
ASDV 2520, Data Structures and Algorithms
Lab, Threads II

1. Add a new package sync new project threads.

2. We have a PROBLEM when threads access common resources. In the example below, a common
account, is accessed by multiple threads and the balance of the account loses integrity. Create
class AccountNoSync and 2 static inner classes AddPennyTask and Account . Add the static
variable account as shown in line 5 and create 10o threads in a pool that access the common static
variable account. All threads add 1 penny to the account. So in the end the balance of the account
should be 100 since we have 100 threads(users), but we don't.

 Then,

The Race Condition

The problem is that Task 1 and Task 2 are accessing the common resource balance in a way that causes
conflict. Task 1 did nothing, because in Step 4 Task 2 overrides Task 1's result, or Task 2 UNDOES
Task 1's result and puts its own result. This is a common problem known as a race condition in
multithreaded programs. A class is said to be thread-safe if an object of the class does not cause a race
condition in the presence of multiple threads.

3. Fix the problem by adding synchronization. Copy AcccountNoSync and paste refactor into
AcccountSync1 . Add the keyword synchronize to method deposit in line 51 as shown below. We
avoid race conditions, and prevent more than one thread from simultaneously entering a certain
part of the program, known as the critical region. The critical region is the entire deposit method.
Run the program. The balance should be 100.

When Task 1 enters the method deposit, Task 2 is blocked until Task 1 finishes the method's code.

4. Fix the problem again differently. Copy AcccountNoSync and paste refactor into AcccountSync2 .

Synchronized block: synchronized (expr)
{
statements;
} The expression expr must evaluate to an object
reference. If the object is already locked by
another thread, the thread is blocked until the lock
is released. When a lock is obtained on the object,
the statements in the synchronized block are
executed and then the lock is released.

5. Try the code below instead of the code of step 4. Observe. Does it work? Who is “this” here?

EXPLICIT LOCKS
6. Copy AcccountNoSync and paste refactor into AcccountSync3 . Modify the inner static class

account by introducing a Lock in line 41. , lock in line 51 and unlock in line 68.
7.

Instead of using implicit locking via the
synchronized keyword use explicit locks specified
by the Lock interface.

ALWAYS your code into a try/finally block to
ensure unlocking in case of exceptions.

Communication Between Threads
a) Threads can cooperate.
b) Conditions on locks can be used to coordinate thread interactions.
c) Thread synchronization avoids race conditions and ensures the mutual exclusion of

multiple threads in the critical region.
d) Threads can cooperate.

1. Conditions can be used for communications among threads. A thread can specify what to do
under a certain condition.

2. Conditions are objects created by invoking the newCondition() method on a Lock object.
Once a condition is created, you can use its await(), signal(), and signalAll() methods for
thread communications.

The communication between two Threads where one deposits money in account while the other withdraws
money from account.

7. We will implement the communication between threads using conditions on deposting and
withdrawing money from account. Copy AcccountSync3 and paste refactor into AcccountSync4 .
Modify the inner class account as shown below:

Line 62. Create a condition object.

Line 76, Withdraw money await()
Causes the current thread to wait until it is
signaled or interrupted.

Line 102, Deposit money signalAll()
Any threads waiting on this condition are all woken
up. Each thread must re-acquire the lock before it
can return from await.

9. Modify AccountSync4 with inner classes DepositTask and WithrawTask as shown and in main
having only 2 threads, one that deposits and the other that withdraws.

10. What will happen if we replace the while loop in lines 73 with an if statement? Replace it to see
the affect on the balance.

Caution 1
Once a thread invokes
await() on a condition,
the thread waits for a
signal to resume. If you
forget to call signal() or
signalAll() on the
condition, the thread
will wait forever.

Caution 2
A condition is created
from a Lock object. To
invoke its methods ,
await(), signal(), and
signalAll() you must
first own the lock. If
you invoke these
methods without
acquiring the lock, an
IllegalMonitorStateExce
ption will be thrown.

11.Synchronization and Monitors in Java
 Synchronization in java is implemented using monitors. Each object in Java is associated with a
monitor, which a thread can lock or unlock. An object itself becomes a monitor once a thread
locks it. Only one thread at a time may hold a lock on a monitor. Any other threads attempting to
lock that monitor are blocked until they can obtain a lock on that monitor. A thread may lock a
particular monitor multiple times; each unlock reverses the effect of one lock operation.

The synchronized statement computes a reference to an object; it then attempts to perform a
lock action on that object's monitor and does not proceed further until the lock action has
successfully completed. After the lock action has been performed, the body of the synchronized
statement is executed. If execution of the body is ever completed, either normally or abruptly, an
unlock action is automatically performed on that same monitor.

A synchronized method automatically performs a lock action when it is invoked; its body is not
executed until the lock action has successfully completed. If the method is an instance method,
it locks the monitor associated with the instance for which it was invoked (that is, the object
that will be known as this during execution of the body of the method). If the method is static,
it locks the monitor associated with the Class object that represents the class in which the
method is defined. If execution of the method's body is ever completed, either normally or
abruptly, an unlock action is automatically performed on that same monitor.

12. Copy and paste/refactor AccountSync4 into AccountSync5.

13. Modify it by deleting Locks, adding synchronized and using Object's wait and notifyAll to achieve
the same affect we achieved with locks.

