
The Rules of Generics
Rule 0
To declare a generic type <T> for a class it is the same as <T extends Object>.

Rule1
There is no inheritance for what is inside the diamond even if the class types in the
diamond is a super getting a sub. Number(super), Integer (sub).

1 of14

Rule 2
There IS inheritance for what is outside the diamond when the classes outside the
diamond are super sub. List ArrayList

Rule 3
Rule 1 and rule 2 apply for assignment as well, as in method calls passing arguments to
parameters IS assignment.

2 of14

Rule 4
The wildcard ?, fixes the inheritance problem inside the diamonds. However, we cannot
modify the ArrayList<?> (line 8) because we (the compiler), do not know what the exact
type of the wild card is.

Rule 5
When we have a wildcard on the LHS of assignment then on the in RHS of the
assignment, what is outside the diamond must be sub (or same class) of LHS and what is
inside the diamond can be any type. We still cannot modify the variable as in Rule 4.

3 of14

Rule 6
Bounded Inheritance for what is inside the diamond with <? extends TYPE>. The TYPE
(A) is the UPPER BOUND of the ?. The method f6() says that the List can have in the
diamond anything that extends type A. A is the super. Upper bound means superclass.
Lower bound means subclass.

Rule 7
The same as rule 6 with the difference that we do the assignment
List<? extends A> list = list1; line 15 and line 20.

4 of14

Rule 8
Upper bounded inheritance that is applicable in Rule 6 and Rule 7 does not work when it
is an instance variable with an upper bound. Line 7 below. So line 9 (parameter is good).
Line 7 is no good.

5 of14

Rule 9
Wildcards with a lower bound have the syntax ? super T denotes an unknown type
that is a supertype of T. In line 8, type class C is the lower bound of type class B, type class A (line
17) and type class Object (line 20). Type class Integer is NOT a super of type class C, and line 24 won't
compile.

6 of14

Rule 10
Upper bounded list1 and lower bounded list2 cannot modify list1 (line 11) or list2 inside
the method which creates the bounds because inside the method we do not know
exactly what the wildcard ? is. The wildcard ? can be A, B, C or Object type. But inside
main we can modify the list as you know precisely (line 16) the type as there is no
wildcard.
The bounded wildcards allow inheritance in the diamond and at the same time provide
upper and lower bound(s) of types we can pass as parameters of the diamond.

7 of14

Rule 11
There is no inheritance in the diamond when we nest <<>>diamonds. The diamond of the
diamond is of type List<Integer> here. We cannot pass as arguments Array<Integer>
(line 26), but can pass the exact type of the inner diamond which is of type
List<Integer> (line 24). Line 25 and 27 won't compile because we use new with abstract
class List.

8 of14

Rule 12
The same as rule 11 but for assignment. No inheritance in inner diamond.

9 of14

Rule 13
To allow inheritance in inner diamonds we use wild card ? in inner diamonds, as upper
bound(? extends), lower bound (? super) or just ?. The example shows the upper bound
fix of inner diamond inheritance. You can see that line 24 compiles as ArrayList<Integer>
of line 24 is a subtype of parameter List<Integer> of line 6. Still we cannot modify the
parameter (line 13).

10 of14

Rule 14
Same as Rule 13 but for assignment. Line 12 now compiles as on the RHS of the
assignment we have ArrayList<Integer> extends the List<Integer> of the LHS of the
assignment.

11 of14

Rule 15
When a parameter has wildcard in the diamond and extends a generic type (such as T2),
then it means anything that extends “Object” which implies that we can pass as
argument ANY TYPE (lines 17, 8, 19).

12 of14

Rule 16
When a parameter of a constructor or method has wildcard in the diamond and extends
a generic type (such as T1), line9, then it means anything that extends “Object” which
implies that it cannot be overloaded with same signatures(line 21 uses <? super>, line
29 uses <?> BECUASE they would have the same type erasure after compilation (same
signatures). Howerver, we can overload by using something different OUTISDE the out
side the diamond (constructor overloading line 13, has different signatures than line 9)

13 of14

Rule 17
When the return type of a method contain wildcard we can assign the return type to a
var that has either wilds card (line 15 and line 18), or no type lines(27,2*) f(or older
Java,versions backward compatibly)

14 of14

