ADSV 2420, Advanced Programming I
JavaFX III, Animation

Problem 1 Step-by-Step (15 points)
1. To your existing FX1 project add a new package named anim (always in Project mode, not File
mode).

2. The abstract class Animation is the root class for JavaFX animations as shown in Figure 1.

The getter and setter methods for property
values and a getter for property itself are provided

. .) . in the class, but omitted in the UML diagram for brevity.
Javafx.animation.Animation
/ -
-autoReverse: BooleanProperty Defines whether the animation reverses direction on alternating cycles.
-cycleCount: IntegerProperty Defines the number of cycles in this animation.
-rate: DoubleProperty Defines the speed and direction for this animation.
-status: ReadOnlyObjectProperty Read-only property to indicate the status of the animation.
<Animation.Status>

+pause(): void Pauses the animation.
+play(Q: void Plays the animation from the current position.
+stop(): void Stops the animation and resets the animation.

FIGURE 1

a. The autoReverse is a Boolean property that indicates whether an animation will reverse its direction on
the next cycle.

b. The cycleCount indicates the number of the cycles for the
animation. You can use the constant Timeline. INDEFINTE to indicate an indefinite number of cycles.

c. The rate defines the speed of the animation. A negative rate value indicates the opposite direction for
the animation.

d. The status is a read-only property that indicates the status of the animation
(Animation.Status.PAUSED, Animation.Status.RUNNING, and Animation.Status.STOPPED).

e. The methods pause(), play(), and stop() pauses, plays, and stops an animation.

3. The PathTransition and the FadeTransition classes are derived from class Animation.

javatx.animation. Path Transition

The getter and setter methods for property
valugs and a getter for property ifself are provided
in the class but omitted inthe UML diagram for brevily

~duration: ObjectProperty<Durations
-node: ObjectProperty<Node>

-orientation: ObjectProperty
<PathTransition.OrientationType>

-path: ObjectType<Shape>

+PathTransition()

+PathTransition(duration: Duration,
path: Shape)

+PathTransition(duration: Duration,

The duration of ths ransifion.
The target node of ths transition.
The orientation of the node along the path.

The shape whose outine s used as path to animate the node move.

Creates anemply PathTransition.
Creates a PathTranstion with the specified duration and path.

Creates a PathTrans tion with the specifid duration,path, and node.

javaf.animaion,EadeTransition

The getter and setter methods for property
values and a getter for property tself are provided
in the class, but amitted in the UML diagtan for brevity

-duration: ObjectProperty<Durations
-node: ObjectProperty<Node>
~fromValue: DoubleProperty
-toValue: DoubleProperty

-byValue: DoubleProperty

+FadeTransition()
+FadeTransition(duration: Duration)
+FadeTransition(duration: Duration,

The duration of thistransition.

The target node of this ransition.

The start opacity for this animation.

The stop apecity for this animation.

The incrementl value on the opacity for this animation.

Cteates an empty FadeTransition.
Creates a FadeTrans tion wih the specified duration.
Creates a FadeTrans tion with the specified duration and node.

path: Shape, node: Node)

node: Node)

The PathTransition class animates the the moves of a
node along a path from one end to the other over a given
time.

The FadeTransition class animates the change of the
opacity in a node over a given time.

4. The class Timeline is derived from Animation can be used o program any animation using one or more

KeyFrames.

Constructor Summary

Constructors
Constructor and Description

Timeline()

The constructor of Timeline.

Timeline(double targetFramerate)
The constructor of Timeline.

Timeline(double targetFramerate,
The constructor of Timeline.

KeyFrame. . .

Timeline(KeyFrame... keyFrames)
The constructor of Timeline.

Method Summary

keyFrames)

All Methods Instance Methods Concrete Methods

Modifier and Type

ObservableList<KeyFrame>

Method and Description
getKeyFrames ()

Returns the KeyFrames of this Timeline.

void stop()

Stops the animation and resets the play head to its initial position.

5. Now we will animate a ball to bounce left and right, up and down. Create a new package, lab18 and
under the package create the class BouncingBall which extends Pane as shown below. The ball will
be bouncing inside the pane.

package animation. Labl8;

B import javafx.scene.layout.Pane;

1
2
3
4
5
6
7
8
=

public class BouncingBall extends Pane

10 {
11
12 }

6. Add properties to your class by adding lines 13 to 17 as shown below. The comments are
explanatory of the properties. We create a ball which is a Circle of radius 20 pixels, with
coordinates, x, y, with direction dx, dy and then we animate the ball using TimelLine.

co~NO U WNRE

P
WNRFR WO

283

@
17

18

package animation.labl8;

import javafx.animation.Timeline;
import javafx.scene. layout.Pane;
import javafx.scene.shape.Circle;

public class BouncingBall extends Pane

{

}

public final double radius = 20;

private double x = radius, y = radius;

private double dx =1, dy = 1;

private Circle circle = new Circle(x, vy, radius);
private Timeline animation;

7. Add the constructor for the bouncing ball. Click the bulb at line 30 to import and to implement all
abstract methods.

23
24
25
&
27
28
29
@
31
32

=

public BouncingBall()

{

circle.setFill(Color.BROWN);
getChildren().add(circle);

animation = new Timeline(

new_KeyFrame(Duration.millis(50), new EventHandler<ActionEvent=())i

8. The resulting code is shown below after clicking the bulb. The Timeline constructor takes as an
argument a KeyFrame and the Keyfarme constructor takes as arguments the duration of the
keyframe and and an EVENT HANDLER to handle the keyframe that occurs every 50 milliseconds.

25 public BouncingBall()

26 = {

27 circle.setFill(Color.BROWN) ;

=\ getChildren().add(circle);

29

30

31 animation = new Timeline(

& new KeyFrame(Duration.millis(5@), new EventHandler<ActionEvent>()
33| & {

34 @Override

@ public void handle(ActionEvent event)

36 & {

37 throw new UnsupportedOperationException("Not supported yet.");
38| }

39| | 1))

40 -);

41

42 - ¥

9. Create a method moveBall which moves the ball as shown in lines 45 to 62. Then, call the method in
line 37 to handle each keyframe every 50 milliseconds. Lastly, set the animation to play forever in
line 41 and start the animation in line 42.

- [V L R PRV

@ public void handle(ActionEvent event)
36 {

37 [moveBall() ;

38 }

39 13

40);

41 animation.setCycleCount(Timeline.INDEFINITE);
42 animation.play();

43 }

44

45 private void moveBall()

46 B {

47

48 if (x < radius || x > getWidth() - radius)
49 {

50 dx *x= -1;

51 ¥

52 if (y < radius || y > getHeight() - radius)
53 {

54 dy x= -1;

55;

56

57

58 X += dx;

59 y += dy;

60 circle.setCenterX(x);

61 circle.setCenterY(y);

65
66
67
68
69
70
71
72
73

75
76
77
78
79
80
81
82
83

85
86
87
88
89
90

10. Add to the class BouncingBall the methods below. The code is self explanatory. We increase or
decrease the speed of the ball and we play or stop the ball. The rateProperty is the speed of the

ball.

public void play()

{
}

animation.play();

public void pause()

{
s

animation.pause();

public void increaseSpeed()

{
s

animation.setRate(animation.getRate() % 1.5);

public void decreaseSpeed()

{

s

animation.setRate(

animation.getRate() x 1.5 > @ ? animation.getRate() / 1.5 :

public DoubleProperty rateProperty()

{
s

return animation.rateProperty();

0);

11. The complete code of class BouncingBall is shown below for your reference. You may enlarge the
pdf to see it clearly.

<age animation. lablB8;

art javaf=.animation.KeyFrame;

art javaf=.animation.Timeline;

art javaf=.beans.property.DoubleProperty;
art javaf=.ewvent.ActionEwvent;

art javaf=.ewent.EventHandler;

art javaf=.scene. layout.Pane;

art javaf=.scene.paint.Color;

art javaf=.scene.shape.Circle;

art javaf=.util.Duration;

sauthor AS

Lic class BouncingBall extends Pane

public final double radius = 28;

priwvate double = = radius, ¥ = radius;

private double dx = 1, dy = 1;

priwvate Circle circle = new Circle(x, v, radius);

priwvate Timeline animation;

public BouncingBalll()
[} £

circle.setFilliColor.ER0WNY; /7
getChildren().add(circilel; d

an animation for mowing the ba
= new Timelinel
new KeyFrame(Duration.millis(58), new EwentHandler<ActionEwent=(])

i
@lverride
public woid handle(ActionEwent ewent)
L] i
moweBalll);
L ¥
L *

HH
animation.setCycleCount(Timeline. TNDEFINITE) ;
animation.playl(); 7/ =

L ¥
private woid moweBalll)
{

||7£ = getWidthi() — radius)
Change ba mowe direction

if (v = radius || w > getHeight() — radius)
! dy #= —1; /S Char ba tion

-
y = dy;

circle.setCentersi=);
circle.setCentery(y);
L ¥
public woid play()
{
[I animation.playl();
¥

;%gﬂg&ﬂE!EEglﬂgHHH‘EH}HEEﬁ&ﬁ&ﬁtﬁﬁE&Hg@H@HI'»-"@gHH@HEEEE:EGEEE:EMHHQM.&WN»&

public woid pausel)
{

=
]

animation.pausel();

¥
public woid increaseSpeedl]
£

animation.setRatel{animation.getRate() = 1.5);

¥

public woid decreaseSpeed(]

£
animation.setRatel(
animation.getRatel() = 1.5 = @ 7 animation.getRatel() 7 1.5 : @);
¥
public DoubleProperty rateProperty()
I £

return animation.rateProperty();

fBEaEBERRREE A dadadd

Il
=]

O oo ~NOoOUT R WN R

O VWO ~NOOUT A~ WN KL

NNNNRRPRPRRRRRPR =
WNRPR OO NOU~WNE

12.

13.

Now we will build our standard JavaFX application to control the ball with the mouse and the
keyboard. Create a class BallControl that extends Application. Click the bulb and add imports and
all abstract methods.

package animation. lab1l8;

import javafx.application.Application;
import javafx.stage.Stage;

public class BallControl extends Application

{
@Override
public void start(Stage primaryStage) throws Exception
{
throw new UnsupportedOperationException("Not supported yet.");
}
}

Follow our standard procedure of adding Node(s) to the Scene and the Scene to the Stage. That
is, create the BouncingBall and add it as shown below:

package animation.labl8;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.stage.Stage;

public class BallControl extends Application
{

@Override
public void start(Stage primaryStage) throws Exception
{

BouncingBall bouncingBall = new BouncingBall();

Scene scene = new Scene(bouncingBall, 800, 600);
primaryStage.setTitle("Bouncing Ball Control");
primaryStage.setScene(scene);
primaryStage.show();

bouncingBall. requestFocus();

14. We want to stop the ball when the mouse is pressed and move the ball when the mouse is
released. Below are the specifications for method setOnMousePressed of class Node.
BouncingBall IS-A Node.

setOnMousePressed

public final void setOnMousePressed(EventHandler<? super MouseEvent> value)

Sets the value of the property onMousePressed.

Property description:
Defines a function to be called when a mouse button has been pressed on this Node.

15. Add line 24, shown below which will add a listener too the BouncingBall when the mouse is
pressed. Click the bulb on the left to import and to implement all abstract methods. When
the mouse is pressed we stop the ball from moving.

22 bouncingBall. requestFocus();

23

@ bouncingBall.setOnMousePressed(new EventHandler<MouseEvent>());
25 b

16. After clicking the bulb of line 24 the resulting code is shown below with the addition of the
main() method. Clean and build and click the mouse to stop the ball from moving.

1 package animation.labl8;

2

3 import javafx.application.Application;

4 import javafx.event.EventHandler;

5 import javafx.scene.Scene;

6 import javafx.scene.input.MouseEvent;

7 import javafx.stage.Stage;

8

9 public class BallControl extends Application

10 {

11 @override

@ public void start(Stage primaryStage) throws Exception
13| B {

14 BouncingBall bouncingBall = new BouncingBall();
15

16 Scene scene = new Scene(bouncingBall, 800, 600);
17 primaryStage.setTitle("Bouncing Ball Control");
18 primaryStage.setScene(scene);

19 primaryStage.show();

20

21 bouncingBall. requestFocus();

22

=) bouncingBall.setOnMousePressed(new EventHandler<MouseEvent>()
24 H {

25 @override

@ public void handle(MouseEvent event)

27| B {

28 bouncingBall.pause();

29

30 });

31 b }

32

33 public static void main(String[] args)

34 {

35 launch(args);
}

37 }

32
33
34
35

38
39
40
41
42
43
44
45
46

48
49

17. Similarly add an event handler for mouse released to move the ball. This time with a lamda
expression for setOnMouseReleased.

bouncingBall.setOnMouseReleased(e —>

{
bouncingBall.play();

)

18. Similarly add an event handler for the keyboard to increase and decrease the speed of the
ball. DO NOT USE the lambda expression shown below but an ANONYMOUS class. Clean and build
and test your animation.

bouncingBall.setOnKeyPressed(e —>

: if (e.getCode() == KeyCode.UP)
{ bouncingBall. increaseSpeed();
ilse if (e.getCode() == KeyCode.DOWN)
i bouncingBall.decreaseSpeed();

)i

19. The complete code for class BallControl is shown below:

1 package animation.labl8;

2 import javafx.application.Application;

3 import javafx.event.EventHandler;

4 import javafx.scene.Scene;

3 import javafx.scene.input.KeyCode;

6 import javafx.scene.input.MouseEvent;

7 import javafx.stage.Stage;

8

9 public class BallControl extends Application

10 {

11 @Override

(3 public void start(Stage primaryStage) throws Exception

13 = {

14 BouncingBall bouncingBall = new BouncingBall(); // Create a ball pane
15 // Create a scene and place it in the stage

16 Scene scene = new Scene(bouncingBall, 80@, 600);

17 primaryStage.setTitle("Bouncing Ball Control"); // Set the stage title
18 primaryStage.setScene(scene); // Place the scene in the stage
19 primaryStage.show(); // Display the stage

20 // Must request focus after the primary stage is displayed
21 bouncingBall.requestFocus();

22

{& bouncingBall.setOnMousePressed(new EventHandler<MouseEvent>()
24 [{

25 @Override

(1 public void handle(MouseEvent event)

27 {

28 bouncingBall.pause();

29 }

30 });

31

32 bouncingBall.setOnMouseReleased(e —>

33 {

34 bouncingBall.play();

35 });

36 // Increase and decrease animation

37 bouncingBall.setOnKeyPressed(e —>

38 {

39 if (e.getCode() == KeyCode.UP)

40 {

41 bouncingBall.increaseSpeed();

42 }

43 else if (e.getCode() == KeyCode.DOWN)

a4 {

45 bouncingBall.decreaseSpeed();

46 }

47 3

48 - ¥

49 = public static void main(Stringl[] args){ launch(args); }

50 }

51

Problem 2
Add to the BouncingBall class a Rectangle of width 70 and height 20. Make the ball of radius 10. The
rectangle is a racket which appears at the center-bottom of your BouncingBall pane and can hit the ball
back. The rectangle moves left and right upon events KeyCode LEFT, and KeyCode. RIGHT by adding code
to your existing keyboard handler of BallControl. To detect WHEN the ball hits the racket use the
Rectangle method intersects and simply reverse the direction of the ball appropriately. Add to your
BouncingBall Text nodes to keep track of the score of Human against Computer. The program's jar is
posted under tennis.jar. Extra credit 1 point if you add one more ball. That is, play tennis with 2 balls at
the same time.

