South Louisiana Community College

ASDV 2420, Advanced Programming Language I

Programming Examination 2 on 2019/3/12

Create a project called Exam2LastName where LastName is your last name.
Upload the zip and html for each problem outside of the zip. The examination MUST be
uploaded before 11:59am. IT WILL CLOSE at 11:59am.

Problem 1 (4 points)

Create a the abstract class Vehicle which
implements Cloneable and Comparable.
You are NOT +o implement Cloneable and
Comparable inside this abstract class.
Use Netbeans to insert code for the

following: The class methods are shown below.

Problem 2 (3 points)

Create a the class Automobile. which
extends Vehicle implements Cloneable

as shown in RHS. HERE you implement clone()
and comparedTo methods. The compareTo
compares vin numbers, nothing else. TEST
your CODE with the main shown at the
RHS to produce the exact output shown

below.
1 package exam2f19;

2

@ abstract public class Vehicle

4 implements Cloneable,

5 Comparable<Vehicle>

6 {

7 private String vin;

8 [public Vehicle(){}

9| [public Vehicle(String vin){this.vin = vin;}
10| = public String getVin(){return vin;}
11| =@ public void setVin(String vin){this.vin = vin;}
12 @Ooverride

C public String toString()
14 B {return "Vehicle{" + "vin=" 4+ vin + '}';}
15 @Override

@i public boolean equals(Object obj)
17| = {...20 lines }
37, }
OUTPUT

run:
Vehicle{vin=vinlBMW}
Automobile{make=BMW}

Vehicle{vin=vin2BMW}
Automobile{make=BMW}

Vehicle{vin=vin1BMW}
Automobile{make=BMW}

John's beemer EQUALS Marys's beemer -—> false
John's beemer EQUALS John's cloned beemer —-—> true
John's beemer COMPARE_TO John's cloned beemer ——> 0@
John's beemer COMPARE_TO Marys's beemer ——> -1
John's beemer EQUALS Airplane --> false

BUILD SUCCESSFUL (total time: @ seconds)

package exam2Spring2017;
public class Automobile

{

}

extends Vehicle implements Cloneable

private String make;
public Automobile(String make) {...}
public Automobile(String make, String vin)
{s::4 lines }
public String getMake() {...}
public void setMake(String make) {...}
@0verride
public int compareTo(Vehicle o)
{...20 lines }
@0verride
public boolean equals(Object obj)
{...21 lines }
@Override
protected Object clone() throws CloneNotSupportedException
{..}
@0verride
public String toString()
{...}
public static void main(String... args)
throws CloneNotSupportedException
{
Automobile johnsBeemer
Automobile marysBeemer

new Automobile ("BNMW",
new Automobile ("BNMW",

"vin1BMW");
"vin2BMW");

Automobile johnsClonedBeemer = (Automobile) johnsBeemer.clone();

System.out.println(johnsBeemer +'\n");
System.out.println(marysBeemer +"\n");
System.out.println(johnsClonedBeemer +"\n");

System.out.println("John\'s beemer EQUALS Marys\'s beemer -->
johnsBeemer.equals(marysBeemer));

[

System.out.println("John\'s beemer EQUALS John\'s cloned beemer —-> " +

johnsBeemer.equals(johnsClonedBeemer));

System.out.println("John\'s beemer COMPARE_TO John\'s cloned beemer -->

johnsBeemer.compareTo(johnsClonedBeemer));

System.out.println("John\'s beemer COMPARE_TO Marys\'s beemer -->

johnsBeemer.compareTo(marysBeemer));

System.out.println("John\'s beemer EQUALS Airplane --> " +
johnsBeemer.equals(new Airplane()));

class Airplane{}

[

+

Problem 3 (2 points)

1. Create an interface named Materialable which has one parameterless method named material/ that

returns void.

2. Create another interface named Colorable which has one parameterless method named color that

returns void.

3. Create a third interface named Housable which inherits all methods from interfaces Materialable

and Colorable

1
2
@
4
5 {
6
7 b4
8

package exam2f19.problem3;

public interface Housable
extends Colorable, Materialable

4. Create a class named BrickHouse which inherits all methods from interface Housable.

B. Create a class hamed WoodHouse which inherits all methods from interface Housable.

6. Add appropriate code in the methods of classes BrickHouse and WoodHouse to produce the same
output shown below using the main method given below.

run:
red brick
redish
oak house
brown

27 public static void main(String...args)
28 {

29 new BrickHouse().material();

30 new BrickHouse().color();

31 new WoodHouse().material();

32 new WoodHouse().color();

33 ¥

Debugc

BUILD SUCCESSFUL (total time: © seconds)

Problem 4 (1 point)

Given any string sl and any string s2, of any size, implement method isRotation shown to the right.

the method /isRotation returns true if s2 is a rotation of sl.
(eg given s1 = ABCD and s2 = CDAB, refurns true,
ABCD and s2 = DABC, returns true,
given s1 = ABCD, and s2 = ACBD , returns false
given s1="", and s2 = "A" , returns false)
Test it with the exact main shown below:

3 o

4 public

5 {...25
30 [public
74 public
75 O {

76 System.
77 System.
78 System.
79 System.
80 System.
81 System.
82 - }
83 }

run:
true
false
false
true
false
true

RETY

1 package exam2f19.problem3;
2 public class Problem4

static boolean isRotation(String s1, String s2)
lines }
static boolean isRotationZac(String s1, String s2) {...44 lines

static void main(String...

out.
out.
out.
out.
out.

out

printin(
printin(
printin(
println(
println(

.printin(

BUILD SUCCESSFUL (total time: @ seconds)

args)

isRotation("ABCDABCD", "BCDABCDA"));

isRotation
isRotation
iIsRotation
IsRotation
isRotation

("ABCD",
("ABCD",
("ABCD",
("ABCD",
("ABCD",

"ACBD"));
"ABC™));
"BCDA"));
"ABCCM));
"DABC"));

_.
oweu-eamzris e

