
JavaFX II

 REMEMBER TO CLEAN AND BUILD before you run any class.
1. How to create a Library of classes . We will create a Library for a standard-style a

JAVA-FX Button.
File > New Project > Java > Java Class Library (NOT Java Application). Name the
project JavaLibraryASDV.

2. Create a new Package name style, create class ButtonStyle under the package style and
either type the code below or download the file ButtonStyle.java from canvas to avoid
typing errors. Make sure you include the comments in lines 4 to 7 for Javadoc.

3. Run> Clean and Build Project
4. Run > Generate Javadoc
5. Run> Clean and Build Project (again)

You are done with the creation of the Library , JavaLibraryASDV.jar . In the future you may

add more classes similarly to this project and rebuild.
To add this library to your existing JavaFX project named FX1:. Right click on the coffee cup of
FX1 and click Properties.

6. Select Libraries, Compile, Add Jar/Folder AND NAGIVATE to where the
JavaLibraryASDV.jar is in your computer. Click OK.
......JavaLibraryASDV/dist/ JavaLibraryASDV.jar.

7. To test your new Button of the class library we will introduce officially EVENT DRIVEN
PROGRAMMING.

FIGURE 1
As you see in the figure 1 above, a button-click CREATES an OBJECT (event). We take this
OBJECT (event) and we handle it in a HANDLER method.

In figure 2 below, the a partial hierarchy of Inheritance of Events is shown:

FIGURE 2

In figure 3 below, the clicking of a Button generates an ActionEvent . Wee will register an
object (event) with Java-Machine and implement the method setOnAction .

FIGURE 3

8. Let as put Event Driven Programing to works. Create a new package in your FX1
application and name it events. Create a new class HandleClickEvent and derive it from
Application. The class handles the clicking of button(s).

9. Add the class OKHandlerClass which implements EventHandler to handle clicking. Lines 28 to
28 below, and click the bulb to Implement all abstract methods in OKHandlerClass

10. Type line 31. Your program now contains 2 classes and it should look as shown below:

11. Inside your start() method, create a button in line 17 and set its style in line 18 as shown
below. After you type line 19, Netbeans should import the library class style.ButtonStlye
we created in the beginning of this lab (line 8).

12. Create the Event Handler, eventHandler variable, line 20, and REGISTER the handler
with the method setOnAction, line 21. Now the button object buttonOK has registred
the object eventHandler to handle the clicking of the button.

13. Follow standard procedure to test your Java-FX program: Create a Pane, add the Button to the
Pane. Create a Scene, add the Pane to the Scene. Add the Scene to the Stage. You are done. Clean
and build. Then run it.

14. Now we will introduce officially Anonymous classes. In package events , right click the class
HandleClickEvent. Copy. Then, paste inside the same package but refactor the class with the
name HandleClickAnonymous. Delete the class OKHandlerClass, and delete the 2 lines of the
registration of the button-handler and the attachment to the handler. The resulting code after
the deletions is shown below.

15. Type line 20 shown below. Then click the bulb to Implement all abstract methods.

21. After you clicked Implement all abstract methods, replace the thrown exception of method handle
with line 27 shown below.
Anonymous class: The parameter of the method setOnAction is an ANONYMOUS class of type
EventHandler<ActionEvent> , with its implementation following after the brace at line 23.

 Clean and build, then run, to see the clicking output. As you see we PASSED IN THE WHOLE
CLASS as an argument to the parameter of method setOnAction instead of just a variable .

22. Modify HandleClickEvent.java and add class
Cancel HandlerClass implements EventHandler<ActionEvent> below the class class OK HandlerClass
implements EventHandler<ActionEvent>

 The handle method of class CancelHandlerClass prints “ You clicked cancel”
 Inside the start() create another button and register its clicking and we did for the OK button.
 Instead of Pane, use BorderPane (look it up to see how it behaves,, as it IS-A a Pane).

23. Modify the HandleClickEventAnonymous class to and add a Cancel button after the OK button.
Have an anonymous class handle the clicking event as we did for the OK button. Use a BorderPane as
shown below. We will see more Pane types later.

Fonts

24. Create the class FontDemo1 below. The class add to pane a Circle, and a label to the circle. It prints
the label using font Comic MS of size 96.

25. Create the class FontDemo2. Create a gray background for the circle, Yellow text for the
label, and rotated as shown below.

Images
26. Instead of a Pane we will use an Hbox to add the American flag. Images must to be .gif.

 In your project, create a folder and name it images. Add all the flags posted in canvas to that
folder.

We will use Insets for padding within a Node:

We will use Hbox instead of Pane

27. Create class Image1. Display the American flag 3 times inside an Hbox. Insets is the padding
within the cells of the Hbox.

28. Create class ImageArray1.The class display an array of flags of the same size inside an Hbox.

29. Create class ImageArray2.The class displays an array of flags of the same size inside a VBox.
The VBox only differs form the HBox in that it add its nodes vertically.

30. Create a class ShowGridePane1. GridPane lays out its children within a flexible grid of rows and
columns. If a border and/or padding is set, then its content will be layed out within those insets.

31. Create a class ShowGridePane2. Modify your GridPane1 to add a new textfield for the gender and
place the button to the left as shown below.
For the size of the gender textfield

SHAPES and Binding

We already experimented with shape Rectangle. Now will experiment with Line Text and Arc

32. Create a class Line0. Implement and understand the starting end ending points of the line in the
code shown below. SIZE the WINDOW of your output. You will size that the line REMAINS the
same size.

33. Create class Line1.We will remedy the problem with sizing the window of Line0. When the window
increases then we could increase the size of the line if we please. It is done by BINDING the
start and the end of the line to the sizes of the window which is a Pane. Type in the code given.
The line always starts at point (10, 11)

Line 33, binds the endX property of line to the width of the Pane. When the Pane increases or decreases
then the line increases or decreases.
Line 33, binds the endY property of line to the height of the Pane. When the Pane increases or decreases
then the line increases or decreases.

34. Create class Line2. Modify class Line1 and add a vertical red line of stroke 10 which as shown below
which increases and decrease as the window is sized.

35. Create a class ShowText1. Test the code.

36. Create a class TestArc. Arc is like an ellipse but shows only parts of the perimeter, either solid
arc or just the arc. We will draw a solid arc. Study lines 20 to 27 for its creation which are self-
explanatory. We start at 45 degrees(line 24) and we add an angle of 270 degrees(line 25). And
we have a Pacman.

37. Create class ShowEllipse1. The class My32Ellipses that starts at line 22 is derived from Pane.
However, we do not bind the coordinates of the ellipses to the Pane. What we do is we overload
the methods setWidth and setSize of the the parent(super) of Pane (Node). When the window is
sized these methods are called and the size of the ellipses increase or decrees depending on winch
way we size the window. The creation of each ellipse is explained in comment lines 31, 32. Run the
program and size the ellipse SMALL so the ellipses look like a star. It is a beautiful star.

