hours entered.");
 10 }
 11 }
 12 else
 13 {
 14 MessageBox.Show("The hours worked must be an integer.");
 15 }

 Let’s assume the application uses a TextBox named hoursWorkedTextBox to get the hours
worked. Also assume that the variable hours has already been declared as an int . The
outer if statement (line 1) uses the int.TryParse method to make sure the user has en-
tered an integer. If so, the value is stored in the hours variable and the program continues
to the inner if statement (line 3). The inner if statement ensures that we process the input
only if hours is greater than 0 and hours is less than or equal to 168. This is because we
cannot write a paycheck for 0 hours worked, and 168 is the maximum number of hours
in a week.

 4.9 Radio Buttons and Check Boxes 241

 Let’s look at another example. The following code comes from an application that gets a
test score as input. A valid test score is an integer in the range of 0 through 100.

 1 if (int.TryParse(testScoreTextBox.Text, out testScore))
 2 {
 3 if (testScore >= 0 && testScore <= 100)
 4 {
 5 // Continue to process the input.
 6 }
 7 else
 8 {
 9 MessageBox.Show("Test score must be in the range 0 - 100.");
 10 }
 11 }
 12 else
 13 {
 14 MessageBox.Show("The test score must be an integer.");
 15 }

 Let’s assume the application uses a TextBox named testScoreTextBox to get the test score.
Also assume that the variable testScore has already been declared as an int . The outer
 if statement (line 1) uses the int.TryParse method to make sure the user has entered an
integer. If so, the value is stored in the testScore variable and the program continues to
the inner if statement (line 3). The inner if statement ensures that we process the input
only if testScore is greater than or equal to 0 and testScore is less than or equal to 100.

 4.9 Radio Buttons and Check Boxes

 CONCEPT: GUIs commonly use radio buttons and check boxes to let the user select
items.

 Radio Buttons
 Radio buttons are useful when you want the user to select one choice from several pos-
sible choices. Figure 4-24 shows a form with a group of three radio buttons. The radio
buttons in the figure allow the user to select Coffee , Tea , or Soft Drink .

 Figure 4-24 Radio buttons

 A radio button may be either selected or deselected. Each radio button has a small circle
that appears filled in when the radio button is selected, and appears empty when the radio
button is deselected. In Figure 4-24 , the Coffee radio button is selected and the other
radio buttons are deselected.

 At run time, only one radio button in a group may be selected at a time. Clicking on a
radio button selects it, and automatically deselects any other radio button in the same
group. We call this mutually exclusive selection .

242 Chapter 4 Making Decisions

 When you want to create a group of radio buttons on a form, you use the RadioButton
control , which is found in the Common Controls section of the Toolbox . RadioButton
controls are normally grouped in one of the following ways:

 • You place them inside a GroupBox control. All RadioButton controls that are inside
a GroupBox are members of the same group.

 • You place them inside a Panel control. All RadioButton controls that are inside a
Panel are members of the same group.

 • You place them on a form but not inside a GroupBox or a Panel. All RadioButton
controls that are on a form but not inside a GroupBox or Panel are members of the
same group.

 Figure 4-25 shows a form with two groups of RadioButton controls. The group on the
left is inside a GroupBox control, and the group on the right is inside a Panel control.
When the application runs, the user will be able to select only one RadioButton from
each group. In the figure, Coffee is selected in the left group and Lunch is selected in
the right group.

 NOTE: The name radio button refers to the old car radios that had push buttons for
selecting stations. Only one button could be pushed in at a time. When you pushed a
button, it automatically popped out the currently selected button.

 Figure 4-25 A form with two groups of RadioButton controls

 The RadioButton Control’s Text Property

 RadioButton controls have a Text property, which holds the text that is displayed next to
the radio button’s circle. For example, the radio buttons shown in Figure 4-24 have their
Text properties set to Coffee , Tea , and Soft Drink .

 The RadioButton Control’s Checked Property

 RadioButton controls have a Checked property that determines whether the control is
selected or deselected. The Checked property is a Boolean property, which means that
it may be set to either True or False. When the Checked property is set to True, the
 RadioButton is selected, and when the Checked property is set to False, the RadioButton
is deselected. By default, the Checked property is set to False.

 You can use the Properties window to set the initial value of a RadioButton control’s
Checked property. Keep in mind that the Checked property of only one RadioButton in a
group can be set to True at a given time. When you set a RadioButton control’s Checked
property to True in the Properties window, the Checked properties of all the other Radi-
oButtons in the same group automatically are set to False.

 4.9 Radio Buttons and Check Boxes 243

 Working with Radio Buttons in Code

 In code, you can determine whether a RadioButton control is selected by testing its
Checked property. For example, suppose a form has a RadioButton control named
 choice1RadioButton . The following if statement determines whether it is selected:

 if (choice1RadioButton.Checked)
 {
 MessageBox.Show("You selected Choice 1");
 }

 Notice that we did not have to use the == operator to explicitly compare the Checked
property to the value true . This code is equivalent to the following:

 if (choice1RadioButton.Checked == true)
 {
 MessageBox.Show("You selected Choice 1.");
 }

 Let’s look at an example using multiple RadioButton controls. Open the RadioButton
project in the Chap04 folder of this book’s Student Sample Programs. The application’s
form is shown in Figure 4-26 . When you run the application, select one of the radio
buttons and then click the OK button. A message box appears showing the sport that you
selected.

footballRadioButton

basketballRadioButton

baseballRadioButton

okButton

 Figure 4-26 The RadioButton Example form

 Here is the code for the okButton_Click event handler:

 1 private void okButton_Click(object sender, EventArgs e)
 2 {
 3 if (footballRadioButton.Checked)
 4 {
 5 MessageBox.Show("You selected Football.");
 6 }
 7 else if (basketballRadioButton.Checked)
 8 {
 9 MessageBox.Show("You selected Basketball.");
 10 }
 11 else if (baseballRadioButton.Checked)

 TIP: When you create a group of RadioButton controls, you should always set
one of the control’s Checked property to True in the Properties window. If all the
 RadioButtons in a group have their Checked property set to False, then the Checked
property of the RadioButton with the lowest TabIndex value will automatically be set
to True when you run the application.

244 Chapter 4 Making Decisions

 12 {
 13 MessageBox.Show("You selected Baseball.");
 14 }
 15 }

 When the event handler executes, the if statement in line 3 determines whether the
 footballRadioButton control’s Checked property is true. If it is, the message You
selected Football. is displayed in line 5. Otherwise, line 7 determines whether the
 basketballRadioButton control’s Checked property is true. If it is, the message
 You selected Basketball. is displayed in line 9. Otherwise, line 11 determines whether
the baseballRadioButton control’s Checked property is true. If it is, the message
 You selected Baseball. is displayed in line 13.

 Check Boxes
 A check box appears as a small box with some accompanying text. Figure 4-27 shows
an example. They are called check boxes because clicking on an empty check box causes
a check mark to appear in it. If a check mark already appears in a check box, clicking it
removes the check mark.

 Figure 4-27 A check box

 Check boxes are similar to radio buttons, except that check boxes are not mutually ex-
clusive. You can have one or more check boxes in a group, and any number of them can
be selected at any given time. When you want to create a check box on a form, you use
the CheckBox control , which is found in the Common Controls section of the Toolbox .

 The CheckBox Control’s Text Property

 CheckBox controls have a Text property, which holds the text that is displayed next to
the check box. For example, the CheckBox control shown in Figure 4-27 has its Text
property set to Pepperoni .

 The CheckBox Control’s Checked Property

 Like radio buttons, CheckBox controls have a Checked property. When a CheckBox con-
trol is selected, or checked, its Checked property is set to True. When a CheckBox control
is deselected, or unchecked, its Checked property is set to False.

 Working with CheckBox Controls in Code

 In code, you can determine whether a CheckBox control is selected by testing its Checked
property. For example, suppose a form has a CheckBox control named option1CheckBox .
The following if statement determines whether it is selected:

 if (option1CheckBox.Checked)
 {
 MessageBox.Show("You selected Option 1.");
 }

 Let’s look at an example program. Open the CheckBox Example project in the Chap04
folder of this book’s Student Sample Programs. The application’s form is shown in Fig-
ure 4-28 . When you run the application, select any of the check boxes and then click the OK
button. One or more message boxes will appear, showing you the items that you selected.

 4.9 Radio Buttons and Check Boxes 245

 Here is the code for the okButton_Click event handler:

 1 private void okButton_Click(object sender, EventArgs e)
 2 {
 3 if (pepperoniCheckBox.Checked)
 4 {
 5 MessageBox.Show("You selected Pepperoni.");
 6 }
 7
 8 if (cheeseCheckBox.Checked)
 9 {
 10 MessageBox.Show("You selected Cheese.");
 11 }
 12
 13 if (anchoviesCheckBox.Checked)
 14 {
 15 MessageBox.Show("You selected Anchovies.");
 16 }
 17 }

 Notice that we have three separate if statements. The if statement in line 3 determines
whether the pepperoniCheckBox control is selected. If so, line 5 displays the message You
selected Pepperoni . The if statement in line 8 determines whether the cheeseCheckBox
control is selected. If so, line 10 displays the message You selected Cheese . The if state-
ment in line 13 determines whether the anchoviesCheckBox control is selected. If so, line
15 displays the message You selected Anchovies .

 The CheckedChanged Event
 Any time a RadioButton or a CheckBox control’s Checked property changes, a Checked-
Changed event happens for that control. If you want some action to immediately take
place when the user selects (or deselects) a RadioButton or CheckBox control, you can
create a CheckedChanged event handler for the control and write the desired code in that
event handler.

 To create a CheckedChanged event handler for a RadioButton or a CheckBox, simply
double-click the control in the Designer . An empty CheckedChanged event handler is
created in the code editor. You can then write code inside the event handler. Tutorial 4-5
leads you through the process.

pepperoniCheckBox

cheeseCheckBox

anchoviesCheckBox

okButton

 Figure 4-28 The CheckBox Example form

246 Chapter 4 Making Decisions

 Tutorial 4-5:
 Creating the Color Theme Application

 In this tutorial you create an application that allows the user to select a color using RadioBut-
ton controls. When the user selects a color, the form’s background color is changed to that
color immediately. Figure 4-29 shows the application’s form, with the names of all the controls.

 Tutorial 4-5 :
 Creating the
 Color Theme
application

VideoNote

yellowRadioButton

redRadioButton

whiteRadioButton

normalRadioButton

exitButton

colorGroupBox

 Figure 4-29 The Color Theme form

 Step 1: Start Visual Studio (or Visual Studio Express) and begin a new Windows
Forms Application project named Color Theme .

 Step 2: Set up the application’s form as shown in Figure 4-29 . Notice that the form’s
Text property is set to Color Theme . The names of the controls are shown in
the figure. As you place each of the controls on the form, refer to Table 4-8
for the relevant property settings.

 Table 4-8 Control property settings

 Control Name Control Type Property Settings

 colorGroupBox GroupBox Text : Select a Background Color

 yellowRadioButton RadioButton Text : Yellow
 Checked: False

 redRadioButton RadioButton Text : Red
 Checked: False

 whiteRadioButton RadioButton Text : White
 Checked: False

 normalRadioButton RadioButton Text : Back to Normal
 Checked: True

 exitButton Button Text : Exit

 Step 3: Once you have set up the form with its controls, you can create the Checked-
Changed event handlers for the RadioButton controls. At the end of this tuto-
rial, Program 4-5 shows the completed code for the form. You will be instructed
to refer to Program 4-5 as you write the event handlers.

 In the Designer , double-click the yellowRadioButton control. This opens the
code editor, and you see an empty event handler named yellowRadioButton_
CheckedChanged . Complete the yellowRadioButton_CheckedChanged event
handler by typing the code shown in lines 22–25 in Program 4-5 .

 4.9 Radio Buttons and Check Boxes 247

 The event handler is easy to understand. The if statement in line 22 deter-
mines whether the yellowRadioButton control is checked. If so, line 24 sets
the form’s background to yellow.

 Step 4: Switch your view back to the Designer and double-click the redRadioButton
control. This opens the code editor, and you see an empty event handler
named redRadioButton_CheckedChanged . Complete the redRadioButton_
CheckedChanged event handler by typing the code shown in lines 30–33 in
 Program 4-5 .

 Step 5: Switch your view back to the Designer and double-click the whiteRadioBut-
ton control. This opens the code editor, and you see an empty event handler
named whiteRadioButton_CheckedChanged . Complete the whiteRadioButton_
CheckedChanged event handler by typing the code shown in lines 38–41 in
 Program 4-5 .

 Step 6: Switch your view back to the Designer and double-click the
normalRadioButton control. This opens the code editor, and you see an
empty event handler named normalRadioButton_CheckedChanged . Complete
the normalRadioButton_CheckedChanged event handler by typing the code
shown in lines 46–49 in Program 4-5 .

 Step 7: Switch your view back to the Designer and double-click the exitButton
control. In the code editor you see an empty event handler named
exitButton_Click . Complete the exitButton_Click event handler by typing
the code shown in lines 54–55 in Program 4-5 .

 Step 8: Save the project and run the application. Notice that the Back to Normal radio
button is initially selected. That’s because you set its Checked property to True
in the Properties window. Click the other Radio buttons and notice that the
form’s background color changes immediately. When you are finished testing
the application, click the Exit button to close it.

 Program 4-5 Completed Form1 code for the Color Theme application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Color_Theme
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void yellowRadioButton_CheckedChanged(object sender, EventArgs e)
 21 {
 22 if (yellowRadioButton.Checked)

248 Chapter 4 Making Decisions

 Checkpoint

 4.26 If several RadioButton controls have been created in the same GroupBox, how
many of them may be selected at one time?

 4.27 If several CheckBox controls have been created in the same GroupBox, how many
of them may be selected at one time?

 4.28 In code, how do you determine whether a RadioButton or a CheckBox control has
been selected?

 4.10 The switch Statement

 CONCEPT: The switch statement lets the value of a variable or an expression deter-
mine which path of execution the program will take.

 The switch statement is a multiple-alternative decision structure . It allows you to test the
value of a variable or an expression and then use that value to determine which statement

 23 {
 24 this.BackColor = Color.Yellow;
 25 }
 26 }
 27
 28 private void redRadioButton_CheckedChanged(object sender, EventArgs e)
 29 {
 30 if (redRadioButton.Checked)
 31 {
 32 this.BackColor = Color.Red;
 33 }
 34 }
 35
 36 private void whiteRadioButton_CheckedChanged(object sender, EventArgs e)
 37 {
 38 if (whiteRadioButton.Checked)
 39 {
 40 this.BackColor = Color.White;
 41 }
 42 }
 43
 44 private void normalRadioButton_CheckedChanged(object sender, EventArgs e)
 45 {
 46 if (normalRadioButton.Checked)
 47 {
 48 this.BackColor = SystemColors.Control;
 49 }
 50 }
 51
 52 private void exitButton_Click(object sender, EventArgs e)
 53 {
 54 // Close the form.
 55 this.Close();
 56 }
 57 }
 58 }

 4.10 The switch Statement 249

or set of statements to execute. Figure 4-30 shows an example of how a multiple alterna-
tive decision structure looks in a flowchart.

switch (testExpression)
{
 case value_1:
 statement;
 statement;
 etc.
 break;

 case value_2:
 statement;
 statement;
 etc.
 break;

Insert as many case sections as necessary.

 case value_N:
 statement;
 statement;
 etc.
 break;

 default:
 statement;
 statement;
 etc.
 break;
}

The testExpression is
a variable or expression.

These statements are executed
if the testExpression is
equal to value_1.

These statements are executed
if the testExpression is
equal to value_2.

These statements are executed
if the testExpression is
equal to value_N.

These statements are executed
if the testExpression is
not equal to any of the case
values.

month

Display "January" Display "February" Display "March" Display "Error:
Invalid month"

2 3 Default1

 Figure 4-30 A multiple alternative decision structure

 In the flowchart, the diamond symbol shows month , which is the name of a variable. If
the month variable contains the value 1, the program displays “January.” If the month
variable contains the value 2, the program displays “February.” If the month variable
contains the value 3, the program displays “March.” If the month variable contains none
of these values, the action that is labeled Default is executed. In this case, the program
displays “Error: Invalid month.”

 Here is the general format of a switch statement in C# code:

250 Chapter 4 Making Decisions

 The first line of the statement starts with the word switch , followed by a testExpres-
sion , which is enclosed in parentheses. The testExpression is a variable or an expres-
sion that gives an integer, string, or bool value. (Several other data types that we have not
discussed yet are also permissible. The important thing to remember is that the testEx-
pression cannot be a floating-point or decimal value.)

 Beginning at the next line is a block of code enclosed in curly braces. Inside this block of
code are one or more case sections. A case section begins with the word case , followed
by a value, followed by a colon. Each case section contains one or more statements, fol-
lowed by a break statement. Each case section must end with a break statement. At the
end is an optional default section. The default section must also end with a break
statement.

 When the switch statement executes, it compares the value of the testExpression
with the values that follow each of the case statements (from top to bottom). When
it finds a case value that matches the testExpression ’s value, the program branches
to the case statement. The statements that follow the case statement are executed,
until a break statement is encountered. At that point the program jumps out of the
 switch statement. If the testExpression does not match any of the case values,
the program branches to the default statement and executes the statements that
immediately follow it.

 For example, the following code performs the same operation as the flowchart in
 Figure 4-30 :

 switch (month)
 {
 case 1:
 MessageBox.Show("January");
 break;

 case 2:
 MessageBox.Show("February");
 break;

 case 3:
 MessageBox.Show("March");
 break;

 default:
 MessageBox.Show("Error: Invalid month");
 break;
 }

 In this example the testExpression is the month variable. If the value in the month
variable is 1, the program branches to the case 1: section and executes the
 MessageBox.Show("January") statement that immediately follows it. If the value in
the month variable is 2, the program branches to the case 2: section and executes the
 MessageBox.Show("February") statement that immediately follows it. If the value
in the month variable is 3, the program branches to the case 3: section and executes
the MessageBox.Show("March") statement that immediately follows it. If the value
in the month variable is not 1, 2, or 3, the program branches to the default: section
and executes the MessageBox.Show("Error: Invalid month") statement that im-
mediately follows it.

 The switch statement can be used as an alternative to an if-else-if statement that
tests the same variable or expression for several different values. For example, the previously
shown switch statement works like this if-else-if statement:

 4.11 Introduction to List Boxes 251

 if (month == 1)
 {
 MessageBox.Show("January");
 }
 else if (month == 2)
 {
 MessageBox.Show("February");
 }
 else if (month == 3)
 {
 MessageBox.Show("March");
 }
 else
 {
 MessageBox.Show("Error: Invalid month");
 }

 To see an application that uses a switch statement, look at the Switch Example project in
the Chap04 folder of this book’s Student Sample Programs.

 Checkpoint

 4.29 Convert the following if-else-if code to a switch statement.
 if (choice == 1)
 {
 MessageBox.Show("You chose 1.");
 }
 else if (choice == 2)
 {
 MessageBox.Show("You chose 2.");
 }
 else if (choice == 3)
 {
 MessageBox.Show("You chose 3.");
 }
 else
 {
 MessageBox.Show("Make another choice.");
 }

 4.11 Introduction to List Boxes

 CONCEPT: List boxes display a list of items and allow the user to select an item from
the list.

 A list box displays a list of items and allows the user to select one or more items from the
list. In Visual C# you use the ListBox control to create a list box on an application’s form.
 Figure 4-31 shows a form with two ListBox controls. At run time, the user may select one
of the items, causing the item to appear selected.

 The topmost ListBox in Figure 4-31 does not have a scroll bar, but the bottom one does.
A scroll bar appears when a ListBox contains more items than can be displayed in the

252 Chapter 4 Making Decisions

space provided. In the figure, the top ListBox has four items (Poodle, Great Dane, Ger-
man Shepherd, and Terrier), and all items are displayed. The bottom ListBox shows four
items (Siamese, Persian, Bobtail, and Burmese), but because it has a scroll bar, we know
there are more items in the ListBox than those four.

 You will find the ListBox control in the Common Controls section of the Toolbox . Once
you create a ListBox control, you add items to its Items property . The items that you add
to a ListBox’s Items property are displayed in the ListBox.

 To store values in the Items property at design time, follow these steps:

 1. Select the ListBox control in the Designer window.
 2. In the Properties window, the setting for the Items property is displayed as (Collec-

tion) . When you select the Items property, an ellipsis button () appears.
 3. Click the ellipsis button. The String Collection Editor dialog box appears, as shown

in Figure 4-32 .
 4. Type the values that are to appear in the ListBox into the String Collection Editor

dialog box. Type each value on a separate line by pressing the Enter key after each
entry.

 5. When you have entered all the values, click the OK button.

 Figure 4-31 ListBox examples

 Figure 4-32 The String Collection Editor dialog box

 NOTE: Once you acquire the necessary skills, you will be able to fill the Items col-
lection of list boxes from external data sources (such as databases).

 4.11 Introduction to List Boxes 253

 The SelectedItem Property
 When the user selects an item in a ListBox, the item is stored in the ListBox’s
 SelectedItem property . For example, suppose an application has a ListBox control named
fruitListBox and a string variable named selectedFruit . The fruitListBox con-
trol contains the items Apples , Pears , and Bananas . If the user has selected Pears , the fol-
lowing statement assigns the string "Pears" to the variable selectedFruit :

 selectedFruit = fruitListBox.SelectedItem.ToString();

 Notice that you have to call the SelectedItem property’s ToString method to retrieve the
value as a string.

 Determining Whether an Item Is Selected
 An exception will occur if you try to get the value of a ListBox’s SelectedItem property
when no item is selected in the ListBox. For that reason, you should always make sure
that an item is selected before reading the SelectedItem property. You do this with the
SelectedIndex property.

 The items that are stored in a ListBox each have an index. The index is simply a number
that identifies the item’s position in the ListBox. The first item has the index 0, the next
has the index 1, and so on. The last index value is n − 1, where n is the number of items
in the ListBox. When the user selects an item in a ListBox, the item’s index is stored in the
ListBox’s SelectedIndex property . If no item is selected in the ListBox, the SelectedIndex
property is set to −1.

 You can use the SelectedIndex property to make sure that an item is selected in a ListBox
before you try to get the value of the SelectedItem property. You simply make sure the
SelectedIndex property is not set to −1 before trying to read the SelectedItem property.
Here is an example:

 if (fruitListBox.SelectedIndex != -1)
 {
 selectedFruit = fruitListBox.SelectedItem.ToString();
 }

 In Tutorial 4-6 you will create an application that lets the user select an item from a
ListBox control.

 Tutorial 4-6:
 Creating the Time Zone Application

 In this tutorial you create an application that allows the user to select a city from a List-
Box control. When the user clicks a button, the application displays the name of the city’s
time zone. Figure 4-33 shows the application’s form, with the names of all the controls.

 Step 1: Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms
Application project named Time Zone .

 Step 2: Set up the application’s form, as shown in Figure 4-33 . Notice that the form’s
Text property is set to Time Zone . The names of the controls are shown in the
figure. As you place each of the controls on the form, refer to Table 4-9 for the
relevant property settings.

 Tutorial 4-6 :
 Creating the
 Time Zone
application

VideoNote

254 Chapter 4 Making Decisions

 Step 3: Once you have set up the form with its controls, you can create the Click event
handlers for the Button controls. At the end of this tutorial, Program 4-6 shows
the completed code for the form. You will be instructed to refer to Program 4-6
as you write the event handlers.

 In the Designer , double-click the okButton control. This opens the code editor,
and you see an empty event handler named okButton_Click . Complete the
 okButton_Click event handler by typing the code shown in lines 22–53 in
 Program 4-6 . Let’s take a closer look at the code:

 Line 22: This line declares a string variable named city . It is used to hold the
name of the city that the user selects from the ListBox.

 Line 24: This if statement determines whether the user has selected an item
in the cityListBox control. If an item is selected, the control’s SelectedIndex
property is set to the item’s index (a value of 0 or greater), and the program
continues to line 26. If no item is selected, however, the control’s SelectedIndex
property is set to −1, and the program jumps to the else clause in line 49.

cityListBox

timeZoneLabeloutputDescriptionLabel

promptLabel

exitButtonokButton

 Figure 4-33 The Color Theme form

 Table 4-9 Control property settings

 Control Name Control Type Property Settings

 promptLabel Label Text : Select a city and I will give
you the time zone.

 cityListBox ListBox Items :

 Denver
 Honolulu
 Minneapolis
 New York
 San Francisco

 outputDescriptionLabel Label Text : Time Zone:

 timeZoneLabel Label AutoSize : False
 BorderStyle : FixedSingle
 Text : (The contents of the Text
property have been erased.)
 TextAlign : MiddleCenter

 okButton Button Text : OK

 exitButton Button Text : Exit

 4.11 Introduction to List Boxes 255

 Line 27: This statement gets the selected item from the ListBox and assigns it to
the city variable.

 Line 30: This switch statement tests the city variable and branches to one of its
case statements, depending on the variable’s value:

 • If the city variable equals "Honolulu" , the program jumps to the case
statement in line 32.

 • If the city variable equals "San Francisco" , the program jumps to the
 case statement in line 35.

 • If the city variable equals "Denver" , the program jumps to the case state-
ment in line 38.

 • If the city variable equals "Minneapolis" , the program jumps to the case
statement in line 41.

 • If the city variable equals "New York" , the program jumps to the case state-
ment in line 44.

 Step 4: Switch your view back to the Designer and double-click the exitButton
control. In the code editor you see an empty event handler named
exitButton_Click . Complete the exitButton_Click event handler by
typing the code shown in lines 58–59 in Program 4-6 .

 Step 5: Save the project and run the application. Select a city in the ListBox control
and click the OK button to see its time zone. Test each city, and when you are
finished, click the Exit button and the form should close.

 Program 4-6 Completed Form1 code for the Time Zone application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Time_Zone
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void okButton_Click(object sender, EventArgs e)
 21 {
 22 string city; // To hold the name of a city
 23
 24 if (cityListBox.SelectedIndex != -1)
 25 {
 26 // Get the selected item.
 27 city = cityListBox.SelectedItem.ToString();
 28
 29 // Determine the time zone.

256 Chapter 4 Making Decisions

 Checkpoint

 4.30 How do you add items to a ListBox control using the Properties window?

 4.31 How do you get the item that is selected in a ListBox?

 4.32 How can you determine whether an item has been selected in a ListBox?

 30 switch (city)
 31 {
 32 case "Honolulu":
 33 timeZoneLabel.Text = "Hawaii-Aleutian";
 34 break;
 35 case "San Francisco":
 36 timeZoneLabel.Text = "Pacific";
 37 break;
 38 case "Denver":
 39 timeZoneLabel.Text = "Mountain";
 40 break;
 41 case "Minneapolis":
 42 timeZoneLabel.Text = "Central";
 43 break;
 44 case "New York":
 45 timeZoneLabel.Text = "Eastern";
 46 break;
 47 }
 48 }
 49 else
 50 {
 51 // No city was selected.
 52 MessageBox.Show("Select a city.");
 53 }
 54 }
 55
 56 private void exitButton_Click(object sender, EventArgs e)
 57 {
 58 // Close the form.
 59 this.Close();
 60 }
 61 }
 62 }

 Review Questions 257

 Key Terms

 ! operator
 && operator
 || operator
 bool data type
 Boolean expression
 check box
 CheckBox control
 Checked property
 CheckedChanged event
 conditionally executed
 control structure
 decimal.TryParse method
 decision structure
 double.TryParse method
 dual-alternative decision structure
 flag
 if-else statement
 if-else-if statement
 index
 input validation
 int.Tryparse method
 Items property
 ListBox control

 logical AND operator
 logical NOT operator
 logical operator
 logical OR operator
 multiple-alternative decision
structure
 mutually exclusive selection
 nested decision structure
 out keyword
 output variable
 radio buttons
 RadioButton control
 relational operator
 SelectedIndex property
 SelectedItem property
 selection structure
 sequence structure
 short-circuit evaluation
 single-alternative decision structure
 switch statement
 TryParse method

 Review Questions
 Multiple Choice

 1. A __________ structure executes a set of statements only under certain circum-
stances.

 a. sequence
 b. circumstantial
 c. decision
 d. Boolean

 2. A __________ structure provides one alternative path of execution.

 a. sequence
 b. single-alternative decision
 c. one-path alternative
 d. single-execution decision

 3. A(n) __________ expression has a value of either true or false.

 a. binary
 b. decision
 c. unconditional
 d. Boolean

 4. The symbols > , < , and == are all __________ operators.

 a. relational
 b. logical
 c. conditional
 d. ternary

258 Chapter 4 Making Decisions

 5. A __________ structure tests a condition and then takes one path if the condition is
true or another path if the condition is false.

 a. multibranch statement
 b. single-alternative decision
 c. dual-alternative decision
 d. sequence

 6. You use a(n) __________ statement to write a single-alternative decision structure.

 a. test-jump
 b. if
 c. if-else
 d. if-call

 7. You use a(n) __________ statement to write a dual alternative decision structure.

 a. test-jump
 b. if
 c. if-else
 d. if-call

 8. A ____________ decision structure is written inside another decision structure.

 a. nested
 b. tiered
 c. dislodged
 d. hierarchical

 9. && , || , and ! are __________ operators.

 a. relational
 b. logical
 c. conditional
 d. ternary

 10. A compound Boolean expression created with the __________ operator is true only
if both of its subexpressions are true.

 a. &&
 b. ||
 c. !
 d. both

 11. A compound Boolean expression created with the __________ operator is true if
either of its subexpressions is true.

 a. &&
 b. ||
 c. !
 d. either

 12. The __________ operator takes a Boolean expression as its operand and reverses its
logical value.

 a. &&
 b. ||
 c. !
 d. either

 13. A __________ is a Boolean variable that signals when some condition exists in the
program.

 a. flag
 b. signal

 Review Questions 259

 c. sentinel
 d. siren

 14. The __________ family of methods can be used to convert a string to a specific data
type without throwing an exception.

 a. TryConvert
 b. Parse
 c. TryParse
 d. SafeConvert

 15. If several __________ controls exist in a GroupBox, only one of them may be se-
lected at a time.

 a. CheckBox
 b. RadioButton
 c. ListBox
 d. SelectionButton

 16. You use the __________ statement to create a multiple alternative decision structure.

 a. menu
 b. branch
 c. select
 d. switch

 17. The __________ section of a switch statement is branched to if none of the case
values match the test expression.

 a. else
 b. default
 c. case
 d. otherwise

 18. A ListBox’s index numbering starts at __________.

 a. 0
 b. 1
 c. −1
 d. any value you specify

 19. You can use the __________ property to determine whether an item is selected in a
ListBox.

 a. Index
 b. SelectedItem
 c. SelectedIndex
 d. Items.SelectedIndex

 20. The __________ property holds the item that is selected in a ListBox control.

 a. Index
 b. SelectedItem
 c. SelectedIndex
 d. Items.SelectedIndex

 True or False

 1. You can write any program using only sequence structures.

 2. A single-alternative decision structure tests a condition and then takes one path if
the condition is true or another path if the condition is false.

 3. The if-else statement is a dual-alternative decision structure.

260 Chapter 4 Making Decisions

 4. A decision structure can be nested inside another decision structure.

 5. A compound Boolean expression created with the && operator is true only when
both subexpressions are true.

 6. The TryParse methods throw an exception if the string argument cannot be
 converted.

 7. Multiple CheckBox controls in the same GroupBox can be selected at the same time.

 8. The test expression in a switch statement can be a double or a decimal value.

 9. If an item is not selected in a ListBox, the control’s SelectedIndex property will be
set to 0.

 10. To store items in a ListBox, you add them to the control’s Text property.

 Short Answer

 1. What is meant by the term conditionally executed ?

 2. You need to test a condition and then execute one set of statements if the condition
is true. If the condition is false, you need to execute a different set of statements.
What structure will you use?

 3. Briefly describe how the && operator works.

 4. Briefly describe how the || operator works.

 5. When determining whether a number is inside a range, which logical operator is it
best to use?

 6. What is a flag and how does it work?

 7. What are the two arguments that you pass to a TryParse method?

 8. How do you determine in code whether a RadioButton control or a CheckBox
control is selected?

 9. How do you add items to a ListBox using the Properties window?

 10. How can you read the selected item from a ListBox while preventing an exception
from occurring if no item is selected?

 Algorithm Workbench

 1. Write an if statement that assigns 20 to the variable y and assigns 40 to the variable
 z if the variable x is greater than 100.

 2. Write an if statement that assigns 0 to the variable b and assigns 1 to the variable
 c if the variable a is less than 10.

 3. Write an if-else statement that assigns 0 to the variable b if the variable a is less
than 10. Otherwise, it should assign 99 to the variable b .

 4. Write nested decision structures that perform the following: if amount1 is greater
than 10 and amount2 is less than 100, display the greater of amount1 and amount2 .

 5. Write an if-else statement that displays “Speed is normal” if the value of the
 speed variable is at least 24 but no more than 56. If the speed variable’s value is
outside this range, display “Speed is abnormal.”

 6. Write an if-else statement that determines whether the value of the points vari-
able is less than 9 or greater than 51. If this is true, display “Invalid points.” Other-
wise, display “Valid points.”

 Programming Problems 261

 7. Assume pointsTextBox is the name of a TextBox control and points is the name
of an int variable. Write an if-else statement that uses one of the TryParse
methods to convert the pointsTextBox control’s Text property to an int and
stores the result in the points variable. If the conversion is not successful, display
an error message in a message box.

 8. Rewrite the following if-else-if statement as a switch statement.

 if (selection == 1)

 {

 MessageBox.Show("You selected 1.");

 }

 else if (selection == 2)

 {

 MessageBox.Show("You selected 2.");

 }

 else if (selection == 3)

 {

 MessageBox.Show("You selected 3.");

 }

 else if (selection == 4)

 {

 MessageBox.Show("You selected 4.");

 }

 else

 {

 MessageBox.Show("Not good with numbers, eh?");

 }

 9. Assume nameListBox is a ListBox control. Write code that reads the selected item
from the ListBox. Be sure to prevent an exception from occurring in case no item
has been selected.

 Programming Problems

 1. Roman Numeral Converter

 Create an application that allows the user to enter an integer between 1 and 10 into
a TextBox control. The program should display the Roman numeral version of that
number. If the number is outside the range of 1 through 10, the program should
display an error message.

 The following table lists the Roman numerals for the numbers 1 through 10.

 Number Roman Numeral
 1 I
 2 II
 3 III
 4 IV
 5 V
 6 VI
 7 VII
 8 VIII
 9 IX

 10 X

262 Chapter 4 Making Decisions

 2. Mass and Weight

 Scientists measure an object’s mass in kilograms and its weight in Newtons. If you
know the amount of mass of an object, you can calculate its weight, in Newtons,
with the following formula:

 Weight = Mass × 9.8

 Create an application that lets the user enter an object’s mass and then calculates its
weight. If the object weighs more than 1000 Newtons, display a message indicating
that it is too heavy. If the object weighs less than 10 Newtons, display a message
indicating that it is too light.

 3. Magic Dates

 The date June 10, 1960, is special because when it is written in the following format,
the month times the day equals the year:

 6/10/60

 Create an application that lets the user enter a month (in numeric form), a day, and
a two-digit year. The program should then determine whether the month times the
day equals the year. If so, it should display a message saying the date is magic. Oth-
erwise, it should display a message saying the date is not magic.

 4. Color Mixer

 The colors red, blue, and yellow are known as the primary colors because they can-
not be made by mixing other colors. When you mix two primary colors, you get a
secondary color, as shown here:
 • When you mix red and blue, you get purple.
 • When you mix red and yellow, you get orange.
 • When you mix blue and yellow, you get green.

 Create an application that lets the user select two primary colors from two differ-
ent sets of Radio buttons. The form should also have a Mix button. When the user
clicks the Mix button, the form’s background should change to the color that you
get when you mix the two selected primary colors. Figure 4-34 shows an example of
how the form should appear.

 Solving the
Mass and
Weight
Problem

VideoNote

 Figure 4-34 The Color Mixer form

 Note: If the user picks the same color from both sets of Radio buttons, set the form’s
background to that color.

 5. Distance Converter

 In the English measurement system, 1 yard equals 3 feet and 1 foot equals 12 inches.
Use this information to create an application that lets the user convert distances to
and from inches, feet, and yards.

 Programming Problems 263

 Figure 4-35 shows an example of how the application’s form might appear. In the
example, the user enters the distance to be converted into a TextBox. A ListBox
allows the user to select the units being converted from, and another ListBox allows
the user to select the units being converted to.

 Figure 4-35 The Distance Converter form

 Note: Be sure to handle the situation where the user picks the same units from both
list boxes. The converted value will be the same as the value entered.

 6. Book Club Points

 Serendipity Booksellers has a book club that awards points to its customers based
on the number of books purchased each month. The points are awarded as follows:
 • If a customer purchases 0 books, he or she earns 0 points.
 • If a customer purchases 1 book, he or she earns 5 points.
 • If a customer purchases 2 books, he or she earns 15 points.
 • If a customer purchases 3 books, he or she earns 30 points.
 • If a customer purchases 4 or more books, he or she earns 60 points.

 Create an application that lets the user enter the number of books that he or she has
purchased this month and displays the number of points awarded.

 7. Software Sales

 A software company sells a package that retails for $99. Quantity discounts are
given according to the following table:

 Quantity Discount
 10–19 20%
 20–49 30%
 50–99 40%
 100 or more 50%

 Create an application that lets the user enter the number of packages purchased.
The program should then display the amount of the discount (if any) and the total
amount of the purchase after the discount.

 8. Body Mass Index Program Enhancement

 In Programming Problem 6 in Chapter 3 , you were asked to create an application
that calculates a person’s body mass index (BMI). Recall from that exercise that the
BMI is often used to determine whether a person is overweight or underweight for
their height. A person’s BMI is calculated with the following formula:

 BMI = Weight × 703 ÷ Height2

 In the formula, weight is measured in pounds and height is measured in inches.
Enhance the program so it displays a message indicating whether the person has
optimal weight, is underweight, or is overweight. A person’s weight is considered

264 Chapter 4 Making Decisions

to be optimal if his or her BMI is between 18.5 and 25. If the BMI is less than 18.5,
the person is considered to be underweight. If the BMI value is greater than 25, the
person is considered to be overweight.

 9. Change for a Dollar Game

 Create a change-counting game that gets the user to enter the number of coins re-
quired to make exactly one dollar. The program should let the user enter the number
of pennies, nickels, dimes, and quarters. If the total value of the coins entered is
equal to one dollar, the program should congratulate the user for winning the game.
Otherwise, the program should display a message indicating whether the amount
entered was more than or less than one dollar.

 10. Fat Percentage Calculator

 One gram of fat has 9 calories. If you know the number of fat grams in a particular
food, you can use the following formula to calculate the number of calories that
come from fat in that food:

 Calories from fat = Fat grams × 9

 If you know the food’s total calories, you can use the following formula to calculate
the percentage of calories from fat:

 Percentage of calories from fat = Calories from fat ÷ Total calories

 Create an application that allows the user to enter:

 • The total number of calories for a food item
 • The number of fat grams in that food item

 The application should calculate and display:

 • The number of calories from fat
 • The percentage of calories that come from fat

 Also, the application’s form should have a CheckBox that the user can check if he or
she wants to know whether the food is considered low fat. (If the calories from fat
are less than 30% of the total calories of the food, the food is considered low fat.)

 Use the following test data to determine if the application is calculating properly:

 Calories and Fat Percentage Fat
 200 calories, 8 fat grams Percentage of calories from fat: 36%
 150 calories, 2 fat grams Percentage of calories from fat: 12% (a low-fat food)
 500 calories, 30 fat grams Percentage of calories from fat: 54%

 Note: Make sure the number of calories and fat grams are not less than 0. Also,
the number of calories from fat cannot be greater than the total number of calories.
If that happens, display an error message indicating that either the calories or fat
grams were incorrectly entered.

 11. Time Calculator

 Create an application that lets the user enter a number of seconds and works as
 follows:
 • There are 60 seconds in a minute. If the number of seconds entered by the user

is greater than or equal to 60, the program should display the number of min-
utes in that many seconds.

 • There are 3,600 seconds in an hour. If the number of seconds entered by the
user is greater than or equal to 3,600, the program should display the number
of hours in that many seconds.

 • There are 86,400 seconds in a day. If the number of seconds entered by the user
is greater than or equal to 86,400, the program should display the number of
days in that many seconds.

 Programming Problems 265

 12. Workshop Selector

 The following table shows a training company’s workshops, the number of days of
each, and their registration fees.

 Workshop Number of Days Registration Fee
 Handling Stress 3 $1,000
 Time Management 3 $800
 Supervision Skills 3 $1,500
 Negotiation 5 $1,300
 How to Interview 1 $500

 The training company conducts its workshops in the six locations shown in the
following table. The table also shows the lodging fees per day at each location.

 Location Lodging Fees per Day
 Austin $150
 Chicago $225
 Dallas $175
 Orlando $300
 Phoenix $175
 Raleigh $150

 When a customer registers for a workshop, he or she must pay the registration fee
plus the lodging fees for the selected location. For example, here are the charges to
attend the Supervision Skills workshop in Orlando:

 Registration: $1,500
 Lodging: $300 × 3 days = $900
 Total: $2,400

 Create an application that lets the user select a workshop from one ListBox and
a location from another ListBox. When the user clicks a button, the application
should calculate and display the registration cost, the lodging cost, and the total
cost.

This page intentionally left blank

267

 5.1 More about ListBoxes

 5.2 The while Loop

 5.3 The ++ and −− operators

 5.4 The for Loop

 5.5 The do-while Loop

 5.6 Using Files for Data Storage

 5.7 The OpenFileDialog and
SaveFileDialog Controls

 5.8 Random Numbers

 5.9 The Load Event

 TOPICS

 Loops, Files, and
Random Numbers 5 C

H
A

P
T

E
R

 5.1 More about ListBoxes

 CONCEPT: ListBox controls have various methods and properties that you can use in
code to manipulate the ListBox’s contents.

 In Chapter 4 we introduced the ListBox control, which displays a list of items and allows
the user to select one or more items from the list. In this chapter we use ListBox controls
to display output. Many of the algorithms that you will see in this chapter generate lists of
data and then display those lists in ListBox controls.

 Recall from Chapter 4 that you add items to a ListBox control’s Items property, and those
items are displayed in the ListBox. At design time, you can use the Properties window to
add items to the control’s Items property. You can also write code that adds items to a
ListBox control at run time. To add an item to a ListBox control with code, you call the
control’s Items.Add method . Here is the method’s general format:

 ListBoxName .Items.Add(Item);

 ListBoxName is the name of the ListBox control. Item is the value to be added to
the Items property. For example, in the Chap05 folder of this book’s Student Sample
 Programs, you will find a project named Name List . Figure 5-1 shows the applica-
tion’s form. As shown in the image on the left, the ListBox’s name is nameListBox and
the Button control’s name is addButton . At run time, when you click the addButton
 control, the names shown in the image on the right are added to the nameListBox
control.

268 Chapter 5 Loops, Files, and Random Numbers

 Here is the code for the addButton_Click event handler:

 1 private void addButton_Click(object sender, EventArgs e)
 2 {
 3 namesListBox.Items.Add("Chris");
 4 namesListBox.Items.Add("Alicia");
 5 namesListBox.Items.Add("Justin");
 6 namesListBox.Items.Add("Holly");
 7 }

 You can add values of other types as well. In the Chap05 folder of the book’s Student
Sample Programs, you will find a project named Number List . Figure 5-2 shows the ap-
plication’s form. As shown in the image on the left, the ListBox’s name is numberListBox
and the Button control’s name is addButton . At run time, when you click the addButton
control, the numbers shown in the image on the right are added to the numberListBox
control.

namesListBox

addButton

 Figure 5-1 The Name List application

numberListBox

addButton

 Figure 5-2 The Number List application

 Here is the code for the addButton_Click event handler:

 1 private void addButton_Click(object sender, EventArgs e)
 2 {
 3 numberListBox.Items.Add(10);
 4 numberListBox.Items.Add(20);
 5 numberListBox.Items.Add(30);
 6 numberListBox.Items.Add(40);
 7 }

 The Items.Count Property
 ListBox controls have an Items.Count property that reports the number of items stored
in the ListBox. If the ListBox is empty, the Items.Count property equals 0. For example,

 5.2 The while Loop 269

assume an application has a ListBox control named employeesListBox . The following
 if statement displays a message box if there are no items in the ListBox:

 if (employeesListBox.Items.Count == 0)
 {
 MessageBox.Show("There are no items in the list!");
 }

 The Items.Count property holds an integer value. Assuming numEmployees is an int
variable, the following statement assigns the number of items in the employeesListBox
to the numEmployees variable:

 numEmployees = employeesListBox.Items.Count;

 The Items.Clear Method
 ListBox controls have an Items.Clear method that erases all the items in the Items prop-
erty. Here is the method’s general format:

 ListBoxName .Items.Clear();

 For example, assume an application has a ListBox control named employeesListBox .
The following statement clears all the items in the list.

 employeesListBox.Items.Clear();

 Checkpoint

 5.1 In code, how do you add an item to a ListBox control?

 5.2 How do you determine the number of items that are stored in a ListBox control?

 5.3 How do you erase the contents of a ListBox control?

 5.2 The while Loop

 CONCEPT: The while loop causes a statement or set of statements to repeat as long
as a Boolean expression is true.

 The while loop gets its name from the way it works: While a Boolean expression is true,
do some task . The loop has two parts: (1) a Boolean expression that is tested for a true or
false value and (2) a statement or set of statements that is repeated as long as the Boolean
expression is true. Figure 5-3 shows the logic of a while loop.

Statement(s)
Boolean

Expression
True

False

 Figure 5-3 The logic of a while loop

270 Chapter 5 Loops, Files, and Random Numbers

 The diamond symbol represents the Boolean expression that is tested. Notice what hap-
pens if the expression is true: One or more statements are executed and the program’s ex-
ecution flows back to the point just above the diamond symbol. The Boolean expression
is tested again, and if it is true, the process repeats. If the Boolean expression is false, the
program exits the loop. Each time the loop executes its statement or statements, we say
the loop is iterating, or performing an iteration .

 Here is the general format of the while loop:

while (BooleanExpression)
{
 statement;
 statement;
 etc.
}

This set of statements is repeated
while the Boolean expression is true.

 We refer to the first line as the while clause . The while clause begins with the word
 while , followed by a Boolean expression that is enclosed in parentheses. Beginning on the
next line is a set of statements enclosed in curly braces. This block of statements is known
as the body of the loop.

 When the while loop executes, the Boolean expression is tested. If the Boolean expres-
sion is true, the statements that appear in the body of the loop are executed, and then the
loop starts over. If the Boolean expression is false, the loop ends and the program resumes
execution at the statement immediately following the loop.

 We say that the statements in the body of the loop are conditionally executed because they
are executed only under the condition that the Boolean expression is true. If you are writ-
ing a while loop that has only one statement in its body, you do not have to enclose the
statement inside curly braces. Such a loop can be written in the following general format:

 while (BooleanExpression)
 statement;

 When a while loop written in this format executes, the Boolean expression is tested. If
it is true, the one statement that appears on the next line is executed, and then the loop
starts over. If the Boolean expression is false, however, the loop ends.

 Although the curly braces are not required when there is only one statement in the loop’s
body, it is still a good idea to use them, as shown in the following general format:

 while (BooleanExpression)
 {
 statement;
 }

 When we discussed the various if statements in Chapter 4 , we mentioned that this is a
good style of programming because it cuts down on errors. If you have more than one
statement in the body of a loop, those statements must be enclosed in curly braces. If you
get into the habit of always enclosing the conditionally executed statements in a set of
curly braces, it’s less likely that you will forget them.

 You should also notice that the statements in the body of the loop are indented. As with
 if statements, this indentation makes the code easier to read and debug. By indenting
the statements in the body of the loop, you visually set them apart from the surrounding
code.

 Let’s look at an example. In the Chap05 folder of this book’s Student Sample Programs,
you will find a project named while Loop Demo . Figure 5-4 shows the application’s form.
As shown in the image on the left, the Button control’s name is goButton . At run time,
when you click the goButton control, the message box shown in the image on the right

 5.2 The while Loop 271

is displayed. When you click the OK button to close the message box, another identical
message box is displayed. The message box is displayed a total of five times.

 Here is the code for the goButton_Click event handler:

 1 private void goButton_Click(object sender, EventArgs e)
 2 {
 3 // Declare a variable to count the loop iterations.
 4 int count = 1;
 5
 6 // Display "Hello" in a message box five times.
 7 while (count <= 5)
 8 {
 9 // Display the message box.
 10 MessageBox.Show("Hello");
 11
 12 // Add one to count.
 13 count = count + 1;
 14 }
 15 }

 Let’s take a closer look at this code. In line 4 an int variable named count is declared
and initialized with the value 1. A while loop begins in line 7. Notice that the while loop
tests the expression count <= 5 . The statements in the body of the while loop repeat as
long as the count variable is less than or equal to 5. Inside the body of the loop, line 10
displays “Hello” in a message box, and then line 13 adds one to the count variable. This
is the last statement in the body of the loop, so after it executes, the loop starts over. It
tests the Boolean expression again, and if it is true, the statements in the body of the loop
are executed. This cycle repeats until the Boolean expression count <= 5 is false, as il-
lustrated in Figure 5-5 . A flowchart for the loop is shown in Figure 5-6 .

goButton

 Figure 5-4 The while Loop Demo application

while (count <= 5)
{
 // Display the message box.
 MessageBox.Show("Hello");

 // Add one to count.
 count = count + 1;
}

Test this Boolean expression.

If the Boolean expression
is true, perform these
statements. Otherwise,
the loop ends.

After executing the
body of the loop,
start over.

2

1

3

 Figure 5-5 The while Loop

272 Chapter 5 Loops, Files, and Random Numbers

 The while Loop Is a Pretest Loop
 The while loop is known as a pretest loop , which means it tests its condition before per-
forming an iteration. Because the test is done at the beginning of the loop, you usually
have to perform some steps prior to the loop to make sure that the loop executes at least
once. Notice the declaration of the count variable in the while Loop Demo program:

 int count = 1;

 The count variable is initialized with the value 1. If count had been initialized with a
value that is greater than 5, as shown in the following program sample, the loop would
never execute:

 1 private void goButton_Click(object sender, EventArgs e)
 2 {
 3 // Declare a variable to count the loop iterations.
 4 int count = 6;
 5
 6 // This loop will never iterate!
 7 while (count <= 5)
 8 {
 9 // Display the message box.
 10 MessageBox.Show("Hello");
 11
 12 // Add one to count.
 13 count = count + 1;
 14 }
 15 }

 An important characteristic of the while loop is that the loop will never iterate if the
Boolean expression is false to start with. If you want to be sure that a while loop executes
the first time, you must initialize the relevant data in such a way that the Boolean expres-
sion starts out as true.

 Counter Variables
 In the while Loop Demo application, the variable count is initialized with the value 1,
and then 1 is added to the variable count during each loop iteration. The loop executes as
long as count is less than or equal to 5. The variable count is used as a counter variable ,
which means it is regularly incremented in each loop iteration. In essence, the count vari-
able keeps count of the number of iterations the loop has performed. Counter variables
are commonly used to control the number of times that a loop iterates.

 Tutorial 5-1 will give you some practice writing a loop and using a counter variable. In
the tutorial you will write a while loop that calculates the amount of interest earned by a
bank account each month for a number of months.

Display “Hello”
count
<= 5

True

False

Add 1 to count

 Figure 5-6 Flowchart for the while Loop

 5.2 The while Loop 273

 Tutorial 5-1 :
 Using a
Loop to
Calculate
an Account
Balance

VideoNote

 Tutorial 5-1:
 Using a Loop to Calculate an Account Balance

 In this tutorial you complete the Ending Balance application. The project has already
been started for you and is located in the Chap05 folder of this book’s Student Sample
Programs. The application’s form is shown in Figure 5-7 .

startingBalTextBox

endingBalanceLabel

monthsTextBox

calculateButton clearButton exitButton

 Figure 5-7 The Ending Balance form

 When you complete the application, it will allow the user to enter an account’s starting
balance into the startingBalTextBox control and the number of months that the ac-
count will be left to earn interest into the monthsTextBox control. When the user clicks
the calculateButton control, the application calculates the account’s balance at the end
of the time period. The account’s monthly interest rate is 0.005, and the interest is com-
pounded monthly.

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Ending
Balance in the Chap05 folder of this book’s Student Sample Programs.

 Step 2: Open the Form1 form in the Designer . The form is shown, along with the names
of the important controls, in Figure 5-7 .

 Step 3: Now you will create the Click event handlers for the Button controls. At the end
of this tutorial, Program 5-1 shows the completed code for the form. You will
be instructed to refer to Program 5-1 as you write the event handlers.

 In the Designer , double-click the calculateButton control. This opens the
code editor, and you will see an empty event handler named calculateButton_
Click . Complete the calculateButton_Click event handler by typing
the code shown in lines 22–59 in Program 5-1 . Let’s take a closer look at
the code:

 Line 23: This statement declares a constant decimal named INTEREST_RATE ,
set to the value 0.005. This is the monthly interest rate.

 Lines 26–28: These statements declare the following variables:

 • balance , a decimal variable to hold the account balance.
 • months , an int variable to hold the number of months that the account will

be left to earn interest.
 • count , an int that is used to count the months as a loop iterates. Notice that

the count variable is initialized with the value 1.

274 Chapter 5 Loops, Files, and Random Numbers

 Line 31: This if statement tries to convert startingBalTextBox.Text to a
 decimal . If the conversion is successful, the result is stored in the balance vari-
able, and the program continues executing at line 33. If the conversion is not
successful, the program jumps to the else clause in line 55, and line 58 displays
the error message Invalid value for starting balance .

 Line 34: This if statement tries to convert monthsTextBox.Text to an int . If
the conversion is successful, the result is stored in the months variable, and the
program continues executing at line 36. If the conversion is not successful, the
program jumps to the else clause in line 49, and line 52 displays the error mes-
sage Invalid value for months .

 Line 37: This is the beginning of a while loop. The loop executes as long as the
expression count <= months is true.

 Lines 39–43: These statements are the body of the loop. Line 40 calculates the
monthly interest and adds it to the balance variable. Line 43 adds 1 to the
 count variable.

 Line 47: This statement executes after the loop has finished all of its iterations.
It converts the value of the balance variable to a string (formatted as currency)
and assigns the resulting string to the endingBalanceLabel control’s Text
property.

 Step 4: Switch your view back to the Designer and double-click the clearButton control.
In the code editor you will see an empty event handler named clearButton_Click .
Complete the clearButton_Click event handler by typing the code shown in lines
64–70 in Program 5-1 .

 Step 5: Switch your view back to the Designer and double-click the exitButton control.
In the code editor you will see an empty event handler named exitButton_Click .
Complete the exitButton_Click event handler by typing the code shown in
lines 75–76 in Program 5-1 .

 Step 6: Save the project. Then, press % on the keyboard, or click the Start Debugging
button () on the toolbar to compile and run the application.

 First, enter 1000 as the starting balance and 48 as the number of months.
Click the Calculate Average button and $1,270.49 should appear as the
ending balance. Think about the value that you entered for the number of
months. How many times did the while loop in line 36 iterate? (Answer:
48 times.)

 Next, click the Clear button to clear the TextBoxes and the ending balance.
Now, enter 100 as the starting balance and 1 as the number of months. Click
the Calculate Average button and $100.50 should appear as the ending bal-
ance. How many times did the while loop iterate this time? (Answer: 1 time.)

 Continue to test the application as you wish. When you are finished, click the
 Exit button and the form should close. (If you plan to continue to the next
 tutorial, leave this project open in Visual Studio.)

 Program 5.1 Completed Form1 code for the Ending Balance application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;

 5.2 The while Loop 275

 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Ending_Balance
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void calculateButton_Click(object sender, EventArgs e)
 21 {
 22 // Constant for the monthly interest rate.
 23 const decimal INTEREST_RATE = 0.005m;
 24
 25 // Local variables
 26 decimal balance; // The account balance
 27 int months; // The number of months
 28 int count = 1; // Loop counter, initialized with 1
 29
 30 // Get the starting balance.
 31 if (decimal.TryParse(startingBalTextBox.Text, out balance))
 32 {
 33 // Get the number of months.
 34 if (int.TryParse(monthsTextBox.Text, out months))
 35 {
 36 // The following loop calculates the ending balance.
 37 while (count <= months)
 38 {
 39 // Add this month's interest to the balance.
 40 balance = balance + (INTEREST_RATE * balance);
 41
 42 // Add one to the loop counter.
 43 count = count + 1;
 44 }
 45
 46 // Display the ending balance.
 47 endingBalanceLabel.Text = balance.ToString("c");
 48 }
 49 else
 50 {
 51 // Invalid number of months was entered.
 52 MessageBox.Show("Invalid value for months.");
 53 }
 54 }
 55 else
 56 {
 57 // Invalid starting balance was entered.
 58 MessageBox.Show("Invalid value for starting balance.");
 59 }
 60 }
 61
 62 private void clearButton_Click(object sender, EventArgs e)
 63 {
 64 // Clear the TextBoxes and the endingBalanceLabel control.

276 Chapter 5 Loops, Files, and Random Numbers

 65 startingBalTextBox.Text = "";
 66 monthsTextBox.Text = "";
 67 endingBalanceLabel.Text = "";
 68
 69 // Reset the focus.
 70 startingBalTextBox.Focus();
 71 }
 72
 73 private void exitButton_Click(object sender, EventArgs e)
 74 {
 75 // Close the form.
 76 this.Close();
 77 }
 78 }
 79 }

 Tutorial 5-2 :
 Enhancing
the Ending
Balance
Application

VideoNote

 Tutorial 5-2:
 Enhancing the Ending Balance Application

 In this tutorial you enhance the Ending Balance application that you created in Tutorial
 5-1 . First, add a ListBox control to the application’s form, as shown in Figure 5-8 . Then
modify the calculateButton_Click event handler so it displays each month’s ending
balance in the ListBox. Figure 5-9 shows an example of how the form will appear when
the user has entered 1000 for the starting balance and 8 for the months.

detailListBox

 Figure 5-8 The modified Ending Balance form

 Step 1: Start Visual Studio (or Visual Studio Express) and open the Ending Balance
project that you completed in Tutorial 5-1 .

 Step 2: Enlarge the form so it is roughly the size shown in Figure 5-8 . (310 pixels
wide by 325 pixels high should be sufficient.)

 Step 3: Create a ListBox control named detailListBox . Resize the ListBox as
shown in Figure 5-8 .

 5.2 The while Loop 277

 Step 4: Switch to the code editor and insert the code shown in lines 42–45 in Program
 5-2 . (The new lines of code are shown in bold.) The statement in lines 43–45
adds a string to the detailListBox control. If you examine the statement care-
fully, you will see that it uses concatenation to create a string in the following
format:

 The ending balance for month count is balance.

 In the actual string that is created, count will be the value of the count variable
and balance will be the value of the balance variable, formatted as currency.

 Step 5: Find the clearButton_Click event handler in the code editor. Update the
comment as shown in lines 69–70, and insert the line of code shown in line 74.
(The lines are shown in bold.) The statement in line 74 clears the contents of the
 detailListBox control.

 Step 6: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application.

 As shown in Figure 5-9 , enter 1000 as the starting balance and 8 as the number
of months. Click the Calculate Average button. Your output should look like
that shown in Figure 5-9 . Click the Clear button and enter any other values you
wish to test the application further. When you are finished, click the Exit button
and the form should close.

 Program 5.2 Completed Form1 code for the Ending Balance application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Ending_Balance
 12 {

 Figure 5-9 Example output

278 Chapter 5 Loops, Files, and Random Numbers

 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void calculateButton_Click(object sender, EventArgs e)
 21 {
 22 // Constant for the monthly interest rate.
 23 const decimal INTEREST_RATE = 0.005m;
 24
 25 // Local variables
 26 decimal balance; // The account balance
 27 int months; // The number of months
 28 int count = 1; // Loop counter, initialized with 1
 29
 30 // Get the starting balance.
 31 if (decimal.TryParse(startingBalTextBox.Text, out balance))
 32 {
 33 // Get the number of months.
 34 if (int.TryParse(monthsTextBox.Text, out months))
 35 {
 36 // The following loop calculates the ending balance.
 37 while (count <= months)
 38 {
 39 // Add this month's interest to the balance.
 40 balance = balance + (INTEREST_RATE * balance);
 41
 42 // Display this month's ending balance.
 43 detailListBox.Items.Add("The ending balance " +
 44 "for month " + count + " is " +
 45 balance.ToString("c"));
 46
 47 // Add one to the loop counter.
 48 count = count + 1;
 49 }
 50
 51 // Display the ending balance.
 52 endingBalanceLabel.Text = balance.ToString("c");
 53 }
 54 else
 55 {
 56 // Invalid number of months was entered.
 57 MessageBox.Show("Invalid value for months.");
 58 }
 59 }
 60 else
 61 {
 62 // Invalid starting balance was entered.
 63 MessageBox.Show("Invalid value for starting balance.");
 64 }
 65 }
 66
 67 private void clearButton_Click(object sender, EventArgs e)
 68 {
 69 // Clear the TextBoxes, the endingBalanceLabel control,
 70 // and the ListBox.

 5.2 The while Loop 279

 Infinite Loops
 In all but rare cases, loops must contain a way to terminate within themselves. This means
that something inside the loop must eventually make the loop’s Boolean expression false.
The loop in Program 5-2 stops when the expression count <= months is false. If a loop
does not have a way of stopping, it is called an infinite loop. An infinite loop continues to
repeat until the program is interrupted. Infinite loops usually occur when the programmer
forgets to write code inside the loop that makes the test condition false. In most circum-
stances you should avoid writing infinite loops.

 The following code sample demonstrates an infinite loop. In line 1 the count variable is
declared and initialized with the value 1. The while loop that begins in line 5 executes
as long as count is less than or equal to 5. There is no code inside the loop to change the
 count variable’s value, so the expression count <= 5 in line 5 is always true. As a conse-
quence, the loop has no way of stopping.

 1 // Declare a variable to count the loop iterations.
 2 int count = 1;
 3
 4 // How many times will this loop iterate?
 5 while (count <= 5)
 6 {
 7 // Display the message box.
 8 MessageBox.Show("Hello");
 9 }

 Checkpoint

 5.4 What is a loop iteration?

 5.5 What is a counter variable?

 5.6 What is a pretest loop?

 5.7 Does the while loop test its condition before or after it performs an iteration?

 5.8 What is an infinite loop?

 71 startingBalTextBox.Text = "";
 72 monthsTextBox.Text = "";
 73 endingBalanceLabel.Text = "";
 74 detailListBox.Items.Clear();
 75
 76 // Reset the focus.
 77 startingBalTextBox.Focus();
 78 }
 79
 80 private void exitButton_Click(object sender, EventArgs e)
 81 {
 82 // Close the form.
 83 this.Close();
 84 }
 85 }
 86 }

280 Chapter 5 Loops, Files, and Random Numbers

 5.3 The ++ and −− operators

 CONCEPT: To increment a variable means to increase its value, and to decrement a
variable means to decrease its value. C# provides special operators to incre-
ment and decrement variables.

 To increment a variable means to increase its value and to decrement a variable means to
decrease its value. Both of the following statements increment the variable num by 1:

 num = num + 1;
 num += 1;

 And num is decremented by 1 in both the following statements:

 num = num - 1;
 num -= 1;

 Incrementing and decrementing is so commonly done in programs that C# provides a set
of simple unary operators designed just for incrementing and decrementing variables. The
increment operator is ++ , and the decrement operator is −− . The following statement uses
the ++ operator to add 1 to num :

 num++;

 After this statement executes, the value of num is increased by 1. The following statement
uses the −− operator to subtract 1 from num :

 num--;

 NOTE: The ++ operator is pronounced “plus plus,” and the −− operator is pronounced
“minus minus.” The expression num++ is pronounced “num plus plus,” and the
 expression num−− is pronounced “num minus minus.”

 In these examples, we have written the ++ and −− operators after their operands (or, on
the right side of their operands). This is called postfix mode . The operators can also be
written before (or, on the left side) of their operands, which is called prefix mode . Here
are examples:

 ++num;
 −−num;

 When you write a simple statement to increment or decrement a variable, such as the ones
shown here, it doesn’t matter if you use prefix mode or postfix mode. The operators do
the same thing in either mode. However, if you write statements that mix these operators
with other operators or with other operations, there is a difference in the way the two
modes work. Such complex code can be difficult to understand and debug. When we use
the increment and decrement operators, we will do so only in ways that are straightfor-
ward and easy to understand, such as the statements previously shown.

 We introduce these operators at this point because they are commonly used in loops. The
following code segment shows an example. In the code, the count variable is initialized
with the value 1. The while loop that begins in line 5 iterates as long as count is less than
or equal to 5. The statement in line 11 increments count . The loop will iterate 5 times.

 1 // Declare a variable to count the loop iterations.
 2 int count = 1;

 5.4 The for Loop 281

 3
 4 // Display "Hello" in a message box five times.
 5 while (count <= 5)
 6 {
 7 // Display the message box.
 8 MessageBox.Show("Hello");
 9
 10 // Increment count.
 11 count++;
 12 }

 In the next section, which discusses the for loop, you will see these operators used often.

 Checkpoint

 5.9 What messages will the following code sample display?
 int number = 5;
 number++;
 MessageBox.Show(number.ToString());
 number--;
 MessageBox.Show(number.ToString());

 5.10 How many times will the following loop iterate?
 int count = 0;
 while (count < 4)
 {
 MessageBox.Show(count.ToString());
 count++;
 }

 5.4 The for Loop

 CONCEPT: The for loop is ideal for performing a known number of iterations.

 The for loop is specifically designed for situations requiring a counter variable to control
the number of times that a loop iterates. When you write a for loop, you specify three
actions:

 • Initialization: This action takes place when the loop begins. It happens only once.
 • Test: A Boolean expression is tested. If the expression is true, the loop iterates.

 Otherwise, the loop stops.
 • Update: This action takes place at the end of each loop iteration.

 Figure 5-10 shows how these three actions are used in the logic of a for loop.

 Here is the general format of the for loop:

 for (InitializationExpression ; TestExpression ; UpdateExpression)
 {
 statement ;
 statement ;
 etc.
 }

 The statements that appear inside the curly braces are the body of the loop. These are the
statements that are executed each time the loop iterates. As with other control structures,

282 Chapter 5 Loops, Files, and Random Numbers

the curly braces are optional if the body of the loop contains only one statement, as shown
in the following general format:

 for (InitializationExpression; TestExpression; UpdateExpression)
 statement;

 The first line of the for loop is the loop header . After the key word for , there are three
expressions inside the parentheses, separated by semicolons. (Notice that there is not a
semicolon after the third expression.)

 The first expression is the initialization expression . It is normally used to initialize a
counter variable to its starting value. This is the first action performed by the loop, and it
is only done once. The second expression is the test expression . This is a Boolean expres-
sion that controls the execution of the loop. As long as this expression is true, the body
of the for loop will repeat. The for loop is a pretest loop, so it evaluates the test expres-
sion before each iteration. The third expression is the update expression . It executes at
the end of each iteration. Typically, this is a statement that increments the loop’s counter
variable.

 Let’s assume that count is an int variable that has already been declared. Here is an ex-
ample of a simple for loop that displays “Hello” in a message box 5 times:

 for (count = 1; count <= 5; count++)
 {
 MessageBox.Show("Hello");
 }

 In this loop, the initialization expression is count = 1 , the test expression is count <= 5 ,
and the increment expression is count++ . The body of the loop has one statement, which

Boolean expression

Statement(s)

Update

Initialization

True

False

 Figure 5-10 Logic of a for loop

 5.4 The for Loop 283

is the call to MessageBox.Show method. This is a summary of what happens when this
loop executes:

 1. The initialization expression count = 1 is executed. This assigns 1 to the count
variable.

 2. The expression count <= 5 is tested. If the expression is true, continue with Step 3.
Otherwise, the loop is finished.

 3. The statement MessageBox.Show("Hello"); is executed.
 4. The update expression count++ is executed. This adds 1 to the count variable.
 5. Go back to Step 2.

 Figure 5-11 illustrates this sequence of events. Notice that Steps 2–4 are repeated as long
as the test expression is true. Figure 5-12 shows the logic of the loop as a flowchart.

for (count = 1; count <= 5; count++)
{
 MessageBox.Show("Hello");
}

Step 1: Perform the initialization. Step 2: Evaluate the test expression. If
it is true, go to step 3. Otherwise, the
loop stops.

Step 3: Execute the body
of the loop.

Step 4: Perform the update expression,
then go back to step 2.

 Figure 5-11 Sequence of events in the for loop

counter <= 5

False

True
Display "Hello" Add 1 to counter

counter = 1

 Figure 5-12 Logic of the for loop

 Let’s look at a complete application that uses a for loop. In the Chap05 folder of this
book’s Student Sample Programs, you will find a project named Squares . The purpose of
the application is to display the numbers 1–10 and their squares. Figure 5-13 shows the
application’s form. As shown in the image on the left, the ListBox’s name is outputList-
Box and the Button control’s name is goButton . At run time, when you click the goBut-
ton control, the outputListBox control displays the program’s output, as shown in the
image on the right.

284 Chapter 5 Loops, Files, and Random Numbers

 Here is the code for the goButton_Click event handler:

 1 private void goButton_Click(object sender, EventArgs e)
 2 {
 3 // Constant for the maximum number
 4 const int MAX_VALUE = 10;
 5
 6 // Loop counter
 7 int number;
 8
 9 // Display the list of numbers and their squares.
 10 for (number = 1; number <= MAX_VALUE; number++)
 11 {
 12 outputListBox.Items.Add("The square of " +
 13 number + " is " + (number * number));
 14 }
 15 }

 Let’s take a closer look at the code:

 • Line 4 declares an int constant named MAX_VALUE , set to the value 10. This is the
maximum number that we will use to calculate a square.

 • Line 7 declares an int variable named number . This variable is used both as a coun-
ter variable and in the calculation of squares.

 • Line 10 is the beginning of a for loop. You can see from this line that the loop
works in the following way:

 Initialization: The number variable is initialized with the value 1.
 Test: The expression number <= MAX_VALUE is tested at the beginning of each

 iteration.
 Update: The expression number++ is executed at the end of each iteration.

 • Since the MAX_VALUE constant is set to the value 10, the number variable will be as-
signed the values 1 through 10 as the loop iterates.

 • Lines 12 and 13: This statement adds a line to the ListBox showing the current value
of the number variable, and the square of that value.

 The for Loop Is a Pretest Loop
 Because the for loop tests its Boolean expression before it performs an iteration, it is a
pretest loop. It is possible to write a for loop in such a way that it will never iterate. Here
is an example:

 for (count = 6; count <= 5; count++)
 {
 MessageBox.Show("Hello");
 }

outputListBox

goButton

 Figure 5-13 The Squares application

 5.4 The for Loop 285

 Because the variable count is initialized to a value that makes the Boolean expression
false from the beginning, this loop terminates as soon as it begins.

 Declaring the Counter Variable
in the Initialization Expression
 Not only may the counter variable be initialized in the initialization expression, but it may
also be declared there. The following code shows an example:

 for (int count = 1; count <= 5; count++)
 {
 MessageBox.Show("Hello");
 }

 In this loop, the count variable is both declared and initialized in the initialization expres-
sion. If the variable is used only in the loop, it makes sense to define it in the loop header.
This makes the variable’s purpose clearer.

 When a variable is declared in the initialization expression of a for loop, the scope of the
variable is limited to the loop. This means you cannot access the variable in statements
outside the loop. For example, the following code would cause a compiler error because
the statement in line 6 cannot access the count variable.

 1 for (int count = 1; count <= 5; count++)
 2 {
 3 MessageBox.Show("Hello");
 4 }
 5
 6 MessageBox.Show("The value of count is " + count);

 Other Forms of the Update Expression
 In the update expression, the counter variable is typically incremented by 1. This makes it
convenient to use the ++ operator in the increment expression. This is not a requirement,
however. You can write virtually any expression you wish as the update expression. For
example, the following loop increments count by 10.

 for (int count = 0; count <= 100; count += 10)
 {
 MessageBox.Show(count.ToString());
 }

 Notice that in this example the increment expression is count += 10 . This means that at
the end of each iteration, 10 is added to count . During the first iteration count is set to 0,
during the second iteration count is set to 10, during the third iteration count is set to 20,
and so forth.

 Counting Backward by Decrementing
the Counter Variable
 Although the counter variable is usually incremented in a count-controlled loop, you can
alternatively decrement the counter variable. For example, look at the following code:

 for (int count = 10; count >= 0; count--)
 {
 MessageBox.Show(count.ToString());
 }
 MessageBox.Show("Blastoff!");

 In this loop the count variable is initialized with the value 10. The loop iterates as long as
 count is greater than or equal to 0. At the end of each iteration, count is decremented by 1.

286 Chapter 5 Loops, Files, and Random Numbers

 During the first iteration count is 10, during the second iteration count is 9, and so forth.
If this were in an actual program, it would display the numbers 10, 9, 8, and so forth,
down to 0, and then display Blastoff!

 Avoiding Modifying the Counter Variable
in the Body of the for Loop
 Be careful not to place a statement that modifies the counter variable in the body of the for
loop. All modifications of the control variable should take place in the update expression,
which is automatically executed at the end of each iteration. If a statement in the body of
the loop also modifies the counter variable, the loop probably will not terminate when you
expect it to. The following loop, for example, increments count twice for each iteration:

 for (int count = 1; count <= 10; count++)
 {
 MessageBox.Show(count.ToString());
 count++; // Wrong!
 }

 You have seen several examples of the for loop. Tutorial 5-3 gives you an opportunity to
write one. In the tutorial you will complete an application that uses a for loop to convert
a series of measurements from the metric system to the English system.

 Tutorial 5-3 :
 Using the
for Loop

VideoNote

 Tutorial 5-3:
 Using the for Loop

 Your friend Amanda just inherited a European sports car from her uncle. Amanda lives in
the United States, and she is afraid she will get a speeding ticket because the car’s speed-
ometer works in kilometers per hour. She has asked you to write a program that displays
a table of speeds in kilometers per hour with their values converted to miles per hour. The
formula for converting kilometers per hour to miles per hour is:

 MPH = KPH * 0.6214

 In the formula, MPH is the speed in miles per hour and KPH is the speed in kilometers
per hour.

 The table that your program displays should show speeds from 60 kilometers per hour
through 130 kilometers per hour, in increments of 10, along with their values converted
to miles per hour. The table should look something like this:

 KPH MPH

 60 37.284

 70 43.498

 80 49.712

 etc. . . .

 After thinking about this table of values, you decide that you will write a for loop that
uses a counter variable to hold the kilometers-per-hour speeds. The counter’s starting
value will be 60, its ending value will be 130, and you will increase its value by 10 in the
update expression. Inside the loop you will use the counter variable to calculate a speed
in miles per hour.

 5.4 The for Loop 287

 The project, which is named Speed Converter , has already been started for you. It is
 located in the Chap05 folder of this book’s Student Sample Programs. The application’s
form is shown in Figure 5-14 . The image on the left in the figure shows the names of the
controls. The image on the right shows how the form appears after the user clicks the
 Display Speeds button.

outputListBox

displayButton exitButton

 Figure 5-14 The Speed Converter form

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Speed
Converter in the Chap05 folder of this book’s Student Sample Programs.

 Step 2: Open the Form1 form in the Designer .

 Step 3: In the Designer , double-click the displayButton control. This opens the code
editor, and you will see an empty event handler named displayButton_Click .
Complete the displayButton_Click event handler by typing the code shown
in lines 22–41 in Program 5-3 (at the end of this tutorial). Let’s take a closer
look at the code:

 Lines 23–26: These statements declare the following named constants:

 • START_SPEED , an int constant set to 60. This is the starting speed for the
list of conversions and the value with which the loop’s counter variable is
initialized.

 • END_SPEED , an int constant set to 130. This is the ending speed for the
list of conversions. When the counter variable exceeds this value, the loop
stops.

 • INTERVAL , an int constant set to 10. This is the amount that you add to loop’s
counter variable after each iteration.

 • CONVERSION_FACTOR , a double constant set to 0.6214. This is the conversion
factor that you use in the formula to convert KPH to MPH.

 Lines 29–30: These statements declare the following variables:

 • kph , an int variable to hold the speed in kilometers per hour.
 • mph , a double variable to hold the speed in miles per hour.

 Line 33: This is the beginning of a for loop that works in the following way:

 Initialization: The kph variable is initialized with the value of START_SPEED ,
which is 60.

 Test: The expression kph <= END_SPEED is tested at the beginning of each
 iteration.

288 Chapter 5 Loops, Files, and Random Numbers

 Update: The expression kph += INTERVAL is executed at the end of each itera-
tion. This adds the value of INTERVAL (which is 10) to the kph variable.

 As the loop iterates, the kph variable is assigned the values 60, 70, 80, and so
forth, through 130.

 Line 36: This statement converts the value of the kph variable to miles per hour
and assigns the result to the mph variable.

 Lines 39–40: This statement adds a line to the outputListBox control showing
the current value of the kph variable and the equivalent value in miles per hour.

 Step 4: Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you will see an empty event handler named exitButton_
Click . Complete the exitButton_Click event handler by typing the code
shown in lines 46–47 in Program 5-3 .

 Step 5: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. Click the Display
Speeds button, and you should see the output shown in the image on the right in
 Figure 5-14 . Click the Exit button to close the form.

 Program 5-3 Completed Form1 code for the Speed Converter application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Speed_Converter
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void displayButton_Click(object sender, EventArgs e)
 21 {
 22 // Constants
 23 const int START_SPEED = 60;
 24 const int END_SPEED = 130;
 25 const int INTERVAL = 10;
 26 const double CONVERSION_FACTOR = 0.6214;
 27
 28 // Variables
 29 int kph; // Kilometers per hour
 30 double mph; // Miles per hour
 31
 32 // Display the table of speeds.
 33 for (kph = START_SPEED; kph <= END_SPEED; kph += INTERVAL)
 34 {

 5.5 The do-while Loop 289

 35 // Calculate miles per hour.
 36 mph = kph * CONVERSION_FACTOR;
 37
 38 // Display the conversion.
 39 outputListBox.Items.Add(kph + " KPH is the same as " +
 40 mph + " MPH");
 41 }
 42 }
 43
 44 private void exitButton_Click(object sender, EventArgs e)
 45 {
 46 // Close the form.
 47 this.Close();
 48 }
 49 }
 50 }

 Checkpoint

 5.11 Name the three expressions that appear inside the parentheses in the first line of a
 for loop.

 5.12 You want to write a for loop that displays I love to program 50 times. Assume
that you will use a variable named count as the counter variable.
 a. What initialization expression will you use?
 b. What test expression will you use?
 c. What update expression will you use?
 d. Write the loop.

 5.13 What would the following code display?
 for (int count = 1; count <= 5; count++)
 {
 MessageBox.Show(count.ToString());
 }

 5.14 What would the following code display?
 for (int count = 0; count <= 500; count += 100)
 {
 MessageBox.Show(count.ToString());
 }

 5.5 The do-while Loop

 CONCEPT: The do-while loop is a posttest loop, which means it performs an itera-
tion before testing its Boolean expression.

 You have learned that the while loop and the for are pretest loops, which means they
test their Boolean expressions before performing an iteration. The do-while loop is a
 posttest loop . This means it performs an iteration before testing its Boolean expression.
As a result, the do-while loop always performs at least one iteration, even if its Boolean
expression is false to begin with. The logic of a do-while loop is shown in Figure 5-15 .

290 Chapter 5 Loops, Files, and Random Numbers

 In the flowchart, one or more statements are executed, and then a Boolean expression is
tested. If the Boolean expression is true, the program’s execution flows back to the point
just above the first statement in the body of the loop, and this process repeats. If the
Boolean expression is false, the program exits the loop.

 In code, the do-while loop looks something like an inverted while loop. Here is the
 general format of the do-while loop:

 do
 {
 statement;
 statement;
 etc .
 } while (BooleanExpression);

 As with the while loop, the braces are optional if there is only one statement in the body
of the loop. This is the general format of the do-while loop with only one conditionally
executed statement:

 do
 statement;
 while (BooleanExpression);

 Notice that a semicolon appears at the very end of the do-while statement. This semico-
lon is required; leaving it out is a common error.

 The do-while loop is a posttest loop. This means it does not test its Boolean expression
until it has completed an iteration. As a result, the do-while loop always performs at
least one iteration, even if the expression is false to begin with. This differs from the be-
havior of a while loop. For example, in the following while loop, the statement that calls
 MessageBox.Show will not execute at all:

 int number = 1;
 while (number < 0)
 {
 MessageBox.Show(number.ToString());
 }

 But, the statement that calls MessageBox.Show in the following do-while loop executes
one time because the do-while loop does not test the expression number < 0 until the
end of the iteration.

 int number = 1;
 do

Boolean
Expression

True

False

Statement(s)

 Figure 5-15 The logic of a do-while loop

 5.6 Using Files for Data Storage 291

 {
 MessageBox.Show(number.ToString());
 } while (number < 0);

 Checkpoint

 5.15 What is a posttest loop?

 5.16 What is the difference between the while loop and the do-while loop?

 5.17 How many times will the following loop iterate?
 int count = 0;
 do
 {
 MessageBox.Show(count.ToString());
 count++;
 } while (count < 0);

 5.6 Using Files for Data Storage

 CONCEPT: When a program needs to save data for later use, it writes the data in a
file. The data can be read from the file at a later time.

 The programs you have written so far require the user to reenter data each time the pro-
gram runs because data kept in variables and control properties is stored in RAM and dis-
appears once the program stops running. If a program is to retain data between the times
it runs, it must have a way of saving it. Data is saved in a file, which is usually stored on
a computer’s disk. Once the data is saved in a file, it will remain there after the program
stops running. Data that is stored in a file can be retrieved and used at a later time.

 Most of the commercial software that you use on a day-to-day basis store data in files.
The following are a few examples.

 • Word processors: Word processing programs are used to write letters, memos, re-
ports, and other documents. The documents are then saved in files so they can be
edited and printed.

 • Image editors: Image-editing programs are used to draw graphics and edit images,
such as the ones that you take with a digital camera. The images that you create or
edit with an image editor are saved in files.

 • Spreadsheets: Spreadsheet programs are used to work with numerical data. Num-
bers and mathematical formulas can be inserted into the rows and columns of the
spreadsheet. The spreadsheet can then be saved in a file for use later.

 • Games: Many computer games keep data stored in files. For example, some games
keep a list of player names with their scores stored in a file. These games typically
display the players’ names in order of their scores, from highest to lowest. Some
games also allow you to save your current game status in a file so you can quit the
game and then resume playing it later without having to start from the beginning.

 • Web browsers: Sometimes when you visit a Web page, the browser stores a small
file known as a cookie on your computer. Cookies typically contain information
about the browsing session, such as the contents of a shopping cart.

 Programs that are used in daily business operations rely extensively on files. Payroll programs
keep employee data in files, inventory programs keep data about a company’s products in
files, accounting systems keep data about a company’s financial operations in files, and so on.

292 Chapter 5 Loops, Files, and Random Numbers

 Programmers usually refer to the process of saving data in a file as writing data to the file.
When a piece of data is written to a file, it is copied from a variable in RAM to the file.
This is illustrated in Figure 5-16 . The term output file is used to describe a file to which
data is written. It is called an output file because the program stores output in it.

Cindy Chandler 7451Z 18.65

Cindy ChandlerVariable
employeeName

Variable
employeeID

Variable
payRate

7451Z

18.65

Data is copied from
the file to variables.

A file on the disk

 Figure 5-17 Reading data from a file

Cindy Chandler 7451Z 18.65

Cindy Chandler
Variable
employeeName

Variable
employeeID

Variable
payRate

7451Z

18.65

Data is copied from
variables to the file.

A file on the disk

 Figure 5-16 Writing data to a file

 The process of retrieving data from a file is known as reading data from the file. When a
piece of data is read from a file, it is copied from the file into a variable in RAM. Figure 5-17
illustrates this. The term input file is used to describe a file from which data is read. It is
called an input file because the program gets input from the file.

 In this section we discuss ways to create programs that write data to files and read data
from files. There are always three steps that must be taken when a file is used by a program.

 1. Open the file —Opening a file creates a connection between the file and the program.
Opening an output file usually creates the file on the disk and allows the program to
write data to it. Opening an input file allows the program to read data from the file.

 2. Process the file —In this step data is either written to the file (if it is an output file) or
read from the file (if it is an input file).

 3. Close the file —When the program is finished using the file, the file must be closed.
Closing a file disconnects the file from the program.

 5.6 Using Files for Data Storage 293

 Types of Files
 In general, there are two types of files: text and binary. A text file contains data that has
been encoded as text using a scheme such as Unicode. Even if the file contains numbers,
those numbers are stored in the file as a series of characters. As a result, the file may be
opened and viewed in a text editor such as Notepad. A binary file contains data that has
not been converted to text. As a consequence, you cannot view the contents of a binary
file with a text editor. In this chapter we work only with text files.

 File Access Methods
 Most programming languages provide two different ways to access data stored in a file:
sequential access and direct access. When you work with a sequential access file , you ac-
cess data from the beginning of the file to the end of the file. If you want to read a piece
of data that is stored at the very end of the file, you have to read all the data that comes
before it—you cannot jump directly to the desired data. This is similar to the way cassette
tape players work. If you want to listen to the last song on a cassette tape, you have to
either fast-forward over all of the songs that come before it or listen to them. There is no
way to jump directly to a specific song.

 When you work with a direct access file (which is also known as a random access file),
you can jump directly to any piece of data in the file without reading the data that comes
before it. This is similar to the way a CD player or an MP3 player works. You can jump
directly to any song you want to listen to.

 This chapter focuses on sequential access files. Sequential access files are easy to work
with, and you can use them to gain an understanding of basic file operations.

 Filenames and File Objects
 Files on a disk are identified by a filename . For example, when you create a document with
a word processor and then save the document in a file, you have to specify a filename.
When you use a utility such as Windows Explorer to examine the contents of your disk,
you see a list of filenames. Figure 5-18 shows how three files named cat.jpg, notes.txt, and
resume.doc might be represented in Windows Explorer.

 Figure 5-18 Three files

 Each operating system has its own rules for naming files. Many systems, including Win-
dows, support the use of filename extensions , which are short sequences of characters that
appear at the end of a filename and are preceded by a period (which is known as a “dot”).
For example, the files depicted in Figure 5-18 have the extensions .jpg, .txt, and .doc. The
extension usually indicates the type of data stored in the file. For example, the .jpg exten-
sion usually indicates that the file contains a graphic image that is compressed according
to the JPEG image standard. The .txt extension usually indicates that the file contains text.
The .doc extension usually indicates that the file contains a Microsoft Word document.

 In order for a program to work with a file on the computer’s disk, the program must create
a file object in memory. A file object is an object that is associated with a specific file and
provides a way for the program to work with that file. In the program, a variable is linked
with the file object. We say that the variable references the object. This variable is used to
carry out any operations that are performed on the file. This concept is shown in Figure 5-19 .

294 Chapter 5 Loops, Files, and Random Numbers

 You will be using two classes from the .NET Framework to create file objects. When you
want to write data to a text file, you use the StreamWriter class , and when you want
to read data from a text file you use the StreamReader class . These classes are in the
 System.IO namespace in the .NET Framework, so you will need to write the following
directive at the top of your programs:

 using System.IO;

Cindy Chandler 7451Z 18.65

variableName File object

A file on the disk

 Figure 5-19 A variable referencing a file object that is associated with a file

 NOTE: In programming terminology, files are considered streams of data. In C# you
use a StreamWriter object to open a stream, such as a file, and write data to it. You
use a StreamReader object to open a stream, such as a file, and read data from it.

 Writing Data to a File with a StreamWriter Object
 You can use the StreamWriter class’s WriteLine method to write a line of text to a
file. Let’s suppose you want to write a program that creates a text file named courses.txt
and writes the names of the courses you are taking to the file. The following code sample
shows how you can do this:

 1 StreamWriter outputFile;
 2 outputFile = File.CreateText("courses.txt");
 3
 4 outputFile.WriteLine("Intro to Computer Science");
 5 outputFile.WriteLine("English Composition");
 6 outputFile.WriteLine("Calculus I");
 7 outputFile.WriteLine("Music Appreciation");
 8
 9 outputFile.Close();

 Let’s look at each line of code.

 Line 1: This statement declares a variable named outputFile , which can be used to
reference a StreamWriter object.

 Line 2: In a nutshell, this statement opens the file to which you will be writing data. It
does so by calling the File.CreateText method, passing the string "courses.txt"
as an argument. The File.CreateText method does the following:

 • It creates a text fi le with the name specifi ed by the argument. If the fi le already exists,
its contents are erased.

 • It creates a StreamWriter object in memory, associated with the fi le.

 • It returns a reference to the StreamWriter object.

 5.6 Using Files for Data Storage 295

 Notice that an assignment operator assigns the value returned from the File.Create-
Text method to the outputFile variable. This causes the outputFile variable to
reference the StreamWriter object that was created by the method.

 After the statement in line 2 executes, the courses.txt file is created on the disk, a
 StreamWriter object associated with the file exists in memory, and the outputFile
variable references that object.

 Line 4: This statement writes the string "Intro to Computer Science" to the courses.
txt file. It does that by calling the StreamWriter class’s WriteLine method, passing
the string that is to be written to the file as an argument. When the WriteLine method
writes data to a file, it writes a newline character immediately following the data. A
 newline character is an invisible character that specifies the end of a line of text.

 Line 5: This statement writes the string "English Composition" to the courses.txt
file.

 Line 6: This statement writes the string "Calculus I" to the courses.txt file.

 Line 7: This statement writes the string "Music Appreciation" to the courses.txt file.

 Line 9: This statement closes the courses.txt file. It does that by calling the
 StreamWriter class’s Close method.

 After this code has executed, we can open the courses.txt file using a text editor and look
at its contents. Figure 5-20 show how the file’s contents will appear in Notepad.

 Figure 5-20 Contents of the courses.txt file shown in Notepad

 Writing Data with the Write Method
 Earlier you read that the StreamWriter class’s WriteLine method writes an item of data
to a file and then writes a newline character. The newline character specifies the end of a
line of text. For example, the following code sample opens a file named Example.txt and
then uses the WriteLine method to write the strings "One" , "Two" , and "Three" to the
file. Because a newline character is written after each string, the strings appear on separate
lines when viewed in a text editor. The screen shown on the left in Figure 5-21 shows how
the file would appear in Notepad.

 1 StreamWriter outputFile;
 2 outputFile = File.CreateText("Example.txt");
 3
 4 outputFile.WriteLine("One");
 5 outputFile.WriteLine("Two");
 6 outputFile.WriteLine("Three");
 7
 8 outputFile.Close();

296 Chapter 5 Loops, Files, and Random Numbers

 In some situations you might want to write an item to a file without a newline character
immediately following it. The StreamWriter class provides the Write method for this
purpose. It writes an item of data to a text file without writing a newline character. The
following code sample demonstrates. The screen shown on the right in Figure 5-21 shows
how the resulting file would appear in Notepad.

 1 StreamWriter outputFile;
 2 outputFile = File.CreateText("Example.txt");
 3
 4 outputFile.Write("One");
 5 outputFile.Write("Two");
 6 outputFile.Write("Three");
 7
 8 outputFile.Close();

 Handling File-Related Exceptions
 Unexpected problems can potentially occur when working with files. For example, your
program might not have sufficient rights to create a file when it calls the File.CreateText
method, or the disk might be full when you call the StreamWriter class’s WriteLine
method. When unexpected errors such as these occur, an exception is thrown. To handle
such exceptions, you can write a try-catch statement, with the code that performs file
operations placed in the try block. Here is an example:

 1 try
 2 {
 3 StreamWriter outputFile;
 4 outputFile = File.CreateText("courses.txt");
 5
 6 outputFile.WriteLine("Intro to Computer Science");
 7 outputFile.WriteLine("English Composition");
 8 outputFile.WriteLine("Calculus I");
 9 outputFile.WriteLine("Music Appreciation");
 10
 11 outputFile.Close();
 12 }
 13 catch (Exception ex)
 14 {
 15 // Display an error message.
 16 MessageBox.Show(ex.Message);
 17 }

 In Tutorial 5-4 you will complete an application that reads input from a TextBox control
and writes the input to a file.

Items written with WriteLine Items written with Write

 Figure 5-21 Items written with the WriteLine and Write methods

 5.6 Using Files for Data Storage 297

 Tutorial 5-4 :
 Writing
Data to a
Text File

VideoNote

 Tutorial 5-4:
 Writing Data to a Text File

 In this tutorial you complete the Friend File application. The project has already been
started for you and is located in the Chap05 folder of this book’s Student Sample Pro-
grams. The application’s form is shown in Figure 5-22 .

nameTextBox

writeNameButton exitButton

 Figure 5-22 The Friend File form

 When you complete the application, it will allow the user to enter a name into the
 nameTextBox control. When the user clicks the writeNameButton control, the applica-
tion opens a text file named Friend.txt, writes the name that was entered into the TextBox
control to the file, and then closes the file.

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Ending
Balance in the Chap05 folder of this book’s Student Sample Programs.

 Step 2: Open the Form1 form’s code in the code editor. Insert the using System.IO;
directive shown in line 10 of Program 5-4 at the end of this tutorial. This state-
ment is necessary because the StreamWriter class is part of the System.IO
namespace in the .NET Framework.

 Step 3: Open the Form1 form in the Designer . The form is shown, along with the names
of the important controls, in Figure 5-22 . Double-click the writeNameButton
control. This opens the code editor, and you will see an empty event handler
named writeNameButton_Click . Complete the writeNameButton_Click
event handler by typing the code shown in lines 23–44 in Program 5-4 . Let’s
take a closer look at the code:

 Line 23: This is the beginning of a try-catch statement. The try block appears
in lines 25–38, and the catch block appears in lines 42–43. If an exception is
thrown by any statement in the try block, the program jumps to the catch block,
and line 43 displays an error message.

 Line 26: This statement declares a StreamWriter variable named outputFile .
You use this variable to reference a StreamWriter object.

 Line 29: This statement calls the File.CreateText method to create a text file
named Friend.txt. The method also creates a StreamWriter object in memory
associated with the file. The method returns a reference to that object, which
is assigned to the outputFile variable. As a result, the outputFile variable
references the StreamWriter object. You will be able to use the outputFile
variable to perform operations on the Friend.txt file.

 Line 32: This statement uses the outputFile variable to call the StreamWriter
class’s WriteLine method. The nameTextBox control’s Text property is passed
as an argument. As a result, the value entered into the TextBox is written to the
Friend.txt file.

298 Chapter 5 Loops, Files, and Random Numbers

 Line 35: This statement closes the Friend.txt file.

 Line 38: This statement displays a message box to let the user know that the
name was written to the file.

 Step 4: Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you will see an empty event handler named exitButton_
Click . Complete the exitButton_Click event handler by typing the code
shown in lines 49–50 in Program 5-4 .

 Step 5: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application.

 Enter a name into the nameTextBox control, and then click the Write Name
button. You should see a message box appear letting you know that the name
was written to the file. Click the OK button to dismiss the message box; then
click the Exit button on the application’s form to end the application.

 Step 6: Now you will look at the contents of the Friend.txt file that the application cre-
ated. Perform one of the following, depending on whether you are using Visual
Studio or Visual Studio Express:

 • If you are using Visual Studio, click FILE on the menu bar, then click Open ,
and then click File .

 • If you are using Visual Studio Express, click FILE on the menu bar, and then
click Open File .

 Step 7: You should now see the Open File window, viewing the contents of the Friend
File project folder. As shown in Figure 5-23 , open the bin folder, then open the

Open the bin folder.1 Open the Debug folder.2

Select Friend.txt. (You might not see the .txt extension.)3

 Figure 5-23 Opening the Friend.txt file in the Open File window

 5.6 Using Files for Data Storage 299

 Debug folder, and then select the file Friend.txt . (You might not see the .txt
extension, depending on how your system is set up.) Click the Open button.

 Step 8: You should now see the contents of the Friend.txt file in Visual Studio, as shown
in Figure 5-24 . (The example in the figure shows the contents of the file after
the user has written Tim Owens to the file.) When you are finished examining
the contents of the file, you can close its tab. We come back to this project in the
next tutorial.

 Figure 5-24 Sample contents of the Friend.txt file shown in Visual Studio

 Program 5-4 Completed Form1 code for the Friend File application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10 using System.IO;
 11
 12 namespace Friend_File
 13 {
 14 public partial class Form1 : Form
 15 {
 16 public Form1()
 17 {
 18 InitializeComponent();
 19 }
 20
 21 private void writeNameButton_Click(object sender, EventArgs e)
 22 {
 23 try
 24 {
 25 // Declare a StreamWriter variable.
 26 StreamWriter outputFile;
 27
 28 // Create a file and get a StreamWriter object.
 29 outputFile = File.CreateText("Friend.txt");
 30
 31 // Write the friend's name to the file.
 32 outputFile.WriteLine(nameTextBox.Text);
 33
 34 // Close the file.
 35 outputFile.Close();

300 Chapter 5 Loops, Files, and Random Numbers

 Writing Numeric Data to a Text File
 You can use the StreamWriter class’s WriteLine or Write method to write numbers
(such as int s, double s, and decimal s) to a text file, but the numbers are converted to
strings. For example, look at the following sample code (taken from the Number File
project in the Chap05 folder of the Student Sample Programs):

 1 private void writeNumbersButton_Click(object sender, EventArgs e)
 2 {
 3 try
 4 {
 5 // Declare a StreamWriter variable.
 6 StreamWriter outputFile;
 7
 8 // Create a file and get a StreamWriter object.
 9 outputFile = File.CreateText("Numbers.txt");
 10
 11 // Write the numbers 1 through 10 to the file.
 12 for (int count = 1; count <= 10; count++)
 13 {
 14 outputFile.WriteLine(count);
 15 }
 16
 17 // Close the file.
 18 outputFile.Close();
 19 }
 20 catch (Exception ex)
 21 {
 22 // Display an error message.
 23 MessageBox.Show(ex.Message);
 24 }
 25 }

 When this event handler executes, line 9 creates a text file named Numbers.txt, and the
loop in lines 12–15 writes the numbers 1–10 to the file. Figure 5-25 shows how the file
appears when opened with Notepad.

 36
 37 // Let the user know the name was written.
 38 MessageBox.Show("The name was written.");
 39 }
 40 catch (Exception ex)
 41 {
 42 // Display an error message.
 43 MessageBox.Show(ex.Message);
 44 }
 45 }
 46
 47 private void exitButton_Click(object sender, EventArgs e)
 48 {
 49 // Close the form.
 50 this.Close();
 51 }
 52 }
 53 }

 5.6 Using Files for Data Storage 301

 Appending Data to an Existing File
 When you call the File.CreateText method to open a file and the file specified by the
argument already exists, it is erased and a new empty file with the same name is created.
For example, when you run the Friend File application that you completed in Tutorial 5-4 ,
each time you click the Write Name button, the Friend.txt file is erased and a new file is
created.

 Sometimes you want to preserve an existing file and append new data to its current con-
tents. To append data to an existing file, you open it with the File.AppendText method.
It works like the File.CreateText method, but the file is not erased if it already exists.
Any data written to the file is appended to the file’s existing contents.

 For example, assume the file Names.txt exists and contains the data shown in Figure 5-26 :

 Figure 5-25 The Numbers.txt file opened in Notepad

 Figure 5-26 Names.txt file

 The following code opens the file and appends additional data to its existing contents:

 1 StreamWriter outputFile;
 2 outputFile = File.AppendText("Names.txt");
 3
 4 outputFile.WriteLine("Lynn");
 5 outputFile.WriteLine("Steve");
 6 outputFile.WriteLine("Bill");
 7
 8 outputFile.Close();

 After this code executes, the Names.txt file contains the data shown in Figure 5-27 :

302 Chapter 5 Loops, Files, and Random Numbers

 Figure 5-27 Names.txt file after data has been appended

 Tutorial 5-5 :
 Appending
Data to the
Friend.txt
File

VideoNote

 Tutorial 5-5:
 Appending Data to the Friend.txt File

 In this tutorial you will modify the Friend File application so it appends data to the Friend.
txt file. When the user clicks the Write Name button, instead of erasing the file’s current
contents, the application adds the contents of the nameTextBox control to the Friend.txt file.

 Step 1: If the Friend File project from Tutorial 5-4 is not currently open in Visual Stu-
dio (or Visual Studio Express), open it now.

 Step 2: Open the Form1 form’s code in the code editor. You will make modifications
to the writeNameButton_Click event handler. Program 5-5 , at the end of this
tutorial, shows how the event handler code will appear after you make the fol-
lowing changes:

 Lines 8 and 9: Change the comments as shown to reflect the way that the Friend.
txt file will be opened in line 10.

 Line 10: Change this statement so it calls the File.AppendText method instead
of the File.CreateText method.

 Lines 21–25: Add the new comments and statements shown in these lines. Line
22 clears the nameTextBox control’s contents, and line 25 gives the focus to the
 nameTextBox control. This makes the application more convenient for adding
several names to the file.

 Step 3: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application.

 Enter a name into the nameTextBox control and then click the Write Name but-
ton. You should see a message box letting you know that the name was written
to the file. When you click the OK button to dismiss the message box, notice
that the nameTextBox is cleared, and the focus is given to the TextBox. Enter
another name, and click the Write Name button. Again, you see the message
box. Click the OK button to dismiss the message box and then click the Exit
button to end the application.

 Step 4: Now you will look at the contents of the Friend.txt file.

 • If you are using Visual Studio, click FILE on the menu bar, then click Open ,
and then click File .

 • If you are using Visual Studio Express, click FILE on the menu bar and then
click Open File .

 You should now see the Open File window, viewing the contents of the Friend
File project folder. Open the bin folder, then open the Debug folder, and then

 5.6 Using Files for Data Storage 303

select the file Friend.txt . (You might not see the .txt extension, depending on
how your system is set up.) Click the Open button.

 Step 5: You should now see the contents of the Friend.txt file in Visual Studio. Figure
 5-28 shows an example. Notice that the names that you entered were appended
to the file each time you clicked the Write Name button. When you are finished
examining the contents of the file, you can close its tab. We come back to this
project in the next tutorial.

 Figure 5-28 Sample contents of the Friend.txt file shown in Visual Studio

 Program 5-5 Partial code for Form1 in the Friend File application

 1 private void writeNameButton_Click(object sender, EventArgs e)
 2 {
 3 try
 4 {
 5 // Declare a StreamWriter variable.
 6 StreamWriter outputFile;
 7
 8 // Open the Friend.txt file for appending,
 9 // and get a StreamWriter object.
 10 outputFile = File.AppendText(" Friend.txt ");
 11
 12 // Write the friend's name to the file.
 13 outputFile.WriteLine(nameTextBox.Text);
 14
 15 // Close the file.
 16 outputFile.Close();
 17
 18 // Let the user know the name was written.
 19 MessageBox.Show("The name was written.");
 20
 21 // Clear the nameTextBox control.
 22 nameTextBox.Text = "" ;
 23
 24 // Give the focus to the nameTextBox control.
 25 nameTextBox.Focus();
 26 }
 27 catch (Exception ex)
 28 {
 29 // Display an error message.
 30 MessageBox.Show(ex.Message);
 31 }
 32 }

304 Chapter 5 Loops, Files, and Random Numbers

 Specifying the Location of an Output File
 When you call the File.CreateText or File.AppendText methods to open a file, you
pass the filename as a string argument. If the filename that you pass as an argument does
not contain the file’s path, the file’s location will be the bin \ Debug folder, under the ap-
plication’s project folder. You saw this in Tutorials 5-4 and 5-5 when you opened the
Friend.txt file in Visual Studio.

 If you want to open a file in a different location, you can specify a path as well as a
filename in the argument that you pass to the File.CreateText or File.AppendText
method. If you specify a path in a string literal, be sure to prefix the string with the @
character. Here is an example:

 StreamWriter outputFile;
 outputFile = File.CreateText(@"C:\Users\Chris\Documents\Names.txt");

 TIP: You can also let the user specify the file location. See Section 5.7 for more in-
formation on the SaveFileDialog control.

 Reading Data from a File with a StreamReader Object
 To read data from a text file, you create a StreamReader object. You can then use the
 StreamReader class’s ReadLine method to read a line of text from a file. For example,
suppose a file named Students.txt exists and contains the four names shown in Figure 5-29 .

 Figure 5-29 Contents of the Students.txt file

 Let’s suppose you want to write a program that reads the four names from the Students.
txt file and displays them in message boxes. The following code sample shows how you
can do this. (This code sample is taken from the Student Names project, in the Chap05
folder of this book’s Student Sample Programs.)

 1 try
 2 {
 3 // Declare a variable to hold an item read from the file.
 4 string studentName;
 5
 6 // Declare a StreamReader variable.
 7 StreamReader inputFile;
 8
 9 // Open the file and get a StreamReader object.
 10 inputFile = File.OpenText("Students.txt");
 11

 5.6 Using Files for Data Storage 305

 12 // Read and display the first name.
 13 studentName = inputFile.ReadLine();
 14 MessageBox.Show(studentName);
 15
 16 // Read and display the second name.
 17 studentName = inputFile.ReadLine();
 18 MessageBox.Show(studentName);
 19
 20 // Read and display the third name.
 21 studentName = inputFile.ReadLine();
 22 MessageBox.Show(studentName);
 23
 24 // Read and display the fourth name.
 25 studentName = inputFile.ReadLine();
 26 MessageBox.Show(studentName);
 27
 28 // Close the file.
 29 inputFile.Close();
 30 }
 31 catch (Exception ex)
 32 {
 33 // Display an error message.
 34 MessageBox.Show(ex.Message);
 35 }

 Let’s take a closer look at the code.

 Line 1: This is the beginning of a try-catch statement. An exception will be thrown
in the try block if a problem occurs while the file is being opened or while an item is
being read from the file. If that happens, the program jumps to the catch clause in
line 31.

 Line 4: This statement declares a string variable named studentName . Each time we
read a line of text from the file, we assign it to this variable.

 Line 7: This statement declares a variable named inputFile that can be used to refer-
ence a StreamReader object.

 Line 10: This statement opens the file from which we will be reading data. It does so
by calling the File.OpenText method, passing the string "Students.txt" as an argu-
ment. The File.OpenText method does the following:

 • It opens an existing text fi le with the name specifi ed by the argument. If the fi le does
not exist, an exception is thrown.

 • It creates a StreamReader object in memory associated with the fi le.

 • It returns a reference to the StreamReader object.

 Notice that an assignment operator assigns the value returned from the File.OpenText
method to the inputFile variable. This causes the inputFile variable to reference the
 StreamReader object that was created by the method.

 Line 13: This statement calls the inputFile.ReadLine method, which reads a line of
text from the file. The line of text is returned as a string from the method and assigned
to the studentName variable. Since this statement reads the first line of text from the
file, the studentName variable is assigned the string “Joe Merrell”.

 Line 14: This statement displays the contents of the studentName variable in a mes-
sage box.

 Lines 17 and 18: The statement in line 17 reads the next line of text from the file and
assigns it to the studentName variable. After this line executes, the studentName vari-
able is assigned the string “Chris Rich”. The statement in line 18 displays the con-
tents of the studentName variable in a message box.

306 Chapter 5 Loops, Files, and Random Numbers

 Lines 21 and 22: The statement in line 21 reads the next line of text from the file and
assigns it to the studentName variable. After this line executes, the studentName vari-
able is assigned the string “Kathryn Stevens”. The statement in line 22 displays the
contents of the studentName variable in a message box.

 Lines 25 and 26: The statement in line 25 reads the next line of text from the file and
assigns it to the studentName variable. After this line executes, the studentName vari-
able is assigned the string “Carly Colombo”. The statement in line 26 displays the
contents of the studentName variable in a message box.

 Line 29: This statement closes the Students.txt file.

 The Read Position
 When a program works with an input file, a special value known as a read position is in-
ternally maintained for that file. A file’s read position marks the location of the next item
that will be read from the file. When an input file is opened, its read position is initially
set to the first item in the file. As items are read from the file, the read position moves
forward, toward the end of the file. Let’s see how this works in the previous code sample
(from the Student Names project) After the statement in line 10 executes, the read posi-
tion for the Students.txt file is positioned as shown in Figure 5-30 .

Joe Merrell Chris Rich Kathryn Stevens Carly Colombonewline newline newline newline

Read position

 Figure 5-30 The initial read position

 The ReadLine method call in line 13 reads an item from the file’s current read position
and assigns that item to the studentName variable. Once this statement executes, the
 studentName variable is assigned the string “Joe Merrell”. In addition, the file’s read
position is advanced to the next item in the file, as shown in Figure 5-31 .

Joe Merrell Chris Rich Kathryn Stevens Carly Colombonewline newline newline newline

Read position

 Figure 5-31 Read position after the first ReadLine method call

 The ReadLine method call in line 17 reads an item from the file’s current read position
and assigns that value to the studentName variable. Once this statement executes, the
 studentName variable is assigned the string “Chris Rich”. The file’s read position is
advanced to the next item, as shown in Figure 5-32 .

Joe Merrell Chris Rich Kathryn Stevens Carly Colombonewline newline newline newline

Read position

 Figure 5-32 Read position after the second ReadLine method call

 5.6 Using Files for Data Storage 307

 The ReadLine method call in line 21 reads an item from the file’s current read position
and assigns that value to the studentName variable. Once this statement executes, the
 studentName variable is assigned the string “Kathryn Stevens”. The file’s read position
is advanced to the next item, as shown in Figure 5-33 .

Joe Merrell Chris Rich Kathryn Stevens Carly Colombonewline newline newline newline

Read position

 Figure 5-33 Read position after the third ReadLine method call

 The last ReadLine method call appears in line 25. It reads an item from the file’s current
read position and assigns that value to the studentName variable. Once this statement
executes, the studentName variable is assigned the string “Carly Colombo”. The file’s
read position is advanced to the end of the file, as shown in Figure 5-34 .

Joe Merrell Chris Rich Kathryn Stevens Carly Colombonewline newline newline newline

Read position

 Figure 5-34 Read position after the fourth ReadLine method call

 Reading Numeric Data from a Text File
 Remember that when data is stored in a text file, it is encoded as text, using a scheme
such as Unicode. Even if the file contains numbers, those numbers are stored in the file
as a series of characters. Furthermore, when you read an item from a text file with the
 StreamReader class’s ReadLine method, that item is returned as a string.

 Suppose a text file contains numeric data, such as that shown in Figure 5-35 . When we
use the ReadLine method to read the items from the file, we get the strings “10”, “20”,
and “30”. If we need to perform math with these values, we must convert each value from
a string to a numeric data type. We can use the Parse or TryParse families of methods
that you already know about to perform this conversion.

 NOTE: Did you notice that the previous code sample read the items in the Students.
txt file in sequence, from the beginning of the file to the end of the file? Recall from
our discussion at the beginning of the section that this is the nature of a sequential
access file.

 Figure 5-35 A text file containing numeric data

308 Chapter 5 Loops, Files, and Random Numbers

 Let’s suppose you want to write a program that reads the three numbers from the
 NumericData.txt file shown in Figure 5-35 and displays their total in a message box.
The following code sample shows a simple demonstration. (This code sample is taken
from the Numeric Data project in the Chap05 folder of this book’s Student Sample
Programs.)

 1 try
 2 {
 3 // Variables to hold the numbers read from the file
 4 // and their total
 5 int number1, number2, number3, total;
 6
 7 // A StreamReader variable.
 8 StreamReader inputFile;
 9
 10 // Open the file and get a StreamReader object.
 11 inputFile = File.OpenText("NumericData.txt");
 12
 13 // Read three numbers from the file.
 14 number1 = int.Parse(inputFile.ReadLine());
 15 number2 = int.Parse(inputFile.ReadLine());
 16 number3 = int.Parse(inputFile.ReadLine());
 17
 18 // Calculate the total of the numbers.
 19 total = number1 + number2 + number3;
 20
 21 // Display the total.
 22 MessageBox.Show("The total is " + total);
 23
 24 // Close the file.
 25 inputFile.Close();
 26 }
 27 catch (Exception ex)
 28 {
 29 // Display an error message.
 30 MessageBox.Show(ex.Message);
 31 }

 Let’s take a closer look at the code.

 Line 1: This is the beginning of a try-catch statement. Various exceptions can be
thrown by the code in the try block, which cause the program to jump to the catch
clause in line 27.

 Line 5: This statement declares the int variables number1 , number2 , number3 , and
 total . These variables hold the three values read from the file and their total.

 Lines 8–11: After these statements have executed, the NumericData.txt file is opened
for reading, and the inputFile variable references a StreamReader object that is as-
sociated with the file.

 Line 14: This statement does the following:

 • It calls the inputFile.ReadLine method to read a line of text from the fi le.

 • The value that is returned from the inputFile.ReadLine method (a string) is passed
as an argument to the int.Parse method.

 • The value that is returned from the int.Parse method is assigned to the number1
variable.

 After this statement executes, the number1 variable is assigned the first value read from
the file, converted to an int . (The number1 variable is assigned the value 10.)

 5.6 Using Files for Data Storage 309

 Line 15: This statement reads the next value from the file, converts it to an int ,
and assigns the result to the number2 variable. (The number2 variable is assigned the
value 20.)

 Line 16: This statement reads the next value from the file, converts it to an int , and
assigns the result to the number3 variable. (The number3 variable is assigned the
value 30.)

 Line 19: This statement calculates the sum of number1 , number2 , and number3 , and
assigns the result to total .

 Line 22: This statement displays the sum of the numbers in a message box.

 Line 25: This statement closes the file.

 Reading a File with a Loop and
Detecting the End of the File
 Quite often a program must read the contents of a file without knowing the number of
items that are stored in the file. For example, suppose you need to write a program that
displays all the items in a file, but you do not know how many items the file contains. You
can open the file and then use a loop to repeatedly read an item from the file and display
it. However, an exception will be thrown if the program attempts to read beyond the end
of the file. The program needs some way of knowing when the end of the file has been
reached so it will not try to read beyond it. The following pseudocode shows the logic:

 Open the file
 While not at the end of the file:
 Read an item from the file
 Display the item
 End While
 Close the file

 StreamReader objects have a Boolean property named EndOfStream that signals whether
the end of the file has been reached. If the file’s read position is at the end of the file (and
there is no more data to read), the EndOfStream property is set to true. Otherwise, it is set
to false. When you need to read all the items in a file without knowing how many items
the file contains, you can write a loop that iterates as long as the EndOfStream property
is false.

 Let’s assume inputFile references a StreamReader object that is associated with a file
that is already open. You can write the loop in the following manner:

 while (inputFile.EndOfStream == false)
 {
 // Read an item from the file.
 // Process the item.
 }

 However, most programmers prefer the following logic, which uses the ! operator:

 while (!inputFile.EndOfStream)
 {
 // Read an item from the file.
 // Process the item.
 }

 Recall that the ! operator is the logical NOT operator. When you read the first line of this
loop, you naturally think while NOT at the end of the stream . In Tutorial 5-6 you will
complete an application that uses this technique to display all the items in a file.

310 Chapter 5 Loops, Files, and Random Numbers

 Tutorial 5-6 :
 Using a
Loop to
Read to the
End of a File

VideoNote

 Tutorial 5-6:
 Using a Loop to Read to the End of a File

 In this tutorial you complete the South America application that is found in the Chap05
folder of this book’s Student Sample Programs. The application’s form has already been cre-
ated and is shown in Figure 5-36 . The application also has an accompanying text file named
Countries.txt that is stored in the bin \ Debug folder under the project folder. The Countries.
txt file contains the names of the countries of South America. Figure 5-37 shows the file as it
appears in Notepad.

countriesListBox

getCountriesButton exitButton

 Figure 5-36 The South America application’s form

 Figure 5-37 The Countries.txt file

 When the completed application runs and the user clicks the Get Countries button,
the application reads each country name from the file and adds each one to the
 countriesListBox control.

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named South
America in the Chap05 folder of this book’s Student Sample Programs.

 Step 2: Open the Form1 form’s code in the code editor. Insert the using System.IO;
directive shown in line 10 of Program 5-6 at the end of this tutorial. This state-
ment is necessary because the StreamReader class is part of the System.IO
namespace in the .NET Framework.

 5.6 Using Files for Data Storage 311

 Step 3: Open the Form1 form in the Designer . The form is shown, along with
the names of the important controls, in Figure 5-36 . Double-click the
 getCountriesButton control. This opens the code editor, and you will see
an empty event handler named getCountriesButton _Click . Complete the
 getCountriesButton _Click event handler by typing the code shown in lines
23–46 in Program 5-6 . Let’s take a closer look at the code:

 Line 23: This is the beginning of a try-catch statement, which handles any
exceptions that are thrown while the file is being processed. If an exception
is thrown by any statement in the try block, the program jumps to the catch
clause in line 50.

 Line 26: This statement declares the string variable countryName , which
holds the lines of text that are read from the file.

 Lines 29–32: After these statements have executed, the Countries.txt file is
opened for reading, and the inputFile variable references a StreamReader
object that is associated with the file.

 Line 35: This statement clears anything that might be displayed in the
 countriesListBox control. (This prevents the names of the countries from
 appearing multiple times in the ListBox if the user clicks the Get Countries button
multiple times.)

 Line 38: This is the beginning of a while loop that iterates as long as the end of
the Countries.txt file has not been reached.

 Line 41: This statement reads a line of text from the file and assigns it to the
 countryName variable.

 Line 44: This statement adds the contents of the countryName variable to the
ListBox.

 Line 48: This statement closes the file.

 Step 4: Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you will see an empty event handler named exitButton_
Click . Complete the exitButton_Click event handler by typing the code
shown in lines 59–60 in Program 5-6 .

 Step 5: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the ap-
plication runs, click the Get Countries button. This should fill the ListBox with
the names of the countries from the Countries.txt file, as shown in Figure 5-38 .
Click the Exit button to exit the application.

 Figure 5-38 The South America application displaying the list of countries

312 Chapter 5 Loops, Files, and Random Numbers

 Program 5-6 Completed code for Form1 in the South America application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10 using System.IO;
 11
 12 namespace South_America
 13 {
 14 public partial class Form1 : Form
 15 {
 16 public Form1()
 17 {
 18 InitializeComponent();
 19 }
 20
 21 private void getCountriesButton_Click(object sender, EventArgs e)
 22 {
 23 try
 24 {
 25 // Declare a variable to hold a country name.
 26 string countryName;
 27
 28 // Declare a StreamReader variable.
 29 StreamReader inputFile;
 30
 31 // Open the file and get a StreamReader object.
 32 inputFile = File.OpenText("Countries.txt");
 33
 34 // Clear anything currently in the ListBox.
 35 countriesListBox.Items.Clear();
 36
 37 // Read the file's contents.
 38 while (!inputFile.EndOfStream)
 39 {
 40 // Get a country name.
 41 countryName = inputFile.ReadLine();
 42
 43 // Add the country name to the ListBox.
 44 countriesListBox.Items.Add(countryName);
 45 }
 46
 47 // Close the file.
 48 inputFile.Close();
 49 }
 50 catch (Exception ex)
 51 {
 52 // Display an error message.
 53 MessageBox.Show(ex.Message);
 54 }
 55 }
 56
 57 private void exitButton_Click(object sender, EventArgs e)

 5.6 Using Files for Data Storage 313

 Calculating a Running Total
 Many programming tasks require you to calculate the total of a series of numbers. In this
section you learn how to calculate the total of a series of numbers that are stored in a file.
For example, suppose you have a file that contains a business’s sales for each day of a week
and you need to write a program that calculates the total of all the amounts in the file. The
program would read the values in the file and keep a total of the values as they are read.

 Programs that calculate the total of a series of numbers typically use two elements:

 • A loop that reads each number in the series
 • A variable that accumulates the total of the numbers as they are read

 The variable that is used to accumulate the total of the numbers is called an accumulator .
It is often said that the loop keeps a running total because it accumulates the total as it
reads each number in the series. Figure 5-39 shows the general logic of a loop that calcu-
lates a running total.

 58 {
 59 // Close the form.
 60 this.Close();
 61 }
 62 }
 63 }

Set accumulator to 0.

Is there another
number to read?

Read the next number.
Add the number to the

accumulator.

Yes
(True)

No
(False)

 Figure 5-39 Logic for calculating a running total

 When the loop finishes, the accumulator will contain the total of the numbers that were
read by the loop. Notice that the first step in the flowchart is to set the accumulator vari-
able to 0. This is a critical step. Each time the loop reads a number, it adds it to the ac-
cumulator. If the accumulator starts with any value other than 0, it will not contain the
correct total when the loop finishes.

 In Tutorial 5-7 you will complete an application that calculates a running total of the
values in a file.

314 Chapter 5 Loops, Files, and Random Numbers

 Tutorial 5-7 :
 Calculating
a Running
Total

VideoNote

 Tutorial 5-7:
 Calculating a Running Total

 In this tutorial you complete the Total Sales application that is found in the Chap05
folder of this book’s Student Sample Programs. The application’s form has already been
created and is shown in Figure 5-40 . The application also has an accompanying text
file named Sales.txt that is stored in the bin \ Debug folder, under the project folder. The
Sales.txt file contains the amounts shown in Figure 5-41 .

totalLabel

calculateButton exitButton

 Figure 5-40 The Total Sales application’s form

 Figure 5-41 Contents of the Sales.txt file

 When the completed application runs and the user clicks the Read Sales & Calculate
Total button, the application calculates the total of the values in the Sales.txt file and
displays the total in the totalLabel control.

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Total
Sales in the Chap05 folder of this book’s Student Sample Programs.

 Step 2: Open the Form1 form’s code in the code editor. Insert the using System.IO;
directive shown in line 10 of Program 5-7 at the end of this tutorial.

 Step 3: Open the Form1 form in the Designer . The form is shown, along with the names
of the important controls, in Figure 5-40 . Double-click the calculateButton
control. This opens the code editor, and you will see an empty event handler
named calculateButton _Click . Complete the calculateButton _Click
event handler by typing the code shown in lines 23–56 in Program 5-7 . Let’s
take a closer look at the code:

 5.6 Using Files for Data Storage 315

 Line 23: This is the beginning of a try-catch statement, which handles any
exceptions that are thrown while the file is being processed. If an exception
is thrown by any statement in the try block, the program jumps to the catch
clause in line 52.

 Lines 26–27: These statements declare the decimal variables sales and total .
The sales variable holds each value that is read from the file, and the total
variable is used as an accumulator. Notice that the total variable is explicitly
initialized to 0.

 Lines 30–33: After these statements have executed, the Sales.txt file is opened
for reading, and the inputFile variable references a StreamReader object that
is associated with the file.

 Line 36: This is the beginning of a while loop that iterates as long as the end of
the Countries.txt file has not been reached.

 Line 39: This statement reads a line of text from the file, converts it to a deci-
mal, and assigns the result to the sales variable.

 Line 42: This statement adds the sales variable to the total variable.

 Line 46: This statement closes the file.

 Line 49: This statement displays the total, formatted as currency, in the
 totalLabel control.

 Step 4: Switch your view back to the Designer and double-click the exitButton
control. In the code editor you will see an empty event handler named
 exitButton_Click . Complete the exitButton_Click event handler by typing
the code shown in lines 61–62 in Program 5-7 .

 Step 5: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the applica-
tion runs, click the Read Sales & Calculate Total button. The total sales should
be calculated and displayed, as shown in Figure 5-42 . Click the Exit button to
exit the application.

 Figure 5-42 The Total Sales application displaying the total sales

 Program 5-7 Completed code for Form1 in the Total Sales application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;

316 Chapter 5 Loops, Files, and Random Numbers

 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10 using System.IO;
 11
 12 namespace Total_Sales
 13 {
 14 public partial class Form1 : Form
 15 {
 16 public Form1()
 17 {
 18 InitializeComponent();
 19 }
 20
 21 private void calculateButton_Click(object sender, EventArgs e)
 22 {
 23 try
 24 {
 25 // Variables
 26 decimal sales; // To hold a sales amount
 27 decimal total = 0m; // Accumulator, set to 0
 28
 29 // Declare a StreamReader variable.
 30 StreamReader inputFile;
 31
 32 // Open the file and get a StreamReader object.
 33 inputFile = File.OpenText("Sales.txt");
 34
 35 // Read the file's contents.
 36 while (!inputFile.EndOfStream)
 37 {
 38 // Get a sales amount.
 39 sales = decimal.Parse(inputFile.ReadLine());
 40
 41 // Add the sales amount to total.
 42 total += sales;
 43 }
 44
 45 // Close the file.
 46 inputFile.Close();
 47
 48 // Display the total.
 49 totalLabel.Text = total.ToString("C");
 50
 51 }
 52 catch (Exception ex)
 53 {
 54 // Display an error message.
 55 MessageBox.Show(ex.Message);
 56 }
 57 }
 58
 59 private void exitButton_Click(object sender, EventArgs e)
 60 {
 61 // Close the form.
 62 this.Close();
 63 }
 64 }
 65 }

 5.7 The OpenFileDialog and SaveFileDialog Controls 317

 Checkpoint

 5.18 What is an output file?

 5.19 What is an input file?

 5.20 What three steps must be taken by a program when it uses a file?

 5.21 What is the difference between a text file and a binary file?

 5.22 What are the two types of file access? What is the difference between these two?

 5.23 What type of object do you create if you want to write data to a text file?

 5.24 What type of object do you create if you want to read data from a text file?

 5.25 If you call the File.CreateText method and the specified file already exists, what
happens to the existing file?

 5.26 If you call the File.AppendText method and the specified file already exists, what
happens to the existing file?

 5.27 What is the difference between the WriteLine and Write methods discussed in
this chapter?

 5.28 What method do you call to open a text file to read data from it?

 5.29 What is a file’s read position? Initially, where is the read position when an input
file is opened?

 5.30 How do you read a line of text from a text file?

 5.31 How do you close a file?

 5.32 Assume inputFile references a StreamReader object that is associated with an
open file. Which of the following loops is written in the correct general format to
read all of the items from the file?

 Loop A:
 while (inputFile.EndOfStream)
 {
 // Read an item from the file.
 }

 Loop B:
 while (!inputFile.EndOfStream)
 {
 // Read an item from the file.
 }

 5.7 The OpenFileDialog and SaveFileDialog Controls

 CONCEPT: The OpenFileDialog and SaveFileDialog controls allow your application
to display standard Windows dialog boxes for opening and saving files.
These allow the user to easily specify a file’s name and location.

 So far, the applications in this chapter that open a file specify the filename as a string literal.
Most Windows users, however, are accustomed to using a dialog box to browse their disk for a
file to open or for a location to save a file. You can use the OpenFileDialog and SaveFileDialog
controls to equip applications with standard Windows dialog boxes for these purposes.

318 Chapter 5 Loops, Files, and Random Numbers

 The OpenFileDialog Control
 The OpenFileDialog control displays a standard Windows Open dialog box, such as the
one shown in Figure 5-43 . The Open dialog box is useful in applications that must open
an existing file because it allows the user to browse the system and select the file.

 Figure 5-43 Windows Open dialog box

 Adding the OpenFileDialog Control to Your Project

 To add an OpenFileDialog control to a form, double-click the OpenFileDialog tool under
the Dialogs group in the Toolbox window. When the control is created, it does not ap-
pear on the form, but in an area at the bottom of the Designer known as the component
tray . Figure 5-44 shows an example of how an OpenFileDialog control appears in the
component tray. The control’s default name is openFileDialog1. As with other controls,
you can change the control’s Name property to change its name.

 Displaying an Open Dialog Box

 In code, you can display an Open dialog box by calling the OpenFileDialog control’s
 ShowDialog method. For example, assume that we have created an OpenFileDialog
 control and changed its name to openFile . The following statement calls the control’s
 ShowDialog method:

 openFile.ShowDialog();

 In most cases, however, you will want to know whether the user clicked the Open button
or the Cancel button to dismiss the Open dialog box. If the user clicked the Open button,
it means that the user has selected a file and he or she can open it. If the user clicked the
 Cancel button, it means that the user does not want to proceed.

 The ShowDialog method returns a value that indicates which button the user clicked to
dismiss the dialog box. If the user clicked the Open button, the value DialogResult.
OK is returned. If the user clicked the Cancel button, the value DialogResult.Cancel is
returned. Assuming openFile is the name of an OpenFileDialog control, the following is

 5.7 The OpenFileDialog and SaveFileDialog Controls 319

an example of an if-else statement that calls the ShowDialog method and determines
whether the user clicked the Open button or the Cancel button.

 if (openFile.ShowDialog() == DialogResult.OK)
 {
 MessageBox.Show("You clicked the Open button.");
 }
 else
 {
 MessageBox.Show("You clicked the Cancel button.");
 }

 The Filename Property

 When the user selects a file with the Open dialog box, the file’s path and filename are stored
in the control’s Filename property . Assume openFile is the name of an OpenFileDialog
control. The following code is an example of how you can display an Open dialog box and,
if the user clicks the Open button to dismiss the dialog box, open the selected file.

 1 StreamReader inputFile;
 2
 3 if (openFile.ShowDialog() == DialogResult.OK)
 4 {
 5 // Open the selected file.
 6 inputFile = File.OpenText(openFile.Filename);
 7
 8 // Continue processing the file…
 9 }
 10 else
 11 {
 12 MessageBox.Show("Operation canceled.");
 13 }

 Figure 5-44 An OpenFileDialog control in the component tray

320 Chapter 5 Loops, Files, and Random Numbers

 Let’s take a closer look at the code. The statement in line 1 declares a StreamReader
variable named inputFile . The if statement in line 3 calls the openFile control’s
 ShowDialog method to display an Open dialog box. If the user clicks the Open button to
dismiss the dialog box, the program continues to line 6, where the name of the selected
file is retrieved from the control’s Filename property and that file is opened. Otherwise (if
the user clicks the Cancel button), the program jumps to the else clause in line 10.

 TIP: When you create an OpenFileDialog control, its Filename property is initially
set to the control’s default name. For example, if the control’s default name is
 openFileDialog1 , then the Filename property is also set to openFileDialog1 . Always
be sure to delete the default value of the Filename property.

 The InitialDirectory Property

 By default, the Open dialog box displays the contents of the user’s Documents directory
(or folder). You can specify another directory to be initially displayed by storing its path
in the InitialDirectory property . For example, the following code stores the path C:\Data
in the openFile control’s InitialDirectory property before displaying an Open dialog box:

 openFile.InitialDirectory = "C:\Data";

 if (openFile.ShowDialog() == DialogResult.OK)
 {
 // Continue to process the selected file…
 }
 else
 {
 // The operation was canceled.
 }

 In this example, when the Open dialog box is displayed it shows the contents of the direc-
tory C:\Data .

 The Title Property

 By default, the word Open is displayed in an Open dialog box’s title bar. You can change
the default text displayed in the title bar by changing the control’s Title property.

 The SaveFileDialog Control
 The SaveFileDialog control displays a standard Windows Save As dialog box, such as the
one shown in Figure 5-45 . The Save As dialog box allows the user to browse the system
and select a location and name for a file that is about to be saved.

 Adding the SaveFileDialog Control to Your Project

 The SaveFileDialog control has much in common with the OpenFileDialog control. To
add a SaveFileDialog control to a form, double-click the SaveFileDialog tool under the
 Dialogs group in the Toolbox window. When the control is created, it appears in the
component tray at the bottom of the Designer . The control will be given a default name
such as saveFileDialog1, but you can change the name with the Name property.

 Displaying a Save As Dialog Box

 In code, you can display a Save As dialog box by calling the SaveFileDialog control’s
 ShowDialog method. For example, assume that we have created a SaveFileDialog

 5.7 The OpenFileDialog and SaveFileDialog Controls 321

control and changed its name to saveFile . The following statement calls the control’s
 ShowDialog method:

 saveFile.ShowDialog();

 The method returns a value indicating whether the user clicked the Save button or the
 Cancel button to dismiss the Save As dialog box. If the user clicks the Save button,
the value DialogResult.OK is returned. If the user clicks the Cancel button, the value
 DialogResult.Cancel is returned. Assume saveFile is the name of a SaveFileDialog
control. The following is an example of an if-else statement that calls the
 ShowDialog method and determines whether the user clicked the Save button or the
 Cancel button.

 if (saveFile.ShowDialog() == DialogResult.OK)
 {
 MessageBox.Show("You clicked the Save button.");
 }
 else
 {
 MessageBox.Show("You clicked the Cancel button.");
 }

 The Filename Property

 When the user specifies a location and filename with the Save As dialog box, the file’s
path and filename are stored in the control’s Filename property. Assume saveFile is
the name of a SaveFileDialog control. The following code is an example of how you can
display a Save As dialog box, and if the user clicks the Save button to dismiss the dialog
box, open the selected file.

 1 StreamWriter outputFile;
 2
 3 if (saveFile.ShowDialog() == DialogResult.OK)
 4 {

 Figure 5-45 Windows Save As dialog box

322 Chapter 5 Loops, Files, and Random Numbers

 5 // Create the selected file.
 6 outputFile = File.CreateText(openFile.Filename);
 7
 8 // Write data to the file…
 9 }
 10 else
 11 {
 12 MessageBox.Show("Operation canceled.");
 13 }

 Let’s take a closer look at the code. The statement in line 1 declares a StreamWriter
variable named outputFile . The if statement in line 3 calls the saveFile control’s
 ShowDialog method to display a Save As dialog box. If the user clicks the Save button to
dismiss the dialog box, the program continues to line 6, where the selected name and path
are retrieved from the control’s Filename property, and that file is created. Otherwise (if
the user clicks the Cancel button), the program jumps to the else clause in line 10.

 The InitialDirectory Property

 By default, the Save As dialog box displays the contents of the user’s Documents direc-
tory (or folder). You can specify another directory to be initially displayed by storing its
path in the InitialDirectory property. The following code stores the path C:\Data in the
 saveFile control’s InitialDirectory property before displaying a Save As dialog box:

 saveFile.InitialDirectory = "C:\Data";

 if (saveFile.ShowDialog() == DialogResult.OK)
 {
 // Continue to process the file…
 }
 else
 {
 // The operation was cancelled.
 }

 In this example, when the Save As dialog box is displayed, it shows the contents of the
directory C:\Data .

 The Title Property

 By default the words Save As are displayed in a Save As dialog box’s title bar. You
can change the default text displayed in the title bar by changing the control’s Title
property .

 Checkpoint

 5.33 What is the benefit of using an Open and/or Save As dialog box in an application
that works with files?

 5.34 What is the purpose of the following OpenFileDialog and SaveFileDialog
properties?

 InitialDirectory

 Title

 Filename

 5.8 Random Numbers 323

 5.8 Random Numbers

 CONCEPT: Random numbers are used in a variety of applications. The .NET Frame-
work provides the Random class that you can use in C# to generate random
numbers.

 Random numbers are useful for lots of different programming tasks. The following are
just a few examples.

 • Random numbers are commonly used in games. For example, computer games that
let the player roll dice use random numbers to represent the values of the dice. Pro-
grams that show cards being drawn from a shuffled deck use random numbers to
represent the face values of the cards.

 • Random numbers are useful in simulation programs. In some simulations, the com-
puter must randomly decide how a person, animal, insect, or other living being will
behave. Formulas can be constructed in which a random number is used to deter-
mine various actions and events that take place in the program.

 • Random numbers are useful in statistical programs that must randomly select data
for analysis.

 • Random numbers are commonly used in computer security to encrypt sensitive
data.

 The .NET Framework provides a class named Random that you can use in C# to generate
random numbers. First you create an object from the Random class with a statement such
as this:

 Random rand = new Random();

 Let’s dissect the statement into two parts. The first part of the statement, appearing on the
left side of the = operator, is as follows:

Random rand = new Random();

This declares a variable named rand
that can reference a Random object.

 This declares a variable named rand that can be used to reference a Random object.
The second part of the statement, appearing on the right side of the = operator, is as
 follows:

Random rand = new Random();

This creates a Random object
in memory.

 The expression new Random() causes an object of the Random class to be created in mem-
ory. The = operator causes the rand variable to reference the Random object, as illustrated
in Figure 5-46 . After this statement has executed, we can use the rand variable to work
with the Random object.

324 Chapter 5 Loops, Files, and Random Numbers

 The Next Method
 Once you have created a Random object, you can call its Next method to get a random
integer number. The following code shows an example:

 // Declare an int variable.
 int number;

 // Create a Random object.
 Random rand = new Random();

 // Get a random integer and assign it to number.
 number = rand.Next();

 After this code executes, the number variable contains a random integer. If you call the
 Next method with no arguments, as shown in this example, the returned integer is some-
where between 0 and 2,147,483,647. Alternatively, you can pass an argument that speci-
fies an upper limit to the generated number’s range. In the following statement, the value
assigned to number is somewhere between 0 and 99:

 number = rand.Next(100);

 The random integer’s range does not have to begin at zero. You can add or subtract
a value to shift the numeric range upward or downward. In the following statement,
we call the Next method to get a random number in the range of 0 through 9, and
then we add 1 to it. So, the number assigned to number is somewhere in the range of
1 through 10:

 number = rand.Next(10) + 1;

 The following statement shows another example. It assigns a random integer to number
between −50 and +49:

 number = rand.Next(100) − 50

 The NextDouble Method
 You can call a Random object’s NextDouble method to get a random floating-point number
between 0.0 and 1.0 (not including 1.0). The following code shows an example:

 // Declare a Double variable.
 double number;

 // Create a Random object.
 Random rand = new Random();

 // Get a random number and assign it to number.
 number = rand.NextDouble();

 After this code executes, the number variable will contain a random floating-point number
in the range of 0.0 up to (but not including) 1.0.

 In Tutorial 5-8 you will use random numbers to determine whether the heads or tails side
of a coin is facing up after the coin has been tossed.

Random object
rand

 Figure 5-46 The rand variable references a Random object

 5.8 Random Numbers 325

 Tutorial 5-8 :
 Simulating
Coin Tosses

VideoNote

 Tutorial 5-8
 Simulating Coin Tosses

 In this tutorial you create an application that simulates the tossing of a coin. Each time the
user tosses the coin, the application uses a Random object to get a random integer in the
range of 0 through 1. If the random number is 0, it means the tails side of the coin is up, and
if the random number is 1, it means the heads side is up. The application displays an image
of a coin showing either heads or tails, depending on the value of the random number.

 Step 1: Start Visual Studio (or Visual Studio Express) and begin a new Windows Forms
Application project named Coin Toss .

 Step 2: Set up the application’s form as shown in Figure 5-47 . Notice that the form’s Text
property is set to Coin Toss . The names of the controls are shown in the figure.
As you place each of the controls on the form, refer to Table 5-1 for the relevant
property settings. (Make sure the headsPictureBox control’s Visible property is
set to True, and the tailsPictureBox control’s Visible property is set to False.
This will cause the coin to initially appear heads up when the application runs.)

headsPictureBox tailsPictureBox

tossButton exitButton

 Figure 5-47 Initial setup of the Coin Toss form

 Table 5-1 Control property settings

 Control Name Control Type Property Settings

 headsPictureBox PictureBox Image : Select and import the
Heads1.bmp file from the Chap05
folder of the Student Sample Programs.
 Size: 170, 170
 SizeMode : Zoom
 Visible: True

 tailsPictureBox PictureBox Image : Select and import the Tails1.bmp
file from the Chap05 folder of the
Student Sample Programs.
 Size: 170, 170
 SizeMode : Zoom
 Visible: False

 tossButton Button Text : Toss

 exitButton Button Text : Exit

326 Chapter 5 Loops, Files, and Random Numbers

 Step 3: After you have set all of the control properties as shown in Table 5-1 , move the
PictureBox controls so one is on top of the other, as shown in Figure 5-48 . (In
the figure, the headsPictureBox control is on top, but it really doesn’t matter
which is on top.) Also, reduce the width of the form and position the button
controls as shown in the figure.

The headsPictureBox control is on
top of the tailsPictureBox control

 Figure 5-48 The controls repositioned and the form size adjusted

 Step 4: Now you will create the Click event handlers for the Button controls. At the end
of this tutorial, Program 5-8 shows the completed code for the form. You will
be instructed to refer to Program 5-8 as you write the event handlers.

 In the Designer , double-click the tossButton control. This opens the code edi-
tor, and you will see an empty event handler named tossButton_Click . Com-
plete the tossButton_Click event handler by typing the code shown in lines
22–44 in Program 5-8 . Let’s take a closer look at the code:

 Line 23: This statement declares an int variable named sideUp . This variable is
used to hold a random number that indicates which side of the coin is up.

 Line 26: This statement does the following:

 • It declares a variable named rand that can be used to reference a Random
 object.

 • It creates a Random object in memory.
 • The = operator causes the rand variable to reference the Random object.

 Line 30: This statement gets a random integer in the range of 0 through 1 and
assigns it to the sideUp variable. The random integer represents which side of
the coin is facing up. The value 0 means that the tails side is facing up, and the
value 1 means that the heads side is facing up.

 Lines 33–44: This if-else statement displays the side of the coin that is fac-
ing up. If sideUp equals 0, then the statements in lines 36 and 37 display the
 tailsPictureBox control and hide the headsPictureBox control. If sideUp
equals 1, then the statements in lines 42 and 43 display the headsPictureBox
control and hide the tailsPictureBox control.

 Step 5: Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you will see an empty event handler named exitButton_
Click . Complete the exitButton_Click event handler by typing the code
shown in lines 49–50 in Program 5-8 .

 Step 6: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the appli-
cation runs, click the Toss button several times to simulate several coin tosses.
When you are finished, click the Exit button to exit the application.

 5.8 Random Numbers 327

 Program 5-8 Completed code for Form1 in the Coin Toss application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Coin_Toss
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void tossButton_Click(object sender, EventArgs e)
 21 {
 22 // Variable to indicate which side is up
 23 int sideUp;
 24
 25 // Create a Random object.
 26 Random rand = new Random();
 27
 28 // Get a random integer in the range of 0 through 1.
 29 // 0 means tails up, 1 means heads up.
 30 sideUp = rand.Next(2);
 31
 32 // Display the side that is up.
 33 if (sideUp == 0)
 34 {
 35 // Display tails up.
 36 tailsPictureBox.Visible = true;
 37 headsPictureBox.Visible = false;
 38 }
 39 else
 40 {
 41 // Display heads up.
 42 headsPictureBox.Visible = true;
 43 tailsPictureBox.Visible = false;
 44 }
 45 }
 46
 47 private void exitButton_Click(object sender, EventArgs e)
 48 {
 49 // Close the form.
 50 this.Close();
 51 }
 52 }
 53 }

328 Chapter 5 Loops, Files, and Random Numbers

 Random Number Seeds
 The numbers that are generated by the Random class are not truly random. Instead, they
are pseudorandom numbers that are calculated by a formula. The formula used to gener-
ate random numbers has to be initialized with a value known as a seed value. The seed
value is used in the calculation that returns the next random number in the series. When
a Random object is created in memory, it retrieves the system time from the computer’s
internal clock and uses that as the seed value. The system time is an integer that represents
the current date and time, down to a hundredth of a second.

 If a Random object uses the same seed value each time it is created, it always generates the same
series of random numbers. Because the system time changes every hundredth of a second, it
is the preferred value to use as the seed in most cases. However, you can specify a different
integer value as the seed, if you desire, when you create a Random object. Here is an example:

 Random rand = new Random(1000);

 In this example, the Random object that is created uses 1000 as the seed value. Each time a
 Random object is created with this statement, it generates the same series of random num-
bers. That may be desirable in some applications, when you always want to produce the
same set of pseudorandom numbers.

 Checkpoint

 5.35 What does a Random object’s Next method return?

 5.36 What does a Random object’s NextDouble method return?

 5.37 Write code that creates a Random object and then assigns a random integer in the
range of 1 through 100 to the variable randomNumber .

 5.38 Write code that creates a Random object and then assigns a random integer in the
range of 100 through 399 to the variable randomNumber .

 5.39 What does a Random object use as its seed value if you do not specify one?

 5.40 What happens if the same seed value is used each time a Random object is created?

 5.9 The Load Event

 CONCEPT: When an application’s form loads into memory, an event known as the
Load event takes place. You can write an event handler for the Load
event, and that handler will execute just before the form is displayed.

 When you run an application, the application’s form is loaded into memory and an event
known as the Load event takes place. The Load event takes place before the form is dis-
played on the screen. If you want to execute some code at this point, you can write a Load
event handler containing the desired code.

 To create a Load event handler for a form, simply double-click any area of the form in the
 Designer window where there is no other control. The code editor will open with an empty
Load event handler. If the form is named Form1 , the event handler is named Form1_Load .
Any code that you write inside the event handler executes when the form’s Load event
takes place. Here is an example of a Load event handler in a form named Form1 :

 private void Form1_Load(object sender, EventArgs e)
 {
 MessageBox.Show("Prepare to see the form!");
 }

 5.9 The Load Event 329

 Keep in mind that the Load event happens before the form is displayed on the screen.
When the application containing this event handler runs, the message box is displayed
before the form appears.

 Load event handlers are useful for performing setup operations. In Tutorial 5-9 you will
complete an application that uses a Load event handler to read items from a text file and
add those items to a ListBox control.

 Tutorial 5-9 :
 Creating a
Load Event
Handler

VideoNote

 Tutorial 5-9:
 Creating a Load Event Handler

 In this tutorial you complete the Load Event application that is found in the Chap05
folder of this book’s Student Sample Programs. This application is a variation of the
 South America application that you created in Tutorial 5-6 . This version of the applica-
tion uses a Load event handler to read the contents of the Countries.txt file and adds
those items to a ListBox control.

 The application’s form has already been created and is shown in Figure 5-49 . The ap-
plication also has an accompanying text file named Countries.txt, that is stored in the
 bin \ Debug folder, under the project folder. The Countries.txt file contains the names of
the countries of South America.

countriesListBox

exitButton

 Figure 5-49 The Load Event application’s form

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Load
Event in the Chap05 folder of this book’s Student Sample Programs.

 Step 2: Open the Form1 form’s code in the code editor. Insert the using System.IO;
directive shown in line 10 of Program 5-9 at the end of this tutorial. This
statement is necessary because you will be using the StreamReader class,
which is part of the System.IO namespace in the .NET Framework.

 Step 3: Open the Form1 form in the Designer . The form is shown, along with the
names of the important controls, in Figure 5-49 . Double-click any part of
the form that does not contain a control. (Be sure not to click the Label con-
trol, the ListBox control, or the Button control.) This opens the code editor,
and you will see an empty event handler named Form1_Load . Complete the
 Form1_Load event handler by typing the code shown in lines 23–46 in Pro-
gram 5-9 . Let’s take a closer look at the code:

330 Chapter 5 Loops, Files, and Random Numbers

 Line 23: This is the beginning of a try-catch statement, which handles any ex-
ceptions that are thrown while the file is being processed. If an exception is thrown
by any statement in the try block, the program jumps to the catch clause in line 47.

 Line 26: This statement declares the string variable countryName , which
holds the lines of text that are read from the file.

 Lines 29–32: After these statements have executed, the Countries.txt file is
opened for reading, and the inputFile variable references a StreamReader
object that is associated with the file.

 Line 35: This is the beginning of a while loop that iterates as long as the end of
the Countries.txt file has not been reached.

 Line 38: This statement reads a line of text from the file and assigns it to the
 countryName variable.

 Line 41: This statement adds the contents of the countryName variable to the
ListBox.

 Line 45: This statement closes the file.

 Step 4: Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you will see an empty event handler named exitButton_
Click . Complete the exitButton_Click event handler by typing the code
shown in lines 56–57 in Program 5-9 .

 Step 5: Save the project. Then, press % on the keyboard or click the Start Debugging
 button () on the toolbar to compile and run the application. When the applica-
tion runs, the ListBox should appear filled with the names of the countries from
the Countries.txt file, as shown in Figure 5-50 . Click the Exit button to exit the
 application.

 Figure 5-50 The Load Event application displaying the list of countries

 Program 5-9 Completed code for Form1 in the Load Event application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10 using System.IO;

 5.9 The Load Event 331

 11
 12 namespace Load_Event
 13 {
 14 public partial class Form1 : Form
 15 {
 16 public Form1()
 17 {
 18 InitializeComponent();
 19 }
 20
 21 private void Form1_Load(object sender, EventArgs e)
 22 {
 23 try
 24 {
 25 // Declare a variable to hold a country name.
 26 string countryName;
 27
 28 // Declare a StreamReader variable.
 29 StreamReader inputFile;
 30
 31 // Open the file and get a StreamReader object.
 32 inputFile = File.OpenText("Countries.txt");
 33
 34 // Read the file's contents.
 35 while (!inputFile.EndOfStream)
 36 {
 37 // Get a country name.
 38 countryName = inputFile.ReadLine();
 39
 40 // Add the country name to the ListBox.
 41 countriesListBox.Items.Add(countryName);
 42 }
 43
 44 // Close the file.
 45 inputFile.Close();
 46 }
 47 catch (Exception ex)
 48 {
 49 // Display an error message.
 50 MessageBox.Show(ex.Message);
 51 }
 52 }
 53
 54 private void exitButton_Click(object sender, EventArgs e)
 55 {
 56 // Close the form.
 57 this.Close();
 58 }
 59 }
 60 }

 Checkpoint

 5.41 When does the Load event take place?

 5.42 How do you create an event handler for the Load event?

332 Chapter 5 Loops, Files, and Random Numbers

 Key Terms

 accumulator
 binary file
 body
 component tray
 counter variable
 decrement
 direct access file
 file object
 filename
 filename extensions
 Filename property
 increment
 InitialDirectory property
 initialization expression
 input file
 Items.Add method
 Items.Clear method
 Items.Count property
 iteration
 Load event
 newline character
 Next method
 Open dialog box
 OpenFileDialog control

 output file
 postfix mode
 posttest loop
 prefix mode
 pretest loop
 pseudorandom numbers
 random access file
 read position
 ReadLine method
 running total
 Save As dialog box
 SaveFileDialog control
 seed value
 sequential access file
 StreamReader class
 StreamWriter class
 test expression
 text file
 Title property
 update expression
 while clause
 Write method
 WriteLine method

 Review Questions
 Multiple Choice

 1. ListBox controls have an __________ method that erases all the items in the Items
property.

 a. Items.Erase
 b. Items.Remove
 c. Items.Clear
 d. Items.Empty

 2. A __________ is commonly used to control the number of times that a loop iterates.

 a. counter variable
 b. test expression
 c. while clause
 d. controlled variable

 3. A(n) __________ tests its condition before performing an iteration.

 a. preemptive loop
 b. pretest loop
 c. infinite loop
 d. logical loop

 4. The term __________ is used to describe a file that data is written to.

 a. input file
 b. output file
 c. saved file
 d. user file

 Review Questions 333

 5. The term __________ is used to describe a file that data is read from.

 a. data file
 b. write file
 c. read file
 d. input file

 6. A(n) __________ contains data that has been encoded as text, using a scheme such
as Unicode.

 a. text file
 b. character file
 c. Unicode file
 d. system file

 7. When you work with a __________ you access data from the beginning of the file to
the end of the file.

 a. direct access file
 b. random access file
 c. sequential access file
 d. binary access file

 8. Files on a disk are identified by a(n) __________.

 a. unique identifier
 b. filename
 c. binary sequencer
 d. file extension

 9. A __________ is an object that is associated with a specific file and provides a way
for the program to work with that file.

 a. data object
 b. directory object
 c. stream object
 d. file object

 10. When a program works with an input file, a special value known as a(n) __________
is internally maintained for that file and marks the location of the next item that will
be read from the file.

 a. input locator
 b. accumulator
 c. read position
 d. sequential read value

 11. When the user selects a file with the Open dialog box, the file’s path and filename
are stored in the control’s __________.

 a. Filename property
 b. FilePath property
 c. Pathname property
 d. Text property

 12. The __________ displays a standard Windows Save As dialog box.

 a. SaveAsDialog control
 b. FileDialog control
 c. SaveFileDialog control
 d. StandardDialog control

334 Chapter 5 Loops, Files, and Random Numbers

 13. Once you have created a Random object, you can call its __________ to get a random
integer number.

 a. Generate method
 b. Rand method
 c. NextInteger method
 d. Next method

 14. The __________ is used in the calculation that returns the next random number in
the series.

 a. Start value
 b. seed value
 c. Next value
 d. sequence value

 15. When you run an application, the application’s form is loaded into memory and an
event known as the __________ takes place.

 a. Startup event
 b. Begin event
 c. Load event
 d. Initialize event

 True or False

 1. If the ListBox is empty, the Items.Count property equals −1.

 2. The while loop is known as a pretest loop, which means it tests its condition before
performing an iteration.

 3. To increment a variable means to increase its value and to decrement a variable
means to decrease its value.

 4. When a variable is declared in the initialization expression of a for loop, the scope
of the variable is limited to the loop.

 5. The while loop always performs at least one iteration, even if its Boolean expres-
sion is false to begin with.

 6. The term read file is used to describe a file that data is read from.

 7. To append data to an existing file, you open it with the File.AppendText method.

 8. As items are read from the file, the read position moves forward, toward the end of
the file.

 9. The numbers that are generated by the Random class are truly random.

 10. The Load event takes place after the form is displayed on the screen.

 Short Answer

 1. What is contained in the body of a loop?

 2. Write a programming statement that uses postfix mode to increment a variable
named count .

 3. How many iterations will occur if the test expression of a for loop is false to begin
with?

 4. What are filename extensions? What do they indicate about a file?

 5. When an input file is opened, what is its read position initially set to?

 Programming Problems 335

 6. How can you read all of the items in a file without knowing how many items the file
contains?

 7. What is a variable that is used to accumulate a total called?

 8. By default, the Open dialog box displays the contents of the user’s Documents
 directory. How can you specify another directory to be initially displayed?

 9. Why is the system time the preferred seed value for a Random object?

 10. What kind of code should be placed in the Load event?

 Algorithm Workbench

 1. Write a loop that displays your name 10 times.

 2. Write a loop that displays all the odd numbers from 1 through 49.

 3. Write a loop that displays every fifth number from 0 through 100.

 4. Write a code sample that uses a loop to write the numbers from 1 through 10 to a
file.

 5. Assume that a file named People.txt contains a list of names. Write a code sample
that uses a while loop to read the file and display its contents in a ListBox control.

 Programming Problems

 1. Distance Calculator

 If you know a vehicle’s speed and the amount of time it has traveled, you can calcu-
late the distance it has traveled as follows:

 Distance = Speed × Time

 For example, if a train travels 40 miles per hour for 3 hours, the distance traveled
is 120 miles. Create an application with a form similar to the one shown in Figure
 5-51 . The user enters a vehicle’s speed and the number of hours traveled into text
boxes. When the user clicks the Calculate button, the application should use a loop
to display in a list box the distance the vehicle has traveled for each hour of that
time period.

 Figure 5-51 The Distance Calculator application

336 Chapter 5 Loops, Files, and Random Numbers

 2. Distance File

 Modify the Distance Calculator program that you wrote for Programming Problem 1
so it writes its output to a file instead of displaying it in a ListBox control. Open the
file in Notepad or Visual Studio to confirm the output.

 3. Celsius-to-Fahrenheit Table

 Assuming that C is a Celsius temperature, the following formula converts the tem-
perature to a Fahrenheit temperature (F):

 F =
9
5

 C + 32

 Create an application that displays a table of the Celsius temperatures 0–20 and
their Fahrenheit equivalents. The application should use a loop to display the tem-
peratures in a list box.

 4. Population

 Create an application that predicts the approximate size of a population of organ-
isms. The application should use text boxes to allow the user to enter the starting
number of organisms, the average daily population increase (as a percentage), and
the number of days the organisms will be left to multiply. For example, assume the
user enters the following values:

 Starting number of organisms: 2

 Average daily increase: 30%

 Number of days to multiply: 10

 The application should display the following table of data in a ListBox control.

 Day Approximate Population

 1 2

 2 2.6

 3 3.38

 4 4.394

 5 5.7122

 6 7.42586

 7 9.653619

 8 12.5497

 9 16.31462

 10 21.209

 5. Pennies for Pay

 Susan is hired for a job, and her employer agrees to pay her every day. Her employer
also agrees that Susan’s salary is 1 penny the first day, 2 pennies the second day,
4 pennies the third day, continuing to double each day. Create an application that
allows the user to enter the number of days that Susan will work and calculates the
total amount of pay she will receive over that period of time.

 6. Ocean Levels

 Assuming the ocean’s level is currently rising at about 1.5 millimeters per year, cre-
ate an application that displays the number of millimeters that the ocean will have
risen each year for the next 10 years. Display the output in a ListBox control.

 Solving the
Celsius-to-
Fahrenheit
Table
problem

VideoNote

 Programming Problems 337

 7. Calories Burned

 Running on a particular treadmill, you burn 3.9 calories per minute. Create an ap-
plication that uses a loop to display the number of calories burned after 10, 15, 20,
25, and 30 minutes. Display the output in a ListBox control.

 8. Tuition Increase

 At one college the tuition for a full-time student is $6000 per semester. It has been
announced that the tuition will increase by 2 percent each year for the next five
years. Create an application with a loop that displays the projected semester tuition
amount for the next 5 years in a ListBox control.

 9. Dice Simulator

 Create an application that simulates rolling a pair of dice. When the user clicks a
button, the application should generate two random numbers, each in the range of 1
through 6, to represent the value of the dice. Use PictureBox controls to display the
dice. (In the Student Sample Programs, in the Chap05 folder, you will find six im-
ages named Die1.bmp, Die2.bmp, Die3.bmp, Die4.bmp, Die5.bmp, and Die6.bmp
that you can use in the PictureBoxes.)

 10. Addition Tutor

 Create an application that generates two random integers, each in the range of 100
through 500. The numbers should be displayed as addition problems on the applica-
tion’s form, such as

 247 + 129 = ?

 The form should have a text box for the user to enter the problem’s answer. When
a button is clicked, the application should do the following:

 • Check the user’s input and display a message indicating whether it is the correct
answer.

 • Generate two new random numbers and display them in a new problem on the
form.

 11. Random Number Guessing Game

 Create an application that generates a random number in the range of 1 through
100 and asks the user to guess what the number is. If the user’s guess is higher than
the random number, the program should display “Too high, try again.” If the user’s
guess is lower than the random number, the program should display “Too low, try
again.” If the user guesses the number, the application should congratulate the user
and then generate a new random number so the game can start over.

 Optional Enhancement: Enhance the game so it keeps count of the number of
guesses that the user makes. When the user correctly guesses the random number,
the program should display the number of guesses.

 12. Calculating the Factorial of a Number

 In mathematics, the notation n ! represents the factorial of the nonnegative integer
 n . The factorial of n is the product of all the nonnegative integers from 1 through n .
For example,

 7! = 1 × 2 × 3 × 4 × 5 × 6 × 7 = 5,040

 and
 4! = 1 × 2 × 3 × 4 = 24

 Create an application that lets the user enter a nonnegative integer and then uses a
loop to calculate the factorial of that number. Display the factorial in a label or a
message box.

338 Chapter 5 Loops, Files, and Random Numbers

 13. Random Number File Writer

 Create an application that writes a series of random numbers to a file. Each random
number should be in the range of 1 through 100. The application should let the user
specify how many random numbers the file will hold and should use a SaveFileDialog
control to let the user specify the file’s name and location.

 14. Random Number File Reader

 This exercise assumes you have completed Programming Problem 13, Random
Number File Writer . Create another application that uses an OpenFileDialog con-
trol to let the user select the file that was created by the application that you wrote
for Problem 13. This application should read the numbers from the file, display the
numbers in a ListBox control, and then display the following data:

 • The total of the numbers
 • The number of random numbers read from the file

339

Introduction to Methods

 CONCEPT: Methods can be used to break a complex program into small, manageable
pieces. A void method simply executes a group of statements and then
terminates. A value-returning method returns a value to the statement that
called it.

 In a general sense, a method is a collection of statements that performs a specific task. So
far you have experienced methods in two ways:

 • You have created event handlers. An event handler is a special type of method that
responds to events.

 • You have executed predefined methods from the .NET Framework, such as
 MessageBox.Show and the TryParse methods.

 In this chapter you will learn how to create your own methods that can be executed just
as you execute the .NET Framework methods.

 Methods are commonly used to break a problem into small, manageable pieces. Instead
of writing one long method that contains all the statements necessary to solve a problem,
you can write several small methods that each solve a specific part of the problem. These
small methods can then be executed in the desired order to solve the problem. This
approach is sometimes called divide and conquer because a large problem is divided into
several smaller problems that are easily solved. Figures 6-1 and 6-2 illustrate this idea by
comparing two programs: one that uses a long, complex event handler containing all the
statements necessary to solve a problem and another that divides a problem into smaller
problems, each of which are handled by a separate method.

 6.1 Introduction to Methods

 6.2 void Methods

 6.3 Passing Arguments to Methods

 6.4 Passing Arguments by
Reference

 6.5 Value-Returning Methods

 TOPICS

 Modularizing Your Code
with Methods 6 C

H
A

P
T

E
R

 6.1

340 Chapter 6 Modularizing Your Code with Methods

namespace Example
{
 public partial class Form1 : Form
 {
 private void myButton_Click(object sender, EventArgs e)
 {
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 ... and so on.
 }
 }
}

In this program the task is performed
by one long seqeunce of statements in

an event handler.

 Figure 6-1 Using one long sequence of statements to perform a task

In this program the task has
been divided into smaller tasks,

each of which is performed
by a separate method.

Event
Handler

private void Method2()
{
 statement;
 statement;
 statement;
}

Method 2

Method 4

private void Method4()
{
 statement;
 statement;
 statement;
}

namespace Example
{
 public partial class Form1 : Form
 {
 private void myButton_Click(object sender, EventArgs e)
 {
 Method2();
 Method3();
 Method4();
 }

 }
}

private void Method3()
{
 statement;
 statement;
 statement;
}

Method 3

 Figure 6-2 Using methods to divide and conquer a problem

 In general terms, a program that is broken into smaller units of code, such as methods, is
known as a modularized program . Modularization tends to simplify code. If a specific
task is performed in several places in a program, a method can be written once to perform
that task and then be executed any time it is needed. This benefit of using methods is
known as code reuse because you are writing the code to perform a task once and then
reusing it each time you need to perform the task.

 6.2 void Methods 341

 void Methods and Value-Returning Methods
 In this chapter you will learn to write two types of methods: void methods and value-
returning methods. When you call a void method , it simply executes the statements it con-
tains and then terminates. When you call a value-returning method , it executes the statements
that it contains and then it returns a value back to the statement that called it. The Parse
methods are good examples of value-returning methods. The first type of method that you
will learn to write is the void method.

 void Methods

 CONCEPT: A void method performs a task and then terminates. It does not return a
value back to the statement that called it.

 To create a method you write its definition. A method definition has two parts: a header
and a body. The method header , which appears at the beginning of a method definition,
lists several important things about the method, including the method’s name. The
 method body is a collection of statements that are performed when the method is exe-
cuted. These statements are enclosed inside a set of curly braces. Here is an example of a
method definition:

 private void DisplayMessage()
 {
 MessageBox.Show("This is the DisplayMessage method.");
 }

 The Method Header
 Using the previously shown method definition, Figure 6-3 points out the different parts of
the method header, which is the first line.

 6.2

private void DisplayMessage()
{
 MessageBox.Show("This is the DisplayMessage method.");
}

Access Return
type

Method
modifier name Parentheses

 Figure 6-3 Parts of the method header

 Let’s take a closer look at the parts identified in the figure:

 • Access modifier —The keyword private is an access modifier. When a method is
declared as private , it can be called only by code inside the same class as the
method. Alternatively, a method that is declared as public can be called by code
that is outside the class. This is important because some applications have multiple
classes, and unless you specifically intend a method to be available to code outside
the class, you should declare it private .

 • Return type —Recall our previous discussion of void and value-returning methods.
When the keyword void appears here, it means that the method is a void method,
and does not return a value. As you will see later in this chapter, a value-returning
method lists a data type here.

342 Chapter 6 Modularizing Your Code with Methods

 • Method name —You should give each method a descriptive name. In general, the
same rules that apply to variable names also apply to method names. The method in
this example is named DisplayMessage , so we can easily guess what the method
does: It displays a message.

 In this book we use Pascal case for method names. Pascal case is like camelCase (the
convention we have been using for variable names), except in a Pascal case name the
first character is always uppercase. It is a standard convention among C# program-
mers to use Pascal case for method names because it differentiates method names
from variable and field names.

 • Parentheses —In the header, the method name is always followed by a set of paren-
theses. As you will see later in this chapter, you sometimes write declarations inside
the parentheses, but for now, the parentheses will be empty.

 NOTE: The method header is never terminated with a semicolon.

 The Method Body
 Beginning at the line after the method header, one or more statements appear inside a set
of curly braces ({ }). These statements are the method’s body and are performed any time
the module is executed.

 When you write a method definition, Visual Studio automatically indents the statements
in the method body. The indentation is not required, but it makes the code easier to read
and debug. By indenting the statements in the body of the method, you visually set them
apart from the surrounding code. This allows you to tell at a glance what part of the pro-
gram is part of the method.

 Declaring Methods Inside a Class
 Methods usually belong to a class, so you must write a method’s definition inside the class
to which it is supposed to belong. In this chapter, all the methods that you will write will
belong to an application’s Form1 class. When you write a method’s definition, you write
it inside the Form1 class, as shown in Figure 6-4 .

Your method definitions will apear
here, inside the Form1 class.

 Figure 6-4 Write method definitions inside the Form1 class

 Calling a Method
 A method executes when it is called. Event handlers are called when specific events take place,
but other methods are executed by method call statements. When a method is called, the pro-
gram branches to that method and executes the statements in its body. Here is an example of
a method call statement that calls the DisplayMessage method we previously examined:

 DisplayMessage();

 The statement is simply the name of the method followed by a set of parentheses. Because
it is a complete statement, it is terminated with a semicolon.

 Let’s look at a complete program that uses the DisplayMessage method. In the Chap06
folder of this book’s Student Sample Programs is a project named Simple Method . Figure 6-5
shows the application’s form, and Program 6-1 shows the form’s code.

 6.2 void Methods 343

goButton

 Figure 6-5 The Simple Method application’s form

 Program 6-1 Code for the Simple Method application’s Form1 form

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Simple_Method
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void goButton_Click(object sender, EventArgs e)
 21 {
 22 MessageBox.Show("This is the goButton_Click method.");
 23 DisplayMessage();
 24 MessageBox.Show("Back in the goButton_Click method.");
 25 }
 26
 27 private void DisplayMessage()
 28 {
 29 MessageBox.Show("This is the DisplayMessage method.");
 30 }
 31 }
 32 }

344 Chapter 6 Modularizing Your Code with Methods

 Let’s step through the code. When the user clicks the Go button, the goButton_Click
event handler executes. Inside the event handler the statement in line 22 displays This is
the goButton_Click method in a message box. Then, line 23 calls the DisplayMessage
method. As a shown in Figure 6-6 , the program jumps to the DisplayMessage method
and executes the statements in its body. There is only one statement in the body of
the DisplayMessage method, which is line 29. This statement displays This is the
 DisplayMessage method, and then the method ends. As shown in Figure 6-7 , the program
jumps back to the part of the program that called the DisplayMessage method and
resumes execution from that point. In this case, the program resumes execution at line 24,
which displays Back in the goButton_Click method . The goButton_Click event handler
ends at line 25.

The program jumps to the
DisplayMessage method and

executes the statement in its body.

 Figure 6-6 Calling the DisplayMessage method

When the DisplayMessage
method ends, the program returns

to the part of the program that
called it, and resumes execution

at the point.

 Figure 6-7 The DisplayMessage method returns

 When a method is called, some operations are performed “behind the scenes” so the sys-
tem will know to where the program should return after the method ends. First, the sys-
tem saves the memory address of the location to which it should return. This is typically
the statement that appears immediately after the method call. This memory location is
known as the return point . Then, the system jumps to the method and executes the state-
ments in its body. When the method ends, the system jumps back to the return point and
resumes execution.

 NOTE: When a program calls a method, programmers commonly say that the control
of the program transfers to that method. This simply means that the method takes
control of the program’s execution.

 In Tutorial 6-1 you will get hands-on practice writing and calling methods.

 6.2 void Methods 345

 Tutorial 6-1:
Creating and Calling Methods

 The Chap06 folder in this book’s Student Sample Programs contains a partially created
project named Lights . In this tutorial you complete the project so it simulates a light being
turned off or on. The project’s form, in its initial setup, is shown in Figure 6-8 .

lightOnPictureBox lightOffPictureBox

lightStateLabel

switchButton exitButton

 Figure 6-8 The Lights project’s form in its initial setup

 Here are some details about specific property settings:

 • The lightOnPictureBox control’s Visible property is initially set to True.
 • The lightOffPictureBox control’s Visible property is initially set to False.
 • The lightStateLabel displays either ON or OFF while the application runs to

indicate whether the light is on or off. Initially, this control’s Text property is set
to ON .

 At run time, when the user clicks the Switch Light button, the state of the light is reversed.
In other words, if the light is currently on, it will be turned off. If the light is currently off,
it will be turned on.

 When the light is turned on, the following actions take place:

 • The lightOnPictureBox control’s Visible property is set to true .
 • The lightOffPictureBox control’s Visible property is set to false .
 • The lightStateLabel label’s Text property is assigned the string "ON" .

 When the light is turned off, the following actions take place:

 • The lightOffPictureBox control’s Visible property is set to true .
 • The lightOnPictureBox control’s Visible property is set to false .
 • The lightStateLabel label’s Text property is assigned the string "OFF" .

 To modularize the code, you create a method named TurnLightOn (containing the code
to turn the light on), and another method named TurnLightOff (containing the code to

 Tutorial 6-1 :
 Creating and
Calling
Methods

VideoNote

346 Chapter 6 Modularizing Your Code with Methods

turn the light off). When you need to turn the light on, you call the TurnLightOn method
and when you need to turn the light off you call the TurnLightOff method.

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Lights
in the Chap06 folder of this book’s Student Sample Programs.

 Step 2: Open the Form1 form in the Designer . The form is shown, along with the names
of the important controls, in Figure 6-8 .

 Step 3: Move the PictureBox controls so one is on top of the other, as shown in Figure
 6-9 . (In the figure, the lightOnPictureBox control is on top, but it really does
not matter which is on top.) Also, reduce the width of the form and position the
button controls as shown in the figure.

The lightOnPictureBox control is on
top of the lightOffPictureBox control

 Figure 6-9 The controls repositioned and the form size adjusted

 Step 4: Program 6-2, at the end of this tutorial, shows the form’s completed code. Open
the code editor and type the code for the TurnLightOn and the TurnLightOff
methods, shown in lines 20–42 of Program 6-2.

 Let’s take a closer look at the code. Line 20 is the beginning of a method named
 TurnLightOn . The purpose of this method is to simulate the light turning on.
When this method executes, line 23 makes the lightOnPictureBox control
 visible, line 26 makes the lightOffPictureBox control invisible, and line 29
sets the lightStateLabel control’s Text property to "ON" .

 Line 32 is the beginning of a method named TurnLightOff . The purpose of this
method is to simulate the light turning off. When this method executes, line 35
makes the lightOffPictureBox control visible, line 38 makes the lightOn-
PictureBox control invisible, and line 41 sets the lightStateLabel control’s
Text property to "OFF" .

 Step 5: Next, you create the Click event handlers for the Button controls. Switch back
to the Designer and double-click the switchButton control. This opens the
code editor, and you will see an empty event handler named switchButton_
Click . Complete the switchButton_Click event handler by typing the code
shown in lines 46–54 in Program 6-2.

 Let’s review this code. The if statement in line 47 determines whether the
 lightOnPictureBox control is visible. If it is, it means the light is turned on,
so the statement in line 49 calls the TurnLightOff method to turn the light off.

Otherwise, the else clause in line 51 takes over, and the TurnLightOn method
is called on line 53 to turn the light on.

 Step 6: Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you will see an empty event handler named exitButton_
Click . Complete the exitButton_Click event handler by typing the code
shown in lines 59–60 in Program 6-2.

 Step 7: Save the project. Then, press % on the keyboard, or click the Start Debugging
button () on the toolbar to compile and run the application. When the applica-
tion runs, click the Switch Light button several times to simulate several coin
tosses. When you are finished, click the Exit button to exit the application.

 Program 6-2 Completed code for Form1 in the Lights application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Lights
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void TurnLightOn()
 21 {
 22 // Display the "light on" image.
 23 lightOnPictureBox.Visible = true;
 24
 25 // Hide the "light off" image.
 26 lightOffPictureBox.Visible = false;
 27
 28 // Display the light’s state.
 29 lightStateLabel.Text = "ON";
 30 }
 31
 32 private void TurnLightOff()
 33 {
 34 // Display the "light off" image.
 35 lightOffPictureBox.Visible = true;
 36
 37 // Hide the "light on" image.
 38 lightOnPictureBox.Visible = false;
 39
 40 // Display the light’s state.
 41 lightStateLabel.Text = "OFF";
 42 }
 43
 44 private void switchButton_Click(object sender, EventArgs e)

 6.2 void Methods 347

348 Chapter 6 Modularizing Your Code with Methods

 Checkpoint

 6.1 What is the difference between a void method and a value-returning method?

 6.2 What two parts does a method definition have?

 6.3 What does the phrase “calling a method” mean?

 6.4 When a void method is executing, what happens when the end of the method is
reached?

 6.5 Describe the steps involved in the top-down design process.

 Top-Down Design
 In this section, we have discussed and demonstrated how methods work. You have seen
how the program jumps to a method when it is called and returns to the part of the pro-
gram that called the method when the method ends. It is important that you understand
these mechanical aspects of methods.

 Just as important as understanding how methods work is understanding how to use meth-
ods to modularize a program. Programmers commonly use a technique known as top-
down design to break down an algorithm into methods. The process of top-down design
is performed in the following manner:

 • The overall task that the program is to perform is broken down into a series of sub-
tasks.

 • Each subtask is examined to determine whether it can be further broken down into
more subtasks. This step is repeated until no more subtasks can be identified.

 • Once all of the subtasks have been identified, they are written in code.

 This process is called top-down design because the programmer begins by looking at the
topmost level of tasks that must be performed and then breaks down those tasks into
lower levels of subtasks.

 NOTE: The top-down design process is sometimes called stepwise refinement .

 45 {
 46 // Reverse the state of the light.
 47 if (lightOnPictureBox.Visible == true)
 48 {
 49 TurnLightOff();
 50 }
 51 else
 52 {
 53 TurnLightOn();
 54 }
 55 }
 56
 57 private void exitButton_Click(object sender, EventArgs e)
 58 {
 59 // Close the form.
 60 this.Close();
 61 }
 62 }
 63 }

 6.3 Passing Arguments to Methods 349

Passing Arguments to Methods

 CONCEPT: An argument is any piece of data that is passed into a method when the
method is called. A parameter is a variable that receives an argument that
is passed into a method.

 Sometimes it is useful not only to call a method, but also to send one or more pieces of
data into the method. Pieces of data that are sent into a method are known as arguments .
The method can use its arguments in calculations or other operations.

 You are already familiar with how to use arguments in a method call. For example, look
at the following statement:

 MessageBox.Show("Hello");

 This statement calls the MessageBox.Show method and passes the string "Hello" as an
argument. Here is another example:

 number = int.Parse(str);

 Assume that number is an int variable and str is a string variable. This statement calls
the int.Parse method, passing the str variable as an argument.

 If you are writing a method and you want it to receive arguments when it is called, you
must equip the method with one or more parameter variables. A parameter variable ,
often simply called a parameter , is a special variable that receives an argument when a
method is called. Here is an example of a method that has a parameter variable:

 private void DisplayValue(int value)

 {
 MessageBox.Show(value.ToString());
 }

 Notice the int variable declaration that appears inside the parentheses (int value) .
This is the declaration of a parameter variable, which enables the DisplayValue method
to accept an int value as an argument. Here is an example of a call to the DisplayValue
method, passing 5 as an argument:

 DisplayValue(5);

 This statement executes the DisplayValue method. The argument that is listed inside the
parentheses is assigned to the method’s parameter variable, value . This is illustrated in
 Figure 6-10 .

 6.3

private void DisplayValue(int value)
{
 MessageBox.Show(value.ToString());
}

DisplayValue(5);
The value 5 is assigned
to the value parameter.

 Figure 6-10 Passing the value 5 to the DisplayValue method

350 Chapter 6 Modularizing Your Code with Methods

 Inside the DisplayValue method, the variable value will contain the value of whatever
argument was passed into it. If we pass 5 as the argument, the method will display the
value 5 in a message box.

 You may also pass the contents of variables and the values of expressions as arguments.
For example, the following statements call the DisplayValue method with various argu-
ments passed:

 DisplayValue(x);
 DisplayValue(x * 4);
 DisplayValue(int.Parse("700"));

 The first statement is simple. It passes the value of the variable x as the argument to the
 DisplayValue method. The second statement is also simple, but it does a little more
work: it passes the result of the expression x * 4 as the argument to the DisplayValue
method. The third statement does even more work. It passes the value returned from the
 int.Parse method as the argument to the DisplayValue method. (The int.Parse
method is called first, and its return value is passed to the DisplayValue method.)

 In the Chap06 folder of this book’s Student Sample Programs, you will find a project
named Argument Demo that demonstrates this method. Figure 6-11 shows the applica-
tion’s form, and Program 6-3 shows the form’s code.

exitButton

demo3Buttondemo1Button

demo2Button

 Figure 6-11 The Argument Demo application’s form

 Program 6-3 Code for the Argument Demo application’s Form1 form

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Argument_Demo
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void DisplayValue(int value)
 21 {
 22 MessageBox.Show(value.ToString());

 6.3 Passing Arguments to Methods 351

 23 }
 24
 25 private void demo1Button_Click(object sender, EventArgs e)
 26 {
 27 // Call DisplayValue passing 5 as an argument.
 28 DisplayValue(5);
 29 }
 30
 31 private void demo2Button_Click(object sender, EventArgs e)
 32 {
 33 // Call DisplayValue passing the expression 3 + 5
 34 // as an argument.
 35 DisplayValue(3 + 5);
 36 }
 37
 38 private void demo3Button_Click(object sender, EventArgs e)
 39 {
 40 // Use a loop to call DisplayValue 5 times.
 41 for (int count = 0; count < 5; count++)
 42 {
 43 DisplayValue(count);
 44 }
 45 }
 46
 47 private void exitButton_Click(object sender, EventArgs e)
 48 {
 49 // Close the form.
 50 this.Close();
 51 }
 52 }
 53 }

 The form has four button controls, and a Click event handler has been written for each
one. In addition to the event handlers, the code contains the DisplayValue method,
which we discussed earlier, in lines 20–23.

 If you run the application and click the Demo 1 button, the demo1Button_Click event
handler executes. Notice that in line 28 the DisplayValue method is called, passing 5 as
an argument. This causes a message box to appear showing the value 5.

 If you click the Demo 2 button, the demo2Button_Click event handler executes. In line
35 the DisplayValue method is called, passing the expression 3 + 5 as an argument.
This causes a message box to appear showing the value 8.

 If you click the Demo 3 button, the demo3Button_Click event handler executes. In line
41 a for loop executes five times, each time passing the count variable as an argument.
This causes a message box to appear five times, showing the values 0 through 4.

 NOTE: When calling a method and passing a variable as an argument, simply write
the variable name inside the parentheses of the method call. Do not write the data
type of the argument variable in the method call. For example, the following state-
ment causes an error:

 DisplayValue(int x); // Error!

 The method call should appear as follows:

 DisplayValue(x); // Correct

352 Chapter 6 Modularizing Your Code with Methods

 In Tutorial 6-2 you will complete an application that calls a method and passes an argu-
ment to it.

 NOTE: In this text, the values that are passed into a method are called arguments,
and the variables that receive those values are called parameters. There are several
variations of these terms in use. In some circles these terms are switched in meaning.
Also, some call the arguments actual parameters and call the parameters formal
parameters . Others use the terms actual argument and formal argument . Regardless
of which set of terms you use, it is important to be consistent.

 Tutorial 6-2:
Passing an Argument to a Method

 In this tutorial you complete the Cards project in the Chap06 folder of this book’s Student
Sample Programs. The project’s form, shown in Figure 6-12 , has already been created for
you. The PictureBox controls show the images of three cards. Each PictureBox control’s
Visible property is set to False, so they do not initially appear when the application runs.
After you complete the application, the user can select a card’s name from the ListBox, click
the Show Card button, and the image of the selected card will appear.

 Tutorial 6-2 :
 Passing an
Argument to
a Method

VideoNote

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Cards in
the Chap06 folder of this book’s Student Sample Programs.

 Step 2: Program 6-4, at the end of this tutorial, shows the form’s completed code. Open
the code editor and type the comments and code for the ShowCard method,
shown in lines 20–36 of Program 6-4.

 The purpose of the ShowCard method is to display one of the card PictureBox
controls. Let’s take a closer look at the code.

 Line 22: This is the beginning of the method. The method has a string parameter
named card . When we call the method, we pass the item that the user selected in
the ListBox as an argument, and the method displays the specifi ed card.

aceSpadesPictureBox kingClubsPictureBox

cardListBox

TenHeartsPictureBox

showCardButton exitButton

 Figure 6-12 The Cards project’s form

 6.3 Passing Arguments to Methods 353

 Lines 24–35: This is a switch statement that tests the value of the card param-
eter. If card is equal to "Ace of Spades" , the program jumps to the case
statement in line 26 and calls the ShowAceSpades method in line 27. If card is
equal to "10 of Hearts" , the program jumps to the case statement in line 29
and calls the ShowTenHearts method in line 30. If card is equal to "King of
Clubs" , the program jumps to the case statement in line 32 and calls the
 ShowKingClubs method in line 33.

 Step 3: Type the comments and code for the ShowAceSpades method, shown in lines
38–45 of Program 6-4. This method makes the aceSpadesPictureBox control
visible, and the other PictureBox controls invisible.

 Step 4: Type the comments and code for the ShowTenHearts method, shown in lines
47–54 of Program 6-4. This method makes the tenHeartsPictureBox control
visible and the other PictureBox controls invisible.

 Step 5: Type the comments and code for the ShowKingClubs method, shown in lines
56–63 of Program 6-4. This method makes the kingClubsPictureBox control
visible, and the other PictureBox controls invisible.

 Step 6: Next you create the Click event handlers for the Button controls. Switch back to
the Designer and double-click the showCardButton control. This opens the
code editor, and you will see an empty event handler named showCardButton_
Click . Complete the showCardButton_Click event handler by typing the code
shown in lines 67–76 in Program 6-4.

 Let’s review this code. The if statement in line 68 determines whether the user
has selected an item in the cardListBox . If a value has been selected, line 70
calls the ShowCard method. Notice that the item that was selected in the ListBox
(converted to a string) is passed as an argument. If the user has not selected an
item in the cardListBox control, the else clause in line 72 takes over, and lines
74–75 display a message box telling the user to select a card.

 Step 7: Switch your view back to the Designer and double-click the exitButton
control. In the code editor you will see an empty event handler named exit-
Button_Click . Complete the exitButton_Click event handler by typing the
code shown in lines 81–82 in Program 6-4.

 Step 8: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. Test the applica-
tion by selecting each card’s name in the ListBox and clicking the Show Card
button. When you are finished, click the Exit button to exit the application.

 Program 6-4 Completed code for Form1 in the Cards application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Cards
 12 {
 13 public partial class Form1 : Form

354 Chapter 6 Modularizing Your Code with Methods

 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 // The ShowCard method accepts a string that names
 21 // the selected card, and displays that card.
 22 private void ShowCard(string card)
 23 {
 24 switch (card)
 25 {
 26 case "Ace of Spades" :
 27 ShowAceSpades();
 28 break;
 29 case "10 of Hearts":
 30 ShowTenHearts();
 31 break;
 32 case "King of Clubs":
 33 ShowKingClubs();
 34 break;
 35 }
 36 }
 37
 38 // The ShowAceSpades method makes the Ace of Spades
 39 // visible and the other cards invisible.
 40 private void ShowAceSpades()
 41 {
 42 aceSpadesPictureBox.Visible = true;
 43 tenHeartsPictureBox.Visible = false;
 44 kingClubsPictureBox.Visible = false;
 45 }
 46
 47 // The ShowTenHearts method makes the Ten of Hearts
 48 // visible and the other cards invisible.
 49 private void ShowTenHearts()
 50 {
 51 tenHeartsPictureBox.Visible = true;
 52 aceSpadesPictureBox.Visible = false;
 53 kingClubsPictureBox.Visible = false;
 54 }
 55
 56 // The ShowKingClubs method makes the King of Clubs
 57 // visible and the other cards invisible.
 58 private void ShowKingClubs()
 59 {
 60 kingClubsPictureBox.Visible = true;
 61 aceSpadesPictureBox.Visible = false;
 62 tenHeartsPictureBox.Visible = false;
 63 }
 64
 65 private void showCardButton_Click(object sender, EventArgs e)
 66 {
 67 // If a card is selected in the ListBox, display it.
 68 if (cardListBox.SelectedIndex != -1)
 69 {
 70 ShowCard(cardListBox.SelectedItem.ToString());
 71 }
 72 else
 73 {

 6.3 Passing Arguments to Methods 355

 74 MessageBox.Show("Please select a card from " +
 75 "the list box.");
 76 }
 77 }
 78
 79 private void exitButton_Click(object sender, EventArgs e)
 80 {
 81 // Close the form.
 82 this.Close();
 83 }
 84 }
 85 }

 Argument and Parameter Data Type Compatibility
 When you pass an argument to a method, the argument’s data type must be assignment
compatible with the receiving parameter’s data type. Otherwise, an error occurs when
you try to compile the code. We discussed assignment compatibility in Chapter 3 . Here is
a summary of how it applies to argument passing when using string s, int s, double s,
and decimal s:

 • You can pass only string arguments into string parameters.
 • You can pass int arguments into int parameters, but you cannot pass double or

 decimal arguments into int parameters.
 • You can pass either double or int arguments into double parameters, but you can-

not pass decimal values into double parameters.
 • You can pass either decimal or int arguments to decimal parameters, but you

cannot pass double arguments into decimal parameters.

 Parameter Variable Scope
 Recall from Chapter 3 that a variable’s scope is the part of the program where the varia-
ble may be accessed. A variable is visible only to statements inside the variable’s scope. A
parameter variable’s scope is the method in which the parameter is declared. No state-
ment outside the method can access the parameter variable.

 Passing Multiple Arguments
 Often it is useful to pass more than one argument to a method. The following code
sample shows a method that accepts two arguments. The name of the method is Show-
Max . It accepts two int arguments and displays the value of the argument that is the
greatest. If the arguments are equal, it displays a message saying so. (This method can
be found in the Max project in the Chap06 folder of this book’s Student Sample
Programs.)

 1 private void ShowMax(int num1, int num2)
 2 {
 3 if (num1 == num2)
 4 {
 5 MessageBox.Show("The numbers are equal.");
 6 }
 7 else if (num1 > num2)
 8 {
 9 MessageBox.Show(num1 + " is the greatest.");

356 Chapter 6 Modularizing Your Code with Methods

 10 }
 11 else
 12 {
 13 MessageBox.Show(num2 + " is the greatest.");
 14 }
 15 }

 Notice that two parameter variables, num1 and num2 , are declared inside the parentheses
in the method header (line 1). This is often referred to as a parameter list. Also notice that
a comma separates the declarations. Here is an example of a statement that calls the
method:

 ShowMax(5, 10);

 This statement passes the arguments 5 and 10 to the method. The arguments are passed
into the parameter variables according to their positions. In other words, the first argu-
ment is passed into the first parameter variable, the second argument is passed into the
second parameter variable, and so forth. So, this statement causes 5 to be passed into
the num1 parameter and 10 to be passed into the num2 parameter. This is illustrated in
 Figure 6-13 .

ShowMax(5, 10);

private void ShowMax(int num1, int num2)
{
 if (num1 == num2)
 {
 MessageBox.Show("The numbers are equal.");
 }
 else if (num1 > num2)
 {
 MessageBox.Show(num1 + " is the greatest.");
 }
 else
 {
 MessageBox.Show(num2 + " is the greatest.");
 }
}

 Figure 6-13 Two arguments passed according to position to a method

 Suppose we were to reverse the order in which the arguments are listed in the method call,
as shown here:

 ShowMax(10, 5);

 This causes 10 to be passed into the num1 parameter and 5 to be passed into the num2
parameter. The following code sample shows one more example. This time we are passing
variables as arguments.

 int value1 = 2;
 int value2 = 3;
 ShowMax(value1, value2);

 When the ShowMax method executes as a result of this code, the num1 parameter contains
2 and the num2 parameter contains 3.

 6.3 Passing Arguments to Methods 357

 Named Arguments
 In addition to the conventional approach of positional argument passing (where the first
argument is passed into the method’s first parameter, the second argument is passed into
the method’s second parameter, and so forth), C# also allows you to specify which param-
eter an argument should be passed into. To specify which parameter variable the argu-
ment should be passed to, you use the following format to write the argument in the
method call:

 parameterName : value

 In this format parameterName is the name of a parameter variable and value is the value
being passed to that parameter. An argument that is written using this syntax is known as
a named argument . To demonstrate, look at the following method:

 private void ShowName(string firstName, string lastName)
 {
 MessageBox.Show(firstName + " " + lastName);
 }

 The following statement shows how the method can be called using named arguments:

 ShowName(lastName : "Smith", firstName : "Suzanne");

 This statement specifies that "Smith" should be passed into the lastName parameter and
 "Suzanne" should be passed into the firstName parameter. You get the same results as
if you had called the method like this, using positional arguments:

 ShowName("Suzanne", "Smith");

 Default Arguments
 C# allows you to provide a default argument for a method parameter. When a default
argument is provided for a parameter, it becomes possible to call the method without
explicitly passing an argument into the parameter. Here is an example of a method that
has a parameter with a default argument:

 private void ShowTax(decimal price, decimal taxRate = 0.07m)
 {
 // Calculate the tax.
 decimal tax = price * taxRate;
 // Display the tax.
 MessageBox.Show("The tax is " + tax.ToString("c"));
 }

 NOTE: You have to write the data type for each parameter variable that is declared
in a parameter list. For example, a compiler error would occur if the parameter list
for the ShowMax method were written as shown here:

 private void ShowMax(int num1, num2) // Error!

 A data type for both the num1 and num2 parameter variables must be listed, as
shown here:

 private void ShowMax(int num1, int num2)

358 Chapter 6 Modularizing Your Code with Methods

 In this method definition, a default argument is provided for the taxRate parameter.
Notice that the parameter name is followed by an equal sign and a value. The value that
follows the equal sign is the default argument. In this case, the value is 0.07m is the
default argument for the taxRate parameter. Because the taxRate parameter has a
default argument, we have the option of omitting an argument for it when we call the
method. Here is an example:

 ShowTax(100.0m);

 This statement calls the ShowTax method, passing the value 100.0m as the argument for
the price parameter. Because we did not pass an argument into the taxRate parameter,
its value will be 0.07m . If we want the taxRate parameter to have a different value, we
can specify an argument for it when we call the method, as shown here:

 ShowTax(100.0m, 0.08m);

 This statement calls the ShowTax method, passing 100.0m as the argument for the price
parameter and 0.08m as the argument for the taxRate parameter.

 Here are some details to keep in mind when using default arguments:

 • Default arguments must be literals or constants. You cannot specify a variable as a
default argument.

 • You can provide default arguments for all of the parameters in a method. However,
when only some of the parameters have a default argument (as in the previous
example), you must declare the parameters with the default arguments last. For
example, a compiler error would occur if we were to write the ShowTax method
header as shown here:

 // Illegal method header!
 private void ShowTax(decimal taxRate = 0.07m, decimal price)

 • When a method has several parameters with default arguments and you leave out
one of the arguments when you call the method, you have to leave out all the argu-
ments that come after it as well.

 NOTE: Default arguments were introduced in Visual C# 2010. You cannot use
them in older versions of C#.

 Passing Arguments by Value
 All the example programs that you have looked at so far pass arguments by value. Argu-
ments and parameter variables are separate items in memory. When an argument is passed
by value , only a copy of the argument’s value is passed into the parameter variable. If the
contents of the parameter variable are changed inside the method, it has no effect on the
argument in the calling part of the program.

 For example, the following code comes from the Pass By Value project in the Chap06
folder of this book’s Student Sample Programs. When you run the application and click
the Go button, you see the sequence of message boxes shown in Figure 6-14 .

 1 private void goButton_Click(object sender, EventArgs e)
 2 {
 3 int number = 99;
 4
 5 // Display the value of number.
 6 MessageBox.Show("The value of number is " + number);
 7
 8 // Call ChangeMe, passing number as an argument.
 9 ChangeMe(number);

 6.3 Passing Arguments to Methods 359

 10
 11 // Display the value of number again.
 12 MessageBox.Show("The value of number is " + number);
 13 }
 14
 15 private void ChangeMe(int myValue)
 16 {
 17 // Change the value of the myValue parameter.
 18 myValue = 0;
 19
 20 // Display the value of myValue.
 21 MessageBox.Show("In ChangeMe, myValue is " + myValue);
 22 }

This message is displayed
by line 6.

This message is displayed
by line 21.

This message is displayed
by line 12.

 Figure 6-14 Sequence of messages displayed by the Pass By Value application

 Inside the goButton_Click event handler, a local variable named number is declared in
line 3 and initialized with the value 99. As a result, the statement in line 6 displays The
value of number is 99. The number variable’s value is then passed as an argument to the
 ChangeMe method in line 9. This means that in the ChangeMe method, the value 99 is
assigned to the myValue parameter variable.

 Inside the ChangeMe method, line 18 assigns the value 0 to the myValue parameter vari-
able. This overwrites the value 99 that was passed into the parameter when the method
was called. Line 21 displays the message In ChangeMe, myValue is 0 .

 After the ChangeMe method finishes, control of the program returns to the goButton_
Click event handler. When the statement in line 12 executes, the message The value of
number is 99 is displayed. Even though the parameter variable myValue was changed in
the ChangeMe method, the number variable in the goButton_Click event handler was
not modified.

 Passing by value works in most situations because arguments are usually sent to methods
for informational purposes only. Typically, when you pass a variable as an argument to a
method, you want that variable to have the same value before and after the method call.
Passing an argument by value guarantees that the argument will not be changed by the
method it is passed into. Sometimes, however, you want a method to be able to change
the value of a variable that was passed as an argument to it. This requires a slightly differ-
ent type of argument passing, which is discussed in the next section.

360 Chapter 6 Modularizing Your Code with Methods

 Checkpoint

 6.6 What is the purpose of an argument?

 6.7 Briefly summarize how assignment compatibility applies to argument passing.

 6.8 What is the scope of a parameter variable?

 6.9 What is a named argument?

 6.10 What does it mean when an argument is passed by value?

 Passing Arguments by Reference

 CONCEPT: When an argument is passed by reference to a method, the method can
change the value of the argument in the calling part of the program.

 When you want a method to be able to change the value of a variable that is passed to it
as an argument, the variable must be passed by reference . In C# there are two ways to
pass an argument by reference:

 • You can use a reference parameter in the method.
 • You can use an output parameter in the method.

 Using Reference Parameters
 A reference parameter is a special type of parameter variable. When you pass an argument
into a reference parameter, the reference parameter does not receive a copy of the argument’s
value. Instead, it becomes a reference to the argument that was passed into it. Anything that
is done to the reference parameter is actually done to the argument that it references.

 Reference parameters are useful for establishing two-way communication between methods.
When a method calls another method and passes an argument by reference, communication
between the methods can take place in the following ways:

 • The calling method can communicate with the called method by passing an argument.
 • The called method can communicate with the calling method by modifying the value

of the argument via the reference parameter.

 In C#, you declare a reference parameter by writing the ref keyword before the parame-
ter variable’s data type. For example, look at the following method:

 private void SetToZero(ref int number)
 {
 number = 0;
 }

 Inside the parentheses, the keyword ref indicates that number is a reference variable.
The method assigns 0 to the number parameter. Because number is a reference parame-
ter, this action is actually performed on the variable that was passed to the method as an
argument.

 When you call a method that has a reference parameter, you must also write the keyword
 ref before the argument. The following code sample shows an example.

 int myVar = 99;
 SetToZero(ref myVar);

 6.4

 6.4 Passing Arguments by Reference 361

 The first statement declares myVar as an int variable, initialized with the value 99. The
second statement calls the SetToZero method, passing myVar by reference. After the
method call, the myVar variable is set to the value 0.

 When you pass an argument to a ref parameter, that argument must already be set to
some value. For example, if a variable has not been initialized or assigned a value, you
cannot pass it as an argument into a ref parameter. The following code sample causes a
compiler error:

 int myVar; // Declare myVar with no initial value.
 SetToZero(ref myVar); // Error! myVar is not set to a value.

 Let’s look at a complete program that uses the SetToZero method. In the Chap06 folder
of this book’s Student Sample Programs, you will find a project named Pass By Ref . Fig-
ure 6-15 shows the application’s form, and Program 6-5 shows the form’s code.

outputListBox

exitButtongoButton

 Figure 6-15 The Pass By Ref application’s form

 Program 6-5 Code for the Pass By Ref application’s Form1 form

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Pass_By_Ref
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 // The SetToZero method accepts an int argument
 21 // by reference and sets it to zero.
 22 private void SetToZero(ref int number)
 23 {
 24 number = 0;
 25 }
 26

362 Chapter 6 Modularizing Your Code with Methods

 27 private void goButton_Click(object sender, EventArgs e)
 28 {
 29 // Declare some local int variables.
 30 int x = 99, y = 100, z = 101;
 31
 32 // Display the values in those variables.
 33 outputListBox.Items.Clear();
 34 outputListBox.Items.Add("x is set to " + x);
 35 outputListBox.Items.Add("y is set to " + y);
 36 outputListBox.Items.Add("z is set to " + z);
 37
 38 // Pass each variable to SetToZero.
 39 SetToZero(ref x);
 40 SetToZero(ref y);
 41 SetToZero(ref z);
 42
 43 // Display the values in those variables again.
 44 outputListBox.Items.Add("--------------------");
 45 outputListBox.Items.Add("x is set to " + x);
 46 outputListBox.Items.Add("y is set to " + y);
 47 outputListBox.Items.Add("z is set to " + z);
 48 }
 49
 50 private void exitButton_Click(object sender, EventArgs e)
 51 {
 52 // Close the form.
 53 this.Close();
 54 }
 55 }
 56 }

 Figure 6-16 The Pass By Ref application’s output

 Notice that the form has a ListBox control named outputListBox . This ListBox is used
to display the program’s output. The SetToZero method that we previously discussed
appears in lines 22–25. The method accepts an int argument by reference and assigns the
value 0 to the argument.

 In the goButton_Click method, line 30 declares the int variables x , y , and z and initial-
izes them to the values 99, 100, and 101, respectively. Line 33 clears the outputListBox
control, and lines 34–36 display the values of the x , y , and z variables in the ListBox.

 In lines 39–41 x , y , and z variables are passed as arguments, by reference, to the
 SetToZero method. Each time SetToZero is called, the variable that is passed as an argu-
ment is assigned the value 0. This is shown when the x , y , and z variables are displayed
again in lines 45–47. Figure 6-16 shows the application’s form after the Go button has
been clicked.

 6.4 Passing Arguments by Reference 363

 Using Output Parameters
 An output parameter works like a reference parameter. When you pass an argument into
an output parameter, the output parameter becomes a reference to the argument that is
passed into it. Anything that is done to the output parameter is actually done to the argu-
ment that it references. Output parameters are different from reference parameters in the
following ways:

 • An argument does not have to be set to a value before it is passed into an output
parameter. For example, an uninitialized variable can be passed into an output
parameter.

 • A method that has an output parameter must set the output parameter to some
value before it finishes executing.

 In C#, you declare an output parameter by writing the out keyword before the parameter
variable’s data type. For example, we could modify the SetToZero method in the follow-
ing way to make the number parameter an output parameter:

 private void SetToZero(out int number)
 {
 number = 0;
 }

 When you call a method that has an output parameter, you must also write the keyword
 out before the argument. The following code sample shows an example.

 int myVar;
 SetToZero(out myVar);

 The first statement declares myVar as an uninitialized int variable. The second statement
calls the SetToZero method, passing myVar into the output parameter. After the method
call, the myVar variable is set to the value 0.

 Tutorial 6-3 gives you some experience writing a method that uses an ouput parameter.

 Tutorial 6-3:
Using an Output Parameter

 In this tutorial you complete the North America application that is found in the Chap06
folder of this book’s Student Sample Programs. The application’s form has already been cre-
ated and is shown in Figure 6-17 . The application also has an accompanying text file named

 Tutorial 6-3 :
 Using an
Output
Parameter

VideoNote

countriesListBox

getCountriesButton exitButton

 Figure 6-17 The North America application’s form

364 Chapter 6 Modularizing Your Code with Methods

NorthAmerica.txt that is stored in the Chap06 folder. The NorthAmerica. txt file contains the
names of the countries of North America.

 When the completed application runs and the user clicks the Get Countries button, the
application uses an OpenFileDialog control to let the user select a file. The application
reads each country name from the file and adds each one to the countriesListBox
control.

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named North
America in the Chap06 folder of this book’s Student Sample Programs.

 Step 2: Open Form1 in the Designer and add an OpenFileDialog control to the form.
Change the control’s name to openFile and clear the contents of the control’s
Filename property.

 Step 3: Open the Form1 form’s code in the code editor. Insert the using System.IO ;
directive shown in line 10 of Program 6-6 at the end of this tutorial. This state-
ment is necessary because you will be using the StreamReader class, which is
part of the System.IO namespace in the .NET Framework.

 Step 4: Type the comments and code for the GetFileName method, shown in lines
21–34 of Program 6-6. The purpose of the GetFileName method is to let the
user select the file that should be opened. Let’s take a closer look at the code.

 Line 24: This is the beginning of the method. The method has a string output
parameter named selectedFile . When we call the method, we pass a string
variable as an argument. The method lets the user select the fi le that should be
opened and stores its fi lename and path in the selectedFile parameter.

 Lines 26–33: This if statement calls the openFile control’s ShowDialog
method. If the user clicks the Open button, the method returns the value
 DialogResult.OK , and line 28 assigns the name of the selected fi le to the
 selectedFile parameter. If the user clicks the Cancel button, line 32 assigns an
empty string to the selectedFile parameter.

 Step 5: Type the comments and code for the GetCountries method, shown in lines 36–70
of Program 6-6. In a nutshell, this method accepts a filename as an argument, reads
the contents of the specified file, and adds them to the countriesListBox con-
trol. Here is a more detailed description of each part of the method:

 Line 41: This is the beginning of a try - catch statement, which handles any
exceptions that are thrown while the fi le is being processed. If an exception is
thrown by any statement in the try block, the program will jump to the catch
clause in line 68.

 Line 44: This statement declares the string variable countryName , which holds
the lines of text that are read from the fi le.

 Line 47: This statement declares the StreamReader variable inputFile .

 Line 50: After this statement has executed, the fi le specifi ed by the filename
parameter is opened for reading, and the inputFile variable references a
 StreamReader object that is associated with the fi le.

 Line 53: This statement clears anything that might be displayed in the
 countriesListBox control.

 Line 56: This is the beginning of a while loop that iterates as long as the end of
the fi le has not been reached.

 Line 59: This statement reads a line of text from the fi le and assigns it to the
 countryName variable.

 6.4 Passing Arguments by Reference 365

 Line 62: This statement adds the contents of the countryName variable to the
ListBox.

 Line 66: This statement closes the fi le.

 Step 6: Open the Form1 form in the Designer . Double-click the getCountriesButton
control. This opens the code editor, and you will see an empty event handler
named getCountriesButton_Click . Complete the getCountriesButton
_Click event handler by typing the code shown in lines 77–83 in Program 6-6.
Let’s take a closer look at the code:

 Line 77: This statement declares a string variable named filename .

 Line 80: This statement calls the GetFileName method, passing the filename
variable as an argument. When the method returns, the filename variable con-
tains the name of the fi le selected by the user.

 Line 83: This statement calls the GetCountries method, passing the filename
variable as an argument. The method opens the specifi ed fi le and fi lls the
 countriesListBox control with its contents.

 Step 7: Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you will see an empty event handler named exitButton_
Click . Complete the exitButton_Click event handler by typing the code
shown in lines 88–89 in Program 6-6.

 Step 8: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the applica-
tion runs, click the Get Countries button. An Open dialog box should appear.
Navigate to the Chap06 folder in the Student Sample Programs, select the
NorthAmerica.txt file, and click the Open button. This should fill the ListBox
with the names of the countries from the selected file, as shown in Figure 6-18 .
Click the Exit button to exit the application.

 Figure 6-18 The North America application displaying the list of countries

 Program 6-6 Completed code for Form1 in the North America application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;

366 Chapter 6 Modularizing Your Code with Methods

 9 using System.Windows.Forms;
 10 using System.IO;
 11
 12 namespace North_America
 13 {
 14 public partial class Form1 : Form
 15 {
 16 public Form1()
 17 {
 18 InitializeComponent();
 19 }
 20
 21 // The GetFileName method gets a fi lename from the
 22 // user and assigns it to the variable passed as
 23 // an argument.
 24 private void GetFileName(out string selectedFile)
 25 {
 26 if (openFile.ShowDialog() == DialogResult.OK)
 27 {
 28 selectedFile = openFile.FileName;
 29 }
 30 else
 31 {
 32 selectedFile = "";
 33 }
 34 }
 35
 36 // The GetCountries method accpets a fi lename as an
 37 // argument. It opens the specifi ed fi le and displays
 38 // its contents in the countriesListBox control.
 39 private void GetCountries(string fi lename)
 40 {
 41 try
 42 {
 43 // Declare a variable to hold a country name.
 44 string countryName;
 45
 46 // Declare a StreamReader variable.
 47 StreamReader inputFile;
 48
 49 // Open the fi le and get a StreamReader object .
 50 inputFile = File.OpenText(fi lename);
 51
 52 // Clear anything currently in the ListBox.
 53 countriesListBox.Items.Clear();
 54
 55 // Read the fi le's contents.
 56 while (!inputFile.EndOfStream)
 57 {
 58 // Get a country name.
 59 countryName = inputFile.ReadLine();
 60
 61 // Add the country name to the ListBox.
 62 countriesListBox.Items.Add(countryName);
 63 }
 64
 65 // Close the fi le.
 66 inputFile.Close();
 67 }
 68 catch (Exception ex)

 6.5 Value-Returning Methods 367

Value-Returning Methods

 CONCEPT: A value-returning method is a method that returns a value to the part of
the program that called it.

 A value-returning method is like a void method in the following ways:

 • It contains a group of statements that perform a specific task.
 • When you want to execute the method, you call it.

 When a value-returning method finishes, however, it returns a value to the statement that
called it. The value that is returned from a method can be used like any other value: It can
be assigned to a variable, displayed on the screen, used in a mathematical expression (if it
is a number), and so on.

 You have already used many of the value-returning methods that are in the .NET Frame-
work. For example, the int.Parse method accepts a string as an argument and returns
the value of the string converted to an int . Let’s review how that method works. In the
following statement, assume number is an int variable:

 number = int.Parse("100");

 6.5

 Checkpoint

 6.11 What is a reference parameter?

 6.12 How can methods communicate using reference parameters?

 6.13 What keyword is used to specify a reference parameter?

 6.14 What is an output parameter?

 69 {
 70 // Display an error message.
 71 MessageBox.Show(ex.Message);
 72 }
 73 }
 74
 75 private void getCountriesButton_Click(object sender, EventArgs e)
 76 {
 77 string fi lename; // To hold the fi lename
 78
 79 // Get the fi lename from the user.
 80 GetFileName(out fi lename);
 81
 82 // Get the countries from the fi le.
 83 GetCountries(fi lename);
 84 }
 85
 86 private void exitButton_Click(object sender, EventArgs e)
 87 {
 88 // Close the form.
 89 this.Close();
 90 }
 91 }
 92 }

368 Chapter 6 Modularizing Your Code with Methods

 The part of the statement that reads int.Parse("100") is a call to the int.Parse
method, with the string "100" passed as an argument. Figure 6-19 illustrates this part of
the statement.

number = int.Parse("100");

Method call

Argument

 Figure 6-19 A statement that calls the int.Parse method

 Notice that the call to the int.Parse method appears on the right side of an = operator.
When the method is called, it returns an integer. The integer that is returned is assigned to
the number variable, as shown in Figure 6-20 .

number = int.Parse("100");

100

The value 100 is returned from the
method and assigned to number.

 Figure 6-20 The int.Parse method returns a value

 Writing Your Own Value-Returning Functions
 You write a value-returning method in the same way that you write a void method, with
two exceptions:

 • You must specify a data type for a value-returning method. The value that is returned
from the method must be of the specified data type.

 • A value-returning method must have a return statement. The return statement
causes a value to be returned from the method.

 Here is the general format of a value-returning method definition in C#:

 AccessModifier DataType MethodName (ParameterList)
 {
 statement;
 statement;
 etc.
 return expression ;
 }

 • AccessModifier is an access modifier such as private or public .
 • DataType is the data type of the value that the method returns. We commonly call

this the method’s return type . For example, if the method returns an integer, the
word int appears here. If the method returns a double value, then the word
 double appears here. Likewise, if the method returns a decimal value, the word
 decimal appears here.

 • MethodName is the name of the method.
 • ParameterList is an optional parameter list. If the method does not accept argu-

ments, then an empty set of parentheses appears.

 6.5 Value-Returning Methods 369

 One of the statements inside the method must be a return statement, which takes the
following form:

 return expression ;

 The value of the expression that follows the keyword return is sent back to the state-
ment that called the method. This can be any value, variable, or expression that has a
value (such as a math expression). The value that is returned must be of the same data
type as that specified in the method header or a compiler error will occur.

 Here is an example of a value-returning method:

 private int Sum(int num1, int num2)
 {
 return num1 + num2;
 }

 Figure 6-21 illustrates the various parts of the method header. Notice that the method
returns an int , the method’s name is sum , and the method has two int parameters named
 num1 and num2 .

private int Sum(int num1, int num2)
{
 return num1 + num2;
}

This is a private
method

The method
returns an int

The method’s
name is Sum

num1 and num2
are parameters

 Figure 6-21 Parts of the method header

 The purpose of this method is to accept two int values as arguments and return their
sum. Notice that the return statement returns the value of the expression num1 + num2 .
When the return statement executes, the method ends its execution and sends the value
of num1 + num2 back to the part of the program that called the method.

 Let’s look at a complete program that demonstrates the Sum method. In the Chap06 folder
of this book’s Student Sample Programs, you will find a project named Sum . Figure 6-22
shows the application’s form, and Program 6-7 shows the form’s code. When you run the
application, you enter two integers into the age1TextBox and age2TextBox controls.
When you click the Calculate Combined Age button, the sum of the two integers is dis-
played in the combinedAgeLabel control.

calculateButton exitButton

age1TextBox

age2TextBox

combinedAgeLabel

 Figure 6-22 The Sum application’s form

370 Chapter 6 Modularizing Your Code with Methods

 Program 6-7 Code for the Sum application’s Form1 form

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Sum
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 // The Sum method accepts two int arguments
 21 // and returns the sum of the arguments.
 22 private int Sum(int num1, int num2)
 23 {
 24 return num1 + num2;
 25 }
 26
 27 private void calculateButton_Click(object sender, EventArgs e)
 28 {
 29 // Declare variables to hold two ages and their sum.
 30 int userAge, friendAge, combinedAge;
 31
 32 // Get the user's age.
 33 if (int.TryParse(age1TextBox.Text, out userAge))
 34 {
 35 // Get the best friend's age age.
 36 if (int.TryParse(age2TextBox.Text, out friendAge))
 37 {
 38 // Get the sum of the ages.
 39 combinedAge = Sum(userAge, friendAge);
 40
 41 // Display the combined age.
 42 combinedAgeLabel.Text = combinedAge.ToString();
 43 }
 44 else
 45 {
 46 // Display an error message.
 47 MessageBox.Show("Enter an integer for your age.");
 48 }
 49 }
 50 else
 51 {
 52 // Display an error message.
 53 MessageBox.Show("Enter an integer for your age.");
 54 }
 55 }
 56
 57 private void exitButton_Click(object sender, EventArgs e)
 58 {

 6.5 Value-Returning Methods 371

 59 // Close the form.
 60 this.Close();
 61 }
 62 }
 63 }

 In line 33, the value entered into the age1TextBox control is converted to an int and
stored in the userAge variable. In line 36, the value entered into the age2TextBox control
is converted to an int and stored in the friendAge variable. Line 39 passes the userAge
and friendAge variables as arguments to the Sum method. The sum of the two variables
is returned from the method and assigned to the combinedAge variable. In line 42 the
value of the combinedAge variable is converted to a string and displayed in the
 combinedAgeLabel control.

 Let’s assume the userAge variable is set to the value 23 and the friendAge variable is set
to the value 25. Figure 6-23 shows how the arguments are passed to the method and how
a value is returned from the method.

combinedAge = Sum(userAge, friendAge);

23
25

48

private int Sum(int num1, int num2)
{
 return num1 + num2;
}

 Figure 6-23 Arguments passed to Sum and a value returned

 When you call a value-returning method, you usually want to do something meaningful
with the value it returns. In line 39 of Program 6-7 the value that is returned from the Sum
method is assigned to a variable. This is commonly how return values are used, but you
can do many other things with them. For example, the following code shows a math
expression that uses a call to the Sum method:

 int x = 10, y = 15;
 double average;
 average = Sum(x, y) / 2.0;

 In the last statement, the Sum method is called with x and y as its arguments. The method’s
return value, which is 25, is divided by 2.0. The result, 12.5, is assigned to average . Here
is another example:

 int x = 10, y = 15;
 MessageBox.Show("The sum is " + Sum(x, y));

 This code sends the Sum method’s return value to MessageBox.Show , so it can be dis-
played on the screen. The message The sum is 25 is displayed. Remember, a value-returning
method returns a value of a specific data type. You can use the method’s return value
anywhere that you can use a regular value of the same data type. This means that any-
where an int value can be used, a call to an int value-returning method can be used.
Likewise, anywhere a double value can be used, a call to a double value-returning
method can be used. The same is true for all other data types.

 In Tutorial 6-4 you complete an application that converts a value from one unit of
measurement to another. The code will use a value-returning method to perform the
conversion.

372 Chapter 6 Modularizing Your Code with Methods

 Tutorial 6-4:
Writing a Value-Returning Method

 Cups and fluid ounces are common units of measurement for food items. Sometimes,
when a recipe calls for an item measured in cups, you find that in the grocery store the
item is sold in fluid ounces. To know how much you need to purchase for the recipe, you
need to convert the required number of cups to fluid ounces. The formula is:

 Ounces = Cups × 8

 In this tutorial you complete the Cups To Ounces application that is found in the Chap06
folder of this book’s Student Sample Programs. The application’s form has already been
created and is shown in Figure 6-24 . When you complete the application, you will be able
to enter a number of cups into the cupsTextBox control, click the Convert button, and see
the equivalent number of fluid ounces in the ouncesLabel control.

 Tutorial 6-4 :
 Writing a
Value-
Returning
Method

VideoNote

convertButton exitButton

cupsTextBox

ouncesLabel

 Figure 6-24 The Cups To Ounces application’s form

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Cups To
Ounces in the Chap06 folder of this book’s Student Sample Programs.

 Step 2: Open the Form1 form in the Designer . The form is shown, along with the names
of the important controls, in Figure 6-24 .

 Step 3: Program 6-8, at the end of this tutorial, shows the form’s completed code.
Open the code editor and type the comments and code for the CupsToOunces
method shown in lines 20–26 of Program 6-8. The purpose of the method is to
accept a number of cups as an argument and return that value converted to
fluid ounces. You can see in line 23 that the method has a double parameter
named cups , and in line 25 the method returns the value of cups multiplied
by 8.

 Step 4: Now you will create the Click event handlers for the Button controls. Switch
back to the Designer and double-click the convertButton control. This opens
the code editor, and you will see an empty event handler named convertButton_
Click . Complete the convertButton_Click event handler by typing the code
shown in lines 30–46 in Program 6-8. Let’s review this code:

 Line 31: This statement declares the cups and ounces variables, which hold the
number of cups and ounces.

 Lines 34–46: The if statement in line 34 converts the cupsTextBox control’s
Text property to a double , and the result is stored in the cups variable. If the

 6.5 Value-Returning Methods 373

conversion is successful, line 37 calls the CupsToOunces method, passing cups
as an argument. The value that is returned from the method is assigned to the
 ounces variable, and in line 40 the value of the ounces variable is displayed in
the ouncesLabel control. If the conversion is not successful, line 45 displays an
error message.

 Step 5: Switch your view back to the Designer and double-click the exitButton
control. In the code editor you will see an empty event handler named exit-
Button_Click . Complete the exitButton_Click event handler by typing the
code shown in lines 51–52 in Program 6-8.

 Step 6: Save the project. Then, press % on the keyboard, or click the Start Debugging
button () on the toolbar to compile and run the application. When the applica-
tion runs, enter the value 1 into the cupsTextBox control and click the Convert
button. The application should display 8.0 as the number of fluid ounces. Con-
tinue to test the application with other values. When you are finished, click the
 Exit button to exit the application.

 Program 6-8 Completed code for Form1 in the Cups To Ounces application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Cups_To_Ounces
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 // The CupsToOunces method accepts a number
 21 // of cups as an argument and returns the
 22 // equivalent number of fl uid ounces.
 23 private double CupsToOunces(double cups)
 24 {
 25 return cups * 8.0;
 26 }
 27
 28 private void convertButton_Click(object sender, EventArgs e)
 29 {
 30 // Variables to hold cups and ounces
 31 double cups, ounces;
 32
 33 // Get the number of cups.
 34 if (double.TryParse(cupsTextBox.Text, out cups))
 35 {
 36 // Convert the cups to ounces.
 37 ounces = CupsToOunces(cups);

374 Chapter 6 Modularizing Your Code with Methods

 Boolean Methods
 A Boolean method returns either true or false . You can use a Boolean method to test a
condition, and then return either true or false to indicate whether the condition exists.
Boolean methods are useful for simplifying complex conditions that are tested in decision
and repetition structures.

 For example, suppose you are writing a program that will ask the user to enter a number
and then determine whether that number is even or odd. The following code shows how
you can make that determination. Assume number is an int variable containing the
number entered by the user.

 if (number % 2 == 0)
 {
 MessageBox.Show("The number is even.");
 }
 else
 {
 MessageBox.Show("The number is odd.");
 }

 The meaning of the Boolean expression being tested by this if-else statement is not
clear, so let’s take a closer look at it:

 number % 2 == 0

 This expression uses the % operator, which was introduced in Chapter 2 . Recall that
the % operator divides two integers and returns the remainder of the division. So, this
code is saying, If the remainder of number divided by 2 is equal to 0, then display a
message indicating the number is even, or else display a message indicating the number
is odd.

 Because dividing an even number by 2 always gives a remainder of 0, this logic works.
The code would be easier to understand, however, if you could somehow rewrite it to say,
If the number is even, then display a message indicating it is even, or else display a mes-
sage indicating it is odd. As it turns out, this can be done with a Boolean method. In this
example, you could write a Boolean method named IsEven that accepts an int as an

 38
 39 // Display the ounces.
 40 ouncesLabel.Text = ounces.ToString("n1");
 41 }
 42 else
 43 {
 44 // Display an error message.
 45 MessageBox.Show("Enter a valid number.");
 46 }
 47 }
 48
 49 private void exitButton_Click(object sender, EventArgs e)
 50 {
 51 // Close the form.
 52 this.Close();
 53 }
 54 }
 55 }

 6.5 Value-Returning Methods 375

argument and returns true if the number is even or false otherwise. Here is an example
how the IsEven method might be written:

 private bool IsEven(int number)
 {
 // Local variable to hold true or false
 bool numberIsEven;
 // Determine whether the number is even.
 if (number % 2 == 0)
 {
 numberIsEven = true;
 }
 else
 {
 numberIsEven = false;
 }
 // Return the result.
 return numberIsEven;
 }

 Then you can rewrite the if-else statement so it calls the IsEven method to determine
whether number is even:

 if (IsEven(number))
 {
 MessageBox.Show("The number is even.");
 }
 else
 {
 MessageBox.Show("The number is odd.");
 }

 Not only is this logic easier to understand, but now you have a method that you can call
in the program any time you need to test a number to determine whether it is even. (The
 Chap06 folder of this book’s Student Sample Programs has a project named Even Number
that demonstrates the IsEven method.)

 Using a Boolean Method to Modularize Input Validation
 Boolean methods can be useful for modularizing input validation. When a form has multi-
ple TextBox controls, the input validation usually requires multiple, nested if statements.
In many cases, you can simplify the code by creating a Boolean method that performs all
the input validation and returns true if all of the input is valid or false if any of it is
invalid. In Tutorial 6-5 you will complete an application that uses this approach.

 Tutorial 6-5:
Modularizing Input Validation with a Boolean Method

 In addition to regular pay, a company pays its employees an annual bonus. The company
also contributes 5 percent of an employee’s total compensation (gross pay plus bonus) to
a retirement account. In this tutorial you complete an application that lets you enter an
employee’s gross pay and bonus amount and calculates the amount of retirement contri-
bution. The project is named Pay and Bonus and is found in the Chap06 folder of this
book’s Student Sample Programs. Figure 6-25 shows the application’s form, which has
already been created for you.

 Tutorial 6-5 :
 Modulariz–
ing Input
Validation
with a
Boolean
Method

VideoNote

376 Chapter 6 Modularizing Your Code with Methods

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Pay and
Bonus in the Chap06 folder of this book’s Student Sample Programs.

 Step 2: Open the Form1 form’s code in the code editor. Insert the comment and con-
stant field declaration shown in lines 15 and 16 of Program 6-9. This constant,
which is set to the value 0.05, is used in the calculation of the retirement account
contribution.

 Step 3: Type the comments and code for the InputIsValid method, shown in lines 23
through 54 of Program 6-9. Notice in line 27 that the method has reference
parameters for gross pay and the bonus amount. The purpose of the method is
to get the values entered by the user, convert them to decimal values, and assign
them to the parameter variables. If the input is successfully converted, the
method returns true . Otherwise, an error message is displayed and the method
returns false to indicate that the input is not valid.

 Step 4: Open the Form1 form in the Designer . Double-click the calculateButton
control. This opens the code editor, and you will see an empty event handler
named calculateButton_Click . Complete the calculateButton_Click
event handler by typing the code shown in lines 58–68 in Program 6-9. Let’s
take a closer look at the code:

 Line 59: This statement declares decimal variables to hold the gross pay, bonus
amount, and contribution amount.

 Lines 61–68: This if statement calls the InputIsValid method, passing the
 grosspay and bonus variables, by reference, as arguments. If the method
returns true, the variables will contain the gross pay and bonus amount entered
by the user. In that case, line 64 calculates the amount of contribution to the
retirement account, and line 67 displays that amount.

 Step 5: Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you will see an empty event handler named exitButton_
Click . Complete the exitButton_Click event handler by typing the code
shown in lines 73–74 in Program 6-9.

 Step 6: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the applica-
tion runs, enter 80000 for the gross pay and 20000 for the bonus amount. Click
the Calculate Contribution button. The application should display $5,000.00 as
the amount of contribution. Try other values if you wish. Click the Exit button
to exit the application.

exitButton

grossPayTextBox

bonusTextBox

contributionLabel

calculateButton

 Figure 6-25 The Pay and Bonus application’s form

 6.5 Value-Returning Methods 377

 Program 6-9 Completed code for Form1 in the Pay and Bonus application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Pay_and_Bonus
 12 {
 13 public partial class Form1 : Form
 14 {
 15 // Constant fi eld for the contribution rate
 16 private const decimal CONTRIB_RATE = 0.05m;
 17
 18 public Form1()
 19 {
 20 InitializeComponent();
 21 }
 22
 23 // The InputIsValid method converts the user input and stores
 24 // it in the arguments (passed by reference). If the conversion
 25 // is successful, the method returns true. Otherwise it returns
 26 // false.
 27 private bool InputIsValid(ref decimal pay, ref decimal bonus)
 28 {
 29 // Flag variable to indicate whether the input is good
 30 bool inputGood = false;
 31
 32 // Try to convert both inputs to decimal.
 33 if (decimal.TryParse(grossPayTextBox.Text, out pay))
 34 {
 35 if (decimal.TryParse(bonusTextBox.Text, out bonus))
 36 {
 37 // Both inputs are good.
 38 inputGood = true;
 39 }
 40 else
 41 {
 42 // Display an error message for the bonus.
 43 MessageBox.Show("Bonus amount is invalid.");
 44 }
 45 }
 46 else
 47 {
 48 // Display an error message for gross pay.
 49 MessageBox.Show("Gross pay is invalid.");
 50 }
 51
 52 // Return the result.
 53 return inputGood;
 54 }
 55
 56 private void calculateButton_Click(object sender, EventArgs e)
 57 {

378 Chapter 6 Modularizing Your Code with Methods

 Returning a String from a Method
 So far you’ve seen examples of methods that return numbers and Boolean values. You can
write methods that return any type of data. Let’s look at an example program that uses a
string-returning method. The Chap06 folder of this book’s Student Sample Programs
 contains a project named Full Name . Figure 6-26 shows the application’s form, and Pro-
gram 6-10 shows the form’s code. When you run the application, you enter your first
name, middle name, and last name into the TextBox controls. When you click the Show
Full Name button, your full name is displayed in the fullNameLabel control.

firstNameTextBox

middleNameTextBox

lastNameTextBox

fullNameLabel

showFullNameButton exitButton

 Figure 6-26 The Full Name application’s form

 Program 6-10 Code for the Full Name application’s Form1 form

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;

 58 // Variables for gross pay, bonus, and contributions
 59 decimal grossPay = 0m, bonus = 0m, contributions = 0m;
 60
 61 if (InputIsValid(ref grossPay, ref bonus))
 62 {
 63 // Calculate the amount of contribution.
 64 contributions = (grossPay + bonus) * CONTRIB_RATE;
 65
 66 // Display the contribution.
 67 contributionLabel.Text = contributions.ToString("c");
 68 }
 69 }
 70
 71 private void exitButton_Click(object sender, EventArgs e)
 72 {
 73 // Close the form.
 74 this.Close();
 75 }
 76 }
 77 }

 6.5 Value-Returning Methods 379

 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Full_Name
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 // The FullName method accepts arguments for a fi rst
 21 // name, a middle name, and a last name. It returns
 22 // the full name.
 23 private string FullName(string fi rst, string middle, string last)
 24 {
 25 return fi rst + " " + middle + " " + last;
 26 }
 27
 28 private void showFullNameButton_Click(object sender, EventArgs e)
 29 {
 30 // Variables to hold the fi rst, middle, last, and full names
 31 string fi rst, middle, last, full;
 32
 33 // Get the fi rst, middle, and last names.
 34 fi rst = fi rstNameTextBox.Text;
 35 middle = middleNameTextBox.Text;
 36 last = lastNameTextBox.Text;
 37
 38 // Get the full name.
 39 full = FullName(fi rst, middle, last);
 40
 41 // Display the full name.
 42 fullNameLabel.Text = full;
 43 }
 44
 45 private void exitButton_Click(object sender, EventArgs e)
 46 {
 47 // Close the form.
 48 this.Close();
 49 }
 50 }
 51 }

 Lines 23–26 define a method named FullName . Notice the following things about the
method:

 • Its return type is string .
 • It has three string parameters: first , middle , and last . When we call the method

we pass a first name, a middle name, and a last name as arguments.
 • In line 25 it returns a string that is the concatenation of the first , middle , and

 last parameters, with spaces inserted between each.

 Figure 6-27 shows an example of the application’s form after the user has entered names
into each TextBox and clicked the Show Full Name button.

380 Chapter 6 Modularizing Your Code with Methods

 Figure 6-27 Example output of the Full Name application

 Checkpoint

 6.15 What is a value-returning method? How is it used?

 6.16 What is returned by a Boolean method?

 6.17 Can a method be written to return any type of data?

 Review Questions 381

 Key Terms

 arguments
 code reuse
 default argument
 divide and conquer
 method body
 method header
 modularized program
 named argument
 output parameter
 parameter
 parameter variable

 Pascal case
 passed by reference
 passed by value
 reference parameter
 return point
 return type
 stepwise refinement
 top-down design
 value-returning method
 void method

 Review Questions

 Multiple Choice

 1. In general terms, a program that is broken into smaller units of code, such as meth-
ods, is known as a(n) __________.

 a. object-oriented program
 b. modularized program
 c. procedural program
 d. method-driven program

 2. Writing the code to perform a task once and then reusing it each time you need to
perform the task is a benefit of using methods called __________.

 a. code reuse
 b. the single-use philosophy
 c. method recycling
 d. code reprocessing

 3. When you call a(n) __________, it simply executes the statements it contains and
then terminates.

 a. intrinsic method
 b. empty method
 c. logical method
 d. void method

 4. The __________, which appears at the beginning of a method definition, lists several
important things about the method, including the method’s name.

 a. method title
 b. method description
 c. method header
 d. method declaration

 5. The __________ is a collection of statements enclosed inside a set of curly braces
that are performed when the method is executed.

 a. method body
 b. method designation
 c. method code
 d. method classification

 6. The __________ is the memory address that is saved by the system when a method is
called and is the location to which the system should return after a method ends.

 a. calling address
 b. method address

382 Chapter 6 Modularizing Your Code with Methods

 c. return point
 d. come back position

 7. Programmers commonly use a technique known as __________ to break down an
algorithm into methods.

 a. prototyping
 b. method modeling
 c. algorithm division
 d. top-down design

 8. Pieces of data that are sent into a method are known as __________.

 a. arguments
 b. references
 c. method variables
 d. data entries

 9. A(n) __________ is a special variable that receives an argument when a method is
called.

 a. reference variable
 b. argument variable
 c. parameter variable
 d. method variable

 10. A __________ specifies which parameter an argument should be passed into.

 a. named argument
 b. special argument
 c. constant argument
 d. literal argument

 11. When a(n)__________ is provided for a parameter, it becomes possible to call the
method without explicitly passing an argument into the parameter.

 a. local argument
 b. empty argument
 c. default argument
 d. expressional argument

 12. When an argument is __________, only a copy of the argument’s value is passed into
the parameter variable.

 a. a named constant
 b. passed by association
 c. passed by reference
 d. passed by value

 13. When you want a method to be able to change the value of a variable that is passed
to it as an argument, the variable must be __________.

 a. passed by reference
 b. a local variable
 c. passed by value
 d. a named constant

 14. A __________ a special type of parameter variable that is useful for establishing
two-way communication between methods.

 a. communication variable
 b. reference parameter
 c. method parameter
 d. global variable

 Review Questions 383

 15. A(n) __________ can have an uninitialized value passed into it, but it must be set to
some value before the method it belongs to finishes executing.

 a. input parameter
 b. reference parameter
 c. output parameter
 d. default parameter

 16. A method’s __________ is the type of value that the method returns.

 a. data type
 b. return type
 c. value type
 d. method type

 True or False

 1. Dividing a large problem into several smaller problems that are easily solved is
sometimes called divide and conquer.

 2. In a Pascal case name, the first character is always uppercase.

 3. If a method belongs to a class, then you must write a method’s definition inside
the class.

 4. The contents of variables and the values of expressions cannot be passed as arguments.

 5. You do not have to write the data type for each parameter variable that is declared
in a parameter list if they are all of the same data type.

 6. An output parameter works like a by value parameter.

 7. A value-returning function must contain a return statement.

 8. A Boolean method returns either yes or no .

 Short Answer

 1. What do you call a method that executes the statements it contains and then returns
a value back to the statement that called it?

 2. What is the standard naming convention used among C# programmers for method
names? Why?

 3. What is another name for the top-down design process?

 4. What is a parameter list?

 5. How do you specify a named argument?

 6. How are output parameters different from reference parameters?

 7. How is a value-returning method like a void method? How is it different?

 8. Can Boolean methods be used to modularize input validation? Why or why not?

 Algorithm Workbench

 1. Examine the following method header; then write an example call to the method.

 private void ShowValue()

 2. The following statement calls a method named ShowHalf . The ShowHalf method
displays a value that is half that of the argument. Write the method.

 ShowHalf(50);

384 Chapter 6 Modularizing Your Code with Methods

 3. Write the method header for a method named ShowRetailPrice . The method should
include parameter variables for a list price and a markup percentage. Write the method
so that the default argument for the markup percentage is set to 50 percent.

 4. Examine the following method header; then write an example call to the method.

 private void ResetValue(ref int value)

 5. A program contains the following value-returning method.

 private int Square(int value)
 {
 return value * value;
 }

 Write a statement that passes the value 10 as an argument to this method and assigns
its return value to the variable result .

 Programming Problems

 1. Retail Price Calculator

 Create an application that lets the user enter an item’s wholesale cost and its markup
percentage. It should then display the item’s retail price. For example:

 • If an item’s wholesale cost is $5.00 and its markup percentage is 100 percent,
then the item’s retail price is $10.00.

 • If an item’s wholesale cost is $5.00 and its markup percentage is 50 percent,
then the item’s retail price is $7.50.

 The program should have a method named CalculateRetail that receives the
wholesale cost and the markup percentage as arguments and returns the retail price
of the item.

 2. Falling Distance

 When an object is falling because of gravity, the following formula can be used to
determine the distance the object falls in a specific time period:

 d =
1
2

gt2

 The variables in the formula are as follows: d is the distance in meters, g is 9.8, and
 t is the amount of time in seconds that the object has been falling. Create an applica-
tion that allows the user to enter the amount of time that an object has fallen and
then displays the distance that the object fell. The application should have a func-
tion named FallingDistance . The FallingDistance function should accept an
object’s falling time (in seconds) as an argument. The function should return the
distance in meters that the object has fallen during that time interval.

 3. Kinetic Energy

 In physics, an object that is in motion is said to have kinetic energy. The following
formula can be used to determine a moving object’s kinetic energy:

 KE =
1
2

mv2

 In the formula KE is the kinetic energy, m is the object’s mass in kilograms, and v is
the object’s velocity in meters per second. Create an application that allows the user
to enter an object’s mass and velocity and then displays the object’s kinetic energy.
The application should have a function named KineticEnergy that accepts an
object’s mass (in kilograms) and velocity (in meters per second) as arguments. The
function should return the amount of kinetic energy that the object has.

 Solving the
Kinetic
Energy
problem

VideoNote

 Programming Problems 385

 4. Calories from Fat and Carbohydrates

 A nutritionist who works for a fitness club helps members by evaluating their diets.
As part of her evaluation, she asks members for the number of fat grams and carbo-
hydrate grams that they consume in a day. Then, she calculates the number of calo-
ries that result from the fat using the following formula:

 Calories from fat = Fat grams × 9

 Next, she calculates the number of calories that result from the carbohydrates using
the following formula:

 Calories from carbs = Carbs grams × 4

 Create an application that will make these calculations. In the application, you
should have the following methods:

 • FatCalories– This method should accept a number of fat grams as an argu-
ment and return the number of calories from that amount of fat.

 • CarbCalories– This method should accept a number of carbohydrate grams as an
argument and return the number of calories from that amount of carbohydrates.

 5. Joe’s Automotive

 Joe’s Automotive performs the following routine maintenance services:

 • Oil change—$26.00
 • Lube job—$18.00
 • Radiator flush—$30.00
 • Transmission flush—$80.00
 • Inspection—$15.00
 • Muffler replacement—$100.00
 • Tire rotation—$20.00

 Joe also performs other nonroutine services and charges for parts and labor ($20 per
hour). Create an application that displays the total for a customer’s visit to Joe’s.
The form should resemble the one shown in Figure 6-28 .

 Figure 6-28 Automotive form

386 Chapter 6 Modularizing Your Code with Methods

 The application should have the following value-returning methods:

 • OilLubeCharges —Returns the total charges for an oil change and/or a lube
job, if any.

 • FlushCharges —Returns the total charges for a radiator flush and/or a trans-
mission flush, if any.

 • MiscCharges —Returns the total charges for an inspection, muffler replace-
ment, and/or a tire rotation, if any.

 • OtherCharges —Returns the total charges for other services (parts and labor),
if any.

 • TaxCharges —Returns the amount of sales tax, if any. Sales tax is 6% and is
charged only on parts. If the customer purchases services only, no sales tax is
charged.

 • TotalCharges —Returns the total charges.

 The application should have the following void methods, called when the user
clicks the Clear button:

 • ClearOilLube —Clears the check boxes for oil change and lube job.
 • ClearFlushes —Clears the check boxes for radiator flush and transmission

flush.
 • ClearMisc —Clears the check boxes for inspection, muffler replacement, and

tire rotation.
 • ClearOther —Clears the text boxes for parts and labor.
 • ClearFees —Clears the labels that display the labels in the section marked Sum-

mary .

 6. Hospital Charges

 Create an application that calculates the total cost of a hospital stay. The daily base
charge is $350. The hospital also charges for medication, surgical fees, lab fees, and
physical rehab. The application should accept the following input:

 • The number of days spent in the hospital
 • The amount of medication charges
 • The amount of surgical charges
 • The amount of lab fees
 • The amount of physical rehabilitation charges

 Create and use the following value-returning methods in the application:

 • CalcStayCharges —Calculates and returns the base charges for the hospital
stay. This is computed as $350 times the number of days in the hospital.

 • CalcMiscCharges —Calculates and returns the total of the medication, surgi-
cal, lab, and physical rehabilitation charges.

 • CalcTotalCharges —Calculates and returns the total charges.

 7. Present Value

 Suppose you want to deposit a certain amount of money into a savings account and
then leave it alone to draw interest for the next 10 years. At the end of 10 years you
would like to have $10,000 in the account. How much do you need to deposit today
to make that happen? You can use the following formula, which is known as the
present-value formula, to find out:

 P =
F

(1 + r)n

 The terms in the formula are as follows:

 • P is the present value , or the amount that you need to deposit today.
 • F is the future value that you want in the account. (In this case, F is $10,000.)

 Programming Problems 387

 • r is the annual interest rate .
 • n is the number of years that you plan to let the money sit in the account.

 Write a method named PresentValue that performs this calculation. The method
should accept the future value, annual interest rate, and number of years as argu-
ments. It should return the present value, which is the amount that you need to
deposit today. Demonstrate the method in an application that lets the user experi-
ment with different values for the formula’s terms.

 8. Prime Numbers

 A prime number is a number that can be evenly divided by only itself and 1. For
example, the number 5 is prime because it can be evenly divided by only 1 and 5.
The number 6, however, is not prime because it can be evenly divided by 1, 2, 3, and 6.
Write a Boolean function named IsPrime that takes an integer as an argument and
returns true if the argument is a prime number or false otherwise. Use the func-
tion in an application that lets the user enter a number and then displays a message
indicating whether the number is prime.

 TIP: Recall that the % operator divides one number by another and returns the
remainder of the division. In an expression such as num1 % num2 , the % operator returns
0 if num1 is evenly divisible by num2 .

 9. Prime Number List

 This exercise assumes you have already written the IsPrime function in Program-
ming Problem 8. Create another application that uses this function to display all the
prime numbers from 1 through 100 in a list box. The program should have a loop
that calls the IsPrime function.

 10. Rock, Paper, Scissors Game

 Create an application that lets the user play the game of Rock, Paper, Scissors
against the computer. The program should work as follows.

 1. When the program begins, a random number in the range of 1 through 3 is
generated. If the number is 1, then the computer has chosen rock. If the number
is 2, then the computer has chosen paper. If the number is 3, then the computer
has chosen scissors. (Do not display the computer’s choice yet.)

 2. The user selects his or her choice of rock, paper, or scissors. To get this input
you can use Button controls, or clickable PictureBox controls displaying some
of the artwork that you will find in the student sample files.

 3. The computer’s choice is displayed.

 4. A winner is selected according to the following rules:

 • If one player chooses rock and the other player chooses scissors, then rock
wins. (Rock smashes scissors.)

 • If one player chooses scissors and the other player chooses paper, then scis-
sors wins. (Scissors cuts paper.)

 • If one player chooses paper and the other player chooses rock, then paper
wins. (Paper wraps rock.)

 • If both players make the same choice, the game must be played again to
determine the winner.

 Be sure to modularize the program into methods that perform each major task.

This page intentionally left blank

389

 7.1 Value Types and Reference Types

 7.2 Array Basics

 7.3 Working with Files and Arrays

 7.4 Passing Arrays as Arguments to
Methods

 7.5 Some Useful Array Algorithms

 7.6 Advanced Algorithms for Sorting and
Searching Arrays

 7.7 Two-Dimensional Arrays

 7.8 Jagged Arrays

 7.9 The List Collection

 TOPICS

 Arrays and Lists 7 C
H

A
P

T
E

R

 7.1 Value Types and Reference Types

 CONCEPT: The data types in C# and the .NET Framework fall into two categories:
value types and reference types.

 In this chapter you will gain more experience working with objects. Specifically, you
will work with arrays and collections, which are objects that store groups of data. Be-
fore we go into the details of creating and working with those objects, it will be helpful
for you to understand how objects are stored in memory. In this section we discuss the
ways that different types of objects are internally stored by the .NET Framework. As a
result, you will better understand the concepts presented in this chapter, and chapters
to come.

 All the data types in C#—and the underlying .NET Framework—fall into two categories:
 value types and reference types . Of the C# data types that you have used so far, the fol-
lowing are value types: int , double , decimal , and bool . (There are other value types in
addition to these, but these are the ones we focus on in this book.)

 When you declare a value type variable, the compiler sets aside, or allocates, a chunk of
memory that is big enough for that variable. For example, look at the following variable
declarations:

 int wholeNumber;
 double realNumber;
 decimal moneyNumber;

390 Chapter 7 Arrays and Lists

int wholeNumber;

double realNumber;

decimal moneyNumber;

4 bytes

8 bytes

16 bytes

 Figure 7-1 Memory allocated

 The memory that is allocated for a value type variable is the actual location that will hold
any value that is assigned to that variable. For example, suppose we use the following
statements to assign values to the variables shown in Figure 7-1 :

 wholeNumber = 99;
 realNumber = 123.45;
 moneyNumber = 800.0m;

 Figure 7-2 shows how the assigned values are stored in each variable’s memory location.

int wholeNumber;

99

double realNumber;

123.45

decimal moneyNumber;

800.0

 Figure 7-2 Values assigned to the variables

 As you can see from these illustrations, value types are very straightforward. When you
are working with a value type, you are using a variable that holds a piece of data.

 This is different from the way that reference types work. When you are working with a
reference type, you are using two things:

 • An object that is created in memory
 • A variable that references the object

 The object that is created in memory holds data of some sort and performs operations of
some sort. (Exactly what the data and operations are depends on what kind of object it is.) In
order to work with the object in code, you need some way to refer to it. That’s where the var-
iable comes in. The variable does not hold an actual piece of data with which your program
will work. Instead, it holds a special value known as a reference , which links the variable to
the object. 1 When you want to work with the object, you use the variable that references it.

 1 A reference is similar to a memory address. It is a value that identifi es the object’s memory location.

 Recall from Chapter 3 that an int uses 32 bits of memory (4 bytes), a double uses 64 bits
of memory (8 bytes), and a decimal uses 128 bits of memory (16 bytes). These declara-
tion statements cause memory to be allocated as shown in Figure 7-1 .

 7.1 Value Types and Reference Types 391

 A variable that is used to reference an object is commonly called a reference variable . Ref-
erence variables can be used only to reference objects. Figure 7-3 illustrates two objects
that have been created in memory, each referenced by a variable.

Object

Reference
variable

Object

Reference
variable

 Figure 7-3 Two objects referenced by variables

 To understand how reference variables and objects work together, think about flying a
kite. In order to fly a kite, you need a spool of string attached to it. When the kite is air-
borne, you use the spool of string to hold onto the kite and control it. This is similar to
the relationship between an object and the variable that references the object. As shown
in Figure 7-4 , the object is like the kite, and the variable that references the object is like
the spool of string.

Object

Variable referencing
the object

 Figure 7-4 The kite and string metaphor

 Creating a reference type object typically requires the following two steps:

 1. You declare a reference variable.
 2. You create the object and associate it with the reference variable.

 After you have performed these steps, you can use the reference variable to work with
the object. Let’s look at an example that you have already learned about: creating objects
of the Random class. Recall from Chapter 5 that the Random class allows your program
to generate random numbers. Here is an example of how you create an object from the
 Random class:

 Random rand = new Random();

 Let’s look at the different parts of this statement:

 • The first part of the statement, appearing on the left side of the = operator, reads
 Random rand . This declares a variable named rand that can be used to reference an
object of the Random type.

 • The second part of the statement, appearing on the right side of the = operator,
reads new Random() . The new operator creates an object in memory and returns a

392 Chapter 7 Arrays and Lists

reference to that object. So, the expression new Random() creates an object from the
 Random class and returns a reference to that object.

 • The = operator assigns the reference that was returned from the new operator to the
 rand variable.

 After this statement executes, the rand variable references a Random object, as shown in
 Figure 7-5 . The rand variable can then be used to perform operations with the object,
such as generating random numbers.

Random object
rand

 Figure 7-5 The rand variable referencing a Random object

 Checkpoint

 7.1 Into what two categories do the data types in C# and the underlying .NET
Framework fall?

 7.2 What is the difference in the way you work with value types and reference types?

 7.3 How is the relationship between an object and a reference variable similar to a kite
and a spool of string?

 7.4 Is a variable of the Random class a reference type or a value type?

 7.2 Array Basics

 CONCEPT: An array allows you to store a group of items of the same data type to-
gether in memory. Processing a large number of items in an array is usually
easier than processing a large number of items stored in separate variables.

 In the programs you have written so far, you have used variables to store data in memory.
The simplest way to store a value in memory is to store it in a variable. Variables work
well in many situations, but they have limitations. For example, they can hold only one
value at a time. Consider the following variable declaration:

 int number = 99;

 This statement declares an int variable named number , initialized with the value 99.
Consider what happens if the following statement appears later in the program:

 number = 5;

 This statement assigns the value 5 to number , replacing the value 99 that was previously
stored there. Because number is an ordinary variable, it can hold only one value at a time.

 Because variables hold only a single value, they can be cumbersome in programs that
process lists of data. For example, suppose you are asked to write a program that holds
the names of 50 employees. Imagine declaring 50 variables to hold all those names:

 string employee1;
 string employee2;
 string employee3;

 7.2 Array Basics 393

 and so on . . .

 string employee50

 Then, imagine writing the code to process all 50 names. For example, if you wanted to
display the contents of the variables in a ListBox, you would write code such as this:

 employeeListBox.Items.Add(employee1); // Display employee 1
 employeeListBox.Items.Add(employee2); // Display employee 2
 employeeListBox.Items.Add(employee3); // Display employee 3

 and so on . . .

 employeeListBox.Items.Add(employee50); // Display employee 50

 As you can see, variables are not well suited for storing and processing lists of data. Each
variable is a separate item that must be declared and individually processed.

 Fortunately, you can use an array as an alternative to a group of variables. An array is an
object that can hold a group of values that are all the same data type. You can have an
array of int values, an array of double values, and array of decimal values, or an array of
 string values, but you cannot store a mixture of data types in an array. Once you create
an array, you can write simple and efficient code to process the values that are stored in it.

 Arrays are reference type objects. Recall from Section 7.1 that two steps are required to
create and use a reference type object:

 1. You declare a reference variable.
 2. You create the object and associate it with the reference variable.

 Suppose you want to create an array that can hold int values. Here is an example of how
you might declare a reference variable for the array:

 int[] numbersArray;

 This statement declares a reference variable named numbersArray . Notice that this state-
ment looks like a regular int variable declaration except for the set of brackets ([]) that
appear after the keyword int . The expression int[] indicates that this variable is a refer-
ence to an int array. So, we cannot use this variable to store an int value. Rather, we can
use it to reference an int array.

 The next step in the process is to create the array object and associate it with the
 numbersArray variable. The following statement shows an example:

 numbersArray = new int[6];

 As previously mentioned, the new keyword creates an object in memory. The expression
that appears after the new keyword specifies what type of object to create. In this case, the
expression int[6] specifies that the object should be an array large enough to hold six
 int values. The number inside the brackets is the array’s size declarator . It indicates the
number of values that the array should be able to hold.

 The new keyword also returns a reference to the object that it creates. In the previously
shown statement, the new keyword creates an int array and returns a reference to that
array. The = operator assigns the reference to the numbersAray variable. After this state-
ment executes, the numbersArray variable will reference an int array that can hold six
values. This is shown in Figure 7-6 .

numbersArray
variable

Array that can hold six int values

 Figure 7-6 The numbersArray variable referencing an int array

394 Chapter 7 Arrays and Lists

 In the previous example we used two statements to (1) declare a reference variable and (2)
create an array object. These two steps can be combined into one statement, as shown here:

 int[] numbersArray = new int[6];

 You can create arrays of any data. The following are all valid array declarations:

 double[] temperatures = new double[100];
 decimal[] prices = new decimal[50];
 string[] nameArray = new string[1200];

 An array’s size declarator must be a nonnegative integer expression. It can be a literal
value, as shown in the previous examples, or a variable. It is a preferred practice to use a
named constant as a size declarator, however. Here is an example:

 const int SIZE = 6;
 int[] numbersArray = new int[SIZE];

 This practice can make programs easier to maintain. As you will see later in this chapter,
many array-processing techniques require you to refer to the array’s size. When you use a
named constant as an array’s size declarator, you can use the constant to refer to the size
of the array in your algorithms. If you ever need to modify the program so the array is a
different size, you need only change the value of the named constant.

 Array Elements and Subscripts
 The storage locations in an array are known as elements . In memory, an array’s ele-
ments are located in consecutive memory locations. Each element in an array is assigned a
unique number known as a subscript . Subscripts are used to identify specific elements in
an array. The first element is assigned the subscript 0, the second element is assigned the
subscript 1, and so forth. For example, suppose a program has the following declarations:

 const int SIZE = 5;
 int[] numbersArray = new int[SIZE];

 As shown in Figure 7-7 , the array referenced by numbersArray has five elements. The ele-
ments are assigned the subscripts 0–4. (Because subscript numbering starts at 0, the sub-
script of the last element in an array is 1 less than the total number of elements in the array.)

numbersArray
variable

Element
0

Element
1

Element
2

Element
3

Element
4

0 0 0 0 0

 Figure 7-7 Array subscripts

 Array Element Default Values
 Notice that Figure 7-7 shows each element of the array containing the value 0. When you
create a numeric array in C#, its elements are set to the value 0 by default.

 Remember, you can create an array to hold any type of value. It is possible to create an
array of reference type objects. If you create an array of reference type objects, each ele-
ment of the array acts as a reference variable. By default, the elements of an array of refer-
ence type objects are set to the special value null . The value null indicates that a reference
variable is not set to a valid object and cannot be used for any meaningful purpose.

 7.2 Array Basics 395

 Working with Array Elements
 You access the individual elements in an array by using their subscripts. For example, the
following code creates an int array with five elements and assigns values to each of its
elements.

 const int SIZE = 5;
 int[] numbersArray = new int[SIZE];
 numbersArray[0] = 20;
 numbersArray[1] = 30;
 numbersArray[2] = 40;
 numbersArray[3] = 50;
 numbersArray[4] = 60;

 This code assigns the value 20 to element 0, the value 30 to element 1, and so forth. Figure 7-8
shows the contents of the array after these statements execute.

 NOTE: As you will see in Chapter 8 , strings are actually reference types, so the de-
fault value of a string array’s elements is null .

numbersArray
variable

20 30 40 50 60

Element
0

Element
1

Element
2

Element
3

Element
4

 Figure 7-8 Values assigned to each element

 NOTE: The expression numbersArray[0] is pronounced “numbersArray sub zero.”

 The following code shows another example. It creates a string array with three elements
and assigns strings to each of its elements.

 const int SIZE = 3;
 string[] names = new string[SIZE];
 names[0] = “Chris”;
 names[1] = “Laurie”;
 names[2] = “Joe”;

 The following code sample shows how values can be assigned from TextBox controls
to array elements. Assume that an application’s form has three TextBox controls named
 amount1TextBox , amount2TextBox , and amount3TextBox and that the user has en-
tered a numeric value into each one. The following code creates a decimal array named
 amounts and assigns each of the TextBox control’s input value to an array element.

 const int SIZE = 3;
 decimal[] amounts = new decimal[SIZE];
 amounts[0] = decimal.Parse(amount1TextBox.Text);
 amounts[1] = decimal.Parse(amount2TextBox.Text);
 amounts[2] = decimal.Parse(amount3TextBox.Text);

396 Chapter 7 Arrays and Lists

 Let’s look at a complete program that demonstrates how to assign values to an array and
then display the values in the array. In the Chap07 folder of this book’s Student Sample
Programs, you will find a project named Display Elements . Figure 7-9 shows the applica-
tion’s form.

name1TextBox

name2TextBox

name3TextBox

getNamesButton exitButton

 Figure 7-9 The Display Elements application’s form

 Here is the code for the getNamesButton_Click event handler:

 1 private void getNamesButton_Click(object sender, EventArgs e)
 2 {
 3 // Create an array to hold three strings.
 4 const int SIZE = 3;
 5 string[] names = new string[SIZE];
 6
 7 // Get the names.
 8 names[0] = name1TextBox.Text;
 9 names[1] = name2TextBox.Text;
 10 names[2] = name3TextBox.Text;
 11
 12 // Display the names.
 13 MessageBox.Show(names[0]);
 14 MessageBox.Show(names[1]);
 15 MessageBox.Show(names[2]);
 16 }

 Run the application, enter a name into each of the TextBox controls, and then click the
 Get Names button. The following actions take place:

 • In line 5, an array to hold three strings is created.
 • In lines 8–10, the names that you entered into the TextBox controls are assigned to

the array elements.
 • In lines 13–15, each element of the array is displayed in a message box.

 The Display Elements application displays the contents of a string array. Because the
array’s elements are strings, we can pass each element directly to the MessageBox.Show
method without performing a data type conversion. If you want to pass a numeric array
element to the MessageBox.Show method, however, you will have to call the element’s
 ToString method. The following code sample demonstrates:

 1 // Create an array to hold three integers.
 2 const int SIZE = 3;
 3 int[] myValues = new int[SIZE];
 4
 5 // Assign some values to the array elements.
 6 myValues[0] = 10;
 7 myValues[1] = 20;
 8 myValues[2] = 30;
 9

 7.2 Array Basics 397

 10 // Display the array elements.
 11 MessageBox.Show(myValues[0].ToString());
 12 MessageBox.Show(myValues[1].ToString());
 13 MessageBox.Show(myValues[2].ToString());

 Array Initialization
 When you create an array, you can optionally initialize it with a group of values. Here is
an example:

 const int SIZE = 5;
 int[] numbersArray = new int[SIZE] { 10, 20, 30, 40, 50 };

 The series of values inside the braces and separated with commas is called an initialization
list . These values are stored in the array elements in the order they appear in the list.
(The first value, 10, is stored in numbersArray[0] , the second value, 20, is stored in
 numbersArray[1] , and so forth.)

 When you provide an initialization list, the size declarator can be left out. The compiler
determines the size of the array from the number of items in the initialization list. Here is
an example:

 int[] numbersArray = new int[] { 10, 20, 30, 40, 50 };

 In this example, the compiler determines that the array should have five elements because
five values appear in the initialization list.

 You can also leave out the new operator and its subsequent expression when an initializa-
tion list is provided. Here is an example:

 int[] numbersArray = { 10, 20, 30, 40, 50 };

 Here are three separate examples that declare and initialize a string array named days .
Each of these examples results in the same array:

 // Example 1
 const int SIZE = 7;
 string[] days = new string[SIZE] = { “Sunday”, “Monday”,
 “Tuesday”, “Wednesday”, “Thursday”,
 “Friday”, “Saturday” };
 // Example 2
 string[] days = new string[] = { “Sunday”, “Monday”,
 “Tuesday”, “Wednesday”, “Thursday”,
 “Friday”, “Saturday” };
 // Example 3
 string[] days = { “Sunday”, “Monday”, “Tuesday”,
 “Wednesday”, “Thursday”, “Friday”,
 “Saturday” };

 Using a Loop to Step through an Array
 You can store a number in an int variable and then use that variable as a subscript. This
makes it possible to use a loop to step through an array, performing the same operation
on each element. For example, look at the following code sample:

 1 // Create an array to hold three integers.
 2 const int SIZE = 3;
 3 int[] myValues = new int[SIZE];
 4
 5 // Assign 99 to each array element.
 6 for (int index = 0; index < SIZE; index++)

398 Chapter 7 Arrays and Lists

 7 {
 8 myValues[index] = 99;
 9 }

 Line 3 creates an int array named myValues with three elements. The for loop that
starts in line 6 uses an int variable named index as its counter. The index variable is ini-
tialized with the value 0 and is incremented after each loop iteration. The loop iterates as
long as index is less than 3. So, the loop will iterate three times. As it iterates, the index
variable is assigned the values 0, 1, and 2.

 Inside the loop, the statement in line 8 assigns the value 99 to an array element, using the
index variable as the subscript. This is what happens as the loop iterates:

 • The first time the loop iterates, index is set to 0, so 99 is assigned to myValues[0] .
 • The second time the loop iterates, index is set to 1, so 99 is assigned to myValues[1] .
 • The third time the loop iterates, index is set to 2, so 99 is assigned to myValues[2] .

 Invalid Subscripts
 When working with an array, it is important that you do not use an invalid subscript.
You cannot use a subscript that is less than 0 or greater than the size of the array minus
1. For example, suppose an array has 100 elements. The valid subscripts for the array are
the integers 0 through 99. If you try to use any value outside this range, an exception will
be thrown at runtime. The following code sample demonstrates how a loop that is not
carefully written can cause such an exception to be thrown:

 1 // Create an array to hold three integers.
 2 const int SIZE = 3;
 3 int[] myValues = new int[SIZE];
 4
 5 // Will this loop cause an exception?
 6 for (int index = 0; index <= SIZE; index++)
 7 {
 8 myValues[index] = 99;
 9 }

 Notice that the for loop iterates as long as index is less than or equal to 3. During the
loop’s last iteration, index is set to 3, so the statement in line 8 attempts to make an as-
signment to myValues[3] . There is no element in the array with the subscript 3, so an
exception will be thrown.

 The Length Property
 In C#, all arrays have a Length property that is set to the number of elements in the array.
For example, consider an array created by the following statement:

 double[] temperatures = new double[25];

 The temperatures array’s Length property will be set to 25. If we executed the following
statement, it would display the message “The temperatures array has 25 elements . ”

 MessageBox.Show(“The temperatures array has “ +
 temperatures.Length + “ elements.”);

 The Length property can be useful when processing the entire contents of an array with a
loop. The subscript of the last element is always 1 less than the array’s Length property.
Here is an example:

 for (int index = 0; index < temperatures.Length; index++)
 {
 MessageBox.Show(temperatures[index].ToString());
 }

 7.2 Array Basics 399

 In Tutorial 7-1 you complete an application that generates a set of random numbers simi-
lar to those used in lotteries. The numbers will be stored in an array.

 NOTE: An array’s Length property is read only, so you cannot change its value.

 Tutorial 7-1:
 Using an Array to Hold a List of Random Lottery Numbers

 In this tutorial you complete an application that randomly generates lottery numbers.
The application’s form is shown in Figure 7-10 . When the Generate Numbers button is
clicked, the application will generate five two-digit integer numbers and store them in an
array. The contents of the array will then be displayed in Label controls.

VideoNote

 Tutorial 7-1 :
 Using an
Array to
Hold a List
of Random
Lottery
Numbers

generateButton exitButton

fifthLabelfirstLabel

secondLabel thirdLabel fourthLabel

 Figure 7-10 The Lottery Numbers application’s form

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Lottery
Numbers in the Chap07 folder of this book’s Student Sample Programs.

 Step 2: Open the Form1 form in the Designer . Double-click the generateButton con-
trol. This will open the code editor, and you will see an empty event handler
named generateButton _Click . Complete the generateButton _Click
event handler by typing the code shown in lines 22–41 in Program 7-1. Let’s
take a closer look at the code:

 Line 23: This statement declares an int constant named SIZE , set to the value
5. This is used as an array size declarator.

 Line 24: This statement creates an int array named lotteryNumbers with five
elements.

 Line 27: This statement creates a Random object, referenced by a variable named
 rand .

 Line 31: This for loop uses an int variable named index as its counter. The
 index variable is initialized with the value 0 and is incremented after each loop
iteration. The loop iterates as long as index is less than lotteryNumbers.
Length (which is 5). So, the loop will iterate five times. As it iterates, the index
variable is assigned the values 0, 1, 2, 3, and 4.

 Line 33: This statement gets a random number in the range of 0 through 99
and assigns it to lotteryNumbers[index] . The first time the loop iterates,

400 Chapter 7 Arrays and Lists

this statement assigns a random number to lotteryNumbers[0] . The
second time the loop iterates, this statement assigns a random number to
 lotteryNumbers[1] . This continues until the loop is finished. At that time,
each element in the array is assigned a random number.

 Lines 37–41: These statements display the array elements in the firstLabel ,
 secondLabel , thirdLabel , fourthLabel , and fifthLabel controls.

 Step 3: Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you will see an empty event handler named exitButton_
Click . Complete the exitButton_Click event handler by typing the code
shown in lines 46–47 in Program 7-1.

 Step 4: Save the project. Then, press % on the keyboard, or click the Start Debugging
button () on the toolbar to compile and run the application. When the applica-
tion runs, click the Generate Numbers button. The application should display a
set of random numbers in the Label controls. Click the Generate Numbers but-
ton several more times to see different sets of random numbers. When you are
finished, click the Exit button to exit the application.

 Program 7-1 Completed code for Form1 in the Lottery Numbers application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Lottery_Numbers
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void generateButton_Click(object sender, EventArgs e)
 21 {
 22 // Create an array to hold the numbers.
 23 const int SIZE = 5;
 24 int[] lotteryNumbers = new int[SIZE];
 25
 26 // Create a Random object.
 27 Random rand = new Random();
 28
 29 // Fill the array with random numbers, in the range
 30 // of 0 through 99.
 31 for (int index = 0; index < lotteryNumbers.Length; index++)
 32 {
 33 lotteryNumbers[index] = rand.Next(100);
 34 }
 35
 36 // Display the array elements in the Label controls.
 37 firstLabel.Text = lotteryNumbers[0].ToString();

 7.2 Array Basics 401

 38 secondLabel.Text = lotteryNumbers[1].ToString();
 39 thirdLabel.Text = lotteryNumbers[2].ToString();
 40 fourthLabel.Text = lotteryNumbers[3].ToString();
 41 fifthLabel.Text = lotteryNumbers[4].ToString();
 42 }
 43
 44 private void exitButton_Click(object sender, EventArgs e)
 45 {
 46 // Close the form.
 47 this.Close();
 48 }
 49 }
 50 }

 Watching for Off-by-One Errors
 Because array subscripts start at 0 rather than 1, you have to be careful not to perform an
off-by-one error. An off-by-one error occurs when a loop iterates one time too many or
one time too few. For example, look at the following code sample:

 1 // Create an array to hold three integers.
 2 const int SIZE = 100;
 3 int[] myValues = new int[SIZE];
 4
 5 // Assign 99 to each array element.
 6 for (int index = 1; index < myValues.Length; index++)
 7 {
 8 myValues[index] = 99;
 9 }

 The intent of this code is to create an int array with 100 elements and assign the value
99 to each element. However, this code has an off-by-one error. During the loop’s execu-
tion, the index variable is assigned the values 1 through 99 when it should be assigned
the values 0 through 99. As a result, the first element, which is at subscript 0, is skipped.

 Using the foreach Loop with Arrays
 C# provides a special loop that, in many circumstances, simplifies array processing. It
is known as the foreach loop. When you use the foreach loop with an array, the loop
automatically iterates once for each element in the array. For example, if you use the
 foreach loop with an eight-element array, the loop will iterate eight times. Because the
 foreach loop automatically knows the number of elements in an array, you do not have
to use a counter variable to control its iterations, as with a regular for loop.

 The foreach loop is designed to work with a temporary, read-only variable known as the
 iteration variable . Each time the foreach loop iterates, it copies an array element to the
iteration variable. For example, the first time the loop iterates, the iteration variable will
contain the value of element 0, the second time the loop iterates, the iteration variable will
contain the value of element 1, and so forth.

 Here is the general format of the foreach loop:

 foreach(Type VariableName in ArrayName)
 {
 statement ;
 statement ;
 etc.
 }

402 Chapter 7 Arrays and Lists

 The statements that appear inside the curly braces are the body of the loop. These are the
statements executed each time the loop iterates. As with other control structures, the curly
braces are optional if the body of the loop contains only one statement, as shown in the
following general format:

 foreach(Type VariableName in ArrayName)
 statement ;

 Let’s take a closer look at the items appearing inside the parentheses:

 • Type is the data type of the values in the array.
 • VariableName is the name of the iteration variable.
 • in is a keyword that must appear after the VariableName.
 • ArrayName is the name of an array.

 Suppose we have the following array declaration:

 int[] numbers = { 3, 6, 9 };

 We can use the following foreach loop to display the contents of the numbers array:

 foreach (int val in numbers)
 {
 MessageBox.Show(val.ToString());
 }

 Because the numbers array has three elements, this loop will iterate three times. The first
time it iterates, val will contain the value of numbers[0] , so a message box will display
the value 3. During the second iteration, val will contain the value of numbers[1] , so a
message box will display the value 6. During the third iteration, val will contain the value
of numbers[2] , so a message box will display the value 9.

 The foreach Loop versus the for Loop

 When you need to read the values that are stored in an array from the first element to
the last element, the foreach loop is simpler to use than the for loop. With the foreach
loop, you do not have to be concerned about the size of the array, and you do not have
to create a counter variable to hold subscripts. However, because the iteration variable is
read only, there are circumstances in which the foreach loop is not adequate. You can-
not use the foreach loop if you need to do any of the following:

 • Change the contents of an array element
 • Work through the array elements in reverse order
 • Access some, but not all, of the array elements
 • Simultaneously work with two or more arrays within the loop

 In any of these circumstances, you should use the for loop to process the array.

 Reassigning an Array Reference Variable
 It is possible to reassign an array reference variable to a different array, as demonstrated
by the following code sample:

 1 // Create an array referenced by the numbers variable.
 2 int[] numbers = new int[6];
 3
 4 // Reassign the numbers variable to a new array.
 5 numbers = new int[3];

 The statement in line 2 creates a six-element int array. A reference to the array is as-
signed to the numbers variable. Figure 7-11 shows how the numbers variable references
the six-element array after this statement executes.

 7.2 Array Basics 403

 Then, the statement in line 5 creates a new, three-element int array. A reference to
the new array is assigned to the numbers variable. When line 5 executes, the refer-
ence that is currently stored in the numbers variable will be replaced by a reference
to the three-element array. After this statement executes, the numbers variable will
reference the three-element array instead of the six-element array. This is illustrated in
 Figure 7-12 .

numbers
variable

Array that can hold six int values

 Figure 7-11 The numbers variable referencing a six-element array

numbers
variable

Array that can hold six int values

Array that can hold
three int values

 Figure 7-12 The numbers variable referencing a three-element array

 Notice in Figure 7-12 that the six-element array still exists in memory, but it is no longer
referenced by any variables. Because it is no longer referenced, it cannot be accessed.
When an object is no longer referenced, it becomes eligible for garbage collection. Gar-
bage collection is a process that periodically runs, removing all unreferenced objects
from memory.

 Checkpoint

 7.5 Write a statement that declares a reference variable named monthlyPay for an
array that can hold decimal values.

 7.6 Write a statement so that the monthlyPay variable from Checkpoint 7.5 references
a decimal array that can hold 12 values.

 7.7 Combine the statements from Checkpoints 7.5 and 7.6 into a single statement, and
use a named constant for a size declarator.

 7.8 Write a statement that creates an array of 3 string values referenced by a variable
named fullName . Provide an initialization list for the array using string values for
a first, middle, and last name.

 7.9 Under what circumstances should you use a for loop rather than a foreach loop
to process data stored in an array?

 7.10 What happens when an object such as an array is no longer referenced by a
variable?

404 Chapter 7 Arrays and Lists

 7.3 Working with Files and Arrays

 CONCEPT: For some problems, files and arrays can be used together effectively. You
can easily write a loop that saves the contents of an array to a file, and
vice versa.

 Some tasks may require you to save the contents of an array to a file so the data can be
used at a later time. Likewise, some situations may require you to read the data from a file
into an array. For example, suppose you have a file that contains a set of values and you
want to reverse the order of the values. One technique for doing this is to read the file’s
values into an array and then write the values in the array back to the file from the end of
the array to the beginning.

 Writing an Array’s Contents to a File
 Writing the contents of an array to a file is a straightforward procedure: Open the file
and use a loop to step through each element of the array, writing its contents to the
file. For example, in the Chap07 folder of the Student Sample Programs, you will find a
project named Array To File . When you click the OK button, the application writes the
contents of an int array to a file. The following code shows the Click event handler for
the OK button.

 1 private void okButton_Click(object sender, EventArgs e)
 2 {
 3 try
 4 {
 5 // Create an array with some values.
 6 int[] numbers = { 10, 20, 30, 40, 50 };
 7
 8 // Declare a StreamWriter variable.
 9 StreamWriter outputFile;
 10
 11 // Create the file and get a StreamWriter object.
 12 outputFile = File.CreateText(“Values.txt”);
 13
 14 // Write the array’s contents to the file.
 15 for (int index = 0; index < numbers.Length; index++)
 16 {
 17 outputFile.WriteLine(numbers[index]);
 18 }
 19
 20 // Close the file.
 21 outputFile.Close();
 22
 23 // Let the user know it’s done.
 24 MessageBox.Show(“Done”);
 25 }
 26 catch (Exception ex)
 27 {
 28 // Display an error message.
 29 MessageBox.Show(ex.Message);
 30 }
 31 }

 7.3 Working with Files and Arrays 405

 The try - catch statement handles any file-related errors. Here is a summary of the code
inside the try block:

 • Line 6 creates an int array with five elements, initialized to the values 10, 20, 30,
40, and 50.

 • Line 9 declares a StreamWriter variable named outputFile . (You do not see it in
this code sample, but the directive using System.IO; appears at the top of the file.
This is required for the StreamWriter declaration in line 9.)

 • Line 12 creates a file named Values.txt for writing. After this statement executes, the
 outputFile variable will reference a StreamWriter object that is associated with
the file.

 • Line 15 is the beginning of a for loop. The loop iterates once for each element of the
array. During the loop’s iterations, the index variable will be assigned the values 1,
2, 3, 4 and 5.

 • Inside the loop, line 17 writes the array element numbers[index] to the file.
 • Line 21 closes the file.
 • Line 24 displays a message box letting the user know the operation is done.

 Figure 7-13 shows the contents of the Values.txt file, opened in Notepad, after the OK
button has been clicked.

 Figure 7-13 Contents of the Values.txt file

 Reading Values from a File and
Storing Them in an Array
 Reading the contents of a file into an array is also straightforward: Open the file and
use a loop to read each item from the file, storing each item in an array element. The
loop should iterate until either the array is filled or the end of the file is reached. For
example, in the Chap07 folder of the Student Sample Programs, you will find a project
named File To Array . When you click the Get Values button, the application reads val-
ues from a file named Values.txt into an int array. The contents of the array are then
displayed in a list box. The following code shows the Click event handler for the Get
Values button.

 1 private void getValuesButton_Click(object sender, EventArgs e)
 2 {
 3 try
 4 {
 5 // Create an array to hold items read from the file.
 6 const int SIZE = 5;
 7 int[] numbers = new int[SIZE];
 8
 9 // Counter variable to use in the loop
 10 int index = 0;

406 Chapter 7 Arrays and Lists

 11
 12 // Declare a StreamReader variable.
 13 StreamReader inputFile;
 14
 15 // Open the file and get a StreamReader object.
 16 inputFile = File.OpenText(“Values.txt”);
 17
 18 // Read the file’s contents into the array.
 19 while (index < numbers.Length && !inputFile.EndOfStream)
 20 {
 21 numbers[index] = int.Parse(inputFile.ReadLine());
 22 index++;
 23 }
 24
 25 // Close the file.
 26 inputFile.Close();
 27
 28 // Display the array elements in the list box.
 29 foreach (int value in numbers)
 30 {
 31 outputListBox.Items.Add(value);
 32 }
 33 }
 34 catch (Exception ex)
 35 {
 36 // Display an error message.
 37 MessageBox.Show(ex.Message);
 38 }
 39 }

 The try - catch statement handles any file-related errors. Here is a summary of the code
inside the try block:

 • Lines 6 and 7 create an int array with five elements.
 • Line 10 declares an int variable named index , initialized with the value 0. This

variable will be used in a loop to hold subscript values.
 • Line 13 declares a StreamReader variable named inputFile . (You do not see it in

this code sample, but the directive using System.IO; appears at the top of the file.
This is required for the StreamReader declaration in line 13.)

 • Line 16 opens a file named Values.txt for reading. After this statement executes,
the inputFile variable references a StreamReader object that is associated with
the file.

 • Line 19 is the beginning of a while loop that reads items from the file and assigns them
to elements of the numbers array. Notice that the loop tests two Boolean expressions
connected by the && operator. The first expression is index < numbers.Length . The
purpose of this expression is to prevent the loop from writing beyond the end of the
array. When the array is full, the loop stops. The second expression is !inputFile.
EndOfStream . The purpose of this expression is to prevent the loop from reading
beyond the end of the file. When there are no more values to read from the file, the
loop stops.

 • Inside the loop, line 21 reads a line of text from the file, converts it to an int , and
assigns the int to numbers[index] . Then, line 22 increments index .

 • Line 26 closes the file.
 • The foreach loop in lines 29–32 displays the array elements in the outputListBox

control.

 Figure 7-14 shows the application’s form after the Get Values button has been
clicked.

 7.4 Passing Arrays as Arguments to Methods 407

 Figure 7-14 The File To Array form

 7.4 Passing Arrays as Arguments to Methods

 CONCEPT: An array can be passed as an argument to a method. To pass an array, you
pass the variable that references the array.

 Sometimes you will want to write a method that accepts an entire array as an argument
and performs an operation on the array. For example, the following code shows a method
named ShowArray . The method accepts an array of strings as an argument and displays
each element in a message box.

 1 private void ShowArray(string[] strArray)
 2 {
 3 foreach (string str in strArray)
 4 {
 5 MessageBox.Show(str);
 6 }
 7 }

 Notice in line 1 that the method has a parameter variable named strArray and that the
parameter’s data type is string[] . The expression string[] indicates that this param-
eter variable is a reference to a string array. When you call this method, you must pass
a string array as an argument.

 When you call a method and pass an array as an argument, you simply pass the variable
that references the array. The following code shows an example of how the ShowArray
method (previously shown) might be called:

 1 // Create an array of strings.
 2 string[] people = { “Bill”, “Jill”, “Phil”, “Will” };
 3
 4 // Pass the array to the ShowArray method.
 5 ShowArray(people);

 Line 2 creates an array of strings named people and initializes it with four strings. Line 5
calls the ShowArray method passing the people array as an argument.

 Keep in mind that arrays are always passed by reference. When you pass an array as an
argument, the thing that is passed into the parameter variable is a reference to the array.
This is illustrated in Figure 7-15 . As shown in the figure, the people variable contains a
reference to an array. When the people variable is passed to the ShowArray method, the
reference to the array is passed into the strArray parameter variable. Figure 7-16 shows
that while the ShowArray method is executing, the people variable and the strArray
parameter variable reference the same array in memory.

408 Chapter 7 Arrays and Lists

 Because arrays are always passed by reference, a method that receives an array as an
argument has access to the actual array (not a copy of the array). For example, in the
 Chap07 folder of the Student Sample Programs, you will find a project named Array
Argument . Figure 7-17 shows the application’s form just after the user has clicked the

private void showArray(string[] strArray)
{
 foreach (string str in strArray)
 {
 MessageBox.Show(str);
 }
}

showArray(people);

Reference

"Bill" "Jill" "Phil" "Will"

 Figure 7-15 An array passed as an argument

private void ShowArray(string[] strArray)
{
 foreach (string str in strArray)
 {
 MessageBox.Show(str);
 }
}

ShowArray(people);

"Bill" "Jill" "Phil" "Will"

 Figure 7-16 The people and strArray variables referencing the same array

outputListBox

goButton exitButton

 Figure 7-17 The Array Argument application

 7.4 Passing Arrays as Arguments to Methods 409

 Go button. The following code shows the Click event handler for the Go button, and a
method named SetToZero :

 1 // Click event handler for the goButton control.
 2 private void goButton_Click(object sender, EventArgs e)
 3 {
 4 // Create an int array.
 5 int[] numbers = { 1, 2, 3 };
 6
 7 // Display the array in the list box.
 8 outputListBox.Items.Add(“The array’s original contents:”);
 9 foreach (int number in numbers)
 10 {
 11 outputListBox.Items.Add(number);
 12 }
 13
 14 // Pass the array to the SetToZero method.
 15 SetToZero(numbers);
 16
 17 // Display the array in the list box again.
 18 outputListBox.Items.Add(“”);
 19 outputListBox.Items.Add(“After calling SetToZero:”);
 20 foreach (int number in numbers)
 21 {
 22 outputListBox.Items.Add(number);
 23 }
 24 }
 25
 26 // The SetToZero method accepts an int array as an
 27 // argument and sets its elememts to 0.
 28 private void SetToZero(int[] iArray)
 29 {
 30 for (int index = 0; index < iArray.Length; index++)
 31 {
 32 iArray[index] = 0;
 33 }
 34 }

 Let’s take a closer look at the goButton_Click event handler:

 • Line 5 creates an int array named numbers , initialized with the values 1, 2, and 3.
 • Line 8 displays the string ”The array’s original contents:” in the outputListBox

control.
 • The foreach loop in lines 9–12 displays the contents of the numbers array in the

 outputListBox control. Look at Figure 7-17 and notice that the arrays values are
1, 2, and 3.

 • Line 15 calls the SetToZero method, passing the numbers array as an
argument.

 • Line 18 displays a blank line in the outputListBox control, and line 19 displays the
string ”After calling SetToZero:” .

 • The foreach loop in lines 9–12 displays the contents of the numbers array in the
 outputListBox control. Look at Figure 7-17 and notice that the array’s values are
now 0, 0, and 0.

 As you can see from Figure 7-17 , the SetToZero method changed the values stored in the
 numbers array. Let’s look at the SetToZero method:

 • Notice in line 28 that the method accepts an int array as an argument. The param-
eter variable’s name is iArray .

410 Chapter 7 Arrays and Lists

 • Line 30 is the beginning of a for loop that steps through the array. As the loop iter-
ates, the index variable is assigned the values 0, 1, 2, and so forth. The loop iterates
as long as index is less than iArray.Length .

 • The statement in line 32 assigns 0 to the array element iArray[index] .

 Because the iArray parameter is a reference to the array that was passed as an argument,
the statement in line 32 assigns 0 to an element of the numbers array.

 Using ref and out with Array Parameters
 You saw in the previous example that arrays are always passed by reference. When you
pass an array as an argument to a method, the method has direct access to the array
through its parameter variable. However, the method cannot access the original reference
variable that was used to pass the array. For example, in the Chap07 folder of the Student
Sample Programs, you will find a project named Change Array 1 . Figure 7-18 shows the
application’s form just after the user has clicked the Go button. The following code shows
the Click event handler for the Go button and a method named ChangeArray :

outputListBox

goButton exitButton

 Figure 7-18 The Change Array 1 application

 1 private void goButton_Click(object sender, EventArgs e)
 2 {
 3 // Create an int array.
 4 int[] numbers = { 1, 2, 3 };
 5
 6 // Display the numbers array’s contents.
 7 outputListBox.Items.Add(“The array’s original contents:”);
 8 foreach (int value in numbers)
 9 {
 10 outputListBox.Items.Add(value);
 11 }
 12
 13 // Pass the numbers array to the ChangeArray method.
 14 ChangeArray(numbers);
 15
 16 // Display the numbers array’s contents.
 17 outputListBox.Items.Add(“After calling ChangeArray:”);
 18 foreach (int value in numbers)
 19 {
 20 outputListBox.Items.Add(value);
 21 }
 22 }
 23

 7.4 Passing Arrays as Arguments to Methods 411

 24 private void ChangeArray(int[] iArray)
 25 {
 26 const int NEW_SIZE = 5;
 27
 28 // Make iArray reference a different array.
 29 iArray = new int[NEW_SIZE];
 30
 31 // Set the new array’s elements to 99.
 32 for (int index = 0; index < iArray.Length; index++)
 33 {
 34 iArray[index] = 99;
 35 }
 36 }

 Let’s take a closer look at the goButton_Click event handler:

 • Line 4 creates an int array named numbers , initialized with the values 1, 2, and 3.
 • Lines 7–11 display the array’s contents in the outputListBox control. Look at Fig-

ure 7-18 and notice that the array’s values are 1, 2, and 3.
 • Line 14 calls the ChangeArray method, passing the numbers array as an argument.
 • Lines 17–21 display the contents of the numbers array in the outputListBox con-

trol after the ChangeArray method has executed. Look at Figure 7-18 and notice
that the array’s values are still 1, 2, and 3. Apparently the method did not change
the array.

 Let’s look at the ChangeArray method:

 • Notice in line 24 that the method accepts an int array as an argument. The param-
eter variable’s name is iArray . Keep in mind that when we call this method in line
14, passing numbers as an argument, the iArray parameter and the numbers vari-
able reference the same array in memory.

 • Line 26 declares an int constant named NEW_SIZE , set to the value 5.
 • Line 29 creates a new int array in memory with five elements. A reference to

the array is assigned to the iArray parameter variable. As shown in Figure 7-19 ,

private void ChangeArray(int[] iArray)
{
 const int NEW_SIZE = 5;

 // Make iArray reference a different array.
 iArray = new int[NEW_SIZE];

 // Set the new array's elements to 99.
 for (int index = 0; index < iArray.Length; index++)
 {
 iArray[index] = 99;
 }
}

Five-element int array

Three-element int array

1 2 3

private void goButton_Click(object sender, EventArgs e)
{
 // Create an int array.
 int[] numbers = { 1, 2, 3 };

and so forth...

 ChangeArray(numbers);

and so forth...
}

 Figure 7-19 After line 29 executes

412 Chapter 7 Arrays and Lists

this causes the iArray parameter variable to no longer reference the array
that was passed as an argument. Instead, the iArray parameter references the
new array.

 • The for loop in lines 32–35 assigns the value 99 to each element of array referenced
by iArray . This does not affect the numbers array.

 When you use either the ref or out keywords with an array parameter, the receiving
method not only has access to the array, but it also has access to the reference variable
that was used to pass the array. For example, the Change Array 2 project, in the Chap07
folder of the Student Sample Programs, is identical to the Change Array 1 project, ex-
cept that the iArray parameter is declared with the ref keyword in the ChangeArray
method. The following code shows the Click event handler for the Go button, and the
 ChangeArray method.

 1 private void goButton_Click(object sender, EventArgs e)
 2 {
 3 // Create an int array.
 4 int[] numbers = { 1, 2, 3 };
 5
 6 // Display the number array’s contents.
 7 outputListBox.Items.Add(“The array’s original contents:”);
 8 foreach (int value in numbers)
 9 {
 10 outputListBox.Items.Add(value);
 11 }
 12
 13 // Pass the number array to the ChangeArray method.
 14 ChangeArray(ref numbers);
 15
 16 // Display the number array’s contents.
 17 outputListBox.Items.Add(“After calling ChangeArray:”);
 18 foreach (int value in numbers)
 19 {
 20 outputListBox.Items.Add(value);
 21 }
 22 }
 23
 24 private void ChangeArray(ref int[] iArray)
 25 {
 26 const int NEW_SIZE = 5;
 27
 28 // Make iArray reference a different array.
 29 iArray = new int[NEW_SIZE];
 30
 31 // Set the new array’s elements to 99.
 32 for (int index = 0; index < iArray.Length; index++)
 33 {
 34 iArray[index] = 99;
 35 }
 36 }

 Notice that in line 24 the iArray parameter is declared with the ref keyword, and
in line 14 the ref keyword is used to pass numbers as an argument to the Change-
Array method. In this code, the iArray parameter refers to the numbers variable.
Anything that is done to the iArray parameter is actually done to the numbers vari-
able. Figure 7-20 shows how line 29 causes the numbers variable to reference the new
five-element array.

 7.4 Passing Arrays as Arguments to Methods 413

 Figure 7-21 shows the application’s form just after the user has clicked the Go button.
Notice from the program’s output that after the ChangeArray method has been called,
the numbers variable references a five-element array, and each element’s value is 99.

private void ChangeArray(ref int[] iArray)
{
 const int NEW_SIZE = 5;

 // Make iArray reference a different array.
 iArray = new int[NEW_SIZE];

 // Set the new array's elements to 99.
 for (int index = 0; index < iArray.Length; index++)
 {
 iArray[index] = 99;
 }
}

Five-element int array

Three-element int array

1 2 3

private void goButton_Click(object sender, EventArgs e)
{
 // Create an int array.
 int[] numbers = { 1, 2, 3 };

and so forth...

 ChangeArray(ref numbers);

and so forth...
}

X

 Figure 7-20 After line 29 executes in the Change Array 2 application

 Figure 7-21 The Change Array 1 application

 Checkpoint

 7.11 When you pass an array as an argument, what is passed into the parameter
variable?

 7.12 Does a method that receives an array as an argument have access to the actual
array or only a copy of the array?

 7.13 What is the result when you use either the ref or out keyword with an array
parameter?

414 Chapter 7 Arrays and Lists

selectionListBox

okButton exitButton

 Figure 7-22 The American Colonies application

 7.5 Some Useful Array Algorithms

 The Sequential Search
 Programs commonly need to search for data that is stored in an array. Various techniques
known as search algorithms have been developed to locate a specific item in a larger collection
of data, such as an array. In this section we discuss the simplest of all search algorithms—the
sequential search. The sequential search algorithm uses a loop to sequentially step through an
array, starting with the first element. It compares each element with the value being searched
for and stops when the value is found or the end of the array is encountered. If the value being
searched for is not in the array, the algorithm unsuccessfully searches to the end of the array.

 Let’s look at an example. In the Chap07 folder of the Student Sample Programs, you
will find a project named American Colonies . The application is a game that tests your
knowledge of U.S. history. As shown in Figure 7-22 , the application’s form displays a list
of states in a ListBox control. Only one of the states shown in the ListBox was an original
American colony. You select the state that you believe was a colony and click the OK
button to see if you were correct.

 The following code is taken from the application. It shows a method named
 SequentialSearch and the Click event handler for the OK button.

 1 // The SequentialSearch method searches a string array
 2 // for a specified value. If the value is found, its
 3 // position is returned. Otherwise, −1 is returned.
 4 private int SequentialSearch(string[] sArray, string value)
 5 {
 6 bool found = false; // Flag indicating search results
 7 int index = 0; // Used to step through the array
 8 int position = −1; // Position of value, if found
 9
 10 // Search the array.
 11 while (!found && index < sArray.Length)
 12 {
 13 if (sArray[index] == value)
 14 {
 15 found = true;
 16 position = index;
 17 }
 18

 7.5 Some Useful Array Algorithms 415

 19 index++;
 20 }
 21
 22 // Return
 23 return position;
 24 }
 25
 26 private void okButton_Click(object sender, EventArgs e)
 27 {
 28 string selection; // To hold the user’s selection
 29
 30 // Create an array with the colony names.
 31 string[] colonies = { “Delaware”, “Pennsylvania”, “New Jersey”,
 32 “Georgia”, “Connecticut”, “Massachusetts”,
 33 “Maryland”, “South Carolina”, “New Hampshire”,
 34 “Virginia”, “New York”, “North Carolina”,
 35 “Rhode Island” };
 36
 37 if (selectionListBox.SelectedIndex != −1)
 38 {
 39 // Get the selected item.
 40 selection = selectionListBox.SelectedItem.ToString();
 41
 42 // Determine if the item is in the array.
 43 if (SequentialSearch(colonies, selection) != -1)
 44 {
 45 MessageBox.Show(“Yes, that was one of the colonies.”);
 46 }
 47 else
 48 {
 49 MessageBox.Show(“No, that was not one of the colonies.”);
 50 }
 51 }
 52 }

 The SequentialSearch method, which begins in line 4, searches a string array for a spec-
ified value. It accepts a string array and a string search value as arguments. If the search
value is found in the array, the method returns the value’s subscript. If the search value is
not found in the array, the method returns −1. Let’s take a closer look at the method:

 • Line 6 declares a bool variable named found . The found variable is used as a flag.
Setting found to false indicates that the search value has not been found. Setting
 found to true indicates that the search value has been found. Notice that found is
initialized with false .

 • Line 7 declares an int variable named index that will be used to step through the
elements of the array. Notice that index is initialized with the value 0.

 • Line 8 declares an int variable named position . If the search value is found in
the array, we save its subscript in the position variable. Notice that the position
variable is initialized with the value −1.

 • The while loop that begins in line 11 searches the array for the specified value. It
iterates as long as found is not true and index is less than the array’s length.

 • The if statement in line 13 determines whether sArray[index] is equal to value .
If this is true, then the search value has been found in the array. In that case, line 15
sets found to true , and line 16 assigns index to position .

 • Line 19 increments index .
 • When the loop finishes, line 23 returns the value of the position variable. If the

search value was found in the array, the position variable will contain the value’s
subscript. If the search value was not found in the array, the position variable will
still be set to −1.

416 Chapter 7 Arrays and Lists

 The Click event handler for the OK button begins in line 26. Let’s take a closer look at
the event handler’s code:

 • Line 28 declares a string variable named selection . This variable will hold the
item that is selected from the ListBox control.

 • Lines 31–35 declare a string array named colonies . The array is initialized with
the names of the U.S. colonies.

 • The if statement that begins in line 37 determines whether an item has been se-
lected in the selectionListBox control. If an item has been selected, the following
actions take place:
 • Line 40 gets the selected item and assigns it to the selection variable.
 • The if statement in line 43 calls the SequentialSearch method, passing

the colonies array and the selection variable as arguments. If the value of
the selection variable is found in the colonies array, the method returns a
value other than −1, and line 45 displays a message box informing the user that
the selected item was one of the colonies. However, if the value of the selection
variable is not found in the colonies array, the method will return −1, and line
49 displays a message box informing the user that the selected item was not one
of the colonies.

 Copying an Array
 Because an array is an object, there is a distinction between an array and the variable that
references it. The array and the reference variable are two separate entities. This is important
to remember when you wish to copy the contents of one array to another. You might be
tempted to write something like the following code, thinking that you are copying an array:

 int[] array1 = { 2, 4, 6, 8, 10 };
 int[] array2 = array1; // This does not copy array1.

 The first statement creates an array referenced by the array1 variable. The second state-
ment assigns array1 to array2 . This does not make a copy of the array referenced by
 array1 . Rather, it assigns the reference that is in array1 to array2 . After this statement
executes, both the array1 and array2 variables will reference the same array. This type
of assignment operation is called a reference copy . Only a reference to the array object is
copied, not the contents of the array object. This is illustrated in Figure 7-23 .

array1
variable

2 4 6 8 10

array2
variable

 Figure 7-23 Both array1 and array2 referencing the same array

 If you want to make a copy of an array, you must create the second array in memory and
then copy the individual elements of the first array to the second. This is usually best done
with a loop, such as the following:

 1 const int SIZE = 5;
 2 int[] firstArray = { 5, 10, 15, 20, 25 };
 3 int[] secondArray = new int[SIZE];
 4

 7.5 Some Useful Array Algorithms 417

 5 for (int index = 0; index < firstArray.length; index++)
 6 {
 7 secondArray[index] = firstArray[index];
 8 }

 The loop in this code copies each element of firstArray to the corresponding element
of secondArray .

 Comparing Arrays
 You cannot use the == operator to compare two array reference variables and determine
whether the arrays are equal. For example, the following code appears to compare two
arrays, but in reality it does not:

 1 int[] firstArray = { 5, 10, 15, 20, 25 };
 2 int[] secondArray = { 5, 10, 15, 20, 25 };
 3
 4 if (firstArray == secondArray) // This is a mistake.
 5 {
 6 MessageBox.Show(“The arrays are the same.”);
 7 }
 8 else
 9 {
 10 MessageBox.Show(“The arrays are not the same.”);
 11 }

 When you use the == operator with reference variables, the operator compares the refer-
ences that the variables contain, not the contents of the objects referenced by the variables.
Because the firstArray and secondArray variables in this example reference different
objects in memory, the result of the Boolean expression firstArray == secondArray is
false, and the code reports that the arrays are not the same.

 To compare the contents of two arrays, you must compare the elements of the two arrays.
For example, look at the following code:

 1 int[] firstArray = { 2, 4, 6, 8, 10 };
 2 int[] secondArray = { 2, 4, 6, 8, 10 };
 3 boolean arraysEqual = true; // Flag variable
 4 int index = 0; // To hold array subscripts
 5
 6 // First determine whether the arrays are the same size.
 7 if (firstArray.length != secondArray.length)
 8 {
 9 arraysEqual = false;
 10 }
 11
 12 // Next determine whether the elements contain the same data.
 13 while (arraysEqual && index < firstArray.length)
 14 {
 15 if (firstArray[index] != secondArray[index])
 16 {
 17 arraysEqual = false;
 18 }
 19 index++;
 20 }
 21
 22 if (arraysEqual)
 23 {
 24 MessageBox.Show(“The arrays are equal.”);
 25 }
 26 else

418 Chapter 7 Arrays and Lists

 27 {
 28 MessageBox.Show(“The arrays are not equal.”);
 29 }

 This code determines whether firstArray and secondArray (declared in lines 1 and 2)
contain the same values. A Boolean flag variable, arraysEqual , is declared and initial-
ized to true in line 3. The arraysEqual variable used to signal whether the arrays are
equal. Another variable, index , is declared and initialized to 0 in line 4. The index vari-
able is used in a loop to step through the arrays.

 First, the if statement in line 7 determines whether the two arrays are the same length.
If they are not the same length, then the arrays cannot be equal, so the flag variable
 arraysEqual is set to false in line 9. Then a while loop begins in line 13. The loop
executes as long as arraysEqual is true and the index variable is less than firstArray.
length . During each iteration, it compares a different set of corresponding elements in
the arrays. When it finds two corresponding elements that have different values, the flag
variable arraysEqual is set to false .

 After the loop finishes, an if statement examines the arraysEqual variable in line
22. If the variable is true , then the arrays are equal and a message indicating so is
displayed in line 24. Otherwise, they are not equal, so a different message is displayed
in line 28.

 Totaling the Values in an Array
 To calculate the total of the values in a numeric array, you use a loop with an accumula-
tor variable. First, the accumulator is initialized with 0. Then, the loop steps through the
array, adding the value of each array element to the accumulator.

 1 // Create an int array.
 2 int[] numbers = { 2, 4, 6, 8, 10 };
 3
 4 // Declare and initialize an accumulator variable.
 5 int total = 0;
 6
 7 // Step through the array, adding each element to
 8 // the accumulator.
 9 for (int index = 0; index < units.Length; index++)
 10 {
 11 total += units[index];
 12 }
 13
 14 // Display the total.
 15 MessageBox.Show(“The total is “ + total);

 Averaging the Values in an Array
 The first step in calculating the average of all the values in a numeric array is to get the
total of the values. The second step is to divide the total by the number of elements in the
array. The following code shows an example:

 1 // Create an array.
 2 double[] scores = { 92.5, 81.6, 65.7, 72.8 }
 3
 4 // Declare and initialize an accumulator variable.
 5 double total = 0.0;
 6
 7 // Declare a variable to hold the average.

 7.5 Some Useful Array Algorithms 419

 8 double average;
 9
 10 // Step through the array, adding each element to
 11 // the accumulator.
 12 for (int index = 0; index < scores.Length; index++)
 13 {
 14 total += scores[index];
 15 }
 16
 17 // Calculate the average.
 18 average = total / scores.Length;
 19
 20 // Display the average.
 21 MessageBox.Show(“The average is “ + average);

 When this code finishes, the average variable will contain the average of the values in the
 scores array. Notice that the last statement, which divides total by scores.length , is
not inside the loop. This statement should execute only once, after the loop has finished
its iterations.

 Finding the Highest and Lowest Values in an Array
 Some programming tasks require you to find the highest value in a set of data. Exam-
ples include programs that report the highest sales amount for a given time period, the
highest test score in a set of test scores, the highest temperature for a given set of days,
and so forth.

 The algorithm for finding the highest value in an array works like this: You create a vari-
able to hold the highest value (the following example names this variable highest). Then,
you assign the value at element 0 to the highest variable. Next, you use a loop to step
through the rest of the array elements, beginning at element 1. Each time the loop iterates,
it compares an array element to the highest variable. If the array element is greater than
the highest variable, then the value in the array element is assigned to the highest vari-
able. When the loop finishes, the highest variable will contain the highest value in the
array. The flowchart in Figure 7-24 illustrates this logic.

 The following code demonstrates this algorithm:

 1 // Create an array.
 2 int[] numbers = { 8, 1, 12, 6, 2 };
 3
 4 // Declare a variable to hold the highest value, and
 5 // initialize it with the first value in the array.
 6 int highest = numbers[0];
 7
 8 // Step through the rest of the array, beginning at
 9 // element 1. When a value greater than highest is found,
 10 // assign that value to highest.
 11 for (int index = 1; index < numbers.Length; index++)
 12 {
 13 if (numbers[index] > highest)
 14 {
 15 highest = numbers[index];
 16 }
 17 }
 18
 19 // Display the highest value.
 20 MessageBox.Show(“The highest value is “ + highest);

420 Chapter 7 Arrays and Lists

 In some programs you are more interested in finding the lowest value than the high-
est value in a set of data. For example, suppose you are writing a program that stores
several players’ golf scores in an array and you need to find the best score. In golf,
the lower the score the better, so you need an algorithm that finds the lowest value in
the array.

 The algorithm for finding the lowest value in an array is very similar to the algorithm
for finding the highest score. It works like this: You create a variable to hold the lowest
value (the following example names this variable lowest). Then, you assign the value at
element 0 to the lowest variable. Next, you use a loop to step through the rest of the
array elements, beginning at element 1. Each time the loop iterates, it compares an array
element to the lowest variable. If the array element is less than the lowest variable, then
the value in the array element is assigned to the lowest variable. When the loop finishes,
the lowest variable contains the lowest value in the array. The flowchart in Figure 7-25
illustrates this logic.

index < array.Length

index = 1

True

False

highest = array[0]

array[index] >
highest

True

highest = array[index]
False

index = index + 1

 Figure 7-24 Flowchart for finding the highest value in an array

 7.5 Some Useful Array Algorithms 421

 The following code demonstrates this algorithm:

 1 // Create an array.
 2 int[] numbers = { 8, 1, 12, 6, 2 };
 3
 4 // Declare a variable to hold the lowest value, and
 5 // initialize it with the first value in the array.
 6 int lowest = numbers[0];
 7
 8 // Step through the rest of the array, beginning at
 9 // element 1. When a value less than lowest is found,
 10 // assign that value to lowest.
 11 for (int index = 1; index < numbers.Length; index++)
 12 {
 13 if (numbers[index] < lowest)
 14 {
 15 lowest = numbers[index];
 16 }
 17 }
 18
 19 // Display the lowest value.
 20 MessageBox.Show(“The lowest value is “ + lowest);

index <= SIZE - 1

index = 1

True

False

lowest = array[0]

array[index] <
lowest

True

lowest = array[index]
False

index = index + 1

 Figure 7-25 Flowchart for finding the lowest value in an array

422 Chapter 7 Arrays and Lists

 Partially Filled Arrays
 Sometimes you need to store a series of items in an array, but you do not know the
number of items in the series. As a result, you do not know the exact number of elements
needed for the array. One solution is to make the array large enough to hold the larg-
est possible number of items. This can lead to another problem, however. If the actual
number of items stored in the array is less than the number of elements, the array will be
only partially filled. When you process a partially filled array, you must process only the
elements that contain valid data items.

 A partially filled array is normally used with an accompanying integer variable that
holds the number of items that are actually stored in the array. If the array is empty,
then 0 is stored in this variable because there are no items in the array. Each time an item
is added to the array, the variable is incremented. When code steps through the array’s
elements, the value of this variable is used instead of the array’s size to determine the
maximum subscript.

 For example, in the Chap07 folder of the Student Sample Programs, you will find a project
named Partially Filled Array . When you click the Go button, the application reads up to
100 values from a file named Values.txt and stores them in a 100-element int array. If
the file contains fewer than 100 values, the application will partially fill the array. The
contents of the array are then displayed in a list box. Figure 7-26 shows the application’s
form just after the user has clicked the Go button. The following code shows the Click
event handler for the Get Values button.

 Figure 7-26 The Partially Filled Array application

 1 private void goButton_Click(object sender, EventArgs e)
 2 {
 3 try
 4 {
 5 // Create an array to hold items read from the file.
 6 const int SIZE = 100;
 7 int[] numbers = new int[SIZE];
 8
 9 // Variable to hold the number of items stored in
 10 // the array
 11 int count = 0;
 12
 13 // Declare a StreamReader variable.
 14 StreamReader inputFile;
 15
 16 // Open the file and get a StreamReader object.
 17 inputFile = File.OpenText(“Values.txt”);
 18

 7.5 Some Useful Array Algorithms 423

 19 // Read the file’s contents into the array until the
 20 // end of the file is reached, or the array is full.
 21 while (!inputFile.EndOfStream && count < numbers.Length)
 22 {
 23 // Read the next item from the file.
 24 numbers[count] = int.Parse(inputFile.ReadLine());
 25
 26 // Increment count.
 27 count++;
 28 }
 29
 30 // Close the file.
 31 inputFile.Close();
 32
 33 // Display the array elements in the list box.
 34 outputListBox.Items.Add(“The file contains “ + count +
 35 “ items:”);
 36
 37 for (int index = 0; index < count; index++)
 38 {
 39 outputListBox.Items.Add(numbers[index]);
 40 }
 41 }
 42 catch (Exception ex)
 43 {
 44 // Display an error message.
 45 MessageBox.Show(ex.Message);
 46 }
 47 }

 Let’s examine the code in detail:

 • Line 3 is the beginning of a try - catch statement that handles any errors that might
result while reading data from the file.

 • Line 6 declares a constant, SIZE , initialized with the value 100.
 • Line 7 declares an int array named numbers using SIZE as the size declarator. As a

result, the values array has 100 elements.
 • Line 11 declares an int variable named count , which holds the number of items

that are stored in the numbers array. Notice that count is initialized with 0 because
there are no values stored in the array.

 • Line 14 declares a StreamReader variable named inputFile . (You do not see it in
this code sample, but the directive using System.IO; appears at the top of the file.
This is required for the StreamReader declaration in line 14.)

 • Line 17 opens a file named Values.txt for reading. After this statement executes, the
 inputFile variable references a StreamReader object that is associated with the file.

 • Line 21 is the beginning of a while loop that reads items from the file and assigns
them to elements of the numbers array. Notice that the loop tests two Boolean
expressions connected by the && operator. The first expression is !inputFile.
EndOfStream . The purpose of this expression is to prevent the loop from reading
beyond the end of the file. When there are no more values to read from the file,
the loop stops. The second expression is count < numbers.Length . The purpose
of this expression is to prevent the loop from writing beyond the end of the array.
When the array is full, the loop will stop.

 • Inside the loop, line 24 reads a line of text from the file, converts it to an int , and
assigns the int to numbers[index] .

 • Then, line 27 increments the count variable. Each time a number is assigned to an
array element, the count variable is incremented. As a result, the count variable
holds the number of items that are stored in the array.

424 Chapter 7 Arrays and Lists

 • Line 31 closes the file.
 • The for loop in lines 37–40 displays the array elements in the outputListBox con-

trol. Rather than stepping through all the elements in the array, however, the loop
steps through only the elements that contain values. Notice that the loop iterates
as long as index is less than count . Because count contains the number of items
stored in the array, the loop stops when the element containing the last valid value
has been displayed.

 Now that you’ve seen several algorithms for processing the contents of an array, you
should practice writing some of them yourself. Tutorial 7-2 takes you through the process
of writing an application that reads data from a file into an int array and then determines
the highest, lowest, and average values in the array.

VideoNote

 Tutorial 7-2 :
 Processing an
Array

 Tutorial 7-2:
 Processing an Array

 In this tutorial you complete an application that reads five test scores from a file and
stores the test scores in an array. The application displays the test scores as well as the
highest score, the lowest score, and the average score. Figure 7-27 shows the application’s
form, which has already been created for you. A set of five test scores is stored in a file
named TestScores.txt, which has also been created for you.

highScoreLabel

lowScoreLabel

averageScoreLabel

testScoresListBox

getScoresButton exitButton

 Figure 7-27 The Test Average application’s form

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Test
Average in the Chap07 folder of the Student Sample Programs.

 Step 2: Open the Form1 form’s code in the code editor. Insert the using System.IO;
directive shown in line 10 of Program 7-2 at the end of this tutorial. This
statement is necessary because we will be using the StreamReader class, and
it is part of the System.IO namespace in the .NET Framework.

 Step 3: With the code editor still open, type the comments and code for the Average
method, shown in lines 21–40 of Program 7-2. The purpose of the Average
method is to accept an int array as an argument and return the average of
the values in the array. This method uses an algorithm similar to the array
averaging you saw earlier in this chapter.

 Step 4: Type the comments and code for the Highest method, shown in lines 42–63
of Program 7-2. The purpose of the Highest method is to accept an int

 7.5 Some Useful Array Algorithms 425

array as an argument and return the highest value in the array. This method
uses an algorithm similar to the algorithm that you saw earlier in this chapter
for finding the highest value in an array.

 Step 5: Type the comments and code for the Lowest method, shown in lines 65–86 of
Program 7-2. The purpose of the Lowest method is to accept an int array as
an argument and return the lowest value in the array. This method uses an algo-
rithm similar to the algorithm that you saw earlier in this chapter for finding the
lowest value in an array.

 Step 6: Now you create the Click event handlers for the Button controls. Switch
back to the Designer and double-click the getScoresButton control. This
opens the code editor, and you will see an empty event handler named
 getScoresButton_Click . Complete the getScoresButton_Click event
handler by typing the code shown in lines 90–134 in Program 7-2. Let’s re-
view this code:

 Line 90: This is the beginning of a try - catch statement that handles any ex-
ceptions that are thrown while reading and processing data from the file. If an
exception occurs in the try block (lines 92–128), the program jumps to the catch
block, and line 133 displays an error message.

 Lines 93–99: The following declarations appear in these lines:

 • SIZE —a constant, set to 5, for the number of test scores
 • scores —an int array that holds the test scores
 • index —an int variable, initialized to 0, that is used in a loop to step

through the elements of the scores array
 • highestScore —an int that holds the highest score
 • lowestScore —an int that holds the lowest score
 • averageScore —a double that holds the average score
 • inputFile —a variable that references the StreamReader object that is used

to read data from the fi le

 Line 102: After this statement executes, the TestScores.txt file will be opened
for reading, and the inputFile variable will reference a StreamReader object
that is associated with the file.

 Line 105: This is the beginning of a while loop that iterates as long as the end
of the TestScores.txt file has not been reached and as long as index is less than
 scores.Length . (Recall that index starts with the value 0.)

 Line 107: This statement reads a line of text from the file and assigns it to the
array element scores[index] .

 Line 108: This statement increments the index variable.

 Line 112: This statement closes the TestScores.txt file.

 Lines 115—118: This foreach loop displays the contents of the scores array
in the testScoresListBox control.

 Line 121: This statement calls the Highest method, passing the scores array
as an argument. The method returns the highest value in the array, which is as-
signed to the highestScore variable.

 Line 122: This statement calls the Lowest method, passing the scores array
as an argument. The method returns the lowest value in the array, which is as-
signed to the lowestScore variable.

 Line 123: This statement calls the Average method, passing the scores array
as an argument. The method returns the average of the values in the array,
which is assigned to the averageScore variable.

426 Chapter 7 Arrays and Lists

 Figure 7-28 The Test Average application

 Lines 126–128: These statements display the highest score, lowest score, and
average score.

 Step 7: Switch your view back to the Designer and double-click the exitButton
control. In the code editor you will see an empty event handler named
 exitButton_Click . Complete the exitButton_Click event handler by
typing the code shown in lines 139–140 in Program 7-2.

 Step 8: Save the project. Then, press % on the keyboard or click the Start De-
bugging button () on the toolbar to compile and run the application.
When the application runs, click the Get Scores button. This should dis-
play a set of test scores in ListBox as well as the highest, lowest, and aver-
age of the test scores, as shown in Figure 7-28 . Click the Exit button to
exit the application.

 Program 7-2 Completed code for Form1 in the Test Average application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10 using System.IO;
 11
 12 namespace Test_Average
 13 {
 14 public partial class Form1 : Form
 15 {
 16 public Form1()
 17 {
 18 InitializeComponent();
 19 }
 20
 21 // The Average method accepts an int array argument
 22 // and returns the Average of the values in the array.
 23 private double Average(int[] iArray)
 24 {

 7.5 Some Useful Array Algorithms 427

 25 int total = 0; // Accumulator, initialized to 0
 26 double average; // To hold the average
 27
 28 // Step through the array, adding each element to
 29 // the accumulator.
 30 for (int index = 0; index < iArray.Length; index++)
 31 {
 32 total += iArray[index];
 33 }
 34
 35 // Calculate the average.
 36 average = (double) total / iArray.Length;
 37
 38 // Return the average.
 39 return average;
 40 }
 41
 42 // The Highest method accepts an int array argument
 43 // and returns the highest value in that array.
 44 private int Highest(int[] iArray)
 45 {
 46 // Declare a variable to hold the highest value, and
 47 // initialize it with the first value in the array.
 48 int highest = iArray[0];
 49
 50 // Step through the rest of the array, beginning at
 51 // element 1. When a value greater than highest is found,
 52 // assign that value to highest.
 53 for (int index = 1; index < iArray.Length; index++)
 54 {
 55 if (iArray[index] > highest)
 56 {
 57 highest = iArray[index];
 58 }
 59 }
 60
 61 // Return the highest value.
 62 return highest;
 63 }
 64
 65 // The Lowest method accepts an int array argument
 66 // and returns the lowest value in that array.
 67 private int Lowest(int[] iArray)
 68 {
 69 // Declare a variable to hold the lowest value, and
 70 // initialize it with the first value in the array.
 71 int lowest = iArray[0];
 72
 73 // Step through the rest of the array, beginning at
 74 // element 1. When a value less than lowest is found,
 75 // assign that value to lowest.
 76 for (int index = 1; index < iArray.Length; index++)
 77 {
 78 if (iArray[index] < lowest)
 79 {
 80 lowest = iArray[index];
 81 }
 82 }
 83
 84 // Return the lowest value.

428 Chapter 7 Arrays and Lists

 85 return lowest;
 86 }
 87
 88 private void getScoresButton_Click(object sender, EventArgs e)
 89 {
 90 try
 91 {
 92 // Local variables
 93 const int SIZE = 5; // Number of tests
 94 int[] scores = new int[SIZE]; // Array of test scores
 95 int index = 0; // Loop counter
 96 int highestScore; // To hold the highest score
 97 int lowestScore; // To hold the lowest score
 98 double averageScore; // To hold the average score
 99 StreamReader inputFile; // For file input
 100
 101 // Open the file and get a StreamReader object.
 102 inputFile = File.OpenText(“TestScores.txt”);
 103
 104 // Read the test scores into the array.
 105 while (!inputFile.EndOfStream && index < scores.Length)
 106 {
 107 scores[index] = int.Parse(inputFile.ReadLine());
 108 index++;
 109 }
 110
 111 // Close the file.
 112 inputFile.Close();
 113
 114 // Display the test scores.
 115 foreach (int value in scores)
 116 {
 117 testScoresListBox.Items.Add(value);
 118 }
 119
 120 // Get the highest, lowest, and average scores.
 121 highestScore = Highest(scores);
 122 lowestScore = Lowest(scores);
 123 averageScore = Average(scores);
 124
 125 // Display the values.
 126 highScoreLabel.Text = highestScore.ToString();
 127 lowScoreLabel.Text = lowestScore.ToString();
 128 averageScoreLabel.Text = averageScore.ToString(“n1”);
 129 }
 130 catch (Exception ex)
 131 {
 132 // Display an error message.
 133 MessageBox.Show(ex.Message);
 134 }
 135 }
 136
 137 private void exitButton_Click(object sender, EventArgs e)
 138 {
 139 // Close the form.
 140 this.Close();
 141 }
 142 }
 143 }

 7.6 Advanced Algorithms for Sorting and Searching Arrays 429

 7.6 Advanced Algorithms for Sorting
and Searching Arrays

 CONCEPT: A sorting algorithm is used to arrange data into some order. A search
algorithm is a method of locating a specific item in a larger collection of
data. The selection sort and the binary search are popular sorting and
searching algorithms.

 The Selection Sort Algorithm
 Often the data in an array must be sorted in some order. Customer lists, for instance,
are commonly sorted in alphabetical order. Student grades might be sorted from highest
to lowest. Product codes could be sorted so all the products of the same color are stored
together. In this section we explore how to write your own sorting algorithm. A sorting
algorithm is a technique for scanning through an array and rearranging its contents in
some specific order. The algorithm that we explore is called the selection sort.

 The selection sort works like this: The smallest value in the array is located and moved to
element 0. Then the next smallest value is located and moved to element 1. This process
continues until all the elements have been placed in their proper order. Let’s see how the
selection sort works when arranging the elements of the array in Figure 7-29 .

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

5 7 2 8 9 1

 Figure 7-29 Values in an array

1 7 2 8 9 5

These two elements were swapped.

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

 Figure 7-30 Values in the array after the first swap

 The selection sort scans the array, starting at element 0, and locates the element with the
smallest value. Then, the contents of this element are swapped with the contents of ele-
ment 0. In this example, the 1 stored in element 5 is swapped with the 5 stored in element
0. After the swap, the array appears as shown in Figure 7-30 .

 Then, the algorithm repeats the process, but because element 0 already contains the small-
est value in the array, it can be left out of the procedure. This time, the algorithm begins
the scan at element 1. In this example, the value in element 2 is swapped with the value in
element 1. Then, the array appears as shown in Figure 7-31 .

430 Chapter 7 Arrays and Lists

 Once again, the process is repeated, but this time the scan begins at element 2. The al-
gorithm will find that element 5 contains the next smallest value. This element’s value is
swapped with that of element 2, causing the array to appear as shown in Figure 7-32 .

1 2 7 8 9 5

These two elements were swapped.

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

 Figure 7-31 Values in the array after the second swap

1 2 5 7 8 9

These two elements were swapped.

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

 Figure 7-34 Values in the array after the fifth swap

1 2 5 8 9 7

These two elements were swapped.

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

 Figure 7-32 Values in the array after the third swap

1 2 5 7 9 8

These two elements were swapped.

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

 Figure 7-33 Values in the array after the fourth swap

 Next, the scanning begins at element 3. Its value is swapped with that of element 5, caus-
ing the array to appear as shown in Figure 7-33 .

 At this point there are only two elements left to sort. The algorithm finds that the value in
element 5 is smaller than that of element 4, so the two are swapped. This puts the array in
its final arrangement, as shown in Figure 7-34 .

 7.6 Advanced Algorithms for Sorting and Searching Arrays 431

 Swapping Array Elements

 As you saw in the description of the selection sort algorithm, certain elements are
swapped as the algorithm steps through the array. Let’s briefly discuss the process
of swapping two items in computer memory. Assume we have the following variable
declarations:

 int a = 1;
 int b = 9;

 Suppose we want to swap the values in these variables so the variable a contains 9 and
the variable b contains 1. At first, you might think that we need only assign the variables
to each other, like this:

 // ERROR! The following does NOT swap the variables.
 a = b;
 b = a;

 To understand why this does not work, let’s step through the code. The first statement
is a = b . This causes the value 9 to be assigned to a . But, what happens to the value 1
that was previously stored in a ? Remember, when you assign a new value to a variable,
the new value replaces any value that was previously stored in the variable. So, the old
value, 1, is thrown away. Then the next statement is b = a . Since the variable a contains
9, this assigns 9 to b . After these statements execute, the variables a and b both contain
the value 9.

 To successfully swap the contents of two variables, we need a third variable that can serve
as a temporary storage location:

 int temp;

 Then we can perform the following steps to swap the values in the variables a and b :

 • Assign the value of a to temp .
 • Assign the value of b to a .
 • Assign the value of temp to b .

 Figure 7-35 shows the contents of these variables as we perform each of these steps. No-
tice that after the steps are finished, the values in a and b are swapped.

1

9

?

a

b

temp

int a = 1;
int b = 9;
int temp;

temp = a;

1

9

1

a

b

temp

a = b;

9

9

1

a

b

temp

b = temp;

9

1

1

a

b

temp

2

4

1

3

 Figure 7-35 Swapping the values of a and b

432 Chapter 7 Arrays and Lists

 Here is the code for a Swap method that we can use to swap to int values:

 1 private void Swap(ref int a, ref int b)
 2 {
 3 int temp = a;
 4 a = b;
 5 b = temp;
 6 }

goButton exitButton

originalListBox sortedListBox

 Figure 7-36 The Selection Sort application’s form

 NOTE: It is critical that we use reference parameters in the Swap method, because
the method must be able to change the values of the items that are passed to it as
arguments.

 Let’s look at a complete program that demonstrates the Selection Sort algorithm. In the
 Chap07 folder of the Student Sample Programs, you will find a project named Selection
Sort . Figure 7-36 shows the application’s form. On the left, you see the form with the
names of various controls. On the right you see the form after the Go button has been
clicked. When you click the Go button, the following actions take place:

 • An int array is created, initialized with unsorted values.
 • The contents of the array are displayed in the originalListBox control.
 • The array is passed as an argument to the SelectionSort method. The method

uses the Selection Sort algorithm to sort the array.
 • The contents of the array are displayed in the sortedListBox control.

 Program 7-3 shows the complete code for the Selection Sort application.

 Program 7-3 Complete code for Form1 in the Selection Sort application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10

 7.6 Advanced Algorithms for Sorting and Searching Arrays 433

 11 namespace Selection_Sort
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 // The SelectionSort method accepts an int array as an argument.
 21 // It uses the Selection Sort algorithm to sort the array.
 22 private void SelectionSort(int[] iArray)
 23 {
 24 int minIndex; // Subscript of smallest value in scanned area
 25 int minValue; // Smallest value in the scanned area
 26
 27 // The outer loop steps through all the array elements,
 28 // except the last one. The startScan variable marks the
 29 // position where the scan should begin.
 30 for (int startScan = 0; startScan < iArray.Length - 1; startScan++)
 31 {
 32 // Assume the first element in the scannable area
 33 // is the smallest value.
 34 minIndex = startScan;
 35 minValue = iArray[startScan];
 36
 37 // Scan the array, starting at the 2nd element in the
 38 // scannable area, looking for the smallest value.
 39 for (int index = startScan + 1; index < iArray.Length; index++)
 40 {
 41 if (iArray[index] < minValue)
 42 {
 43 minValue = iArray[index];
 44 minIndex = index;
 45 }
 46 }
 47
 48 // Swap the element with the smallest value with the
 49 // first element in the scannable area.
 50 Swap(ref iArray[minIndex], ref iArray[startScan]);
 51 }
 52 }
 53
 54 // The Swap method accepts two integer arguments, by reference,
 55 // and swaps their contents.
 56 private void Swap(ref int a, ref int b)
 57 {
 58 int temp = a;
 59 a = b;
 60 b = temp;
 61 }
 62
 63 private void goButton_Click(object sender, EventArgs e)
 64 {
 65 // Create an array of integers.
 66 int[] numbers = { 4, 6, 1, 3, 5, 2 };
 67
 68 // Display the array in original order.
 69 foreach (int value in numbers)
 70 {
 71 originalListBox.Items.Add(value);

434 Chapter 7 Arrays and Lists

 72 }
 73
 74 // Sort the array.
 75 SelectionSort(numbers);
 76
 77 // Display the array in sorted order.
 78 foreach (int value in numbers)
 79 {
 80 sortedListBox.Items.Add(value);
 81 }
 82 }
 83
 84 private void exitButton_Click(object sender, EventArgs e)
 85 {
 86 // Close the form.
 87 this.Close();
 88 }
 89 }
 90 }

 The Binary Search Algorithm
 Previously in this chapter we discussed the sequential search algorithm, which uses a loop
to step sequentially through an array, starting with the first element. It compares each
element with the value being searched for and stops when the value is found or the end of
the array is encountered. If the value being searched for is not in the array, the algorithm
unsuccessfully searches to the end of the array.

 The advantage of the sequential search is its simplicity: It is very easy to understand and
implement. Furthermore, it does not require the data in the array to be stored in any
particular order. Its disadvantage, however, is its inefficiency. If the array being searched
contains 20,000 elements, the algorithm has to look at all 20,000 elements in order to
find a value stored in the last element.

 In an average case, an item is just as likely to be found near the beginning of an array as
near the end. Typically, for an array of n items, the sequential search locates an item in
 n /2 attempts. If an array has 50,000 elements, the sequential search makes a comparison
with 25,000 of them in a typical case. This is assuming, of course, that the search item
is consistently found in the array. (n /2 is the average number of comparisons. The maxi-
mum number of comparisons is always n .)

 When the sequential search fails to locate an item, it must make a comparison with every
element in the array. As the number of failed search attempts increases, so does the aver-
age number of comparisons. Although the sequential search algorithm is adequate for
small arrays, it should not be used on large arrays if speed is important.

 The binary search is a clever algorithm that is much more efficient than the sequential
search. Its only requirement is that the values in the array must be sorted in ascending
order. Instead of testing the array’s first element, this algorithm starts with the element in
the middle. If that element happens to contain the desired value, then the search is over.
Otherwise, the value in the middle element is either greater than or less than the value
being searched for. If it is greater, then the desired value (if it is in the list) will be found
somewhere in the first half of the array. If it is less, then the desired value (again, if it is
in the list) will be found somewhere in the last half of the array. In either case, half of the
array’s elements have been eliminated from further searching.

 If the desired value is not found in the middle element, the procedure is repeated for the
half of the array that potentially contains the value. For instance, if the last half of the
array is to be searched, the algorithm tests its middle element. If the desired value is not

 7.6 Advanced Algorithms for Sorting and Searching Arrays 435

found there, the search is narrowed to the quarter of the array that resides before or after
that element. This process continues until the value being searched for is either found or
there are no more elements to test.

 Here is the pseudocode for a method that performs a binary search on an array:

 Method BinarySearch(array, searchValue)
 Set first to 0
 Set last to the last subscript in the array
 Set position to −1
 Set found to false

 While found is not true and first is less than or equal to last
 Set middle to the subscript half way between array[first]and array[last]
 If array[middle] equals searchValue
 Set found to true
 Set position to middle
 Else If array[middle] is greater than searchValue
 Set last to middle −1
 Else
 Set first to middle +1
 End If
 End While

 Return position
 End Method

 This algorithm uses three variables to mark positions within the array: first , last , and
 middle . The first and last variables mark the boundaries of the portion of the array cur-
rently being searched. They are initialized with the subscripts of the array’s first and last
elements. The subscript of the element halfway between first and last is calculated and
stored in the middle variable. If the element in the middle of the array does not contain
the search value, the first or last variable is adjusted so that only the top or bottom half
of the array is searched during the next iteration. This cuts the portion of the array being
searched in half each time the loop fails to locate the search value.

 The following C# method performs a binary search on an integer array. The first param-
eter, iArray , is searched for an occurrence of the number stored in value . If the number
is found, its array subscript is returned. Otherwise, −1 is returned, indicating the value did
not appear in the array.

 1 private int BinarySearch(int[] iArray, int value)
 2 {
 3 int first = 0; // First array element
 4 int last = iArray.Length − 1; // Last array element
 5 int middle; // Midpoint of search
 6 int position = −1; // Position of search value
 7 bool found = false; // Flag
 8
 9 // Search for the value.
 10 while (!found && first <= last)
 11 {
 12 // Calculate the midpoint.
 13 middle = (first + last) / 2;
 14
 15 // If value is found at midpoint . . .
 16 if (iArray[middle] == value)
 17 {
 18 found = true;
 19 position = middle;

436 Chapter 7 Arrays and Lists

 20 }
 21 // else if value is in lower half . . .
 22 else if (iArray[middle] > value)
 23 {
 24 last = middle - 1;
 25 }
 26 // else if value is in upper half
 27 else
 28 {
 29 first = middle + 1;
 30 }
 31 }
 32
 33 // Return the position of the item, or -1
 34 // if it was not found.
 35 return position;
 36 }

 If you want to see a complete application that uses the binary search algorithm, look at
the Binary Search project, located in the Chap07 folder of the Student Sample Programs.
It loads a list of names from a file into an array and then performs a binary search to find
a specific name in the array.

 Checkpoint

 7.14 What is a search algorithm?

 7.15 What is the purpose of a sorting algorithm?

 7.16 What is the only requirement of the binary search algorithm?

 7.7 Two-Dimensional Arrays

 CONCEPT: A two-dimensional array is like several identical arrays put together. It is
useful for storing multiple sets of data.

 The arrays that you have studied so far are known as one-dimensional arrays. They are
called one-dimensional arrays because they can hold only one set of data. Two-dimensional
arrays, which are also called 2D arrays , can hold multiple sets of data. Think of a two-
dimensional array as having rows and columns of elements, as shown in Figure 7-37 . This
figure shows a two-dimensional array having three rows and four columns. Notice that
the rows are numbered 0, 1, and 2, and the columns are numbered 0, 1, 2, and 3. There is
a total of 12 elements in the array.

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2 Column 3

 Figure 7-37 A two-dimensional array

 7.7 Two-Dimensional Arrays 437

 Two-dimensional arrays are useful for working with multiple sets of data. For example,
suppose you are designing a grade-averaging program for a teacher. The teacher has six
students, and each student takes five exams during the semester. One approach would be
to create six one-dimensional arrays, one for each student. Each of these arrays would
have five elements, one for each exam score. This approach would be cumbersome, how-
ever, because you would have to separately process each of the arrays. A better approach
would be to use a two-dimensional array with six rows (one for each student) and five
columns (one for each exam score), as shown in Figure 7-38 .

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2 Column 3

Row 3

Row 4

Row 5

Column 4

This row is for student 1.

This column
contains

 scores for
exam 1.

This column
contains

 scores for
exam 2.

This column
contains

 scores for
exam 3.

This column
contains

 scores for
exam 4.

This column
contains

 scores for
exam 5.

This row is for student 2.

This row is for student 3.

This row is for student 4.

This row is for student 5.

This row is for student 6.

 Figure 7-38 Two-dimensional array with six rows and five columns

 Declaring a Two-Dimensional Array
 To declare a two-dimensional array, two size declarators are required: The first one is for
the number of rows, and the second one is for the number of columns. Here is an example
declaration of a two-dimensional array with three rows and four columns:

 double[,] scores = new double[3, 4];

 Notice the comma that appears inside the first set of brackets. This indicates that the scores
variable references a two-dimensional array. The numbers 3 and 4 are size declarators. The
first size declarator specifies the number of rows, and the second size declarator specifies the
number of columns. Notice that the size declarators are separated by a comma.

 As with one-dimensional arrays, it is best to use named constants as the size declarators.
Here is an example:

 const int ROWS = 3;
 const int COLS = 4;
 int[,] scores = new int[ROWS, COLS];

 When processing the data in a two-dimensional array, each element has two subscripts:
one for its row and another for its column. In the scores array, the elements in row 0 are
referenced as follows:

 scores[0,0]
 scores[0,1]
 scores[0,2]
 scores[0,3]

438 Chapter 7 Arrays and Lists

 The elements in row 1 are referenced as follows:

 scores[1,0]
 scores[1,1]
 scores[1,2]
 scores[1,3]

 And, the elements in row 2 are referenced as follows:

 scores[2,0]
 scores[2,1]
 scores[2,2]
 scores[2,3]

 Figure 7-39 illustrates the array with the subscripts shown for each element.

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2 Column 3

scores[0,0]

scores[1,0]

scores[2,0]

scores[0,1]

scores[1,1]

scores[2,1]

scores[0,2]

scores[1,2]

scores[2,2]

scores[0,3]

scores[1,3]

scores[2,3]

 Figure 7-39 Subscripts for each element of the scores array

 Accessing the Elements in a Two-Dimensional Array
 To access one of the elements in a two-dimensional array, you must use two subscripts.
For example, suppose we have the following declarations in a program:

 const int ROWS = 5;
 const int COLS = 10;
 int[,] values = new int[ROWS, COLS];

 The following statement assigns the number 95 to values[2,1] :

 values[2,1] = 95;

 Programs often use nested loops to process two-dimensional arrays. For example, the fol-
lowing code assigns a random number to each element of the values array:

 1 // Create a Random object.
 2 Random rand = new Random();
 3
 4 // Create a two-dimensional int array.
 5 const int ROWS = 5;
 6 const int COLS = 10;
 7 int[,] values = new int[ROWS, COLS];
 8
 9 // Fill the array with random numbers.
 10 for (int row = 0; row < ROWS; row++)
 11 {
 12 for (int col = 0; col < COLS; col++)
 13 {
 14 values[row, col] = rand.Next(100);
 15 }
 16 }

 7.7 Two-Dimensional Arrays 439

 And the following set of nested loops displays all the elements of the values array in a
ListBox control named outputListBox :

 1 // Display the array contents.
 2 for (int row = 0; row < ROWS; row++)
 3 {
 4 for (int col = 0; col < COLS; col++)
 5 {
 6 outputListBox.Items.Add(values[row, col].ToString());
 7 }
 8 }

 Implicit Sizing and Initialization
of Two-Dimensional Arrays
 As with a one-dimensional array, you may provide an initialization list for a two-dimensional
array. Recall that when you provide an initialization list for an array, you cannot provide
the upper subscript numbers. When initializing a two-dimensional array, you must pro-
vide the comma to indicate the number of dimensions. The following is an example of a
two-dimensional array declaration with an initialization list:

 int[,] values = { {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9} };

 Initialization values for each row are enclosed in their own set of braces. In this example,
the initialization values for row 0 are {1, 2, 3} , the initialization values for row 1 are
 {4, 5, 6} , and the initialization values for row 2 are {7, 8, 9} . So, this statement de-
clares an array with three rows and three columns. The values are assigned to the values
array in the following manner:

 values[0, 0] is set to 1.

 values[0, 1] is set to 2.

 values[0, 2] is set to 3.

 values[1, 0] is set to 4.

 values[1, 1] is set to 5.

 values[1, 2] is set to 6.

 values[2, 0] is set to 7.

 values[2, 1] is set to 8.

 values[2, 2] is set to 9.

 Tutorial 7-3 gives you hands-on practice working with a two-dimensional array.

 Tutorial 7-3:
 Completing the Seating Chart Application

 In this tutorial, you complete the Seating Chart application. The application’s form, which
is shown in Figure 7-40 , uses a PictureBox control to display an airplane seating chart
that is arranged in rows and columns. When completed, the application allows the user to
enter valid row and column numbers in the rowTextBox and colTextBox text boxes and
then click the Display Price button. The price of the selected seat will be displayed in the
 priceLabel control. The following table shows the seat prices:

VideoNote

 Tutorial 7-3 :
 Completing
the Seating
Chart
application

440 Chapter 7 Arrays and Lists

 When you write the code for the application, you will create a two-dimensional array to
hold these values.

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Seating
Chart in the Chap07 folder of this book’s Student Sample Programs.

 Step 2: Open the Form1 form in the Designer . Double-click the displayPriceButton
control. This opens the code editor, and you will see an empty event handler
named displayPriceButton _Click . Complete the event handler by typing the
code shown in lines 22–78 in Program 7-4. Let’s take a closer look at the code:

 Line 23: This statement declares two int variables, row and col , to hold the
row and column selected by the user.

displayPriceButton exitButton

priceLabel

rowTextBox

colTextBox

 Figure 7-40 The Seating Chart application’s form

 Columns 0 1 2 3

 Row 0 $450 $450 $450 $450

 Row 1 $425 $425 $425 $425

 Row 2 $400 $400 $400 $400

 Row 3 $375 $375 $375 $375

 Row 4 $375 $375 $375 $375

 Row 5 $350 $350 $350 $350

 7.7 Two-Dimensional Arrays 441

 Lines 26–27: These statements declare int constants named MAX_ROW and MAX_
COL , set to the values 5 and 3, respectively. These are used as array size declarators.

 Lines 30–36: This statement creates a two-dimensional decimal array named
 prices , initialized with the seat prices previously shown.

 Line 39: This if statement converts the value entered into the rowTextBox con-
trol to an int and stores the result in the row variable. If the conversion is suc-
cessful, the program continues. If the conversion fails, the program jumps to the
 else clause in line 74, and then line 77 displays an error message.

 Line 42: This if statement converts the value entered into the colTextBox con-
trol to an int and stores the result in the col variable. If the conversion is suc-
cessful, the program continues. If the conversion fails, the program jumps to the
 else clause in line 68, and then line 71 displays an error message.

 Line 45: This if statement determines whether row is in the range of 0 through
 MAX_ROW . If so, the program continues. Otherwise, the program jumps to the
 else clause in line 61, and then lines 64–65 display an error message.

 Line 48: This if statement determines whether col is in the range of 0 through
 MAX_COL . If so, the program continues. Otherwise, the program jumps to the
 else clause in line 54, and then lines 57–58 display an error message.

 Lines 51–52: This statement uses row and col as subscripts to retrieve the se-
lected seat’s price from the prices array and then displays that value in the
 priceLabel control.

 Step 3: Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you will see an empty event handler named exitButton_
Click . Complete the event handler by typing the code shown in lines 83–84 in
Program 7-4.

 Step 4: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the applica-
tion runs, experiment by entering row and column numbers for different seats
and comparing the displayed price with the table previously shown. When you
are finished, click the Exit button to end the application.

 Program 7-4 Completed code for Form1 in the Seating Chart application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Seating_Chart
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void displayPriceButton_Click(object sender, EventArgs e)

442 Chapter 7 Arrays and Lists

 21 {
 22 // Variables for the selected row and column
 23 int row, col;
 24
 25 // Constants for the maximum row and column subscripts
 26 const int MAX_ROW = 5;
 27 const int MAX_COL = 3;
 28
 29 // Create an array with the seat prices.
 30 decimal[,] prices = { {450m, 450m, 450m, 450m},
 31 {425m, 425m, 425m, 425m},
 32 {400m, 400m, 400m, 400m},
 33 {375m, 375m, 375m, 375m},
 34 {375m, 375m, 375m, 375m},
 35 {350m, 350m, 350m, 350m}
 36 };
 37
 38 // Get the selected row number.
 39 if (int.TryParse(rowTextBox.Text, out row))
 40 {
 41 // Get the selected column number.
 42 if (int.TryParse(colTextBox.Text, out col))
 43 {
 44 // Make sure the row is within range.
 45 if (row >= 0 && row <= MAX_ROW)
 46 {
 47 // Make sure the column is within rnge.
 48 if (col >= 0 && col <= MAX_COL)
 49 {
 50 // Display the selected seat's price.
 51 priceLabel.Text =
 52 prices[row, col].ToString("c");
 53 }
 54 else
 55 {
 56 // Error message for invalid column.
 57 MessageBox.Show("Column must be 0 through " +
 58 MAX_COL);
 59 }
 60 }
 61 else
 62 {
 63 // Error message for invalid row.
 64 MessageBox.Show("Row must be 0 through " +
 65 MAX_ROW);
 66 }
 67 }
 68 else
 69 {
 70 // Display an error message for noninteger column.
 71 MessageBox.Show("Enter an integer for the column.");
 72 }
 73 }
 74 else
 75 {
 76 // Display an error message for noninteger row.
 77 MessageBox.Show("Enter an integer for the row.");
 78 }
 79 }
 80

 7.7 Two-Dimensional Arrays 443

 81 private void exitButton_Click(object sender, EventArgs e)
 82 {
 83 // Close the form.
 84 this.Close();
 85 }
 86 }
 87 }

 Summing All the Elements
of a Two-Dimensional Array
 To sum all the elements of a two-dimensional array, you can use a pair of nested loops to
add the contents of each element to an accumulator. The following code shows an example:

 1 const int ROWS = 3;
 2 const int COLS = 3;
 3 int[,] numbers = { {1, 2, 3, 4},
 4 {5, 6, 7, 8},
 5 {9, 10, 11, 12}
 6 };
 7
 8 int total = 0; // Accumulator, set to 0
 9
 10 // Sum the array elements.
 11 for (int row = 0; row < ROWS; row++)
 12 {
 13 for (int col = 0; col < COLS; col++)
 14 {
 15 total += numbers[row, col];
 16 }
 17 }
 18 // Display the sum.
 19 MessageBox.Show(“The total is “ + total);

 Summing the Rows of a Two-Dimensional Array
 Sometimes you may need to calculate the sum of each row in a two-dimensional array.
For example, suppose a two-dimensional array is used to hold a set of test scores for a set
of students. Each row in the array is a set of test scores for one student. To get the sum of
a student’s test scores (perhaps so an average may be calculated), you use a loop to add all
the elements in one row. The following code shows an example:

 1 const int ROWS = 3;
 2 const int COLS = 3;
 3 int[,] numbers = { {1, 2, 3, 4},
 4 {5, 6, 7, 8},
 5 {9, 10, 11, 12}
 6 };
 7
 8 int total; // Accumulator
 9
 10 // Sum each row in the array.
 11 for (int row = 0; row < ROWS; row++)
 12 {
 13 // Set the accumulator to 0.
 14 total = 0;
 15
 16 // Total the row.
 17 for (int col = 0; col < COLS; col++)

444 Chapter 7 Arrays and Lists

 18 {
 19 total += numbers[row, col];
 20 }
 21
 22 // Display the row’s total.
 23 MessageBox.Show(“The total of row “ + row +
 24 “ is “ + total);
 25 }

 Summing the Columns of a Two-Dimensional Array
 Sometimes you may need to calculate the sum of each column in a two-dimensional array.
For example, suppose a two-dimensional array is used to hold a set of test scores for a set
of students and you wish to calculate the class average for each of the test scores. To do
this, you calculate the average of each column in the array. This is accomplished with a set
of nested loops. The outer loop controls the column subscript, and the inner loop controls
the row subscript. The inner loop calculates the sum of a column, which is stored in an
accumulator. The following code demonstrates:

 1 const int ROWS = 3;
 2 const int COLS = 4;
 3 int[,] numbers = { {1, 2, 3, 4},
 4 {5, 6, 7, 8},
 5 {9, 10, 11, 12}
 6 };
 7
 8 int total; // Accumulator
 9
 10 // Sum each column in the array.
 11 for (int col = 0; col < COLS; col++)
 12 {
 13 // Set the accumulator to 0.
 14 total = 0;
 15
 16 // Total the column.
 17 for (int row = 0; row < ROWS; row++)
 18 {
 19 total += numbers[row, col];
 20 }
 21
 22 // Display the column’s total.
 23 MessageBox.Show(“The total of column “ + col +
 24 “ is “ + total);
 25 }

 Checkpoint

 7.17 How many rows and how many columns are in the following array?

 int[,] values = new decimal[200, 100];

 7.18 Write a statement that assigns the value 50 to the very last element in the values
array declared in Checkpoint 7.17.

 7.19 Write a declaration for a two-dimensional int array initialized with the following
table of data:

 12 24 32 21 42

 99 8 68 32 92

 95 34 21 11 7

 7.8 Jagged Arrays 445

 7.8 Jagged Arrays

 CONCEPT: A jagged array is similar to a two-dimensional array, but the rows in a jag-
ged array can have different lengths.

 In a traditional two-dimensional array, each row has the same number of columns. Men-
tally, we visualize a two-dimensional array as a rectangular structure. Figure 7-37 , pre-
viously shown, is an example. For this reason, two-dimensional arrays are sometimes
referred to as rectangular arrays .

 A jagged array is similar to a two-dimensional array, but the rows in a jagged array can
have different numbers of columns. This is possible because a jagged array is actually an
array of arrays. To be more specific, a jagged array is a one-dimensional array, and each
element of the array is also a one-dimensional array. Figure 7-41 shows an example. In
the figure, row 0 has four columns, row 1 has three columns, and row 2 has five columns.

1 2 3 4

5 6 7

8 9 10 11 12

Row 0

Row 2

Row 1

 Figure 7-41 A jagged array

 Because a jagged array is an array of arrays, you set it up differently than a two-dimensional
array. First you create an array, and then you create each of the arrays that are the ele-
ments of the first array. The following code shows an example of how the jagged array in
 Figure 7-41 might be created and initialized.

 1 // Create an array of 3 int arrays.
 2 int[][] jaggedArray = new int[3][];
 3
 4 // Create each array that is an element
 5 // of the jagged array.
 6 jaggedArray[0] = new int[4] { 1, 2, 3, 4 };
 7 jaggedArray[1] = new int[3] { 5, 6, 7 };
 8 jaggedArray[2] = new int[5] { 8, 9, 10, 11, 12 };

 Let’s take a closer look at the code:

 • Line 2 declares an array named jaggedArray . Notice that the data type is int[]
[] , with two sets of brackets. This indicates that we are declaring an array of int
arrays. Also notice that the expression new int[3][] uses only one size declarator,
specifying the number of rows. The column sizes must be set individually.

 • Line 6 creates element 0, which is an int array with four columns. The columns are
initialized with the values 1, 2, 3, and 4.

 • Line 7 creates element 1, which is an int array with three columns. The columns are
initialized with the values 5, 6, and 7.

 • Line 8 creates element 2, which is an int array with five columns. The columns are
initialized with the values 8, 9, 10, 11, and 12.

 To access an item that is stored at a particular row and column in a jagged array, you enclose
the row and column subscripts in their own sets of brackets. For example, the following

446 Chapter 7 Arrays and Lists

statement displays the value stored at row 1, column 2, of the jaggedArray that was previ-
ously declared:

 MessageBox.Show(jaggedArray[1][2].ToString());

 The following statement shows another example. It assigns the value 99 to row 0, column
3, of jaggedArray :

 jaggedArray[0][3] = 99;

 A jagged array has a Length property that holds the number of rows, and then each
row has its own Length property. You can use a row’s Length property to determine the
number of columns in that row. For example, the following set of nested loops displays all
the values stored in the jaggedArray that was previously declared:

 1 for (int row = 0; row < jaggedArray.Length; row++)
 2 {
 3 for (int col = 0; col < jaggedArray[row].Length; col++)
 4 {
 5 MessageBox.Show(jaggedArray[row][col].ToString());
 6 }
 7 }

 Checkpoint

 7.20 Why are two-dimensional arrays sometimes referred to as rectangular arrays?

 7.21 Write a statement that declares a jagged array of int values and initialize the
columns of each row with the values in the following table of data:

 2 4 6

 3 5 7 9

 5 9 11 17 21

 7.9 The List Collection

 CONCEPT: List is a class in the .NET Framework that is similar to an array. Unlike
an array, a List object’s size is automatically adjusted to accommodate
the number of items being stored in it.

 The .NET Framework provides a class named List , which can be used for storing and
retrieving items. Once you create a List object, you can think of it as a container for
holding other objects. A List object is similar to an array but offers many advantages
over an array. Here are a few:

 • When you create a List object, you do not have to know the number of items that
you intend to store in it.

 • A List object automatically expands as items are added to it.
 • In addition to adding items to a List , you can remove items as well.
 • A List object automatically shrinks as items are removed from it.

 Creating a List
 Here is an example of how you create a List object that can be used to hold strings:

 List<string> nameList = new List<string>();

 7.9 The List Collection 447

 This statement creates a List object, referenced by the nameList variable. Notice that in
this example the word string is written inside angled brackets <> immediately after the
word List . This specifies that the List can hold objects of the string data type. If you
try to store any other type of object in this List , an error occurs.

 Here is an example of how you create a List object that can be used to hold integers:

 List<int> numberList = new List<int>();

 This statement creates a List object, referenced by the numberList variable. Notice that
in this example the word int is written inside angled brackets <> immediately after the
word List .

 Initializing a List
 You can optionally initialize a List object when you declare it. Here is an example:

 List<int> numberList = new List<int>() { 1, 2, 3 };

 This statement creates a List object that can hold integers and initializes it with the val-
ues 1, 2, and 3. Here is an example that creates a List object to hold strings and initial-
izes it with three strings:

 List<string> nameList = new List<string>() { “Chris”,
 “Kathryn”, “Bill” };

 Adding Items to a List
 To add items to an existing List object, you use the Add method. For example, the fol-
lowing statements create a List object and add a series of strings to it:

 List<string> nameList = new List<string>();
 nameList.Add(“Chris”);
 nameList.Add(“Kathryn”);
 nameList.Add(“Bill”);

 After these statements execute, the nameList object will hold the three strings ”Chris” ,
 ”Kathryn” , and ”Bill” .

 The items that are stored in a List have a corresponding index. The index specifies
the item’s location in the List , so it is much like an array subscript. The first item
that is added to a List is stored at index 0. The next item that is added to the List
is stored at index 1, and so forth. After the previously shown statements execute,
 ”Chris” is stored at index 0, ”Kathryn” is stored at index 1, and ”Bill” is stored
at index 2.

 The Count Property
 A List object has a Count property that holds the number of items stored in the List .
For example, the following statement uses the Count property to display the number of
items stored in nameList :

 MessageBox.Show(“The List has “ + nameList.Count +
 “ objects stored in it.”);

 Assuming that nameList holds the strings ”Chris” , ”Kathryn” , and ”Bill” , the follow-
ing statement will be displayed in a message box:

 The List has 3 objects stored in it.

448 Chapter 7 Arrays and Lists

 Accessing Items in a List
 You can use subscript notation to access the items in a List , just as you can with an
array. For example, the following for loop displays the items in the nameList object:

 for (int index = 0; index < nameList.Count; index++)
 {
 MessageBox.Show(nameList[index]);
 }

 Notice that the loop uses the List object’s Count property in the test expression to con-
trol the number of iterations. Here is an example that reads values from a text file and
adds them to a List :

 1 // Open the Names.txt file.
 2 StreamReader inputFile = File.OpenText(“Names.txt”);
 3
 4 // Create a List object to hold strings.
 5 List<string> nameList = new List<string>();
 6
 7 // Read the file’s contents.
 8 while (!inputFile.EndOfStream)
 9 {
 10 // Read a line and add it to the List.
 11 nameList.Add(inputFile.ReadLine());
 12 }

 Let’s take a closer look at this code:

 • Line 2 opens a file named Names.txt and associates it with a StreamReader object
that is referenced by the inputFile variable.

 • Line 5 creates a List object, referenced by the nameList variable. The object can
hold strings.

 • The while loop that starts in line 8 iterates until the end of the file is reached.
 • The statement in line 11 reads a line from the file and adds it to the nameList

object.

 After this code executes, the nameList object contains all the lines that were read from
the Names.txt file.

 You can also use the foreach loop to iterate over the items in a List , just as you can with
an array. Here is an example:

 foreach (string str in nameList)
 {
 MessageBox.Show(str);
 }

 Passing a List to a Method
 Sometimes you will want to write a method that accepts a List as an argument and per-
forms an operation on the List . For example, the following code shows a method named
 DisplayList . The method accepts a List of strings as an argument and displays each
item in List .

 1 private void DisplayList(List<string> sList)
 2 {
 3 foreach (string str in sList)
 4 {
 5 MessageBox.Show(str);
 6 }
 7 }

 7.9 The List Collection 449

 Notice in line 1 that the method has a parameter variable named sList and that the
parameter’s data type is List<string> . The parameter variable is a reference to a
 List<string> object. When you call this method, you must pass a List<string> object
as an argument.

 When you call a method and pass a List<string> object as an argument, you simply
pass the variable that references the List . The following code shows an example of how
the DisplayList method (previously shown) might be called:

 1 // Create a List of strings.
 2 List<string> nameList = new List<string>() { “Chris”,
 3 “Kathryn”, “Bill” };
 4
 5 // Pass the List to the DisplayList method.
 6 DisplayList(nameList);

 The statement in lines 2 and 3 creates a List containing the strings ”Chris” , ”Kathryn” ,
and ”Bill” . Line 6 calls the DisplayList method, passing the nameList object as an
argument.

 NOTE: List objects, like arrays, are always passed by reference.

 Removing Items from a List
 You can use the RemoveAt method to remove an item at a specific index in a List . The
following code shows an example:

 1 // Create a List of strings.
 2 List<string> nameList = new List<string>() { “Chris”,
 3 “Kathryn”, “Bill” };
 4
 5 // Remove the item at index 0.
 6 nameList.RemoveAt(0);

 The statement in lines 2 and 3 creates a List containing the strings ”Chris” , ”Kathryn” ,
and ”Bill” . Then, the statement in line 6 removes the string at index 0. After this state-
ment executes, the List contains the strings ”Kathryn” and ”Bill” .

 If you know the value of the item that you want to remove from a List , but you do not
know the item’s index, you can use the Remove method. You pass the item that you want
to remove as an argument, and the Remove method searches for that item in the List . If
the item is found, it is removed. Here is an example:

 1 // Create a List of strings.
 2 List<string> nameList = new List<string>() { “Chris”,
 3 “Kathryn”, “Bill” };
 4
 5 // Remove “Bill” from the List.
 6 nameList.Remove(“Bill”);

 The statement in lines 2 and 3 creates a List containing the strings ”Chris” , ”Kathryn” ,
and ”Bill” . Then, the statement in line 6 removes ”Bill” from the List . After this
statement executes, the List contains the strings ”Chris” and ”Kathryn” .

 The Remove method returns a Boolean value indicating whether the item was actually re-
moved from the List . If the specified item was found in the List and removed, the Remove
method returns true . If the item was not found in the List , the Remove method returns

450 Chapter 7 Arrays and Lists

 false . The following code demonstrates how you can use the value returned from the
method:

 1 // Create a List of strings.
 2 List<string> nameList = new List<string>() { “Chris”,
 3 “Kathryn”, “Bill” };
 4
 5 // Remove “Susan”.
 6 if (!nameList.Remove(“Susan”))
 7 {
 8 MessageBox.Show(“Susan was not found.”);
 9 }

 The statement in lines 2 and 3 creates a List containing the strings ”Chris” , ”Kathryn” ,
and ”Bill” . Then, the statement in line 6 attempts to remove ”Susan” from the List .
The List does not contain the string ”Susan” , so the Remove method returns false . The
message “Susan was not found” is displayed. After this code executes, the List still con-
tains the strings ”Chris” , ”Kathryn” , and ”Bill” .

 NOTE: The Remove method performs a sequential search to locate the specified
item. If the List contains a large number of items, its performance will be slow.

 If you want to remove all the items from a List , you can call the Clear method. Here is
an example:

 nameList.Clear();

 After this statement executes, the nameList object is empty.

 Inserting an Item
 You can use the Insert method to insert an item at a specific index in a List . The fol-
lowing code shows an example:

 1 // Create a List of strings.
 2 List<string> nameList = new List<string>() { “Chris”,
 3 “Kathryn”, “Bill” };
 4
 5 // Insert an item at index 0.
 6 nameList.Insert(“Joanne”, 0);

 The statement in lines 2 and 3 creates a List containing the strings ”Chris” , ”Kathryn” ,
and ”Bill” . Then, the statement in line 6 inserts the string ”Joanne” at index 0. After
this statement executes, the List contains the strings ”Joanne” , ”Chris” , ”Kathryn” ,
and ”Bill” .

 NOTE: An exception will occur if the specified index is less than 0 or greater than
the List object’s Count property.

 Searching for Items in a List
 Because you can use subscript notation to access the items in a List , you can adapt any
of the array-processing algorithms that you saw earlier in this chapter so they work with
a List . For example, you can write code that performs a sequential search, binary search,
selection sort, and so on, on a List .

 7.9 The List Collection 451

 An easy way to search for item in a List , however, is to use the IndexOf method. The
 IndexOf method accepts a value as an argument, and it searches for that value in the
 List . If the value is found, the method returns its index. If the value is not found, the
method returns −1. The following code shows an example:

 1 // Create a List of strings.
 2 List<string> nameList = new List<string>() { “Chris”,
 3 “Kathryn”, “Bill” };
 4
 5 // Search for “Kathryn”.
 6 int position = nameList.IndexOf(“Kathryn”);
 7
 8 // Was Kathryn found in the List?
 9 if (position != −1)
 10 {
 11 MessageBox.Show(“Kathryn was found at index “ +
 12 position);
 13 }
 14 else
 15 {
 16 MessageBox.Show(“Kathryn was not found.”);
 17 }

 The statement in lines 2 and 3 creates a List containing the strings ”Chris” , ”Kath-
ryn” , and ”Bill” . The statement in line 6 calls the IndexOf method to search for
 ”Kathryn” in the List . The value that is returned from the method is assigned to the
 position variable. After this statement executes, the position variable contains the
index of ”Kathryn” or −1 if ”Kathryn” was not found in the List . The if statement
in lines 9–17 displays one of two possible messages, depending on whether ”Kathryn”
was found. (If this code were executed, it would display the message “Kathryn was
found at index 1”.)

 There are two additional versions of the IndexOf method that allow you to specify the
area of the List that should be searched. The following statement shows an example of
one of these:

 position = nameList.IndexOf(“Diane”, 2);

 Notice that two arguments are passed to the IndexOf method. The first argument,
 ”Diane” , is the item to search for. The second argument, 2 is the starting index of the
search. This specifies that the search should begin at index 2 and end at the last item in
the List . (The beginning index is included in the search. If you pass an invalid index as
an argument, an exception occurs.)

 Here is an example of another version of the IndexOf method:

 position = nameList.IndexOf(“Diane”, 2, 5);

 In this example, three arguments are passed to the IndexOf method. The first argument,
 ”Diane” , is the item to search for. The second argument, 2 is the starting index of the
search. The third argument, 5, is the ending index of the search. This specifies that the
search should begin at index 2, and end at index 5. (The beginning and ending indices are
included in the search. If either index is invalid, an exception occurs.)

 NOTE: The IndexOf method performs a sequential search to locate the specified
item. If the List contains a large number of items, its performance will be slow.

 In Tutorial 7-4 you will complete an application that reads the contents of a file into a
List, and then performs various operations on the List .

452 Chapter 7 Arrays and Lists

VideoNote

 Tutorial 7-4 :
 Completing
the Test
Score List
Application

 Tutorial 7-4:
 Completing the Test Score List Application

 In this tutorial, you complete the Test Score List application. The application’s form,
which is shown in Figure 7-42 , has already been created for you. When you complete the
application, it will read a set of test scores from a file into a List . (The file has also been
created for you.) The test scores are displayed in the ListBox control. The average test
score is calculated and displayed, as well as the number of above-average test scores and
below-average test scores.

getScoresButton exitButton

averageLabel

aboveAverageLabel

belowAverageLabel

testScoresListBox

 Figure 7-42 The Test Score List application’s form

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Test
Score List in the Chap07 folder of the Student Sample Programs.

 Step 2: Open the Form1 form’s code in the code editor. Insert the using System.IO;
directive shown in line 10 of Program 7-5 at the end of this tutorial. This state-
ment is necessary because we will be using the StreamReader class, and it is
part of the System.IO namespace in the .NET Framework.

 Step 3: With the code editor still open, type the comments and code for the ReadScores
method, shown in lines 21–44 of Program 7-5. The purpose of the ReadScores
method is to accept a List<int> object as an argument and read the contents
of the TestScores.txt file into the list.

 Step 4: Type the comments and code for the DisplayScores method, shown in lines
46–54 of Program 7-5. The purpose of the DisplayScores method is to
accept a List<int> object as an argument and display its contents in the
 testScoresListBox control.

 Step 5: Type the comments and code for the Average method, shown in lines 56–74
of Program 7-5. The purpose of the Average method is to accept a List<int>
object as an argument and return the average of the values in the List .

 Step 6: Type the comments and code for the AboveAverage method, shown in lines
76–96 of Program 7-5. The purpose of the AboveAverage method is to accept
a List<int> object as an argument and return the number of above average
scores it contains.

 Step 7: Type the comments and code for the BelowAverage method, shown in lines
98–118 of Program 7-5. The purpose of the BelowAverage method is to accept
a List<int> object as an argument and return the number of below average
scores it contains.

 7.9 The List Collection 453

 Step 8: Next, you create the Click event handlers for the Button controls. Switch
back to the Designer and double-click the getScoresButton control. This
opens the code editor, and you will see an empty event handler named
 getScoresButton_Click . Complete the getScoresButton_Click event
handler by typing the code shown in lines 122–145 in Program 7-5. Let’s
review this code:

 Lines 122–124: These statements declare the following variables:

 • averageScore —This variable is used to hold the average test score.
 • numAboveAverage —This variable is used to hold the number of above-average

test scores.

 • numBelowAverage —This variable is used to hold the number of below-average
test scores.

 Line 127: This statement creates a List<int> object, referenced by the
 scoresList variable.

 Line 130: This statement calls the ReadScores method, passing the
 scoresList object as an argument. After this statement executes, the scoresList
object contains the test scores that are in the TestScores.txt file.

 Line 133: This statement calls the DisplayScores method, passing the
 scoresList object as an argument. After this statement executes, the items in
the scoresList object are displayed in the testScoresListBox control.

 Line 136: This statement calls the Average method, passing the scoresList
object as an argument. The method returns the average of the values in the
 scoresList object, which is assigned to the averageScore variable.

 Line 137: This statement displays the average score in the averageLabel
control.

 Line 140: This statement calls the AboveAverage method, passing the
 scoresList object as an argument. The method returns the number of
above-average scores in the scoresList object, which is assigned to the
 numAboveAverage variable.

 Line 141: This statement displays the number of above-average scores in the
 aboveAverageLabel control.

 Line 144: This statement calls the BelowAverage method, passing the
 scoresList object as an argument. The method returns the number of
 below-average scores in the scoresList object, which is assigned to the
 numBelowAverage variable.

 Line 145: This statement displays the number of below-average scores in the
 belowAverageLabel control.

 Step 9: Switch your view back to the Designer and double-click the exitButton
 control. In the code editor you will see an empty event handler named
 exitButton_Click . Complete the event handler by typing the code shown in
lines 150–151 in Program 7-5.

 Step 10: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the applica-
tion runs, click the Get Scores button. This should display a set of test scores in
the ListBox, as well as the average score, the number of above-average scores,
and the number of below-average scores, as shown in Figure 7-43 . Click the
 Exit button to exit the application.

454 Chapter 7 Arrays and Lists

 Program 7-5 Completed code for Form1 in the Test Scores List application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10 using System.IO;
 11
 12 namespace Test_Score_List
 13 {
 14 public partial class Form1 : Form
 15 {
 16 public Form1()
 17 {
 18 InitializeComponent();
 19 }
 20
 21 // The ReadScores method reads the scores from the
 22 // TestScores.txt file into the scoresList parameter.
 23 private void ReadScores(List<int> scoresList)
 24 {
 25 try
 26 {
 27 // Open the TestScores.txt file.
 28 StreamReader inputFile = File.OpenText("TestScores.txt");
 29
 30 // Read the scores into the list.
 31 while (!inputFile.EndOfStream)
 32 {
 33 scoresList.Add(int.Parse(inputFile.ReadLine()));
 34 }
 35
 36 // Close the file.
 37 inputFile.Close();
 38 }
 39 catch (Exception ex)
 40 {

 Figure 7-43 The Test Score List application

 7.9 The List Collection 455

 41 // Display an error message.
 42 MessageBox.Show(ex.Message);
 43 }
 44 }
 45
 46 // The DisplayScores method displays the contents of the
 47 // scoresList parameter in the ListBox control.
 48 private void DisplayScores(List<int> scoresList)
 49 {
 50 foreach (int score in scoresList)
 51 {
 52 testScoresListBox.Items.Add(score);
 53 }
 54 }
 55
 56 // The Average method returns the average of the values
 57 // in the scoresList parameter.
 58 private double Average(List<int> scoresList)
 59 {
 60 int total = 0; // Accumulator
 61 double average; // To hold the average
 62
 63 // Calculate the total of the scores.
 64 foreach (int score in scoresList)
 65 {
 66 total += score;
 67 }
 68
 69 // Calculate the average of the scores.
 70 average = (double)total / scoresList.Count;
 71
 72 // Return the average.
 73 return average;
 74 }
 75
 76 // The AboveAverage method returns the number of
 77 // above average scores in scoresList.
 78 private int AboveAverage(List<int> scoresList)
 79 {
 80 int numAbove = 0; // Accumulator
 81
 82 // Get the average score.
 83 double avg = Average(scoresList);
 84
 85 // Count the number of above average scores.
 86 foreach (int score in scoresList)
 87 {
 88 if (score > avg)
 89 {
 90 numAbove++;
 91 }
 92 }
 93
 94 // Return the number of above average scores.
 95 return numAbove;
 96 }
 97
 98 // The BelowAverage method returns the number of

456 Chapter 7 Arrays and Lists

 99 // below average scores in scoresList.
 100 private int BelowAverage(List<int> scoresList)
 101 {
 102 int numBelow = 0; // Accumulator
 103
 104 // Get the average score.
 105 double avg = Average(scoresList);
 106
 107 // Count the number of below average scores.
 108 foreach (int score in scoresList)
 109 {
 110 if (score < avg)
 111 {
 112 numBelow++;
 113 }
 114 }
 115
 116 // Return the number of below average scores.
 117 return numBelow;
 118 }
 119
 120 private void getScoresButton_Click(object sender, EventArgs e)
 121 {
 122 double averageScore; // To hold the average score
 123 int numAboveAverage; // Number of above average scores
 124 int numBelowAverage; // Number of below average scores
 125
 126 // Create a List to hold the scores.
 127 List<int> scoresList = new List<int>();
 128
 129 // Read the scores from the file into the List.
 130 ReadScores(scoresList);
 131
 132 // Display the scores.
 133 DisplayScores(scoresList);
 134
 135 // Display the average score.
 136 averageScore = Average(scoresList);
 137 averageLabel.Text = averageScore.ToString("n1");
 138
 139 // Display the number of above average scores.
 140 numAboveAverage = AboveAverage(scoresList);
 141 aboveAverageLabel.Text = numAboveAverage.ToString();
 142
 143 // Display the number of below average scores.
 144 numBelowAverage = BelowAverage(scoresList);
 145 belowAverageLabel.Text = numBelowAverage.ToString();
 146 }
 147
 148 private void exitButton_Click(object sender, EventArgs e)
 149 {
 150 // Close the form.
 151 this.Close();
 152 }
 153 }
 154 }

 7.9 The List Collection 457

 Checkpoint

 7.22 Write a statement that initializes a List with 4 values of the double data type.

 7.23 Write a statement that adds a new value to the List object created in Checkpoint
7.22.

 7.24 Write a statement that clears the contents of the List object created in
Checkpoint 7.22.

 7.25 Is it possible to write code that performs a sequential search, binary search,
selection sort, and so on, on a List ? Why or why not?

458 Chapter 7 Arrays and Lists

 Key Terms

 Add method
 array
 binary search
 Clear method
 Count property
 elements
 foreach loop
 garbage collection
 IndexOf method
 initialization list
 Insert method
 iteration variable
 jagged array
 Length property
 List
 new operator

 off-by-one error
 one-dimensional
 rectangular arrays
 reference
 reference copy
 reference types
 reference variable
 Remove method
 RemoveAt method
 search algorithms
 selection sort
 sequential search algorithm
 size declarator
 subscript
 two-dimensional
 value types

 Review Questions
 Multiple Choice

 1. The memory that is allocated for a __________ variable is the actual location that
will hold any value that is assigned to that variable.

 a. reference type
 b. general type
 c. value type
 d. framework type

 2. A variable that is used to reference an object is commonly called a(n) __________.

 a. reference variable
 b. resource variable
 c. object variable
 d. component variable

 3. When you want to work with an object, you use a variable that holds a special value
known as a(n) __________ to link the variable to the object.

 a. union
 b. reference
 c. object linker
 d. data coupling

 4. The __________ creates an object in memory and returns a reference to that object.

 a. = operator
 b. object allocator
 c. reference variable
 d. new operator

 5. A(n) __________ is an object that can hold a group of values that are all of the same
data type.

 a. array
 b. collection
 c. container
 d. set

 Review Questions 459

 6. The __________ indicates the number of values that the array should be able to
hold.

 a. allocation limit
 b. size declarator
 c. data type
 d. compiler

 7. The storage locations in an array are known as __________.

 a. elements
 b. sectors
 c. pages
 d. blocks

 8. Each element in an array is assigned a unique number known as a(n) __________.

 a. element identifier
 b. subscript
 c. index
 d. sequencer

 9. When you create an array, you can optionally initialize it with a group of values
called a(n) __________.

 a. default value group
 b. initialization list
 c. defined set
 d. value list

 10. In C#, all arrays have a __________ that is set to the number of elements in the array.

 a. Limit property
 b. Size property
 c. Length property
 d. Maximum property

 11. A(n) __________ occurs when a loop iterates one time too many or one time too few.

 a. general error
 b. logic error
 c. loop count error
 d. off-by-one error

 12. C# provides a special loop that, in many circumstances, simplifies array processing.
It is known as the __________.

 a. for loop
 b. foreach loop
 c. while loop
 d. do - while loop

 13. The foreach loop is designed to work with a temporary, read-only variable that is
known as the __________.

 a. element variable
 b. loop variable
 c. index variable
 d. iteration variable

 14. __________ is a process that periodically runs, removing all unreferenced objects
from memory.

 a. Systematic reallocation
 b. Memory cleanup

460 Chapter 7 Arrays and Lists

 c. Garbage collection
 d. Object maintenance

 15. Various techniques known as __________ have been developed to locate a specific
item in a larger collection of data, such as an array.

 a. seek functions
 b. request methods
 c. traversal procedures
 d. search algorithms

 16. The __________ uses a loop to step through an array, starting with the first element,
searching for an item.

 a. sequential search algorithm
 b. top-down method
 c. ascending search algorithm
 d. basic search function

 17. A(n) __________ is a type of assignment operation that copies a reference to an
array and not the contents of the array.

 a. object copy
 b. reference copy
 c. double reference
 d. parallel copy

 18. The __________ is a clever algorithm that is much more efficient than the sequential
search.

 a. linear search
 b. bubble sort
 c. binary search
 d. selection sort

 19. A __________ is similar to a two-dimensional array, but the rows can have different
numbers of columns.

 a. one-dimensional array
 b. columnar array
 c. jagged array
 d. split row array

 20. The .NET Framework provides a class named __________, which can be used for
storing and retrieving items.

 a. Matrix
 b. Database
 c. Container
 d. List

 True or False

 1. When you are working with a value type, you are using a variable that holds a piece
of data.

 2. Reference variables can be used only to reference objects.

 3. Individual variables are well suited for storing and processing lists of data.

 4. Arrays are reference type objects.

 5. You can store a mixture of data types in an array.

 6. When you create a numeric array in C#, its elements are set to the value 0 by default.

 Programming Problems 461

 7. The subscript of the last element will always be one less than the array’s Length
property.

 8. You use the == operator to compare two array reference variables and determine
whether the arrays are equal.

 9. A jagged array is similar to a two-dimensional array, but the rows in a jagged array
can have different numbers of columns.

 10. When you create a List object, you do not have to know the number of items that
you intend to store in it.

 Short Answer

 1. How much memory is allocated by the compiler when you declare a value type variable?

 2. What type of variable is needed to work with an object in code?

 3. What two steps are typically required for creating a reference type object?

 4. Are variables well suited for processing lists of data? Why or why not?

 5. What value is returned by the Length property of an array?

 6. What can cause an off-by-one error when working with an array?

 7. How do you keep track of elements that contain data in a partially filled array?

 8. Briefly describe the selection sort algorithm.

 9. How is the binary search more efficient that the sequential search algorithm?

 10. What advantages does a List have over an array?

 Algorithm Workbench

 1. Assume names is a variable that references an array of 20 string values. Write a
 foreach loop that displays each of the elements of the array in a ListBox control.

 2. The variables numberArray1 and numberArray2 reference arrays that have
100 elements each. Write code that copies the values from numberArray1 to
 numberArray2 .

 3. Write code for a sequential search that determines whether the value -1 is stored in
an array with a reference variable named values . The code should display a mes-
sage indicating whether the value was found.

 4. Write a declaration statement that creates a two-dimensional array referenced by a
variable named grades . The array should store int values using 18 rows and 12
columns.

 5. Write code that sums each column in the array in Question 4.

 6. Create a List object that uses the binary search algorithm to search for the string
 ”A” . Display a message box indicating whether the value was found.

 Programming Problems

 1. Total Sales

 In the Chap07 folder of the Student Sample Programs, you will find a file named
Sales.txt. Figure 7-44 shows the file’s contents displayed in Notepad. Create an ap-
plication that reads this file’s contents into an array, displays the array’s contents in
a ListBox control, and calculates and displays the total of the array’s values.

VideoNote

 Solving the
Total Sales
Problem

462 Chapter 7 Arrays and Lists

 2. Sales Analysis

 Modify the application that you created in Programming Exercise 1 so it also
 displays the following:
 • The average of the values in the array
 • The largest value in the array
 • The smallest value in the array

 3. Charge Account Validation

 In the Chap07 folder of the Student Sample Programs, you will find a file named
ChargeAccounts.txt. The file contains a list of a company’s valid charge account
numbers. There are a total of 18 charge account numbers in the file, and each one is
a 7-digit number, such as 5658845 .

 Create an application that reads the contents of the file into an array or a List . The
application should then let the user enter a charge account number. The program
should determine whether the number is valid by searching for it in the array or
 List that contains the valid charge account numbers. If the number is in the array
or List , the program should display a message indicating the number is valid. If the
number is not in the array or List , the program should display a message indicating
the number is invalid.

 4. Driver’s License Exam

 The local driver’s license office has asked you to create an application that grades
the written portion of the driver’s license exam. The exam has 20 multiple-choice
questions. Here are the correct answers:

 Figure 7-44 The Sales.txt file

 1. B 2. D 3. A 4. A 5. C
 6. A 7. B 8. A 9. C 10. D
 11. B 12. C 13. D 14. A 15. D
 16. C 17. C 18. B 19. D 20. A

 Your program should store these correct answers in an array. The program should
read the student’s answers for each of the 20 questions from a text file and store the
answers in another array. (Create your own text file to test the application.) After
the student’s answers have been read from the file, the program should display a
message indicating whether the student passed or failed the exam. (A student must
correctly answer 15 of the 20 questions to pass the exam.) It should then display
the total number of correctly answered questions, the total number of incorrectly
answered questions, and a list showing the question numbers of the incorrectly an-
swered questions.

 5. World Series Champions

 In the Chap07 folder of the Student Sample Programs, you will find the following files:
 • Teams.txt—This file contains a list of several Major League baseball teams in al-

phabetical order. Each team listed in the file has won the World Series at least once.

 Programming Problems 463

 • WorldSeriesWinners.txt—This file contains a chronological list of the World
Series’ winning teams from 1903 through 2012. (The first line in the file is
the name of the team that won in 1903, and the last line is the name of the
team that won in 2012. Note that the World Series was not played in 1904
or 1994.)

 Create an application that displays the contents of the Teams.txt file in a ListBox
control. When the user selects a team in the ListBox, the application should display
the number of times that team has won the World Series in the time period from
1903 through 2012.

 TIP: Read the contents of the WorldSeriesWinners.txt file into a List or an array.
When the user selects a team, an algorithm should step through the list or array
counting the number of times the selected team appears.

 6. Name Search

 In the Chap07 folder of the Student Sample Programs, you will find the following
files:

 • GirlNames.txt—This file contains a list of the 200 most popular names given to
girls born in the United States from 2000 through 2009.

 • BoyNames.txt—This file contains a list of the 200 most popular names given to
boys born in the United States from 2000 through 2009.

 Create an application that reads the contents of the two files into two separate
arrays or Lists. The user should be able to enter a boy’s name, a girl’s name, or
both, and the application should display messages indicating whether the names
were among the most popular.

 7. Population Data

 In the Chap07 folder of the Student Sample Programs, you will find a file named
USPopulation.txt. The file contains the midyear population of the United States, in
thousands, during the years 1950 through 1990. The first line in the file contains the
population for 1950, the second line contains the population for 1951, and so forth.

 Create an application that reads the file’s contents into an array or a List. The ap-
plication should display the following data:

 • The average annual change in population during the time period
 • The year with the greatest increase in population during the time period
 • The year with the least increase in population during the time period

 8. Tic-Tac-Toe Simulator

 Create an application that simulates a game of tic-tac-toe. Figure 7-45 shows an ex-
ample of the application’s form. The form shown in the figure uses eight large Label
controls to display the Xs and Os.

 The application should use a two-dimensional int array to simulate the game board
in memory. When the user clicks the New Game button, the application should step
through the array, storing a random number in the range of 0 through 1 in each ele-
ment. The number 0 represents the letter O, and the number 1 represents the letter
X. The form should then be updated to display the game board. The application
should display a message indicating whether player X won, player Y won, or the
game was a tie.

464 Chapter 7 Arrays and Lists

 9. Jagged Array of Exam Scores

 Dr. Hunter teaches three sections of her Intro to Computer Science class. She has
12 students in section 1, 8 students in section 2, and 10 students in section 3. In the
 Chap07 folder of the Student Sample Programs, you will find the following files:

 • Section1.txt—This file contains the final exam scores for each student in section 1.
(There are 12 integer scores in the file.)

 • Section2.txt—This file contains the final exam scores for each student in section 2.
(There are 8 integer scores in the file.)

 • Section3.txt—This file contains the final exam scores for each student in section 3.
(There are 10 integer scores in the file.)

 Create an application that reads these three files and stores their contents in a jagged
array. The array’s first row should hold the exam scores for the students in section
1, the second row should hold the exam scores for the students in section 2, and the
third row should hold the exam scores for the students in section 3.

 The application should display each section’s exam scores in a separate ListBox
control and then use the jagged array to determine the following:

 • The average exam score for each individual section
 • The average exam score for all the students in the three sections
 • The highest exam score among all three sections and the section number in

which that score was found
 • The lowest exam score among all three sections and the section number in

which that score was found

 Figure 7-45 The Tic-Tac-Toe application

465

Introduction
 This chapter presents several diverse topics. Now that you have studied the fundamentals
of programming using Visual C#, you can use the topics presented in this chapter to per-
form more advanced operations. First, we discuss various string and character processing
techniques that are useful in applications that work extensively with text. Then we discuss
structures, which allow you to encapsulate several variables into a single item. After that
we discuss enumerated types, which are data types that you can create, consisting of
specified values. Last, we discuss the ImageList control, which is a data structure for stor-
ing and retrieving images.

String and Character Processing

 CONCEPT: Some programming tasks require that you manipulate strings at a detailed
level. C# and the .NET Framework provide tools that let you work with
individual characters and sets of characters within strings.

 Sometimes the data with which a program must work comes in the form of text. Word
processors, text messaging programs, e-mail applications, Web browsers, and spell-
checkers are just a few examples of programs that work extensively with text. The earlier
chapters in this book have demonstrated some simple text processing techniques, such as
comparing strings and converting strings to other data types. Sometimes, however, you
need to operate on strings at a more detailed level. Some operations require that you
access or manipulate the individual characters in a string.

 8.1

 8.2

 8.1 Introduction

 8.2 String and Character Processing

 8.3 Structures

 8.4 Enumerated Types

 8.5 The ImageList Control

 TOPICS

 More about Processing Data 8 C
H

A
P

T
E

R

466 Chapter 8 More about Processing Data

 For example, you have probably used programs or Web sites that require you to set up a
password that meets certain requirements. Some systems require that passwords have a
minimum length and contain at least one uppercase letter, at least one lowercase letter,
and at least one numeric digit. These requirements are intended to prevent ordinary words
from being used as passwords and thus make the passwords more secure. When a new
password is created, the system has to examine each of the password’s characters to deter-
mine whether it meets the requirements. In the next section you will see an example of an
algorithm that performs this very operation. First, however, we discuss the char data type
and the process of retrieving the individual characters in a string.

 The char Data Type
 So far in this book, we have used the string data type to store text. C# also provides the
 char data type, which is used to store individual characters. A variable of the char data
type can hold only one character at a time. Here is an example of how you might declare
a char variable:

 char letter;

 This statement declares a char variable named letter , which can store one character. In
C#, character literals are enclosed in single quotation marks. Here is an example showing
how we would assign a character to the letter variable:

 letter = 'g';

 This statement assigns the character 'g' to the letter variable. Because char variables
can hold only one character, they are not compatible with strings. For example, you can-
not assign a string to a char variable, even if the string contains only one character. The
following statement, for example, will not compile because it attempts to assign a string
literal to a char variable.

 letter = "g"; // ERROR! Cannot assign a string to a char

 It is important that you do not confuse character literals, which are enclosed in single
quotation marks, with string literals, which are enclosed in double quotation marks.

 When you need to convert a char variable to a string, you can call its ToString method.
For example, the following statement displays the value of the letter variable in a mes-
sage box:

 MessageBox.Show(letter.ToString());

 The following statement shows another example. Assume that letter is a char variable
and outputLabel is the name of a Label control:

 outputLabel.Text = letter.ToString();

 Retrieving the Individual Characters in a String
 C# allows you to access the individual characters in a string using subscript notation. This
makes it possible to work with a string as if it were an array of characters. You use sub-
script 0 to access the first character, subscript 1 to access the second character, and so on.
The subscript of the last character is 1 less than the string’s length. The following code
shows an example.

 1 // Declare a string and a char.
 2 string name = "Jacob";
 3 char letter;
 4
 5 // Get the first character (at position 0).

 8.2 String and Character Processing 467

 6 letter = name[0];
 7
 8 // Display the character.
 9 MessageBox.Show(letter.ToString());

 In this code, line 2 declares a string variable named name , initialized with the string
 "Jacob" . Line 3 declares a char variable named letter . Line 6 gets the character at
position 0 in name (the first character in the string) and assigns it to the letter variable.
Line 9 displays the value of the letter variable in a message box. If this code were exe-
cuted, a message box would appear showing the character J.

 The following code sample shows how a loop can be used to step through the characters
in a string. Notice that in the for loop, the index variable has a starting value of 0 and is
incremented after each iteration, and the loop iterates as long as index is less than
 name.Length . If this code were executed, a series of message boxes would appear dis-
playing the characters J, a, c, o, and b.

 1 // Declare a string and a char.
 2 string name = "Jacob";
 3 char letter;
 4
 5 // Display the characters in the string.
 6 for (int index = 0; index < name.Length; index++)
 7 {
 8 letter = name[index];
 9 MessageBox.Show(letter.ToString());
 10 }

 Keep in mind that subscripts provide read-only access to the characters in a string. You
cannot use a subscript to change the value of a character. For example, the following code
will not compile because the second statement attempts to use a subscript expression to
change the value of the first character in the name variable:

 string name = "Jill";
 name[0] = 'B'; // ERROR! This will not work!

 You can also use the foreach loop to retrieve the individual characters in a string. The
following code shows an example. If this code were executed, a series of message boxes
would appear displaying the characters J, a, c, o, and b.

 1 // Declare a string and a char.
 2 string name = "Jacob";
 3 char letter;
 4
 5 // Display the characters in the string.
 6 foreach (char letter in name)
 7 {
 9 MessageBox.Show(letter.ToString());
 10 }

 Character Testing and Conversion Methods
 The char data type provides several methods for testing the value of a character. Some of
the methods are listed in Table 8-1 . Note that each of the methods listed in the table
returns a Boolean value of true or false .

 NOTE: As with arrays, an exception occurs if you attempt to use an invalid subscript
with a string. String subscripts must be at least 0, and they must be less than the length
of the string.

468 Chapter 8 More about Processing Data

 Table 8-1 Some of the Character Testing Methods

 Method Description

 char.IsDigit(ch) The argument ch is a character. The method returns true
if ch is a digit (0 through 9) or false otherwise.
 Example:
 string str = "12345";
 if (char.IsDigit(str[0]))
 {
 MessageBox.Show("Character 0 is " +
 "a digit.");
 }

 char.IsDigit(str , index) The argument str is a string, and index is the position of
a character within str . The method returns true if the
specified character is a digit (0 through 9) or false
otherwise.
 Example:
 string str = "12345";
 if (char.IsDigit(str, 0))
 {
 MessageBox.Show("Character 0 is “ +
 "a digit.");
 }

 char.IsLetter(ch) The argument ch is a character. The method returns true
if ch is an alphabetic letter or false otherwise.
 Example:
 string str = "Hello World";
 if (char.IsLetter(str[0]))
 {
 MessageBox.Show("Character 0 is " +
 "a letter.");
 }

 char.IsLetter(str , index) The argument str is a string, and index is the position of a
character within str . The method returns true if the
specified character is an alphabetic letter or false otherwise.
 Example:
 string str = "Hello World";
 if (char.IsLetter(str, 0))
 {
 MessageBox.Show("Character 0 is " +
 "a letter.");
 }

 char.IsLetterOrDigit(ch) The argument ch is a character. The method returns true
if ch is either an alphabetic letter or a numeric digit.
Otherwise, the method returns false .
 Example:
 string str = "Hello World";
 if (char.IsLetterOrDigit(str[0]))
 {
 MessageBox.Show("Character 0 is " +
 "either a letter " +
 "or a digit.");
 }

(continued)

 8.2 String and Character Processing 469

 Method Description

 char.IsLetterOrDigit
(str , index)

 The argument str is a string, and index is the position
of a character within str . The method returns true if the
specified character is either an alphabetic letter or a
numeric digit. Otherwise, the method returns false .
 Example:
 string str = "12345";
 if (char.IsLetterOrDigit(str, 0))
 {
 MessageBox.Show("Character 0 is " +
 "either a letter " +
 "or a digit.");
 }

 char.IsLower(ch) The argument ch is a character. The method returns true
if ch is a lowercase letter or false otherwise.
 Example:
 string str = "hello world";
 if (char.IsLower(str[0]))
 {
 MessageBox.Show("Character 0 is " +
 "lowercase.");
 }

 char.IsLower(str , index) The argument str is a string, and index is the position of
a character within str . The method returns true if the
specified character is a lowercase letter or false otherwise.
 Example:
 string str = “hello world”;
 if (char.IsLower(str, 0))
 {
 MessageBox.Show("Character 0 is " +
 "lowercase.");
 }

 char.IsPunctuation(ch) The argument ch is a character. The method returns true if
 ch is categorized as a punctuation mark or false otherwise.
 Example:
 string str = "Hello!";
 if (char.IsPunctuation(str[5]))
 {
 MessageBox.Show("Character 5 is a " +
 "punctuation mark.");
 }

 char.IsPunctuation(str , index) The argument str is a string, and index is the position of
a character within str . The method returns true if the
specified character is categorized as a punctuation mark or
 false otherwise.
 Example:
 string str = "Hello!";
 if (char.IsPunctuation(str, 5))
 {
 MessageBox.Show("Character 5 is a " +
 "punctuation mark.");
 }

(continued)

Table 8-1 Some of the Character Testing Methods (continued)

470 Chapter 8 More about Processing Data

 Method Description

 char.IsUpper(ch) The argument ch is a character. The method returns true
if ch is an uppercase letter or false otherwise.

 Example:
 string str = "Hello World";
 if (char.IsUpper(str[0]))
 {
 MessageBox.Show("Character 0 is " +
 "uppercase.");
 }

 char.IsUpper(str , index) The argument str is a string, and index is the position of
a character within str . The method returns true if the
specified character is an uppercase letter or false
otherwise.

 Example:
 string str = "Hello World";
 if (char.IsUpper(str, 0))
 {
 MessageBox.Show("Character 0 is " +
 "uppercase.");
 }

 char.IsWhiteSpace(ch) The argument ch is a character. The method returns
 true if ch is a white-space character or false otherwise.
(White-space characters are the space, tab, linefeed,
carriage-return, formfeed, vertical-tab, and newline
characters.)

 Example:
 string str = " ";
 if (char.IsWhiteSpace(str[0]))
 {
 MessageBox.Show("Character 0 is " +
 "whitespace.");
 }

 char.IsWhiteSpace(str , index) The argument str is a string, and index is the position of
a character within str . The method returns true if the
specified character is a white-space character or false
otherwise. (White-space characters are the space, tab,
linefeed, carriage-return, formfeed, vertical-tab, and
newline characters.)

 Example:
 string str = " ";
 if (char.IsWhiteSpace(str, 0))
 {
 MessageBox.Show("Character 0 is " +
 "whitespace.");
 }

Table 8-1 Some of the Character Testing Methods (continued)

 In Tutorial 8-1 you use several of the character testing methods in an application that
validates passwords.

 8.2 String and Character Processing 471

 Tutorial 8-1:
 Completing the Password Validation Application

 Many password-protected systems allow users to set up their own passwords. When a
user creates a password, the system examines the password to determine whether it meets
the minimum requirements. If it does not, the system rejects the password and requires
the user to create another, more secure, password.

 In this tutorial you complete the Password Validation application. The application’s
form, which has already been created for you, is shown in Figure 8-1 . When the
application is complete, the user will enter a password and then click the Check
Password button. The application will check the password to make sure it meets the
following requirements:

 • The password must be at least eight characters long.
 • The password must contain at least one uppercase character.
 • The password must contain at least one lowercase character.
 • The password must contain at least one numeric digit.

 Tutorial 8-1 :
 Completing
the
Password
Validation
Application

VideoNote

passwordTextBox

checkPasswordButton exitButton

 Figure 8-1 The Password Validation application’s form

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Pass-
word Validation in the Chap08 folder of the Student Sample Programs.

 Step 2: Open the Form1 form’s code in the code editor. Type the comments and code
for the NumberUpperCase method, shown in lines 20–37 of Program 8-1. The
purpose of the NumberUpperCase method is to accept a string as an argument
and return the number of uppercase letters contained in the string.

 Step 3: Type the comments and code for the NumberLowerCase method, shown in lines
39–56 of Program 8-1. The purpose of the NumberLowerCase method is to
accept a string as an argument and return the number of lowercase letters con-
tained in the string.

 Step 4: Type the comments and code for the NumberDigits method, shown in lines
58–75 of Program 8-1. The purpose of the NumberDigits method is to accept
a string as an argument and return the number of numeric digits contained in
the string.

472 Chapter 8 More about Processing Data

 Step 5: Next you create the Click event handlers for the Button controls. Switch back to
the Designer and double-click the checkPasswordButton control. This opens
the code editor, and you will see an empty event handler named checkPass-
wordButton_Click . Complete the event handler by typing the code shown in
lines 79–96 in Program 8-1. Let’s review this code:

 Lines 79–82: The statement in line 79 declares a constant for the minimum pass-
word length. Line 82 declares the password variable and initializes it with the
value entered by the user.

 Line 85: The if - else statement that begins in line 85 evaluates a compound
Boolean expression. In plain English, the statement should be interpreted
like this:

 If the password’s length is at least 8 and
 the number of uppercase letters in the password is at least 1 and
 the number of lowercase letters in the password is at least 1 and
 the number of numeric digits in the password is at least 1,

 Then the password is valid.

 Else

 The password does not meet the requirements.

 Step 6: Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you will see an empty event handler named exitButton_
Click . Complete the event handler by typing the code shown in lines 101–102
in Program 8-1.

 Step 7: Save the project. Then, press % on the keyboard or click the Start Debug-
ging button () on the toolbar to compile and run the application. When the
application runs, test various passwords to confirm that the application works
properly. When you are finished, click the Exit button to exit the application.

 Program 8-1 Completed code for Form1 in the Password Validation application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Password_Validation
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 // The NumberUpperCase method accepts a string argument
 21 // and returns the number of uppercase letters it contains.
 22 private int NumberUpperCase(string str)
 23 {
 24 int upperCase = 0; // The number of uppercase letters

 8.2 String and Character Processing 473

 25
 26 // Count the uppercase characters in str.
 27 foreach (char ch in str)
 28 {
 29 if (char.IsUpper(ch))
 30 {
 31 upperCase++;
 32 }
 33 }
 34
 35 // Return the number of uppercase characters.
 36 return upperCase;
 37 }
 38
 39 // The NumberLowerCase method accepts a string argument
 40 // and returns the number of lowercase letters it contains.
 41 private int NumberLowerCase(string str)
 42 {
 43 int lowerCase = 0; // The number of lowercase letters
 44
 45 // Count the lowercase characters in str.
 46 foreach (char ch in str)
 47 {
 48 if (char.IsLower(ch))
 49 {
 50 lowerCase++;
 51 }
 52 }
 53
 54 // Return the number of lowercase characters.
 55 return lowerCase;
 56 }
 57
 58 // The NumberDigits method accepts a string argument
 59 // and returns the number of numeric digits it contains.
 60 private int NumberDigits(string str)
 61 {
 62 int digits = 0; // The number of digits
 63
 64 // Count the digits in str.
 65 foreach (char ch in str)
 66 {
 67 if (char.IsDigit(ch))
 68 {
 69 digits++;
 70 }
 71 }
 72
 73 // Return the number of digits.
 74 return digits;
 75 }
 76
 77 private void checkPasswordButton_Click(object sender, EventArgs e)
 78 {
 79 const int MIN_LENGTH = 8; // Password's minimum length
 80
 81 // Get the password from the TextBox.
 82 string password = passwordTextBox.Text;
 83

474 Chapter 8 More about Processing Data

 84 // Validate the password.
 85 if (password.Length >= MIN_LENGTH &&
 86 NumberUpperCase(password) >= 1 &&
 87 NumberLowerCase(password) >= 1 &&
 88 NumberDigits(password) >= 1)
 89 {
 90 MessageBox.Show("The password is valid.");
 91 }
 92 else
 93 {
 94 MessageBox.Show("The password does not meet " +
 95 "the requirements.");
 96 }
 97 }
 98
 99 private void exitButton_Click(object sender, EventArgs e)
 100 {
 101 // Close the form.
 102 this.Close();
 103 }
 104 }
 105 }

 Character Case Conversion
 The char data type also provides the ToLower and ToUpper methods listed in Table 8-2
for converting the case of a character. Each method accepts a char argument and returns
a char value.

 Table 8-2 Character Case Conversion Methods

 Method Description

 char.ToLower(ch) The argument ch is a character. The method returns the
lowercase equivalent of ch .

 char.ToUpper(ch) The argument ch is a character. The method returns the
uppercase equivalent of ch .

 If the ToLower method’s argument is an uppercase character, the method returns the low-
ercase equivalent. For example, look at the following code. The statement in line 2 assigns
the character 'a' to the letter variable.

 1 string str = "ABC";
 2 char letter = char.ToLower(str[0]);

 If the argument is already lowercase, the ToLower method returns it unchanged.

 If the ToUpper method’s argument is a lowercase character, the method returns the upper-
case equivalent. For example, look at the following code. The statement in line 2 assigns
the character 'A' to the letter variable.

 1 string str = "abc";
 2 char letter = char.ToUpper(str[0]);

 If the argument is already uppercase, the ToUpper method returns it unchanged.

 8.2 String and Character Processing 475

 Searching for Substrings
 Some tasks require you to search for a specific string of characters within a string. A string
within a string is called a substring . Objects of the string data type have several methods
that allow you to search for substrings. Table 8-3 summarizes the Contains,
StartsWith , and EndsWith methods . Each of the methods in Table 8-3 returns a Boolean
value indicating whether the substring was found.

 Table 8-3 Some of the Substring-Searching Methods

 Method Description

 stringVar .Contains(substring) stringVar is the name of a string variable or
is a string expression. The argument substring is
also a string. The method returns true if
 stringVar contains the string substring or false
otherwise.

 Example:
 // The following code displays
 // "ice was found."
 string str = "chocolate ice cream";
 if (str.Contains("ice"))
 {
 MessageBox.Show("ice was found.");
 }

 stringVar .Contains(ch) stringVar is the name of a string variable or is a
string expression. The argument ch is a character.
The method returns true if stringVar contains the
character ch or false otherwise.

 Example:
 // The following code displays
 // "b was found."
 string str = "abcd";
 if (str.Contains('b'))
 {
 MessageBox.Show("b was found.");
 }

 stringVar .StartsWith(substring) stringVar is the name of a string variable or
is a string expression. The argument substring
is also a string. The method returns true if
 stringVar starts with the string substring or false
otherwise.

 Example:
 // The following code displays "The string
 // starts with choc."
 string str = "chocolate ice cream";
 if (str.StartsWith("choc"))
 {
 MessageBox.Show("The string starts " +
 "with choc.");
 }

(continued)

476 Chapter 8 More about Processing Data

 Method Description

 stringVar .EndsWith(substring) stringVar is the name of a string variable or is a
string expression. The argument substring is also a
string. The method returns true if stringVar ends
with the string substring or false otherwise.

 Example:
 // The following code displays "The string
 // ends with cream."
 string str = "chocolate ice cream";
 if (str.EndsWith("cream"))
 {
 MessageBox.Show("The string ends " +
 "with cream.");
 }

Table 8-3 Some of the Substring-Searching Methods (continued)

 The methods shown in Table 8-3 let you know whether a specified substring is found
within a string. Sometimes you also want to know the position of the substring. When
that is the case, you can use one of the IndexOf or LastIndexOf methods shown in Table
 8-4 . Note that each method in Table 8-4 returns an int .

 Table 8-4 Methods for Getting a Character or Substring’s Position

 Method Description

 stringVar .IndexOf(substring) stringVar is the name of a string variable or is a
string expression. The argument substring is also a
string. If substring is found in stringVar , the
method returns the integer position of substring ’s
first occurrence. If substring is not found in
 stringVar , the method returns 21.
 Example:
 // The following code displays "10"
 string str = "chocolate ice cream";
 int position = str.IndexOf("ice");
 if (position != −1)
 {
 MessageBox.Show(position.ToString());
 }
 else
 {
 MessageBox.Show("ice was not found.");
 }

 stringVar .IndexOf(substring,
start)

 stringVar is the name of a string variable or is a
string expression. The argument substring is a string,
and the argument start is an integer. The method
searches stringVar for substring , starting at the
position specified by start and going to the end of
 stringVar . If substring is found in this portion of
 stringVar , the method returns the integer position of
its first occurrence. If substring is not found, the
method returns −1.

(continued)

 8.2 String and Character Processing 477

Table 8-4 Methods for Getting a Character or Substring’s Position (continued)

 Method Description

 Example:
 // The following code displays “2”
 string str = “cocoa beans”;
 int position = str.IndexOf(“co”, 2);
 if (position != −1)
 {
 MessageBox.Show(position.ToString());
 }
 else
 {
 MessageBox.Show(“co was not found.”);
 }

 stringVar .IndexOf(substring,
start, count)

 stringVar is the name of a string variable or is a
string expression. The argument substring is a
string, the argument start is an integer, and the
argument count is also an integer. The method
searches stringVar for substring , starting at the
position specified by start and continuing for count
characters. If substring is found in this portion of
 stringVar , the method returns the integer position
of its first occurrence. If substring is not found, the
method returns −1.
 Example:
 // The following code displays "6"
 string str = "xx oo xx oo xx";
 int position = str.IndexOf("xx", 3, 8);
 if (position != −1)
 {
 MessageBox.Show(position.ToString());
 }
 else
 {
 MessageBox.Show("xx was not found.");
 }

 stringVar .IndexOf(ch) stringVar is the name of a string variable or is a
string expression. The argument ch is a character. If ch
is found in stringVar , the method returns the integer
position of ch ’s first occurrence. If ch is not found in
 stringVar , the method returns −1.
 Example:
 // The following code displays "2"
 string str = "chocolate ice cream";
 int position = str.IndexOf('o');
 if (position != −1)
 {
 MessageBox.Show(position.ToString());
 }
 else
 {
 MessageBox.Show("o was not found.");
 }

(continued)

478 Chapter 8 More about Processing Data

Table 8-4 Methods for Getting a Character or Substring’s Position (continued)

 Method Description

 stringVar .IndexOf(ch, start) stringVar is the name of a string variable or is a
string expression. The argument ch is a character,
and the argument start is an integer. The method
searches stringVar for ch , starting at the position
specified by start and going to the end of
 stringVar . If ch is found in this portion of
 stringVar , the method returns the integer position
of its first occurrence. If ch is not found, the method
returns −1.
 Example:
 // The following code displays "4"
 string str = "chocolate ice cream";
 int position = str.IndexOf('o', 3);
 if (position != −1)
 {
 MessageBox.Show(position.ToString());
 }
 else
 {
 MessageBox.Show("o was not found.");
 }

 stringVar .IndexOf(ch, start,
count)

 stringVar is the name of a string variable or is a
string expression. The argument ch is a character,
the argument start is an integer, and the argument
 count is also an integer. The method searches
 stringVar for ch , starting at the position specified
by start and continuing for count characters. If ch
is found in this portion of stringVar , the method
returns the integer position of its first occurrence.
If substring is not found, the method returns −1.
 Example:
 // The following code displays "12"
 string str = "chocolate ice cream";
 int position = str.IndexOf('e', 10, 4);
 if (position != −1)
 {
 MessageBox.Show(position.ToString());
 }
 else
 {
 MessageBox.Show("e was not found.");
 }

 stringVar .LastIndexOf(substring) stringVar is the name of a string variable or is a
string expression. The argument substring is also a
string. If substring is found in stringVar , the
method returns the integer position of substring ’s last
occurrence. If substring is not found in stringVar ,
the method returns −1.

(continued)

 8.2 String and Character Processing 479

Table 8-4 Methods for Getting a Character or Substring’s Position (continued)

 Method Description

 Example:
 // The following code displays “11”.
 string str = “blue green blue”;
 int position = str.LastIndexOf(“blue”);
 if (position != −1)
 {
 MessageBox.Show(position.ToString());
 }
 else
 {
 MessageBox.Show(“blue was not found.”);
 }

 stringVar .LastIndexOf(substring,
start)

 stringVar is the name of a string variable or is a
string expression. The argument substring is a
string, and the argument start is an integer. The
method searches stringVar for substring , starting
at the position specified by start and proceeding
backward toward the beginning of stringVar . If
 substring is found in this portion of stringVar , the
method returns its integer position. If substring is
not found, the method returns −1.

 Example:
 // The following code displays "6".
 string str = "xx oo xx oo xx";
 int position = str.LastIndexOf("xx", 10);
 if (position != −1)
 {
 MessageBox.Show(position.ToString());
 }
 else
 {
 MessageBox.Show("xx was not found.");
 }

 stringVar .LastInde xOf(substring,
start, count)

 stringVar is the name of a string variable or is a
string expression. The argument substring is a string,
the argument start is an integer, and the argument
 count is also an integer. The method searches
 stringVar for substring , starting at the position
specified by start and proceeding backward toward
the beginning of stringVar for count characters. If
 substring is found in this portion of stringVar , the
method returns its integer position. If substring is
not found, the method returns −1.

(continued)

480 Chapter 8 More about Processing Data

 Method Description

 Example:
 // The following code displays "6".
 string str = "oo xx oo xx oo";
 int position = str.LastIndexOf("oo", 10, 8);
 if (position != −1)
 {
 MessageBox.Show(position.ToString());
 }
 else
 {
 MessageBox.Show("oo was not found.");
 }

 stringVar .LastIndexOf(ch) stringVar is the name of a string variable or is a
string expression. The argument ch is a character. If ch
is found in stringVar , the method returns the integer
position of ch ’s last occurrence. If ch is not found in
 stringVar , the method returns −1.
 Example:
 // The following code displays "14".
 string str = "chocolate ice cream";
 int position = str.LastIndexOf('c');
 if (position != −1)
 {
 MessageBox.Show(position.ToString());
 }
 else
 {
 MessageBox.Show("c was not found.");
 }

 stringVar .LastIndexOf(ch, start) stringVar is the name of a string variable or is a
string expression. The argument ch is a character, and
the argument start is an integer. The method searches
 stringVar for ch , starting at the position specified by
 start and proceeding backward toward the beginning
of stringVar . If ch is found in this portion of
 stringVar , the method returns its integer position. If
 ch is not found, the method returns −1.
 Example:
 // The following code displays "12".
 string str = "chocolate ice cream";
 int position = str.LastIndexOf('e', 14);
 if (position != −1)
 {
 MessageBox.Show(position.ToString());
 }
 else
 {
 MessageBox.Show("e was not found.");
 }

Table 8-4 Methods for Getting a Character or Substring’s Position (continued)

(continued)

 8.2 String and Character Processing 481

Table 8-4 Methods for Getting a Character or Substring’s Position (continued)

 Method Description

 stringVar .LastIndexOf(ch, start,
count)

 stringVar is the name of a string variable or is a string
expression. The argument ch is a character, the argument
 start is an integer, and the argument count is also an
integer. The method searches stringVar for ch , starting
at the position specified by start and proceeding
backward for count characters. If ch is found in this
portion of stringVar , the method returns its integer
position. If substring is not found, the method returns −1.
 Example:
 // The following code displays "12".
 string str = "chocolate ice cream";
 int position = str.LastIndexOf('e', 14, 8);
 if (position != −1)
 {
 MessageBox.Show(position.ToString());
 }
 else
 {
 MessageBox.Show("e was not found.");
 }

 Sometimes you need to retrieve a specific set of characters from a string. For example,
suppose a string contains a U.S. telephone number, such as "(919)555-1212" and you
are interested in getting the area code. You need a way to retrieve the characters in posi-
tions 1 through 3. You can use the Substring method, as shown in Table 8-5 . Note that
the Substring method returns a string .

 Table 8-5 The Substring Method

 Method Description

 stringVar .Substring(start) stringVar is the name of a string variable or is a
string expression. The argument start is an integer
that specifies a position in stringVar . The method
returns a string containing the characters beginning at
 start , continuing to the end of stringVar .
 Example:
 // The following code displays "beans".
 string str = "cocoa beans";
 MessageBox.Show(str.Substring(6));

 stringVar .Substring(start,count) stringVar is the name of a string variable or is a
string expression. The argument start is an integer that
specifies a position in stringVar , and count is an
integer that specifies a number of characters. The method
returns a string containing the characters beginning at
 start and continuing for count characters.
 Example:
 // The following code displays "cocoa".
 string str = "cocoa beans";
 MessageBox.Show(str.Substring(0, 5));

482 Chapter 8 More about Processing Data

 Methods for Modifying a String
 Table 8-6 describes several methods that string objects have for modifying the contents
of a string in the following ways:

 • The Insert method inserts a string into another string.
 • The Remove methods remove specified characters from a string.
 • The ToLower method converts a string to all lowercase characters.
 • The ToUpper method converts a string to all uppercase characters.
 • The Trim method removes all leading and trailing spaces from a string. (Leading

spaces are spaces that appear at the beginning of a string, and trailing spaces are
spaces that appear at the end of a string.)

 • The TrimStart method removes all leading spaces from a string.
 • The TrimEnd method removes all trailing spaces from a string.

 It is important to remember that the methods shown in Table 8-6 do not actually modify
the calling string object. They return a modified copy of the calling string object. For
example, look at the following code, which demonstrates the Remove method:

 1 string str1 = "sunshine";
 2 string str2 = str1.Remove(3);
 3 MessageBox.Show(str1);
 4 MessageBox.Show(str2);

 Table 8-6 Methods for Modifying a String

 Method Description

 stringVar .Insert(start , strItem) stringVar is the name of a string variable or is a
string expression. The start argument is an integer that
specifies a position in stringVar , and the strItem
argument is a string that is to be inserted. The method
returns a string containing a copy of stringVar with
 strItem inserted into it beginning at the position
specified by start .
 Example:
 // The following displays "New York City".
 string str1 = "New City";
 string str2 = str1.Insert(4, "York ");
 MessageBox.Show(str2);

 stringVar .Remove(start) stringVar is the name of a string variable or is a string
expression. The start argument is an integer that specifies
a position in stringVar . The method returns a string
containing a copy of stringVar with all the characters
from the position specified by start to the end removed.
 Example:
 // The following displays "blue".
 string str1 = "blueberry";
 string str2 = str1.Remove(4);
 MessageBox.Show(str2);

 stringVar .Remove(start, count) stringVar is the name of a string variable or is a string
expression. The start argument is an integer that specifies
a position in stringVar , and count is an integer that
specifies a number of characters. The method returns a
string containing a copy of stringVar with count characters
removed, beginning at the position specified by start .

(continued)

 8.2 String and Character Processing 483

 Method Description

 Example:
 // The following displays “jelly doughnuts”.
 string str1 = “jelly filled doughnuts”;
 string str2 = str1.Remove(6, 7);
 MessageBox.Show(str2);

 stringVar .ToLower() stringVar is the name of a string variable or is a
string expression. The method returns a string
containing a copy of stringVar converted to lowercase.
 Example:
 // The following displays "abc".
 string str1 = "ABC";
 string str2 = str1.ToLower();
 MessageBox.Show(str2);

 stringVar .ToUpper() stringVar is the name of a string variable or is a
string expression. The method returns a string
containing a copy of stringVar converted to uppercase.
 Example:
 // The following displays "ABC".
 string str1 = "abc";
 string str2 = str1.ToUpper();
 MessageBox.Show(str2);

 stringVar .Trim() stringVar is the name of a string variable or is a
string expression. The method returns a string
containing a copy of stringVar with all leading and
trailing spaces removed.
 Example:
 // The following displays ">Hello<".
 string str1 = " Hello ";
 string str2 = str1.Trim();
 MessageBox.Show(">" + str2 + "<");

 stringVar .TrimStart() stringVar is the name of a string variable or is a
string expression. The method returns a string
containing a copy of stringVar with all leading
spaces removed.
 Example:
 // The following displays ">Hello<".
 string str1 = " Hello";
 string str2 = str1.TrimStart();
 MessageBox.Show(">" + str2 + "<");

 stringVar .TrimEnd() stringVar is the name of a string variable or is a
string expression. The method returns a string containing
a copy of stringVar with all trailing spaces removed.
 Example:
 // The following displays ">Hello<".
 string str1 = "Hello ";
 string str2 = str1.TrimEnd();
 MessageBox.Show(">" + str2 + "<");

Table 8-6 Methods for Modifying a String (continued)

484 Chapter 8 More about Processing Data

 Line 1 declares a string variable named str1 , initialized with the string "sunshine" .
Line 2 calls the str1.Remove method, passing 3 as an argument. The method returns a
copy of str1 with all the characters from position 3 to the end of the string removed.
(The method returns the string "sun" .) The string that is returned is assigned to the str2
variable. Line 3 displays the str1 variable, which is "sunshine", and line 4 displays the
 str2 variable, which is "sun" .

 In Tutorials 8-2 and 8-3 you use several of the string methods that we have discussed in
applications that format and unformat U.S. telephone numbers.

 Tutorial 8-2:
 Completing the Telephone Format Application

 Telephone numbers in the United States are commonly formatted to appear in the follow-
ing manner:

 (XXX)XXX-XXXX

 In the format, X represents a digit. The three digits that appear inside the parentheses are
the area code. The three digits following the area code are the prefix, and the four digits
after the hyphen are the line number. Here is an example:

 (919)555-1212

 Although the parentheses and the hyphen make the number easier for people to read,
those characters are unnecessary for processing by a computer. In a computer system, a
telephone number is commonly stored as an unformatted series of digits, as shown here:

 9195551212

 Programs that work with telephone numbers sometimes need to unformat numbers that
have been entered by the user. This means that the parentheses and the hyphen must be
removed prior to storing the number in a file or processing it in some other way. In ad-
dition, such programs need the ability to format a number so it contains the parentheses
and the hyphen before displaying it on the screen or printing it on paper.

 In this tutorial you complete the Telephone Format application. The application’s form,
which has already been created for you, is shown in Figure 8-2 . When the application
is complete, you will be able to enter a string of 10 digits into the numberTextBox
control and click the Format button to see the string of digits formatted as a telephone
number.

 Tutorial 8-2 :
 Completing
the
 Telephone
Format
Application

VideoNote

numberTextBox

formatButton exitButton

 Figure 8-2 The Telephone Format application’s form

 8.2 String and Character Processing 485

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Tele-
phone Format in the Chap08 folder of the Student Sample Programs.

 Step 2: Open the Form1 form’s code in the code editor. Type the comments and code
for the IsValidNumber method, shown in lines 20–50 of Program 8-2. The
method accepts a string as an argument and return true if the string is 10 char-
acters long and contains only digits. Otherwise, the method returns false . You
use this method to make sure that the user has entered a valid string of digits.
Let’s take a closer look at the code.

 Line 25: This statement declares the constant VALID_LENGTH , initialized with
the value 10, to represent the length of a valid string.

 Line 26: This statement declares a bool variable named valid , initialized with
the value true . The valid variable is used as a fl ag to indicate whether the str
parameter is a valid number.

 Line 29: This if statement determines whether the str parameter’s length
is valid. If so, the program continues at line 32. Otherwise, the program
jumps to the else clause in line 42, and line 45 assigns false to the valid
variable.

 Line 32: This foreach loop steps through each of the characters in the str
parameter. If the statement in line 36 determines that a character is not a digit,
then the statement in line 38 assigns false to the valid variable.

 Line 49: This statement returns the value of the valid variable.

 Step 3: Type the comments and code for the TelephoneFormat method, shown in lines
52–64 of Program 8-2. The TelephoneFormat method accepts a string as an
argument, passed by reference, and inserts the parentheses and the hyphen at
the proper locations so it appears in the form (XXX)XXX-XXXX . Let’s take a
closer look at the code.

 Line 54: Notice that the ref keyword is used in the declaration of the str
parameter variable.

 Line 57: This statement calls the Insert method to insert "(" at position 0. All
the characters in the string are automatically shifted right one space to accom-
modate the inserted character.

 Line 60: This statement calls the Insert method to insert ")" at position 4,
shifting the characters that previously appeared beginning at position 4 to the
right one space.

 Line 63: This statement calls the Insert method to insert "-" at position 8,
shifting the characters that previously appeared beginning at position 8 to the
right one space. After this statement executes, the string referenced by str is
formatted as (XXX)XXX-XXXX .

 Step 4: Next you create the Click event handlers for the Button controls. Switch back to
the Designer and double-click the formatButton control. This opens the code
editor, and you will see an empty event handler named formatButton_Click .
Complete the event handler by typing the code shown in lines 68–82 in Program
8-2. Let’s review this code:

 Line 69: Notice the expression on the right side of the = operator is
 numberTextBox.Text.Trim() . This expression calls the Trim method on the
Text property of the numberTextBox control. The method returns a copy of
the numberTextBox control’s Text property with all leading and trailing spaces
removed. The result is assigned to the input variable.

486 Chapter 8 More about Processing Data

 Line 73: This if statement calls the IsValidNumber method, passing the input
variable as an argument. If the value of the input variable is a valid number,
the method returns true and the program continues to line 75. In line 75 the
 TelephoneFormat method is called, passing input by reference as an argu-
ment, and then line 76 displays the value of the input variable in a message box.

 If the value of the input variable is not a valid number, the IsValidNumber
method returns false , and the program jumps to the else clause in line 78.
Then, line 81 displays an error message.

 Step 5: Switch your view back to the Designer and double-click the exitButton
 control. In the code editor you will see an empty event handler named
exitButton_Click . Complete the event handler by typing the code shown in
lines 87–88 in Program 8-2.

 Step 6: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the applica-
tion runs, test various input values to confirm that the application works prop-
erly. For example, if you enter 9195551212 , the application should display
 (919)555-1212 , and if you enter abc5551212 , the application should display
 "Invalid input" . When you are finished, click the Exit button to exit the
application.

 Program 8-2 Completed code for Form1 in the Telephone Format application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Telephone_Format
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 // The IsValidNumber method accepts a string and
 21 // returns true if it contains 10 digits, or false
 22 // otherwise.
 23 private bool IsValidNumber(string str)
 24 {
 25 const int VALID_LENGTH = 10; // Length of a valid string
 26 bool valid = true; // Flag to indicate validity
 27
 28 // Check the string's length.
 29 if (str.Length == VALID_LENGTH)
 30 {
 31 // Check each character in str.
 32 foreach (char ch in str)
 33 {

 8.2 String and Character Processing 487

 34 // If this character is not a digit, the
 35 // string is not valid.
 36 if (!char.IsDigit(ch))
 37 {
 38 valid = false;
 39 }
 40 }
 41 }
 42 else
 43 {
 44 // Incorrect length.
 45 valid = false;
 46 }
 47
 48 // Return the status.
 49 return valid;
 50 }
 51
 52 // The TelephoneFormat method accepts a string argument
 53 // by reference and formats it as a telephone number.
 54 private void TelephoneFormat(ref string str)
 55 {
 56 // First, insert the left paren at position 0.
 57 str = str.Insert(0, "(");
 58
 59 // Next, insert the right paren at position 4.
 60 str = str.Insert(4, ")");
 61
 62 // Next, insert the hyphen at position 8.
 63 str = str.Insert(8, "-");
 64 }
 65
 66 private void formatButton_Click(object sender, EventArgs e)
 67 {
 68 // Get a trimmed copy of the user's input.
 69 string input = numberTextBox.Text.Trim();
 70
 71 // If the input is a valid number, format it
 72 // and display it.
 73 if (IsValidNumber(input))
 74 {
 75 TelephoneFormat(ref input);
 76 MessageBox.Show(input);
 77 }
 78 else
 79 {
 80 // Display an error message.
 81 MessageBox.Show("Invalid input");
 82 }
 83 }
 84
 85 private void exitButton_Click(object sender, EventArgs e)
 86 {
 87 // Close the form.
 88 this.Close();
 89 }
 90 }
 91 }

488 Chapter 8 More about Processing Data

 Tutorial 8-3:
 Completing the Telephone Unformat Application

 In this tutorial you complete the Telephone Unformat application. The application’s
form, which has already been created for you, is shown in Figure 8-3 . When the applica-
tion is complete, you will be able to enter a telephone number in the format (XXX)XXX-XXXX
into the numberTextBox control and click the Unformat button to see it with the paren-
theses and the hyphen removed.

 Tutorial 8-3 :
 Completing
the
 Telephone
Unformat
Application

VideoNote

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Tele-
phone Unformat in the Chap08 folder of the Student Sample Programs.

 Step 2: Open the Form1 form’s code in the code editor. Type the comments and code
for the IsValidFormat method, shown in lines 20–44 of Program 8-3. The
method accepts a string as an argument and returns true if the string is format-
ted as (XXX)XXX-XXXX . Otherwise, the method returns false . You use this
method to make sure that the user has entered a properly formatted telephone
number. Let’s take a closer look at the code:

 Line 28: This statement declares the constant VALID_LENGTH , initialized with
the value 13, to represent the length of a properly formatted telephone number.

 Line 29: This statement declares a bool variable named valid , initialized with
the value true . The valid variable is used as a fl ag to indicate whether the str
parameter is properly formatted.

 Lines 32–33: The if - else statement that begins in these lines determines
whether the str parameter is properly formatted. In plain English, the statement
should be interpreted like this:

 If the string’s length is 13 and the character at position 0 is "(" and the charac-
ter at position 4 is ")" and the character at position 8 is "-" Then

 Set valid to true.
 Else

 Set valid to false.

 After the if - else statement executes, the valid variable will be set to either
 true or false, indicating whether str is properly formatted. The statement in
line 39 returns the value of the valid variable.

 Line 43: This statement returns the value of the valid variable.

 Step 3: Type the comments and code for the Unformat method, shown in lines 46–65
of Program 8-3. The Unformat method accepts a string as an argument, passed

unformatButton exitButton

numberTextBox

 Figure 8-3 The Telephone Unformat application’s form

 8.2 String and Character Processing 489

by reference. The method assumes that the string is formatted as (XXX)XXX-
XXXX . When the method is finished, the parentheses and the hyphen will be
removed from the string. Let’s take a closer look at the code:

 Line 54: This statement deletes the character at position 0, which is the "("
character. All the remaining characters are automatically shifted left by one
position to occupy the space left by the deleted character.

 Line 59: This statement deletes the character at position 3, which is the ")"
character. The characters that previously appeared beginning at position 4 are
automatically shifted left to occupy the space left by the deleted character.

 Line 64: This statement deletes character at position 6, which is the hyphen. The
characters previously appearing to the right of the hyphen are automatically
moved left by one position. After this statement executes, the string referenced
by str will be unformatted, appearing simply as a string of digits.

 Step 4: Next you create the Click event handlers for the Button controls. Switch back to
the Designer and double-click the unformatButton control. This opens the
code editor, and you will see an empty event handler named unformatButton_
Click . Complete the event handler by typing the code shown in lines 69–83 in
Program 8-3. Let’s review this code:

 Line 70: Notice the expression on the right side of the = operator is
 numberTextBox.Text.Trim() . This expression calls the Trim method on the
Text property of the numberTextBox control. The method returns a copy of the
 numberTextBox control’s Text property with all leading and trailing spaces
removed. The result is assigned to the input variable.

 Line 74: This if statement calls the IsValidFormat method, passing the input
variable as an argument. If the value of the input variable is properly format-
ted, the method returns true, and the program continues to line 76. In line 76
the Unformat method is called, passing input by reference as an argument, and
then line 77 displays the value of the input variable in a message box.

 If the value of the input variable is not properly formatted, the IsValidFormat
method returns false , and the program jumps to the else clause in line 79.
Then, line 82 displays an error message.

 Step 5: Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you will see an empty event handler named exitButton_
Click . Complete the event handler by typing the code shown in lines 88–89 in
Program 8-3.

 Step 6: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the application
runs, test various input values to confirm that the application works properly. For
example, if you enter (919)555-1212 , the application should display 9195551212 ,
and if you enter 919-555-1212 , the application should display "Invalid input" .
When you are finished, click the Exit button to exit the application.

 Program 8-3 Completed code for Form1 in the Telephone Unformat application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;

490 Chapter 8 More about Processing Data

 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Telephone_Unformat
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 // The IsValidFormat method accepts a string argument
 21 // and determines whether it is properly formatted as
 22 // a US telephone number in the following manner:
 23 // (XXX)XXX-XXXX
 24 // If the argument is properly formatted, the method
 25 // returns true, otherwise false.
 26 private bool IsValidFormat(string str)
 27 {
 28 const int VALID_LENGTH = 13; // Length of a valid string
 29 bool valid; // Flag to indicate validity
 30
 31 // Determine whether str is properly formatted.
 32 if (str.Length == VALID_LENGTH && str[0] == '(' &&
 33 str[4] == ')' && str[8] == '-')
 34 {
 35 valid = true;
 36 }
 37 else
 38 {
 39 valid = false;
 40 }
 41
 42 // Return the value of valid.
 43 return valid;
 44 }
 45
 46 // The unformat method accepts a string, by reference,
 47 // assumed to contain a telephone number formatted in
 48 // this manner: (XXX)XXX-XXXX.
 49 // The method unformats the string by removing the
 50 // parentheses and the hyphen.
 51 private void Unformat(ref string str)
 52 {
 53 // First, delete the left paren at position 0.
 54 str = str.Remove(0, 1);
 55
 56 // Next, delete the right paren. Because of the
 57 // previous deletion it is now located at
 58 // position 3.
 59 str = str.Remove(3, 1);
 60
 61 // Next, delete the hyphen. Because of the
 62 // previous deletions it is now located at
 63 // position 6.
 64 str = str.Remove(6, 1);
 65 }

 8.2 String and Character Processing 491

 66
 67 private void unformatButton_Click(object sender, EventArgs e)
 68 {
 69 // Get a trimmed copy of the user's input.
 70 string input = numberTextBox.Text.Trim();
 71
 72 // If the input is properly formatted, unformat it
 73 // and display it.
 74 if (IsValidFormat(input))
 75 {
 76 Unformat(ref input);
 77 MessageBox.Show(input);
 78 }
 79 else
 80 {
 81 // Display an error message.
 82 MessageBox.Show("Invalid input");
 83 }
 84 }
 85
 86 private void exitButton_Click(object sender, EventArgs e)
 87 {
 88 // Close the form.
 89 this.Close();
 90 }
 91 }
 92 }

 Tokenizing Strings
 Sometimes a string contains a series of words or other items of data separated by spaces
or other characters. For example, look at the following string:

 "peach raspberry strawberry vanilla"

 This string contains the following four items of data: peach, raspberry, strawberry, and
vanilla. In programming terms, items such as these are known as tokens . Notice that a space
appears between the items. The character that separates tokens is known as a delimiter .
Here is another example:

 "17;92;81;12;46;5"

 This string contains the following tokens: 17, 92, 81, 12, 46, and 5. Notice that a semico-
lon appears between each item. In this example, the semicolon is used as a delimiter. Some
programming problems require you to read a string that contains a list of items and then
extract all the tokens from the string for processing. For example, look at the following
string that contains a date:

 "3-22-2014"

 The tokens in this string are 3, 22, and 2014, and the delimiter is the hyphen character.
Perhaps a program needs to extract the month, day, and year from such a string.

 The process of breaking a string into tokens is known as tokenizing . In C#, string objects
have a method named Split that is used to tokenize the string. When you call a string
object’s Split method, the method extracts tokens from the string and returns them as an
array of strings. Each element in the array is one of the tokens.

 We discuss two ways that you can call the Split method. The first way is to pass the
value null as an argument. When you pass null as an argument to the Split method,

492 Chapter 8 More about Processing Data

the method tokenizes the string using white-space characters as delimiters. (White-space
characters are the space, tab, linefeed, carriage-return, formfeed, vertical-tab, and newline
characters.) The method returns a string array, with each element of the array contain-
ing one of the tokens. The following code shows an example:

 1 // Create a String to tokenize.
 2 string str = "one two three four";
 3
 4 // Get the tokens from the string.
 5 string[] tokens = str.Split(null);
 6
 7 // Display each token.
 8 foreach (string s in tokens)
 9 {
 10 MessageBox.Show(s);
 11 }

 Let’s take a closer look at the code:

 • Line 2 declares a string variable named str , initialized with the string "one two
three four" .

 • Line 5 declares a string array named tokens . The tokens array is initialized with
the array that is returned from the str.Split(null) method call. After this state-
ment executes, the tokens array will have four elements, containing the strings
 "one" , "two" , "three" , and "four" .

 • The foreach loop in lines 8–11 displays each of the tokens array’s elements in
message boxes. When the loop executes, four message boxes will be displayed, one
after the other, showing the strings "one" , "two" , "three" , and "four" .

 The second way that we call the Split method is to pass a char array as an argument. Each
element of the char array is used as a delimiter. The following code shows an example:

 1 // Create a String to tokenize.
 2 string str = "one;two;three;four";
 3
 4 // Create an array of delimiters.
 5 char[] delim = { ';' };
 6
 7 // Get the tokens from the string.
 8 string[] tokens = str.Split(delim);
 9
 10 // Display each token.
 11 foreach (string s in tokens)
 12 {
 13 MessageBox.Show(s);
 14 }

 Let’s take a closer look at the code:

 • Line 2 declares a string variable named str , initialized with the string
 "one;two;three;four" .

 • Line 5 declares a char array named delim . Notice that the initialization list contains
only one character. The delim array has one element, containing the ';' character.

 • Line 8 declares a string array named tokens . The tokens array is initialized with
the array that is returned from the str.Split(delim) method call. After this state-
ment executes, the tokens array will have four elements, containing the strings
 "one" , "two" , "three" , and "four" .

 • The foreach loop in lines 11–14 displays each of the tokens array’s elements in
message boxes. When the loop executes, four message boxes will be displayed, one
after the other, showing the strings "one" , "two" , "three" , and "four" .

 8.2 String and Character Processing 493

 Some situations require that you use multiple characters as delimiters in the same string.
For example, look at the following e-mail address:

 joe@gaddisbooks.com

 This string uses two delimiters: @ (the at symbol) and . (the period). To extract the tokens
from this string, we must specify both characters as delimiters. Here is an example:

 1 // Create a String to tokenize.
 2 string str = "joe@gaddisbooks.com";
 3
 4 // Create an array of delimiters.
 5 char[] delim = { '@', '.' };
 6
 7 // Get the tokens from the string.
 8 string[] tokens = str.Split(delim);
 9
 10 // Display each token.
 11 foreach (string s in tokens)
 12 {
 13 MessageBox.Show(s);
 14 }

 Let’s take a closer look at the code:

 • Line 2 declares a string variable named str , initialized with the string
"joe@gaddisbooks.com" .

 • Line 5 declares a char array named delim , initialized with the characters '@'
and '.' .

 • Line 8 declares a string array named tokens . The tokens array is initialized with
the array that is returned from the str.Split(delim) method call. After this state-
ment executes, the tokens array will have three elements, containing the strings
 "joe" , "gaddisbooks" , and "com" .

 • The foreach loop in lines 11–14 displays each of the tokens array’s elements in
message boxes. When the loop executes, four message boxes will be displayed, one
after the other, showing the strings "joe" , "gaddisbooks" , and "com" .

 Trimming a String before Tokenizing

 When you are tokenizing a string that was entered by the user and you are using
characters other than white spaces as delimiters, you probably want to trim the string
before tokenizing it. Otherwise, if the user enters leading white-space characters,
they will become part of the first token. Likewise, if the user enters trailing white-
space characters, they will become part of the last token. For example, look at the
following code:

 1 // Create a string with leading and trailing whitespaces.
 2 String str = " one;two;three ";
 3
 4 // Create a char array containing the semicolon.
 5 char[] delim = { ';' };
 6
 7 // Get the tokens from the string.
 8 string[] tokens = str.Split(delim);
 9
 10 // Display each token.
 11 foreach (string s in tokens)
 12 {
 13 MessageBox.Show("*" + s + "*");
 14 }

494 Chapter 8 More about Processing Data

 This code produces three message boxes, displaying the following output:

 * one*
 two
 *three *

 Notice that the first token contains the leading spaces and the last token contains the trail-
ing spaces. To prevent leading and/or trailing white-space characters from being included
in the first and last tokens, use the Trim method to remove them. Here is the same code,
modified to use the Trim method:

 1 // Create a string with leading and trailing white spaces.
 2 String str = " one;two;three ";
 3
 4 // Create a char array containing the semicolon.
 5 char[] delim = { ';' };
 6
 7 // Trim the string.
 8 str = str.Trim();
 9
 10 // Get the tokens from the string.
 11 string[] tokens = str.Split(delim);
 12
 13 // Display each token.
 14 foreach (string s in tokens)
 15 {
 16 MessageBox.Show("*" + s + "*");
 17 }

 This code produces three message boxes, displaying the following output:

 one
 two
 three

 In Tutorial 8-4 you complete an application that reads and tokenizes data from a file that
has been exported by Microsoft Excel.

 Tutorial 8-4:
 Completing the CSV Reader Application

 A professor keeps her students’ test scores in a Microsoft Excel spreadsheet. Figure 8-4
shows a set of five test scores for five students. Each column holds a test score, and each
row represents the scores for one student.

 Tutorial 8-4 :
 Completing
the CSV
Reader
Application

VideoNote

 Figure 8-4 Microsoft Excel spreadsheet

 Suppose the professor wants you to write a C# application that reads the test scores from
the Excel spreadsheet and performs some operation with them. Excel, like many commercial

 8.2 String and Character Processing 495

applications, has the ability to export data to a text file. When the data in a spreadsheet is
exported, each row is written to a line, and the values of the cells are separated by commas.
For example, when the data shown in Figure 8-4 is exported, it will be written to a text file
in the following format:

 87,79,91,82,94
 72,79,81,74,88
 94,92,81,89,96
 77,56,67,81,79
 79,82,85,81,90

 This is called the comma separated value, or CSV , file format. When you save a spread-
sheet in this format, Excel saves it to a file with the .csv extension. In a C# application,
you can read a line from the file into a string variable and then use the Split method to
extract the cell values as tokens.

 To learn how this is done, you will complete the CSV Reader application. The applica-
tion’s form, which has already been created for you, is shown in Figure 8-5 . A file named
Grades.csv, which contains the test scores shown in Figure 8-4 , has also been created for
you. When you run the completed application and click the Get Scores button, it will read
the test scores from the Grades.csv file. Each student’s average test score will be calculated
and displayed in the averagesListBox control.

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named CSV
Reader in the Chap08 folder of the Student Sample Programs.

 Step 2: Open the Form1 form’s code in the code editor. Type the using System.IO;
directive shown in line 10 of Program 8-4. This directive is necessary because
we will create a StreamReader object to read input from a file.

 Step 3: Next you create the Click event handlers for the Button controls. Switch back to
the Designer and double-click the getScoresButton control. This opens the
code editor, and you will see an empty event handler named getScoresButton_
Click . Complete the event handler by typing the code shown in lines 23–74 in
Program 8-4. Let’s review this code:

 Line 23: This is the beginning of a try - catch statement. The try block appears
in lines 25–68, and the catch block appears in lines 72–73. If an exception is

averagesListBox

getScoresButton exitButton

 Figure 8-5 The CSV Reader application’s form

496 Chapter 8 More about Processing Data

thrown by any statement in the try block, the program will jump to the catch
block, and line 73 will display an error message.

 Lines 25–29: These statements declare the following variables:

 • inputFile , a StreamReader variable that will be used to read fi le input
 • line , a string variable to hold a line that has been read from the fi le
 • count , an int that will be used to count the number of students as a loop

iterates (Notice that the count variable is initialized with the value 0.)
 • total , an int that will hold the total of a student’s test scores

 • average , a double that will hold the average of a student’s test scores

 Line 32: This statement creates a char array named delim . The array has one
element containing the character ',' .

 Line 35: This statement opens the Grades.csv fi le. After the statement executes,
the inputFile variable references a StreamReader object that is associated
with the fi le.

 Line 37: This is the beginning of a while loop that reads the contents of the
Grades.csv fi le.

 Line 40: This statement increments the count variable, which keeps count of the
number of students. This statement will cause count to be set to 1 during the
loop’s fi rst iteration, 2 during the loop’s 2nd iteration, and so forth.

 Line 43: This statement reads a line from the Grades.csv fi le and assigns it to the
 line variable.

 Line 46: This statement tokenizes the line variable, using the ',' character as
a delimiter. After this statement executes, the tokens are stored in the tokens
array’s elements. (The fi rst test score is stored in tokens[0] , the second test
score is stored in tokens[1] , etc.)

 Line 49: This statement sets the total variable to 0. This is necessary because
 total is about to be used as an accumulator in calculating the total of the test
scores that are in the tokens array.

 Lines 53–56: This foreach loop steps through the elements of the tokens array.
In line 55 each element is converted to an int and then added to the total vari-
able. After the loop fi nishes, the total variable will contain the total of the test
scores that are in the tokens array.

 Line 60: This statement calculates the average of the test scores and assigns the
result to the average variable. Note that the (double) cast operator is used to
prevent integer division.

 Lines 63–64: This statement displays the average, along with the student num-
ber, in the averageListBox control.

 Line 68: This statement closes the Grades.csv fi le.

 Step 4: Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you see an empty event handler named exitButton_
Click . Complete the event handler by typing the code shown in lines 79–80 in
Program 8-4.

 Step 5: Save the project. Then press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the applica-
tion runs, click the Get Scores button. The student averages should appear as
shown in Figure 8-6 . When you are finished examining the averages, click the
 Exit button to exit the application.

 8.2 String and Character Processing 497

 Program 8-4 Completed code for Form1 in the CSV Reader application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10 using System.IO;
 11
 12 namespace CSV_Reader
 13 {
 14 public partial class Form1 : Form
 15 {
 16 public Form1()
 17 {
 18 InitializeComponent();
 19 }
 20
 21 private void getScoresButton_Click(object sender, EventArgs e)
 22 {
 23 try
 24 {
 25 StreamReader inputFile; // To read the fi le
 26 string line; // To hold a line from the fi le
 27 int count = 0; // Student counter
 28 int total; // Accumulator
 29 double average; // Test score average
 30
 31 // Create a delimiter array.
 32 char[] delim = { ',' };
 33
 34 // Open the CSV fi le.
 35 inputFile = File.OpenText("Grades.csv");
 36
 37 while (!inputFile.EndOfStream)
 38 {
 39 // Increment the student counter.
 40 count++;
 41
 42 // Read a line from the fi le.
 43 line = inputFile.ReadLine();

 Figure 8-6 Test averages displayed

498 Chapter 8 More about Processing Data

 44
 45 // Get the test scores as tokens.
 46 string[] tokens = line.Split(delim);
 47
 48 // Set the accumulator to 0.
 49 total = 0;
 50
 51 // Calculate the total of the
 52 // test score tokens.
 53 foreach (string str in tokens)
 54 {
 55 total += int.Parse(str);
 56 }
 57
 58 // Calculate the average of these
 59 // test scores.
 60 average = (double)total / tokens.Length;
 61
 62 // Display the average.
 63 averagesListBox.Items.Add("The average for student " +
 64 count + " is " + average.ToString("n1"));
 65 }
 66
 67 // Close the fi le.
 68 inputFile.Close();
 69 }
 70 catch (Exception ex)
 71 {
 72 // Display an error message.
 73 MessageBox.Show(ex.Message);
 74 }
 75 }
 76
 77 private void exitButton_Click(object sender, EventArgs e)
 78 {
 79 // Close the form.
 80 this.Close();
 81 }
 82 }
 83 }

 Checkpoint

 8.1 Declare a char variable named letter and assign the letter 'A' to the variable.

 8.2 Write a statement that displays the value of a char variable named letterGrade
in a message box.

 8.3 Write a statement that declares a char variable named lastLetter and stores the
last character of a string named alphabet in the variable.

 8.4 Write a foreach loop that displays each character of a string variable named
 serialNumber in a message box.

 8.5 Write the first line of an if statement that calls the char.IsPuncuation method
and passes the last character of a string variable named sentence as an
argument.

 8.3 Structures 499

 8.6 Write the first line of an if statement that calls the char.IsUpper method, pass-
ing a string variable named sentence and the index value for the first character
of the sentence variable as arguments.

 8.7 Write a statement that calls the char.ToUpper method, passes a char variable
named lowercase as an argument, and stores the result in a char variable named
 uppercase .

 8.8 What value does the char.ToLower function return if the argument is already
lowercase?

 8.9 Write a statement that calls the StartsWith method of a string named dessert ,
passes the string "strawberry" as an argument, and stores the result in a Boolean
variable named found .

 8.10 What value is returned by the IndexOf and LastIndexOf methods if the substring
being searched for is not found?

 8.11 A program has two string variables named str1 and str2 . Write a statement
that trims the leading and trailing whitespace characters from the str1 variable
and assigns the result to the str2 variable.

 8.12 A program has two string variables named vegetable and veggie . Write a
statement that assigns an all lowercase copy of the vegetable variable to the
 veggie variable.

 8.13 Declare a char array named delimiters and initialize it with the comma and
semicolon characters.

 8.14 What delimiter is used to separate data in a spreadsheet that has been exported to
a text file with the .csv file extension?

Structures

 CONCEPT: C# allows you to group several variables together into a single item known
as a structure.

 So far you have created applications that keep data in individual variables. Sometimes a
relationship exists between different items of data. For example, a used-car dealer’s inven-
tory system might use the variables shown in the following declaration statements:

 string make; // The car's make
 int year; // The car's year model
 double mileage; // The car's mileage

 All these variables are related because they will hold data about the same car. Their dec-
laration statements, however, do not make it clear that they belong together. To create a
relationship between variables, C# gives you the ability to package them together into a
single item known as a structure. A structure is a data type you can create that contains
one or more variables known as fields. The fields can be of different data types.

 Before a structure can be used, it must be declared. Here is the general format that we use
for declaring a structure:

 struct StructureName
 {
 Field Declarations
 }

 8.3

500 Chapter 8 More about Processing Data

 The first line of the structure declaration begins with the keyword struct , followed by
the structure name. A set of braces appears next, and the braces contain one or more field
declarations. Here is an example of a structure declaration:

 1 struct Automobile
 2 {
 3 public string make;
 4 public int year;
 5 public double mileage;
 6 }

 The name of this structure is Automobile . In this book we always begin structure names
with an uppercase letter. This is not required, but many programmers follow this practice
because it helps distinguish structure names from variable names.

 Lines 3, 4, and 5 declare three fields. Line 3 declares a string field named make , line 4
declares an int field named year , and line 5 declares a double field named mileage . Notice
that each declaration begins with the keyword public . The keyword public is an access
modifier that specifies the field can be directly accessed by statements outside the structure.

 In Chapter 2 we discussed the way that C# code is organized in namespaces, classes, and
methods. Structure declarations can be written in a variety of places. For example, a
structure declaration can appear in these locations:

 • Outside the application’s namespace
 • Inside the application’s namespace
 • Inside a class
 • Inside another structure

 In this book we always declare structures inside an application’s namespace but not inside
of a class. Figure 8-7 shows where, in a form’s code, that we typically write structure

 NOTE: Structures in C# are capable of much more than we discuss in this book. For
example, in addition to declaring fields, you can also write methods inside of structures.
We use structures for their simplest purpose only: to encapsulate a set of variables into
a single item. If you find yourself using a structure for more than this, you should prob-
ably use a class instead. We discuss classes in Chapter 9 .

We will write structure
declarations here.

 Figure 8-7 Where we typically write structure declarations

 8.3 Structures 501

declarations. In the figure we have written the declaration of the Automobile structure
inside the application’s namespace but not inside the Form1 class.

 Keep in mind that a structure declaration does not create anything in memory. It simply
tells the C# compiler what the structure is made of. Before you can use the structure to
store data, you must create an instance of the structure in memory. (In programming
terms, an instance and an object are the same thing. When you create an instance of a
structure, you are creating an object.)

 At the beginning of Chapter 7 , we discussed value types and reference types. Structures
are value types, so creating an instance of a structure is as simple as declaring a variable.
For example, suppose we want to create an instance of the Automobile structure and we
want the name of the instance to be sportsCar . We would write this:

 Automobile sportsCar;

 After this statement executes, an instance of the Automobile structure exists in memory.
The name of the instance is sportsCar . As illustrated in Figure 8-8 , the sprortsCar
object has three fields: make , year , and mileage .

make

year

mileage

sportsCar object

 Figure 8-8 The sportsCar object as an instance of the Automobile structure

 You can create multiple instances of a structure with a declaration statement, as shown here:

 Automobile sportsCar, pickupTruck;

 This statement creates two instances of the Automobile structure. The objects are named
 sportsCar and pickupTruck . As illustrated in Figure 8-9 , each object has its own make ,
 year , and mileage fields.

make

year

mileage

sportsCar object

make

year

mileage

pickupTruck object

 Figure 8-9 Two instances of the Automobile structure

 Using the new Operator to Create Structure Instances
 When you create a structure object with a simple declaration statement, as previously
shown, the object’s fields are uninitialized, and if you attempt to use any of them before
assigning them a value, a compiler error occurs. As an alternative, you can use the new
operator to create an instance of a structure, as shown here:

 Automobile sportsCar = new Automobile();

502 Chapter 8 More about Processing Data

 This is the recommended technique for creating structure instances because the new oper-
ator not only creates the instance in memory, it also initializes the object’s fields with the
default value of 0. (If the structure contains any fields that are reference variables, they are
initialized with the special value null .) Here is an example of creating two instances of
the Automobile structure using the new operator:

 Automobile sportsCar = new Automobile();
 Automobile pickupTruck = new Automobile();

 Accessing a Structure’s Fields
 Once you have created an instance of a structure, you can access its fields using the dot
operator (a period). For example, suppose an application contains the Automobile struc-
ture declaration previously shown and the following code appears in a method:

 1 Automobile sportsCar = new Automobile();
 2 sportsCar.make = "Ford Mustang";
 3 sportsCar.year = 1965;
 4 sportsCar.mileage = 67500.0;

 Line 1 creates an instance of the Automobile structure in memory. The object’s name is
 sportsCar . Line 2 assigns the string "Ford Mustang" to the sportsCar object’s make
field. Line 3 assigns the value 1965 to the sportsCar object’s year field. Line 4 assigns
the value 67,500.0 to the sportsCar object’s mileage field.

 The following code shows another example using the same sportsCar object. These
statements display the values of the object’s fields in message boxes.

 1 MessageBox.Show(sportsCar.make);
 2 MessageBox.Show(sportsCar.year.ToString());
 3 MessageBox.Show(sportsCar.mileage.ToString());

 The following is another example. This statement displays a message such as "1965 Ford
Mustang with 67500 miles."

 MessageBox.Show(sportsCar.year + " " + sportsCar.make +
 " with " + sportsCar.mileage + " miles.");

 Assigning One Structure Object to Another
 You can use the assignment operator (=) to assign one structure object to another. For
example, assume that car1 and car2 are both instances of the Automobile structure. The
following statement assigns car1 to car2 :

 car2 = car1;

 After this statement executes, the car2 object’s fields contain the same values as the car1
object’s fields.

 Passing Structure Objects to Methods
 As with other types of objects, you can pass a structure object as an argument to a method.
The following code shows a method named DisplayAuto that has been written to accept
an instance of the Automobile structure as an argument:

 1 private void DisplayAuto(Automobile auto)
 2 {
 3 MessageBox.Show(auto.year + " " + auto.make +
 4 " with " + auto.mileage + " miles.");
 5 }

 8.3 Structures 503

 Notice in line 1 that the method has a parameter variable named auto , and its data type
is Automobile . When we call this method, we pass an Automobile object as an argu-
ment, as shown in the following code:

 1 // Create an instance of the Automobile structure.
 2 Automobile sportsCar = new Automobile();
 3
 4 // Assign values to the object's fields.
 5 sportsCar.make = "Chevy Corvette";
 6 sportsCar.year = 1970;
 7 sportsCar.mileage = 50000.0;
 8
 9 // Display the object's fields.
 10 DisplayAuto(sportsCar);

 In line 10 the sportsCar object is passed as an argument to the DisplayAuto method.
Inside the DisplayAuto method, the auto parameter contains a copy of the sportsCar
object.

 Structure objects can be passed by value or by reference. Normally, structure objects are
passed by value. The parameter variable contains a copy of the argument, and any
changes that are made to the parameter do not affect the original argument. If the
receiving method needs to change the contents of the original argument, however, the
 ref or out keyword can be used in the parameter declaration. The following code
shows a method that uses a reference parameter of the Automobile type. Assume that
the application’s form has TextBox controls named makeTextBox , yearTextBox , and
 mileageTextBox .

 1 private void GetData(ref Automobile auto)
 2 {
 3 try
 4 {
 5 // Get the data from the TextBoxes.
 6 auto.make = makeTextBox.Text;
 7 auto.year = int.Parse(yearTextBox.Text);
 8 auto.mileage = double.Parse(mileageTextBox.Text);
 9 }
 10 catch (Exception ex)
 11 {
 12 // Display the exception message.
 13 MessageBox.Show(ex.Message);
 14 }
 15 }

 Notice that the auto parameter is declared with the ref keyword. The statements in lines
6–8 get data from the TextBox controls and assign that data to the fields of the auto
parameter. Since auto is a ref parameter, the values are actually assigned to the object
that is passed as an argument to the method.

 When we call this method, we pass an Automobile object by reference, as shown here:

 1 // Create an instance of the Automobile structure.
 2 Automobile car = new Automobile();
 3
 4 // Get data for the object.
 5 GetData(ref car);

 After the method executes, the car object contains the data that was entered into the
TextBox controls.

504 Chapter 8 More about Processing Data

 Comparing Structure Objects
 You cannot perform comparison operations directly on structure objects. For example,
assume that sportsCar and raceCar are instances of the Automobile structure. The fol-
lowing statement will cause an error.

 if (sportsCar == raceCar) // Error!

 In order to compare two structure objects, you must compare the individual fields, as
shown in the following code.

 if (sportsCar.make == raceCar.make &&
 sportsCar.year == raceCar.year &&
 sportsCar.mileage == raceCar.mileage)
 {
 MessageBox.Show("The two are equal.");
 }

 Arrays of Structure Objects
 Structure objects can be stored in an array. For example, assume the Automobile struc-
ture previously shown exists in an application. The following code creates an array of five
 Automobile objects:

 const int SIZE = 5;
 Automobile[] cars = new Automobile[SIZE];

 When you create a structure array, each element of the array is a structure instance and
the fields of each instance are initialized to 0. (If any field is a reference variable, it is ini-
tialized to the value null .)

 Each element of a structure array may be accessed through a subscript. For example,
 cars[0] is the first object in the array, cars[1] is the second, and so forth. To access a
field of any element, simply place the dot operator and field name after the subscript. For
example, the following expression refers to the mileage member of cars[2] :

 cars[2].mileage

 The following for loop steps through the cars array, displaying the data stored in each
element:

 for (int index = 0; index < cars.Length; index++)
 {
 MessageBox.Show(cars[index].year + " " +
 cars[index].make + " with " +
 cars[index].mileage + " miles.");
 }

 You can also use the foreach loop to iterate over all of the elements in a structure array,
as shown in the following code:

 foreach (Automobile aCar in cars)
 {
 MessageBox.Show(aCar.year + " " +
 aCar.make + " with " +
 aCar.mileage + " miles.");
 }

 Storing Structure Objects in a List
 In Chapter 7 we discussed the List class, which is a container for storing a collection of
objects. Here is an example of how you would create a List that can hold Automobile objects:

 List<Automobile> carList = new List<Automobile>();

 8.3 Structures 505

 This statement creates a List object, referenced by the carList variable. Notice that the
word Automobile is written inside angled brackets, <>, immediately after the word List .
This specifies that the List can hold only objects of the Automobile data type.

 To add a structure object to a List , you use the Add method. The following code shows
an example:

 1 // Create a List to hold Automobile objects.
 2 List<Automobile> carList = new List<Automobile>();
 3
 4 // Create an instance of the Automobile structure.
 5 Automobile sportsCar = new Automobile();
 6
 7 // Assign values to the object's fields.
 8 sportsCar.make = "Chevy Corvette";
 9 sportsCar.year = 1970;
 10 sportsCar.mileage = 50000.0;
 11
 12 // Add the object to the List.
 13 carList.Add(sportsCar);

 The statement in line 2 creates a List named carList that can hold Automobile objects.
Line 5 creates an instance of the Automobile structure named sportsCar , and lines 8–10
assign values to the object’s fields. Line 13 adds the object to the List .

 Keep in mind that structure instances are value type objects, and when you add a value
type object to a List , the List will contain a copy of the object. For example look at the
following code:

 1 // Create a List to hold Automobile objects.
 2 List<Automobile> carList = new List<Automobile>();
 3
 4 // Create an instance of the Automobile structure.
 5 Automobile sportsCar = new Automobile();
 6
 7 // Assign values to the object's fields.
 8 sportsCar.make = "Chevy Corvette";
 9 sportsCar.year = 1970;
 10 sportsCar.mileage = 50000.0;
 11
 12 // Add the object to the List.
 13 carList.Add(sportsCar);
 14
 15 // Assign new values to the object's fields.
 16 sportsCar.make = "Ford Mustang";
 17 sportsCar.year = 1965;
 18 sportsCar.mileage = 67500.0;
 19
 20 // Add the object to the List.
 21 carList.Add(sportsCar);

 The statement in line 2 creates a List named carList that can hold Automobile
objects. Lines 5–10 create an Automobile object named sportsCar and assign values
to the object’s fields. Line 13 adds the sportsCar object to the List . When line 13
executes, a copy of the sportsCar object is made and stored in the List . (This happens
because the sportsCar object is a value type object.) At this point, two instances of the
 Automobile structure exist: the sportsCar object and the copy of the sportsCar
object that is in the List .

 Lines 16–18 assign new values to the sportsCar object’s fields, and then line 21 adds the
 sportsCar object to the List again. Once more, a copy of the sportsCar object is made

506 Chapter 8 More about Processing Data

and added to the List . At this point, three instances of the Automobile structure exist:
the sportsCar object and the two objects that are in the List .

 Let’s look at a complete program that demonstrates structure objects can be added to a
 List . In the Chap08 folder of this book’s Student Sample Programs, you will find a
project named Car List . Figure 8-10 shows the application’s form.

carListBox

addButton displayButton

mileageTextBox

yearTextBox

makeTextBox

 Figure 8-10 The Car List application’s form

 When you run the application, you can enter data about a car into the TextBox con-
trols. When you click the addButton control, that data is assigned to an Automobile
object and then added to a List . You can do this as many times as you wish. When
you click the displayButton control, the data from each object in the List is dis-
played in the carListBox control. Figure 8-11 shows an example of the application’s
form after four objects have been added to the List and the displayButton control
has been clicked.

 Figure 8-11 The Car List application’s form with data displayed

 Program 8-5 shows the application’s Form1 code. Let’s take a closer look:

 Lines 13–18: The Automobile structure is declared in these lines.

 Line 23: This statement creates a List that can hold Automobile objects. Notice that
the List is declared as a field in the Form1 class. All the methods in the class can
access it.

 8.3 Structures 507

 Lines 33–47: The GetData method appears in these lines. The method accepts an
 Automobile object, by reference, as an argument. The data that has been entered into the
form’s TextBox controls is assigned to the object’s fields.

 Lines 49–67: The addButton_Click event handler appears in these lines. Here is a sum-
mary of the event handler’s code:

 • Line 52 creates the car object, which is an instance of the Automobile structure.
 • Line 55 calls the GetData method, passing the car object, by reference, as an argu-

ment. After this statement executes, the car object’s fields contain the data that was
entered into the form’s TextBoxes by the user.

 • Line 58 adds a copy of the car object to the carList .
 • Lines 61–63 clear the contents of the TextBoxes.
 • Line 66 gives the focus to the makeTextBox control.

 Lines 69–87: The displayButton_Click event handler appears in these lines. Here is a
summary of the event handler’s code:

 • Line 72 declares a string variable named output . This is used to hold a line of
output that is displayed in the ListBox control.

 • Line 75 clears the ListBox control’s current contents.
 • The foreach loop in lines 78–86 displays data about each object in the carList .

 • The statement in lines 81–82 creates a line of output and assigns it to the output
variable.

 • Line 85 adds the output variable to the carListBox control.

 Program 8-5 Code for Form1 in the Car List application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Car_List
 12 {
 13 struct Automobile
 14 {
 15 public string make;
 16 public int year;
 17 public double mileage;
 18 }
 19
 20 public partial class Form1 : Form
 21 {
 22 // Create a List as a fi eld.
 23 private List<Automobile> carList = new List<Automobile>();
 24
 25 public Form1()
 26 {
 27 InitializeComponent();
 28 }
 29
 30 // The GetData method gets the data entered
 31 // by the user and assigns it to the parameter
 32 // object's fi elds.
 33 private void GetData(ref Automobile auto)

508 Chapter 8 More about Processing Data

 34 {
 35 try
 36 {
 37 // Get the data from the TextBoxes.
 38 auto.make = makeTextBox.Text;
 39 auto.year = int.Parse(yearTextBox.Text);
 40 auto.mileage = double.Parse(mileageTextBox.Text);
 41 }
 42 catch (Exception ex)
 43 {
 44 // Display the exception message.
 45 MessageBox.Show(ex.Message);
 46 }
 47 }
 48
 49 private void addButton_Click(object sender, EventArgs e)
 50 {
 51 // Create an instance of the Automobile structure.
 52 Automobile car = new Automobile();
 53
 54 // Get the data entered by the user.
 55 GetData(ref car);
 56
 57 // Add the car object to the List.
 58 carList.Add(car);
 59
 60 // Clear the TextBoxes.
 61 makeTextBox.Clear();
 62 yearTextBox.Clear();
 63 mileageTextBox.Clear();
 64
 65 // Reset the focus.
 66 makeTextBox.Focus();
 67 }
 68
 69 private void displayButton_Click(object sender, EventArgs e)
 70 {
 71 // Declare a string to hold a line of output.
 72 string output;
 73
 74 // Clear the ListBox's current contents.
 75 carListBox.Items.Clear();
 76
 77 // Display the car info in the ListBox.
 78 foreach (Automobile aCar in carList)
 79 {
 80 // Make a line of output.
 81 output = aCar.year + " " + aCar.make +
 82 " with " + aCar.mileage + " miles.";
 83
 84 // Add the line of output to the ListBox.
 85 carListBox.Items.Add(output);
 86 }
 87 }
 88 }
 89 }

 In Tutorial 8-5 you complete a phone book application that uses a List of structure
objects.

 8.3 Structures 509

 Tutorial 8-5:
 Completing the Phonebook Application

 In this tutorial you complete the Phonebook application. When the application is com-
plete, it will let you select a person’s name from a ListBox control, and then it will
display that person’s phone number. Figure 8-12 shows an example of how the form
will appear at run time. In the figure, Kevin Brown has been selected in the ListBox
control, and Kevin’s phone number is displayed in a Label control. The application’s
form has already been created for you and is shown in Figure 8-13 with the names of
some of its controls.

 Tutorial 8-5 :
 Completing
the
 Phonebook
Application

VideoNote

 Figure 8-12 The Phonebook application’s form with a name selected

nameListBox
phoneLabel

exitButton

 Figure 8-13 The Phonebook application’s form

 Before you start writing code, let’s go over a summary of how the application will work.
A file named PhoneList.txt, containing several names and corresponding phone numbers,
has been created for you. (It is located in the project’s bin \ debug folder.) Its contents are
shown in Figure 8-14 . Notice that each line in the file contains a name, followed by a
comma, followed by a phone number.

 When the application starts, the form’s Load event handler calls a method named
 ReadFile . The ReadFile method reads the contents of the PhoneList.txt file. Each

510 Chapter 8 More about Processing Data

line that is read from the file will be tokenized, using the comma character as a delim-
iter. This will result in two string tokens: one containing a person’s name and the
other containing a phone number. The tokens are stored in an instance of the following
 PhoneBookEntry structure:

 struct PhoneBookEntry
 {
 public string name;
 public string phone;
 }

 The PhoneBookEntry object is then added to a List . When the ReadFile method is finished,
the List will contain a PhoneBookEntry object for each line in the PhoneList.txt file.

 The Load event handler then calls another method named DisplayNames . The
 DisplayNames method steps through the List , getting the name field of each object and
adding the name to the ListBox control. When the DisplayNames method is finished, the
ListBox control will display all the names that are contained in the List .

 When the user clicks a name in the ListBox control, a SelectedIndexChanged event oc-
curs. You are to write an event handler that responds to this event. The event handler gets
the index of the selected item in the ListBox control, and it uses that index to retrieve an
object from the List . The object contains the phone number for the selected name, which
is displayed in a Label control.

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named
 Phonebook in the Chap08 folder of the Student Sample Programs.

 Step 2: Open the Form1 form’s code in the code editor. Type the using System.IO;
directive shown in line 10 of Program 8-6. This directive is necessary because
we will create a StreamReader object to read input from a file.

 Step 3: Write the declaration of the PhoneBookEntry structure, shown in lines 14–18.
Make sure you write the declaration inside the Phonebook namespace, exactly
as shown in Program 8-6.

 Step 4: Next you write the comment and the declaration for phoneList , which appears
in lines 22–24 in Program 8-6. Notice that phoneList is declared as a field in
the Form1 class. It is available to all the methods in the class.

 Step 5: Write the comments and code for the ReadFile method, shown in lines 31–72
of Program 8-6. The ReadFile method opens the PhoneList.txt file. The while
loop that begins in line 51 iterates until the end of the file is reached. In each
iteration of the loop, the following lines of code are executed:

 Figure 8-14 The contents of the PhoneList.txt file

 8.3 Structures 511

 Line 54: This statement reads a line from the fi le and assigns it to the line
variable.

 Line 57: This statement tokenizes the line variable, using the comma character as a
delimiter. The tokens are assigned to the tokens array. (After this statement exe-
cutes, tokens[0] will contain a name and tokens[1] will contain a phone number.)

 Lines 60–61: These statements assign the tokens to the name and phone fi elds of
the entry object (which is an instance of the PhoneBookEntry structure).

 Line 64: This statement adds the entry object to the phoneList collection.

 Figure 8-15 illustrates the steps performed in these lines of code. After the loop
is fi nished, phoneList will contain a PhoneBookEntry object for each line in
the PhoneList.txt fi le.

 Step 6: Write the comments and code for the DisplayNames method, shown in lines
74–82 of Program 8-6. The foreach loop in line 78 steps through all the objects
in phoneList . For each object in phoneList , line 80 adds the name field to the
 nameListBox control.

 Note that the names are added to the ListBox control in the same order that they
appear in phoneList . For example,

 • The name “Katie Allen” is at index 0 in the ListBox, and the object contain-
ing “Katie Allen” is at index 0 in phoneList .

 • The name “Jill Ammons” is at index 1 in the ListBox, and the object contain-
ing “Jill Ammons” is at index 1 in phoneList .

 Figure 8-16 illustrates how the objects in phoneList and the names in the
 nameListBox control are related by their indexes. You take advantage of this rela-
tionship in Step 7 when you write the code to retrieve an object from phoneList .

Katie Allen,555-1234
Jill Ammons,555-5678
Kevin Brown,555-9012
Elisa Garcia,555-3456
Jeff Jenkins,555-7890
Leo Killian,555-1122
Marcia Potemkin,555-3344
Kelsey Rose,555-5566

Katie Allen,555-1234
Katie Allen

555-1234

entry object phoneList object

Katie Allen

555-1234

Line 54 reads a line from

the line variable.

Lines 57 - 61 tokenize the
the line variable and assign

the tokens to the entry

Line 64 adds the entry
object to the phoneList

collection.

 Figure 8-15 A summary of lines 54–64

nameListBox control

Katie Allen
Jill Ammons
Kevin Brown
Elisa Garcia
Jeff Jenkins
Leo Killian
Marcia Potemkin
Kelsey Rose

phoneList object

Katie Allen

555-1234

Jill Ammons

555-5678

Kevin Brown

555-9012

and so forth...

index 0

index 1

index 2

 Figure 8-16 Objects in phoneList and names in nameListBox as related by their indexes

512 Chapter 8 More about Processing Data

 Step 7: Next you create the form’s Load event handler. Switch back to the Designer and
double-click any part of the form that does not contain a control. This opens
the code editor, and you will see an empty event handler named Form1_Load .
Complete the event handler by typing the code shown in lines 86–90 in Program
8-6. The statement in line 87 calls the ReadFile method, and line 90 calls the
 DisplayNames method.

 Step 8: Now you create the SelectedIndexChange event handler for the nameListBox
control. Switch back to the Designer and double-click the nameListBox con-
trol. This opens the code editor, and you will see an empty event handler named
 nameListBox_ SelectedIndexChanged . Complete the event handler by typ-
ing the code shown in lines 95–99 in Program 8-6.

 We mentioned in Step 6 that the names in the ListBox and the objects in phoneList
are related by their indexes. When the user selects a name from the ListBox, all
we have to do is get that item’s index and then use that same index to retrieve
the corresponding object from phoneList . That is exactly what happens in this
event handler. Line 96 gets the index of the selected item in the nameListBox
control and assigns it to the index variable. Line 99 uses the index variable to
get an object from phoneList . The retrieved object’s phone fi eld is assigned to
 phoneLabel.Text .

 Step 9: Switch your view back to the Designer and double-click the exitButton con-
trol. In the code editor you will see an empty event handler named exitButton_
Click . Complete the event handler by typing the code shown in lines 104–105
in Program 8-6.

 Step 10: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the application
runs, select various names in the ListBox to confirm that the application works
properly. When you are finished, click the Exit button to exit the application.

 Program 8-6 Completed code for Form1 in the Phonebook application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10 using System.IO;
 11
 12 namespace Phonebook
 13 {
 14 struct PhoneBookEntry
 15 {
 16 public string name;
 17 public string phone;
 18 }
 19

 NOTE: When the items in two data structures are related by their indexes, it
is said that a parallel relationship exists between the data structures.

 8.3 Structures 513

 20 public partial class Form1 : Form
 21 {
 22 // Field to hold a list of PhoneBookEntry objects.
 23 private List<PhoneBookEntry> phoneList =
 24 new List<PhoneBookEntry>();
 25
 26 public Form1()
 27 {
 28 InitializeComponent();
 29 }
 30
 31 // The ReadFile method reads the contents of the
 32 // PhoneList.txt fi le and stores it as PhoneBookEntry
 33 // objects in the phoneList.
 34 private void ReadFile()
 35 {
 36 try
 37 {
 38 StreamReader inputFile; // To read the fi le
 39 string line; // To hold a line from the fi le
 40
 41 // Create an instance of the PhoneBookEntry structure.
 42 PhoneBookEntry entry = new PhoneBookEntry();
 43
 44 // Create a delimiter array.
 45 char[] delim = { ',' };
 46
 47 // Open the PhoneList fi le.
 48 inputFile = File.OpenText("PhoneList.txt");
 49
 50 // Read the lines from the fi le.
 51 while (!inputFile.EndOfStream)
 52 {
 53 // Read a line from the fi le.
 54 line = inputFile.ReadLine();
 55
 56 // Tokenize the line
 57 string[] tokens = line.Split(delim);
 58
 59 // Store the tokens in the entry object.
 60 entry.name = tokens[0];
 61 entry.phone = tokens[1];
 62
 63 // Add the entry object to the List.
 64 phoneList.Add(entry);
 65 }
 66 }
 67 catch (Exception ex)
 68 {
 69 // Display an error message.
 70 MessageBox.Show(ex.Message);
 71 }
 72 }
 73
 74 // The DisplayNames method displays the list of names
 75 // in the namesListBox control.
 76 private void DisplayNames()
 77 {
 78 foreach (PhoneBookEntry entry in phoneList)

514 Chapter 8 More about Processing Data

 Checkpoint

 8.15 When a structure is declared, what is created in memory?

 8.16 What does the keyword public specify about a field declared in a structure?

 8.17 When you create an instance of a structure, what are you creating?

 8.18 What effect does the new operator have when creating an instance of a structure?

 8.19 Once you have created an instance of a structure, how can you access its fields?

 8.20 Suppose an application contains a structure named Engine and that motor1 and
 motor2 are instances of the Engine structure. Write a statement that assigns motor1
to motor2 .

 8.21 Write a statement that creates an array named motors that can hold 100 Engine
objects.

 8.22 What causes a parallel relationship to exist between data structures?

Enumerated Types

 CONCEPT: An enumerated data type is a programmer-defined data type. It consists of
predefined constants, known as enumerators, that represent integer values.

 8.4

 79 {
 80 nameListBox.Items.Add(entry.name);
 81 }
 82 }
 83
 84 private void Form1_Load(object sender, EventArgs e)
 85 {
 86 // Read the PhoneList.txt fi le.
 87 ReadFile();
 88
 89 // Display the names.
 90 DisplayNames();
 91 }
 92
 93 private void nameListBox_SelectedIndexChanged(object sender, EventArgs e)
 94 {
 95 // Get the index of the selected item.
 96 int index = nameListBox.SelectedIndex;
 97
 98 // Display the corresponding phone number.
 99 phoneLabel.Text = phoneList[index].phone;
 100 }
 101
 102 private void exitButton_Click(object sender, EventArgs e)
 103 {
 104 // Close the form.
 105 this.Close();
 106 }
 107 }
 108 }

 8.4 Enumerated Types 515

 Sometimes, in a program, you need a way to represent values that cannot be stored in
memory in a straightforward manner. For example, suppose you are writing a pro-
gram that works with the days of the week (Sunday, Monday, Tuesday, etc.), and you
need some way to represent each day of the week in memory. One solution is to let
the integers 0 through 6 represent the days of the week; 0 could represent Sunday, 1
could represent Monday, and so forth. Although this approach will work, it has some
drawbacks.

 For example, it may not be clear to anyone else reading the code that the values 0
through 6 represent the days of the week. Also, you might decide that Sunday is the
first day of the week, whereas someone else assumes that Monday is the first day of
the week. When that other person sees the value 0, he or she might think that it repre-
sents Monday.

 A better solution for dealing with this type of data is to create an enumerated data type.
An enumerated data type is a data type that you can create. When you create an enumer-
ated data type, you specify a set of symbolic values that belong to that data type. Here is
an example of an enumerated data type declaration:

 enum Day { Sunday, Monday, Tuesday, Wednesday,
 Thursday, Friday, Saturday }

 An enumerated data type declaration begins with the keyword enum , followed by the
name of the type, followed by a list of identifiers inside braces. The example declara-
tion creates an enumerated data type named Day . The identifiers Sunday , Monday ,
 Tuesday , Wednesday , Thursday , Friday , and Saturday , which are listed inside the
braces, are known as enumerators . They represent the values that belong to the Day
data type.

 The enumerators are constants that represent integer values. When you declare an enu-
merated type, the enumerators are assigned integer values, starting with 0. For example,
in the Day data type, the Day.Sunday enumerator is assigned the value 0, the Day.Monday
enumerator is assigned the value 1, and so forth.

 An enum declaration can appear in any of the following places:

 • Outside the application’s namespace
 • Inside the application’s namespace
 • Inside a class

 In this book we always write enum declarations in the same region that we write structure
declarations: inside an application’s namespace but not inside a class.

 Once you have created an enumerated data type in your program, you can declare varia-
bles of that type. For example, the following statement declares workDay as a variable of
the Day type:

 Day workDay;

 We refer to this as an enum variable. Because workDay is a variable of the Day type, the
values that we can assign to it are the Day type’s enumerators. For example, the following
statement assigns the value Day.Wednesday to the workDay variable:

 workDay = Day.Wednesday;

 Notice that we assigned Day.Wednesday instead of just Wednesday . The name
 Day.Wednesday is the fully qualified name of the Day type’s Wednesday enumerator.

 NOTE: Notice that the enumerators are not enclosed in quotation marks; therefore,
they are not strings. Enumerators must be legal C# identifiers.

516 Chapter 8 More about Processing Data

You have to use an enumerator’s fully qualified name because it is possible to have the
same enumerator appear in multiple enumerated types. Here is another example:

 Day weekendDay = Day.Saturday;

 This statement declares a Day variable named weekendDay and initializes it with the value
 Day.Saturday .

 The following code shows another example. (Assume the application’s form has a radio
button control named mondayRadioButton .)

 1 Day selectedDay;
 2 if (mondayRadioButton.Checked)
 3 {
 4 selectedDay = Day.Monday;
 5 }

 In this code, line 1 declares a Day variable named selectedDay . The if statement in line
2 determines whether the mondayRadioButton control is selected. If it is, the statement in
line 4 assigns Day.Monday to the selectedDay variable.

 You can make comparisons with enum variables and enumerators. The following code
shows an example. (Assume selectedDay is a Day variable.)

 1 if (selectedDay == Day.Wednesday)
 2 {
 3 MessageBox.Show("Halfway through the week!");
 4 }

 The if statement in line 1 determines whether the selectedDay variable is equal to
 Day.Wednesday . If it is, line 3 displays a message box.

 The following code shows how an enum variable can be tested in a switch statement.
(Assume selectedDay is a Day variable.)

 1 switch (selectedDay)
 2 {
 3 case Day.Sunday:
 4 MessageBox.Show("Rest.");
 5 break;
 6 case Day.Monday:
 7 MessageBox.Show("Back to work.");
 8 break;
 9 case Day.Tuesday:
 10 MessageBox.Show("Just a regular work day.");
 11 break;
 12 case Day.Wednesday:
 13 MessageBox.Show("Halfway through the week.");
 14 break;
 15 case Day.Thursday:
 16 MessageBox.Show("Almost there.");
 17 break;
 18 case Day.Friday:
 19 MessageBox.Show("Last day!");
 20 break;
 21 case Day.Saturday:
 22 MessageBox.Show("Sleep late today.");
 23 break;
 24 }

 In line 1 the switch statement tests the selectedDay variable. Depending on the value of
the variable, the program branches to the appropriate case statement.

 8.4 Enumerated Types 517

 Using an Enumerator’s or enum Variable’s
 ToString Method
 Enumerators and enum variables have a ToString method. When you call an enumera-
tor’s ToString method, it returns the name of the enumerator as a string. For example,
the following code will display the string "Sunday" in a message box:

 MessageBox.Show(Day.Sunday.ToString());

 When you call an enum variable’s ToString method, it returns the name of the value that
the variable contains, as a string. For example, the following code will display the string
 "Thursday" in a message box:

 Day today = Day.Thursday;
 MessageBox.Show(today.ToString());

 When you use the + operator with a string and an enum variable, the enum variable’s
 ToString method is implicitly called. (The same thing happens when you use the + oper-
ator with an int variable. The int variable’s ToString method is implicitly called.) Here
is an example:

 Day today = Day.Thursday;
 MessageBox.Show("Today is " + today);

 This code will display the string "Today is Thursday" in a message box.

 In Tutorial 8-6 you complete an application that uses an enumerated type to represent the
colors of the spectrum.

 Tutorial 8-6:
 Completing the Color Spectrum Application

 The mnemonic ROY G BIV is commonly used to help remember the following sequence
of colors of the visible spectrum: red, orange, yellow, green, blue, indigo, and violet. In
this tutorial you complete the Color Spectrum application, which shows these colors. The
application will display the name of a color if you click it.

 The application’s form, which has already been created for you, is shown in Figure 8-17 .
The colors are actually a set of Label controls with their BackColor properties set to the
appropriate color.

 Tutorial 8-6 :
 Completing
the Color
Spectrum
Application

VideoNote

orangeLabel yellowLabel greenLabel blueLabel indigoLabel

violetLabelredLabel

colorLabel

 Figure 8-17 The Color Spectrum application’s form

518 Chapter 8 More about Processing Data

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Color
Spectrum in the Chap08 folder of the Student Sample Programs.

 Step 2: Open the Form1 form’s code in the code editor. Write the declaration of the
 Spectrum enumerated type, shown in lines 13–17 of Program 8-7. Make sure
you write the declaration inside the Color_Spectrum namespace, exactly as
shown in Program 8-7. Notice that the enumerators in the Spectrum type rep-
resent the colors with which you will be working.

 Step 3: Write the comments and code for the DisplayColor method, shown in lines
26–31 of Program 8-6. Notice in line 28 that this method has a parameter vari-
able of the Spectrum type. When we call this method, we pass a Spectrum
enumerator as an argument. In line 30, the name of the enumerator is displayed
in the colorLabel control.

 Step 4: Next you create the Click event handlers for the Label controls. Switch back to
the Designer and double-click the redLabel control. This opens the code edi-
tor, and you will see an empty event handler named redLabel_Click . Com-
plete the event handler by typing the statement shown in line 35 in Program 8-7.
This statement calls the DisplayColor method, passing the Spectrum.Red
eumerator as an argument.

 Step 5: Repeat this process for the rest of the Label controls, writing the remaining
Click event handlers shown in Program 8-7.

 Step 6: Save the project. Then, press % on the keyboard, or click the Start Debug-
ging button () on the toolbar to compile and run the application. When the
application runs, click the colors shown on the form to confirm that the appli-
cation works properly. When you are finished, click the Exit button to exit the
application.

 Program 8-7 Completed code for Form1 in the Color Spectrum application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Color_Spectrum
 12 {
 13 enum Spectrum
 14 {
 15 Red, Orange, Yellow, Green,
 16 Blue, Indigo, Violet
 17 }
 18
 19 public partial class Form1 : Form
 20 {
 21 public Form1()
 22 {
 23 InitializeComponent();
 24 }
 25

 8.4 Enumerated Types 519

 26 // The DisplayColor method displays the
 27 // name of a color.
 28 private void DisplayColor(Spectrum color)
 29 {
 30 colorLabel.Text = color.ToString();
 31 }
 32
 33 private void redLabel_Click(object sender, EventArgs e)
 34 {
 35 DisplayColor(Spectrum.Red);
 36 }
 37
 38 private void orangeLabel_Click(object sender, EventArgs e)
 39 {
 40 DisplayColor(Spectrum.Orange);
 41 }
 42
 43 private void yellowLabel_Click(object sender, EventArgs e)
 44 {
 45 DisplayColor(Spectrum.Yellow);
 46 }
 47
 48 private void greenLabel_Click(object sender, EventArgs e)
 49 {
 50 DisplayColor(Spectrum.Green);
 51 }
 52
 53 private void blueLabel_Click(object sender, EventArgs e)
 54 {
 55 DisplayColor(Spectrum.Blue);
 56 }
 57
 58 private void indigoLabel_Click(object sender, EventArgs e)
 59 {
 60 DisplayColor(Spectrum.Indigo);
 61 }
 62
 63 private void violetLabel_Click(object sender, EventArgs e)
 64 {
 65 DisplayColor(Spectrum.Violet);
 66 }
 67 }
 68 }

 Getting an Enumerator’s or enum Variable’s
Integer Value
 You cannot assign an enumerator directly to an int variable, but you can convert an
enumerator to its underlying integer type by using a cast operator. Here is an example:

 int value = (int)Day.Friday;

 This statement declares an int variable named value and initializes it with the integer
value of Day.Friday . After this statement executes, value will equal 5. Here is another
example:

 Day workDay = Day.Monday;
 int value = (int)workDay;

520 Chapter 8 More about Processing Data

 The first statement declares a Day variable named workDay , initialized with Day.Monday .
The second statement declares an int variable named value and initializes it with
the integer value of the workDay variable. After this statement executes, value will
equal 1.

 Specifying Integer Values for Enumerators
 By default, the enumerators in an enumerated data type are assigned the integer values 0,
1, 2, and so forth. If this is not appropriate, you can specify the values to be assigned, as
in the following example.

 enum Water { Freezing = 32, Boiling = 212 }

 In this example, the Water.Freezing enumerator is assigned the integer value 32 and the
 Water.Boiling enumerator is assigned the integer value 212.

 The integer values that you assign to enumerators do not have to be unique. For
example, the following code shows an enumerated type named MonthDays . Its enu-
merators are January , February , March , and so forth. Notice that the values
assigned to the enumerators are the days of the months (January has 31 days, Febru-
ary has 28 days, etc.). This data type might appear in an application that uses the
days of each month.

 1 enum MonthDays
 2 {
 3 January = 31, February = 28, March = 31,
 4 April = 30, May = 31, June = 30,
 5 July = 31, August = 31, September = 30,
 6 October = 31, November = 30, December = 31
 7 }

 Comparing Enumerators and enum Variables
 Previously you saw that enumerators and enum variables can be compared using the
equality operator (==). You can also compare enumerators and enum variables with the
other relational operators. For example, using the Day data type we have been discussing,
the following expression is true.

 Day.Friday > Day.Monday

 The expression is true because the enumerator Day.Friday is stored in memory as 5 and
the enumerator Day.Monday is stored as 1. The following code displays the message
 "Friday is greater than Monday."

 1 if (Day.Friday > Day.Monday)
 2 {
 3 MessageBox.Show("Friday is greater than Monday.");
 4 }

 The following code shows another example that compares two enum variables. This code
displays the message "Friday is greater than Monday".

 1 Day day1 = Day.Friday;
 2 Day day2 = Day.Monday;
 3
 4 if (day1 > day2)
 5 {
 6 MessageBox.Show(day1 + " is greater than " + day2);
 7 }

 8.4 Enumerated Types 521

 Enumerators and enum variables can be compared directly with integer values. For exam-
ple, the following code displays the message "Sunday is equal to zero."

 1 if (Day.Sunday == 0)
 2 {
 3 MessageBox.Show("Sunday is equal to zero.");
 4 }

 Using an enum Variable to Step through
an Array’s Elements
 Because enumerators represent integer values, they can be used in a loop to step through
the elements of an array. For example, look at the following code:

 1 decimal[] sales = { 1000, 2000, 3000, 4000,
 2 5000, 6000, 7000 };
 3
 4 for (Day dayCount = Day.Sunday; dayCount <= Day.Saturday; dayCount++)
 5 {
 6 MessageBox.Show("Sales for " + dayCount + " were " +
 7 sales[(int)dayCount].ToString("c"));
 8 }

 Lines 1 and 2 create a decimal array named sales . The for loop that begins in line 4
uses an enum variable name dayCount as its counter variable. Notice the following about
the loop:

 • The dayCount variable is initialized with the value Day.Sunday .
 • The loop iterates as long as dayCount is less than or equal to Day.Saturday .
 • At the end of each iteration, dayCount is incremented.

 In line 7 the expression (int)dayCount is used as an array subscript. As the loop exe-
cutes, it displays the following messages:

 • "Sales for Sunday were $1,000.00"
 • "Sales for Monday were $2,000.00"
 • "Sales for Tuesday were $3,000.00"
 • "Sales for Wednesday were $4,000.00"
 • "Sales for Thursday were $5,000.00"
 • "Sales for Friday were $6,000.00"
 • "Sales for Saturday were $7,000.00"

 Checkpoint

 8.23 Look at the following declaration.

 enum Flower { Rose, Daisy, Petunia }

 a. What is the name of the data type?
 b. In memory, what value will be stored for the enumerator Flower.Rose ? For

 Flower.Daisy ? For Flower.Petunia ?
 c. Write a statement that declares a variable of this enumerated type.

The variable should be named flora . Initialize the variable with the
 Flower.Petunia enumerator.

 8.24 What method do you use to display the string value of a enumerator?

 8.25 How can you get the integer value of an enumerator?

522 Chapter 8 More about Processing Data

ImageList controls appear
in the component tray.

 Figure 8-18 An ImageList control

 After you create an ImageList control, you should set its ImageSize property to the size of
the images that you plan to store in the control. The default size is 16,16. You can set the
ImageSize property to any value from 0,0 through 256,256. (If the value of the ImageSize
property does not match the size of the images that are stored in the control, the images
will appear distorted when you display them.)

 Then, you can use the Images property to add images to the control. In the Properties
window, click the ellipses button () that appears next to the Images property. This dis-
plays the Images Collection Editor window shown in Figure 8-19 . Click the Add button,
and an Open dialog box appears. Use the dialog box to locate and select the image file (or
multiple image files) that you want to add to the ImageList control.

The ImageList Control

 CONCEPT: The ImageList control allows you to store a collection of images. At run
time, you can retrieve an image from an ImageList control and display it in
a PictureBox control.

 The ImageList control is a container that can hold multiple images. As its name implies, it
is a list of images. You can use an index to retrieve an image from an ImageList control
and display the image in a PictureBox control.

 There are a few guidelines that you should follow as you plan to use an ImageList control
in an application:

 • All the images stored in an ImageList control should be the same size.
 • The images stored in an ImageList control can be no more than 256 by 256 pixels in

size.
 • All the images stored in an ImageList control should be in the same format (.bmp,

.jpg, etc.)

 Although these guidelines might seem restrictive, keep in mind that ImageList controls are
designed to store small images such as icons or thumbnails. They also work well in game
programs that display images such as cards.

 You will find the ImageList control in the Components section of the Toolbox. When
you double-click the ImageList tool in the Toolbox, an ImageList control is created
in the component tray area, at the bottom of the Designer . (The ImageList control
does not appear on the form.) Figure 8-18 shows an example. When you create
ImageList controls, they are given default names such as imageList1 , imageList2 ,
and so on.

 8.5

 8.5 The ImageList Control 523

 Figure 8-20 shows the Images Collection Editor window after four images have been
added. The names of the images, which are shown in the Members list, are 2_Clubs.bmp,
2_Diamonds.bmp, 2_Hearts.bmp, and 2_Spades.bmp. Notice that an index value appears
next to each image’s name. You will use the index value later to retrieve images from the
control. When you have added all the images that you want, click the OK button.

 Figure 8-19 The Images Collection Editor window

 Figure 8-20 Four images added

 If you know the index value for a particular image, you can retrieve that image from the
ImageList control and display it in a PictureBox. The following code shows an example.
Assume myImageList is the name of an ImageList control and myPictureBox is the name
of a PictureBox control.

 myPictureBox.Image = myImageList.Images[5];

524 Chapter 8 More about Processing Data

 This statement gets the image at index 5 from myImageList and assigns it to the
 myPictureBox control’s Image property. As a result, the image is displayed in the
PictureBox.

 In code, you can determine the number of images that are stored in an ImageList control
by getting the value of the control’s Images.Count property. The following code shows
an example. Assume myImageList is the name of an ImageList control and numberIm-
ages is the name of an int variable.

 numberImages = myImageList.Images.Count;

 In Tutorial 8-7 you complete an application that randomly selects images from an Image-
List control and displays them in a PictureBox.

 Tutorial 8-7:
 Completing the Random Card Application

 In this tutorial you complete the Random Card application, which randomly displays
images of poker cards selected from an ImageList control. The application’s form, which
has already been created for you, is shown in Figure 8-21 . Notice that the PictureBox
control is already displaying the image of a card’s back.

 Tutorial 8-7 :
 Completing
the Random
Card
Application

VideoNote

cardPictureBox

getCardButton

 Figure 8-21 The Random Card application’s form

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Ran-
dom Card in the Chap08 folder of the Student Sample Programs.

 Step 2: Make sure the Form1 form is open in the Designer . Scroll down in the Toolbox
until you see the Components section, and double-click the ImageList tool. This
should create an ImageList control named imageList1 , which you should see
in the component tray.

 Step 3: Change the name of the imageList1 control to cardImageList .

 Step 4: Each of the images that you will add to the cardImageList control are 50 by
70 pixels in size. Change the cardImageList control’s ImageSize property to
50, 70.

 Step 5: Next you add images to the cardImageList control. The images that you add
are in the Images / Cards / Poker Small folder of the Student Sample Programs. In
the Properties window, click the ellipses button () that appears next to the
Images property. This displays the Images Collection Editor window.

 8.5 The ImageList Control 525

 Click the Add button, and an Open dialog box appears. Use the dialog box to
select as many of the card image fi les as you want to add to the ImageList con-
trol. (You can use the Shift or Ctrl key while clicking fi lenames to select multi-
ple fi les.) When you have selected all the images that you want to add, click the
 OK button.

 Step 6: Now you create the Click event handler for the getCardButton control. Double-
click the getCardButton control in the Designer . This opens the code editor,
and you will see an empty event handler named getCardButton_Click . Com-
plete the event handler by typing the code shown in lines 22–29 in Program 8-8.
Let’s review this code.

 Line 23: This statement creates a Random object, referenced by the rand
variable.

 Line 26: This statement declares an int variable named index . The variable is
initialized with a random number that is returned from the rand.Next method.
Notice that cardImageList.Images.Count is passed as an argument to the
method. As a result, we get a random number in the range of 0 up to, but not
including, the number of images in the control.

 Line 29: This statement uses the index variable to retrieve an image from the
 cardImageList control and assigns it to the cardPictureBox control’s Image
property. As a result, the image is displayed in the PictureBox.

 Step 7: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the applica-
tion runs, click the Get Random Card button several times to see the images
that are randomly selected. When you are finished, click the Exit button to exit
the application.

 Program 8-8 Completed code for Form1 in the Random Card application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Random_Card
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void getCardButton_Click(object sender, EventArgs e)
 21 {
 22 // Create a Random object.
 23 Random rand = new Random();
 24
 25 // Get a random index.
 26 int index = rand.Next(cardImageList.Images.Count);

526 Chapter 8 More about Processing Data

 27
 28 // Display a card.
 29 cardPictureBox.Image = cardImageList.Images[index];
 30 }
 31 }
 32 }

 Checkpoint

 8.26 How you can determine the number of images that are stored in an ImageList
 control?

 8.27 Under which section is the ImageList control located in the Toolbox ?

 8.28 There are a few guidelines that you should follow as you plan to use an ImageList
control in an application. What are they?

 8.29 How do you add images to an ImageList control?

 8.30 What value determines which image from the ImageList will be displayed in a
PictureBox?

 Review Questions 527

 Key Terms

 character literals
 comma separated value (CSV)
 Contains method
 delimiter
 EndsWith method
 enumerated data type
 enumerators
 ImageList control
 IndexOf method
 instance
 LastIndexOf method

 leading spaces
 parallel relationship
 StartsWith method
 structure
 substring
 Substring method
 tokenizing
 tokens
 ToLower method
 ToUpper method
 trailing spaces

 Review Questions

 Multiple Choice

 1. In C#, __________ are enclosed in single quotation marks.

 a. strings
 b. enumerators
 c. tokens
 d. character literals

 2. The char data type provides the __________ for converting the case of a character.

 a. Lowercase and Uppercase methods
 b. ToLower and ToUpper methods
 c. IsDigit and IsLetter methods
 d. IsWhiteSpace and IsPunctuation methods

 3. A string within a string is called a(n) __________.

 a. character
 b. inner string
 c. substring
 d. thread

 4. The __________ of a string object allow you to search for substrings.

 a. TrimStart and TrimEnd methods
 b. IndexOf and LastIndexOf methods
 c. IsWhiteSpace and IsPunctuation methods
 d. Contains , StartsWith , and EndsWith methods

 5. When you want to know the position of the substring, you can use one of the
__________ of a string object.

 a. TrimStart or TrimEnd methods
 b. IndexOf or LastIndexOf methods
 c. ToLower or ToUpper methods
 d. StartsWith or EndsWith methods

 6. The __________ of a string object can be used to retrieve a specific set of charac-
ters from a string.

 a. Substring method
 b. IndexOf method
 c. TrimStart and TrimEnd methods
 d. StartsWith and EndsWith methods

528 Chapter 8 More about Processing Data

 7. __________ are spaces that appear at the beginning of a string.

 a. Leading spaces
 b. Primary spaces
 c. Starting spaces
 d. Empty spaces

 8. __________ are spaces that appear at the end of a string.

 a. Blank spaces
 b. Secondary spaces
 c. Ending spaces
 d. Trailing spaces

 9. A series of words or other items of data contained in a string and separated by
spaces or other characters are known as __________.

 a. substrings
 b. elements
 c. characters
 d. tokens

 10. The character that separates tokens is known as a __________.

 a. partition
 b. literal
 c. delimiter
 d. symbol

 11. The process of breaking a string into tokens is known as __________.

 a. extracting
 b. tokenizing
 c. delimiting
 d. parsing

 12. The __________ file format is commonly used to export spreadsheet data to a text file.

 a. spreadsheet data volume, or SDV
 b. comma separated value, or CSV
 c. extensible markup language, or XML
 d. portable document format, or PDF

 13. A __________ is a data type you can create that contains one or more variables
known as fields.

 a. structure
 b. collection
 c. volume
 d. list

 14. Before you can use a structure to store data, you must create a(n) __________ of the
structure in memory.

 a. copy
 b. instance
 c. declaration
 d. reference

 15. When the items in two data structures are related by their indexes, it is said that a
__________ exists between the data structures.

 a. binary union
 b. parallel relationship
 c. unilateral bond
 d. virtual connection

 Review Questions 529

 16. When you create a(n) __________, you specify a set of symbolic values that belong
to that data type.

 a. abstract data type
 b. symbolic data type
 c. enumerated data type
 d. cryptic data type

 17. __________ are constants that represent integer values.

 a. Literals
 b. Enumerators
 c. Constants
 d. Tokens

 18. The __________ is a container that can hold multiple images.

 a. ImageList control
 b. GroupBox control
 c. PictureBox control
 d. ComboBox control

 True or False

 1. You cannot store a string in a variable of the char data type.

 2. C# allows you to access the individual characters in a string using subscript
notation.

 3. When you call a string object’s Split method, the method divides the string into
two substrings and returns them as an array of strings.

 4. The fields contained in a structure must be of the same data type.

 5. Before you can use the structure to store data, you must create an instance of the
structure in memory.

 6. Structure objects can be passed into a method only by reference.

 7. You cannot perform comparison operations directly on structure objects.

 8. Enumerators must be enclosed in quotation marks.

 9. An enum declaration can only appear inside the application’s namespace.

 10. The integer values that you assign to enumerators do not have to be unique.

 11. You can compare enumerators and enum variables with relational operators.

 12. ImageList controls are designed to store small images such as icons or thumbnails.

 Short Answer

 1. What method can be used to convert a char variable to a string?

 2. List the method you would use to determine whether each of the following is true or
false for the value of a character.
 a. numeric digit
 b. alphabetic letter
 c. alphabetic letter or numeric digit
 d. punctuation mark
 e. white-space character
 f. uppercase letter
 g. lowercase letter

530 Chapter 8 More about Processing Data

 3. List the method you would use to determine each of the following about the value of
a string object.
 a. starts with the substring “VENI”
 b. contains the substring “VIDI”
 c. ends with the substring “VICI”

 4. Briefly describe each of the following string object methods.
 a. Insert
 b. Remove
 c. ToLower
 d. ToUpper
 e. Trim
 f. TrimStart
 g. TrimEnd

 5. What characters are used as delimiters when you pass null as an argument to the
 Split method of a string object?

 6. List the places that a structure can be declared in code.

 7. Assume an application contains a structure named Fruit . Write a statement that
demonstrates how you would create a List that can hold Fruit objects.

 8. Can enumerators be used in a loop to step through the elements of an array? Why
or why not?

 9. Why should you use the new operator when creating instances of a structure?

 10. What is the result if the value of the ImageSize property does not match the size of
the images that are stored in the ImageList control?

 Algorithm Workbench

 1. Write a method that accepts a string as an argument and checks it for proper capi-
talization and punctuation. The method should determine if the string begins with
an uppercase letter and ends with a punctuation mark. The method should return
 true if the string meets the criteria; otherwise it should return false .

 2. Write a method that accepts a string as an argument and displays its contents back-
ward. For instance, if the string argument is "gravity", the method should display
"ytivarg".

 3. Look at the following structure declaration:
 struct Engine
 {
 public int cylinders;
 public int horsepower;
 public int torque;
 }

 Write a method that accepts two Engine structures as arguments, determines if the
two structures are equal, and returns the Boolean value true if the structures are
equal or false if the structures are not equal.

 4. Declare an enumerated data type named Direction with enumerators for North,
South, East, and West.

 5. Write a statement that retrieves the image stored at index 0 from an ImageList con-
trol named slideShowImageList and displays it in a PictureBox control named
 slideShowPictureBox .

 Programming Problems 531

 Programming Problems
 1. Word Counter

 Create an application with a method that accepts a string as an argument and
returns the number of words it contains. For instance, if the argument is "Four
score and seven years ago," the method should return the number 6. The
application should let the user enter a string, and then it should pass the string to the
method. The number of words in the string should be displayed.

 2. Average Number of Letters

 Modify the program you wrote for Problem 1 (Word Counter) so it also displays the
average number of letters in each word.

 3. Sentence Capitalizer

 Create an application with a method that accepts a string as an argument and
returns a copy of the string with the first character of each sentence capitalized. For
instance, if the argument is "hello. my name is Joe. what is your name?" the
method should return the string "Hello. My name is Joe. What is your name?"
The application should let the user enter a string and then pass it to the method. The
modified string should be displayed.

 4. Vowels and Consonants

 Create an application with a method that accepts a string as an argument and returns
the number of vowels that the string contains. The application should have another
method that accepts a string as an argument and returns the number of consonants
that the string contains. The application should let the user enter a string, and should
display the number of vowels and the number of consonants it contains.

 5. Most Frequent Character

 Create an application that lets the user enter a string and displays the character that
appears most frequently in the string.

 6. Word Separator

 Create an application that accepts as input a sentence in which all the words are run
together but the first character of each word is uppercase. Convert the sentence to a
string in which the words are separated by spaces and only the first word starts with
an uppercase letter. For example the string "StopAndSmellTheRoses." would be
converted to "Stop and smell the roses."

 7. Pig Latin

 Create an application that accepts a sentence as input and converts each word to
“Pig Latin.” In one version, to convert a word to Pig Latin you remove the first let-
ter and place that letter at the end of the word. Then you append the string "ay" to
the word. Here is an example:

 English: I SLEPT MOST OF THE NIGHT

 Pig Latin: IAY LEPTSAY OSTMAY FOAY HETAY IGHTNAY

 8. Sum of Numbers in a String

 Create an application that lets the user enter a string containing series of numbers
separated by commas. Here is an example of valid input:

 7,9,10,2,18,6

 The program should calculate and display the sum of all the numbers.

 Solving the
Sum of
Numbers in
a String
Problem

VideoNote

532 Chapter 8 More about Processing Data

 9. Alphabetic Telephone Number Translator

 Many companies use telephone numbers like 555-GET-FOOD so the number is
easier for their customers to remember. On a standard telephone, the alphabetic let-
ters are mapped to numbers in the following fashion:

 A, B, and C = 2
 D, E, and F = 3
 G, H, and I = 4
 J, K, and L = 5
 M, N, and O = 6
 P, Q, R, and S = 7
 T, U, and V = 8
 W, X, Y, and Z = 9

 Create an application that lets the user enter a 10-character telephone number in the
format XXX-XXX-XXXX. The application should display the telephone number with
any alphabetic characters that appeared in the original translated to their numeric
equivalent. For example, if the user enters 555-GET-FOOD, the application should
display 555-438-3663.

 10. Morse Code Converter

 Design a program that asks the user to enter a string and then converts that string to
Morse code. Morse code is a code where each letter of the English alphabet, each
digit, and various punctuation characters are represented by a series of dots and
dashes. Table 8-7 shows part of the code.

 Table 8-7 Morse code

 Character Code Character Code Character Code Character Code

 space space 6 -.... G --. Q --.-

 comma --..-- 7 --... H R .-.

 period .-.-.- 8 ---.. I .. S …

 ? ..--.. 9 ----. J .--- T -

 0 ----- A .- K -.- U ..-

 1 .---- B -... L .-.. V ...-

 2 ..--- C -.-. M - -- W .--

 3 ...-- D -.. N -. X -..-

 4 - E . O --- Y -.--

 5 F ..-. P .--. Z --..

 11. Drink Vending Machine Simulator

 Create an application that simulates a soft-drink vending machine. The application
should let the user select one of the following soft drinks:

 • Cola ($1.00 each)
 • Root Beer ($1.00 each)
 • Lemon Lime Soda ($1.00 each)
 • Grape Soda ($1.50 each)
 • Cream Soda ($1.50 each)

 Figure 8-22 shows an example of the application’s form. (The images that are
 displayed in the PictureBox controls are in the Images \ Drink Machine folder of the

 Programming Problems 533

 Figure 8-22 Drink vending machine simulator

Student Sample Programs.) When the application starts, the vending machine will
have 20 of each type of soft drink. Each time the user selects a drink, the application
should subtract 1 from the quantity of the selected drink. It should also update and
display the total amount of sales. If the user selects a drink that is sold out, a mes-
sage should be displayed indicating so.

 In the application’s code, create a structure that has fields for the following data:

 Drink name
 Drink cost
 Number of drinks in machine

 The program should create an array of five structure objects. Each element of the
array should keep data for a specific type of soft drink.

 12. Slot Machine Simulation

 A slot machine is a gambling device into which the user inserts money and then pulls
a lever (or presses a button). The slot machine then displays a set of random images.
If two or more of the images match, the user wins an amount of money that the slot
machine dispenses back to the user.

 Create an application that simulates a slot machine. Figure 8-23 shows an example
of how the form should look. The application should let the user enter into a

 Figure 8-23 Slot Machine application

534 Chapter 8 More about Processing Data

TextBox the amount of money he or she is inserting into the machine. When the
user clicks the Spin button, the application should display three randomly selected
symbols. (Slot machines traditionally display fruit symbols. You will find a set of
fruit symbols in the Images \ Fruit Symbols folder of the Student Sample Programs.)

 If none of the randomly displayed images match, the program should inform the
user that he or she has won $0. If two of the images match, the program should
inform the user that he or she has won two times the amount entered. If three of the
images match, the program should inform the user that he or she has won three
times the amount entered. When the user clicks the Exit button to exit the applica-
tion, the program should display the total amount of money entered into the slot
machine and the total amount won.

535

 9.1 Introduction to Classes

 9.2 Properties

 9.3 Parameterized Constructors and
Overloading

 9.4 Storing Class Type Objects in Arrays
and List s

 9.5 Finding the Classes and Their
Responsibilities in a Problem

 9.6 Creating Multiple Forms in a Project

 TOPICS

 Classes and Multiform Projects 9 C
H

A
P

T
E

R

 9.1 Introduction to Classes

 CONCEPT: A class is the blueprint for an object. It specifies the fields and methods a
particular type of object has. From the class, one or more objects may be
created.

 As you have worked through this book, you have used objects extensively in all the pro-
grams that you have written. Some objects, such as the controls that you place on a form,
are visual. Other objects, such as Random objects, arrays, List objects, and ImageList
controls, cannot be seen on the screen but exist in memory and perform important tasks.

 We mentioned in Chapter 1 that objects do not just magically appear in your program.
Before a specific type of object can be used, that object has to be created in memory. And,
before an object can be created in memory, you must have a class for the object.

 A class is code that describes a particular type of object. It specifies the data that an object
can hold (fields and properties) and the actions that an object can perform (methods).
You can think of a class as a code “blueprint” that can be used to create a particular type
of object. It serves a similar purpose as the blueprint for a house. The blueprint itself is
not a house but is a detailed description of a house. When we use the blueprint to build
an actual house, we could say we are building an instance of the house described by the
blueprint. If we so desire, we can build several identical houses from the same blueprint.
Each house is a separate instance of the house described by the blueprint. This idea is il-
lustrated in Figure 9-1 .

536 Chapter 9 Classes and Multiform Projects

 So, a class is not an object but a description of an object. When the program is running, it
can use the class to create, in memory, as many objects of a specific type as needed. Each
object that is created from a class is called an instance of the class.

 For example, Jessica is an entomologist (someone who studies insects), and she also
enjoys writing computer programs. She designs a program to catalog different types of
insects. As part of the program, she creates a class named Insect , which specifies fields,
properties, and methods for holding and manipulating data common to all types of in-
sects. The Insect class is not an object but a specification that objects may be created
from. Next, she writes programming statements that create a housefly object, which is
an instance of the Insect class. The housefly object is an entity that occupies compu-
ter memory and stores data about a housefly. It has the fields, properties, and methods
specified by the Insect class. Then she writes programming statements that create a
 mosquito object. The mosquito object is also an instance of the Insect class. It has
its own area in memory and stores data about a mosquito. Although the housefly and
 mosquito objects are two separate entities in the computer’s memory, they were both
created from the Insect class. This means that each object has the fields, properties, and
methods described by the Insect class. This is illustrated in Figure 9-2 .

House Plan

Living Room

Bedroom

Blueprint that describes a house

Instances of the house described by the blueprint

 Figure 9-1 A blueprint and houses built from the blueprint

Insect
class

housefly
object

mosquito
object

The Insect class describes

methods that a particular
type of object may have.

The housefly object is an instance
of the Insect
properties, and methods described
by the Insectclass.

The mosquito object is an instance
of the Insect
properties, and methods described
by the Insectclass.

 Figure 9-2 The housefly and mosquito objects as instances of the Insect class

 Creating a Class
 You create a class by writing a class declaration . This is the general format of a class
declaration:

 class ClassName
 {
 Member declarations go here…
 }

 9.1 Introduction to Classes 537

 The first line of a class declaration is known as the class header . It starts with the word
 class , followed by the name of the class. The same rules for naming variables apply to
naming classes. Most programmers follow the convention of beginning class names with
an uppercase letter. This helps to easily distinguish class names from variable names when
reading code.

 Following the class header is an opening curly brace. Next you write the class’s member
declarations . These are the statements that define the class’s fields, properties, and meth-
ods. A closing curly brace appears at the end of the class declaration.

 Let’s look at a simple example. Suppose we are writing a program to simulate the toss-
ing of a coin. In the program we need to repeatedly toss a coin and each time determine
whether it landed heads up or tails up. First, we write a class named Coin that can per-
form the behaviors of the coin. The following code sample shows the Coin class. (Note
that this class is only part of the application’s code. In a moment you will see where it
should appear in the project, but for now, we concentrate only on this class.)

 1 class Coin
 2 {
 3 // Field to represent the side facing up;
 4 private string sideUp;
 5
 6 // Constructor
 7 public Coin()
 8 {
 9 sideUp = "Heads";
 10 }
 11
 12 // The toss method simulates tossing the coin.
 13 public void Toss()
 14 {
 15 // Create a Random object.
 16 Random rand = new Random();
 17
 18 // Use a random number to determine
 19 // the side of the coin is facing up.
 20 // 0 = Heads, 1 = Tails
 21 if (rand.Next(2) == 0)
 22 {
 23 sideUp = "Heads";
 24 }
 25 else
 26 {
 27 sideUp = "Tails";
 28 }
 29 }
 30
 31 // The GetSideUp method returns the value
 32 // of the sideUp field.
 33 public string GetSideUp()
 34 {
 35 return sideUp;
 36 }
 37 }

 The first line is the class header. It specifies that the name of the class is Coin . The curly
braces that appear in lines 2 and 37 enclose the contents of the class. Let’s take a closer
look at the code inside the class:

 Line 4: This statement declares a field named sideUp . The sideUp field is a string
variable that indicates which side of the coin is facing up. If the heads side is facing

538 Chapter 9 Classes and Multiform Projects

up, the string "Heads" is assigned to this field. If the tails side is facing up, the string
 "Tails" is assigned to this field.

 Notice that the field declaration begins with the keyword private . The keyword
 private is an access modifier that specifies the field cannot be directly accessed by
statements outside the class.

 By using the private access modifier, a class can hide its data from code outside the
class. When a class’s fields are hidden from outside code, the data is protected from
accidental corruption. It is a common practice to make all a class’s fields private and to
provide access to those fields through methods only.

 Lines 7–10: This code defines a special method known as a constructor. A constructor
is a method that is automatically executed when an object is created. In most cases, a
constructor is used to initialize an object’s fields with starting values. It is called a con-
structor because it helps construct an object.

 This constructor performs a simple task. In line 9 it assigns the string "Heads" to the
 sideUp field. As a result, any time we create an object of the Coin class, that object’s
 sideUp field will initially be assigned the string "Heads" .

 Notice the following about the constructor header in line 7:

 • The name of the constructor is the same as the name of the class. In this case, the
name of the constructor is Coin .

 • The header does not specify a return type—not even void .
 • The constructor header begins with the public access modifi er. In most cases, a

class’s constructor is public. In this book we always use the public access modifi er
with constructors.

 Lines 13–29: This code defines a void method named Toss . Notice that the public
access modifier is used in the method header in line 13. Because the method is public,
it can be called from code outside the Coin class.

 The purpose of the Toss method is to simulate the tossing of the coin. When the
method is called, line 16 creates a Random object, referenced by the rand variable.
The if statement in line 21 gets a random number in the range of 0 through 1. If the
number is 0, then line 23 assigns the string "Heads" to the sideUp field. Otherwise,
line 27 assigns the string "Tails" to the sideUp field.

 Lines 33–36: This code defines a method named GetSideUp . Notice that the public
access modifier is used in line 33, which means that the method can be called from
code outside the Coin class. Also notice that the method returns a string .

 The purpose of the GetSideUp method is to return a string indicating which side of the
coin is facing up. Notice that in line 35 the value of the sideUp field is returned.

 Creating an Object
 Remember, a class is not an object but a description of an object. The Coin class specifies
what a Coin object is made of, but it does not create a Coin object in memory. To create
a Coin object, we must write a statement such as this:

 Coin myCoin = new Coin();

 At this point in your studies, you have created plenty of objects, so this type of statement
will be familiar to you. For example, Random objects, arrays, and List s are all created
this way. Let’s look at the different parts of this statement:

 • The first part of the statement, appearing on the left side of the = operator, reads
 Coin myCoin . This declares a variable named myCoin that can be used to reference
an object of the Coin class.

 9.1 Introduction to Classes 539

 • The second part of the statement, appearing on the right side of the = operator,
reads new Coin() . This expression creates an instance of the Coin class and calls
the class’s constructor. The new operator returns a reference to the object.

 • The = operator assigns the reference that was returned from the new operator to the
 myCoin variable.

 After this statement executes, the myCoin variable will reference a Coin object, as shown
in Figure 9-3 . Notice in the figure that the object’s sideUp field is set to "Heads" , as a
result of the constructor.

myCoin
Coin object

sideUp "Heads"

 Figure 9-3 The myCoin variable references a Coin object

 Once we have created a Coin object, we can perform operations with it. For example,
assuming the variable myCoin references a Coin object, the following statement calls the
object’s Toss method:

 myCoin.Toss();

 And, the following statement displays the side of the coin that is facing up:

 MessageBox.Show(myCoin.GetSideUp());

 Where to Write Class Declarations
 In C# you have some flexibility in choosing where to write class declarations. When you
start writing your own classes in a project, it is possible to write them in the same file
that contains the form’s class. Figure 9-4 shows an example of how the Coin class can be
written in the same file as a project’s Form1 class. Notice in the figure that the Coin class
is written inside the project namespace. This is not required, but it is a good idea since
the class is part of the project. (It does not matter if the class is written before or after the
 Form1 class.)

 Although this approach might be acceptable for small classes, it is recommended that
you write each class in its own separate file. Doing so makes your code more organ-
ized and helps keep your source code files to a manageable size. It also makes it easy
for you to reuse classes in other projects. In this book, we always store classes in their
own files.

 NOTE: Classes are reference types. When you create an object from a class, you use
a reference variable to reference that object. When you want to work with the object,
you use the variable that references it.

540 Chapter 9 Classes and Multiform Projects

 Visual Studio automates the process of adding a new class file to a project. When you are
ready to write a new class, follow these steps to create a source file for the class:

 1. With the project open in Visual Studio, click PROJECT on the menu bar; then select
 Add Class …. This is shown in Figure 9-5 .

Form1’s methods and event handlers appear here.

The Coin class’s members appear here.

Form1 class

Coin class

 Figure 9-4 The Form1 class and the Coin class in the same source code file

 Figure 9-5 Selecting Add Class … on the PROJECT menu

 2. The Add New Item window, shown in Figure 9-6 , should appear. Make sure Class is
selected as the type of item. Notice in the figure that Class1.cs appears in the Name
text box. This is the default filename that Visual Studio provides. Change the name

 9.1 Introduction to Classes 541

to match the name of the class that you are creating. For example, if you are creating
a class named Coin , you change the name to Coin.cs . (Be sure that the filename ends
with the .cs extension.)

 3. Click the Add button.

 After performing these steps, the specified source code file will be created in the project
and will be displayed in the code editor. The source code file already contains several
 using directives and an empty class declaration that you can edit. Figure 9-7 shows an
example. You will also see an entry for the new source code file in the Solution Explorer ,
as shown in Figure 9-8 .

 Figure 9-6 The Add New Item window

 Figure 9-7 A new class file displayed in the code editor

542 Chapter 9 Classes and Multiform Projects

 Figure 9-8 Solution Explorer window

 Tutorial 9-1 leads you through the process of creating the Coin class in an application
that uses it to simulate a coin that can be tossed.

 Tutorial 9-1 :
 Creating and
Using the
Coin class

VideoNote

 Tutorial 9-1:
 Creating and Using the Coin Class

 In this tutorial you complete the Coin Toss application. The application’s form, which
has already been created for you, is shown in Figure 9-9 . When you run the completed
application, you can click the Toss Five Times button and the application will simulate
a coin being tossed five times. The results of each coin toss are displayed in the list box.

outputListBox

tossButton exitButton

 Figure 9-9 The Coin Toss application’s form

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Coin
Toss in the Chap09 folder of the Student Sample Programs.

 Step 2: Click PROJECT on the Visual Studio menu bar; then select Add Class …. The
 Add New Item window should appear. (See Figure 9-6 for an example.) Make
sure Class is selected as the type of item. Notice that the default filename Class1.
cs appears in the Name text box. Change the name to Coin.cs , as shown in
 Figure 9-10 , and then click the Add button. This adds a source code file named
Coin.cs to the project.

 Step 3: The Coin.cs file should now be displayed in the code editor, as shown in Figure
 9-11 . Notice that the file already contains several using directives and an empty
 Coin class has been created. Complete the code for the Coin class by typing
lines 11–45 in Program 9-1 .

 9.1 Introduction to Classes 543

 Step 4: Next you create the Click event handlers for the Button controls. Click the tab
that reads Form1.cs [Design] in the area just above the code editor to switch
your view to the Form1 form in the Designer. (Alternatively, you can double-
click the Form1.cs entry in the Solution Explorer .)

 Step 5: Double-click the tossButton control. This opens the Form1.cs file in the code
editor, and you will see an empty event handler named tossButton_Click .
Complete the event handler by typing the code shown in lines 22–36 in Program
 9-2 . Let’s review this code:

 Line 23: This statement does the following:

 • It declares a Coin reference variable named myCoin .
 • It creates a Coin object in memory and calls its constructor.
 • It assigns a reference to the Coin object to the myCoin variable.

 After this statement executes, the myCoin variable will reference a Coin object.
The object’s sideUp field will be set to "Heads" .

 Line 26: This statement clears the outputListBox control.

 Lines 29–36: This for loop iterates five times, simulating five tosses of a coin.
During each iteration, the following actions take place:

 • Line 32 calls the myCoin.Toss() method.
 • Line 35 calls the myCoin.GetSideUp() method to get the side of the coin that

is facing up. The result of the method call is displayed in the outputListBox
control.

 Step 6: Switch your view back to the Form1 form in the Designer and double-click
the exitButton control. In the code editor you will see an empty event han-
dler named exitButton_Click . Complete the event handler by typing the code
shown in lines 41–42 in Program 9-2 .

 Figure 9-10 The filename changed to Coin.cs

You will add code to
the Coin class.

 Figure 9-11 The Coin.cs file in the code editor

544 Chapter 9 Classes and Multiform Projects

 Step 7: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the appli-
cation runs, click the Toss Five Times button and view the results. Figure 9-12
shows an example of the application’s output. Click the button as many times
as you wish to see different, random results. Click the Exit button when you
are finished.

 Figure 9-12 Example output of the Coin Toss application

 Program 9-1 Completed code for the Coin.cs file in the Coin Toss application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.Linq;
 4 using System.Text;
 5 using System.Threading.Tasks;
 6
 7 namespace Coin_Toss
 8 {
 9 class Coin
 10 {
 11 // Field to represent the side facing up;
 12 private string sideUp;
 13 Random rand = new Random();
 14
 15 // Constructor
 16 public Coin()
 17 {
 18 sideUp = "Heads";
 19 }
 20
 21 // The toss method simulates tossing the coin.
 22 public void Toss()
 23 {
 24 // Create a Random object.
 25 //Random rand = new Random();
 26
 27 // Use a random number to determine
 28 // the side of the coin is facing up.
 29 // 0 = Heads, 1 = Tails
 30 if (rand.Next(2) == 0)
 31 {
 32 sideUp = "Heads";
 33 }
 34 else
 35 {
 36 sideUp = "Tails";

 9.1 Introduction to Classes 545

 37 }
 38 }
 39
 40 // The GetSideUp method returns the value
 41 // of the sideUp field.
 42 public string GetSideUp()
 43 {
 44 return sideUp;
 45 }
 46 }
 47 }

 Program 9-2 Completed code for Form1 in the Coin Toss application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Coin_Toss
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void tossButton_Click(object sender, EventArgs e)
 21 {
 22 // Create a Coin object.
 23 Coin myCoin = new Coin();
 24
 25 // Clear the ListBox.
 26 outputListBox.Items.Clear();
 27
 28 // Toss the coin five times.
 29 for (int count = 0; count < 5; count++)
 30 {
 31 // Toss the coin.
 32 myCoin.Toss();
 33
 34 // Display the side that is up.
 35 outputListBox.Items.Add(myCoin.GetSideUp());
 36 }
 37 }
 38
 39 private void exitButton_Click(object sender, EventArgs e)
 40 {
 41 // Close the form.
 42 this.Close();
 43 }
 44 }
 45 }

546 Chapter 9 Classes and Multiform Projects

 Passing an Object to a Method
 When you are developing applications that work with objects, you often need to write
methods that accept objects as arguments. For example, the following code shows a
method named ShowCoinStatus that accepts a Coin object as an argument:

 1 private void ShowCoinStatus(Coin coin)
 2 {
 3 MessageBox.Show("This side of the coin is up: " +
 4 coin.GetSideUp());
 5 }

 The following code sample shows how we might create a Coin object and then pass it as
an argument to the ShowCoinStatus method:

 Coin myCoin = new Coin();
 ShowCoinStatus(myCoin);

 Because classes are reference types, objects that are instances of a class are always passed
by reference. When you pass an object that is an instance of a class as an argument, the
thing that is passed into the parameter variable is a reference to the object. As a result, the
method that receives the object as an argument has access to the actual object (not a copy
of the object). For example, look at the following Flip method:

 1 private void Flip(Coin coin)
 2 {
 3 coin.Toss();
 4 }

 This method accepts a Coin object as an argument, and it calls the object’s Toss method.
The following code demonstrates the method being called:

 1 // Create a Coin object.
 2 Coin myCoin = new Coin();
 3
 4 // This will display "Heads".
 5 MessageBox.Show(myCoin.GetSideUp());
 6
 7 // Pass the object to the Flip method.
 8 Flip(myCoin);
 9
 10 // This might display "Heads", or it might
 11 // display "Tails".
 12 MessageBox.Show(myCoin.GetSideUp());

 The statement in line 2 creates a Coin object, referenced by the variable myCoin . Line 5
displays the value of the myCoin object’s sideUp field. Because the object’s constructor
set the sideUp field to "Heads" , we know that line 5 will display the string "Heads".
Line 8 calls the Flip method, passing the myCoin object as an argument, by reference.
Inside the Flip method, the myCoin object’s Toss method is called. Line 12 displays the
value of the myCoin object’s sideUp field again. This time, we cannot predict whether
“Heads” or “Tails” will be displayed because the myCoin object’s Toss method has
been called.

 Checkpoint

 9.1 How is a class like a blueprint?

 9.2 Briefly describe the process of writing a class declaration.

 9.3 What is a constructor?

 9.2 Properties 547

 9.4 List the three steps for adding a new class file to a Visual C# project.

 9.5 When you pass an object that is an instance of a class as an argument, what is
passed into the parameter variable?

 9.2 Properties

 CONCEPT: A property is a class member that holds a piece of data about an object.
Properties are implemented as special methods that set and get the values
of corresponding fields.

 A property is a special type of class member that allows an object to store and retrieve a piece
of data. You are already familiar with properties because you have used them extensively
when creating forms. GUI controls have properties that determine their characteristics. For
example, a Label control’s Text property determines the text that is displayed by the control.

 In code, you work with properties in the same ways that you work with variables. For
example, assume messageLabel is the name of a Label control. You can assign a specific
value to the control’s Text property, as shown here:

 messageLabel.Text = "Hello";

 Also, you can assign a property to a variable. The following statement initializes the vari-
able str with the messageLabel control’s Text property:

 string str = messageLabel.Text;

 From these examples, you can see that a property is a class member that behaves like a pub-
lic field. A property is not a public field, however. It is a special set of methods, known as
 accessors , which work in conjunction with a private field. The private field, which is known
as the property’s backing field , holds any data that is assigned to the property. The accessors
allow code outside the class to get the property’s value and assign values to the property.

 Let’s look at an example of a simple class that has a property. Suppose you want to create
a class named Pet that represents the family pet. The class will have a Name property to
hold the pet’s name. The following code shows how the Pet class might be written:

 1 class Pet
 2 {
 3 // Field for the pet's name
 4 private string _name;
 5
 6 // Constructor
 7 public Pet()
 8 {
 9 _name = "";
 10 }
 11
 12 // Name property
 13 public string Name
 14 {
 15 get
 16 {
 17 return _name;
 18 }
 19
 20 set
 21 {

548 Chapter 9 Classes and Multiform Projects

 22 _name = value;
 23 }
 24 }
 25 }

 Let’s take a closer look at the code inside the class:

 Line 4: This statement declares a private string field named _name . The _name field is
the backing field for the Name property. When a value is assigned to the Name prop-
erty, it is stored in the _name field.

 Notice that we have started the field’s name with an underscore character. This is not a
requirement, but some programmers begin the names of backing fields with an under-
score to eliminate confusion between the field name and the property name. By follow-
ing this practice, when you are reading the code and you see a variable name that begins
with an underscore, you know immediately that it is a backing field for a property.

 Lines 7–10: This is the class constructor. When an instance of the Pet class is created,
this constructor assigns an empty string to the _name field.

 Line 13: This is the beginning of a property declaration. It specifies three things about
the property:

 • public —The property is public, so it can be used by code outside the class. (Most
properties are declared as public.)

 • string —The property’s data type is string .
 • Name —The name of the property is Name.

 Line 14: An opening curly brace appears in this line. The corresponding closing curly
brace appears in line 24. Inside these braces are the Name property’s accessors.

 Lines 15–18: This is the property’s get accessor. You can think of the get accessor as
a method that returns the property’s value. You can see that line 17 is a return state-
ment, returning the value of the _name field. The get accessor is executed any time the
property is read.

 Lines 20–23: This is the property’s set accessor. The purpose of the set accessor is to
set the property to a value. The set accessor has an implicit parameter named value .
It is “implicit” because it is not declared, as the parameters in a regular method are.
The value parameter is automatically created by the compiler, and its data type is the
same as that of the property. In this case, the value parameter’s data type is string .

 Any time a value is assigned to a property, the property’s set accessor is executed, and
the value being assigned is passed into the value parameter. Line 22 assigns the value
parameter to the _name field.

 The following code shows how you can use the Pet class’s Name property.

 1 // Create two Pet objects.
 2 Pet myDog = new Pet();
 3 Pet myCat = new Pet();
 4
 5 // Set their Name properties.
 6 myDog.Name = "Fido";
 7 myCat.Name = "Sylvester";
 8
 9 // Display their names.
 10 MessageBox.Show("My dog's name is " + myDog.Name);
 11 MessageBox.Show("My cat's name is " + myCat.Name);

 Let’s take a closer look at the code:

 Line 2: This statement creates a Pet object, calls the Pet class constructor, and assigns
a reference to the object to the myDog variable. After this statement executes, the myDog
variable references a Pet object.

 9.2 Properties 549

 Line 3: This statement creates a Pet object, calls the Pet class constructor, and assigns
a reference to the object to the myCat variable. After this statement executes, the myCat
variable references a Pet object.

 Line 6: This statement sets the myDog object’s Name property to "Fido" . When this
statement executes, the Name property’s set accessor is executed, and the string
 "Fido" is passed into the value parameter. The value parameter is then assigned to
the myDog object’s _name field. This process is illustrated in Figure 9-13 .

myDog.Name = "Fido";

// Name property
public string Name
{
 get
 {
 return _name;
 }

 set
 {
 _name = value;
 }
}

Pet object

_name "Fido"

 Figure 9-13 Setting the myDog object’s Name property to "Fido"

 Line 7: This statement sets the myCat object’s Name property to "Sylvester" . When
this statement executes, the Name property’s set accessor is executed, and the string
 "Sylvester" is passed into the value parameter. The value parameter is then
 assigned to the myCat object’s _name field.

 Line 10: This statement displays the message “My dog’s name is Fido” in a message
box. When the myDog object’s Name property is retrieved, the get accessor returns the
value of the object’s _name field.

 Line 11: This statement displays the message “My cat’s name is Sylvester” in a message
box. When the myCat object’s Name property is retrieved, the get accessor returns the
value of the object’s _name field.

 When an accessor contains only a single statement, many programmers prefer to write the
entire accessor in one line of code. For example, the Name property in the Pet class could
have been written like this:

 // Name property
 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }

 This concise style of writing accessors reduces the number of lines code in a class declara-
tion without sacrificing the code’s readability. From this point forward in the book, we
will use this style when an accessor has only one statement.

 Properties versus Public Fields
 At this point, you might be wondering why you should go to the trouble of creating a
property when it would be easier to simply create a public field. For example, in the
 Pet class, couldn’t we have just declared a public string field named Name ? If the
field is public, it can be directly accessed by code outside the class without the need for
 accessors.

550 Chapter 9 Classes and Multiform Projects

 It is possible to take that approach, but it is not recommended. Class fields are almost
always declared private in order to protect them from accidental corruption. When code
outside the class needs to access a field, it does so through public methods (or, in the case
of a property, through accessors). This ensures that the object owning the fields is in control
of all changes being made to them.

 Passing Properties as Arguments
 You can pass a property as an argument to a method. For example, line 8 in the following
code sample passes a Pet object’s Name property as an argument to the MessageBox.Show
method.

 1 // Create a Pet object.
 2 Pet myDog = new Pet();
 3
 4 // Set the object's Name property.
 5 myDog.Name = "Fido";
 6
 7 // Display the Name property.
 8 MessageBox.Show(myDog.Name);

 When you pass a property as an argument to a method, there is one restriction: Properties
can be passed only by value. If you try to pass a property to a ref or an out parameter,
an error occurs.

 Tutorial 9-2 leads you through the process of creating a class with properties. You use
the class in a simple application that creates an object of the class and tests its properties.

 Tutorial 9-2 :
 Creating and
Using the
CellPhone
Class

VideoNote

 Tutorial 9-2:
 Creating and Using the CellPhone Class

 Suppose you work as a programmer for a company that sells cell phones and wireless
service. Your department is creating an application to manage the company’s inventory of
cells phones. You have been asked to create a class that represents a cell phone. The class
should keep the following data about a cell phone:

 • The phone’s brand name
 • The phone’s model
 • The phone’s retail price

 The class should have the following public properties:

 • Brand—a string property that will store the phone’s brand name
 • Model—a string property that will store the phone’s model
 • Price—a decimal property that will store the phone’s retail price

 The class should have the following private fields:

 • _brand —a string that serves as the backing field for the Brand property
 • _model —a string that serves as the backing field for the Model property
 • _price —a decimal that serves as the backing field for the Price property

 The class should also have a constructor that initializes the private fields. The _brand and
 _model fields will be initialized with empty strings, and the _price field will be initialized
with the value 0.

 You create the CellPhone class in a project that will create an object of the class and test
the object’s properties. The project is named Cell Phone Test and has already been started

 9.2 Properties 551

for you; it is located in the Chap09 folder of the Student Sample Programs. Figure 9-14
shows the application’s form. At run time, you enter sample cell phone data into the text
boxes and then click the Create Object button. The application creates an object of the
 CellPhone class and assigns the data from the text boxes to the object’s properties. It
then reads and displays the values of the object’s properties in the brandLabel , model-
Label , and priceLabel controls.

brandTextBox

createObjectButton exitButton

modelTextBox

priceTextBox

brandLabel

modelLabel

priceLabel

 Figure 9-14 The Cell Phone Test application’s form

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Cell
Phone Test in the Chap09 folder of the Student Sample Programs.

 Step 2: Click PROJECT on the Visual Studio menu bar and then select Add Class ….
The Add New Item window should appear. Make sure Class is selected as the
type of item. Change the default filename to CellPhone.cs and then click the
 Add button. This adds a source code file named CellPhone.cs to the project.

 Step 3: The CellPhone.cs file should now be displayed in the code editor. Complete the
code for the CellPhone class by typing lines 11–43 in Program 9-3 .

 Step 4: Open the Form1.cs file in the code editor. Type the comments and code for the
 GetPhoneData method, shown in lines 20–44 of Program 9-4 . Notice in line 23
that the method has a CellPhone parameter named phone . When we call this
method, we pass a CellPhone object to it as an argument.

 The purpose of the GetPhoneData method is to read the data that the user has
entered into the form’s text boxes and store that data in the CellPhone object’s
properties. Let’s review this code:

 Line 26: This statement declares a local decimal variable named price . This
variable temporarily holds the value that the user entered for the phone’s price
while we perform input validation on that value.

 Line 29: This statement assigns the brandTextBox control’s Text property to
the phone object’s Brand property.

 Line 32: This statement assigns the modelTextBox control’s Text property to
the phone object’s Model property.

552 Chapter 9 Classes and Multiform Projects

 Lines 35–43: The if statement in line 35 calls the decimal.TryParse method
to convert the priceTextBox control’s Text property to a decimal , and it
stores the result in the price variable. If the conversion is successful, line 37 as-
signs the price variable to the phone object’s Price property. If the conversion
is not successful, line 42 displays an error message.

 You might be wondering why we need the price variable in this code. Why
not simply pass the phone.Price property as the second argument to the
 decimal.TryParse method in line 35? The reason is that the second argument
passed to the decimal.TryParse method is passed to an out parameter. Recall
that you cannot pass a property to a ref or an out parameter. So, we pass the
 price variable, and if the conversion is successful, we assign the price variable
to the phone.Price property.

 Step 5: Next you create the Click event handlers for the Button controls. Switch your
view to the Form1 form in the Designer. Double-click the createObjectButton
control. This opens the Form1.cs file in the code editor, and you will see an
empty event handler named createObjectButton_Click . Complete the event
handler by typing the code shown in lines 48–57 in Program 9-4 . Let’s review
this code:

 Line 49: This statement creates a CellPhone object in memory, referenced by a
variable named myPhone .

 Line 52: This statement calls the GetPhoneData method, passing the myPhone
object as an argument.

 Lines 55–57: These statements display the values of the myPhone object’s Brand,
Model, and Price properties in the brandLabel , modelLabel , and priceLabel
controls.

 Step 6: Switch your view back to the Form1 form in the Designer and double-click
the exitButton control. In the code editor you will see an empty event han-
dler named exitButton_Click . Complete the event handler by typing the code
shown in lines 62–63 in Program 9-4 .

 Step 7: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the ap-
plication runs, enter some sample data in the TextBox controls and click the
 Create Object button. You should see the values that you entered displayed in
the brandLabel , modelLabel , and priceLabel controls. Click the Exit button
when you are finished.

 Program 9-3 Completed code for the CellPhone.cs file in the Cell Phone Test
application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.Linq;
 4 using System.Text;
 5 using System.Threading.Tasks;
 6
 7 namespace Cell_Phone_Test
 8 {
 9 class CellPhone
 10 {
 11 // Fields
 12 private string _brand; // The phone's brand

 9.2 Properties 553

 13 private string _model; // The phone's model
 14 private decimal _price; // Retail price
 15
 16 // Constructor
 17 public CellPhone()
 18 {
 19 _brand = "";
 20 _model = "";
 21 _price = 0m;
 22 }
 23
 24 // Brand property
 25 public string Brand
 26 {
 27 get { return _brand; }
 28 set { _brand = value; }
 29 }
 30
 31 // Model property
 32 public string Model
 33 {
 34 get { return _model; }
 35 set { _model = value; }
 36 }
 37
 38 // Price property
 39 public decimal Price
 40 {
 41 get { return _price; }
 42 set { _price = value; }
 43 }
 44 }
 45 }

 Program 9-4 Completed code for Form1 in the Cell Phone Test application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Cell_Phone_Test
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 // The GetPhoneData method accepts a CellPhone object
 21 // as an argument. It assigns the data entered by the
 22 // user to the object's properties.
 23 private void GetPhoneData(CellPhone phone)

554 Chapter 9 Classes and Multiform Projects

 24 {
 25 // Temporary variable to hold the price.
 26 decimal price;
 27
 28 // Get the phone's brand.
 29 phone.Brand = brandTextBox.Text;
 30
 31 // Get the phone's model.
 32 phone.Model = modelTextBox.Text;
 33
 34 // Get the phone's price.
 35 if (decimal.TryParse(priceTextBox.Text, out price))
 36 {
 37 phone.Price = price;
 38 }
 39 else
 40 {
 41 // Display an error message.
 42 MessageBox.Show("Invalid price");
 43 }
 44 }
 45
 46 private void createObjectButton_Click(object sender, EventArgs e)
 47 {
 48 // Create a CellPhone object.
 49 CellPhone myPhone = new CellPhone();
 50
 51 // Get the phone data.
 52 GetPhoneData(myPhone);
 53
 54 // Display the phone data.
 55 brandLabel.Text = myPhone.Brand;
 56 modelLabel.Text = myPhone.Model;
 57 priceLabel.Text = myPhone.Price.ToString("c");
 58 }
 59
 60 private void exitButton_Click(object sender, EventArgs e)
 61 {
 62 // Close the form.
 63 this.Close();
 64 }
 65 }
 66 }

 Read-Only Properties
 Sometimes it is useful to make a property read only. A read-only property can be read, but
it cannot be modified. If you need to make a property read only, you simply do not write
a set accessor for the property. The following Circle class shows an example:

 1 class Circle
 2 {
 3 // Field
 4 private double _diameter;
 5
 6 // Constructor
 7 public Circle()
 8 {

 9.3 Parameterized Constructors and Overloading 555

 9 _diameter = 0.0;
 10 }
 11
 12 // Diameter property
 13 public double Diameter
 14 {
 15 get { return _diameter; }
 16 set { _diameter = value; }
 17 }
 18
 19 // Radius property (read-only)
 20 public double Radius
 21 {
 22 get { return _diameter / 2; }
 23 }
 24 }

 This class has two properties: Diameter (defined in lines 13–17) and Radius (defined in
lines 20–23). Notice that the Radius property has a get accessor but does not have a
 set accessor. The Radius property is read only. Therefore, if we create an object of the
 Circle class, we can get the value of the Radius property, but an error will occur if we try
to assign a value to the Radius property.

 Avoiding Stale Data
 In the Circle class example, previously shown, notice that the Radius property does not
have its own backing field, as the Diameter property does. Rather, the Radius property’s
 get accessor returns the value of a calculation. The radius is not stored in a field because
a circle’s radius is dependent on the circle’s diameter. If we store both the diameter and
the radius in their own fields, the radius field will become incorrect as soon as the diam-
eter field changes.

 When a field’s value is tightly dependent on other data and that field is not updated when
the other data is changed, it is said that the field has become stale . When designing a
class, you should take care not to store in a field any calculated data that can potentially
become stale. Instead, provide a read-only property, or a method, that returns the value
of the calculation.

 Checkpoint

 9.6 What is a property?

 9.7 When you pass a property as an argument to a method, there is one restriction.
What is it?

 9.8 How do you make a property read only?

 9.9 What will happen if you try to assign a value to a read-only property?

 9.10 What is stale data?

 9.3 Parameterized Constructors and Overloading

 CONCEPT: A constructor that accepts arguments is known as a parameterized con-
structor. A class can have multiple versions of the same method, which are
known as overloaded methods.

556 Chapter 9 Classes and Multiform Projects

 Constructors can accept arguments in the same way as other methods. A constructor that
accepts arguments is known as a parameterized constructor because it has parameter vari-
ables. When a class has a parameterized constructor, you can pass initialization values to
the constructor when you create an object. In Tutorial 9-3 you write a class that simulates
a bank account. The class’s constructor will accept an argument that specifies the ac-
count’s starting balance.

 Tutorial 9-3 :
 Creating and
Using the
BankAccount
Class

VideoNote

 Tutorial 9-3:
 Creating and Using the BankAccount Class

 In this tutorial you write a class named BankAccount that simulates a bank account.
When you create an instance of the class, you pass the account’s starting balance as an
argument to the constructor. The class will have a Deposit method that adds an amount
to the balance and a Withdraw method that subtracts an amount from the balance. The
class will also have a read-only Balance property that reports the account’s balance.

 The BankAccount class is part of the Account Simulator application, which has already
been started for you. Figure 9-15 shows the application’s form. When the completed ap-
plication runs, it creates a BankAccount object with a starting balance of $1,000.00. The
balance is displayed in the balanceLabel control. If you want to make a deposit, you can
enter the amount into the depositTextBox and click the Deposit button. If you want to
make a withdrawal, you can enter the amount into the withdrawTextBox and click the
 Withdraw button. Each time you perform one of these actions, the new account balance
is displayed.

depositButton

exitButton

withdrawButton

withdrawTextBox

depositTextBox
balanceLabel

 Figure 9-15 The Account Simulator application’s form

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Account
Simulator in the Chap09 folder of the Student Sample Programs.

 Step 2: Click PROJECT on the Visual Studio menu bar and then select Add Class ….
The Add New Item window should appear. Make sure Class is selected as the
type of item. Change the default filename to BankAccount.cs and then click the
 Add button. This adds a source code file named BankAccount.cs to the project.

 9.3 Parameterized Constructors and Overloading 557

 Step 3: The BankAccount.cs file should now be displayed in the code editor. Complete
the code for the BankAccount class by typing lines 11–36 in Program 9-5 . Let’s
take a closer look at the code:

 Line 12: This statement declares a private decimal field named _balance . The
 _balance field is the backing field for the Balance property.

 Lines 15–18: These lines are the parameterized class constructor. When an instance
of the class is created, an argument specifying the account’s starting balance is
passed into the startingBalance parameter. In line 17 the startingBalance
parameter is assigned to the _balance field.

 Lines 21–24: This is the code for the Balance property. Notice that the property
does not have a set accessor, so it is read only.

 Lines 27–30: This is the Deposit method, which accepts a decimal argument
and adds the argument to the _balance field.

 Lines 33–36: This is the Withdraw method, which accepts a decimal argument,
and subtracts the argument from the _balance field.

 Step 4: Open the Form1.cs file in the code editor. Type the comment and declaration
shown in lines 15 and 16 of Program 9-6 . The statement in line 16 does the
 following:

 • It creates an object of the BankAccount class, passing the value 1000 as an
argument to the constructor.

 • It assigns a reference to the object to a fi eld named account .

 Because the account variable is declared as a field, all the methods in the Form1
class have access to it.

 Step 5: Next you create a Load event handler for the form. The Load event handler
displays the account balance in the balanceLabel control. Switch your view
to the Form1 form in the Designer and double-click any part of the form that
does not contain a control. This opens the code editor, and you will see an
empty event handler named Form1_Load . Complete the event handler by typing
the code shown in lines 25 and 26 in Program 9-6 . Notice that line 26 uses the
 ToString method to format the account object’s Balance property as currency
and assigns the result to the balanceLabel control’s Text property.

 Step 6: Now you create the Click event handlers for the Button controls. Switch
your view back to the Form1 form in the Designer and double-click the
 depositButton control. This opens the code editor, and you will see an empty
event handler named depositButton_Click . Complete the event handler by
typing the code shown in lines 31–49 in Program 9-6 . Let’s look at the code:

 Line 31: This statement declares a local decimal variable named amount . This
holds the amount that the user wishes to deposit.

 Lines 34–49: The if statement in line 34 calls the decimal.TryParse method
to convert the depositTextBox control’s Text property to a decimal , and it
stores the result in the amount variable. If the conversion is successful, the fol-
lowing actions take place:

 • Line 37 calls the account object’s Deposit method, passing amount as an
argument.

 • Line 40 displays the account balance, formatted as currency.
 • Line 43 clears the depositTextBox control.

 If the conversion is not successful, line 48 displays an error message.

558 Chapter 9 Classes and Multiform Projects

 Step 7: Switch your view back to the Form1 form in the Designer and double-click the
 withdrawButton control. This opens the code editor, and you will see an empty
event handler named withdrawButton_Click . Complete the event handler by
typing the code shown in lines 54–72 in Program 9-6 . Let’s look at the code:

 Line 54: This statement declares a local decimal variable named amount . This
holds the amount that the user wishes to withdraw.

 Lines 57–72: The if statement in line 57 calls the decimal.TryParse method
to convert the withdrawTextBox control’s Text property to a decimal , and it
stores the result in the amount variable. If the conversion is successful, the fol-
lowing actions take place:

 • Line 60 calls the account object’s Withdraw method, passing amount as an
argument.

 • Line 63 displays the account balance, formatted as currency.
 • Line 66 clears the withdrawTextBox control.

 If the conversion is not successful, line 71 displays an error message.

 Step 8: Switch your view back to the Form1 form in the Designer and double-click
the exitButton control. In the code editor you will see an empty event han-
dler named exitButton_Click . Complete the event handler by typing the code
shown in lines 77–78 in Program 9-6 .

 Step 9: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the applica-
tion runs, experiment by depositing and withdrawing various amounts. Click
the Exit button when you are finished.

 Program 9-5 Completed code for the BankAccount.cs file in the Account Simulator
application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.Linq;
 4 using System.Text;
 5 using System.Threading.Tasks;
 6
 7 namespace Account_Simulator
 8 {
 9 class BankAccount
 10 {
 11 // Field
 12 private decimal _balance;
 13
 14 // Constructor
 15 public BankAccount(decimal startingBalance)
 16 {
 17 _balance = startingBalance;
 18 }
 19
 20 // Balance property (read-only)
 21 public decimal Balance
 22 {
 23 get { return _balance; }
 24 }
 25
 26 // Deposit method

 9.3 Parameterized Constructors and Overloading 559

 27 public void Deposit(decimal amount)
 28 {
 29 _balance += amount;
 30 }
 31
 32 // Withdraw method
 33 public void Withdraw(decimal amount)
 34 {
 35 _balance -= amount;
 36 }
 37 }
 38 }

 Program 9-6 Completed code for Form1 in the Account Simulator application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Account_Simulator
 12 {
 13 public partial class Form1 : Form
 14 {
 15 // BankAccount field with a $1000 starting balance
 16 private BankAccount account = new BankAccount(1000);
 17
 18 public Form1()
 19 {
 20 InitializeComponent();
 21 }
 22
 23 private void Form1_Load(object sender, EventArgs e)
 24 {
 25 // Display the starting balance.
 26 balanceLabel.Text = account.Balance.ToString("c");
 27 }
 28
 29 private void depositButton_Click(object sender, EventArgs e)
 30 {
 31 decimal amount; // To hold the amount of deposit
 32
 33 // Convert the amount to a decimal.
 34 if (decimal.TryParse(depositTextBox.Text, out amount))
 35 {
 36 // Deposit the amount into the account.
 37 account.Deposit(amount);
 38
 39 // Display the new balance.
 40 balanceLabel.Text = account.Balance.ToString("c");
 41
 42 // Clear the text box.
 43 depositTextBox.Clear();
 44 }

560 Chapter 9 Classes and Multiform Projects

 Overloaded Methods
 Sometimes you need different ways to perform the same operation. For example, the
 BankAccount class that you wrote in Tutorial 9-3 has a Deposit method that accepts a
 decimal argument. Suppose you are using the class in an application that needs to pass a
 double variable to the method instead of a decimal variable. In this application, before
you call the Deposit method, you have to convert the double variable to a decimal so it
can be passed to the method. It would be nice if the Deposit method could accept either
a decimal argument or a double argument. Then, it would be unnecessary to convert a
 double variable before passing it to the method. This can be accomplished with overloading.

 When a method is overloaded , it means that multiple methods in the same class have the
same name but use different types of parameters. Here is an example of how we might
overload the Deposit method inside the BankAccount class:

 1 // Deposit method
 2 public void Deposit(decimal amount)
 3 {
 4 _balance += amount;
 5 }

 45 else
 46 {
 47 // Display an error message.
 48 MessageBox.Show("Invalid amount");
 49 }
 50 }
 51
 52 private void withdrawButton_Click(object sender, EventArgs e)
 53 {
 54 decimal amount; // To hold the amount of withdrawal
 55
 56 // Convert the amount to a decimal.
 57 if (decimal.TryParse(withdrawTextBox.Text, out amount))
 58 {
 59 // Withdraw the amount from the account.
 60 account.Withdraw(amount);
 61
 62 // Display the new balance.
 63 balanceLabel.Text = account.Balance.ToString("c");
 64
 65 // Clear the text box.
 66 withdrawTextBox.Clear();
 67 }
 68 else
 69 {
 70 // Display an error message.
 71 MessageBox.Show("Invalid amount");
 72 }
 73 }
 74
 75 private void exitButton_Click(object sender, EventArgs e)
 76 {
 77 // Close the form.
 78 this.Close();
 79 }
 80 }
 81 }

 9.3 Parameterized Constructors and Overloading 561

 6
 7 // Deposit method
 8 public void Deposit(double amount)
 9 {
 10 _balance += (decimal)amount;
 11 }

 The first Deposit method (in lines 2–5) accepts a decimal argument, which is added to
the _balance field in line 4. The second Deposit method (in lines 8–11) accepts a dou-
ble argument. Line 10 uses a cast operator to convert its value to a decimal , and assigns
the result to the _balance field.

 When you write a call to the Deposit method, the compiler must determine which one of
the overloaded methods you intended to call. The process of matching a method call with
the correct method is known as binding . When an overloaded method is called, the compiler
uses the method’s name and parameter list to determine to which method to bind the call.
If we call the Deposit method and pass a decimal argument, the version of the method
that has a decimal parameter is called. Likewise, if we call the Deposit method and pass a
 double argument, the version of the method that has a double parameter is called.

 The compiler uses a method’s signature to distinguish it from other methods of the same
name. A method’s signature consists of the method’s name and the data type and argu-
ment kind (by value, ref , or out) of the method’s parameters, from left to right. For ex-
ample, here are the signatures of the Deposit methods that we previously showed:

 Deposit(decimal)
 Deposit(double)

 Note that the method’s return type is not part of the signature. For this reason, you can-
not overload methods by giving them different return types.

 Overloaded Constructors
 Constructors can also be overloaded, which means that a class can have more than one
constructor. The rules for overloading constructors are the same for overloading other
methods: Each version of the constructor must have a different parameter list. As long as
each constructor has a unique signature, the compiler can tell them apart.

 Here is an example of how we might overload the BankAccount class constructor:

 1 // Constructor
 2 public BankAccount()
 3 {
 4 _balance = 0;
 5 }
 6
 7 // Constructor
 8 public BankAccount(decimal startingBalance)
 9 {
 10 _balance = startingBalance;
 11 }

 The first constructor (lines 2–5) is a parameterless constructor , which means it accepts
no arguments. The following statement calls the parameterless constructor as it creates a
 BankAccount object:

 BankAccount account = new BankAccount();

 The second constructor (lines 8–11) accepts a decimal argument. The following state-
ment calls this constructor as it creates a BankAccount object:

 BankAccount account = new BankAccount(500m);

562 Chapter 9 Classes and Multiform Projects

 The following statement also calls the second constructor (lines 8–11) because an integer
value can be implicitly converted to a decimal :

 BankAccount account = new BankAccount(500);

 The following code will cause an error, however, because there is no constructor that ac-
cepts a double argument:

 // Error
 BankAccount account = new BankAccount(500.0);

 Default Constructors
 It is perfectly legal to write a class without any constructors. If you write a class with no
constructor whatsoever, the compiler provides a default constructor. The default con-
structor is a parameterless constructor (it accepts no arguments), and it initializes the
object’s fields with the value 0. (If any fields are reference variables, they are initialized
with the special value null .)

 Checkpoint

 9.11 What is a parameterized constructor?

 9.12 What does it mean when a method is overloaded?

 9.13 What is the process of matching a method call with the correct method called?

 9.14 What happens if you write a class with no constructor whatsoever?

 9.15 Describe the purpose of the default constructor.

 9.4 Storing Class Type Objects in Arrays and List s

 CONCEPT: You can store a collection of class type objects in an array or a Lis t.

 Arrays of Class Type Objects
 Objects that are instances of a class can be stored in an array. For example, assume the
 CellPhone class previously shown exists in an application. The following code creates a
 CellPhone array with four elements:

 const int SIZE = 4;
 CellPhone[] phones = new CellPhone[SIZE];

 Although this code creates an array, it does not yet contain any objects. When you create
an array of a class type, each element of the array is a reference variable. By default, each
element will be initialized with the value null . The next step is to create the objects that
each element will reference. This can be done one element at a time, as shown here:

 phones[0] = new CellPhone();
 phones[1] = new CellPhone();
 phones[2] = new CellPhone();
 phones[3] = new CellPhone();

 Or, it can be done with a loop, as shown here:

 for (int index = 0; index < phones.Length; index++)
 {

 9.4 Storing Class Type Objects in Arrays and Lists 563

 phones[index] = new CellPhone();
 }

 Alternatively, you can initialize the array elements in the declaration statement:

 CellPhone[] phones = {
 new CellPhone(), new CellPhone(),
 new CellPhone(), new CellPhone()
 };

 The following shows another example. This code creates a BankAccount array and ini-
tializes its elements with references to four BankAccount objects.

 BankAccount[] accounts = {
 new BankAccount(1000),
 new BankAccount(2000),
 new BankAccount(3000),
 new BankAccount(4000)
 };

 Notice the arguments that are passed to the BankAccount constructor for each object. If
the following code were executed, it would display “The balance is 1000”, “The balance
is 2000”, and so forth:

 for (int index = 0; index < accounts.Length; index++)
 {
 MessageBox.Show("The balance is " +
 accounts[index].Balance);
 }

 The following code performs the same operation using a foreach loop:

 foreach (BankAccount acct in accounts)
 {
 MessageBox.Show("The balance is " +
 acct[index].Balance);
 }

 List s of Class Type Objects
 In Chapter 7 we discussed the List class, which is a container for storing a collection of ob-
jects. Here is an example of how you would create a List that can hold CellPhone objects:

 List<CellPhone> phoneList = new List<CellPhone>();

 This statement creates a List object, referenced by the phoneList variable. Notice that
the word CellPhone is written inside angled brackets, <>, immediately after the word
 List . This specifies that the List can hold only objects of the CellPhone class type.

 To add an object to a List , you use the Add method. The following code shows an example:

 1 // Create a List to hold CellPhone objects.
 2 List<CellPhone> phoneList = new List<CellPhone>();
 3
 4 // Create an instance of the CellPhone class.
 5 CellPhone myPhone = new CellPhone();
 6
 7 // Assign values to the object's properties.
 8 myPhone.Brand = "Acme Electronics";
 9 myPhone.Model = "M1000";

 10 myPhone.Price = 199;
 11
 12 // Add the object to the List.
 13 phoneList.Add(myPhone);

564 Chapter 9 Classes and Multiform Projects

 The statement in line 2 creates a List named phoneList that can hold CellPhone objects.
Line 5 creates an instance of the CellPhone class, referenced by the myPhone variable.
Lines 8–10 assign values to the object’s properties. Line 13 adds the object to the List .

 In Tutorial 9-4 you complete an application that uses a List to hold a collection of
 CellPhone objects.

 Tutorial 9-4 :
 Completing
the Cell
Phone
Inventory
Application

VideoNote

 Tutorial 9-4:
 Completing the Cell Phone Inventory Application

 In this tutorial you complete the Cell Phone Inventory application. Figure 9-16 shows the
application’s form, which has already been created for you. When you run the completed
application, you can enter data about a cell phone into the TextBox controls. When you
click the Add Phone button, that data is assigned to a CellPhone object’s properties and
then the object is added to a List . You can do this as many times as you wish. Each time
you add a cell phone, its brand and model is displayed in the list box. If you select a phone
in the list box, the application displays that phone’s price.

 Figure 9-16 The Cell Phone Inventory application’s form

brandTextBox

modelTextBox

priceTextBox

phoneListBox

addPhoneButton exitButton

 Figure 9-17 shows an example of the application at run time. In the figure, five cell phones
have been added, and Atlantic Mobile S2 has been selected in the list box. The selected
phone’s price is displayed in the message box.

 Figure 9-17 The Cell Phone Inventory application running

 9.4 Storing Class Type Objects in Arrays and Lists 565

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Cell
Phone Inventory in the Chap09 folder of the Student Sample Programs. Notice
that the CellPhone class has already been added to the project for you in the
file CellPhone.cs.

 Step 2: Open the Form1.cs file in the code editor. Write the comment and the declara-
tion for phoneList , which appears in lines 15 and 16 in Program 9-7 . Notice
that phoneList is declared as a field in the Form1 class. It will be available to all
the methods in the class.

 Step 3: Type the comments and code for the GetPhoneData method, shown in lines
23–47 of Program 9-7 . Notice that the method accepts a CellPhone object as an
argument. The purpose of the GetPhoneData method is to read the data that the
user has entered into the form’s text boxes and store that data in the argument
object’s properties. (This method might look familiar. We used it in Tutorial 9-2 .)

 Step 4: Switch your view to the Form1 form in the Designer and double-click the
 addPhoneButton control. This opens the code editor, and you will see an empty
event handler named addPhoneButton_Click . Complete the event handler by
typing the code shown in lines 51–70 in Program 9-7 . Let’s look at the code:

 Line 52: This statement creates a CellPhone object in memory, referenced by a
variable named myPhone .

 Line 55: This statement calls the GetPhoneData method, passing the myPhone
object as an argument. After the method executes, the myPhone object’s proper-
ties are set to the data entered by the user.

 Line 58: This statement adds the myPhone object to the phoneList .

 Lines 61–62: These statements add an entry to the phoneListBox control dis-
playing the myPhone object’s Brand and Model properties.

 Lines 65–67: These statements clear the contents of the TextBox controls.

 Line 70: This statement sets the focus to the brandTextBox control.

 Note that each CellPhone object that is added to the phoneList has a corre-
sponding item in the ListBox control. An object in the phoneList and its cor-
responding item in the ListBox share the same index. For example,

 • The CellPhone object at index 0 in phoneList corresponds to the item at
index 0 in the ListBox.

 • The CellPhone object at index 1 in phoneList corresponds to the item at
index 1 in the ListBox.

 Recall from Chapter 8 that when the items in two data structures are related
by their indexes, it is said that a parallel relationship exists between the data
structures.

 Step 5: Next you create the SelectedIndexChange event handler for the phoneListBox
control. Switch back to the Designer and double-click the phoneListBox con-
trol. This opens the code editor, and you will see an empty event handler named
 phoneListBox_SelectedIndexChange . Complete the event handler by typing
the code shown in lines 75–79 in Program 9-7 .

 We mentioned in Step 4 that the items in the list box and the objects in the
 phoneList are related by their indexes. When the user selects an item from the
list box, all we have to do is get that item’s index and then use that same index
to retrieve the corresponding object from the phoneList . That is exactly what
happens in this event handler. Line 76 gets the index of the selected item in the
 phoneListBox control and assigns it to the index variable. Line 79 uses the

566 Chapter 9 Classes and Multiform Projects

 index variable to get an object from phoneList and display its Price property
in a message box.

 Step 6: Switch your view back to the Designer and double-click the exitButton control.
In the code editor you will see an empty event handler named exitButton_Click .
Complete the event handler by typing the code shown in lines 84 and 85 in
 Program 9-7 .

 Step 7: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the appli-
cation runs, enter some sample data in the TextBox controls and click the Add
Phone button. Repeat this with several different sets of data. Each time you add
a phone, you should see its brand and model displayed in the list box. After you
have entered data for several phones, click the entries that appear in the list box
to see each phone’s price. Click the Exit button when you are finished.

 Program 9-7 Completed code for Form1 in the Cell Phone Inventory application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Cell_Phone_Inventory
 12 {
 13 public partial class Form1 : Form
 14 {
 15 // List to hold CellPhone objects
 16 List<CellPhone> phoneList = new List<CellPhone>();
 17
 18 public Form1()
 19 {
 20 InitializeComponent();
 21 }
 22
 23 // The GetPhoneData method accepts a CellPhone object
 24 // as an argument. It assigns the data entered by the
 25 // user to the object's properties.
 26 private void GetPhoneData(CellPhone phone)
 27 {
 28 // Temporary variable to hold the price.
 29 decimal price;
 30
 31 // Get the phone's brand.
 32 phone.Brand = brandTextBox.Text;
 33
 34 // Get the phone's model.
 35 phone.Model = modelTextBox.Text;
 36
 37 // Get the phone's price.
 38 if (decimal.TryParse(priceTextBox.Text, out price))
 39 {
 40 phone.Price = price;

 9.4 Storing Class Type Objects in Arrays and Lists 567

 Checkpoint

 9.16 When you create a array of a class type, with what value will each element of the
array be initialized?

 9.17 How can you initialize an array of a class type with references to objects of the
class?

 9.18 How do you specify the class type that a List can hold?

 41 }
 42 else
 43 {
 44 // Display an error message.
 45 MessageBox.Show("Invalid price");
 46 }
 47 }
 48
 49 private void addPhoneButton_Click(object sender, EventArgs e)
 50 {
 51 // Create a CellPhone object.
 52 CellPhone myPhone = new CellPhone();
 53
 54 // Get the phone data.
 55 GetPhoneData(myPhone);
 56
 57 // Add the CellPhone object to the List.
 58 phoneList.Add(myPhone);
 59
 60 // Add an entry to the list box.
 61 phoneListBox.Items.Add(myPhone.Brand + " " +
 62 myPhone.Model);
 63
 64 // Clear the TextBox controls.
 65 brandTextBox.Clear();
 66 modelTextBox.Clear();
 67 priceTextBox.Clear();
 68
 69 // Reset the focus.
 70 brandTextBox.Focus();
 71 }
 72
 73 private void phoneListBox_SelectedIndexChanged(object sender, EventArgs e)
 74 {
 75 // Get the index of the selected item.
 76 int index = phoneListBox.SelectedIndex;
 77
 78 // Display the selected item's price.
 79 MessageBox.Show(phoneList[index].Price.ToString("c"));
 80 }
 81
 82 private void exitButton_Click(object sender, EventArgs e)
 83 {
 84 // Close the form.
 85 this.Close();
 86 }
 87 }
 88 }

568 Chapter 9 Classes and Multiform Projects

 9.5 Finding the Classes and Their Responsibilities
in a Problem
 When developing an object-oriented program, one of your first tasks is to identify the
classes that you will need to create. Typically, your goal is to identify the different types of
real-world objects that are present in the problem and then create classes for those types
of objects within your application.

 Over the years, software professionals have developed numerous techniques for finding
the classes in a given problem. One simple and popular technique involves the following
steps.

 1. Get a written description of the problem domain.
 2. Identify all the nouns (including pronouns and noun phrases) in the description.

Each of these is a potential class.
 3. Refine the list to include only the classes that are relevant to the problem.

 Let’s take a closer look at each of these steps.

 Writing a Description of the Problem Domain
 The problem domain is the set of real-world objects, parties, and major events related
to the problem. If you adequately understand the nature of the problem you are try-
ing to solve, you can write a description of the problem domain yourself. If you do not
thoroughly understand the nature of the problem, you should have an expert write the
description for you.

 For example, suppose we are programming an application that the manager of Joe’s Au-
tomotive Shop will use to print service quotes for customers. Here is a description that an
expert, perhaps Joe himself, might have written:

 Joe’s Automotive Shop services foreign cars and specializes in servicing cars made by Mercedes,
Porsche, and BMW. When a customer brings a car to the shop, the manager gets the custom-
er’s name, address, and telephone number. The manager then determines the make, model, and
year of the car and gives the customer a service quote. The service quote shows the estimated
parts charges, estimated labor charges, sales tax, and total estimated charges.

 The problem domain description should include any of the following:

 • Physical objects such vehicles, machines, or products
 • Any role played by a person, such as manager, employee, customer, teacher, student,

and so on
 • The results of a business event, such as a customer order or, in this case, a service

quote
 • Record-keeping items, such as customer histories and payroll records

 Identify All of the Nouns
 The next step is to identify all of the nouns and noun phrases. (If the description contains
pronouns, include them, too.) Here’s another look at the previous problem domain
 description. This time the nouns and noun phrases appear in bold.

 Joe’s Automotive Shop services foreign cars and specializes in servicing cars made by
 Mercedes , Porsche , and BMW . When a customer brings a car to the shop , the manager
gets the customer ’s name , address , and telephone number . The manager then determines the
 make, model , and year of the car and gives the customer a service quote . The service quote
shows the estimated parts charges, estimated labor charges , sales tax , and total estimated
charges .

 9.5 Finding the Classes and Their Responsibilities in a Problem 569

 Notice that some of the nouns are repeated. The following list shows all the nouns with-
out duplicating any of them.

 address

 BMW

 car

 cars

 customer

 estimated labor charges

 estimated parts charges

 foreign cars

 Joe’s Automotive Shop

 make

 manager

 Mercedes

 model

 name

 Porsche

 sales tax

 service quote

 shop

 telephone number

 total estimated charges

 year

 Refining the List of Nouns
 The nouns that appear in the problem description are merely candidates to become
classes. It might not be necessary to make classes for them all. The next step is to refine
the list to include only the classes that are necessary to solve the particular problem at
hand. We look at the common reasons that a noun can be eliminated from the list of
 potential classes.

 1. Some of the nouns really mean the same thing.

 In this example, the following sets of nouns refer to the same thing:

 • car, cars , and foreign cars

 These all refer to the general concept of a car.

 • Joe’s Automotive Shop and shop

 Both of these refer to the company “Joe’s Automotive Shop.”

 We can settle on a single class for each of these. In this example we arbitrarily elimi-
nate cars and foreign cars from the list and use the word car . Likewise, we eliminate
 Joe’s Automotive Shop from the list and use the word shop . The updated list of potential
classes is as follows:

 address

 BMW

 car

 cars

570 Chapter 9 Classes and Multiform Projects

 customer

 estimated labor charges

 estimated parts charges

 foreign cars

 Joe’s Automotive Shop

 make

 manager

 Mercedes

 model

 name

 Porsche

 sales tax

 service quote

 shop

 telephone number

 total estimated charges

 year

 2. Some nouns might represent items that we do not need to be concerned with in
order to solve the problem.

 A quick review of the problem description reminds us of what our application
should do: print a service quote. In this example we can eliminate two unnecessary
classes from the list:

 • We can cross shop off the list because our application needs to be concerned only
with individual service quotes. It does not need to work with or determine any
companywide information. If the problem description asked us to keep a total of
all the service quotes, then it would make sense to have a class for the shop.

 • We will not need a class for the manager because the problem statement does not
direct us to process any information about the manager. If there were multiple shop
managers, and the problem description had asked us to record which manager gen-
erated each service quote, then it would make sense to have a class for the manager.

 The updated list of potential classes at this point is as follows:

 address

 BMW

 car

 cars

 customer

 estimated labor charges

 estimated parts charges

 foreign cars

 Joe’s Automotive Shop

 make

 manager

 Mercedes

 model

 name

Our problem description does not
direct us to process any information
about the shop or any information
about the manager , so we have
eliminated those from the list.

Because car, cars , and foreign cars mean
the same thing in this problem, we have
eliminated cars and foreign cars . Also,
because Joe’s Automotive Shop and
 shop mean the same thing, we have
eliminated Joe’s Automotive Shop .

 9.5 Finding the Classes and Their Responsibilities in a Problem 571

 Porsche

 sales tax

 service quote

 shop

 telephone number

 total estimated charges

 year

 3. Some of the nouns might represent objects, not classes.

 We can eliminate Mercedes, Porsche , and BMW as classes because, in this example,
they all represent specific cars and can be considered instances of a car class. At this
point the updated list of potential classes is as follows:

 address

 BMW

 car

 cars

 customer

 estimated labor charges

 estimated parts charges

 foreign cars

 Joe’s Automotive Shop

 manager

 make

 Mercedes

 model

 name

 Porsche

 sales tax

 service quote

 shop

 telephone number

 total estimated charges

 year

 4. Some of the nouns might represent simple values that can be assigned to a variable
and do not require a class.

 NOTE: Some object-oriented designers take note of whether a noun is plural or
 singular. Sometimes a plural noun will indicate a class and a singular noun will indi-
cate an object.

 A class contains data attributes and methods. Data attributes are the fields and
properties that define the object’s state. Methods are actions or behaviors that
can be performed by an object of the class. If a noun represents a type of item
that would not have any identifiable data attributes or methods, then it can prob-
ably be eliminated from the list. To help determine whether a noun represents an

We have eliminated Mercedes, Porsche ,
and BMW , because they are all
instances of a car class. That means that
these nouns identify objects, not classes.

572 Chapter 9 Classes and Multiform Projects

item that would have data attributes and methods, ask the following questions
about it:

 • Would you use a group of related values to represent the item’s state?
 • Are there any obvious actions to be performed by the item?

 If the answers to both of these questions are no, then the noun probably represents a
value that can be stored in a simple variable. If we apply this test to each noun that
 remains in our list, we can conclude that the following are probably not classes: address,
estimated labor charges, estimated parts charges, make, model, name, sales tax, tele-
phone number, total estimated charges , and year . These are all simple string or numeric
values that can be stored in variables. Here is the updated list of potential classes:

 address

 BMW

 car

 cars

 customer

 estimated labor charges

 estimated parts charges

 foreign cars

 Joe’s Automotive Shop

 make

 manager

 Mercedes

 model

 name

 Porsche

 sales tax

 service quote

 shop

 telephone number

 total estimated charges

 year

 As you can see from the list, we have eliminated everything except car, customer ,
and service quote . This means that in our application, we need classes to repre-
sent cars, customers, and service quotes. Ultimately, we will write a Car class, a
 Customer class, and a ServiceQuote class.

 Identifying a Class’s Responsibilities
 Once the classes have been identified, the next task is to identify each class’s responsibili-
ties. A class’s responsibilities are as follows:

 • The things that the class is responsible for knowing
 • The actions that the class is responsible for doing

 When you have identified the things that a class is responsible for knowing, then you have
identified the class’s fields and/or properties. Likewise, when you have identified the ac-
tions that a class is responsible for doing, you have identified its methods.

 It is often helpful to ask these questions: In the context of this problem, what must the
class know? What must the class do? The first place to look for the answers is in the de-
scription of the problem domain. Many of the things that a class must know and do will
be mentioned. Some class responsibilities, however, might not be directly mentioned in

We have eliminated address, estimated
labor charges, estimated parts charges,
make, model, name, sales tax, telephone
number, total estimated charges, and
 year as classes because they represent
simple values that can be stored in
variables.

 9.5 Finding the Classes and Their Responsibilities in a Problem 573

the problem domain, so brainstorming is often required. Let’s apply this methodology to
the classes we previously identified from our problem domain.

 The Customer class

 In the context of our problem domain, what must the Customer class know? The descrip-
tion directly mentions the following items:

 • The customer’s name
 • The customer’s address
 • The customer’s telephone number

 These are all values that can be represented as strings and stored as properties. The Cus-
tomer class can potentially know many other things. One mistake that can be made at
this point is to identify too many things that an object is responsible for knowing. In some
applications, a Customer class might know the customer’s e-mail address. This particular
problem domain does not mention that the customer’s e-mail address is used for any pur-
pose, so we should not include it as a responsibility.

 Now let’s identify the class’s methods. In the context of our problem domain, what must
the Customer class do? The only obvious actions are these:

 • Create and initialize an object of the Customer class.
 • Get and set the customer’s name.
 • Get and set the customer’s address.
 • Get and set the customer’s telephone number.

 From this list we can see that the Customer class will have a constructor as well as fields
and properties for the data attributes. The following code shows how the Customer class
might be written:

 1 class Customer
 2 {
 3 // Fields
 4 private string _name;
 5 private string _address;
 6 private string _phone;
 7
 8 // Constructor
 9 public Customer(string name, string address, string phone)
 10 {
 11 _name = name;
 12 _address = address;
 13 _phone = phone;
 14 }
 15
 16 // Name property
 17 public string Name
 18 {
 19 get { return _name; }
 20 set { _name = value; }
 21 }
 22
 23 // Address property
 24 public string Address
 25 {
 26 get { return _address; }
 27 set { _address = value; }
 28 }
 29
 30 // Phone property
 31 public string Phone
 32 {

574 Chapter 9 Classes and Multiform Projects

 33 get { return _phone; }
 34 set { _phone = value; }
 35 }
 36 }

 The Car Class

 In the context of our problem domain, what must an object of the Car class know?
The following items are all data attributes of a car and are mentioned in the problem
domain:

 • The car’s make
 • The car’s model
 • The car’s year

 Now let’s identify the class’s methods. In the context of our problem domain, what must
the Car class do? Once again, the only obvious actions are the standard set of methods
that we will find in most classes. Specifically, the actions are these:

 • Create and initialize an object of the Car class.
 • Get and set the car’s make.
 • Get and set the car’s model.
 • Get and set the car’s year.

 The following code shows how the Car class might be written:

 1 class Car
 2 {
 3 // Fields
 4 private string _make;
 5 private string _model;
 6 private int _year;
 7
 8 // Constructor
 9 public Car(string make, string model, int year)
 10 {
 11 _make = make;
 12 _model = model;
 13 _year = year;
 14 }
 15
 16 // Make property
 17 public string Make
 18 {
 19 get { return _make; }
 20 set { _make = value; }
 21 }
 22
 23 // Model property
 24 public string Model
 25 {
 26 get { return _model; }
 27 set { _model = value; }
 28 }
 29
 30 // Year property
 31 public int Year
 32 {
 33 get { return _year; }
 34 set { _year = value; }
 35 }
 36 }

 9.5 Finding the Classes and Their Responsibilities in a Problem 575

 The ServiceQuote Class

 In the context of our problem domain, what must an object of the ServiceQuote class
know? The problem domain mentions the following items:

 • The estimated parts charges
 • The estimated labor charges
 • The sales tax
 • The total estimated charges

 Careful thought and a little brainstorming reveals that two of these items are the results of
calculations: sales tax and total estimated charges. Furthermore, in order to calculate the
sales tax, the class must also know the sales tax rate.

 Now let’s identify the class’s methods. In the context of our problem domain, what must
the ServiceQuote class do? Once again, the only obvious actions are the standard set of
methods that we will find in most classes. Specifically, the actions are these:

 • Create and initialize an object of the ServiceQuote class.
 • Get and set the estimated parts charges.
 • Get and set the estimated labor charges.
 • Get and set the sales tax rate.
 • Get the sales tax.
 • Get the total estimated charges.

 The following code shows how the ServiceQuote class might be written:

 1 class ServiceQuote
 2 {
 3 // Fields
 4 private decimal _partsCharges;
 5 private decimal _laborCharges;
 6 private decimal _taxRate;
 7
 8 // Constructor
 9 public ServiceQuote(decimal partsCharges,
 10 decimal laborCharges, decimal taxRate)
 11 {
 12 _partsCharges = partsCharges;
 13 _laborCharges = laborCharges;
 14 _taxRate = taxRate;
 15 }
 16
 17 // PartsCharges property
 18 public decimal PartsCharges
 19 {
 20 get { return _partsCharges; }
 21 set { _partsCharges = value; }
 22 }
 23
 24 // LaborCharges property
 25 public decimal LaborCharges
 26 {
 27 get { return _laborCharges; }
 28 set { _laborCharges = value; }
 29 }
 30
 31 // TaxRate property
 32 public decimal TaxRate
 33 {
 34 get { return _taxRate; }
 35 set { _taxRate = value; }
 36 }

576 Chapter 9 Classes and Multiform Projects

 37
 38 // SalesTax property (read-only)
 39 public decimal SalesTax
 40 {
 41 get { return _partsCharges * _taxRate; }
 42 }
 43
 44 // TotalCharges property (read-only)
 45 public decimal TotalCharges
 46 {
 47 get
 48 {
 49 return _partsCharges + _laborCharges +
 50 (_partsCharges * _taxRate);
 51 }
 52 }
 53 }

 This Is Only the Beginning
 You should look at the process that we have discussed in this section merely as a starting
point. It’s important to realize that designing an object-oriented application is an iterative
process. It may take you several attempts to identify all the classes that you will need and
determine all their responsibilities. As the design process unfolds, you will gain a deeper
understanding of the problem, and consequently you will see ways to improve the design.

 Checkpoint

 9.19 What is a problem domain?

 9.20 When designing an object-oriented application, who should write a description of
the problem domain?

 9.21 How do you identify the potential classes in a problem domain description?

 9.22 What are a class’s responsibilities?

 9.23 What two questions should you ask to determine a class’s responsibilities?

 9.24 Will all a class’s actions always be directly mentioned in the problem domain description?

 9.6 Creating Multiple Forms in a Project

 CONCEPT: A Visual C# project can have multiple forms. Each form has its own class
that can be instantiated and displayed on the screen.

 The applications you have created so far have used only one form, named Form1. The
Form1 form is displayed when the application runs, and when the Form1 form closes, the
application ends. You are not limited to one form in a project, however. You may create
multiple forms in a project to use as dialog boxes, to display error messages, and so on.
Then you can display these forms as they are needed.

 Every form in a Visual C# project has a class. For example, if a project has a form named
Form1, then the project has a class named Form1 , which is stored in a file named Form1.
cs. When you add additional forms to a project, you add additional classes, which are
stored in their own files. When you create event handlers for a specific form’s controls,
you write them as methods in that form’s class.

 9.6 Creating Multiple Forms in a Project 577

 Renaming the Form1 Form
 When you add forms to a Visual C# project, they are given default names such as Form1,
Form2, and so on. If you have only one form in a project, there is no compelling reason to
change the form’s name. However, when you have multiple forms in a project, you should
give each form a meaningful name that describes its purpose.

 Before you add a new form to a project, it is a good idea to change the name of the Form1
form. In this book, we always change the name of the Form1 form to MainForm because
it is usually the main form in an application. To change the form’s name, you use the
Solution Explorer to change the name of the Form1.cs file to MainForm.cs. When you
do this, Visual Studio automatically changes the name of the Form1 form to MainForm.
Here is the procedure to follow:

 1. Right-click the Form1.cs entry that appears in the Solution Explorer. The pop-up
menu shown in Figure 9-18 should appear.

 Figure 9-18 Right-clicking the form file in the Solution Explorer

 2. Select Rename from the pop-up menu.
 3. In the Solution Explorer , the form’s filename should become highlighted. Type

the new name, which is MainForm . cs , and press e. (Be sure to type the .cs
 extension.)

 4. The dialog box shown in Figure 9-19 will appear next. Click Yes to rename the
form.

 Figure 9-19 Clicking Yes to rename the form

578 Chapter 9 Classes and Multiform Projects

 Figure 9-20 shows an example of the Solution Explorer after the Form1.cs file has been
renamed MainForm.cs.

 Figure 9-20 Form file renamed as MainForm.cs

 Adding a New Form to a Project
 Follow these steps to add a new form to a project:

 1. Click PROJECT on the Visual Studio menu bar, and then select Add Windows Form…
from the PROJECT menu. The Add New Item window, shown in Figure 9-21 , should
appear.

 Figure 9-21 Add New Item window

 2. Near the bottom of the Add New Item window, a Name text box appears, where
you can specify the new form’s file name. Initially, a default name will appear here.
(Notice that in Figure 9-21 the default name Form1.cs appears. The actual name
that appears on your screen may be different.) Change the default name that is
 displayed in the Name text box to a more descriptive name. For example, if you

 9.6 Creating Multiple Forms in a Project 579

wish to name the new form ErrorForm, enter ErrorForm.cs in the Name text box.
(Make sure you specify the .cs extension with the file name that you enter.)

 3. Click the Add button.

 After completing these steps, a new blank form is added to your project. The new form
is displayed in the Designer, and an entry for the new form’s file appears in the Solution
Explorer . Figure 9-22 shows an example of the Solution Explorer with two form files:
 ErrorForm . cs and MainForm . cs . Once you have added a form to a project, you can place
any controls on it that you desire and write the necessary event handlers for it.

 Figure 9-22 Solution Explorer window showing two forms

 Switching between Forms and Form Code
 In Visual Studio, you can easily switch your view to another form by double-clicking the
form’s entry in the Solution Explorer window. The form is then displayed in the Designer .
You can also use the tabs that appear at the top of the Designer to display different forms
or their code. For example, look at Figure 9-23 . It shows the tabs that appear for a project
with two forms: ErrorForm and MainForm. The tabs that display the [Design] designa-
tor cause a form to be displayed in the Design window. The tabs that appear without the
designator cause a form’s code to be displayed in the code editor.

 Figure 9-23 Designer tabs

580 Chapter 9 Classes and Multiform Projects

 When you open a form in the code editor, you will see several using directives, a name-
space declaration, and the form’s class. Figure 9-24 shows an example. The file in the
f igure contains the code for a form named ErrorForm. Notice that the form’s class is
named ErrorForm .

 Figure 9-24 A source code file containing a form class

 Removing a Form
 If you wish to remove a form from a project and delete its file from the disk, follow these steps.

 1. Right-click the form’s entry in the Solution Explorer window.
 2. On the pop-up menu, click Delete .

 If you wish to remove a form from a project but you do not want to delete its file from the
disk, follow these steps.

 1. Right-click the form’s entry in the Solution Explorer window.
 2. On the pop-up menu click Exclude From Project .

 Displaying a Form
 In your application’s code, the first step in displaying a form is to create an instance of the
form’s class. For example, suppose a project has a form named ErrorForm. The following
statement creates an instance of the ErrorForm class:

 ErrorForm myErrorForm = new ErrorForm();

 This statement declares a reference variable named myErrorForm . It also creates an object
of the ErrorForm class in memory and assigns a reference to the object to the myErrorForm
variable. After this statement executes, you will be able to use the myErrorForm variable
to perform operations with the form.

 Creating an instance of a form’s class does not display the form on the screen. The next
step is to call the form’s ShowDialog method. Here is an example:

 myErrorForm.ShowDialog();

 The ShowDialog method displays a form on the screen, and it gives that form the focus.
This means that control of the application transfers to the form. When the user closes the
form, control of the application returns to the point where the ShowDialog method was
called, and execution resumes.

 9.6 Creating Multiple Forms in a Project 581

 Now that we’ve covered the basic concepts of creating and displaying a form, go
through the steps in Tutorial 9-5 . In the tutorial you create a simple application that has
two forms.

 Tutorial 9-5 :
 Creating an
Application
with Two
Forms

VideoNote

 Tutorial 9-5:
 Creating an Application with Two Forms

 Step 1: Start Visual Studio (or Visual Studio Express). Create a new Windows Forms
Application project named Multiform Practice .

 Step 2: In the Solution Explorer window, rename the Form1 . cs file to MainForm . cs .
(Right-click Form1 . cs and then select Rename from the pop-up menu.) Changing
the form’s file name to MainForm . cs changes the form’s name to MainForm.
The Solution Explorer window should appear as shown in Figure 9-25 .

 Figure 9-25 Solution Explorer after changing Form1.cs to MainForm.cs

displayFormButton exitButton

 Figure 9-26 MainForm

 Step 3: In the Designer , set up the MainForm form as shown in Figure 9-26 .

 Step 4: Perform the following to create another form named MessageForm in the project:

 • Click PROJECT on the menu bar and then select Add Windows Form ….
 • The Add New Item window will appear. Enter MessageForm . cs as the name.
 • Click the Add button.

 As shown in Figure 9-27 , a new form named MessageForm will appear in the
 Designer . Notice that an entry for MessageForm . cs appears in the Solution
 Explorer .

582 Chapter 9 Classes and Multiform Projects

 Figure 9-27 MessageForm added to the project

 Step 5: In the Designer , set up the MessageForm as shown in Figure 9-28 .

closeButton

messageLabel

 Figure 9-28 MessageForm

 Step 6: Next you create the Click event handler for the closeButton control. In the
 Designer , double-click the closeButton control. This displays the Message-
Form.cs file in the code editor, and you will see an empty event handler named
 closeButton_Click . Complete the event handler by typing the code shown in
lines 22–23 in Program 9-8 . When the user clicks the closeButton control, this
event handler closes the form.

 Step 7: Use the tabs at the top of the Designer to switch to MainForm . cs [Design]. This
brings up the MainForm in the Designer .

 9.6 Creating Multiple Forms in a Project 583

 Step 8: Now you create the Click event handler for the displayFormButton control.
Double-click the displayFormButton control. This displays the MainForm.cs
file in the code editor, and you will see an empty event handler named display-
FormButton_Click . Complete the event handler by typing the code shown in
lines 22–26 in Program 9-9 . Let’s review this code:

 Line 23: This statement does the following:

 • It declares a MessageForm reference variable named myMessageForm .
 • It creates a MessageForm object in memory.
 • It assigns a reference to the MessageForm object to the myMessageForm

 variable.

 After this statement executes, the myMessageForm variable will reference a Mes-
sageForm object.

 Line 26: This statement displays the MessageForm on the screen and transfers
control of the application to the form.

 Step 9: Switch your view back to the MainForm form in the Designer and double-click
the exitButton control. In the code editor you will see an empty event han-
dler named exitButton_Click . Complete the event handler by typing the code
shown in lines 31–32 in Program 9-9 .

 Step 10: Save the project. Then, press % on the keyboard or click the Start Debug-
ging button () on the toolbar to compile and run the application. When the
application runs, the MainForm should appear, as shown on the left in Figure
 9-29 . Click the Display Form button. The MessageForm form should appear, as
shown on the right in Figure 9-29 .

 Figure 9-29 The MainForm and the MessageForm forms displayed

 Step 11: On the MessageForm, click the Close button. This should close the Message-
Form. Next, click the Exit button on the MainForm to end the application.

 Program 9-8 Completed code for the MessageForm form

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Multiform_Practice

584 Chapter 9 Classes and Multiform Projects

 12 {
 13 public partial class MessageForm : Form
 14 {
 15 public MessageForm()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void closeButton_Click(object sender, EventArgs e)
 21 {
 22 // Close the form.
 23 this.Close();
 24 }
 25 }
 26 }

 Program 9-9 Completed code for the MainForm form

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Multiform_Practice
 12 {
 13 public partial class MainForm : Form
 14 {
 15 public MainForm()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void displayFormButton_Click(object sender, EventArgs e)
 21 {
 22 // Create an instance of the MessageForm class.
 23 MessageForm myMessageForm = new MessageForm();
 24
 25 // Display the form.
 26 myMessageForm.ShowDialog();
 27 }
 28
 29 private void exitButton_Click(object sender, EventArgs e)
 30 {
 31 // Close the form.
 32 this.Close();
 33 }
 34 }
 35 }

 9.6 Creating Multiple Forms in a Project 585

 Modal and Modeless Forms
 A form can be either modal or modeless. The ShowDialog method displays a form in
modal fashion. When a modal form is displayed, no other form in the application can re-
ceive the focus until the modal form is closed. The user must close the modal form before
he or she can work with any other form in the application. A modeless form , on the other
hand, allows the user to switch focus to another form while it is displayed. The user does
not have to close a modeless form to switch focus to another form. If you want to display
a form in modeless fashion, call its Show method .

 There is another important difference between modal and modeless forms. When you call
the ShowDialog method to display a modal form, control of the program is transferred
to the form, and no statements appearing after the ShowDialog method call will execute
until the form is closed. Figure 9-30 illustrates this concept.

statement;
statement;
messageForm.ShowDialog();
statement;
statement;
statement;

These statements will execute
immediately after the messageForm
form is displayed.

 Figure 9-31 Execution of statements after displaying a modeless form

statement;
statement;
messageForm.ShowDialog();
statement;
statement;
statement;

These statements will not
execute until the messageForm
form is closed.

 Figure 9-30 Execution of statements after displaying a modal form

 When you call the Show method to display a modeless form, however, the statements that
appear after the Show method call continue to execute while the form is displayed. The
application does not wait until the modeless form is closed before executing these state-
ments. Figure 9-31 illustrates this concept.

 Checkpoint

 9.25 What steps should you follow to change a form’s name?

 9.26 What steps should you follow to add a new form to a project?

 9.27 How do you remove a form from a project and delete its file from the disk?

 9.28 What is the first step in displaying a form?

 9.29 What happens after a form that has been displayed with the ShowDialog method
is closed by the user?

 TIP: Modeless forms are typically used in special situations. In most multiform ap-
plications, you will want to display forms in modal fashion.

586 Chapter 9 Classes and Multiform Projects

 Key Terms

 accessors
 backing field
 binding
 class declaration
 class header
 constructor
 default constructor
 instance
 member declarations
 modal form
 modeless form

 overloaded
 parameterized constructor
 parameterless constructor
 problem domain
 property
 read-only property
 Show method
 ShowDialog method
 signature
 stale
 value parameter

 Review Questions
 Multiple Choice

 1. Each object that is created from a class is called a(n) __________ of the class.

 a. reference
 b. example
 c. instance
 d. event

 2. You create a class by writing a(n) __________.

 a. blueprint
 b. class declaration
 c. initialization list
 d. object name

 3. The first line of a class declaration is known as the __________.

 a. class preface
 b. class title
 c. class header
 d. class directive

 4. The class’s __________ are the statements that define the class’s fields, properties,
and methods.

 a. data agents
 b. body statements
 c. private definitions
 d. member declarations

 5. A(n) __________ is a method that is automatically executed when an object is
 created.

 a. opener
 b. loader
 c. constructor
 d. assembler

 6. A(n) __________ is a special type of class member that allows an object to store and
retrieve a piece of data.

 a. property
 b. asset
 c. inserter/retriever
 d. accessory

 Review Questions 587

 7. A special set of methods, known as __________, work in conjunction with a private
field and allow code outside the class to get the property’s value, and assign values
to the property.

 a. accessors
 b. imitators
 c. intermediates
 d. directives

 8. The private field, which is known as the property’s __________, holds any data that
is assigned to the property.

 a. private data
 b. backing field
 c. holding value
 d. masked variable

 9. The __________ parameter of the set accessor is automatically created by the
 compiler, and its data type is the same as that of the property.

 a. property
 b. value
 c. member
 d. detail

 10. A __________ can be read, but it cannot be modified.

 a. limited property
 b. temporary value
 c. field value
 d. read-only property

 11. When the value of an item is dependent on other data and that item is not updated
when the other data is changed, what has the value become?

 a. bitter
 b. stale
 c. asynchronous
 d. moldy

 12. A constructor that accepts arguments is known as a(n) __________.

 a. argumentative constructor
 b. changeable constructor
 c. parameterized constructor
 d. secondary constructor

 13. When a method is __________, it means that multiple methods in the same class
have the same name but use different types of parameters.

 a. emulated
 b. versioned
 c. threaded
 d. overloaded

 14. The process of matching a method call with the correct method is known as
__________.

 a. sorting
 b. matching
 c. styling
 d. binding

588 Chapter 9 Classes and Multiform Projects

 15. A method’s __________ consists of the method’s name and the data type and argu-
ment kind (by value, ref , or out) of the method’s parameters, from left to right.

 a. appearance
 b. signature
 c. identifier
 d. footprint

 16. A __________ is a constructor that accepts no arguments.

 a. parameterless constructor
 b. basic constructor
 c. primary constructor
 d. passive constructor

 17. If you write a class with no constructor whatsoever, the compiler will provide a(n)
__________.

 a. default constructor
 b. constructor list
 c. parameterized method
 d. error message

 18. The __________ is the set of real-world objects, parties, and major events related to
the problem.

 a. critical path
 b. problem domain
 c. solution set
 d. operation focus

 19. A class’s responsibilities are __________.

 a. the objects created from the class
 b. things the class knows
 c. actions the class performs
 d. both b and c

 20. The __________ displays a form on the screen, and it gives that form the focus.

 a. Show method
 b. ShowDialog method
 c. Clear method
 d. Focus method

 True or False

 1. Objects that are instances of a class are always passed by value.

 2. Class declarations must be written inside the project namespace.

 3. A class is an object.

 4. It is a common practice to make all a class’s fields private and to provide access to
those fields through methods.

 5. The same rules for naming variables apply to naming classes.

 6. If you need to make a property read only, you simply do not write a set accessor for
the property.

 7. If you try to pass a property to a ref or an out parameter, an error will occur.

 8. Class fields are almost always declared public in order to make their values easily
accessible to code outside of the class.

 Review Questions 589

 9. The get accessor can be thought of as a method that returns the class property’s
value.

 10. Constructors can accept arguments in the same way as other methods.

 11. It is legal to write a class without any constructors.

 12. Objects that are instances of a class can be stored in an array.

 13. The objects of a class can be stored in an array, but not in a List .

 14. One way to find the classes needed for an object-oriented program is to identify all
the verbs in a description of the problem domain.

 15. Every form in a Visual C# project has a class.

 Short Answer

 1. When a method receives an object as an argument, does the method have access to
the actual object or a copy of the object?

 2. What are the advantages of storing classes in their own files?

 3. How is a constructor used?

 4. What is the difference between a class and an instance of a class?

 5. What convention do most programmers follow when naming classes?

 6. What is the value parameter? How is it created?

 7. What is executed any time a class property is read?

 8. What is executed any time a value is assigned to a class property?

 9. How can you protect class fields from accidental corruption?

 10. What is stale data?

 11. Is it possible to pass initialization values to the constructor when you create an ob-
ject? If so, how?

 12. How does the compiler distinguish a method from other methods of the same name?

 13. What do you call the constructor that is provided by the compiler, if no constructor
is specified when a class is written?

 14. In Visual Studio, how you can you switch your view to another form?

 15. How do you remove a form from a project but keep its file on the disk?

 16. What is the difference between a modal form and a modeless form?

 Algorithm Workbench

 1. Write a statement that creates an instance of the Transcript class.

 2. Write the accessors for a property named CustomerNumber that assigns a string
value to the _customerNumber field.

 3. Suppose that an application declares an array of class objects with the following
statement:

 Employee[] employees = new Employee[9];

 Write a loop that creates 10 instances of the class and assigns them to the elements
of the array.

590 Chapter 9 Classes and Multiform Projects

 4. Look at the following description of a problem domain:

 The bank offers the following types of accounts to its customers: savings accounts,
checking accounts, and money market accounts. Customers are allowed to deposit
money into an account (thereby increasing its balance), withdraw money from an
account (thereby decreasing its balance), and earn interest on the account. Each ac-
count has an interest rate.

 Assume that you are writing a program that will calculate the amount of interest
earned for a bank account.

 a. Identify the potential classes in this problem domain.
 b. Refine the list to include only the necessary class or classes for this problem.
 c. Identify the responsibilities of the class or classes.

 Programming Problems
 1. Pet Class

 Create a class named Pet (similar to the one discussed in this chapter), which has
the following properties:

 • Name—The Name property holds the name of a pet.
 • Type—The Type property holds the type of animal that a pet is. Example values

are “Dog”, “Cat”, and “Bird”.
 • Age—The Age property holds the pet’s age.

 Demonstrate the class in an application that creates an object of the class and lets
the user enter the name, type, and age of his or her pet. This data should be stored
in the object. Retrieve the pet’s Name, Type, and Age properties and display their
values on the screen.

 2. Car Class

 Create a class named Car that has the following properties:

 • Year—The Year property holds the car’s year model.
 • Make—The Make property holds the make of the car.
 • Speed—The Speed property holds the car’s current speed.

 In addition, the class should have the following constructor and other methods.

 • Constructor —The constructor should accept the car’s year and model and make
them as arguments. These values should be assigned to the backing fields for the
object’s Year and Make properties. The constructor should also assign 0 to the
backing field for the Speed property.

 • Accelerate —The Accelerate method should add 5 to the Speed property’s
backing field each time it is called.

 • Brake —The Brake method should subtract 5 from the Speed property’s back-
ing field each time it is called.

 Demonstrate the class in an application that creates a Car object. The application’s
form should have an Accelerate button that calls the Accelerate method and then
displays the car’s current speed each time it is clicked. The application’s form should
also have a Brake button that calls the Brake method and then displays the car’s
current speed each time it is clicked.

 3. Personal Information Class

 Create a class that holds the following personal data in properties: name, address,
age, and phone number. Demonstrate the class in an application that creates three
instances of the class. One instance should hold your information, and the other two

 Solving the
Pet Class
Problem

VideoNote

 Programming Problems 591

should hold your friends’ or family members’ information. Display each object’s
properties on the application’s form.

 4. Employee Class

 Write a class named Employee that has the following properties:

 • Name —The Name property holds the employee’s name.
 • IdNumber —The IdNumber property holds the employee’s ID number.
 • Department —The Department property holds the name of the department in

which the employee works.
 • Position —The Position property holds the employee’s job title.

 The class should have the following overloaded constructors:

 • A constructor that accepts the following values as arguments and assigns them
to the appropriate properties: employee’s name, employee’s ID number, depart-
ment, and position

 • A constructor that accepts the following values as arguments and assigns them
to the appropriate properties: employee’s name and ID number. The Depart-
ment and Position properties should be assigned an empty string ("")

 • A parameterless constructor that assigns empty strings ("") to the Name,
 Department, and Position properties, and 0 to the IdNumber property

 In an application, create three Employee objects to hold the following data:

 Name ID Number Department Position

 Susan Meyers 47899 Accounting Vice President

 Mark Jones 39119 IT Programmer

 Joy Rogers 81774 Manufacturing Engineer

 The application should store this data in the three objects and display the data for
each employee on the screen.

 5. RetailItem Class

 Write a class named RetailItem that holds data about an item in a retail store. The
class should have the following properties:

 • Description —The Description property should hold a brief description of the
item.

 • UnitsOnHand —The UnitsOnHand property should hold the number of units
currently in inventory.

 • Price —The Price property should hold the item’s retail price.

 Write a constructor that accepts arguments for each property.

 The application should create an array of three RetailItem objects containing the
following data:

 Description Units on Hand Price

 Item 1 Jacket 12 59.95

 Item 2 Jeans 40 34.95

 Item 3 Shirt 20 24.95

 The application should have a loop that steps through the array, displaying each
element’s properties.

592 Chapter 9 Classes and Multiform Projects

 6. Dorm and Meal Plan Calculator

 A university has the following dormitories:

 Allen Hall $1,500 per semester
 Pike Hall $1,600 per semester
 Farthing Hall $1,800 per semester
 University Suites $2,500 per semester

 The university also offers the following meal plans:

 7 meals per week $ 600 per semester
 14 meals per week $1,200 per semester
 Unlimited meals $1,700 per semester

 Create an application with two forms. The main form should allow the user to select
a dormitory and a meal plan. The application should show the total charges on the
second form.

 7. E-Mail Address Book

 Create an application with a class named PersonEntry . The PersonEntry class
should have properties for a person’s name, e-mail address, and phone number.
Also, create a text file that contains the names, e-mail addresses, and phone numbers
for at least five people. When the application starts, it should read the data from the
file and create a PersonEntry object for each person’s data. The PersonEntry ob-
jects should be added to a List , and each person’s name should be displayed in a
list box on the application’s main form. When the user selects a name from the list
box, a second form should appear displaying that person’s name, e-mail address,
and phone number.

593

 10.1 Inheritance

 10.2 Polymorphism

 10.3 Abstract Classes

 TOPICS

 Inheritance and Polymorphism 10 C
H

A
P

T
E

R

 10.1 Inheritance

 CONCEPT: Inheritance allows a new class to extend an existing class. The new class
inherits the members of the class it extends.

 Generalization and Specialization
 In the real world you can find many objects that are specialized versions of other more
general objects. For example, the term insect describes a very general type of creature with
numerous characteristics. Because grasshoppers and bumblebees are insects, they have
all the general characteristics of an insect. In addition, they have special characteristics
of their own. For example, the grasshopper has its jumping ability, and the bumblebee
has its stinger. Grasshoppers and bumblebees are specialized versions of an insect. This is
 illustrated in Figure 10-1 .

 Inheritance and the “Is a” Relationship
 When one object is a specialized version of another object, there is an “is a” relationship
between them. For example, a grasshopper is an insect. Here are a few other examples of
the “is a” relationship:

 • A poodle is a dog.
 • A car is a vehicle.
 • A flower is a plant.
 • A rectangle is a shape.
 • A football player is an athlete.

594 Chapter 10 Inheritance and Polymorphism

 When an “is a” relationship exists between objects, it means that the specialized ob-
ject has all of the characteristics of the general object, plus additional characteristics that
make it special. In object-oriented programming, inheritance is used to create an “is a”
relationship among classes. This allows you to extend the capabilities of a class by creat-
ing another class that is a specialized version of it.

 Inheritance involves a base class and a derived class. The base class is the general class
and the derived class is the specialized class. You can think of the derived class as an ex-
tended version of the base class. The derived class inherits fields, properties, and methods
from the base class without any of them having to be rewritten. Furthermore, new fields,
properties, and methods may be added to the derived class, and that is what makes it a
specialized version of the base class.

Insect All insects have
certain characteristics.

In addition to the common
insect characteristics, the

 bumblebee has its own unique
characteristics such as the

ability to sting.

In addition to the common
insect characteristics, the

 grasshopper has its own unique
characteristics such as the

ability to jump.

 Figure 10-1 Bumblebees and grasshoppers, specialized versions of an insect

 NOTE: Base classes are sometimes called superclasses, and derived classes are some-
times called subclasses . Either set of terms is correct. For consistency, this text uses
the terms base class and derived class .

 Let’s look at an example of how inheritance can be used. Suppose we are developing an
application that a car dealership can use to manage its inventory of used cars. The dealer-
ship’s inventory includes three types of automobiles: cars, pickup trucks, and sport-utility
vehicles (SUVs). Regardless of the type, the dealership keeps the following data about
each automobile:

 • Make
 • Year model
 • Mileage
 • Price

 Each type of vehicle that is kept in inventory has these general characteristics plus its own
specialized characteristics. For cars, the dealership keeps the following additional data:

 • Number of doors (2 or 4)

 For pickup trucks, the dealership keeps the following additional data:

 • Drive type (two-wheel drive or four-wheel drive)

 10.1 Inheritance 595

 And, for SUVs, the dealership keeps the following additional data:

 • Passenger capacity

 In designing this program, one approach would be to write the following three classes:

 • A Car class with properties for the make, year model, mileage, price, and the number
of doors

 • A Truck class with properties for the make, year model, mileage, price, and the
drive type

 • A SportUtility class with properties for the make, year model, mileage, price, and
the passenger capacity

 This is an inefficient approach, however, because all three classes have a large number
of common properties. As a result, the classes would contain a lot of duplicated code.
In addition, if we discover later that we need to add more common attributes, we would
have to modify all three classes.

 A better approach would be to write an Automobile base class to hold all the general
data about an automobile and then write derived classes for each specific type of automo-
bile. The following code shows the Automobile class:

 1 class Automobile
 2 {
 3 // Fields
 4 private string _make;
 5 private string _model;
 6 private int _mileage;
 7 private decimal _price;
 8
 9 // Constructor
 10 public Automobile()
 11 {
 12 _make = "";
 13 _model = "";
 14 _mileage = 0;
 15 _price = 0;
 16 }
 17
 18 // Make property
 19 public string Make
 20 {
 21 get { return _make; }
 22 set { _make = value; }
 23 }
 24
 25 // Model property
 26 public string Model
 27 {
 28 get { return _model; }
 29 set { _model = value; }
 30 }
 31
 32 // Mileage property
 33 public int Mileage
 34 {
 35 get { return _mileage; }
 36 set { _mileage = value; }
 37 }
 38
 39 // Price property
 40 public decimal Price

596 Chapter 10 Inheritance and Polymorphism

 41 {
 42 get { return _price; }
 43 set { _price = value; }
 44 }
 45 }

 Lines 4–7 declare the backing fields for the Make, Model, Mileage, and Price properties.
The parameterless constructor, which appears in lines 10–16, assigns empty strings to
the _make and _model fields and 0 to the _mileage and _price fields. The code for the
Make, Model, Mileage, and Price properties appears in lines 19–44.

 The Automobile class is a complete class from which we can create objects. However, the
 Automobile class holds only general data about an automobile. It does not hold any of
the specific pieces of data that the dealership wants to keep about cars, pickup trucks, and
SUVs. To hold data about those specific types of automobiles, we write derived classes
that inherit from the Automobile class. The following code shows the Car class, which is
derived from the Automobile class.

 1 class Car : Automobile
 2 {
 3 // Field
 4 private int _doors;
 5
 6 // Constructor
 7 public Car()
 8 {
 9 _doors = 0;
 10 }
 11
 12 // Doors property
 13 public int Doors
 14 {
 15 get { return _doors; }
 16 set { _doors = value; }
 17 }
 18 }

 Take a closer look at the class header in line 1:

 class Car : Automobile

 This line of code has some new notation. After the name of the class, Car , a colon
 appears, followed by the name of another class, Automobile . This line indicates that
we are defining a class named Car , and it is derived from the Automobile class. The
 Car class is the derived class and the Automobile class is the base class. Figure 10-2
 illustrates this notation. If we want to express the relationship between the Car class and
the Automobile class, we can say that a Car is an Automobile .

The class being declared
(the derived class)

The colon indicates that this class
is derived from another class.

The base class

 Figure 10-2 Inheritance notation in the class header

 10.1 Inheritance 597

 Because the Car class is derived from the Automobile class, the Car class inherits all the
 Automobile class’s members, except its constructor. (The purpose of the base class’s con-
structor is to create an instance of the base class, so it makes sense that the derived class
does not inherit the base class’s constructor.)

 NOTE: Although the derived class inherits the base class’s private members, it can-
not directly access them. Only methods in the base class can directly access the base
class’s private members.

 The Car class has a parameterless constructor that appears in lines 7–10. In line 9, the
constructor assigns the value 0 to the _doors field. Here is a summary of what happens
when an object of the Car class is created:

 • The base class constructor executes first. In this case, the Automobile class’s con-
structor is called, and it assigns empty strings to the _make and _model fields and 0
to the _mileage and _price fields.

 • The derived class constructor executes next. In this case, 0 is assigned to the _doors
field.

 The code for the Doors property appears in lines 13–17.

 Before going any further, let’s look at a complete application that demonstrates the
 Automobile and Car classes. In the Chap10 folder of the Student Sample Programs you
will find a project named Car Demo . This project contains a form named Form1, the
 Automobile class, and the Car class. Figure 10-3 shows the Form1 form.

makeTextBox

modelTextBox

mileageTextBox

makeLabel

modelLabel

mileageLabel

priceTextBox

doorsTextBox

priceLabel

doorsLabel

createObjectButton exitButton

 Figure 10-3 The Car Demo project’s Form1 form

598 Chapter 10 Inheritance and Polymorphism

 When you run the application, enter sample car data into the text boxes and then click the
 Create Object button. The application will create an object of the Car class and assign the
data from the text boxes to the object’s properties. It will then read and display the values
of the object’s properties in the makeLabel , modelLabel , mileageLabel , priceLabel ,
and doorsLabel controls. Figure 10-4 shows an example of the application’s form after
the user has entered some data and clicked the Create Object button.

 Figure 10-4 The Car Demo application

 Program 10-1 shows the code in the Form1.cs file.

 Program 10-1 Form1 code in the Car Demo project

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Car_Demo
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 // The GetCarData method accepts a Car object as an
 21 // argument. It assigns the data entered by the

 10.1 Inheritance 599

 22 // user to the object's properties.
 23 private void GetCarData(Car car)
 24 {
 25 // Temporary variables to hold mileage, price,
 26 // and number of doors
 27 int mileage;
 28 decimal price;
 29 int doors;
 30
 31 // Get the car's make.
 32 car.Make = makeTextBox.Text;
 33
 34 // Get the car's model.
 35 car.Model = modelTextBox.Text;
 36
 37 // Get the car's mileage.
 38 if (int.TryParse(mileageTextBox.Text, out mileage))
 39 {
 40 car.Mileage = mileage;
 41
 42 // Get the car's price.
 43 if (decimal.TryParse(priceTextBox.Text, out price))
 44 {
 45 car.Price = price;
 46
 47 // Get the number of doors.
 48 if (int.TryParse(doorsTextBox.Text, out doors))
 49 {
 50 car.Doors = doors;
 51 }
 52 else
 53 {
 54 // Display an error message.
 55 MessageBox.Show("Invalid number of doors");
 56 }
 57 }
 58 else
 59 {
 60 // Display an error message.
 61 MessageBox.Show("Invalid price");
 62 }
 63 }
 64 else
 65 {
 66 // Display an error message.
 67 MessageBox.Show("Invalid mileage");
 68 }
 69 }
 70
 71 private void createObjectButton_Click(object sender, EventArgs e)
 72 {
 73 // Create a Car object.
 74 Car myCar = new Car();
 75
 76 // Get the car data.
 77 GetCarData(myCar);
 78
 79 // Display the car data.
 80 makeLabel.Text = myCar.Make;
 81 modelLabel.Text = myCar.Model;
 82 mileageLabel.Text = myCar.Mileage.ToString();

600 Chapter 10 Inheritance and Polymorphism

 83 priceLabel.Text = myCar.Price.ToString("c");
 84 doorsLabel.Text = myCar.Doors.ToString();
 85 }
 86
 87 private void exitButton_Click(object sender, EventArgs e)
 88 {
 89 // Close the form.
 90 this.Close();
 91 }
 92 }
 93 }

 Let’s take a closer look at the code:

 Lines 23–69: This is the code for the GetCarData method. The purpose of the method is to
accept a Car object as an argument, get the car data entered by the user (performing input
validation on the mileage, price, and doors), and store that data in the Car object’s properties.

 Line 74: This statement creates an instance of the Car class, referenced by the myCar
variable.

 Line 77: This statement calls the GetCarData method, passing the myCar object as an
argument. After the method executes, the myCar object’s properties will contain the data
entered by the user.

 Lines 80–84: These statements display the myCar object’s properties.

 Now let’s take a look at the Truck and SportUtility classes, which are also derived
from the Automobile class. Here is the code for the Truck class:

 1 class Truck : Automobile
 2 {
 3 // Field
 4 private string _drive;
 5
 6 // Constructor
 7 public Truck()
 8 {
 9 _drive = "";
 10 }
 11
 12 // Drive property
 13 public string Drive
 14 {
 15 get { return _drive; }
 16 set { _drive = value; }
 17 }
 18 }

 The Truck class has a string property named Drive. This property holds a value such
as “Four-Wheel Drive” or “Two-Wheel Drive.” The backing field for the property is
named _drive and is declared in line 4. The code for the property is in lines 13–17. The
constructor, which appears in lines 7–10, assigns an empty string to the _drive field.

 Now, let’s look at the SportUtility class, which is also derived from the Automobile
class:

 1 class SportUtility : Automobile
 2 {
 3 // Field
 4 private int _passengers;
 5

 10.1 Inheritance 601

 6 // Constructor
 7 public SportUtility()
 8 {
 9 _passengers = 0;
 10 }
 11
 12 // Passengers property
 13 public int Passengers
 14 {
 15 get { return _passengers; }
 16 set { _passengers = value; }
 17 }
 18 }

 The SportUtility class has an int property named Passengers. This property holds the
vehicle’s passenger capacity. The backing field for the property is named _passengers
and is declared in line 4. The code for the property is in lines 13–17. The constructor,
which appears in lines 7–10, assigns an empty string to the _passengers field.

 Now, let’s look at a program that demonstrates all four of these classes. In the Chap10
folder of the Student Sample Programs, you will find a project named Car Truck SUV
Demo . This project contains a form named Form1, the Automobile class, the Car class,
the Truck class, and the SportUtility class. Figure 10-5 shows the Form1 form, and
Program 10-2 shows the code in the Form1.cs file.

 Figure 10-5 The Car Truck SUV Demo project’s Form1 form

 Program 10-2 Form1 code in the Car Truck SUV Demo project

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Car_Truck_SUV_Demo
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void createObjectsButton_Click(object sender, EventArgs e)
 21 {
 22 // Create a Car object for a used 2001 BMW with 70,000
 23 // miles, priced at $15,000, with 4 doors.

602 Chapter 10 Inheritance and Polymorphism

 24 Car myCar = new Car();
 25 myCar.Make = "BMW";
 26 myCar.Model = "2001";
 27 myCar.Mileage = 70000;
 28 myCar.Price = 15000;
 29 myCar.Doors = 4;
 30
 31 // Create a Truck object for a used 2002 Toyota
 32 // pickup with 40,000 miles, priced at $12,000,
 33 // with four wheel drive.
 34 Truck myTruck = new Truck();
 35 myTruck.Make = "Toyota";
 36 myTruck.Model = "2002";
 37 myTruck.Mileage = 40000;
 38 myTruck.Price = 12000;
 39 myTruck.Drive = "Four Wheel Drive";
 40
 41 // Create a SportUtility object for a used 2000
 42 // Volvo with 30,000 miles, priced at $15,500,
 43 // with a passenger capacity of 5.
 44 SportUtility mySUV = new SportUtility();
 45 mySUV.Make = "Volvo";
 46 mySUV.Model = "2000";
 47 mySUV.Mileage = 30000;
 48 mySUV.Price = 15500;
 49 mySUV.Passengers = 5;
 50
 51 // Display data about the car.
 52 MessageBox.Show(myCar.Model + " " + myCar.Make + " with " +
 53 myCar.Mileage + " miles, priced at " +
 54 myCar.Price.ToString("c") + ", with " + myCar.Doors +
 55 " doors.");
 56
 57 // Display data about the truck.
 58 MessageBox.Show(myTruck.Model + " " + myTruck.Make +
 59 " with " + myTruck.Mileage + " miles, priced at " +
 60 myTruck.Price.ToString("c") + ", with " +
 61 myTruck.Drive);
 62
 63 // Display data about the SUV.
 64 MessageBox.Show(mySUV.Model + " " + mySUV.Make + " with " +
 65 mySUV.Mileage + " miles, priced at " +
 66 mySUV.Price.ToString("c") + ", with " + mySUV.Passengers +
 67 " passengers.");
 68 }
 69
 70 private void exitButton_Click(object sender, EventArgs e)
 71 {
 72 // Close the form.
 73 this.Close();
 74 }
 75 }
 76 }

 Let’s step through the code in the createObjectsButton_Click event handler. Line 24
creates an instance of the Car class, referenced by the myCar variable. Lines 25–29 assign
values to the objects Make, Model, Mileage, Price, and Doors properties.

 Line 34 creates an instance of the Truck class, referenced by the myTruck variable. Lines
35–39 assign values to the objects Make, Model, Mileage, Price, and Drive properties.

 10.1 Inheritance 603

 Line 44 creates an instance of the SportUtility class, referenced by the mySUV variable.
Lines 45–49 assign values to the objects Make, Model, Mileage, Price, and Passengers
properties.

 Lines 52–55 display the properties of the myCar object in the topmost message box shown
in Figure 10-6 . Lines 58–61 display the properties of the myTruck object in the middle
message box shown in Figure 10-6 . Lines 64–67 display the properties of the mySUV ob-
ject in the bottom message box shown in Figure 10-6 .

 Figure 10-6 Message boxes displayed by the Car Truck SUV Demo project

 In Tutorial 10-1 you create a base class for a savings account, and a derived class for a
certificate of deposit.

 Tutorial 10-1:
 Creating and Testing the SavingsAccount and
 CDAccount Classes

 Bank Financial Systems, Inc., develops financial software for banks and credit unions.
The company is developing a new system that manages customer accounts. One of your
tasks is to develop a class that represents a savings account. The data that must be held by
an object of this class is

 • The account number
 • The interest rate
 • The account balance

VideoNote

 Tutorial 10-1 :
 Creating and
Testing the
Savings
Account and
CDAccount
Classes

604 Chapter 10 Inheritance and Polymorphism

 You must also develop a class that represents a certificate of deposit (CD) account. The
data that must be held by an object of this class is

 • The account number
 • The interest rate
 • The account balance
 • The account maturity date

 As you analyze these requirements, you realize that a CD account is really a specialized
version of a savings account. The class that represents a CD will hold all the same data as
the class that represents a savings account, plus an extra property for the maturity date.
You decide to create a SavingsAccount class to represent a savings account and then
create a class that is derived from SavingsAccount, named CDAccount, to represent a
CD account.

 To test the classes, you will use them in an application that lets the user enter data about
a CD account, creates an object of the CDAccount class, sets the object’s properties to the
data that the user entered, and then displays the object’s data. The application’s form,
which has already been created for you, is shown in Figure 10-7 .

accountNumberTextBox

interestRateTextBox

balanceTextBox

maturityDateTextBox

accountNumberLabel

interestRateLabel

balanceLabel

maturityDateLabel

createObjectButton exitButton

 Figure 10-7 The CD Account Test application’s form

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named CD
 Account Test in the Chap10 folder of the Student Sample Programs.

 Step 2: Click PROJECT on the Visual Studio menu bar and then select Add Class …. The
 Add New Item window should appear. Make sure Class is selected as the type of
item. Change the default filename to SavingsAccount.cs and then click the Add
button. This adds a source code file named SavingsAccount.cs to the project.

 Step 3: The SavingsAccount.cs file should now be displayed in the code editor. Com-
plete the code for the SavingsAccount class by typing lines 11–43 in Program
10-3. The class code is very straightforward. It declares properties named

 10.1 Inheritance 605

AccountNumber, InterestRate, and Balance, as well as the backing fields for
the properties. The class also has a parameterless constructor that initializes the
backing fields to default values.

 Step 4: Click PROJECT on the Visual Studio menu bar and then select Add Class ….
The Add New Item window should appear. Make sure Class is selected as
the type of item. Change the default filename to CDAccount.cs and then
click the Add button. This adds a source code file named CDAccount.cs to
the project.

 Step 5: The CDAccount.cs file should now be displayed in the code editor. Complete
the code for the CDAccount class as follows:

 • At the end of the class header type : SavingsAccount to indicate that this
class is derived from the SavingsAccount class. (See line 9 in Program 10-4.)

 • Type the code shown in lines 11–25 in Program 10-4. The class code is very
straightforward. It declares a property named MaturityDate as well as the
 backing fi eld for the property. The class also has a parameterless constructor
that initializes the backing fi eld to an empty string.

 Step 6: Open the Form1.cs file in the code editor. Type the comments and code for the
 GetCDData method, shown in lines 20–57 of Program 10-5. Notice in line 23
that the method has a CDAccount parameter named account . When we call this
method, we pass a CDAccount object to it as an argument.

 The purpose of the GetCDData method is to read the data that the user has
entered into the form’s text boxes and store that data in the account object’s
properties. The values that have been entered for the interest rate and the bal-
ance are validated.

 Step 7: Next you create the Click event handlers for the Button controls. Switch your
view to the Form1 form in the Designer. Double-click the createObjectBut-
ton control. This opens the Form1.cs file in the code editor, and you will see
an empty event handler named createObjectButton_Click . Complete the
event handler by typing the code shown in lines 61–71 in Program 10-5. Let’s
review this code:

 Line 62: This statement creates a CDAccount object in memory, referenced by a
variable named myAccount .

 Line 65: This statement calls the GetCDData method, passing the myAccount
object as an argument. After the method executes, the myAccount object’s prop-
erties will be set to the values entered by the user.

 Lines 68–71: These statements display the values of the myAccount object’s
properties.

 Step 8: Switch your view back to the Form1 form in the Designer and double-click
the exitButton control. In the code editor you will see an empty event han-
dler named exitButton_Click . Complete the event handler by typing the code
shown in lines 76–77 in Program 10-5.

 Step 9: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the applica-
tion runs, enter some sample data in the TextBox controls and click the Create
Object button. You should see the values that you entered displayed in the Ob-
ject Properties group box. Figure 10-8 shows an example. Click the Exit button
when you are finished.

606 Chapter 10 Inheritance and Polymorphism

 Program 10-3 Completed code for the SavingsAccount.cs file in the CD Account
Test application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.Linq;
 4 using System.Text;
 5 using System.Threading.Tasks;
 6
 7 namespace CD_Account_Test
 8 {
 9 class SavingsAccount
 10 {
 11 // Fields
 12 private string _accountNumber;
 13 private decimal _interestRate;
 14 private decimal _balance;
 15
 16 // Constructor
 17 public SavingsAccount()
 18 {
 19 _accountNumber = "";
 20 _interestRate = 0;
 21 _balance = 0;
 22 }
 23
 24 // AccountNumber property

 Figure 10-8 The CD Account Test application

 NOTE: The MaturityDate property in the CDAccount class is implemented as
a string . If you prefer, you can use the DateTime data type provided by the
.NET Framework. We have not covered the DateTime data type in this book,
but if you feel adventurous, you can explore it on your own and devise a way
to implement the MaturityDate property as a DateTime instead of a string .

 10.1 Inheritance 607

 25 public string AccountNumber
 26 {
 27 get { return _accountNumber; }
 28 set { _accountNumber = value; }
 29 }
 30
 33 // InterestRate property
 32 public decimal InterestRate
 33 {
 34 get { return _interestRate; }
 35 set { _interestRate = value; }
 36 }
 37
 38 // Balance property
 39 public decimal Balance
 40 {
 41 get { return _balance; }
 42 set { _balance = value; }
 43 }
 44 }
 45 }

 Program 10-4 Completed code for the CDAccount.cs file in the CD Account Test
application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.Linq;
 4 using System.Text;
 5 using System.Threading.Tasks;
 6
 7 namespace CD_Account_Test
 8 {
 9 class CDAccount : SavingsAccount
 10 {
 11 // Field
 12 private string _maturityDate;
 13
 14 // Constructor
 15 public CDAccount()
 16 {
 17 _maturityDate = "";
 18 }
 19
 20 // MaturityDate property
 21 public string MaturityDate
 22 {
 23 get { return _maturityDate; }
 24 set { _maturityDate = value; }
 25 }
 26 }
 27 }

 Program 10-5 Completed code for Form1 in the CD Account Test application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;

608 Chapter 10 Inheritance and Polymorphism

 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace CD_Account_Test
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 // The GetCDData method accepts a CDAccount object
 21 // as an argument. It assigns the data entered by
 22 // the user to the object's properties.
 23 private void GetCDData(CDAccount account)
 24 {
 25 // Temporary variables to hold interest rate
 26 // and balance
 27 decimal interestRate;
 28 decimal balance;
 29
 30 // Get the account number.
 31 account.AccountNumber = accountNumberTextBox.Text;
 32
 33 // Get the maturity date.
 34 account.MaturityDate = maturityDateTextBox.Text;
 35
 36 // Get the interest rate.
 37 if (decimal.TryParse(interestRateTextBox.Text, out interestRate))
 38 {
 39 account.InterestRate = interestRate;
 40
 41 // Get the balance.
 42 if (decimal.TryParse(balanceTextBox.Text, out balance))
 43 {
 44 account.Balance = balance;
 45 }
 46 else
 47 {
 48 // Display an error message.
 49 MessageBox.Show("Invalid balance");
 50 }
 51 }
 52 else
 53 {
 54 // Display an error message.
 55 MessageBox.Show("Invalid interest rate");
 56 }
 57 }
 58
 59 private void createObjectButton_Click(object sender, EventArgs e)
 60 {
 61 // Create a CDAccount object.
 62 CDAccount myAccount = new CDAccount();
 63

 10.1 Inheritance 609

 64 // Get the CD account data.
 65 GetCDData(myAccount);
 66
 67 // Display the CD account data.
 68 accountNumberLabel.Text = myAccount.AccountNumber;
 69 interestRateLabel.Text = myAccount.InterestRate.ToString("n2");
 70 balanceLabel.Text = myAccount.Balance.ToString("c");
 71 maturityDateLabel.Text = myAccount.MaturityDate;
 72 }
 73
 74 private void exitButton_Click(object sender, EventArgs e)
 75 {
 76 // Close the form.
 77 this.Close();
 78 }
 79 }
 80 }

 Base Class and Derived Class Constructors
 When you create an instance of a derived class, the base class constructor is executed
first, and then the derived class constructor is executed. In all the examples that we have
discussed so far, the base class and the derived class have parameterless constructors.
When you create an instance of a derived class, by default the base class’s parameterless
constructor is automatically executed.

 But what happens if the base class’s constructor has parameters? Or, what happens if the
base class has multiple, overloaded constructors and you want to make sure a specific one
is called? In either of these situations, the derived class constructor must explicitly call the
base class constructor.

 For example, look at the following Rectangle class:

 1 class Rectangle
 2 {
 3 // Fields
 4 private int _length;
 5 private int _width;
 6
 7 // Constructor
 8 public Rectangle()
 9 {
 10 _length = 0;
 11 _width = 0;
 12 }
 13
 14 // Constructor
 15 public Rectangle(int length, int width)
 16 {
 17 _length = length;
 18 _width = width;
 19 }
 20
 21 // Length property
 22 public int Length
 23 {
 24 get { return _length; }
 25 set { _length = value; }
 26 }

610 Chapter 10 Inheritance and Polymorphism

 27
 28 // Width property
 29 public int Width
 30 {
 31 get { return _width; }
 32 set { _width = value; }
 33 }
 34 }

 This class holds data about a rectangle. It has Length and Width properties to store a rec-
tangle’s length and width. It also has two constructors: a parameterless constructor (lines
8–12) that initializes _length and _width to 0 and a constructor that accepts arguments
for the length and the width (lines 15–19).

 The following Box class is derived from the Rectangle class:

 1 class Box : Rectangle
 2 {
 3 // Field
 4 private int _height;
 5
 6 // Constructor
 7 public Box()
 8 {
 9 _height = 0;
 10 }
 11
 12 // Constructor
 13 public Box(int length, int width, int height)
 14 : base(length, width)
 15 {
 16 _height = height;
 17 }
 18
 19 // Height property
 20 public int Height
 21 {
 22 get { return _height; }
 23 set { _height = value; }
 24 }
 25 }

 The Box class holds data about a rectangular box, which has a length, width, and height.
The class inherits the Length and Width properties from the Rectangle class, and it has
its own Height property. Notice that the Box class has two constructors: a parameterless
constructor (lines 7–10) and a parameterized constructor (lines 13–17).

 If you create an instance of the Box class, calling its parameterless constructor, the
 Rectangle class’s parameterless constructor will be executed. Here is an example:

 Box myBox = new Box();

 After this statement executes, the myBox object’s Length, Width, and Height properties
will be set to 0.

 Now, let’s look at the Box class’s parameterized constructor. The following code appears
in line 13:

 public Box(int length, int width, int height)

 This constructor has three parameters: length , width , and height . Notice the following
code in line 14:

 : base(length, width)

 10.2 Polymorphism 611

 The base keyword refers to the base class. This is an explicit call to the base class’s
 parameterized constructor, passing length and width as arguments. To understand how
this works, consider the following statement:

 Box myBox = new Box(100, 200, 300);

 This statement creates an instance of the Box class, passing 100 into the length param-
eter, 200 into the width parameter, and 300 into the height parameter. The code in line
14 of the Box class calls the Rectangle class’s parameterized constructor, passing length
and width as arguments. After the Rectangle class’s constructor executes, the Box class
constructor resumes execution. The resulting Box object’s Length property will be set to
100, its Width property will be set to 200, and its Height property will be set to 300.

 Summary of Constructor Issues in Inheritance
 • When you create an instance of a derived class, the base class constructor is executed

first and then the derived class constructor is executed.
 • When you create an instance of a derived class, by default the base class’s param-

eterless constructor is automatically executed.
 • If you want a parameterized constructor in the base class to execute, you must

 explicitly call it from the derived class’s constructor. You do this by writing the
 notation : base(parameterList) in the derived class’s constructor header.

 • If the base class does not have a parameterless constructor, the derived class con-
structor must use the notation : base(parameterList) to call one of the base
class’s parameterized constructors.

 Checkpoint

 10.1 In this section we discussed base classes and derived classes. Which is the general
class and which is the specialized class?

 10.2 What does it mean to say there is an “is a” relationship between two objects?

 10.3 What does a derived class inherit from its base class?

 10.4 Look at the following code, which is the first line of a class declaration. What is the
name of the base class? What is the name of the derived class?

 class Canary : Bird

 10.5 Briefly summarize the constructor issues in inheritance.

 10.2 Polymorphism

 CONCEPT: Polymorphism allows derived classes to have methods with the same
names as methods in their base classes. It gives the ability for a program
to call the correct method, depending on the type of object that is used to
call it.

 The term polymorphism refers to an object’s ability to take different forms. It is a pow-
erful feature of object-oriented programming. In this section, we look at two essential
ingredients of polymorphic behavior:

 1. The ability to define a method in a base class and then define a method with the
same name in a derived class. When a derived class method has the same name as a

612 Chapter 10 Inheritance and Polymorphism

base class method, it is often said that the derived class method overrides the base
class method.

 2. The ability to call the correct version of an overridden method, depending on the
type of object that is used to call it. If a derived class object is used to call an overrid-
den method, then the derived class’s version of the method is the one that executes.
If a base class object is used to call an overridden method, then the base class’s ver-
sion of the method is the one that executes.

 Perhaps the best way to describe polymorphism is to demonstrate it, so let’s consider a
simple example. Look at the following code for the Animal class:

 1 class Animal
 2 {
 3 // Field
 4 private string _species;
 5
 6 // Constructor
 7 public Animal(string species)
 8 {
 9 _species = species;
 10 }
 11
 12 // Species property
 13 public string Species
 14 {
 15 get { return _species; }
 16 set { _species = value; }
 17 }
 18
 19 // MakeSound method
 20 public virtual void MakeSound()
 21 {
 22 MessageBox.Show("Grrrrrrr");
 23 }
 24 }

 Line 4 declares the string field _species . This is the backing field for the Species prop-
erty, defined in lines 13–17. The constructor in lines 7–10 takes an argument that is as-
signed to the _species field.

 The class has a method named MakeSound , in lines 20–23. The method simply displays
 "Grrrrrrr" in a message box. Notice the virtual keyword that appears in the method
header. The virtual keyword declares that a derived class is allowed to override this method.

 Here is an example of code that uses an instance of the Animal class:

 1 Animal myAnimal = new Animal("regular animal");
 2 MessageBox.Show("The species is " + myAnimal.Species);
 3 myAnimal.MakeSound();

 The statement in line 1 creates an object of the Animal class, passing the string "regular
animal" to the constructor. The object is referenced by the myAnimal variable. Line 2 dis-
plays “The species is regular animal” in a message box. Line 3 calls the myAnimal object’s
 MakeSound method, which displays “Grrrrrrr” in a message box.

 Next, look at the Dog class, which is derived from the Animal class:

 1 class Dog : Animal
 2 {
 3 // Field
 4 private string _name;
 5

 10.2 Polymorphism 613

 6 // Constructor
 7 public Dog(string name) : base ("Dog")
 8 {
 9 _name = name;
 10 }
 11
 12 // Name property
 13 public string Name
 14 {
 15 get { return _name; }
 16 set { _name = value; }
 17 }
 18
 19 // MakeSound method
 20 public override void MakeSound()
 21 {
 22 MessageBox.Show("Woof! Woof!");
 23 }
 24 }

 Line 4 declares the string field _name . This is the backing field for the Name prop-
erty, defined in lines 13–17. The constructor in lines 7–10 takes an argument for the
dog’s name. Notice that the constructor calls the base class constructor, passing the string
 "Dog" as an argument. The Animal class constructor assigns the string "Dog" to the
 _species field.

 Although the Dog class is derived from the Animal class, the Animal class’s MakeSound
method is inadequate for the Dog class. So, the Dog class overrides the Animal class’s
 MakeSound method. The Dog class’s MakeSound method, in lines 20–23, displays "Woof!
Woof!" in a message box, which is more appropriate for a dog. Notice the override
keyword that appears in the method header. The override keyword declares that this
method overrides a method in the base class.

 Here is an example of code that uses an instance of the Dog class:

 1 Dog myDog = new Dog("Fido");
 2 MessageBox.Show("The species is " + myDog.Species);
 3 MessageBox.Show("The animal's name is " + myDog.Name);
 4 myDog.MakeSound();

 The statement in line 1 creates an object of the Dog class, passing the string "Fido" to the
constructor. The object is referenced by the myDog variable. Line 2 displays “The species
is Dog” in a message box. Line 3 displays “The animal’s name is Fido” in a message box.
Line 4 calls the myDog object’s MakeSound method. When we use a Dog object to call the
 MakeSound method, the version of the method that is in the Dog class is the one that ex-
ecutes. So, the statement in line 4 displays “Woof! Woof!” in a message box.

 Next, look at the Cat class, which is also derived from the Animal class:

 1 class Cat : Animal
 2 {
 3 // Field
 4 private string _name;
 5
 6 // Constructor
 7 public Cat(string name) : base("Cat")
 8 {
 9 _name = name;
 10 }
 11
 12 // Name property
 13 public string Name

614 Chapter 10 Inheritance and Polymorphism

 14 {
 15 get { return _name; }
 16 set { _name = value; }
 17 }
 18
 19 // MakeSound method
 20 public override void MakeSound()
 21 {
 22 MessageBox.Show("Meow");
 23 }
 24 }

 Line 4 declares the string field _name . This is the backing field for the Name property,
defined in lines 13–17. The constructor in lines 7–10 takes an argument for the cat’s name.
Notice that the constructor calls the base class constructor, passing the string "Cat" as an
argument. The Animal class constructor assigns the string "Cat" to the _species field.

 Although the Cat class is derived from the Animal class, the Animal class’s MakeSound
method is inadequate for the Cat class. So, the Cat class overrides the Animal class’s
 MakeSound method. The Cat class’s MakeSound method, in lines 20–23, displays "Meow"
in a message box, which is more appropriate for a cat. Notice the override keyword that
appears in the method header

 Here is an example of code that uses an instance of the Cat class:

 1 Cat myCat = new Cat("Kitty");
 2 MessageBox.Show("The species is " + myCat.Species);
 3 MessageBox.Show("The animal's name is " + myCat.Name);
 4 myCat.MakeSound();

 The statement in line 1 creates an object of the Cat class, passing the string "Kitty" to
the constructor. The object is referenced by the myCat variable. Line 2 displays “The spe-
cies is Cat” in a message box. Line 3 displays “The animal’s name is Kitty” in a message
box. Line 4 calls the myCat object’s MakeSound method. When we use a Cat object to call
the MakeSound method, the version of the method that is in the Cat class is the one that
executes. So, the statement in line 4 displays “Meow” in a message box.

 Because of the “is a” relationship between a base class and a derived class, an object of
the Dog class is not just a Dog object. It is also an Animal object. (A dog is an animal.) Be-
cause of this relationship, we can use an Animal class variable to reference a Dog object.
For example, look at the following code:

 1 Animal myAnimal = new Dog("Fido");
 2 MessageBox.Show("The species is " + myAnimal.Species);
 3 myAnimal.MakeSound();

 Line 1 declares myAnimal as a variable of the Animal type. It also creates an object of the
 Dog class and assigns a reference to the Dog object to the myAnimal variable. After this
statement executes, we will have an Animal variable referencing a Dog object. This assign-
ment is legal because a Dog object is also an Animal object. Line 2 displays “The species
is Dog” in a message box. Line 3 calls the myAnimal object’s MakeSound method, which
displays “Woof! Woof!” in a message box.

 Similarly, we can use an Animal variable to reference a Cat object, as shown in the fol-
lowing code:

 1 Animal myAnimal = new Cat("Kitty");
 2 MessageBox.Show("The species is " + myAnimal.Species);
 3 myAnimal.MakeSound();

 The statement in line 2 displays “The species is Cat” in a message box. Line 3 calls the
 myAnimal object’s MakeSound method, which displays “Meow” in a message box.

 10.2 Polymorphism 615

 Overriding Properties
 Properties in a base class can be overridden in the same way that methods can be over-
ridden. In the base class, you write the virtual keyword in the property declaration, as
shown here:

 public virtual double Weight
 {
 get { return _weight; }
 set { _weight = value; }
 }

 This example declares a virtual property named Weight. To override the property in the
derived class you write the override keyword in the property declaration. For example,
suppose that in a derived class we want to override the Weight property so the get acces-
sor returns the weight on the moon. Here is an example:

 public override double Weight
 {
 get { return _weight * 0.165; }
 set { _weight = value; }
 }

 Base Class Reference Variables Know about
Base Class Members Only
 A base class reference variable can reference an object of any class that is derived from
the base class. However, there is a limit to what the base class variable can do with those
objects. A base class reference variable knows only about the members that are declared
in the base class. If the derived class introduces additional methods, properties, or fields, a
base class reference variable cannot access them. For example, look at the following code:

 1 Animal myAnimal = new Dog("Fido");
 2 MessageBox.Show("The species is " + myAnimal.Species);
 3 MessageBox.Show("The animal's name is " + myAnimal.Name); // ERROR!
 4 myAnimal.MakeSound();

 Line 3 in this code will not compile. The myAnimal variable is an Animal reference vari-
able, and the Animal class does not have a Name property. Even though the myAnimal
variable is referencing a Dog object, it cannot access the object’s Name property.

 The “Is a” Relationship Does Not Work in Reverse
 It is important to understand that the “is a” relationship does not work in reverse.
 Although the statement “a dog is an animal” is true, the statement “an animal is a dog”
is not true. This is because all dogs are animals, but not all animals are dogs. So, the
 following statement will not compile:

 Dog myDog = new Animal("Dog");

 You cannot assign an Animal reference to a Dog variable. This makes sense because Dog
objects have capabilities that go beyond those of an Animal object.

 NOTE: Interestingly, the C# compiler will allow you to make such an assignment if
you use a cast operator, as shown here:

 Dog myDog = (Dog) new Animal("Dog");

 However, an exception will be thrown at run time when the assignment takes place.

616 Chapter 10 Inheritance and Polymorphism

 Passing Objects to Base Class Parameters
 Polymorphism gives you a great deal of flexibility when designing applications. For exam-
ple, look at the following method:

 private void ShowAnimalInfo(Animal animal)
 {
 MessageBox.Show("Species: " + animal.Species);
 animal.MakeSound();
 }

 This method displays information about an animal. Because it has an Animal variable as
its parameter, you can pass an Animal object to the method when you call it. The method
then displays the object’s Species property and calls its MakeSound method.

 The ShowAnimalInfo method works with an Animal object, but what if you also need
methods that display the same information about Dog objects and Cat objects? Do you
need to write additional methods for each of these types? Because of polymorphism, the
answer is no . In addition to Animal objects, you can also pass Dog objects or Cat objects
as arguments to the ShowAnimalInfo method previously shown.

 In Tutorial 10-2 you complete an application that uses the Animal , Dog , and Cat classes
to demonstrate polymorphism.

 Tutorial 10-2:
 Completing the Polymorphism Application

 In this tutorial you complete the Polymorphism application, which demonstrates the
 Animal , Dog , and Cat classes shown in this section. The application also incorporates
the ShowAnimalInfo method previously described.

 The application’s form, which has already been created for you, is shown in Figure 10-9 .
When you run the completed application, clicking the Create an Animal button creates an
object of the Animal class and passes the object to the ShowAnimalInfo method. Clicking
the Create a Dog button creates an object of the Dog class and passes that object to the
 ShowAnimalInfo method. Clicking the Create a Cat button creates an object of the Cat
class and passes that object to the ShowAnimalInfo method.

VideoNote

 Tutorial 10-2 :
 Completing
the Poly-
morphism
Application

exitButton

createDogButton

createAnimalButton createCatButton

 Figure 10-9 The Polymorphism application’s form

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Poly-
morphism in the Chap10 folder of the Student Sample Programs.

 Step 2: Click PROJECT on the Visual Studio menu bar and then select Add Class ….
The Add New Item window should appear. Make sure Class is selected as the

 10.2 Polymorphism 617

type of item. Change the default filename to Animal.cs and then click the Add
button. This adds a source code file named Animal.cs to the project.

 Step 3: The Animal.cs file should now be displayed in the code editor. Add the using
directive shown in line 6 of Program 10-6. This is necessary in order for the
class to call the MessageBox.Show method. Next, complete the code for the
 Animal class by typing lines 12–32 in Program 10-6.

 Step 4: Click PROJECT on the Visual Studio menu bar and then select Add Class ….
The Add New Item window should appear. Make sure Class is selected as the
type of item. Change the default filename to Dog.cs and then click the Add but-
ton. This adds a source code file named Dog.cs to the project.

 Step 5: The Dog.cs file should now be displayed in the code editor. Add the using
 directive shown in line 6 of Program 10-7. This is necessary in order for the
class to call the MessageBox.Show method. Next, add the : Animal notation
to the class header, shown in line 10 of Program 10-7. Then, complete the code
for the Dog class by typing lines 12–33 in Program 10-7.

 Step 6: Click PROJECT on the Visual Studio menu bar and then select Add Class ….
The Add New Item window should appear. Make sure Class is selected as the
type of item. Change the default filename to Cat.cs , and then click the Add
 button. This adds a source code file named Cat.cs to the project.

 Step 7: The Cat.cs file should now be displayed in the code editor. Add the using
 directive shown in line 6 of Program 10-8. This is necessary in order for the
class to call the MessageBox.Show method. Next, add the : Animal notation
to the class header, shown in line 10 of Program 10-8. Then, complete the code
for the Dog class by typing lines 12–33 in Program 10-8.

 Step 8: Open the Form1.cs file in the code editor. Type the comments and code for the
 ShowAnimalInfo method shown in lines 20–27 of Program 10-9.

 Step 9: Next you create the Click event handlers for the Button controls. Switch your
view to the Form1 form in the Designer. Double-click the createAnimalButton
control. This opens the Form1.cs file in the code editor, and you will see an empty
event handler named createAnimalButton_Click . Complete the event handler
by typing the code shown in lines 31–32 in Program 10-9.

 Let’s review this code. Line 31 creates an object of the Animal class, passing
 "Regular animal" as an argument to the constructor. Line 32 passes the ob-
ject to the ShowAnimalInfo method.

 Step 10: Switch your view to the Form1 form in the Designer. Double-click the create-
DogButton control. This will open the Form1.cs file in the code editor, and you
will see an empty event handler named createDogButton_Click . Complete
the event handler by typing the code shown in lines 37–39 in Program 10-9.

 Let’s review this code. Line 37 creates an object of the Dog class, passing "Fido"
as an argument to the constructor. Line 38 displays the object’s Name property
in a message box. Line 39 passes the object to the ShowAnimalInfo method.

 Step 11: Switch your view to the Form1 form in the Designer. Double-click the create-
CatButton control. This opens the Form1.cs file in the code editor, and you
will see an empty event handler named createCatButton_Click . Complete
the event handler by typing the code shown in lines 44–46 in Program 10-9.

 Let’s review this code. Line 44 creates an object of the Cat class, passing "Kitty"
as an argument to the constructor. Line 45 displays the object’s Name property in
a message box. Line 46 passes the object to the ShowAnimalInfo method.

618 Chapter 10 Inheritance and Polymorphism

 Step 12: Switch your view back to the Form1 form in the Designer and double-click
the exitButton control. In the code editor you will see an empty event han-
dler named exitButton_Click . Complete the event handler by typing the code
shown in lines 51–52 in Program 10-9.

 Step 13: Save the project. Then, press % on the keyboard or click the Start Debugging
button() on the toolbar to compile and run the application. When the appli-
cation runs, click the Create an Animal button. You should see the following
 messages displayed in message boxes:

 Species: Regular animal

 Grrrrrrr

 Next, click the Create a Dog button. You should see the following messages
displayed in message boxes:

 The dog’s name is Fido

 Species: Dog

 Woof! Woof!

 Next, click the Create a Cat button. You should see the following messages
displayed in message boxes:

 The cat’s name is Kitty

 Species: Cat

 Meow

 Click the Exit button when you are finished.

 Program 10-6 Completed code for the Animal.cs file in the Polymorphism application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.Linq;
 4 using System.Text;
 5 using System.Threading.Tasks;
 6 using System.Windows.Forms; // Needed for MessageBox
 7
 8 namespace Polymorphism
 9 {
 10 class Animal
 11 {
 12 // Field
 13 private string _species;
 14
 15 // Constructor
 16 public Animal(string species)
 17 {
 18 _species = species;
 19 }
 20
 21 // Species property
 22 public string Species
 23 {
 24 get { return _species; }
 25 set { _species = value; }
 26 }
 27
 28 // MakeSound method
 29 public virtual void MakeSound()

 10.2 Polymorphism 619

 30 {
 31 MessageBox.Show("Grrrrrrr");
 32 }
 33 }
 34 }

 Program 10-7 Completed code for the Dog.cs file in the Polymorphism application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.Linq;
 4 using System.Text;
 5 using System.Threading.Tasks;
 6 using System.Windows.Forms; // Needed for MessageBox
 7
 8 namespace Polymorphism
 9 {
 10 class Dog : Animal
 11 {
 12 // Field
 13 private string _name;
 14
 15 // Constructor
 16 public Dog(string name)
 17 : base("Dog")
 18 {
 19 _name = name;
 20 }
 21
 22 // Name property
 23 public string Name
 24 {
 25 get { return _name; }
 26 set { _name = value; }
 27 }
 28
 29 // MakeSound method
 30 public override void MakeSound()
 31 {
 32 MessageBox.Show("Woof! Woof!");
 33 }
 34 }
 35 }

 Program 10-8 Completed code for the Cat.cs file in the Polymorphism application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.Linq;
 4 using System.Text;
 5 using System.Threading.Tasks;
 6 using System.Windows.Forms; // Needed for MessageBox
 7
 8 namespace Polymorphism
 9 {
 10 class Cat : Animal
 11 {
 12 // Field
 13 private string _name;

620 Chapter 10 Inheritance and Polymorphism

 14
 15 // Constructor
 16 public Cat(string name)
 17 : base("Cat")
 18 {
 19 _name = name;
 20 }
 21
 22 // Name property
 23 public string Name
 24 {
 25 get { return _name; }
 26 set { _name = value; }
 27 }
 28
 29 // MakeSound method
 30 public override void MakeSound()
 31 {
 32 MessageBox.Show("Meow");
 33 }
 34 }
 35 }

 Program 10-9 Completed code for Form1 in the Polymorphism application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Polymorphism
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 // The ShowAnimalInfo method accepts an Animal
 21 // object as an argument. It displays the object's
 22 // species and calls its MakeSound method.
 23 private void ShowAnimalInfo(Animal animal)
 24 {
 25 MessageBox.Show("Species: " + animal.Species);
 26 animal.MakeSound();
 27 }
 28
 29 private void createAnimalButton_Click(object sender, EventArgs e)
 30 {
 31 Animal myAnimal = new Animal("Regular animal");
 32 ShowAnimalInfo(myAnimal);
 33 }
 34
 35 private void createDogButton_Click(object sender, EventArgs e)

 10.3 Abstract Classes 621

 36 {
 37 Dog myDog = new Dog("Fido");
 38 MessageBox.Show("The dog's name is " + myDog.Name);
 39 ShowAnimalInfo(myDog);
 40 }
 41
 42 private void createCatButton_Click(object sender, EventArgs e)
 43 {
 44 Cat myCat = new Cat("Kitty");
 45 MessageBox.Show("The cat's name is " + myCat.Name);
 46 ShowAnimalInfo(myCat);
 47 }
 48
 49 private void exitButton_Click(object sender, EventArgs e)
 50 {
 51 // Close the form.
 52 this.Close();
 53 }
 54 }
 55 }

 Checkpoint

 10.6 Look at the following class definitions:
 class Vegetable
 {
 public virtual void message()
 {
 MessageBox.Show("I'm a vegetable.");
 }
 }
 class Potato : Vegetable
 {
 public override void message()
 {
 MessageBox.Show("I'm a potato.");
 }
 }

 Given these class declarations, what will the following code display?
 Vegetable v = new Potato();
 Potato p = new Potato();
 v.message();
 p.message();

 10.7 Does the “is a” relationship work in reverse? Why or why not?

 10.3 Abstract Classes

 CONCEPT: An abstract class serves as a base class but is not instantiated itself. An
abstract method has no body and must be overridden in a derived class.

 Sometimes it does not make sense to instantiate a base class. For example, consider a fac-
tory that manufactures airplanes. The factory does not make a generic airplane but makes

622 Chapter 10 Inheritance and Polymorphism

two specific types of airplanes: a prop-driven plane and a commuter jet. The computer
software that catalogs the planes might use a class named Airplane . The Airplane class
has members representing the common characteristics of all airplanes. In addition, the
software has a class named PropPlane and a class named CommuterJet . These classes
represent the two specific airplane models the factory manufactures and are derived from
the Airplane class. The Airplane class is never instantiated but is used as a base class
for the other classes.

 A class that is not intended to be instantiated but is to be used only as a base class is called
an abstract class . An abstract class serves as a starting point, providing some members for
its derived classes. To declare a class as abstract, you use the abstract keyword in the
class header. Here is the general format:

 abstract class ClassName
 {
 // Member declarations
 }

 The primary difference between an abstract class and a regular class (which is some-
times called a concrete class) is that the abstract class cannot be instantiated. A
statement that tries to use the new operator to instantiate an abstract class will not
compile.

 Abstract classes can also contain abstract methods. An abstract method is a method
that appears in a base class but expects to be overridden in a derived class. An abstract
method has only a header and no body. In the header, the abstract keyword appears
before the return type. Here is a very simple example of an abstract class that contains
an abstract method:

 abstract class Person
 {
 public abstract void DoSomething();
 }

 When an abstract method appears in a class, it must be overridden in any class that is
derived from the class. In this example, if a class is derived from the Person class, the
derived class must override the DoSomething method.

 Abstract classes can also contain abstract properties. An abstract property is a property
that appears in a base class but expects to be overridden in a derived class. In the property
header, the abstract keyword appears before the property type. Here is a very simple
example of an abstract class that contains an abstract method:

 abstract class Person
 {
 public abstract string JobTitle
 {
 get;
 set;
 }
 }

 Notice that the abstract property shows get and set accessors, but it does not specify
what those accessors do. When an abstract property appears in a class, it must be over-
ridden in any class that is derived from the class. In this example, if a class is derived from
the Person class, the derived class must override the JobTitle property.

 NOTE: If you want to create an abstract read-only property, leave out the set
 accessor.

 10.3 Abstract Classes 623

 In Tutorial 10-3 you complete an application that uses an abstract base class with an
abstract property.

VideoNote

 Tutorial 10-3 :
 Completing
the Computer
Science
Student
Application

 Tutorial 10-3:
 Completing the Computer Science Student Application

 In this tutorial you write an abstract class named Student . The Student class holds data
that is common to all students, but it does not hold all the data needed for students of
specific majors. The Student class is intended to be a base class that can be derived by
other classes that represent students of specific majors.

 The Student class has a Name property to hold a student’s name and an ID property to
hold a student’s ID number. It also has an abstract read-only property named Required-
Hours. The purpose of the RequiredHours property is to hold the number of required
hours for a specific major. Any class that is derived from the Student class must override
the RequiredHours property.

 You also write a class named CompSciStudent , which is derived from the Student class.
The CompSciStudent class has a field named AcademicTrack, which holds the name of
the student’s academic track. It also overrides the RequiredHours property to calculate
and return the number of hours required for a computer science major.

 You will demonstrate the classes in the Computer Science Student application. The appli-
cation’s form, which has already been created for you, is shown in Figure 10-10 . When you
run the completed application, you will enter a student’s name and ID number into the text
boxes, and you will select an academic track using the radio buttons. When you click the
 Get Required Hours button, the application will create a CompSciStudent object, initial-
ized with the data you entered. It will then get the value of the RequiredHours property
and display it on the form.

nameTextBox

idTextBox

infoSystemsRadioButton

softwareEngineeringRadioButton

requiredHoursLabel

exitButtongetHoursButton

 Figure 10-10 The Computer Science Student application’s form

 Step 1: Start Visual Studio (or Visual Studio Express). Open the project named Computer
Science Student in the Chap10 folder of the Student Sample Programs.

 Step 2: Click PROJECT on the Visual Studio menu bar and then select Add Class ….
The Add New Item window should appear. Make sure Class is selected as the
type of item. Change the default filename to Student.cs and then click the Add
button. This adds a source code file named Student.cs to the project.

624 Chapter 10 Inheritance and Polymorphism

 Step 3: The Student.cs file should now be displayed in the code editor. Add the abstract
keyword to the class header, shown in line 9 of Program 10-10. Next, complete
the code for the Student class by typing lines 11–40 in Program 10-10.

 Step 4: Click PROJECT on the Visual Studio menu bar and then select Add Class …. The
 Add New Item window should appear. Make sure Class is selected as the type of
item. Change the default filename to CompSciStudent.cs and then click the Add
button. This adds a source code file named CompSciStudent.cs to the project.

 Step 5: The CompSciStudent.cs file should now be displayed in the code editor. Add
the : Student notation to the class header, shown in line 9 of Program 10-11.
Then, complete the code for the CompSciStudent class by typing lines 11–37 in
Program 10-11.

 Notice that the RequiredHours property, in lines 34–37, overrides the abstract
RequiredHours property in the base class. This property calculates and returns
the number of required hours.

 Step 6: Now you will create the Click event handlers for the Button controls. Switch
your view to the Form1 form in the Designer. Double-click the getHoursButton
control. This opens the Form1.cs file in the code editor, and you will see an empty
event handler named getHoursButton_Click . Complete the event handler by
typing the code shown in lines 22–45 in Program 10-12. Let’s review this code:

 Line 23: This statement declares three local string variables: name , id , and
 track . They will be used to hold user input.

 Lines 26–27: These statements get the name and ID number entered by the user
and assign those values to the name and id variables.

 Lines 30–37: This if - else statement determines which radio button is selected
and assigns a value to the track variable.

 Lines 40–41: This statement creates a CompSciStudent object, referenced by
the variable csStudent , and initializes it with the data entered by the user.

 Lines 44–45: This statement gets the value of the csStudent object’s Required-
Hours property and displays it in the requiredHoursLabel control.

 Step 7: Switch your view back to the Form1 form in the Designer and double-click
the exitButton control. In the code editor you will see an empty event han-
dler named exitButton_Click . Complete the event handler by typing the code
shown in lines 50–51 in Program 10-12.

 Step 8: Save the project. Then, press % on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the applica-
tion runs, enter some sample data in the TextBox controls, select a value with
the radio buttons, and click the Get Required Hours button. You should see the
value 120.0 displayed as the number of required hours. Click the Exit button
when you are finished.

 Program 10-10 Completed code for the Student.cs file in the Computer Science
Student application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.Linq;
 4 using System.Text;
 5 using System.Threading.Tasks;

 10.3 Abstract Classes 625

 6
 7 namespace Computer_Science_Student
 8 {
 9 abstract class Student
 10 {
 11 // Fields
 12 private string _name;
 13 private string _id;
 14
 15 // Constructor
 16 public Student(string name, string id)
 17 {
 18 _name = name;
 19 _id = id;
 20 }
 21
 22 // Name property
 23 public string Name
 24 {
 25 get { return _name; }
 26 set { _name = value; }
 27 }
 28
 29 // ID property
 30 public string ID
 31 {
 32 get { return _id; }
 33 set { _id = value; }
 34 }
 35
 36 // RequiredHours property (abstract)
 37 public abstract double RequiredHours
 38 {
 39 get;
 40 }
 41 }
 42 }

 Program 10-11 Completed code for the CompSciStudent.cs file in the Computer
Science Student application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.Linq;
 4 using System.Text;
 5 using System.Threading.Tasks;
 6
 7 namespace Computer_Science_Student
 8 {
 9 class CompSciStudent : Student
 10 {
 11 // Constants
 12 private double MATH_HOURS = 20;
 13 private double CS_HOURS = 40;
 14 private double GEN_HOURS = 60;
 15
 16 // Fields
 17 private string _academicTrack;
 18

626 Chapter 10 Inheritance and Polymorphism

 19 // Constructor
 20 public CompSciStudent(string name, string id, string track)
 21 : base(name, id)
 22 {
 23 _academicTrack = track;
 24 }
 25
 26 // AcademicTrack property
 27 public string AcademicTrack
 28 {
 29 get { return _academicTrack; }
 30 set { _academicTrack = value; }
 31 }
 32
 33 // RequiredHours property
 34 public override double RequiredHours
 35 {
 36 get { return MATH_HOURS + CS_HOURS + GEN_HOURS; }
 37 }
 38 }
 39 }

 Program 10-12 Completed code for Form1 in the Computer Science Student application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Computer_Science_Student
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void getHoursButton_Click(object sender, EventArgs e)
 21 {
 22 // Variables to hold input
 23 string name, id, track;
 24
 25 // Get the student's name and ID.
 26 name = nameTextBox.Text;
 27 id = idTextBox.Text;
 28
 29 // Get the student's academic track.
 30 if (infoSystemsRadioButton.Checked)
 31 {
 32 track = "Information Systems";
 33 }
 34 else
 35 {

 10.3 Abstract Classes 627

 36 track = "Software Engineering";
 37 }
 38
 39 // Create a CompSciStudent object.
 40 CompSciStudent csStudent =
 41 new CompSciStudent(name, id, track);
 42
 43 // Display the student's required hours.
 44 requiredHoursLabel.Text =
 45 csStudent.RequiredHours.ToString("n1");
 46 }
 47
 48 private void exitButton_Click(object sender, EventArgs e)
 49 {
 50 // Close the form.
 51 this.Close();
 52 }
 53 }
 54 }

 Checkpoint

 10.8 What is the purpose of an abstract class?

 10.9 If a class is abstract, what cannot be done with the class?

 10.10 If a class is derived from a base class that has an abstract method, what must the
derived class do?

 10.11 What must be done with an abstract property before it can be used?

 10.12 How can you create an abstract read-only property?

628 Chapter 10 Inheritance and Polymorphism

 Review Questions

Multiple Choice

 1. When one object is a specialized version of another object, there is an __________
between them.

 a. “is a” relationship
 b. innate association
 c. inherent union
 d. unbreakable union

 2. In an inheritance relationship, the __________ is the general class.

 a. derived class
 b. base class
 c. dependent class
 d. child class

 3. In an inheritance relationship, the __________ is the specialized class.

 a. base class
 b. master class
 c. derived class
 d. parent class

 4. Base classes are sometimes called __________.

 a. megaclasses
 b. primitive classes
 c. starter classes
 d. superclasses

 5. Derived classes are sometimes called __________.

 a. refined classes
 b. subclasses
 c. child classes
 d. neoclasses

 6. The __________ refers to the base class.

 a. friend keyword
 b. this keyword
 c. base keyword
 d. class keyword

 7. The term __________ refers to an object’s ability to take different forms.

 a. multi-instance
 b. by referencing
 c. polymorphism
 d. oligopoly

 Key Terms

 abstract class
 abstract keyword
 abstract method
 abstract property
 base class
 base keyword
 concrete class
 derived class

 “is a” relationship
 override keyword
 overrides
 polymorphism
 subclasses
 superclasses
 virtual keyword

 Multiple Choice 629

 8. When a derived class method has the same name as a base class method, it is often
said that the derived class method __________ the base class method.

 a. terminates
 b. cancels out
 c. overrides
 d. short circuits

 9. The __________ declares that a derived class is allowed to override a method.

 a. void keyword
 b. protected keyword
 c. base keyword
 d. virtual keyword

 10. The __________ declares that this method overrides a method in the base class.

 a. override keyword
 b. class keyword
 c. virtual keyword
 d. base keyword

 11. A class that is not intended to be instantiated, but used only as a base class, is called
a(n) __________.

 a. dummy class
 b. subclass
 c. virtual class
 d. abstract class

 12. To declare a class as abstract, you use the __________ in the class header.

 a. abstract keyword
 b. base keyword
 c. void keyword
 d. virtual keyword

 13. A regular, nonabstract class is sometimes called a __________.

 a. true class
 b. model class
 c. concrete class
 d. real class

 14. A(n) __________ is a method that appears in a base class but expects to be overrid-
den in a derived class.

 a. abstract method
 b. virtual method
 c. concrete method
 d. base method

 15. A(n) __________ is a property that appears in a base class but expects to be overrid-
den in a derived class.

 a. virtual property
 b. concrete property
 c. base property
 d. abstract property

 16. __________ allows a base class reference variable to reference a derived class object.

 a. Polymorphism
 b. Inheritance
 c. Generalization
 d. Specialization

630 Chapter 10 Inheritance and Polymorphism

 True or False

 1. The base class inherits fields, properties, and methods from the derived class.

 2. Polymorphism allows a class variable of the base class type to reference objects of
either the base class or the derived class types.

 3. Properties in a base class cannot be overridden in the same way that methods can be
overridden.

 4. A base class reference variable can reference an object of any class that is derived
from the base class.

 5. A statement that tries to use the new operator to instantiate an abstract class will not
compile.

 6. A class that is not intended to be instantiated, but used only as a base class, is called
a concrete class.

 7. When an abstract property appears in a class, it must be overridden in any class that
is derived from the class.

 Short Answer

 1. What does a derived class inherit from its base class?

 2. Look at the following code, which is the first line of a class declaration. What is the
name of the base class? What is the name of the derived class?

 class Tiger : Felis

 3. Can methods in the derived class directly access the base class’s private members?

 4. When you create an instance of a derived class, which constructor is called first?

 5. In what kind of situation would you want to use an abstract class instead of a
base class?

 6. What is primary difference between an abstract class and a regular class?

 7. Can abstract classes also contain abstract properties?

 Algorithm Workbench

 1. Write the first line of the definition for a Poodle class. The class should be derived
from the Dog class.

 2. Look at the following class declarations:

 class Plant
 {
 public virtual void Message()
 {
 MessageBox.Show("I'm a plant.");
 }
 }
 class Tree : Plant
 {
 public override void Message()
 {
 MessageBox.Show("I'm a tree.");
 }
 }

 Programming Problems 631

 Given these class definitions, what will the following code display?
 Plant p = new Tree();
 p.Message();

 3. Write a parameterized constructor for a base class named Movie with a string field
named _title and an int field named _runningTime .

 4. A class named Wave has a virtual property named Frequency. A class named Sound
is derived from the Wave class. Write example code showing how the Frequency
property might appear in the Sound class.

 5. Create an abstract class called Star . Include an abstract method named Solar-
Masses that returns a value of the double data type.

 Programming Problems
 1. Employee and ProductionWorker Classes

 Create an Employee class that has properties for the following data:

 • Employee name
 • Employee number

 Next, create a class named ProductionWorker that is derived from the Employee
class. The ProductionWorker class should have properties to hold the following data:

 • Shift number (an integer, such as 1, 2, or 3)
 • Hourly pay rate

 The workday is divided into two shifts: day and night. The Shift property will hold
an integer value representing the shift that the employee works. The day shift is shift
1 and the night shift is shift 2.

 Create an application that creates an object of the ProductionWorker class and lets
the user enter data for each of the object’s properties. Retrieve the object’s proper-
ties and display their values.

 2. ShiftSupervisor Class

 In a particular factory, a shift supervisor is a salaried employee who supervises a shift. In
addition to a salary, the shift supervisor earns a yearly bonus when his or her shift meets
production goals. Create a ShiftSupervisor class that is derived from the Employee
class you created in Programming Problem 1. The ShiftSupervisor class should have
a property that holds the annual salary and a property that holds the annual production
bonus that a shift supervisor has earned. Demonstrate the class in an application.

 3. TeamLeader Class

 In a particular factory, a team leader is an hourly paid productionworker that leads a
small team. In addition to hourly pay, team leaders earn a fixed monthly bonus. Team
leaders are required to attend a minimum number of hours of training per year. Design
a TeamLeader class that is derived from the ProductionWorker class you created in
Programming Problem 1. The TeamLeader class should have properties for the monthly
bonus amount, the required number of training hours, and the number of training hours
that the team leader has attended. Demonstrate the class in an application.

 4. Person and Customer Classes

 Design a class named Person with properties for holding a person’s name, address,
and telephone number. Next, design a class named Customer , which is derived
from the Person class. The Customer class should have a property for a customer
number and a Boolean property indicating whether the customer wishes to be on a
mailing list. Demonstrate an object of the Customer class in a simple application.

VideoNote

 Solving the
Employee
and
Production-
Worker
Classes
Problem

 5. PreferredCustomer Class

 A retail store has a preferred customer plan where customers can earn discounts
on all their purchases. The amount of a customer’s discount is determined by the
amount of the customer’s cumulative purchases in the store as follows:

 • When a preferred customer spends $500, he or she gets a 5 percent discount on
all future purchases.

 • When a preferred customer spends $1,000, he or she gets a 6 percent discount
on all future purchases.

 • When a preferred customer spends $1,500, he or she gets a 7 percent discount
on all future purchases.

 • When a preferred customer spends $2,000 or more, he or she gets a 10 percent
discount on all future purchases.

 Design a class named PreferredCustomer , which is derived from the Customer
class you created in Programming Problem 4. The PreferredCustomer class should
have properties for the amount of the customer’s purchases and the customer’s dis-
count level. Demonstrate the class in a simple application.

632 Chapter 10 Inheritance and Polymorphism

633

 11.1 Introduction to Database
Management Systems

 11.2 Tables, Rows, and Columns

 11.3 Creating a Database in Visual Studio

 11.4 The DataGridView Control

 11.5 Connecting to an Existing Database
and Using Details View Controls

 11.6 More about Data-Bound Controls

 11.7 Selecting Data with the SQL Select
Statement

 TOPICS

 Databases 11 C
H

A
P

T
E

R

 11.1 Introduction to Database Management
Systems

 CONCEPT: A database management system (DBMS) is software that manages large
collections of data.

 If an application needs to store only a small amount of data, traditional files work
well. These types of files are not practical, however, when a large amount of data must
be stored and manipulated. Many businesses keep hundreds of thousands—or even
millions—of data items in files. When a traditional file contains this much data, simple
operations such as searching, inserting, and deleting become cumbersome and inefficient.

 When developing applications that work with an intensive amount of data, most develop-
ers prefer to use a database management system. A database management system (DBMS)
is software that is specifically designed to store, retrieve, and manipulate large amounts
of data in an organized and efficient manner. Once the data is stored using the database
management system, applications may be written in C# or other languages to communi-
cate with the DBMS. Rather than retrieving or manipulating the data directly, applica-
tions can send instructions to the DBMS. The DBMS carries out those instructions and
sends the results back to the application, as Figure 11-1 illustrates.

 Although Figure 11-1 is simplified, it illustrates the layered nature of an application that
works with a DBMS. The topmost layer of software, which—in this case—is written in

634 Chapter 11 Databases

C#, interacts with the user. It also sends instructions to the next layer of software, the
DBMS. The DBMS works directly with the data and sends the results of operations back
to the application.

 For example, suppose a company keeps all its product records in a database. The com-
pany has a C# application that allows the user to look up information on any product
by entering its product ID number. The C# application instructs the DBMS to retrieve
the record for the product with the specified product ID number. The DBMS retrieves
the product record and sends the data back to the C# application. The C# application
displays the data to the user.

 The advantage of this layered approach to software development is that the C# program-
mer does not need to know about the physical structure of the data. He or she needs to
know only how to interact with the DBMS. The DBMS handles the actual reading of,
writing of, and searching for data.

 SQL Server Express Edition
 There are numerous DBMSs in use today, and Visual C# can interact with many of them.
Some of the more popular ones are Microsoft SQL Server, Oracle, DB2, MySQL, and Mi-
crosoft Access. In this book we use Microsoft SQL Server Express Edition because it is auto-
matically installed on your system when you install Visual Studio or Visual Studio Express.

 Checkpoint

 11.1 What is a database management system (DBMS)?

 11.2 Why do most businesses use a DBMS to store their data instead of creating their
own text files to hold the data?

 11.3 When developing a C# application that uses a DBMS to store and manipulate
data, why doesn’t the programmer need to know specific details about the physical
structure of the data?

Database
Management

System

Data

C#
Application

 Figure 11-1 A C# application interacting with a DBMS, which manipulates data

 11.2 Tables, Rows, and Columns 635

 11.2 Tables, Rows, and Columns

 CONCEPT: Data that is stored in a database is organized into tables, rows, and
columns.

 A database management system stores data in a database . The data that is stored in a da-
tabase is organized into one or more tables. Each table holds a collection of related data.
The data that is stored in a table is then organized into rows and columns. A row is a
complete set of information about a single item. The data that is stored in a row is divided
into columns. Each column holds an individual piece of information about the item.

 For example, suppose we are developing a phone book application and we want to store a
list of names and phone numbers in a database. We initially store the following list:

 Katie Allen 555-1234
 Jill Ammons 555-5678
 Kevin Brown 555-9012
 Elisa Garcia 555-3456
 Jeff Jenkins 555-7890
 Leo Killian 555-1122
 Marcia Potemkin 555-3344
 Kelsey Rose 555-5566

 Think about how this data would appear if we stored it as rows and columns in a spread-
sheet. We would put the names in one column and the phone numbers in another column.
Each row, then, would contain data about one person. Figure 11-2 shows how the third
row contains the name and phone number for Kevin Brown.

This row contains data
about one person:
Name: Kevin Brown
Phone: 555-9012

 Figure 11-2 The table

 When we create a database table to hold this information, we organize it in a similar man-
ner. We give the table a name, such as Person . In the table, we create a column for the
names and a column for the phone numbers. Each column in a table must have a name, so
we can name our columns Name and Phone , respectively.

 Column Data Types
 When you create a database table, you must specify a data type for the columns. The data
types that you can choose from are not C# data types, however. They are the data types

636 Chapter 11 Databases

that are provided by the DBMS. In this book we are using Microsoft SQL Server, so we will
select from the data types provided by that DBMS. Table 11-1 lists a few of the Microsoft
SQL Server data types and shows the C# data type with which each is generally compatible.

 Table 11-1 A few of the Microsoft SQL Server data types

 SQL Server
Data Type Description

 Corresponding C# or .NET
Framework Data Type

 bit True/false values bool

 datetime A date and a time DateTime

 decimal(t , d) A decimal value with t total
digits and d digits appearing
after the decimal point.

 decimal

 float Real numbers double

 int An integer number int

 money Values that represent
currency

 decimal

 nchar(n) A fixed-length Unicode
string with a maximum
length of n characters.

 string

 nvarchar(n) A variable-length Unicode
string with a maximum
length of n characters.

 string

 NOTE: Table 11-1 shows the data types that you will most often use while learning.
These are only a small number of the data types provided by Microsoft SQL Server,
however.

 Primary Keys
 Most database tables have a primary key , which is a column that can be used to identify a
specific row. The column that is designated as the primary key must hold a unique value
for each row. Here are some examples:

 • A table stores employee data, and one of the columns holds employee ID numbers.
Because each employee’s ID number is unique, this column can be used as the pri-
mary key.

 • A table stores product data, and one of the columns holds the product number.
Because each product has a unique product number, this column can be used as the
primary key.

 • A table stores invoice data, and one of the columns holds invoice numbers. Each
invoice has a unique invoice number, so this column can be used as a primary key.

 NOTE: The nchar(n) and nvarchar(n) data types are both used to store strings.
An nchar(n) column is fixed in length and will always use n characters of space in
the database. An nvarchar(n) column is variable in length, and the amount of space
it uses in the database will be enough to accommodate the piece of data it holds, up
to n characters.

 11.2 Tables, Rows, and Columns 637

 Identity Columns
 Sometimes the data that you want to store in a table does not contain any unique items
that can be used as a primary key. For example, in the Person table that we previously
described, neither the Name column nor the Phone column contains unique data. Two
people can have the same name, so it is possible that a name might appear more than
once in the Name column. Also, multiple people can share the same phone number, so it is
possible that a phone number might appear more than once in the Phone column. Conse-
quently, you cannot use the Name column or the Phone column as a primary key.

 In a case such as this, it is necessary to create an identity column specifically to serve as the
primary key. An identity column is a column that contains unique values that are generated
by the DBMS. Identity columns typically contain integers. Each time a new row is added
to the table, the DBMS automatically assigns a unique value to that row’s identity column.

 For example, when designing the Person table that we previously discussed, we could cre-
ate an int column named PersonID and designate that column as an identity column. (As
a result, the DBMS assigns a unique integer value to the PersonID column for each row.)
Then we could designate the PersonID column as the table’s primary key. Figure 11-3
shows an example of the Person table after we have created it and entered data into it.

 Figure 11-3 The Person table with data entered

 Allowing Null Values
 If a column contains no data, it is said to be null. Sometimes it is okay for a column to be
left empty. Some columns, however, such as primary keys, must contain a value. When
you are designing a table, you can specify whether a column is allowed to be null. If a par-
ticular column is not allowed to be null, any time you add a row of data to the table, the
DBMS will require that a value be provided for the column. Leaving the column empty
results in an error.

 Checkpoint

 11.4 Describe each of the following terms:
 a. database
 b. table
 c. row
 d. column

 11.5 Match the Microsoft SQL Server data type with the compatible C# data type.
 1. bit a. double
 2. datetime b. int
 3. float c. bool
 4. int d. DateTime
 5. money e. string
 6. nchar f. decimal

638 Chapter 11 Databases

 Figure 11-4 The components used by an application to connect to a database

 11.6 What is the purpose of a primary key?

 11.7 What is an identity column?

 11.8 If a particular column is not allowed to be null, what is the result if the column is
left empty?

 11.3 Creating a Database in Visual Studio

 CONCEPT: A .NET application uses several components, arranged in layers, to con-
nect to a database. Visual Studio provides tools that allow you to create a
database and configure the various components that an application needs
to connect to it.

 Connecting an Application to a Database
 A .NET application requires a set of special components that let it connect to, and work with,
a database. The components are layered one on top of the other, as shown in Figure 11-4 .

 Here is a summary of the layers shown in the figure:

 • Data Source —As its name implies, a data source is a source of data with which the
application can work. Data sources are usually databases, but they can also be Excel
spreadsheets, XML data, text files, or Web services.

 • Table Adapter —A table adapter connects to a data source and can retrieve data
from a table in a data source. It can also update the table in the data source.

 • Dataset —A dataset gets a copy of a table from the table adapter and keeps the copy
of the table in memory. Instead of working directly with the database, the application
works with the dataset, modifying rows, deleting rows, adding new rows, etc. Then,
the dataset can instruct the table adapter to write the changes back to the database.

 • Binding Source —A binding source is a component that can connect user interface
controls directly to a dataset.

 Fortunately, Visual Studio provides wizards that make it easy to create and configure the
necessary components. In Tutorial 11-1 you start a new C# project and use Visual Studio
to perform the following:

 • Create an SQL Server database
 • Design a table in the database
 • Add data to the table

 11.3 Creating a Database in Visual Studio 639

 Tutorial 11-1:
 Starting the Phone Book Application and Creating
the Phonelist.mdf Database

 In the next two tutorials, you create an application that uses a database to store a list of
names and phone numbers. In this tutorial you start the application by creating the data-
base. In the next tutorial you connect the application to the database, add a dataset, and
add a control to the form that allows the user to interact with the database.

 Step 1: Start Visual Studio (or Visual Studio Express). Create a new Windows Forms
Application project named Phone Book .

 Step 2: Change the Form1 form’s Text property to Phone Book .

 Step 3: Next you create a new database and add it to the project. Click PROJECT on
the Visual Studio menu bar and then select Add New Item ….

 Step 4: The Add New Item window will appear. Scroll down the list of items and select
 Service - based Database , as shown in Figure 11-5 . You also need to specify the
database’s name in the Name text box at the bottom of the window. A default
name, such as Database1 . mdf appears there. Change the name to Phonelist . mdf .
(Be sure to keep the .mdf file extension.)

VideoNote

 Tutorial 11-1 :
 Starting the
 Phone Book
Application
and Creating
the Phonelist.
mdf Database

Select Service-based
Database1

Change the name to
Phonelist.mdf2

 Figure 11-5 The Add New Item window

 Step 5: Click the Add button in the Add New Item window. This adds an empty SQL
Server database named Phonelist.mdf to your project.

 Step 6: The Data Source Configuration Wizard window, shown in Figure 11-6 , appears
next. Click the Cancel button. (You are canceling the process at this point be-
cause the database that you just created is currently empty. You cannot config-
ure a data source until you have created a database table.)

640 Chapter 11 Databases

 Step 7: Look at the Solution Explorer , shown in Figure 11-7 , and notice that it now con-
tains an entry for the Phonelist.mdf database. Double-click the entry for Phonelist.
mdf database. Notice that a new window named Server Explorer is now open in
the area where the Toolbox is located. (The window is named Server Explorer in
Visual Studio. If you are using Visual Studio Express, the window is named Data-
base Explorer .) The Server Explorer is shown in Figure 11-8 .

Click Cancel

 Figure 11-6 Clicking Cancel in the Data Source Configuration Wizard window

Entry for the Phonelist.mdf database

 Figure 11-7 Solution Explorer entry for the Phonelist.mdf database

 NOTE: For our purposes, it does not matter whether you are using the
 Server Explorer in Visual Studio or the Database Explorer in Visual Studio
Express. They both work the same way. The Server Explorer provides the
added capability to locate databases across your network.

 11.3 Creating a Database in Visual Studio 641

 Step 8: Now you add a table to the Phonelist.mdf database. In the Server Explorer (or
 Database Explorer), make sure the Phonelist.mdf entry is expanded, as shown
in Figure 11-8 . Right-click on Tables , and as shown in Figure 11-9 , click Add
New Table on the menu.

 Figure 11-8 Server Explorer

 Figure 11-9 Adding a table to the Phonelist.mdf database

 This displays the Table Designer , as shown in Figure 11-10 . You use the Table
Designer to specify the names and data types of the table’s columns.

 Step 9: Look closely at the Table Designer and notice that a column named Id has
automatically been added to the table. Figure 11-11 shows how to read the in-
formation about the column in the Table Designer :

 • The key icon () that appears to the left of the name indicates that the col-
umn is the table’s primary key.

 • The name of the column is Id .
 • The column’s data type is int .
 • The Allow Nulls checkbox is not checked. This means that the column must

have a value (it cannot be null).

 We want to keep this column, but we are going to make some changes to it. In
the next step we will change the column’s name to PersonID , and we will make
it an identity column (so the database will automatically generate unique integer
values for it).

642 Chapter 11 Databases

 Step 10: Click on the column name (Id) in the Table Designer , and change the name to
 PersonID . Press the t key. The Table Designer should appear as shown in
 Figure 11-12 .

 Step 11: With the column still selected, notice that the Properties window is show-
ing the column’s properties. Scroll down until you see Identity Specification .
Double-click Identity Specification, and you should see the (Is Identity),
 Identity Increment , and Identity Seed properties appear below it, as shown in
 Figure 11-13 .

 Step 12: Change the (Is Identity) property to True . This designates the column as an
identity column. Notice that the Identity Increment and Identity Seed proper-
ties are both now set to 1 , as shown in Figure 11-14 . Leave these values as
they are.

Table Designer

 Figure 11-10 The Table Designer

This column is
the primary key.

The column
name is Id.

The column’s data
type is int.

Nulls are not allowed
(the column must have

a value).

 Figure 11-11 The Id column that is automatically added to the table

 11.3 Creating a Database in Visual Studio 643

 Figure 11-12 The column name changed to PersonID

 Figure 11-13 The column’s Identity Specification properties displayed

 Figure 11-14 The Identity Specification properties set to the desired values

 Step 13: In the Table Designer , add another column named Name . Select nvarchar(50)
as the data type and remove the check under Allow Nulls.

 Step 14: Add another column named Phone . Select nvarchar(50) as the data type and
remove the check under Allow Nulls. The Table Designer should now appear as
shown in Figure 11-15 .

644 Chapter 11 Databases

 Step 15: You are finished designing the table, but you need to change the table’s name.
When you create a new table in the Server Explorer , it is given a default name, such
as Table . Notice at the bottom of the screen (below the Table Designer), you see an
area labeled T-SQL . As shown in Figure 11-16 , the first statement in this window
shows the name of the table. Change the first statement so it reads as follows:

 CREATE TABLE [dbo].[Person]

 The T-SQL window should now appear as shown in Figure 11-17 .

 Figure 11-15 The PersonID , Name , and Phone columns created in the Table Designer

The table’s name

 Figure 11-16 The T-SQL window

 Figure 11-17 The table named changed to Person

 Step 16: Although you changed the table’s name in the T-SQL window, the change does
not take effect until you update the database. Click the Update button that ap-
pears in the upper left corner of the Table Designer, as shown in Figure 11-18 .

 11.3 Creating a Database in Visual Studio 645

 Step 17: The Preview Database Updates window, shown in Figure 11-19 , will appear
next. Click the Update Database button. After a moment you should see con-
firmation that the update was successful at the bottom of the screen, similar to
that shown in Figure 11-20 . Close the Table Designer window.

Update button

 Figure 11-18 The Update button to update the database

 Figure 11-19 The Preview Database Updates window

 Figure 11-20 Confirmation that the database was updated

 Step 18: The next step is to enter data into the table. In the Server Explorer (or Database
Explorer), expand the Tables entry and then right-click the Person entry . You will
see the pop-up menu shown in Figure 11-21 . Click Show Table Data in the menu .

 NOTE: If you do not see the entry for the Person table in the Server Ex-
plorer (or Database Explorer), click the Refresh button () in the upper-left
corner of the window.

646 Chapter 11 Databases

 Step 19: The table should now be opened and ready for input, as shown in Figure 11-22 .
Enter several names and phone numbers into the Name and the Phone columns.
As you enter data, keep the following in mind:

 • Do not enter values for the PersonID column. The system automatically
generates a value for the PersonID column each time you add a new row.

 • You must enter values for the Name and Phone columns. Recall that you
removed the check from Allow Nulls for these columns when you designed
the table. If you try to move away from a row without specifying values for
these columns, you will see an error message.

 • Exclamation points will appear next to the columns as you enter data. These
simply mean that the data has not been saved to the database. When you move
away from the row, the data is saved and the exclamation points disappear.

 Figure 11-21 Clicking Show Table Data

Start entering data here.

 Figure 11-22 Ready to enter data into the Person Table

 Figure 11-23 shows the table with sample data entered.

 Step 20: Once you have entered all the data, click FILE on the Visual Studio menu and
then click Save All . The rows are saved to the Phonelist.mdf database.

 Step 21: Close the table so the Form1 form is displayed in the Designer .

 Let’s review what you have done up to this point:

 • Created an SQL Server database named Phonelist.mdf
 • Designed and created a table named Person
 • Entered sample data into the table

 11.3 Creating a Database in Visual Studio 647

 Figure 11-23 Sample data entered into the Person Table

 In the next tutorial you connect the Phonelist.mdf database to the application’s
form and add a control to the form that lets the user interact with the database.
If you intend to continue to the next tutorial at this time, leave the project open
in Visual Studio.

 The Database File’s Location
 When you use Visual Studio to create a database, as you did in Tutorial 11-1 , the data-
base file will be created in the project folder. For example, Figure 11-24 shows how the
Phonelist.mdf database file was created in the Phone Book application’s project folder.

 NOTE: When you create an SQL Server database, you will also see a file that
ends with the .LDF extension. For example, in Figure 11-24 you see a file named
Phonelist_log.LDF. This is a transaction log file. The SQL Server DBMS uses it to
keep a log of all the operations that you perform on the database.

Project folder

Database file

 Figure 11-24 Location of the Phonelist.mdf database file

648 Chapter 11 Databases

 Checkpoint

 11.9 List each of the .NET components that allow an application to connect to, and work
with, a database in the order they are layered. Begin the list with the application as
the topmost layer.

 11.10 What is the relationship between the table adapter and data source components?

 11.11 What component is used to connect interface controls to a dataset?

 11.4 The DataGridView Control

 CONCEPT: A DataGridView control can display a database table in a scrollable
grid.

 A data-bound control is a user interface control that is connected to a data source. For
example, a data-bound control can be connected to a column in a database table. Data-
bound controls automatically display data from the data source and can be used to change
the data that they are bound to. One of the simplest and most powerful data-bound con-
trols is the DataGridView control. A DataGridView control can display an entire data-
base table in a scrollable grid on an application’s form.

 In Tutorial 11-2 you continue working on the Phone Book application that you
started in Tutorial 11-1 . You connect the application’s form to the Phonelist.mdf
database and add a DataGridView control that can be used to view and update the
 Person table.

VideoNote

 Tutorial 11-2 :
 Completing
the Phone
Book
Application

 Tutorial 11-2:
 Completing the Phone Book Application

 In this tutorial you complete the Phone Book application. You add the Phonelist.mdf
database to the project as a data source, create a dataset that is connected to the
 Person table, and add a DataGridView control that lets the user interact with the
database.

 Step 1: Make sure the Phone Book project is open in Visual Studio (or Visual Studio
Express) from the previous tutorial.

 Step 2: Click PROJECT on the Visual Studio menu and then click Add New Data
Source You should see the Data Source Configuration Wizard , as shown in
 Figure 11-25 .

 Step 3: The data source you are adding is a database, so make sure Database is
selected and then click Next > . The window now appears, as shown in
 Figure 11-26 .

 Step 4: Make sure Dataset is selected, and click Next > . The window now appears, as
shown in Figure 11-27 .

 Step 5: In this window you are asked to choose a data connection, and the Phonelist
.mdf database should be automatically selected, as shown in Figure 11-27 .
Simply click Next > . The window now appears, as shown in Figure 11-28 .

 11.4 The DataGridView Control 649

 Figure 11-25 The Data Source Configuration Wizard—Choose a Data Source Type

 Figure 11-26 The Data Source Configuration Wizard—Choose a Database Model

650 Chapter 11 Databases

 Figure 11-27 The Data Source Configuration Wizard—Choose Your Data Connection

 Figure 11-28 The Data Source Configuration Wizard—Save the Connection String

 11.4 The DataGridView Control 651

 Step 6: In this window you are asked if you want to save a connection string. Leave the
 Yes box checked and click Next > .

 Step 7: In the window that appears now, you are asked to choose the database objects
that you want to include in the dataset. Expand the Tables entry, and place a
check next to Person , as shown in Figure 11-29 .

 At the bottom of the window you can specify a name for the dataset. The default
name PhonelistDataSet is already provided. Because you selected the Per-
son table as the database object, change the dataset name to PersonDataSet .
Click Finish .

 Here is a summary of what you just did:

 • You added the Phonelist.mdf database as a data source to the application.
 • You created a dataset component that is connected to the Person table. The

name of the dataset component is PersonDataSet .

 Figure 11-29 The Data Source Configuration Wizard—Choose Your Database Objects

 Step 8: Visual Studio provides a Data Sources window that lets you see all the data
sources in the current project. Click VIEW on the Visual Studio menu bar, then
select Other Windows , then click Data Sources . The Data Sources window
should be displayed, as shown in Figure 11-30 . Notice that the window shows
the name of the dataset, which is PersonDataSet , and the name of the table to
which the dataset is connected, which is Person .

652 Chapter 11 Databases

 Figure 11-30 The Data Sources window

 Step 9: Next you select DataGridView as the default data-bound control for the Person
table. In the Data Sources window, click the entry for the Person table, as
shown in the image on the left in Figure 11-31 . Then, click the down arrow (),
and select DataGridView , as shown in the image on the right.

Select Person. Click the down-arrow and
select DataGridView.

 Figure 11-31 Selecting DataGridView as the data-bound control for the Person table

 Step 10: Now you add a DataGridView control to the form. As shown in Figure 11-32 ,
click and drag the Person table from the Data Sources window onto the form.
As shown in Figure 11-33 , this creates a DataGridView control and a naviga-
tion bar on the form. (If necessary, adjust the size of the form and the size and
position of the DataGridView control so they appear similar to Figure 11-33 .)

 Notice that the component tray (the gray area at the bottom of the Designer)
now contains several items. These are components that were automatically cre-
ated when you placed the DataGridView control on the form. Here’s a sum-
mary of the components:

 • personTableAdapter —This is the table adapter. It gets data directly from
the data source, which in this case is the Person.mdf database.

 • tableAdapterManager —In many applications, the database has multiple
tables from which we want to get data. A table adapter manager is a compo-
nent that manages multiple tables.

 • personDataSet —This is the dataset component. It gets a copy of the table
from the table adapter and keeps it in memory. The application works with
the dataset instead of working directly with the database.

 • personBindingSource —This is the navigation bar.

 11.4 The DataGridView Control 653

Drag the Person table
onto the form.

 Figure 11-32 Dragging the Person table onto the form

Navigation bar

DataGridView
control

Components

 Figure 11-33 The DataGridView control placed on the form

654 Chapter 11 Databases

 Step 11: Save and run the application. The form will appear similar to Figure 11-34 ,
with the rows of the Person table displayed in the DataGridView control. You
can use the DataGridView control in the following ways:

 • To change the value of a cell, click the cell with the mouse and then change its
data as necessary.

 • To select a row, click the button that appears next to it, along the left side of
the control.

 • To delete a row, select it; then either click the Delete button () on the navi-
gation bar or press ∂ on the keyboard.

 • To add a new row, scroll to the bottom of the grid, where you will see an
empty row. Enter the new data in the empty row.

 • The changes that you make affect only the in-memory copy of the table that
is held in the dataset. To save the changes to the database, click the Save but-
ton () on the navigation bar.

 • To sort the rows on a column value, click the column heading.

 Figure 11-34 The Phone Book application running

 Step 12: Use the DataGridView control to make several changes to the dataset. For
example, change a value in an existing row, add a new row, and delete an ex-
isting row. Be sure to click the Save button () on the navigation bar to save
your changes.

 Step 13: Close the application and then rerun it to verify that your changes were saved.
When you are finished, close the application.

 Auto-Generated Code
 When you place a data-bound control, such as the DataGridView, on a form, Visual
Studio does a lot of work behind the scenes to make the control functions. In fact, you
completed the application in Tutorial 11-2 without writing a single line of code! If you
open the form in the code editor, however, you will see that Visual Studio generated some
code, as shown in Program 11-1 .

 11.4 The DataGridView Control 655

 Program 11-1 Form1 code in the Phone Book application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Phone_Book
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void personBindingNavigatorSaveItem_Click(object sender, EventArgs e)
 21 {
 22 this.Validate();
 23 this.personBindingSource.EndEdit();
 24 this.tableAdapterManager.UpdateAll(this.personDataSet);
 25
 26 }
 27
 28 private void Form1_Load(object sender, EventArgs e)
 29 {
 30 // TODO: This line of code loads data into the. . .
 31 this.personTableAdapter.Fill(this.personDataSet.Person);
 32
 33 }
 34 }
 35 }

 Visual Studio adds an event handler in lines 20–26 that executes when the user clicks the
 Save button on the navigation bar. In a nutshell, the statements in this method apply any
changes that have been made to the DataGridView control to the dataset and then save
the dataset to the database.

 Visual Studio also adds a Load event handler for the form, in lines 28–33. In line 31, the
event handler calls the table adapter’s Fill method, passing a reference to the Person
table (contained in the dataset) as an argument. This statement causes the table adapter to
load data from the database into the dataset.

 Checkpoint

 11.12 What do you call a user interface control that is connected to a data source?

 11.13 List the components that are automatically created when you place a DataGridView
control on a form.

 11.14 What is the purpose of the table adapter’s Fill method?

 11.15 What kind of information is displayed in the Data Sources window? How is it
displayed?

656 Chapter 11 Databases

 11.5 Connecting to an Existing Database and Using
Details View Controls

 CONCEPT: You can easily connect an application to an existing database. The Details
view controls are an alternative to the DataGridView control for interact-
ing with a database.

 In Tutorial 11-1 you used Visual Studio to create a database from scratch and populate its
table with data. More often, programmers must create applications that connect to exist-
ing databases. In Tutorial 11-3 you create an application and connect it to a database that
is provided in the Student Sample Program files. The database is named ProductDB.mdf,
and you will find it in the Chap11 folder. The database has one table, named Product .
 Figure 11-35 shows the data that is stored in the Product table.

 Figure 11-35 The Product table in the ProductDB.mdf database

 Here are some things to know about the columns in the Product table:

 • The Product_Number column is the primary key. Its data type is nchar(5) , and
nulls are not allowed.

 • The Description column’s data type is nvarchar(50) , and nulls are not allowed.
 • The Units_On_Hand column’s data type is int , and nulls are not allowed.
 • The Price column’s data type is money , and nulls are not allowed.

 In the tutorial you also learn how to create a Details view. A Details view is a set of indi-
vidual controls that are bound to the columns in a single row. Rather than showing multi-
ple rows at once, a Details view lets the user see one row at a time. Figure 11-36 shows an

 Figure 11-36 Details view

 11.5 Connecting to an Existing Database and Using Details View Controls 657

example of a form with a set of Details view controls. In the figure, the TextBox controls
are bound to the columns of the Product table. Notice that the form also has a naviga-
tion bar. The navigation bar works just like the one that appears with a DataGridView
control. It can be used to move forward and backward in the table, add new rows, delete
the currently displayed row, and save the changes that have been made.

 Notice in Figure 11-36 that each TextBox control has a Label control next to it, identify-
ing the column. When you create a Details view, these Label controls are created auto-
matically. As you can see in the figure, the underscores in the column name are replaced
by spaces in the Label controls.

 Tutorial 11-3:
 Creating the Products Application and Using a Details View

 Step 1: Start Visual Studio (or Visual Studio Express). Create a new Windows Forms
Application project named Products .

 Step 2: Change the Form1 form’s Text property to Products .

 Step 3: Click PROJECT on the Visual Studio menu bar and then click Add New Data
Source You should see the Data Source Configuration Wizard , as shown in
 Figure 11-37 . Make sure Database is selected and then click Next > .

VideoNote

 Tutorial 11-3 :
 Creating the
 Products
Application
and Using a
Details View

 Figure 11-37 The Data Source Configuration Wizard—Choose a Data Source Type

 Step 4: The window now appears as shown in Figure 11-38 . Make sure Dataset is se-
lected, and click Next > .

658 Chapter 11 Databases

 Figure 11-38 The Data Source Configuration Wizard—Choose a Database Model

 Step 5: The window now appears as shown in Figure 11-39 . In this window you are
asked to choose a data connection. Because you have not previously created any
data connections in this project, none are available for you to choose from. So,
you will have to create a new data connection. Click the New Connection button.

 Figure 11-39 The Data Source Configuration Wizard—Choose Your Data Connection

 11.5 Connecting to an Existing Database and Using Details View Controls 659

 Step 6: You see the Add Connection dialog box next, as shown in Figure 11-40 .
(Important: The screens shown in Figures 11-40 and 11-41 were taken from
Visual Studio. If you are using Visual Studio Express, the dialog box will
look slightly different. The steps given here will work regardless of the ver-
sion you are using.)

Make sure this data
source is selected.
(If it is not, click the
Change ... button and
select Microsoft SQL
Server Database File.)

1 Click here to browse
for the ProductDB.mdf2

 Figure 11-40 The Add Connection dialog box (Visual Studio)

 Figure 11-41 The data source and database file selected (Visual Studio)

660 Chapter 11 Databases

 Perform the following:

 • Look carefully at the selected data source. Make sure Microsoft SQL Server
Database File (SqlClient) is selected. If not, click the Change … button and
select Microsoft SQL Server Database File . (You will have to do this if you
are using Visual Studio Express.)

 • As indicated in the figure, click the Browse . . . button. Navigate to the
 Chap11 folder in the Student Sample Programs and select the ProductDB
.mdf file.

 Figure 11-41 shows how the dialog box should appear now. At this point,
you can optionally click the Test Connection button to test the connection to
the database. You should see the message Test Connection Succeeded .

 Step 7: Click the OK button on the Add Connection dialog box to close the dialog
box.

 Step 8: You should be back at the Data Source Configuration Wizard, as shown in
 Figure 11-42 . As shown in the figure, ProductDB.mdf should be selected as the
data connection. Click the Next > button to continue.

 Figure 11-42 The Data Source Configuration Wizard with ProductDB.mdf selected

 Step 9: You should see the dialog box shown in Figure 11-43 . The message is telling
you that the database file is located outside the project folder, and you are being
asked if you want to copy it into the project. Unless your instructor has told you
to do otherwise, click Yes . That will make it easier for you to copy the complete
project to submit to your instructor.

 11.5 Connecting to an Existing Database and Using Details View Controls 661

 Step 11: The Data Source Configuration Wizard should now appear, as shown in Figure
 11-45 . You are asked to choose the database objects that you want to include
in the dataset. Expand the Tables entry and place a check next to Product , as
shown in Figure 11-45 .

 At the bottom of the window, you can specify a name for the dataset. The de-
fault name ProductDBDataSet is already provided. Because you selected the
 Product table as the database object, change the dataset name to ProductDataSet .
Click Finish .

 Figure 11-43 Message about copying the database to the project

 Figure 11-44 The Data Source Configuration Wizard— Save the Connection String

 Step 10: The Data Source Configuration Wizard should now appear as shown in Figure
 11-44 . Click the Next > button to continue.

662 Chapter 11 Databases

 Here is a summary of what you just did:

 • You added the ProductDB.mdf database as a data source to the application.
 • You created a dataset component that is connected to the Product table. The

name of the dataset component is ProductDataSet .

 Step 12: Next you display the Data Sources window. Click VIEW on the Visual
Studio menu bar, then select Other Windows , then click Data Sources . The
 Data Sources window should be displayed, as shown in Figure 11-46 . Notice
that the window shows the name of the dataset, which is ProductDataSet ,
and the name of the table that the dataset is connected to, which is
 Product .

 Figure 11-45 The Data Source Configuration Wizard—Choose Your Database Objects

 Figure 11-46 The Data Sources window

 Step 13: Now you select Details as the default data-bound control for the Product table.
In the Data Sources window, click the entry for the Product table, as shown

 11.5 Connecting to an Existing Database and Using Details View Controls 663

Select Product. Click the down-arrow and
select Details.

 Figure 11-47 Selecting Details as the data-bound control for the Product table

Drag the Product table
onto the form.

 Figure 11-48 Dragging the Product table onto the form

 Step 14: Next you add a Details view onto the form. As shown in Figure 11-48 , click
and drag the Product table from the Data Sources window onto the form. As
shown in Figure 11-49 , this creates a set of Details view controls, complete
with a navigation bar, on the form. (Adjust the size of the form and the size
and position of the controls so they appear similar to Figure 11-49 .)

in the image on the left in Figure 11-47 . Then, click the down arrow (), and
select Details , as shown in the image on the right.

664 Chapter 11 Databases

Navigation bar

Details view
controls

Components

 Figure 11-49 Placing the Details view controls on the form

 Step 15: Save and run the application. The form will appear similar to Figure 11-50 ,
with data from the first row of the Product table displayed. You can use the
form in the following ways:

 • On the navigation bar, the Move next button () moves your view to the next
row, and the Move last button () moves your view to the last row.

 • The Move previous button () moves your view to the previous row, and the
 Move fi rst button () moves your view to the fi rst row.

 • The values of a row are displayed in text boxes. To change a value, simply
click the text box with the mouse and then change its data as necessary.

 • To add a new row, click the Add button (). An empty row will be created
and displayed. Enter data for the new row into the text boxes.

 • To delete the row that is currently displayed, click the Delete button () on
the navigation bar.

 • The changes that you make affect only the in-memory copy of the table that
is held in the dataset. To save the changes to the database, click the Save but-
ton () on the navigation bar.

 Figure 11-50 The Phone Book application running

 Step 16: Use the Details view controls to make several changes to the dataset. For exam-
ple, change a value in an existing row, add a new row, and delete an existing
row. Be sure to click the Save button () on the navigation bar to save your
changes. Close the application when you are finished.

 11.6 More about Data-Bound Controls 665

 Copies of the Database at Run Time
 Recall that in Step 9 of Tutorial 11-3 , Visual Studio displayed a message indicating that
you had selected a database file located outside the project folder, and you were asked if
you wanted to copy the file into the project. (See Figure 11-43 .) You answered Yes , and,
as a result, the database file was copied into the project folder.

 Then, when you ran the application for the first time, Visual Studio copied the database
file from the project folder to the project’s output folder , which is the bin \ Debug folder.
Each subsequent time the application runs, it connects to the copy of the database in the
output folder instead of the project folder.

 Suppose you make a change to the application, such as repositioning a control, and you
run it again. Because you modified the application, Visual Studio rebuilds the project
(recompiles it). Visual Studio also copies the database file, once again, from the project
folder to the output folder. As a side effect, any changes that you previously made to the
database will be lost!

 You can get around this behavior by answering No to the dialog box shown in Figure 11-43 .
That causes the application to always connect to the database in its external location. How-
ever, if you are being graded on the project, your instructor will have trouble running it on
his or her computer because the database file will be missing. So, it is normally a good idea
to answer Yes to the dialog box in Figure 11-43 , as long as you are aware that rebuilding the
project causes the database in the output folder to be overwritten.

 Checkpoint

 11.16 How can you create a form that shows the columns of only a single row of a
database in an application?

 11.17 What happens when you drag a table from the Data Sources window onto a form?

 11.18 Where is a project’s output folder located?

 11.6 More about Data-Bound Controls

 CONCEPT: The DataGridView control and the Details view may be customized in
various ways. Other controls, such a list boxes, can be data-bound to
allow interaction with a database.

 Customizing the DataGridView Control
 In the Designer , if you select a DataGridView control, you will see a small arrow in the
upper-right corner of the control’s bounding box. Figure 11-51 shows an example. This is
called a smart tag . When you click on the smart tag, a tasks panel will pop up, giving you
a number of options that you can perform with the DataGridView control. Figure 11-52
shows an example of the tasks panel.

 Notice in the figure that the tasks panel has the following check boxes:

 • Enable Adding —When this item is checked, the user may add rows in the DataGrid-
View control. This item is checked by default.

 • Enable Editing —When this item is checked, the user may change the contents of
rows in the DataGridView control. This item is checked by default.

666 Chapter 11 Databases

 • Enable Deleting —When this item is checked, the user may delete rows from the
DataGridView control. This item is checked by default.

 • Enable Column Reordering —When this item is checked, the user may click and drag
columns to rearrange them in the DataGridView control. This item is not checked
by default.

 If you do not want the user to be able to add, edit, or delete rows in the DataGridView
control, simply remove the appropriate checkmarks.

 Keep in mind that the navigation bar has buttons that allow the user to add, delete, and
save the data in the DataGridView control. These buttons will still work, even after you
have disabled adding, editing, and deleting in the DataGridView control’s tasks panel. To
disable a button on the navigation bar, right-click it in the Designer . This will display the
pop-up menu shown in Figure 11-53 . Notice in the figure that Enabled is checked. Click
 Enabled to remove the checkmark, thus disabling the button. When a button is disabled,
it will appear grayed-out on the navigation bar. Figure 11-54 shows an example with the
 Add , Delete , and Save buttons disabled.

Smart Tag

 Figure 11-51 A DataGridView control’s smart tag

 Figure 11-52 A DataGridView control’s tasks panel

 11.6 More about Data-Bound Controls 667

 Customizing the Details View
 In Tutorial 11-3 you saw how several controls are created automatically when you cre-
ate Details view for a table. For example, TextBoxes were created and bound to the in-
dividual columns. Label controls that identify the columns were also created, as was a
navigation bar.

 When you create a Details view, the type of control that a column is automatically bound
to is determined by the column’s data type, as follows:

 • Columns containing character data are bound to TextBox controls by default.
 • Numeric columns are bound to TextBox controls by default.
 • Bit columns are bound to CheckBox controls.
 • Datetime columns are bound to DateTimePicker controls, which allow the user to

select a date from a small pop-up calendar.

 It is possible to change the type of control that a column is bound to in a Details view.
For example, recall that the Product table in Tutorial 11-3 has a column named

 Figure 11-53 Disabling the Delete button

 Figure 11-54 The Add , Delete , and Save buttons disabled (grayed-out)

668 Chapter 11 Databases

 Product_Number . The Product_Number column contains character data, so a TextBox
control was created for it when you placed the Details view on the form. However, the
 Product_Number column is the primary key for the table, so you might not want the
user to be able to change it. A Label control might be a better option. That way, the user
can see the product number but cannot change it.

 Before you place a Details view on a form, you can select the type of control to which
each column will be bound. In the Data Sources window, expand the table entry as
shown in the image on the left in Figure 11-55 . Then, select a column and click the
down arrow () that appears next to it, as shown in the image on the right in the
figure. A menu will pop up that shows the types of controls that you can select. In
the image on the right in Figure 11-55 , we are selecting the Label control for the
 Product_Number column. Then, when we create the Details view, it appears as shown
in Figure 11-56 .

 Figure 11-55 Selecting the type of data-bound control for a column

 Figure 11-56 Details view with the product number displayed in a Label control

 When you drag an entire table from the Data Sources window and drop it onto a
form, the Details view that is created contains data-bound controls for all the columns.
Sometimes you might not want all the columns displayed, however. Alternatively, you
can drag the individual columns, one at a time, from the Data Sources window onto
the form. Figure 11-57 shows an example of a Details view that displays only the prod-
uct number and description. We created this Details view by dragging the Product_
Number column and then the Description column from the Data Sources window
onto the form.

 11.6 More about Data-Bound Controls 669

 Binding Columns to ListBox Controls
 A list box can be a convenient way to look up data in a table. You can bind a column to a
ListBox control, which causes all the values in that column to be displayed in the list box.
When the user selects an item from the list box, the rest of the columns from the selected
row can be displayed.

 To bind a ListBox control to a column, you must set two of the control’s properties:
DataSource and DisplayMember. The DataSource property identifies the table from
which the ListBox will get its data. The DisplayMember property identifies the column.
In Tutorial 11-4 you use this technique to create a data lookup form for the ProductDB.
mdf database.

 Figure 11-57 Product number and description displayed

 Tutorial 11-4:
 Creating the Product Lookup Application

 Step 1: Start Visual Studio (or Visual Studio Express). Create a new Windows Forms
Application project named Product Lookup .

 Step 2: Change the Form1 form’s Text property to Product Lookup .

 Step 3: Perform the following steps to connect the application to the ProductDB.mdf
database, and select the Product table as the dataset:

 • From the PROJECT menu, select Add New Data Source .…
 • Select Database and click Next > .
 • Select Dataset and click Next > .
 • Click New Connection .…
 • In the Add Connection window, make sure Microsoft SQL Server Database

File (SqlClient) is the selected data source.
 • In the Add Connection window, click Browse , and go to the Chap11 folder in

the Student Sample Programs. Select the ProductDB.mdf fi le. Click OK .
 • Click Next > , and when asked if you want to copy the fi le to the project, click

 Yes .
 • Click Next > .
 • Select the Product table as the database object, and change the name of the

dataset to ProductDataSet. Click Finish .

VideoNote

 Tutorial 11-4 :
 Creating
the Product
Lookup
Application

 NOTE: This is the same procedure that you performed in Steps 3–11 in
 Tutorial 11-3 . If you want more detailed guidance, go back to that tutorial to
see the actual screens.

670 Chapter 11 Databases

 Step 4: Create a ListBox control named productNumberListBox . Just above the List-
Box, place a Label control that displays “Select a Product Number”. The form
should look similar to Figure 11-58 .

 Step 5: Select the ListBox control. In the Properties window, select the DataSource
property and then click the down arrow () that appears next to it. In the
list that pops up, expand Other Data Sources , then expand Project Data
Sources , then expand ProductDataSet , and then select Product . This is
shown in Figure 11-59 .

 Figure 11-58 ListBox and Label
created

 Figure 11-59 Product table
selected in the DataSource property

 Step 6: Select the ListBox control’s DataMember property and then click the down
arrow () that appears next to it. In the list that pops up, select Product_
Number .

 Step 7: In the Data Sources window, set the Product table’s view to Details, as shown
in Figure 11-60 .

 Step 8: In the Data Sources window, expand the Product table so the column names
are displayed, as shown in Figure 11-61 .

 Figure 11-60 Select Details Figure 11-61 Column names displayed

 Step 9: One at a time, drag the Description , Units_On_Hand , and Price columns
from the Data Sources window onto the form. Place them as shown in Figure
 11-62 . Resize the form so it appears similar to that shown in the figure.

 11.6 More about Data-Bound Controls 671

 Figure 11-62 Column names displayed

 Step 10: Save the project and run the application. The application’s form should appear
similar to Figure 11-63 . Notice that the list box contains a list of all the product
numbers in the Product table. When you select a product number in the list
box, that product’s description, units on hand, and price are displayed in the
TextBox controls. When you are finished, exit the application.

 Figure 11-63 The Product Lookup application running

 Having Data-Bound Controls on Multiple Forms
 You have seen that when you place a data-bound control on a form, Visual Studio au-
tomatically creates a set of components that allow the form to connect to the database.
These components include a dataset. When you place data-bound controls on multiple
forms, keep in mind that each form has its own dataset. When you make changes to the
dataset in one form, those changes do not automatically appear in other forms that have
their own dataset. Consider the following scenario:

 • Form1 displays a view of a database, perhaps in a DataGridView control.
 • Some code in Form1 displays Form2.
 • Form2 also displays a view of the same database, allowing the user to make changes

and save those changes to the database. The user closes Form2.
 • Form1 is still displaying its original copy of the data. Its dataset does not automati-

cally update, so Form1 does not show the changes that were made by Form2.

 To make sure that a dataset contains a current copy of the data, you need to write
code that causes the table adapter to read the database table and fill the dataset. You
do this by calling the table adapter’s Fill method. In Tutorial 11-5 you learn how
to do this by creating an application that correctly handles the scenario previously
discussed.

672 Chapter 11 Databases

 Tutorial 11-5:
 Creating the Multiform Products Application

 Step 1: Start Visual Studio (or Visual Studio Express). Create a new Windows Forms
Application project named Multiform Products .

 Step 2: Change the Form1 form’s Text property to Products.

 Step 3: In the Solution Explorer, change the name of Form1.cs to MainForm.cs. This
changes the name of the Form1 form to MainForm.

 Step 4: Perform the following steps to connect the application to the ProductDB.mdf
database and select the Product table for the dataset:

 • From the PROJECT menu, select Add New Data Source
 • Select Database and click Next > .
 • Select Dataset and click Next > .
 • Click New Connection
 • In the Add Connection window, make sure Microsoft SQL Server Database

File (SqlClient) is the selected data source.
 • In the Add Connection window, click Browse and go to the Chap11 folder in

the Student Sample Programs. Select the ProductDB.mdf fi le. Click OK .
 • Click Next > , and when asked if you want to copy the fi le to the project, click

 Yes .
 • Click Next > .
 • Select the Product table as the database object, and change the name of the

dataset to ProductDataSet . Click Finish .

VideoNote

 Tutorial 11-5 :
 Creating the
 Multiform
Products
Application

 NOTE: This is the same procedure that you performed in Steps 3–11 in Tu-
torial 11-3 . If you want more detailed guidance, go back to that tutorial to see
the actual screens.

 Step 5: Open the Data Sources window and, as shown in Figure 11-64 , drag a Data-
GridView control onto the form, bound to the Product table. After creating
the DataGridView control, adjust size of the form and the control as shown in
 Figure 11-65 .

 Step 6: Create the Button controls shown in Figure 11-66 . (You write Click event han-
dlers for these buttons later.)

 Step 7: Add another form named DetailsForm to the project. As a reminder, these are
the steps:

 • Click PROJECT on the Visual Studio menu bar and then select Add Win-
dows Form

 • In the Add New Item window, enter DetailsForm.cs as the name and click
 Add .

 Step 8: Change the form’s Text property to Details .

 Step 9: In the Data Sources window, change the Product table’s default view to De-
tails , as shown in Figure 11-67 . Then, as shown in Figure 11-68 , drag a Details
view onto the form.

 11.6 More about Data-Bound Controls 673

Drag the Product table
onto the form.

 Figure 11-64 Create a DataGridView control on the form

 Figure 11-65 The form and DataGridView control resized

 Step 10: Resize the DetailsForm form and create the Button control shown in Figure
 11-69 .

 Step 11: Double-click the closeButton control, and complete its Click event handler, as
shown in lines 37–38 of Program 11-2 .

674 Chapter 11 Databases

showDetailsButton exitButton

 Figure 11-66 Button controls placed on the MainForm

 Figure 11-67 Changing the Product table’s default view to Details

Drag the Product table
onto the form.

 Figure 11-68 Creating a Details view on the form

 11.6 More about Data-Bound Controls 675

 Step 12: Switch your view back to the MainForm form in the Designer . Double-click the
 showDetailsButton control, and complete its Click event handler, as shown in
lines 37–44 of Program 11-3 . Let’s take a closer look at the code:

 Line 38: This statement creates an instance of the DetailsForm class, refer-
enced by the details variable.

 Line 41: This statement displays the DetailsForm form. The user will be able to
make changes to the product data using the DetailsForm and save those changes
to the database.

 Line 44: This statement calls the table adapter’s Fill method, passing the data-
set as an argument. As a result, the dataset will be filled with the current contents
of the Product table, and the DataGridView control’s contents will be updated.

 Step 13: Switch your view back to the MainForm form in the Designer . Double-click the
 exitButton control, and complete its Click event handler, as shown lines 49
and 50 of Program 11-3 .

 Step 14: Save the project and run the application. The MainForm should show the
 Product table in the DataGridView control. Click the Show Details button to
display the DetailsForm.

 In the DetailsForm, make some changes to the data. For example, change the
value of an existing piece of data, insert a new row, or delete an existing row.
After making the changes, be sure to click the Save button on the navigation
bar. Then, click the Close button () to close the DetailsForm.

 Back at the MainForm, browse the data in the DataGridView control to con-
firm that it shows the changes you just made. When you are finished, exit the
application.

 Program 11-2 Completed code for the DetailsForm

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;

closeButton

 Figure 11-69 Form resized and Close button placed

676 Chapter 11 Databases

 10
 11 namespace Multiform_Products
 12 {
 13 public partial class DetailsForm : Form
 14 {
 15 public DetailsForm()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void productBindingNavigatorSaveItem_Click(object sender, EventArgs e)
 21 {
 22 this.Validate();
 23 this.productBindingSource.EndEdit();
 24 this.tableAdapterManager.UpdateAll(this.productDataSet);
 25
 26 }
 27
 28 private void DetailsForm_Load(object sender, EventArgs e)
 29 {
 30 // TODO: This line of code loads data into the ...
 31 this.productTableAdapter.Fill(this.productDataSet.Product);
 32
 33 }
 34
 35 private void closeButton_Click(object sender, EventArgs e)
 36 {
 37 // Close the form.
 38 this.Close();
 39 }
 40 }
 41 }

 Program 11-3 Completed code for the MainForm form

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Multiform_Products
 12 {
 13 public partial class MainForm : Form
 14 {
 15 public MainForm()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void productBindingNavigatorSaveItem_Click(object sender, EventArgs e)
 21 {
 22 this.Validate();
 23 this.productBindingSource.EndEdit();

 11.7 Selecting Data with the SQL Select Statement 677

 24 this.tableAdapterManager.UpdateAll(this.productDataSet);
 25
 26 }
 27
 28 private void MainForm_Load(object sender, EventArgs e)
 29 {
 30 // TODO: This line of code loads data into the ...
 31 this.productTableAdapter.Fill(this.productDataSet.Product);
 32
 33 }
 34
 35 private void showDetailsButton_Click(object sender, EventArgs e)
 36 {
 37 // Create an instance of the DetailsForm.
 38 DetailsForm details = new DetailsForm();
 39
 40 // Display the form.
 41 details.ShowDialog();
 42
 43 // Update the dataset.
 44 this.productTableAdapter.Fill(this.productDataSet.Product);
 45 }
 46
 47 private void exitButton_Click(object sender, EventArgs e)
 48 {
 49 // Close the form.
 50 this.Close();
 51 }
 52 }
 53 }

 Checkpoint

 11.19 What happens when a control’s smart tag is clicked in the Designer ?

 11.20 When you create a Details view, what determines the type of control to which a
column is bound?

 11.21 Which two properties must be set to bind a ListBox control to a column?

 11.22 What is the name of the table adapter method that populates the dataset with a
current copy of the data?

 11.7 Selecting Data with the SQL Select Statement

 CONCEPT: SQL is a standard language that most DBMS support. The Select state-
ment is used in SQL to retrieve data from a database.

 SQL , which stands for structured query language , is a standard language for working
with database management systems. It was originally developed by IBM in the 1970s.
Since then, SQL has been adopted by almost all database software vendors as the lan-
guage of choice for interacting with their DBMS.

678 Chapter 11 Databases

 SQL consists of several keywords. You use the keywords to construct statements, which are
also known as queries . These statements, or queries, are submitted to the DBMS and are
instructions directing the DBMS to carry out operations on its data. In this section you learn
how to construct simple SQL statements and then pass them to the SQL Server DBMS.

 NOTE: Although SQL is a language, you do not use it to write applications. It is
intended only as a standard means of interacting with a DBMS. You still need a gen-
eral programming language, such as C#, to write an application for the ordinary user.

 In SQL you use the Select statement to retrieve the rows in a table. As its name implies,
the Select statement allows you to select specific rows. We start with a very simple form
of the statement, as shown here:

 Select Columns From Table

 In the general form, Columns is one or more column names, and Table is a table name. Here
is an example Select statement that we might execute on the ProductDB.mdf database:

 Select Description From Product

 This statement retrieves the Description column for every row in the Product table.
You can specify more than one column in a Select statement by separating the column
names with commas. Here is an example:

 Select Description, Price From Product

 This statement retrieves the Description column and the Price column for every row
in the Product table. If you wish to retrieve every column in a table, you can use the *
character instead of listing column names. Here is an example:

 Select * From Product

 This statement retrieves every column for every row in the Product table. SQL statements
are free form, which means that tabs, newlines, and spaces between the keywords are
ignored. For example, the statement

 Select * From Product

 works the same as

 Select
 *
From
 Product

 In addition, SQL keywords and table names are case insensitive. The previous statement
could be written as

 SELECT * FROM PRODUCT

 Specifying a Search Criteria with the Where Clause
 Sometimes you want to retrieve every row in a table. In many situations, however, you
want to narrow the list down to only a few selected rows in the table. That is where the
 Where clause comes in. The Where clause can be used with the Select statement to spec-
ify the search criteria. When you use the Where clause, only the rows that meet the search
criteria are returned. The general format of a Select statement with a Where clause is

 Select Columns From Table Where Criteria

 11.7 Selecting Data with the SQL Select Statement 679

 In the general format, Criteria is a conditional expression. Here is an example of a
 Select statement that uses the Where clause:

 Select * From Product Where Price > 20.00

 The first part of the statement, Select * From Product , specifies that we want to
see every column. The Where clause specifies that we want only the rows in which the
contents of the Price column are greater than 20.00. As a result, the Select statement
retrieves only the rows in which Price is greater than 20.00.

 SQL supports the relational operators listed in Table 11-2 for writing conditional expres-
sions in a Where clause.

 Table 11-2 SQL relational operators

 Operator Meaning

 > Greater than

 < Less than

 >= Greater than or equal to

 <= Less than or equal to

 = Equal to

 <> Not equal to

 Notice that the equal to and not equal to operators in SQL are different from those
in C#. The equal to operator is one equal sign, not two equal signs. The not equal to
operator is <> .

 Let’s look at a few more examples of the Select statement. The following statement
could be used to retrieve the product numbers and prices of all the items that are priced
at $28.95:

 Select Product_Number, Price From Product Where Price = 28.95

 The following Select statement retrieves all the columns from only the rows where the
description is “Denim Jeans”.

 Select * From Product Where Description = 'Denim Jeans'

 If you look carefully at the previous statement, you will notice another difference between
SQL syntax and C# syntax. In SQL, string literals are enclosed in single quotes, not dou-
ble quotes.

 TIP: If you need to include a single quote as part of a string, simply write two single
quotes in its place. For example, suppose you wanted to search the Product table for
Katy’s Wool Cap. You could use the following statement:

 Select * From Product Where Description = 'Katy''s Wool Cap'

 String comparisons in SQL are case sensitive. If you ran the following statement against
the Product table, you would not get any results:

 Select * From Product Where Description = 'denim jeans'

 However, you can use the Lower() function to convert a string to lowercase. Here is an
example:

 Select * From Product Where Lower(Description) = 'denim jeans'

680 Chapter 11 Databases

 This statement converts the Description column to all lowercase before performing the
comparison. As a result, it will return all rows where Description equals “denim jeans”
regardless of case. You could use the Upper function, which converts a string to upper-
case, to achieve the same results:

 Select * From Product Where Upper(Description) = 'DENIM JEANS'

 Using the Like Operator
 Sometimes searching for an exact string will not yield the results you want. For example,
suppose the Product table contains the rows shown in Figure 11-70 and we want a list
of all the shirts.

 The following statement will not work. Can you see why?

 Select * From Product Where Description = 'Shirt'

 Figure 11-70 The Product table in the ProductDB.mdf database

 This statement will search for rows where the Description column is equal to the string
“Shirt”. Unfortunately, it will find none because there are no rows in which the De-
scription column is equal to “Shirt”. However, the word “Shirt” does appear in the
 Description column of some of the rows. For example, in Figure 11-70 the first row’s
 Description column is “Oxford Cloth Shirt”, the second row’s Description col-
umn is “Poplin Shirt”, and so forth.

 In order to find all the shirts, we need to search for rows where “Shirt” appears as a
substring in the Description column. You can perform just such a search using the Like
operator. Here is an example of how to use it.

 Select * From Product Where Description Like '%Shirt%'

 The Like operator is followed by a string that contains a character pattern. In this ex-
ample, the character pattern is '%Shirt%' . The % symbol is used as wildcard character.
It represents any sequence of zero or more characters. The pattern '%Shirt%' specifies
that the string “Shirt” must appear with any sequence of characters before or after it. So,
the statement previously shown would return all rows in which the Description column
contains the string “Shirt”.

 Likewise, the following statement will result in all the rows where the Description col-
umn starts with the word “Chino”.

 Select * From Product Where Description Like 'Chino%'

 11.7 Selecting Data with the SQL Select Statement 681

 The underscore character (_) is also used as a wildcard. Unlike the % character, the un-
derscore represents a single character. For example, look at the following statement:

 Select * From Product Where Product_Number Like '2_-0_'

 This statement will result in all the rows where the Product_Number column begins
with “2”, followed by any one character, followed by “-0”, followed by any one
character.

 You can use the Not operator to disqualify a character pattern in a search criteria. For
example, suppose you want a list of all the items that are not shirts. The following state-
ment will yield just those results.

 Select * From Product Where Description Not Like '%Shirt%'

 Using And and Or
 You can use the And and Or logical operators to specify multiple search criteria in a Where
clause. For example, look at the following statement:

 Select * From Product Where Price > 20.00 And Price < 30.00

 The And operator requires that both search criteria be true in order for a row to be quali-
fied as a match. The only rows that will be returned from this statement are those where
the Price column contains a value that is greater than 20.00 and less than 30.00.

 Here’s an example that uses the Or operator:

 Select * From Product
 Where Description Like '%Shirt%' or Product_Number Like '10-%'

 The Or operator requires that either of the search criteria be true in order for a row to be
qualified as a match. This statement searches for rows where the Description column
contains the string “Shirt” at any position or where the Product_Number column starts
with “10-”.

 Sorting the Results of a Select Query
 If you wish to sort the results of a Select query, you can use the Order By clause. Here
is an example:

 Select * From Product Order By Price

 This statement produces a list of all the rows in the Product table, ordered by the Price
column. The list will be sorted in ascending order on the Price column, meaning that the
lowest-priced coffees will appear first.

 Here’s a Select query that uses both a Where clause and an Order By clause:

 Select * From Product
 Where Price > 20.00
 Order By Price

 This statement produces a list of all the rows in the Product table where the Price col-
umn contains a value greater than 20.00, listed in ascending order by price.

 If you want the list sorted in descending order (from highest to lowest), use the Desc op-
erator, as shown here:

 Select * From Product
 Where Price > 20.00
 Order By Price Desc

682 Chapter 11 Databases

 Table Adapter Queries
 A table adapter query is an SQL statement that is stored in a table adapter and can be
executed simply by calling a method. For example, all table adapters contain a query
that fills a dataset with data from a table. That query can be executed by calling the table
adapter’s Fill method. When you place a data-bound control, such as a DataGridView
control, on a form, a Load event handler that calls the table adapter’s Fill method is
automatically created for the form.

 Let’s look at an example. In Visual Studio, open the Multiform Products project that
you created in Tutorial 11-5 , and open source code for the MainForm form. Look at the
form’s Load event handler, which is shown here (the comment that appears in line 3 has
been shortened to fit on the page):

 1 private void MainForm_Load(object sender, EventArgs e)
 2 {
 3 // TODO: This line of code loads data into ...
 4 this.productTableAdapter.Fill(this.productDataSet.Product);
 5
 6 }

 The statement in line 4 calls the productTableAdapter ’s Fill method, passing the
dataset’s Product table as an argument. The Fill method fills the dataset table with
rows that are returned from an SQL statement. Now let’s look at the SQL statement
that is executed by the Fill method. In the Solution Explorer , you should see an entry
named ProductDataSet . xsd , as shown in Figure 11-71 . This is the schema definition file
that describes the contents of the productDataSet . Double-click the ProductDataSet . xsd
entry to open it in an editor window, as shown in Figure 11-72 . The area at the top of the
diagram shows the columns that are included in the dataset, and the area at the bottom
shows the table adapter query methods.

 Figure 11-71 Schema definition file entry in the Solution Explorer

 Right-click the area that reads Fill, GetData() and, as shown in Figure 11-73 , select Con-
figure from the pop-up menu. This displays the TableAdapter Configuration Wizard
window shown in Figure 11-74 . Notice the SQL query that appears in TableAdapter
Configuration Wizard window. The dataset is filled with the rows that are returned by
this Select statement. If you were to change this Select statement, for instance, by
adding a Where clause and then by clicking the Finish button, the data that is initially

 11.7 Selecting Data with the SQL Select Statement 683

 Figure 11-72 ProductDataSet.xsd opened for editing

 Figure 11-73 Select Configure from the pop-up menu

 Figure 11-74 TableAdapter Configuration Wizard

684 Chapter 11 Databases

displayed in the DataGridView control would change accordingly. When you are finished
examining the window, click the Cancel button to close it.

 NOTE: Notice that the table name in the Select statement is preceded with the
 dbo. prefix. The prefix dbo stands for database owner and is part of an SQL Server
naming convention. In our example programs, the dbo prefix is optional.

 Adding New Table Adapter Queries
 You can add your own SQL queries to a table adapter and call them from your C# code.
In Tutorial 11-6 you add several queries to a table adapter, and then you create buttons
on the application’s form that executes those queries.

 Tutorial 11-6:
 Creating the Product Queries Application

 In this tutorial you create an application that displays the Product table from the
ProductDB.mdf database in a DataGridView control. You also add two SQL queries to
the table adapter. The queries perform the following:

 • Return all the rows, sorted by price in ascending order
 • Return only the rows with more than 100 units on hand

 Then, you create buttons on the applications form that execute the queries.

 Step 1: Start Visual Studio (or Visual Studio Express). Create a new Windows Forms
Application project named Product Queries .

 Step 2: Change the Form1 form’s Text property to Product Queries.

 Step 3: Perform the following steps to connect the application to the ProductDB.mdf
database and select the Product table for the dataset:

 • From the PROJECT menu, select Add New Data Source .…
 • Select Database and click Next > .
 • Select Dataset and click Next > .
 • Click New Connection .…
 • In the Add Connection window, make sure Microsoft SQL Server Database

File (SqlClient) is the selected data source.
 • In the Add Connection window, click Browse and go to the Chap11 folder in

the Student Sample Programs. Select the ProductDB.mdf fi le. Click OK .
 • Click Next > , and when asked if you want to copy the fi le to the project, click

 Yes .
 • Click Next > .
 • Select the Product table as the database object, and change the name of the

dataset to ProductDataSet . Click Finish .

VideoNote

 VideoNote:
 Tutorial 11-6 :
 Creating
the Product
Queries
Application

 NOTE: This is the same procedure that you performed in Steps 3–11 in
 Tutorial 11-3 . If you want more detailed guidance, go back to that tutorial to
see the actual screens.

 11.7 Selecting Data with the SQL Select Statement 685

 Step 4: Open the Data Sources window and drag a DataGridView control onto the
form, bound to the Product table. After creating the DataGridView control,
adjust the size of the form and the control, as shown in Figure 11-75 .

 Figure 11-75 The application’s form

 Step 5: Now you add the first query, which sorts the data in the dataset by price. In the
Solution Explorer, double-click the ProduceDataSet . xsd entry. This opens the
dataset schema description. Right-click the area that reads ProductTableAd-
apter . As shown in Figure 11-76 , select Add , and then click Query

 NOTE: It is possible that you will see Add Query ... on the pop-up menu
instead of Add . If that is the case, simply click Add Query

 Figure 11-76 Adding a query to the table adapter

686 Chapter 11 Databases

 Step 6: The TableAdapter Query Configuration Wizard appears next, as shown in
 Figure 11-77 . Make sure Use SQL Statements is selected, and then click Next > .

 Figure 11-77 TableAdapter Query Configuration Wizard—Choose a Command Type

 Step 7: The wizard now prompts you to choose a query type, as shown in Figure 11-78 .
Make sure SELECT which returns rows is selected, and then click Next > .

 Figure 11-78 TableAdapter Query Configuration Wizard—Choose a Query Type

 11.7 Selecting Data with the SQL Select Statement 687

 Step 8: The wizard now prompts you to Specify a SQL SELECT statement . A state-
ment is already shown that returns every row in the Product table. Add the
 Order By Price clause to the end of the statement, as shown in Figure 11-79 .
Click Next > .

Add this Order By clause.

 Figure 11-79 TableAdapter Query Configuration Wizard—Specify a SQL SELECT statement

 Step 9: The wizard now prompts you to Choose Methods to Generate . We are inter-
ested only in generating a method to fill the dataset with the results of our SQL
statement. Make the following selections:

 • Make sure Fill a DataTable is checked.
 • Under Fill a DataTable , enter FillByPrice as the method name. This will be

the name of the method that executes the SQL statement.
 • Make sure Return a DataTable is not checked.

 The window should now appear as shown in Figure 11-80 . Click Next > .

 Step 10: The wizard now shows you the results, as shown in Figure 11-81 . Click the
 Finish button.

 The schema definition file (ProductDataSet.xsd) should now appear as shown
in Figure 11-82 . Notice that the method FillByPrice() now appears in the
area at the bottom of the diagram.

 NOTE: After you have created a table adapter query, you can edit it by right-
clicking its entry in the dataset schema definition and then clicking Configure . . .
from the pop-up menu.

688 Chapter 11 Databases

 Figure 11-80 TableAdapter Query Configuration Wizard—Choose Methods to Generate

 Figure 11-81 TableAdapter Query Configuration Wizard—Wizard Results

 11.7 Selecting Data with the SQL Select Statement 689

 Figure 11-82 The FillByPrice() method appearing in the schema definition file

 Step 11: Next you add the second query, which returns only the rows with units on hand
greater than 100. Perform the following steps (most of these are the same as
those you performed to add the previous query):

 • In the schema defi nition, right-click the area that reads ProductTableAdapter .
 • In the pop-up menu, select Add , and then click Query (Or, if you see Add

Query . . ., then select that.)
 • The TableAdapter Query Confi guration Wizard appears next. Make sure Use

SQL Statements is selected and then click Next > .
 • The wizard now prompts you to choose a query type. Make sure SELECT

which returns rows is selected and then click Next > .
 • The wizard now prompts you to Specify a SQL SELECT statement . A state-

ment is already shown that returns every row in the Product table. Add the
 WHERE Units_On_Hand > 100 clause to the end of the statement, as shown
in Figure 11-83 . Click Next > .

Add this WHERE clause.

 Figure 11-83 TableAdapter Query Configuration Wizard—Specify a SQL SELECT statement

690 Chapter 11 Databases

 Figure 11-84 TableAdapter Query Configuration Wizard—Choose Methods to Generate

 • The wizard now prompts you to Choose Methods to Generate . Make the fol-
lowing selections:

 Make sure Fill a DataTable is checked.
 Under Fill a DataTable , enter FillByUnits as the method name. This will be

the name of the method that executes the SQL statement.
 Make sure Return a DataTable is not checked.
 • The window should now appear as shown in Figure 11-84 . Click Next > .
 • The wizard now shows you the results. Click the Finish button.

 The schema definition file (ProductDataSet.xsd) should now appear as shown
in Figure 11-85 . Notice that the two methods you created, FillByPrice() and
 FillByUnits() , now appear in the area at the bottom of the diagram.

 Figure 11-85 The FillByPrice() and FillByUnits() methods as they appear in
the schema definition file

 11.7 Selecting Data with the SQL Select Statement 691

 Step 12: Now you add Button controls to the application’s form that execute the SQL
queries. Open Form1 in the Designer and add the two Button controls shown in
 Figure 11-86 .

sortByPriceButton unitsGreater100Button

 Figure 11-86 Button controls added to the form

 Step 13: Double-click the sortByPriceButton control. Complete sortByPriceButton_
Click the event handler by typing the code in line 37 in Program 11-4 . This
statement calls the table adapter’s FillByPrice method.

 Step 14: Switch your view back to Form1 in the Designer and double-click the
 unitsGreater100Button control. Complete unitsGreater100Button_Click
event handler by typing the code in line 42 in Program 11-4 . This statement
calls the table adapter’s FillByUnits method.

 Step 15: Save the project, and then run the application. When the form appears, it should
show all the Product table’s rows in the DataGridView control. When you
click the Sort By Price button, the data should appear sorted by price. When
you click the Products With More Than 100 Units button, you should see only
the rows where Units_On_Hand is greater than 100. When you are finished,
close the application’s form to exit. (If you plan to immediately continue to
the next tutorial, leave the project opened in Visual Studio. You continue to
develop this application in the next tutorial.)

 Program 11-4 Completed Form1 code in the Product Queries application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;

692 Chapter 11 Databases

 SQL Math Functions
 SQL provides several functions for performing calculations. For example, the Avg func-
tion calculates the average value in a particular column. Here is an example Select
statement using the Avg function:

 Select Avg(Price) From Product

 This statement produces a single value: the average of all the values in the Price column.
Because we did not use a Where clause, it uses all the rows in the Product table in the
calculation. Here is an example that calculates the average price of all the items having a
product number that begins with “20”:

 Select Avg(Price)From Product Where Product_Number LIKE '20%'

 Another of the mathematical functions is Sum , which calculates the sum of a column’s
values. The following statement, which is probably not very useful, calculates the sum of
the values in the Price column:

 Select Sum(Price) From Product

 10
 11 namespace Product_Queries
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void productBindingNavigatorSaveItem_Click(object sender, EventArgs e)
 21 {
 22 this.Validate();
 23 this.productBindingSource.EndEdit();
 24 this.tableAdapterManager.UpdateAll(this.productDataSet);
 25
 26 }
 27
 28 private void Form1_Load(object sender, EventArgs e)
 29 {
 30 // TODO: This line of code loads data into the ...
 31 this.productTableAdapter.Fill(this.productDataSet.Product);
 32
 33 }
 34
 35 private void sortByPriceButton_Click(object sender, EventArgs e)
 36 {
 37 this.productTableAdapter.FillByPrice(this.productDataSet.Product);
 38 }
 39
 40 private void unitsGreater100Button_Click(object sender, EventArgs e)
 41 {
 42 this.productTableAdapter.FillByUnits(this.productDataSet.Product);
 43 }
 44 }
 45 }

 11.7 Selecting Data with the SQL Select Statement 693

 The Min and Max functions determine the minimum and maximum values found in a col-
umn. The following statement gives the minimum value in the Price column:

 Select Min(Price) From Product

 The following statement gives the maximum value in the Price column:

 Select Max(Price) From Product

 The Count function can be used to determine the number of rows in a table, as demon-
strated by the following statement:

 Select Count(*) From Product

 The * simply indicates that you want to count entire rows. Here is another example,
which gives the number of items with a price greater than 50.0:

 Select Count(*) From Product Where Price > 50.0

 In Tutorial 11-7 you will add another query to the table adapter in the Product
Queries application. The new query will display average price of all the items in the
database.

 Tutorial 11-7:
 Creating the Product Queries Application

 In this tutorial you add a query to the Product Queries application that returns the aver-
age price of all the items in the Product table. You also add a button to the application’s
form that executes the query and displays its result.

 Step 1: Make sure the Product Queries project is open in Visual Studio (or Visual Stu-
dio Express) from the previous tutorial.

 Step 2: In the Solution Explorer, double-click the ProduceDataSet . xsd entry. This
opens the dataset schema description. Right-click the area that reads Product-
TableAdapter . In the pop-up menu, select Add and then click Query (Or, if
you see Add Query . . . on the pop-up menu, select it.)

 Step 3: The TableAdapter Query Configuration Wizard appears next. Make sure Use
SQL Statements is selected and then click Next > .

 Step 4: The wizard now prompts you to choose a query type. Make sure SELECT
which returns a single value is selected and then click Next > .

 Step 5: The wizard now prompts you to Specify a SQL SELECT statement . Delete the
statement currently shown in the window and replace it with the following:

 Select Avg(Price) From Product

 The window should appear as shown in Figure 11-87 . Click Next > .

 Step 6: The wizard now prompts you to Choose Function Name . The name that
you specify in this window will be the name of the method that executes the
query. As shown in Figure 11-88 , change the name to AveragePrice and
then click Next > .

 Step 7: The wizard now shows you the results. Click the Finish button.

 The schema definition file (ProductDataSet.xsd) should now appear, as shown
in Figure 11-89 . Notice that the AveragePrice method appears, along with the
other methods that you previously created.

VideoNote

 Tutorial
 11-7 :
 Creating
the Product
Queries
Application

694 Chapter 11 Databases

 Figure 11-87 TableAdapter Query Configuration Wizard—Specify a SQL SELECT statement

 Figure 11-88 TableAdapter Query Configuration Wizard—Choose Function Name

 11.7 Selecting Data with the SQL Select Statement 695

 Figure 11-89 The AveragePrice() method as it appears in the schema definition file

 Step 8: Next you add a Button control to the application’s form that executes the
table adapter’s AveragePrice method. Open Form1 in the Designer and the
 averagePriceButton control shown in Figure 11-90 .

averagePriceButton

 Figure 11-90 The averagePriceButton control added to the form

 Step 9: Double-click the averagePriceButton control. Complete the averagePrice-
Button_Click event handler by typing the code in lines 47–55 in Program 11-5 .
Let’s take a closer look at the code:

 Line 48: This statement declares a local decimal variable named averagePrice .

 Line 51: This statement calls the table adapter’s AveragePrice method, which
returns the result of the Select statement that you wrote in Step 4. The value
that is returned is assigned to the averagePrice variable. Notice that we had to
use a cast operator to explicitly convert the value to a decimal .

 Lines 54–55: This statement displays a message box showing the average price
of all items in the table.

696 Chapter 11 Databases

 Step 10: Save the project and then run the application. Click the Average Price of All
Items button. You should see a message box displaying a message indicating
the average price of all the items. When you are finished, close the application’s
form to exit.

 Program 11-5 Completed Form1 code in the Product Queries application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Product_Queries
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void productBindingNavigatorSaveItem_Click(object sender, EventArgs e)
 21 {
 22 this.Validate();
 23 this.productBindingSource.EndEdit();
 24 this.tableAdapterManager.UpdateAll(this.productDataSet);
 25
 26 }
 27
 28 private void Form1_Load(object sender, EventArgs e)
 29 {
 30 // TODO: This line of code loads data into the ...
 31 this.productTableAdapter.Fill(this.productDataSet.Product);
 32
 33 }
 34
 35 private void sortByPriceButton_Click(object sender, EventArgs e)
 36 {
 37 this.productTableAdapter.FillByPrice(this.productDataSet.Product);
 38 }
 39
 40 private void unitsGreater100Button_Click(object sender, EventArgs e)
 41 {
 42 this.productTableAdapter.FillByUnits(this.productDataSet.Product);
 43 }
 44
 45 private void averagePriceButton_Click(object sender, EventArgs e)
 46 {
 47 // Declare a variable to hold the average price.
 48 decimal averagePrice;
 49
 50 // Get the average price.
 51 averagePrice = (decimal) this.productTableAdapter.AveragePrice();

 11.7 Selecting Data with the SQL Select Statement 697

 52
 53 // Display the average price.
 54 MessageBox.Show("Average price of all items: " +
 55 averagePrice.ToString("c"));
 56 }
 57 }
 58 }

 Query Parameters
 SQL queries can accept arguments. Just as with regular methods, arguments are passed
into parameter variables. In an SQL statement, a parameter variable begins with the @
symbol. The following statement shows an example:

 Select * From Product Where Price < @priceValue

 This statement retrieves all the rows in which the Price column is less than the value of
the priceValue parameter. Here is another example:

 Select * From Product
 Where Price < @priceValue And Units_On_Hand < @unitsValue

 This statement retrieves all the rows in which the Price column is less than the value of
the @priceValue parameter and the Units_On_Hand column is less than the value of the
 @unitsValue parameter.

 When you call the table adapter method for an SQL query, you have to pass arguments
for any parameters that are used in the query. In Tutorial 11-8 you create an application
that gets a value from the user and passes that value as an argument to an SQL query.

 Tutorial 11-8:
 Creating the Product Search Application

 In this tutorial you create an application that displays the Product table from the
ProductDB.mdf database in a DataGridView control. The user will be able to enter a
value into a text box and search for all items that contain that value in their description.

 Step 1: Start Visual Studio (or Visual Studio Express). Create a new Windows Forms
Application project named Product Search.

 Step 2: Change the Form1 form’s Text property to Product Search.

 Step 3: Perform the following steps to connect the application to the ProductDB.mdf
database and select the Product table for the dataset:

 • From the PROJECT menu, select Add New Data Source .…
 • Select Database and click Next > .
 • Select Dataset and click Next > .
 • Click New Connection .…
 • In the Add Connection window, make sure Microsoft SQL Server Database

File (SqlClient) is the selected data source.
 • In the Add Connection window, click Browse and go to the Chap11 folder in

the Student Sample Programs. Select the ProductDB.mdf fi le. Click OK .
 • Click Next > , and when asked if you want to copy the fi le to the project, click

 Yes .

VideoNote

 Tutorial 11-8 :
 Creating
the Product
Search
Application

698 Chapter 11 Databases

 • Click Next > .
 • Select the Product table as the database object, and change the name of the

dataset to ProductDataSet . Click Finish .

 NOTE: This is the same procedure that you performed in Steps 3–11 in
 Tutorial 11-3 . If you want more detailed guidance, go back to that tutorial to
see the actual screens.

 Step 4: Open the Data Sources window and drag a DataGridView control onto the
form, bound to the Product table.

 Step 5: Adjust the size of the form and the DataGridView control, as shown in Figure
 11-91 . Then, place the group box, text box, and buttons as shown in the figure.
Here is a summary of what the Button controls will do when the application is
completed:

 • The searchButton control will get the value that has been entered into the
 searchTextBox and pass that as an argument to an SQL query. The query will
return all rows in the Product table that contain the value that was passed as
an argument. Those rows will be displayed in the DataGridView control.

 • The showAllButton will display all the rows of the Product table in the
DataGridView control.

showAllButtonsearchButton

searchTextBox

 Figure 11-91 The application’s form

 Step 6: In the Solution Explorer, double-click the ProduceDataSet . xsd entry. This
opens the dataset schema description. Right-click the area that reads Product-
TableAdapter . In the pop-up menu, select Add and then click Query (Or, if
you see Add Query . . . on the pop-up menu, select it.)

 11.7 Selecting Data with the SQL Select Statement 699

 Step 7: The TableAdapter Query Configuration Wizard appears next. Make sure Use
SQL Statements is selected and then click Next > .

 Step 8: The wizard now prompts you to choose a query type. Make sure SELECT
which returns rows is selected and then click Next > .

 Step 9: The wizard now prompts you to Specify a SQL SELECT statement . Modify the
default statement that is provided as shown here:

 Select Product_Number, Description, Units_On_Hand, Price
 From Product
 Where Description Like '%' + @value + '%'

 Notice that a parameter query named @value is used in the Where clause. Also,
notice the use of the + operator for string concatenation. When this query ex-
ecutes, it will return all rows in which the Description column contains the
value specified by the @value parameter. The window at this point should ap-
pear as shown in Figure 11-92 .

 Click Next >.

 Figure 11-92 TableAdapter Query Configuration Wizard—Specify a SQL SELECT statemen t

 Step 10: The wizard now prompts you to Choose Methods to Generate . Make the fol-
lowing selections:

 • Make sure Fill a DataTable is checked.
 • Under Fill a DataTable , enter SearchDesc as the method name. This will be

the name of the method that executes the SQL statement.
 • Make sure Return a DataTable is not checked.

 The window should now appear as shown in Figure 11-93 . Click Next > .

700 Chapter 11 Databases

 Step 11: The wizard now shows you the results. Click the Finish button.

 The schema definition file (ProductDataSet.xsd) should now appear as shown
in Figure 11-94 . Notice that the SearchDesc(@value) now appears in the area
at the bottom of the diagram.

 Figure 11-93 TableAdapter Query Configuration Wizard—Choose Methods to Generate

 Figure 11-94 The SearchDesc method appearing in the schema definition file

 Step 12: Open Form1 in the Designer and double-click the searchButton control. Com-
plete the searchButton_Click event handler by typing the code shown in lines
37 and 38 in Program 11-6 .

 The statement in these lines calls the table adapter’s SearchDesc method. The
first argument is the dataset’s Product table, and the second argument is the

 11.7 Selecting Data with the SQL Select Statement 701

 searchTextBox control’s Text property. The second argument will be passed
into the SQL query’s @value parameter.

 Step 13: Switch your view back to Form1 in the Designer and double-click the
 showAllButton control. Complete the showAllButton_Click event handler
by typing the code shown in line 43 in Program 11-6 . The statement this line
calls the table adapter’s Fill method. Recall that the Fill method fills the da-
taset table with all of the rows from the table.

 Step 14: Save the project and then run the application. Enter a search term, such as Shirt or
 Pants, in the text box and click the Search button. You should see all the rows that
contain that search term displayed in the DataGridView control. To reset the Da-
taGridView control so it displays all of the rows, click the Show All Items button.
Experiment with several search terms. When you are finished, close the application.

 Program 11-6 Completed Form1 code in the Product Search application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Product_Search
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void productBindingNavigatorSaveItem_Click(object sender, EventArgs e)
 21 {
 22 this.Validate();
 23 this.productBindingSource.EndEdit();
 24 this.tableAdapterManager.UpdateAll(this.productDataSet);
 25
 26 }
 27
 28 private void Form1_Load(object sender, EventArgs e)
 29 {
 30 // TODO: This line of code loads data into the ...
 31 this.productTableAdapter.Fill(this.productDataSet.Product);
 32
 33 }
 34
 35 private void searchButton_Click(object sender, EventArgs e)
 36 {
 37 this.productTableAdapter.SearchDesc(
 38 this.productDataSet.Product, searchTextBox.Text);
 39 }
 40

702 Chapter 11 Databases

 41 private void showAllButton_Click(object sender, EventArgs e)
 42 {
 43 this.productTableAdapter.Fill(this.productDataSet.Product);
 44 }
 45 }
 46 }

 Checkpoint

 11.23 In SQL, what is the purpose of the Select statement?

 11.24 What are the instructions for the DBMS to carry out operations on its data called?

 11.25 How are the relational operators used in SQL different from those used in C#?

 11.26 How do you write a single quote as part of a string in SQL?

 11.27 What is the purpose of the Like operator in SQL?

 11.28 How is the underscore character different from the % character in SQL?

 11.29 How do you sort the results of a Select query in SQL?

 11.30 In an SQL statement, with what symbol does a query parameter begin?

 Review Questions 703

 Key Terms

 binding source
 column
 database
 database management system
 (DBMS)
 data-bound control
 DataGridView control
 dataset
 data source
 DataSource property
 Details view
 DisplayMember property

 identity column
 output folder
 primary key
 queries
 row
 schema definition file
 Select statement
 smart tag
 structured query language (SQL)
 table
 table adapter
 table adapter query

 Review Questions
 Multiple Choice

 1. A(n) __________ is software that is specifically designed to store, retrieve, and ma-
nipulate large amounts of data in an organized and efficient manner.

 a. software development kit (SDK)
 b. database management system (DBMS)
 c. application programming interface (API)
 d. driver development kit (DDK)

 2. A __________ is a collection of tables that are stored using a database management
system.

 a. data source
 b. dataset
 c. database
 d. spreadsheet

 3. A __________ holds a collection of related data that is organized into rows and
columns.

 a. table
 b. grid
 c. dataset
 d. worksheet

 4. A __________ is a complete set of information about a single item in a table of a
database.

 a. data source
 b. dataset
 c. column
 d. row

 5. A(n) __________ holds an individual piece of information about the item in a row of
a table in a database.

 a. column
 b. volume
 c. record
 d. entry

704 Chapter 11 Databases

 6. A __________ is a unique column value that can be used to identify a specific row in
a table of a database.

 a. data cell
 b. primary key
 c. prime column
 d. lookup entry

 7. A(n) __________ is a column that contains unique values that are generated by the
DBMS.

 a. generated column
 b. pseudo-primary key
 c. identity column
 d. automatic entry

 8. A __________ is a source of data with which the application can work.

 a. database communicator
 b. dataset
 c. data source
 d. parser

 9. A __________ connects to a data source and can retrieve and update data from a
table in a data source.

 a. source connection
 b. dataset
 c. binding source
 d. table adapter

 10. A __________ gets a copy of a table from the table adapter and keeps the copy of the
table in memory.

 a. connection
 b. dataset
 c. read-only table
 d. table adapter

 11. A __________ is a component that can connect user interface controls directly to a
dataset.

 a. controller
 b. source editor
 c. binding source
 d. component adapter

 12. A __________ is a user interface control that is connected to a data source.

 a. DBMS component
 b. data-bound control
 c. source control
 d. database control

 13. A __________ can display an entire database table in a scrollable grid on an applica-
tion’s form.

 a. scrollable data control
 b. Table control
 c. SmartGrid control
 d. DataGridView control

 Review Questions 705

 14. A __________ is a set of individual controls that are bound to the columns in a
single row.

 a. data-bound control set
 b. data collection
 c. Details view
 d. Column view

 15. In a Visual Studio project, the bin \ Debug folder is known as the __________.

 a. input folder
 b. output folder
 c. build folder
 d. home folder

 16. In the Designer , the __________ that appears in the upper-right corner of a control’s
bounding box can be clicked to display a tasks panel, which provides a number of
options that can be performed with the control.

 a. double arrow
 b. smart tag
 c. resizing handle
 d. name

 17. The __________ identifies the table from which to get data.

 a. DataSource property
 b. Table property
 c. DataBound property
 d. DataTable property

 18. The __________ identifies the column of the table from which to display data.

 a. DisplayData property
 b. DataOutput property
 c. ShowColumn property
 d. DisplayMember property

 19. __________, which stands for __________, is a standard language for working with
database management systems.

 a. SQL, structured query language
 b. DBL, database language
 c. XML, extensible markup language
 d. HTML, hypertext markup language

 20. __________ are instructions for the DBMS to carry out operations on its data.

 a. Command strings
 b. Queries
 c. Build statements
 d. Data tokens

 21. In SQL, you use the __________ to retrieve the rows in a table.

 a. Select statement
 b. Like operator
 c. % symbol
 d. Where clause

 22. A(n) __________ is an SQL statement that is stored in a table adapter and can be
executed simply by calling a method.

 a. automated query
 b. dataset query

706 Chapter 11 Databases

 c. table adapter query
 d. structured data query

 23. The __________ describes the contents of a dataset, and its name appears in the
 Solution Explorer ending with the .xsd file extension.

 a. schema definition file
 b. data markup file
 c. table description file
 d. DBMS protocol file

 True or False

 1. When developing applications that work with an intensive amount of data, most
developers prefer to use traditional files.

 2. The DBMS works directly with the data and sends the results of operations back to
the application.

 3. The data that is stored in a database is organized into one or more tables.

 4. Each column in a table must have a name.

 5. When you create a database table, the data types that you can choose from are C#
data types.

 6. When working with the data in a database table, the column that is designated as
the primary key must hold a unique value for each row.

 7. If a column in a database table contains no data, it is said to be null.

 8. An application works directly with a database, modifying rows, deleting rows, add-
ing new rows, and so on.

 9. Rather than showing multiple rows at once, a Details view lets the user see one row
at a time.

 10. SQL is a language that can be used to write data intensive applications.

 11. String comparisons in SQL are case sensitive.

 Short Answer

 1. In what situation do traditional files work well for storing data?

 2. Briefly describe the layered nature of an application that works with a DBMS.

 3. What is the data that is stored in a row of a table in a database divided into?

 4. Are the data types used when creating a database table C# data types? If not, what
kind of data types are they?

 5. How do you create a primary key for a table with columns that could potentially
contain the same values?

 6. What type of columns in a database table must always contain a value?

 7. Instead of working with the database directly, with what component does an appli-
cation work?

 8. What control can be used to display an entire database table in a scrollable grid on
an application’s form?

 9. What is a Details view?

 10. In SQL, what statement do you use to retrieve specific rows from a table in a database?

 11. How do you sort the results of a Select query in descending order in SQL?

 Programming Problems 707

 Algorithm Workbench

 1. Look at the following SQL statement.

 Select Name From Employee

 a. What is the name of the table from which this statement is retrieving data?
 b. What is the name of the column that is being retrieved?

 For Questions 2–8, assume that a database has a table named Stock , with the following
columns:

 Column Name Type

 Trading_Symbol nchar(10)
 Company_Name nchar(25)
 Num_Shares int
 Purchase_Price money
 Selling_Price money

 2. Write a Select statement that returns all the columns from every row in the table.

 3. Write a Select statement that returns only the Trading_Symbol column from
every row in the table.

 4. Write a Select statement that returns the Trading_Symbol column and the
 Num_Shares column from every row in the table.

 5. Write a Select statement that returns the Trading_Symbol column only from the
rows where Purchase_Price is greater than $25.00.

 6. Write a Select statement that returns all the columns from the rows where
 Trading_Symbol starts with “SU”.

 7. Write a Select statement that returns the Trading_Symbol column only from the
rows where Selling_Price is greater than Purchase_Price and Num_Shares is
greater than 100.

 8. Write a Select statement that returns the Trading_Symbol column and the
 Num_Shares column only from the rows where Selling_Price is greater than
 Purchase_Price and Num_Shares is greater than 100. The results should be sorted
by the Num_Shares column in ascending order.

 Programming Problems

 1. Personnel Database

 Use Visual Studio to create a database named Personnel.mdf. The database should
have a table named Employee , with columns for employee ID, name, position, and
hourly pay rate. The employee ID should be the primary key. Insert at least five
sample rows of data into the Employee table. Create an application that displays the
 Employee table in a DataGridView control.

 2. Multiform Personnel Database Application

 Create an application that connects to the Personnel.mdf database that you cre-
ated in Programming Problem 1. The application’s main form should display the
 Employee table in a DataGridView control. The main form should also have a button

VideoNote

 Solving the
Personnel
Database
Problem

708 Chapter 11 Databases

that, when clicked, displays a second form. The second form should display the
 Employee table in a Details view. Make sure that when the second form is closed,
the main form refills the dataset so the most current data is displayed.

 3. Hourly Pay Sorter

 Create an application that connects to the Personnel.mdf database that you created
in Programming Problem 1. The application’s form should display the Employee
table in a DataGridView control. The form should also have the following controls:

 • A button that, when clicked, sorts the data in ascending order by hourly pay rate.
 • A button that, when clicked, sorts the data in descending order by hourly pay rate.

 4. Employee Search

 Create an application that connects to the Personnel.mdf database that you created
in Programming Problem 1. The application’s form should display the Employee
table in a DataGridView control. The application should let the user specify a name
in a text box and then search for that name in the Employee table. The application
should display any rows that contain a full or partial match of the specified name.

 5. Highest and Lowest Pay Rate

 Create an application that connects to the Personnel.mdf database that you created
in Programming Problem 1. The application’s form should display the Employee
table in a DataGridView control. The form should also have the following controls:

 • A button that, when clicked, displays a message indicating the highest (maxi-
mum) pay rate in the table.

 • A button that, when clicked, displays a message indicating the lowest (mini-
mum) pay rate in the table.

 6. Population Database

 In the Chap11 folder of the Student Sample Programs, you will find a database file
named PopulationDB.mdf. The database has a table named City . The City table
has the following columns:

 Column Name Data Type

 City nvarchar(50) Primary key

 Population float

 The City column stores the name of a city and the Population column stores the
population of that city. The database has 20 rows already entered.

 Create an application that connects to the PopulationDB.mdf database and allows
the user to perform the following:

 • Use data-bound controls to add new rows to the database, change existing
rows, and delete rows.

 • Sort the list of cities by population, in ascending order.
 • Sort the list of cities by population, in descending order.
 • Sort the list of cities by name.
 • Get the total population of all the cities.
 • Get the average population of all the cities.
 • Get the highest population.
 • Get the lowest population.

 C# Primitive Data Types

 A
P

P
E

N
D

IX

 Data Type Description

 bool A variable to store the Boolean values true and false .

 byte An unsigned 8-bit integer to store values in the range of 0 through 255.
 sbyte A signed 8-bit integer to store values in the range of −128 through 127.
 char A 16-bit variable to hold a Unicode character.
 decimal A 128-bit variable to hold real numbers, rounded to 28 digits of

precision, in the range of −7.9228 3 10 24 to 7.9228 3 10 24 .
 double A 64-bit variable to hold real numbers, rounded to 15 digits of

precision, in the range of 65.0 3 10 2324 to 61.7 3 10 308 .
 float A 32-bit variable to hold real numbers rounded to 15 digits of

precision, in the range of 23.4 3 10 38 to 13.4 3 10 38 .
 int A signed 32-bit integer to store values in the range of

22,147,483,648 through 2,147,483,647.
 uint An unsigned 32-bit integer to store values in the range of 0

through 4,294,967,295.
 long A signed 64-bit integer to store values in the range of

29,223,372,036,854,775,808 through 9,223,372,036,854,775,807.
 ulong An unsigned 64-bit integer to store values in the range of 0

through 18,446,744,073,709,551,615.
 short A signed 16-bit integer to store values in the range of 232,768

through 32,767.
 ushort An unsigned 16-bit integer to store values in the range of 0

through 65,535.
 string A variable to hold strings.

A

709

This page intentionally left blank

 Additional User Interface
Controls

 A
P

P
E

N
D

IX

 The chapters in this textbook have introduced you to the fundamental Visual C#
controls. There are many more controls available in Visual C#, and this appendix

introduces you to several of them. The examples discussed in this appendix can be found
in the Student Sample Program Files.

 ToolTips
 A ToolTip is a small box displayed when the user holds the mouse cursor over a control.
The box shows a short description of what the control does. Most Windows applications
use ToolTips as a way of providing immediate and concise help to the user. Figure B-1
shows an example.

B

711

 Figure B-1 A ToolTip displayed

 The ToolTip control allows you to create ToolTips for other controls on a form. Place a
ToolTip control in your application by double-clicking the ToolTip icon in the Toolbox,
just as you place other controls. When you do so, a ToolTip control appears in the com-
ponent tray, the resizable area at the bottom of the Designer that holds invisible controls.
 Figure B-2 shows an example.

712 Appendix B Additional User Interface Controls

 When you add a ToolTip control to a form, a new property is added to all the other
controls on that form. The new property is named ToolTip on ToolTipControl, where
 ToolTipControl is the name of the ToolTip control. For example, suppose you add a
ToolTip control to a form and keep the default name ToolTip1. The new property added
to the other controls is named ToolTip on ToolTip1.

 The ToolTip on ToolTipControl property holds the string that is displayed as the con-
trol’s ToolTip. Any text that you enter into a control’s ToolTip on ToolTipControl
property is displayed as that control’s ToolTip when the user holds the mouse cursor
over the control.

 Other ToolTip Properties

 ToolTip controls have other properties that affect their behavior. The InitialDelay prop-
erty determines the amount of time, in milliseconds, that elapses between the user point-
ing the mouse at a control and the ToolTip’s appearance. The default setting is 500. (One
millisecond is one-thousandth second, so 500 milliseconds is one-half second.)

 The AutoPopDelay property is also a measure of time in milliseconds. It determines how
long a ToolTip remains on the screen once it is displayed. The default setting is 5000. The
ReshowDelay property holds the number of milliseconds that elapse between the display-
ing of different ToolTips as the user moves the mouse from control to control. The default
setting is 100.

 You can set these properties individually or set them all at once with the AutomaticDelay
property. When you store a value in the AutomaticDelay property, InitialDelay is set to
the same value, AutoPopDelay is set to 10 times the value, and ReshowDelay is set to
one-fifth the value.

 Combo Boxes
 A combo box is like a list box that has been combined with a text box. Figure B-3 shows
an example of one style of combo box, known as a simple combo box.

ToolTip control appears in
the component tray.

 Figure B-2 ToolTip control

 Appendix B Additional User Interface Controls 713

 Combo boxes and list boxes are similar in the following ways:

 • They both display a list of items to the user.
 • They both have Items, Items.Count, SelectedIndex, SelectedItem, and Sorted properties.
 • They both have Items.Add and Items.Clear methods.
 • All these properties and methods work the same with combo boxes and list boxes.

 Additionally, a combo box has a rectangular area that works like a text box. The user
may either select an item from the combo box’s list or type text into the combo box’s text
input area.

 Like a text box, the combo box has a Text property. If the user types text into the combo
box, the text is stored in the Text property. Also, when the user selects an item from the
combo box’s list, the item is copied to the Text property.

 Combo Box Styles

 There are three different styles of combo boxes: the drop-down combo box, the simple
combo box, and the drop-down list combo box. You can select a combo box’s style with
its DropDownStyle property. Let’s look at the differences of each style.

 • Drop-Down Combo Box. This is the default setting for the combo box DropDown-
Style property. At run time, a drop-down combo box like the one shown on the left in
 Figure B-4 appears. When the user clicks the down arrow, a list drops down as shown
in the image on the right in the figure. The user may either select an item from the list
or type input into the text box that appears at the top of the control. The item that is
selected or the text that is entered is assigned to the combo box’s Text property.

 Figure B-3 A simple combo box

 Figure B-4 A drop-down combo box

 • Simple Combo Box. This is the style of combo box shown in Figure B-3 . With the
simple style of combo box, the list of items does not drop down but is always dis-
played. As with the drop-down combo box, this style allows the user to select an
item from the list or type text directly into the text box area. When typing, the user
is not restricted to the items that appear in the list. The item that is selected or the
text that is entered is assigned to the combo box’s Text property.

 • Drop-Down List Combo Box. With the drop-down list combo box style, the user
may not type text directly into the combo box. An item must be selected from the
list. At run time, a drop-down list combo box appears, as shown the image on the
left in Figure B-5 . When the user clicks the down arrow, a list of items appears, as
shown in the image on the right in the figure. The item that is selected is assigned to
the combo box’s Text property.

714 Appendix B Additional User Interface Controls

 Getting the User’s Input from a Combo Box

 As with the list box, you can determine which item has been selected from a combo
box’s list by retrieving the value in the SelectedIndex or SelectedItem property. If the
user has typed text into the combo box’s text area, however, you cannot use the Selec-
tedIndex or SelectedItem property to get the text. The best way to get the user’s input is
with the Text property, which contains either the user’s text input or the item selected
from the list.

 List Boxes versus Combo Boxes

 The following guidelines will help you decide when to use a list box and when to use a
combo box.

 • Use a drop-down or simple combo box when you want to provide the user a list of
items from which to select but do not want to limit the user’s input to the items on
the list.

 • Use a list box or a drop-down list combo box when you want to limit the user’s
selection to a list of items. The drop-down list combo box generally takes less space
than a list box (because the list doesn’t appear until the user clicks the down arrow),
so use it when you want to conserve space on the form.

 Scroll Bars
 Scroll bars provide a visual way to adjust a value within a range of values. These types of
controls display a slider that may be dragged along a track. Visual C# provides a horizon-
tal scroll bar control named HScrollBar and a vertical scroll bar control named VScroll-
Bar. Figure B-6 shows examples of each of these controls. You can find these controls in
the Toolbox, in the All Windows Forms group.

 Figure B-5 A drop-down list combo box

 Figure B-6 Horizontal and vertical scroll bars

 Here is a summary of the important properties of each of these controls:

 • The Value property is an integer value that is adjusted as the user moves the con-
trol’s slider. (The default value is 0.)

 • The Minimum property is the lower limit of the scrollable range. (The default
value is 0.)

 Appendix B Additional User Interface Controls 715

 • The Maximum property is the upper limit of the scrollable range. (The default value
is 100.)

 • The LargeChange property is the integer amount by which the Value property
changes when the user clicks the scroll bar area that lies to either side of the slider.
This is also the amount by which the Value property changes when the user presses
the Page Up or Page Down key on the keyboard while the control has the focus.
(The default value is 10.)

 • The SmallChange property is the integer amount by which the Value property
changes when the user clicks one of the arrows that appear at either end of a scroll
bar control. (The default value is 1.)

 When a horizontal scroll bar’s slider is moved toward its left side, the Value property is
decreased. When the slider is moved toward the scroll bar’s right side, the Value prop-
erty is increased. When a vertical scroll bar’s slider is moved toward its top, the Value
property is decreased. When the slider is moved toward the scroll bar’s bottom, the Value
property is increased.

 When the user moves the slider on a scroll bar control, a Scroll event occurs. If you write
a Scroll event handler for the control, the event handler will execute any time the slider is
moved. To generate a code template for the Scroll event handler, simply double-click the
scroll bar control in the Designer .

 Figure B-7 shows the form in an example application that demonstrates the HScrollBar
control. The HScrollBar control is named hScrollBar , and the label that displays the
value is named valueLabel . The form’s code is shown in Program B-1 . This project can
be found in the Appendix B folder in the Student Sample Programs. You will also find a
similar project that demonstrates the VScrollBar control.

 Figure B-7 HScrollBar Demo application form

 Program B-1 Form1 code in the HScrollBar Demo application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace HScrollBar_Demo
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }

716 Appendix B Additional User Interface Controls

 19
 20 private void Form1_Load(object sender, EventArgs e)
 21 {
 22 hScrollBar.Value = 0;
 23 hScrollBar.Minimum = 0;
 24 hScrollBar.Maximum = 100;
 25 hScrollBar.LargeChange = 10;
 26 hScrollBar.SmallChange = 1;
 27
 28 // Display the scroll bar's initial value
 29 // in the label control.
 30 valueLabel.Text = hScrollBar.Value.ToString();
 31 }
 32
 33 private void hScrollBar_Scroll(object sender, ScrollEventArgs e)
 34 {
 35 // Display the scroll bar value.
 36 valueLabel.Text = hScrollBar.Value.ToString();
 37 }
 38 }
 39 }

 Using a TabControl to Organize a Form
 A TabControl allows you to create a user interface that is made of multiple pages, with
each page containing its own set of controls. The TabControl appears as a container on a
form, with one or more tabs positioned along its top edge. Each tab represents a different
page, known as a TabPage. When the user clicks a tab, the control displays that page. You
can find the TabControl in the Toolbox, in the Containers group.

 When you insert a new TabControl, it will contain two TabPage controls named Tab-
Page1 and TabPage2. This is shown in Figure B-8 . Keep in mind that a TabControl is a
container that contains TabPage controls. When you are working with a TabControl in
the Designer, you can select the TabControl (the container) or you can select the indi-
vidual TabPage controls that it contains. When you work with a TabControl for the first
time, you should practice selecting each of the controls in the group so you know at all
times which one you are working with.

 Figure B-8 A TabControl with two TabPages

 Appendix B Additional User Interface Controls 717

 Each of the TabPage controls has its own set of properties that can be changed in the
 Properties window. For example, to change the text that is displayed on a TabPage’s tab,
you change that TabPage control’s Text property.

 As previously mentioned, a TabControl contains two TabPage controls when first inserted in
a form. To add more TabPages, select the TabControl and then select its TabPages property.
(Click the ellipses button that appears next to the TabPages property window.) This opens
the TabPage Collection Editor, shown in Figure B-9 . This window allows you to add new
TabPages, remove existing TabPages, and edit each TabPage’s properties.

 Figure B-9 TabPage Collection Editor window

 Figure B-10 shows an example application named TabControl Demo that can be found
in the Student Sample Programs. The application’s form has a TabControl with three
TabPages. Each TabPage contains a PictureBox control displaying an image. (There is no
code in the application.)

 Figure B-10 TabControl Demo application

718 Appendix B Additional User Interface Controls

 The WebBrowser Control
 The WebBrowser control (found in the Common Controls group in the Toolbox) allows
you to display a Web page on an application’s form. The control has a property named
Url that can be set to a Web page’s URL (Uniform Resource Locator). At run time, that
Web page is displayed in the control.

 At design time, you can use the Properties window to set the Url property. You simply
type a valid URL such as http://www.gaddisbooks.com into the property’s value box. If
you want to set the Url property in code, you must create a Uri object (Uniform Resource
Identifier) and assign that object to the property. Here is an example:

 WebBrowser1.Url = new Uri(" http://www.gaddisbooks.com ");

 Alternatively, you can call the control’s Navigate method to display a Web page, as shown
here:

 WebBrowser1.Navigate(New Uri(" http://www.gaddisbooks.com "));

 In either of these approaches, an exception will be thrown if an invalid Web address is used.

 When a Web page has finished loading, a DocumentCompleted event occurs. If you want
to perform some action after a page has loaded, you can write a handler for this event.
(Just double-click the WebBrowser control in the Designer window to create a code tem-
plate for the DocumentCompleted event handler.)

 Figure B-11 shows the WebBrowser Demo application in the Student Sample Programs.
The application’s form has a WebBrowser control named WebBrowser1 , a TextBox con-
trol named urlTextBox , and a Button control named goButton . When the user clicks the
 goButton button, the application sets the WebBrowser1 control’s Url property to the ad-
dress that has been typed into the urlTextBox text box. The Form1 form’s code is shown
in Program B-2 .

 Figure B-11 WebBrowser Demo application

http://www.gaddisbooks.com
http://www.gaddisbooks.com
http://www.gaddisbooks.com

 Appendix B Additional User Interface Controls 719

 Program B-2 Form1 code in the WebBrowser Demo application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace WebBrowser_Demo
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void goButton_Click(object sender, EventArgs e)
 21 {
 22 try
 23 {
 24 WebBrowser1.Url = new Uri(urlTextBox.Text);
 25 }
 26 catch (Exception ex)
 27 {
 28 // Error message for an invalid Web address.
 29 MessageBox.Show(ex.Message);
 30 }
 31 }
 32 }
 33 }

 The ErrorProvider Component
 The ErrorProvider component (found in the Components group in the Toolbox) allows
you to indicate that the user has entered an invalid value by displaying a blinking error
icon () next to a specific control on the application’s form. When the user hovers the
mouse pointer over the icon, an error message is displayed as a ToolTip.

 When you insert an ErrorProvider component, it appears in the component tray at the
bottom of the Designer window with a default name such as ErrorProvider1 . In code,
when the user enters an invalid value with a specific control, you call the ErrorProvider
component’s SetError method. Here is the general format for calling the method:

 ErrorProviderName .SetError(ControlName, ErrorMessage);

 In the general format, ErrorProviderName is the name of the ErrorProvider component,
 ControlName is the name of the control that you want to display the error icon next to,
and ErrorMessage is the error message to associate with the error. Here is an example:

 ErrorProvider1.SetError(payRateTextBox, "Invalid pay rate");

 This statement uses the ErrorProvider1 component to display an error icon next to the
 payRateTextBox control. When the user hovers the mouse pointer over the error icon,
the message Invalid pay rate is displayed as a ToolTip.

720 Appendix B Additional User Interface Controls

 The error icon will remain displayed next to the specified control until you call the
 SetError method again, passing the same control name as the first argument and an
empty string as the second argument. Here is an example:

 ErrorProvider1.SetError(payRateTextBox, "");

 Figure B-12 shows the ErrorProvider Demo application in the Student Sample Programs.
The user enters a number of hours in the hoursTextBox control, a numeric pay rate in
the payRateTextBox control, and then clicks the calcButton control to calculate gross
pay. If a nonnumeric value is entered for either the hours or the pay rate, an ErrorProvider
component displays an error icon next to the control containing the invalid value. In
 Figure B-12 the user has entered an invalid value for the pay rate. The Form1 form’s code
is shown in Program B-3 .

 Figure B-12 ErrorProvider Demo application

 Program B-3 Form1 code in the ErrorProvider Demo application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace ErrorProvider_Demo
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void calcButton_Click(object sender, EventArgs e)
 21 {
 22 // Variables for hours, pay rate, and gross pay
 23 decimal hours, payRate, grossPay;
 24
 25 // Clear any existing errors.
 26 ErrorProvider1.SetError(hoursTextBox, "");
 27 ErrorProvider1.SetError(payRateTextBox, "");
 28
 29 // Get values and calculate gross pay.
 30 if (decimal.TryParse(hoursTextBox.Text, out hours))

 Appendix B Additional User Interface Controls 721

 31 {
 32 if (decimal.TryParse(payRateTextBox.Text, out payRate))
 33 {
 34 // Calculate the gross pay.
 35 grossPay = hours * payRate;
 36
 37 // Display the gross pay.
 38 grossPayLabel.Text = grossPay.ToString("c");
 39 }
 40 else
 41 {
 42 // Invalid pay rate
 43 ErrorProvider1.SetError(payRateTextBox,
 44 "Pay rate must be numeric.");
 45 }
 46 }
 47 else
 48 {
 49 // Invalid hours
 50 ErrorProvider1.SetError(hoursTextBox,
 51 "Hours must be numeric.");
 52 }
 53 }
 54 }
 55 }

 Using the SelectionStart and SelectionLength
Properties to Select Text in a TextBox
 TextBox controls have two properties, SelectionStart and SelectionLength, which you can
use to make the process of correcting invalid input more convenient for the user. When
the user enters an invalid value, you can display an error message and then use these prop-
erties to automatically select the invalid input for the user. Then, the user can immediately
retype the input without having to use the mouse to select the TextBox.

 The SelectionStart and SelectionLength properties can be used in code to automatically
select the text in a text box. The SelectionStart property holds the position of the first
selected character in the text box. The SelectionLength property holds the number of
characters that are selected. For example, assume that nameTextBox is a text box and
look at the following code.

 nameTextBox.Focus();
 nameTextBox.SelectionStart = 0;
 nameTextBox.SelectionLength = 5;

 The first statement gives nameTextBox the focus. The second statement establishes that
the first character in nameTextBox (which is at position 0) is the first selected character.
The next statement establishes that five characters will be selected. Together, the state-
ments cause the first five characters in nameTextBox to be selected.

 So, how do you use similar code to select all the text in a TextBox? You use the TextBox’s
Length property to get the length of the text and assign that value to the TextBox’s Selec-
tionLength property. Here is an example:

 nameTextBox.Focus();
 nameTextBox.SelectionStart = 0;
 nameTextBox.SelectionLength = nameTextBox.Text.Length;

 After these statements execute, all the contents of the nameTextBox control are selected.
When the user types a key, that keystroke immediately erases all the selected text.

722 Appendix B Additional User Interface Controls

 Figure B-13 shows the Selected Text Demo application in the Student Sample Program
files. This is a modified version of the ErrorProvider Demo application previously shown.
In this version, after the ErrorProvider displays an error icon, the content of the TextBox
containing the invalid input is automatically selected. In the figure, the user has entered an
invalid value for the hours. The application’s code is shown in Program B-4 .

 Figure B-13 Selected Text Demo application

 Program B-4 Form1 code in the Selected Text Demo application

 1 using System;
 2 using System.Collections.Generic;
 3 using System.ComponentModel;
 4 using System.Data;
 5 using System.Drawing;
 6 using System.Linq;
 7 using System.Text;
 8 using System.Threading.Tasks;
 9 using System.Windows.Forms;
 10
 11 namespace Selected_Text_Demo
 12 {
 13 public partial class Form1 : Form
 14 {
 15 public Form1()
 16 {
 17 InitializeComponent();
 18 }
 19
 20 private void calcButton_Click(object sender, EventArgs e)
 21 {
 22 // Variables for hours, pay rate, and gross pay
 23 decimal hours, payRate, grossPay;
 24
 25 // Clear any existing errors.
 26 ErrorProvider1.SetError(hoursTextBox, "");
 27 ErrorProvider1.SetError(payRateTextBox, "");
 28
 29 // Get values and calculate gross pay.
 30 if (decimal.TryParse(hoursTextBox.Text, out hours))
 31 {
 32 if (decimal.TryParse(payRateTextBox.Text, out payRate))
 33 {
 34 // Calculate the gross pay.
 35 grossPay = hours * payRate;
 36
 37 // Display the gross pay.

 Appendix B Additional User Interface Controls 723

 38 grossPayLabel.Text = grossPay.ToString("c");
 39 }
 40 else
 41 {
 42 // Invalid pay rate
 43 ErrorProvider1.SetError(payRateTextBox,
 44 "Pay rate must be numeric.");
 45
 46 // Select the invalid input.
 47 payRateTextBox.Focus();
 48 payRateTextBox.SelectionStart = 0;
 49 payRateTextBox.SelectionLength =
 50 payRateTextBox.Text.Length;
 51 }
 52 }
 53 else
 54 {
 55 // Invalid hours
 56 ErrorProvider1.SetError(hoursTextBox,
 57 "Hours must be numeric.");
 58
 59 // Select the invalid input.
 60 hoursTextBox.Focus();
 61 hoursTextBox.SelectionStart = 0;
 62 hoursTextBox.SelectionLength =
 63 hoursTextBox.Text.Length;
 64 }
 65 }
 66 }
 67 }

 Creating a Menu System
 A menu system is a collection of commands organized in one or more drop-down menus.
In Visual Studio, the menu designer allows you to visually create a custom menu system
for any form in an application. Before you learn how to use the menu designer, you must
learn about the typical components of a menu system. Look at the Example Menu System
shown in Figure B-14 .

Menu name

Disabled menu command

Menu command

Separator bar

Checked menu command

Shortcut key

Submenu

 Figure B-14 Example Menu System

724 Appendix B Additional User Interface Controls

 The menu system in the figure consists of the following items.

 • Menu names. Each drop-down menu has a name. The menu names are listed on a
menu strip that appears just below the form’s title bar. The menu names in Figure
 B-14 are File , Edit , and Help . The user may activate a menu by clicking the menu
name. In the figure, the Edit menu has been activated.

 • Menu command. Menus have commands. The user selects a command by clicking
it, entering its access key, or entering its shortcut key.

 • Shortcut key. A shortcut key is a key or combination of keys that cause a menu
command to execute. Shortcut keys are shown on a menu to the right of their cor-
responding commands. For example, in Figure B-14 , Ctrl+C is the shortcut key for
the Copy command.

 • Disabled menu command. You can cause a menu command to be disabled when you
do not want the user to select it. A disabled menu command appears in dim lettering
(grayed out) and cannot be selected. In Figure B-14 , the Undo command is disabled.

 • Checked menu command. A checked menu command is usually one that turns an
option on or off. A checkmark appears to the left of the command, indicating the
option is turned on. When no checkmark appears to the left of the command, the
option is turned off. The user toggles a checked menu command each time he or she
selects it. In Figure B-14 , Autosave is a checked menu command.

 • Submenu. Some of the commands on a menu are actually the names of submenus.
You can tell when a command is the name of a submenu because a right arrow ap-
pears to its right. Activating the name of a submenu causes the submenu to appear.
For example, in Figure B-14 , clicking the Sort command causes a submenu to appear.

 • Separator bar. A separator bar is a horizontal bar used to separate groups of com-
mands on a menu. In Figure B-14 , separator bars are used to separate the Copy ,
 Cut , and Paste commands into one group, the Find and Replace commands into an-
other group, and the Sort command in a box by itself. Separator bars are used only
as visual aids and cannot be selected by the user.

 The MenuStrip Control

 An application’s menu system is constructed with a MenuStrip control . When your form
is displayed in the Designer , find the Menus & Toolbars section of the Toolbox window
and double-click the MenuStrip icon. A MenuStrip control will appear in the component
tray at the bottom of the Designer , with a default name of MenuStrip1.

 When the MenuStrip control is selected, you will see the words Type Here displayed in a
strip at the top of the form. This is the menu designer , a tool that allows you to visually
edit the contents of the menu. You simply click inside this strip and type the names of the
items that you want to appear in the menu. Figure B-15 shows an example where a File
menu has been added.

 Figure B-15 Inserting text into a menu item

 Appendix B Additional User Interface Controls 725

 Each item that you create in a menu system is a ToolStripMenuItem object . When you
select a menu item in the menu designer, you see its properties listed in the Properties win-
dow. The text that you typed for the item in the menu designer will appear in the object’s
Text property.

 ToolStripMenuItem objects are given default names that are based on the text that
you typed for the object in the menu designer. For example, if you type the text “File”
for a menu item, the object’s name will be fileToolStripMenuItem . For another
example, it you type the text “Help” for a menu item, the object’s name will be
 helpToolStripMenuItem .

 ToolStripMenuItem objects also respond to events. You can make a menu functional by
writing Click event procedures for its objects.

 How to Use the Menu Designer

 Once you have placed a MenuStrip control in a form’s component tray, you can use the
menu designer to create menu items. Start the menu designer by selecting the MenuStrip
control. Figure B-16 shows a form with a MenuStrip control selected in the component
tray, and the menu designer started. The menu designer appears on the form in the loca-
tion that the menu system will appear.

Menu designer

MenuStrip control

 Figure B-16 MenuStrip control selected and menu designer started

 Notice in Figure B-16 that the words Type Here appear in a small box in the menu
designer. This marks the position of the first menu item. A ToolStripMenuItem object
is automatically created when you type text into the box. The text you type is stored in
the item’s Text property and is displayed on the menu strip. Figure B-17 shows the menu
designer after the word File has been typed as the text for the first menu item.

726 Appendix B Additional User Interface Controls

 Notice that the menu designer now shows two new Type Here boxes, one below and one
to the right of the first object. Simply click in one of the boxes to select it and then type the
text that you wish to appear at that position. Figure B-18 shows the menu designer with a
more complete menu system. The menu system has File , Edit , and Help menus. The Edit
menu is displayed.

 Figure B-17 MenuStrip object with File as its text

 Figure B-18 Menu designer with many items

 Shortcut Keys

 As previously stated, a shortcut key is a key or combination of keys that cause a menu
command to execute. Table B-1 lists some commonly used shortcut keys in Windows
applications.

 Table B-1 Some commonly used shortcut
keys in Windows applications

 Shortcut Key Command

 ∏+S Save

 ∏+P Print

 ∏+C Copy

 ∏+X Cut

 ∏+V Paste

 Appendix B Additional User Interface Controls 727

 Shortcut keys are shown on a menu to the right of their corresponding commands. To
create a shortcut key for a menu item, click the down arrow that appears next to the
 ShortcutKeys property in the Properties window. A dialog appears, as shown in Figure
 B-19 . The Key drop-down list shows all the available shortcut keys and allows you to se-
lect a key from the list. The dialog also allows you to select the ∏, s, or a key (or
any combination of these). For example, if you want to assign ∏+S as a shortcut key,
you would select the S key in the drop-down list and place a check next to Ctrl .

 Figure B-19 The ShortcutKeys property

 You must also make sure that the ShowShortcut property is set to True . When set to
 False , the item’s shortcut key is not displayed.

 Checked Menu Items

 Some programs have menu items that simply turn a feature on or off. For example,
suppose you are creating an application that functions as an alarm clock and you want
the user to be able to turn the alarm on or off with a menu item. A common approach
would be to have a checked menu item for the alarm. When a checkmark appears next
to the menu item, it indicates that the alarm is on. When the checkmark is not displayed
next to the menu item, it indicates that the alarm is off. When the user clicks the menu
item, it toggles its state between on and off. This type of menu item is called a checked
menu item.

 To give a menu item the ability to become checked or unchecked when it is clicked by the
user, you set the item’s CheckOnClick property to True . You can then set the Checked
property to either True or False to specify how the item should initially appear when
the application runs. If you set the Checked property to True , the item will appear with
a checkmark next to it. If you set the Checked property to False , no checkmark will be
shown.

 In code you can use the Checked property to determine whether a menu item is checked.
If the Checked property is set to True , it means the item is checked. If the Checked prop-
erty is set to False , it means the item is unchecked. The following code shows an example.

728 Appendix B Additional User Interface Controls

This code tests the Checked property of a menu item named alarmToolStripMenuItem .
If the item is checked, a message box is displayed.

 if (alarmToolStripMenuItem.Checked)
 {
 MessageBox.Show("WAKE UP!");
 }

 Disabled Menu Items

 A disabled menu item appears dimmed, or grayed out, and may not be selected by the
user. You may disable a menu item by setting its Enabled property to False . For example,
applications that provide Cut , Copy , and Paste commands usually disable the Paste com-
mand until something is cut or copied. So, the Paste menu item’s Enabled property can be
set to False at design time (in the Properties window) and then set to true in code after
the Cut or Copy command has been used. Assuming that the Paste menu item is named
 pasteToolStripMenuItem , the following code enables it:

 pasteToolStripMenuItem.Enabled = true;

 Separator Bars

 You can insert a separator bar into a menu in either of the following ways:

 • Right-click an existing menu item. On the pop-up menu that appears, select Insert
and then select Separator . A separator bar is inserted above the menu item.

 • Type a hyphen (-) as a menu item’s Text property.

 Submenus

 When an existing menu item is selected in the menu designer, a Type Here box is dis-
played to its right. Figure B-20 shows an example. This box allows you to create a sub-
menu item. When you create a submenu, a right arrow () is automatically displayed
next to the menu item that is the parent of the submenu.

Type here to add
a submenu.

 Figure B-20 Creating a submenu

 Inserting Menu Items in an Existing Menu

 If you need to insert a new menu item above an existing menu item, start the menu
designer and then right-click the existing menu item. On the pop-up menu that appears,
select Insert and then select MenuItem . A new menu item is inserted above the existing

 Appendix B Additional User Interface Controls 729

menu item. If you need to insert a new menu item at the bottom of an existing menu, start
the menu designer and simply select the desired menu or submenu. A Type Here box au-
tomatically appears at the bottom.

 Deleting Menu Items

 To delete a menu item, start the menu designer and perform one of the following proce-
dures:

 • Right-click the menu item you wish to delete. On the pop-up menu, select Delete .
 • Select the menu item you wish to delete and then press ∂ on the keyboard.

 Rearranging Menu Items

 You can move a menu item by clicking and dragging. Simply select it in the menu designer
and drag it to the desired location.

 ToolStripMenuItem Click Events

 You do not have to write code to display a menu or a submenu. When the user clicks a
menu item that displays a menu or a submenu, Visual Studio automatically causes the
menu or submenu to appear.

 If a menu item does not have a menu or submenu to display, you make it functional by
providing a Click event handler for it. For example, assume a menu system has a File
menu with an Exit command, which causes the application to end. The menu item for
the Exit command is named exitToolStripMenuItem . Here is the code for the object’s
Click event handler:

 private void exitToolStripMenuItem_Click(object sender, EventArgs e)
 {
 // Close the form.
 this.Close();
 }

 To write a Click event handler for a menu item, start the menu designer and then double-
click the desired menu item. An empty event handler is created.

 Standard Menu Items

 Although not all applications have identical menu systems, it is standard for most applica-
tions to have the following menu items:

 • A File menu as the leftmost item on the menu strip.
 • An Exit command on the File menu. This command ends the application.
 • A Help menu as the rightmost item on the menu strip.
 • An About command on the Help menu. This command displays a window giving

basic information about the application.

 You should always add these items to your menu systems because most Windows users
expect to see them. You should also assign shortcut keys to the most commonly used
commands. Study the menu system in an application such as Microsoft Word or Micro-
soft Excel to become familiar with a typical menu design.

This page intentionally left blank

 ASCII/Unicode Characters

 A
P

P
E

N
D

IX

 The following table lists the ASCII (American Standard Code for Information Inter-
change) character set, which is the same as the first 127 Unicode character codes.

This group of character codes is known as the Latin Subset of Unicode . The code columns
show character codes and the character columns show the corresponding characters. For
example, the code 65 represents the letter A . Note that the first 31 codes, and code 127,
represent control characters that are not printable.

C

731

 Code Character Code Character Code Character Code Character Code Character

 0 NUL 26 SUB 52 4 78 N 104 h

 1 SOH 27 Escape 53 5 79 O 105 i

 2 STX 28 FS 54 6 80 P 106 j

 3 ETX 29 GS 55 7 81 Q 107 k

 4 EOT 30 RS 56 8 82 R 108 l

 5 ENQ 31 US 57 9 83 S 109 m

 6 ACK 32 (Space) 58 : 84 T 110 n

 7 BEL 33 ! 59 ; 85 U 111 O

 8 Backspace 34 ” 60 < 86 V 112 p

 9 HTab 35 # 61 = 87 W 113 q

 10 LineFeed 36 $ 62 > 88 X 114 r

 11 VTab 37 % 63 ? 89 Y 115 s

 12 FormFeed 38 & 64 @ 90 Z 116 t

 13 CR 39 ‘ 65 A 91 [117 u

 14 SO 40 (66 B 92 \ 118 v

 15 SI 41) 67 C 93] 119 w

 16 DLE 42 * 68 D 94 ̂ 120 x

 17 DC1 43 + 69 E 95 _ 121 y

 18 DC2 44 , 70 F 96 ‘ 122 z

 19 DC3 45 - 71 G 97 a 123 {

 20 DC4 46 . 72 H 98 b 124 |

 21 NAK 47 / 73 I 99 c 125 }

 22 SYN 48 0 74 J 100 d 126 ~

 23 ETB 49 1 75 K 101 e 127 DEL

 24 CAN 50 2 76 L 102 f

 25 EM 51 3 77 M 103 g

7
3
2

 Answers to Checkpoint
Questions

 A
P

P
E

N
D

IX

 Chapter 1
 1.1 A program is a set of instructions that a computer follows to perform a task.

 1.2 Hardware is all the physical devices, or components, that a computer is made of.

 1.3 The central processing unit (CPU), main memory, secondary storage devices,
input devices, and output devices

 1.4 The CPU

 1.5 Main memory

 1.6 Secondary storage

 1.7 Input device

 1.8 Output device

 1.9 Operating system

 1.10 Utility program

 1.11 Application software

 1.12 1 byte

 1.13 A bit

 1.14 Binary

 1.15 It is an encoding scheme that uses a set of 128 numeric codes to represent the
English letters, various punctuation marks, and other characters. These numeric
codes are used to store characters in a computer’s memory. (ASCII stands for the
American Standard Code for Information Interchange.)

 1.16 Unicode

 1.17 Digital data is data that is stored in binary, and a digital device is any device that
works with binary data.

D

733

734 Appendix D Answers to Checkpoint Questions

 1.18 Machine language

 1.19 Main memory, or RAM

 1.20 The fetch-decode-execute cycle

 1.21 It is an alternative to machine language. Instead of using binary numbers for
instructions, assembly language uses short words that are known as mnemonics.

 1.22 A high-level language

 1.23 Syntax

 1.24 A compiler

 1.25 An interpreter

 1.26 A syntax error

 1.27 The part of the computer with which the user interacts

 1.28 A command line interface requires the user to type commands. If a command is
typed correctly, it is executed and the results are displayed. If a command is not
typed correctly, an error message is displayed.

 1.29 The program

 1.30 A program that responds to events that are caused by the user, such as the
clicking of a mouse

 1.31 A program component that contains data and performs operations

 1.32 Object oriented

 1.33 An object can (1) store data in fields or properties and (2) perform operations
called methods.

 1.34 Controls

 1.35 To perform some task

 1.36 Code that describes a particular type of object

 1.37 A collection of classes and other code that can be used, along with a
programming language such as C#, to create programs for the Windows
operating system

 1.38 When a program needs specific objects that cannot be found in the .NET framework

 1.39 1. Understand the program’s purpose
 2. Design the graphical user interface (GUI)
 3. Design the program’s logic
 4. Write the code
 5. Correct syntax errors
 6. Test the program and correct logic errors

 1.40 A set of well-defined logical steps that must be taken to perform a task

 1.41 An algorithm that is written out in this manner, in plain English statements

 1.42 A diagram that graphically depicts the steps of an algorithm

 1.43 • Oval—terminal symbol
 • Parallelogram—input or output
 • Rectangle—processing

 Appendix D Answers to Checkpoint Questions 735

 1.44 The Solution Explorer window allows you to navigate among the files in a
Visual C# project.

 1.45 When you are creating a Visual C# application, you use the Properties window
to examine and change a control’s properties.

 1.46 The standard toolbar contains buttons that execute frequently used
commands.

 1.47 The Toolbox is a window that allows you to select the controls that you want to
use in an application’s user interface. The toolbar contains buttons that execute
frequently used Visual Studio commands.

 1.48 A small rectangular box that pops up when you hover the mouse pointer over a
button on the toolbar or in the Toolbox for a few seconds

 1.49 A Visual C# project consists of several files. You can think of a project as a
collection of files that belong to a single application.

 1.50 A solution is a container that holds one or more Visual C# projects. If you are
developing applications for a large organization, you might find it convenient to
store several related projects together in the same solution.

 Chapter 2
 2.1 An empty form in the Designer

 2.2 It is enclosed by a thin dotted line called a bounding box.

 2.3 To resize an object’s bounding box using the mouse

 2.4 A name

 2.5 To display the properties of the currently selected object

 2.6 Causes the properties to be displayed in alphabetical order

 2.7 Causes the properties to be displayed in groups

 2.8 The text that is displayed in the form’s title bar

 2.9 The form’s width and height in pixels

 2.10 A scrollable list of controls that you can add to a form

 2.11 To add a control to a form, you simply find it in the Toolbox and then double-
click it.

 2.12 What the button will do when it is clicked

 2.13 The first character must be one of the letters a – z or A – Z or an underscore
character. After the first character, you may use the letters a – z or A – Z , the digits
0–9, or underscores. The name cannot contain spaces.

 2.14 The camelCase naming convention

 2.15 Source code

 2.16 If you want your application to perform any meaningful actions you must write
code.

 2.17 The application’s start-up code

 2.18 Code that is associated with the Form1 form

736 Appendix D Answers to Checkpoint Questions

 2.19 Namespaces, classes, and methods

 2.20 A container that holds classes

 2.21 Braces ({})

 2.22 Click the tab for the desired window.

 2.23 Double-click the button control in the Designer.

 2.24 An event that occurs when an application is running and the user clicks a
control

 2.25 MessageBox.Show

 2.26 Data that is literally written into a program

 2.27 Double quotation marks

 2.28 Press the F5 key on the keyboard, or click the Start Debugging button on the
toolbar.

 2.29 The Common Controls group

 2.30 The Text property

 2.31 The Font property

 2.32 None

 2.33 Click the down-arrow button that appears next to the property’s value. Select the
desired value from the list.

 2.34 The AutoSize property

 2.35 The TextAlign property

 2.36 Place a Label control on the form at the location where you want the result to
be displayed. Erase the contents of the Label control’s Text property. In the
application’s code, you write the necessary statements to perform the calculation
and then you store the result of the calculation in the Label control’s Text
property.

 2.37 It clears the text that is displayed in a Label control.

 2.38 To display a graphic image on a form

 2.39 In the Common Controls group

 2.40 Use its Image property to specify the image that it will display.

 2.41 Normal

 2.42 The image is uniformly resized to fit in the PictureBox without losing its original
aspect ratio.

 2.43 Create a Click event handler for the PictureBox control that displays the
image.

 2.44 Yes, if a control’s Visible property is set to False, the control can still be seen at
design time, but during run time, the control will not be visible.

 2.45 Comments are brief notes that are placed in a program’s source code to explain
how parts of the program work.

 2.46 A Line comment begins with two forward slashes and appears on one line. A
Block comment starts with a forward slash and an asterisk and ends with an
asterisk followed by a forward slash and can occupy multiple lines.

 Appendix D Answers to Checkpoint Questions 737

 2.47 Be careful not to reverse the beginning and ending symbols, and don’t forget the
ending symbol.

 2.48 Programmers commonly use blank lines and indentations in their code to create a
sense of visual organization; this makes the code easier to understand and to read.

 2.49 this.Close();

 2.50 It is underlined with a jagged line in the code editor.

 2.51 A description of the error will pop up in a ToolTip window.

 2.52 A window appears that displays the errors.

 Chapter 3
 3.1 A TextBox control

 3.2 Retrieve the contents of the control’s Text property

 3.3 A string

 3.4 Assign an empty string ("") to the Text property.

 3.5 To store a value in memory

 3.6 string myFavoriteFood = "pizza";

 3.7 a. String
 b. Real number
 c. String
 d. Integer

 3.8 a. Legal
 b. Illegal; spaces are not allowed in variable names.
 c. Legal
 d. Illegal; first character of the variable name cannot be a number.

 3.9 The string "Hello!"

 3.10 While the event is executing; then it is deleted.

 3.11 The statement will result in an error.

 3.12 Yes, string variables can be assigned only string values.

 3.13 string name, city, state;

 3.14 a. decimal
 b. int
 c. double
 d. decimal
 e. int

 3.15 b, variables of the int data type can be assigned only whole-number values.

 3.16 int dollars = (int)deposit;

 3.17 6

 3.18 length and width

 3.19 1. Perform any operations that are enclosed in parentheses.
 2. Perform any multiplications, divisions, or modulus operations as they appear

from left to right
 3. Perform any additions or subtractions as they appear from left to right.

738 Appendix D Answers to Checkpoint Questions

 3.20 decimal pricePerFoot = 2.99m;
 decimal boardLength = 10.5;
 decimal totalCost = boardLength * pricePerFoot;
 or
 decimal pricePerFoot = 2.99m;
 double boardLength = 10.5;
 decimal totalCost = (decimal)boardLength * pricePerFoot;

 3.21 9

 3.22 70

 3.23 2.5

 3.24 a. count += 1;
 b. amount −= 5;
 c. radius *= 10 ;
 d. length /= 2;

 3.25 int.Parse

 3.26 a. decimal.Parse("90.5");
 b. decimal.Parse(grandTotal);
 c. decimal.Parse("50");
 d. decimal.Parse(priceTextBox.Text);

 3.27 The result will be an error because numeric values cannot be assigned to
strings.

 3.28 a. MessageBox.Show(grandTotal.ToString());
 b. MessageBox.Show(highScore.ToString());
 c. MessageBox.Show(sum.ToString());
 d. MessageBox.Show(width.ToString());

 3.29 resultLabel.Text = result.ToString();

 3.30 MessageBox.Show(salary.ToString("c"));

 3.31 a. "P" or "p" for percent format
 b. "E" or "e" for exponential scientific format
 c. "C" or "c" for currency format
 d. "N" or "n" for number format
 e. "F" or "f" for fixed-point scientific format

 3.32 12

 3.33 "d5"

 3.34 millimeters.ToString("f4");

 3.35 An unexpected error that occurs while a program is running, such as user input
that is not in the correct format

 3.36 Click the Stop Debugging button or by pressing s 1 %.

 3.37 Statements that can potentially throw an exception

 3.38 If a statement in the try block throws an exception

 3.39 Assign a name to the exception object when writing the catch clause of
a try-catch statement and then use the Message property of the
exception object in the catch block to display the default error message
in a message box.

 Appendix D Answers to Checkpoint Questions 739

 3.40 try
 {
 int value1; // To hold value 1.
 int value2; // To hold value 2.
 int sum; // To hold the sum.

 // Get the values as input from the user.
 value1 = int.Parse(value1TextBox.Text);
 value2 = int.Parse(value2TextBox.Text);

 // Calculate the sum of value 1 and value 2.
 sum = value1 + value2;

 // Display the result in the Label control.
 sumLabel.Text = sum.ToString();
 }
 catch (Exception ex)
 {
 // Display the default error message.
 MessageBox.Show(ex.Message);
 }

 3.41 They make programs more self-explanatory and allow for widespread changes to
easily be made to the program.

 3.42 const double DISCOUNT = 0.9;

 3.43 At the top of a class declaration, before any methods

 3.44 It’s a good programming practice to make fields private because private fields
are hidden from code outside the class. That prevents code outside the class from
changing the values of a class’s fields and helps prevent bugs from creeping into
your program.

 3.45 A local variable exists only while the method in which it is declared is executing,
but a field exists as long as the form exists.

 3.46 private const decimal INTEREST_RATE = 0.059m;

 3.47 double product = Math.Pow(12.0, 2.0);

 3.48 Math.Max

 3.49 Math.Min

 3.50 The button’s Click event handler will execute.

 3.51 Click View on the Visual Studio menu bar and then click Tab Order . Exit tab
order selection mode by pressing the Esc key.

 3.52 numberTextBox.Focus();

 3.53 In the Text property, place an ampersand (&) before the character you wish to
use as the access key.

 3.54 In the Text property, place two ampersand (&&) characters where you would
like the single ampersand to appear on the Button control.

 3.55 resultLabel.BackColor = Color.White;
 resultLabel.ForeColor = Color.Red;

 3.56 None, Tile, Center, Stretch, and Zoom

 3.57 The controls inside the GroupBox control are also deleted.

 3.58 The TabIndex values of controls inside a group box are organized relative to the
GroupBox control’s TabIndex property.

740 Appendix D Answers to Checkpoint Questions

 3.59 A Panel cannot display a title and does not have a Text property. A Panel’s
border can be specified by its BorderStyle property.

 Chapter 4
 4.1 A logical design that controls the order in which a set of statements execute

 4.2 It is a program structure that can execute a set of statements only under certain
circumstances.

 4.3 A decision structure that provides a single alternative path of execution. If the
condition that is being tested is true, the program takes the alternative path.

 4.4 An expression that can be evaluated as either true or false

 4.5 You can determine whether one value is greater than, less than, greater than or
equal to, less than or equal to, equal to, or not equal to another value.

 4.6 if (y == 20)
 {
 x = 0;
 }

 4.7 if (sales >= 10000)
 {
 commissionRate = 0.2;
 }

 4.8 A dual alternative decision structure has two possible paths of execution—one path
is taken if a condition is true and the other path is taken if the condition is false.

 4.9 When the Boolean expression is false

 4.10 if (sales >= 50000)
 {
 commissionRate = 0.2;
 }
 else
 {
 commissionRate = 0.1;
 }

 4.11 if (number == 1)
 {
 MessageBox.Show("One");
 }
 else if (number == 2)
 {
 MessageBox.Show("Two");
 }
 else if (number == 3)
 {
 MessageBox.Show("Three");
 }
 else
 {
 MessageBox.Show("Unknown");
 }

 4.12 It is an expression that is created by using a logical operator to combine two
Boolean subexpressions.

 Appendix D Answers to Checkpoint Questions 741

 4.13 F; T; F; F; T; T; T; F; F; T

 4.14 T; F; T; T; T

 4.15 The && operator: If the expression on the left side of the && operator is false, the
expression on the right side will not be checked.

 The || operator: If the expression on the left side of the || operator is true, the
expression on the right side will not be checked.

 4.16 if (speed >= 0 && speed <= 200)
 {
 MessageBox.Show("The number is valid");
 }

 4.17 if (speed < 0 || speed > 200)
 {
 MessageBox.Show("The number is not valid");
 }

 4.18 true or false

 4.19 A variable that signals when some condition exists in the program

 4.20 z is not less than a.

 4.21 Boston; New York

 4.22 true

 4.23 The variable specified by the second argument

 4.24 0

 4.25 It specifies an output variable. An output variable is a variable that is passed as
an argument to a method, and when the method is finished, a value is stored in
the variable.

 4.26 Only one

 4.27 All of them can potentially be selected.

 4.28 When a CheckBox or RadioButton control is selected, or checked, its Checked
property is set to True.

 4.29 switch (choice)
 {
 case 1:
 MessageBox.Show("You chose 1.");
 break;
 case 2:
 MessageBox.Show("You chose 2.");
 break;
 case 3:
 MessageBox.Show("You chose 3.");
 break;
 default:
 MessageBox.Show("Make another choice.");
 break;
}

 4.30 You select the Items property and then use the String Collection Editor to enter
items.

742 Appendix D Answers to Checkpoint Questions

 4.31. When the user selects an item in a ListBox, the item is stored in the ListBox’s
SelectedItem property.

 4.32 When the user selects an item in a ListBox, the item’s index is stored in the
ListBox’s SelectedIndex property. If no item is selected in the ListBox, the
SelectedIndex property is set to 21.

 Chapter 5
 5.1 You call the control’s Items.Add method.

 5.2 The control’s Items.Count property holds the number of items stored in the
ListBox.

 5.3 You call the control’s Items.Clear method.

 5.4 An execution of the statements in the body of the loop

 5.5 A variable that is used to store the number of iterations that a loop has
performed

 5.6 A loop that tests its Boolean expression before performing an iteration

 5.7 Before

 5.8 A loop that has no way of stopping and repeats until the program is interrupted

 5.9 6; 5

 5.10 Four times

 5.11 Initialization, test, and update

 5.12 Here is one possible set of answers:
 a. count = 0;
 b. count < 50;
 c. count++
 d. for (count = 0; count < 50; count++)

 {
 MessagaBox.Show("I love to program");
 }

 Here is another possible set of answers:
 a. count = 1;
 b. count <= 50;
 c. count++
 d. for (count = 1; count <= 50; count++)

 {
 MessagaBox.Show("I love to program");
 }

 5.13 It would display the numbers 1, 2, 3, 4, and 5 in message boxes.

 5.14 It would display the numbers 0, 100, 200, 300, 400, and 500 in message boxes.

 5.15 A loop that tests its Boolean expression after it performs an iteration

 5.16 The while loop is a pretest loop, and the do - while loop is a posttest loop. The
 do - while loop will always iterate at least one time.

 5.17 One time

 5.18 A file that data is written to. It is called an output file because the program stores
output in it.

 5.19 A file from which data is read; it is called an input file because the program gets
input from the file.

 Appendix D Answers to Checkpoint Questions 743

 5.20 Open the file, process the file, and close the file.

 5.21 A text file contains data that has been encoded as text, using a scheme such as
Unicode. A binary file contains data that has not been converted to text.

 5.22 Sequential and direct (or random) access. When you work with a sequential
access file, you access data from the beginning of the file to the end of the file.
When you work with a direct access file, you can jump directly to any piece of
data in the file without reading the data that comes before it.

 5.23 StreamWriter

 5.24 StreamReader

 5.25 Its contents are erased.

 5.26 Its contents are not erased.

 5.27 The WriteLine method writes an item of data to a file and then writes a newline
character. The Write method writes an item of data to a text file without writing
a newline character.

 5.28 File.OpenText

 5.29 A file’s read position marks the location of the next item that will be read from
the file. When an input file is opened, its read position is initially set to the first
item in the file.

 5.30 With the StreamReader class’s ReadLine method

 5.31 With the StreamReader or StreamWriter class’s Close method

 5.32 Loop B is written in the correct form.

 5.33 Most users of Windows are accustomed to using a dialog box to browse their disk
for a file to open or for a location to save a file. An Open and/or Save As dialog
box allows the user of your application to easily specify a file’s name and location.

 5.34 InitialDirectory : Specifies the directory to be initially displayed

 Title : Specifies the text displayed in the title bar

 Filename : When the user selects a file with the Open dialog box, the file’s path
and filename are stored in the control’s Filename property. When the user
specifies a location and filename with the Save As dialog box, the file’s path and
filename are stored in the control’s Filename property.

 5.35 If you call the Next method with no arguments, the method returns an integer
that is somewhere between 0 and 2,147,483,647. Alternatively, you can pass an
argument that specifies an upper limit to the generated number’s range.

 5.36 A random floating-point number between 0.0 and 1.0 (not including 1.0)

 5.37 Random rand = new Random();
 randomNumber = rand.Next(100) + 1;

 5.38 Random rand = new Random();
 randomNumber = rand.Next(300) + 100;

 5.39 The system time, retrieved from the computer’s internal clock

 5.40 It will always generate the same series of random numbers.

 5.41 When a form is loaded into memory, before it is displayed

 5.42 Double-click any area of the form in the Designer window, where there is no
other control.

744 Appendix D Answers to Checkpoint Questions

 Chapter 6
 6.1 A void method simply executes a group of statements and then terminates.

A value-returning method returns a value to the statement that called it.

 6.2 A header and a body

 6.3 You are causing the method to execute.

 6.4 Control of the program goes back to the part of the program that called the
method.

 6.5 • The overall task that the program is to perform is broken down into a series
of subtasks.

 • Each subtask is examined to determine whether it can be further broken
down into more subtasks. This step is repeated until no more subtasks can be
identified.

 • Once all the subtasks have been identified, they are written in code.

 6.6 A method uses arguments to pass data into the method using parameter
variables.

 6.7 Assignment compatibility applies to argument passing in the following ways:

 • You can pass only string arguments into string parameters.
 • You can pass int arguments into int parameters, but you cannot pass

 double or decimal arguments into int parameters.
 • You can pass either double or int arguments into double parameters, but

you cannot pass decimal values into double parameters.
 • You can pass either decimal or int arguments to decimal parameters, but

you cannot pass double arguments into decimal parameters.

 6.8 The scope of a parameter variable is limited to the method in which it
is declared.

 6.9 A named argument is a parameter variable with a default value.

 6.10 A copy is passed into the parameter variable, and it does not modify the original
argument.

 6.11 A reference parameter is a reference to the argument it was passed. Any changes
done to the parameter are also done to the argument.

 6.12 The calling method can communicate with the called method by passing
an argument.

 The called method can communicate with the calling method by modifying the
value of the argument via the reference parameter.

 6.13 The ref keyword

 6.14 An output parameter works like a reference parameter, but the value passed
into it can be uninitialized and it must be set by the method before the method
terminates.

 6.15 A value-returning method returns a value to the caller. A value-returning method
can be used to perform a calculation and then return the result.

 6.16 The Boolean values true or false

 6.17 Yes. A method can be written to return any type of data.

 Appendix D Answers to Checkpoint Questions 745

 Chapter 7
 7.1 Value types and reference types

 7.2 When you are working with a value type, you are using a variable that holds a
piece of data, but when you are working with a reference type, you are using
two things:

 • An object that is created in memory
 • A variable that references the object

 7.3 The object is like the kite, and the variable that references the object is like the
spool of string.

 7.4 Reference type

 7.5 decimal[] monthlyPay;

 7.6 monthlyPay = new decimal[12];

 7.7 const int SIZE = 12;
 double[] monthlyPay = new decimal[SIZE];

 7.8 string [] fullName = { "John", "Quincy", "Adams" };

 7.9 In any of the following circumstances, you should use a for loop to process the
array:

 • To change the contents of an array element
 • To work through the array elements in reverse order
 • To access some of but not all the array elements
 • To simultaneously work with two or more arrays within the loop

 7.10 When an object is no longer referenced, it becomes eligible for garbage
collection.

 7.11 A reference to the array

 7.12 Because arrays are always passed by reference, a method that receives an array as
an argument has access to the actual array.

 7.13 The receiving method not only has access to the array, but it also has access to
the reference variable that was used to pass the array.

 7.14 A method of locating a specific item in a larger collection of data

 7.15 A technique for scanning through an array and rearranging its contents in some
specific order

 7.16 The values in the array must be sorted in ascending order.

 7.17 200 rows and 100 columns

 7.18 values[199][99] = 50;

 7.19 int[,] values = { { 12, 24, 32, 21, 42 },
 { 99, 8, 68, 32, 92 },
 { 95, 34, 21, 11, 7 } };

 7.20 In a traditional two-dimensional array, each row has the same number of
columns.

 7.21 int[][] values = new int [3][];
 values[0] = new int[3] { 2, 4, 6 };
 values[1] = new int[4] { 3, 5, 7, 9 };
 values[2] = new int[5] { 5, 9, 11, 17, 21 };

746 Appendix D Answers to Checkpoint Questions

 7.22 List<double> valueList = new List<double>() { 1.0, 2.0, 3.0 };

 7.23 valueList.Add(4.0);

 7.24 valueList.Clear();

 7.25 Yes. You can use the subscript notation of a List to adapt any of the array-
processing algorithms so they work with a List .

 Chapter 8
 8.1 char letter = 'A';

 8.2 MessageBox.Show(letterGrade.ToString());

 8.3 char lastLetter = alphabet[alphabet.Length-1];

 8.4 foreach (char character in serialNumber)
 {
 MessageBox.Show(character.ToString());
 }

 8.5 if (char.IsPunctuation(sentence[sentence.Length-1]))

 8.6 if (char.IsUpper(sentence, 0))

 8.7 uppercase = char.ToUpper(lowercase);

 8.8 If the argument is already lowercase, the ToLower method returns it
unchanged.

 8.9 found = dessert.StartsWith("Strawberry");

 8.10 If the substring is not found, the methods will return the integer value −1 .

 8.11 city.Trim();

 8.12 vegetable.ToLower();

 8.13 char[] delimiters = { ',', ';' };

 8.14 A comma is used as the delimiter for files with the .csv extension.

 8.15 Nothing

 8.16 The keyword public is an access modifier that specifies the field can be directly
accessed by statements outside the structure.

 8.17 When you create an instance of a structure, you are creating an object.

 8.18 The new operator creates an instance of the structure and initializes the object’s
fields with the default value of 0 or null if any of the fields are reference
variables.

 8.19 Once you have created an instance of a structure, you can access its fields using
the dot operator.

 8.20 motor2 = motor1;

 8.21 Engine [] motors = new Engine[100];

 8.22 When the items in two data structures are related by their indexes

 8.23 a. Flower
 b. 1, 2, 3
 c. Flower flora = Flower.Petunia;

 Appendix D Answers to Checkpoint Questions 747

 8.24 The ToString method

 8.25 You can convert an enumerator to its underlying integer type by using a cast
operator.

 8.26 By getting the value of the control’s Images.Count property

 8.27 You will find the ImageList control in the Components section of the Toolbox.

 8.28 • All the images stored in an ImageList control should be the same size.
 • The images stored in an ImageList control can be no more than 256 by

256 pixels in size.
 • All the images stored in an ImageList control should be in the same format

(.bmp, .jpg, etc.).

 8.29 In the Properties window, click the ellipses button that appears next to the
Images property. Click the Add button, and an Open dialog box will appear.
Use the dialog box to locate and select the image file that you want to add to the
ImageList control.

 8.30 If you know the index value for a particular image, you can retrieve that image
from the ImageList control and display it in a PictureBox.

 Chapter 9
 9.1 A class is code that describes a particular type of object. You can think of a class

as a code blueprint that can be used to create a particular type of object.

 9.2 The first line of a class declaration is known as the class header. It starts with the
word class , followed by the name of the class. Following the class header is an
opening curly brace. Next, you write the class’s member declarations. These are
the statements that define the class’s fields, properties, and methods. A closing
curly brace appears at the end of the class declaration.

 9.3 A constructor is a method that is automatically executed when an object is
created. In most cases, a constructor is used to initialize an object’s fields with
starting values.

 9.4 1. With the project open in Visual Studio, click PROJECT on the menu bar and
then select Add Class ….

 2. Select Class as the type of item in the Add New Item window and then change
the name that appears in the Name text box to match the name of the class
that you are creating.

 3. Click the Add button.

 9.5 When you pass an object that is an instance of a class as an argument, the thing
that is passed into the parameter variable is a reference to the object.

 9.6 A property is a special type of class member that allows an object to store and
retrieve a piece of data.

 9.7 Properties can be passed only by value.

 9.8 If you need to make a property read only, you simply do not write a set accessor
for the property.

 9.9 An error will occur if you try to assign a value to a read-only property.

 9.10 When field’s value is tightly dependent on other data and that field is not
updated when the other data is changed, it is said that the field has become stale.

 9.11 A parameterized constructor is a constructor that accepts arguments.

748 Appendix D Answers to Checkpoint Questions

 9.12 When a method is overloaded, it means that multiple methods in the same class
have the same name, but use different types of parameters.

 9.13 Binding

 9.14 If you write a class with no constructor whatsoever, the compiler will provide a
default constructor.

 9.15 The default constructor is a parameterless constructor (it accepts no arguments),
and it initializes the object’s fields with the value 0. (If any fields are reference
variables, they are initialized with the special value null .)

 9.16 When you create an array of a class type, each element of the array is a reference
variable. By default, each element is initialized with the value null .

 9.17 You can initialize the array element one element at a time, in a loop, or in the
declaration statement of the array.

 9.18 By writing the class type inside the angled brackets, <>, immediately after the
word List

 9.19 A written description of the real-world objects, parties, and major events related
to the problem.

 9.20 If you adequately understand the nature of the problem you are trying to solve,
you can write a description of the problem domain yourself. If you do not
thoroughly understand the nature of the problem, you should have an expert
write the description for you.

 9.21 First, identify the nouns, pronouns, and pronoun phrases in the problem
domain description. Then, refine the list to eliminate duplicates, items that
you do not need to be concerned with in the problem, items that represent
objects instead of classes, and items that represent simple values that can be
stored in variables.

 9.22 The things that the class is responsible for knowing and the actions that the class
is responsible for doing

 9.23 In the context of this problem, what must the class know? What must the class do?

 9.24 No

 9.25 Follow these steps to rename a form:
 1. Right-click the form’s name in the Solution Explorer.
 2. Select Rename from the pop-up menu.
 3. In the Solution Explorer , the form’s filename should become highlighted. Type

the new name, and press Enter.
 4. When the dialog box appears, click Yes to rename the form.

 9.26 Follow these steps to add a new form to a project:
 1. Click PROJECT on the Visual Studio menu bar and then select Add Windows

Form… from the Project menu. The Add New Item window should appear.
 2. Near the bottom of the Add New Item window, a Name text box appears

where you can specify the new form’s file name. Initially, a default name will
appear here. Change the default name that is displayed in the Name text box
to a more descriptive name.

 3. Click the Add button.

 9.27 If you wish to remove a form from a project and delete its file from the disk,
follow these steps:
 1. Right-click the form’s entry in the Solution Explorer window.
 2. On the pop-up menu, click Delete .

 Appendix D Answers to Checkpoint Questions 749

 9.28 In your application’s code, the first step in displaying a form is to create an
instance of the form’s class.

 9.29 When the user closes the form, control of the application returns to the point
where the ShowDialog method was called, and execution resumes.

 Chapter 10
 10.1 The base class is the general class, and the specialized class is the derived class.

 10.2 One object is a specialized version of the other object.

 10.3 It inherits all the base class’s members.

 10.4 Bird is the base class and Canary is the derived class.

 10.5 Summary of constructor issues in inheritance.

 • When you create an instance of a derived class, the base class constructor is
executed first, and then the derived class constructor is executed.

 • When you create an instance of a derived class, by default the base class’s
parameterless constructor is automatically executed.

 • If you want a parameterized constructor in the base class to execute, you must
explicitly call it from the derived class’s constructor. You do this by writing the
notation : base(parameterList) in the derived class’s constructor header.

 • If the base class does not have a parameterless constructor, the derived class
constructor must use the notation : base(parameterList) to call one of the
base class’s parameterized constructors.

 10.6 I’m a potato.

 I’m a potato.

 10.7 No. An object of a base class is not a specialized version of a derived class.
Although the statement “a dog is an animal” is true, the statement “an animal is
a dog” is not true. This is because all dogs are animals, but not all animals
are dogs.

 10.8 An abstract class is meant to be a base class and never instantiated. It serves as a
starting point, providing some members for its derived classes.

 10.9 It cannot be instantiated.

 10.10 It must override the abstract method.

 10.11 It must be overridden in a derived class.

 10.12 Simply leave out the set accessor.

 Chapter 11
 11.1 A database management system is software that is specifically designed to

store, retrieve, and manipulate large amounts of data in an organized and
efficient manner.

 11.2 Most businesses use a DBMS instead of creating their own text files because a
DBMS is specifically designed to store, retrieve, and manipulate large amounts of
data in an organized and efficient manner. When traditional files contain large
amounts of data, simple operations such as searching, inserting, and deleting
become cumbersome and inefficient.

750 Appendix D Answers to Checkpoint Questions

 11.3 The programmer does not need to know specific details about the physical
structure of the data because the DBMS handles the actual reading of, writing
of, and searching for data. The programmer needs to know only how to interact
with the DBMS.

 11.4 a. A database is the data that is stored in a database management system and
organized into one or more tables.

 b. A table holds a collection of related data that is organized into rows and
columns.

 c. A row is a complete set of information about a single item in a table of a
database.

 d. A column holds an individual piece of information about the item in a row of
a table in a database.

 11.5 1. c
 2. d
 3. f
 4. b
 5. a
 6. e

 11.6 A primary key serves as a unique value that can be used to identify a specific
row.

 11.7 A column that contains unique values that are generated by the DBMS

 11.8 Leaving the column empty will result in a error.

 11.9 Application
 Binding source
 Dataset
 Table adapter
 Data source

 11.10 A table adapter connects to a data source and can retrieve data from a table in a
data source. It can also update the table in the data source.

 11.11 A binding source is a component that can connect user interface controls directly
to a dataset.

 11.12 A user interface control that is connected to a data source is called a data-bound
control.

 11.13 Table adapter
 Adapter manager
 Data set
 Binding source

 11.14 The Fill method causes the table adapter to load data from the database into
the dataset.

 11.15 Visual Studio provides a Data Sources window that lets you see all the data
sources in the current project. Click PROJECT on the Visual Studio menu bar
to display the Data Sources window.

 11.16 Create a Details view to display on a single row of a database.

 11.17 Dragging a table from the Data Sources window onto the form creates a
DataGridView control (by default), complete with a navigation bar, on the form.

 11.18 The project’s output folder is the bin \ Debug folder.

 Appendix D Answers to Checkpoint Questions 751

 11.19 When you click the smart tag, a tasks panel will pop up, giving you a number of
options that you can perform with the control.

 11.20 The type of control to which a column is automatically bound is determined by
the column’s data type.

 11.21 To bind a ListBox control to a column, you must set two of the control’s
properties: DataSource and DisplayMember.

 11.22 The table adapter’s Fill method

 11.23 You use the Select statement to retrieve the rows in a table.

 11.24 Queries

 11.25 In SQL, the equal to operator is one equal sign, not two equal signs, and the not
equal to operator is <> .

 11.26 If you need to include a single quote as part of a string, simply write two single
quotes in its place.

 11.27 The Like operator can be used to search for a substring in a column.

 11.28 Unlike the % character, the underscore represents a single character.

 11.29 The Order By clause

 11.30 The @ symbol

This page intentionally left blank

753

 Index

 Symbols
 & (ampersand), 181
 && (AND operator)

 defined, 223
 example of, 223
 truth table for, 224

 = (assignment operator), 85
 $ (dollar sign), 151
 ! (NOT operator)

 defined, 223 , 225
 example of, 225
 truth table for, 225

 | | (OR operator)
 defined, 223 , 224
 example of, 224
 truth table for, 224

 ; (semicolon), 74
 . (period) delimiter, 493
 - = operator, 142
 /= operator, 142
 / (division) operator, 138
 - (subtraction) operator, 138
 @ (at symbol) delimiter, 493
 ! = operator, 201
 % = operator, 142
 * = operator, 142
 + = operator, 142
 = operator, 502
 = = operator, 199 , 200 – 201 , 229
 < = operator, 200
 > = operator, 200
 + (addition) operator

 defined, 138
 enum variable, 517
 implicit string conversion with, 147
 with string and enum variable, 517

 % (modulus) operator, 138 , 139
 * (multiplication) operator, 138

 A
 Abstract classes

 defined, 621 – 622
 example, 622
 general format, 622
 properties, 622
 regular classes vs. 622
 tutorial, 623 – 627

 Abstract keyword, 622
 Abstract methods, 622
 Abstract properties, 622
 Accept buttons, 181
 AcceptButton property, 181

 Access keys
 assigning to buttons, 180 – 181
 case sensitivity, 181
 defined, 180
 same assignment, to multiple

 buttons, 181
 Access modifiers

 defined, 168
 private, 168
 public, 341

 Accessors
 defined, 547
 writing, 549

 Account Simulator application
 BankAccount class

 BankAccount.cs file code, 558 – 559
 defined, 556
 form, 556
 Form1 code, 559 – 560

 Actual arguments, 352
 Actual parameters, 352
 Ada, 15
 Add Connection dialog box (Visual

Studio), 659 – 660
 Add method

 for adding objects to Lists, 563 – 564
 for adding structure objects to

 Lists, 505 – 506
 for adding to Lists, 447

 Add New Item window illustrated,
 540 – 541

 opening, 540
 Phonebook application, 639

 Add Two Numbers application,
 235 – 236

 Algorithms
 array, 414 – 428
 binary search, 434 – 436
 defined, 25
 flowchart symbols, 26
 selection sort, 429 – 434
 sequential search, 450 – 451

 Alignment
 if-else-if statement, 222
 of nested decision structures,

 217 – 218
 Alphabetical button (Properties

 window), 57
 American Standard Code for Information

Interchange (ASCII)
 defined, 10

 Ampersand (&), 181

 And operator (SQL), 681
 AND operator (&&)

 defined, 223
 example of, 223
 truth table for, 224

 Angle brackets (<>), 447
 Animal class, 612 – 617
 Appending data

 code, 301
 to existing files, 301 – 302
 illustrated, 302
 tutorial, 302 – 303

 Application software, 6
 Applications

 Account Simulator, 556 – 560
 Add Two Numbers, 235 – 236
 Argument Demo, 350 – 351
 Array Argument, 408 – 409
 binding source, 638
 Birth Date String, 128 – 131
 Car Demo, 597 – 600
 Car List, 506 – 508
 Car Truck SUV Demo, 601 – 603
 Card Flip, 100 – 103
 Cards, 352 – 355
 CD Account Test, 604 – 609
 Cell Phone Inventory, 564 – 567
 Cell Phone Test, 550 – 554
 Change Array 1 , 411 – 412
 Change Array 2 , 412 – 413
 Change Counter, 171 – 175
 CheckBox, 244 – 245
 Coin Toss, 325 – 327 , 539 , 542 – 546
 Colonies, 414 – 416
 Color Spectrum, 517 – 519
 Color Theme, 246 – 248
 Computer Science Student, 623 ,

 625 – 626
 CSV Reader, 494 – 495 , 497
 Cups To Ounces, 372 – 374
 data source, 640
 DBMS interaction with, 636
 Display Elements, 395 – 396
 Ending Balance, 273 – 279
 ErrorProvider Demo, 719 – 720
 Field Demo, 169 – 170
 File To Array, 405 – 407
 Flags, 96 – 99
 Friend File, 297 – 303
 Fuel Economy, 148 – 151 , 237 – 239
 Full Name, 378 – 380
 Grader, 218 – 220

754 Index

 Applications (continued)
 Grader 2 , 221 – 222
 HScrollBar Demo, 715 – 716
 Language Translator, 88 – 90
 Lights, 345 – 348
 Load Event, 329 – 331
 Loan Qualifier, 214 – 217
 Lottery Numbers, 399 – 401
 Max, 355 – 356
 Multiform Products, 672 , 676 , 682
 Name List, 267 – 268
 North America, 363 – 367
 Number List, 268
 Numeric Data, 307 – 309
 Partially Filled Array, 422 – 424
 Pass By Ref, 361 – 362
 Pass By Value , 358 – 359
 Password Validation, 471 – 474
 Pay and Bonus, 375 – 378
 Payroll with Overtime, 208 – 211
 Phone Book, 647 – 648 , 654 – 655 , 664
 Phonebook, 509 – 513
 Polymorphism, 616 – 621
 Presidential Trivia, 86
 Product Lookup, 669 – 671
 Product Queries, 684 – 691
 Products, 672 – 677
 RadioButton, 243 – 244
 Random Card, 524 – 526
 Sales Price Calculator, 154 – 157
 Seating Chart, 439 – 443
 Secret Word, 229 – 230
 Selected Text Demo, 722 – 723
 Selection Sort, 432 – 434
 Simple Method, 343 – 344
 South America, 310 – 313
 Speed Converter, 286 – 289
 Squares, 283 – 284
 Sum, 369 – 371
 TabControl Demo, 717
 table adapter, 638
 Telephone Format, 484 – 487
 Telephone Unformat, 488 – 491
 Test Average, 162 – 166 , 424 – 428
 Test Score Average, 202 – 206
 Test Score List, 452 – 456
 Time Zone, 253 – 256
 Total Sales, 314 – 316
 WebBrowser Demo, 718 – 719

 Argument Demo application, 350 – 351
 Arguments

 actual, 352
 default, 357 – 358
 defined, 144 , 349 , 352
 formal, 352
 named constants, 357
 parameter data type compatibility, 355
 passing, 349 – 360
 passing arrays as, 407 – 413
 passing by reference, 360 – 367
 passing variables as, 351

 Array Argument application, 408 – 409
 Array elements

 accessing in two-dimensional arrays,
 438 – 439

 default values, 394 – 395
 defined, 394
 initializing in declaration statement, 563
 null value, 394 , 562
 stepping through with enum

 variable, 521
 subscripts, 394 – 398
 swapping, 431 – 434
 two-dimensional arrays, summing, 443
 working with, 395 – 397

 Array To File project, 404 – 405
 Arrays

 advanced search algorithms, 429 – 436
 algorithms, 414 – 428
 binary search algorithm, 434 – 436
 of class type objects, 562 – 563
 comparing, 417 – 418
 contents, writing to file, 404 – 405
 copying, 416 – 417
 declaring, 394
 defined, 392 , 393 , 401
 files and, 404 – 407
 foreach loops with, 401 – 402
 initialization, 397
 initialization list, 397
 jagged, 445 – 446
 Length property, 398 – 399
 List objects vs., 446
 for listing random lottery numbers,

 399 – 401
 loops for stepping through, 397 – 398
 one-dimensional, 436
 parameters, ref and out with,

 410 – 413
 partially filled, 422 – 424
 processing, 424 – 428
 processing items in, 392
 as reference type, 393
 reference variables, reassigning,

 402 – 403
 selected sort algorithm, 429 – 434
 size declarator, 393 , 394
 storing file values in, 405 – 407
 two-dimensional, 436 – 444
 values, averaging, 418 – 419
 values, highest and lowest, 419 – 421
 values, totaling, 418

 ASCII. See American Standard Code
for Information Interchange
(ASCII)

 Assembler, 14
 Assembly language, 13 – 14
 Assignment, one structure to another,

 502
 Assignment compatibility

 decimal variables, 136
 double variables, 136

 int variables, 135 – 136
 variables, 126 – 127

 Assignment operators
 combined, 142 – 143
 defined, 85

 Assignment statement, 85
 Auto Hide, 34 – 35
 Automobile class, 595 – 597 , 600 – 601
 AutoPopDelay property, 712
 AutoSize property

 as Boolean property, 83
 defined, 83
 illustrated, 83 , 84
 Label controls, 83 – 84

 Avg function (SQL), 692

 B
 BackColor property, 182 , 183
 BackgroundImage property, 183
 BackgroundImageLayout property,

 183 – 184
 Backing fields, 547 – 548 , 555 , 596 ,

 600 – 601 , 605 , 612 – 614
 BankAccount class, 556 – 558 ,

 560 – 561
 Base classes. See also Inheritance;

 Constructors
 defined, 594
 “is a” relationship, 593 – 594
 methods, derived class methods

overriding, 615
 parameterized constructors, 610 – 611
 parameters, passing objects to, 616
 reference variables, 615

 Base keyword, 611
 BASIC, 15
 Binary digits. See Bits (binary digits)
 Binary files, 293
 Binary numbering system, 8 – 9
 Binary search algorithm

 Arrays defined, 434
 method performing, 435 – 436
 pseudocode, 436
 variables to mark positions, 435

 Binary Search application, 436
 BinarySearch method, 435 – 436
 Binding, 561
 Binding source, 638
 Birth Date String application, 128 – 131

 control property settings, 129
 form, 128
 Form1 code, 130 – 131
 illustrated, 130

 bit data type (SQL), 636
 Bits (binary digits)

 defined, 7
 pattern illustrations, 7 , 9
 values of, 8

 Blank lines
 use of, 104 , 106

 Block comment, 105

 Index 755

 Body, loop
 for loop, 282 – 283
 statement execution, 270

 Body, method
 defined, 341
 statements, 342

 bool data type, 709
 bool variable, 228
 Boolean

 AutoSize property as, 83
 Visible property as, 99 , 100

 Boolean expressions
 % operator in, 374
 compound, 226
 defined, 199
 if-else statement and, 207
 and relational operators, 199 – 201
 using logical operators, 223

 Boolean methods. See also Methods
 defined, 374
 to modularized input validation,

 375 – 378
 return values, 374

 BorderStyle property, 82 – 83
 defined, 82
 examples, 82
 Panel control, 186
 PictureBox control, 95
 selections, 83

 Bounding box, 54
 Braces, 69 – 70
 Break mode, 158
 Button controls

 Click event handler, 73
 creation of, 58 , 65
 default names, 59
 moving, 65
 multiple, with event handlers, 75 – 76
 Text property of, changing, 59 – 60 , 65

 Buttons
 access keys, assigning, 180 – 181
 defined, 22
 radio, 241 – 244

 byte data type, 709
 Bytes

 defined, 7
 illustrated, 7
 for large numbers, 9

 C
 C #

 code, 67 – 77
 data type, 709
 defined, 15
 development settings, selecting, 30
 identifiers, 61 – 62
 introduction, 53 – 117
 keywords, 16
 .NET Framework and, 22 – 23

 C language, 15
 C ++ language, 15

 Calculations, performing, 138 – 143
 Calling methods

 method execution and, 343
 operations behind the scenes, 344
 process, 343 – 344
 tutorial, 345 – 348
 value-returning, 341
 void, 341

 CamelCase naming convention, 62
 CancelButton property, 181
 Car class, 574 , 595 – 598
 Car Demo application

 defined, 598
 form, 598
 Form1 code, 598 – 600
 Form1 form, 598

 Car List application
 data display, 506 – 507
 defined, 506
 form, 506
 Form1 code, 507 – 508
 running, 506

 Car Truck SUV Demo application
 defined, 601
 Form1 code, 601 – 602
 Form1 form, 601
 message boxes displayed by, 603

 Card Flip application
 Control property settings, 102
 creating, 100 – 103
 form, 101
 Form1 code, 102 – 103
 illustrated, 101

 Cards application
 defined, 352
 form, 352
 Form1 code, 353 – 355

 Cast operators
 applied to variables, 137
 defined, 137
 explicitly converting values with,

 136 – 137
 in math expressions, 141
 usage examples of, 137

 Cat class, 614 – 615
 Catch blocks, 158
 Catch clause, 158
 Categorized button (Properties

 window), 57
 CD (compact disc), 5
 CD Account Test application

 CDAccount.cs file code, 607
 defined, 604 – 605
 form, 604 – 605
 Form1 code, 607 – 609
 SavingsAccount and CDAccount

classes, 603 – 606
 SavingsAccount.cs file code, 606 – 607
 testing classes, 603 – 604

 CDAccount class, 603 – 606
 Cell Phone Inventory application

 completing, 564 – 567
 defined, 564
 form, 564
 Form1 code, 566 – 567

 Cell Phone Test application
 CellPhone class, 551 – 554
 CellPhone.cs file, 552 – 553
 defined, 551
 form, 551 – 552
 Form1 code, 553 – 554

 Central processing units (CPU)
 as computer’s brain, 11
 defined, 3
 in ENIAC computer, 3 – 4
 fetch-decode-execute cycle, 13
 instruction execution, 12 – 13
 instruction set, 12
 manufacturers, 12
 microprocessors, 4
 operations, 11 – 12

 Change Array 1 application
 ChangeArray method, 411 – 412
 form, 410
 goButton_Click event handler, 411

 Change Array 2 application, 412 – 413
 Change Counter application

 control property settings, 172
 creating, 171 – 175
 form, 171
 Form1 code, 174 – 175

 ChangeArray method, 411 – 412
 ChangeMe method, 359
 char data type

 declaring, 467
 defined, 466 , 709
 testing methods, 467 – 470

 Character literals, 467
 Character testing methods

 char.IsDigit, 468
 char.IsLetter, 468
 char.IsLetterOrDigit, 468
 char.IsLower, 469
 char.IsPunctuation, 469
 char.IsUpper, 470
 char.IsWhiteSpace, 470
 char.ToLower, 470
 char.ToUpper, 470

 Characters
 case conversion, 474
 position methods, 476
 retrieving, in a string, 466 – 467
 storage of, 9 – 10
 Unicode representation, 230
 white-space, 470

 char.IsDigit, 468
 char.IsLetter, 468
 char.IsLetterOrDigit, 468
 char.IsLower, 469
 char.IsPunctuation, 469
 char.IsUpper, 470
 char.IsWhiteSpace, 470

756 Index

 char.ToLower, 470
 char.ToUpper, 470
 Check boxes

 creation of, 244 – 245
 defined, 244
 illustrated, 244

 CheckBox application, 244 – 245
 CheckBox control

 Checked property, 244
 CheckedChanged event handler, 245
 defined, 244
 Text property, 244
 working with in code, 244 – 245

 Checked menu items
 defined, 724
 using, 727 – 728

 Checked property
 CheckBox control, 244
 menu items, 727 – 728
 RadioButton controls, 242 – 243

 CheckedChanged event, 245
 CheckOnClick property, 727
 Circle class, 554 – 555
 Class declarations

 format of, 539
 where to write, 539 – 542
 writing, 536 – 537

 Class instances
 defined, 536
 derived class, 594 – 597
 form, creating, 581 – 583

 Class type objects
 arrays of, 562 – 563
 Lists of, 563 – 564
 storing, 562 – 567

 Classes
 abstract, 621 – 622
 Animal, 612 – 614
 Automobile, 595 – 597
 base, 594 – 596
 Car, 574
 CDAccount, 603 – 606
 Coin, 537 – 539
 creating, 536 – 38
 Customer, 573 – 574
 defined, 22 , 69
 derived, 594 – 597
 Dog, 612 – 614
 introduction to, 535 – 536
 Math, 175 – 177
 naming, 537
 as object blueprint, 535 – 536
 potential, list of, 569 – 572
 Random, 323 , 391 – 392
 Rectangle, 609 – 610
 as reference types, 539
 responsibilities, 568 – 576
 responsibilities in problems, 568 – 571
 SavingsAccount, 603 – 606
 ServiceQuote, 575 – 576
 SportUtility, 595 , 600 – 603

 StreamReader, 294 , 304 – 313
 StreamWriter, 294 , 304
 Truck, 595 , 600 – 602
 writing, 23

 Clear method, 450
 Click event handler

 for Button control, 73
 creation of, 76
 for menu system, 729
 PictureBox control, 95
 writing, 75

 Clickable images, 95 – 96
 Closing files, 292
 COBOL, 14 , 15
 Code. See Source code
 Code editor

 class file display in, 541
 defined, 67
 detaching, 71
 with empty event handler, 78
 IntelliSense, 91 – 92
 opening Form1.cs in, 68
 returning to docked position, 71
 switching between Designer and,

 70 – 71
 Code window, 131
 Coin class

 creating and using tutorial, 542 – 544
 defined, 538
 source code, 540

 Coin Toss application
 Coin.cs, 543
 Coin.cs code, 544 – 545
 completing, 544 – 545
 control property settings, 325
 example output, 544
 form, 325
 Form1 code, 327 , 545
 repositioned controls, 326

 Colonies application
 Click event handler, 416
 defined, 414
 form, 414
 SequentialSearch method, 414 – 415

 Color Spectrum application
 completing, 517 – 519
 defined, 517
 form, 518
 Form1 code, 518 – 519

 Color Theme application
 control property settings, 246
 creating, 246 – 248
 form, 246
 Form1 code, 247 – 248

 Colors
 default, 183
 setting in code, 182 – 183

 Column Properties window, 642
 Columns. See also Tables

 binding with ListBox controls, 669
 data types, 635 – 636

 identity, 637
 null values, 637
 selecting data-bound control for, 648
 two-dimensional arrays, summing, 444

 Combined assignment operators,
 142 – 143

 Combo boxes
 defined, 712
 drop-down, 713
 drop-down list, 713
 getting user input from, 714
 list boxes vs., 713 , 714
 simple, 712 , 713
 styles of, 713 – 714

 Comma separated value (CSV) file
format, 495

 Command line interface
 defined, 18
 illustrated, 19

 Comments
 block, 105
 defined, 104
 documentation, 105 – 106
 line, 104 – 105
 types of, 104

 Compact disc (CD), 5
 Comparing arrays, 417 – 418
 Comparing structure objects, 504
 Compilers, 16 – 17
 Computer programming, 1
 Computer Science Student application

 completing, 623 – 627
 CompSciStudent.cs file code, 625 – 626
 defined, 623
 form, 623
 Form1 code, 626 – 627
 Student.cs file code, 625 – 626

 Computers
 CPU, 3 – 4
 data storage, 7 – 11
 ENIAC, 3 – 4
 hardware, 2 – 5
 input devices, 5
 main memory, 4
 output devices, 5
 secondary storage devices, 4 – 5
 software, 1 , 2 , 6

 Concatenation
 defined, 123
 strings, 123 – 125

 Conditional execution, 198
 Console interface. See Command line

interface
 const keyword, 171
 Constant field

 declaring, 171
 defined, 170
 value, 171

 Constructors
 base class, 609 – 611
 default, 562

 Index 757

 defined, 555
 derived class, 609 – 611
 inheritance and, 611
 overloaded, 561 – 562
 parameterized, 555 – 562

 Contains method, 475
 Control property settings

 Birth Date String application, 129
 Card Flip application, 102
 Change Counter application, 172
 Color Theme application, 246
 Flags application, 97
 Fuel Economy application, 149
 Language Translator application, 89
 Presidential Trivia application, 86
 Sales Price Calculator

application, 155
 Test Average application, 163
 Time Zone application, 254

 Control structures
 defined, 197
 do-while loop, 289 – 291
 for loop, 281 – 289
 while loop, 269 – 272

 Controls
 adding to form, 57 – 59
 Button, 58 – 60
 data-bound, 648 – 649
 DataGridView, 648 – 654
 defined, 22
 deleting, 59
 Details view, 656 – 665
 focus, 177 , 178 , 179 – 180
 GroupBox, 184 – 185
 HScrollBar, 715
 identifiers, 61 – 62
 identifying by names, 55
 ImageList, 522 – 526
 Label, 80 – 90
 ListBox, 251 – 253
 MenuStrip, 724 – 725
 moving, 58 – 59
 Name property, changing, 60 – 61
 naming, 61 – 62
 OpenFileDialog, 317 – 320
 organizing, 184 – 186
 Panel, 186
 PictureBox, 92 – 104
 RadioButton, 242 – 244
 renaming, 60 – 61
 resizing, 58 – 59
 SaveFileDialog, 317 , 320 – 322
 TabControl, 716
 TabPage, 716 – 717
 TextBox, 119 – 121 , 235 – 237
 Toolbox, 57 – 58
 ToolTip, 711 – 712
 VScrollBar, 715
 WebBrowser, 718

 Copying arrays, 416 – 417
 Count property, 447 , 524

 Counter variables
 declaring in initialization

expression, 285
 declaring in update expression, 285
 decrementing, 285 – 286
 defined, 272
 for loops and, 286

 CSV Reader application
 completing, 494 – 498
 defined, 494
 form, 495
 Form1 code, 497 – 498
 Microsoft Excel spreadsheet, 494
 test averages display, 497

 Cups To Ounces application
 defined, 372
 form, 372
 Form1 code, 373 – 374

 Curly braces ({})
 for conditionally executed

 statements, 207
 do-while loops, 290
 for loops, 281 – 282
 in method body, 342
 while loops, 270

 Currency format, 152 , 154 – 157
 Customer class, 573 – 574

 D
 Data-bound controls

 DataGridView, 665 – 667
 defined, 665
 Details view controls, 656 – 664
 on multiple forms, 663 – 668
 placement on forms, 671
 selecting, 659
 using, 664 – 665

 Data source, 638 – 640
 Data Source Configuration Wizard

 data connection selection, 648 , 650
 data source type selection, 647 , 649
 database model selection, 648 , 650
 database objects selection, 650 , 660
 saving connection string, 659 – 660
 window, 640

 Data Sources window, 651 – 652 , 663
 Data storage, 7 – 11

 advanced number, 10
 characters, 9 – 10
 digital data, 10 – 11
 numbers, 8 – 9
 object, 21

 Data types. See also Reference types;
Value types

 argument and parameter compat-
ibility, 375

 bool, 228
 categories, 389
 char, 466
 datetime, 606 , 636
 decimal, 636

 decimal, 134
 defined, 122
 double, 134
 enumerated, 514 – 517
 float, 636
 int, 134 , 636
 Microsoft SQL Server, 636
 mixing, in math expression, 141
 money, 636
 nchar, 636
 numeric, 133 – 134
 nvarchar, 636
 primitive, 122 , 709
 string, 123 , 636

 Database management systems (DBMSs)
 C# application interacting with, 634
 column data types, 635 – 636
 defined, 633
 examples of, 634
 functioning of, 633 – 634
 identity columns, 637
 introduction to, 633 – 634

 Databases
 connecting applications to, 638
 copies at runtime, 665
 creating in Visual Studio, 651 – 652
 defined, 634
 existing, connecting to, 656 – 664
 file location, 647
 model selection, 649
 objects selection, 651
 tables, 635

 DataGridView controls
 auto-generated code, 654
 buttons, disabling, 667
 customizing, 665 – 667
 defined, 648
 placed on form, 653
 smart tag, 665 – 666
 tasks panel, 665 – 666
 tutorial, 648 – 654

 DateTime, 606
 Debugging, source code, 27
 decimal data type, 636

 defined, 134 , 709
 decimal literal, 135
 decimal variables

 arrays of, 393
 assignment compatibility, 136
 defined, 134

 decimal.Parse method, 144 – 145
 decimal.TryParse method, 233
 Decision structure

 combining sequence structures
with, 212

 conditional execution, 198
 defined, 197
 dual-alternative, 206 – 207
 if-else statement, 206 – 211
 if statement, 197 – 206
 multiple-alternative, 248

758 Index

 Decision structure (continued)
nested, 212 – 222
 single-alternative, 198 – 199
 switch statement, 248 – 251

 Decrementing
 counter variables, 285 – 286
 defined, 280
 variables, 280 – 281

 Default arguments
 defined, 357
 use example, 357 – 358
 use guidelines, 358

 Default constructors, 562
 Delimiters

 @ (at symbol), 493
 . (period), 493
 defined, 489

 Derived classes. See also Inheritance
 defined, 594
 “is a” relationship, 593
 methods overriding base class

methods, 590
 polymorphism, 589

 Design time, 76 – 77
 Designer window

 defined, 33 – 34
 displaying, 41
 illustrated, 34
 switching between code editor and,

 70 – 71
 Details view, 656 – 657

 control-type selection, 667 – 669
 creating, 657
 customizing, 667 – 669
 defined, 656 – 657
 illustrated, 657
 Label controls, 657
 placing on form, 664
 tutorial, 657 – 664

 Dialog box, 73 . See also
Message boxes

 Font, 81 , 82
 String Collection Editor, 252

 Digital data, 10 – 11
 Digital versatile disc (DVD), 5
 Direct access files, 293
 Disabled menu items

 defined, 724
 using, 728

 Disk drives
 defined, 4
 external, 4 – 5
 floppy, 5

 Display Elements application,
 395 – 396

 DisplayAuto method, 503
 DisplayList method, 448 – 449
 DisplayMember property, 669
 DisplayNames method, 510 – 513
 DisplayValue method, 349 – 350

 Divide and conquer approach, 339 , 340
 do-while loops

 curly braces, 290
 defined, 289
 general format, 290
 iterations, 290 – 291
 logic, 290
 as posttest loop, 289 , 290

 Documentation (Visual Studio), 41 – 42
 Documentation comments, 105 – 106
 Dollar sign ($), 151
 Dot (.) operator, 493
 double data type

 defined, 134 , 709
 double literal, 135
 double variables

 assignment compatibility, 136
 defined, 134

 double.Parse method, 144
 double.TryParse method, 233 , 234
 Drop-down combo boxes, 713
 Drop-down list combo boxes,

 713 – 714
 Dual-alternative decision structure

 defined, 206
 illustrated, 206
 writing, 207

 DVD (digital versatile disc), 5

 E
 Elements, array

 accessing in two-dimensional arrays,
 438 – 439

 default values, 394 – 395
 defined, 394
 initializing in declaration

statement, 563
 null value, 394 , 562
 stepping through with enum

 variable, 516
 subscripts, 394 – 398
 swapping, 431 – 434
 two-dimensional arrays, summing,

 443
 working with, 395 – 397

 else clause, 207
 alignment of, 218

 End terminal symbol, flowchart, 26
 Ending Balance application

 defined, 273
 enhancing, 276 – 279
 example output, 277
 form, 273
 Form1 code, 274 – 276 , 277 – 279
 loop calculation in, 273 – 276
 modified form, 276

 EndOfStream property, 309
 EndsWith method, 475
 ENIAC computer, 3 – 4
 Enum declarations, 515

 enum variables, 515
 compared with integer values, 520 – 521
 defined, 514
 enumerator comparison, 520 – 521
 integer value, getting, 520
 for stepping through arrays, 521
 ToString method, 517

 Enumerated data types, 515 . See also
Data types

 defined, 514
 multiple, 516

 Enumerators
 compared with integer values,

 520 – 521
 as constants representing integer

 values, 514 – 515
 declaring, 515
 defined, 514 – 515
 enum variable comparison,

 520 – 521
 integer value, getting, 520
 as legal C# identifiers, 515
 specifying integer values for, 520
 ToString method, 517

 Equal to (==) operator, 199 ,
 200 – 201 , 229

 Error List window, 108
 ErrorProvider component, 719 – 720
 ErrorProvider Demo application,

 719 – 720
 Errors

 logic, 27
 off-by-one, 401
 syntax, 17 , 27 , 107 – 108

 Event-driven GUI programs, 20
 Event handler

 CheckedChanged, 245
 Click (See Click event handler)
 code, 73
 code generation illustration, 72
 defined, 71
 for displaying message box, 74
 empty, 78
 statements written inside, 79

 Event handlers
 defined, 71
 Load, 328 – 331
 multiple Button controls with,

 75 – 76
 Exception handler

 defined, 159
 Exception handling, 158 – 162

 default error message, displaying,
 160 – 162

 file-related exceptions, 296
 process, 158 – 159
 tutorial, 162 – 166

 Exception objects
 defined, 160
 properties, 161

 Index 759

 Exceptions
 data conversion, prevention with

 TryParse methods, 232 – 239
 default error message, displaying,

 160 – 162
 defined, 145 , 158
 file-related, 296
 reported, 146 , 159

 Exponential format, 152

 F
 Fetch-decode-execute cycle, 13
 Field Demo application

 form, 169
 Form1 code, 169 – 170

 Fields
 backing, 547 – 548
 constant, 170 – 171
 declarations, 168 , 499 – 500
 defined, 21 , 167
 lifetime of, 170
 precautions, 170
 public, 547 , 549 – 550
 scope of, 167
 stale, 555
 structure, 499 – 500
 variables declaring as, 167 – 175

 File menu, 729
 File objects, 293 – 294
 File To Array application, 405 – 407
 File.AppendText method, 301 , 304
 File.CreateText method, 294 – 295 ,

 301 , 304
 Filename property

 OpenFileDialog control, 319 – 320
 SaveFileDialog control, 321 – 322

 Filenames, 293
 Files

 access methods, 293
 appending data to, 301 – 303
 arrays and, 404 – 407
 binary, 293
 closing, 292
 for data storage, 291 – 317
 defined, 294
 direct access, 293
 exceptions, handling, 296
 input, 292
 opening, 292
 output, 292 , 304
 processing, 292
 program storing data in, 291
 reading data from, 292
 reading values for arrays, 405 – 407
 schema definition, 682
 sequential access, 293
 text, 293 , 300 – 299 , 307 – 309
 types of, 293
 use steps, 292
 writing array contents to, 404 – 405

 writing data to, 292
 writing data to, with StreamWriter

object, 294 – 295
 writing data to, with Write method,

 295 – 296
 Fill method, 671
 Fixed-point scientific format, 152
 Flags, 228
 Flags application

 control property settings, 97
 creation of, 96 – 99
 form, 97
 Form1 code, 98
 running, 99

 Flash memory, 5
 Flip method, 546
 float data type, 636 , 709
 Floating-point notation, 10
 Floppy disk drive, 5
 Flowcharts

 defined, 26
 highest value in array, 420
 illustrated example, 26
 lowest value in array, 421
 nested decision structures, 212 – 213
 symbols, 26
 while loop, 272

 Focus
 changing, with Focus method,

 179 – 180
 controls capable of, 178
 defined, 177

 Focus method, 179 – 180
 Font dialog box, 81 , 82
 Font property, 81 – 82

 attributes, 82
 defined, 81
 illustrated, 81

 for loops. See also Control structures;
Loops

 actions specified by, 281
 body, 282 – 283
 counter variables and, 286
 curly braces, 281 – 282
 defined, 281
 execution, 283
 foreach loops vs., 402
 general format, 281
 initialization, 284
 initialization expression, 282 , 285
 logic, 281 – 282 , 283
 loop header, 281 – 282
 as pretest loops, 284 – 285
 sequence of events in, 283
 test, 284
 test expression, 282
 tutorial, 286 – 289
 update, 284
 update expression, 282 , 285
 using, 286 – 289

 foreach loops
 with arrays, 401 – 402
 components, 402
 defined, 401
 for loops vs., 402
 general format, 401 – 402
 with iteration variables, 401
 for retrieving characters in a string, 465
 for structure arrays, 502

 ForeColor property, 182
 Form1 form

 defined, 576
 renaming, 577 – 578

 Form files, renaming, 577 – 578
 Formal arguments, 352
 Formatting strings

 defined, 151
 list of, 152

 Form1.cs file
 code (example of), 87
 code (organization of), 69
 code (in Visual Studio code editor), 68
 defined, 67
 opening, in code editor, 68

 Forms
 adding controls to, 57 – 59
 adding new, to project, 578 – 579
 adding to projects, 578 – 579
 background images for, 183 – 184
 bounding box, 54
 modal, 585
 modeless, 585
 with multiple Button controls, 75
 removing, 580
 resizing, 54 – 55 , 64
 Size property, 57
 sizing handles, 54
 Solutions Explorer window, 581
 source code, 580
 switching between form code and,

 579 – 580
 tab order, 177 – 179
 Text property, 55 , 56 , 64
 FORTRAN, 15

 Forward slashes (//), 105
 Friend File application

 appending data in, 302 – 303
 defined, 297
 form, 297
 Form1 code, 299 – 300 , 303
 Friend.txt file, 302 – 303
 text file, opening, 298
 text file contents, 299
 writing data to text file, 297 – 300

 Fuel Economy application
 calculating, 237 – 239
 control property settings, 149
 form, 148 , 237
 Form1 code, 150 , 238 – 239
 illustrated, 149
 invalid input, 238

760 Index

 Full Name application
 defined, 378
 example output, 380
 form, 378
 Form1 code, 378 – 379

 G
 Games, 291
 Garbage collection, 403
 Generalization, 593
 Grader application

 form, 219
 nested decision structure, 219
 testing series of conditions, 218 – 220

 Grader2 application, 221 – 222
 Graphical user interfaces (GUIs)

 check boxes, 244 – 245
 combo boxes, 712 – 714
 defined, 18 , 19
 designing, in development cycle, 24 – 25
 event-driven programs, 20
 illustrated, 19
 list boxes, 251 – 256
 objects in, 21
 radio buttons, 241 – 244

 Greater than (>) operator, 199
 Greater than or equal to (> =)

operator, 200
 GroupBox control

 adding controls to, 185
 creating, 185
 defined, 184
 deleting, 185
 illustrated, 184
 moving, 185
 moving existing controls to, 185
 Panel controls vs., 186
 tab order, 185
 TabIndex property, 185
 Text property, 184

 GUIs. See Graphical user interfaces
(GUIs)

 H
 Hardware, 2 – 5

 components, 2
 CPU, 3 – 4
 defined, 2
 illustrated, 3
 input devices, 5
 main memory, 4
 microprocessors, 4
 output devices, 5
 secondary storage devices, 4 – 5

 Header, method
 defined, 341
 parts of, 341 – 342
 semicolon termination and, 342 , 343

 Height property, 610
 Hello World program

 creating GUI for, 63 – 66

 defined, 62
 running, 66 , 80
 writing code for, 77 – 80

 Help menu, 729
 High-level languages. See also specific

Programming languages
 defined, 14
 functioning of, 14 – 15
 statements, 16

 HScrollBar control, 715
 HScrollBar Demo application, 715 – 716

 I
 IDE. See Integrated development

 environment (IDE)
 Identifiers, 61 – 62
 Identity columns, 637
 If-else-if statement

 alignment of, 222
 defined, 220
 indentation of, 222
 logic of, 222
 switch statement as alternative to,

 250 – 251
 If-else statement

 and Boolean expression, 207
 defined, 206
 format of, 207
 parts of, 207

 If statement
 decision structures, 197 – 206
 example of, 201
 format of, 199
 relational operators, 199 – 201
 writing, 201

 Image editors, 291
 Image property

 defined, 93
 Select Resource window, 93

 ImageList controls, 522 – 524
 defined, 522
 illustrated, 522
 Images property, 522
 ImageSize property, 522
 use guidelines, 522

 Images
 background, 183 – 184
 clickable, creation of, 95 – 96

 Images Collection Editor window, 522 – 523
 Images property, 522
 ImageSize property, 522
 Incrementing, 280 – 293
 Indentation

 if-else-if statement, 222
 loop body statements, 270
 of nested decision structures, 217 – 218
 use of, 104 , 106

 IndexOf method, 451 , 476 – 478
 Infinite loops, 279
 Inheritance

 base class, 594

 base class constructor, 609 – 611
 constructor issues in, 611
 defined, 594
 derived class, 594
 derived class constructor, 609 – 611
 example, 594 – 603
 “is a” relationship and, 593 – 603
 notation in a class header, 596

 InitialDelay property, 712
 InitialDirectory property

 OpenFileDialog control, 320
 SaveFileDialog control, 322

 Initialization, variables, 132
 Initialization expression

 declaring counter variable in, 285
 defined, 282

 Initialization list
 defined, 397
 two-dimensional arrays, 439

 Input
 devices, 5
 files, 292
 reading, with TextBox control, 119 – 121

 Input symbols, flowchart, 26
 Input validation

 Boolean methods for modularizing,
 375 – 378

 defined, 240
 example of, 240 – 241

 Insert method, 450 , 482 , 485
 Instance of a structure, 501

 creating, 501 – 502
 creating with new operator, 501 – 502
 illustrated, 501

 Instruction set, CPU, 12
 int data type, 134
 int data type, 636

 defined , 709
 int variables

 arrays of, 393
 assignment compatibility, 135 – 136
 defined, 134

 Integer division, 142
 Integer literal, 135
 Integer values

 enum variable, getting, 519 – 520
 enumerator, getting, 519 – 520
 enumerator, specifying, 520

 Integrated development environment
(IDE), 27

 IntelliSense, 91 – 92
 Interpreter, 17
 int.Parse method

 defined, 367
 statement calling, 368
 uses, 144
 value returned by, 368

 int.TryParse method, 233
 example of, 234

 “Is a” relationship, 593 – 594 , 615
 base and derived classes, 615

 Index 761

 defined, 593
 examples, 593
 inheritance and, 593 – 603
 in reverse and, 615

 IsDigit method, 468
 IsEven method, 375
 IsLetter method, 468
 IsLetterOrDigit method, 468 – 469
 IsLower method, 469
 IsPunctuation method, 469
 IsWhiteSpace method, 470
 Items property, 252
 Items.Add method, 267
 Items.Clear method, 269
 Iteration variables, 401

 J
 Jagged arrays. See also Arrays

 code example, 445
 defined, 445
 illustrated, 445
 Length property, 445

 Java, 15
 JavaScript, 15

 K
 Keywords

 abstract, 622
 base, 611
 C #, 16
 const, 171
 defined, 15
 new, 393
 out, 233 , 363 , 412 , 503
override, 615
 ref, 360 – 361 , 412 , 503
 this, 183
 virtual, 612 , 615

 L
 Label controls, 80 – 90

 AutoSize property, 83 – 84
 BorderStyle property, 82 – 83
 clearing, 88
 creating, 81
 defined, 80
 Details view and, 657 , 667 – 668
 displaying numeric data in, 147
 Font property, 81 – 82
 form with, 80
 illustrated, 81
 output in, code to display, 84 – 88
 Text property, 80 , 87 – 88 , 547
 TextAlign property, 84

 Labels, defined, 21
 Language Translator application

 creation of, 88 – 90
 form, 88
 Form1 code, 89 – 90
 running, 90

 LargeChange property, 715

 LastIndexOf method, 476 , 478 – 481
 Leading spaces, 482
 Leading zeros, 153 – 154
 Length property

 arrays, 398 – 399
 Box class, 610
 defined, 398
 jagged arrays, 446
 Rectangle class, 610

 Less than (<) operator, 200
 Less than or equal to (< =) operator, 200
 Lifetime

 fields, 170
 variables, 126

 Lights application
 creating and calling methods, 345 – 348
 defined, 345
 form, 345
 Form1 code, 347 – 348
 property settings, 345
 repositioned controls, 346

 Like operator, 680 – 681
 Line comment, 104 – 105
 List boxes

 combo boxes vs., 713 , 714
 defined, 251
 introduction, 251 – 256
 manipulating, 267 – 269

 List class, 446
 List objects

 accessing items in, 448
 adding items to, 447
 adding value type objects to, 505
 arrays vs., 446
 of class type objects, 563 – 564
 Count property, 447
 creating, 446 – 447
 defined, 446
 initializing, 447
 inserting items into, 450
 passing by reference, 449
 passing to methods, 448 – 449
 removing items from, 449 – 450
 searching for items in, 450 – 451
 storing structure objects in, 504 – 506

 ListBox controls
 adding items to, 267
 binding columns with, 669
 contents, manipulating, 267 – 269
 DataSource property, 669
 defined, 251
 DisplayMember property, 669
 illustrated, 252
 Items property, 252
 Items.Add method, 267
 Items.Clear method, 269
 Items.Count property, 268 – 269
 SelectedIndex property, 253
 SelectedItem property, 253

 Literals
 character, 466

 decimal, 135
 defined, 75
 double, 135
 integer, 135
 numeric, 134 – 135
 string, 75 , 466

 Load event
 defined, 328
 occurrence of, 329

 Load Event application
 defined, 329
 displaying list of countries, 330
 form, 329
 Form1 code, 330 – 331

 Load event handlers
 creating, 328 – 329
 example, 328
 for setup operations, 329
 tutorial, 329 – 331

 Loan Qualifier application
 completing, 214 – 217
 form, 215
 Form1 code, 216 – 217

 Local variables, 125 – 126
 Logic errors, 27
 Logical operators, 223 – 227

 ! operator, 223 , 225
 && operator, 223 – 224
 | | operator, 223 , 224
 Boolean expressions using, 223
 checking numeric ranges with,

 225 – 227
 defined, 223
 precedence of, 225
 short-circuit evaluation, 224

 long data type, 709
 Loops

 body, 270
 curly braces, 270
 do-while, 289 – 291
 in Ending Balance application,

 273 – 279
 for, 281 – 289
 foreach, 401 – 402
 infinite, 279
 posttest, 289
 pretest, 272 , 284 – 285
 for reading end of files, 310 – 313
 reading files with, 309
 in running total calculation, 313
 for stepping through arrays, 397 – 398
 tutorials, 273 – 279
 while, 269 – 272

 Lottery Numbers application
 arrays for holding list of random

numbers, 399 – 401
 defined, 399
 form, 399
 Form1 code, 400 – 401

 Low-level language, 14
 Lower() function, 679

762 Index

 M
 Machine language, 12
 Main memory, 4
 Math class

 defined, 175
 Math.E named constant, 177
 Math.PI named constant, 177
 methods of, 176
 using, 175 – 177

 Math expression
 cast operators in, 141
 defined, 138
 example of, 138
 grouping with parentheses, 140
 integer division, 142
 mixing data types in, 141
 operands, 139 , 141
 order of operations in, 139 – 140
 variables in, 139

 Math functions (SQL), 692 – 693
 Math operators

 defined, 138
 list of, 138
 to perform calculations, 138 – 143

 Max application, 355 – 356
 Max function, 693
 Maximum property, 715
 Member declarations, 537
 Memory

 flash, 5
 main, 4
 RAM, 4

 Menu bar (Visual Studio), 36
 Menu designer

 defined, 723 , 724
 illustrated, 726
 using, 725 – 726

 Menu names, defined, 724
 Menu systems

 checked menu items, 724 , 727 – 728
 Click event handler for, 729
 commands, 724
 creating, 723 – 729
 defined, 723
 deleting menu items from, 729
 disabled menu items, 724 , 728
 illustrated, 723
 inserting menu items in, 728 – 729
 menu names, 724
 rearranging menu items in, 729
 separator bars, 724 , 728
 shortcut key, 724 , 726 – 727
 standard menu items, 729
 submenus, 724 , 728

 MenuStrip control, 724 – 725
 Message boxes

 Car Truck SUV Demo application, 603
 code for displaying, 74
 defined, 73
 illustrated, 73

 Message property, 161 , 162

 MessageBox.Show method, 74
 Method body

 defined, 341
 statements, 342

 Method call
 defined, 74
 TryParse, 233

 Method headers
 defined, 341
 parts of, 341 – 342 , 369
 semicolon termination and, 342 , 343
 value-returning method, 369
 void method, 341 – 342

 Methods. See also specific methods
 abstract, 621 – 622
 Boolean, 374 – 378
 call (See Method call)
 character case conversion, 474
 character or substring position, 476 – 481
 character testing, 467 – 468 , 467 – 470
 communication between, 360
 creating, 345 – 348
 declaring inside classes, 342
 defined, 21 , 69 , 339
 in divide and conquer, 339 , 340
 execution of, 343
 IndexOf, 476 – 478
 introduction to, 339 – 341
 LastIndexOf, 476 , 478 – 481
 Math class, 176
 for modifying a string, 482 – 484
 name of, 342
 overloaded, 555 – 556
 overriding, 613
 parameter variables, 349
 passing arguments by reference to,

 360 – 367
 passing arguments to, 349 – 360
 passing arrays as arguments to, 407 – 413
 passing List objects to, 448 – 449
 passing objects to, 546
 passing structure objects to, 502 – 503
 Remove, 482
 return type, 561
 returning strings from, 378 – 380
 signature, 561
 Substring, 481
 substring-searching, 475 – 476
 in top-down design, 348
 value-returning, 339 , 341 , 367 – 380
 void, 339 , 341 – 348

 Microprocessors, 4
 Microsoft Developer Network

(MSDN) Library, 42 – 43
 Microsoft SQL Server Express Edition

 data types, 636
 defined, 634

 Min function, 693
 Minimum property, 714
 Mnemonics, 14 , 180
 Modal forms, 585

 Modeless forms
 defined, 585
 execution of statements after

 displaying, 585
 use of, 585

 Modularized programs, 340
 money data type (SQL), 636
 Multiform Practice application

 creating, 581 – 584
 MainForm, 581
 MainForm form code, 584
 MainForm form display, 583
 MainForm.cs, 581
 MessageForm, 582
 MessageForm form code, 583 – 584
 MessageForm form display, 583

 Multiform Products application
 Button controls, 674
 Close button, 675
 creating, 672 – 677
 DataGridView control, 673
 Details view, 675
 DetailsForm code, 675 – 676
 MainForm form code, 676 – 677
 table default view, changing, 674

 Multiple-alternative decision structure
 defined, 248
 illustrated, 249
 switch statement, 248 – 249

 Multiple arguments, passing, 355 – 357
 Mutually exclusive selection, 241

 N
 Name List application, 267 – 268
 Name property

 backing field, 613
 controls, changing, 60 – 61

 Named arguments, 357
 Named constant

 advantage of, 167
 defined, 166 , 167
 Math.E, 177
 Math.PI, 177
 as size declarators, 394
 using, 166 – 167
 writing, 167

 Namespace
 defined, 69
 .NET Framework, 69

 Naming
 controls, 61 – 62
 projects, 40
 solutions, 40

 nchar data type (SQL), 636
 Nested decision structures

 alignment of, 217 – 218
 defined, 212 , 213
 flowcharts, 212 – 213
 illustrated, 214
 indentation of, 217 – 218
 testing series of conditions, 218 – 220

 Index 763

 .NET Framework
 and C #, 22 – 23
 code organization, 69
 defined, 23 , 69
 namespaces, 69

 new keyword, 393
 new operator, 391 – 392 , 539 , 622
 New Project window, 31
 Newline characters, 295
 Next method, 324
 NextDouble method, 324
 North America application

 defined, 363 – 364
 displaying list of countries, 365
 form, 363
 Form1 code, 365 – 367

 Not equal to (! =) operator, 201
 NOT operator (!)

 defined, 223 , 225
 example of, 225
 truth table for, 225

 Nouns
 list, refining, 569 – 572
 plural vs. singular, 571
 in problem domain, 568
 simple value representation, 571

 Null values, 637
 Number List application, 268
 Numbers

 formatted as currency, 152
 formatting, with ToString method,

 151 – 158
 getting, from TextBox, 143 – 146
 storage of, 8 – 9

 Numeric data
 reading from text file, 307 – 309
 writing to text file, 300 – 301

 Numeric Data application, 307 – 309
 Numeric data types, 133 – 134

 defined, 133
 invalid conversions to, 145
 string conversions to, 144 – 145
 types of, 134

 Numeric formatting
 currency format, 152
 examples, 153
 exponential format, 152
 fixed-point format, 152
 leading zeros, 153 – 154
 number format, 152
 percent format, 152 – 153
 precision specification, 153
 rounding, 153
 tutorial, 154 – 157

 Numeric literals
 defined, 134
 using, 134 – 135

 Numeric ranges, checking with logical
operators, 225 – 227

 Numeric values
 displaying, 146 – 147

 inputting/outputting, 143 – 151
 nvarchar data type (SQL), 636

 O
 Objects

 Button, 21
 class type, 562 – 564
 classes as blueprint for, 535 – 536
 creating, 538 – 539
 data storage, 21
 defined, 21
 file, 293 – 294
 Form, 21
 garbage collection, 403
 generalized, 593
 in GUI, 21
 as instance of a structure, 501
 as instance of class, 546
 Label, 21
 List, 446 – 451
 passing, to method, 502 – 503
 Random, 324 , 392
 reference-type, 390
 referenced by variables, 391
 specialized, 593
 StreamReader, 304 – 306
 StreamWriter, 294 – 295
 of string data type, 475 , 482 , 491
 structure, 501 – 506
 TextBox, 22
 visible vs. invisible, 22

 One-dimensional arrays, 436
 Open dialog box

 default display, 320
 defined, 318
 displaying, 318 – 319
 illustrated, 318
 title bar display, 320
 user selection, 319

 OpenFileDialog controls
 in component tray, 319
 defined, 317
 display, 318 – 319
 Filename property, 319 – 320
 InitialDirectory property, 320
 Title property, 320

 Opening files, 292
 Operands, 141

 defined, 139
 Operating system, 6
 Operations, order of, 139 – 140
 Operators. See also specific operators

 assignment, 85
 cast, 136 – 137
 combined assignment, 142 – 143
 defined, 16
 logical, 223 – 227
 relational, 199 – 201

 OR operator (| |)
 defined, 223 , 224
 example of, 224

 truth table for, 224
 Or operator (SQL), 681
 Order of operations, in math

 expression, 139 – 140
 out keyword, 233 , 363 , 412 , 503
 Output

 devices, 5
 Label control, code to display, 84 – 88

 Output files
 defined, 292
 specifying location of, 304

 Output folder, location of, 665
 Output parameters

 defined, 363
 reference parameters vs., 363
 tutorial, 363 – 367
 using, 363 – 367

 Output symbols, flowchart, 26
 Output variable, 233
 Overloaded constructors, 561 – 562
 Overloaded methods, 555 – 556
 override keyword, 615
 Overriding

 method, 613
 properties, 615

 P
 Panel control, 186
 Parallel relationship, 512
 Parameterized constructors

 base class, 611
 defined, 556
 uses, 556

 Parameters
 actual, 352
 argument data type compatibility, 355
 array, 410 – 413
 defined, 349 , 352
 formal, 352
 output, 363 – 367
 queries, 697
 reference, 360 – 362
 scope, 355

 Parentheses
 grouping with, 140

 Parse methods, 144 , 145 – 146
 Partially Filled Array application

 Click event handler, 422 – 424
 defined, 422
 form, 422

 Partially filled arrays, 422 – 424
 Pascal, 15
 Pass By Ref application

 form, 361
 Form1 code, 361 – 362
 output, 362

 Pass By Value application, 358 – 359
 Passing arguments

 multiple, 355 – 357
 to ref keyword, 361
 by reference, 360 – 367

764 Index

Passing arguments (continued)
 tutorial, 352 – 355
 by value, 358 – 359

 Passing arguments by reference
 defined, 360
 methods, 360
 with output parameters, 363 – 367
 with reference parameters, 360 – 362

 Passing arrays
 defined, 407
 example, 408 – 410
 illustrated, 408

 Passing by reference, 448 – 449
 Passing List objects to methods,

 448 – 449
 Passing objects

 to base class parameters, 616
 to methods, 546
 structure, 502 – 503

 Password Validation application
 completing, 471 – 474
 defined, 471
 form, 471
 Form1 code, 472 – 474

 Pay and Bonus application
 Boolean methods for modularizing

input validation, 375 – 378
 defined, 375
 form, 376
 Form1 code, 377 – 378

 Payroll with Overtime application
 completing, 208 – 211
 form, 208
 Form1 code, 210 – 211

 Percent format, 152 – 153
 Phone Book application

 Add New Item window, 639
 column creation, 644
 Column Properties window, 642
 creating, 639 – 647
 data entered into table, 644
 Data Source Configuration Wizard,

 640
 DataGridView control placement on

form, 653
 DataGridView control selection, 652
 Form1 code, 655
 Identity Specification properties, 643
 Phonelist.mdf database, adding a

table to, 641
 Phonelist.mdf database, Solution

Explorer entry, 640
 Phonelist.mdf file location, 647
 Preview Database Updates window, 645
 primary key designation, 637
 running, 654
 starting, 639 – 647
 T-SQL window, 644
 table, entering data in, 646 – 647
 Table Designer window, 642
 table name selection, 644

 Phonebook application
 completing, 509 – 514
 form, 509
 Form1 code, 512 – 514
 nameListBox names, 511
 phoneList objects, 511
 PhoneList.txt file, 510
 starting of, 509

 PictureBox control, 92 – 104
 BorderStyle property, 95
 Click event handler, 95
 clickable images, 95 – 96
 defined, 92
 empty, 93
 image displayed in, 94
 Image property, 93
 SizeMode property, 94 – 95
 Visible property, 99 – 100

 PictureBox tool, 92
 Pixels (picture element), 10
 Polymorphism

 behavior ingredients, 611 – 612
 defined, 611
 example, 612
 flexibility in designing applications, 616
 tutorial, 616 – 621

 Polymorphism application
 Animal.cs file code, 618 – 619
 Cat.cs file code, 619 – 620
 completing, 616 – 621
 Dog.cs file code, 619
 form, 616
 Form1 code, 620 – 621

 Postfix mode, 280
 Posttest loops

 defined, 289
 do-while loops as, 289 , 290

 Precedence, of logical operators, 225
 Prefix mode, 280
 Presidential Trivia application

 control property settings, 86
 form illustration, 86
 running, 87

 Pretest loops
 defined, 272
 for loops as, 284 – 285
 while loops as, 272

 Primary keys
 assigning values, 637
 defined, 636
 examples, 636

 Primitive data types, 122 , 709
 private access modifier, 168 , 341 , 538
 Problem domain

 Car class, 574
 Customer class, 573 – 574
 defined, 568
 description, 568
 description review, 570
 nouns in, 568
 ServiceQuote class, 575 – 576

 Processing files, 292
 Processing symbols, flowchart, 26
 Product Lookup application, 669 – 671
 Product Queries application

 adding queries to table adapter,
 685 – 686

 Button controls added to form, 691
 command type selection, 686
 creating, 684 – 692
 defined, 684
 form, 685
 Form1 code, 691 – 692
 function name specification, 694
 methods to generate selection, 688 , 690
 query type selection, 686 – 687
 SQL Select statement specification, 687
 TableAdapter Query Configuration

 Wizard, 688 – 690
 Product Search application

 creating, 697 – 702
 defined, 697
 form, 698
 Form1 code, 701 – 702
 methods to generate selection, 700
 SQL Select statement specification, 699
 TableAdapter Query Configuration

 Wizard, 699 – 700
 Products application

 Add Connection dialog box (Visual
Studio), 659

 creating, 657 – 664
 data connection selection, 658
 Data Source Configuration Wizard,

 657 – 658
 data source type selection, 657
 Data Sources window, 662 – 663
 database model selection, 658
 database objects selection, 662
 Details view control, 663 – 664
 dragging Products table onto form, 663
 multiform, creation of, 672 – 675
 placing Details view controls, 664
 product table, 663
 ProductDB.mdf database, 660
 running, 664
 saving connection string, 661

 Program development cycle
 code writing, 26
 defined, 23
 GUI design, 24 – 25
 illustrated, 24
 logic design, 25 – 26
 logic error correction, 27
 program purpose understanding, 24
 program testing, 27
 syntax error correction, 27

 Program.cs file, 67
 Programmers, 1
 Programming languages

 assembly language, 13 – 14
 list of, 15

 Index 765

 low-level, 14
 machine language, 12
 object oriented, 21

 Programs. See also Software
 compiling, 17
 control, transfer of, 344
 defined, 1
 development process, 23 – 27
 event-driven GUI, 20
 execution with interpreter, 17
 Hello World, 62 – 66
 logic, designing, 25 – 26
 modularized, 340
 purpose of, 24
 testing, 27
 using files for data storage, 291
 utility, 6
 working of, 11 – 18

 Project folder, 40
 PROJECT menu, 540 , 578
 Projects

 adding code to, 71 – 73
 adding forms to, 578 – 579
 closing, 33
 defined, 31 , 39
 existing, opening, 41
 naming, 40
 organization on disk, 40
 output folder, 665
 renaming, 32
 saving, 33
 and solutions, 39
 starting, 31 – 33

 Properties
 abstract, 622
 AcceptButton, 181
 as an argument, 550
 assigning to variables, 547
 AutoPopDelay, 712
 AutoSize, 83 – 84
 BackColor, 182 , 183
 BackgroundImage, 183
 BackgroundImageLayout, 183 – 184
 backing field, 547
 Boolean, 99 , 100
 CancelButton, 181
 Checked, 242 – 243 , 244 , 727 – 728
 CheckOnClick, 727
 DataSource, 669
 defined, 21 , 547
 DisplayMember, 669
 EndOfStream, 309
 exception object, 161
 Filename, 319 – 318 , 321 – 320
 Font, 81 – 82
 ForeColor, 182
 Height, 610
 Images, 93 , 522
 ImageSize, 522
 InitialDelay, 712
 InitialDirectory, 320 , 322

 Items, 252
 LargeChange, 715
 Length, 610
 list of, 55
 Maximum, 715
 Message, 161 , 162
 Minimum, 714
 Name, 60 – 61
 overriding, 615
 passing as arguments, 550
 public fields vs. 549 – 550
 Radius, 555
 read-only, 554 – 555
 ReshowDelay, 712
 SelectedIndex, 253
 SelectedItem, 253
 SelectionLength, 721
 SelectionStart, 721
 set accessor for, 554
 ShortcutKeys, 727
 Size, 57
 SizeMode, 94 – 95
 SmallChange, 715
 TabIndex, 178 – 179
 Text, 547, 551–552, 558 (See Text

property)
 TextAlign, 84
 Title, 320 , 322
 ToolTip controls, 712
 Value, 714
 Visible, 99 – 100
 Weight, 615
 Width, 610

 Properties window, 33 , 34 , 55 – 57
 Alphabetical button, 57
 Categorized button, 57
 drop-down list of colors, 182
 floating, 39
 hiding, 35
 illustrated, 56

 Pseudocode, 25 – 26
 Pseudorandom numbers, 328
 public access modifier, 341
 Public fields, 549 – 550
 Python, 15

 Q
 Queries

 defined, 678
 parameters, 697
 Select, results, 681
 table adapters, 682 – 692 , 684 – 692

 R
 Radio buttons, 241 – 244

 creation of, 242 – 244
 defined, 241 , 242
 illustrated, 241
 mutually exclusive selection, 241
 working with code, 243 – 244

 RadioButton application, 243 – 244

 RadioButton controls
 Checked property, 242 – 243
 defined, 242
 illustrated, 242
 Text property, 242

 RAM (random-access memory), 4
 Random-access memory (RAM), 4
 Random Card application

 completing, 524 – 526
 defined, 524
 form, 524
 Form1 code, 525 – 526

 Random class
 creating objects from, 391 – 392
 defined, 323

 Random numbers
 defined, 323
 seeds, 328
 uses, 323

 Random objects, 323
 Next method, 324
 NextDouble method, 324
 rand variable referencing, 324 , 328 ,

 392
 seed value, 328

 Range Checker application, 226 – 227
 Read-only properties, 554 – 555
 Read position, 306 – 307
 Reading data

 numeric, from text file, 307 – 309
 read position, 306 – 307
 with StreamReader object, 304 – 306

 Reading files, with loops, 309
 ReadLine method

 call, 306 , 307
 defined, 304
 read position, 306

 Rectangle class, 609 – 611
 ref keyword

 with array parameter, 412
 defined, 360
 in parameter declaration, 503
 passing arguments to, 361
 use of, 360 – 361

 Reference copies, 416
 Reference parameters

 for communication between meth-
ods, 360

 defined, 360
 output parameters vs., 363
 passing arguments by reference

with, 360 – 362
 Reference types. See also Data types

 arrays as, 393
 defined, 389
 working with, 390

 Reference variables
 = = operator with, 417
 declaring, 391
 defined, 391
 reassigning, 402 – 403

766 Index

 Relational operators
 ! = operator, 201
 = = operator, 199 , 200 – 201 , 229
 Boolean expressions and, 199 – 201
 defined, 199
 < = operator, 200
 > = operator, 200
 list of, 200
 SQL (structured query language), 679
 and string comparisons, 229 – 232

 Remove method, 482
 defined, 449
 return values, 449 – 450
 sequential search, 450
 in string modification, 482

 RemoveAt method, 449
 Reserved words. See Keywords
 ReshowDelay property, 712
 Return point, 344
 Return type, in method header, 341
 Rounding, 153
 Rows

 defined, 635
 two-dimensional arrays, summing,

 443 – 444
 Ruby, 15
 Run time, 76 – 77
 Running total calculation

 defined, 313
 elements, 313
 logic, 313
 tutorial, 314 – 316

 S
 Sales Price Calculator application

 control property settings, 155
 creating, 154 – 157
 form, 154
 Form1 code, 156 – 157
 illustrated, 156

 Samples, 11
 Save As dialog box

 buttons, 321
 default display, 322
 defined, 320
 displaying, 320 – 321
 illustrated, 321
 title bar display, 322
 user specification, 321

 Save Project window, 40
 SaveFileDialog controls

 adding, 320
 defined, 317 , 320
 displaying, 320 – 321
 Filename property, 321 – 322
 InitialDirectory property, 322
 ShowDialog method, 320 – 321
 Title property, 322

 SavingsAccount class, 604 – 605
 sbyte data type, 709
 Schema definition files, 682 , 687

 Scope, variables
 defined, 126
 parameter, 355

 Scroll bars
 defined, 714
 horizontal, 714
 vertical, 714

 Search algorithms, 414
 Search criteria, with Where clause,

 678 – 680 , 692
 Seating Chart application

 completing, 439 – 443
 defined, 439 – 440
 form, 440
 Form1 code, 441 – 443
 seat prices table, 440

 Secondary storage, 4 – 5
 Secret Word application, 229 – 230
 Seed value, 327
 Seeds, random number, 328
 Select query, 681
 Select statement, 678 – 680 , 682 , 684 ,

 687 , 689 , 692 , 694 – 695 , 699
 defined, 678
 general format, 678
 Like operator, 680 – 681
 math functions, 692 – 693
 And operator, 681
 Or operator, 681
 query results, sorting, 681
 table name, 684
 Where clause, 678 – 680 , 692

 Selected Text Demo application, 722 – 723
 SelectedIndex property

 ListBox control, 253
 SelectedItem property

 ListBox control, 253
 Selection sort algorithm. See also Arrays

 defined, 429
 functioning of, 429 – 430
 swapping array elements, 431 – 434
 values after swaps, 429 – 430

 Selection Sort application
 defined, 432
 form, 432
 Form1 code, 432 – 434

 SelectionLength property, 721
 SelectionStart property, 721
 Semicolon (;), 74
 Separator bar

 defined, 724
 inserting, 728

 Sequence structures
 combining with decision structure, 212
 defined, 197

 Sequential access files, 293
 Sequential execution, statements, 103 – 104
 Sequential search algorithms

 defined, 414
 IndexOf method, 451
 Remove method, 450

 SequentialSearch method, 414 – 415
 Server Explorer, 640 – 641 , 644 – 645
 ServiceQuote class, 572 , 575 – 576
 Short-circuit evaluation, 224
 short data type, 709
 Shortcut keys, 726 – 727

 defined, 724
 ShortcutKeys property, 727
 Show method, 585
 ShowDialog method, 319 , 320 – 321
 Signature of method, 561
 Simple combo boxes, 712 , 713
 Simple Method application, 343 – 344
 Single-alternative decision structure,

 198 – 199 . See also If statement
 Size declarators

 defined, 393
 initialization list and, 397
 named constants as, 394
 two-dimensional arrays, 437

 Size property, 57
 SizeMode property

 defined, 94
 values, 94 – 95

 Sizing handles, 54
 SmallChange property, 715
 Smart tags, 665
 Software

 application, 6
 defined, 1 , 2
 developers (See Programmers)
 system, 6

 Software development tools, 6
 Solution Explorer window, 33 , 34

 floating, 39
 forms, 581
 hiding, 35
 for opening forms in Designer

 window, 42
 source code files in, 67

 Solution file, 40
 Solution folder, 40
 Solutions

 defined, 39
 naming, 40
 organization on disk, 40

 Source code
 adding to projects, 71 – 73
 braces, 69 – 70
 CheckBox control, 244 – 245
 for closing application’s form,

 106 – 107
 debugging, 27
 defined, 17
 to display output in Label control,

 84 – 88
 event handler, 71 – 73
 files, 67
 form, 580
 Form1.cs, 68 , 69
 .NET Framework, 69

 Index 767

 radio buttons in, 243 – 244
 setting colors in, 182 – 183
 writing, for Hello World program,

 77 – 80
 writing, in development cycle, 26

 South America application
 Countries.txt, 310
 defined, 310
 displaying list of countries, 311
 form, 310
 Form1 code, 312 – 313

 Spaces, 482
 Specialization, 593
 Speed Converter application

 defined, 286 – 287
 form, 287
 Form1 code, 288 – 289

 SportUtility class, 595 , 600 – 601 , 603
 Spreadsheets, 291
 SQL (structured query language)

 defined, 677
 keywords, 678
 math functions, 692 – 693
 queries, 678
 relational operators, 679
 Select statement, 678 – 680 , 682 ,

 684 , 687 , 689 , 692 , 694 – 695 , 699
 string comparisons, 679
 table adapter queries, 682 – 692

 Squares application, 283 – 284
 Stale data, 555
 Standard toolbar (Visual Studio)

 buttons, 36
 defined, 36

 Start terminal symbol, flowchart, 26
 StartsWith method, 475
 Statements

 assignment, 85
 defined, 16
 if, 197 – 206
 if-else, 206 – 211
 if-else-if, 220 – 222
 multiple variable declaration, 132
 Select (SQL), 678 – 680 , 682 , 684 ,

 687 , 689 , 692 , 694 – 695 , 699
 sequential execution of, 103 – 104
 switch, 248 – 251
 this.Close();, 106 – 107
 try-catch, 159
 variable declaration, 122 , 125

 Stepwise refinement, 348
 Storage. See Data storage
 StreamReader class

 defined, 294
 ReadLine method, 304 , 306 , 307

 StreamReader object
 EndOfStream property, 309
 inputFile reference, 309
 reading data from files with,

 304 – 306
 Streams, opening, 294

 StreamWriter class
 defined, 294
 StreamWriter object, 294 – 295
 WriteLine method, 294 – 296

 String Collection Editor dialog box, 252
 String comparisons, 229 – 232

 = = operator for, 229
 character-by-character, 230 – 231
 defined, 228 , 229
 greater than/less than, 230
 by string.Compare method,

 230 – 231
 string data type, 466 , 475 , 482 ,

 491 , 709
 String literal

 defined, 75
 storage in string variable, 127

 string object, 482
 string variables

 demo application, 124
 string literal storage in, 127
 using, 123

 string.Compare method, 230 , 231 – 232
 Strings, 74

 comparisons (See String comparisons)
 concatenation, 123 – 125
 conversions, to numeric data types,

 144 – 145
 empty, 120
 formatting, 151 , 152
 implicit conversion with + operator, 147
 invalid conversions, 145 – 146
 .NET Framework and, 465
 retrieving characters in, 466
 returning from methods, 378 – 380
 subscripts, 467
 Text property and, 87 – 88
 tokenizing, 491 – 494

 stringVar.EndsWith, 476
 stringVar.IndexOf, 476 – 478
 stringVar.Insert, 482
 stringVar.LastIndexOf, 478 – 481
 stringVar.Remove, 482
 stringVar.StartsWith, 475
 stringVar.Substring, 481
 stringVar.ToLower, 483
 stringVar.ToUpper, 483
 stringVar.Trim, 483
 stringVar.TrimEnd, 483
 stringVar.TrimStart, 483
 Structure instances, 501 , 505

 creating, 501 – 502
 creating with new operator,

 501 – 502
 illustrated, 501

 Structure objects
 arrays of, 504
 assigning one to another, 502
 comparing, 504
 passing to methods, 502 – 503
 storing in Lists, 504 – 507

 Structures
 C#, 499 – 500
 declaration, 499 – 500
 declarations, location of, 500
 defined, 499
 fields, 499
 fields, accessing, 502
 names, 499 – 500
 parallel relationships, 512
 uses for, 499
 as value types, 501

 Student Names project
 code, 304 – 305
 detail, 305 – 306

 Submenus
 creating, 728
 defined, 724

 Subscripts
 defined, 394
 illustrated, 394
 invalid, 398 , 467
 read-only access, 467
 string, 467
 two-dimensional arrays, 438
 valid, 398

 Substring method, 481
 Substring methods

 defined, 481
 stringVar.Contains, 475
 stringVar.EndsWith, 476
 stringVar.IndexOf, 476 – 478
 stringVar.Insert, 482
 stringVar.LastIndexOf, 478 – 481
 stringVar.Remove, 482
 stringVar.StartsWith, 475
 stringVar.Substring, 481
 stringVar.ToLower, 483
 stringVar.ToUpper, 483
 stringVar.Trim, 483
 stringVar.TrimEnd, 483
 stringVar.TrimStart, 483

 Substrings
 defined, 475
 position methods, 476 – 481

 Sum application
 arguments passed to, 371
 defined, 369
 form, 369
 Form1 code, 370 – 371
 value returned, 371

 Sum function, 692
 Summing

 two-dimensional array columns, 444
 two-dimensional array elements, 443
 two-dimensional array rows, 443 – 444

 Superclasses. See Base classes
 Swapping array elements, 431 – 434
 switch statement

 as alternative to if-else-if
 statement, 250 – 251

 defined, 248

768 Index

switch statement (continued)
 example code, 250
 execution, 250
 format of, 249
 as multiple-alternative decision

structure, 248 – 249
 Syntax

 defined, 16
 rules, 18

 Syntax error
 correcting, 27
 dealing with, 107 – 108
 debugging, 108
 defined, 17 , 107
 underlined, 108

 System software, 6

 T
 Tab order

 changing, 178 – 179
 defined, 178
 forms, 177 – 179
 GroupBox control, 185
 selection mode, 178

 TabControl controls, 716
 TabControl Demo application, 717
 TabIndex property

 defined, 178
 GroupBox control, 185
 values, 178 – 179

 Table adapter
 adding query to, 684
 defined, 638
 Fill method, 682

 Table adapter queries
 adding, 684 – 691
 defined, 682
 editing, 687
 tutorial, 684 – 691

 TableAdapter Configuration Wizard,
 682 – 683

 command type selection, 686
 displaying, 682 – 683
 function name specification, 694
 illustrated, 682 – 683
 methods to generate selection, 688 ,

 690 , 700
 query type selection, 686
 results, 688
 SQL Select statement specification,

 687 , 689 , 694 , 699
 Table Designer window

 columns created in, 641
 illustrated, 642

 Tables. See also Columns; Rows
 data, showing, 646 – 647
 dragging from Data Sources

 window, 652
 entering data into, 646
 naming, 644

 primary keys, 636
 TabPage controls, 716 – 717
 Telephone Format application

 completing, 484 – 487
 defined, 484
 form, 484
 Form1 code, 486 – 487

 Telephone Unformat application
 completing, 488 – 491
 defined, 488
 form, 488
 Form1 code, 489 – 491

 Terminal symbols, 26
 Test Average application

 array processing, 424 – 428
 control property settings, 163
 creating, 162 – 166
 defined, 422
 form, 162 , 424
 Form1 code, 165 – 166 , 426 – 428
 illustrated, 164 , 426

 Test Score Average application
 average and message displayed, 204
 average displayed, 202
 completing, 202 – 206
 form, 202
 Form1 code, 204 – 206

 Test Score List application
 completing, 452 – 456
 defined, 452
 form, 452
 Form1 code, 454 – 456
 illustrated, 454

 Testing classes, 603 – 604
 Testing programs, in development

cycle, 27
 Text, alignments, 84
 Text files

 defined, 293
 reading numeric data from, 307 – 309
 writing data to, 297 – 300
 writing numeric data to, 300 – 301

 Text property
 access key assignment with, 180 – 181
 Button control, changing, 59 – 60 , 65
 CheckBox control, 244
 GroupBox control, 184
 Label control, 80 , 87 – 88 , 547
 RadioButton controls, 242
 and strings, 87 – 88
 TextBox control, 119 , 120

 TextAlign property, 84
 setting, 85

 TextBox control
 contents of, clearing, 120 – 121
 defined, 119
 getting numbers from, 143 – 146
 illustrated, 120
 multiple, validating data in, 235 – 237
 reading input with, 119 – 121

 SelectionLength property, 721
 SelectionStart property, 721
 Text property, 119 , 120
 validating, 236

 TextBox objects
 defined, 22

 TextBox tool, 119
 this keyword, 183
 this.Close(); statement, 106 – 107
 Time Zone application

 control property settings, 254
 creating, 253 – 256
 form, 254
 Form1 code, 255 – 256

 Title property
 OpenFileDialog control, 320
 SaveFileDialog control, 322

 Tokenizing strings
 defined, 491
 with Split method, 491 – 492
 trimming before, 493 – 494

 Tokens, 491 – 492
 ToLower method, 474 , 482
Toolbox

 CheckBox control, 244
 controls, 57 – 58
 defined, 36
 displaying, 37
 ErrorProvider component, 719
 floating, 39
 GroupBox control, 184
 illustrated, 37 , 58
 ImageList control, 522
 Label control, 80
 ListBox control, 252
 OpenFileDialog control, 318
 PictureBox tool, 92
 RadioButton control, 242
 SaveFileDialog control, 320 – 321
 sections, 37 – 38
 TextBox tool, 119
 WebBrowser control, 718

 ToolStripMenuItem object, 729
 ToolTip, 711
 ToolTip controls

 defined, 711
 illustrated, 712
 properties, 712

 ToolTips, 38
 Top-down design, 348
 Toss method, 538 – 539 , 546
 ToString method

 for converting char variable to
string, 466

 defined, 146
 enumerator, 517
 formatting numbers with, 151 – 158
 SelectedItem property, 253

 Total Sales application
 defined, 314

 Index 769

 displaying total sales, 315
 form, 314
 Form1 code, 315 – 316

 ToUpper method, 474 , 482
 Trailing spaces, 482
 Trim method, 482 , 494
 TrimEnd method, 482
 Trimming, strings, 493 – 494
 Truck class, 595 , 600 – 602
 Truncation, 137
 Try block, 158
 Try-catch statement, 159 , 233
 TryParse methods

 calling, 233
 defined, 233
 format of, 233
 preventing data conversion excep-

tions with, 232 – 239
 types of, 233

 Two-dimensional arrays. See also Arrays
 columns, summing, 444
 declaring, 437 – 438
 defined, 436
 elements, accessing, 438 – 439
 illustrated, 436 – 437
 implicit sizing of, 439
 initialization of, 439
rows, summing, 443 – 444
 size declarators, 437
 subscripts, 438
 summing elements of, 443
 tutorial, 439 – 443
 uses, 437

 Two’s complement, 10

 U
 uint data type, 709
 ulong data type, 709
 Universal serial bus (USB) drives, 5
 Update expression

 declaring counter variable in, 285
 defined, 282

 USB (universal serial bus) drives, 5
 User interface

 defined, 18
 graphical (See Graphical user

 interfaces (GUIs))
 Users

 defined, 18
 file location specification, 304

 ushort data type, 709
 using System.IO ; directive, 294, 310 ,

 329 , 364
 Utility program, 6

 V
 Validation, input, 240 – 241
 Value, passing arguments by, 358 – 359
 Value property, 714

 Value-returning methods. See also
Methods

 calling, 341
 defined, 339 , 367
 example, 367 – 368 , 369
 general format, 368
 method header, 369
 void method similarities, 367
 writing, 368 – 374
 writing tutorial, 372 – 374

 Value types. See also Data types
 declaring, 389 – 390
 defined, 390

 Values
 array, averaging, 418 – 419
 array, highest and lowest, 419 – 421
 array, totaling, 418
 of binary digits, 8
 constant field, 171
 explicitly converting, with cast op-

erators, 136 – 137
 math expressions, 140
 null, 637
 numeric, 143 – 151
 SizeMode property, 94 – 95
 Visible property, 99

 Variable declaration
 defined, 122
 multiple, 132
 statement, 122 , 125

 Variable name, 122 – 123
 defined, 122
 duplicate, 126

 Variables
 assignment compatibility, 126 – 127
 bool, 228
 cast operators applied to, 137
 counter, 272 , 285 – 286
 data type (See Data types)
 decimal, 134
 declaring as fields, 167 – 175
 decrementing, 280 – 281
 defined, 121 , 122
 double, 134
 flag, 228
 holding one value at a time,

 127 – 128
 incrementing, 280 – 281
 initializing, 132
 int, 134 , 135 – 136
 iteration, 401
 lifetime of, 126
 local, 125 – 126
 in math expression, 139
 naming, 122 – 123
 output, 233
 parameter, 349
 passing as arguments, 351
 reference, 391
 referencing objects, 293 – 294

 scope, 126
 string, 123 , 127
 ToString method, 146
 value-type, 389 – 390
 values assigned to, 390

 Virtual keyword, 612 , 615
 Visible property

 defined, 99
 values, 99

 Visual Basic, 15
 Visual Studio, 24 – 25

 Auto Hide, 34 – 35
 break mode, 158
 code editor, 67 , 70 – 71 , 91 – 92
 as customizable environment, 28
 defined, 27
 documentation, 42 – 43
 environment setup, 28 – 31
 menu bar, 36
 menu designer, 723 , 725 – 726
 standard toolbar, 36
 Start Page, 28 , 29
 Toolbox, 36 – 38
 ToolTips, 38 , 711
 window layout, resetting, 29 , 31

 Visual Studio 2012 Express for
 Windows Desktop, 28

 Visual Studio environment, 33 – 34 , 64
 Designer window, 33 – 34
 open project in, 33
 Properties window, 33 , 34
 Solution Explorer window, 33 , 34
 tutorial, 43

 Void methods. See also Methods
 calling, 341
 defined, 339 , 341
 method header, 341 – 342

 Volatile, memory type, 4
 VScrollBar control, 715

 W
 Web browsers, 291
 WebBrowser control, 718
 WebBrowser Demo application,

 718 – 719
 Weight property, 615
 Where clause, 678 – 680 , 692
 While Loop Demo project, 270 – 271 ,

 272
 while loops. See also Loops

 body, 270
 curly braces, 270
 defined, 269
 execution, 270
 flowchart, 272
 general format, 270
 illustrated, 271
 infinite, 279
 logic, 269
 non-iteration characteristic, 272

770 Index

while loops. See also Loops (continued)
 parts, 269
 as pretest loops, 272
 while clause, 270

 White-space characters, 470 , 492 , 494
 Width property, 611
 Windows. See also specific Windows

 docked, 38
 floating, 38 – 39

 Word processors, 291
 Write method

 defined, 296
 items written with, 296
 writing data with, 295 – 296
 in writing numeric data, 300

 WriteLine method
 defined, 294
 items written with, 296

 in writing numeric data, 300
 Writing data

 numeric, to text file, 300 – 301
 with StreamWriter object, 294 – 295
 to text file, 297 – 300
 with Write method, 295 – 296

 Z
 Zeros, leading, 153 – 154

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Attention Students
	Chapter 1 Introduction to Computers and Programming
	1.1 Introduction
	1.2 Hardware and Software
	1.3 How Computers Store Data
	1.4 How a Program Works
	1.5 Graphical User Interfaces
	1.6 Objects
	1.7 The Program Development Process
	1.8 Getting Started with the Visual Studio Environment
	TUTORIAL 1-1: Starting Visual Studio and Setting Up the Environment
	TUTORIAL 1-2: Starting a New Visual C# Project
	TUTORIAL 1-3: Saving and Closing a Project
	TUTORIAL 1-4: Opening an Existing Project
	TUTORIAL 1-5: Getting Familiar with the Visual Studio Environment
	Key Terms
	Review Questions
	Programming Problems

	Chapter 2 Introduction to Visual C#
	2.1 Getting Started with Forms and Controls
	2.2 Creating the GUI for Your First Visual C# Application: The Hello World Application
	TUTORIAL 2-1: Creating the GUI for the Hello World Application
	2.3 Introduction to C# Code
	2.4 Writing Code for the Hello World Application
	TUTORIAL 2-2: Writing Code for the Hello World Application
	2.5 Label Controls
	TUTORIAL 2-3: Creating the Language Translator Application
	2.6 Making Sense of IntelliSense
	2.7 PictureBox Controls
	TUTORIAL 2-4: Creating the Flags Application
	TUTORIAL 2-5: Creating the Card Flip Application
	2.8 Comments, Blank Lines, and Indentation
	2.9 Writing the Code to Close an Application’s Form
	2.10 Dealing with Syntax Errors
	Key Terms
	Review Questions
	Programming Problems

	Chapter 3 Processing Data
	3.1 Reading Input with TextBox Controls
	3.2 A First Look at Variables
	TUTORIAL 3-1: The Birth Date String Application
	3.3 Numeric Data Types and Variables
	3.4 Performing Calculations
	3.5 Inputting and Outputting Numeric Values
	TUTORIAL 3-2: Calculating Fuel Economy
	3.6 Formatting Numbers with the ToString Method
	TUTORIAL 3-3: Creating the Sale Price Calculator Application with Currency Formatting
	3.7 Simple Exception Handling
	TUTORIAL 3-4: Creating the Test Average Application with Exception Handling
	3.8 Using Named Constants
	3.9 Declaring Variables as Fields
	TUTORIAL 3-5: Creating the Change Counter Application
	3.10 Using the Math Class
	3.11 More GUI Details
	Key Terms
	Review Questions
	Programming Problems

	Chapter 4 Making Decisions
	4.1 Decision Structures and the if Statement
	TUTORIAL 4-1: Completing the Test Score Average Application
	4.2 The if-else Statement
	TUTORIAL 4-2: Completing the Payroll with Overtime Application
	4.3 Nested Decision Structures
	TUTORIAL 4-3: Completing the Loan Qualifier Application
	4.4 Logical Operators
	4.5 bool Variables and Flags
	4.6 Comparing Strings
	4.7 Preventing Data Conversion Exceptions with the TryParse Methods
	TUTORIAL 4-4: Calculating Fuel Economy
	4.8 Input Validation
	4.9 Radio Buttons and Check Boxes
	TUTORIAL 4-5: Creating the Color Theme Application
	4.10 The switch Statement
	4.11 Introduction to List Boxes
	TUTORIAL 4-6: Creating the Time Zone Application
	Key Terms
	Review Questions
	Programming Problems

	Chapter 5 Loops, Files, and Random Numbers
	5.1 More about ListBoxes
	5.2 The while Loop
	TUTORIAL 5-1: Using a Loop to Calculate an Account Balance
	TUTORIAL 5-2: Enhancing the Ending Balance Application
	5.3 The ++ and - - operators
	5.4 The for Loop
	TUTORIAL 5-3: Using the for Loop
	5.5 The do-while Loop
	5.6 Using Files for Data Storage
	TUTORIAL 5-4: Writing Data to a Text File
	TUTORIAL 5-5: Appending Data to the Friend.txt File
	TUTORIAL 5-6: Using a Loop to Read to the End of a File
	TUTORIAL 5-7: Calculating a Running Total
	5.7 The OpenFileDialog and SaveFileDialog Controls
	5.8 Random Numbers
	TUTORIAL 5-8: Simulating Coin Tosses
	5.9 The Load Event
	TUTORIAL 5-9: Creating a Load Event Handler
	Key Terms
	Review Questions
	Programming Problems

	Chapter 6 Modularizing Your Code with Methods
	6.1 Introduction to Methods
	6.2 void Methods
	TUTORIAL 6-1: Creating and Calling Methods
	6.3 Passing Arguments to Methods
	TUTORIAL 6-2: Passing an Argument to a Method
	6.4 Passing Arguments by Reference
	TUTORIAL 6-3: Using an Output Parameter
	6.5 Value-Returning Methods
	TUTORIAL 6-4: Writing a Value-Returning Method
	TUTORIAL 6-5: Modularizing Input Validation with a Boolean Method
	Key Terms
	Review Questions
	Programming Problems

	Chapter 7 Arrays and Lists
	7.1 Value Types and Reference Types
	7.2 Array Basics
	TUTORIAL 7-1: Using an Array to Hold a List of Random Lottery Numbers
	7.3 Working with Files and Arrays
	7.4 Passing Arrays as Arguments to Methods
	7.5 Some Useful Array Algorithms
	TUTORIAL 7-2: Processing an Array
	7.6 Advanced Algorithms for Sorting and Searching Arrays
	7.7 Two-Dimensional Arrays
	TUTORIAL 7-3: Completing the Seating Chart Application
	7.8 Jagged Arrays
	7.9 The List Collection
	TUTORIAL 7-4: Completing the Test Score List Application
	Key Terms
	Review Questions
	Programming Problems

	Chapter 8 More about Processing Data
	8.1 Introduction
	8.2 String and Character Processing
	TUTORIAL 8-1: Completing the Password Validation Application
	TUTORIAL 8-2: Completing the Telephone Format Application
	TUTORIAL 8-3: Completing the Telephone Unformat Application
	TUTORIAL 8-4: Completing the CSV Reader Application
	8.3 Structures
	TUTORIAL 8-5: Completing the Phonebook Application
	8.4 Enumerated Types
	TUTORIAL 8-6: Completing the Color Spectrum Application
	8.5 The ImageList Control
	TUTORIAL 8-7: Completing the Random Card Application
	Key Terms
	Review Questions
	Programming Problems

	Chapter 9 Classes and Multiform Projects
	9.1 Introduction to Classes
	TUTORIAL 9-1: Creating and Using the Coin Class
	9.2 Properties
	TUTORIAL 9-2: Creating and Using the CellPhone Class
	9.3 Parameterized Constructors and Overloading
	TUTORIAL 9-3: Creating and Using the BankAccount Class
	9.4 Storing Class Type Objects in Arrays and Lists
	TUTORIAL 9-4: Completing the Cell Phone Inventory Application
	9.5 Finding the Classes and Their Responsibilities in a Problem
	9.6 Creating Multiple Forms in a Project
	TUTORIAL 9-5: Creating an Application with Two Forms
	Key Terms
	Review Questions
	Programming Problems

	Chapter 10 Inheritance and Polymorphism
	10.1 Inheritance
	TUTORIAL 10-1: Creating and Testing the SavingsAccount and CDAccount Classes
	10.2 Polymorphism
	TUTORIAL 10-2: Completing the Polymorphism Application
	10.3 Abstract Classes
	TUTORIAL 10-3: Completing the Computer Science Student Application
	Key Terms
	Review Questions
	Programming Problems

	Chapter 11 Databases
	11.1 Introduction to Database Management Systems
	11.2 Tables, Rows, and Columns
	11.3 Creating a Database in Visual Studio
	TUTORIAL 11-1: Starting the Phone Book Application and Creating the Phonelist.mdf Database
	11.4 The DataGridView Control
	TUTORIAL 11-2: Completing the Phone Book Application
	11.5 Connecting to an Existing Database and Using Details View Controls
	TUTORIAL 11-3: Creating the Products Application and Using a Details View
	11.6 More about Data-Bound Controls
	TUTORIAL 11-4: Creating the Product Lookup Application
	TUTORIAL 11-5: Creating the Multiform Products Application
	11.7 Selecting Data with the SQL Select Statement
	TUTORIAL 11-6: Creating the Product Queries Application
	TUTORIAL 11-7: Creating the Product Queries Application
	TUTORIAL 11-8: Creating the Product Search Application
	Key Terms
	Review Questions
	Programming Problems

	Appendix A: C# Primitive Data Types
	Appendix B: Additional User Interface Controls
	Appendix C: ASCII/Unicode Characters
	Appendix D: Answers to Checkpoint Questions
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

