DAVID GEARY - CAY HORSTMANN

JavaServer:
Faces

THIRD EDITION

£

ry of Wow! egok

FACELETS PAGE LAYOUT

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core"
xmins:h="http://java.sun.com/jsf/htm1"
xmins:ui="http://java.sun.com/jsf/facelets">
<h:head>...</h:head>
<h:body>
<h:form>

;)i.l:form>
</h:body>
</html>

TEXT FIELD
12345678901234567890

page.xhtml
<h:inputText value="#{beanl.TluckyNumber}">

WEB-INF/classes/com/corejsf/SampleBean.java

@Named("beanl") // or @ManagedBean(name="beanl") P}
@SessionScoped
public class SampleBean {

public int getLuckyNumber() { ... }

public void setLuckyNumber(int value) { ... }

}
BUTTON

press me |

page.xhtml

<h:commandButton value="press me" action="#{beanl.login}"/>

WEB-INF/classes/com/corejsf/SampleBean.java

public class SampleBean {
public String Togin() {
if (...) return "success"; else return "error";

}
.-

The outcomes success and error can be mapped to pages
in faces-config.xml. If no mapping is specified, the page
/success.xhtml or /error.xhtml is displayed.

GET REQUESTS

<f:metadata>
<fiviewParam name="item" value="#{beanl.currentItem}"/>
<fiviewParam name="userId" value="#{beanl.user}"/>
</f:metadata>

Request parameters set bean properties before the

page is rendered.

<h:button value="Continue" outcome="#{beanl.continueOutcome}"
includeViewParams="true" />

The getContinueQutcome method is called when the button is
rendered. The view parameters are added to the
request URL.

RADIO BUTTONS
" (Cheese ¥ Pickle ¢ Mustard ¢ Lettuce ¢ Onions

page.xhtml

<h:selectOneRadio value="#{beanl.condiment}>
<f:selectItems value="#{beanl.choices}" var="it"
itemLabel="#{it.description}"
itemValue="#{it.productId}"/>

</h:selectOneRadio>

WEB-INF/classes/com/corejsf/SampleBean.java

public class SampleBean {
public Collection<Condiment> getChoices() { ...}
public int getCondiment() { ... }
public void setCondiment(int value) { ... }

o

WEB-INF/classes/com/corejsf/Condiment.java

public class Condiment {
public String getDescription() { ... }
pubTic int getProductId() { ... }

CONVERSION

<h:outputText value="#{beanl.amount}">
<f:convertNumber type="currency"/>
</h:outputText>

The number is displayed with currency symbol and
group separator: $1,000.00

VALIDATION
Using the bean validation framework (JSR 303)

public class SampleBean {
@Max(1000) private BigDecimal amount;
}
Page-level validation and conversion

<h:inputText value="#{beanl.amount}" required="true">
<fivalidateDoubleRange maximum="1000"/>
</hinputText>

Error messages

Amount: too much’ is not a number.
Amount fion much

Example; 99

Amount
<h:inputText id="amt" Tabel="Amount" value="#{beanl.amount}"/>
<h:message for="amt"/>

RESOURCES

page.xhtml
<h:outputStylesheet Tibrary="css" name="styles.css"/>

<h:message for="amt" errorClass="errors">

resources/css/styles.css

.errors {
font-style: italic;
color: red;

}

From the Library of Wow! eBook

core
JAVASERVER" FACES

THIRD EDITION

From the Library of Wow! eBook

This page intentionally left blank

From the Library of Wow! eBook

core
JAVASERVER" FACES

THIRD EDITION

DAVID GEARY
CAY HORSTMANN

L &
L @<
L X J

PRENTICE
HALL

Upper Saddle River, NJ ® Boston ® Indianapolis ® San Francisco
New York e Toronto ® Montreal ® London ® Munich ¢ Paris ® Madrid
Capetown e Sydney ¢ Tokyo ® Singapore ® Mexico City

From the Library of Wow! eBook

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

This document is provided for information purposes only and the contents hereof are subject to change without notice. This doc-
ument is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically dis-
claim any liability with respect to this document and no contractual obligations are formed either directly or indirectly by this
document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without our prior written permission.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include
electronic versions and / or custom covers and content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph
Library of Congress Cataloging-in-Publication Data

Geary, David M.

Core JavaServer faces / David Geary, Cay Horstmann.—3rd ed.

p. cm.

Includes index.

ISBN 978-0-13-701289-3 (pbk. : alk. paper)

1. JavaServer pages. 2. Web site development. 3. Web sites—Design.
L. Horstmann, Cay S., 1959- II. Title.

TK5105.8885.J38G433 2010

006.7'8—dc22

2010011569

Copyright ©2010, Oracle and / or its affiliates. All rights reserved.
500 Oracle Parkway, Redwood Shores, CA 94065

Allrights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise.

For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax: (617) 671-3447

ISBN-13: 978-0-13-701289-3
ISBN-10: 0-13-701289-6

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, May 2010

From the Library of Wow! eBook

Preface XV

Acknowledgments Xix

GETTING STARTED 2

Why JavaServer Faces? 3
A Simple Example 4
Ingredients 7
Directory Structure 8
Building a JSF Application 9
Deploying a JSF Application 11
Development Environments for JSF 13
An Analysis of the Sample Application 15
Beans 16
JSF Pages 17
Servlet Configuration 19
A First Glimpse of Ajax INNGFED 21
JSF Framework Services 24
Behind the Scenes 26
Rendering Pages 27

From the Library of Wow! eBook

n Contents

Decoding Requests 28
The Life Cycle 29
Conclusion 31

2 MANAGED BEANS 32

Definition of a Bean 33
Bean Properties 36
Value Expressions 37
Backing Beans 38

CDI Beans 39

Message Bundles 40
Messages with Variable Parts
Setting the Application Locale

A Sample Application 45

Bean Scopes 51
Session Scope 52
Request Scope 53
Application Scope 54
Conversation Scope
View Scope 55
Custom Scopes

Configuring Beans 56
Injecting CDI Beans

42
43

Injecting Managed Beans 57

Bean Life Cycle Annotations 58
Configuring Managed Beans with XML 58

The Expression Language Syntax 63

Lvalue and Rvalue Modes 63

Using Brackets 64

Map and List Expressions 65

Calling Methods and Functions 66
Resolving the Initial Term 67

Composite Expressions 69

From the Library of Wow! eBook

Contents n

Method Expressions 70
Method Expression Parameters 71
Conclusion 71

NAVIGATION 72

Static Navigation 73
Dynamic Navigation 74
Mapping Outcomes to View IDs 75
The JavaQuiz Application 77
Redirection 86
Redirection and the Flash NN 87
RESTful Navigation and Bookmarkable URLs [NNFK 88
View Parameters 89
GET Request Links 90
Specifying Request Parameters 91
Adding Bookmarkable Links to the Quiz Application 92
Advanced Navigation Rules 96
Wildcards 97
Using from-action 98
Conditional Navigation Cases INN#X 99
Dynamic Target View IDs NN 99
Conclusion 99

STANDARD JSF TAGS 100

An Overview of the JSF Core Tags 102
Attributes, Parameters, and Facets 104
An Overview of the JSF HTML Tags 105
Common Attributes 107
Panels 115
The Head, Body, and Form Tags 118
Form Elements and JavaScript 120
Text Fields and Text Areas 123
Hidden Fields 127

From the Library of Wow! eBook

n Contents

Using Text Fields and Text Areas 127
Displaying Text and Images 131
Buttons and Links 134
Using Buttons 136
Using Command Links 141
Selection Tags 145
Checkboxes and Radio Buttons 148
Menus and Listboxes 151
ltems 153
Messages 171
Conclusion 177

5 FACELETS @ 178

Facelets Tags 179
Templating with Facelets 181
Building Pages from Common Templates 183
Organizing Your Views 187
Decorators 193
Parameters 195
Custom Tags 195
Components and Fragments 198
Loose Ends 198
<ui:debug> 198

<ui:remove> 200
Handling Whitespace 202
Conclusion 202

G DATATABLES 204
The Data Table Tag—h:dataTable 205
A Simple Table 207
h:dataTable Attributes 210
h:column Attributes 211
Headers, Footers, and Captions 212

From the Library of Wow! eBook

Contents n

Styles 215
Styles by Column 215
Styles by Row 216
The ui:repeat Tag 217
JSF Components in Tables 218
Editing Tables 222
Editing Table Cells 222
Deleting Rows INN#Xd 225
Database Tables 228
Table Models 232
Rendering Row Numbers 233
Finding the Selected Row 234
Sorting and Filtering 234
Scrolling Techniques 242
Scrolling with a Scrollbar 242
Scrolling with Pager Widgets 243
Conclusion 244

CONVERSION AND VALIDATION 246

Overview of the Conversion and Validation Process 247
Using Standard Converters 249
Conversion of Numbers and Dates 249
Conversion Errors 253

A Complete Converter Example 259
Using Standard Validators 262
Validating String Lengths and Numeric Ranges 262
Checking for Required Values 264
Displaying Validation Errors 265
Bypassing Validation 266
A Complete Validation Example 267
Bean Validation INNFKU 270
Programming with Custom Converters and Validators 275
Implementing Custom Converter Classes 275

From the Library of Wow! eBook

- Contents

Specifying Converters NN 279

Reporting Conversion Errors 280

Getting Error Messages from Resource Bundles 281
The Custom Converter Sample Application 286
Supplying Attributes to Converters 289
Implementing Custom Validator Classes 290
Registering Custom Validators 290

Validating with Bean Methods 294

Validating Relationships between Multiple
Components 295

Implementing Custom Converter and Validator Tags 297
Conclusion 303

8 EVENTHANDLING 304
Events and the JSF Life Cycle 306
Value Change Events 307
Action Events 312
Event Listener Tags 318
The f:actionListener and f:valueChangelListener

Tags 318

Immediate Components 320
Using Immediate Input Components 321
Using Immediate Command Components 323

Passing Data from the Ul to the Server 324
Method Expression Parameters 325
The f:param Tag 325
The f:attribute Tag 326
The f:setPropertyActionListener Tag 327
Phase Events 328
System Events INNE 329
Multi-Component Validation 331
Making Decisions before Rendering the View 333
Putting It All Together 338
Conclusion 345

From the Library of Wow! eBook

10

Contents n

COMPOSITE COMPONENTS 346
The Composite Tag Library 348

Using Composite Components 350
Implementing Composite Components 352

Configuring Composite Components 353

Attribute Types 354

Required Attributes and Default Attribute Values 355

Manipulating Server-Side Data 356

Localizing Composite Components 359
Exposing a Composite’s Components 360

Exposing Action Sources 363
Facets 365
Children 366
JavaScript 368
Backing Components 373
Packaging Composite Components in JARs
Conclusion 383

AJAX D 384

Ajax and JSF 386

The JSF Life Cycle and Ajax 387
The JSF Ajax Recipe 388

The f:ajax Tag 389

Ajax Groups 392

Ajax Field Validation 394

Ajax Request Monitoring 396
JavaScript Namespaces 398
Handling Ajax Errors 400

Ajax Responses 400

The JSF 2.0 JavaScript Library 403
Passing Additional Ajax Request Parameters
Queueing Events 407

Coalescing Events 408

382

405

From the Library of Wow! eBook

n Contents

11

12

Intercepting jsf.ajax.request() 409
Using Ajax in Composite Components 409
Conclusion 416

CUSTOM COMPONENTS, CONVERTERS,
AND VALIDATORS 418

Implementing a Component Class 420
Encoding: Generating Markup 424
Decoding: Processing Request Values 427
The Tag Library Descriptor INN#A 433
Using an External Renderer 438
Processing Tag Attributes [N 441
Supporting Value Change Listeners 442
Supporting Method Expressions 443
Queuing Events 445
The Sample Application 445
Encoding JavaScript 453
Using Child Components and Facets 457
Processing SelectItem Children 460
Processing Facets 461
Using Hidden Fields 462
Saving and Restoring State 468
Partial State Saving 469
Building Ajax Components 473

Implementing Self-Contained Ajax in
Custom Components 475

Supporting f:ajax in Custom Components 479
Conclusion 484

EXTERNAL SERVICES 486

Database Access with JDBC 487
Issuing SQL Statements 487
Connection Management 489

From the Library of Wow! eBook

Contents m

Plugging Connection Leaks 490
Using Prepared Statements 491
Transactions 493
Using the Derby Database 493
Configuring a Data Source 495
Accessing a Container-Managed Resource 495
Configuring a Database Resource in GlassFish 496
Configuring a Database Resource in Tomcat 498
A Complete Database Example 499
Using the Java Persistence Architecture 507
A Crash Course in JPA 507
Using JPA in a Web Application 508

Using Managed Beans and Stateless Session Beans 513
Stateful Session Beans 517
Container-Managed Authentication and Authorization 519
Sending Mail 532
Using Web Services 537
Conclusion 544

HOWDOI...? 546

How do | find more components? 547

How do | support file uploads? 548

How do | show an image map? 557

How do | produce binary data in a JSF page? 559

How do | show a large data set, one page at a time? 568
How do | generate a pop-up window? 573

How do | selectively show and hide parts of a page? 581
How do | customize error pages? 582

How do | write my own client-side validation tag? 588
How do | configure my application? 595

How do | extend the JSF expression language? 596

How do | add a function to the JSF expression

language? INNEFX 599

From the Library of Wow! eBook

n Contents

How do | monitor the traffic between the browser
and the server? 601

How do | debug a stuck page? 602

How do | use testing tools when developing a JSF
application? 604

How do | use Scala with JSF? 605
How do | use Groovy with JSF? 607
Conclusion 608

Index 609

From the Library of Wow! eBook

When we heard about JavaServer Faces (JSF) at the 2002 JavaOne conference,
we were very excited. Both of us had extensive experience with client-side Java
programming—David in Graphic Java™, and Cay in Core Java™, both published
by Sun Microsystems Press—and we found web programming with servlets
and JavaServer Pages (JSP) to be rather unintuitive and tedious. JSF promised
to put a friendly face in front of a web application, allowing programmers to
think about text fields and menus instead of dealing with page flips and
request parameters. Each of us proposed a book project to our publisher, who
promptly suggested that we should jointly write the Sun Microsystems Press
book on JSE.

In 2004, the JSF Expert Group (of which David is a member) released the JSF 1.0
specification and reference implementation. A bug fix 1.1 release emerged
shortly afterward, and an incremental 1.2 release added a number of cleanups
and convenience features in 2006.

The original JSF specification was far from ideal. It was excessively general,
providing for use cases that turned out to be uninteresting in practice. Not
enough attention was given to API design, forcing programmers to write com-
plex and tedious code. Support for GET requests was clumsy. Error handling
was plainly unsatisfactory, and developers cursed the “stack trace from hell”.

JSF had one saving grace, however. It was highly extensible, and therefore it
was very attractive to framework developers. Those framework developers

XV

From the Library of Wow! eBook

Preface

built cutting edge open-source software that plugged into JSE, such as Facelets,
Ajax4jsf, Seam, JSF Templates, Pretty Faces, RichFaces, ICEFaces, and so on.

JSF 2.0, released in 2009, is built on the experience of those open-source frame-
works. Nearly all of the original authors of the aforementioned frameworks
participated on the JSF 2 Expert Group, so JSF 2.0, unlike JSF 1.0, was forged
from the crucible of real-world open-source projects that had time to mature.

JSF 2.0 is much simpler to use and better integrated into the Java EE technology
stack than JSF 1.0. Almost every inch of JSF 1.0 has been transformed in JSF 2.0
in some way for the better. In addition, the specification now supports new
web technologies such as Ajax and REST.

JSF is now the preeminent server-side Java web framework, and it has fulfilled
most of its promises. You really can design web user interfaces by putting com-
ponents on a form and linking them to Java objects, without having to mix
code and markup. A strong point of JSF is its extensible component model, and
a large number of third-party components have become available. The flexible
design of the framework has allowed it to grow well and accommodate new
technologies.

Because JSF is a specification and not a product, you are not at the mercy of a
single vendor. JSF implementations, components, and tools are available from
multiple sources. We are very excited about JSF 2.0, and we hope you will share
in this excitement when you learn how this technology makes you a more
effective web application developer.

About This Book

This book is suitable for web developers whose main focus is on implementing
user interfaces and business logic. This is in stark contrast to the official JSF
specification, a dense and pompously worded document whose principal audi-
ence is framework implementors, as well as long-suffering book authors. JSF is
built on top of servlets, but from the point of view of the JSF developer, this
technology merely forms the low-level plumbing. While it can't hurt to be
familiar with servlets, JSP, or Struts, we do not assume any such knowledge.

The first half of the book, extending through Chapter 7, focuses on the JSF tags.
These tags are similar to HTML form tags. They are the basic building blocks
for JSF user interfaces. Anyone with basic HTML skills (for web page design)
and standard Java programming (for the application logic) can use the JSF tags
to build web applications.

From the Library of Wow! eBook

Preface m

The first part of the book covers these topics:

* Setting up your programming environment (Chapter 1)

¢ Connecting JSF tags to application logic (Chapter 2)

* Navigating between pages (Chapter 3)

L Using the standard JSF tags (Chapter 4)

e Using Facelets tags for templating (Chapter 5)

¢ Data tables (Chapter 6)

e Converting and validating input (Chapter 7)

Starting with Chapter 8, we begin JSF programming in earnest. You will learn

how to perform advanced tasks, and how to extend the JSF framework. Here
are the main topics of the second part:

e Event handling (Chapter 8)

* Building composite components—reusable components with
sophisticated behavior that are composed from simpler components

(Chapter 9)
* Ajax (Chapter 10)
* Implementing custom components (Chapter 11)
* Connecting to databases and other external services (Chapter 12)

We end the book with a chapter that aims to answer common questions of the
form “How doI...?” (Chapter 13). We encourage you to have a peek at that
chapter as soon as you become comfortable with the basics of JSF. There are
helpful notes on debugging and logging, and we also give you implementation
details and working code for features that are missing from JSF, such as file
uploads, pop-up menus, and a pager component for long tables.

All chapters have been revised extensively in this edition to stress the new and
improved features of JSF 2.0. Chapters 5, 9, and 10 are new to this edition.

Required Software

All software that you need for this book is freely available. You can use an
application server that supports Java EE 6 (such as GlassFish version 3) or a
servlet runner (such as Tomcat 6) together with a JSF implementation. The
software runs on Linux, Mac OS X, Solaris, and Windows. Both Eclipse and
NetBeans have extensive support for JSF development with GlassFish or
Tomcat.

From the Library of Wow! eBook

Preface

Web Support

The web site for this book is http://corejsf.com. It contains:

e The source code for all examples in this book

. Useful reference material that we felt is more effective in browseable form
than in print

e Alist of known errors in the book and the code
e A form for submitting corrections and suggestions

From the Library of Wow! eBook

http://corejsf.com

7
Ackyowledagrmessts

r F4

y B2

First and foremost, we'd like to thank Greg Doench, our editor at Prentice Hall,
who has shepherded us through this project, never losing his nerve in spite of
numerous delays and complications. Many thanks to Vanessa Moore for turn-
ing our messy manuscript into an attractive book and for her patience and
amazing attention to detail.

We very much appreciate our reviewers for this and previous editions who
have done a splendid job, finding errors and suggesting improvements in
various drafts of the manuscript. They are:

. Gail Anderson, Anderson Software Group, Inc.

. Larry Brown, LMBrown.com, Inc.

¢ Damodar Chetty, Software Engineering Solutions, Inc.

. Frank Cohen, PushToTest

® Brian Goetz, Sun Microsystems, Inc.

. Rob Gordon, Crooked Furrow Farm

* Marty Hall, author of Core Servlets and JavaServer Pages™, Second Edition,
(Prentice Hall, 2008)

° Steven Haines, CEO/Founder, GeekCap, Inc.

. Charlie Hunt, Sun Microsystems, Inc.

* Jeff Langr, Langr Software Solutions

o Jason Lee, Senior Java Developer, Sun Microsystems, Inc.

Xix

From the Library of Wow! eBook

Acknowledgments

e Bill Lewis, Tufts University

. Kito Mann, author of JavaServer Faces in Action (Manning, 2005) and
founder of JSFCentral.com

e Jeff Markham, Markham Software Company

¢ Angus McIntyre, IBM Corporation

e John Muchow, author of Core J2ME™ (Prentice Hall, 2001)

¢ Dan Shellman, BearingPoint

® Sergei Smirnov, principal architect of Exadel JSF Studio

¢ Roman Smolgovsky, Flytecomm

* Stephen Stelting, Sun Microsystems, Inc.

¢ Christopher Taylor, Nanshu Densetsu

¢ Kim Topley, Keyboard Edge Limited

* Michael Yuan, coauthor of JBoss® Seam: Simplicity and Power Beyond Java™
EE (Prentice Hall, 2007)

Finally, thanks to our families and friends who have supported us through this
project and who share our relief that it is finally completed.

From the Library of Wow! eBook

core
JAVASERVER" FACES

THIRD EDITION

From the Library of Wow! eBook

GETTING STARTED

Topics in This Chapter

e “Why JavaServer Faces?” on page 3

e “A Simple Example” on page 4

e “Development Environments for JSF” on page 13

e “An Analysis of the Sample Application” on page 15
e “A First Glimpse of Ajax” on page 21

e “JSF Framework Services” on page 24

e “Behind the Scenes” on page 26

From the Library of Wow! eBook

Why JavaServer Faces?

Nowadays, you can choose among many frameworks for developing the user
interface of a web application. JavaServer Faces (JSF) is a component-based
framework. For example, if you want to display a table with rows and col-
umns, you do not generate HTML tags for rows and cells in a loop, but you
add a table component to a page. (If you are familiar with client-side Java
development, you can think of JSF as “Swing for server-side applications.”) By
using components, you can think about your user interface at a higher level
than raw HTML. You can reuse your own components and use third-party
component sets. And you have the option of using a visual development envi-
ronment in which you can drag and drop components onto a form.

JSF has these parts:

* A set of prefabricated Ul (user interface) components

¢ Anevent-driven programming model

* A component model that enables third-party developers to supply

additional components

Some JSF components are simple, such as input fields and buttons. Others are
quite sophisticated—for example, data tables and trees.

From the Library of Wow! eBook

n Chapter 1 B Getting Started

JSF contains all the necessary code for event handling and component organi-
zation. Application programmers can be blissfully ignorant of these details and
spend their effort on the application logic.

JSF is not the only component-based web framework, but it is the view layer in
the Java EE standard. JSF is included in every Java EE application server, and it
can be easily added to a standalone web container such as Tomcat.

Unlike most web frameworks, JSF is a standard with multiple implementations.

This gives you a choice of vendors. Another advantage is that a standards com-
mittee has given considerable thought to the design of the framework, and that
JSF is continuously improved and updated.

This book focuses on JSF 2.0, a major improvement over previous versions. JSF
2.0 is much simpler to use than JSF 1.x, and it provides new and powerful fea-
tures, such as easy Ajax integration and composite component authoring.

A Simple Example

Let us have a look at a simple example of a JSF application. Our example starts
with a login screen, shown in Figure 1-1.

[®|Welcome - Mozilla Firefox

File Edit View History Bookmarks Tools Hclp

L= ~ ﬂ |§ http:/flocalhost:8080/login/ ~

Please enter your name and password.

Name: |ohn Q. Public |
Password: [eeesee |

| Login

Donec
T T

Figure 1-1 A login screen

The file that describes the login screen is essentially an HTML file with a few
additional tags (see Listing 1-1). Its visual appearance can be easily improved
by a graphic artist who need not have any programming skills.

From the Library of Wow! eBook

A Simple Example “

Togin/web/index. xhtm1

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>Welcome</title>
</h:head>
<h:body>
<h:forms>
<h3>Please enter your name and password.</h3>
<table>
<tr>
<td>Name:</td>
<td><h:inputText value="#{user.name}"/></td>
</tr>
<tr>
<td>Password:</td>
<td><h:inputSecret value="#{user.password}"/></td>
</tr>
</table>
<p><h:commandButton value="Login" action="welcome"/></p>
</h:form>
</h:body>
</htm1>

We discuss the contents of this file in detail in the section “JSF Pages” on
page 17. For now, note the following points:

. A number of the tags are standard HTML tags: p, table, and so on.

* Some tags have prefixes, such as h:head and h:inputText. These are JSF tags.
The xmins attribute declares the JSF namespace.

* The h:inputText, h:inputSecret, and h:commandButton tags correspond to the text
field, password field, and submit button in Figure 1-1.

e Theinput fields are linked to object properties. For example, the attribute
value="#{user.name}" tells the JSF implementation to link the text field with
the name property of a user object. We discuss this linkage in more detail in
the section “Beans” on page 16.

When the user enters the name and password, and clicks the “Login” button,
the welcome.xhtm file is displayed, as specified in the action attribute of the
h:commandButton tag. (See Figure 1-2 and Listing 1-2.)

From the Library of Wow! eBook

- Chapter 1 B Getting Started

NOTE: Before JSF 2.0, you had to add a “navigation rule” in a file WEB-INF/

yAl faces-config.xml file in order to specify the page that should be displayed
when a button is clicked. In JSF 2.0, you can specify the page name directly
in the action attribute of the button. (You can still use navigation rules; we
discuss them in Chapter 3.)

[®|Welcome - Mozilla Firefox
File Edit View History Bookmarks Tools Hclp

* ~ g ﬂ |§ http:/flocalhost:8080/login/faces/ind ~

Welcome to JavaServer Faces, John Q. Public!

Donec
T T

Figure 1-2 A welcome page

The second JSF page of our application is even simpler than the first (see
Listing 1-2). We use the #{user.name} expression to display the name property of
the user object that was set in the first page. The password is ignored for now.

Togin/web/welcome.xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm] PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtm]1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>Welcome</title>
</h:head>
<h:body>
<h3>Welcome to JavaServer Faces, #{user.name}!</h3>
</h:body>
</html>

The purpose of this application is, of course, not to impress anyone, but to
illustrate the various pieces that are necessary to produce a JSF application.

From the Library of Wow! eBook

A Simple Example

Ingredients

Our sample application consists of the following ingredients:

* Pages that define the login and welcome screens. We call them index.xhtm]
and welcome.xhtm1.

* Abean that manages the user data (in our case, username and password).
A bean is a Java class that exposes properties, by following a simple naming
convention for the getter and setter methods. The code is in the file
UserBean.java (see Listing 1-3). Note the @Named or @ManagedBean annotation that
specifies the name by which an object of this class is referenced in the JSF
pages. (For compatibility reasons, there are two alternative annotations
for naming a bean. @Named is the best choice with a Java EE 6 compliant
application server. @ManagedBean is intended for use with legacy application
servers and standalone servlet runners.)

* Configuration files web.xnl and beans.xml that are needed to keep the appli-
cation server happy.

NOTE: Before JSF 2.0, you had to declare beans in a file WEB-INF/faces-
yAl config.xml. This is no longer necessary, and this application does not need a
faces-config.xml file.

More advanced JSF applications have the same structure, but they can contain
additional Java classes, such as event handlers, validators, and custom compo-
nents. Additional configuration parameters can be placed in a file WEB-INF/faces-
config.xml that we will describe in the next chapter. For a simple application, this
file is not required.

TRV T BRI Togin/src/java/com/corejsf/UserBean. java

package com.corejsf;

import java.io.Serializable;
import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;

@amed("user") // or @anagedBean(name="user")

@SessionScoped

pubTic class UserBean implements Serializable {
private String name;

From the Library of Wow! eBook

Chapter 1 B Getting Started

private String password;

public String getName() { return name; }
public void setName(String newValue) { name = newValue; }

public String getPassword() { return password; }
public void setPassword(String newValue) { password = newValue; }

}

Directory Structure

A JSF application is deployed as a WAR file: a zipped file with extension .war
and a directory structure that follows a standardized layout:

XHTML files

resources/
I— CSS files, JavaScript, images
WEB-INF/

— servlet and JSF configuration files

— classes/

’> class files

—— META-INF/

b/ I— application server configuration files
— Ti

library files

For example, the WAR file of our sample application has the directory structure
shown in Figure 1-3. Note that the UserBean class is in the package com.corejsf.

NOTE: When you use Tomcat or another servlet runner, the 1ib directory
- contains the JAR files of the JSF implementation. This is not necessary with
GlassFish and other Java EE application servers since they already have
JSF built in.

From the Library of Wow! eBook

A Simple Example n

ﬁ login.war
") index.xhtml
" welcome.xhtml
v (& WEB-INF
.| beans.xml

| web.xml
¥ (&5 classes

¥ (& com
¥ (& corejsf
| UserBean.class

Figure 1-3 Directory structure of the sample WAR file

It is customary to package the application source in a different directory structure.
In this book, we follow the Java Blueprints conventions (http://java.sun.com/
blueprints/code/projectconventions.html). This packaging makes it easy to import
our projects into IDEs, such as Eclipse or NetBeans. The source code is con-
tained in a src/java directory, and the JSF pages and configuration files are
contained in a web directory (see Figure 1-4).

[E login
¥ [& src
¥ (& java
¥ (& META-INF
] beans.xml

v [E com
¥ (& corejsf
| % UserBean.java
v E web

.| index.xhtm|
; welcome.xhtml
¥ (& WEB-INF

[web.xml

Figure 1-4 Directory structure of the sample application source

Building a JSF Application

We now walk you through the steps required for building JSF applications
with your bare hands. Of course, you will usually want to use an IDE or a build
script. However, it is a good idea to know what your IDE does under the hood
so that you can troubleshoot problems effectively.

From the Library of Wow! eBook

http://java.sun.com/blueprints/code/projectconventions.html
http://java.sun.com/blueprints/code/projectconventions.html

Chapter 1 B Getting Started

You need the following software packages to get started:

JDK (Java SE Development Kit) 5.0 or higher (http://java.sun.com/j2se)
JSF 2.0 (either included with your application server or separately

available at http://javaserverfaces.dev.java.net)
The sample code for this book, available at http://corejsf.com

We assume that you have already installed the JDK and that you are familiar
with the JDK tools. For more information on the JDK, see Cay Horstmann and
Gary Cornell, Core Java™, 8th ed., Santa Clara, CA: Sun Microsystems Press/
Prentice Hall, 2008.

Since JSF 2.0 is part of the Java EE 6 specification, the easiest way to try out JSF
is to use an application server that is compatible with Java EE 6, such as Glass-
Fish version 3 (http://glassfish.dev.java.net).

If you do not want to install a complete application server, you can use a servlet
runner, such as Tomcat (http://tomcat.apache.org), together with the JSF reference
implementation (available at http://javaserverfaces.dev.java.net).

If you use another application server or servlet runner, you will need to adjust
the instructions that follow.

Here are the build instructions for the sample JSF application.

1.
2.

Launch a command shell.

Change to the corejsf-examples directory—that is, the directory that contains
the sample code for this book.

If you use GlassFish or another Java EE 6 compliant application server,
change to the javaee subdirectory. If you use Tomcat, change to the tomcat
subdirectory.

Change to the source directory and make the directory for holding the
class files:

cd ch01/login/src/java
mkdir ../../web/WEB-INF/classes

On Windows, use backslashes as file separators.
If you use GlassFish, run

javac -d ../../web/WEB-INF/classes -classpath .:glassfish/modules/\x
com/corejsf/UserBean. java

From the Library of Wow! eBook

http://java.sun.com/j2se
http://javaserverfaces.dev.java.net
http://corejsf.com
http://glassfish.dev.java.net
http://tomcat.apache.org
http://javaserverfaces.dev.java.net

A Simple Example n

On Windows, use a semicolon in the classpath, and don’t escape the *
wildcard:

javac -d ..\..\web\WEB-INF\classes -classpath .;glassfish\modules\«
com\corejsf\UserBean.java

If you use Tomcat, use the following command to compile your code:

javac -d ../../web/WEB-INF/classes -classpath .:jsf-ref-impl/1ib/jsf-api.jar
com/corejsf/UserBean. java
6. If you use Tomcat, you need to include the JSF libraries:
mkdir ../../web/WEB-INF/Tib
cp jsf-ref-impl/1ib/«.jar ../../web/WEB-INF/1ib
Skip this step if you use a Java EE 6 compliant application server.

7. Run the following commands (and note the period at the end of the jar
command, indicating the current directory):

cd ../..
jar cvf login.war .

Deploying a JSF Application

Install your server and start it. For example, to start GlassFish on Unix/Linux,
you use the command:

glassfish/bin/asadmin start-domain
(See Figure 1-5.) To start Tomcat on Unix/Linux, use:

tomcat/bin/startup.sh

[E[Terminal EET

File Edit View Terminal Help
~$ /opt/glassfishv3/glassfish/bin/asadmin start-domain -

Waiting for DAS to start.

Name of the domain started: [domainl] and its location:
[/opt/glassfishv3/glassfish/domains/domainl].

Admin port for the domain: [4848].

Command start-domain executed successfully.

=3 |

Figure 1-5 Starting GlassFish

From the Library of Wow! eBook

Chapter 1 B Getting Started

To test that your server runs properly, point your browser to a default URL.
With GlassFish and Tomcat, that is http://localhost:8080. You should see a wel-
come page (see Figure 1-6).

Hle Edit View History Bookmarks Jools Help

@ v o= #k [[@ nrpsyiocalnost:zosoy 7

Sun GlassFish Enterprise Server v3 Prelude [

Your server is now running

To replace Lhis page, overwrile lhe file index_html in e document rool folder of Lhis server. The documentd rool Tolder for Lhis server is Lhe
docroot subdireclory of this server's domain direclory.

To manage a server on the local host with the default administration port, go to the Administration Console
Register Sun GlassFish Enterprise Server with Sun Connection now
Use the Administration Console to register Sun GlassFish'™™ Enterprise Server (GlassFish server) with sun®™ Connection now. Registration is
optional, but as a registered user you receive benefits such as:
* Palch informealion and buog updales
® Screencasts and tutorials
* News and evenls
® Suppoert and training offerings

Done
I s

Figure 1-6 GlassFish welcome page

Most servers let you deploy applications by copying WAR files to a deploy-
ment directory. In GlassFish, that directory is glassfish/domains/domainl/autodeploy.
With Tomcat, you deploy WAR files in the tomcat/webapps directory.

Copy the login.war file to the deployment directory, make sure that your server
has been started, and point your browser to:

http://Tocalhost:8080/Togin
The application should start up at this point.

% NOTE: If something goes wrong with deploying the example program, you

should consult the log file for clues. GlassFish logs all messages in the file

glassfish/domains/domainl/logs/server.log. Tomcat keeps logs in the tomcat/
logs/catalina.out file.

As you start developing your own applications, it is useful to know that the
logs contain all output that was sent to System.out and System.err. In the default
configuration, that includes all logging messages with level INFO or higher.

In other words, you can simply include calls to System.out.println or Logger.get-
Global().info for debugging purposes, and the output will appear in the logs.

From the Library of Wow! eBook

Development Environments for JSF

Development Environments for JSF

You can produce the pages and configuration files for a simple JSF application
with a text editor. However, as your applications become more complex, you
will want to use more sophisticated tools.

IDEs, such as Eclipse or NetBeans, are deservedly popular with programmers.
Support for autocompletion, refactoring, debugging, and so on, can dramati-
cally increase programmer productivity, particularly for large projects.

As this book is written, both Eclipse and Netbeans have good JSF support. Net-
beans gives you one-stop shopping: it is already fully integrated with Glass-
Fish and Tomcat. With Eclipse, install GlassFish or Tomcat separately and use a
server plugin. (The GlassFish plugin is at https://glassfishplugins.dev.java.net.)
Eclipse has fairly basic JSF support. Several commercial Eclipse derivatives
(such as MyEclipse, JBoss Developer Studio, and Rational Application Devel-
oper) as well as Oracle JDeveloper have advanced JSF features. They all have
trial versions that you can download.

When you load one of the sample projects from the book’s companion code into
your IDE, choose the option for importing a web project from existing sources.
Select the source directory, such as corejsf-examples/javaee/ch01/1ogin. Netbeans auto-
matically picks up the correct source and web directories, but with Eclipse, you
need to change the defaults src and WebContent to src/java and web (see Figure 1-7).

) [New Dynamic Web Project *
Dynamic Web Project
Create a standalone Dynamic Web project or add it to & new or existing Enterprise Application, @

&[New Dynamic Web Project Ix
progoct name: [login

Java =
Project contents Configure project for buikding a Java appheation 7
Use default & A
Directory: [homeicayicorefchil login Source folders on buid path:
/S cuuucuucuuciunni | aa soutar
Target runtime:
GlassFish v3 Java EE & di.
Dynamic web module version O Edit Source Folder x Remave

25

Specify the new name for the source folder.

Configuration srcfjava

Default Configuration for Glassfish v3 Java EE 6

Add project to an EAR
Context root legin

Content directory: |web
Werking sets

add project to working sets Generate web xml deployment descriptor

Default cutput folder

) x| | Buldiclasses k

Figure 1-7 Importing a project into Eclipse

From the Library of Wow! eBook

) [New Dynamic Web Project *
A good starting point for working with GlassFish v3 Java EE 6 run
instalied 1o add new functionality to the project Web Module) ﬁ
Configure web module settings.
EAR membership

i /
[A—

https://glassfishplugins.dev.java.net

Chapter 1 B Getting Started

With an IDE, it is very easy to run and debug applications. Figure 1-8 shows
the Eclipse debugger, stopped at a breakpoint in the UserBean class. Both Eclipse
and Netbeans support hot fixes, the ability to make changes to JSF pages and
Java code that are instantly reflected in the running program. (Fair warning:
Hot fixes can’t always be applied, and you will occasionally need to redeploy
your application or even restart the application server.)

£ [Debug - login/srcfjavajcom/corejsf/UserBean.java - Eclipse

File Edit Source Refactor Mawigate Search Project Pun Window Help *
rg- B Q- Qv | ™ & & ¥ Ty (o 7 | 4 Debug| L
% Debug 7 . 4 Servers = 0O 09« Variables 3 . ¥a Breakpoints # 3 T <0
o P S] = = || Name Value
B ITITRAU TS0 FATTEWO K LAUTILTRGT | LRy) = @ this UserBean (w=123)
#® Daemon Thread [Thread-01 (Running) Il w name | nul
w o Daemaon Thread [hitp] (Suspended (breakpaint at Bne 16 in s m password null
[1F @ newvalue “john 0. Public* (id=125)
NativeMethodAce LLinvok od, Object, Object{]) lir—

NativeMethodaccessorimplinvoke{Object, Object[]) line: 39 =
d. L t, Object[]} line: 25

J) Userieanjava H @ Welcome = B || 5 outline =
iManagedBeaniname = ~user”) E a 5 L o
: @
usessionScoped %R oW »
public class UserBean implements Serializable { @ com.corejsf

private String name; b ‘2 import declarations

private String password; = @ Useriean 51 5/17

public String getName() { return name; } E @ name
public void setMame(String newValue) { a password
2 name = newValue; @ getNamel)
public string getPassword() { return password; } - & getfassword() : String =
T »
B Console 3 . &) Tusks ® GH .\J:ﬁ \J_\’ o B-pr4- 08

<terminated> GlassFish v3 Java EE 6 at localhost [Application Server (GlassFish or Sun)] ..

Name of the domain started: [domainl] and its location: 3
[/opt/glassfishvi/qlassfish/domains/domainl].

Admin port for the domain: [4848].

Command start-domain executed successfully.

Figure 1-8 The Eclipse debugger

Some IDEs have a visual builder tool that allows a designer to drag and drop
components from a palette onto a JSF page. Figure 1-9 shows the visual builder
in JDeveloper.

Visual JSF builders are usually optimized for a particular component set. For
example, JDeveloper uses the ADF Faces components. Unfortunately, you can-
not simply add your favorite component set to a visual builder tool. The JSF stan-
dard does not currently specify design time behavior of components, and there is
no standard way of packaging component libraries for use in multiple IDEs.

From the Library of Wow! eBook

An Analysis of the Sample Application n

& Oracle JDeveloper 11g - Applicationl.jws : ViewController.Jpr
File Edit View Application Refagtor Sewch Navigate Build Run Versipning Tools Window Help
Boda 9C XE0 0 -0 R- ARl b-¥- @-
(S ppication Mavigater L] @uanrage | Happueaniontjws [nema spx [@ companent paterte | [GlRescurce paetne __
= 9
F appsicationl | - | B - snow=|Funscreen size « | @ [nane - | Detaun v [rione « |G & = |ADF Faces -
Projects B®T-E- ®
41 [woaer !
g G |We|c0me to JavaServer Faces! T
-] ViewController Nase
= [22 Web Contern R oo Menu
& (0 we-InF -----go B menunem
B races-contip wem Loghy [Hessage
s trnidad-config.xmi Ui Messages
By wet -
& '_'l:;n::;‘e::l g Mavigation hem
BB faces-canng wmi (@ Hore window
Tl neiospx iy Outpun Formanea
53 Output Label
M output et
A Output Text dActived
L Panel Label and Message
Applicatian Resaurces & Cnewel Mers fnr
Data Controls Layout
Recently Opened Files Operations
S hellojspx - Siruclure = S Output Test - Welcome Lo JavaServer Faces... =
= Hoe® /00 +4)@
mings (2} ~
[roct = Style
Jsp directive page b Txiew b + afform#1 » * SeyleClass
Fuiew | Design | Source | Bindings | Preview | History < >[I N =
B ardacument e - o InlineStyle: |font-sizedargs; |~
gl [Elmessages - Log Ql h
=[] afform u—l—M olE
B arpanelFormLayout [05:22:29 PH] Creating Integrated Weblogic domain... A=)
. N R . n| [05:23:22 PM] Extending Integrated Weblogic demain... Calor M =T
REEURIN R 2 n0ea 1inrary 'EJB 3.0° te praject Madel L]
03 afinputTest - Name [05:23:57 PH] Integrated Weblogic domain processing completed successfullyl|l |ronr =
3 atinputText - Fassword r - —
(5524 Panel Form Layout facels sze: \mm i b =~
=4 faater natic: =~
@ afcommandBuman - Login Soud =
(=8 Document facets ! [:
Harizontal Align; -]~
Decarainn =]~
< » vertical Align: | == |~
source [Design Messages |Feeamack |4 > (4D

/name feay flaevelaper mywari/ Application] [ViewC antraller /pubbe_hmifhello jspx Inserting insise Dutput Text - Welcome 10 JwvaServer Fac. | Selected: Output Test - autputTextl o7

Figure 1-9 Visual JSF development

An Analysis of the Sample Application

You have now seen a simple JSF application, and you now know how to build
and run it. Now let us have a closer look at the structure of the application.

Web applications have two parts: the presentation layer and the business logic.
The presentation layer is concerned with the look of the application. In the con-
text of a browser-based application, the look is determined by the HTML tags
that specify layout, fonts, images, and so on. The business logic is implemented
in the Java code that determines the behavior of the application.

Some web technologies intermingle HTML and code. That approach is seduc-
tive since it is easy to produce simple applications in a single file. But for seri-
ous applications, mixing markup and code poses considerable problems.

Professional web designers know about graphic design, but they typically rely
on tools that translate their vision into HTML. They would certainly not want
to deal with embedded code. On the other hand, programmers are notoriously

From the Library of Wow! eBook

Chapter 1 B Getting Started

unqualified when it comes to graphic design. (The example programs in this
book bear ample evidence.)

Thus, for designing professional web applications, it is important to separate the
presentation from the business logic. This allows both web designers and pro-
grammers to focus on their core competencies.

In the context of JSF, the application code is contained in beans, and the design
is contained in web pages. We look at beans first.

Beans

A Java bean is a class that exposes properties and events to a framework, such as
JSE. A property is a named value of a given type that can be read and/or written.
The simplest way to define a property is to use a standard naming convention for
the reader and writer methods, namely, the familiar get/set convention. The first
letter of the property name is changed to uppercase in the method names.

For example, the UserBean class has two properties, name and password, both of type
String:

pubTic class UserBean implements Serializable {

public String getName() { . . . }
public void setName(String newvalue) {. . . }

public String getPassword() { . . . }
public void setPassword(String newvalue) { . . . }

}

The get/set methods can carry out arbitrary actions. In many cases, they simply
get or set an instance field. But they might also carry out some computations or
even access a database.

% NOTE: According to the bean specification, it is legal to omit a getter or setter
method. For example, if getPassword is omitted, then password is a write-only prop-
erty. That might be desirable for security reasons. However, JSF does not sup-
port write-only properties. You always use read/write properties for input
components, though you can use read-only properties for output components.

A managed bean is a Java bean that can be accessed from a JSF page. A managed
bean must have a name and a scope. The bean in our example has name user and ses-
sion scope. This means that the bean object is available for one user across multiple
pages. Different users who use the web application are given different instances of
the bean object. You will encounter additional bean scopes in Chapter 2.

From the Library of Wow! eBook

An Analysis of the Sample Application

The beans are “managed” in the following sense: When the bean name occurs
in a JSF page, the JSF implementation locates the object with that name, or
constructs it if it does not yet exist in the appropriate scope. For example, if a
second user connects to our sample application, another UserBean object is
constructed.

The easiest way of specifying the name and scope of a managed bean is to use
attributes:

@amed("user") // or @anagedBean(name="user")
@SessionScoped
pubTlic class UserBean implements Serializable

In JSF applications, you use managed beans for all data that needs to be acces-
sible from a page. The beans are the conduits between the user interface and
the backend of the application.

JSF Pages

You need a JSF page for each browser screen. For historical reasons, there are
several different mechanisms for authoring JSF pages. JSF 1.x was based on
JavaServer Pages (JSP), which caused some unpleasant technical problems.
However, JSF allows programmers to replace the “view handler” that pro-
cesses JSF pages. The Facelets project did just that, providing better error
messages, a mechanism for factoring out common page parts, and an easier
mechanism for writing your own components. Facelets has become a part of
JSF 2.0, and we use it in this book.

When you author a Facelets page, you add JSF tags to an XHTML page. An
XHTML page is simply an HTML page that is also proper XML. We use the
extension .xhtml for Facelets pages.

Have another look at the first page of our sample application in Listing 1-1. At
the top of the page, you will find a namespace declaration:

<html xmIns="http://www.w3.0rg/1999/xhtm1" xmins:h="http://java.sun.com/jsf/htm1">
The second line declares the h: prefix for the JSF HTML tags.

The JSF implementation also defines a set of core tags that are independent
of HTML. If you need such a tag in your page, you must add a namespace
declaration:

xmins:f="http://java.sun.com/jsf/core"

If you use tag libraries from other vendors, you supply additional namespace
declarations.

From the Library of Wow! eBook

“ Chapter 1 B Getting Started

% NOTE: You can choose any tag prefixes that you like, such as htm1:inputText
instead of h:inputText. In this book, we always use h for the HTML tags and f
for the core tags.

A JSF page is similar to an HTML form. Note the following differences:

. Your page must be properly formatted XHTML. Unlike a browser, the JSF
implementation is not forgiving of syntax errors.

o You use h:head, h:body, and h:form instead of head, body, and form.

. Instead of using the familiar input HTML tags, use h:inputText, h:inputSecret,
and h: commandButton.

NOTE: Instead of using a JSF tag such as:

<h:inputText value="#{user.name}"/>

you can use a regular HTML tag with a jsfc attribute:

<input type="text" jsfc="h:inputText" value="#{user.name}"/>

That feature is intended to facilitate page authoring in a web design tool.
However, it only works for those JSF components that directly correspond to
HTML components. In this book, we always use the JSF tags.

NOTE: If you are familiar with earlier versions of JSF, you may have seen
' JSF pages defined with the JSP syntax:

<html>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %
<fiviews
<head>...</head>
<body>. ..</body>
</fiview>
</html>
You can still use JSP in JSF 2.0, but we do not recommend it. One disadvan-
tage is that you can get very cryptic error messages if a page has a syntax
error. More importantly, some JSF 2.0 features (such as templating) only
work with Facelets.

We discuss all standard JSF tags and their attributes in Chapters 4 and 5. In the
first three chapters, we can get by with input fields and command buttons.

From the Library of Wow! eBook

An Analysis of the Sample Application n

The input field values are bound to properties of the bean with name user:

<h:inputText value="#{user.name}"/>

The #{...} delimiters enclose expressions in the JSF “expression language,”
which we discuss in detail in Chapter 2.

When the page is displayed, the JSF implementation locates the user bean and

calls the getName method to obtain the current property value. When the page is
submitted, the JSF implementation invokes the setName method to set the value
that was entered into the form.

The h:commandButton tag has an action attribute whose value indicates which page
should be displayed next:

<h:commandButton value="Login" action="welcome"/>

Servlet Configuration

When you deploy a JSF application inside an application server, you need to
supply a configuration file named web.xml. Fortunately, you can use the same
web.xml file for most JSF applications. Listing 1-4 shows the file.

Togin/web/WEB-INF/web.xm1

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlIns="http://java.sun.com/xml/ns/javaee"
xmIns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5">
<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServiet</serviet-class>
</serviet>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/«</url-pattern>
</servlet-mapping>
<welcome-file-Tist>
<welcome-file>faces/index.xhtml</welcome-file>
</welcome-file-Tist>
<context-params
<param-name>javax.faces.PROJECT_STAGE</param-name>
<param-value>Development</param-value>
</context-param>
</web-app>

From the Library of Wow! eBook

Chapter 1 B Getting Started

All JSF pages are passed to the Faces servlet that is a part of the JSF implemen-
tation code. To ensure that the correct servlet is activated when a JSF page is
requested, the JSF URLs have a special format. In our configuration, they have
a prefix /faces. The servlet-mapping element ensures that all URLs with that prefix
are processed by the Faces servlet.

For example, you cannot simply point your browser to http://locaThost:8080/
Togin/index.xhtml. The URL has to be http://Tocalhost:8080/Togin/faces/index.xhtml.
The mapping rule activates the Faces servlet, which is the entry point to the JSF
implementation. The JSF implementation strips off the /faces prefix, loads the
index.xhtml page, processes the tags, and displays the result.

CAUTION: If you view a JSF page without the /faces prefix, the browser will
display the HTML tags in the page, but it will simply skip the JSF tags.

NOTE: You can also define an extension mapping instead of the /faces
prefix mapping. Use the following directive in your web.xm] file:

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>=.faces</url-pattern>
</servlet-mapping>

Then use the URL http://localhost:8080/Togin/index. faces. That URL acti-
vates the Faces servlet. The JSF implementation strips off the faces prefix
and loads the file /Togin/index.xhtml.

NOTE: Strictly speaking, JSF pages are not XHTML files—they only aim to
produce such files. If you want to use a .jsf extension for JSF page files,
then add the following entry to the web.xm1 file:

<context-param>
<param-name>javax.faces.DEFAULT_SUFFIX</param-name>
<param-value>.jsf</param-value>

</context-param>

Note that this configuration affects only the web developers, not the users of
your web application. The URLSs still have a .faces extension or /faces prefix.

The web.xm1 file specifies a welcome page, the page that is loaded when the
user enters the URL of the web application. For example, if a user enters the

From the Library of Wow! eBook

A First Glimpse of Ajax n

URL http://TocaThost:8080/1ogin, the application server automatically loads the
page /faces/index.xhtml.

Finally, we specify a parameter that adds support for debugging a JSF
application:
<context-param>
<param-name>javax. faces.PROJECT_STAGE</param-name>

<param-value>Development</param-value>
</context-param>

The choices for the project stage are Development, UnitTest, SystemTest, and Production.
In the development stage, you get more informative error messages.

NOTE: The PROJECT_STAGE parameter was introduced in JSF 2.0.
2.0

% NOTE: Some application servers (including GlassFish) automatically pro-
vide a servlet mapping for the /faces/x, «.faces, and «.jsf patterns, provided
that any of the following conditions applies:

* Any of the classes in the web application uses a JSF annotation
¢ Any initialization parameters start with javax.faces
e The WEB-INF/faces-config.xml file is present

It's not necessary to supply a web.xml file if you don’t need to set other parame-
ters. However, since we recommend to set the project stage to Development, we
will supply web.xm1 files in our examples. If you know that your application
server automatically detects JSF applications, then you can omit the declara-
tion of the Faces servlet and the servlet mapping from your web.xm1 file.

A First Glimpse of Ajax | JSF 2.0

Asynchronous JavaScript with XMLHttpRequest (Ajax) is a technology for
updating a web page in the browser client without submitting a form and ren-
dering the response. The web page contains JavaScript code that communicates
with the server and makes incremental changes to the structure of the page.
The result is a smoother user experience without the dreaded “page flip”.

We will discuss Ajax in detail in Chapter 10. Fortunately, JSF 2.0 lets you

use Ajax without having to understand the considerable complexities of the
Ajax communication channel. Here, we give you a quick flavor to whet your
appetite.

From the Library of Wow! eBook

Chapter 1 B Getting Started

We will restructure our login application so that the Login button makes an
Ajax request instead of submitting the form. As soon as the user has logged in,
a greeting will appear (see Figure 1-10).

[© [Welcome - Mozilla Firefox

fle Cdit View History Dookmarks Tools llelp

« ~ g ﬁ |§ http://localhost:8080/login-ajax/ g

Please enter your name and password.

Name: |Theodore Roosevelt |

Password: [eeseeseess |

[Login [®|Welcome - Mozilla Firefox
fle Cdit View History Dookmarks Tools llelp

« ~ g ﬁ |§ http://localhost:8080/login-ajax/ g

Please enter your name and password.

Name: |Theod ore Roosevelt |
Done Password: [eeeseeeese |
T
| Luygin

Welcome to JSF2 + Ajax, Theodore Roosevelt!

Done #

Figure 1-10 With Ajax, the welcome message appears without a page flip

Each component that is accessed by the client code needs an ID, which we
declare with the id attribute, like this:

<h:outputText id="out" value="#{user.greeting}"/>
We also give IDs to the name and password input fields.

By default, the form ID is prepended to the IDs of its components. We turn this
process off in order to have simpler ID names, by setting the prependId attribute
of the form to false (see Listing 1-5).

We add a read-only greeting property to the UserBean class:

public String getGreeting() {
if (name.length() ==) return "";

From the Library of Wow! eBook

A First Glimpse of Ajax n

n ",

else return "Welcome to JSF2 + Ajax, " + name + ;

}
This greeting will be displayed in the text field.

Now we are ready to implement the Ajax behavior for the Login button:

<h:commandButton value="Login">
<f:ajax execute="name password" render="out" />
</h:commandButton>
When the Login button is clicked, the form is not submitted. Instead, an Ajax
request is sent to the server.

The execute and render attributes specify lists of component IDs. The execute com-
ponents are processed exactly as if the form had been submitted. In particular,
their values are sent to the server and the corresponding bean properties are
updated. The render components are processed as if the page had been dis-
played. In our case, the getGreeting method of the user bean is called, and its
result is sent to the client and displayed.

Note that the user bean is located on the server. The greeting is not computed on
the client. Instead, the client code sends component values to the server,
receives updated HTML for the components to be rendered, and splices those
updates into the page.

When you run this application, you can see that there is no “page flip” when
you press the login button. Only the greeting is updated; the remainder of the
page stays unchanged.

As you just saw, using Ajax with JSF is pretty straightforward. You write the
program logic in Java and use the same mechanism for interacting with the
Java code as you would in a regular JSF page.

login-ajax/web/index. xhtm1

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.o0rg/TR/xhtm11/DTD/xhtm]1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://java.sun.com/jsf/html"
xmins:f="http://java.sun.com/jsf/core">
<h:head>
<title>Welcome</title>
</h:head>
<h:body>
<h:form prependId="false">
<h3>Please enter your name and password.</h3>

From the Library of Wow! eBook

Chapter 1 B Getting Started

<table>
<tr>
<td>Name:</td>

<td><h:inputText value="#{user.name}" id="name"/></td>

</tr>
<tr>
<td>Password:</td>

<td><h:inputSecret value="#{user.password}" id="password"/></td>

</tr>
</table>
<p><h:commandButton value="Login">

<f:ajax execute="name password" render="out"/>

</h:commandButton></p>

<h3><h:outputText id="out" value="#{user.greeting}"/></h3>

</h:form>
</h:body>
</html>

JSF Framework Services

Now that you have seen your first JSF application, it is easier to explain the ser-
vices that the JSF framework offers to developers. Figure 1-11 gives a high-level
overview of the JSF architecture. As you can see, the JSF framework is responsi-
ble for interacting with client devices, and it provides tools for tying together the
visual presentation, application logic, and business logic of a web application.
However, the scope of JSF is restricted to the presentation tier. Database persis-
tence, web services, and other backend connections are outside the scope of JSE.

Servlet Container
(~ Web Application

N

Client Devices | | | Presentation Application Logic|

Navigation
Validation
Event Handling

Business Logic

M JSF Framework

‘ Databas%

Web
Service

Figure 1-11 High-level overview of the JSF framework

From the Library of Wow! eBook

JSF Framework Services ﬂ

Here are the most important services that the JSF framework provides:

* Model-view-controller architecture—All software applications let users
manipulate certain data, such as shopping carts, travel itineraries, or
whatever data is required in a particular problem domain. This data is
called the model. Just as artists create paintings of a model in a studio, a
web application displays views of the data model. In a web application,
HTML (or a similar rendering technology) is used to paint these views.

JSF connects the view and the model. As you have seen, a view compo-
nent can be wired to a bean property of a model object, such as:

<h:inputText value="#{user.name}"/>

The JSF implementation operates as the controller that reacts to the user by
processing action and value change events, routing them to code that
updates the model or the view. For example, you may want to invoke a
method to check whether a user is allowed to log on. Use the following
JSF tag:

<h:commandButton value="Login" action="#{user.check}"/>

When the user clicks the button and the form is submitted to the server,
the JSF implementation invokes the check method of the user bean. That
method can take arbitrary actions to update the model, and it returns the
ID of the next page to be displayed. We discuss this mechanism further in
Chapter 3.

Thus, JSF implements a model-view-controller architecture.

. Data conversion—Users enter data into web forms as text. Business
objects want data as numbers, dates, or other data types. As explained in
Chapter 7, JSF makes it easy to specify and customize conversion rules.

* Validation and error handling—JSF makes it easy to attach validation
rules for fields such as “this field is required” or “this field must be a
number”. Of course, when users enter invalid data, you need to display
appropriate error messages. JSF takes away much of the tedium of this
programming task. We cover validation in Chapter 7.

* Internationalization—]SF manages internationalization issues, such as
character encodings and the selection of resource bundles. We cover
resource bundles in Chapter 2.

* Custom components—Component developers can develop sophisticated
components that page designers simply drop into their pages. For exam-
ple, suppose a component developer produces a calendar component

From the Library of Wow! eBook

n Chapter 1 B Getting Started

with all the usual bells and whistles. You just use it in your page, with a
command, such as:

<acme:calendar value="#{f1ight.departure}" startOfWeek="Mon"/>
Chapter 11 covers custom components in detail.

* Ajax support—]JSF provides a standard Ajax communication channel
that transparently invokes server-side actions and updates client-side
components. See Chapter 10 for more information.

* Alternative renderers—By default, JSF generates markup for HTML
pages. But it is possible to extend the JSF framework to produce markup
for another page description language such as WML or XUL. When JSF
was first developed, this flexibility seemed quite intriguing. However, we

have never seen a compelling use of this generality and do not cover it in
this book.

Behind the Scenes

Now that you have read about the “what” and the “why” of JSF, you may be
curious about just how the JSF implementation does its job.

Let us look behind the scenes of our sample application. We start at the point
when the browser first connects to http://localhost:8080/Togin/faces/index.xhtml.
The JSF implementation initializes the JSF code and reads the index.xhtml page.
That page contains tags, such as h:form and h:inputText. Each tag has an associ-
ated tag handler class. When the page is read, the tag handlers are executed.
The JSF tag handlers collaborate with each other to build a component tree (see
Figure 1-12).

UlForm

Ulinput Ullnput UlCommand

Figure 1-12 Component tree of the sample application

From the Library of Wow! eBook

Behind the Scenes

The component tree is a data structure that contains Java objects for all user
interface elements on the JSF page. For example, the two UlInput objects corre-
spond to the h:inputText and h:inputSecret fields in the JSF file.

Rendering Pages

Next, the HTML page is rendered. All text that is not a JSF tag is passed through.
The h:form, h:inputText, h:inputSecret, and h:commandButton tags are converted to HTML.

As we just discussed, each of these tags gives rise to an associated component.

Each component has a renderer that produces HTML output, reflecting the com-
ponent state. For example, the renderer for the component that corresponds to

the h:inputText tag produces the following output:

<input type="text" name="umnique ID" value="current value"/>

This process is called encoding. The renderer of the UIInput object asks the JSF
implementation to look up the unique ID and the current value of the expres-
sion user.name. By default, ID strings are assigned by the JSF implementation.
The IDs can look rather random, such as _id_id12:_id_id21.

The encoded page is sent to the browser, and the browser displays it in the
usual way (see Figure 1-13).

Vas Server N
Browser Component Tree

e AL SR ‘-i
P

Please enter your name and password

ot o HTTP POST .

>
Encode/Decode
JSF Framework

Figure 1-13 Encoding and decoding JSF pages

a TIP: Select “View -> Page source” from the browser menu to see the HTML
output of the rendering process. Figure 1-14 shows a typical output. This is
useful for debugging JSF problems.

From the Library of Wow! eBook

Chapter 1 B Getting Started

(@ [Source of: http://localhost:8080/login/ - Mozilla Firefox
Fle Edit Yiew Hep

< 1P /DTD XHTI 1 8 Trane

DOCTYPE html PUBLIC "-/, //DTD XHTML 1.6 Transitional//EN" “http://ww
<html xmlns="http://www.w3.0rg/1999/xhtml "><heads
<titlesWelcomes/titles</head><body>
<form id="j id2859540600 7ac?1836" name="j id208595486868 7ac?1836" method="post” action="/login/faces/index.xh
<input type="hidden" name="j id2859548688 7ac21836" value="j 1d2859548688 7ac21836" />

<h3=-Please enter your name and password.-=/h3=
<table=
<trs
<tdsName:</td>
<td><input type="text” name="j id2850548608 7ac21836:j id2050540688 Tac21818" /></td>
</tr>
<tr>
<td=Password:</td=
<td><input type="password" name="j id2059540600 7ac21836:j id2059540600 7ac2180d" value="" /></td>
</tr=
</tables &
<p=<input type="submit"“name="j id2059540600 Tac21836:j id2059540600 7ac218fa" wvalue="Login® /></p=<input
</ form=</body>
</html>

Figure 1-14 Viewing the source of the login page

Decoding Requests

After the page is displayed in the browser, the user fills in the form fields and
clicks the login button. The browser sends the form data back to the web server,
formatted as a POST request. This is a special format, defined as part of the
HTTP protocol. The POST request contains the URL of the form (/Togin/faces/
index.xhtm1), as well as the form data.

NOTE: The URL for the POST request is the same as that of the request
' that renders the form. Navigation to a new page occurs after the form has
been submitted. (For this reason, the URL displayed in the browser is usu-
ally one step behind the URL of the JSF page that is being displayed.)

The form data is a string of ID/value pairs, such as:
id1=me&id2=secret&id3=Login

As part of the normal request processing, the form data is placed in a hash table
that all components can access.

Next, the JSF implementation gives each component a chance to inspect that
hash table, a process called decoding. Each component decides on its own how
to interpret the form data.

From the Library of Wow! eBook

Behind the Scenes n

The login form has three component objects: two UILInput objects that correspond
to the text fields on the form and one UICommand object that corresponds to the
submit button.

* The UIInput components update the bean properties referenced in the value
attributes: they invoke the setter methods with the values that the user
supplied.

e The UICommand component checks whether the button was clicked. If so, it
fires an action event to launch the login action referenced in the action
attribute. That event tells the navigation handler to look up the successor
page, welcome.xhtml.

Now the cycle repeats.

You have just seen the two most important processing steps of the JSF imple-
mentation: encoding and decoding. However, the processing sequence (also
called the life cycle) is a bit more intricate. If everything goes well, you do not
need to worry about the intricacies of the life cycle. However, when an error
occurs, you will definitely want to understand what the JSF implementation
does. In the next section, we look at the life cycle in greater detail.

The Life Cycle

The JSF specification defines six distinct phases:

1. Restore View

2. Apply Request Values
3. Process Validations

4. Update Model Values
5. Invoke Application

6.

Render Response

Here we discuss the most common flow through the life cycle (see Figure
1-15). You will see a number of variations throughout the book.

The Restore View phase retrieves the component tree for the requested page if it
was displayed previously or constructs a new component tree if it is displayed
for the first time.

If there are no request values, the JSF implementation skips ahead to the
Render Response phase. This happens when a page is displayed for the first
time.

From the Library of Wow! eBook

Chapter 1 B Getting Started

Otherwise, the next phase is the Apply Request Values phase. In this phase, the
JSF implementation iterates over the component objects in the component tree.
Each component object checks which request values belong to it and stores
them.

Apply Request
Values

Process | .
Validations

Restore
e |

No E

Query 1 H

Data i i

v v

Render Invoke Update

Response R Applicati Model
esponse ‘—{ pplication Valies

Conversion or Validation Errors / Render Response

Figure 1-15 The JSF life cycle

The values stored in the component are called “local values”. When you design
a JSF page, you can attach validators that perform correctness checks on the
local values. These validators are executed in the Process Validations phase. If
validation passes, the JSF life cycle proceeds normally. However, when conver-
sion or validation errors occur, the JSF implementation invokes the Render
Response phase directly, redisplaying the current page so that the user has
another chance to provide correct inputs.

NOTE: To many programmers, this is the most surprising aspect of the JSF
- life cycle. If a converter or validator fails, the current page is redisplayed. You
should add tags to display the validation errors so that your users know why

they see the old page again. See Chapter 7 for details.

After the converters and validators have done their work, it is assumed that
it is safe to update the model data. During the Update Model Values phase, the
local values are used to update the beans that are wired to the components.

From the Library of Wow! eBook

Conclusion n

In the Invoke Application phase, the action method of the button or link compo-
nent that caused the form submission is executed. That method can carry out
arbitrary application processing. It returns an outcome string that is passed to
the navigation handler. The navigation handler looks up the next page.

Finally, the Render Response phase encodes the response and sends it to the
browser. When a user submits a form, clicks a link, or otherwise generates a
new request, the cycle starts anew.

NOTE: In the Ajax example, the Ajax request added the input components
to the execute list and the output component to the render list. For compo-
nents on the execute list, all phases except for “Render Response” are car-
ried out. In particular, during the “Update Model Values” phase, the model
bean is updated. Conversely, for components on the render list, the “Render
Response” phase of the lifecycle is executed, and the result is sent back to
the Ajax request.

Conclusion

You have now seen the basic mechanisms that make the JSF magic possible. In
the following chapters, we examine the various parts of the life cycle in more
detail.

From the Library of Wow! eBook

MANAGED BEANS

Topics in This Chapter

e “Definition of a Bean” on page 33
e “CDI Beans” on page 39

e “Message Bundles” on page 40

e “A Sample Application” on page 45
e “Bean Scopes” on page 51

e “Configuring Beans” on page 56

e “The Expression Language Syntax” on page 63

From the Library of Wow! eBook

A central theme of web application design is the separation of presentation and
business logic. JSF uses beans to achieve this separation. JSF pages refer to bean
properties, and the program logic is contained in the bean implementation
code. Because beans are so fundamental to JSF programming, we discuss them
in detail in this chapter.

The first half of the chapter discusses the essential features of beans that every
JSF developer needs to know. We then present an example program that puts
these essentials to work. The remaining sections cover more technical aspects
about bean configuration and value expressions. You can safely skip these sec-
tions when you first read this book and return to them when the need arises.

Definition of a Bean

According to the JavaBeans specification (available at http://java.sun.com/
products/javabeans/), a Java bean is “a reusable software component that can be
manipulated in a builder tool”. That is a pretty broad definition and indeed, as
you will see in this chapter, beans are used for a variety of purposes.

At first glance, a bean seems to be similar to an object. However, beans serve a
different purpose. Objects are created and manipulated inside a Java program
when the program calls constructors and invokes methods. Yet, beans can be
created and manipulated without programming.

33

From the Library of Wow! eBook

http://java.sun.com/products/javabeans/
http://java.sun.com/products/javabeans/

Chapter 2 B Managed Beans

% NOTE: You may wonder where the term “bean” comes from. Well, Java is a
synonym for coffee (at least in the United States), and coffee is made from
beans that encapsulate its flavor. You may find the analogy cute or annoying,
but the term has stuck.

The “classic” application for JavaBeans is a user interface builder. A palette
window in the builder tool contains component beans such as text fields,
sliders, checkboxes, and so on. Instead of writing Java code, you use a user
interface designer to drag and drop component beans from the palette into a
form. Then you can customize the beans by selecting property values from a
property sheet dialog (see Figure 2-1).

® [JavaApplicationl - NetBeans IDE 6.7.1 EET
File Cdit W“iew Mavigate Source Refactor Run Debug DProfile Team Toels Window llelp
] - 1 A X3e Far] P
<R L ke < F W D B O
[Main.|ava = |[Z] New|Frame.java + % «|[»|[r][a] |Falette o x|
——— = z e e - B
Source | Design B ® e o = I In B= & 4 _JOGL Components
—_— | GLPancl D GLCanvas
= Swing Controls
whel Labal]
oKl Rutton 3
oH Toggle Button m
User name |{TextFisldl &- Check Box
@- Radio Button
Password l_ITe:».'cFIeIdZ
] 8~ Button Group
Loqm. =] Cumbu Bux [~]

IjButtonl [[Button] - Prop... e

Properties Binding
Events Code

~ Properties

[3]

action =
background [[249,248,[..
font The guick brd...
foreground W 1616, 160
icon - [
mnamanic |
text Login =
text (7]
(java.lang.String) The button's
tent.

[B& 1021 |Ins
T

Figure 2-1 Customizing a bean in a GUI builder

From the Library of Wow! eBook

Definition of a Bean n

In the context of JSE, beans store the state of web pages. Bean creation and
manipulation is under the control of the JSF implementation. The JSF
implementation does the following;:

o Creates and discards beans as needed (hence the term “managed beans”)

. Reads bean properties when displaying a web page

J Sets bean properties when a form is posted

Consider the login application in Chapter 1, shown in “A Simple Example” on

page 4. An input field reads and updates the password property of the user bean:
<h:inputSecret value="#{user.password}"/>

The JSF implementation needs to locate a bean class for the bean named user. In

our example, a UserBean class was declared as follows:

@anagedBean(name="user")
@SessionScoped
public class UserBean implements Serializable {

}

You can omit the name attribute in the @ManagedBean annotation. In that case, the
bean name is derived from the class name by turning the first letter into lower-
case. For example, if you omit (name = "user") in the example above, the bean
name becomes userBean.

CAUTION: The @ManagedBean annotation is in the javax.faces.bean package.
Java EE 6 defines another @ManagedBean annotation in the javax.annotation
package that does not work with JSF.

When an expression with name user is first encountered, the JSF implementation
constructs an object of the class UserBean. The object stays alive for the duration of
the session—that is, for all requests that originate from the same client, lasting
until the session is either terminated explicitly or it times out. Throughout the
session, the bean name user references the previously constructed object.

At any given point in time, different sessions that belong to different clients
may be active on the server. Each of them has its own UserBean object.

% NOTE: The UserBean class implements the Serializable interface. This is not
a requirement for a JSF managed bean, but it is nevertheless a good idea
for session-scoped beans. Application servers can provide better manage-
ment for serializable beans, such as clustering.

From the Library of Wow! eBook

Chapter 2 B Managed Beans

As you can see, the JSF developer does not need to write any Java code to con-
struct and manipulate the user bean. The JSF implementation constructs the
beans and accesses them, as described by the expressions in the JSF pages.

Bean Properties

Bean classes need to follow specific programming conventions to expose
features that tools can use. We discuss these conventions in this section.

The most important features of a bean are the properties that it exposes. A
property is any attribute of a bean that has:

o A name
¢ Atype
* Methods for getting and/or setting the property value

For example, the UserBean class of the preceding chapter has a property with
name password and type String. The methods getPassword and setPassword access the
property value.

Some programming languages, in particular Visual Basic and C#, have direct
support for properties. However, in Java, a bean is simply a class that follows
certain coding conventions.

The JavaBeans specification puts a single demand on a bean class: It must

have a public constructor without parameters. However, to define properties, a
bean must either use a naming pattern for property getters and setters, or it must
define a companion bean info class. (Bean info classes are not commonly used,
and we will not discuss them here. See Cay Horstmann and Gary Cornell, Core
Java™, Eighth Edition, Santa Clara, CA: Sun Microsystems Press/Prentice Hall,
2008, Vol. 2, Chapter 8, for more information.)

Defining properties with naming patterns is straightforward. Consider the
following pair of methods:

pubTic T getFoo()
public void setFoo(T newValue)

The pair corresponds to a read-write property with type T and name foo. If you
have only the first method, then the property is read-only. If you have only the
second method, then the property is write-only.

The method names and signatures must match the pattern precisely. The
method name must start with get or set. A get method must have no parame-
ters. A set method must have one parameter and no return value. A bean class
can have other methods, but the methods do not yield bean properties.

From the Library of Wow! eBook

Definition of a Bean

Note that the name of the property is the “decapitalized” form of the part of the
method name that follows the get or set prefix. For example, getFoo gives rise to
a property named foo, with the first letter turned into lowercase. However, if
the first two letters after the prefix are uppercase, then the first letter stays
unchanged. For example, the method name getURL defines a property URL and
not ukL.

For properties of type boolean, you have a choice of prefixes for the method that
reads the property. Both

pubTic boolean isConnected()
and
pubTic boolean getConnected()

are valid names for the reader of the connected property.

% NOTE: The JavaBeans specification also defines indexed properties, speci-
fied by method sets such as the following:

public T[] getFoo()

public T getFoo(int index)

public void setFoo(T[] newArray)

public void setFoo(int index, T newValue)

However, JSF provides no support for accessing the indexed values.

The JavaBeans specification is silent on the behavior of the getter and setter
methods. In many situations, these methods simply manipulate an instance
field. But they may equally well carry out more sophisticated operations, such
as database lookups, data conversion, validation, and so on.

A bean class may have other methods beyond property getters and setters.

Of course, those methods do not give rise to bean properties.

Value Expressions

As you already saw in Chapter 1, you can use an expression, such as
#{user.name}, to access a property of a bean. In JSF, such an expression is called a
value expression. For example, the welcome.xhtm] page contains the fragment:

Welcome to JavaServer Faces, #{user.name}!

When the JSF implementation renders that page, it invokes the getName method
of the user object.

A value expression can be used both for reading and writing a value. Consider
this input component:

From the Library of Wow! eBook

Chapter 2 B Managed Beans

<h:inputText value="#{user.name}"/>

When the JSF implementation renders the component, it calls the property get-
ter is invoked when the component is rendered. When the user submits the
page, the JSF implementation invokes the property setter.

We will discuss value expressions in detail in the section “The Expression Lan-
guage Syntax” on page 63.

% NOTE: JSF value expressions are related to the expression language used
in JSP. Those expressions are delimited by ${...} instead of #{...}. As of
JSF 1.2 and JSP 2.1, the syntax of both expression languages has been uni-
fied. (See “The Expression Language Syntax” on page 63 for a complete
description of the syntax.)

The §{...} delimiter denotes immediate evaluation of expressions. When the
page is processed, the expression’s value is computed and inserted. In con-
trast, the #{...} delimiter denotes deferred evaluation. With deferred evalua-
tion, the JSF implementation retains the expression and evaluates it
whenever a value is needed.

As a rule of thumb, you always use deferred expressions for JSF component
properties, and you use immediate expressions in plain JSP or JSTL
(JavaServer Pages Standard Tag Library) constructs. (These constructs
are rarely needed in JSF pages.)

Backing Beans

Sometimes it is convenient to design a bean that contains some or all component
objects of a web form. Such a bean is called a backing bean for the web form.

For example, we can define a backing bean for the quiz form by adding proper-
ties for the form component:

@ManagedBean(name="quizForm")

@SessionScoped

public class QuizFormBean {
private UIInput answerComponent;
private UIOutput scoreComponent;

public UILInput getAnswerComponent() { return answerComponent; }
public void setAnswerComponent(UIInput newValue) { answerComponent = newValue; }

public UIOutput getScoreComponent() { return scoreComponent; }
public void setScoreComponent(UIOutput newValue) { scoreComponent = newValue; }

From the Library of Wow! eBook

CDI Beans n

Input components belong to the UIInput class and output components belong to
the UIOutput class. We discuss these classes in greater detail in Chapter 11.

Some visual JSF development environments use backing beans. These environ-
ments automatically generate property getters and setters for all components
that are dragged onto a form.

When you use a backing bean, you need to wire up the components on the
form to those on the bean. You use the binding attribute for this purpose:

<h:inputText binding="#{quizForm.answerComponent}" .../>

When the component tree for the form is built, the getAnswerComponent method
of the backing bean is called, but it returns null. As a result, an output
component is constructed and installed into the backing bean with a call

to setAnswerComponent.

CDI Beans

JSF pioneered the concept of “managed beans” in web applications. How-
ever, JSF managed beans are fairly limited. JSR 299 (“Contexts and Depen-
dency Injection”, often abbreviated as CDI) defines a more flexible model for
beans that are managed by the application server. These beans are bound to a
context (such as the current request, a browser session, or even a user-defined
life cycle context). CDI specifies mechanisms for injecting beans, intercepting
and decorating method calls, and firing and observing events. Because CDI is
a much more powerful mechanism than JSF managed beans, it makes sense
to use CDI beans if you deploy your application in a Java EE application
server. A Java EE 6 compliant application server, such as GlassFish, automat-
ically supports CDI.

% NOTE: You can also add the CDI reference implementation to Tomcat. See
http://seamframework.org/Weld for the details.

You use a CDI bean in the same way as a JSF managed bean. However, you
declare it with the @amed annotation, like this:

@Named("user")
@SessionScoped
public class UserBean implements Serializable {

}

From the Library of Wow! eBook

http://seamframework.org/Weld

Chapter 2 B Managed Beans

You can then use value expressions #{user} or #{user.name} in the same way as
with JSF managed beans.

Here, the @SessionScoped annotation is from the javax.enterprise.context package,
not the javax.faces.bean package.

Note that session-scoped CDI beans must implement the Serializable interface.

NOTE: You must include a file WEB-INF/beans.xm1 to activate CDI beans pro-
' cessing. This file can be empty, or it can optionally contain instructions for
configuring the beans. See the CDI specification at http://jcp.org/en/jsr/
summary?id=299 for details about the beans.xml file.

It is a historical accident that there are two separate mechanisms, CDI beans
and JSF managed beans, for beans that can be used in JSF pages. We suggest
that you use CDI beans unless your application must work on a plain servlet
runner such as Tomcat. The source code for the book comes in two versions,
one with CDI beans (for Java EE 6 application servers) and one with JSF man-
aged beans (for servlet runners without CDI support).

Message Bundles

When you implement a web application, it is a good idea to collect all message
strings in a central location. This process makes it easier to keep messages consis-
tent and, crucially, makes it easier to localize your application for other locales.
In this section, we show you how JSF makes it simple to organize messages. In
the section “A Sample Application” on page 45, we put managed beans and
message bundles to work.

You collect your message strings in a file in the time-honored properties format:

guessNext=Guess the next number in the sequence!
answer=Your answer:

% NOTE: Look into the APl documentation of the Toad method of the
java.util.Properties class for a precise description of the file format.

Save the file together with your classes—for example, in src/java/com/corejsf/
messages.properties. You can choose any directory path and file name, but you
must use the extension .properties.

From the Library of Wow! eBook

http://jcp.org/en/jsr/summary?id=299
http://jcp.org/en/jsr/summary?id=299

Message Bundles n

You can declare the message bundle in two ways. The simplest way is to sup-
ply a file named faces-config.xml in the WEB-INF directory of your application, with
the following contents:

<?xml version="1.0"?>
<faces-config xmIns="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd"
version="2.0">
<application>
<resource-bundle>
<base-name>com. corejsf.messages</base-name>
<var>msgs</var>
</resource-bundle>
</application>
</faces-config>

NOTE: The faces-config.xml file can be used for configuring numerous
' aspects of your JSF application. It is important that you use the correct ver-
sion of the schema declaration. Here we show the declaration for JSF 2.0. If
you use an older schema version, the JSF implementation may view this as
an indication to fall back into a compatibility mode for an older JSF version.

Instead of using a global resource bundle declaration, you can add the f:1oad-
Bundle element to each JSF page that needs access to the bundle, like this:

<f:loadBundle basename="com.corejsf.messages" var="msgs"/>

In either case, the messages in the bundle are accessible through a map variable
with the name nsgs. (The base name com.corejsf.messages looks like a class name,
and indeed the properties file is loaded by the class loader.)

You can now use value expressions such as #{msgs.guessNext} to access the mes-
sage strings.

That is all there is to it! When you are ready to localize your application for
another locale, you simply supply localized bundle files.

% NOTE: The resource-bundle element is more efficient than the f:loadBundle
action, since the bundle can be created once for the entire application.

From the Library of Wow! eBook

Chapter 2 B Managed Beans

When you localize a bundle file, you need to add a locale suffix to the file
name: an underscore followed by the lowercase, two-letter ISO-639 language
code. For example, German strings would be in com/corejsf/messages_de.properties.

% NOTE: You can find a listing of all two- and three-letter ISO-639 language
codes at http://www.loc.gov/standards/is0639-2/.

As part of the internationalization support in Java, the bundle that matches the
current locale is automatically loaded. The default bundle without a locale pre-
fix is used as a fallback when the appropriate localized bundle is not available.
See Cay Horstmann and Gary Cornell, Core Java™, 8th ed., Santa Clara, CA:
Sun Microsystems Press/Prentice Hall, 2008, Vol. 2, Chapter 5, for a detailed
description of Java internationalization.

NOTE: When you prepare translations, keep one oddity in mind: Message
' bundle files are not encoded in UTF-8. Instead, Unicode characters beyond
127 are encoded as \uxxxx escape sequences. The Java SDK utility
native2ascii can create these files.

You can have multiple bundles for a particular locale. For example, you may
want to have separate bundles for commonly used error messages.

Messages with Variable Parts

Often, messages have variable parts that need to be filled. For example, sup-
pose we want to display the sentence “You have n points.”, where n is a value
that is retrieved from a bean. Make a resource string with a placeholder:

currentScore=Your current score is {0}.

Placeholders are numbered {0}, {1}, {2}, and so on. In your JSF page, use the
h:outputFormat tag and supply the values for the placeholders as f:param child
elements, like this:

<h:outputFormat value="#{msgs.currentScore}">
<f:param value="#{quizBean.score}"/>
</h:outputFormat>

The h:outputFormat tag uses the MessageFormat class from the standard library to
format the message string. That class has several features for locale-aware
formatting.

From the Library of Wow! eBook

http://www.loc.gov/standards/iso639-2/

Message Bundles n

You can format numbers as currency amounts by adding a suffix number, currency
to the placeholder, like this:

currentTotal=Your current total is {0,number,currency}.
In the United States, a value of 1023.95 would be formatted as $1,023.95. The
same value would be displayed as €1.023,95 in Germany, using the local
currency symbol and decimal separator convention.

The choice format lets you format a number in different ways, such as “zero
s s

points”, “one point”, “2 points”, “3 points”, and so on. Here is the format string
that achieves this effect:

currentScore=Your current score is {0,choice,0#zero points|l#one point|2#{0} points}.
There are three cases: 0, 1, and > 2. Each case defines a separate message string.

Note that the 0 placeholder appears twice, once to select a choice, and again in
the third choice, to produce a result such as “3 points”.

Listings 2-5 and 2-6 on page 51 illustrate the choice format in our sample
application. The English locale does not require a choice for the message,
“Your score is . . . 7. However, in German, this is expressed as “Sie haben . . .
Punkte” (You have . . . points). Now the choice format is required to deal with
the singular form “einen Punkt” (one point).

For more information on the MessageFormat class, see the API documentation or
Cay Horstmann and Gary Cornell, Core Java™, Eighth Edition, Santa Clara, CA:
Sun Microsystems Press/Prentice Hall, 2008, Vol. 2, Chapter 5.

Setting the Application Locale

Once you have prepared your message bundles, you need to decide how to set
the locale of your application. You have three choices:

1. You can let the browser choose the locale. Set the default and supported
locales in WEB-INF/faces-config.xml:

<faces-config>
<application>
<locale-config>
<default-Tocale>en</default-Tocale>
<supported-Tocale>de</supported-Tocale>
</locale-config>
</application>
</faces-config>

When a browser connects to your application, it usually includes an
Accept-Language value in the HTTP header (see http://www.w3.org/International/
questions/qa-accept-Tang-Tocales.html). The JSF implementation reads the

From the Library of Wow! eBook

http://www.w3.org/International/questions/qa-accept-lang-locales.html
http://www.w3.org/International/questions/qa-accept-lang-locales.html

n Chapter 2 B Managed Beans

header and finds the best match among the supported locales. You can
test this feature by setting the preferred language in your browser (see

Figure 2-2).

You can set the locale programatically. Call the setLocale method of the

UIViewRoot object:

UIViewRoot viewRoot = FacesContext.getCurrentInstance().getViewRoot();

viewRoot.setLocale(new Locale("de"));

See “Using Command Links” on page 141 of Chapter 4 for an example.

You can set the locale for an individual page by using the f:view element

with a locale attribute—for example:
<fiview Tocale="de">
The locale can be dynamically set:

<f:view locale="#{user.locale}"/>

Now the locale is set to the string that the getLocale method returns. This is
useful in applications that let the user pick a preferred locale.

Place your entire page—both the h:head and the h:body tags—inside f:view.

NOTE: Before JSF 2.0, all JSF pages had to be enclosed in f:view tags.
yA1l Nowadays, this is no longer necessary. However, the f:view tag is still occa-

sionally useful; for example, for setting the locale.

Languages and Character Encoding x

Languages
Web pages are sometimes offered in more than one language. Choose
languages for displaying these web pages, in order of preference.

Languages in order of preference:

English/United States [en-us]
English [en]
German/Gernmany [de-te]
German [de]

Select a language to add... m

Character Encoding

Default Character Encoding: |Westem (1I50-8850-1)

Cancel] [0K
= l

Figure 2-2 Selecting the preferred language

From the Library of Wow! eBook

A Sample Application n

A Sample Application

After all these rather abstract rules and regulations, it is time for a concrete
example. The application presents a series of quiz questions. Each question dis-
plays a sequence of numbers and asks the participant to guess the next number
of the sequence.

For example, Figure 2-3 asks for the next number in the sequence:

31415

You often find puzzles of this kind in tests that purport to measure intelligence.
To solve the puzzle, you need to find the pattern. In this case, we have the first
digits of .

Type in the next number in the sequence (9), and the score goes up by one.

% NOTE: There is a Java-compatible mnemonic for the digits of «: “Can | have a
small container of coffee? Thank you.” Count the letters in each word, and you
get3141592653.

[®NumberQuiz - Mozilla Firefox

fle Cdit View History Dookmarks Tools llelp

g ﬂ |§I http://localhost:0080/ch02-numberquiz/ b

Have fun with NumberQuiz!
Your current score is 0.
Guess the next number in the sequence!

[3,1,4,1,5]

Your answer:| |

Next |

Done
T T

Figure 2-3 The number quiz

In this example, we place the quiz questions in the QuizBean class. Of course, in a
real application, you would be more likely to store this information in a data-
base. But the purpose of the example is to demonstrate how to use beans that
have complex structure.

From the Library of Wow! eBook

n Chapter 2 B Managed Beans

We start out with a ProblemBean class. A ProblemBean has two properties: solution, of
type int, and sequence, of type ArraylList (see Listing 2-1).

numberquiz/src/java/com/corejsf/ProblemBean. java

package com.corejsf;

import java.io.Serializable;
import java.util.Arraylist;

public class ProblemBean implements Serializable {
private Arraylist<Integer> sequence;
private int solution;

public ProblemBean() {}

public ProblemBean(int[] values, int solution) {
sequence = new ArrayList<Integer>();
for (int i = 0; i < values.length; i++)
sequence.add(values[i]);
this.solution = solution;

}

public ArrayList<Integer> getSequence() { return sequence; }
public void setSequence(Arraylist<Integer> newValue) { sequence = newValue; }

public int getSolution() { return solution; }
public void setSolution(int newValue) { solution = newValue; }

}

Next, we define a bean for the quiz with the following properties:

® problems: a write-only property to set the quiz problems

® score: a read-only property to get the current score

® aurrent: a read-only property to get the current quiz problem

® answer: a property to get and set the answer that the user provides

The problems property is unused in this sample program—we initialize the
problem set in the QuizBean constructor. However, under “Configuring Man-
aged Beans with XML” on page 58, you will see how to set up the problem
set inside faces-config.xml, without having to write any code.

The current property is used to display the current problem. However, the value
of the current property is a ProblemBean object, and we cannot directly display that

From the Library of Wow! eBook

A Sample Application

object in a text field. We make a second property access to get the number
sequence as #{quizBean.current.sequence}.

The value of the sequence property is an ArrayList. When it is displayed, it is con-
verted to a string by a call to the toString method. The result is a string of the
form:

(3, 1, 4, 1, 5]

Finally, we do a bit of dirty work with the answer property. We tie the answer
property to the input field:

<h:inputText value="#{quizBean.answer}"/>

When the input field is displayed, the getter is called, and we define the getAnswer
method to return an empty string.

When the form is submitted, the setter is called with the value that the user
typed into the input field. We define setAnswer to check the answer, update the
score for a correct answer, and advance to the next problem:

pubTic void setAnswer(String newValue) {
try {
int answer = Integer.parseInt(newValue.trim());
if (getCurrent().getSolution() == answer) score++;
currentIndex = (currentIndex + 1) % problems.size();

}

catch (NumberFormatException ex) {
}
}

Strictly speaking, it is a bad idea to put code into a property setter that is unre-
lated to the task of setting the property. Updating the score and advancing to
the next problem should really be contained in a handler for the button action.
However, we have not yet discussed how to react to button actions, so we use
the flexibility of the setter method to our advantage.

Another weakness of our sample application is that we have not yet covered
how to stop at the end of the quiz. Instead, we just wrap around to the begin-
ning, letting the user rack up a higher score. You will learn in the next chapter
how to do a better job. Remember—the point of this application is to show you
how to configure and use beans.

Finally, note that we use message bundles for internationalization. Try switching
your browser language to German, and the program will appear as in Figure 2—4.

This finishes our sample application. Figure 2-5 shows the directory structure.
The remaining code is in Listings 2-2 through 2-6.

From the Library of Wow! eBook

n Chapter 2 B Managed Beans

[®[zahlenquiz - Mozilla Firefox
fle Cdit View History Dookmarks Tools llelp

g ﬁ | [http://localhost:8080/ch02-numberquiz/ | ad

Viel SpaB mit dem Zahlenquiz!
Sie haben 0 Punkte.
Raten Sie die nachste Zahl in der Folge!

[3,1,4,1,5]

Ihre Antwort;| |

Weiter

Done
T T

Figure 2-4 The number quiz with the German locale

[E numberquiz.war
[index.xhtml
¥ (& WEB-INF
| % beans.xml
[faces-config.xml
: web.xml
¥ [& classes
v ﬁ com
¥ (& corejsf
[% ProblemBean.class
[QuizBean.class
[] messages.properties
_ messages_de.properties

Figure 2-5 The directory structure of the number quiz example

numberquiz/web/index.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core"
xmins:h="http://java.sun.com/jsf/html">
<h:head>
<titles#{msgs.title}</title>
</h:head>

From the Library of Wow! eBook

A Sample Application n

<h:body>
<h:forms>
<h3>#{msgs.heading}</h3>
<p>
<h:outputFormat value="#{msgs.currentScore}">
<f:param value="#{quizBean.score}"/>
</h:outputFormat>
</p>
<p>#{msgs.guessNext}</p>
<p>#{quizBean.current.sequence}</p>
<p>
#{msgs.answer}
<h:inputText value="#{quizBean.answer}"/>
</p>
<p><h:commandButton value="#{msgs.next}"/></p>
</h:form>
</h:body>
</htm1>

| B350 @ 2R B numberquiz/src/java/com/corejst/QuizBean. java

package com.corejsf;

import java.io.Serializable;
import java.util.Arraylist;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;

@Named // or @ManagedBean

@SessionScoped

pubTic class QuizBean implements Serializable {
private ArraylList<ProblemBean> problems = new ArraylList<ProblemBean>();
private int currentIndex;
private int score;

public QuizBean() {

problems.add(

new ProblemBean(new int[] { 3, 1, 4, 1, 5}, 9)); // pi
problems.add(

new ProblemBean(new int[] { 1, 1, 2, 3, 51}, 8)); // fibonacci
problems.add(

new ProblemBean(new int[] { 1, 4, 9, 16, 25 }, 36)); // squares
problems.add(

From the Library of Wow! eBook

Chapter 2 B Managed Beans

new ProblemBean(new int[] { 2, 3, S, 7, 11 }, 13)); // primes
problems.add(
new ProblemBean(new int[] { 1, 2, 4, 8, 16 }, 32)); // powers of 2
}

public void setProblems(ArrayList<ProblemBean> newValue) {
problems = newValue;
currentIndex = 0;
score = 0;

}
public int getScore() { return score; }

public ProblemBean getCurrent() { return problems.get(currentIndex); }
public String getAnswer() { return ""; }
public void setAnswer(String newvalue) {
try {
int answer = Integer.parseInt(newValue.trim());
if (getCurrent().getSolution() == answer) score++;
currentIndex = (currentIndex + 1) % problems.size();
}
catch (NumberFormatException ex) {
}
}
}

numberquiz/web/WEB-INF/faces-config.xml

<?xml version="1.0"?>
<faces-config xmIns="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd"
version="2.0">
<application>
<locale-config>
<defauTt-Tocale>en</default-Tocale>
<supported-Tocale>de</supported-Tocale>
</locale-config>
<resource-bundle>
<base-name>com. corejsf.messages</base-name>
<varsmsgs</var>
</resource-bundle>
</application>
</faces-config>

From the Library of Wow! eBook

Bean Scopes ﬂ

TRV VR0 M numberquiz/src/java/com/corejst/messages.properties

title=NumberQuiz

heading=Have fun with NumberQuiz!
currentScore=Your current score is {0}.
guessNext=Guess the next number in the sequence!
answer=Your answer:

next=Next

B350 - 2 numberquiz/src/java/com/corejst/messsages_de.properties

title=Zahlenquiz

heading=Viel Spa\u0@df mit dem Zahlenquiz!

currentScore=Sie haben {0,choice,0#0 Punkte|l#einen Punkt|2#{0} Punkte}.
guessNext=Raten Sie die n\u@@e4chste Zahl in der Folge!

answer=Ihre Antwort:

next=Weiter

Bean Scopes
For the convenience of the web application programmer, a JSF container pro-
vides separate scopes, each of which manages a table of name/value bindings.

These scopes typically hold beans and other objects that need to be available in
different components of a web application.

When you define a bean, you need to specify its scope. Three scopes are com-
mon to JSF and CDI beans:

* Session scope

o Request scope

* Application scope

JSF 2.0 adds a view scope and custom scopes. These are not supported in CDI,

which instead has a far more useful conversation scope.

In JSF 2.0, you can use annotations, such as the following, for defining bean
scopes:

@SessionScoped
@RequestScoped
@ApplicationScoped

Note that these annotations are in the package javax. faces.bean for JSF managed
beans and in the package javax.enterprise.context for CDI beans.

We discuss these scopes in the following sections.

From the Library of Wow! eBook

Chapter 2 B Managed Beans

Session Scope

Recall that the HTTP protocol is stateless. The browser sends a request to the
server, the server returns a response, and then neither the browser nor the
server has any obligation to keep any memory of the transaction. This simple
arrangement works well for retrieving basic information, but it is unsatisfac-
tory for server-side applications. For example, in a shopping application, you
want the server to remember the contents of the shopping cart.

For that reason, servlet containers augment the HTTP protocol to keep track of
a session—that is, repeated connections by the same client. There are various
methods for session tracking. The simplest method uses cookies: name/value
pairs that a server sends to a client, hoping to have them returned in subse-
quent requests (see Figure 2-6).

Stored Cookies |?

View and remove cookies that are stored on your computer.

Site | Cookie Name |
linuxtoday.com 9610_uu (4]
linuxtoday.com 7801 _uu
lucene.apache.org nde-textsize D
lunarpages.com __utma
lunarpages.com _utmz [~

Information about the selected Cookie

Name: JSESSIONID
Content: b55cd6785defBffffffff87fdc53f65c9dBe
Host: localhost
Path: [numberquiz
Send For: Any type of connection
Expires: at end of session

Figure 2-6 The cookie sent by a JSF application
As long as the client does not deactivate cookies, the server receives a session
identifier with each subsequent request.

Application servers use fallback strategies, such as URL rewriting, for dealing
with those clients that do not return cookies. URL rewriting adds a session
identifier to a URL, which looks somewhat like this:

http://corejsf.com/login/faces/index.xhtml;jsessionid=h55cd6. ..d8e

From the Library of Wow! eBook

http://corejsf.com/login/faces/index.xhtml;jsessionid=b55cd6...d8e

Bean Scopes n

NOTE: To see this behavior, tell your browser to reject cookies from the
localhost, then restart the web application and submit a page. The next
page will have a jsessionid attribute.

Session tracking with cookies is completely transparent to the web developer,
and the standard JSF tags automatically perform URL rewriting if a client does
not use cookies.

The session scope persists from the time that a session is established until session
termination. A session terminates if the web application invokes the invalidate
method on the HttpSession object, or if it times out.

For example, a UserBean can contain information about users that is accessible
throughout the entire session. A ShoppingCartBean can be filled up gradually
during the requests that make up a session.

Keep in mind that an excessively large session state can be a performance
bottleneck. See the following sections for alternatives.

Request Scope

The request scope is short-lived. It starts when an HTTP request is submitted
and ends after the response is sent back to the client. If you place a managed
bean into request scope, a new instance is created with each request. It is worth
considering request scope if you are concerned about the cost of session scope
storage.

Request scope works fine when all bean data is also stored in a page. For exam-
ple, in the login application of Chapter 1, we could have placed the UserBean into
request scope. When the login page is submitted, a new UserBean is created. The
bean is available for rendering the welcome page, and the user name will be
displayed correctly. However, in a more realistic application, the user name
would probably be needed for multiple pages, and request scope would not be
sufficient.

Data for error and status messages can often be placed in request scope. They
are computed when the client submits the form data and displayed when the
response is rendered. Similarly, the f:ToadBundle tag places the bundle variable
in request scope. The variable is needed only during the Render Response phase
in the same request.

From the Library of Wow! eBook

Chapter 2 B Managed Beans

If you have complex data, such as the contents of a table, then request scope
may not be appropriate since you would need to regenerate the data with
every request.

CAUTION: Only request scope beans are single-threaded and, therefore,
inherently threadsafe. Perhaps surprisingly, session beans are not single-
threaded. For example, a user can simultaneously submit responses from
multiple browser windows. Each response is processed by a separate
request thread. If you need thread safety in your session scoped beans, you
must provide locking mechanisms.

Application Scope

The application scope persists for the entire duration of the web application. That
scope is shared among all requests and all sessions.

You place managed beans into the application scope if a single bean should be
shared among all instances of a web application. The bean is constructed when
it is first requested by any user of the application, and it stays alive until the
web application is removed from the application server.

However, if an application-scoped bean is marked as eager, then it must be
constructed before the first page of the application is displayed. Use the
annotation:

@ManagedBean(eager=true)

The eager attribute is a feature of JSF 2.0.

Conversation Scope

A conversation scope ranges over a set of related pages. This provides data
persistence until a particular goal has been reached, without having to store the
data for the entire session. A conversation is tied to a particular browser page
or tab. A single session can have multiple conversations in different pages. This
is an important requirement in practice. Users often branch out to a new tab so
that they can explore two parts of your application in parallel.

To see the importance of supporting multiple conversations, start up the num-
ber quiz application in two browser windows and play two rounds of the quiz
in parallel. This plainly does not work. When you hit the “Next” button in
either window, you can see that the session has a single QuizBean instance, with
one score and one current index.

From the Library of Wow! eBook

Bean Scopes ﬂ

Conversation scope is easy to use. Follow these rules:

. Use a CDI bean—this is a feature of CDI, not JSF.
o Use the @ConversationScoped annotation.
. Add an instance variable:

private @Inject Conversation conversation;

The instance variable will be automatically initialized with a Conversation
object when the bean is constructed.

e Call conversation.begin() to elevate the scope of the bean from request scope
to conversation scope.

. Call conversation.end() to remove the bean from conversation scope.

For example, here is how you can use conversation scope in the number quiz:

@Named

@ConversationScoped

public class QuizBean implements Serializable {
@Inject Conversation conversation;

public void setAnswer(String newValue) {
try {
if (currentIndex == 0) conversation.begin();
int answer = Integer.parseInt(newValue.trim());
if (getCurrent().getSolution() == answer) score++;
currentIndex = (currentIndex + 1) % problems.size();
if (currentIndex == 0) conversation.end();

}

catch (NumberFormatException ex) {
}
}
}

Try running the quiz in two browser windows again. Now each quiz keeps its
own score and current index. When you reach the end of the quiz, the conver-
sation ends.

View Scope m

View scope was added in JSF 2.0. A bean in view scope persists while the same
JSF page is redisplayed. (The JSF specification uses the term view for a JSF page.)
As soon as the user navigates to a different page, the bean goes out of scope.

If you have a page that keeps getting redisplayed, then you can put the beans
that hold the data for this page into view scope, thereby reducing the size of the
session scope. This is particularly useful for Ajax applications.

From the Library of Wow! eBook

Chapter 2 B Managed Beans

Custom Scopes m

Ultimately, a scope is simply a map that binds names to objects. What distin-
guishes one scope from another is the lifetime of that map. The lifetimes of the four
standard JSF scopes (session, application, view, and request) are managed by the
JSF implementation. As of JSF 2.0, you can supply custom scopes—maps whose
lifetimes you manage. A bean is placed into such a map with the annotation:

@CustomScoped("#{expr}")

where #{expr} yields the scope map. Your application is responsible for remov-
ing objects from the map.

NOTE: We are unenthusiastic about custom scopes. In most applications,
the CDI conversation scope is a better choice.

Configuring Beans

In the following sections, we cover in detail how you can configure beans with
Java annotations and XML descriptors.

Injecting CDI Beans

It often happens that you need to wire beans together. Suppose you have a User-
Bean that contains information about the current user, and an EditBean needs to
know about that user. You “inject” the UserBean instance into the EditBean. In its
simplest form, you can use the following annotation:

@Named
@SessionScoped
public class EditBean {
@Inject private UserBean currentUser;

}
Instead of annotating a field, you can annotate a property setter or a constructor.

When the EditBean is constructed, an appropriate UserBean instance is located—in
this situation, the UserBean in the current session. The currentUser instance vari-
able is then set to that UserBean.

While this simple setup is fine for basic applications, the CDI specification gives
you great flexibility in controlling the injection process. Using annotations and
deployment descriptors, you can inject different beans for particular deployments
or for testing. We refer you to the excellent documentation of the reference imple-
mentation at http://docs. jhoss.org/weld/reference/1.0.0/en-US/htm] for details.

From the Library of Wow! eBook

http://docs.jboss.org/weld/reference/1.0.0/en-US/html

Configuring Beans

Injecting Managed Beans !1

JSF managed beans don’t have a rich set of controls for dependency injection,
but there is a basic mechanism—the @ManagedProperty annotation.

Suppose you have a UserBean with name user that contains information about the
current user. Here is how you can inject it into a field of another bean:
@ManagedBean
@SessionScoped
public class EditBean implements Serializable {

@ManagedProperty(value="#{user}")
private UserBean currentUser;

public void setCurrentUser(UserBean newValue) { currentUser = newValue; }

}

Note that you annotate the currentlUser field, but you must supply a setCurrentUser
method. When an EditBean instance is constructed, the value expression #{user} is
evaluated, and the result is passed to the setCurrentUser method.

CAUTION: Programmers who are familiar with Java EE annotations may be
bewildered by the fact that the @ManagedProperty annotation is applied to a
field when in fact the property setter is invoked. If you have a property that
doesn't correspond to a field, you will need to create a bogus field so you
can place the annotation.

When you set a managed bean as the property of another, you must make sure
that their scopes are compatible. The scope of the property must be no less than
that of the containing bean. Table 2-1 lists the permissible combinations.

Table 2-1 Compatible Bean Scopes

When defining a bean . . . you can set its properties to
of this scope . .. beans of these scopes.

none none

application none, application

session none, application, session

view none, application, session, view

request none, application, session, view, request

From the Library of Wow! eBook

Chapter 2 B Managed Beans

Bean Life Cycle Annotations

Using the @PostConstruct and @PreDestroy annotations, you can specify bean meth-
ods that are automatically called just after a bean has been constructed and just
before a bean goes out of scope:

public class MyBean {
@PostConstruct
public void initialize() {
// initialization code

}

@PreDestroy

public void shutdown() {
// shutdown code

}

// other bean methods
}

The @PostConstruct annotation is useful for beans that need to pull in data for dis-
play on a page. Another common use is for beans that establish connections to
external resources, such as databases.

% NOTE: The @PreDestroy and @PostDestruct annotations work both with JSF
managed beans and CDI beans.

Configuring Managed Beans with XML

Before JSF 2.0, all beans had to be configured with XML. Nowadays, you have
the choice between annotations and XML configuration. The XML configura-
tion is rather verbose, but it can be useful if you want to configure beans at
deployment time. Feel free to skip this material if you are not interested in con-
figuring beans with XML.

You can place XML configuration information into the following files:
o WEB-INF/faces-config.xml

¢ Files named faces-config.xml or having a name ending with .faces-config.xml
inside the META-INF directory of a JAR file. (You use this mechanism if you
deliver reusable components in a JAR file.)

From the Library of Wow! eBook

Configuring Beans n

e Files listed in the javax.faces.CONFIG_FILES initialization parameter inside
WEB-INF/web.xml. For example:

<web-app>
<context-params
<param-name>javax.faces.CONFIG_FILES</param-name>
<param-value>WEB-INF/navigation.xml,WEB-INF/managedbeans.xml</param-value>
</context-param>

</web-app>

This mechanism is attractive for builder tools because it separates naviga-
tion, beans, and so on.

Defining Beans

You use the managed-bean element to define a managed bean in an XML configu-
ration file. For example:

<faces-config>
<managed-bean>
<managed-bean-name>user</managed-bean-name>
<managed-bean-class>com.corejsf.UserBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>
</faces-config>

The scope can be request, view, session, application, none, or a value expression that
yields a custom scope map. (See “Custom Scopes” on page 56.)

The none scope denotes a bean that is not kept in a scope map. Whenever an
object of the none scope is requested in a value expression, a new object is cre-
ated. This can be useful for specifying beans that are set as properties of other
beans.

An application-scoped bean can be marked as “eager” (see page 54) with the
attribute:

<managed-bean eager="true">

Setting Property Values

You can configure property values with XML, similar to the use of the @anaged-
Property annotation. Here we customize a UserBean instance:

<managed-bean>
<managed-bean-name>user</managed-bean-name>
<managed-bean-class>com.corejsf.UserBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<managed-property>

From the Library of Wow! eBook

n Chapter 2 B Managed Beans

<property-name>name</property-name>
<value>troosevelt</value>

</managed-property>

<managed-property>
<property-name>password</property-name>
<value>jabberwock</value>

</managed-property>

</managed-bean>

When the user bean is first looked up, it is constructed with the UserBean() con-
structor. Then the setName and setPassword methods are executed.

To initialize a property with null, use a null-value element. For example:

<managed-property>
<property-name>password</property-name>
<null-value/>

</managed-property>

The value elements can be value expressions, such as:

<managed-bean>
<managed-bean-name>edi tBean</managed-bean-name>
<managed-bean-class>com.corejsf.EditBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<managed-property>
<property-name>user</property-name>
<value>#{user}</value
</managed-property>
</managed-bean>

In this example, the setUser method is invoked with the value of the expression
#{user}.

Initializing Lists and Maps

A special syntax initializes values that are of type List or Map. Here is an example
of a list:

<list-entries>
<value-class>java.lang.Integer</value.class>
<value>3</value>
<value>1</value>
<value>d</value>
<value>1</value>
<value>5</value>

</Tist-entries>

From the Library of Wow! eBook

Configuring Beans n

Here we use the java.lang.Integer wrapper type since a List cannot hold values of
primitive type.

The list can contain a mixture of value and nul1-value elements. The value-class is
optional. If it is omitted, a list of java.lang.String objects is produced.

A map is more complex. You specify optional key-class and value-class elements
(again, with a default of java.lang.String). Then you provide a sequence of map-
entry elements, each of which has a key element, followed by a value or nul1-value
element.

Here is an example:

<map-entries>
<key-class>java.lang.Integer</key-class>
<map-entry>
<key>1</key>
<value>George Washington</value>
</map-entry>
<map-entry>
<key>3</key>
<value>Thomas Jefferson</value>
</map-entry>
<map-entry>
<key>16</key>
<value>Abraham Lincoln</value>
</map-entry>
<map-entry>
<key>26</key>
<value>Theodore Roosevelt</value>
</map-entry>
</map-entries>

You can use Tist-entries and map-entries elements to initialize either a managed-bean
or a managed-property, provided that the bean or property type is a List or Map.

Figure 2-7 shows a syntax diagram for the managed-bean element and all of its
child elements. Follow the arrows to see which constructs are legal inside a
managed-bean element. For example, the second graph tells you that a managed-
property element starts with zero or more description elements, followed by zero
or more display-name elements, zero or more icons, then a mandatory property-nare,
an optional property-class, and exactly one of the elements value, null-value,
map-entries, or Tist-entries.

From the Library of Wow! eBook

Chapter 2 B Managed Beans

managed-bean

managed-
property

managed- managed managed- map-
l bean-| name bean class bean-scope entries
description display- icon
name list-
managed-property
e property value
name A
description display- icon
name class

null

map-entries

t

value

map:
entries

key-
class

4

list
entries

value-
class

map-
entry

i

P =) @

map-entry

key

list-entries

value-
class

Figure 2-7 Syntax diagram for managed-bean elements

String Conversions

You specify property values and elements of lists or maps with a value element
that contains a string. The enclosed string needs to be converted to the type of
the property or element. For primitive types, this conversion is straightfor-
ward. For example, you can specify a string, such as 10 or true, and have it con-
verted to a number or boolean value.

Starting with JSF 1.2, values of enumerated types are supported as well. The
conversion is performed by calling Enum.valueOf (propertyClass, valueText).

For other property types, the JSF implementation attempts to locate a matching
PropertyEditor. If a property editor exists, its setAsText method is invoked to con-
vert strings to property values. Defining a property editor is somewhat
involved, and we refer the interested reader to Cay Horstmann and Gary
Cornell, Core Java™, 8th ed., Santa Clara, CA: Sun Microsystems Press/Prentice
Hall, 2008, Vol. 2, Chapter 8.

From the Library of Wow! eBook

The Expression Language Syntax n

Table 2-2 summarizes these conversion rules. They are identical to the rules for
the jsp:setProperty action of the JSP specification.

CAUTION: The string conversion rules are fairly restrictive. For example, if
you have a property of type URL, you cannot simply specify the URL as a
string, even though there is a constructor URL(String). You would need to
supply a property editor for the URL type or reimplement the property type as
String.

Table 2-2 String Conversions

Target Type Conversion

int, byte, short, long, float, double, or The valueOf method of the wrapper type, or

the corresponding wrapper type 0 if the string is empty.

booTlean or BooTlean The result of Boolean.valueOf, or false if the
string is empty.

char or Character The first character of the string, or (char) 0 if
the string is empty.

String or Object A copy of the string; new String("") if the
string is empty.

bean property A type that calls the setAsText method of the

property editor if it exists. If the property
editor does not exist or it throws an excep-
tion, the property is set to nul1 if the string is
empty. Otherwise, an error occurs.

The Expression Language Syntax

In the following sections, we discuss the syntax for value and method expres-
sions in gruesome detail. These sections are intended for reference. Feel free to
skip them at first reading.

Lvalue and Rvalue Modes

We start with an expression of the form a.h. For now, we will assume that we

already know the object to which a refers. If a is an array, a list, or a map, then
special rules apply (see “Using Brackets” on page 64). If a is any other object,

then b must be the name of a property of a. The exact meaning of a.b depends
on whether the expression is used in rvalue mode or lvalue mode.

From the Library of Wow! eBook

Chapter 2 B Managed Beans

This terminology is used in the theory of programming languages to denote
that an expression on the right-hand side of an assignment is treated differently
from an expression on the left-hand side.

Consider the assignment:
left = right;

A compiler generates different code for the left and right expressions. The right
expression is evaluated in rvalue mode and yields a value. The left expression
is evaluated in lvalue mode and stores a value in a location.

The same phenomenon happens when you use a value expression in a user
interface component:

<h:inputText value="#{user.name}"/>

When the text field is rendered, the expression user.name is evaluated in rvalue
mode, and the getName method is called. During decoding, the same expression
is evaluated in lvalue mode and the setName method is called.

In general, the expression a.b in rvalue mode is evaluated by calling the prop-
erty getter, whereas a.b in lvalue mode calls the property setter.

Using Brackets

Just as in JavaScript, you can use brackets instead of the dot notation. That is,
the following three expressions all have the same meaning:

For example, user.password, user["password"], and user['password'] are equivalent
expressions.

Why would anyone write user["password"] when user.password is much easier to

type? There are a number of reasons:

* When you access an array or map, the [] notation is more intuitive.

. You can use the [] notation with strings that contain periods or dashes—
for example, msgs["error.password"].

e The [] notation allows you to dynamically compute a property:
a[b.propname].

TIP: Use single quotes in value expressions if you delimit attributes with
j double quotes: value="#{user['password']}". Alternatively, you can switch
single and double quotes: value="#{user["password"]}".

From the Library of Wow! eBook

The Expression Language Syntax n

Map and List Expressions

The value expression language goes beyond bean property access. For exam-
ple, let mbe an object of any class that implements the Map interface. Then m["key"]
(or the equivalent m.key) is a binding to the associated value. In rvalue mode,
the value

m.get("key")
is fetched. In Ivalue mode, the statement
m.put("key", right);
is executed. Here, right is the right-hand side value that is assigned to m.key.

You can also access a value of any object of a class that implements the List
interface (such as an ArraylList). You specify an integer index for the list position.
For example, a[i] (or, if you prefer, a.) binds the ith element of the list a. Here i
can be an integer, or a string that can be converted to an integer. The same rule
applies for array types. As always, index values start at zero.

Table 2-3 summarizes these evaluation rules.

Table 2-3 Evaluating the Value Expression a.b

Type of a Type of b lvalue Mode rvalue Mode

null any error null

any null error null

Map any a.put(b, right) a.get(h)

List convertible to int a.set(b, right) a.get(h)

array convertible to int afb] = right alb]

bean any call setter of call getter of
property with property with
name b.toString() name b.toString()

CAUTION: Unfortunately, value expressions do not work for indexed proper-
ties. If p is an indexed property of a bean b, and i is an integer, then b.p[i]
does not access the ith value of the property. It is simply a syntax error. This
deficiency is inherited from the JSP expression language.

From the Library of Wow! eBook

Chapter 2 B Managed Beans

Calling Methods and Functions !1

Starting with JSF 2.0, you can invoke methods in value expressions. Simply
supply the method name and parameters. For example, if the stockQuote bean
has a method double price(String), then you can use the following expression:

#{stockQuote.price("ORCL")}

Overloaded methods are not supported. The bean must have a unique method
with the given name.

You can also invoke useful functions from the JSTL functions library. They are
shown in Table 2—4. If you use these functions, remember to add

xmins:fn="http://java.sun.com/jsp/jst1/functions"

to the html element in your page.

Table 2-4 JSTL Functions

Functions Description

fn:contains(str, substr) Returns true if the string str contains substr.

fn:containsIgnoreCase(str, substr) Returns true if the string str contains substr,
ignoring letter case.

fn:startsWith(str, substr) Returns true if the string str starts with substr.
fn:endsWith(str, substr) Returns true if the string str ends with substr.
fn:Tlength(str) Returns the length of the string str.
fn:index0f(str, substr) Returns the index of the first occurrence of

substr in str, -1 if not found.

fn:join(strArray, separator) Joins the strings in the given string array,
placing the separator string between them.

fn:split(str, separator) Splits the string into an array of strings,
removing all occurrences of the separator.

fnisubstring(str, start, pastEnd) Returns the substring of str at positions
start...pastEnd - 1.

fn:substringAfter(str, separator) Returns the substring of str after the first
occurrence of separator.

fn:substringBefore(str, separator) Returns the substring of str before the first
occurrence of separator.

From the Library of Wow! eBook

The Expression Language Syntax

Table 2-4 JSTL Functions (cont.)

Functions Description

fn:replace(str, from, to) Returns the result of replacing all occurrences
of fromin str with to.

fn:toLowerCase(str) Returns the lowercase of str.

fn:toUpperCase(str) Returns the uppercase of str.

fnitrim(str) Returns str with leading and trailing
whitespace removed.

fn:escapeXml(str) Returns str with characters < > & escaped as
XML entities.

Resolving the Initial Term

Now you know how an expression of the form a.b is resolved. The rules can be
applied repetitively to expressions such as a.b.c.d (or, of course, a['b'].c["d"]).
We still need to discuss the meaning of the initial term a.

In the examples you have seen so far, the initial term referred to a bean or to a
message bundle map. Those are indeed the most common situations. But it is
also possible to specify other names.

There are a number of predefined objects, called implicit objects in the JSF speci-
fication. Table 2-5 shows the complete list. For example:

header['User-Agent']

is the value of the User-Agent parameter of the HTTP request that identifies the
user’s browser.

If the initial term is not one of the predefined objects, the JSF implementation
looks for it in the request, view, session, and application scopes, in that order.
In particular, all instantiated managed beans are located in these scope maps.

If the search is still not successful, the JSF implementation attempts to construct
a managed bean or a resource bundle with the given name.

It is also possible for an application to define custom “resolvers” that recognize
additional names. We briefly discuss this in the section “How do I extend the
JSF expression language?” on page 596 of Chapter 13.

From the Library of Wow! eBook

n Chapter 2 B Managed Beans

Table 2-5 Predefined Objects in the Expression Language

Variable Name Meaning

header A Map of HTTP header parameters, containing only the first
value for each name.

headerValues A Map of HTTP header parameters, yielding a String[] array of
all values for a given name.

param A Map of HTTP request parameters, containing only the first
value for each name.

paramValues A Map of HTTP request parameters, yielding a String[] array of
all values for a given name.

cookie A Map of the cookie names and values of the current request.

initParam A Map of the initialization parameters of this web application.
Initialization parameters are discussed in Chapter 12.

requestScope A Map of all request scope attributes.

viewScope A Map of all view scope attributes.

[JSF 2.0

sessionScope A Map of all session scope attributes.

applicationScope A Map of all application scope attributes.

flash A Map for forwarding objects to the next view. See Chapter 3.

[JSF 2.0

resource A Map of application resources. Resources are described in

LISF 2.0] Chaper 4.

facesContext The FacesContext instance of this request. This class is discussed
in Chapter 7.

view The UIViewRoot instance of this request. This class is discussed
in Chapter 8.

component The current component (see Chapter 9).

[JSF 2.0

cc The current composite component (see Chapter 9).

[JSF 2.0

From the Library of Wow! eBook

The Expression Language Syntax n

Consider, for example, the following expression:

#{user.password}

The term user is not one of the predefined objects. When it is encountered for the
first time, it is not an attribute name in request, view, session, or application
scope.

Therefore, the JSF implementation locates the managed bean with name user
and calls the constructor with no parameters of the corresponding class. Next,
it adds an association to the sessionScope map. Finally, it returns the constructed
object as the result of the lookup.

When the term user needs to be resolved again in the same session, it is located
in the session scope.

Composite Expressions

You can use a limited set of operators inside value expressions:

* Arithmetic operators + - « / % The last two operators have alphabetic
variants div and mod.

* Relational operators < <= > >= == |= and their alphabetic variants Tt e gt ge
eq ne. The first four variants are required for XML safety.

* Logical operators & || ! and their alphabetic variants and or not. The first
variant is required for XML safety.

. The empty operator. The expression empty a is true if a is null, an array or
String of length O, or a Collection or Map of size 0.

¢ The ternary ?: selection operator.

Operator precedence follows the same rules as in Java. The empty operator has
the same precedence as the unary - and ! operators.

Generally, you do not want to do a lot of expression computation in web
pages—that would violate the separation of presentation and business logic.
However, occasionally, the presentation layer can benefit from operators. For
example, suppose you want to hide a component when the hide property of a
bean is true. To hide a component, you set its rendered attribute to false. Invert-
ing the bean value requires the ! (or not) operator:

<h:inputText rendered="#{!bean.hide}" ... />

Finally, you can concatenate plain strings and value expressions by placing
them next to each other. Consider, for example:

<h:commandButton value="#{msgs.clickHere}, #{user.name}!"/>

From the Library of Wow! eBook

Chapter 2 B Managed Beans

The statement concatenates four strings: the string returned from #{messages.
greeting}, the string consisting of a comma and a space, the string returned from
#{user.name}, and the string consisting of an exclamation mark.

You have now seen all the rules that are applied to resolve value expressions.
Of course, in practice, most expressions are of the form #{bean.property}. Just
come back to this section when you need to tackle a more complex expression.

Method Expressions
A method expression denotes an object and a method that can be applied to it.
For example, here is a typical use of a method expression:

<h:commandButton action="#{user.checkPassword}"/>

We assume that user is a value of type UserBean and checkPassword is a method of
that class. The method expression is a convenient way of describing a method
invocation that needs to be carried out at some future time.

When the expression is evaluated, the method is applied to the object.

In our example, the command button component will call user. checkPassword()
and pass the returned string to the navigation handler.

Syntax rules for method expressions are similar to those of value expressions.
All but the last component are used to determine an object. The last component
must be the name of a method that can be applied to that object. Table 2-6
shows the attributes that require method expressions.

Table 2-6 Method Expression Attributes

Method See
Tag Attribute Expression Type Chapter
Buttons action String action() 3
and links . R X
actionListener void Tistener(ActionEvent) 8
Input valueChangelListener void Tistener(ValueChangeEvent) 9
components - - -
validator void validator(FacesContext, 7
UIComponent, Object)
f:event 1istener void Tistener(ComponentSystemEvent) 8
[JSF 2.0
frajax 1istener void Tistener(AjaxBehaviorEvent) 10

[JSF 2.0

From the Library of Wow! eBook

Conclusion

NOTE: The EL syntax for method expression types (shown in Table 2—6)
' contains not just the method parameter and return types, but also a method
name, such as void Tistener(ActionEvent). These names are intended to
document the purpose of the method.

Method Expression Parameters

Starting with JSF 2.0, you can provide parameter values in method expressions.
This feature is useful for providing parameters to the actions of buttons and
links. For example,

<h:commandButton value="Previous" action="#{formBean.move(-1)}"/>
<h:commandButton value="Next" action="#{formBean.move(1)}"/>

The action method must then be declared with a parameter:
pubTic class FormBean {

public String move(int amount) { ... }

}

When the method reference is evaluated, the parameters are evaluated and
passed to the method.

CAUTION: Method parameters will not work on Tomcat 6 with just the JSF
JAR files. The expression language (EL) is not a part of JSF but instead
defined in JSR 245 (JavaServer Pages). Method parameters are a feature of
EL 2.2, which is not supported by Tomcat 6. In order to use the EL 2.2 fea-
tures, obtain the JARs from http://uel.dev.java.net, add them to the WEB-INF/
Tib directory of your web application, and add the following to your web.xm1 file:

<context-param>
<param-name>com. sun. faces.expressionFactory</param-name>
<param-value>com.sun.el.ExpressionFactoryImpl</param-value>
</context-param>

Conclusion

This completes our discussion of managed beans. We would like to reassure
you that most of the technical issues raised here are not important to be pro-
ductive with JSF development. Start out with using message bundles and
session-scoped named beans, and come back to this chapter when you have
more advanced needs.

Next, you will learn how your JSF applications navigate between pages.

From the Library of Wow! eBook

http://uel.dev.java.net

NAVIGATION

¥ Topics in This Chapter

e “Static Navigation” on page 73
e “Dynamic Navigation” on page 74
e “Redirection” on page 86

e “RESTful Navigation and Bookmarkable
URLs” on page 88

e “Advanced Navigation Rules” on page 96

From the Library of Wow! eBook

In this short chapter, we discuss how you configure the navigation of your web
application. In particular, you will learn how your application can move from
one page to the next, depending on user actions and the outcomes of decisions
in the business logic.

Static Navigation

Consider what happens when the user of a web application fills out a web page.
The user might fill in text fields, click radio buttons, or select list entries.

All these edits happen inside the user’s browser. When the user clicks a button
that posts the form data, the changes are transmitted to the server.

At that time, the web application analyzes the user input and must decide
which JSF page to use for rendering the response. The navigation handler is
responsible for selecting the next JSF page.

In a simple web application, navigation is static. That is, clicking a particular
button always selects a fixed JSF page for rendering the response. In “A Simple
Example” on page 4 of Chapter 1, you saw the simplest mechanism for wiring
up static navigation between JSF pages.

You give each button an action attribute—for example:

<h:commandButton Tabel="Login" action="welcome"/>

73

From the Library of Wow! eBook

Chapter 3 B Navigation

NOTE: As you will see in Chapter 4, navigation actions can also be attached
to hyperlinks.

The value of the action attribute is called the outcome. As you will see in the sec-
tion “Mapping Outcomes to View IDs” on page 75, an outcome can be option-
ally mapped to a view ID. (In the JSF specification, a JSF page is called a view.)

If you don’t provide such a mapping for a particular outcome, the outcome is
transformed into a view ID, using the following steps:

1. If the outcome doesn’t have a file extension, then append the extension of
the current view.

2. If the outcome doesn’t start with a /, then prepend the path of the current
view.

For example, the welcome outcome in the view /index.xhtml yields the target view
ID /welcome.xhtml.

NOTE: The mapping from outcomes to view IDs is optional since JSF 2.0.
yAl Prior to JSF 2.0, you had to specify explicit navigation rules for every
outcome.

Dynamic Navigation

In most web applications, navigation is not static. The page flow does not just
depend on which button you click but also on the inputs that you provide. For
example, submitting a login page may have two outcomes: success or failure.
The outcome depends on a computation—namely, whether the username and
password are legitimate.

To implement dynamic navigation, the submit button must have a method
expression, such as:

<h:commandButton Tabel="Login" action="#{loginController.verifyUser}"/>

In our example, loginController references a bean of some class, and that class
must have a method named verifylUser.

A method expression in an action attribute has no parameters. It can have any
return type. The return value is converted to a string by calling toString.

From the Library of Wow! eBook

Dynamic Navigation

NOTE: In JSF 1.1, an action method was required to have return type
' String. As of JSF 1.2, you can use any return type. In particular, using
enumerations is a useful alternative since the compiler can catch typos
in the action names.

Here is an example of an action method:

String verifyUser() {
if (...)
return "success";
else
return "failure";

}

The method returns an outcome string such as "success" or "failure", which is
used to determine the next view.

NOTE: An action method may return null to indicate that the same view
' should be redisplayed. In this case, the view scope (which was discussed in
Chapter 2) is preserved. Any non-null outcome purges the view scope,
even if the resulting view is the same as the current one.

In summary, here are the steps that are carried out whenever the user clicks a
command button whose action attribute is a method expression:

1. The specified bean is retrieved.
2. The referenced method is called and returns an outcome string.
3. The outcome string is transformed into a view ID.

4. The page corresponding to the view ID is displayed.

Thus, to implement branching behavior, you supply a reference to a method in
an appropriate bean class. You have wide latitude about where to place that
method. The best approach is to find a class that has all the data that you need
for decision making.

Mapping Outcomes to View IDs

One key design goal of JSF is to separate presentation from business logic.
When navigation decisions are made dynamically, the code that computes the
outcome should not have to know the exact names of the web pages. JSF pro-
vides a mechanism for mapping logical outcomes, such as success and failure, to
actual web pages.

From the Library of Wow! eBook

Chapter 3 B Navigation

This is achieved by adding navigation-rule entries into faces-config.xml. Here is a
typical example:

<navigation-rule>
<from-view-id>/index.xhtml</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/welcome.xhtml</to-view-id>
</havigation-case>
</navigation-rule>

This rule states that the success outcome navigates to /welcome.xhtml if it occurred
inside /index.xhtml.

NOTE: The view ID strings start with a /. If you use extension mapping
(such as a suffix .faces), the extension must match the file extension (such
as .xhtml), not the URL extension.

If you pick the outcome strings carefully, you can group multiple navigation
rules together. For example, you may have buttons with action Togout sprinkled
throughout your application’s pages. You can have all these buttons navigate
to the ToggedOut.xhtm1 page with the single rule:

<navigation-rule>
<navigation-case>
<from-outcome>Togout</from-outcome>
<to-view-id>/TloggedOut.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

This rule applies to all pages because no from-view-id element was specified.
You can merge navigation rules with the same from-view-id. Here is an example:

<navigation-rule>
<from-view-id>/index.xhtml</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/welcome.xhtml</to-view-id>
</navigation-case>
<navigation-case>
<from-outcome>failure</from-outcome>
<to-view-id>/newuser.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

From the Library of Wow! eBook

Dynamic Navigation

JSF NOTE: For simple applications, you probably don’t need to use navigation
yAl rules. As your applications get more complex, it makes sense to use logical
outcomes in your managed beans, together with navigation rules for

mapping outcomes to target views.

The JavaQuiz Application

In this section, we put navigation to use in a program that presents the user
with a sequence of quiz questions (see Figure 3-1).

m A Java Trivia Quiz - Mozilla Firefox

File Edit View Go Bookmarks Tools Help

<r‘ = = ‘@ 1 hupsiflocalhost: B0BOjavaguiz/index.faces -

What trademarked slogan describes Java development? Write once, ...

debug everywhere
Check Answer

Dane

Figure 3-1 A quiz question

When the user clicks the “Check Answer” button, the application checks
whether the user provided the correct answer. If the answer is not correct, the
user has one additional chance to answer the same problem (see Figure 3-2).

A Java Trivia Quiz - Mozilla Fire

File Edit View Go Bookmarks Tools Help

<r‘, i N t@ 1 hupsiflocalhost: BOBOY i faces] onid=b57bf90ea2SC 1FHFHHT8023dcdddbelb03 | v

Sorry, that was not carrect. Please try again!

What trademarked slogan describes Java development? Write once, ...

nun many fimes
Check Answer

Dane
1

Figure 3-2 One wrong answer: Try again

From the Library of Wow! eBook

Chapter 3 B Navigation

After two wrong answers, the next problem is presented (see Figure 3-3).

via Quiz - Mozilla Firefo

File Edit View Go Bookmarks Tools Help
¥ - L@ 1 mpeiflocalhost8080javaquiz/again.faces v
Sorry, that was still not correct. The correct answer was: run anywhere.
Here is your next problem.
What are the first 4 bytes of every class file (in hexadecimal)?
Check Answer

Dane
1 1 |

Figure 3-3 Two wrong answers: Move on

And, of course, after a correct answer, the next problem is presented as well.
Finally, after the last problem, a summary page displays the score and invites
the user to start over (see Figure 3-4).

Our application has two classes. The Problem class, shown in Listing 3-1,
describes a single problem, with a question, an answer, and a method to
check whether a given response is correct.

The QuizBean class describes a quiz that consists of a number of problems. A
QuizBean instance also keeps track of the current problem and the total score of
a user. You will find the complete code in Listing 3-2.

A Java Trivia Quiz - Mozilla Firefox

File Edit View Go Bookmarks Tools Help

<b", T N LK_%? 1 hupefflecalhost: B0B0javaguiz/success.faces o

Thank you for taking the quiz. Your score is 5.

Start over

Dane
1 1 |

Figure 3-4 Done with the quiz

From the Library of Wow! eBook

Dynamic Navigation

javaquiz/src/java/com/corejsf/Problem. java

package com.corejsf;
import java.io.Serializable;

pubTic class Problem implements Serializable {
private String question;
private String answer;

public Problem(String question, String answer) {
this.question = question;
this.answer = answer;

}
public String getQuestion() { return question; }
public String getAnswer() { return answer; }

// override for more sophisticated checking
public boolean isCorrect(String response) {
return response.trim().equalsIgnoreCase(answer);
}
}

In this example, the QuizBean is the appropriate class for holding the navigation
methods. That bean has all the knowledge about the user’s actions, and it can
determine which page should be displayed next.

The answerAction method of the QuizBean class carries out the navigation logic. The
method returns one of the strings "success" or "done" if the user answered the
question correctly, "again" after the first wrong answer, and "failure" or "done"
after the second wrong try.

public String answerAction() {

tries++;

if (problems.get(currentProblem).isCorrect(response)) {
score++;
nextProblem();
if (currentProblem == problems.size()) return "done";
else return "success";

}

else if (tries == 1) return "again"

else {
nextProblem();
if (currentProblem == problems.size()) return "done";

From the Library of Wow! eBook

Chapter 3 B Navigation

else return "failure";
}
}

We attach the answerAction method expression to the buttons on each of the
pages. For example, the index.xhtml page contains the following element:

<h:commandButton value="#{msgs.checkAnswer}" action="#{quizBean.answerAction}"/>

Figure 3-5 shows the directory structure of the application. Listing 3-3 shows
the main quiz page index.xhtml. The success.xhtml and failure.xhtml pages are omit-
ted. They differ from index.xhtml only in the message at the top of the page.

The done.xhtm1 page in Listing 3—4 shows the final score and invites the user to
play again. Pay attention to the command button on that page. It looks as if we
could use static navigation, since clicking the “Start over” button always
returns to the index.xhtnl page. However, we use a method expression:

<h:commandButton value="#{msgs.startOver}" action="#{quizBean.startOverAction}"/>

The startOverAction method carries out useful work that needs to take place to
reset the game. It reshuffles the response items and resets the score:

pubTic String startOverAction() {
Collections.shuffle(problems);
currentProblem = 0;
score = 0;
tries = 0;
response = "";
return "startOver";

}
In general, action methods have two roles:

* To carry out the model updates that are a consequence of the user action
e To tell the navigation handler where to go next

NOTE: As you will see in Chapter 8, you can also attach action listeners to
' buttons. When the user clicks the button, the code in the processAction
method of the action listener is executed. However, action listeners do not
interact with the navigation handler.

Listing 3-5 shows the application configuration file with the navigation rules.
To understand the rules better, have a look at the page transitions in Figure 3-6.

From the Library of Wow! eBook

Dynamic Navigation n

ﬁjavaquiz.war
" again.xhtml
| done.xhtml
| failure.xhtml
| index.xhtml
__ success.xhtml
¥ (& WEB-INF
| beans.xml
| faces-config.xml
| web.xml
¥ (& classes
v ﬁ com
v ﬁ corejsf
' Problem.class
|| QuizBean.class
__| messages.properties

Figure 3-5 Directory structure of the Java Quiz application

non

Three of our outcomes ("success", "again”, and "done") have no navigation rules.
They always lead to /success.xhtml, /again.xhtml, and /done.xhtml. We map the
"startOver" outcome to /index.xhtml. The failure outcome is a bit tricker. It initially
leads to /again.xhtml, where the user can have a second try. However, if failure
occurs in that page, then the next page is /failure.xhtml:

<navigation-rule>
<from-view-id>/again.xhtml</from-view-id>
<navigation-case>
<from-outcome>failure</from-outcome>
<to-view-id>/failure.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<navigation-case>
<from-outcome>failure</from-outcome>
<to-view-id>/again.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

Note that the order of the rule matters. The second rule matches when the cur-
rent page is not /again.xhtml.

Finally, Listing 3-6 shows the message strings.

From the Library of Wow! eBook

n Chapter 3 B Navigation

again success

/—> /success.xhtml
/again.xhtml

again failure done success

startOver

/done.xhtml

Figure 3-6 The transition diagram of the Java Quiz application

B350 - 20 javaquiz/src/java/com/corejst/QuizBean. java

. package com.corejsf;

.import java.io.Serializable;

1
2
3
4.
5. import java.util.Arraylist;

6. import java.util.Arrays;

7.import java.util.Collections;

8.

9. import javax.inject.Named;
10. // or import javax.faces.bean.ManagedBean;
11. import javax.enterprise.context.SessionScoped;
12. // or import javax.faces.bean.SessionScoped;
13.
14. @Named // or @ManagedBean
15. @SessionScoped
16. pubTic class QuizBean implements Serializable {
17. private int currentProblem;

From the Library of Wow! eBook

Dynamic Navigation n

private int tries;
private int score;
private String response = "";
private String correctAnswer;

// Here, we hardwire the problems. In a real application,
// they would come from a database
private ArrayList<Problem> problems = new ArraylList<Problem>(Arrays.asList(
new ProbTem(
"What trademarked slogan describes Java development? Write once, ...",
"run anywhere"),
new ProbTem(
"What are the first 4 bytes of every class file (in hexadecimal)?",
"CAFEBABE"),
new ProbTem(
"What does this statement print? System.out.printIn(1+\"2\");",
"12"),
new ProbTem(
"Which Java keyword is used to define a subclass?",
"extends"),
new ProbTem(
"What was the original name of the Java programming language?",
"0ak"),
new ProbTem(
"Which java.util class describes a point in time?",
"Date™)));

pubTic String getQuestion() { return problems.get(currentProblem).getQuestion(); }
public String getAnswer() { return correctAnswer; }
public int getScore() { return score; }

public String getResponse() { return response; }
public void setResponse(String newValue) { response = newValue; }

public String answerAction() {

tries++;

if (problems.get(currentProblem).isCorrect(response)) {
Score++;
nextProblem();
if (currentProblem == problems.size()) return "done";
else return "success";

}

else if (tries == 1) return "again";

else {
nextProblem();

From the Library of Wow! eBook

n Chapter 3 B Navigation

if (currentProblem == problems.size()) return "done";
else return "failure";

}

}

public String startOverAction() {
Collections.shuffle(problems)
currentProblem = 0;

score = 0;
tries = 0;
response = "";

return "startOver";

}

private void nextProblem() {
correctAnswer = problems.get(currentProblem).getAnswer();
currentProblem++;
tries = 0;
response = "";

B TT50 TR 2RI javaquiz/web/index. xhtm]

—
——

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://java.sun.com/jsf/htm1">
<h:head>
<titles#{msgs.title}</title>
</h:head>
<h:body>
<h:forms>
<p>#{quizBean.question}"/></p>
<p><h:inputText value="#{quizBean.response}"/></p>
<p>
<h:commandButton value="#{msgs.checkAnswer}"
action="#{quizBean.answerAction}"/>
</p>
</h:form>
</h:body>
</htm1>

From the Library of Wow! eBook

Dynamic Navigation n

javaquiz/web/done. xhtm1

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>#{msgs.title}</title>
</h:head>
<h:body>
<h:forms>
<p>
#{msgs.thankYou}
<h:outputFormat value="#{msgs.score}">
<fiparam value="#{quizBean.score}"/>
</h:outputFormat>
</p>
<p>
<h:commandButton value="#{msgs.startOver}"
action="#{quizBean.startOverAction}"/>
</p>
</h:form>
</h:body>
</htm1>

javaquiz/web/WEB-INF/faces-config.xml

<?xml version="1.0"?>
<faces-config xmins="http://java.sun.com/xml/ns/javaee"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd"
version="2.0">
<navigation-rule>
<navigation-case>
<from-outcome>startOver</from-outcome>
<to-view-id>/index.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/again.xhtml</from-view-id>
<navigation-case>
<from-outcome>failure</from-outcome>
<to-view-id>/failure.xhtml</to-view-id>

From the Library of Wow! eBook

n Chapter 3 B Navigation

</navigation-case>
</navigation-rule>
<navigation-rule>
<navigation-case>
<from-outcome>failure</from-outcome>
<to-view-id>/again.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

<application>
<resource-bundle>
<base-name>com. corejsf.messages</base-name>
<varsmsgs</var>
</resource-bundle>
</application>
</faces-config>

BRI B javaquiz/src/java/com/corejst/messages. properties

title=A Java Trivia Quiz

checkAnswer=Check Answer

startOver=Start over

correct=Congratulations, that is correct.
notCorrect=Sorry, that was not correct. Please try again!
stillNotCorrect=Sorry, that was still not correct.
correctAnswer=The correct answer was: {0}.

score=Your score is {0}.

nextProblem=Here is your next problem.

thankYou=Thank you for taking the quiz.

Redirection

You can ask the JSF implementation to redirect to a new view. Then the JSF
implementation sends an HTTP redirect to the client. The redirect response
tells the client which URL to use for the next page. The client then makes a GET
request to that URL.

Redirecting is slow because another round trip to the browser is involved.
However, the redirection gives the browser a chance to update its address
field.

Figure 3-7 shows how the address field changes when you use redirection.

Without redirection, the original URL (Tocalhost:8080/javaquiz/faces/index.xhtml) is
unchanged when the user moves from the /index.xhtml page to the /success.xhtml

From the Library of Wow! eBook

Redirection

face. With redirection, the browser displays the new URL (localhost: 8080/
javaquiz/faces/success.xhtml).

D A Java Trivia Quiz - Mozilla Firefox
Ele Edit Yiew History Bookmarks Tools Help

“a - & E-h_l:lv;_-'.l'luul}ms{ 8080/javaguizilaces/index xlllli__l_'j_:': ~

What trademarked slogan desg D |A Java Trivia Quiz - Mozilla Firefox
Ele Edit Yiew History Bookmarks Tools Help

run anywherg ‘

Chechinswer

w e ﬂ E_n_l__lv:_-'.u'luul}m{ 8080n’jdvduuiaddLes.'suttuss.Hf:.l.rnf .
CDngra[L“ationS, that Is correct.Your score is 1.

Here is your next proelem.

What are the first 4 bytes of every class file (in hexadecimal)?

Check Answer

Done

Figure 3-7 Redirection updating the URL in the browser

If you don’t use navigation rules, add the string
?faces-redirect=true
to the outcome string, for example:
<h:commandButton Tabel="Login" action="welcome?faces-redirect=true"/>
In a navigation rule, you add a redirect element after to-view-id, as follows:

<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/success.xhtml</to-view-id>
<redirect/>

</navigation-case>

Redirection and the Flash

To minimize session scope bloat, it makes sense to use request scope as much
as possible. Without the redirect element, you can use request scoped beans for
data that are shown in the next view.

However, consider what happens with a redirect.

1. The client sends a request to the server.

2. The request scope map is populated with request scoped beans.

From the Library of Wow! eBook

Chapter 3 B Navigation

3. The server sends an HITP 302 (Moved temporarily) status to the client,
together with the redirect location. This ends the current request, and the
request scoped beans are removed.

4. The client makes a GET request to the new location.
5. The server renders the next view. However, the previous request scoped
beans are no longer available.

To overcome this problem, JSF 2.0 provides a flash object that can be populated
in one request and used in the next. (The flash concept is borrowed from the
Ruby on Rails web framework.) A common use of the flash is for messages. For
example, a button handler can put a message into the flash:

ExternalContext.getFlash().put("message"”, "Your password is about to expire");

The ExternalContext.getFlash() method returns an object of the class Flash which
implements Map<String, Object>.

In a JSF page, you reference the flash object with the flash variable. For exam-
ple, you can display the message as:

#{flash.message}

After the message has been rendered and the redirected view has been deliv-
ered to the client, the message string is automatically removed from the flash.

You can even keep a value in the flash for more than one request. The
expression

#{flash.keep.message}

yields the value of the message key in the flash and adds it back for another
request cycle.

% NOTE: If you find yourself shoveling large amounts of data between the
flash and a bean, consider using a conversation scope instead.

RESTful Navigation and Bookmarkable URLSs

By default, a JSF application makes a sequence of POST requests to the server.
Each POST contains form data. This makes sense for an application that col-
lects lots of user input. But much of the web doesn’t work like that. Consider
for example a user browsing a shopping catalog, clicking from one link to the
next. No user input is involved other than selecting the links that are being
clicked. These links should be bookmarkable, so that a user can return to the

From the Library of Wow! eBook

RESTful Navigation and Bookmarkable URLs n

same page when revisiting the URL. And the pages should be cacheable. Cach-
ing is an important part of building efficient web applications. Of course, POST
requests do not work with bookmarking or caching.

An architectural style called REST (Representational State Transfer) advocates
that web applications should use HTTP as it was originally envisioned. Look-
ups should use GET requests. PUT, POST, and DELETE requests should be
used for creation, mutation, and deletion.

REST proponents tend to favor URLs, such as
http://myserver.com/catalog/item/1729

but the REST architecture does not require these “pretty URLs”. A GET request
with a parameter

http://myserver.com/catalog?item=1729
is every bit as RESTful.

Keep in mind that GET requests should never be used for updating informa-
tion. For example, a GET request for adding an item to a cart

http://myserver.com/addToCart?cart=314159&item=1729

would not be appropriate. GET requests should be idempotent. That is, issuing a
request twice should be no different from issuing it once. That’s what makes
the requests cacheable. An “add to cart” request is not idempotent—issuing it
twice adds two copies of the item to the cart. A POST request is clearly appro-
priate in this context. Thus, even a RESTful web application needs its share of
POST requests.

Currently, JSF does not have a standard mechanism for producing or consum-
ing “pretty URLs”, but since JSF 2.0, there is support for GET requests. We
describe that support in the following sections.

View Parameters
Consider a GET request for displaying information about a particular item:

http://myserver.com/catalog?item=1729

Anitem ID is supplied as a query parameter. When the request is received, the
parameter value must be transferred to an appropriate bean. You can use view
parameters for this purpose.

At the top of your page, add tags such as the following:

From the Library of Wow! eBook

http://myserver.com/catalog/item/1729
http://myserver.com/catalog?item=1729
http://myserver.com/addToCart?cart=314159&item=1729
http://myserver.com/catalog?item=1729

Chapter 3 B Navigation

<f:metadata>
<fiviewParam name="item" value="#{catalog.currentItem}"/>
</f:metadata>

When the request is processed, the value of the item query parameter is passed
to the setCurrentItem method of the catalog bean.

A JSF page can have any number of view parameters. View parameters can be
converted and validated, just like any other request parameters. (See chapter 7
for details on conversion and validation.)

It is often necessary to fetch additional data after the view parameters have
been set. For example, after setting the item view parameter, you may want to
retrieve item properties from a database so that you can render the page that
describes the item. In Chapter 8, you will see how to carry out this kind of
work in a handler for the preRenderView event.

GET Request Links

In the preceding section, you saw how JSF processes a GET request. In a REST-
ful application, you want to enable your users to navigate with GET requests.
Therefore, you need to add buttons and links to your pages that issue GET
requests. You use the h:button and h:Tink tags for this purpose. (In contrast,
h:commandButton and h:commandLink generate POST requests.)

You will want to control the target view ID and the query parameters for these
requests. The target view ID is specified by the outcome attribute. This can be a
fixed string:

<h:button value="Done" outcome="done"/>
Alternatively, you can supply a value expression:
<h:button value="Skip" outcome="#{quizBean.skipOutcome}"/>

The getSkipOutcome method is invoked. It must yield an outcome string. The out-
come string is then fed into the navigation handler in the usual way, yielding a
target view ID.

There is an essential difference between the outcome attribute of an h:button and
the action attribute of an h:commandButton. The outcome attribute is evaluated before
the page is rendered, so that the link can be embedded into the page. However,
the action attribute is only evaluated if the user actually clicked on the com-
mand button. For that reason, the JSF specification uses the term preemptive
navigation for computing the target view IDs for GET requests.

From the Library of Wow! eBook

RESTful Navigation and Bookmarkable URLs n

CAUTION: The EL expression in the outcome attribute is a value expression
and not a method expression. Conceptually, a command button action may
mutate the state of the application in some way. However, computing the
outcome of a GET request link should not do any mutation—after all, the
link is just computed for potential use at a later time.

Specifying Request Parameters

Often, you will want to include parameters with a GET request link. These
parameters can come from three sources:

* The outcome string
* View parameters
* Nested f:param tags

If the same parameter is specified more than once, the latter one in this list
takes precedence.

Let us look at these choices in detail.
You can specify parameters in an outcome string, such as:
<h:Tink outcome="index?q=1" value="Skip">

The navigation handler strips off the parameters from the outcome, computes
the target view ID, and appends the parameters. In this example, the target
view ID is /index.xhtm1?g=1.

If you supply multiple parameters, be sure to escape the & separator:
<h:Tink outcome="index?q=1&score=0" value="Skip">

Of course, you can use value expressions in the outcome string, like this:
<h:Tink outcome="index?q=#{quizBean.currentProblem + 1}" value="Skip">

There is a convenient shortcut for including all view parameters in the query
string. Simply add an attribute:

<h:Tink outcome="index" includeViewParams="true" value="Skip">

In this way, you can carry all view parameters from one page to another, which
is a common requirement in a RESTful application.

You can use the f:param tag to override view parameters. For example:

<h:Tink outcome="index" includeViewParams="true" value="Skip">
<f:param name="q" value="#{quizBean.currentProblem + 1}"/>
</h:Tink>

From the Library of Wow! eBook

Chapter 3 B Navigation

A redirect link, also being a GET request, can similarly benefit from inclusion
of view parameters. However, instead of setting an attribute in the tag, you
add a parameter to the outcome:

<h:commandLink action="index?faces-redirect=true&includeViewParams=true"
value="Skip"/>

Unfortunately, nested f:param tags are not included in the request.

If you specify navigation rules in the XML configuration, use the include-view-
params attribute and nested view-param tags, like this:

<redirect include-view-params=true>
<view-param>
<name>g</name>
<value>#{quizBean.currentProblem + 1}</value>
</view-param>
</redirect>
Do not be alarmed by the minor inconsistencies in the syntax. They are meant
to heighten your level of attention and thereby make you a better programmer.

Adding Bookmarkable Links to the Quiz Application

Consider the quiz application that we used earlier in this chapter to demon-
strate navigation. Can we make it more RESTful?

A GET request would not be appropriate for submitting an answer because it is
not idempotent. Submitting an answer modifies the score. However, we can
add RESTful links for navigating among the questions.

In order to keep the application simple, we provide a single bookmarkable link
for skipping to the next question. We use a view parameter:

<f:metadata>
<f:viewParam name="q" value="#{quizBean.currentProblem}"/>
</f:metadata>

The link is given by:

<h:Tink outcome="#{quizBean.skipOutcome}" value="Skip">
<fiparam name="q" value="#{quizBean.currentProblem + 1}"/>
</h:Tink>

The getSkipOutcome method of the QuizBean returns index or done, depending on
whether there are additional questions available:

public String getSkipOutcome() {
if (currentProblem < problems.size() - 1) return "index";

From the Library of Wow! eBook

RESTful Navigation and Bookmarkable URLs n

else return "done";

}
The resulting link looks like this (see Figure 3-8):

http://Tocalhost:8080/javaquiz-rest/faces/index.xhtm1?g=1

You can bookmark the link and return to any question in the quiz.

D |A Java Trivia Quiz - Mozilla Firefox
Ele Edit View History Hookmarks Jools Help

* B a ﬂ |n http:iocalhost-BOBDjavaquir-restifacesindex xhtmi?qe=1 ~

What are the first 4 bytes of every class file (in hexadecimal)?

Check Answer

s

[

._'| hI.lv.:l;’M)c.dl.Iu.:sl:sosoﬂavdquiz-reﬂﬂdtwl|dex.xl|lm|:’q.-2...
Figure 3-8 A RESTful link

Listing 3-7 shows the index.xhtnl page with the view parameter and the h:Tink
tag. Listing 3-8 shows the modified QuizBean. We added a setCurrentProblem
method and modified the mechanism for computing the score. Since it is now
possible to visit the same question multiple times, we need to make sure that a
user doesn'’t receive points for answering the same question more than once.

javaquiz-rest/web/index.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">
<f:metadata>
<fiviewParam name="q" value="#{quizBean.currentProblem}"/>
</f:metadata>
<h:head>
<titles#{msgs.title}</title>
</h:head>
<h:body>

From the Library of Wow! eBook

n Chapter 3 B Navigation

<h:forms>
<p>#{quizBean.question}</p>
<p><h:inputText value="#{quizBean.response}"/></p>
<p><h:commandButton value="#{msgs.checkAnswer}"
action="#{quizBean.answerAction}"/></p>
<p><h:Tink outcome="#{quizBean.skipOutcome}" value="Skip">

<fiparam name="q" value="#{quizBean.currentProblem + 1}"/>

</h:1ink>
</p>

</h:form>

</h:body>
</html>

 BTTEV VIR B javaquiz-rest/src/java/com/corejsf/QuizBean. java

package com.corejsf;

import java.io.Serializable;

import java.util.Arraylist;
import java.util.Arrays;
import java.util.Collections;
import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;

@Named // or @ManagedBean
@SessionScoped
public class QuizBean implements Serializable {
private int currentProblem;
private int tries;
private String response = "";
private String correctAnswer;

// Here, we hardwire the problems. In a real application,
// they would come from a database
private ArrayList<Problem> problems = new ArraylList<Problem>(Arrays.asList(
new ProbTem(
"What trademarked slogan describes Java development? Write once, ...",
"run anywhere"),
new ProbTem(
"What are the first 4 bytes of every class file (in hexadecimal)?",
"CAFEBABE"),
new ProbTem(
"What does this statement print? System.out.printIn(1+\"2\");",
"12"),

From the Library of Wow! eBook

RESTful Navigation and Bookmarkable URLs ﬂ

new ProbTem(
"Which Java keyword is used to define a subclass?”,
"extends"),
new ProbTem(
"What was the original name of the Java programming language?",
"0ak"),
new ProbTem(
"Which java.util class describes a point in time?",
"Date")));

private int[] scores = new int[problems.size()];

public String getQuestion() {
return problems.get(currentProblem).getQuestion()

}
public String getAnswer() { return correctAnswer; }

public int getScore() {
int score = 0;
for (int s : scores) score += S;
return score;

}

public String getResponse() { return response; }
public void setResponse(String newValue) { response = newValue; }

public int getCurrentProblem() { return currentProblem; }
public void setCurrentProblem(int newvalue) { currentProblem = newValue; }

public String getSkipOutcome() {
if (currentProblem < problems.size() - 1) return
else return "done";

}

"index";

public String answerAction() {

tries++;

if (problems.get(currentProblem).isCorrect(response)) {
scores[currentProblem] = 1;
nextProblem();
if (currentProblem == problems.size()) return "done";
else return "success";

}

else {
scores[currentProblem] = 0;
if (tries == 1) return "again";

From the Library of Wow! eBook

n Chapter 3 B Navigation

else {
nextProblem();
if (currentProblem == problems.size()) return "done";
else return "failure";

}
}
}

public String startOverAction() {
Collections.shuffle(problems);
currentProblem = 0;
for (int i = 0; i < scores.length; i++)

scores[i] = 0;

tries = 0;
response = "";
return "startOver";

}

private void nextProblem() {
correctAnswer = problems.get(currentProblem).getAnswer();
currentProblem++;
tries = 0;
response = "";
}
}

Advanced Navigation Rules

The techniques of the preceding sections should be sufficient for most practical
navigation needs. In this section, we describe the remaining rules for the navi-
gation elements that can appear in the faces-config.xm1 file. Figure 3-9 shows a
syntax diagram of the valid elements.

% NOTE: As you saw in “Configuring Beans” on page 56 of Chapter 2, it is also
possible to place the navigation information into configuration files other than
the standard faces-config.xml file.

As you can see from the syntax diagram in Figure 3-9, each navigation-rule and
navigation-case element can have an arbitrary description, a display-name, and icon
elements. These elements are intended for use in builder tools, and we do not
discuss them further.

From the Library of Wow! eBook

Advanced Navigation Rules

navigation-rule

T—[description HT—{ display-name]4— T—[icon]‘J
C
L»{ from-view-id l—T T—[navigation—case '4—

navigation-case

T—[description I<J T—[display-name I<J t—[icon lq—
—_—

(P to-view-id '—l_%
e ——

|-> from-action 'j L»[from—outcomeJ—r L‘ if]—r

Figure 3-9 Syntax diagram for navigation elements

Wildcards

You can use wildcards in the from-view-id element of a navigation rule, for
example:

<navigation-rule>
<from-view-id>/secure/«=</from-view-id>
<navigation-case>

</havigation-case>
</navigation-rule>

This rule applies to all pages that start with the prefix /secure/. Only a single « is
allowed, and it must be at the end of the ID string.

If there are multiple matching wildcard rules, the longest match is taken.

From the Library of Wow! eBook

n Chapter 3 B Navigation

% NOTE: Instead of leaving out a from-view-id element, you can also use one
of the following to specify a rule that applies to all pages:

<from-view-id>/«</from-view-id>
or

<from-view-id>«</from-view-id>

Using from-action

The structure of the navigation-case element is more complex than we previ-
ously discussed. In addition to the from-outcome element, there is also a fron-
action element. That flexibility can be useful if you have two separate actions
with the same outcome string.

For example, suppose that in our quiz application, the startOverAction returns
the string "again" instead of "startOver". The same string can be returned by the
answerAction. To differentiate between the two navigation cases, you can use a
from-action element. The contents of the element must be identical to the method
expression string of the action attribute:

<navigation-case>
<from-action>#{quizBean.answerAction}</from-action>
<from-outcome>again</from-outcome>
<to-view-id>/again.xhtml</to-view-id>

</navigation-case>

<navigation-case>
<from-action>#{quizBean.startOverAction}</from-action>
<from-outcome>again</from-outcome>
<to-view-id>/index.xhtml</to-view-id>

</navigation-case>

% NOTE: The navigation handler does not invoke the method inside the #{...}
delimiters. The method has been invoked before the navigation handler
kicks in. The navigation handler merely uses the from-action string as a key
to find a matching navigation case.

From the Library of Wow! eBook

Conclusion n

Conditional Navigation Cases !1

As of JSF 2.0, you can supply an if element that activates a navigation case only
when a condition is fulfilled. Supply a value expression for the condition. Here
is an example:
<navigation-case>
<from-outcome>previous</from-outcome>
<if>#{quizBean.currentQuestion != 0}</if>
<to-view-id>/main.xhtml</to-view-id>
</navigation-case>

Dynamic Target View IDs !I

The to-view-id element can be a value expression, in which case it is evaluated.
The result is used as the view ID. For example:
<navigation-rule>
<from-view-id>/main.xhtml</from-view-id>
<navigation-case>
<to-view-id>#{quizBean.nextViewID}</to-view-id>
</navigation-case>
</navigation-rule>
In this example, the getNextViewID method of the quiz bean is invoked to get the
target view ID.

Conclusion

You have now seen all features that JSF offers for controlling navigation. Keep
in mind that the simplest case is very straightforward: the actions of command
buttons and links can simply return an outcome that specifies the next page.
However, if you want more control, the JSF framework gives you the necessary
tools.

In the next chapter, you will learn all about the standard JSF components.

From the Library of Wow! eBook

STANDARD JSF TAGS

Topics in This Chapter

e “An Overview of the JSF Core Tags” on page 102
e “An Overview of the JSF HTML Tags” on page 105
e “Panels” on page 115

e “The Head, Body, and Form Tags” on page 118

e “Text Fields and Text Areas” on page 123

e “Buttons and Links” on page 134

e “Selection Tags” on page 145

* “Messages” on page 171

From the Library of Wow! eBook

Development of compelling JSF applications requires a good grasp of the JSF
tag libraries. JSF 1.2 had two tag libraries: core and HTML. As of JSF 2.0, there
are six libraries with over 100 tags—see Table 4-1. In this chapter, we cover the
core library and most of the HTML library. One HTML library component—the
data table—is so complex that it is covered separately in Chapter 6.

Table 4-1 JSF Tag Libraries

Namespace Commonly Number See

Library Identifier Used Prefix of Tags Chapter

Core http://java.sun.com/ f: 27 See Table 4-2
jsf/core

HTML http://java.sun.com/ h: 31 4and 6
jst/html

Facelets http://java.sun.com/ ui: 11 5

[JSF 2.0 | jsf/facelets

Composite http://java.sun.com/ composite: 12 9

Components jsf/composite

[JSF 2.0 |

JSTL Core http://java.sun.com/ c: 7 13

[JSF 2.0 | jsp/jstl/core

JSTL Functions http://java.sun.com/ fn: 16 2

[JSF2.0]

jsp/jst1/functions

101

From the Library of Wow! eBook

http://java.sun.com/jsf/core
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html
http://java.sun.com/jsf/html
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/composite
http://java.sun.com/jsf/composite
http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/functions
http://java.sun.com/jsp/jstl/functions

Chapter 4 m Standard JSF Tags

An Overview of the JSF Core Tags

The core library contains the tags that are independent of HTML rendering.
The core tags are listed in Table 4-2.

Table 4-2 JSF Core Tags

See
Tag Description Chapter
attribute Sets an attribute (key/value) in its parent 4
component.
param Adds a parameter child component to its 4
parent component.
facet Adds a facet to a component. 4
actionListener Adds an action listener to a component. 8
setPropertyActionListener Adds an action listener that sets a property. 8
valueChangelistener Adds a value change listener to a component. 8
phaselistener Adds a phase listener to the parent view. 8
event Adds a component system event listener. 8
[JSF2.0]
converter Adds an arbitrary converter to a component. 7
convertDateTime Adds a datetime converter to a component. 7
convertNumber Adds a number converter to a component. 7
validator Adds a validator to a component. 7
validateDoubleRange Validates a double range for a component’s 7
value.
validateLength Validates the length of a component’s value. 7
validatelLongRange Validates a Tong range for a component’s 7
value.
validateRequired Checks that a value is present. 7
[JSF2.0]
validateRegex Validates a value against a regular 7

[JSF 2.0/

expression.

From the Library of Wow! eBook

An Overview of the JSF Core Tags m

Table 4-2 JSF Core Tags (cont.)

See

Tag Description Chapter

validateBean Uses the Bean Validation APT (JSR 303) for 7

validation.

ToadBundle Loads a resource bundle, stores properties 2
as a Map.

selectitems Specifies items for a select one or select 4
many component.

selectitem Specifies an item for a select one or select 4
many component.

verbatim Turns text containing markup into a 4
component.

viewParam Defines a “view parameter” that can be 3

[JSF 2.0 | initialized with a request parameter.

metadata Holds view parameters. May hold other 3

[JSF 2.0 | metadata in the future.

ajax Enables Ajax behavior for components. 11

[JOF 2.0

view Use for specifying the page locale or a 2and 7
phase listener.

subview Not needed with facelets.

Most of the core tags represent objects you add to components, such as the

following:

. Attributes

. Parameters

. Facets

. Listeners

. Converters

o Validators

. Selection items

All of the core tags are discussed at length in different places in this book, as

shown in Table 4-1.

From the Library of Wow! eBook

Chapter 4 m Standard JSF Tags

Attributes, Parameters, and Facets

The f:attribute, f:param, and f:facet tags are general-purpose tags to add informa-
tion to a component. Any component can store arbitrary name/value pairs in its
attribute map. You can set an attribute in a page and later retrieve it programati-
cally. For example, in “Supplying Attributes to Converters” on page 289 of
Chapter 7, we set the separator character for credit card digit groups like this:

<h:outputText value="#{payment.card}">
<f:attribute name="separator" value="-" />
</h:outputText>

The converter that formats the output retrieves the attribute from the
component.

The f:param tag also lets you define a name/value pair, but the value is placed in
a separate child component, a much bulkier storage mechanism. However, the
child components form a list, not a map. You use f:param if you need to supply a
number of values with the same name (or no name at all). You saw an example
in “Messages with Variable Parts” on page 42 of Chapter 2, where the h:output-
Format component contains a list of f:param children.

NOTE: the h:commandlink component turns its f:param children into HTTP
i request name/value pairs. The event listener that is activated when the user
clicks the link can then retrieve the name/value pairs from the request map.
We demonstrate this technique in Chapter 8.

Finally, f:facet adds a named component to a component’s facet map. A facet is
not a child component; each component has both a list of child components and
a map of named facet components. The facet components are usually rendered
in a special place. The root of a Facelets page has two facets named "head" and
"body". You will see in “Headers, Footers, and Captions” on page 212 of Chapter
6 how to use facets named "header" and "footer" in data tables.

Table 4-3 shows the attributes for the f:attribute, f:param, and f:facet tags.

Table 4-3 Attributes for f:attribute, f:param, and f:facet

Attribute Description

name The attribute, parameter component, or facet name

value The attribute or parameter component value (does not apply to f:facet)

binding, id See Table 4-5 on page 107 (f:param only)

From the Library of Wow! eBook

An Overview of the JSF HTML Tags m

% NOTE: All tag attributes in this chapter, except for var and id, accept value or
method expressions. The var attribute must be a string. The id attribute can
be a string or an immediate ${...} expression.

An Overview of the JSF HTML Tags

Table 44 lists all HTML tags. We can group these tags in the following
categories:

Inputs (input...)

Outputs (output..., graphicImage)

Commands (commandButton and commandLink)

GET Requests (button, Tink, outputLink)

Selections (checkbox, Tistbox, menu, radio)

HTML pages (head, body, form, outputStylesheet, outputScript)
Layouts (panelGrid, panelGroup)

Data table (dataTable and column); see Chapter 6

Errors and messages (mnessage, messages)

The JSF HTML tags share common attributes, HTML pass-through attributes,
and attributes that support dynamic HTML.

Table 4-4 JSF HTML Tags

Tag Description

(Ul JSF 2.0 | Renders the head of the page
Yl JSF 2.0 | Renders the body of the page
form Renders a HTML form
outputStylesheet |NEYFPAW] Adds a stylesheet to the page
outputScript [NENYFE Adds a script to the page
inputText Single-line text input control
inputTextarea Multiline text input control
inputSecret Password input control
inputHidden Hidden field

From the Library of Wow! eBook

m Chapter 4 m Standard JSF Tags

Table 4-4 JSF HTML Tags (cont.)

Tag Description

outputLabel Label for another component for accessibility
outputLink Link to another web site

outputFormat Like outputText, but formats compound messages
outputText Single-line text output

commandButton Button: submit, reset, or pushbutton

commandLink Link that acts like a pushbutton

button [NEYFAD

Button for issuing a GET request

Tink NG

Link for issuing a GET request

message Displays the most recent message for a component
messages Displays all messages

graphicImage Displays an image

selectOneListhox Single-select listbox

selectOneMenu Single-select menu

selectOneRadio Set of radio buttons

selectBooTeanCheckbox Checkbox

selectManyCheckbox Set of checkboxes

selectManyListhox Multiselect listbox

selectManyMenu Multiselect menu

panelGrid Tabular layout

panelGroup Two or more components that are laid out as one
dataTable A feature-rich table control (see Chapter 6)
column Column in a dataTable (see Chapter 6)

From the Library of Wow! eBook

An Overview of the JSF HTML Tags m

% NOTE: The HTML tags may seem overly verbose—for example,
selectManyListhox could be more efficiently expressed as multilList. But those
verbose names correspond to a component/renderer combination, so
selectManyListbox represents a selectMany component paired with a 1isthox
renderer. Knowing the type of component a tag represents is crucial if you
want to access components programmatically.

Common Attributes

Three types of tag attributes are shared among multiple HTML component
tags:

. Basic

e HTML4.0

e DHTML events

Next, we look at each type.

Basic Attributes

As you can see from Table 4-5, basic attributes are shared by the majority of JSF
HTML tags.

Table 4-5 Basic HTML Tag Attributes?®

Component

Attribute Types Description

id A (31) Identifier for a component

binding A (31) Links this component with a backing
bean property

rendered A (31) A Boolean; false suppresses rendering

value I,O,C(21) A component’s value, typically a value
expression

valueChangelListener 1(11) A method expression to a method that
responds to value changes

converter 1,0 (15) Converter class name

validator 1(11) Class name of a validator that is created

and attached to a component

From the Library of Wow! eBook

m Chapter 4 m Standard JSF Tags

Table 4-5 Basic HTML Tag Attributes? (cont.)

Component
Attribute Types Description
required 1(11) A Boolean; if true, requires a value to be
entered in the associated field
converterMessage, 1(11) A custom message to be displayed when
validatorMessage, a conversion or validation error occurs,
requiredvessage or when required input is missing

a. A =all, I = input, O = output, C = commands, (1) = number of tags with attribute

All components can have id, binding, and rendered attributes, which we discuss in
the following sections.

The value and converter attributes let you specify a component value and a
means to convert it from a string to an object, or vice versa.

The validator, required, and valueChangeListener attributes are available for input
components so that you can validate values and react to changes to those val-
ues. See Chapter 7 for more information about validators and converters.

IDs and Bindings
The versatile id attribute lets you do the following:

® Access JSF components from other JSF tags
* Obtain component references in Java code

* Access HTML elements with scripts

In this section, we discuss the first two tasks listed above. See “Form Elements
and JavaScript” on page 120 for more about the last task.

The id attribute lets page authors reference a component from another tag. For
example, an error message for a component can be displayed like this:

<h:inputText id="name" .../>
<h:message for="name"/>

You can also use component identifiers to get a component reference in your Java
code. For example, you could access the name component in a listener like this:

UIComponent component = event.getComponent().findComponent("name");

The preceding call to findComponent has a caveat: The component that generated the
event and the name component must be in the same form. There is another way to

From the Library of Wow! eBook

An Overview of the JSF HTML Tags m

access a component in your Java code. Define the component as an instance field
of a class. Provide property getters and setters for the component. Then use the
binding attribute, which you specify in a JSF page, like this:

<h:inputText binding="#{form.nameField}" .../>

The binding attribute is specified with a value expression. That expression refers to
a read-write bean property, such as this one:

private UIComponent nameField = new UIInput();
pubTlic UIComponent getNameField() { return nameField; }
pubTic void setNameField(UIComponent newValue) { nameField = newValue; }

See “Backing Beans” on page 38 of Chapter 2 for more information about the
binding attribute. The JSF implementation sets the property to the component, so
you can programatically manipulate components.

Values, Converters, and Validators

Inputs, outputs, commands, and data tables all have values. Associated tags in
the HTML library, such as h:inputText and h:dataTable, come with a value attribute.
You can specify values with a string, like this:

<h:commandButton value="Logout" .../>
Most of the time you will use a value expression—for example:
<h:inputText value="#{customer.name}"/>

The converter attribute, shared by inputs and outputs, lets you attach a con-
verter to a component. Input tags also have a validator attribute that you can
use to attach a validator to a component. Converters and validators are dis-
cussed at length in Chapter 7.

Conditional Rendering

You use the rendered attribute to include or exclude a component, depending
on a condition. For example, you may want to render a “Logout” button only if
the user is currently logged in:

<h:commandButton ... rendered="#{user.loggedIn}"/>

To conditionally include a group of components, include them in an h:panelGrid
with a rendered attribute. See “Panels” on page 115 for more information.

From the Library of Wow! eBook

m Chapter 4 m Standard JSF Tags

TIP: Remember, you can use operators in value expressions. For example,
v you might have a view that acts as a tabbed pane by optionally rendering a
panel depending on the selected tab. In that case, you could use h:panelGrid

like this:

<h:panelGrid rendered="#{bean.selectedTab == 'Movies'}"/>

The preceding code renders the movies panel when the user selects the
Movies tab.

% NOTE: Sometimes, you will see the JSTL c:if construct used for conditional
rendering. However, that is less efficient than the rendered attribute.

HTML 4.0 Attributes

JSF HTML tags have appropriate HTML 4.0 pass-through attributes. Those
attribute values are passed through to the generated HTML element. For
example, <h:inputText value="#{form.name.last}" size="25".../> generates this HTML:
<input type="text" size="25".../>. Notice that the size attribute is passed through to
HTML.

The HTML 4.0 attributes are listed in Table 4-6.

Table 4-6 HTML 4.0 Pass-Through Attributes?

Attribute Description

accesskey (16) A key, typically combined with a system-defined metakey, that
gives focus to an element.

accept (1) Comma-separated list of content types for a form.

acceptcharset (I) Comma- or space-separated list of character encodings for a
form. The HTML accept-charset attribute is specified with the JSF
attribute named acceptcharset.

alt (5) Alternative text for nontextual elements such as images or applets.

border (4) Pixel value for an element’s border width.

charset (3) Character encoding for a linked resource.

coords (3) Coordinates for an element whose shape is a rectangle, circle, or
polygon.

dir (26) Direction for text. Valid values are "1tr" (left to right) and "rt1"
(right to left).

From the Library of Wow! eBook

An Overview of the JSF HTML Tags m

Table 4-6 HTML 4.0 Pass-Through Attributes? (cont.)

Attribute Description

disabled (14) Disabled state of an input element or button.

hreflang (3) Base language of a resource specified with the href attribute;
hreflang may only be used with href.

Tang (26) Base language of an element’s attributes and text.

maxlength (2)

Maximum number of characters for text fields.

readonly (11) Read-only state of an input field; text can be selected in a
read-only field but not edited.

rel (3) Relationship between the current document and a link
specified with the href attribute.

rev (3) Reverse link from the anchor specified with href to the current
document. The value of the attribute is a space-separated list of
link types.

rows (1) Number of visible rows in a text area. h:dataTable has a rows
attribute, but it is not an HTML pass-through attribute.

shape (3) Shape of a region. Valid values: default, rect, circle, poly (default
signifies the entire region).

size (4) Size of an input field.

style (26) Inline style information.

styleClass (26)

Style class; rendered as HTML class attribute.

tabindex (16)

Numerical value specifying a tab index.

target (5) The name of a frame in which a document is opened.

title (25) A title, used for accessibility, that describes an element. Visual
browsers typically create tooltips for the title’s value.

type (4) Type of a link—for example, "stylesheet".

width (3) Width of an element.

a. (n) = number of tags with attribute

The attributes listed in Table 4—6 are defined in the HTML specification, which
you can access online at http://ww.w3.0rg/TR/REC-htm140. That web site is an excel-
lent resource for deep digging into HTML.

From the Library of Wow! eBook

http://www.w3.org/TR/REC-html40

Chapter 4 m Standard JSF Tags

Styles

You can use CSS styles, either inline (style) or classes (styleClass), to influence
how components are rendered:

<h:outputText value="#{customer.name}" styleClass="emphasis"/>
<h:outputText value="#{customer.id}" style="border: thin solid blue"/>

CSS style attributes can be value expressions—that gives you programmatic
control over styles.

Resources U

You can include a stylesheet in the usual way, with an HTML Tink tag. But that
is tedious if your pages are at varying directory nesting levels—you would
always need to update the stylesheet directory when you move a page. More
importantly, if you assemble pages from different pieces—as described in
Chapter 5—you don’t even know where your pieces end up.

Since JSF 2.0, there is a better way. You can place stylesheets, JavaScript files,
images, and other files into a resources directory in the root of your web applica-
tion. Subdirectories of this directory are called libraries. You can create any librar-
ies that you like. In this book, we often use libraries css, images, and javascript.

To include a stylesheet, use the tag:
<h:outputStylesheet Tibrary="css" name="styles.css"/>

The tag adds a link of the form

<link href="/context-root/faces/javax.faces.resource/styles.css?1n=css"
rel="stylesheet" type="text/css"/>

to the header of the page.
To include a script resource, use the outputScript tag instead:
<h:outputScript name="jsf.js" library="javascript" target="head" />

If the target attribute is head or body, the script is appended to the "head" or "body"
facet of the root component, which means that it appears at the end of the head
or hody in the generated HTML. If there is no target element, the script is
inserted in the current location.

To include an image from a library, you use the graphicImage tag:
<h:graphicImage name="Togo.png" library="images"/>

There is a versioning mechanism for resource libraries and individual resources.
You can add subdirectories to the library directory and place newer versions of

From the Library of Wow! eBook

An Overview of the JSF HTML Tags m

files into them. The subdirectory names are simply the version numbers. For
example, suppose you have the following directories:

resources/css/1_0_2

resources/css/1_1
Then the latest version (resources/css/1_1) will be used. Note that you can add
new versions of a library in a running application.

Similarly, you can add new versions of an individual resource, but the naming
scheme is a bit odd. You replace the resource with a directory of the same
name, then use the version name as the file name. You can add an extension if
you like. For example:

resources/css/styles.css/1.0_2.css

resources/css/styles.css/1_1.css
The version numbers must consist of decimal numbers, separated by under-
scores. They are compared in the usual way, first comparing the major version
numbers and using the minor numbers to break ties.

There is also a mechanism for supplying localized versions of resources. Unfor-
tunately, that mechanism is unintuitive and not very useful. Localized
resources have a prefix, such as resources/de_DE/images, but the prefix is not
treated in the same way as a bundle suffix. There is no fallback mechanism.
That is, if an image is not found in resources/de_DE/images, then resources/de/images
and resources/images are not consulted.

Moreover, the locale prefix is not simply the current locale. Instead, it is
obtained by a curious lookup, which you enable by following these steps:

1. Add theline
<message-bundle>name of a resource bundle used in your application</message-bundle>

inside the application element of faces-config.xml

2. Inside each localized version of that resource bundle, place a
name/value pair

javax.faces.resource.localePrefix=prefix
3. Place the matching resources into resources/prefix/ library/ ...

For example, if you use the message bundle com.corejsf.messages, and the file
com.corejsf.messages_de contains the entry

javax.faces.resource.localePrefix=german

then you place the German resources into resources/german. (The prefix need not
use the standard language and country codes, and in fact it is a good idea not
to use them so that you don’t raise false hopes.)

From the Library of Wow! eBook

m Chapter 4 m Standard JSF Tags

CAUTION: Unfortunately, this localization scheme is unappealing in prac-
tice. Once you define a locale prefix, that prefix is used for all resources.
Suppose you wanted to have different images for the German and English
versions of your site. Then you would also have to duplicate every other
resource. Hopefully, this will be fixed in a future version of JSF.

DHTML Events

Client-side scripting is useful for all sorts of tasks, such as syntax validation or
rollover images, and it is easy to use with JSE. HTML attributes that support

scripting, such as onclick and onchange are called dynamic HTML (DHTML) event
attributes. JSF supports DHTML event attributes for nearly all of the JSF HTML

tags. Those attributes are listed in Table 4-7.

Table 4-7 DHTML Event Attributes?

Attribute

Description

onblur (16)

Element loses focus

onchange (11)

Element’s value changes

onclick (17)

Mouse button is clicked over the element

ondblclick (21)

Mouse button is double-clicked over the element

onfocus (16)

Element receives focus

onkeydown (21)

Key is pressed

onkeypress (21)

Key is pressed and subsequently released

onkeyup (21)

Key is released

onload (1)

Page is loaded

onmousedown (21)

Mouse button is pressed over the element

onmousemove (21)

Mouse moves over the element

onmouseout (21)

Mouse leaves the element’s area

onmouseover (21)

Mouse moves onto an element

onmouseup (21)

Mouse button is released

onreset (1)

Form is reset

From the Library of Wow! eBook

Table 4-7 DHTML Event Attributes? (cont.)

Attribute Description

onselect (11) Text is selected in an input field
onsubmit (1) Form is submitted

onunToad (1) Page is unloaded

a. (n) = number of tags with attribute

The DHTML event attributes listed in Table 4-7 let you associate client-side

scripts with events. Typically, JavaScript is used as a scripting language, but
you can use any scripting language you like. See the HTML specification for
more details.

TIP: You will probably add client-side scripts to your JSF pages soon after
¥ you start using JSF. One common use is to submit a request when an
input’s value is changed so that value change listeners are immediately
notified of the change, like this: <h:selectOneMenu onchange="submit()"...>

Panels

Up to this point, we have used HTML tables to lay out components. Creating
table markup by hand is tedious, so now we’ll look at alleviating some of that
tedium with h:panelGrid, which generates the HTML markup for laying out
components in rows and columns.

NOTE: The h:panelGrid tag uses HTML tables for layout, which some web
' designers find objectionable. You can certainly use CSS layout instead of
h:panelGrid. A future version of h:panelGrid may have an option for using
CSS layout as well.

You can specify the number of columns with the columns attribute, like this:

<h:panelGrid columns="3">

</h:panelGrid>

The columns attribute is not mandatory—if you do not specify it, the number of
columns defaults to 1. The h:panelGrid tag places components in columns from
left to right and top to bottom. For example, if you have a panel grid with three

From the Library of Wow! eBook

Chapter 4 m Standard JSF Tags

columns and nine components, you will wind up with three rows, each con-

taining three columns. If you specify three columns and 10 components, you
will have four rows, and in the last row only the first column will contain the
tenth component.

Table 4-8 lists h:panelGrid attributes.

Table 4-8 Attributes for h:panelGrid

Attributes Description

bgcolor Background color for the table

border Width of the table’s border

cellpadding Padding around table cells

cellspacing Spacing between table cells

columnClasses Comma-separated list of CSS classes for columns

columns Number of columns in the table

footerClass CSS class for the table footer

frame Specification for sides of the frame surrounding
the table that are to be drawn; valid values: none,
above, below, hsides, vsides, 1hs, rhs, box, border

headerClass CSS class for the table header

rowClasses Comma-separated list of CSS classes for rows

rules Specification for lines drawn between cells; valid
values: groups, rows, columns, all

summary Summary of the table’s purpose and structure

used for nonvisual feedback, such as speech

captionClass NRYZEIVAL
captionStyle [NAZEIVA

CSS class or style for the caption; a panel caption is
optionally supplied by a facet named "caption"

binding, id, rendered, value

Basic attributes?

dir, lang, style, styleClass,
title, width

HTML 4.0P

From the Library of Wow! eBook

Table 4-8 Attributes for h:panelGrid (cont.)

Attributes Description

onclick, ondblcTick, onkeydown, DHTML events©
onkeypress, onkeyup, onmousedown,

onmousemove, onmouseout,

ONMouseover, onmouseup

a. See Table 4-5 on page 107 for information about basic attributes.
b. See Table 4-6 on page 110 for information about HTML 4.0 attributes.
c. See Table 4-7 on page 114 for information about DHTML event attributes.

You can specify CSS classes for different parts of the table: header, footer, rows,
and columns. The columnClasses and rowClasses specify lists of CSS classes that are
applied to columns and rows, respectively. If those lists contain fewer class names
than rows or columns, the CSS classes are reused. That makes it possible to
specify classes, like this:

rowClasses="evenRows, oddRows"
and
columnClasses="evenColumns, oddColumns"

The cellpadding, cellspacing, frame, rules, and summary attributes are HTML pass-
through attributes that apply only to tables. See the HTML 4.0 specification for
more information.

h:panelGrid is often used with h:panelGroup, which groups two or more components
so they are treated as one. For example, you might group an input field and its
error message, like this:

<h:panelGrid columns="2">
<h:panelGroup>
<h:inputText id="name" value="#{user.name}">

<h:message for="name"/>
</h:panelGroup>

</h:panelGrid>

Grouping the text field and error message puts them in the same table cell. (We
discuss the h:message tag in the section “Messages” on page 171.)

h:panelGroup is a simple tag with only a handful of attributes. Those attributes
are listed in Table 4-9.

From the Library of Wow! eBook

Chapter 4 m Standard JSF Tags

Table 4-9 Attributes for h:panelGroup

Attributes Description

Tayout If the value is "block", use an HTML div to
lay out the children; otherwise, use a span

binding, id, rendered Basic attributes?

style, styleClass HTML 4.0°

a. See Table 4-5 on page 107 for information about basic attributes.
b. See Table 4-6 on page 110 for information about HTML 4.0 attributes.

The Head, Body, and Form Tags

Table 4-10 shows the attributes of the h:head and h:body tags. All of them are
basic or HTML/DHTML attributes.

Table 4-10 Attributes for h:head and h:body

Attributes Description
id, binding, rendered Basic attributes?
dir, lang HTML 4.0° attributes

h:body only: style, styleClass, target, title

h:body only: onclick, ondbTc1ick, onkeydown, onkeypress, DHTML events©
onkeyup, onToad, onmousedown, onmousemove, onmouseout,
onmouseover, onmouseup, onunload

a. See Table 4-5 on page 107 for information about basic attributes.
b. See Table 4-6 on page 110 for information about HTML 4.0 attributes.
c. See Table 4-7 on page 114 for information about DHTML event attributes.

Web applications run on form submissions, and JSF applications are no excep-
tion. Table 4-11 lists all h:form attributes.

From the Library of Wow! eBook

The Head, Body, and Form Tags m

Table 4-11 Attributes for h:form

Attributes Description

prependId [NEYZEIVAL true (default) if the ID of this form is
prepended to the IDs of its components;
false to suppress prepending the form ID
(useful if the ID is used in JavaScript code)

binding, id, rendered Basic attributes?

accept, acceptcharset, dir, enctype, lang, HTML 4.0 attributes
style, styleClass, target, title

onclick, ondbTcTick, onfocus, onkeydown, DHTML events©
onkeypress, onkeyup, onmousedown,

onmousemove, onmouseout, onmouseover,

onmouseup, onreset, onsubmit

a. See Table 4-5 on page 107 for information about basic attributes.
b. See Table 4-6 on page 110 for information about HTML 4.0 attributes.
c. See Table 4-7 on page 114 for information about DHTML event attributes.

Although the HTML form tag has method and action attributes, h:form does not.
Because you can save state in the client—an option that is implemented as a hid-
den field—posting forms with the GET method is disallowed. The contents of that
hidden field can be quite large and may overrun the buffer for request parame-
ters, so all JSF form submissions are implemented with the POST method.

There is no need for an anchor attribute since JSF form submissions always post
to the current page. (Navigation to a new page happens after the form data
have been posted.)

The h:form tag generates an HTML form element. For example, if, in a JSF page
named /index.xhtm], you use an h:form tag with no attributes, the Form renderer
generates HTML like this:

<form id="_1d0" method="post" action="/faces/index.xhtml"
enctype="application/x-www-form-urlencoded">

If you do not specify the id attribute explicitly, a value is generated by the JSF
implementation, as is the case for all generated HTML elements. You can explic-
itly specify the id attribute for forms so that it can be referenced in stylesheets
or scripts.

From the Library of Wow! eBook

Chapter 4 m Standard JSF Tags

Form Elements and JavaScript

JavaServer Faces is all about server-side components, but it is also designed to
work with scripting languages, such as JavaScript. For example, the applica-
tion shown in Figure 4-1 uses JavaScript to confirm that a password field
matches a password confirm field. If the fields do not match, a JavaScript
dialog is displayed. If they do match, the form is submitted.

ee 8 Accessing Form Elements with JavaScript =)
4& @ hitp: / /localhost:8080/ javascript/index.faces S
Name: Willis
Password: e
Confirm Password:
e 08 e Accessing Form Elements with JavaScript =
[Submit Ferm | -
&
=4 A= [avaScript Application]
MNarmr Password and password confirm fields don't match
Pass 2
Document: Done Cont
on @
(Sut

9

Document: Done

Figure 4-1 Using JavaScript to access form elements

We use the id attribute to assign names to the relevant HTML elements so that
we can access them with JavaScript:

<h:forms>

<h:inputSecret id="password" .../>
<h:inputSecret id="passwordConfirm" .../>

<h:commandButton type="button" onclick="checkPassword(this.form)"/>

</h:form>
When the user clicks the button, a JavaScript function checkPassword is invoked.

Here is the implementation of the function:

function checkPassword(form) {
var password = form[form.id + ":password"].value;
var passwordConfirm = form[form.id + ":passwordConfirm"].value;

if (password == passwordConfirm)
form.submit();

From the Library of Wow! eBook

The Head, Body, and Form Tags m

else
alert("Password and password confirm fields don't match");

}

To understand the syntax used to access form elements, look at the HTML pro-
duced by the preceding code:
<form id="_1d0" method="post"

action="/javascript/faces/index.xhtml"
enctype="application/x-www-form-urlencoded">

<input id="_id0:password"
type="text" name="registerForm:password"/>

<input type="button" name="_id@:_id5"
value="Submit Form" onclick="checkPassword(this.form)"/>

</Forn>
All form controls generated by JSF have names that conform to

formName:componentName

where formName represents the name of the control’s form and componentName
represents the control’s name. If you do not specify id attributes, the JSF imple-
mentation creates identifiers for you. In our case, we didn’t specify an id for the
form. Therefore, to access the password field in the preceding example, the
script uses the expression:

[

form{form.id + ":password"]

% NOTE: The ID values generated by the JSF implementation seem to get
more complex with every version of JSF. In the past, they were fairly
straightforward (such as _id@), but more recent versions use IDs such as
j_1d2059540600_7ac21823. For greater clarity, we use the simpler IDs in our
examples.

The directory structure for the application shown in Figure 4-1 is shown in
Figure 4-2. The JSF page is listed in Listing 4-1. The JavaScript code,
stylesheets, and resource bundle are listed in Listings 4-2 through 4-4.

From the Library of Wow! eBook

m Chapter 4 m Standard JSF Tags

[E javascript.war
[index.xhtml
¥ (&5 WEB-INF
; beans.xml
[faces-config.xml
[web.xml
Y E classes
v ﬁ com
v ﬁ corejsf
| messages.properties
v [ﬁ resources

¥ (& css
[styles.css
v [E javascript
[] checkPassword.js

Figure 4-2 The JavaScript example directory structure

javascript/web/index.xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:h="http://java.sun.com/jsf/html">
<h:head>
<titles#{msgs.windowTitTe}</title>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<h:outputScript Tibrary="javascript" name="checkPassword.js"/>
</h:head>
<h:body>
<h:forms>
<h:panelGrid columns="2" columnClasses="evenColumns, oddColumns">
#{msgs.namePrompt}
<h:inputText/>
#{msgs.passwordPrompt}
<h:inputSecret id="password"/>
#{msgs.confirmPasswordPrompt}
<h:inputSecret id="passwordConfirm"/>
</h:panelGrid>
<h:commandButton type="button" value="Submit Form"
onclick="checkPassword(this.form)"/>
</h:form>
</h:body>
</html>

From the Library of Wow! eBook

Text Fields and Text Areas m

ST LT S0 javascript/web/resources/javascript/checkPassword.js

function checkPassword(form) {
var password = form[form.id + ":password"].value;
var passwordConfirm = form[form.id + ":passwordConfirm"].value;

if (password == passwordConfirm)
form.submit();
else
alert("Password and password confirm fields don't match");

ST T BRI javascript/web/resources/css/styles.css

I

.evenColumns {
font-style: italic;
}

.0ddCoTumns {
padding-left: lem;
}

B 750 - BV B javascript/src/java/com/corejst/messages.properties

windowTitle=Accessing Form Elements with JavaScript
namePrompt=Name:

passwordPrompt=Password:
confirmPasswordPrompt=Confirm Password:

Text Fields and Text Areas

Text inputs are the mainstay of most web applications. JSF supports three vari-
eties represented by the following tags:

U h:inputText

U h:inputSecret

U h:inputTextarea

Since the three tags use similar attributes, Table 4-12 lists attributes for all
three.

From the Library of Wow! eBook

m Chapter 4 m Standard JSF Tags

Table 4-12 Attributes for h:inputText, h:inputSecret, h:inputTextarea,
and h:inputHidden

Attributes Description

cols For h:inputTextarea only—number of columns.
immediate Process validation early in the life cycle.
redisplay For h:inputSecret only—when true, the input

field’s value is redisplayed when the web page
is reloaded.

required Require input in the component when the
form is submitted.

rows For h:inputTextarea only—number of rows.

valueChangelistener A specified listener that is notified of value
changes.

Tabel |NAGEIVA A description of the component for use in error

messages. Does not apply to h:inputHidden.

binding, converter, Basic attributes.?

converteressage [INAYGEIVAL

id, rendered, required,

requiredVessage [INAYEEIVAL

value, validator,

validatorMessage

accesskey, alt, dir, disabled, 1ang, HTML 4.0 pass-through attributesP—
maxlength, readonly, size, style, alt, maxlength, and size do not apply to
styleClass, tabindex, title h:inputTextarea. None apply to h:inputHidden.
autocomplete If the value is "off", render the nonstandard

HTML attribute autocomplete="off" (h:inputText
and h:inputSecret only).

onbTur, onchange, onclick, DHTML events. None apply to h:inputHidden.©
ondbTcTick, onfocus, onkeydown,

onkeypress, onkeyup, onmousedown,

onmousemove, onmouseout,

onmouseover, onmouseup, onselect

a. See Table 4-5 on page 107 for information about basic attributes.
b. See Table 4-6 on page 110 for information about HTML 4.0 attributes.
c. See Table 4-7 on page 114 for information about DHTML event attributes.

From the Library of Wow! eBook

Text Fields and Text Areas m

All three tags have immediate, required, value, and valueChangelListener attributes. The
immediate attribute is used primarily for value changes that affect the user inter-
face and is rarely used by these three tags. Instead, it is more commonly used
by other input components such as menus and listboxes. See “Immediate Com-
ponents” on page 320 of Chapter 8 for more information about the immediate
attribute.

Three attributes in Table 4-12 are each applicable to only one tag: cols, rows, and
redisplay. The rows and cols attributes are used with h:inputTextarea to specify the
number of rows and columns, respectively, for the text area. The redisplay
attribute, used with h:inputSecret, is a boolean that determines whether a secret
field retains its value—and therefore redisplays it—when the field’s form is
resubmitted.

Table 4-13 shows sample uses of the h:inputText and h:inputSecret tags.

Table 4-13 h:inputText and h:inputSecret Examples

Example Result

<h:inputText value="#{form.testString}" [12345678901234567890
readonly="true"/>

tttttttttt

<h:inputSecret value="#{form.passwd}" |
redisplay="true"/>

(shown after an unsuccessful form submit)

<h:inputSecret value="#{form.passwd}" |
redisplay="false"/>

(shown after an unsuccessful form submit)

<h:inputText value="inputText"

style="color: Yellow; background: Teal;"/>

<h:inputText value="1234567" size="5"/> 12335¢

<h:inputText value="1234567890" maxlength="6" |123455
size="10"/>

The first example in Table 4-13 produces the following HTML:

<input type="text" name="_id0:_id4" value="12345678901234567890"
readonly="readonly" />

From the Library of Wow! eBook

Chapter 4 m Standard JSF Tags

The input field is read-only, so our form bean defines only a getter method:

private String testString = "12345678901234567890";
pubTic String getTestString() {
return testString;

}

The h:inputSecret examples illustrate the use of the redisplay attribute. If that
attribute is true, the text field stores its value between requests and, therefore,
the value is redisplayed when the page reloads. If redisplay is false, the value is
discarded and is not redisplayed.

The size attribute specifies the number of visible characters in a text field. But
because most fonts are variable width, the size attribute is not precise, as you
can see from the fifth example in Table 4-13, which specifies a size of 5 but dis-
plays six characters. The maxlength attribute specifies the maximum number of
characters a text field will display. That attribute is precise. Both size and
maxlength are HTML pass-through attributes.

Table 4-14 shows examples of the h:inputTextarea tag.

The h:inputTextarea has cols and rows attributes to specify the number of columns
and rows, respectively, in the text area. The cols attribute is analogous to the
size attribute for h:inputText and is also imprecise.

Table 4-14 h:inputTextarea Examples

Example Result

<h:inputTextarea rows="5"/>

<h:inputTextarea cols="5"/> —

<h:inputTextarea value="123456789012345" rows="3"

cols="10"/>
[TaT»]
<h:inputTextarea value="#{form.dataInRows}" rows="2"
C01S='I15I'/> _%:e two
line three

From the Library of Wow! eBook

Text Fields and Text Areas 127

If you specify one long string for h:inputTextarea’s value, the string will be placed
in its entirety in one line, as you can see from the third example in Table 4-14. If
you want to put data on separate lines, you can insert newline characters (\n) to
force a line break. For example, the last example in Table 4-14 accesses the
dataInRows property of a backing bean. That property is implemented like this:

private String dataInRows = "line one\nline two\nline three";
public void setDataInRows(String newValue) {
dataInRows = newValue;

}
pubTic String getDataInRows() {
return dataInRows;

}

Hidden Fields

JSF provides support for hidden fields with h:inputHidden. Hidden fields are
often used with JavaScript actions to send data back to the server. The
h:inputHidden tag has the same attributes as the other input tags, except that it
does not support the standard HTML and DHTML tags.

Using Text Fields and Text Areas

Next, we take a look at a complete example that uses text fields and text
areas. The application shown in Figure 4-3 uses h:inputText, h:inputSecret, and
h:inputTextarea to collect personal information from a user. The values of those
components are wired to bean properties, which are accessed in the
thankYou.xhtml page that redisplays the information the user entered.

Three things are noteworthy about the following application. First, the JSF
pages reference a user bean (com.corejsf.UserBean). Second, the h:inputTextarea tag
transfers the text entered in a text area to the model (in this case, the user bean)
as one string with embedded newlines (\n). We display that string by using the
HTML <pre> element to preserve that formatting. Third, for illustration, we use
the style attribute to format output. A more industrial-strength application
would presumably use stylesheets exclusively to make global style changes
easier to manage.

From the Library of Wow! eBook

m Chapter 4 m Standard JSF Tags

806

Using Textfields and Textareas

Name:

Password:

Please tell us about yourself:

P T E——

(Submityour information) [EEIREY Thank you for submitting your information

Please enter the following personal information

William

I like to do these things:

Read good books
Program Web user interfaces with |SF
Play with my dog

Name: William

Some information about you:

Figure 4-3 Using text fields and text areas

I like to do these things:
Read good bocks

Play with my dog

Program Web user interfaces with JSF

Al

Figure 4—4 shows the directory structure for the application shown in Figure
4-3. Listings 4-5 through 4-8 show the pertinent JSF pages, managed beans,

faces configuration file, and resource bundle.

[E personalData.war
[index.xhtml
__' thankYou.xhtml
¥ (&5 WEB-INF
[beans.xml
;” faces-config.xml
[web.xml
v ﬁ classes
¥ (& com

v E corejsf

|| UserBean.class
|| messages.properties

Figure 4-4 Directory structure of the text fields and text areas example

From the Library of Wow! eBook

Text Fields and Text Areas m

personalData/web/index.xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>#{msgs.indexWindowTitTe}</title>
</h:head>
<h:body>
<h:outputText value="#{msgs.indexPageTitle}"
style="font-style: italic; font-size: 1.5em"/>
<h:forms>
<h:panelGrid columns="2">
#{msgs.namePrompt}
<h:inputText value="#{user.name}"/>
#{msgs.passwordPrompt}
<h:inputSecret value="#{user.password}"/>
#{msgs.tel1UsPrompt}
<h:inputTextarea value="#{user.aboutYourself}" rows="5" cols="35"/>
</h:panelGrid>
<h:commandButton value="#{msgs.submitPrompt}" action="thankYou"/>
</h:form>
</h:body>
</htm1>

personalData/web/thankYou.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>#{msgs.thankYouWindowTitle}</title>
</h:head>
<h:body>
<h:outputText value="#{msgs.namePrompt}" style="font-style: italic"/>
#{user.name}

<h:outputText value="#{msgs.aboutYourselfPrompt}" style="font-style: italic"/>

<pre>#{user.aboutYourself}</pre>
</h:body>
</htm1>

From the Library of Wow! eBook

m Chapter 4 m Standard JSF Tags

personalData/src/java/com/corejsf/UserBean.java

package com.corejsf;

import java.io.Serializable;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;

@Named("user") // or @ManagedBean(name="user")
@SessionScoped
pubTic class UserBean implements Serializable {
private String name;
private String password;
private String aboutYourself;

public String getName() { return name; }
public void setName(String newValue) { name = newValue; }

public String getPassword() { return password; }
public void setPassword(String newValue) { password = newvalue; }

public String getAboutYourself() { return aboutYourself; }
public void setAboutYourself(String newvalue) { aboutYourself = newValue; }

}

B350 - S personalData/src/java/com/corejsf/messages.properties

indexWindowTitle=Using Textfields and Textareas
thankYouWindowTitle=Thank you for submitting your information
thankYouPageTitle=Thank you!

indexPageTitle=Please enter the following personal information
namePrompt=Name:

passwordPrompt=Password:

tel1UsPrompt=Please tell us about yourself:
aboutYourselfPrompt=Some information about you:
submitPrompt=Submit your information

From the Library of Wow! eBook

Text Fields and Text Areas m

Displaying Text and Images
JSF applications use the following tags to display text and images:

. h:outputText

. h:outputFormat

. h:graphicImage

The h:outputText tag is one of JSF’s simplest tags. With only a handful of
attributes, it does not typically generate an HTML element. Instead, it gener-
ates mere text—with one exception: If you specify the style or styleClass
attributes, h:outputText will generate an HTML span element.

In JSF 2.0, you don’t usually need the h:outputText tag since you can simply
insert value expressions, such as #{msgs.namePrompt} into your page. You would
use h:outputText in the following circumstances:

e To produce styled output
¢ Ina panel grid to make sure that the text is considered one cell of the grid
¢ To generate HTML markup

The h:outputText and h:outputFormat tags have one attribute that is unique among
all JSF tags: escape. By default, the escape attribute is true, which causes the char-
acters < > & to be converted to &1t; > and & respectively. Changing those
characters helps prevent cross-site scripting attacks. (See http://www.cert.org/
advisories/CA-2000-02.htm1 for more information about cross-site scripting attacks.)
Set this attribute to false if you want to programmatically generate HTML
markup.

NOTE: The value attribute of h:outputText can never contain < characters.
' The only way to produce HTML markup with h:outputText is with a value
expression.

NOTE: When you include a value expression such as #{msgs.namePrompt} in
- your page, the resulting value is always escaped. You must use h:outputText
if you want to generate HTML markup.

Table 4-15 lists all h:outputText attributes.

From the Library of Wow! eBook

http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html

m Chapter 4 m Standard JSF Tags

Table 4-15 Attributes for h:outputText and h:outputFormat

Attributes Description

escape If set to true (default), escapes <, >, and &
characters

binding, converter, id, rendered, value Basic attributes?®

style, styleClass, title, HTML 4.0P

dir AT Tang

a. See Table 4-5 on page 107 for information about basic attributes.
b. See Table 4-6 on page 110 for information about HTML 4.0 attributes.

The h:outputFormat tag formats a compound message with parameters specified
in the body of the tag—for example:

<h:outputFormat value="{0} is {1} years old">
<fiparam value="Bi11"/>
<fiparam value="38"/>

</h:outputFormat>

In the preceding code fragment, the compound message is {0} is {1} years old
and the parameters, specified with f:param tags, are Bi11 and 38. The output of
the preceding code fragment is: Bi11 is 38 years old. The h:outputFormat tag uses a
java.text.MessageFormat instance to format its output.

The h:graphicImage tag generates an HTML img element. You can specify the
image location with the url or value attribute, as a context-relative path—mean-
ing relative to the web application’s context root. As of JSF 2.0, you can place
images into the resources directory and specify a library and name:

<h:graphicImage Tibrary="images" name="de_flag.gif"/>

Here, the image is located in resources/images/de_f1ag.gif. Alternatively, you can
use this:

<h:graphicImage url="/resources/images/de_flag.gif"/>
You can also use the resources map:
<h:graphicImage value="#{resources["images:de_flag.gif']}"/>

Table 4-16 shows all the attributes for h:graphicImage.

From the Library of Wow! eBook

Text Fields and Text Areas m

Table 4-16 Attributes for h:graphicImage

Attributes Description

binding, id, rendered, value Basic attributes?®

alt, dir, height, ismap, 1ang, Tongdesc, style, styleClass, title, url, HTML 4.0b
usemap, width

onclick, ondbTcTick, onkeydown, onkeypress, onkeyup, onmousedown, DHTML events©
onmousemove, ONMOUSEOUt, ONMOUSEOVer, onmouseup
T1ibrary, name [N The resource

library and name
for this image

a. See Table 4-5 on page 107 for information about basic attributes.
b. See Table 4-6 on page 110 for information about HTML 4.0 attributes.
c. See Table 4-7 on page 114 for information about DHTML event attributes.

Table 4-17 shows some examples of using h:outputText and h:graphicImage.

Table 4-17 h:outputText and h:graphicInage Examples

Example Result
<h:outputText value="#{form.testString}"/> 12345678901234567890
<h:outputText value="Number #{form.number}"/> Number 1008

<h:outputText value="#{form.htmlCode}"

escape="false"/> where the getHtmlCode jheito

method returns the string

"<input type="text' value="hello'/>"

<h:outputText value="#{form.htm1Code}"/> T T L

where the getHtmlCode method returns the
string "<input type="text' value='hello'/>"

<h:graphicImage value="/tjefferson.jpg"/>

<h:graphicImage Tibrary="images" I
name="tjefferson.jpg"

style="border: thin solid black"/>

From the Library of Wow! eBook

Chapter 4 m Standard JSF Tags

The third and fourth examples in Table 4-17 illustrate use of the escape attribute.
If the value for h:outputText is <input type='text' value="hello'/>, and the escape
attribute is false—as is the case for the third example in Table 4-17—the
h:outputText tag generates an HTML input element. Unintentional generation of
HTML elements is exactly the sort of mischief that enables miscreants to carry
out cross-site scripting attacks. With the escape attribute set to true—as in the
fourth example in Table 4-17—that output is transformed to harmless text,
thereby thwarting a potential attack.

The final two examples in Table 4-17 show you how to use h:graphicImage.

Buttons and Links

Buttons and links are ubiquitous among web applications, and JSF provides
the following tags to support them:

h: commandButton
h: commandLink
h:button

h:Tink
h:outputLink

The h:commandButton and h:commandLink are the primary components for navigating
within a JSF application. When a button or link is activated, a POST request
sends the form data back to the server.

JSF 2.0 introduced the h:button and h:1ink components. These components also
render buttons and links, but clicking on them issues a bookmarkable GET
request instead. We discussed this mechanism in Chapter 3.

The h:outputLink tag generates an HTML anchor element that points to a resource
such as an image or a web page. Clicking the generated link takes you to the
designated resource without further involving the JSF framework. These links
are most suitable for navigating to a different web site.

Table 4-18 lists the attributes shared by h:commandButton, h:commandLink, h:button, and
h:Tink.

From the Library of Wow! eBook

Buttons and Links m

Table 4-18 Attributes for h:commandButton, h:commandLink, h:button, and h:1ink

Attribute Description
action (h:commandButton If specified as a string: Directly specifies an
and h:commandLink only) outcome used by the navigation handler to

determine the JSF page to load next as a
result of activating the button or link.

If specified as a method expression: The method
has this signature: String methodName(); the
string represents the outcome.

If omitted: Activating the button or link redis-
plays the current page.

outcome The outcome, used by the navigation handler
(h:button and h:Tink only) to determine the target view when the com-
ponent is rendered.

fragment A fragment that is to be appended to the

(h:button and h:Tink only) target URL. The # separator is applied auto-
matically and should not be included in the
fragment.

actionListener A method expression that refers to a method
with this signature: void methodName(Action-
Event).

image (h:commandButton The path to an image displayed in a button. If

and h:button only) you specify this attribute, the HTML input’s

type will be image. If the path starts with a /,
the application’s context root is prepended.

immediate A Boolean. If false (the default), actions and
action listeners are invoked at the end of the
request life cycle; if true, actions and action
listeners are invoked at the beginning of the
life cycle. See Chapter 8 for more information
about the immediate attribute.

type For h:commandButton—The type of the gener-
ated input element: button, submit, or reset.
The default, unless you specify the image
attribute, is submit.

For h:commandLink and h:1ink—The content
type of the linked resource; for example, text/
htm1, image/gif, or audio/basic.

From the Library of Wow! eBook

m Chapter 4 m Standard JSF Tags

Table 4-18 Attributes for h:commandButton, h:commandLink, h:button, and h:1ink (cont.)

Attribute Description

value The label displayed by the button or link. You
can specify a string or a value expression.

binding, id, rendered Basic attributes.?

accesskey, charset (h:commandLink HTML 4.0.P

and h:Tink only), coords
(h:commandLink and h:Tink only),

dir disabled
(h:commandButton only in JSF 1.1),
hreflang (h:commandLink and h:1ink
only), 1ang, rel (h:commandLink and
h:Tlink only), rev (h:commandLink and
h:1ink only), shape (h:commandLink and
h:1ink only), style, styleClass,
tabindex, target (h:commandLink and
h:Tink only), title

onblur, onclick, ondblcTick, DHTML events.€
onfocus, onkeydown, onkeypress,

onkeyup, onmousedown, onmousemove,

onmouseout, onmouseover, onmouseup

a. See Table 4-5 on page 107 for information about basic attributes.
b. See Table 4-6 on page 110 for information about HTML 4.0 attributes.
c. See Table 4-7 on page 114 for information about DHTML event attributes.

Using Buttons

The h:commandButton and h:button tags generate an HTML input element whose
type is button, image, submit, or reset, depending on the attributes you specify.
Table 4-19 illustrates some uses of these tags.

The third example in Table 4-19 generates a push button—an HTML input ele-
ment whose type is button—that does not result in a form submit. The only way
to attach behavior to a push button is to specify a script for one of the DHTML
event attributes, as we did for onclick in the example.

From the Library of Wow! eBook

Buttons and Links m

Table 4-19 h:commandButton and h:button Examples

Example Result

<h:commandButton value="submit" type="submit"
. . . bmi
action="#{form.submitAction}"/> su—m'tl

<h:commandButton value="reset" type="reset"/> reset |

<h:commandButton value="click this button..."
onclick="alert('button clicked")"
type="button"/>

<h:commandButton value="disabled"
disabled
disabled="#{not form.buttonEnabled}"/> ﬂ

click this button to execute JavaScript

<h:button value="#{form.buttonText}"
outcome="#{form.pressMeOutcome" /> MI

CAUTION: In JSF 1.1, there was an inconsistency in the handling of image
paths between h:graphicImage and h:commandButton. The context root is auto-
matically added by h:graphicImage, but not by h:commandButton. For example,
for an application named myApp, here is how you specified the same image
for each tag:

<h:commandButton image="/myApp/imageFile.jpg"/> <!-- JSF 1.1 -->
<h:graphicImage value="/imageFile.jpg"/>

This was annoying because it required the page to know the context root.
The h:commandButton behavior changed in JSF 1.2. Now the context root is
automatically added if the path starts with a /.

To preserve a level of annoyance, this feature interacts poorly with a resource
map. You cannot use

<h:commandButton image="#{resources['images:imageFile.jpg"']}"/>

because the string returned by the resource map starts with /context-root.
The result would be <input type="image" src="/context-root/context-root/..." />

The h:commandLink and h:Tink tags generates an HTML anchor element that acts like
a form submit button. Table 4-20 shows some examples.

From the Library of Wow! eBook

m Chapter 4 m Standard JSF Tags

Table 4-20 h:commandLink and h:1ink Examples

Example Result

<h:commandLink>register</h:commandLink> register

<h:commandLink style="font-style: italic">
#{msgs.linkText}>
</h:commandLink>

click here to register

<h: commandLink>

#{msgs.linkText}

<h:graphicImage value="/registration.jpg"/>
</h:commandLink>

click here to registe

<h:commandLink value="welcome"

Lo . welcome
actionListener="#{form.useLinkValue}"
action="#{form.followLink}"/>

<h:Tink value="welcome" wel.come

outcome="#{form.welcomeQutcome}">
<fiparam name="id" value="#{form.userId}"/>
</h:Tink>

The h:commandLink and h:1ink tags generate JavaScript to make links act like buttons.
For example, here is the HTML generated by the first example in Table 4-20:

<a href="#" onclick="document.forms['_id0']1['_id0:_id2'].value="_1d0:_id2";
document.forms['_id@"'].submit()">register

When the user clicks the link, the anchor element’s value is set to the h:commandLink’s
client ID, and the enclosing form is submitted. That submission sets the JSF life
cycle in motion and, because the href attribute is "#", the current page will be
reloaded unless an action associated with the link returns a non-nu11 outcome.

You can place as many children as you want in the body of an

h:commandLink tag—each corresponding HTML element is part of the link. So,
for example, if you click on either the text or image in the third example in
Table 4-20, the link’s form will be submitted.

The next-to-last example in Table 4-20 attaches an action listener, in addition to
an action, to a link. Action listeners are discussed in “Action Events” on
page 312 of Chapter 8.

From the Library of Wow! eBook

Buttons and Links m

The last example in Table 4-20 embeds an f:paran tag in the body of the

h:Tink tag. When you click the link, a request parameter with the name and
value specified with the f:param tag is created by the link. In Chapter 2, we dis-
cussed how the request parameters can be processed. You can also use request
parameters with an h:commandLink or h:commandButton. See “Passing Data from the
UI to the Server” on page 324 of Chapter 8 for an example.

Like h:commandLink and h:Tink, h:outputLink generates an HTML anchor element. But
unlike h:commandLink, h:outputLink does not generate JavaScript to make the link act
like a submit button. The value of the h:outputLink value attribute is used for the
anchor’s href attribute, and the contents of the h:outputLink body are used to
populate the body of the anchor element. Table 4-21 lists all attributes for
h:outputLink., and Table 4-22 shows some h:outputLink examples.

Table 4-21 Attributes for h:outputLink

Attributes Description
binding, converter, id, 1ang, rendered, value Basic attributes?

accesskey, charset, coords, dir, disabled |NEYFKIWPA hreflang, lang, HTML 4.0b
rel, rev, shape, style, styleClass, tabindex, target, title, type

onblur, onclick, ondb1cTick, onfocus, onkeydown, onkeypress, onkeyup, DHTML events©
onmousedown, onmousemove, onMOUSeout, onNMoUSeover, onmouseup

a. See Table 4-5 on page 107 for information about basic attributes.
b. See Table 4-6 on page 110 for information about HTML 4.0 attributes.
c. See Table 4-7 on page 114 for information about DHTML event attributes.

Table 4-22 h:outputLink Examples

Example Result

<h:outputLink value="http://java.net">
<h:graphicImage value="java-dot-net.jpg"/>
<h:outputText value="java.net"/>
</h:outputlLink>

java.net

<h:outputLink value="#{form.welcomeURL}">
#{form.welcomeLinkText}
</h:outputLink>

go to welcome page

From the Library of Wow! eBook

Chapter 4 m Standard JSF Tags

Table 4-22 h:outputLink Examples (cont.)

Example Result

<h:outputLink value="#introduction">

) Introduction
<h:outputText value="Introduction"
style="font-style: italic"/>
</h:outputLink>
<h:outputLink value="#conclusion" S TP
title="Go to the conclusion"> é@
Conclusion

</h:outputLink>

<h:outputLink value="#toc"
title="Go to the table of contents">
<h2>Table of Contents</h2>
</h:outputlLink>

Table of Contents

The first example in Table 4-22 is a link to http://java.net. The second example
uses properties stored in a bean for the link’s URL and text. Those properties
are implemented like this:

private String welcomeURL = "/outputLinks/faces/welcome.jsp";
pubTic String getWelcomeURL() {
return welcomeURL;

}
private String welcomeLinkText = "go to welcome page";
public String getWelcomeLinkText() {

return welcomeLinkText;

}

The last three examples in Table 4-22 are links to named anchors in the same
JSF page. Those anchors look like this:

Introduction
Conclusion

Table of Contents

From the Library of Wow! eBook

http://java.net

Buttons and Links m

CAUTION: If you use JSF 1.1, you need to use the f:verbatim tag when you
want to place text inside a tag. For example, the last example in Table 4—22
had to be:

<h:outputLink...><f:verbatim>Table of Contents</f:verbatim></h:outputLink>

In JSF 1.1, the text would appear outside the link. The remedy is to place the
text inside another component, such as h:outputText or f:verbatim. This
problem has been fixed in JSF 1.2.

Using Command Links

Now that we have discussed the details of JSF tags for buttons and links, we
take a look at a complete example. Figure 4-5 shows the application discussed
in “Using Text Fields and Text Areas” on page 127, with two links that let you
select either English or German locales. When a link is activated, an action
changes the view’s locale and the JSF implementation reloads the current page.

eoe6 Using Command Links (=
Q’ @ hitp:/ /localhost:8080/flags /index.faces ™
[L]
> <
Please enter the following personal information
Name:
Password:
Please tell us about yourself:
eoe6 Ein Beispiel fir Textfelder und Textgebiete (=]
& @ hitp:/ /localhost:8080/flags /index.faces jsessionid=57520B84 IFOA3BF29257 /¢

—

[Submit your informati e

Bitte geben Sie die folgenden persénlichen Daten ein
Ducurnent: Done

Name:
Palwort:

Ritte erzihlen Sie etwas iiher Sich:

(schickenSie lhre Daten)

Ducurnent. Dune (5] 5

Figure 4-5 Using command links to change locales

From the Library of Wow! eBook

Chapter 4 m Standard JSF Tags

The links are implemented like this:

<h:commandLink action="#{localeChanger.englishAction}">
<h:graphicImage library="images" name="en_flag.gif" style="border: Qpx" />
</h:commandLink>

Both links specify an image and an action method. The method to change to the
English locale looks like this:

pubTic class LocaleChanger {

public String englishAction() {
FacesContext context = FacesContext.getCurrentInstance();
context.getViewRoot().setLocale(Locale.ENGLISH);
return null;
}
}

Because we have not specified any navigation for this action, the JSF imple-
mentation will reload the current page after the form is submitted. When the
page is reloaded, it is localized for English or German, and the page redisplays
accordingly.

Figure 4-6 shows the directory structure for the application, and Listings 4-9
through 4-11 show the associated JSF pages and Java classes.

ﬁ flags.war
| index.xhtml
| thankYou.xhtml
v (& WEB-INF
| beans.xml
| faces-config.xml
: web.xml
¥ (&5 classes
¥ (& com
v ﬁ corejsf
'_‘ LocaleChanger.class
|| UserBean.class
: messages.properties
|| messages_de.properties
¥ (&5 resources
v ﬁ images
|| de_flag.gif
; en_flag.gif

Figure 4-6 Directory structure of the flags example

From the Library of Wow! eBook

Buttons and Links m

flags/web/index. xhtm1

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>#{msgs.indexWindowTitTe}</title>
</h:head>
<h:body>
<h:forms>
<h:commandLink action="#{localeChanger.germanAction}">
<h:graphicImage Tibrary="images" name="de_flag.gif"
style="border: @px; margin-right: lem;"/>
</h:commandLink>
<h:commandLink action="#{localeChanger.englishAction}">
<h:graphicImage library="images"
name="en_flag.gif" style="border: Qpx"/>
</h:commandLink>
<p><h:outputText value="#{msgs.indexPageTitle}"
style="font-style: italic; font-size: 1.3em"/></p>
<h:panelGrid columns="2">
#{msgs.namePrompt}
<h:inputText value="#{user.name}"/>
#{msgs.passwordPrompt}
<h:inputSecret value="#{user.password}"/>
#{msgs.te11UsPrompt}
<h:inputTextarea value="#{user.aboutYourself}" rows="5" cols="35"/>
</h:panelGrid>
<h:commandButton value="#{msgs.submitPrompt}" action="thankYou"/>
</h:form>
</h:body>
</htm1>

flags/src/java/com/corejsf/UserBean. java

package com.corejsf;
import java.io.Serializable;
import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;

import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;

From the Library of Wow! eBook

m Chapter 4 m Standard JSF Tags

@Named("user") // or @ManagedBean(name="user")
@SessionScoped
pubTic class UserBean implements Serializable {
private String name;
private String password;
private String aboutYourself;

public String getName() { return name; }
public void setName(String newValue) { name = newValue; }

public String getPassword() { return password; }
public void setPassword(String newValue) { password = newvalue; }

public String getAboutYourself() { return aboutYourself; }
public void setAboutYourself(String newvalue) { aboutYourself = newValue; }

}

flags/src/java/com/corejsf/LocaleChanger.java

package com.corejsf;

import java.io.Serializable;
import java.util.Locale;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;
import javax.faces.context.FacesContext;

@Named // or @ManagedBean
@SessionScoped
public class LocaleChanger implements Serializable {
public String germanAction() {
FacesContext context = FacesContext.getCurrentInstance();
context.getViewRoot().setLocale(Locale.GERMAN);
return null;

}

public String englishAction() {
FacesContext context = FacesContext.getCurrentInstance();
context.getViewRoot().setLocale(Locale.ENGLISH);
return null;
}
}

From the Library of Wow! eBook

Selection Tags m

Selection Tags

JSF has seven tags for making selections:

h:selectBooleanCheckbox
h:seTectManyCheckbox
h:selectOneRadio
h:selectOnelistbox
h:selectManyListhox
h:seTectOneMenu
h:seTectManyMenu

Table 4-23 shows examples of each tag.

Table 4-23 Selection Tag Examples

Tag Generated HTML Examples

h:selectBooleanCheckbox <input type="checkbox"> Receive email: F

h:selectManyCheckbox <table> I Red F Blue I Yellow
<label>
<input type="checkbox"/>
</1abel>
</table>
h:selectOneRadio <table> € High School
;iébeb ' Bachelor's
<input type="radio"/> ¢ Master's
</1abel> " Doctorate
</table>
h:selectOnelisthox <select> —
. " " Cheese |=
<option value="Cheese"> Biekia
Cheese Mustard [
</option> Lettuce [+
</select>
h:selectManyListhox <select multiple>
<option value="Cheese">
Cheese
</option>
</select>

From the Library of Wow! eBook

m Chapter 4 m Standard JSF Tags

Table 4-23 Selection Tag Examples (cont.)

Tag Generated HTML Examples
h:selectOneMenu <select size="1">

. n n Pickl 7
<option value="Cheese"> [Pickle |y

Cheese

Cheese Pickle

</option> Mustard

- Lettuce

</select> Onions

h:selectManyMenu

<select multiple size="1">

<option value="Sunday">
Sunday
</option>

</select>

Sunday
Monday m
Tuesday .

Wednesday v

The h:selectBooleanCheckbox is the simplest selection tag—it renders a checkbox
you can wire to a boolean bean property. You can also render a set of checkboxes

with h:selectManyCheckbox.

Tags whose names begin with selectOne let you select one item from a collection.
The selectOne tags render sets of radio buttons, single-select menus, or listboxes.
The selectMany tags render sets of checkboxes, multiselect menus, or listboxes.

All selection tags share an almost identical set of attributes, listed in Table 4-24.

Table 4-24 Attributes for h:selectBooleanCheckbox, h:selectManyCheckbox,
h:selectOneRadio, h:selectOneListbox, h:selectManyListbox, h:selectOneMenu, and

h:selectManyMenu

Attributes

Description

enabledClass,

disabledClass

CSS class for enabled or disabled
elements—for h:selectOneRadio and
h:selectManyCheckbox only.

selectedClass,

unselectedClass

CSS class for selected or unselected

elements—for h:selectManyCheckbox only.

Tayout

Specification for how elements are laid
out: TineDirection (horizontal) or page-
Direction (vertical)—for h:selectOneRadio
and h:selectManyCheckbox only.

From the Library of Wow! eBook

Selection Tags m

Table 4-24 Attributes for h:selectBooleanCheckbox, h:selectManyCheckbox,
h:selectOneRadio, h:selectOneListhox, h:selectManyListbox, h:selectOneMenu, and

h:selectManyMenu (cont.)

Attributes

Description

tabe! NN

A description of the component for use
in error messages.

collectionType |NEYFA]

(selectMany tags only) A string or a
value expression that evaluates to a
fully qualified collection class name,
such as java.util.TreeSet. See “The value
Attribute and Multiple Selections” on
page 162.

hideNoSeTectionOption [INEYFFE

Hide any item that is marked as the “no
selection option”. See “The f:selectItem
Tag” on page 153.

binding, converter,

converterMessage [INRYGEIVAL
requiredMessage [INAGEIVAL

id, immediate, required, rendered,

validator, validatorMessage [[INEYGEIWAL

value, valueChangeListener

Basic attributes.?

accesskey, border, dir, disabled, Tang,
readonly, style, styleClass, size,
tabindex, title

HTML 4.0P—border is applicable to
h:selectOneRadio and h:selectManyCheckbox
only. size is applicable to h:selectOne-
Listbox and h:selectManyListbox only.

onblur, onchange, onclick, ondb1cTick,
onfocus, onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, onmouseout,
onmouseover, onmouseup, onselect

DHTML events.©

a. See Table 4-5 on page 107 for information about basic attributes.
b. See Table 4-6 on page 110 for information about HTML 4.0 attributes.
c. See Table 4-7 on page 114 for information about DHTML event attributes.

From the Library of Wow! eBook

Chapter 4 m Standard JSF Tags

Checkboxes and Radio Buttons
Two JSF tags represent checkboxes:

o h:selectBooleanCheckbox
U h:selectManyCheckbox

The h:selectBooleanCheckbox tag represents a single checkbox that you can wire to
a boolean bean property. Here is an example:

Contact me T

In your JSF page, you do this:
<h:selectBooleanCheckbox value="#{form.contactMe}"/>
In your backing bean, provide a read-write property:

private boolean contactMe;
public void setContactMe(boolean newValue) { contactMe = newValue; }
public boolean getContactMe() { return contactMe; }

The generated HTML looks something like this:
<input type="checkbox" name="_id2:_id7"/>

You can create a group of checkboxes with h:selectManyCheckbox. As the tag name
implies, you can select one or more of the checkboxes in the group. You specify
that group within the body of h:selectManyCheckbox, either with one or more
fiselectItem tags or one f:selectItems tag. See “Items” on page 153 for more infor-
mation about those core tags. For example, here is a group of checkboxes for
selecting colors:

| Red @ Blue) Yellow | Green ¥ Orange

The h:selectManyCheckbox tag looks like this:

<h:selectManyCheckbox value="#{form.colors}">
<f:selectItem itemValue="Red" itemLabel="Red"/>
<f:selectItem itemValue="Blue" itemLabel="Blue"/>
<f:selectItem itemValue="Yellow" itemLabel="Yellow"/>
<fiselectItem itemValue="Green" itemLabel="Green"/>
<f:selectItem itemValue="Orange" itemLabel="Orange"/>
</h:selectManyCheckbox>

The checkboxes are specified with f:selectIten (page 153) or f:selectItens (page 155).

From the Library of Wow! eBook

Selection Tags m

The h:selectManyCheckbox tag generates an HTML table element; here is the gener-
ated HTML for our color example:

<table>
<tr>
<td>
<label for="_id2:_id14">
<input name="_id2:_id14" value="Red" type="checkbox"> Red</input>
</1abel>
</td>
</tr>

</table>
Each color is an input element, wrapped in a Tabel for accessibility. That Tabel is
placed in a td element.

Radio buttons are implemented with h:selectOneRadio. Here is an example:

) High School) Bachelor's @ Master's () Doctorate

The value attribute of the h:selectOneRadio tag specifies the currently selected item.
Once again, we use multiple f:selectItem tags to populate the radio buttons:

<h:selectOneRadio value="#{form.education}">
<f:selectItem itemValue="High School" itemLabel="High School"/>
<f:selectItem itemValue="Bachelor's" itemLabel="Bachelor's"/>
<f:selectItem itemValue="Master's" itemLabel="Master's"/>
<f:selectItem itemValue="Doctorate" itemLabel=Doctorate"/>

</h:selectOneRadio>

Like h:selectManyCheckbox, h:selectOneRadio generates an HTML table. Here is the
table generated by the preceding tag:

<table>
<tr>
<td>
<label for="_id2:_id14">
<input name="_id2:_id14" value="High School" type="radio">
High School
</input>
</1abel>
</td>
</tr>

</table>

From the Library of Wow! eBook

Chapter 4 m Standard JSF Tags

Besides generating HTML tables, h:selectOneRadio and h:selectManyCheckbox have
something else in common—a handful of attributes unique to those two tags:

* horder

e enabledClass

e disabledClass

U layout

The border attribute specifies the width of the border. For example, here are
radio buttons and checkboxes with borders of 1 and 2, respectively:

“C} High Schaol”@ Bachelar's”S Master'5|$ Doctarate”

|:‘ Red”a BIue”E ‘r’ellow”f Green”f 0range|

The enabled(lass and disabledClass attributes specify CSS classes used when the
checkboxes or radio buttons are enabled or disabled, respectively. For example,
the following picture shows an enabled class with an italic font style, blue
color, and yellow background:

™ Red) Blue O Yellow & Green _ Orange

The Tayout attribute can be either TineDirection (horizontal) or pageDirection (verti-
cal). For example, the following checkboxes on the left have a pageDirection
layout and the checkboxes on the right are TineDirection:

! Red) Red ™ Blue [Yellow) Green @ Orange
Blue
™ Yellow

™

1 Green
Orange

% NOTE: You might wonder why layout attribute values are not horizontal and
vertical, instead of TineDirection and pageDirection, respectively. Although
TineDirection and pageDirection are indeed horizontal and vertical for Latin-
based languages, that is not always the case for other languages. For
example, a Chinese browser that displays text top to bottom could regard
TineDirection as vertical and pageDirection as horizontal.

From the Library of Wow! eBook

Selection Tags ﬂ

Menus and Listboxes
Menus and listboxes are represented by the following tags:

o h:selectOnelisthox

U h:selectManyListbox

o h:selectOneMenu

U h:selectManyMenu

The attributes for the preceding tags are listed in Table 4-24 on page 146, so
that discussion is not repeated here.

Menu and listbox tags generate HTML select elements. The menu tags add a
size="1" attribute to the select element. That size designation is all that separates
menus and listboxes.

Here is a single-select listbox:

1900
1901
1902
1903 .
1904 =

The corresponding listbox tag looks like this:

<h:selectOneListhox value="#{form.year}" size="5">
<fiselectItem itemValue="1900" itemLabel="1900"/>
<f:selectItem itemValue="1901" itemLabel="1901"/>

</h:selectOnelisthox>

Notice that we’ve used the size attribute to specify the number of visible items.
The generated HTML looks like this:

<select name="_id2:_id11l" size="5">
<option value="1900">1900</option>
<option value="1901">1901</option>

</select>
Use h:selectManyListbox for multiselect listboxes like this one:

English
French
Italian
Spanish
Russian

From the Library of Wow! eBook

Chapter 4 m Standard JSF Tags

The listbox tag looks like this:

<h:selectManyListbox value="#{form.languages}">
<fiselectItem itemValue="English" itemLabel="English"/>
<f:selectItem itemValue="French" itemLabel="French"/>
<fiselectItem itemValue="Italian" itemLabel="Italian"/>
<f:selectItem itemValue="Spanish" itemLabel="Spanish"/>
<fiselectItem itemValue="Russian" itemLabel="Russian"/>
</h:selectManyListbox>

This time we do not specify the size attribute, so the listbox grows to accommo-
date all its items. The generated HTML looks like this:

<select name="_id2:_id11" multiple>
<option value="English">English</option>
<option value="French">French</option>
</select>

Use h:selectOneMenu and h:seTectManyMenu for menus. A single-select menu looks like this:

" Wednesday |:!

h:selectOneMenu created the preceding menu:

<h:selectOneMenu value="#{form.day}">

<fiselectItem
<fiselectItem
<fiselectItem
<f:selectItem
<f:selectItem
<fiselectItem
<fiselectItem

itemValue="1"
itemValue="2"
itemValue="3"
itemValue="4"
itemvValue="5"
itemValue="6"
itemValue="7"

itemLabel="Sunday"/>
itemLabel="Monday"/>
itemLabel="Tuesday"/>
itemLabel="Wednesday" />
itemLabel="Thursday"/>
itemLabel="Friday" />
itemLabel="Saturday"/>

</h:selectOneMenu>
Here is the generated HTML:

<select name="_id2:_id17" size="1">
<option value="1">Sunday</option>

</select>
The h:selectManyMenu tag is used for multiselect menus. That tag generates
HTML, which looks like this:

<select name="_id2:_id17" multiple size="1">
<option value="1">Sunday</option>

</select>

From the Library of Wow! eBook

Selection Tags m

That HTML does not yield consistent results among browsers. For example,
here is h:selectManyMenu on Internet Explorer (left) and Netscape (right):

Sunday -~ |Sunday
Maonday

Tuesday :

Wednesday v

% NOTE: In HTML, the distinction between menus and listboxes is artificial.
Menus and listboxes are both HTML select elements. The only distinction:
Menus always have a size="1" attribute.

Browsers consistently render single-select menus as drop-down lists, as
expected. But they do not consistently render multiple select menus, speci-
fied with size="1" and multiple attributes. Instead of rendering a drop-down
list with multiple selection, as you might expect, some browsers render
absurdities such as tiny scrollbars that are nearly impossible to manipulate
(Internet Explorer) or no scrollbar at all, leaving you to navigate with arrow
keys (Firefox).

Items

Starting with “Checkboxes and Radio Buttons” on page 148, we have used
multiple f:selectIten tags to populate select components. Now that we are
familiar with the visual appearance of selection tags, we take a closer look at
fiselectItem and the related f:selectItems tags.

The f:selectItem Tag
You use f:selectItem to specify single selection items, like this:

<h:selectOneMenu value="#{form.condiments}">
<f:selectItem itemValue="Cheese" itemLabel="Cheese"/>
<f:selectItem itemValue="Pickle" itemLabel="Pickle"/>
<fiselectItem itemValue="Mustard" itemLabel="Mustard"/>
<fiselectItem itemValue="Lettuce" itemLabel="Lettuce"/>
<f:selectItem itemValue="Onions" itemLabel="Onions"/>
</h:selectOneMenu>

The values—Cheese, Pickle, etc.—are transmitted as request parameter values
when a selection is made from the menu and the menu’s form is subsequently
submitted. The itenLabel values are used as labels for the menu items. Some-
times you want to specify different values for request parameter values and
item labels:

From the Library of Wow! eBook

m Chapter 4 m Standard JSF Tags

<h:selectOneMenu value="#{form.condiments}">
<f:selectItem itemValue="1" itemLabel="Cheese"/>
<f:selectItem itemValue="2" itemLabel="Pickle"/>
<f:selectItem itemValue="3" itemLabel="Mustard"/>
<f:selectItem itemValue="4" itemLabel="Lettuce"/>
<fiselectItem itemValue="5" itemLabel="Onions"/>
</h:selectOneMenu>

In the preceding code, the item values are strings. “Binding the value Attribute”
on page 161 shows you how to use different data types for item values.

In addition to labels and values, you can also supply item descriptions and
specify an item’s disabled state:

<f:selectItem itemLabel="Cheese" itemValue="#{form.cheeseValue}"
itemDescription="used to be milk"
itemDisabled="true"/>

Item descriptions are for tools only—they do not affect the generated HTML.
The itemDisabled attribute, however, is passed to HTML. The f:selectIten tag has
the attributes shown in Table 4-25.

As of JSF 2.0, there is a noSelectionOption attribute for marking an item that is
included for navigational purposes, such as “Select a condiment”. This
attribute is used in conjunction with validation. If an entry is required and the
user selects the “no selection option”, a validation error occurs.

Table 4-25 Attributes for f:selectItem

Attribute Description

binding, id Basic attributes®

itemDescription Description used by tools only

itemDisabled Boolean value that sets the item’s disabled HTML attribute
itemLabel Text shown by the item

itemValue Item’s value, passed to the server as a request parameter

value Value expression that points to a SelectItem instance

escape true if special characters in the value should be converted to

[JVF 1.2 | character entities (default), false if the value should be emitted

without change

noSelectionOption true if this item is the “no selection” option that, when selected,
!I indicates that the user intends to made no selection

a. See Table 4-5 on page 107 for information about basic attributes.

From the Library of Wow! eBook

Selection Tags m

You can use f:selectItem’s value attribute to access SelectItem instances created in
a bean:

<f:selectItem value="#{form.cheeseItem}"/>

The value expression for the value attribute points to a method that returns a
javax.faces.model.SeTectItem instance:

pubTic SelectItem getCheeseItem() { return new SelectItem("Cheese"); }

Apli| javax.faces.model.SelectIten
———1

e SelectItem(Object value)
Creates a SelectItem with a value. The item label is obtained by applying
toString() to the value.

e SelectItem(Object value, String Tabel)
Creates a SelectItem with a value and a label.

e SelectItem(Object value, String label, String description)
Creates a SelectItem with a value, label, and description.

e SelectItem(Object value, String label, String description, boolean disabled)
Creates a SelectItem with a value, label, description, and disabled state.

e SelectItem(Object value, String Tabel, String description, boolean disabled,
boolean noSelectionOption) [NAYFFAA
Creates a SelectItem with a value, label, description, disabled state, and “no
selection option” flag.

The f:selectItems Tag

As we saw in “The f:selectIten Tag” on page 153, f:selectItenis versatile, but it is
tedious for specifying more than a few items. The first code fragment shown in
that section can be reduced to the following with f:selectItems:

<h:selectOneRadio value="#{form.condiments}>
<fiselectItems value="#{form.condimentItems}"/>
</h:selectOneRadio>

The value expression #{form.condimentItens} could point to an array of SelectItem
instances:

private static SelectItem[] condimentItems = {
new SelectItem(1, "Cheese"),
new SelectItem(2, "Pickle"),
new SelectItem(3, "Mustard"),
new SelectItem(4, "Lettuce"),

From the Library of Wow! eBook

ﬂ Chapter 4 m Standard JSF Tags

new SelectItem(5, "Onions")

b

pubTic SelectItem[] getCondimentItems() {
return condimentItems;

}

The f:selectItems value attribute must be a value expression that points to one of
the following:

* Asingle SelectItem instance

¢ A collection

e Anarray

* A map whose entries represent labels and values

The first option is not very useful. We discuss the other options in the follow-
ing sections.

NOTE: Can't remember what you can specify for the f:selectItems value
' attribute? It's a SCAM: Single select item, Collection, Array, or Map.

NOTE: A single f:selectItens tag is usually better than multiple f:selectItem
' tags. If the number of items changes, you have to modify only Java code if
you use f:selectItems, whereas f:selectItem may require you to modify both
Java code and JSF pages.

Table 4-26 summarizes the attributes of the f:selectItems tag.

Table 4-26 Attributes for f:selectItens

Attribute Description
binding, id Basic attributes?
value Value expression that points to a SelectItem instance, an array

or collection, or a map

var The name of a variable, used in the value expressions below

B when traversing an array or collection of objects other than
SelectItem

itemLabel Value expression yielding the text shown by the item refer-

B enced by the var variable

From the Library of Wow! eBook

Selection Tags ﬂ

Table 4-26 Attributes for f:selectItems (cont.)

Attribute Description

itemvValue Value expression yielding the value of the item referenced by

B the var variable

itemDescription Value expression yielding the description of the item refer-

m enced by the var variable; the description is intended for use
by tools

itemDisabled Value expression yielding the disabled HTML attribute of the

B item referenced by the var variable

itemLabelEscaped Value expression yielding true if special characters in the

m item’s value should be converted to character entities
(default), false if the value should be emitted without change

noSelectionOption Value expression that yields the “no selection option” item or

B string that equals the value of the “no selection option” item

a. See Table 4-5 on page 107 for information about basic attributes.

Using Collections and Arrays with f:selectItems

Before JSF 2.0, collections and arrays had to contain SelectItem instances. That
was unfortunate because it coupled your business logic to the JSF API. As of
JSF 2.0, the value of f:selectItems can be a collection or array containing objects of
any type.

If they are instances of SelectItem, no further processing is done. Otherwise, the
labels are obtained by calling toString on each object.

Alternatively, you cau use the var attribute to define a variable that iterates
over the array or collection. Then you supply value expressions for the label
and value in the attributes itenLabel and itemValue.

For example, suppose you want users to select objects of the following class:

pubTic class Weekday {
public String getDayName() { ... } // name in current locale, such as "Monday"
public int getDayNumber() { ... } // number such as Calendar.MONDAY (2)

}
Use the following tag:

<fiselectItems value="#{form.daysOfTheWeek}"

var="w

From the Library of Wow! eBook

Chapter 4 m Standard JSF Tags

itemLabel="#{w.dayName}"

itemValue="#{w.dayNumber}" />
Here, #{form.days0fTheWleek} yields an array or collection of Weekday objects. The
variable w is set to each of the elements. Then a SelectItem object is constructed
with the results of the itemLabel and itemValue expressions.

NOTE: The var attribute in the f:selectItems tag is conceptually similar to the
YAl use of the var attribute in the h:dataTable which we will discuss in Chapter 6.

Using Maps with f:selectItems

If the value attribute of the f:selectItems tag yields a map, the JSF implementation
creates a SelectItem instance for every entry in the map. The entry’s key is used

as the item’s label, and the entry’s value is used as the item’s value. For exam-

ple, here are condiments specified with a map:

private static Map<String, Object> condimentItems;

static {
condimentItems = new LinkedHashMap<String, Object>();
condimentItems.put("Cheese", 1); // label, value
condimentItems.put("Pickle", 2)
condimentItems.put("Mustard", 3)
condimentItems.put("Lettuce", 4);
condimentItems.put(' 5)

'Onions",

}

pubTic Map<String, Object> getCondimentItems() {
return condimentItems;

}

Note that you cannot specify item descriptions or disabled status when you use
a map.

Pay attention to these two issues when using a map:

1. You will generally want to use a LinkedHashMap, not a TreeMap or HashMap. In a
LinkedHashMap, you can control the order of the items because items are
visited in the order in which they were inserted. If you use a TreeMap, the
labels that are presented to the user (which are the keys of the map) are
sorted alphabetically. That may or may not be what you want. For exam-
ple, days of the week would be neatly arranged as Friday Monday Satur-
day Sunday Thursday Tuesday Wednesday. If you use a HashMap, the items
are ordered randomly.

From the Library of Wow! eBook

Selection Tags m

2. Map keys are turned into item labels and map values into item values.
When a user selects an item, your backing bean receives a value in your
map, not a key. For example, in the example above, if the backing bean
receives a value of 5, you would need to iterate through the entries if you
wanted to find the matching "Onions". Since the value is probably more
meaningful to your application than the label, this is usually not a

problem, just something to be aware of.

Item Groups

You can group menu or listbox items together, like this:

|Burgers
|Qwarter pounder
|Single

| Veggie
|Beverages
|Coke

iPepsi

|Water

| Coffes

| Tea
|Condiments
|cheese

| pickle
|mustard
|lettuce
|onions

Here are the JSF tags that define the listbox:

<h:selectManyListhox>
<f:selectItems value="#{form.menuItems}"/>
</h:selectManyListbox>

The menuItems property is a SelectItem array:

public SelectItem[] getMenuItems() { return menultems; }

The menuItems array is instantiated like this:

private static SelectItem[] menultems = { burgers, beverages, condiments };

The burgers, beverages, and condiments variables are SelectItemGroup instances that are

instantiated like this:

private SelectItemGroup burgers =
new SelectItemGroup("Burgers", // value

"burgers on the menu", // description
false, // disabled
burgerItems); // select items

From the Library of Wow! eBook

Chapter 4 m Standard JSF Tags

private SelectItemGroup beverages =
new SelectItemGroup("Beverages", // value

"beverages on the menu", // description
false, // disabled
beverageItems); // select items

private SelectItemGroup condiments =
new SelectItemGroup("Condiments", // value

"condiments on the menu", // description
false, // disabled
condimentItems); // select items

Notice that we are using SelectItemGroups to populate an array of SelectItems. We
can do that because SelectItemGroup extends SelectItem. The groups are created
and initialized like this:

private SelectItem[] burgerItems = {
new SelectItem("Qwarter pounder"),
new SelectItem("Single"),
new SelectItem("Veggie"),

b

private SelectItem[] beverageltems = {
new SelectItem("Coke"),
new SelectItem("Pepsi"),
new SelectItem("Water"),
new SelectItem("Coffee"),
new SelectItem("Tea"),

b

private SelectItem[] condimentItems = {
new SelectItem("cheese"),
new SelectItem("pickle"),
new SelectItem("mustard"),
new SelectItem ",
new SelectItem ,

n

"Tettuce

(
(
¢
("onions")

b

SelectItemGroup instances encode HTML optgroup elements. For example, the
preceding code generates the following HTML:

<select name="_i1d@:_idl" multiple size="16">
<optgroup label="Burgers">
<option value="1" selected>Qwarter pounder</option>
<option value="2">Single</option>
<option value="3">Veggie</option>
</optgroup>

From the Library of Wow! eBook

Selection Tags m

<optgroup label="Beverages">
<option value="4" selected>Coke</option>
<option value="5">Pepsi</option>
<option value="6">Water</option>
<option value="7">Coffee</option>
<option value="8">Tea</option>
</optgroup>

<optgroup label="Condiments">
<option value="9">cheese</option>
<option value="10">pickle</option>
<option value="11">mustard</option>
<option value="12">Tettuce</option>
<option value="13">onions</option>

</optgroup>

</select>

% NOTE: The HTML 4.01 specification does not allow nested optgroup elements,
which would be useful for things like cascading menus. The specification
does mention that future HTML versions may support that behavior.

A[P|1 javax. faces.model.SelectItenGroup

e SelectItemGroup(String Tabel)
Creates a group with a label but no selection items.

e SelectItemGroup(String Tabel, String description, boolean disabled,
SelectItem[] items)
Creates a group with a label, a description (which is ignored by the JSF
Reference Implementation), a boolean that disables all the items when true,
and an array of select items used to populate the group.

o setSelectItems(SelectItem[] items)
Sets a group’s array of SelectItems.

Binding the value Attribute

Whether you are using a set of checkboxes, a menu, or a listbox, you will want
to keep track of the item or items selected by the user. For that purpose, you
use the value attribute of the selectOne and selectMany tags. Consider this example:

<h:selectOneMenu value="#{form.bestDay}">
<fiselectItems value="#{form.weekdays}"/>
</h:selectOneRadio>

From the Library of Wow! eBook

Chapter 4 m Standard JSF Tags

The value attribute of h:selectOneMenu refers to the value that the user selects. The
value attribute of f:selectItems specifies all possible values.

Suppose the radio buttons were specified with an array of SelectItem objects,
containing the following:

new SelectItem(1, "Sunday"), // value, Tabel
new SelectItem(2, "Monday"),

The user sees the labels (Sunday, Monday;, ...), but the application uses the
values (1, 2, ...).

There is an important but subtle issue about the Java type of the values. In the
web page, the values are always strings:

<option value="1">Sunday</option>

<option value="2">Monday</option>
When the page is submitted, the server receives the selected string and must
convert it to an appropriate type. The JSF implementation knows how to con-
vert to numbers and enumerated types, but for other types you need to define
a converter. (We discuss converters in Chapter 7.)

In our example, the #{form.bestDay} value expression should refer to a property
of type int or Integer. Listing 4-13 has an example where the value is an enumer-
ated type.

CAUTION: Because the value of a SelectItem is an Object, it can be tempting to
set it to the value that you actually need in your application. However, keep in
mind that the value is turned into a string when it is sent to the client. For exam-
ple, consider a SelectItem(Color.RED, "Red"). The client receives the client is the
string "java.awt.Color[r=255,9=0,b=0]". That string is returned when the user
selects the option with label "Red". You would have to parse it to turn it back into
a color. It is easier to send the RGB value of the color instead.

The value Attribute and Multiple Selections

You can keep track of multiple selections with a selectMany tag. These tags have
a value attribute that specifies zero or more selected items, using an array or
collection.

Consider an h:selectManyListhox that lets a user choose multiple condiments:

<h:selectManylListbox value="#{form.condiments}">
<f:selectItems value="#{form.condimentItems}"/>
</h:selectManyListhox>

From the Library of Wow! eBook

Selection Tags

Here are the condimentItems and condiments properties:

private static SelectItem[] condimentItems = {
new SelectItem(1, "Cheese"),

new SelectItem(2, "Pickle"),
new SelectItem(3, "Mustard"),
new SelectItem(4, "Lettuce"),
new SelectItem(5, "Onions"),

b

pubTic SelectItem[] getCondimentItems() {
return condimentItems;

}

private int[] condiments;
pubTic void setCondiments(int[] newValue) {
condiments = newValue;

}
pubTic int[] getCondiments() {
return condiments;

}

Instead of an int[] array for the condiments property, you could have used an
Integer[] array.

The value of a selectMany tag can be a collection instead of an array, but there are
two technical issues that you need to keep in mind. Most importantly, the ele-
ments cannot be converted because the collection’s element type is not known
at runtime. (This is an unfortunate aspect of Java generics. At runtime, an Array-
List<Integer> or ArrayList<String> is only a raw Arraylist, and there is no way of
determining the element type. In contrast, Integer[] and String[] are distinct
types at runtime.) That means, you should use collections only for strings.

The other complexity is more subtle. When the JSF application receives the
user choices, it must construct a new instance of the collection, populate it, and
pass the collection to the property setter. But suppose the property type is
Set<String>. What kind of Set should be constructed?

Before JSF 2.0, this was not clearly specified. JSF 2.0 lays down the following
rules:

1. If the tag has a collectionType attribute, its value must be a string or a value
expression that evaluates to a fully qualified classname, such as
java.util.TreeSet. Instantiate that class.

2. Otherwise, get the existing value and try cloning and clearing it.

From the Library of Wow! eBook

Chapter 4 m Standard JSF Tags

3. If that fails (perhaps because the existing value was null or not cloneable),
look at the type of the value expression. If that type is SortedSet, Set, or Queue,
construct a TreeSet, HashSet, or LinkedList.

4. Otherwise, construct an Arraylist.

For example, suppose you define a Tanguages property:

private Set<String> Tanguages; // initialized with null
pubTic Set<String> getlLanguages() {

return languages;
}

public void setlanguages(Set<String> newvalue) {
languages = newValue;
}
When the form is submitted for the first time, the property setter is called with
a HashSet that contains the user choices (step 3). In subsequent invocations, that
set is cloned (step 2). However, suppose you initialize the set:

private Set<String> Tanguages = new TreeSet();

Then a clone of that TreeSet is always returned.

All Together: Checkboxes, Radio Buttons, Menus, and Listboxes

We close out our section on selection tags with an example that exercises nearly
all those tags. That example, shown in Figure 4-7, implements a form
requesting personal information. We use an h:selectBooleanCheckbox to determine
whether the user wants to be contacted, and h:selectOneMenu lets the user select
the best day of the week for us to do so.

The year listbox is implemented with h:selectOneMenu, and it demonstrates the
use of a “no selection” item. The language checkboxes are implemented with
h:selectManyCheckbox; the education level is implemented with h:selectOneRadqo.

Note that the languages are collected in a Set<String>. Also note the styles in the
color selector. The disabled Orange option is colored gray, and the selected col-
ors are marked in bold. We use the attribute onchange="submit()" in order to
update the styles immediately upon selection.

When the user submits the form, JSF navigation takes us to a JSF page that
shows the data the user entered.

The directory structure for the application shown in Figure 4-7 is shown in
Figure 4-8. The JSF pages, RegisterForm bean, faces configuration file, and
resource bundle are shown in Listings 4-12 through 4-16.

From the Library of Wow! eBook

Selection Tags

% Checkboxes, Radio buttons, Menus, and Listboxes - Mozilla Firefox

Ele Edit Miew Higtory Bookmarks Tools Help

- ~ il | &) | hitpifiocalhost:aoa0/select/faces/index. xheml
Thank you Theodore, for your information
Contact me: true
Best day to contact you: [1]
Your year of birth: 1959
Languages: [English, French]
Colars: FHFO000 fFO000ff
Education: DOCTOR
Back

Ble Edit View Higtory Bookmarks Tools

% Checkboxes, Radio buttons, Menus, and Listboxes - Mozilla Firefox

Help

- ~ il | &) | hitpifiocalhost-aoao/select/facesfindex. xhtml

MName:

Contact me

What year were you born?

Done Select your favorite colors:

Please fill out the following information

Theadore

=

What's the best day to contact you? [SUREE—

Pick a year:

¥ Red [Green ¥ Blue O Yellaw — Orange
Select the languages you speak: Aussian
Italian
|
High School
© Bachelor's
Select your highest education level: _
Master's
® Doctorate
Submit information |
Done o8 § o

Figure 4-7 Using checkboxes, radio buttons, menus, and listboxes

[E select.war
[index.xhtml
[showlnformation.xhtml
¥ (& WEB-INF
[beans.xml
[faces-config.xml
[web.xml
v ﬁ classes
¥ (& com
¥ (& corejsf
|_L‘ RegisterForm$Education.class
| " RegisterForm$Weekday.class
[RegisterForm.class
[7] messages.properties
v [ﬁ resources

v [Ecss

L styles.css

Figure 4-8 The directory structure of the selection example

From the Library of Wow! eBook

m Chapter 4 m Standard JSF Tags

select/web/index.xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm] PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core" xmins:h="http://java.sun.com/jsf/htm1">
<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<title>#{msgs.indexWindowTitTe}</title>
</h:head>

<h:body>
<h:outputText value="#{msgs.indexPageTitle}" styleClass="emphasis"/>
<h:forms>
<h:panelGrid columns="2">
#{msgs.namePrompt}
<h:inputText value="#{form.name}"/>
#{msgs.contactMePrompt}
<h:selectBooleanCheckbox value="#{form.contactMe}"/>
#{msgs.bestDayPrompt}
<h:selectManyMenu value="#{form.bestDaysToContact}">
<f:selectItems value="#{form.daysOfTheWeek}" var="w"
itemLabel="#{w.dayName}" itemValue="#{w.dayNumber}"/>
</h:selectManyMenu>
#{msgs.year0fBirthPrompt}
<h:selectOneMenu value="#{form.year0fBirth}" required="true">
<fiselectItems value="#{form.yearItems}"/>
</h:selectOneMenu>
#{msgs.colorPrompt}
<h:selectManyCheckbox value="#{form.colors}"
selectedClass="selected" disabledClass="disabled"
onchange="submit()">
<f:selectItems value="#{form.colorItems}"/>
</h:selectManyCheckbox>
#{msgs.languagePrompt}
<h:selectManylListbox size="5" value="#{form.languages}">
<fiselectItems value="#{form.languageItems}"/>
</h:selectManyListbox>
#{msgs.educationPrompt}
<h:selectOneRadio value="#{form.education}"
selectedClass="selected" Tayout="pageDirection">
<f:selectItems value="#{form.educationItems}"/>
</h:selectOneRadio>
</h:panelGrid>
<h:commandButton value="#{msgs.buttonPrompt}" action="showInformation"/>

From the Library of Wow! eBook

Selection Tags m

</h:form>
<h:messages/>
</h:body>
</htm1>

select/web/showInformation.xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core" xmins:h="http://java.sun.com/jsf/htm1">
<h:head>
<title>#{msgs.indexWindowTitTe}</titTe>
</h:head>
<h:body>
<h:forms>
<h:outputStylesheet Tibrary="css" name="styles.css" target="head"/>
<h:outputFormat value="#{msgs.thankYouLabel}">
<f:param value="#{form.name}"/>
</h:outputFormat>
<h:panelGrid columns="2">
#{msgs.contactMelLabel}
<h:outputText value="#{form.contactMe}"/>
#{msgs.bestDayLabel}
<h:outputText value="#{form.bestDaysConcatenated}"/>
#{msgs.yearOfBirthLabel}
<h:outputText value="#{form.yearOfBirth}"/>
#{msgs.languageLabel}
<h:outputText value="#{form.languages}"/>
#{msgs.colorLabel}
<h:outputText value="#{form.colorsConcatenated}"/>
#{msgs.educationLabel}
<h:outputText value="#{form.education}"/>
</h:panelGrid>
<h:commandButton value="#{msgs.backPrompt}" action="index"/>
</h:form>
</h:body>
</htm1>

From the Library of Wow! eBook

m Chapter 4 m Standard JSF Tags

IBET50 B select/src/java/com/corejst/RegisterForm.java

package com.corejsf;

import java.awt.Color;

import java.io.Serializable;
import java.text.DateFormatSymbols;
import java.util.Arraylist;
import java.util.Arrays;

import java.util.Calendar;
import java.util.Collection;
import java.util.LinkedHashMap;
import java.util.Map;

import java.util.Set;

import java.util.TreeSet;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;
import javax.faces.model.SelectItem;

@Named("form") // or @ManagedBean(name="form")
@SessionScoped
public class RegisterForm implements Serializable {
public enum Education { HIGH_SCHOOL, BACHELOR, MASTER, DOCTOR };

public static class Weekday {
private int dayOfWeek;
public Weekday(int dayOfWeek) {
this.dayOfWeek = dayOfWeek;
}

public String getDayName() {
DateFormatSymbols symbols = new DateFormatSymbols();
String[] weekdays = symbols.getWeekdays();
return weekdays[dayOfWeek];

}

public int getDayNumber() {
return dayOfWeek;
}
}

private String name;
private boolean contactMe;

From the Library of Wow! eBook

Selection Tags m

private int[] bestDaysToContact;
private Integer yearOfBirth;
private int[] colors;

private Set<String> languages = new TreeSet<String>();
private Education education = Education.BACHELOR;

public String getName() { return name; }

public void setName(String newValue) { name = newValue; }

public boolean getContactMe() { return contactMe; }

public void setContactMe(boolean newValue) { contactMe = newValue; }

public int[] getBestDaysToContact() { return bestDaysToContact; }
pubTlic void setBestDaysToContact(int[] newValue) { bestDaysToContact = newValue; }

public Integer getYearOfBirth() { return yearOfBirth; }
public void setYearOfBirth(Integer newValue) { yearOfBirth

public int[] getColors() { return colors; }

public void setColors(int[] newValue) { colors = newValue;

public Set<String> getlLanguages() { return languages; }
public void setlanguages(Set<String> newValue) { languages

public Education getEducation() { return education; }
public void setEducation(Education newValue) { education =

}

newvalue; }

newvalue; }

newValue; }

public Collection<SelectItem> getYearItems() { return birthYears; }

public Weekday[] getDaysOfTheWeek() { return daysOfTheWeek; }

public SelectItem[] getlLanguageItems() { return languageltems; }

public SelectItem[] getColorItems() { return colorItems; }

public Map<String, Education> getEducationItems() { return educationItems; }

public String getBestDaysConcatenated() {

}

return Arrays.toString(bestDaysToContact);

public String getColorsConcatenated() {

}

StringBuilder result = new StringBuilder();

for (int color : colors) result.append(String.format("%06x

return result.toString();

" color));

From the Library of Wow! eBook

m Chapter 4 m Standard JSF Tags

private SelectItem[] colorItems = {
new SelectItem(Color.RED.getRGB(), "Red"), // value, label
new SelectItem(Color.GREEN.getRGB(), "Green"),
new SelectItem(Color.BLUE.getRGB(), "Blue"),
new SelectItem(Color.YELLOW.getRGB(), "Yellow"),
new SelectItem(Color.ORANGE.getRGB(), "Orange", "", true) // disabled

b

private static Map<String, Education> educationItems;

static {
educationItems = new LinkedHashMap<String, Education>();
educationItems.put("High School", Education.HIGH_SCHOOL); // label, value
educationItems.put("Bachelor's", Education.BACHELOR);
educationItems.put("Master's", Education.MASTER);
educationItems.put("Doctorate", Education.DOCTOR);

b

private static SelectItem[] languageItems = {
new SelectItem("English"),
new SelectItem("French")
new SelectItem("Russian"),
new SelectItem("Italian"),
new SelectItem("Esperanto”, "Esperanto”, "", true) // disabled

b

private static Collection<SelectItem> birthYears;
static {
birthYears = new ArraylList<SelectItem>();
// The first item is a "no selection" item
birthYears.add(new SelectItem(null, "Pick a year:", "", false, false, true));
for (int i = 1900; i < 2020; ++i) birthYears.add(new SelectItem(i));
}

nn

private static Weekday[] daysOfTheWeek;

static {
daysOfTheWeek = new Weekday[7];
for (int i = Calendar.SUNDAY; i <= Calendar.SATURDAY; i++) {

daysOfTheWeek[i - Calendar.SUNDAY] = new Weekday(i);

}

}

}

From the Library of Wow! eBook

Messages 171

BET50 B N select/src/java/com/corejst/messages.properties

indexWindowTitle=Checkboxes, Radio buttons, Menus, and Listboxes
indexPageTitle=Please fi11 out the following information

namePrompt=Name:

contactMePrompt=Contact me

bestDayPrompt=What's the best day to contact you?
year0fBirthPrompt=What year were you born?
buttonPrompt=Submit information

backPrompt=Back

languagePrompt=Select the Tanguages you speak:
educationPrompt=Select your highest education level:
emailAppPrompt=Select your email application:
colorPrompt=Select your favorite colors:

thankYouLabel=Thank you {0}, for your information
contactMeLabel=Contact me:

bestDaylLabel=Best day to contact you:
yearOfBirthLabel=Your year of birth:
colorLabel=Colors:

languagelLabel=Languages:
educationLabel=Education:

IBETAL BB Sl select/web/resources/css/styles.css

.emphasis {
font-style: italic;
font-size: 1.3em;

}
.disabled {
color: gray;

}

.selected {
font-weight: bold;

}

Messages

During the JSF life cycle, any object can create a message and add it to a queue
of messages maintained by the faces context. At the end of the life cycle—in the
Render Response phase—you can display those messages in a view. Typically,
messages are associated with a particular component and indicate either con-
version or validation errors.

From the Library of Wow! eBook

172 Chapter 4 m Standard JSF Tags

Although error messages are usually the most prevalent message type in a JSF
application, messages come in four varieties:

. Information
o Warning

o Error

. Fatal

All messages can contain a summary and a detail. For example, a summary
might be Invalid Entry and a detail might be The number entered was greater than the
maximum.

JSF applications use two tags to display messages in JSF pages: h:messages and
h:message.

The h:messages tag displays all messages that were stored in the faces context
during the course of the JSF life cycle. You can restrict those messages to global
messages—meaning messages not associated with a component—by setting
h:message’s globalOnly attribute to true. By default, that attribute is false.

The h:message tag displays a single message for a particular component. That
component is designated with h:message’s mandatory for attribute. If more than
one message has been generated for a component, h:message shows only the
last one.

Bi{ NOTE: When you use JSF 2.0 and your project stage is set to Development,
YAl then an h:messages child is automatically added to your page (provided you
didn’t add one yourself).

The h:message and h:messages tags share many attributes. Table 4-27 lists all
attributes for both tags.

Table 4-27 Attributes for h:message and h:messages

Attributes Description

errorClass CSS class applied to error messages.
errorStyle CSS style applied to error messages.
fatalClass CSS class applied to fatal messages.
fatalStyle CSS style applied to fatal messages.

From the Library of Wow! eBook

Messages 173

Table 4-27 Attributes for h:message and h:messages (cont.)

Attributes Description

for The id of the component for which to display the message
(h:message only).

globalOnly Instruction to display only global messages—applicable
only to h:messages. Default is false.

infoClass CSS class applied to information messages.

infoStyle CSS style applied to information messages.

Tayout Specification for message layout: "table" or "1ist"—

applicable only to h:messages.

showDetail A Boolean that determines whether message details are
shown. Defaults are false for h:messages, true for h:message.

showSummary A Boolean that determines whether message summaries
are shown. Defaults are true for h:messages, false for
h:message.

tooltip A Boolean that determines whether message details are

rendered in a tooltip; the tooltip is only rendered if
showDetail and showSummary are true.

warnClass CSS class for warning messages.
warnStyTe CSS style for warning messages.
binding, id, rendered Basic attributes.?

style, styleClass, HTML 4.0.P

title, dir |KNYERIWA,
lang

a. See Table 4-5 on page 107 for information about basic attributes.
b. See Table 4-6 on page 110 for information about HTML 4.0 attributes.

The majority of the attributes in Table 4-27 represent CSS classes or styles that
h:message and h:messages apply to particular types of messages.

You can also specify whether you want to display a message’s summary or
detail, or both, with the showSummary and showDetail attributes, respectively.

The h:messages layout attribute can be used to specify how messages are laid out,
either as a list or a table. If you specify true for the tooltip attribute and you have

From the Library of Wow! eBook

174 Chapter 4 m Standard JSF Tags

also set showDetail and showSummary to true, the message’s detail will be wrapped in
a tooltip that is shown when the mouse hovers over the error message.

Now that we have a grasp of message fundamentals, we take a look at an
application that uses the h:message and h:messages tags. The application shown in

Figure 4-9 contains a simple form with two text fields. Both text fields have
required attributes.

Moreover, the “Age” text field is wired to an integer property, so its value is
converted automatically by the JSF framework. Figure 4-9 shows the error
messages generated by the JSF framework when we neglect to specify a value
for the “Name” field and provide the wrong type of value for the Age field.

© |using h:messages and h:message - Mozilla Firefax

Dle Edit ¥iew History Dookmarks Ibols Help

i v B = |c> http:/flocalhost:8080/messages/faces/index. xhtml A

Please fill out the followin

© |using h:messages and h:message - Mozilla Firefax

Name: Ole [Edit View Histery Dookmarks Tpols Help |
Age: |0 & v & = |c> http:/flocalhost:8080/messages/faces/index.xhtml -
Submit form

Please fill out the following information
Name: Valldation Error: Value is required.
Age: 'old” must be a number consisting af one ar mare digits.

Name: Name: Validation Error: Value is required.
Age: 'old" must be a number between
Age: |old -2147483648 and 2147483647 Lxample:
o 9346
T Submit form
Done # 0:327

Figure 4-9 Displaying messages

At the top of the JSF page, we use h:messages to display all messages. We use
h:message to display messages for each input field:

<h:form>
<h:messages Tayout="table" errorClass="errors"/>

<h:inputText id="name"

value="#{user.name}" required="true" Tlabel="#{msgs.namePrompt}"/>
<h:message for="name" errorClass="errors"/>

<h:inputText id="age"
value="#{form.age}" required="true" label="#{msgs.agePrompt}"/>
<h:message for="age" errorClass="errors"/>

</h;1.°(.)rm>

From the Library of Wow! eBook

Messages 175

Note that the input fields have Tabel attributes that describe the fields. These
labels are used in the error messages—for example, the Age: label (generated by
#{msgs.agePrompt}) in this message:

Age: 'old' must be a number between -2147483648 and 2147483647 Example: 9346

Both message tags in our example specify a CSS class named errors, which is
defined in styles.css. That class definition looks like this:

.errors {
font-style: italic;
color: red;

}

We have also specified layout="table" for the h:messages tag. If we had omitted that
attribute (or alternatively specified Tayout="Tist"), the output would look like that
shown in Figure 4-10.

|WUsing h:messages and h:message - Mozilla Firefox

File Edit View History Bookmarks Tools Help

= ™ EE ﬁ |§I http:/jlocalhost:2080/messages/faces/index. xhtml v

Please fill out the following information

« Name: Validation Error: Value is required.
+ Age: 'old' must be a number consisting of one or more digits.

Name: | Name: Validation Crror: Value is required.
Age: 'old' must be a number between
Age: |old -2147483648 and 2147483647 Example:
9346
Submit form

Done @ 0:327
[

Figure 4-10 Messages displayed as a list

The 1ist layout encodes the error messages in an unnumbered list (whose
appearance you can control through styles).

CAUTION: In JSF 1.1, the "Tist" style placed the messages one after the
other, without any separators, which was not very useful.

Figure 4-11 shows the directory structure for the application shown in Figure
4-9. Listings 4-17 through 4-19 list the JSF page, resource bundle, and
stylesheet for the application. For this example, we added getAge and setAge
methods to the UserBean class.

From the Library of Wow! eBook

m Chapter 4 m Standard JSF Tags

% NOTE: By default, h:messages shows message summaries but not details.
h:message, on the other hand, shows details but not summaries. If you use
h:messages and h:message together, as we did in the preceding example, sum-
maries will appear at the top of the page, with details next to the appropriate
input field.

[E messages.war
[index.xhtml
¥ (& WEB-INF
| % beans.xml
| faces-config.xml
_ web.xml
¥ (& classes
v ﬁ com
v (& corejsf
| UserBean.class
| messages.properties
A [E resources
v (& css

| | styles.css

Figure 4-11 Directory structure for the messages example

IBETR T S il messages/web/index. xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core" xmins:h="http://java.sun.com/jsf/htm1">
<h:head>
<title>#{msgs.windowTitle}</title>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
</h:head>
<h:body>
<h:form>
<h:outputText value="#{msgs.greeting}" styleClass="emphasis"/>

<h:messages errorClass="errors" layout="table"/>
<h:panelGrid columns="3">
#{msgs.namePrompt}:
<h:inputText id="name" value="#{user.name}" required="true"
Tabel="#{msgs.namePrompt}" />

From the Library of Wow! eBook

Conclusion 177

<h:message for="name" errorClass="errors"/>
#{msgs.agePrompt}:
<h:inputText id="age" value="#{user.age}" required="true"
size="3" Tabel="#{msgs.agePrompt}"/>

<h:message for="age" errorClass="errors"/>

</h:panelGrid>

<h:commandButton value="#{msgs.submitPrompt}"/>

</h:form>
</h:body>
</htm1>

 BET50 SR N messages/src/java/com/corejsf/messages.properties

windowTitle=Using h:messages and h:message
greeting=Please fill out the following information
namePrompt=Name

agePrompt=Age

submitPrompt=Submit form

IBETR LT E Kl messages/web/resources/css/styles.css

.errors {
font-style: italic;
color: red;

}
.emphasis {
font-size: 1.3em;

}

Conclusion

You have now seen all HTML tags in the standard library with the exception of
the tags used for tables, which are covered in Chapter 6. In the next chapter,
you will learn how to use the Facelets tags.

From the Library of Wow! eBook

FACELETS

¥ Topics in This Chapter

e “Facelets Tags” on page 179
e “Templating with Facelets” on page 181
* “Custom Tags” on page 195

e “Loose Ends” on page 198

From the Library of Wow! eBook

User interfaces are typically a web application’s most volatile aspect during

development, and they are often comprised of brittle code that is difficult to

change, making user interfaces expensive to develop. This chapter shows you
how to implement flexible Uls with Facelets.

Facelets Tags

Facelets was originally developed as an alternative to the JSP-based view han-
dler in JSF 1.x. In JSF 2.0, Facelets replaces JSP as JSF’s default view technology.
In addition to being a better view handler, Facelets supports a number of tags
for templating and other purposes. These tags are the topic of this chapter.

Facelets tags can be grouped in these categories:

¢ Including content from other XHTML pages (ui:include)

* Building pages from templates (ui:composition, ui:decorate, ui:insert,
ui:define, ui:param)

¢ Creating custom components without writing Java code (ui:component,
ui:fragment)

. Miscellaneous utilities (ui:debug, ui:remove, ui:repeat)

To use Facelets tags, add the following namespace declaration to your JSF

page:

xmins:ui="http://java.sun.com/jsf/facelets"

179

From the Library of Wow! eBook

Chapter 5 B Facelets

Table 5-1 gives a brief summary of the Facelets tags. We will discuss these tags
in detail in this chapter, except for ui:repeat, which is covered in Chapter 6.

Table 5-1 Facelets Tags

Tag Description
uizinclude Includes content from another XML file.
ui:composition When used without a template attribute, a composition is a

sequence of elements that can be inserted somewhere else. The
composition can have variable parts (specified with ui:insert
children).

When used with a template attribute, the template is loaded. The
children of this tag determine the variable parts of the template.
The template contents replaces this tag.

ui:decorate When used without a template attribute, ui:decorate specifies a
page into which parts can be inserted. The variable parts are
specified with ui:insert children.

When used with a template attribute, the template is loaded. The
children of this tag determine the variable parts of the template.

ui:define Defines content that is inserted into a template with a matching
ui:insert.
ui:insert Inserts content into a template. That content is defined inside the

tag that loads the template.

ui:param Specifies a parameter that is passed to an included file or a
template.
ui:component This tag is identical to ui:composition, except that it creates a

component that is added to the component tree.

ui:fragment This tag is identical to ui:decorate, except that it creates a
component that is added to the component tree.

ui:debug The ui:debug tag lets users display a debug window, with a
keyboard shortcut, that shows the component hierarchy for the
current page and the application’s scoped variables.

ui:remove JSF removes everything inside of ui:remove tags.
ui:repeat Iterates over a list, array, result set, or individual object. See
Chapter 6.

From the Library of Wow! eBook

Templating with Facelets m

Templating with Facelets

Most web applications follow a similar pattern, in which all pages have a com-
mon layout and styling. For example, it is typical for pages to have the same
header, footer, and sidebars.

Facelets lets you encapsulate that commonality in a template, so that you can
update the look of your site by making changes to the template, not the indi-
vidual pages.

% NOTE: Facelets templates encapsulate functionality that is shared by multi-
ple pages, so you don’t have to specify that functionality individually for
each page. Encapsulation is the cornerstone of both object-oriented pro-
gramming, and the well-known DRY (Don't Repeat Yourself) principle.

As a simple example, we will dissect an application that displays information
about the planets in our solar system (see Figure 5-1 and Figure 5-2).

ane Welcome Lo the Planetarium
[« [=][+]6 hup./jlocalbost5080/planets |) G 3

Welcome to the Planetarium

Welcome fo the Plinetarium.

Please log in. Name

Password

4

[Leqin |

Figure 5-1 Logging into the planetarium

The planets application has a total of 10 pages: a login page, a welcome page,
and a page for each of the planets. All of those pages share a common layout,
with a header at the top, a sidebar on the left, and a content area to the right of

From the Library of Wow! eBook

m Chapter 5 B Facelets

the sidebar. The pages also share some content (all planet pages have an identi-
cal header and sidebar) and a CSS stylesheet.

ann The Plasstarium
Lt L L] teip: s tocatbont 8080 staness taces fogin ahtmt 3 1
The Planetarium

Wekome to the planctariums. Click on a planct.

ann Marcury
[L] toio: ccatbost 808D elanets faces planetarium. hesl cKa—)|

%
A
)
:
®
X
|

The Planetarium

‘ Mercury is the chosest planet 1o the sun.

‘ann stars
Woam Lt o iccattost 3080 ctanets faces marcery. shemi 3)|

The Planetarium

Scientists believe that life may have existed on Mars in the past.

&

ann Sarurm
[[=] 1o ceatbest 8080/ctanets Taces /mars.ahimi Bc) |

The Planetarium

Satamn has rings made of ice and dust.

2
2
Q
*
9.
)
|

Y, W Py Y.

Q
2
?
h
:
®
)
2

Figure 5-2 All planetarium views share a common template

From the Library of Wow! eBook

Templating with Facelets m

Building Pages _from Common Templates

Listing 5-1 shows the template for the planets application.

planets/web/templates/masterLayout.xhtml

<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>
<title><ui:insert name="windowTitle"/></title>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
</h:head>

<h:body>
<div id="heading">
<ui:insert name="heading">
<ui:include src="/sections/planetarium/header.xhtml"/>
</ui:insert>
</div>

<div id="sidebarlLeft">
<ui:insert name="sidebarlLeft">
<uirinclude src="/sections/planetarium/sidebarLeft.xhtml"/>
</ui:insert>
</div>

<div id="content">
<ui:insert name="content"/>
</div>
<ui:debug/>
</h:body>
</htm1>

The template uses the ui:insert tag four times, to insert:

. The window title
¢ The heading
. The left sidebar

. The main content

From the Library of Wow! eBook

Chapter 5 B Facelets

The template also inserts a stylesheet into the head of the page. The stylesheet
defines the layout for the heading, the sidebar, and the main content.

You can specify default content inside the body of a ui:insert tag. For example:

<ui:insert name="header">
Default header goes here
</uizinsert>

The default is used if no replacement for header is specified when the template is
used.

It is common to use a ui:include tag to include default content from another file:

<ui:iinsert name="header">
<uizinclude src="/sections/planetarium/header.xhtml">
</uiiinsert>

We use a default for the header and the left sidebar.

To make use of a template, you use a ui:composition tag with a template attribute,
as shown in Listing 5-2.

planets/web/saturn.xhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:ui="http://java.sun.com/jsf/facelets">
<head><tit1e>IGNORED</title></head>
<body>
<ui:composition template="/templates/masterLayout.xhtml">
<ui:define name="windowTitle">
#{msgs.saturn}
</ui:define>

<ui:define name="content">
Saturn has rings made of ice and dust.
</ui:define>
</ui:composition>
</body>
</htm1>

Facelets removes all tags outside the ui:composition tag—that is, the doctype
declaration, html, head, title, and body tags. This is necessary because the
ui:composition is replaced with the template that contains its own set of html,
head, title, and body tags.

From the Library of Wow! eBook

Templating with Facelets m

In fact, you could instead simply make a saturn.xhtm] file with the following
XML code:

<ui:composition template="/templates/masterLayout.xhtml"
xmIns:ui="http://java.sun.com/jsf/facelets">
<ui:define name="windowTitle">
#{msgs.saturn}
</ui:define>

<ui:define name="content">
Saturn has rings made of ice and dust.
</ui:define>
</ui:composition>

This form is shorter and perhaps less confusing. However, you may not get as
much help from your IDE with such a file as you would when editing a regular
Facelets file. For that reason, it makes sense to include the composition inside a
properly formatted XHTML page, as we have done in Listing 5-2.

The ui:define tags inside the ui:composition tag correspond to the ui:insert tags of
the template shown in Listing 5-1. For example,

<ui:define name="content">
Saturn has rings made of ice and dust.
</ui:define>

in the composition corresponds to
<ui:insert name="content"/>
in the template.

When the template is loaded, each ui:insert is replaced with the contents of the
corresponding ui:define.

All of the pages in the planets application use the same template. The following
examples show how the template is used for some of those pages. (Differences
are shown in bold.)

mars.xhtml

<ui:composition template="/templates/masterLayout.xhtml">
<ui:define name="windowTitle">
#{msgs.mars}
</ui:define>

<ui:define name="content">
Scientists believe that 1ife may have existed on Mars in the past.
</ui:define>
</ui:composition>

From the Library of Wow! eBook

Chapter 5 B Facelets

planetarium.xhtml

<ui:composition template="/templates/masterLayout.xhtml">
<ui:define name="windowTitle">

<ui:define name="content">
#{msgs.planetariumWelcome}
</ui:define>
</ui:composition>

login.xhtml

<ui:composition template="/templates/masterLayout.xhtml">
<ui:define name="windowTitle">
#{msgs.loginTitle}
</ui:define>

<ui:define name="heading">
<uizinclude src="/sections/login/header.xhtml"/>
</ui:define>

<ui:define name="sidebarLeft">
<ui:include src="/sections/login/sidebarLeft.xhtml"/>
</ui:define>

<ui:define name="content">
<h:form>
<h:panelGrid columns="2">
#{msgs.namePrompt}
<h:inputText id="name" value="#{user.name}"/>
#{msgs .passwordPrompt}
<h:inputSecret id="password" value="#{user.password}"/>
</h:panelGrid>
<p>
<h:commandButton value="#{msgs.loginButtonText}"
action="planetarium"/>
</p>
</h:form>
</ui:define>
</ui:composition>

Note that the Togin.xhtml page overrides the defaults for the heading and

sidebar.

From the Library of Wow! eBook

Templating with Facelets m

Organizing Your Views

Fundamentally, templating splits a view into two XHTML pages: one that
defines common functionality (a template), and another that defines function-
ality that differs between views (a composition).

From this simple templating technique, you can construct user interfaces that
are very malleable and extensible. Let’s take a look at the bigger picture for the
planets application to see how.

Figure 5-3 shows the files that comprise the template and views for the planet
application.

ﬁ web

| earth.xhtml
| jupiter.xhtmi
_| login.xhtml
| mars.xhtml
" mercury.xhtml
; neptune.xhtml
| planetarium.xhtml
| saturn.xhtml
| uranus.xhtml
"] venus.xhtml
v ﬁ sections
v ﬁ login
| header.xhtml
| sidebarlLeft.xhtml
¥ ﬁ planetarium
| header.xhtml
| sidebarLeft.xhtml
v ﬁ templates
") masterLayout.xhtml

Figure 5-3 The planets application’s pages, sections, and template

Not only does the planets application split views into a common template and
compositions, but each piece of content is also split out into its own file; for
example, the login and planetarium views have one file each for the header,
and sidebar. Those individual pieces of content are included by each view with
the ui:include tag. For example, the login page includes its header like this:

<ui:define name="heading">
<uizinclude src="sections/login/header.xhtml"/>
</ui:define>

From the Library of Wow! eBook

188 Chapter 5 B Facelets

Defining individual pieces of content in their own files makes it easy to locate
code when you make changes to a view. For example, if you want to change
something in the login view’s sidebar, you know to edit sections/Togin/sidebar-
Left.xhtm], instead of having to search for that sidebar definition in one long file.
Splitting out sections makes it easy to read, understand, and modify your
pages, as each file contains a small amount of markup.

In our pages, we did not use separate files for the content sections. If you prefer,
you can factor out the content section into a separate Facelets file, such as
/sections/login/content.xhtml.

% NOTE: Smalltalk advocates a design pattern known as Composed Method.
That pattern urges you to write small, atomic methods from which you com-
pose your application. Small, atomic methods are much easier to write,
read, and extend than long methods with a lot of functionality. It’s also easier
to replace or modify functionality when that functionality is composed of
small snippets of code.

With JSF 2.0, you can use the Composed Method pattern to implement your
views. Carving your views into small XHTML files that perform a single clear
function, such as displaying a login form, makes it easer to implement, main-
tain, and extend your application’s views.

To complete our exploration of how the planets application uses Facelets tem-
plating, let’s take a look at the files under the sections directory. The files in this
directory contain page sections that are included in a template.

Listings 5-3 through 5-5 show the XHTML markup that creates the login
view’s header, menu, and content.

The header for the login view looks like this:

The Planetarium

The implementation of that header is shown in Listing 5-3.

Notice that the content (in this case, the text for the heading) is placed inside a
ui:composition tag that does not specify a template.

Here, we use ui:composition for a tactical reason: to discard the surrounding
XHTML tags.

From the Library of Wow! eBook

Templating with Facelets m

planets/web/sections/login/header.xhtml

<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:ui="http://java.sun.com/jsf/facelets">
<head><tit1e>IGNORED</title></head>
<body>
<ui:composition>
<div class="header">
#{msgs.loginHeading}
</div>
</ui:composition>
</body>
</htm1>

If it wasn’t for the ui:composition tag, you would wind up with multiple <html>
tags, because then <ui:include src="/sections/login/header.xhtm1"> would include
the entire file.

As a general rule, whenever you include content using the ui:include tag, wrap
the included content in a ui:composition tag.

NOTE: As already mentioned, you need not put the surrounding XHTML
; tags into the file that is being included. You still want to place the contents—
which usually consists of a sequence of tags— inside a ui:composition tag
so that the included file is proper XML.

Here is the sidebar for the login view:

Welcome to The
Planetarium. Please log in.

The login sidebar is implemented as shown in Listing 5—4.

From the Library of Wow! eBook

Chapter 5 B Facelets

planets/web/sections/login/sidebarLeft.xhtm]

<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/htm1">
<head><tit1e>IGNORED</title></head>
<body>
<ui:composition>
<div class="welcome">
#{msgs.ToginWelcome}
<div class="welcomeImage">
<h:graphicImage Tibrary="images" name="Saturn.gif"/>
</div>
</div>
</ui:composition>
</body>
</html>

Finally, the content area of the login page looks like this:

Please log in

Name William
Password

{ Y
Log In)

The content section is included in the Togin.xhtml page—see Listing 5-5.

planets/web/login.xhtm]

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://java.sun.com/jsf/html"
xmins:ui="http://java.sun.com/jsf/facelets">
<head><tit1e>IGNORED</title></head>

<body>
<ui:composition template="/templates/masterLayout.xhtml">

<ui:define name="windowTitle">
#{msgs.loginTitle}
</ui:define>

From the Library of Wow! eBook

Templating with Facelets m

<ui:define name="heading">
<uisinclude src="/sections/login/header.xhtml"/>
</ui:define>

<ui:define name="sidebarLeft">
<uizinclude src="/sections/login/sidebarLeft.xhtml"/>
</ui:define>

<ui:define name="content">
<h:forms>
<h:panelGrid columns="2">
#{msgs.namePrompt}
<h:inputText id="name" value="#{user.name}"/>
#{msgs.passwordPrompt}
<h:inputSecret id="password" value="#{user.password}"/>
</h:panelGrid>
<p>
<h:commandButton value="#{msgs.loginButtonText}"
action="planetarium"/>
</p>
</h:form>
</ui:define>
</ui:composition>
</body>
</htm1>

Now let’s take a look at the planetarium content.

Listings 5-6 through 5-8 show the XHTML markup that creates the planetar-
ium view’s header, menu, and content.

planets/web/sections/planetarium/header.xhtml

<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.o0rg/TR/xhtm11/DTD/xhtm]1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmIns:ui="http://java.sun.com/jsf/facelets">
<head><tit1e>IGNORED</title></head>
<body>
<ui:composition>
<div class="header">
#{msgs.planetariumHeading}
</div>
</ui:composition>
</body>
</htm1>

From the Library of Wow! eBook

m Chapter 5 B Facelets

planets/web/sections/planetarium/sidebarLeft.xhtml

<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:ui="http://java.sun.com/jsf/facelets"
xmins:h="http://java.sun.com/jsf/html"
xmins:corejsf="http://corejsf.com/facelets">
<head><tit1e>IGNORED</title></head>
<body>
<ui:composition>
<h:form>
<corejsf:planet name="mercury"
image="#{resource['images:Mercury.gif']}"/>
<corejsf:planet name="venus"
image="#{resource['images:Venus.qgif']}"/>
<corejsfiplanet name="earth"
image="#{resource['images:Earth.qgif']}"/>
<corejsf:planet name="mars"
image="#{resource['images:Mars.gif']}"/>
<corejsf:planet name="jupiter"
image="#{resource['images:Jupiter.gif']}"/>
<corejsf:planet name="saturn"
image="#{resource['images:Saturn.gif'1}"/>
<corejsf:planet name="uranus"
image="#{resource['images:Uranus.gif']}"/>
<corejsf:planet name="neptune"
image="#{resource['images:Neptune.gif']}"/>

</h:form>
</ui:composition>
</body>
</html>

planets/web/planetarium. xhtml

<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:ui="http://java.sun.com/jsf/facelets">
<head><tit1e>IGNORED</title></head>
<body>
<ui:composition template="/templates/masterLayout.xhtml">
<ui:define name="windowTitle">
#{msgs.planetariumTitle}
</ui:define>

From the Library of Wow! eBook

Templating with Facelets m

<ui:define name="content">
#{msgs.planetariumwelcome}
</ui:define>
</ui:composition>
</body>
</html>

The planetarium sections are similar to the login sections—each section is a
composition that defines a piece of the planetarium view.

Notice the use of the corejsf:planet tag in Listing 5-7. We will discuss that tag,
and Facelets custom tags in general, in the section “Custom Tags” on page 195.

Decorators

The template that you have seen in the preceding section defined a page by
laying out individual parts. When using the template, you specify the contents
of each part. This is similar to the Tiles framework (http://tiles.apache.org) that
can be used with Struts and JSF 1.x.

When you have a complex set of pages, the Tiles approach gives you a lot of
flexibility. But for a simple application, it seems rather complex to think of each
page as an assembly of sections. Decorators are a more content-centric
approach. You write your pages as usual, but you surround the contents with a
ui:decorate tag that has a template attribute. The decorator approach is the Face-
lets analog of the Sitemesh framework (http://waw.opensymphony.com/sitemesh/). In
Sitemesh, as with decorators, you first design your content and then you
decorate it.

In its simplest form, a decorator can be used like this:

<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://java.sun.com/jsf/html"
xmIns:ui="http://java.sun.com/jsf/facelets">
<head><title>#{msgs.loginTitle}</title></head>
<body>
<ui:decorate template="/templates/masterDecorator.xhtml">
<!-- Contents to be decorated -->
<h:forms>
<h:panelGrid columns="2">
#{msgs.namePrompt}
<h:inputText id="name" value="#{user.name}"/>
#{msgs.passwordPrompt}
<h:inputSecret id="password" value="#{user.password}"/>

From the Library of Wow! eBook

http://www.opensymphony.com/sitemesh/
http://tiles.apache.org

m Chapter 5 B Facelets

</h:panelGrid>
<p>
<h:commandButton value="#{msgs.loginButtonText}"
action="planetarium"/>

</p>
</h:form>
</ui:decorate>
</body>
</html>

The template decorates its contents in some way, such as with a header and a
left sidebar. Note that the tags outside the ui:decorate are not trimmed off (as
they would be with ui:composition). Here, the page author specifies the page title
directly in the page, without templating.

The template is defined like this:

Optional XHTML header
<ui:composition>
<h:outputStylesheet Tibrary="css" name="styles.css" target="body"/>
<div id="heading">
<ui:insert name="heading">Default header</ui:insert>
</div>

<div id="sidebarLeft">
<ui:insert name="sidebarLeft">Default sidebar</ui:insert>
</div>
<div id="content">
<ui:insert/>
</div>
</ui:composition>
Optional XHTML footer

Note the <ui:insert/> tag without a name attribute. It inserts all children of the
ui:decorate tag.

Also note the ui:composition tag that surrounds the layout instructions in the
template. We do not want the XHTML header and footer tags as part of the
template—the page that is being decorated already has its own XHTML tags.

With decorators, as with compositions, you can override defaults with ui:define
tags, like this:

<ui:decorate template="/templates/masterDecorator.xhtml">
<ui:define name="heading">Special Header</ui:define>
Body

</ui:decorate>

From the Library of Wow! eBook

Custom Tags m

The difference between ui:composition and ui:decorator is mostly conceptual. You
can achieve the same effects with either tag. Facelets simply considers them com-
plementary constructs: ui:composition trims all surrounding contents, whereas
ui:decorator doesn’t (and therefore requires a ui:composition in the template).

Parameters

When you invoke a template, you can supply arguments in two ways: with
ui:define and with the ui:param tag. As you have already seen, ui:define is used to
provide markup that is inserted into the template. In contrast, ui:param sets an
EL variable for use in a template, like this:
<ui:composition template="templates/masterTemplate.xhtml">
<ui:param name="currentDate" value="#{someBean.currentDate}"/>
</ui:composition>
In the corresponding template, you can access the parameter with an EL
expression, like this:
<body>
Today's date: #{currentDate}"/>
</body>

The ui:param tag can also be used as a child of a ui:include tag.

Custom Tags

You have now seen how to lay out user interface elements with templates. In
addition, Facelets allows you to define custom tags. A custom tag looks like a
regular JSF tag, but it uses the Facelets composition mechanism to insert con-
tent into your page.

For example, the planet links in the sidebar of the planets application are
created by a custom tag, shown in Listing 5-7 on page 192, like this:

<corejsf:planet name="#{mercury}"/>

The corejsf:planet tag creates a link with an image of the appropriate planet, as
shown in the menu in Figure 5-2 on page 182. When the user clicks on the link,
the application shows information about the selected planet.

Implementing a custom Facelets tag with JSF 2.0 is a two-step process:

1. Implement the custom tag (or component) in an XHTML file.

2. Declare the custom tag in a tag library descriptor.

From the Library of Wow! eBook

m Chapter 5 B Facelets

Listing 5-9 shows the implementation of the corejsf:planet tag.

planets/web/WEB-INF/tags/corejsf/planet.xhtml

<!DOCTYPE html1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:h="http://java.sun.com/jsf/html"
xmins:ui="http://java.sun.com/jsf/facelets">
<h:head><titTe>IGNORED</title></h:head>
<h:body>
<ui:composition>
<div class="#{name == planetarium.selectedPlanet ?
"planetImageSelected” : "planetImage"}'>
<h:commandLink action="#{planetarium.changePlanet(name)}">
<h:graphicImage value="#{image}"/>
</h:commandLink>
<ui:insert name="contentl"/>
</div>
</ui:composition>
</h:body>
</html>

When the user clicks on the link created by the custom tag, the changePTanet
method of the Planetarium class is invoked. That method simply navigates to the
selected planet. The Planetarium class is shown in Listing 5-10.

|05 0 -3 S8 L0 planets/src/com/corejsf/Planetarium. java

package com.corejsf;

import java.io.Serializable;
import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.RequestScoped;
// or import javax.faces.bean.RequestScoped;

@Named // or @ManagedBean

@RequestScoped

public class Planetarium implements Serializable {
private String selectedPlanet;

pubTic String getSelectedPlanet() { return selectedPlanet; }

From the Library of Wow! eBook

Custom Tags m

pubTic String changePlanet(String newValue) {
selectedPlanet = newValue;
return selectedPlanet;
}
}

In order to use the corejsf:planet tag, it must be declared in a tag library file. This
file defines:

. A namespace for the tags in this library (such as http://corejsf.com/facelets,
which is mapped to a prefix, such as corejsf:, in the page using the tags)

o A name for each tag (such as planet)
. The location of the template (here, tags/corejsf/planet.xhtml)

Listing 5-11 shows the listing for the tag library file.

planets/web/WEB-INF/corejsf.taglib.xml

<?xml version="1.0"?>
<!DOCTYPE facelet-taglib PUBLIC
"-//Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"
"http://java.sun.com/dtd/facelet-taglib_1_0.dtd">
<facelet-taglib>
<namespace>http://corejsf.com/facelets</namespace>
<tag>
<tag-name>planet</tag-name>
<source>tags/corejsf/planet.xhtml</source>
</tag>
</facelet-taglib>

Next, specify the location of the tag library file in web.xm1:

<context-params
<param-name>facelets.LIBRARIES</param-name>
<param-value>/WEB-INF/corejsf.taglib.xml</param-value>
</context-param>

If you use multiple tag library files, separate them with semicolons.

You can also package a set of Facelets tags as a JAR file. Place the template files
and any required resources into the JAR file. Then place the tag library file into
the META-INF directory. It doesn’t matter what name you give to the tag library
file, provided its name ends with taglib.xm1.

Implementing custom Facelets tags with JSF 2.0 is a simple matter, and it is
highly recommended for factoring out repetitive markup.

From the Library of Wow! eBook

http://corejsf.com/facelets

Chapter 5 B Facelets

Note, however, that custom Facelets tags are not as powerful as full-fledged
JSF components. In particular, you cannot attach functionality, such as valida-
tors or listeners, to a Facelets custom tag. (See Chapters 7 and 8 for more infor-
mation about validators and event listeners.) For example, we cannot add an
action listener to the corejsf:planet tag. JSF 2.0 addresses this concern with a
more advanced component mechanism, called composite components. We
discuss composite components in Chapter 9.

Components and Fragments

The template for the planet custom tag defines a ui:composition. When you use
the tag, it is replaced with the child elements of the composition. If you change
ui:composition in Listing 5-9 on page 196 to the ui:component tag, then the child ele-
ments are placed inside a JSF component. The component is then added to the
view.

You can supply id, binding, and rendered attributes with the ui:component tag. There
are two reasons why you might want to do this. You can programmatically
manipulate the component if you use the binding attribute to bind it to a bean.
Moreover, you can conditionally render the component by setting the rendered
attribute to a value expression.

Similarly, the ui:fragment tag is an analog to ui:decorate that generates a compo-
nent. You can use a fragment inside a ui:composition or ui:component to conditionally
include children:

<ui:fragment rendered="#{name == planetarium.selectedPlanet}">

Conditionally included children
</ui:fragment>

Loose Ends

In this section, we look at the remaining tags from Table 5-1 on page 180, with
the exception of ui:repeat, which is covered in the next chapter. We finish the
section with a note on whitespace handling in Facelets.

<ui:debug>

When you place the ui:debug tag in a Facelets page, a debug component is
added to the component tree for that page. If the user types a hotkey, which
by default is CTRL+SHIFT+d, JSF opens a window and displays the state of
the component tree and the application’s scoped variables. Figure 5-4 shows
that debug window.

From the Library of Wow! eBook

Loose Ends m

Debug - [login.xhtml

IC|_| http://localhost:8080/Planets/faces/login.xhtmi?facelets.ui.DebugOutput=1266422264814 it

Debug Output

‘ /login.xhtml

+ Component Tree
+ Scoped Variables

17 févr. 2010 08:58:47 - Generated by Mojara/Facelets

Terminé .*‘ E YSlow Y

Figure 5-4 Facelets debug output

You can click on Component Tree or Scoped Variables, to show the component
tree or the application’s scoped variables, respectively, as shown in Figure 5-5.

The ui:debug tag also lets you redefine the hotkey that brings up the Debug Out-
put window, with a hotkey attribute, like this:

<ui:debug hotkey="i"/>
The preceding use of ui:debug redefines the hotkey to CTRL+SHIFT+i.
The ui:debug tag is useful during development, so developers can instantly see
the current page’s component tree and the application’s scoped variables; how-
ever, you will probably want to remove the tag in production. For that reason,
we recommend that you put the ui:debug tag in a template, where it is specified
in one place, and shared among many views, instead of replicating the tag in
each view’s XHTML page.

From the Library of Wow! eBook

m Chapter 5 B Facelets

~

Debug - flogin.xhtml Jod
(UL hutp: flocalhost 8080 Planets faces/login.xhtmiTfacelets.ul.DebugOutput=1266422264814 1)
m
Debug Output '
‘ Jlogin.xhtml

i Component Tree

<UIViewReoot id="j_idl" inView="true" locale="fr FR" renderKitId="HTML_BASIC"
rendered="true" transient="false" viewId="/login.xhtml">

avax_faces_location HEAD
<ComponentResourceContainer id="javax faces location HEAD" inView="true
rendered="true" transient="false">

|<L’20ntpu': id="j_idt7" inView="false" rendered="true" transient="false"/>

—~

Debug - /login.xhtml €

(| | | http://localhost: 8080 /Planets/faces/login.xhtmi?facelets.ui.DebugOutput=1266422264814 h i

Debug Output

‘ flogin.xhtml

+ Component Tree

Scoped Variabl

Terminé

Request Parameters }
Name Value

None

View Attributes
Name Value

None

Request Attributes
Name Value

None -
ry
v

Terminé 3 B YSlow Y

Figure 5-5 Examining the component tree and scoped variables

<ui:remove>

Sometimes, to find out which part of a JSF page causes a stack trace, you may
want to use the time-honored divide-and-conquer strategy of commenting out
parts of the page to isolate the offending component.

From the Library of Wow! eBook

Loose Ends m

Somewhat surprisingly, the XML comments <!-- ... --> are not useful for this
purpose. For example, if you comment out a button in an XHTML page, like
this:

<!-- <h:commandButton id="ToginButton"
value="#{msgs.ToginButtonText}"
action="planetarium"/> -->

JSF will process the value expression #{msgs.loginButtonText}, and place the result, as
a comment, in the generated HTML page. Assuming that #{msgs.loginButtonText}
evaluates to Log In, you will see the following in the generated HTML page:

<!-- <h:commandButton id="ToginButton"
value="Log In"
action="planetarium"/> -->

If the getLoginButtonText method throws an exception, then the XML comments
don’t help you at all.

Since Facelets is not JSP, you cannot use a JSP comment <%-- ... --%> either.
Instead, use ui:remove, like this:

<u1i:remove>
<h:commandButton id="ToginButton"
value="#{msgs.ToginButtonText}"
action="planetarium"/>
</ui:remove>

You may wonder why Facelets processes value expressions in XML comments.
This feature was meant for use in JavaScript code inside comments. Actually,
you should use the script tag, not XML comments, to include JavaScript code in
your page, like this:
<script type="text/javascript">
<! [CDATA[
Javascript code

11>

</script>

This is a better solution since you can locate and process the scripts with XML
tools.

NOTE: If you set the context parameter javax.faces.FACELETS_SKIP_COMMENTS
to true in web.xm1, then XML comments are skipped. This is a sensible
setting that you should consider for your projects.

From the Library of Wow! eBook

Chapter 5 B Facelets

Handling Whitespace

The handling of whitespace in Facelets pages can be a bit surprising. By
default, whitespace is trimmed around components. For example, consider
the tags:

<h:outputText value="#{msgs.name}"/>
<h:inputText value="#{user.name}"/>

They are separated by whitespace (the newline after the h:outputText and the
spaces before h:inputText). Facelets won’t turn that whitespace into a text com-
ponent. This is a good thing—otherwise the tag sequence would not work cor-
rectly inside an h:panelGrid.

However, if you have two links in a row, the whitespace handling is unintui-
tive. The tags

<h:commandLink value="Previous" .../> <h:commandLink value="Next" .../>

yield links PreviousNext with no space in between. The remedy is to add a
space with a value expression #{' '}.

Conclusion

Facelets is a much more powerful display technology than JSP. Facelets was
expressly implemented for JSF, so it does not suffer from incompatibility with
JSF, as with corner cases using JSP with JSE.

Like Tiles, Facelets gives you the ability to implement modular user interfaces
that are easy to understand, modify, and extend, using the built-in templating
capabilities. Facelets also gives you the ability to decorate sections of a page,
further separating concerns between basic content and decorations. Finally,
Facelets gives you a number of utility tags, including ui:debug, which make
implementing JSF pages much easier than with JSP.

From the Library of Wow! eBook

This page intentionally left blank

From the Library of Wow! eBook

DATA TABLES

- Topics in This Chapter

e “The Data Table Tag—h:dataTable” on page 205
e “A Simple Table” on page 207

e “Headers, Footers, and Captions” on page 212
e “Styles” on page 215

e “JSF Components in Tables” on page 218

e “Editing Tables” on page 222

e “Database Tables” on page 228

e “Table Models” on page 232

e “Scrolling Techniques” on page 242

From the Library of Wow! eBook

Classic web applications deal extensively in tabular data. In the days of old,
HTML tables were preferred for that task, in addition to acting as page layout
managers. That latter task has, for the most part, been subsequently rendered
to CSS, but displaying tabular data is still big business.

This chapter discusses the h:dataTable tag, a capable but limited component that
lets you manipulate tabular data.

% NOTE: The h:dataTable tag represents a capable component/renderer pair.
For example, you can easily display JSF components in table cells, add
headers and footers to tables, and manipulate the look and feel of your
tables with CSS classes. However, h:dataTable is missing some high-end
features that you might expect out of the box. For example, if you want to
sort table columns, you will have to write some code to carry that out. See
“Sorting and Filtering” on page 234 for more details on how to do that.

The Data Table Tag—h:dataTable

The h:dataTable tag iterates over data to create an HTML table. Here is how you
use it:

205

From the Library of Wow! eBook

m Chapter 6 B Data Tables

<h:dataTable value="#{items}" var="1item">
<h:column>
<!-- left column components -->
#{item.aPropertyName}
</h:column>

<h:column>
<!-- next column components -->
<h:commandLink value="#{item.anotherPropertyName}" action="..."/>

</h:column>

<!-- add more columns, as desired -->
</h:dataTable>

The value attribute represents the data over which h:dataTable iterates; that data
must be one of the following:

e AJava object

* Anarray

. An instance of java.util.List

. An instance of java.sql.ResultSet

U An instance of javax.servlet.jsp.jst1.sql.Result
. An instance of javax.faces.model.DataMode]

As h:dataTable iterates, it makes each item in the array, list, result set, etc.,
available within the body of the tag. The name of the item is specified with
h:dataTable’s var attribute. In the preceding code fragment, each item (item) of a
collection (items) is made available, in turn, as h:dataTable iterates through the
collection. You use properties from the current item to populate columns for
the current row.

You can also specify any Java object for h:dataTable’s value attribute, although the
usefulness of doing so is questionable. If that object is a scalar (meaning it is not
a collection of some sort), h:dataTable iterates once, making the object available
in the body of the tag.

The body of h:dataTable tags can contain only h:column tags; h:dataTable ignores all
other component tags. Each column can contain an unlimited number of com-
ponents (as well as optional header and footer facets, which we discuss in the
next section).

h:dataTable pairs a UIData component with a Table renderer. That combination
provides robust table generation that includes support for CSS styles, database
access, custom table models, and more. We start our h:dataTable exploration
with a simple table.

From the Library of Wow! eBook

A Simple Table m

A Simple Table

Figure 6-1 shows a table of names.

[®]A Simple Table - Mozilla Firefox

fle Cdit View History Dookmarks Tools llelp

= i |©) httpiyfiocalhost:8080/simple/ v

An array of names:
Dupont, William
Keeney, Anna
Randor, Mariko
Wilson, John

Done #
T T

Figure 6-1 A simple table

The directory structure for the application shown in Figure 6-1 is shown in
Figure 6-2. The application’s JSF page is given in Listing 6-1.

ﬁ simple.war
| index.xhtml
¥ (& WEB-INF
'_ beans.xml
7| faces-config.xml
| web.xml
¥ (& classes
v ﬁ com
v (&5 corejsf
| Name.class
_| TableData.class

| messages.properties
Figure 6-2 The directory structure for the simple table
In Listing 6-1, we use h:dataTable to iterate over an array of names. The last

name followed by a comma is placed in the left column and the first name is
placed in the right column.

From the Library of Wow! eBook

Chapter 6 B Data Tables

Listing 6-2 shows the Name class. The array of names in this example is instanti-
ated by a managed bean, which is shown in Listing 6-3.

simple/web/index.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm] PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>#{msgs.windowTitTe}</title>
</h:head>
<h:body>
#{msgs.pageTitle}
<h:forms>
<h:dataTable value="#{tableData.names}" var="name">
<h:column>
#{name.last},
</h:column>

<h:column>
#{name.first}
</h:coTumn>
</h:dataTable>
</h:form>
</h:body>
</htm1>

simple/src/java/com/corejst/Name.java

package com.corejsf;
import java.io.Serializable;

pubTic class Name implements Serializable {
private String first;
private String last;

public Name(String first, String last) {
this.first = first;
this.last = last;

}

From the Library of Wow! eBook

A Simple Table m

public void setFirst(String newvalue) { first = newValue; }
public String getFirst() { return first; }

public void setlast(String newValue) { Tast = newValue; }
public String getlast() { return last; }
}

simple/src/java/com/corejsf/TableData. java

package com.corejsf;
import java.io.Serializable;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;
import javax.faces.model.ArrayDataModel;
import javax.faces.model.DataModel;

@Named // or @ManagedBean
@SessionScoped
pubTic class TableData implements Serializable {
private static final Name[] names = new Name[] {
new Name("WiTliam", "Dupont"),
new Name("Anna", "Keeney"),
new Name("Mariko", "Randor"),
new Name("John", "WiTson")

b

public Name[] getNames() { return names;}

}

The table in Figure 6-1 is intentionally vanilla. Throughout this chapter we will
see how to add bells and whistles, such as CSS styles and column headers, to
tables.

CAUTION: h:dataTable data is row oriented—for example, the names in
Listing 6-3 correspond to table rows, but the names say nothing about what
is stored in each column—it is up to the page author to specify column con-
tent. Row-oriented data might be different from what you are used to; Swing
table models, for example, keep track of what is in each row and column.

From the Library of Wow! eBook

Chapter 6 B Data Tables

h:dataTable Attributes
h:dataTable attributes are listed in Table 6-1.

Table 6-1 Attributes for h:dataTable

Attribute Description

bgcolor Background color for the table

border Width of the table’s border

captionClass B The CSS class for the table caption

captionStyle NI GKIVA A CSS style for the table caption

cellpadding Padding around table cells

cellspacing Spacing between table cells

columnClasses Comma-separated list of CSS classes for columns

dir Text direction for text that does not inherit direc-
tionality; valid values: LTR (left to right) and RTL
(right to left)

first A zero-relative index of the first row shown in
the table

footerClass CSS class for the table footer

frame Specification for sides of the frame surrounding

the table; valid values: none, above, beTow, hsides,
vsides, 1hs, rhs, box, border

headerClass CSS class for the table header
rowClasses Comma-separated list of CSS classes for rows
rows The number of rows displayed in the table,

starting with the row specified with the first
attribute; if you set this value to zero, all table
rows will be displayed

rules Specification for lines drawn between cells; valid
values: groups, rows, columns, all

summary Summary of the table’s purpose and structure
used for nonvisual feedback such as speech

From the Library of Wow! eBook

A Simple Table m

Table 6-1 Attributes for h:dataTable (cont.)

Attribute Description

var The name of the variable created by the data table
that represents the current item in the value

binding, id, rendered, styleClass, Basic

value
lang, style, title, width HTML 4.0
onclick, ondblcTick, onkeydown, DHTML events

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup

The binding and id attributes are discussed in “IDs and Bindings” on page 108 of
Chapter 4, and rendered attributes are discussed in “An Overview of the JSF
HTML Tags” on page 105 of Chapter 4.

h:dataTable also comes with a full complement of DHTML event and HTML 4.0
pass-through attributes. You can read more about those attributes in Chapter 4.

The first attribute specifies a zero-relative index of the first visible row in the
table. The value attribute points to the data over which h:dataTable iterates. At the
start of each iteration, h:dataTable creates a request-scoped variable that you
name with h:dataTable’s var attribute. Within the body of the h:dataTable tag, you
can reference the current item with that name.

h:column Attributes

h:column attributes are listed in Table 6-2.

Table 6-2 Attributes for h:column

Attribute Description

footerClass [NEYEIWA The CSS class for the column'’s footer
headerClass [NAYFKIVA The CSS class for the column’s header
binding, id, rendered, styleClass, value Basic

From the Library of Wow! eBook

Chapter 6 B Data Tables

Headers, Footers, and Captions

If you display a list of names as we did in “A Simple Table” on page 207, you
need to distinguish last names from first names. You can do that with a column
header, as shown in Figure 6-3.

F_Headers. Footers, and Captions - Mozilla Firefox

[_[A[x]

ﬁ |§' http://localhost:2080/hcadersAnd

w

#

fle Cdit View History Dookmarks Tools llelp
€« -8
Last Name First Name
Dupont, William
Keeney, Anna
Randor, Mariko
Wilson, John
[alphal [alphal
Donc
T

Figure 6-3 Specifying column headers and footers

Besides headers, the table columns in Figure 6-3 also contain footers that indi-
cate the data type of their respective columns; in this case, both columns are

[alpha], for alphanumeric.

Column headers and footers are specified with facets, as shown here:

<h:dataTable>

<h:column headerClass="columnHeader"
footerClass="columnFooter">

<f:facet name="header">

<!-- header components go here -->

</f:facet>

<I-- column components go here -->

<f:facet name="footer">

<!-- footer components go here -->

</f:facet>
</h:column>

</h (lialltaTaM e>

From the Library of Wow! eBook

Headers, Footers, and Captions m

h:dataTable places the components specified for the header and footer facets in
the HTML table’s header and footer, respectively. Notice that we use the
h:column headerClass and footerClass attributes to specify CSS styles for column
headers and footers, respectively.

To supply a table caption, add a caption facet, like this:
<h:dataTable ...>
<f:facet name="caption">An Array of Names:</f:facet>
</h:dataTable>

If you add this facet to the table shown in Figure 6-3, you will see what is
shown in Figure 6—4.

You can use captionStyle and captionClass to specify a style or CSS class, respec-
tively, for the caption:

<h:dataTable ... captionClass="caption">
<f:facet name="caption">An Array of Names:</f:facet>

</h:dataTable>

In the preceding code snippet, we used some plain text for the facet, but like
any facet, you can specify a JSF component instead.

[®[Headers, Footers, and Captions - Mozilla Firefox RS
fle Cdit View History Dookmarks Tools llelp

* ~ g ﬁ |§| http:/flocalhost:2080/hcadersAnd v

An Array ol Narmes
Last Name First Name

Dupont, William

Keeney, Anna

Randor, Mariko

Wilson, John

[alphal [alphal

Donc *.

T T

Figure 6-4 A table caption

The code for the JSF page shown in Figure 6—4 is given in Listing 6—4.

From the Library of Wow! eBook

m Chapter 6 B Data Tables
headersAndFooters/web/index.xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core" xmins:h="http://java.sun.com/jsf/htm1">
<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<title>#{msgs.windowTitle}</title>
</h:head>
<h:body>
<h:forms>
<h:dataTable value="#{tableData.names}" var="name"
captionStyle="font-size: 0.95em; font-style:italic"
style="width: 250px;">

<f:facet name="caption">An Array of Names</f:facet>

<h:column headerClass="columnHeader" footerClass="columnFooter">
<f:facet name="header">#{msgs.lastnameColumn}</f:facet>

#{name.last},

<f:facet name="footer">#{msgs.alphanumeric}</f:facet>
</h:coTumn>

<h:column headerClass="columnHeader" footerClass="columnFooter">
<f:facet name="header">#{msgs.firstnameColumn}</f:facet>

#{name.first}

<f:facet name="footer">#{msgs.alphanumeric}</f:facet>
</h:column>
</h:dataTable>
</h:form>
</h:body>
</html>

TIP: To place multiple components in a table header or footer, you must
¥ group them in an h:panelGroup tag or place them in a container component
with h:panelGrid or h:dataTable. If you place multiple components in a facet,
only the first component will be displayed.

From the Library of Wow! eBook

oy

Styles
h:dataTable has attributes that specify CSS classes for the following:

The table as a whole (styleClass)
Column headers and footers (headerClass and footerClass)

Individual columns (columnClasses)

Individual rows (rowClasses)

The table shown in Figure 6-5 uses styleClass, headerClass, and columnClasses.

o
a
2
2
=
3
g
o)
2
2
2
-]
)
o
g
=]
3
2
5]
1
=
3

Description
2002-05-20
2002-05-21
2002-05-24
2002-05-23
2002-05-22
2002-05-20
2002-05-22
2002-05-21
2002-05-23
2002-05-21
2002-05-24
2002-05-22

&
5
]
%
1
A
<
pude
=
oo
®
A
(4]
[/}
"
(-]
(¢}
=]
)
g
=
wn
[~}
=
2
(=N
a
wn

% NOTE: The h:dataTable rowClasses and columnClasses attributes are mutually
exclusive. If you specify both, columnClasses has priority.

Styles by Column
Here is how the CSS classes in Figure 6-5 are specified:

<h:dataTable value="#{order.al1}" var="order"
styleClass="orders"
headerClass="ordersHeader"
columnClasses="oddColumn,evenColumn">

Those CSS classes are listed next.

From the Library of Wow! eBook

Chapter 6 B Data Tables

.orders {
border: thin solid black;
}
.ordersHeader {
text-align: center;
font-style: italic;
color: Snow;
background: Teal;
}
.oddCoTumn {
height: 25px;
text-align: center;
background: MediumTurquoise;
}
.evenColumn {
text-align: center;
background: PowderBlue;

}

We specified only two column classes, but notice that we have five columns.
In this case, h:dataTable reuses the column classes, starting with the first. By
specifying only the first two column classes, we can set the CSS classes for odd
and even columns. (When using the terms odd and even in this way, we assume
that the first column is column 1.)

CAUTION: We use color names, such as PowderBlue and Medium-
Turquoise, in our style classes for the sake of illustration. You should prefer
the equivalent hex constants because they are portable, whereas color
names are not.

Styles by Row

You can use the rowClasses attribute to specify CSS classes by rows instead of
columns, as illustrated in Figure 6-6. That data table is implemented like this:

<h:dataTable value="#{order.al1}" var="order"
styleClass="orders"
headerClass="ordersHeader"
rowClasses="oddRow,evenRow">

Like column classes, h:dataTable reuses row classes when the number of classes
is less than the number of rows. In the preceding code fragment, we have taken
advantage of this feature to specify CSS classes for odd and even rows.

From the Library of Wow! eBook

Styles 217

Order Number Order Date Customer ID Amount Description

2002-05-21 19.95 Coffee grinder

2002-05-23 39.34 Deluxe cheese grater

2002-05-20 28.11 Instamatic camera

2002-05-21 56.76 Coffee maker

2002-05-21 6.8 Tape recorder

2002-05-22 47.63 Game software

Figure 6-6 Applying styles to rows

The ui:repeat Tag

Instead of the h:dataTable tag, you can use the ui:repeat tag. The ui:repeat tag
repeatedly inserts its body into the page. You have to render the table markup

yourself, like this:

<table>
<ui:repeat value="#{tableData.names}" var="name">
<tr>
<td>#{name.last},</td>
<td>#{name.first}</td>
</tr>
</ui:repeat>
</table>

We find that this gets a bit tedious, particularly when you have to worry about
headers, footers, captions, and styles. But if you are familiar with HTML tables,

there is nothing wrong with using ui:repeat instead of h:dataTable.

The ui:repeat tag has several attributes that can make it a better choice than

h:dataTable in some situations.

The following attributes let you iterate over a subset of the collection:

. offset is the index at which the iteration starts (default: 0)

o step is the difference between successive index values (default: 1)

. size is the number of iterations (default: (size of the collection — offset) /

step)

From the Library of Wow! eBook

Chapter 6 B Data Tables

For example, if you want to show elements 10, 12, 14, 16, 18 of a collection, you
use:

<ui:repeat ... offset="10" step="2" size="5">

The varStatus attribute sets a variable that reports on the iteration status. The
iteration status has these properties:

U Boolean properties even, odd, first, and Tast, which are useful for selecting
styles.

e Integer properties index, begin, step, and end, which give the index of the
current iteration and the starting offset, step size, and ending offset. Note
that begin = offset and end = offset + step x size, where offset and size are the
attribute values from the ui:repeat tag.

The index property can be used for row numbers:

<table>
<ui:repeat value="#{tableData.names}" var="name" varStatus="status">
<tr>
<td>#{status.index + 1}</td>
<td>#{name.last},</td>
<td>#{name.first}</td>
</tr>
</ui:repeat>
</table>

JSF Components in Tables

To this point, we have used only output components in table columns, but you
can place any JSF component in a table cell. Figure 6-7 shows an application
that uses a variety of components in a table.

h:dataTable iterates over data, so the table shown in Figure 67 provides a list of
integers for that purpose. We use the current integer to configure components
in the “Number”, “Textfields”, “Buttons”, and “Menu” columns.

Components in a table are no different than components outside a table; you
can manipulate them in any manner you desire, including conditional render-
ing with the rendered attribute, handling events, and the like.

The directory structure for the application shown in Figure 6-7 is shown in
Figure 6-8. The JSF page is given in Listing 6-5. Listing 6—6 shows the managed
bean that contains the model data: the numbers 1 through 5.

From the Library of Wow! eBook

JSF Components in Tables m

WUsing JSF Components in Tables - Mozilla Firefox

File Edit View History Bookmarks Tools Help
ﬁ ~ g ﬂ ||_g" http:/flocalhost:0080/components/ -
- . Radio List
Number Textfields Buttons Checkboxes Links Graphics Menu Buttons P
yes [7]
— - . ~ b
1 1 1! O 1 - 1|3 ' yes O no nmnay €
ok -]
yes [
o | ~ -y P b
2 2 2 L 2 - 2% 2 yes U no nmoay €
uk -]
yes [4]
_ . b
s b blos 3 B bl owmom B
ok
yes [2f
— — Py b
4 4 4 O 4 ! 4% O yes O no :ﬁoav e
ok [~]
yes
o | M - h
s 50 510 s BR6E owom T
ok [~]
Done i
T T

Figure 6-7 JSF components in table cells

ﬁ components.war
| index.xhtml
¥ (& WEB-INF
| beans.xml
| faces-config.xml
_ web.xml
v ﬁ classes
¥ & com
¥ (&5 corejsf
__| messages.properties
¥ (&5 resources
v (& css
_ styles.css
v (& images
| dicel.gif
| dice2.gif
| dice3.qgif
| dice4.gif
| dice5.gif

Figure 6-8 Directory structure for the components example

From the Library of Wow! eBook

Chapter 6 B Data Tables

components/web/index.xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<title>#{msgs.windowTitle}</title>
</h:head>
<h:body style="background: #eee">
<h:form>
<h:dataTable value="#{numberList}" var="number">
<h:column>
<f:facet name="header">#{msgs.numberHeader}</f:facet>
#{number}
</h:column>
<h:column>
<f:facet name="header">#{msgs.textfieldHeader}</f:facet>
<h:inputText value="#{number}" size="3"/>
</h:coTumn>
<h:column>
<f:facet name="header">#{msgs.buttonHeader}</f:facet>
<h:commandButton value="#{number}"/>
</h:coTumn>
<h:column>
<f:facet name="header">#{msgs.checkboxHeader}</f:facet>
<h:selectBooleanCheckbox value="false"/>
</h:column>
<h:column>
<f:facet name="header">#{msgs.TinkHeader}</f:facet>
<h: commandLink>#{number}</h:commandLink>
</h:coTumn>
<h:column>
<f:facet name="header">#{msgs.graphicHeader}</f:facet>
<h:graphicImage library="images" name="dice#{number}.gif"
style="border: Opx"/>
</h:column>
<h:column>
<f:facet name="header">#{msgs.menuHeader}</f:facet>
<h:selectOneMenu>
<fiselectItem itemLabel="#{number}" itemValue="#{number}"/>
</h:selectOneMenu>
</h:column>

From the Library of Wow! eBook

JSF Components in Tables m

<h:column>
<f:facet name="header">#{msgs.radioHeader}</f:facet>
<h:selectOneRadio layout="TineDirection" value="nextMonth">
<fiselectItem itemValue="yes" itemLabel="yes"/>
<f:selectItem itemValue="no" itemLabel="no"/>
</h:selectOneRadio>
</h:column>
<h:column>
<f:facet name="header">#{msgs.1istboxHeader}</f:facet>
<h:selectOneListbox size="4">
<fiselectItem itemValue="yes" itemLabel="yes"/>
<fiselectItem itemValue="maybe" itemLabel="maybe"/>
<f:selectItem itemValue="no" itemLabel="no"/>
<fiselectItem itemValue="ok" itemLabel="ok"/>
</h:selectOnelisthox>
</h:column>
</h:dataTable>
</h:form>
</h:body>
</htm1>

TRV TG RGN components/web/WEB-INF/faces-config.xml

<?xml version="1.0"?>
<faces-config xmins="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd"
version="2.0">
<application>
<resource-bundle>
<base-name>com. corejsf.messages</base-name>
<varsmsgs</var>
</resource-bundle>
</application>

<managed-bean>
<managed-bean-name>numberList</managed-bean-name>
<managed-bean-class>java.util.ArraylList</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<list-entries>
<value>l</value>
<value>2</value>
<value>3</value>
<value>d</value>
<value>5</value>
</list-entries>
</managed-bean>
</faces-config>

From the Library of Wow! eBook

m Chapter 6 B Data Tables

Editing Tables

The following two sample programs show you how to edit tables. We first
show you how to edit individual table cells. Then we give an example of delet-
ing table rows. The same technique would work for adding rows. When you
implement commands that affect individual rows, your application needs to

have a way of finding out which rows the user selected. Each example shows a
different approach for identifying the user selections.

Editing Table Cells

To edit table cells, you provide an input component for the cell you want to edit.
The application shown in Figure 6-9 allows editing of all its cells. You click a
checkbox to edit a row and then click the “Save Changes” button to save your
changes. From top to bottom, Figure 6-9 shows a cell being edited.

) Editing Table Cells - Mozilla Firefox

Hile Edit ¥iew History Bookmarks [pols Help

€« v

4 [@] nep:nocainost:ausu/cditings v

Edit Last Name First Name

[Dupont William

(R GENTAM © Editing Table Cells - Mozilla Firefox

[Randor |Lle Ldit View History Bookmarks lools Help
LI Wilson | 4a
Save changes

B e ﬂ |0 http:/flocalhost:8080/editing/face v

Edit Last Name First Name

— Q Lupont |wi|liam

O Keeney
[Randor | ile
[Wilson

Save changes

) Editing Table Cells - Mozilla Firefox

Ldit Yiew History BHookmarks Jools Help

€« v

ﬂ |0 http:/flocalhost:8080/editing/face v

Edit Last Name First Name
Done & |willis [Harrisonpy,

[Keeney
) Randor Lile
[Wilson

Save changes

) Editing Table Cells - Mozilla Firefox

Ldit Yiew History BHookmarks Jools Help

«s g

ﬂ |0 http:/flocalhost:8080/editing/face v

Edit Last Name First Name

Done & |willis [Harrison
i O Keeney |5 Editing Table Cells - Mozilla Firefox
[Randor Lile Edit yiew History Bookmarks Iools Help
:aupglr_l‘!:;: L v @ |8 hup:ocalhost:uouosediti
Edit Last Name First Name
Done B Willis Harrison
T

\5 Keeney Anna
LI Randor Mariko
O Wilson John

Save changes

Figure 6-9 Editing table cells

From the Library of Wow! eBook

Editing Tables m

The table cells in Figure 6-9 use an input component when the cell is being
edited and an output component when it is not. The following code shows how
that is implemented:

<h:dataTable value="#{tableData.names}" var="name">
<!-- checkbox column -->
<h:column>
<f:facet name="header">
<h:outputText value="#{msgs.editColumn}" style="font-weight: bold"/>
</f:facet>

<h:selectBooleanCheckbox value="#{name.editable}" onclick="submit()"/>
</h:column>

<!-- last name column -->
<h:column>

<h:inputText value="#{name.last}" rendered="#{name.editable}" size="10"/>

<h:outputText value="#{name.last}" rendered="#{not name.editable}"/>
</h:column>

</h:dataTables

The preceding code fragment lists only the code for the checkbox and last
name columns. The value of the checkbox corresponds to whether the current
name is editable; if so, the checkbox is checked. Two components are specified
for the last name column: an h:inputText and an h:outputText. If the name is edit-
able, the input component is rendered. If the name is not editable, the output
component is rendered.

Here we add an editable property to the Name class:

pubTic class Name {
private String first;
private String last;
private boolean editable;

pubTic boolean isEditable() { return editable; }
public void setEditable(boolean newValue) { editable = newValue; }

}
The full listing for the JSF page shown in Figure 6-9 is given in Listing 6-7.

From the Library of Wow! eBook

m Chapter 6 B Data Tables
editing/web/index. xhtn

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>#{msgs.windowTitle}</title>
</h:head>
<h:body>
<h:forms>
<h:dataTable value="#{tableData.names}" var="name">
<h:column>
<f:facet name="header">
<h:outputText value="#{msgs.editColumn}"
style="font-weight: bold"/>

</f:facet>
<h:selectBooleanCheckbox value="#{name.editable}" onclick="submit()"/>
</h:coTumn>
<h:column>
<f:facet name="header">
<h:outputText value="#{msgs.lastnameColumn}"
style="font-weight: bold"/>
</f:facet>
<h:inputText value="#{name.last}" rendered="#{name.editable}"
size="10"/>
<h:outputText value="#{name.last}" rendered="#{not name.editable}"/>
</h:coTumn>
<h:column>
<f:facet name="header">
<h:outputText value="#{msgs.firstnameColumn}"
style="font-weight: bold"/>
</f:facet>
<h:inputText value="#{name.first}" rendered="#{name.editable}"
size="10"/>
<h:outputText value="#{name.first}" rendered="#{not name.editable}"/>
</h:coTumn>
</h:dataTable>
<h:commandButton value="#{msgs.saveChangesButtonText}"
action="#{tableData.save}"/>
</h:form>
</h:body>
</html>

From the Library of Wow! eBook

Editing Tables m

NOTE: Table cell editing, as illustrated in the preceding section, works for all
' valid types of table data: Java objects, arrays, lists, result sets, and results.
However, a database result set associated with a table must be updatable for
the JSF implementation to update the database.

Deleting Rows

When deleting or adding rows, it would be tedious to use an array to collect
the row data. Use a list instead. We will simply use an ArrayList<Name> in our
example.

Our sample application shows a link labeled “Delete” next to each row—see
Figure 6-10. As in the editing example, there must be some way of finding out
which row the user selected. In that example, we added an editable property to
the Name class. That made the code quite simple, but it is not always a workable
approach. If the Name class comes from the business logic of your application,
you can’t simply add properties to that class.

[©|Deleting Table Rows - Mozilla Firefo|_ ([
File Edit View History Bookmarks Tools Help

g ﬁ @) | http://locz []

Last NamelFirst Name| | [©|Deleting Table Rows - Mozilla Firefo|_ |1[X|
Keeney, Anna Delete| |file Edit view History Bookmarks Tools Help
Wilson, John Deﬁte & v o & :§ hetpsfloce |~ |
Randor, Mariko Delele
Dupont, | William pe\Ql|Last Name|First Name| |

Keeney, Anna Delete

http://localhost:8080/ch06 delete/faces/index.x Randor. Mariko M

! Dupont, William Delele

Donec
T T

Figure 6-10 Deleting table rows

Instead, we want each link to identify the row to be deleted. In some

web frameworks, you might craft links of the form /delete/rowNumber or
delete?id=someld. You can do this in JSF, but since JSF 2.0, there is a much easier
way. You simply pass the row item to the action method:

From the Library of Wow! eBook

m Chapter 6 B Data Tables

<h:dataTable value="#{tableData.names}" var="name" ...>

<h:commandLink value="Delete" action="#{tableData.deleteRow(name)}">

</h (lialltaTaM e>

When the link is clicked, the deleteRow method is called with the current value of
name, and the value is removed:

public String deleteRow(Name nameToDelete) {
names. remove (nameToDelete) ;
return null;

}

Note that we do not require that Name objects have IDs. We simply use the object
itself. Of course, that object is not sent back and forth between the browser and
the server. Instead, each component in a data table has an ID that contains its
row number. These IDs are automatically generated when the data table is ren-
dered. When a link is activated, its ID is sent to the server. When decoding the
response, the data table loops again over the values, setting the name variable and
regenerating the link IDs. When the matching link is encountered, its decode
method is activated, and evaluates the expression #{tableData.deleteRow(name)} with
the current value.

CAUTION: If the value of a data table has request scope, be sure that the
data does not change between the rendering of the table and the decoding
of the response. If the new data set is different, then the wrong row will be
processed. If the new data set is empty, then no action takes place at all
because no matching link is encountered.

Our example does not illustrate adding rows, but you can use the same idea to
extend it. Provide “Add above” links next to each element, and then provide
an additional link to add a row below the last one.

Figure 6-11 shows the directory structure for the application. Listings 6-8 and 6-9
provide the JSF page and the managed bean.

From the Library of Wow! eBook

Editing Tables m

ﬁ delete.war
7 index.xhtml
¥ (& WEB-INF
_ beans.xml
7| faces-config.xml
| web.xml
¥ (& classes
v ﬁ com
v (&5 corejsf
| Name.class
|| TableData.class
: messages.properties
v ﬁ resources

v (& css

| styles.css

Figure 6-11 The directory structure for the delete example

delete/web/index.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmins:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<title>#{msgs.windowTitle}</title>
</h:head>
<h:body>
<h:forms>
<h:dataTable value="#{tableData.names}" var="name" styleClass="names"
headerClass="namesHeader" columnClasses="Tast,first">
<h:column>
<f:facet name="header">#{msgs.lastColumnHeader}</f:facet>
#{name.last},
</h:column>
<h:column>
<fifacet name="header">#{msgs.firstColumnHeader}</f:facet>
#{name.first}
</h:coTumn>
<h:column>
<h:commandLink value="Delete"

From the Library of Wow! eBook

m Chapter 6 B Data Tables

action="#{tableData.deleteRow(name)}"/>
</h:column>
</h:dataTable>
</h:form>
</h:body>
</html>

delete/src/java/com/corejsf/TableData.java

package com.corejsf;

import java.io.Serializable;
import java.util.Arraylist;
import java.util.Arrays;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;

@Named // or @ManagedBean
@SessionScoped
pubTic class TableData implements Serializable {
private ArrayList<Name> names = new ArrayList<Name>(Arrays.asList(
new Name("Anna", "Keeney"),
new Name("John", "WiTson"),
new Name("Mariko", "Randor"),
new Name("WiTliam", "Dupont")

));

pubTic ArrayList<Name> getNames() {
return names;

}

public String deleteRow(Name nameToDelete) {
names. remove (nameToDelete);
return null;
}
}

Database Tables

Databases store information in tables, so the JSF data table component is a
good fit for showing data stored in a database. In this section, we show you
how to display the results of a database query.

Figure 6-12 shows a JSF application that displays a database table.

From the Library of Wow! eBook

Database Tables m

£ Displaying Database Tables - Mozilla Firefox

Eile Edit View Higtory Bookmarks Jools Help
L v - [8]| http:piocalhast:B0BO/database/ ol
(Customer ID| __ Name _|Phone Numberl _ Address | city | state |}

1 :William Dupont (652)488-9931 801 Oak Street Eugene Nebraska

2 | Anna Keeney ({716)834-8772 86 East Amherst Street Buffalo New York

3 :Marlko Randor (451)842-8933 923 Maple Street Springfield Tennessee

4 :john Wilson (758)955-5934 8122 Genessee Street El Reno Oklahoma

& 'Lynn Seckinger (552)767-1935 712 Kehr Street Kent Washington

6 :Rlchard Tattersall (455)282-2936 21 South Park Drive Dallas Texas

7 _Gahriella Sarintia (819)152-8937 81123 West Seneca Street Denver Colorado

8 :Lisa Hartwig (818)852-1937 6652 Sheridan Drive Sheridan Wyoming

9 'Shirley Jones (992)488-3931 2831 Main Street Butte Montana

10 :BIII Sprague (316)962-0632 1043 Cherry Street Cheektowaga New York

11 | Greg Doench (136)692-6023 99 Qak Street Upper Saddle River New Jersey

12 ZSOIange MNadeau (255)767-0935 177 Rue 5t. Catherine Montreal Quebec

13 | Heather McGann (554)282-0936 7192 913 West Park Buloxie Mississippi

14 :Roy Martin (918)888-0937 5571 North Olean Avenue White River Arkansas

15 | Claude Loubier (857)955-0934 1003 Rue de la Montagne St. Marguerite de Lingwick Quebec

16 | Dan Woodard (703)555-1212 2993 Tonawonda Street Springfield Missouri

17 :Ron Dunlap (761)678-4251 5579 East Seneca Street Kansas City Kansas

18 |Keith Frankart (602)152-6723 88124 Milpidas Lane Springfield Maryland

19 :Andre Nadeau (541)842-0933 94219 Rue Florence 5t. Marguerite de Lingwick Quebec

20 |Horace Celestin (914)843-6553 99423 Spruce Street Ann Arbor Michigan |
Done *

Figure 6-12 Displaying database tables

The JSF page shown in Figure 6-12 uses h:dataTable, like this:

<h:dataTable value="#{customerBean.al1}" var="customer"
styleClass="customers"
headerClass="customersHeader"
columnClasses="custid,name">
<h:column>
<f:facet name="header">#{msgs.customerIdHeader}</f:facet>
#{customer.Cust_ID}
</h:coTumn>
<h:column>
<f:facet name="header">#{msgs.nameHeader}</f:facet>
#{customer.Name}
</h:coTumn>

</h:dataTable>

The customerBean is a managed bean that knows how to connect to a database
and perform a query of all customers in the database. The CustomerBean.all
method performs that query.

From the Library of Wow! eBook

Chapter 6 B Data Tables

When working with a database, the value you specify for h:dataTable is an
instance of java.sql.ResultSet or javax.servlet.jsp.jst1.Result. However, don’t use a
result set returned from the Statement.executeQuery method. In order to render that
result set, the underlying database connection has to stay open. But then you
don’t have a chance to close it. A better way is to use a wrapper that holds the
query result, such as javax.sql.CachedRowSet or javax.servlet.jsp.jstl.Result (which
was invented before CachedRowSet became a part of Java 5). We use a CachedRowSet
in our example.

The preceding JSF page accesses column data by referencing column names—
for example, #{customer.Cust_ID} references the Cust_ID column.

The directory structure for the database example is shown in Figure 6-13. The
web page and managed bean for the application are given in Listings 6-10 and
6-11.

% NOTE: Here we assume that you are familiar with setting up a data source
with your application server. If not, please turn to Chapter 12 for detailed
information.

ﬁ database.war
| index.xhtml
¥ (& META-INF
| context.xml
¥ (& WEB-INF
| beans.xml
; faces-config.xml
| web.xml
¥ (&5 classes
¥ (& META-INF
| MANIFEST.MF
| context.xml
v ﬁ com
v (& corejsf
| CustomerBean.class
| messages.properties
¥ (& misc
| customers.sql
v ﬁ resources
v (&5 css

|| styles.css

Figure 6-13 Directory structure for the database example

From the Library of Wow! eBook

Database Tables m

database/web/index.xhtml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core"

xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<h:outputStylesheet Tibrary="css" name=

<title>#{msgs.pageTitle}</title>
</h:head>
<h:body>

<h:forms>

"styles.css"/>

<h:dataTable value="#{customerBean.all}" var="customer"

styleClass="customers"

headerClass="customersHeader"

columnClasses="custid,name">

<h:column>
<f:facet name="header">#{msgs.
#{customer.Cust_ID}

</h:column>

<h:column>
<f:facet name="header">#{msgs
#{customer.Name}

</h:coTumn>

<h:column>
<fifacet name="header">#{msgs.
#{customer.Phone_Number}

</h:coTumn>

<h:column>
<f:facet name="header">#{msgs.
#{customer.Street_Address}

</h:column>

<h:column>
<f:facet name="header">#{msgs.
#{customer.City}

</h:coTumn>

<h:column>
<f:facet name="header">#{msgs.
#{customer.State}

</h:coTumn>

</h:dataTable>
</h:form>
</h:body>
</htm1>

customerIdHeader}</f:facet>

.nameHeader}</f:facet>

phoneHeader}</f: facet>

addressHeader}</f:facet>

cityHeader}</f:facet>

stateHeader}</f:facet>

From the Library of Wow! eBook

m Chapter 6 B Data Tables

5350 -l B database/src/java/com/corejsf/CustomerBean. java

package com.corejsf;

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import javax.annotation.Resource;
import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.RequestScoped;
// or import javax.faces.bean.RequestScoped;
import javax.sql.DataSource;
import javax.sql.rowset.CachedRowSet;

@Named // or @ManagedBean

@RequestScoped

pubTic class CustomerBean {
@Resource(name="jdbc/mydb")
private DataSource ds;

public ResultSet getAT1() throws SQLException {
Connection conn = ds.getConnection();
try {
Statement stmt = conn.createStatement();
ResultSet result = stmt.executeQuery("SELECT « FROM Customers");
// return ResultSupport.toResult(result);
CachedRowSet crs = new com.sun.rowset.CachedRowSetImp1();
// or use an implementation from your database vendor
crs.populate(result);
return crs;
} finally {
conn.close();
}
}
}

Table Models

When you use a Java object, array;, list, result set, or JSTL result object to
represent table data, h:dataTable wraps those objects in a model that extends the
javax.faces.model.DataModel class. All of those model classes, listed below, reside in
the javax.faces.model package:

From the Library of Wow! eBook

Table Models m

ArrayDataModel
ListDataModel
ResultDataModel
ResultSetDataModel
ScalarDataModel

You don’t usually need to know about the model when you use an h:dataTabTe,
but in the following sections, we show you three problems that can be solved
by accessing the model: rendering row numbers, finding the row that a user
selected, and sorting table rows.

Rendering Row Numbers

Suppose you want to render row numbers, like this:

| [Last Name]First Name
1

Keeney, Anna

2| Wilson, John
3| Randor, Mariko
4| Dupont, William

The JSF data table does not have an easy mechanism for producing these num-
bers. You display different content in each row by using the variable declared
with the var attribute. That variable contains the row data, but not the line num-
ber (unless each row value happens to have the line number).

However, the DataMode1 class has a method getRowIndex that yields the current row
number. You can access this method from a JSF page, as long as your applica-
tion provides a table model instead of a collection. For example, you can
change the TableData class as follows:

pubTic class TableData implements Serializable {
private static final Name[] names = new Name[] {
new Name("WiTliam", "Dupont"),
new Name("Anna", "Keeney"),
new Name("Mariko", "Randor"),
new Name("John", "WiTson")
H
private DataModel<Name> model = new ArrayDataModel<Name>(names);
public DataModel<Name> getNames() { return model; }

}

Note that the getNames method returns a DataModel<Name> instead of a Name[] array.

From the Library of Wow! eBook

Chapter 6 B Data Tables

Then add a column:

<h:dataTable value="#{tableData.names}" var="name">
<h:column>#{tableData.names.rowIndex + 1}</h:column>
<h:column>#{name.last},</h:column>
<h:column>#{name.first}</h:column>
</h:dataTable>
This technique has one significant disadvantage: it ties your managed beans to
the JSF APL See “The ui:repeat Tag” on page 217 for an alternative approach.

Finding the Selected Row

Another reason to expose the DataModel instead of the underlying collection is to
find the selected row in an action or action listener. Consider again the exam-
ple “Deleting Rows” on page 225, with a link in a data table:

<h:dataTable value="#{tableData.names}" var="name">
<h:commandLink value="Delete" action="{tableData.deleteRow}"/>

</h:dataTable>
In the deleteRow method, you want to know which row contains the link that the

user selected. We previously solved this problem by passing the row value as a
parameter: action="{tableData.deleteRow(name)}".

However, prior to JSF 2.0, it was not posssible to pass parameters to an action
method. Instead, you can retrieve the current item by calling the getRonData
method of the DataModel class. For example:
pubTic String deleteRow() {
Name nameToDelete = model.getRowData();
names. remove (nameToDelete);
return null;

}
Sorting and Filtering

To sort or filter tables with h:dataTable, you need to implement a table model
that decorates one of the table models listed on page 233. Figure 6-14 shows
what it means to decorate a table model.

setRowIndex() setRowlIndex()

UlData SortFilterModel »| DataModel

Y

Figure 6-14 Data model filter

From the Library of Wow! eBook

Table Models m

When the JSF implementation renders or decodes table data, it invokes meth-
ods on the table model. When you decorate that model, your model intercepts
those method calls, giving the illusion that the data is sorted.

Figure 6-15 shows our basic table rewritten to support sortable table columns.

[®Sorting Java Beans - Mozilla Firefox
File Edit View History Bookmarks Tools Help

« v g ﬁ |§I http://localhost:2080/sorting/ v

Last %me First Name
Keeney, Anna
Wilson, John

Randor, Mariko
Dupont, | William « A g ﬁ |§I http://localhost:2080/sortingffacesfind: v

Last Name First Name
Dupni William

http://localhost:8080/sorting/# Keeney, Anna

T

Randor, Mariko
Wilson, John

[®Sorting Java Beans - Mozilla Firefox
File Edit View History Bookmarks Tools Help

http:/flocalhost:28080/sorting/facesfindex.xhtml# #
T

Figure 6-15 Sorting table columns

The application sorts table columns by decorating a table data model. First, we
specify the h:dataTable’s value attribute, like this:

<h:dataTable value="#{tableData.names}" var="name" ...>
The TableData.names method returns a data model:

pubTic class TableData {
private SortFilterModel<Name> filterModel;
private static final Name[] names = {
new Name("Anna", "Keeney"),
new Name("John", "WiTson"),
new Name("Mariko", "Randor"),
new Name("William", "Dupont"),

¥

public TableData() {
filterModel = new SortFilterModel<Name>(new ArrayDataModel(names));

}
public DataModel<Name> getNames() {

From the Library of Wow! eBook

Chapter 6 B Data Tables

return filterModel;
}
}

When the tableData object is created, it creates an ArrayDataMode] instance, passing
it the array of names. That is the original model. Then the TableData constructor
wraps that model in a sorting model. When the getNames method is subsequently
called to populate the data table, that method returns the sorting model. The
sorting model contains a regular model and an array of integers rows, where
rows[i] indicates the index of the model data that should be displayed in the ith
row. To sort the array in different ways, we sort the row indexes.

To understand the implementation details, you need to know a bit about the
DataModel API. A DataModel has a somewhat cumbersome interface to get at a data
item. First invoke the setRowIndex method, then call getRowData:

DataModel<Name> model = ...;
model.setRowIndex(currentIndex);
Name current = model.getRowData();

We intercept the call to setRowIndex, substituting the sorted index:

pubTic class SortFilterModel<E> extends DataModel<E> {
private DataModel<E> model;
private Integer[] rows;

public SortFilterModel (DataModel<E> model) {
this.model = model;
initializeRows();
}
private void initializeRows() {
int rowCnt = model.getRowCount();
if (rowCnt != -1) {
rows = new Integer[rowCnt];
for(int i = 0; i < rowCnt; i++) rows[i] = i;
}
}
public void setRowIndex(int rowIndex) {
if (0 <= rowIndex & rowIndex < model.getRowCount())
model.setRowIndex(rows[i]);
else
modeT.setRowIndex(rowIndex);

From the Library of Wow! eBook

Table Models m

To sort, the caller needs to supply a data comparator. The sort filter model uses
that comparator to rearrange the row index array. You can see the details in
Listing 6-13 on page 238. (You may wonder why we used Integer instead of int
for the rows. The reason is that we can use Arrays.sort with a custom compara-
tor only for an Integer[] array, not for an int[] array.)

The directory structure for the sorting example is shown in Figure 6-16. List-
ings 6-12 through 6-14 provide the JSF page, sorting model, and the managed
bean.

ﬁ sorting.war
") index.xhtml
¥ (&5 WEB-INF
| beans.xml
| faces-config.xml
_ web.xml
v ﬁ classes
¥ (& com
v % corejsf
'_ Name.class
| SortFilterModel$1.class
| SortFilterModel.class
; TableData$1.class
") TableData$2.class
| TableData.class
| messages.properties
¥ (& resources
v ﬁ css

| styles.css

Figure 6-16 The directory structure for the sorting example

NOTE: The JSF specification recommends that concrete DataModel classes
' provide at least two constructors: a no-argument constructor that calls
setWrappedData(nul1) and a constructor that passes wrapped data to
setWrappedData(). See Listing 6—13 on page 238 for an example of those
constructors.

From the Library of Wow! eBook

m Chapter 6 B Data Tables
sorting/web/index. xhtm1

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<title>#{msgs.windowTitle}</title>
</h:head>
<h:body>
<h:form>
<h:dataTable value="#{tableData.names}" var="name" styleClass="names"
headerClass="namesHeader" columnClasses="Tast,first">
<h:column>
<f:facet name="header">
<h:commandLink action="#{tableData.sortByLast}">
#{msgs.lastColumnHeader}
</h:commandLink>
</f:facet>
#{name.last},
</h:coTumn>
<h:column>
<f:facet name="header">
<h:commandLink action="#{tableData.sortByFirst}">
#{msgs.firstColumnHeader}
</h:commandLink>
</f:facet>
#{name.first}
</h:column>
</h:dataTable>
</h:form>
</h:body>
</html>

BTG K sorting/src/java/com/corejsf/SortFilterModel. java

package com.corejsf;

import java.util.Arrays;
import java.util.Comparator;

import javax.faces.model.DataModel;

From the Library of Wow! eBook

Table Models m

pubTic class SortFilterModel<E> extends DataModel<E> {
private DataModel<E> model;
private Integer[] rows;

public SortFilterModel() { // mandated by JSF spec
setWrappedData(null);

}

public SortFilterModel(E[] names) { // recommended by JSF spec
setWrappedData(names);

}

public SortFilterModel(DataModel<E> model) {
this.model = model;
initializeRows();

}

private E getData(int row) {
int originalIndex = model.getRowIndex();
model. setRowIndex(row);
E thisRowData = model.getRowData();
model.setRowIndex(originalIndex);
return thisRowData;

}

public void sortBy(final Comparator<E> dataComp) {
Comparator<Integer> rowComp = new
Comparator<Integer>() {
public int compare(Integer rl, Integer r2) {
E el = getData(rl)
E e2 = getData(r2);
return dataComp.compare(el, e2);
}
b
Arrays.sort(rows, rowComp);

}

public void setRowIndex(int rowIndex) {
if (0 <= rowIndex && rowIndex < rows.length)
modeT.setRowIndex(rows[rowIndex]);
else
model.setRowIndex(rowIndex);

}
// The following methods delegate to the decorated model
public boolean isRowAvailable() {

return model.isRowAvailable();

}

From the Library of Wow! eBook

m Chapter 6 B Data Tables

public int getRowCount() {
return model.getRowCount();
}
public E getRowData() {
return model.getRowData();
}
public int getRowIndex() {
return model.getRowIndex();

}
public Object getWrappedData() {
return model.getWrappedData();
}
public void setWrappedData(Object data) {
model.setWrappedData(data);
initializeRows();
}
private void initializeRows() {
int rowCnt = model.getRowCount();
if (rowCnt != -1) {
rows = new Integer[rowCnt];
for(int i = 0; i < rowCnt; ++i) rows[i] = i;
}
}
}

sorting/src/java/com/corejsf/TableData.java

package com.corejsf;

import java.io.Serializable;
import java.util.Comparator;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;
import javax.faces.model.DataModel;
import javax.faces.model.ArrayDataModel;

@amed // or @ManagedBean
@SessionScoped
pubTic class TableData implements Serializable {
private SortFilterModel<Name> filterModel;
private static final Name[] names = {
new Name("Anna", "Keeney"),
new Name("John", "WiTson"),

From the Library of Wow! eBook

Table Models m

new Name("Mariko", "Randor"),
new Name("William", "Dupont"),

b

public TableData() {
filterModel = new SortFilterModel<Name>(new ArrayDataModel<Name>(names));

}
public DataModel<Name> getNames() {
return filterModel;

}

public String sortByFirst() {
filterModel.sortBy(new Comparator<Name>() {
pubTic int compare(Name nl, Name n2) {
return nl.getFirst().compareTo(n2.getFirst());
}
b

return null;

}

public String sortByLast() {
filterModel.sortBy(new Comparator<Name>() {
public int compare(Name nl, Name n2) {
return nl.getlast().compareTo(n2.getlast());
}
b

return null;

}

javax.faces.model.DataModel<E>

int getRowCount()
Returns the total number of rows, if known; otherwise, it returns —1. The
ResultSetDataModel always returns —1 from this method.

int getRowIndex()
Returns the index of the current row.

void setRowIndex(int index)

Sets the current row index and updates the scoped variable representing
the current item in the collection (that variable is specified with the var
attribute of h:dataTable).

E getRowData()

Returns the data associated with the current row.

From the Library of Wow! eBook

Chapter 6 B Data Tables

e poolean isRowAvailable()
Returns true if there is valid data at the current row index.

e TIterator<t> iterator() NI A
Returns an iterator that visits all rows.
e void addDataModelListener(DataModelListener Tistener)
Adds a data model listener that is notified when the row index changes.
e void removeDataModelListener(DataModelListener Tistener)
Removes a data model listener.
e void setWrappedData(Object obj)
Sets the object that a data model wraps.

e (Object getWrappedData()
Returns a data model’s wrapped data.

Scrolling Techniques

There are two ways to scroll through tables with lots of rows: with a scrollbar
or with some other type of control that moves through the rows. We explore
both techniques in this section.

Scrolling with a Scrollbar

Scrolling with a scrollbar is the simplest solution. Wrap your h:dataTable in an
HTML div, like this:
<div style="overflow:auto; width:100%; height:200px;">

<h:dataTable...>
<h:column>

</h:column>
</h:dataTable>
</div>

The application shown in Figure 6-17 is identical to the application discussed
in “Database Tables” on page 228, except that the data table is placed in a scrol-
lable div, as shown above.

Scrollbars are nice from a usability standpoint, but they can be expensive
for large tables because all the table data is loaded at once. A less resource-
intensive alternative is to scroll through tables with pager widgets, an
approach that requires only one page of data at a time.

From the Library of Wow! eBook

Scrolling Techniques m

& Displaying Database Tables - Mozilla Firefox
File Edit View Hrtory Bookmarks Tools Help

‘ B a ﬂ ®| http:jflocalhost-2080/databasef ~
Customer ID|___Name __|Phone Numberl ___Address | City | State |

il | William Dupont (652)488-9931 801 Oak Street Eugene Nebraska 5

2 :Anna Keeney (716)834-8772 86 East Amherst Street Buffalo New York

3 :Mariko Randor (451)842-8933 923 Maple Street Springfield Tennessee

4 :John Wilson (758)955-5934 8122 Genessee Street El Reno Oklahoma

5 :Lynn Seckinger (552)767-1935 712 Kehr Street Kent Washington

6 :Richalrl Tattersall (455)282-2936 21 South Park Drive Dallas Texas

el L abhelalla ©ardebia IOTAVIED OADT C117D Wark Crrme- Chrremt P Fealee aede = -

File Edit View Hrstory Bookmarks Tools Help

‘ B a ﬂ ®| | http:/flacalhose:8080/datahase) ~
14 Roy Martin (918)888-0937 5571 North Olean Avenue White River Arkansas H
15 | Claude Loubler (857)955-0934 1003 Rue de la Montagne St. Marguerite de Lingwick Quebec
16 | Dan Woodard (703)555-1212 2993 Tonawonda Street Springfield Missouri
17 :Ron Dunlap (761)678-4251 5579 East Seneca Street Kansas City Kansas
18 :Keith Frankart (602)152-6723 88124 Milpidas Lane Springfield Maryland
19 :Andre Nadeau (541)842-0933 94219 Rue Florence 5t. Marguerite de Lingwick Quebec
20 :Hnral:e Celestin (914)843-6553 99423 Spruce Street Ann Arbor Michigan ‘-_.‘
Done #

Figure 6-17 Scrolling a table with a scrollable div

Scrolling with Pager Widgets

Scrolling with pager widgets is more efficient than scrolling with a scrollable
div, but it is also considerably more complex. In Chapter 13, we show you how
to implement a pager widget that you can use with any table created with
h:dataTable (see “How do I show a large data set, one page at a time?” on

page 568 of Chapter 13). Figure 6-18 shows an example of that pager.

The application shown in Figure 6-18 uses a data table that displays the ISO
country codes for locales. We obtain that list by calling java.util.Locale.getIS0-
Countries(), a static method that returns an array of strings.

From the Library of Wow! eBook

Chapter 6 B Data Tables

[®|Pager Test - MozillaFirefox

File Edit View History Bookmarks Tools Help

* ~ g 'ﬁ' |§| http:/flocalhost:8080/pager/faces/index.xhtml ~

America/knox_IN
America/Managua
America/Menominee
America/Merida
America/Mexico_City
America/Monterrey
America/North_Dakota/Center
America/North_Dakota/New Salem
America/Rainy_River
America/Rankin_Inlet
<1234567891011121314151617181920=>> =

Figure 6-18 Scrolling with a JSF pager

Conclusion

You have now seen how to use h:dataTable, the most complex component in
the standard JSF component set. In the next chapter, we show you how your

application can react to user and system events.

From the Library of Wow! eBook

This page intentionally left blank

From the Library of Wow! eBook

CONVERSION
AND VALIDATION

¥ Topics in This Chapter
e “Overview of the Conversion and Validation
Process” on page 247
r e “Using Standard Converters” on page 249
e “Using Standard Validators” on page 262
e “Bean Validation” on page 270

e “Programming with Custom Converters and
Validators” on page 275

e “Implementing Custom Converter and Validator
Tags” on page 297

From the Library of Wow! eBook

In this chapter, we discuss how form data is converted to Java objects and how
the conversion results are checked for correctness. The JSF container carries out
these steps before updating the model, so you can rest assured that invalid
inputs will never end up in the business logic.

We first look at the concepts behind the conversion and validation process.
Then we discuss the standard tags that JSF provides for conversion and valida-
tion. These tags suffice for the most common needs. Next, you see how to sup-
ply your own conversion and validation code for more complex scenarios.

It is also possible to implement custom tags—reusable converters and valida-
tors that can be configured by page authors. However, implementing custom
tags requires significantly more programming. We cover the necessary tech-
niques in the last part of this chapter.

Overview of the Conversion and Validation Process

Let us look at user input in slow motion as it travels from the browser form to
the beans that make up the business logic.

First, the user fills in a field of a web form. When the user clicks the submit button,
the browser sends the value to the server, using an HTTP request. We call this
value the request value.

In the Apply Request Values phase, the JSF implementation stores the request val-
ues in component objects. (Recall that each input tag of the JSF page has a

247

From the Library of Wow! eBook

Chapter 7 B Conversion and Validation

corresponding component object.) A value stored in the component object is
called a submitted value.

Of course, all request values are strings—after all, the client browser sends the
strings that the user supplies. On the other hand, the web application deals
with arbitrary types, such as int, Date, or even more sophisticated types. A
conversion process transforms the incoming strings to those types. In the next
section, we discuss conversion in detail.

The converted values are not immediately transmitted to the beans that make
up the business logic. Instead, they are first stored inside the component
objects as local values. After conversion, the local values are validated. Applica-
tion designers can specify validation conditions—for example, that certain
fields should have a minimum or maximum length. We begin our discussion of
validation under “Using Standard Validators” on page 262. After all local
values have been validated, the Update Model Values phase starts, and the
local values are stored in beans, as specified by their value references.

You may wonder why JSF bothers with local values at all. Could not one sim-
ply store the request values directly in the model?

JSF uses a two-step approach to make it easier to preserve model integrity. As
all programmers know only too well, users enter wrong information with dis-
tressing regularity. Suppose some of the model values had been updated before
the first user error was detected. The model might then be in an inconsistent
state, and it would be tedious to bring it back to its old state.

For that reason, JSF first converts and validates all user input. If errors are
found, the page is redisplayed with the values that the user entered so that the
user can try again. The Update Model Values phase starts only if all validations
are successful.

Figure 7-1 shows the journey of a field value from the browser to the server-
side component object and finally to the model bean.

Apply Update
Request Model
Values Values
A Ullnput Model Bean
Expiration date (MonthyiYear) | 11/2009
Process ': submitted Value = "11/2009" ~ | expirationDate = Date object
T T T local Value = Date object
Smmes 74
onversion
Validation J

Figure 7-1 A value travels from the browser to the model

From the Library of Wow! eBook

Using Standard Converters m

Using Standard Converters

In the first part of this chapter, we cover the converters and validators that are
part of the JSF library.

Conversion of Numbers and Dates

A web application stores data of many types, but the web user interface deals
exclusively with strings. For example, suppose the user needs to edit a Date
object that is stored in the business logic. First, the Date object is converted to a
string that is sent to the client browser to be displayed inside a text field. The
user then edits the text field. The resulting string is returned to the server and
must be converted back to a Date object.

The same situation holds, of course, for primitive types, such as int, double, or
boolean. The user of the web application edits strings, and the JSF container
needs to convert the string to the type required by the application.

To see a typical use of a built-in converter, imagine a web application that pro-
cesses payments (see Figure 7-2). The payment data includes:

* The amount to be charged

. The credit card number

* The credit card expiration date

|W_An Application to Test Data Conversion - Mozilla Firefox

file Cdit View History Dookmarks Tools llelp

* * ~ g ﬁ |§ http:/flocalhost:8080/converter/faces/result.xhtml e

Please enter the payment information

AmountL 10000

Credit Card 4111111111111111
Expiration date (Month/Year) |11/2009

Process

Done #
T T

Figure 7-2 Processing payments

From the Library of Wow! eBook

Chapter 7 B Conversion and Validation

We attach a converter to the text field and tell it to format the current value
with at least two digits after the decimal point:

<h:inputText value="#{payment.amount}">
<ficonvertNumber minFractionDigits="2"/>
</h:inputText>

The f:convertNumber converter is one of the standard converters supplied by the
JSF implementation.

The second field in this screen does not use a converter. (Later in this chapter,
we attach a custom converter.) The third field uses an f:convertDateTime converter
whose pattern attribute is set to the string MM/yyyy. (The pattern string format is
documented in the API documentation for the java.text.SimpleDateFormat class.)

<h:inputText value="#{payment.date}">
<f:convertDateTime pattern="MM/yyyy"/>
</h:inputText>

In the result.xhtml page, we show the inputs that the user provided, using a dif-
ferent converter for the payment amount:

<h:outputText value="#{payment.amount}">
<f:convertNumber type="currency"/>
</h:outputText>

This converter automatically supplies a currency symbol and decimal separa-
tors (see Figure 7-3).

|W_An Application to Test Data Conversion - Mozilla Firefox

file Cdit View History Dookmarks Tools llelp

* ~ g ﬁ |§ http:/flocalhost:8080/converter/faces/index.xhtml e

Payment information

Amount $10,000.00

Credit Card 4111111111111111

Expiration date (Month/Ycar) 11/2009

| Back

Done P

Figure 7-3 Displaying the payment information

From the Library of Wow! eBook

Using Standard Converters ﬂ

Converters and Attributes

Tables 7-1 and 7-2 show the standard converters and their attributes.

NOTE: If you use a value expression whose type is either a primitive type,

| or, starting with JSF 1.2, an enumerated type or BigInteger/BigDecimal, then
you do not need to specify any converter. The JSF implementation automat-

ically picks a standard converter. However, you need to specify an explicit
converter for Date values.

Table 7-1 Attributes of the f:convertNunber Tag

Attribute Type Value

type String number (default), currency, or percent

pattern String Formatting pattern, as defined in
java.text.DecimalFormat

maxFractionDigits int Maximum number of digits in the
fractional part

minFractionDigits int Minimum number of digits in the
fractional part

maxIntegerDigits int Maximum number of digits in the
integer part

minIntegerDigits int Minimum number of digits in the
integer part

integerOnly hooTean True if only the integer part is parsed
(default: false)

groupingUsed booTean True if grouping separators are used
(default: true)

Tocale java.util.localeor Locale whose preferences are to be used

String for parsing and formatting

currencyCode String ISO 4217 currency code, such as USD or
EUR, for selecting a currency converter

currencySymbol String This string is passed to DecimalFor-

mat.setDecimalFormatSymbols, overriding
the locale-based symbol; not recom-
mended—use currencyCode instead

From the Library of Wow! eBook

m Chapter 7 B Conversion and Validation

Table 7-2 Attributes of the f:convertDateTime Tag

Attribute Type Value

type String date (default), time, or both

dateStyle String default, short, medium, Tong, or full

timeStyle String default, short, medium, Tong, or full

pattern String Formatting pattern, as defined in
java.text.SimpleDateFormat

Tocale java.util.Locale or Locale whose preferences are to be

String used for parsing and formatting
timeZone java.util.TimeZone Time zone to use for parsing and

formatting; if you do not supply a
time zone, the default is GMT

Note: As of JSF 2.0, you can change
the default to TimeZone.getDefault() by
setting javax.faces.DATETIMECONVERTER
_DEFAULT_TIMEZONE_IS_SYSTEM_TIMEZONE
to true in web.xml.

The converter Attribute

An alternate syntax for attaching a converter to a component is to add the con-
verter attribute to the component tag. You specify the ID of the converter like this:

<h:outputText value="#{payment.date}" converter="javax.faces.DateTime"/>
This is equivalent to using f:convertDateTime with no attributes:

<h:outputText value="#{payment.date}">
<f:convertDateTime/>
</h:outputText>

A third way of specifying the converter would be as follows:

<h:outputText value="#{payment.date}">
<ficonverter converterId="javax.faces.DateTime"/>
</h:outputText>

All JSF implementations must define a set of converters with predefined IDs:

. javax.faces.DateTime (used by f:convertDateTime)
e javax.faces.Number (used by f:convertNumber)

From the Library of Wow! eBook

Using Standard Converters m

. javax.faces.Boolean, javax.faces.Byte, javax.faces.Character, javax.faces.Double,
javax.faces.Float, javax.faces.Integer, javax.faces.Long, javax.faces.Short (auto-
matically used for primitive types and their wrapper classes)

o javax.faces.BigDecimal, javax.faces.BigInteger (automatically used for
BigDecimal/BigInteger)

Additional converter IDs can be configured in an application configuration file
(see “Specifying Converters” on page 279 for details).

CAUTION: When the value of the converter attribute is a string, then the
value indicates the ID of a converter. However, if it is a value expression,
then its value must be a converter object—an object of a class that
implements the Converter interface. That interface is introduced under
“Implementing Custom Converter Classes” on page 275.

NOTE: As of JSF 1.2, the f:convertNumber, f:convertDateTime, and f:converter
; tags have an optional binding attribute. This allows you to tie a converter
instance to a backing bean property of type javax.faces.convert.Converter.

Conversion Errors

When a conversion error occurs, the JSF implementation carries out the follow-
ing actions:

* The component whose conversion failed posts a message and declares
itself invalid. (You will see in the following sections how to display the
message.)

* The JSF implementation redisplays the current page immediately after
the Process Validations phase has completed. The redisplayed page con-
tains all values that the user provided—no user input is lost.

This behavior is generally desirable. If a user provides an illegal input for, say, a
field that requires an integer, then the web application should not try to use
that illegal input. The JSF implementation automatically redisplays the current
page, giving the user another chance to enter the value correctly.

However, you should avoid overly restrictive conversion options for input
fields. For example, consider the “Amount” field in our example. Had we used
a currency format, then the current value would have been nicely formatted.
But suppose a user enters 100 (without a leading $ sign). The currency formatter

From the Library of Wow! eBook

Chapter 7 B Conversion and Validation

will complain that the input is not a legal currency value. That is too strict for
human use.

To overcome this problem, you can program a custom converter. A custom con-
verter can format a value prettily, yet be lenient when interpreting human
input. Custom converters are described in the section “Implementing Custom
Converter Classes” on page 275.

TIP: When gathering input from the user, you should either use a lenient
o4 converter or redesign your form to be more user friendly. For example, rather
than forcing users to format the expiration date as MM/yyyy, you can supply
two input fields, one for the month and another for the year.

Displaying Error Messages

You want your users to see the messages that are caused by conversion
and validation errors. Add h:message tags whenever you use converters and
validators.

Normally, you want to show the error messages next to the components that
reported them (see Figure 7—4). Give an ID to the component and reference that
ID in the h:message tag. As of JSF 1.2, you also need to supply a component label
that is displayed in the error message:

<h:inputText id="amount" label="#{msgs.amount}" value="#{payment.amount}"/>
<h:message for="amount"/>

For JSF 1.1, omit the 1abel attribute.

|W_An Application to Test Data Conversion - Mozilla Firefox
File Edit View History Bookmarks Tools Hclp

* v g ﬂ |§ http://localhost:2080/converter/faces/index xhtml v

Please enter the payment information

Amount: 'too much' is not a number.

Amounl [to0 much |Examp|p- 99 |

Credit Card |4111111111111111 |

Expiration date
{Month/Year)

Process

[11/2009 |

Donec #
T T

Figure 7-4 Displaying a conversion error message

From the Library of Wow! eBook

Using Standard Converters m

The h:message tag takes a number of attributes to describe the appearance of the
message (see “Messages” on page 171 of Chapter 4 for details). Here, we dis-
cuss only the attributes that are of particular interest for error reporting.

A message has two versions: summary and detail.

For the number converter, the detail error message shows the label of the com-
ponent, the offending value, and a sample of a correct value, like this:

Amount: "too much’ is not a number. Example: 99

The summary message omits the example.

% NOTE: In JSF 1.1, the converters displayed a generic message “Conversion
error occurred’

By default, the h:message tag shows the detail and hides the summary. If you
want to show the summary message instead, use these attributes:

<h:message for="amount" showSummary="true" showDetail="false"/>

CAUTION: If you use a standard converter, display either the summary
message or the detail message, but not both—the messages are nearly
identical. You do not want your users to ponder an error message that reads
%..is not a number ... is not a number. Example: 99

a TIP: If you do not use an explicit f:convertNumber converter, but instead rely

¥ on the standard converters for numeric types, use the summary message
and not the detail message. The detail messages give far too much detail.
For example, the standard converter for double values has this detail
message: .. must be a number between 4.9E-324 and
1.7976931348623157E308. Example: 1999999’

Usually, you will want to show error messages in a different color. You use the
styleClass or style attribute to change the appearance of the error message:

<h:messages styleClass="errorMessage"/>
or
<h:message for="amount" style="color:red"/>

We recommend that you use style(lass and a stylesheet instead of a hardcoded
style.

From the Library of Wow! eBook

Chapter 7 B Conversion and Validation

Of course, you can also place the message tags inside a div element and style
that element with CSS.

Displaying All Error Messages

It is uncommon to have multiple messages for one component, but it can hap-
pen. The h:message tag produces only the first message. Unfortunately, you do
not know whether the first message is the most useful one for the user. While
no tag shows all messages for a particular component, you can show a listing
of all messages from all components with the h:messages tag.

By default, the h:messages tag shows the message summary instead of the
message detail. This behavior is opposite from that of the h:message tag.

The default value of the Tayout attribute for h:messages is "1ist", which yields an
unnumbered list whose appearance you can control with a stylesheet. Alterna-
tively, you can up the messages vertically by using;:

<h:messages layout="table"/>

TIP: The h:messages tag is useful for debugging. Whenever your JSF
application stalls at a particular page and is unwilling to move on, add an
<h:messages/> tag to see if a failed conversion or validation is the culprit. In
JSF 2.0, an <h:messages/> child is automatically added to the view if the
project stage is set to Development.

CAUTION: In JSF 1.1, the default behavior was to concatenate all mes-
sages. Moreover, the error messages did not include the message label.
That made the h:messages tag far less useful because users were left
wondering which of their inputs caused an error.

Changing the Text of Standard Error Messages

Sometimes, you may want to change the standard conversion messages for your
entire web application. Table 7-3 shows the most useful standard messages. Note
that all detail message keys end in _detail. To save space, the table does not list
separate summary and detail strings when the summary string is a substring of
the detail string. Instead, the additional detail phrase is set in italics. In most
messages, {0} is the invalid value, {1} is a sample valid value, and {2} is the com-
ponent label; however, for the Boolean converter, {1} is the component label.

From the Library of Wow! eBook

Using Standard Converters 257

To replace a standard message, set up a message bundle, as explained in Chap-
ter 2. Add the replacement message, using the appropriate key from Table 7-3.

Suppose you do not want to fuss with input labels or example values when
the f:convertNumber converter reports an error. Add the following definition to a
message bundle:

javax.faces.converter.NumberConverter .NUMBER_detail=""{0}'" is not a number.

Then set the base name of the bundle in a configuration file (such as faces-
config.xml):

<faces-config>
<application>
<message-bundle>com.corejsf.messages</message-bundle>
</application>

</faces-config>

You need only specify the messages that you want to override.

% NOTE: This message bundle is not the same as the resource bundles that
are accessed with the resource-bundle tag in faces-config.xml. Those bundles
are mapped to a variable that you can use in value expressions. The bundle
referenced by the message-bundle tag is used for messages produced by the
application.

Table 7-3 Standard Conversion Error Messages

Resource ID Default Text
javax.faces.converter.IntegerConverter. {2}: "{0}" must be a number consisting of
INTEGER one or more digits.
javax.faces.converter.IntegerConverter. {2}: "{0}" must be a number between
INTEGER_detail -2147483648 and 2147483647.

Example: {1}
javax.faces.converter.DoubleConverter. {2}: "{0}" must be a number consisting of
DOUBLE one or more digits.
javax.faces.converter.DoubleConverter. {2}: "{0}" must be a number between
DOUBLE_detail 4.9E-324 and 1.7976931348623157E308.

Example: {1}

From the Library of Wow! eBook

m Chapter 7 B Conversion and Validation

Table 7-3 Standard Conversion Error Messages (cont.)

Resource ID

Default Text

javax.faces.converter.BooleanConverter.
BOOLEAN_detail

{1}: "{0}" must be 'true’ or 'false’. Any
value other than "true’ will evaluate to
"false’.

javax.faces.converter.BigDecimal-
Converter.BIGINTEGER detail

"{0}" must be a number consisting of one
or more digits. Example: {1}

javax.faces.converter.BigDecimal-
Converter.BIGDECIMAL _detail

"{0}" must be a signed decimal number
consisting of zero or more digits, that may be
followed by a decimal point and fraction.
Example: {1}

javax.faces.converter.NumberConverter.
NUMBER_detai

{2}: "{0}" is not a number. Example: {1}

javax.faces.converter.NumberConverter.
CURRENCY_detail

{2}: "{0}" could not be understood as a
currency value. Example: {1}

javax.faces.converter.NumberConverter.
PERCENT_detai

{2}: "{0}" could not be understood as a
percentage. Example: {1}

javax.faces.converter.DateTimeConverter.
DATE_detail

{2}: "{0}" could not be understood as a
date. Example: {1}

javax.faces.converter.DateTimeConverter.
TIME_detail

{2}: "{0}" could not be understood as a
time. Example: {1}

javax.faces.converter.
DateTimeConverter.PATTERN_TYPE

{1}: A 'pattern’ or 'type' attribute must be
specified to convert the value "{0}".

javax.faces.converter.EnumConverter.ENUM

{2}: "{0}" must be convertible to an enum.

javax.faces.converter.EnumConverter.
ENUM_detail

{2}: "{0}" must be convertible to an
enum from the enum that contains the
constant "{1}".

javax.faces.converter.EnumConverter.
ENUM_NO_CLASS_detail

{1}: "{0}" must be convertible to an
enum from the enum, but no enum class
provided.

% NOTE: In JSF 1.1, the generic message “Conversion error occurred” has key
javax.faces.component.UIInput.Conversion.

From the Library of Wow! eBook

Using Standard Converters m

Using a Custom Error Message

Starting with JSF 1.2, you can provide a custom converter error message for a
component. Set the converterMessage attribute of the component whose value is
being converted. For example:

<h:inputText ... converterMessage="Not a valid number."/>

CAUTION: Unlike the message strings of the preceding section, these
message attributes are taken literally. Placeholders, such as {0}, are not
replaced.

A Complete Converter Example

We are now ready for our first complete example. Figure 7-5 shows the direc-
tory structure of the application. This web application asks the user to supply
payment information (Listing 7-1) and then displays the formatted informa-
tion on a confirmation screen (Listing 7-2). The messages are in Listing 7-3 and
the bean class is in Listing 7—4.

ﬁ converter.war
| index.xhtml
| result.xhtml
v (&5 WEB-INF
| beans.xml
| faces-config.xml
_ web.xml
v ﬁ classes
¥ (& com
¥ (&5 corejsf
| PaymentBean.class
; messages.properties
v ﬁ resources
v ﬁ css

.| styles.css

Figure 7-5 Directory structure of the converter sample

From the Library of Wow! eBook

Chapter 7 B Conversion and Validation

B T750 Tl 23 Bl converter/web/index. xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<titles#{msgs.title}</title>
</h:head>
<h:body>
<h:form>
<h1>#{msgs.enterPayment}</h1>
<h:panelGrid columns="3">
#{msgs.amount}
<h:inputText id="amount" label="#{msgs.amount}"
value="#{payment.amount}">
<ficonvertNumber minFractionDigits="2"/>
</hzinputText>
<h:message for="amount" styleClass="errorMessage"/>

#{msgs.creditCard}

<h:inputText id="card" label="#{msgs.creditCard}"
value="#{payment.card}"/>

<h:message for="card" styleClass="errorMessage" />

#{msgs.expirationDate}

<h:inputText id="date" label="#{msgs.expirationDate}"

value="#{payment.date}">
<ficonvertDateTime pattern="MM/yyyy"/>
</hzinputText>
<h:message for="date" styleClass="errorMessage"/>
</h:panelGrid>

<h:commandButton value="#{msgs.process}" action="result"/>

</h:form>
</h:body>
</htm1>

From the Library of Wow! eBook

Using Standard Converters m

TRV Tl 20 B converter/web/result.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<title>#{msgs.title}</title>
</h:head>
<h:body>
<h:forms>
<h1>#{msgs.paymentInformation}</hl>
<h:panelGrid columns="2">
#{msgs.amount}
<h:outputText value="#{payment.amount}">
<f:convertNumber type="currency"/>
</h:outputText>

#{msgs.creditCard}
<h:outputText value="#{payment.card}"/>

#{msgs.expirationDate}
<h:outputText value="#{payment.date}">
<ficonvertDateTime pattern="MM/yyyy"/>

</h:outputText>

</h:panelGrid>

<h:commandButton value="#{msgs.back}" action="index"/>

</h:form>
</h:body>
</htm1>

B350 V2RI converter/src/java/com/corejsf/messages.properties

title=An Application to Test Data Conversion
enterPayment=Please enter the payment information
amount=Amount

creditCard=Credit Card

expirationDate=Expiration date (Month/Year)
process=Process

back=Back

paymentInformation=Payment information

From the Library of Wow! eBook

m Chapter 7 B Conversion and Validation
 BTTR VTl 2 B converter/src/java/com/corejst/PaymentBean. java

package com.corejsf;

import java.io.Serializable;
import java.util.Date;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;

@Named("payment") // or @ManagedBean(name="payment")

@SessionScoped

public class PaymentBean implements Serializable {
private double amount;

nn,

private String card = "";
private Date date = new Date();

public void setAmount(double newvalue) { amount = newValue; }
public double getAmount() { return amount; }

public void setCard(String newValue) { card = newValue; }
public String getCard() { return card; }

public void setDate(Date newValue) { date = newValue; }
public Date getDate() { return date; }
}

Using Standard Validators

In the following sections, we discuss the standard JSF validators. You can also
implement custom validators—see “Implementing Custom Validator Classes”
on page 290.

Validating String Lengths and Numeric Ranges

It is easy to use JSF validators within JSF pages—add validator tags to the body
of a component tag, like this:

<h:inputText id="card" value="#{payment.card}">

<f:validateLength minimum="13"/>

</h:inputText>
The preceding code fragment adds a validator to a text field; when the text
field’s form is submitted, the validator makes sure that the string contains at
least 13 characters. When validation fails (in this case, when the string has 12 or

From the Library of Wow! eBook

Using Standard Validators m

fewer characters), validators generate error messages associated with the guilty
component. These messages can later be displayed in a JSF page by the h:message
or h:messages tag.

JavaServer Faces has built-in mechanisms that let you carry out the following
validations:

¢ Checking the length of a string

e Checking limits for a numerical value (for example, > 0 or < 100)

® Checking against a regular expression (since JSF 2.0)

* Checking that a value has been supplied

Table 7—4 lists the standard validators that are provided with JSF. You saw the

string length validator in the preceding section. To validate numerical input,
you use a range validator. For example:

<h:inputText id="amount" value="#{payment.amount}">
<f:validateLongRange minimum="10" maximum="10000"/>
</h:inputText>

The validator checks that the supplied value is = 10 and < 10000.
All the standard range validator tags have minimum and maximum attributes. You

need to supply one or both of these attributes.

Table 7-4 Standard Validators

JSP Tag Validator Class Attribute? Validates
f:validateDoubleRange DoubleRangeValidator — minimum, A double value
maximum within an optional
range
f:validatelLongRange LongRangeValidator minimum, A long value within
maximum an optional range
f:validateLength LengthValidator minimum, A String with a
maximum minimum and

maximum number
of characters

f:validateRequired Requiredvalidator The presence of a
B value
f:validateRegex RegexValidator pattern A String against a

[JSF 2.0] regular expression

From the Library of Wow! eBook

Chapter 7 B Conversion and Validation

Table 7-4 Standard Validators (cont.)

JSP Tag Validator Class Attribute? Validates

f:validateBean BeanValidator validation- Specifies valida-

[JSF 2.0 | Groups tion groups for
bean validators
(see the JSR 303
specification for
details)

a. You can disable any validator by setting the Boolean disabled attribute.

Checking for Required Values

To check that a value is supplied, you can nest a validator inside the input com-
ponent tag:

<h:inputText id="date" value="#{payment.date}">
<fivalidateRequired/>
</h:inputText>

Alternatively, you can simply use the attribute required="true" in the input
component:

<h:inputText id="date" value="#{payment.date}" required="true"/>

The f:validateRequired tag was introduced in JSF 2.0. It simply sets the required
attribute of the enclosing component to true.

CAUTION: If the required attribute is not set and a user supplies a blank
input, then no validation occurs at all! Instead, the blank input is interpreted
as a request to leave the existing value unchanged.

As of JSF 2.0, you can change this behavior by setting the context parame-
ter javax.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL to true in
web.xm1.

An alternate syntax for attaching a validator to a component is to use the
fivalidator tag. You specify the ID of the validator and the validator parameters
like this:

<h:inputText id="card" value="#{payment.card}">
<fivalidator validatorId="javax.faces.validator.LengthValidator">
<f:attribute name="minimum" value="13"/>
</f:validator>
</h:inputText>

From the Library of Wow! eBook

Using Standard Validators m

Yet another way of specifying the validator is with a validator attribute to the
component tag (see “Validating with Bean Methods” on page 294).

NOTE: As of JSF 1.2, the f:validatelLength, f:validatelLongRange, f:validate-
; DoubleRange, and f:validator tags have an optional binding attribute. This
allows you to tie a validator instance to a backing bean property of type
javax.faces.validator.Validator.

Displaying Validation Errors

Validation errors are handled in the same way as conversion errors. A message
is added to the component that failed validation, the component is invalidated,
and the current page is redisplayed immediately after the Process Validations
phase has completed.

You use the h:message or h:messages tag to display the validation errors. For
details, see “Displaying Error Messages” on page 254.

As of JSF 1.2, you can supply a custom message for a component by setting the
requiredMessage or validatorMessage attribute, like this:
<h:inputText id="card" value="#{payment.card}" required="true"
requiredMessage="#{msgs.cardRequired}"
validatorMessage="#{msgs.cardInvalid}">
<f:validateLength minimum="13"/>
</h:inputText>
You can also globally override the default validator messages shown in Table
7-5. Define a message bundle for your application and supply messages with
the appropriate keys, as shown under “Changing the Text of Standard Error
Messages” on page 256.

NOTE: In JSF 1.1, the input label was not included in the validation
- messages. The key for the “not in range” messages was javax. faces.
validator.NOT_IN_RANGE.

CAUTION: The standard message for the LengthValidator is likely to be con-
fusing to users. For example, if you set a minimum length of 5 for a zip code,
and a user enters “94107 the error message is: “Value is less than allowable
minimum of 5

From the Library of Wow! eBook

m Chapter 7 B Conversion and Validation

Table 7-5 Standard Validation Error Messages

Resource ID

Default Text

Reported By

javax.faces.component.
UIInput.REQUIRED

{0}: Validation Error: Value
is required.

UIInput with required attribute
when value is missing.

javax.faces.validator.

DoubleRangeValidator.NOT_IN_RANGE

javax.faces.validator.
LongRangeValidator.NOT_IN_RANGE

{2}: Validation Error:
Specified attribute is not
between the expected
values of {0} and {1}.

DoubleRangeValidator and Long-
RangeValidator when value is
out of range and both minimum
and maximum are specified.

javax.faces.validator.
DoubTeRangeValidator.MAXIMUM

javax.faces.validator.
LongRangeValidator.MAXIMUM

{1}: Validation Error: Value
is greater than allowable
maximum of "{0}".

DoubleRangeValidator or Long-
RangeValidator when value is
out of range and only maximum
is specified.

javax.faces.validator.
DoubleRangeValidator.MINIMUM

javax.faces.validator.
LongRangeValidator.MINIMUM

{1}: Validation Error: Value
is less than allowable
minimum of "{0}".

DoubleRangeValidator or Long-
RangeValidator when value is
out of range and only minimum
is specified.

javax.faces.validator.
DoubleRangeValidator.TYPE

javax.faces.validator.
LongRangeValidator.TYPE

{0}: Validation Error: Value
is not of the correct type.

DoubleRangeValidator or Long-
RangeValidator when value
cannot be converted to double
or long.

javax.faces.validator.
LengthValidator.MAXIMUM

{1}: Validation Error: Value
is greater than allowable
maximum of "{0}".

LengthValidator when string
length is greater than maximum.

javax.faces.validator.
LengthValidator.MINIMUM

{1}: Validation Error: Value
is less than allowable
minimum of "{0}".

LengthValidator when string
length is less than minimum.

javax.faces.validator.
BeanValidator.MESSAGE

{0}

A validator from the Bean
Validation Framework. See the
JSR 303 specification for
details about customizing
messages.

Bypassing Validation

As you saw in the preceding examples, validation errors (as well as conver-
sion errors) force a redisplay of the current page. This behavior can be prob-
lematic with certain navigation actions. Suppose, for example, you add a
Cancel button to a page that contains required fields. If the user clicks

From the Library of Wow! eBook

Using Standard Validators y1.y4

“Cancel”, leaving a required field blank, then the validation mechanism kicks
in and forces the current page to be redisplayed.

It would be unreasonable to expect your users to fill in required fields before
they are allowed to cancel their input. Fortunately, a bypass mechanism is
available. If a command has the inmediate attribute set, then the command is
executed during the Apply Request Values phase.

Thus, you would implement a Cancel button like this:

<h:commandButton value="Cancel" action="cancel" immediate="true"/>

A Complete Validation Example

The following sample application shows a form that employs all the standard
JSF validation checks: required fields, string length, and numeric limits. The
application makes sure that values are entered in all fields, the amount is
between $10 and $10,000, the credit card number has at least 13 characters,
and the expiration date is supplied. Figure 7—6 shows typical validation error
messages. A Cancel button is also provided to demonstrate the validation
bypass.

|W_An Application to Test Validation - Mozilla Firefox

file Cdit View History Dookmarks Tools llelp

* ho g ﬁ |§ http://lecalhost:2080/validator/facesfindex.xhtml;jsessionid—c25dded1c5 ~

Please enter the payment information

Amount: Validation Error: Specified
Amount [100000 attribute is not between the expected
values of 10 and 10,000.
Credit Card: Validation Error: Value is less
than allowable minimum of '13'
Expliration date [Explration date (Month/Year): Valldation
(Month/Year) Error: Value is required. i

Process || Cancel

Credil Card [4111

Done #*
T T

Figure 7-6 Typical validation error messages

Figure 7-7 shows the directory structure of the application. Listings 7-5 and
7-6 contain the JSF page with the validators and the page that is displayed
when the request is canceled. (Note that no validation occurs when the user
clicks the Cancel button.)

From the Library of Wow! eBook

Chapter 7 B Conversion and Validation

ﬁ validator.war
' '] canceled.xhtml
; index.xhtml
_ result.xhtml
¥ (& WEB-INF
| beans.xml
__| faces-config.xml|
_ web.xml
¥ (&5 classes
¥ (& com
v [E corejsf
; PaymentBean.class
|| messages.properties
v % resources
v (&5 css

|| styles.css

Figure 7-7 Directory structure of the validation example

validator/web/index.xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm] PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<titles#{msgs.title}</title>
</h:head>
<h:body>
<h:forms>
<h1>#{msgs.enterPayment}</h1>
<h:panelGrid columns="3">
#{msgs.amount}
<h:inputText id="amount" Tabel="#{msgs.amount}"
value="#{payment.amount}" required="true">
<ficonvertNumber minFractionDigits="2"/>
<fivalidateDoubTeRange minimum="10" maximum="10000"/>
</hzinputText>
<h:message for="amount" styleClass="errorMessage"/>

#{msgs.creditCard}

<h:inputText id="card" label="#{msgs.creditCard}"
value="#{payment.card}" required="true"

From the Library of Wow! eBook

Using Standard Validators m

requiredMessage="#{msgs.cardRequired}">
<fivalidatelLength minimum="13"/>
</h:inputText>
<h:message for="card" styleClass="errorMessage"/>

#{msgs.expirationDate}
<h:inputText id="date" label="#{msgs.expirationDate}"
value="#{payment.date}" required="true">
<ficonvertDateTime pattern="MM/yyyy"/>

</hzinputText>
<h:message for="date" styleClass="errorMessage"/>

</h:panelGrid>

<h:commandButton value="#{msgs.process}" action="result"/>

<h:commandButton value="#{msgs.cancel}" action="canceled"

immediate="true"/>
</h:form>
</h:body>
</htm1>

validator/web/canceled.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<title>#{msgs.title}</title>
</h:head>
<h:body>
<h:forms>
#{msgs.canceled}

<h:commandButton value="#{msgs.back}" action="index"/>
</h:form>
</h:body>
</htm1>

From the Library of Wow! eBook

270

Chapter 7 B Conversion and Validation

Bean Validation

JSF 2.0 integrates with the Bean Validation Framework (JSR 303), a general frame-
work for specifying validation constraints. Validations are attached to fields or
property getters of a Java class, like this:

pubTic class PaymentBean {

@Size(min=13) private String card;
@Future public Date getDate() { ... }

}

Table 7-6 shows the available annotations.

Table 7-6 Annotations in the Bean Validation Framework

Annotation Attribute? Purpose

@Nu11, @NotNu11 None Check that a value is null or not null.

@Min, @Max The bound as a Check that a value is at least or at most

Tong the given bound. The type must be one
of int, Tong, short, byte and their wrap-
pers, BigInteger, BigDecimal. Note: double
and float are not supported due to
roundoff.

@ecimalMin, The bound as a As above. Can also be applied to a

@DecimalMax String String.

@igits integer, fraction Check that a value has, at most, the given
number of integer or fractional digits.
Applies to int, long, short, byte and their
wrappers, BigInteger, BigDecimal, String.

@AssertTrue, None Check that a Boolean value is true or

@AssertFalse false.

@Past, @Future None Check that a date is in the past or in the
future.

@Size min, max Check that the size of a string, array,
collection, or map is at least or at most
the given bound.

@Pattern regexp, flags A regular expression and optional

compilation flags.

a. All validation annotations have attributes message and groups. We do not discuss validation

groups here.

From the Library of Wow! eBook

Bean Validation 271

The Bean Validation Framework has a significant advantage over page-level
validation. Suppose your web application updates a bean in several pages. You
don’t need to add validation rules to each page, and you can be assured that
validation is handled consistently.

To override the default messages, supply a file ValidationMessages.properties in the
default (root) package of your application. You can override the standard mes-
sages, for example:

javax.validation.constraints.Min.message=Must be at least {value}

(instead of the unsightly default “Must be greater than or equal to ...”). To pro-
vide a custom message for a particular validation, reference the bundle key in
the message attribute:

@Size(min=13, message="{com.corejsf.creditCardLength}")

private String card = "";
Then define the key in ValidationMessages.properties:

com.corejsf.creditCardLength=The credit card number must have at Teast 13 digits

NOTE: If you use a Java EE 6 compatible application server, you auto-
; matically have access to a JSR 303 implementation. Otherwise, include
the Hibernate Validator JAR files (http://validator.hibernate.org/) in the
WEB-INF/Tib directory.

We provide an example application that demonstrates bean validation (see
Figure 7-8). The example is notable for its simplicity. The JSF pages are not
concerned with validation. The model class, shown in Listing 7-7, contains the
validation annotations.

Note the @LuhnCheck annotation that checks the digits of a credit card, using the
Luhn formula.

NOTE: The Luhn formula—developed by a group of mathematicians in the
late 1960s—verifies and generates credit card numbers, as well as Social
Insurance numbers for the Canadian government. The formula can detect
whether a digit is entered wrongly or whether two digits were transposed.
See the web site http://www.merriampark.com/anatomycc.htm for more informa-
tion about the Luhn formula. For debugging, it is handy to know that the
number 4111 1111 1111 1111 passes the Luhn check.

From the Library of Wow! eBook

http://www.merriampark.com/anatomycc.htm
http://validator.hibernate.org/

272 Chapter 7 B Conversion and Validation

|W_An Application to Test Validation - Mozilla Firefox

File Edit View History Bookmarks Tools Hclp

< v & @ |[8) | http:/ocalhost:8080/bean-validator/faces/index.xhtml:jsessionid=dffaBbdd4c766(v

Please enter the payment information

Amount [1,000.00

Credit Card [4111111111111112 Not a valid credit card number
Expiration date (Month/Year) |11f2010

Process || Cancel

Donec #
T

Figure 7-8 Luhn check failed

The @LuhnCheck annotation is a custom validator that we wrote for this book to
demonstrate the extensibility of the Bean Validation Framework. To write a
custom validator, you provide the following:

o An annotation (see Listing 7-8)

. A class that implements the ConstraintValidator interface (see Listing 7-9)

e Optionally, default messages in the ValidationMessages.properties file (see
Listing 7-10)

Note the circular dependency between the annotation and the validator class.

The annotation references the validator class:

@Constraint(validatedBy=LuhnCheckValidator.class)
public @interface LuhnCheck

The validator class references the annotation type:
pubTic class LuhnCheckValidator implements ConstraintValidator<LuhnCheck, String>

The second type parameter of the ConstraintValidator interface is the type of the
object that is being validated; in our case, a String. Therefore, the isValid method
has a String parameter:
pubTic boolean isValid(String value, ConstraintValidatorContext context) {
return TuhnCheck(value.replaceA1T("\\D", "")); // remove non-digits
}
We won't go into the details of the Bean Validation Framework here. If you

need to implement your own custom validation rules, you can simply follow
this example.

Figure 7-9 shows the directory structure of this application.

From the Library of Wow! eBook

Bean Validation 273

[E bean-validator.war
[canceled.xhtml
[index.xhtml
|) result.xhtml
¥ (&3 WEB-INF
; beans.xml
[faces-config.xml
[web.xml
A [E classes
u ValidationMessages.properties
¥ (& com
v [E corejsf
[LuhnCheck.class
[LuhnCheckvalidator.class
_f PaymentBean.class
| | messages.properties
¥ (& resources

"ﬁcss

[t
| | styles.css

Figure 7-9 The directory structure of the bean validation framework
example

| BTTR VT2 Al hean-validator/src/java/com/corejst/PaymentBean. java

package com.corejsf;

import java.io.Serializable;
import java.util.Date;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;
import javax.validation.constraints.Future;
import javax.validation.constraints.Max;
import javax.validation.constraints.Min;
import javax.validation.constraints.Size;

@amed("payment") // or @ManagedBean(name="payment")

@SessionScoped

public class PaymentBean implements Serializable {
@Min(10) @Max(10000)
private double amount;
@Size(min=13,message="{com.corejsf.creditCardLength}") @LuhnCheck

From the Library of Wow! eBook

274 Chapter 7 B Conversion and Validation

nn,

private String card = "";
@Future
private Date date = new Date();

public void setAmount(double newvalue) { amount = newValue; }

public double getAmount() { return amount; }

public void setCard(String newValue) { card = newValue; }
public String getCard() { return card; }

public void setDate(Date newValue) { date = newValue; }
public Date getDate() { return date; }
}

bean-validator/src/java/com/corejsf/LuhnCheck.java

package com.corejsf;

import java.lang.annotation.Documented;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import javax.validation.Constraint;

import javax.validation.Payload;

import static java.lang.annotation.ElementType.+;
import static java.lang.annotation.RetentionPolicy.x;

@Target({METHOD, FIELD})

@Retention(RUNTIME)

@ocumented
@Constraint(validatedBy=LuhnCheckValidator.class)
public @interface LuhnCheck {

String message() default "{com.corejsf.LuhnCheck.message}";

(lass[] groups() default {};
(lass<? extends Payload>[] payload() default {};
}

bean-validator/src/java/com/corejsf/LuhnCheckValidator.java

package com.corejsf;
import javax.validation.ConstraintValidator;
import javax.validation.ConstraintValidatorContext;

pubTic class LuhnCheckValidator implements ConstraintValidator<LuhnCheck, String> {

public void initialize(LuhnCheck constraintAnnotation) {

}

From the Library of Wow! eBook

Programming with Custom Converters and Validators 275

public hoolean isValid(String value, ConstraintValidatorContext context) {
return TuhnCheck(value.replaceA11("\\D", "")); // remove non-digits
}

private static boolean TuhnCheck(String cardNumber) {
int sum = 0;

for(int i = cardNumber.Tength() - 1; i >=0; 1 -= 2) {
sum += Integer.parseInt(cardNumber.substring(i, i + 1));

if(i > 0) {
int d = 2 « Integer.parseInt(cardNumber.substring(i - 1, i));
if(d>9)d-=9;
sum += d;

}

}

return sum % 10 == 0;
}
}

| BET50 g 0l bean-validator/src/java/ValidationMessages.properties

javax.validation.constraints.Min.message=Must be at least {value}
com.corejsf.creditCardLength=The credit card number must have at Teast 13 digits
com.corejsf.LuhnCheck.message=Not a valid credit card number

Programming with Custom Converters and Validators

JSF standard converters and validators cover a lot of bases, but many web
applications must go further. For example, you may need to convert to types
other than numbers and dates or perform application-specific validation, such
as checking a credit card.

In the following sections, we show you how to implement application-specific
converters and validators. These implementations require a moderate amount
of programming.

Implementing Custom Converter Classes

A converter is a class that converts between strings and objects. A converter
must implement the Converter interface, which has the following two methods:

Object getAsObject(FacesContext context, UIComponent component, String newValue)
String getAsString(FacesContext context, UIComponent component, Object value)

The first method converts a string into an object of the desired type, throwing a
ConverterException if the conversion cannot be carried out. This method is called

From the Library of Wow! eBook

Chapter 7 B Conversion and Validation

when a string is submitted from the client, typically in a text field. The second
method converts an object into a string representation to be displayed in the
client interface.

To illustrate these methods, we develop a custom converter for credit card
numbers. Our converter allows users to enter a credit card number with or
without spaces. That is, we accept inputs of the following forms:

1234567890123456
1234 5678 9012 3456

Listing 7-11 shows the code for the custom converter. The getAsObject method
of the converter strips out all characters that are not digits. It then creates an
object of type CreditCard. If an error is found, then we generate a FacesMessage
object and throw a ConverterException. We will discuss these steps in the next
section, “Reporting Conversion Errors,” on page 280.

The getAsString method of our converter makes an effort to format the credit
card number in a way that is pleasing to the eye of the user. The digits are sep-
arated into the familiar patterns, depending on the credit card type. Table 7-7
shows the most common credit card formats.

Table 7-7 Credit Card Formats

Card Type Digits Format

MasterCard 16 S5XXX XXXX XXXX XXXX

Visa 16 XXX XXXX XXXX XXXX

Visa 13 4XXX XXX XXX XXX

Discover 16 HXXX XXXX XXXX XXXX
American Express 15 37XX XXXXXX XXXXX
American Express 22 BXXXXX XXXXXXXX XXXXXXXX
Diners Club, Carte Blanche 14 BXXXX XXXX XXXXX

In this example, the CreditCard class is minor; it contains just the credit card
number (see Listing 7-12). We could have left the credit card number as a String
object, reducing the converter to a formatter. However, most converters have a
target type other than String. To make it easier for you to reuse this example, we
use a distinct target type.

From the Library of Wow! eBook

Programming with Custom Converters and Validators 277

TR T 28 B converter2/src/java/com/coresjf/CreditCardConverter.java

package com.corejsf;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;

import javax.faces.convert.ConverterException;
import javax.faces.convert.FacesConverter;

@FacesConverter(forClass=CreditCard.class)
public class CreditCardConverter implements Converter {
pubTic Object getAsObject(FacesContext context, UIComponent component,
String newvalue) throws ConverterException {
StringBuilder builder = new StringBuilder(newValue);
boolean foundInvalidCharacter = false;
char invalidCharacter = '"\0';
int i = 0;
while (i < builder.length() & !foundInvalidCharacter) {
char ch = builder.charAt(i);
if (Character.isDigit(ch))
T+4;
else if (Character.isWhitespace(ch))
builder.deleteCharAt(i);
else {
foundInvalidCharacter = true;
invalidCharacter = ch;
}
}

if (foundInvalidCharacter) {
FacesMessage message = com.corejsf.util.Messages.getMessage(
"com.corejsf.messages”, "badCreditCardCharacter”
new Object[]{ new Character(invalidCharacter) });
message.setSeverity(FacesMessage.SEVERITY_ERROR) ;
throw new ConverterException(message);

}

return new CreditCard(builder.toString());
}

public String getAsString(FacesContext context, UIComponent component,
Object value) throws ConverterException {
// Tength 13: XXXX XXX XXX XXX
// Tength 14: XXXXX XXXX XXXXX

From the Library of Wow! eBook

278 Chapter 7 B Conversion and Validation

// Tength 15: XXXX XXXXXX XXXXX
// Tength 16: XXXX XXXX XXXX XXXX
// length 22: XXXXXX XXXXXXXX XXXXXXXX
String v = value.toString();
int[] boundaries = null;
int Tength = v.length();
if (length == 13)
boundaries = new int[]{ 4, 7, 10 };
else if (Tength == 14)
boundaries = new int[]{ 5, 9 };
else if (Tength == 15)
boundaries = new int[]{ 4, 10 };
else if (Tength == 16)
boundaries = new int[]{ 4, 8, 12 };
else if (Tength == 22)
boundaries = new int[]{ 6, 14 };
else
return v;
StringBuilder result = new StringBuilder();
int start = 0;
for (int i = 0; i < boundaries.length; i++) {
int end = boundaries[i];
result.append(v.substring(start, end));
result.append(" ");
start = end;
}
result.append(v.substring(start));
return result.toString();
}
}

converter2/src/java/com/corejsf/CreditCard. java

package com.corejsf;
import java.io.Serializable;

public class CreditCard implements Serializable {
private String number;

public CreditCard(String number) { this.number = number; }

public String toString() { return number; }
}

From the Library of Wow! eBook

Programming with Custom Converters and Validators 279

Specifying Converters !1

One mechanism for specifying converters involves a symbolic ID that you
register with the JSF application. We will use the ID com.corejsf.Card for
our credit card converter.

You associate the ID with the converter in one of two ways. Since JSF 2.0, you
can use the @FacesConverter annotation:

@FacesConverter("com.corejsf.Card")
pubTic class CreditCardConverter implements Converter

Before JSF 2.0, you had to place an entry into to faces-config.xnl that associates
the converter ID with the class that implements the converter:

<converters>
<converter-id>com.corejsf.Card</converter-id>
<converter-class>com.corejsf.CreditCardConverter</converter-class>
</converter>

In the following examples, we will assume that the card property of the Payment-
Bean has type CreditCard, as shown in Listing 7-18 on page 289. Now we can use
the f:converter tag and specify the converter ID:

<h:inputText value="#{payment.card}">
<ficonverter converterId="com.corejsf.Card"/>
</h:inputText>

Or, more succinctly, we can use the converter attribute:
<h:inputText value="#{payment.card}" converter="com.corejsf.Card"/>

Alternatively, if you are confident that your converter is appropriate for all con-
versions between String and CreditCard objects, then you can register it as the
default converter for the CreditCard class.

Use the annotation:
@FacesConverter(forClass=CreditCard.class)
or the faces-config entry:

<converter>
<converter-for-class>com.corejsf.CreditCard</converter-for-class>
<converter-class>com.corejsf.CreditCardConverter</converter-class>
</converter>

Now you do not have to mention the converter any longer. It is automatically used
whenever a value reference has the type CreditCard. For example, consider the tag:

<h:inputText value="#{payment.card}"/>

From the Library of Wow! eBook

Chapter 7 B Conversion and Validation

When the JSF implementation converts the request value, it notices that the
target type is CreditCard, and it locates the converter for that class. This is the
ultimate in converter convenience for the page author!

CAUTION: If you specify both the value and for(lass attributes in the
FacesConverter annotation, the latter is ignored.

AR javax.faces.convert.Converter

e (Object getAsObject(FacesContext context, UIComponent component, String value)
Converts the given string value into an object that is appropriate for
storage in the given component.

e String getAsString(FacesContext context, UIComponent component, Object value)
Converts the given object, which is stored in the given component, into a
string representation.

Pt @javax.faces.convert.FacesConverter

e String value (Default: "")
The ID of the converter.

e (lass forClass (Default: Object.class)
The class for which this is a converter.

Reporting Conversion Errors

When a converter detects an error, it should throw a ConverterException. For
example, the getAsObject method of our credit card converter checks whether the
credit card contains characters other than digits or separators. If it finds an
invalid character, it signals an error:

if (foundInvalidCharacter) {
FacesMessage message = new FacesMessage(
"Conversion error occurred. ", "Invalid card number. ");
message.setSeverity(FacesMessage.SEVERITY_ERROR);
throw new ConverterException(message);

}

The FacesMessage object contains the summary and detail messages that can be
displayed with message tags.

From the Library of Wow! eBook

Programming with Custom Converters and Validators m

¢ff[javax.faces.application.FacesMessage

>

FacesMessage(FacesMessage.Severity severity, String summary, String detail)
Constructs a message with the given severity, summary, and detail. The
severity is one of the constants SEVERITY_ERROR, SEVERITY_FATAL, SEVERITY_INFO, or
SEVERITY_WARN in the FacesMessage class.

e FacesMessage(String summary, String detail)
Constructs a message with severity SEVERITY_INFO and the given summary
and detail.

e void setSeverity(FacesMessage.Severity severity)
Sets the severity to the given level. The severity is one of the constants
SEVERITY_ERROR, SEVERITY_FATAL, SEVERITY_INFO, or SEVERITY_WARN in the FacesMessage class.

www

P[T javax.faces.convert.ConverterException

> (¢

ConverterException(FacesMessage message)

e (onverterException(FacesMessage message, Throwable cause)
These constructors create exceptions whose getMessage method returns the
summary of the given message and whose getFacesMessage method returns
the given message.

e (onverterException()

e (onverterException(String detailMessage)

e (onverterException(Throwable cause)

e (onverterException(String detailMessage, Throwable cause)

These constructors create exceptions whose getMessage method returns the

given detail message and whose getFacesMessage method returns null.

e FacesMessage getFacesMessage()
Returns the FacesMessage with which this exception object was constructed or
returns null if none was supplied.

Getting Error Messages from Resource Bundles

Of course, for proper localization, you will want to retrieve the error messages
from a message bundle.

Doing that involves some busywork with locales and class loaders:
1. Get the current locale.

FacesContext context = FacesContext.getCurrentInstance();
UIViewRoot viewRoot = context.getViewRoot();
Locale Tocale = viewRoot.getLocale();

From the Library of Wow! eBook

Chapter 7 B Conversion and Validation

2. Get the current class loader. You need it to locate the resource bundle.
(lassLoader Tloader = Thread.currentThread().getContextClassLoader();

3. Get the resource bundle with the given name, locale, and class loader.
ResourceBundle bundle = ResourceBundle.getBundle(bundleName, locale, loader);

4. Get the resource string with the given ID from the bundle.
String resource = bundle.getString(resourceld);

However, there are several wrinkles in the process. We actually need two mes-
sage strings: one for the summary and one for the detail messages. By conven-
tion, the resource ID of a detail message is obtained by addition of the string
_detail to the summary key. For example:

badCreditCardCharacter=Invalid card number.
badCreditCardCharacter_detail=The card number contains invalid characters.

Moreover, converters are usually part of a reusable library. It is a good idea to
allow a specific application to override messages. (You saw in “Changing the
Text of Standard Error Messages” on page 256 how to override the standard con-
verter messages.) Therefore, you should first attempt to locate the messages in
the application-specific message bundle before retrieving the default messages.

Recall that an application can supply a bundle name in a configuration file,
such as:

<faces-config>
<application>
<message-bundle>com.mycompany .myapp.messages</message-bundle>
</application>
</faces-config>
The following code snippet retrieves that bundle name:

Application app = context.getApplication();
String appBundleName = app.getResourceBundle();

Look up your resources in this bundle before going to the library default.

Finally, you may want some messages to provide detailed information about
the nature of the error. For example, you want to tell the user which character
in the credit card number was objectionable. Message strings can contain place-
holders {0}, {1}, and so on—for example:

The card number contains the invalid character {0}.

From the Library of Wow! eBook

Programming with Custom Converters and Validators m

The java.text.MessageFormat class can substitute values for the placeholders:

Object[] params = ...;
MessageFormat formatter = new MessageFormat(resource, locale);
String message = formatter.format(params);

Here, the paranms array contains the values that should be substituted. (For more
information about the MessageFormat class, see Cay Horstmann and Gary Cornell,
Core Java™, 8th ed., Santa Clara, CA: Sun Microsystems Press/Prentice Hall,
2008, Vol. 2, Chapter 5.)

Ideally, much of this busywork should have been handled by the JSF frame-
work. Of course, you can find the relevant code in the innards of the reference
implementation, but the framework designers chose not to make it available to
JSF programmers.

We provide the package com.corejsf.util with convenience classes that imple-
ment these missing pieces. Feel free to use these classes in your own code.

The com.corejsf.util.Messages class has a static method, getMessage, that returns a
FacesMessage with a given bundle name, resource ID, and parameters:

FacesMessage message
= com.corejsf.util.Messages.getMessage(
“com.corejsf.messages”, "badCreditCardCharacter",
new Object[] { new Character(invalidCharacter) });

You can pass null for the parameter array if the message does not contain
placeholders.

Our implementation follows the JSF convention of displaying missing
resources as ???resourceld???. See Listing 7-13 for the source code.

% NOTE: If you prefer to reuse the standard JSF message for conversion
errors, call:

FacesMessage message = com.corejsf.util.Messages.getMessage(
"javax.faces.Messages", "javax.faces.component.UIInput.CONVERSION", null);

javax.faces.context.FacesContext

e static FacesContext getCurrentInstance()
Gets the context for the request that is being handled by the current thread,
or null if the current thread does not handle a request.

e UIViewRoot getViewRoot()
Gets the root component for the request described by this context.

From the Library of Wow! eBook

Chapter 7 B Conversion and Validation

[javax.faces.component.UIViewRoot

e Locale getlocale()

>

Gets the locale for rendering this view.

BTV 2 R converter?/src/java/com/corejst/util/Messages. java

package com.corejsf.util;

import java.text.MessageFormat;

import java.util.locale;

import java.util.MissingResourceException;
import java.util.ResourceBundle;

import javax.faces.application.Application;
import javax.faces.application.FacesMessage;
import javax.faces.component.UIViewRoot;
import javax.faces.context.FacesContext;

public class Messages {
public static FacesMessage getMessage(String bundleName, String resourceld,
Object[] params) {
FacesContext context = FacesContext.getCurrentInstance();
Application app = context.getApplication();
String appBundle = app.getMessageBundle();
Locale Tocale = getlocale(context);
(TassLoader Toader = getClassLoader();
String summary = getString(appBundle, bundleName, resourceld,
locale, loader, params);
if (summary == null) summary = "???" + resourceld + "?7??";
String detail = getString(appBundle, bundleName, resourceld + "_detail",
locale, Toader, params);
return new FacesMessage(summary, detail);

}

public static String getString(String bundle, String resourceld,
Object[] params) {
FacesContext context = FacesContext.getCurrentInstance();
Application app = context.getApplication();
String appBundle = app.getMessageBundle();
Locale Tlocale = getlLocale(context);
(lassLoader loader = getClassLoader();
return getString(appBundle, bundle, resourceld, Tocale, Toader, params);

}

public static String getString(String bundlel, String bundle2,

From the Library of Wow! eBook

Programming with Custom Converters and Validators m

String resourceld, Locale Tocale, ClassLoader Toader,
Object[] params) {

String resource = null;

ResourceBundle bundle;

if (bundlel != null) {
bundle = ResourceBundle.getBundle(bundlel, Tocale, loader);
if (bundle != null)
try {
resource = bundle.getString(resourceld);
} catch (MissingResourceException ex) {
}
}

if (resource == null) {
bundle = ResourceBundle.getBundle(bundle2, locale, loader);
if (bundle != null)
try {
resource = bundle.getString(resourceld);
} catch (MissingResourceException ex) {
}
}

if (resource == null) return null; // no match
if (params == null) return resource;

MessageFormat formatter = new MessageFormat(resource, locale);
return formatter.format(params);

}

public static Locale getlocale(FacesContext context) {
Locale locale = null;
UIViewRoot viewRoot = context.getViewRoot();
if (viewRoot != null) locale = viewRoot.getlocale();
if (Tocale == null) Tocale = Locale.getDefault();
return locale;

}

public static ClassLoader getClassLoader() {
(lassLoader loader = Thread.currentThread().getContextClassLoader();
if (Toader == null) Toader = ClassLoader.getSystemClassLoader();
return loader;
}
}

From the Library of Wow! eBook

Chapter 7 B Conversion and Validation

The Custom Converter Sample Application

Here are the remaining pieces of our next sample application. Figure 7-10
shows the directory structure. Listings 7-14 and 7-15 show the input and result
pages. Look at the inputText and outputText tags for the credit card numbers to see
the two styles of specifying a custom converter. (Both converter specifications
could have been omitted if the converter had been registered to be the default
for the CreditCard type.)

The custom converter is defined in the faces-config.xm1 file (Listing 7-16). The
messages.properties file (shown in Listing 7-17) contains the error message for the
credit card converter. Finally, Listing 7-18 shows the payment bean with three
properties of type double, Date, and CreditCard.

(& converter2.war
| index.xhtml
_" result.xhtml
¥ (& WEB-INF
[beans.xml
| | faces-config.xml
__' web.xml
¥ [& classes
¥ [& com
v E corejsf
[9 creditCard.class
| 7] CreditCardConverter.class
__' PaymentBean.class
[] messages.properties
¥ (& util
| | Messages.class
¥ (& resources
v [ﬁ Css

| | styles.css

Figure 7-10 Directory structure of the custom converter example

| BETR VT2 B converter?/web/index.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core"
xmins:h="http://java.sun.com/jsf/html">
<h:head>

From the Library of Wow! eBook

Programming with Custom Converters and Validators m

<h:outputStylesheet Tibrary="css" name="styles.css"/>
<title>#{msgs.title}</title>
</h:head>
<h:body>
<h:forms>
<h1>#{msgs.enterPayment}</h1>
<h:panelGrid columns="3">
#{msgs.amount}
<h:inputText id="amount" label="#{msgs.amount}"
value="#{payment.amount}">
<f:convertNumber minFractionDigits="2"/>
</h:inputText>
<h:message for="amount" styleClass="errorMessage"/>

#{msgs.creditCard}

<h:inputText id="card" label="#{msgs.creditCard}"
value="#{payment.card}">

</h:inputText>

<h:message for="card" styleClass="errorMessage"/>

#{msgs.expirationDate}
<h:inputText id="date" Tlabel="#{msgs.expirationDate}"
value="#{payment.date}">
<ficonvertDateTime pattern="MM/yyyy"/>

</h:inputText>
<h:message for="date" styleClass="errorMessage"/>

</h:panelGrid>

<h:commandButton value="#{msgs.process}" action="result"/>

</h:form>
</h:body>
</htm1>

| B80Tl 2a Bl converter?/web/result.xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.o0rg/TR/xhtm11/DTD/xhtm]1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core"
xmlIns:h="http://java.sun.com/jsf/html">
<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<titles#{msgs.title}</title>
</h:head>
<h:body>
<h:forms>
<h1>#{msgs.paymentInformation}</h1>

From the Library of Wow! eBook

288 Chapter 7 B Conversion and Validation

<h:panelGrid columns="2">
#{msgs.amount}
<h:outputText value="#{payment.amount}">
<f:convertNumber type="currency"/>
</h:outputText>

#{msgs.creditCard}
<h:outputText value="#{payment.card}"/>
#{msgs.expirationDate}
<h:outputText value="#{payment.date}">
<f:convertDateTime pattern="MM/yyyy"/>

</h:outputText>

</h:panelGrid>

<h:commandButton value="#{msgs.back}" action="index"/>

</h:form>
</h:body>
</html>

ISRV T2 (Il converter?/web/WEB-INF/faces-config.xml

<?xml version="1.0"?>
<faces-config xmIns="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd"
version="2.0">
<application>
<message-bundle>com.corejsf.messages</message-bundle>
<resource-bundle>
<base-name>com. corejsf.messages</base-name>
<varsmsgs</var>
</resource-bundle>
</application>
</faces-config>

PR Za Al converter?/src/java/com/corejst/messages.properties

badCreditCardCharacter=Invalid card number.

badCreditCardCharacter_detail=The card number contains the invalid character {0}.
title=An Application to Test Data Conversion

enterPayment=Please enter the payment information

amount=Amount

creditCard=Credit Card

expirationDate=Expiration date (Month/Year)

process=Process

back=Back

paymentInformation=Payment information

From the Library of Wow! eBook

Programming with Custom Converters and Validators m

TRV 2 Bl converter2/src/java/com/corejst/PaymentBean. java

package com.corejsf;

import java.io.Serializable;
import java.util.Date;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;

@Named("payment") // or @ManagedBean(name="payment")

@SessionScoped

pubTic class PaymentBean implements Serializable {
private double amount;
private CreditCard card = new CreditCard("");
private Date date = new Date();

public void setAmount(double newValue) { amount = newValue; }
public double getAmount() { return amount; }

public void setCard(CreditCard newvalue) { card = newvValue; }

public CreditCard getCard() { return card; }

public void setDate(Date newValue) { date = newValue; }
public Date getDate() { return date; }

Supplying Attributes to Converters

Every JSF component can store arbitrary attributes. You can set an attribute of
the component to which you attach a converter; use the f:attribute tag. Your

converter can then retrieve the attribute from its component. Here is how that
technique would work to set the separator string for the credit card converter.

When attaching the converter, also nest an f:attribute tag inside the component:

<h:outputText value="#{payment.card}">
<f:converter converterId="CreditCard"/>
<f:attribute name="separator" value="-"/>
</h:outputText>

In the converter, retrieve the attribute as follows:

separator = (String) component.getAttributes().get("separator");

From the Library of Wow! eBook

Chapter 7 B Conversion and Validation

Later in this chapter, you will see a more elegant mechanism for passing
attributes to a converter—writing your own converter tag.

A[P[1 javax. faces.component.UIComponent

e Map getAttributes()
Returns a mutable map of all attributes and properties of this component.

Implementing Custom Validator Classes

Implementing custom validator classes is similar to the process of implement-
ing custom converters. Your validator class must implement the javax.faces.val-
idator.Validator interface.

The Validator interface defines only one method:
void validate(FacesContext context, UIComponent component, Object value)
If validation fails, generate a FacesMessage that describes the error, construct a

ValidatorException from the message, and throw it:

if (validation fails) {
FacesMessage message = ...;
message.setSeverity(FacesMessage.SEVERITY_ERROR);
throw new ValidatorException(message);

}

The process is analogous to the reporting of conversion errors, except that you
throw a ValidatorException instead of a ConverterException.

For example, Listing 7-19 on page 292 shows a validator that checks the digits
of a credit card, using the Luhn formula. As described under “Getting Error
Messages from Resource Bundles” on page 281, we use the convenience class
com.corejsf.util.Messages to locate the message strings in a resource bundle.

A[P(1 javax.faces.validator.Validator

e void validate(FacesContext context, UIComponent component, Object value)
Validates the component to which this validator is attached. If there is a
validation error, throw a ValidatorException.

Registering Custom Validators

Now that we have created a validator, we need to give it an ID. As with con-
verter IDs, there are two choices. In JSF 2.0, you can use an annotation:

@FacesValidator("com.corejsf.Card")
public class CreditCardvalidator implements Validator

From the Library of Wow! eBook

Programming with Custom Converters and Validators m

Alternatively, you can register the validator in a configuration file (such as
faces-config.xml), like this:

<validator>
<validator-id>com.corejsf.Card</validator-id>
<validator-class>com.corejsf.CreditCardvalidator</validator-class>
</validator>

You specify the validator ID in the f:validator tag—for example, the following
code fragment uses the credit card validator discussed above:

<h:inputText id="card" value="#{payment.card}" required="true">
<f:converter converterId="com.corejsf.Card"/>
<f:validator validatorId="com.corejsf.Card"/>
</h:inputText>

The f:validator tag uses the validator ID to look up the corresponding class, cre-
ates an instance of that class if necessary, and invokes its validate method.

NOTE: JSF uses separate name spaces for converter and validator IDs.
’ Thus, it is okay to have both a converter and a validator with the ID
com.corejsf.Card.

NOTE: JSF registers its standard validators with IDs javax.faces.LongRange,
; javax.faces.DoubleRange, javax.faces.Length, javax.faces.RegularExpression,
javax.faces.Required, and javax.faces.Bean.

The remainder of the sample application is straightforward. Figure 7-11 shows
the directory structure, and Listing 7-20 contains the JSF page.

The f:validator tag is useful for simple validators that do not have parameters,
such as the credit validator discussed above. If you need a validator with prop-
erties that can be specified in a JSF page, you should implement a custom tag
for your validator. You will see how to do that in the section “Implementing
Custom Validator Classes” on page 290.

From the Library of Wow! eBook

m Chapter 7 B Conversion and Validation

ﬁ validator2.war
") index.xhtml
" result.xhtml
v (& WEB-INF
" beans.xml
_ faces-config.xml
" web.xml
¥ (& classes
A % com
v E corejsf
|| CreditCard.class
'] CreditCardConverter.class
: CreditCardValidator.class
" PaymentBean.class

' | messages.properties
v (& util
|| Messages.class
v E resources

v (& css

| styles.css

Figure 7-11 The directory structure of the custom validator example

validator2/src/java/com/corejsf/CreditCardValidator.java

package com.corejsf;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import javax.faces.validator.FacesValidator;
import javax.faces.validator.Validator;

import javax.faces.validator.ValidatorException;

@FacesValidator("com.corejsf.Card")
pubTic class CreditCardvalidator implements Validator {
public void validate(FacesContext context, UIComponent component,
Object value) {
if(value == null) return;
String cardNumber;
if (value instanceof CreditCard)
cardNumber = value.toString();
else
cardNumber = value.toString().replaceA1T("\\D", ""); // remove non-digits
if(!TuhnCheck(cardNumber)) {
FacesMessage message

From the Library of Wow! eBook

Programming with Custom Converters and Validators m

= com.corejsf.util.Messages.getMessage(
"com.corejsf.messages”, "badLuhnCheck", null);
message.setSeverity(FacesMessage.SEVERITY_ERROR) ;
throw new ValidatorException(message);
}
}

private static boolean TuhnCheck(String cardNumber) {
int sum = 0;

for(int i = cardNumber.length() - 1; i >=0; i -= 2) {
sum += Integer.parseInt(cardNumber.substring(i, i + 1));

if(i > 0) {
int d = 2 « Integer.parseInt(cardNumber.substring(i - 1, i));
if(d>9)d-=09;
sum += d;

}

}

return sum % 10 == 0;

}
}
validator2/web/index. xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<title>#{msgs.title}</title>
</h:head>
<h:body>
<h:forms>
<h1>#{msgs.enterPayment}</h1>
<h:panelGrid columns="3">
#{msgs.amount}
<h:inputText id="amount" label="#{msgs.amount}"
value="#{payment.amount}">
<f:convertNumber minFractionDigits="2"/>
</h:inputText>
<h:message for="amount" styleClass="errorMessage"/>

From the Library of Wow! eBook

m Chapter 7 B Conversion and Validation

#{msgs.creditCard}
<h:inputText id="card" label="#{msgs.creditCard}"
value="#{payment.card}" required="true">
<f:converter converterId="com.corejsf.Card"/>
<f:validator validatorId="com.corejsf.Card"/>
</h:inputText>
<h:message for="card" styleClass="errorMessage"/>

#{msgs.expirationDate}
<h:inputText id="date" Tabel="#{msgs.expirationDate}"
value="#{payment.date}">
<f:convertDateTime pattern="MM/yyyy"/>

</h:inputText>
<h:message for="date" styleClass="errorMessage"/>

</h:panelGrid>

<h:commandButton value="#{msgs.process}" action="result"/>

</h:form>
</h:body>
</html>

www

B @javax. faces.validator.FacesValidator

> |

e String value
The ID of the converter.

Validating with Bean Methods

In the preceding section, you saw how to implement a validation class. How-
ever, you can also add the validation method to an existing class and invoke it
through a method expression, like this:

<h:inputText id="card" value="#{payment.card}"
required="true" validator="#{payment.luhnCheck}"/>

The payment bean must then have a method with the exact same signature as
the validate method of the Validator interface:

pubTic class PaymentBean {

public void TuhnCheck(FacesContext context, UIComponent component, Object value) {
... // same code as in the preceding example

}
}

Why would you want to do this? There is one major advantage. The validation
method can access other instance variables of the class. You saw an example in
the section, “Supplying Attributes to Converters” on page 289.

From the Library of Wow! eBook

Programming with Custom Converters and Validators m

On the downside, this approach makes it more difficult to move a validator
to a new web application, so you would probably only use it for application-
specific scenarios.

CAUTION: The value of the validator attribute is a method expression,
whereas the seemingly similar converter attribute specifies a converter ID (if
it is a string) or a converter object (if it is a value expression). As Emerson
said, ‘A foolish consistency is the hobgoblin of little minds.”

Validating Relationships between Multiple Components

The validation mechanism in JSF was designed to validate a single component.
However, in practice, you often need to ensure that related components have
reasonable values before letting the values propagate into the model. For
example, as we noted earlier, it is not a good idea to ask users to enter a date
into a single text field. Instead, you would use three different text fields, for the
day, month, and year, as in Figure 7-12.

If the user enters an illegal date, such as February 30, you would want to show
a validation error and prevent the illegal data from entering the model.

|W|Validating The Relationship Between Components - Mozilla Firefox
File Edit View History Bookmarks Tools Help

<

* ~ g ﬂ |§ http:/flocalhost:2080/validator3/facesfindcx.xhtml

Please enter a date.

Day |29

Month |2

Year (2011 |The enlered dale is nol valid.
| Submit
[+]
Donc FC
7 T

Figure 7-12 Validating a relationship involving three components

You can solve this problem with the following approach. Attach the validator
to the last of the components. By the time its validator is called, the preceding
components have passed validation and had their local values set. The last
component has passed conversion, and the converted value is passed as the
Object parameter of the validation method.

From the Library of Wow! eBook

Chapter 7 B Conversion and Validation

To carry out this approach, the validator of the last component needs to have
access to the other components. You can achieve that access by giving ID val-
ues to the other components. Then you can use the findComponent method of the
UIComponent class to locate them:

public class BackingBean {

public void validateDate(FacesContext context, UIComponent component,
Object value) {
UILInput dayInput = (UIInput) component.findComponent("day");
UILInput monthInput = (UIInput) component.findComponent("month");
int d = ((Integer) dayInput.getlocalValue()).intValue();
int m = ((Integer) monthInput.getlocalValue()).intValue();
int y = ((Integer) value).intValue();

if (!lisvalidDate(d, m, y)) {
FacesMessage message = ...;
throw new ValidatorException(message);

}
}

}

Note that the value lookup is a bit asymmetric. The last component does not
yet have the local value set because it has not passed validation.

An alternative approach is to attach the validator to a hidden input field that
comes after all other fields on the form:

<h:inputHidden id="datecheck" validator="#{bb.validateDate}"
value="needed"/>

The hidden field is rendered as a hidden HTML input field. When the field
value is posted back, the validator kicks in. (It is essential that you supply some
field value. Otherwise, the component value is never updated.) With this
approach, the validation function is more symmetrical since all other form
components already have their local values set.

% NOTE: In Chapter 8, you will see another approach: a listener to the
PostValidateEvent that checks the three components.

From the Library of Wow! eBook

Implementing Custom Converter and Validator Tags 297

NOTE: It would actually be worthwhile to write a custom date component
' that renders three input fields and has a single value of type Date. That sin-
gle component could then be validated easily. However, the technique of this
section is useful for any form that needs validation across fields.

Implementing Custom Converter and Validator Tags

The custom converters and validator classes that you saw in the preceding sec-
tions have a shortcoming: They do not allow attributes. For example, we may
want to specify a separator character for the credit card converter so that the
page designer can choose whether to use dashes or spaces to separate the digit
groups. Specifically, we would like page designers to use tags, such as the
following:

<h:outputText value="#{payment.card}">
<corejsf:convertCreditcard separator="-"/>
</h:outputText>

In other words, custom converters should have the same capabilities as the
standard f:convertNumber and f:convertDateTime tags. To achieve this, you need to
implement a custom converter tag. In this section, you will learn how to imple-
ment your own converter and validator tags.

You need to define custom converter and validator tags in a tag descriptor file.
You have already encountered these descriptor files in Chapter 5. You can set
the file location in web.xm1, like this:

<context-params
<param-name>javax.faces.FACELETS_LIBRARIES</pararm-name>
<param-value>/WEB-INF/corejsf.taglib.xml</param-value>
</context-param>

Alternatively, if you want to package your tags to that they are usable in other
projects, you place them inside a JAR file and add the tag descriptor file into
the META-INF directory.

Listing 7-21 shows the descriptor file that describes a custom converter and
validator.

From the Library of Wow! eBook

m Chapter 7 B Conversion and Validation
custom-tags/web/WEB-INF/corejsf.taglib.xml

<?xml version="1.0" encoding="UTF-8"?>
<facelet-taglib version="2.0"
xmlns="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xm1/ns/javaee/web-facelettaglibary_2_0.xsd">
<namespace>http://corejsf.com</namespace>
<tag>
<tag-name>convertCreditCard</tag-name>
<converters>
<converter-id>com.corejsf.CreditCard</converter-id>
</converters>
</tag>
<tag>
<tag-name>validateCreditCard</tag-name>
<validator>
<validator-id>com.corejsf.CreditCard</validator-id>
</validator>
</tag>
</facelet-taglib>

You simply supply the converter or validator ID for the given tag name.

Listing 7-22 on page 299 shows the full converter class. Note the setSeparator
method that is called when a separator is provided in the tag.

When implementing converters or validators that have state, you need to make
sure that the state can be saved. The easiest way of accomplishing that is to
implement the Serializable interface and follow the usual rules for Java serial-
ization. (For more information on state saving, please see Chapter 11.)

In our sample application, we also provide a validator tag for carrying out the
Luhn check. We use that validator in the following way:

<h:inputText id="card" value="#{payment.card}" required="true">

<corejsfivalidateCreditCard errorDetail="#{msgs.creditCardError}"/>

</h:inputText>
By default, the validator displays an error message that complains about fail-
ing the Luhn check. If your application’s audience includes users who are unfa-
miliar with that terminology, you will want to change the message. We give
you attributes errorSummmary and errorDetail for this purpose.

You will find the validator code in Listing 7-23. Note the setErrorSummary and
setErrorDetail methods for setting the tag attributes.

From the Library of Wow! eBook

Implementing Custom Converter and Validator Tags m

Figure 7-13 shows the application’s directory structure. Listing 7-24 shows the

JSF page.

[E custom-tags.war
|] index.xhtml

n.

[result.xhtml
v (& WEB-INF

[] beans.xml
| | corejsf.taglib.xml
| | faces-config.xml

[web.xml
A [E classes
v com
¥ (& corejsf
| %) CreditCard.class

| CreditCardConverter.class
[creditcardvalidator.class
[% PaymentBean.class

| messages.properties
v (& util
| | Messages.class
¥ (& resources

v ﬁcss

L' styles.css

Figure 7-13 Directory structure of the thoroughly validating application

B350 -l eb B custom-tags/src/java/com/corejst/CreditCardConverter. java

package com.corejsf;

import java.io.Serializable;

import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;

import javax.faces.convert.ConverterException;
import javax.faces.convert.FacesConverter;

@FacesConverter("com.corejsf.CreditCard")
pubTlic class CreditCardConverter implements Converter, Serializable

{

private String separator;

public void setSeparator(String newValue) { separator = newValue; }

From the Library of Wow! eBook

m Chapter 7 B Conversion and Validation

public Object getAsObject(

}

FacesContext context,
UIComponent component,
String newValue)

throws ConverterException {

StringBuilder builder = new StringBuilder(newValue);

int i = 0;
while (i < builder.length()) {
if (Character.isDigit(builder.charAt(i)))
i+4;
else
builder.deleteCharAt(i);
}
return new CreditCard(builder.toString());

public String getAsString(

FacesContext context,
UIComponent component,
Object value)
throws ConverterException {
// Tength 13: XXXX XXX XXX XXX
// Tength 14: XXXXX XXXX XXXXX
// Tength 15: XXXX XXXXXX XXXXX
// Tength 16: XXXX XXXX XXXX XXXX
// Tength 22: XXXXXX XXXXXXXX XXXXXXXX
if (!(value instanceof CreditCard))
throw new ConverterException();
String v = ((CreditCard) value).toString();
String sep = separator;
if (sep == null) sep =" ";
int[] boundaries = null;
int length = v.length();
if (Tength == 13)
boundaries = new int[] { 4, 7, 10 };
else if (length == 14)
boundaries = new int[] { 5, 9 };
else if (Tength == 15)
boundaries = new int[] { 4, 10 };
else if (Tength == 16)
boundaries = new int[] { 4, 8, 12 };
else if (length == 22)
boundaries = new int[] { 6, 14 };
else
return v;
StringBuilder result = new StringBuilder();
int start = 0;

From the Library of Wow! eBook

Implementing Custom Converter and Validator Tags m

for (int i = 0; i < boundaries.length; i++) {
int end = boundaries[i];
result.append(v.substring(start, end));
result.append(sep);
start = end;

}

result.append(v.substring(start));

return result.toString();

}
}

custom-tags/src/java/com/corejsf/CreditCardvalidator. java

package com.corejsf;

import java.io.Serializable;
import java.text.MessageFormat;
import java.util.locale;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import javax.faces.validator.FacesValidator;
import javax.faces.validator.Validator;

import javax.faces.validator.ValidatorException;

@FacesValidator("com.corejsf.CreditCard")

pubTic class CreditCardValidator implements Validator, Serializable {
private String errorSummary;
private String errorDetail;

public void validate(FacesContext context, UIComponent component,

Object value) {

if(value == null) return;

String cardNumber;

if (value instanceof CreditCard)
cardNumber = value.toString();

else
cardNumber = getDigitsOnly(value.toString())

if(!TuhnCheck(cardNumber)) {
FacesMessage message

= com.corejsf.util.Messages.getMessage(
"com.corejsf.messages", "badLuhnCheck", null);

message.setSeverity(FacesMessage.SEVERITY_ERROR);
Locale Tocale = context.getViewRoot().getLocale()
Object[] params = new Object[] { value };
if (errorSummary != null)

From the Library of Wow! eBook

Chapter 7 B Conversion and Validation

message. setSummary (
new MessageFormat(errorSummary, locale).format(params));
if (errorDetail != null)
message.setDetail(
new MessageFormat(errorDetail, Tocale).format(params));
throw new ValidatorException(message);
}
}

public void setErrorSummary(String newValue) {
errorSummary = newvalue;

}

public void setErrorDetail(String newValue) {
errorDetail = newValue;

}

private static boolean TuhnCheck(String cardNumber) {
int sum = 0;

for(int i = cardNumber.length() - 1; 1 >=0; i -= 2) {
sum += Integer.parseInt(cardNumber.substring(i, i + 1));

if(i>0) {
int d = 2 « Integer.parseInt(cardNumber.substring(i - 1, i));
if(d>9) d-=09;
sum += d;

}

}

return sum % 10 == 0;

}

private static String getDigitsOnly(String s) {
StringBuilder digitsOnly = new StringBuilder ();
char c;
for(int i = 0; i < s.length (); i++) {
c = s.charAt (i);
if (Character.isDigit(c)) {
digitsOnly.append(c);
}
}
return digitsOnly.toString ()
}
}

From the Library of Wow! eBook

Conclusion m

| BCIRV Tl 20 2 custom-tags/web/index.xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:h="http://java.sun.com/jsf/html"
xmins:f="http://java.sun.com/jsf/core"
xmins:corejsf="http://corejsf.com">
<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<titles#{msgs.title}</title>
</h:head>
<h:body>
<h:form>
<h1>#{msgs.enterPayment}</h1>
<h:panelGrid columns="2">
#{msgs.amount}
<h:inputText id="amount" value="#{payment.amount}">
<f:convertNumber minFractionDigits="2"/>
</hzinputText>

#{msgs.creditCard}
<h:inputText id="card" value="#{payment.card}" required="true">
<corejsf:validateCreditCard
errorDetail="#{msgs.creditCardError}"/>
</h:inputText>

#{msgs.expirationDate}
<h:inputText id="date" value="#{payment.date}">
<ficonvertDateTime pattern="MM/yyyy"/>

</h:inputText>

</h:panelGrid>

<h:messages styleClass="errorMessage"

showSummary="false" showDetail="true"/>

<h:commandButton value="Process" action="result"/>
</h:form>
</h:body>
</html>

Conclusion

As you have seen, JSF provides extensive and extensible support for conver-
sion and validation. You can use the JSF standard converter and validators
with one line of code in your JSF pages, or you can supply your own logic if
more complex conversions or validations are needed. Finally, you can define
your own conversion and validation tags.

From the Library of Wow! eBook

EVENT HANDLING

Topics in This Chapter

e “Events and the JSF Life Cycle” on page 306

e “Value Change Events” on page 307

e “Action Events” on page 312

e “Event Listener Tags” on page 318

e “Immediate Components” on page 320

e “Passing Data from the Ul to the Server” on page 324
e “Phase Events” on page 328

e “System Events” on page 329

e “Putting It All Together” on page 338

From the Library of Wow! eBook

Web applications often need to respond to user events, such as selecting items
from a menu or clicking a button. For example, you might want to respond to
the selection of a country in an address form by changing the locale and reload-
ing the current page to better accommodate your users.

Typically, you register event handlers with components—for example, you
might register a value change listener with a menu in a JSF page, like this:

<h:selectOneMenu valueChangelistener="#{form.countryChanged}"...>

</h:selectOneMenu>

In the preceding code, the method binding #{form.countryChanged} references the

countryChanged method of a bean named form. That method is invoked by the JSF
implementation after the user makes a selection from the menu. Exactly when
that method is invoked is one topic of discussion in this chapter.

JSF supports four kinds of events:
® Value change events

U Action events

* Phase events

o System events (since JSF 2.0)

305

From the Library of Wow! eBook

Chapter 8 B Event Handling

Value change events are fired by editable value holders—such as h:inputText,
h:selectOneRadio, and h:selectManyMenu—when the component’s value changes.

Action events are fired by action sources—for example, h:commandButton and
h:commandLink—when the button or link is activated. Phase events are routinely
fired by the JSF life cycle. JSF 2.0 adds a large number of system events. Some
of the system events are of interest to application programmers. For example, it
is now possible to carry out an action before a view or component is rendered.

NOTE: Keep in mind that all JSF events are executed on the server. When
- you provide an event handler in a JSF page, you tell the JSF implementation
that you want the event to be handled, at the appropriate place in the life
cycle, when the server processes the user input from your page.

Events and the JSF Life Cycle

Requests in JSF applications are processed by the JSF implementation with a
controller servlet, which in turn executes the JSF life cycle. Event handling in
the JSF life cycle is shown in Figure 8-1.

response complete response complete

Restore Apply Requesl Process
= View Values Validations "";

4 Render Invoke Update
response Response Application Model
Values

Figure 8-1 Event handling in the JSF life cycle

From the Library of Wow! eBook

Value Change Events

Starting with the Apply Request Values phase, the JSF implementation may cre-
ate events and add them to an event queue during each life cycle phase. After
those phases, the JSF implementation broadcasts queued events to registered lis-
teners. Those events and their associated listeners are the focus of this chapter.

% NOTE: Event listeners can affect the JSF life cycle in one of three ways:
' 1. Let the life cycle proceed normally.

2. Call the renderResponse method of the FacesContext class to skip the rest
of the life cycle up to Render Response.

3. Call the responseCompTete method of the FacesContext class to skip the rest
of the life cycle entirely.

See “Immediate Components” on page 320 for an example of using the
renderResponse method.

Value Change Events

Components in a web application often depend on each other. For example, in
the application shown in Figure 8-2, the value of the “State” prompt depends
on the “Country” menu’s value. You can keep dependent components in synch
with value change events, which are fired by input components after their new
value has been validated.

|W_Using Value Change Events - Mozilla Firefox

File Edit View History Bookmarks Tools Help

* ~ g ﬂ |§I http://localhost:8080/valuechange/faces/index.xhtml ~

Please fill in your address
Af:ldrcss |W_Using Value Change Events - Mozilla Firefox
Clty I— File Edit View History Bookmarks Tools Help

Slale & o =

(2% ﬂ |§I http:/flocalhost:8080/valuechangeffaces/ind ex.xhtml -
Country | United State|

submitaddress | | Please fill in your address
Address | |

Donc City | |

' Province | |

Country ._ Canada &

| Submit address |

Done #
T

Figure 8-2 Using value change events

From the Library of Wow! eBook

307

Chapter 8 B Event Handling

The application in Figure 8-2 attaches a value change listener to the “Country”
menu and uses the onchange attribute to force a form submit after the menu’s
value is changed:

<h:selectOneMenu value="#{form.country}" onchange="submit()"
valueChangeListener="#{form.countryChanged}">
<f:selectItems value="#{form.countries}" var="loc"
itemLabel="#{loc.displayCountry}" itemValue="#{loc.country}"/>
</h:selectOneMenu>

Here, #{form.countries} is bound to an array of Locale objects.

When a user selects a country from the menu, the JavaScript submit function is
invoked to submit the menu’s form, which subsequently invokes the JSF life
cycle. After the Process Validations phase, the JSF implementation invokes the
form bean’s countryChanged method. That method changes the view root’s locale,
according to the new country value:

public void countryChanged(ValueChangeEvent event) {
for (Locale loc : countries)
if (loc.getCountry().equals(event.getNewvalue()))
FacesContext.getCurrentInstance().getViewRoot().setlLocale(loc);

}

Like all value change listeners, the preceding listener is passed a value
change event. The listener uses that event to access the component’s new
value.

One more thing is noteworthy about this example. Notice that we add an
onchange attribute whose value is submit() to our h:selectOneMenu tag. Setting that
attribute means that the JavaScript submit function will be invoked whenever
someone changes the selected value of the menu, which causes the surround-
ing form to be submitted.

That form submit is crucial because the [SF implementation handles all events on
the server. If you take out the onchange attribute, the form will not be submitted
when the selected menu item is changed, meaning that the JSF life cycle will
never be invoked, our value change listener will never be called, and the locale
will never be changed.

You may find it odd that JSF handles all events on the server, but remember
that you can handle events on the client if you wish by attaching JavaScript to
components with attributes, such as onblur, onfocus, onclick, and so on.

The directory structure for the application in Figure 8-2 is shown in Figure 8-3
and the application is shown in Listings 8-1 through 8-5.

From the Library of Wow! eBook

Value Change Events m

>
[§

UIComponent getComponent()

Returns the input component that triggered the event.

e (Object getNewValue()

P javax. faces.event.ValueChangeEvent

Returns the component’s new value, after the value has been converted

and validated.
e (Object getOldvalue()

Returns the component’s previous value.

[E valuechange.war
[index.xhtml
¥ (&5 WEB-INF
; beans.xml
[faces-config.xml
[web.xml
¥ (& classes
v [E com
¥ (& corejsf
[%) RegisterForm.class
; messages.properties
[") messages_en_CA.properties
|) messages_en_US.properties
v [E resources
¥ (& css

| 7] styles.css

Figure 8-3 Directory structure for the value change example

valuechange/web/index. xhtm]

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core"
xmins:h="http://java.sun.com/jsf/html">

<h:head>

<h:outputStylesheet Tibrary="css" name="styles.css"/>
<titles#{msgs.windowTitle}</titTe>

</h:head>

<h:body>
<h:forms>

#{msgs.pageTitle}

From the Library of Wow! eBook

m Chapter 8 B Event Handling

<h:panelGrid columns="2">
#{msgs.streetAddressPrompt}
<h:inputText value="#{form.streetAddress}"/>

#{msgs.cityPrompt}
<h:inputText value="#{form.city}"/>

#{msgs.statePrompt}
<h:inputText value="#{form.state}"/>

#{msgs.countryPrompt}
<h:selectOneMenu value="#{form.country}" onchange="submit()"
valueChangelistener="#{form.countryChanged}">
<f:selectItems value="#{form.countries}" var="loc"
itemLabel="#{loc.displayCountry}" itemValue="#{loc.country}"/>
</h:selectOneMenu>
</h:panelGrid>
<h:commandButton value="#{msgs.submit}"/>
</h:form>
</h:body>
</html>

 BTTE VTS valuechange/src/java/com/corejsf/RegisterForm. java

package com.corejsf;

import java.io.Serializable;
import java.util.LinkedHashMap;
import java.util.Locale;

import java.util.Map;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;
import javax.faces.context.FacesContext;
import javax.faces.event.ValueChangeEvent;

@Named("form") // or @ManagedBean(name="form")
@SessionScoped
pubTic class RegisterForm implements Serializable {
private String streetAddress;
private String city;
private String state;
private String country;

private static final Locale[] countries = { Locale.US, Locale.CANADA };

From the Library of Wow! eBook

Value Change Events m

public Locale[] getCountries() { return countries; }

public void setStreetAddress(String newValue) { streetAddress = newValue; }
public String getStreetAddress() { return streetAddress; }

public void setCity(String newValue) { city = newValue; }
public String getCity() { return city; }

public void setState(String newValue) { state = newValue; }
public String getState() { return state; }

public void setCountry(String newValue) { country = newValue; }
public String getCountry() { return country; }

public void countryChanged(ValueChangeEvent event) {
for (Locale Tloc : countries)
if (Toc.getCountry().equals(event.getNewvalue()))
FacesContext.getCurrentInstance().getViewRoot().setlLocale(Toc);
}
}

valuechange/web/WEB-INF/faces-config.xm]

<?xml version="1.0"?>
<faces-config xmins="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd"
version="2.0">
<application>
<resource-bundle>
<base-name>com.corejsf.messages</base-name>
<varmsgs</var>
</resource-bundle>
</application>
</faces-config>

BRI valuechange/src/java/com/corejsf/messages_en_US.properties

windowTitle=Using Value Change Events
pageTitle=Please fill in your address

streetAddressPrompt=Address
cityPrompt=City
statePrompt=State
countryPrompt=Country
submit=Submit address

From the Library of Wow! eBook

Chapter 8 B Event Handling

valuechange/src/java/com/corejsf/messages_en_CA.properties

windowTitle=Using Value Change Events
pageTitle=Please fill in your address

streetAddressPrompt=Address
cityPrompt=City
statePrompt=Province
countryPrompt=Country
submit=Submit address

Action Events

Action events are fired by buttons and links. As you saw in “Events and the JSF
Life Cycle” on page 306, action events are fired during the Invoke Application
phase, near the end of the life cycle.

You can add an action listener to an action source, like this:

<h:commandLink actionListener="#{bean.linkActivated}">

</h:commandLink>

Command components submit requests when they are activated, so there is no
need to use onchange to force form submits as we did with value change events
in “Value Change Events” on page 307. When you activate a button or link, the
surrounding form is submitted and the JSF implementation subsequently fires
action events.

It is important to distinguish between action listeners and actions. In a nutshell,
actions are designed for business logic and participate in navigation handling,
whereas action listeners typically perform user interface logic and do not par-
ticipate in navigation handling.

Action listeners sometimes work in concert with actions when an action needs
information about the user interface. For example, the application shown in
Figure 8—4 uses an action and an action listener to react to mouse clicks by
forwarding to a JSF page.

If you click on a president’s face, the application forwards to a JSF page with
information about that president. Note that an action alone cannot implement
that behavior—an action can navigate to the appropriate page, but it cannot
determine the appropriate page because it knows nothing about the image
button in the user interface or the mouse click.

From the Library of Wow! eBook

Action Events m

The application shown in Figure 84 uses a button with an image, like this:

<h:commandButton image="/resources/images/mountrushmore.jpg"
actionListener="#{rushmore.handleMouseClick}"
action="#{rushmore.act}"/>

©)|[Actions and Action Listeners - Mozilla Firefox [_[Ofx]

File Edit View History Bookmarks Tools Help

* v @ ﬁ |@| http://localhost:8080/rushmore/ V|

For information about a president, click on the president's face.

File Edit View History Bookmarks Tools Help

ﬁ v ﬂ ﬁ ‘@‘l http:/flocalhost:8080/rushmore/faces/index.xhtmil:jsessionid= V|

Thomas Jefferson

Thomas Jefferson, the 3rd US president, was born in 1743 in
Virginia. Jefferson was tall and awkward, and was not known as a
great public speaker. Jefferson became minister to France in 1785,
after Benjamin Franklin held that post. In 1796, Jefferson was a
reluctant presidential candiate, and missed winning the election by
a mere three votes. He served as president from 1801-1809.
Back...

Done P

Figure 8-4 The Rushmore application

When you click a president, a listener—which has access to the mouse click
coordinates—determines which president was selected. But the listener cannot
affect navigation, so it stores an outcome corresponding to the selected presi-
dent in an instance field:

pubTic class Rushmore {
private String outcome;
private Rectangle washingtonRect (;
private Rectangle jeffersonRect = new Rectangle(115,45,40,40);
private Rectangle rooseveltRect = new Rectangle(135,65,40,40);
private Rectangle TincolnRect = new Rectangle(175,62,40,40)

new Rectangle(70,30,40,40)

public void Tisten(ActionEvent e) {

From the Library of Wow! eBook

m Chapter 8 B Event Handling

FacesContext context = FacesContext.getCurrentInstance();

String clientId = e.getComponent().getClientId(context);

Map requestParams = context.getExternalContext().
getRequestParameterMap();

int x = new Integer((String) requestParams.get(clientId + ".x")).intValue();
int y = new Integer((String) requestParams.get(clientId + ".y")).intValue();

outcome = null;

if (washingtonRect.contains(new Point(x,y)))
outcome = "washington";

if (jeffersonRect.contains(new Point(x,y)))
outcome = "jefferson";

if (rooseveltRect.contains(new Point(x,y)))
outcome = "roosevelt";

if (TincolnRect.contains(new Point(x,y)))
outcome = "lincoln";

}
}

The action associated with the button uses the outcome to affect navigation:

pubTlic String act() {
return outcore;
}
Note that the JSF implementation always invokes action listeners before
actions.

% NOTE: JSF insists that you separate user interface logic and business logic
by refusing to give actions access to events or the components that fire
them. In the preceding example, the action cannot access the client ID of
the component that fired the event, information that is necessary for extrac-
tion of mouse coordinates from the request parameters. Because the action
knows nothing about the user interface, we must add an action listener to
the mix to implement the required behavior.

The directory structure for the application in Figure 84 is shown in Figure 8-5.
The application is shown in Listings 8-6 through 8-9.

From the Library of Wow! eBook

Action Events m

ﬁ rushmore.war
[index.xhtml
[jefferson.xhtml
[lincoln.xhtml
[roosevelt.xhtml
| Y washington.xhtm|
¥ (&5 WEB-INF
[beans.xml
[faces-config.xml
|5 web.xml
¥ (& classes
¥ (& com
v (& corejsf
[Rushmore.class
[") messages.properties
¥ (& resources
v (& css
[styles.css
v [E images
[jefferson.jpg
[lincoln.jpg
[mountrushmore.jpg
[roosevelt.jpg
|) washington.jpg

Figure 8-5 Directory structure for the Rushmore example

rushmore/web/index.xhtm1

1. <?xm] version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3. "http://www.w3.0rg/TR/xhtm11/DTD/xhtm11-transitional.dtd">
4. <html xmIns="http://www.w3.0rg/1999/xhtm1"
5. xmlIns:h="http://java.sun.com/jsf/html">
6. <h:head>
1. <h:outputStylesheet Tibrary="css" name="styles.css"/>
8. <title>#{msgs.indexWindowTitTe}</title>
9. </h:head>
10.
11. <h:body>
12. #{msgs.instructions}
13. <h:forms>
14. <h:commandButton image="/resources/images/mountrushmore.jpg"
15. styleClass="imageButton"
16.
17.

actionListener="#{rushmore.handleMouseClick}
action="#{rushmore.navigate}"/>

From the Library of Wow! eBook

m Chapter 8 B Event Handling

</h:form>
</h:body>
</htm1>

rushmore/web/TincoIn.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core" xmins:h="http://java.sun.com/jsf/htm1">
<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<title>#{msgs.TincolnWindowTitle}</title>
</h:head>

<h:body>
<h:form>
#{msgs.lincolnPageTitle}

<h:graphicImage library="images" name="Tincoln.jpg" styleClass="TeftImage"/>
#{msgs.TincolnDiscussion}

<h:commandLink action="1index"
styleClass="backLink">${msgs.indexLinkText}</h:commandLink>
</h:form>
</h:body>
</htm1>

rushmore/src/java/com/corejsf/Rushmore.java

package com.corejsf;

import java.awt.Point;
import java.awt.Rectangle;
import java.util.Map;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.RequestScoped;
// or import javax.faces.bean.RequestScoped;
import javax.faces.context.FacesContext;
import javax.faces.event.ActionEvent;

@Named // or @ManagedBean
@RequestScoped

From the Library of Wow! eBook

Action Events m

pubTic class Rushmore {
private String outcome = null;
private Rectangle washingtonRect = new Rectangle(70, 30, 40, 40);
private Rectangle jeffersonRect = new Rectangle(115, 45, 40, 40);
private Rectangle rooseveltRect = new Rectangle(135, 65, 40, 40);
private Rectangle TincolnRect = new Rectangle(175, 62, 40, 40);

public void handleMouseClick(ActionEvent e) {
FacesContext context = FacesContext.getCurrentInstance();
String clientId = e.getComponent().getClientId(context);
Map<String, String> requestParams
= context.getExternalContext().getRequestParameterMap();

int x = new Integer((String) requestParams.get(cTientId + ".x")).intValue();
int y = new Integer((String) requestParams.get(clientId + ".y")).intValue();

outcome = null;

if (washingtonRect.contains(new Point(x, y)))
outcome = "washington";

if (jeffersonRect.contains(new Point(x, y)))
outcome = "jefferson";

if (rooseveltRect.contains(new Point(x, y)))
outcome = "roosevelt";

if (TincolnRect.contains(new Point(x, y)))
outcome = "Tincoln";

}

public String navigate() {
return outcome;
}
}

 BTTR VS M rushmore/src/java/com/corejst/messages.properties

instructions=For information about a president, click on the president's face.

indexWindowTitle=Actions and Action Listeners
indexLinkText=Back...
jeffersonWindowTitle=President Jefferson
rooseveltWindowTitle=President Roosevelt
TincolnWindowTitle=President Lincoln
washingtonWindowTitTe=President Washington

From the Library of Wow! eBook

m Chapter 8 B Event Handling

jeffersonPageTitle=Thomas Jefferson
rooseveltPageTitle=Theodore Roosevelt
lincolnPageTitle=Abraham Lincoln
washingtonPageTitle=George Washington

TincoTnDiscussion=President Lincoln was known as the Great Emancipator because \
he was instrumental in abolishing slavery in the United States. He was born \
into a poor family in Kentucky in 1809, elected president in 1860 and \
assassinated by John WiTkes Booth in 1865.

washingtonDiscussion=George Washington was the first president of the United \
States. He was born in 1732 in Virginia and was elected Commander in Chief of \
the Continental Army in 1775 and forced the surrender of Cornwallis at Yorktown \
in 1781. He was inaugurated on April 30, 1789.

rooseveltDiscussion=Theodore Roosevelt was the 26th president of the United \
States. In 1901 he became president after the assassination of President \
McKinley. At only 42 years of age, he was the youngest president in US history.

jeffersonDiscussion=Thomas Jefferson, the 3rd US president, was born in \
1743 in Virginia. Jefferson was tall and awkward, and was not known as a \
great public speaker. Jefferson became minister to France in 1785, after \
Benjamin Franklin held that post. In 1796, Jefferson was a reluctant \
presidential candiate, and missed winning the election by a mere three votes. \
He served as president from 1801-1809.

Event Listener Tags

Up to now, we have added action and value change listeners to components
with the actionListener and valueChangelListener attributes, respectively. However,
you can also add action and value change listeners to a component with the

following tags:

. fractionListener
. f:valueChangeListener

The f:actionListener and f:valueChangeListener Tags

The f:actionListener and f:valueChangelistener tags are analagous to the actionListener
and valueChangelistener attributes. For example, in Listing 8-1 on page 309, we
defined a menu like this:
<h:selectOneMenu value="#{form.country}" onchange="submit()"
valueChangeListener="#{form.countryChanged}">

<fiselectItems value="#{form.countryNames}"/>
</h:selectOneMenu>

From the Library of Wow! eBook

Event Listener Tags m

Alternatively, we could use f:valueChangelistener, like this:

<h:selectOneMenu value="#{form.country}" onchange="submit()">
<fivalueChangeListener type="com.corejsf.CountryListener"/>
<fiselectItems value="#{form.countryNames}"/>
</h:selectOneMenu>

The tags have one advantage over the attributes: Tags let you attach multiple
listeners to a single component.

Notice the difference between the values specified for the valueChangelistener
attribute and the f:valueChangelistener tag in the preceding code. The former
specifies a method binding, whereas the latter specifies a Java class. For

example, the class referred to in the previous code fragment looks like this:

pubTic class CountrylListener implements ValueChangeListener {
public void processValueChange(ValueChangeEvent event) {
FacesContext context = FacesContext.getCurrentInstance();
if ("US".equals(event.getNewValue()))
context.getViewRoot().setLocale(Locale.US);
else
context.getViewRoot().setlLocale(Locale.CANADA);
}
}

Like all listeners specified with f:valueChangeListener, the preceding class imple-
ments the ValueChangeListener interface. That class defines a single method: void
processValueChange (ValueChangeEvent).

The f:actionListener tag is analogous to f:valueChangelistener—the former also has a
type attribute that specifies a class name; the class must implement the ActionListener
interface. For example, in Listing 86 on page 315, we defined a button like this:

<h:commandButton image="mountrushmore.jpg"
styleClass="1imageButton"
actionListener="#{rushmore.handleMouseClick}"
action="#{rushmore.navigate}"/>

Instead of using the actionListener attribute to define our listener, we could have
used the f:actionListener tag instead:

<h:commandButton image="mountrushmore.jpg" action="#{rushmore.navigate}">
<f:actionListener type="com.corejsf.RushmoreListener"/>
</h:commandButton>

Action listener classes must implement the ActionListener interface, which
defines a processAction method, so in the preceding code fragment, JSF will call
RushmoreListener.processAction after the image button is activated.

From the Library of Wow! eBook

Chapter 8 B Event Handling

You can specify multiple listeners with multiple f:actionListener or f:value-
ChangeListener tags per component. For example, we could add another action
listener to our previous example, like this:
<h:commandButton image="mountrushmore.jpg" action="#{rushmore.navigate}">
<f:actionListener type="com.corejsf.RushmoreListener"/>
<fiactionListener type="com.corejsf.ActionLogger"/>
</h:commandButton>
In the preceding code fragment, the ActionLogger class is a simple action listener
that logs action events.

If you specify multiple listeners for a component, as we did in the preceding
code fragment, the listeners are invoked in the following order:
1. The listener specified by the listener attribute

2. Listeners specified by listener tags, in the order in which they are
declared

% NOTE: You may wonder why you must specify a method binding for listen-
ers when you use the actionListener and valueChangelListener attributes, and
why you must use a class name for listeners specified with f:actionListener
and f:valueChangelistener tags. The mismatch between listener attributes
and tags was an oversight on the part of the JSF expert group.

Immediate Components

In “Events and the JSF Life Cycle” on page 306, we saw that value change
events are normally fired after the Process Validations phase, and action events
are normally fired after the Invoke Application phase. Typically, that is the pre-
ferred behavior. You usually want to be notified of value changes only when
they are valid, and actions should be invoked after all submitted values have
been transmitted to the model.

But sometimes you want value change events or action events to fire at the
beginning of the life cycle to bypass validation for one or more components.
In “Using Immediate Input Components” on page 321 and “Bypassing Vali-
dation” on page 266 of Chapter 7, we make compelling arguments for such
behavior. For now, we will look at the mechanics of how immediate events
are delivered, as illustrated by Figure 8-6.

From the Library of Wow! eBook

Immediate Components m

Immediate actions:
1. Action listeners are notified.
Immediate inputs: 2. Actions are invoked.
1. Conversion and validation.
2. Value change listeners are notified. Response Complete Response Complete

Restore Apply Request Process
" View | 2 [Values Validations T

Render Response i

Response Complete Response Complete

i y
Render Invoke Update
Response ¥~ Response Application Model
Values

Conversion Errors /| Render Response

Figure 8-6 Event handling for immediate components

When a component has its immediate attribute set, it fires events after the Apply
Request Values phase. An immediate input component performs conversion
and validation earlier than usual, after completing the Apply Request Values
phase. Then it fires a value change event. An immediate command component
fires action listeners and actions earlier than usual, after the Apply Request
Values phase. That process kicks in the navigation handler and circumvents the
rest of the life cycle, moving directly to Render Response.

Using Immediate Input Components

Figure 8-7 shows the value change example discussed in “Value Change
Events” on page 307. Recall that the application uses a value change listener to
change the view’s locale, which in turn changes the localized state prompt
according to the selected locale.

Here we have made a seemingly innocuous change to that application: We
added a required attribute to the Address field:

<h:inputText value="#{form.streetAddress}" required="true"/>

But that results in an error when we select a country without filling in the Address
field (recall that the country menu submits its form when its value is changed).

From the Library of Wow! eBook

Chapter 8 B Event Handling

The problem is this: We want validation to kick in when the submit button is
activated, but not when the country is changed. How can we specify validation
for one but not the other?

|W_Using Value Change Events - Mozilla Firefox

File Edit View History Bookmarks Tools Hclp

* ~ g ﬁ |§ http:/flecalhost:8080/valuechange/faces/index.xhtml ~

Please fill in your address
Address

City

Province

Country ._ Canada 2

" Submit address |

e | idt8:j idt12: Validation Error: Value is required.

Donec #
T

Figure 8-7 Unwanted validation

The solution is to make the country menu an immediate component. Immediate
input components perform conversion and validation, and subsequently
deliver value change events at the beginning of the JSF life cycle—after Apply
Request Values—instead of after Process Validations.

We specify immediate components with the immediate attribute, which is avail-
able to all input and command components:

<h:selectOneMenu value="#{form.country}" onchange="submit()" immediate="true"
valueChangelistener="#{form.countryChanged}">
<fiselectItems value="#{form.countryNames}"/>

</h:selectOneMenu>

With the immediate attribute set to true, our menu fires value change events after
Apply Request Values, well before any other input components are validated.
You may wonder what good that does us if the other validations happen later
instead of sooner—after all, the validations will still be performed and the
validation error will still be displayed. To prevent validations for the other
components in the form, we have one more thing to do, which is to call the
renderResponse method of the FacesContext class at the end of our value change
listener, like this:

private static final String US = "United States";

public void countryChanged(ValueChangeEvent event) {
FacesContext context = FacesContext.getCurrentInstance();

From the Library of Wow! eBook

Immediate Components m

if (US.equals((String) event.getNewValue()))
context.getViewRoot().setlLocale(Locale.US);

else
context.getViewRoot().setLocale(Locale.CANADA);

context.renderResponse();
}
The call to renderResponse skips the rest of the life cycle—including validation of
the rest of the input components in the form—up to Render Response. Thus,
the other validations are skipped and the response is rendered normally (in
this case, the current page is redisplayed).

To summarize, you can skip validation when a value change event fires by
doing the following;:
1. Adding an immediate attribute to your input tag

2. Calling the renderResponse method of the FacesContext class at the end of your
listener

Using Immediate Command Components

In Chapter 4 we discussed an application, shown in Figure 8-8, that uses com-
mand links to change locales.

|W_Ein Beispiel fiir Textfelder und Textgebiete - Mozilla Firefox

fle Cdit View History Dookmarks Tools llelp

k=i ~ & 4 |§| http://localhost:2080/flags with methodexpr/faces/index.xhtml
Bitte geben Sie die folgenden persénlichen Daten ein

Name: | |

PaBwort: | |

Bitte erzéhlen Sie etwas Uber sich:

Daten absenden

Done #

Figure 8-8 Changing locales with links

From the Library of Wow! eBook

Chapter 8 B Event Handling

If we add a required validator to one of the input fields in the form, we will
have the same problem we had with the application discussed in “Using
Immediate Input Components” on page 321: The validation error will appear
when we just want to change the locale by clicking a link. This time, however,
we need an immediate command component instead of an immediate input
component. All we need to do is add an immediate attribute to our h: commandLink
tag, like this:

<h:commandLink action="#{TlocaleChanger.germanAction}" immediate="true">

<h:graphicImage library="images" name="de_flag.gif" style="border: Qpx"/>
</h:commandLink>

Unlike value change events, we do not need to modify our listener to invoke
FacesContext.renderResponse() because all actions, immediate or not, proceed
directly to the Render Response phase, regardless of when they are fired.

Passing Data from the UI to the Server

The two flags in the application shown in Figure 8-8 are implemented with
links. The link for the German flag is listed in the previous section. Here is the
link for the British flag:

<h:commandLink action="#{localeChanger.englishAction}" immediate="true">
<h:graphicImage library="images" name="en_flag.gif" style="border: Qpx"/>
</h:commandLink>

Notice that each link has a different action: TocaleChanger.englishAction for the
British flag and TocaleChanger.germanAction for the German flag. The implementa-
tions of those actions are minor:

pubTic class LocaleChanger {
public String germanAction() {
FacesContext context = FacesContext.getCurrentInstance();
context.getViewRoot().setLocale(Locale.GERMAN);
return null;

}

public String englishAction() {
FacesContext context = FacesContext.getCurrentInstance();
context.getViewRoot().setLocale(Locale.ENGLISH);
return null;

}
}

Each action method sets the locale of the view root and returns null to indicate
that the JSF implementation should reload the same page. Pretty simple.

From the Library of Wow! eBook

Passing Data from the Ul to the Server m

But imagine if we supported many languages—for example, if we supported 100
languages, we would have to implement 100 actions, and each action would be
identical to all the others except for the locale that it would set. Not so simple.

To reduce redundant code that we must write and maintain, it’s better to pass
the language code from the Ul to the server. That way, we can write a single
action or action listener to change the view root’s locale. JSF gives us four
mechanisms to pass information from the UI to the server:

* Method expression parameters (since JSF 2.0)
. The f:param tag

e The f:attribute tag

. The f:setPropertyActionListener tag (since JSF 1.2)

Now we take a look at each tag in turn to see how we can eliminate redundant
code.

Method Expression Parameters !1

Since JSF 2.0, method expressions can take parameters. Therefore, we can sim-
ply pass the desired locale as a value to the action method, like this:

<h:commandLink action="#{localeChanger.changelLocale('de"')}">

<h:graphicImage library="images" name="de_flag.gif" style="border: Qpx"/>
</h:commandLink>
<h:commandLink action="#{localeChanger.changelocale('en")}">

<h:graphicImage Tibrary="images" name="en_flag.gif" style="border: @px"/>
</h:commandLink>

On the server, the TocaleChanger method has a languageCode parameter to set the
locale:

public class LocaleChanger {
public String changelLocale(String languageChange) {
FacesContext context = FacesContext.getCurrentInstance();
context.getViewRoot().setlLocale(new Locale(TanguageCode));
return null;
}
}

No matter how many flags links we add to our JSF page, our LocaleChanger is
finished. No more redundant code.

The f:paran Tag

The f:param tag lets you attach a parameter to a component. How the parameter
is interpreted depends upon the type of component to which it is attached. For

From the Library of Wow! eBook

Chapter 8 B Event Handling

example, if you attach an f:param tag to an h:outputFormat tag, the parameter spec-
ifies placeholders, such as {0}, {1}, etc. If you attach an f:param tag to a command
component, such as a button or a link, the parameter is turned into a request
parameter. Here is how we can use the f:param tag for our flag example:

<h:commandLink immediate="true"

action="#{localeChanger.changeLocale}">

<f:param name="1anguageCode" value="de"/>

<h:graphicImage library="images" name="de_flag.gif" style="border: Qpx"/>
</h:commandLink>
<h:commandLink immediate="true"

action="#{localeChanger.changeLocale}">

<f:param name="1anguageCode" value="en"/>

<h:graphicImage Tibrary="images" name="en_flag.gif" style="border: @px"/>
</h:commandLink>

On the server, we access the languageCode request parameter to set the locale:

pubTic class LocaleChanger {
public String changelocale() {
FacesContext context = FacesContext.getCurrentInstance();
String languageCode = getlLanguageCode(context);
context.getViewRoot().setLocale(new Locale(languageCode))
return null;
}
private String getlanguageCode(FacesContext context) {
Map<String, String> params = context.getExternalContext()
getRequestParameterMap();
return params.get("languageCode");
}
}

The f:attribute Tag

Another way to pass information from the Ul to the server is to set a compo-
nent’s attribute with the f:attribute tag. Here is how we do that with our flag

example:

<h:commandLink immediate="true"
actionListener="#{localeChanger.changelocale}">
<f:attribute name="1anguageCode" value="de"/>
<h:graphicImage Tibrary="images" name="de_flag.gif" style="border: @px"/>
</h:commandLink>
<h:commandLink immediate="true"
actionListener="#{1localeChanger.changelLocale}">
<f:attribute name="1anguageCode" value="en"/>
<h:graphicImage Tibrary="images" name="en_flag.gif" style="border: @px"/>
</h:commandLink>

From the Library of Wow! eBook

Passing Data from the Ul to the Server 327

There are two things to notice here. First, we are using f:attribute to set an
attribute on the link. That attribute’s name is languageCode and its value is either
en or de.

Second, we have switched from an action to an action listener. That is because
action listeners are passed an event object that gives us access to the compo-
nent that triggered the event; of course, that is one of our links. We need that
component to access its languageCode attribute. Here is how it all hangs together
on the server:

pubTic class LocaleChanger {
public void changeLocale(ActionEvent event) {
UIComponent component = event.getComponent();
String languageCode = getlLanguageCode(component);
FacesContext.getCurrentInstance()
.getViewRoot().setlocale(new Locale(TanguageCode));
}
private String getlLanguageCode(UIComponent component) {
Map<String, Object> attrs = component.getAttributes();
return (String) attrs.get("languageCode");
}
}

This time, instead of pulling the language code out of a request parameter, we
pull it out of a component attribute.

The f:setPropertyActionListener Tag

As we have seen, f:param and f:attribute are handy for passing information from
the Ul to the server, but those tags require us to manually dig the information
out from a request parameter or component attribute, respectively.

The f:setPropertyActionListener tag, added in JSF 1.2, was designed to put an end
to that digging. With f:setPropertyActionListener, the JSF implementation sets a
property in your backing bean for you. Here is how it works for our flags
example:

<h:commandLink immediate="true" action="#{TocaleChanger.changelLocale}">
<f:setPropertyActionListener target="#{localeChanger.languageCode}" value="de"/>
<h:graphicImage Tibrary="images" name="de_flag.gif" style="border: @px"/>

</h:commandLink>

<h:commandLink immediate="true" action="#{localeChanger.changeLocale}">
<fisetPropertyActionListener target="#{localeChanger.languageCode}" value="en"/>
<h:graphicImage Tibrary="images" name="en_flag.gif" style="border: 0px"/>

</h:commandLink>

From the Library of Wow! eBook

Chapter 8 B Event Handling

In the preceding JSP code, we tell the JSF implementation to set the TanguageCode
property of the localeChanger bean with either de or en. Here is the corresponding
implementation of the TocaleChanger bean:

public class LocaleChanger {
private String languageCode;

public String changelocale() {
FacesContext context = FacesContext.getCurrentInstance();
context.getViewRoot().setLocale(new Locale(languageCode));
return null;

public void setlLanguageCode(String newvValue) {
languageCode = newValue;
}
}

For this implementation of the LocaleChanger, we provide a languageCode write-only
property that is set by the JSF implementation.

In the context of this example, method parameters are ostensibly the best
choice for setting the TocaleChanger bean’s TanguageCode property. They are easy to
implement and understand. The f:setPropertyActionListener tag will probably
find little use in JSF 2.0 applications. However, f:paran and f:attribute have their
place in other contexts, to set request parameters or component attributes.

Phase Events

The JSF implementation fires events, called phase events, before and after each
life cycle phase. Those events are handled by phase listeners. Unlike value
change and action listeners that you attach to individual components, a phase
listener is attached to the view root. You can specify a phase listener for an indi-
vidual page with a tag, such as the following, placed anywhere in that page:

<fiphaselistener type="com.corejsf.PhaseTracker"/>
Alternatively, you can specify global phase listeners in a faces configuration
file, like this:

<faces-config>
<lifecycle>
<phase-Tistener>com.corejsf.PhaseTracker</phase-Tistener>
</lifecycle>
</faces-config>

From the Library of Wow! eBook

System Events m

The preceding code fragment specifies only one listener, but you can specify as
many as you want. Listeners are invoked in the order in which they are speci-
fied in the configuration file.

You implement phase listeners by means of the Phaselistener interface from the
javax.faces.event package. That interface defines three methods:

. Phaseld getPhaseld()
. void afterPhase(PhaseEvent)
. void beforePhase(PhaseEvent)

The getPhaseId method tells the JSF implementation when to deliver phase
events to the listener—for example, getPhaseId() could return PhaseId.APPLY_
REQUEST_VALUES. In that case, beforePhase() and afterPhase() would be called once per
life cycle: before and after the Apply Request Values phase. You could also
specify PhaseId.ANY_PHASE, which really means all phases. Your phase listener’s
beforePhase and afterPhase methods will be called six times per life cycle: once
each for each life cycle phase.

Alternatively, you can enclose a JSF page in an f:view tag with beforePhase or
afterPhase attributes. These attributes must point to methods of with the signa-
ture void 1istener(javax.faces.event.PhaseEvent). They are invoked before every
phase except for “Restore view”. For example:

<fiview beforePhase="#{backingBean.beforelistener}">

</frview>
Phase listeners are useful for debugging tools, and before JSF 2.0, they offered
the only mechanism for writing custom components that were aware of the JSF

life cycle. We expect that JSF 2.0 developers will prefer using the system events
that are discussed in the next section.

System Events

JSF 2.0 introduces a fine-grained notification system in which individual com-
ponents as well as the JSF implementation notify listeners of many potentially
interesting events. Table 8-1 lists the JSF system events.

From the Library of Wow! eBook

m Chapter 8 B Event Handling

Table 8-1 System Events

Event Class Description Source Type
PostConstructApplicationEvent Immediately after the Application
PreDestroyApplicationEvent application has started;
immediately before it is
about to be shut down
PostAddToViewEvent After a component has been UIComponent
PreRemoveFromViewEvent added to the view tree;
before it is about to be
removed
PostRestoreStateEvent After the state of a component UIComponent
has been restored
PreValidateEvent Before and after a component UIComponent
PostValidateEvent is validated
PreRenderViewEvent Before the view rootis about UIViewRoot
to be rendered
PreRenderComponentEvent Before a component is about UIComponent
to be rendered
PostConstructViewMapEvent After the root component UIViewRoot
PreDestroyViewMapEvent has constructed the view
scope map; when the view
map is cleared?
PostConstructCustomScopeEvent After a custom scope has ScopeContext
PreDestroyCustomScopeEvent been constructed; before it is
about to be destroyed
ExceptionQueuedEvent After an exception has been ExceptionQueuedEvent-
queued Context

a. To monitor the life cycle of the application, session, and request maps, use a
ServletContextListener, ServletHttpSessionListener, or ServietRequestListener.

There are four ways in which a class can receive system events:

o With the f:event tag:

<inputText value="#{...}">
<f:event name="postValidate" Tistener="#{bean.method}"/>
</inputText>

From the Library of Wow! eBook

System Events m

The method must have the signature
pubTic void Tistener(ComponentSystemEvent) throws AbortProcessingException

This is the most convenient way for listening to component or view
events.

. With an annotation for a UIComponent or Renderer class:
@ListenerFor(systemEventClass=PreRenderViewEvent.class)

We discuss these classes in Chapter 11. This mechanism can be useful for
component developers.

* By being listed as a system event listener in faces-config.xm1:

<application>
<system-event-listener>
<system-event-listener-class>listenerClass</system-event-1istener-class>
<system-event-class>eventClass</system-event-class>
</system-event-Tistener>
</application>

This mechanism is useful for installing a listener to application events.

. By calling the subscribeToEvent method of the UIComponent or Application class.
This method is intended for framework developers, and we refer you to
the JSF API for details.

In the following sections, we will discuss two typical examples of using system
events.

Multi-Component Validation

As you have seen in Chapter 7, JSF does not have a mechanism for validating a
group of components. For example, if you use day, month, and year input
fields for entering a date, there is no natural way of validating the date as a
whole. You can use the PostValidateEvent to overcome this limitation.

Here, we attach an event listener to the panel that contains the input
components:

<h:panelGrid id="date" columns="2">
<f:event type="postValidate" Tistener="#{bb.validateDate}"/>
#{msgs.day}
<h:inputText id="day" value="#{bb.day}" size="2" required="true"/>

#{msgs.month}
<h:inputText id="month" value="#{bb.month}" size="2" required="true"/>

#{msgs.year}

From the Library of Wow! eBook

m Chapter 8 B Event Handling

<h:inputText id="year" value="#{bb.year}" size="4" required="true"/>
</h:panelGrid>
<h:message for="date" styleClass="errorMessage"/>

In the event listener, we obtain the values that the user entered and check
whether they form a valid date. If not, we add an error message to the compo-
nent and call the renderResponse method:

pubTic void validateDate(ComponentSystemEvent event) {
UIComponent source = event.getComponent();
UIInput dayInput = (UIInput) source.findComponent("day");
UILInput monthInput = (UIInput) source.findComponent("month");
UILInput yearInput = (UIInput) source.findComponent("year");
int d = ((Integer) dayInput.getlocalValue()).intValue();
int m = ((Integer) monthInput.getlocalValue()).intValue();
int y = ((Integer) yearInput.getLocalValue()).intValue();
if (lisvValidDate(d, m, y)) {
FacesMessage message = com.corejsf.util.Messages.getMessage(
"com.corejsf.messages”, "invalidDate", null);
message.setSeverity(FacesMessage.SEVERITY_ERROR);
FacesContext context = FacesContext.getCurrentInstance();
context.addMessage(source.getClientId(), message);
context.renderResponse();
}
}

Note that the renderResponse method does not immediately render the response.
The Process Validations phase is first completed; this includes processing of
any post-validation event listeners. Then the response is rendered, and the cur-
rent view is redisplayed with the error message (see Figure 8-9).

— —

[®validating The Relationship Between Components - Mozilla Firefox EET
File Edit View History Bookmarks Tools Hclp

* ~ g ﬁ |§ http:/flocalhost:8080/system-events/faces/enterDate.xhtml v

Please enter a date.

Day |79
Month |2
Year |2010

The entered date is not valid.
Submit || Back |

Done #
T T

Figure 8-9 Using the PostValidateEvent to validate a group of components

From the Library of Wow! eBook

System Events m

Making Decisions before Rendering the View

Sometimes, you want to be notified before a view is rendered, for example, to
load data, make changes to the components on a page, or to conditionally nav-
igate to another page.

For example, you may want to make sure that a user has been logged in
before showing a particular page. Enclose the page in an f:view tag and attach
a listener:

<fiviews>
<f:event type="preRenderView" Tistener="#{user.checkLogin}"/>
<h:head>
<titles>...</title>
</h:head>
<h:body>

</h:body>
</frview>

In the listener, check whether the user is logged in. If not, navigate to the login
page:
pubTlic void checkLogin(ComponentSystemEvent event) {
if (!ToggedIn) {
FacesContext context = FacesContext.getCurrentInstance();
ConfigurableNavigationHandler handler = (ConfigurableNavigationHandler)
context.getApplication().getNavigationHandler();

handler.performNavigation("login");

}
}

The following sample application combines the login check and the date vali-
dation. When you first load index.xhtml, the event handler instead navigates to
login.xhtml. However, when you return to that page after login, it is displayed

normally. After login, you can continue to the date entry view.

Figure 8-10 shows the directory structure of the application. Listings 8-10 and
8-11 show the pages with the f:event tags. Listings 8-12 and 8-13 contain the
managed beans with the event handlers.

From the Library of Wow! eBook

Chapter 8 B Event Handling

(&5 system-events.war
[7] enterDate.xhtml
[index.xhtml
[9 login.xhtml
[result.xhtml
¥ (&5 WEB-INF
[beans.xml
[faces-config.xml
; web.xml
¥ classes
¥ (& com
v (& corejsf
__' BackingBean.class
[] userBean.class
[") messages.properties
v (& util
[Messages.class
v [ﬁ resources
v (& css

[styles.css

Figure 8-10 Directory structure of the system event demo application

B350 2 L0l system-events/web/index. xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-strict.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:h="http://java.sun.com/jsf/html"
xmins:f="http://java.sun.com/jsf/core">
<fiviews
<f:event type="preRenderView" Tistener="#{user.checkLogin}"/>
<h:head>
<title>Welcome</title>
</h:head>
<h:body>
<h3><h:outputText value="Welcome to JavaServer Faces, #{user.name}!" /></h3>
<h:forms>
<h:commandButton value="Logout" action="#{user.logout}" />
<h:commandButton value="Continue" action="enterDate" />
</h:form>
</h:body>
</fiview>
</html>

From the Library of Wow! eBook

System Events m

B350 28 Bl system-events/web/enterDate. xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm]1-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core"
xmins:h="http://java.sun.com/jsf/html">
<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<title>#{msgs.title}</title>
</h:head>
<h:body>
<h:forms>
<h1>#{msgs.enterDate}</h1>
<h:panelGrid id="date" columns="2">
<f:event type="postValidate" listener="#{bb.validateDate}"/>
#{msgs.day}
<h:inputText id="day" value="#{bb.day}" size="2"
required="true"/>

#{msgs.month}
<h:inputText id="month" value="#{bb.month}"
size="2" required="true"/>

#{msgs.year}
<h:inputText id="year" value="#{bb.year}"
size="4" required="true"/>
</h:panelGrid>
<h:message for="date" styleClass="errorMessage"/>

<h:commandButton value="#{msgs.submit}" action="result"/>
<h:commandButton value="#{msgs.back}" action="index" immediate="true"/>
</h:form>
</h:body>
</htm1>

IBTT50 -2 P system-events/src/java/com/corejst/UserBean. java

package com.corejsf;

import javax.faces.application.ConfigurableNavigationHandler;
import javax.inject.Named;

// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;

// or import javax.faces.bean.SessionScoped;

From the Library of Wow! eBook

m Chapter 8 B Event Handling

import javax.faces.context.FacesContext;
import javax.faces.event.AbortProcessingException;
import javax.faces.event.ComponentSystemEvent;

@Named("user") // or @ManagedBean(name="user")
@SessionScoped
pubTic class UserBean {

private String name = "";

private String password;

private boolean ToggedIn;

public String getName() { return name; }
public void setName(String newValue) { name = newValue; }

public String getPassword() { return password; }
public void setPassword(String newvalue) { password = newValue; }

public boolean isLoggedIn() { return ToggedIn; }

public String Togin() {
loggedIn = true;
return "“index";

}

public String Tlogout() {
loggedIn = false;
return "Togin";

}

public void checkLogin(ComponentSystemEvent event) {
if (!loggedIn) {
FacesContext context = FacesContext.getCurrentInstance();
ConfigurableNavigationHandler handler = (ConfigurableNavigationHandler)
context.getApplication().getNavigationHandler();
handler.performNavigation("login");
}
}
}

From the Library of Wow! eBook

System Events m

BRI R system-events/src/java/com/corejsf/BackingBean. java

package com.corejsf;

import java.io.Serializable;

import javax.faces.application.FacesMessage;
import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;
import javax.faces.component.UIComponent;
import javax.faces.component.UIForm;
import javax.faces.component.UIInput;
import javax.faces.context.FacesContext;
import javax.faces.event.ComponentSystemEvent;
import javax.faces.validator.ValidatorException;

@Named("bb") // or @ManagedBean(name="bb")
@SessionScoped
pubTlic class BackingBean implements Serializable {
private int day;
private int month;
private int year;

public int getDay() { return day; }
public void setDay(int newValue) { day = newValue; }

public int getMonth() { return month; }
public void setMonth(int newValue) { month = newvValue; }

public int getYear() { return year; }
public void setYear(int newValue) { year = newValue; }

public void validateDate(ComponentSystemEvent event) {
UIComponent source = event.getComponent();
ULInput dayInput = (UIInput) source.findComponent("day");
UIInput monthInput = (UIInput) source.findComponent("month");
ULInput yearInput = (UIInput) source.findComponent("year");
int d = ((Integer) dayInput.getlocalValue()).intValue();
int m = ((Integer) monthInput.getLocalValue()).intValue();
int y = ((Integer) yearInput.getlLocalValue()).intValue();
if (!isvalidDate(d, m, y)) {
FacesMessage message = com.corejsf.util.Messages.getMessage(
"com.corejsf.messages", "“invalidDate", null);
message.setSeverity(FacesMessage.SEVERITY_ERROR);

From the Library of Wow! eBook

m Chapter 8 B Event Handling

FacesContext context = FacesContext.getCurrentInstance();
context.addMessage(source.getClientId(), message);
context.renderResponse();
}
}

private static boolean isValidDate(int d, int m, int y) {
if(d<1]| m<1]]m>12) return false;
if (m==2) {
if (isLeapYear(y)) return d <= 29;
else return d <= 28;
}
else if M==4]|m==6 || m==9 1] m==11)
return d <= 30;
else
return d <= 31;

}

private static boolean isLeapYear(int y) {
returny % 4 == 0 && (y % 400 == 0 || y % 100 != 0);
}
}

Putting It All Together

We close out this chapter with an example of a poor man’s implementation of a
tabbed pane. That example demonstrates event handling and advanced aspects
of using JSF HTML tags. Those advanced uses include the following;:

* Nesting h:panelGrid tags

e Using facets

* Specifying tab indexing

e Adding tooltips to components with the title attribute

¢ Dynamically determining style classes

e Using action listeners

* Optional rendering

e Including JSF pages

JSF does not have a tabbed pane component, so if you want a tabbed pane in
your application, you have two choices: implement a custom component or
use existing tags—with a backing bean—to create an ad hoc tabbed pane.

Figure 8-11 shows the latter. The former is discussed in “Using Child Com-
ponents and Facets” on page 457 of Chapter 11.

From the Library of Wow! eBook

Putting It All Together

£ |Mt. Rushmore Tabbed Pane - Mozilla Firefox . [=]E3
Ple Edit Yiew Higtory Bookmarks Tools Help

A v ik |9 nttp-ocainost-a0a0tabbedpanes
Thomas Ieffe;son Theodore Roosevelt Abraham Linceln |George Washington

Thomas jefferson

Thomas Jefferson, the 3rd US president, was born in 1743 in Virginia.
Jefferson was tall and awkward, and was not known as a great public

Ll I = i(=gcrely © Mt. Rushmore Tabbed Pane - Mozilla Firefox _imx
Franklin held that| Ble Edit Yiew Higtory Bookmarks Tools Heip
candiate, and mig * v # [[8 nttp:iecainest:-a0s0nabbedpanatacesindex. khtm ~

served as preside

Thomas Jefferson Theodore Roosevelt Abraham Lincoln| Geerge Washington

http:iflecalhost: 8080/ tabbedpane/#

Theodore Roosevelt was the 26th president of the United States. In 1901
he became president after the assassination of President McKinley. At
only 42 years of age, he was the youngest president in US history.

© Mt. Rushmore Tabbed Pane - Mozilla Firefox
Ple Edit Yiew Higtory Bookmarks Tools Help

- v ik [nipnecamnost-a080abbedpanetacesingex ami w

Thomas Jefferson Theodore Roosevelt Abraham Lincoln Geerge Washington

President Lincoln was known as the Great Emancipator because he was
instrumental in abolishing slavery in the United States. He was born into a
poor family in Ke S R T e [N T e . [=]E3
assassinated by J| e Edit Wew Higtory Bookmarks Tools Help

- v ik [nipnecamnost-a080abbedpanetacesingex ami w

Thomas Jefferson Theodore Roosevelt Abraham Lincoln| Geerge Washinaton
http:ilocalhost: 8080 abbedpanefaces/index

George Washington was the first president of the United States. He was
born in 1732 in Virginia and was elected Commander in Chief of the
Continental Army in 1775 and forced the surrender of Cornwallis at
Yorktown in 1781. He was inaugurated on April 30, 1789,

http:iflecalhost: 8080 tabbedpanefaces/index.him|# #

Figure 8-11 A poor man’s tabbed pane

The tabbed pane shown in Figure 8-11 is implemented entirely with existing
JSF HTML tags and a backing bean; no custom renderers or components are
used. The JSF page for the tabbed pane looks like this:

<h:form>
<h:panelGrid styleClass="tabbedPane" columnClasses="displayPanel">
<!-- Tabs -->

<f:facet name="header">

From the Library of Wow! eBook

m Chapter 8 B Event Handling

<h:panelGrid columns="4" styleClass="tabbedPaneHeader">
<h:commandLink tabindex="1"
title="#{msgs.jeffersonTooltip}"
styleClass="#{tp.jeffersonStyle}"
actionListener="#{tp.jeffersonAction}">
#{msgs.jeffersonTab}
</h:commandLink>

</h:panelGrid>
</f:facet>

<!-- Tabbed pane content -->

<ui:include src="washington.xhtml" />
<uirinclude src="roosevelt.xhtml" />
<uizinclude src="1lincoIn.xhtml" />
<uizinclude src="jefferson.xhtml" />
</h:panelGrid>
</h:form>

The tabbed pane is implemented with h:panelGrid. Because we do not specify
the columns attribute, the panel has one column. The panel’s header—defined
with an f:facet tag—contains the tabs, which are implemented with another
h:panelGrid that contains h:commandLink tags for each tab. The only row in the panel
contains the content associated with the selected tab.

When a user selects a tab, the associated action listener for the command link is
invoked and modifies the data stored in the backing bean. Because we use a
different CSS style for the selected tab, the styleClass attribute of each h:commandLink
tag is pulled from the backing bean with a value reference expression.

As you can see from the top picture in Figure 8-11, we have used the title
attribute to associate a tooltip with each tab. Another accessibility feature is the
ability to move from one tab to another with the keyboard instead of the
mouse. We implemented that feature by specifying the tabindex attribute for
each h:commandLink.

The content associated with each tab is statically included with the JSP include
directive. For our application, that content is a picture and some text, but

you could modify the included JSF pages to contain any set of appropriate
components. Notice that even though all the JSF pages representing content are
included, only the content associated with the current tab is rendered. That is
achieved with the rendered attribute—for example, jefferson.xhtml looks like this:

From the Library of Wow! eBook

Putting It All Together m

<h:panelGrid columns="2" columnClasses="presidentDiscussionColumn"

rendered="#{tp.jeffersonCurrent}">
<h:graphicImage value="/images/jefferson.jpg"/>

"#{msgs.jeffersonDiscussion}"

</h:panelGrid>

Figure 8-12 shows the directory structure for the tabbed pane application and

Listings 8-14 through 8-17 show the most important files.

[E tabbedpane.war
[index.xhtml
; jefferson.xhtml
[lincoln.xhtml
[roosevelt.xhtml
| Y washington.xhtm|
¥ (&5 WEB-INF
[beans.xml
[faces-config.xml
|5 web.xml
¥ (& classes
¥ (& com
v [E corejsf
[TabbedPane.class
[") messages.properties
¥ (& util
[Messages.class
v [ﬁ resources
v (& css
[styles.css
¥ (& images
u jefferson.jpg
[lincoln.jpg
| 9 roosevelt.jpg
E washington.jpg

Figure 8-12 Directory structure for the tabbed pane example

tabbedpane/web/index.xhtm]

<?7xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">

<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:ui="http://java.sun.com/jsf/facelets"

xmins:f="http://java.sun.com/jsf/core" xmins:h="http://java.sun.com/jsf/htm1">

<h:head>

From the Library of Wow! eBook

Chapter 8 B Event Handling

<h:outputStylesheet Tibrary="css" name="styles.css"/>
<title>#{msgs.windowTitle}</title>

</h:head>
<h:body>
<h:forms>
<h:panelGrid styleClass="tabbedPane" columnClasses="displayPanel">
<!-- Tabs -->

<f:facet name="header">
<h:panelGrid columns="4" styleClass="tabbedPaneHeader">
<h:commandLink tabindex="1" title="#{msgs.jeffersonTooltip}"
styleClass="#{tp.jeffersonStyle}"
actionListener="#{tp.jeffersonAction}">
#{msgs.jeffersonTabhText}
</h:commandLink>

<h:commandLink tabindex="2" title="#{msgs.rooseveltTooltip}"
styleClass="#{tp.rooseveltStyle}"
actionlListener="#{tp.rooseveltAction}">
#{msgs.rooseveltTabText}
</h:commandLink>

<h:commandLink tabindex="3" title="#{msgs.lincolnTooltip}"
styleClass="#{tp.lincolnStyle}"
actionListener="#{tp.lincolnAction}">
#{msgs.lincolnTabText}
</h:commandLink>

<h:commandLink tabindex="4" title="#{msgs.washingtonTooltip}"
styleClass="#{tp.washingtonStyle}"
actionlListener="#{tp.washingtonAction}">
#{msgs.washingtonTabText}
</h:commandLink>
</h:panelGrid>
</f:facet>

<!-- Tabbed pane content -->

<uisinclude src="washington.xhtml"/>
<ui:include src="roosevelt.xhtml"/>
<ui:include src="Tincoln.xhtml"/>
<ui:include src="jefferson.xhtml"/>
</h:panelGrid>
</h:form>
</h:body>
</htm1>

From the Library of Wow! eBook

Putting It All Together m

tabbedpane/web/jefferson.xhtml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtm11/DTD/xhtm]1-transitional.dtd">

<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:ui="http://java.sun.com/jsf/facelets"
xmins:h="http://java.sun.com/jsf/html">

<ui:composition>
<h:panelGrid columns="2" columnClasses="presidentDiscussionColumn"
rendered="#{tp.jeffersonCurrent}">

<h:graphicImage Tibrary="images" name="jefferson.jpg"/>
#{msgs.jeffersonDiscussion}

</h:panelGrid>
</ui:composition>
</htm1>

tabbedpane/src/java/com/corejsf/messages.properties

windowTitle=Mt. Rushmore Tabbed Pane

TincoTnTooltip=Abraham Lincoln

TincolInTabText=Abraham Lincoln

TincolnDiscussion=President Lincoln was known as the Great Emancipator because \
he was instrumental in abolishing slavery in the United States. He was born \
into a poor family in Kentucky in 1809, elected president in 1860 and \
assassinated by John WiTkes Booth in 1865.

washingtonTooltip=George Washington

washingtonTabText=George Washington

washingtonDiscussion=George Washington was the first president of the United \
States. He was born in 1732 in Virginia and was elected Commander in Chief of \
the Continental Army in 1775 and forced the surrender of Cornwallis at Yorktown \
in 1781. He was inaugurated on April 30, 1789.

rooseveltTooltip=Theodore Roosevelt

rooseveltTabText=Theodore Roosevelt

rooseveltDiscussion=Theodore Roosevelt was the 26th president of the United \
States. In 1901 he became president after the assassination of President \
McKinley. At only 42 years of age, he was the youngest president in US history.

jeffersonTooltip=Thomas Jefferson

jeffersonTabText=Thomas Jefferson

jeffersonDiscussion=Thomas Jefferson, the 3rd US president, was born in \
1743 4in Virginia. Jefferson was tall and awkward, and was not known as a \

From the Library of Wow! eBook

m Chapter 8 B Event Handling

great public speaker. Jefferson became minister to France in 1785, after \
Benjamin Franklin held that post. In 1796, Jefferson was a reluctant \
presidential candiate, and missed winning the election by a mere three votes. \
He served as president from 1801-1809.

tabbedpane/src/java/com/corejsf/TabbedPane.java

package com.corejsf;
import java.io.Serializable;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;
import javax.faces.event.ActionEvent;

@Named("tp") // or @anagedBean(name="tp")

@SessionScoped

public class TabbedPane implements Serializable {
private int index;
private static final int JEFFERSON_INDEX = 0;
private static final int ROOSEVELT_INDEX = 1;
private static final int LINCOLN_INDEX = 2;
private static final int WASHINGTON_INDEX = 3;

private String[] tabTooltips = { "jeffersonTooltip", "rooseveltTooltip",
"TincoTnTooltip", "washingtonTooltip" };

public TabbedPane() {
index = JEFFERSON_INDEX;
}

// action Tisteners that set the current tab

public void jeffersonAction(ActionEvent e) { index = JEFFERSON_INDEX; }
public void rooseveltAction(ActionEvent e) { index = ROOSEVELT_INDEX; }
public void TincolnAction(ActionEvent e) { index = LINCOLN_INDEX; }

public void washingtonAction(ActionEvent e) { index = WASHINGTON_INDEX; }

// CSS styles
public String getJeffersonStyle() { return getCSS(JEFFERSON_INDEX); }
public String getRooseveltStyle() { return getCSS(ROOSEVELT_INDEX); }

public String getLincolnStyle() { return getCSS(LINCOLN_INDEX); }
public String getWashingtonStyle() { return getCSS(WASHINGTON_INDEX); }

From the Library of Wow! eBook

Conclusion m

private String getCSS(int forIndex) {
return forIndex == index ? "tabbedPaneTextSelected" : "tabbedPaneText";

}

// methods for determining the current tab

) { return index == JEFFERSON_INDEX; }
public boolean isRooseveltCurrent() { return index == ROOSEVELT_INDEX; }
public boolean isLincolnCurrent() { return index == LINCOLN_INDEX; }
public boolean isWashingtonCurrent() { return index == WASHINGTON_INDEX; }

public boolean isJeffersonCurrent(

}

Conclusion

This example completes this chapter’s introduction to event handling. In the
next chapter, you will see how to combine the standard JSF components into
your own composite components.

From the Library of Wow! eBook

COMPOSITE

COMPONENTS
| JSF 2.0

Topics in This Chapter

e “The Composite Tag Library” on page 348

e “Using Composite Components” on page 350

e “Implementing Composite Components” on page 352
e “Configuring Composite Components” on page 353

e “Attribute Types” on page 354

e “Required Attributes and Default Attribute Values” on
page 355

e “Manipulating Server-Side Data” on page 356

e “Localizing Composite Components” on page 359

e “Exposing a Composite’s Components” on page 360
e “Facets” on page 365

e “Children” on page 366

* “JavaScript” on page 368

e “Backing Components” on page 373

e “Packaging Composite Components in JARs” on
page 382

From the Library of Wow! eBook

Unlike action-based frameworks, such as Struts or Ruby on Rails, JSF is
component-based, which means you can implement components that you or
others can reuse. Components are a powerful reuse mechanism.

JSF 1.0, however, nearly rendered components inconsequential, for two rea-
sons. First, components were difficult to implement. You had to write Java code
and specify XML configuration. You also had to have a good grasp of JSF’s
life cycle.

Second, JSF 1.0 made no provision for easily composing new components from
existing ones. If you implemented a simple field component, with a prompt
(h:outputText) and an input (h:inputText), you had to create and manipulate those
components in Java code.

JSF 2.0 addresses both of those drawbacks by making it easier to implement
custom components in Java code, and by providing a new facility for compos-
ing new components from existing ones. In this chapter, we take a look at the
latter facility, known as composite components, in detail.

347

From the Library of Wow! eBook

m Chapter 9 B Composite Components

% NOTE: JSF 2.0 refers to components that you implement with the compos-
ite library as composite components. JSF uses the term composite
because you compose new components from existing components.

Implementing composite components is easy. You don't have to write any
Java code or specify any XML configuration. A simple XHTML file that
defines a component will suffice for many composite component scenarios.

The Composite Tag Library

JSF 2.0 comes with a tag library for implementing composite components. By
convention, developers use the composite: prefix for that library. To use the com-
posite tag library, add a namespace declaration to an XHTML file, like this:

<html xmIns="http://www.w3.0rg/1999/xhtm1"...
xmlns:composite="http://java.sun.com/jsf/composite">

</htm1>
Once you have specified a namespace for the composite library, you can use
any of the tags in Table 9-1.

% NOTE: We distinguish between the component author, the developer who
designs and implements a composite component, and page authors, the
developers who use that component in their pages.

Table 9-1 Composite Component Tags

Tag Description Used In

interface Contains other composite tags that N/A
expose a composite component’s
attributes, action sources, value holders,
editable value holders, and facets.

impTlementation Contains the XHTML markup that N/A
defines the component. Inside the
implementation tag, the component
author can access attributes with the
expression #{cc.attrs.attributeName}.

attribute Exposes an attribute of a component to Interface
page authors.

From the Library of Wow! eBook

The Composite Tag Library m

Table 9-1 Composite Component Tags (cont.)

Tag Description Used In

valueHolder Exposes a component thatholdsavalue Interface
to page authors.

editableValueHolder Exposes a component that holds an Interface
editable value to page authors.

actionSource Exposes a component that fires action Interface
events, such as a button or a link, to
page authors.

facet Declares that this component supports Interface
a facet with a given name.

extension The component author can place this Interface
tag inside of any element in an inter- subelement
face. The extension tag can contain
arbitrary XML.

insertChildren Inserts any child components specified =~ Implementation
by the page author.

renderFacet Renders a facet that was specified by Implementation

the page author as a child component.

insertFacet Inserts a facet, specified by the page Implementation
author, as a facet of the enclosing
component.

Composite components have interfaces and implementations, as evidenced by
the first two tags in Table 9-1. Implementations are Facelet markup, using stan-
dard JSF tags. Interfaces let you expose configurable characteristics of your
composite component.

For example, imagine a login composite component that’s implemented as a
form with name and password prompts, and a submit button. You would
implement the login component with h:form, h:inputText, h:commandButton, etc., as
you would any form in a Facelets view.

To be reusable, composite components need something more than just an imple-
mentation, however, because they must also be configurable. For example, for
your login component, you would, more than likely, want to: customize the
labels associated with the name and password fields; attach a validator onto one
or both fields; and attach an action listener to the login component’s submit but-
ton. You can do all of those things in your login component’s interface.

From the Library of Wow! eBook

Chapter 9 B Composite Components

Finally, in the end, you are creating components, so somehow you must regis-
ter them with JSF. Fortunately, in JSF 2.0 that configuration is taken care of for
you, as you'll see next.

Using Composite Components

To eliminate configuration, JSF 2.0 uses a naming convention for composite com-
ponents. To illustrate that naming convention, we use a composite component
shown in Figure 9-1, that displays information about the current HTTP request.

|+ Welcome)

€ > C M 1 hup//localhost:8080/simple-composite/faces /index.xhtmi?param1=value¶m2=value2 | T

Please enter your name and password.

Name:
Password:

€ Login)

Request header:

{host=localhost:8080, connection=keep-alive, user-agent=Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_0; en-US)
AppleWebKit/532.8 (KHTML, like Gecko) Chrome/4.0.280.0 Safari/532.8,
accept=application/xml,application/xhtml+xml tlexthtml;g=0.9 text/plain;g=0.8 image/png */*;q=0.5, accept-encoding=gzip deflate sdch,
cookie=JSESSIONID=6e6490944642c333676{939249d0, accept-language={r-FR fr:q=0 8 en-US;q=0.6 en;q=0 4, accept-charset=ISO-
8859-1,uf-8:9=0.7,*;q=0.3}

Request parameters:

{paraml=value, param2=value2}

]

Figure 9-1 Using a debug component

The <util:debug/> custom component tag is near the bottom of Listing 9-1.

IBETR LT Z B Simple-composite/web/index.xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm]11-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmIns:h="http://java.sun.com/jsf/html"
xmins:util="http://java.sun.com/jsf/composite/util">
<h:head>
<title>Welcome</title>
</h:head>

From the Library of Wow! eBook

Using Composite Components ﬂ

<h:body>
<h:forms>
<h3>Please enter your name and password.</h3>
<table>
<tr>
<td>Name:</td>
<td><h:inputText value="#{user.name}"/></td>
</tr>
<tr>
<td>Password:</td>
<td><h:inputSecret value="#{user.password}"/></td>
</tr>
</table>
<p><h:commandButton value="Login" action="welcome"/></p>
</h:form>
<div style="color: red;">
<util:debug />
</div>
</h:body>
</htm1>

To use a composite component, you must first declare a namespace. For exam-
ple, in Listing 9-1, we declared a namespace named util:

<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:h="http://java.sun.com/jsf/htm1"
xmins:util="http://java.sun.com/jsf/composite/util">

You can use any name you want for the namespace, but the namespace’s value
must always start with http://java.sun.com/jsf/composite/.

The rest of the namespace’s value points to the directory, under resources, where
the composite component resides. Because our debug component is in the
resources/util directory, as shown in Figure 9-2, the full value of the namespace
must be http://java.sun.com/jsf/composite/util.

You use the prefix when you specify the component:
<util:debug/>

With a simple naming convention and the composite tag library, it’s easy to use
composite components. Now let’s see how to implement them.

From the Library of Wow! eBook

http://java.sun.com/jsf/composite/
http://java.sun.com/jsf/composite/util

Chapter 9 B Composite Components

ﬁ simple-composite.war
") index.xhtml
" welcome.xhtml
¥ (& WEB-INF
" beans.xml
: web.xml
¥ (&5 classes
v [E‘ com
v (&5 corejsf
| UserBean.class
¥ (& resources
v (& util

| debug.xhtml

Figure 9-2 The directory structure of the application with the debug
component

Implementing Composite Components

Implementing composite components is almost as easy as using them; as
evidence, look at Listing 9-2, which shows the implementation of the debug
component used in Listing 9-1.

simple-composite/web/resources/util/debug.xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:composite="http://java.sun.com/jsf/composite">

<composite:interface/>
<composite:implementation>
<div style="font-size: 1.2em; font-style: italic">
Request header:
</div>
<p>#{header}</p>
<div style="font-size: 1.2em; font-style: italic">

Request parameters:
</div>

From the Library of Wow! eBook

Configuring Composite Components m

<p>#{param}</p>
</composite:implementation>
</htm1>

Like all composite components, the debug component has an interface and an
implementation. A composite component’s implementation is simply its
markup, whereas the component’s interface specifies component attributes so
developers can configure composite components.

The debug component specifies nothing in its interface, which is a rare occur-
rence among composite components. Nearly all composite components expose
attributes through their interfaces, so they can be configured, and therefore,
reused, in different contexts.

Configuring Composite Components

Components are useful because they are reusable, and they are reusable
because they can be configured for different circumstances. Consider icons like
those shown in Figure 9-3.

e
Figure 9-3 Icons

Icons have two attributes: an image, and an action that gets invoked when you
click the image. You can let page authors specify those two attributes like this:

<util:icon image="#{resource['images:back.jpg']}"
actionMethod="#{user.logout}" />

The following icon.xhtm] file defines a simple icon component:

<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:h="http://java.sun.com/jsf/htm1"
xmlns:composite="http://java.sun.com/jsf/composite">

<composite:interface>
<composite:attribute name="image"/>
<composite:attribute name="actionMethod"
method-signature="java.lang.String action()" />
</composite:interface>

<composite:implementation>
<h:forms>
<h:commandLink action="#{cc.attrs.actionMethod}">
<h:graphicImage url="#{cc.attrs.image}" styleClass="icon" />
</h:commandLink>

From the Library of Wow! eBook

Chapter 9 B Composite Components

</h:form>
</composite:implementation>
</htm1>

In the icon’s implementation, you access the image and actionMethod attributes
with #{cc.attrs.image} and #{cc.attrs.actionMethod}, respectively. The cc represents
the composite component, and cc.attrs receives special handling in the expression
language to look up the component attributes. Thus, #{cc.attrs.attributeName}
accesses the attributeName attribute of the composite component.

Note that the two attributes for the icon component are very different things:
the image attribute "#{resource['images:back.jpg'1}" is a value expression, whereas the
actionMethod attribute "#{user.Togout}" is a method expression. When the expression
#{cc.attrs.attributeName} is evaluated, the JSF implementation checks whether
the value with key attributeName is a value expression. If so, that expression is
evaluated. Otherwise, the value associated with the key is simply returned.

NOTE: If a composite component attribute refers to a method expression,
' you must supply a method signature, so JSF knows that you're referring to a
method name, and not the name of a property. That’s the case for the icon’s
actionMethod in our example.

Attribute Types

As we did with icons, you can specify attributes with value expressions, like
this:

<util:icon image="#{resource['images:back.jpg']}"

actionMethod="#{user.logout}" />

By default, JSF assumes that attribute values are of type java.lang.Object. For
example, in the preceding code, the value expression #{resource['images:back.jpg']}
resolves to a URL, represented as a string: /context-root/faces/javax.faces.resource/
back. jpg?Tn=images. In fact, you could specify that string directly:

<util:icon image="/composite-login/faces/javax. faces.resource/back.jpg?1n=images"
actionMethod="#{user.logout}" />

If you want a composite attribute to represent a subclass of java.lang.0bject, you
must tell JSF what the attribute’s type is. One way to do that is to use the method-
signature attribute, of the composite:attribute tag, like we did in Listing 9-1. When
you specify a method signature for an attribute, JSF resolves the attribute’s
value expression to a method expression, instead of an object.

From the Library of Wow! eBook

Required Attributes and Default Attribute Values m

Another way to specify an attribute’s type is with the composite:attribute’s type
attribute. The type attribute must be specified with a fully qualified Java class
name. So, for example, if you wanted a date attribute whose value was a Date
object, you would do this: <composite:attribute name ="date" type="java.util.Date" />.

% NOTE: The composite:attribute tag’'s type and method-signature attributes
both tell JSF that an attribute’s value is something other than a string. With
the type attribute, you can specify any type, whereas method-signature always
indicates that the type is a JSF method expression object.

The type and method-expression attributes for the composite:attribute tag are
mutually exclusive, with type having priority over method-signature, should
you inadvertently specify both attributes.

Required Attributes and Default Attribute Values

The icon component implemented in Listing 9-1 is pretty handy. You can make
icons look and behave exactly as you wish. But, we can make icons more useful
by:

. Requiring an image attribute

* Letting the page author specify a CSS class for the image

e Letting the page author trigger validation when an icon’s action is
invoked

Listing 9-3 shows an updated icon listing that implements the preceding
features.

 HT750 e BRI /composite-Togin/web/resources/util/icon.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:h="http://java.sun.com/jsf/htm1"
xmlns:composite="http://java.sun.com/jsf/composite">

<composite:interface>
<composite:attribute name="image" required="true" />
<composite:attribute name="doValidation" default="false" />
<composite:attribute name="styleClass" default="icon" />
<composite:attribute name="actionMethod"
method-signature="java.lang.String action()" />

From the Library of Wow! eBook

ﬂ Chapter 9 B Composite Components

</composite:interface>

<composite:implementation>
<h:forms>
<h:commandLink action="#{cc.attrs.actionMethod}"
immediate="#{not cc.attrs.dovValidation}">

<h:graphicImage url="#{cc.attrs.image}"
styleClass="#{cc.attrs.styleClass}" />

</h:commandLink>
</h:form>
</composite:implementation>

</htm1>

Although there are undoubtedly edge cases advocating invisible icons,

we side with the vast majority of icon-related use cases by requiring page
authors to provide an image, by virtue of the required attribute on the image’s
composite:attribute tag.

We also allow page authors to specify a CSS style for the icon’s image with a
styleClass attribute. We specify a default value of icon for that attribute.

Finally, we let the page author control whether clicking on an icon triggers
input validation on the server. By default, an icon’s link has it’s immediate
attribute set to true, where immediate indicates that validation should be skipped.
If you want validation to occur when you click an icon, you must specify that
explicitly, like this: <util:icon doValidation="true".../>.

Manipulating Server-Side Data

The icon component we showed you in Listing 9-1 is more interesting than the
debug component we opened the chapter with because the icon component is
configurable, and therefore more reusable, than the debug component. How-
ever, the icon component lacks something that many non-trivial composite
components have: interaction with server-side data.

Figure 9-4 shows a login component that interacts with a managed bean.
The login component shown in Figure 9-4 can be used like this:

<util:Togin namePrompt="#{msgs.namePrompt}"
passwordPrompt="#{msgs.passwordPrompt}"
loginAction="#{user.login}"
loginButtonText="#{msgs.loginButtonText}"
user="#{user}"/>

From the Library of Wow! eBook

Manipulating Server-Side Data 357

The page author passes in a reference to the user managed bean, in addition to
other attributes that configure the login component’s prompts and button.

Please log in

Name

Password

TS
| Legin)

Figure 9-4 A login component

You can implement a simple login component as follows:

<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmIns:h="http://java.sun.com/jsf/html"
xmins:ui="http://java.sun.com/jsf/facelets"
xmlns:composite="http://java.sun.com/jsf/composite">

<composite:interface>
<composite:attribute user="user"/>

<composite:attribute name="namePrompt"/>
<composite:attribute name="passwordPrompt"/>

<composite:attribute name="ToginButtonText"/>
<composite:attribute name="loginAction"
method-signature="java.lang.String action()"/>
</composite:interface>

<composite:implementation>
<h:form id="form">
<h:panelGrid columns="2">
#{cc.attrs.namePrompt}
<h:inputText id="name" value="#{cc.attrs.user.name}"/>

#{cc.attrs.passwordPrompt}
<h:inputSecret id="password" value="#{cc.attrs.user.password}"/>

</h:panelGrid>

<p>
<h:commandButton id="TloginButton" value="#{cc.attrs.loginButtonText}"

action="#{cc.attrs.loginAction}"/>
</p>
</h:form>
</composite:implementation>
</htm1>

From the Library of Wow! eBook

Chapter 9 B Composite Components

The login component declares a user attribute, and uses that attribute for the
name, #{cc.attrs.user.name}, and password, #{cc.attrs.user.password}, input values.

Passing a managed bean to a composite component is one strategy for interact-
ing with server-side data. For the login component in Listing 9-3, however,
that strategy results in tight coupling: The login component will only work
with managed beans with properties named name and password.

To make the login component more accessible to a wider range of managed
beans, perhaps ones with properties named username and passwd, for example, we
can take a more fine-grained approach, like this:

<util:Togin namePrompt="#{msgs.namePrompt}"

passwordPrompt="#{msgs.passwordPrompt}"

name="#{user.username}"

password="#{user.passwd}"

loginAction="#{user.login}"

loginButtonText="#{msgs.loginButtonText}"/>
Now, instead of giving the login component a user managed bean, and letting
the component reference the bean’s properties, we specify the bean’s name and
password properties directly. That means that this new version of the login com-
ponent will work with managed beans with properties of any name.

You will need to make the following changes to the component definition:

<composite:interface>
<composite:attribute name="name"/>
<composite:attribute name="password"/>

</composite:interface>
<composite:implementation>

#{cc.attrs.namePrompt}
<h:inputText id="name" value="#{cc.attrs.name}"/>

#{cc.attrs.passwordPrompt}
<h:inputSecret id="password" value="#{cc.attrs.password}"/>
</composite:implementation>

Now page authors can associate individual properties of a managed bean, in
our case #{user.username} and #{user.passwd}, with inputs created by the login
component.

So now we have a backing bean (user) with properties (name and password) wired
to inputs in a login component. The login component is beginning to look like a

From the Library of Wow! eBook

Localizing Composite Components m

useful component. However, at this point it has one serious drawback that
makes it less appealing than you might expect: You can’t attach validators to
the name and password inputs. You will see in the section “Exposing a Composite’s
Components” on page 360 how you can do exactly that.

Localizing Composite Components

Most of the time, you want to let page authors configure text displayed by your
composite components, but sometimes you don’t. For example, if we decide to
sell some advertising space in our login component, and we are currently
looking for eager advertisers, we can display some text at the bottom of the
component, as shown in Figure 9-5.

Please log in

Name Hiro

Password

& B}
| Legin)

This advertising space is available. Call 555-1212.

Figure 9-5 Localizing text in composite components

JSF 2.0 lets you associate a resource bundle with a composite component,

so you can localize text that your composite component displays. In your
composite component’s directory, you create a properties file with the name
component_name.properties, where component_name is the name of your composite
component. For the login component, we created login.properties, as shown in
Figure 9-6.

¥ (& resources

Y (& css
'_ styles.css

v (&5 images
| back.png

v (& util
'_ icon.xhtml
" login.js
| login.properties
| login.xhtml

Figure 9-6 The login component’s properties file

From the Library of Wow! eBook

Chapter 9 B Composite Components

Our Togin.properties file only contains one key/value pair, as shown in Listing
9-4.

TR Tl BV composite-Togin/web/resources/util/Togin.properties

footer=This advertising space is available. (Call 555-1212.

Once you have a properties file, you can access its contents with the expression
#{cc.resourceBundleMap.key} where key is the key from the properties file. In our
login component, we did this:

<composite:implementation>
<p>#{cc.resourceBundleMap. footer}</p>
</composite:implementation>

Exposing a Composite’s Components

Now let’s modify our login component so we can attach validators to the name
and password inputs in the login component’s form. The result of erring on the
wrong side of one of those validators is shown in Figure 9-7.

Please log in

Name Hir Not enough characters. You must enter at least 4 characters in this field.

Password

(Login)
Figure 9-7 Adding a validator to one of the login component’s inputs

We add three composite:editableValueHolder tags to our login component’s inter-
face. The first two refer to the name and password inputs, and the third refers to
both inputs:
<composite:interface>
<composite:editableValueHolder name="nameInput" targets="form:name"/>

<composite:editableValueHolder name="passwordInput" targets="form:password"/>
<composite:editableValueHolder name="1inputs" targets="form:name form:password"/>

</composite:interface>

From the Library of Wow! eBook

Exposing a Composite’s Components m

The composite:editableValueHolder exposes the components referenced by the
targets attribute to the page author, under the name specified with the name
attribute. The components are specified with component identifiers. Those
identifiers are relative to the composite component, and since both inputs
reside in a form, with the id form, we must prefix both component ids with form:.

Now that we’ve exposed the name and password input components to page
authors, we can use those components like this:

<util:Tlogin namePrompt="#{msgs.namePrompt}"
passwordPrompt="#{msgs.passwordPrompt}"
name="#{user.name}"
password="#{user.password}"
loginAction="#{user.login}"
loginButtonText="#{msgs.loginButtonText}">

<fivalidateLength maximum="10" for="inputs"/>
<f:validateLength minimum="4" for="nameInput"/>
<fivalidator id="com.corejsf.Password" for="passwordInput"/>

</util:Togin>

In the preceding code snippet, we’ve added three validators to the inputs in the
form component. The first two validators specify a maximum of 10 characters
for both the name and password inputs, and a minimum of 4 characters for the name
input. The third validator is a custom validator that we attach to the password
input, that checks passwords for illegal characters. Figure 9-8 shows the result
when that validation fails.

Please log in

Name Hira

Password Passwords cannot contain @

./L I\.
(Login)

Figure 9-8 Checking passwords for illegal characters (note: JSF clears
the password input before showing the error message)

That validator attached to the password input is shown in Listing 9-5.

From the Library of Wow! eBook

m Chapter 9 B Composite Components

composite-Tlogin/src/java/com/corejsf/PasswordValidator. java

package com.corejsf;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import javax.faces.validator.FacesValidator;
import javax.faces.validator.Validator;

import javax.faces.validator.ValidatorException;

@FacesValidator("com.corejsf.Password")
public class PasswordValidator implements Validator {
public void validate(FacesContext context, UIComponent component, Object value)
throws ValidatorException {
String pwd = (String) value;
if (pwd.contains("@")) {
throw new ValidatorException(new FacesMessage("Passwords cannot contain @"));
}
}
}

The validator in the preceding listing is pretty simple-minded: it only checks
for occurrences of @ in the password. You could easily expand the logic to add
other checks.

NOTE: In the preceding example, we essentially aliased component identifi-
’ ers, like this:

<composite:interface>

<composite:editableValueHolder name="passwordInput"
targets="form:password" />

<composite:editableValueHolder name="inputs"
targets="form:name form:password"/>

</composite:interface>

The name attribute aliases the targets attribute, so page authors can refer to
the name instead of the more unwieldly component id specified for the targets
attribute:

<util:Togin ...>
<fivalidator binding="#{passwordValidator}" for="passwordInput"/>
<f:validateLength maximum="10" for="1inputs"/>

</util:Togin>

From the Library of Wow! eBook

Exposing a Composite’s Components m

If no targets are supplied, the page author has to specify the full name of the
component. For example, if the interface is

<composite:interface>
<composite:editableValueHolder name="form:password"/> <!-- no target -->
<composite:editableValueHolder name="inputs"
targets="form:name form:password"/>

the password field is referenced like this:

<util:Togin...>
<fivalidator binding="#{passwordvalidator}" for="form:password"/>
</util:Togin>

Exposing Action Sources

Besides composite:editableValueHolder, the composite tag library comes with two
other tags that you can use to expose components contained in composite com-
ponents to page authors: composite:valueHolder and composite:actionSource.

The composite:valueHolder tag exposes components, such as output components,
that have a non-editable value. The composite:actionSource tag exposes compo-
nents, such as buttons and links, that fire action events. For example, we can
expose the login component’s submit button:

<composite:interface>
<composite:actionSource name="ToginButton" targets="form:loginButton"/>

</composite:interface>"
<composite:implementation>
<h:form id="form"... >

<h:commandButton id="1oginButton"
value="#{cc.attrs.loginButtonText}"
action="#{cc.attrs.loginAction}"/>

</h:form>
</composite:implementation>

With the form’s submit button exposed, page authors can use that button, like
this:

<util:Togin ...>
<f:actionListener for="loginButton" type="com.corejsf.LoginActionListener"/>
</util:Togin>

From the Library of Wow! eBook

Chapter 9 B Composite Components

JSF 2.0 adds a for attribute to the f:actionListener. That attribute’s value refers to
an action source that is exposed in the surrounding login component.

As a result of attaching an action listener to the login component’s submit but-
ton, when the user clicks the login component’s submit button, JSF instantiates
an instance of com.corejsf.LoginActionListener, and invokes it’s processAction method.

In our sample application, we provide a LoginActionListener (shown in Listing
9-6) that checks whether the provided user name and password are valid. (In
practice, it would be easier to handle login failure in the action method—we
just want to show you the mechanics.)

Table 9-2 lists the tags that you can use in your composite component’s inter-
face section to expose the components contained in a composite component.

Table 9-2 Composite Component Tags

Use the Component with These Tags

Interface Tag in the Using Page
actionSource f:actionListener
valueHolder ficonverter, f:convertDateTime,

f:setPropertyActionListener, f:validate...

editableValueHolder ficonverter, f:convertDateTime, f:setPropertyActionListener,
f:validate..., f:valueChangelListener

The right column in Table 9-2 lists tags that, like f:actionListener, have a for
attribute that you can use to reference a component in a composite component
that’s been exposed through the component’s interface with the tags in the left
column in Table 9-2.

B 750 e B composite-Togin/src/java/com/corejsf/LoginActionListener.java

package com.corejsf;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;

import javax.faces.component.UIInput;

import javax.faces.context.FacesContext;

import javax.faces.event.AbortProcessingException;
import javax.faces.event.ActionEvent;

import javax.faces.event.ActionListener;

pubTic class LoginActionListener implements ActionListener {

From the Library of Wow! eBook

..

public void processAction(ActionEvent event) throws AbortProcessingException {
UIComponent container = event.getComponent().getNamingContainer();
String name = (String) ((UIInput)
container.findComponent("form:name")).getValue();
String pwd = (String) ((UIInput)
container.findComponent("form:password")).getValue();
if (Registrar.isRegistered(name, pwd)) return;

FacesContext context = FacesContext.getCurrentInstance();
context.addVessage(container.getClientId(),

new FacesMessage("Name and password are invalid. Please try again."));
throw new AbortProcessingException("Invalid credentials");

}
}

Facets

Adding objects such as listeners, converters, and validators to components
inside a composite component is one way you can add functionality to a com-
ponent. Another way to add functionality is to let page authors specify facets of
a composite component.

A component uses facets if the component user needs to supply content in
addition to the child components. For example, data tables have facets named
header and footer, like this:

<h:dataTable ...>
<f:facet name="header">#{msgs.tableHeader}</f:facet>

<f:facet name="footer">#{msgs.tableFooter}</f:facet>
</h:dataTable>

You may want to provide facets in your own composite components. For exam-
ple, with just a few lines of markup, you can add header and error facets to the
login component, so a page author can do something like this:

<util:login ...>
<f:facet name="header" styleClass="header">
<div class="prompt">#{msgs.loginPrompt}</div>
</f:facet>
<f:facet name="error" styleClass="error">
<h:messages layout="table" styleClass="error"/>
</f:facet>

</util:Togin>

From the Library of Wow! eBook

Chapter 9 B Composite Components

Here’s how we implemented the header and error facets in the login compo-
nent’s defining page:

<composite:interface>
<composite:facet name="header"/>

<composite:facet name="error"/>
</composite:interface>

<composite:implementation>

<composite:renderFacet name="header"/>
<h:form ...>

</h:form>
<composite:renderFacet name="error"/>
</composite:implementation>

In the preceding code, we declared the facets in the component’s interface with
the composite:facet tag, and used the composite:renderFacet tag in the component’s
implementation, to render the facets.

The composite:renderFacet tag renders the supplied facet as a child component. If
you want to insert it as a facet instead, use the composite:insertFacet tag, like this:

<composite:implementation>

<h:dataTable>
<composite:insertFacet name="header"/>

<composite:insertFacet name="footer"/>
</h:dataTable>

</composite:implementation>

Here, the header and footer become the data table’s header and footer facets.

Children

Composite components are represented by tags. Sometimes it makes sense to
allow content in the body of those tags. By default, if you put something in the
body of a composite component’s tag, JSF will just ignore that content, but you
can use the <composite:insertChildren/> tag in your composite component’s imple-
mentation to render the components in the body of your composite component’s
tag.

From the Library of Wow! eBook

Children m

For example, with our login component, it might be convenient to let page
authors add anything they want to the bottom of the component. A common
use case would be to add a registration link to the login component, as
depicted in Figure 9-9.

Please log in

Name Hiro

Password

./L I\.
[Logln)

Register...

Figure 9-9 The login component, fitted with a registration link

In Figure 9-9, we’ve added a registration link, like this:

<util:login...>

<f:facet name="header" styleClass="header">...</f:facet>
<f:facet name="error" styleClass="error">...</f:facet>

<!-- Child component -->
<h:Tink>#{msgs.registerLinkText}</h:1ink>
</util:login>
In the login component’s implementation, we use the composite:insertChildren tag
to render the composite’s children—i.e., any components other than facets, in
the body of the composite’s tag. For example, here’s how we render child com-
ponents after the error facet in our login component:

<composite:implementation>
<composite:renderFacet name="header"/>
<h:form ...>
</h:form>
<composite:renderFacet name="error"/>

<composite:insertChildren/>
</composite:implementation>

From the Library of Wow! eBook

Chapter 9 B Composite Components

JavaScript

It’s often convenient to attach JavaScript to a component—for example, for
client-side validation. JSF makes it easy to use JavaScript with the built-in JSF
tags.

You can also use JavaScript with composite components that you develop.
However, to do so effectively, you need to know how to access the client identi-
fiers of HTML elements generated by your component.

Figure 9-10 shows client-side validation at work for the places login compo-
nent. That validation uses some JavaScript.

Log in

'.4 | > | 8 http://localhost:B080/composite-login/ G Q* Google

Please log in

http:/ /localhost:8080

Name | Hiro)
!ﬁ | Please enter name and password.
Password 4
(Legin) (OK:)

Register...

This advertising space is available. Call 555-1212.

Figure 9-10 Client-side validation for the login component

You can put JavaScript directly in the implementation section of a composite
component, but to make things more modular, we placed the JavaScript for the
login component in a file of its own. We load that JavaScript with the h:output-
Script tag, and invoke a function from that JavaScript when the user submits
the login form:
<composite:implementation>
<h:outputScript Tibrary="util" name="Togin.js" target="head"/>
<h:form id="form" onsubmit="return checkForm(this, '#{cc.clientId}')">

</h;1.°c.)rm>

</composite:implementation>

From the Library of Wow! eBook

JavaScript m

The checkForm() function takes two arguments: a reference to a form, and the cli-
ent identifier of the composite component in which the form resides. That func-
tion uses the client identifier to access the composite component’s form
elements, as shown in Listing 9-7.

composite-Tlogin/web/resources/util/login.js

function checkForm(form, ccId) {
var name = form[ccId + ':form:name'].value;
var pwd = form[ccId + ':form:password'].value;

_If (name - nn || de - nu) {
alert("Please enter name and password.");
return false;

}

return true,

Notice that we have to drill down to the inputs, through the composite compo-
nent and the input’s form. We can eliminate the form designation by telling JSF
not to prepend the form’s id, like this:

<h:form id="form" prependId="false"
onsubmit="return checkForm(this, '#{cc.clientId}')">

Now we can access the name and password fields a little more easily:

var name = form{ccId + "name'].value;
var pwd = form{ccId + 'password'].value;

Our sample application combines the techniques that we introduced in the pre-
ceding sections.

The final version of the component definition is shown in Listing 9-8. Listing
9-9 is the web page that uses the login component. The User class in Listing
9-10 represents the user that is being logged in. We provide a rudimentary
registration service for demonstration purposes—see the book’s companion
code at http://corejsf.com for the implementation.

From the Library of Wow! eBook

http://corejsf.com

Chapter 9 B Composite Components

composite-Tlogin/web/resources/util/login.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:h="http://java.sun.com/jsf/html"
xmlns:composite="http://java.sun.com/jsf/composite">

<composite:interface>
<composite:editableValueHolder name="nameInput" targets="form:name"/>
<composite:editableValueHolder name="passwordInput" targets="form:password"/>
<composite:editableValueHolder name="inputs"
targets="form:name form:password"/>
<composite:actionSource name="ToginButton" targets="form:loginButton"/>

<composite:attribute name="name"/>
<composite:attribute name="password"/>

<composite:attribute name="namePrompt"/>
<composite:attribute name="passwordPrompt"/>

<composite:attribute name="loginValidate"
method-signature="void validatelLogin(ComponentSystemEvent e)
throws javax.faces.event.AbortProcessingException”/>

<composite:attribute name="ToginAction"
method-signature="java.lang.String action()"/>

<composite:facet name="heading"/>
<composite:facet name="error"/>
</composite:interface>

<composite:implementation>
<h:outputScript Tibrary="components/util" name="login.js" target="head"/>
<h:form id="form" onsubmit="return checkForm(this, '#{cc.clientId}"')">
<composite:renderFacet name="heading"/>
<h:panelGrid columns="2">
#{cc.attrs.namePrompt}
<h:panelGroup>
<h:inputText id="name" value="#{cc.attrs.name}"/>
<h:message for="name"/>
</h:panelGroup>

#{cc.attrs.passwordPrompt}

<h:panelGroup>

From the Library of Wow! eBook

JavaScript

<h:inputSecret id="password" value="#{cc.attrs.password}" size="8"/>
<h:message for="password"/>
</h:panelGroup>
</h:panelGrid>

<p>
<h:commandButton id="ToginButton"
value="#{cc.attrs.loginButtonText}"

action="#{cc.attrs.loginAction}"/>
</p>

</h:form>

<composite:renderFacet name="error"/>
<p><composite:insertChildren/></p>
<p>#{cc.resourceBundleMap.footer}</p>

</composite:implementation>
</htm1>

IBETR LT B Il composite-Togin/web/index.xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core"
xmins:h="http://java.sun.com/jsf/html"
xmins:util="http://java.sun.com/jsf/composite/util"
xmins:ui="http://java.sun.com/jsf/facelets">
<h:head>
<title>#{msgs.loginHeading}</title>
<h:outputStylesheet Tibrary="css" name="styles.css" />
</h:head>
<h:body>
<util:Togin namePrompt="#{msgs.namePrompt}"
passwordPrompt="#{msgs.passwordPrompt}"
name="#{user.name}"
password="#{user.password}"
loginAction="#{user.login}"
loginButtonText="#{msgs.loginButtonText}">

<fivalidateLength minimum="4" for="nameInput"/>
<fivalidator validatorId="com.corejsf.Password" for="passwordInput"/>
<fiactionListener type="com.corejsf.LoginActionListener" for="ToginButton"/>

From the Library of Wow! eBook

371

372

Chapter 9 B Composite Components

<f:facet name="heading" styleClass="header">
<div class="prompt">#{msgs.loginPrompt}</div>
</f:facet>

<f:facet name="error" styleClass="error">
<h:messages layout="table" styleClass="error"/>
</f:facet>

<!-- Child component -->
<h:Tink outcome="register">#{msgs.registerLinkText}</h:Tink>

</util:Togin>
<ui:debug/>
</h:body>
</html>

B350 BB Ll composite-login/src/java/com/corejsf/User. java

package com.corejsf;

import java.io.Serializable;
import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;

@Named // or @ManagedBean

@SessionScoped

pubTic class User implements Serializable {
private String name;
private String password;

public User() { this("", ""); }

public User(String name, String password) {
this.name = name;
this.password = password;

}

public String getPassword() { return password; }
public void setPassword(String newValue) { password = newValue; }

public String getName() { return name; }
public void setName(String newValue) { name = newValue; }

public String register() {
Registrar.register(name, password);
return "welcome";

From the Library of Wow! eBook

Backing Components

}

public String Togin() {
return "welcome";

}

pubTic String Togout() {

nn,

name = password = "";
return "index";

}
}

Backing Components

Sometimes, you want to have more control over the behavior of a composite
component than you can achieve through XML declarations. To add Java code
to a composite component, you supply a backing component. A backing compo-
nent has these requirements:

. It is a subclass of UIComponent.

e Itimplements the NamingContainer marker interface.

. Its family property has the value "javax.faces.NamingContainer".

We will discuss the UIComponent class and the notion of component families in
detail in Chapter 11. This section gives you a simple, but typical example.

Consider a date component that uses three h:selectOneMenu components for the
day, month, and year (see Figure 9-11).

Welcome

| <[= | [+ @ http: /tocalhost:8080/composite-date/ ¢] (@ Google

Please enter your birthday.

1 3| january 3| 2000 ;

{ Next |

&

Figure 9-11 A composite date component

From the Library of Wow! eBook

373

374 Chapter 9 M Composite Components

Using the techniques that you have already seen, it would be very easy to make
such a component and expose the three child components, so that you can
attach a value reference to each of them:

<util:date day="#{user.birthDate}" month="#{user.birthMonth}"

year="#{user.birthYear}"/>

However, suppose your User class stores the date as a java.util.Date and not as
three separate integers. After all, in object-oriented programming, you want to
use classes whenever possible and not just store everything as numbers and
strings.

It would be much better if the component had a single value of type Date:
<util:date value="#{user.birthDay}"/>

However, the Java Date class doesn’t have property getters and setters for the
day, month, and year. Therefore, we cannot simply use value expressions, such
as #{cc.attrs.value.day}, inside our composite component. Instead, some Java
code is needed to assemble a Date from its components. Therefore, we will
provide a backing component.

There are two ways of designating a backing component for a composite
component. The easiest is to follow a naming convention: use the class name
libraryName.componentName. In our example, the class name is util.date—that is, a
class date in a package util. (It's a bit odd to have a lowercase class name, but
that's the price to pay for “convention over configuration”.)

Alternatively, you can use the @FacesComponent annotation to specify a “compo-
nent type”, and then you specify that component type in the composite:interface
declaration:

<composite:interface componentType="com.corejsf.Date">

We will discuss component types in Chapter 11. In this example, we follow the
naming convention and provide a class util.date.

As you will see in Chapter 11, component classes that take user input should
extend the UIInput class. Thus, our backing component has the following form:

package util;
public class date extends UIInput implements NamingContainer {
public String getFamily() {
return "javax.faces.NamingContainer";

}

From the Library of Wow! eBook

Backing Components 375

Before going further with the implementation of the backing component, have
a look at the composite component definition in Listing 9-11.

I BCIEL T BB Bl composite-date/web/resources/util/date.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:h="http://java.sun.com/jsf/htm1"
xmlns:composite="http://java.sun.com/jsf/composite"
xmins:f="http://java.sun.com/jsf/core">

<composite:interface>
<composite:attribute name="value" type="java.util.Date"/>
</composite:interface>

<composite:implementation>
<h:selectOneMenu id="day" converter="javax.faces.Integer">
<fiselectItems value="#{dates.days}"/>
</h:selectOneMenu>
<h:selectOneMenu id="month" converter="javax.faces.Integer">
<f:selectItems value="#{dates.months}"/>
</h:selectOneMenu>
<h:selectOneMenu id="year" converter="javax.faces.Integer">
<fiselectItems value="#{dates.years}"/>
</h:selectOneMenu>
</composite:implementation>
</htm1>

Here, the dates bean simply produces arrays of values 1. .. 31, January . ..
December, and 1900 . . . 2100—see Listing 9-12.

ISETR T B Bl composite-date/src/java/com/corejsf/Dates. java

package com.corejsf;

import java.io.Serializable;

import java.text.DateFormatSymbols;

import java.util.LinkedHashMap;

import java.util.Map;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;

import javax.enterprise.context.ApplicationScoped;
// or import javax.faces.bean.ApplicationScoped;

From the Library of Wow! eBook

376 Chapter 9 B Composite Components

@Named // or @ManagedBean

@ApplicationScoped

public class Dates implements Serializable {
private int[] days;
private int[] years;
private Map<String, Integer> months;

private static int[] intArray(int from, int to) {
int[] result = new int[to - from + 1];
for (int i = from; i <= to; i++) result[i - from] = 1;
return result;

}

public Dates() {
days = intArray(1, 31);
years = intArray(1900, 2100);
months = new LinkedHashMap<String, Integer>();
String[] names = new DateFormatSymbols().getMonths()

for (int i = 0; i < 12; i++) months.put(names[i], i + 1);

}

public int[] getDays() { return days; }
public int[] getYears() { return years; }
public Map<String, Integer> getMonths() { return months; }

When rendering the composite component, we need to set the day, month, and
year values of the child components. This happens in the encodeBegin method:

public class date extends UIInput implements NamingContainer {

public void encodeBegin(FacesContext context) throws IOException {

Date date = (Date) getValue();

Calendar cal = new GregorianCalendar();
cal.setTime(date);

ULInput dayComponent = (UIInput) findComponent("day");

UIInput monthComponent = (UIInput) findComponent("month");

UIInput yearComponent = (UIInput) findComponent("year");
dayComponent.setValue(cal.get(Calendar.DATE));
monthComponent.setValue(cal.get(Calendar.MONTH) + 1);
yearComponent.setValue(cal.get(Calendar.YEAR));
super.encodeBegin(context);

From the Library of Wow! eBook

Backing Components 377

When the form is submitted, we need to reconstitute the Date value from the
day, month, and year. To find the correct place for this conversion, consider
how the JSF life cycle starts:

1. The HTTP request delivers name/value pairs.

2. Inthe Apply Request Values phase, each of the h:selectOneMenu components
sets its submitted value.

3. During validation, the component’s submitted value is converted to the
desired type, becoming the converted value. In our case, each h:selectOne-
Menu component has an integer converter that converts the incoming string
to an Integer.

4, If the converted value passes validation, it becomes the value of the
component.

Now consider the composite component. It does not have a submitted value
because there is nothing in the HTTP request that directly corresponds to the
composite component. But we want it to have a converted value, so that we can
attach validators to the composite component. Therefore, we compute the date
in the getConvertedvalue method:

pubTic class date extends UIInput implements NamingContainer {

protected Object getConvertedValue(FacesContext context, Object newSubmittedValue)
throws ConverterException {
ULInput dayComponent = (UIInput) findComponent("day");
UILInput monthComponent = (UIInput) findComponent("month");
UILInput yearComponent = (UIInput) findComponent("year");
int day = (Integer) dayComponent.getValue();
int month = (Integer) monthComponent.getValue();
int year = (Integer) yearComponent.getValue();
if (isValidDate(day, month, year))
return new GregorianCalendar(year, month - 1, day).getTime();
else
throw new ConverterException(new FacesMessage(FacesMessage.SEVERITY_ERROR,
"Invalid date", "Invalid date"));

}

If the user provides an invalid date, such as February 30, a converter exception
occurs. Note that this is not a validation error. For a Date, a validation error
would be a date that is not in an expected date range. But if the user provides
an input of February 30, we don’t have a Date yet—the user input cannot be
converted into one.

From the Library of Wow! eBook

378

Chapter 9 B Composite Components

As it turns out, we do need to override the getSubmittedValue since a null submit-
ted value is treated as a special case. We simply return the component itself—
see Listing 9-15.

Using the component is very easy, as shown in Listing 9-13. We simply attach a
Date-valued property; here, the birthday of the UserBean class in Listing 9-14.
Note the @Past validation annotation of the birthday property. This annotation
works seamlessly with our date component, validating the submitted Date value.
If the user supplies a date that lies in the future, the application reverts to the
old date and displays an error (Figure 9-12).

Welcome
|af>]] + | @ hup://localhost:8080/composite-date /faces/index.xhtml ¢ | (Qr Google
Please enter your birthday.
o _: 1 -innuary -.ﬁ_.' | 2000 _:_'

must be in the past

CNext |

Figure 9-12 Trying to enter a date in the future is rejected with a
validation error

Figure 9-13 shows the directory structure of the application.

As you can see, implementing a backing component requires some knowledge
of the JSF component API, which we discuss in Chapter 11. However, it is
much less work to add a small amount of code in a backing component than it
would be to write a custom component from scratch.

From the Library of Wow! eBook

Backing Components 379

ﬁ composite-date.war
[index.xhtml

| welcome.xhtml

¥ WEB-INF

| 'l beans.xml
| faces-config.xml
[web.xml

¥ (& classes
v [ﬁ com
v ﬁ corejsf
| ' Dates.class

| | UserBean.class

¥ (& util

[Messages.class
¥ (& util

| %) date.class
| | messages.properties
¥ (& resources
v (& css
[styles.css
¥ (& util

[date.xhtml

Figure 9-13 The directory structure of the composite date application

ISETR T B N composite-date/web/index.xhtm]

1. <?xml version="1.0" encoding="UTF-8"?>

2. <IDOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3. "http://www.w3.0rg/TR/xhtm11/DTD/xhtml1-transitional.dtd">

4. <htm] xmIns="http://www.w3.0rg/1999/xhtm1"

5. xmins:h="http://java.sun.com/jsf/html"

6. xmins:ui="http://java.sun.com/jsf/facelets"

1. xmins:util="http://java.sun.com/jsf/composite/util">

8. <h:head>

9. <title>Welcome</title>

10. <h:outputStylesheet Tibrary="css" name="styles.css"/>
11. </h:head>

12. <h:body>

13. <h:form>

14. <h3>Please enter your birthday.</h3>

15. <util:date id="date" value="#{user.birthday}"/>

16.
<h:message for="date" styleClass="error"/>

17. <p><h:commandButton value="Next" action="welcome"/></p>
18. </h:form>

From the Library of Wow! eBook

m Chapter 9 B Composite Components

</h:body>
</html>

IBTT50 A BB B composite-date/src/java/com/corejst/UserBean.java

package com.corejsf;

import java.io.Serializable;
import java.util.Date;
import java.util.GregorianCalendar;
import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;
import javax.validation.constraints.Past;

@amed("user") // or @anagedBean(name="user")
@SessionScoped
public class UserBean implements Serializable {
private String name;
private String password;
@Past private Date birthday = new GregorianCalendar(2000, 0, 1).getTime()

public String getName() { return name; }
public void setName(String newValue) { name = newValue; }

public String getPassword() { return password; }
public void setPassword(String newvalue) { password = newValue; }

public Date getBirthday() { return birthday; }
public void setBirthday(Date newvalue) { birthday = newvalue; }
}

IBETR T B ksl composite-date/src/java/util/date. java

package util;
import com.corejsf.util.Messages;

import java.io.IOException;

import java.util.Calendar;

import java.util.Date;

import java.util.GregorianCalendar;
import java.util.locale;

import java.util.ResourceBundle;

From the Library of Wow! eBook

Backing Components m

import javax.faces.application.FacesMessage;
import javax.faces.component.NamingContainer;
import javax.faces.component.UIInput;

import javax.faces.context.FacesContext;
import javax.faces.convert.ConverterException;

pubTic class date extends UIInput implements NamingContainer {
public String getFamily() {
return "javax.faces.NamingContainer";

}

public void encodeBegin(FacesContext context) throws IOException {
Date date = (Date) getValue();
Calendar cal = new GregorianCalendar();
cal.setTime(date);
UILInput dayComponent = (UIInput) findComponent("day");
ULInput monthComponent = (UIInput) findComponent(“month");
ULInput yearComponent = (UIInput) findComponent("year");
dayComponent.setValue(cal.get(Calendar.DATE));
monthComponent.setValue(cal.get(Calendar.MONTH) + 1);
yearComponent.setValue(cal.get(Calendar.YEAR));
super.encodeBegin(context);

}

public Object getSubmittedvalue() {
return this;

}

protected Object getConvertedValue(FacesContext context, Object newSubmittedValue)
throws ConverterException {
ULInput dayComponent = (UIInput) findComponent("day");
UILInput monthComponent = (UIInput) findComponent("month");
UILInput yearComponent = (UIInput) findComponent("year");
int day = (Integer) dayComponent.getValue();
int month = (Integer) monthComponent.getValue();
int year = (Integer) yearComponent.getValue();
if (isValidDate(day, month, year))
return new GregorianCalendar(year, month - 1, day).getTime();
else {
FacesMessage message
= Messages.getMessage("util.messages", "invalidDate", null);
message.setSeverity(FacesMessage.SEVERITY_ERROR);
throw new ConverterException(message);
}
}

private static boolean isValidDate(int d, int m, int y) {

From the Library of Wow! eBook

Chapter 9 B Composite Components

if (d<1]lm<1]]m>12) {
return false;
}
if (m==2) {
if (isLeapYear(y)) {
return d <= 29;
} else {
return d <= 28;

}

Jelseif m==4||m=6]| m==9 || m==11) {
return d <= 30;

} else {
return d <= 31;

}
}

private static boolean isLeapYear(int y) {
return y % 4 == 0 && (y %400 == 0 || y % 100 != 0);
}
}

Packaging Composite Components in JARs

You can package your composite components in JAR files, so that other devel-
opers can use those components. All you have to do is put your composite
component, and its artifacts, such as JavaScript, stylesheets, or properties files,
under a META-INF directory in the JAR, as shown in Figure 9-14.

(& components.jar
¥ (@ META-INF
¥ (& resources

v (& css
: styles.css
¥ (@ images
: back.png
¥ (& util
9 icon.xhtml
login.js
| | login.properties
“ login.xhtml

Figure 9-14 Packaging the icon and login components in a JAR file

J[J[7

Once you have a JAR file containing one or more composite components, sim-
ply put the JAR file on your classpath to use the components.

From the Library of Wow! eBook

Conclusion m

Conclusion

JSF’s biggest selling point is that it's a component-based framework, and JSF
2.0 finally makes it simple to implement custom components: If you can imple-
ment a Facelets view, you can implement a composite component.

JSF 2.0 comes with extensive support for composite components, including
support for processing facets and children.

Combined with the new Ajax capabilities of JSF 2.0, composite components
enable JSF developers the ability to easily implement custom components that
encapsulate Ajax.

From the Library of Wow! eBook

AJAX

' Topics in This Chapter

“Ajax and JSF” on page 386

“The JSF Life Cycle and Ajax” on page 387
“The JSF Ajax Recipe” on page 388

“The f:ajax Tag” on page 389

“Ajax Groups” on page 392

“Ajax Field Validation” on page 394

“Ajax Request Monitoring” on page 396
“JavaScript Namespaces” on page 398
“Handling Ajax Errors” on page 400

“Ajax Responses” on page 400

“The JSF 2.0 JavaScript Library” on page 403

“Passing Additional Ajax Request Parameters” on
page 405

“Queueing Events” on page 407
“Coalescing Events” on page 408
“Intercepting jsf.ajax.request()” on page 409

“Using Ajax in Composite Components” on page 409

From the Library of Wow! eBook

Asynchronous JavaScript and XML (Ajax) used to be considered a luxury, both
for users and developers, but today Ajax is essential for building compelling
and competitive web applications.

JSF 2.0 has built-in Ajax support, with a standard JavaScript library. You can
accesss that library in both your views and in your Java code.

You can handle most of the common Ajax use cases—such as field validation
and progress indicators—with a tag from JSF’s core library: f:ajax. Like other
tags from JSF’s core library, such as f:validator and f:converter, f:ajax attaches a
behavior to a component. For example, here’s how you would attach an Ajax
behavior to a text input:

<h:inputText value="#{someBean.someProperty}">

<f:ajax event="keyup" render="someOtherComponentId"/>

</h:inputText>
For each keyup event in the text input, JSF makes an Ajax call to the server, and
processes the input’s value. When the Ajax call returns, JSF renders a compo-
nent with the identifier someOtherComponentId.

385

From the Library of Wow! eBook

Chapter 10 B Ajax

Please log in

Name

Password

Login

Ajax and JSF

Conceptually, Ajax is simple. In fact, Ajax requests differ from regular HTTP
requests in only two ways:

1. Ajax partially processes forms on the server during the Ajax call.

2. Ajax partially renders Document Object Model (DOM) elements on the
client after the Ajax call returns from the server.

This sequence of events is illustrated in Figure 10-1, which illustrates an Ajax
call that validates a single input, presumably when the field loses focus.

public void validateName(ValueChangeEvent e) {
UIInput nameInput =
(UIInput) e.getComponent();

String name =
(String) nameInput.getValue();

3. Execute Input

1. onkeyup

2. Ajax Request

Name cannot be blank

A

5. Render Message

4. Ajax Response

Figure 10-1 An Ajax request for validating an input field

In JSE, we deal in components, so we will define JSF Ajax like this:

JSF Ajax requests partially process components on the server, and partially render
components on the client when the request returns.

As you'll see in the next section, JSF integrates Ajax into its life cycle, which is
the fundamental lifeblood of all JSF applications. That deep level of integration
lets you handle Ajax requests in the same manner in which you handle other
component behaviors, such as validation or conversion.

From the Library of Wow! eBook

The JSF Life Cycle and Ajax

The JSF Life Cycle and Ajax

JSF 2.0 splits the JSF life cycle into two parts: execute (where components are
executed) and render, as shown in Figure 10-2 and Figure 10-3, respectively. On
any given Ajax request, you specify a set of components that JSF executes, and another
set of components that it renders.

The execute part of the life cycle executes inputs on the server, and is repre-
sented by step 3 in Figure 10-1.

Restore Apply Request Process
_>[View 4" Values Validations

Render [Invoke Update
Response l Application Model Values

Figure 10-2 The execute portion of the JSF life cycle

The render part of the life cycle, illustrated by step 5 in Figure 10-1, renders
components on the client. The render part of the life cycle is shown in Figure
10-3.

Restore Apply Request Process
Request y————— ™ View Values Validations

Render [Invoke Update
ﬂ{ Response L Application H Model Values

Figure 10-3 The render portion of the life cycle

From the Library of Wow! eBook

388 Chapter 10 W Ajax

As Figure 10-2 illustrates, when JSF executes a component on the server, it:

¢ Converts and validates the component’s value (if the component is an
input)

¢ Pushes valid input values to the model (if the component is wired to a
bean property)

o Executes actions and action listeners (if the component is an action)

So JSFE 2.0 effectively has two life cycles: one that executes components, and one
that renders components. JSF always executes components first, and subse-
quently renders them.

For regular HTTP requests, all components in a form are both executed and
rendered, whereas for Ajax requests, JSF executes one or more components,
and renders zero or more components.

The JSF Ajax Recipe

Here’s the recipe for using Ajax with JSF 2.0:

1. Associate a component and an event with an Ajax request.
2. Indentify components to execute on the server during the Ajax request.

3. Identify components to render after the Ajax request.

It typically takes a couple of lines of XML in an XHTML file, and perhaps a few
lines of Java in a managed bean to implement most Ajax use cases, including,
as you will see later in this chapter, validating inputs and showing progress
bars.

You associate an Ajax call with an event, such as keyup or blur, fired by a specific
component. Then you specify the components that you want to execute, and
the components you want to render. For example, you can associate an Ajax
call with an input, like this:

<h:inputText id="name" value="#{user.name}">

<f:ajax event="blur" execute="@this" render="nameError"/>

</h:inputText>
The preceding code triggers an Ajax event when the input loses focus. That
Ajax request executes the name component on the server—the @this value for the
execute attribute refers to the f:ajax tag’s surrounding input—and renders a com-
ponent whose id is nameError on the client, when the Ajax call returns.

From the Library of Wow! eBook

The f:ajax Tag m

We could also execute and render multiple components, like this:

<h:inputText id="nameInput" value="#{user.name}">
<f:ajax event="blur" execute="@this passwordInput"
render="nameError passwordError"/>
</h:inputText>

<h:outputText id="nameError"/>

<h:inputText id="passwordInput"/>
<h:outputText id="passwordError" value="#{user.passwordError}"/>

The preceding code executes the nameInput, and the passwordInput. It renders the
nameError and passwordError components.

JSF’s Ajax support is a low-level—but capable and comprehensive—Ajax
implementation. The key to using Ajax with JSF is to keep in mind what it
means to execute a component on the server during an Ajax call.

When JSF executes an input component, for example, it copies the input’s
value to a backing bean property. That changed property typically has a role in
how the Ajax response is rendered: Perhaps it’s a value that’s simply redis-
played, or it could effectuate a more marked change to the user interface.

The f:ajax Tag

Page authors attach behaviors—such as validation—to JSF components with
tags from JSF’s core library. For example, here’s how you validate that a text
input has at least five characters:

<h:inputText value="#{user.name}">
<fivalidateLength minimum="5"/>
</h:inputText>

JSF’s Ajax support follows suit. To attach Ajax behavior to a component, you
add an f:ajax tag in the body of the component; for example:

<h:inputText id="name" value="#{user.name}">
<f:ajax event="keyup" execute="@this" render="echo"/>
</h:inputText>

<h:outputText id="echo" value="#{user.name}"/>

The preceding markup attaches an Ajax behavior to the input. That behavior
echoes whatever the user types in the name field, as shown in Figure 10-4.

From the Library of Wow! eBook

Chapter 10 B Ajax

For each keyup event fired by the input, JSF makes an Ajax call to the server.
On the server, the Ajax call executes the name component (signified by the
built-in @this keyword), and when the Ajax call returns, JSF renders only the
echo component on the client.

The echo output text echoes the name input because, when JSF executes the name
input on the server, it copies the name into the name input’s associated backing
bean property, the name field of a managed bean named user. Subsequently, JSF
renders the echo field, which displays the newly updated user.narme.

Please log in

Name Hiro P

Password ses
(Login
Please log in
Hiro P
Name Hiro Prota
Password ses
(Login
Hiro Prota
Please log in
Name Hiro Protagonist
Password ses
(Login
Hiro Protagonist

Figure 10-4 Using Ajax to echo an input as the user types

Most of the time, as is the case for our simple echo example, you want to exe-
cute an f:ajax tag’s surrounding input component, so JSF executes @this by
default. That default means we can omit execute="Gthis" from the preceding
markup, like this:

<h:inputText id="name" value="#{user.name}">
<f:ajax event="keyup" render="echo"/> <!-- execute="@this" is implicit -->

</h:inputText>

From the Library of Wow! eBook

The f:ajax Tag m

Besides @this, you can also use @form, @all, or @none as values for the f:ajax tag’s
execute attribute, as you can see from Table 10-1, which lists the attributes for
the f:ajax tag.

Table 10-1 f:ajax Tag Attributes

Attribute Description
disabled Disable the tag by specifying true for the disabled attribute.
event The event that triggers the Ajax request. Event names can be Java-

Script event names without the on prefix. For example, you would
use event="blur" for the onblur event.

Event names can also be the following component events: action
and valueChange. Those names can be specified for command com-
ponents (buttons and links) and inputs, respectively.

execute A space-separated list of components that JSF executes on the
server during the Ajax call. Valid keywords for the execute
attribute are:

@this @form
@all @none

If you don’t specify an execute attribute, JSF uses @this as the
default value.

immediate If you set this attribute to true, JSF processes inputs early in the
life cycle.

onerror A JavaScript function that JSF calls if the Ajax call results in an
error.

onevent A JavaScript function that JSF calls for Ajax events. This function
will be called three times during the lifetime of a successful Ajax
call:

begin
complete
success

For a successful Ajax call, JSF invokes the onevent function when
the Ajax call begins (begin), when it has been processed on the
server (complete), and just before JSF renders the Ajax response
(success).

If there is an error during an Ajax request, JSF calls the onevent
function after the Ajax request completes, and subsequently
invokes the error handler referenced by the onevent attribute.

From the Library of Wow! eBook

m Chapter 10 B Ajax

Table 10-1 f:ajax Tag Attributes (cont.)

Attribute Description

Tistener JSF invokes this listener’s processAjaxBehavior method once during
each Ajax call, in the Invoke Application phase of the life cycle (at
the end of the execute portion of the life cycle).

That method must have this signature: pubTic void processAjax-
Behavior(javax.faces.event.AjaxBehaviorEvent event) throws
javax.faces.event.AbortProcessingException

render A space-separated list of components that JSF renders on the
client after the Ajax call returns from the server.

You can use the same keywords (@al1, @this, @form, and @none) that
are valid for the execute attribute.

If you do not specify the render attribute, it defaults to @none,
meaning JSF will not render any components after the Ajax
request completes.

Notice the naming convention JSF uses for events: Take the JavaScript event
name, and strip the leading on. So onblur becomes blur, onkeyup becomes keyup, etc.
Also notice that events can be the component events action and valueChange,
instead of JavaScript events.

The onerror and onevent attributes are JavaScript functions that JSF calls when cer-
tain predetermined events happen in the Ajax life cycle. For a successful Ajax
request, JSF invokes the onevent function three times: when the Ajax request
begins, when it completes, and again after completion, for a successful request.
JSF invokes the onerror JavaScript function after an unsuccessful Ajax request.

The value for the 1istener attribute is a method expression. JSF calls that Java
method once per Ajax call (in the Invoke Application phase of the JSF life cycle).

Ajax Groups

As you saw in “The f:ajax Tag” on page 389, you put f:ajax tags inside a com-
ponent tag, to associate an Ajax request with the component. JSF also lets you
associate an Ajax request with a group of Ajax components by inverting that
structure, like this:
<fiajax>
<h:form>
<h:panelGrid columns="2">

<h:inputText id="name" value="#{user.name}"/>

From the Library of Wow! eBook

Ajax Groups m

<h:inputText id="password" value="#{user.password}"/>

</h:commandButton value="Submit" action="#{user.login}"/>
</h:panelGrid>
</h:form>
</fiajax>
The preceding markup Ajaxifies all of the components in the form. When the
input values change, or when the user activates the button, JSF makes an Ajax
request to the server. (Note that in the preceeding code listing, JSF will not ren-
der any components when the Ajax call returns because we did not specify a
render attribute for the f:ajax tag.)

Some of the built-in JSF components have a default Ajax event. Table 10-2
shows default events for components that have a default event type.

Table 10-2 JSF Component’s Default Ajax Event

Components Default Ajax Event
Command buttons and links action
Text inputs, text areas, secret inputs, and all of the valueChange

select components

JSF applies the default Ajax events listed in Table 10-2 if you don’t explicitly
specify an event. You can specify an event like this:

<f:ajax event="click">
<h:form>

<h:inputText id="name" value="#{user.name}">
<h:inputText id="password" value="#{user.password}"/>

<h:commandButton value="Submit" action="#{user.login}"/>
</h:form>
</frajax>

So now the Ajax is only applicable for the click event—when you click on one
of the inputs or the button, JSF fires an Ajax request. You can even nest f:ajax
tags in one another, and the results are additive; for example:

<fiajax event="click">
<h:form>

<h:inputText id="name" value="#{user.name}">

From the Library of Wow! eBook

m Chapter 10 B Ajax

<h:inputText id="password" value="#{user.password}"/>

<h:commandButton value="Submit" action="#{user.login}">
<f:ajax event="mouseover"/>
</h:commandButton>
</h:form>
</frajax>
In the preceding markup, JSF fires Ajax requests when the mouse hovers over
the button, or the user activates the button.

Ajax Field Validation
All other things being equal, it’s best to give users immediate validation feed-
back as they type in an input field. Field validation is a common Ajax use case.

Figure 10-5 shows an example of Ajax field validation. The name component has
a validator that checks to see whether the name contains an underscore; if so,
the validator thows a validator exception containing an error message.

Please log in

Name no_underscores Name cannot contain underscores
Password

Log In)

Figure 10-5 Ajax validation

Here’s the markup for the name input, and an associated h:message tag:

<h:inputText id="name" value="#{user.name}" validator="#{user.validateName}">
<f:ajax event="keyup" render="nameError"/>
</h:inputText>
<h:message for="name" id="nameError" style="color: red"s/>
For every keyup event in the name component, JSF makes an Ajax request and
executes the name input.

When it executes the name input on the server, JSF invokes the input’s validator,
the validateName() method of a managed bean named user. The User class is pro-
vided in Listing 10-1.

From the Library of Wow! eBook

Ajax Field Validation m

echo/src/java/com/corejsf/UserBean. java

package com.corejsf;
import java.io.Serializable;

import javax.enterprise.context.SessionScoped;
import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.validator.ValidatorException;
import javax.inject.Named;

// or import javax.faces.bean.SessionScoped;

@Named("user") // or @ManagedBean(name="user")
@SessionScoped
pubTic class UserBean implements Serializable {

nn,

private String name = "";
private String password;

public String getName() { return name; }
public void setName(String newValue) { name = newValue; }

public String getPassword() { return password; }
public void setPassword(String newValue) { password = newValue; }

public void validateName(FacesContext fc, UIComponent c, Object value) {
if (((String)value).contains("_"))
throw new ValidatorException(
new FacesMessage("Name cannot contain underscores"));
}
}

The validateName() method checks to see if the name contains an underscore; if
so, the method throws a validator exception with an appropriate error mes-
sage. Subsequently, when the Ajax request returns, JSF renders the nameError
component, which shows the validator exception’s message.

The preceeding markup makes an Ajax request for every keystroke in the name
component, by virtue of the event attribute specified in the preceding markup.

You can reduce the number of Ajax requests, by making an Ajax request only
when the name field loses focus, like this:

<h:inputText id="name" value="#{user.name}" validator="#{user.validateName}">
<f:ajax event="blur" render="nameError"/>
</h:inputText>

From the Library of Wow! eBook

Chapter 10 B Ajax

Validating inputs with Ajax is a simple proposition. Now let’s look at some-
thing a little more complicated.

Ajax Request Monitoring

You can monitor Ajax requests with the f:ajax tag’s onevent attribute. That
attribute’s value must be a JavaScript function. JSF calls that function at each
stage of an Ajax request: begin, complete, and success.

Figure 10-6 shows an application that monitors the Ajax validation of the name
input discussed in “Ajax Field Validation” on page 394.

Please log in

Name - o

Password

Log In)

Figure 10-6 Ajax validation monitoring application

While the validation takes place on the server, the application shows an ani-
mated progress bar on the client. We should note that this example is some-
what artificial—in practice, validation typically does not take long enough to
justify a progress bar.

When the Ajax call returns, the application hides the progress bar. Here’s the
pertinent markup:

<h:outputScript Tibrary="javascript" name="prototype-1.6.0.2.js"/>

<script type="text/javascript">
function showProgress(data) {
var inputld = data.source.id
var progressbarIld = inputId.substring(@, inputId.length - "name".Tength)
+ "pole";

if (data.status == "begin")
Element.show(progressbarId);

else if (data.status == "success")
Element.hide(progressbarld);

From the Library of Wow! eBook

Ajax Request Monitoring 397

</script>
<h:form id="form" prependId="false">

<h:panelGrid columns="2">
#{msgs.namePrompt}
<h:panelGroup>
<h:inputText id="name" value="#{user.name}"
validator="#{user.validateName}">

<f:ajax event="blur" render="nameError" onevent="showProgress"/>
</h:inputText>

<h:graphicImage id="pole"
Tibrary="images" name="orange-barber-pole.gif"
style="display: none"/>
<h:message for="name" id="nameError"
value="#{user.nameError}" style="color: red"/>
</h:panelGroup>

<p>
<h:commandButton id="1oginButton"
value="#{msgs.loginButtonText}"
action="#{user.loginAction}"/>
</p>

</h:form>

In the preceding markup, we use the popular Prototype JavaScript library (see
http://ww.prototypejs.org/ for more information about Prototype) to show and
hide the progress bar, with Prototype’s Element object. We could implement the
JavaScript to do that, but it requires browser-specific code that we’d rather not
write. To use Prototype, we copied the Prototype JavaScript file to resources/
javascript, and then we accessed that JavaScript with the h:outputScript tag.

We also added an f:ajax tag to the name component, and registered the Java-
Script showProgress function as a callback. That function checks to see if the status
of the Ajax request is begin; if so, the function shows the progress bar. On the
other hand, if the Ajax request status is success—meaning the Ajax call returned
and rendered successfully—the function hides the progress bar. More rigorous
definitions of begin, success, and complete, are shown in Table 10-3.

From the Library of Wow! eBook

http://www.prototypejs.org/

m Chapter 10 B Ajax

Table 10-3 Data Object Attributes

Attribute Description

begin Just before JSF sends the Ajax call to the server.

success Just after the Ajax response is rendered.

complete For a successful call, JSF calls this method just after the execute

portion of the life cycle, which by definition means just before the
render portion.

For errors, JSF calls this method just before it invokes the error
handler. You typically set the error handler either with the onevent
attribute of f:ajax or with the JSF JavaScript APIs.

JSF passes a data object to any JavaScript function that’s registered with an
Ajax call via f:ajax’s onevent attribute. That data object’s attributes are listed in
Table 10—4.

Table 10-4 More Data Object Attributes

Attribute Description

status The status of the current Ajax call. Must be one of: begin, complete,
or error.

type Either event or status.

source The DOM element that is the source of the event.

responseXiL The response to the Ajax request. This object is undefined in the

begin phase of the Ajax request.

responseText The XML response, as text. This object is also undefined in the
begin phase of the Ajax request.

responseCode The numeric response code of the Ajax request. Like responseXML
and responseText, this object is undefined in the begin phase of the
Ajax request.

JavaScript Namespaces

In “The f:ajax Tag” on page 389, we implemented a JavaScript function—show-
Progress()—that uses Prototype to show and hide a DOM element. That method
is fragile, however, because it can be overwritten by another JavaScript method
of the same name.

From the Library of Wow! eBook

JavaScript Namespaces m

It sounds plausible that someone might implement another JavaScript function
named showProgress(), thereby replacing your version of the method with theirs.
To prevent that replacement from happening, you could name your function
something more unique, such as com. corejsf.showProgress().

With that strategy in mind for protecting our JavaScript method from being
overwritten, we implement a simple map that serves as a namespace, and we
define functions in that map®:

if (lcom) var com = {}
if (!com.corejsf) {
com.corejsf = {
showProgress: function(data) {
var inputld = data.source.id
var progressharld = inputId.substring(@, inputId.length - "name".length)
+ "pole";

if (data.status == "begin")
Element. show(progressbarIld);
else if (data.status == "success")
Element.hide(progressharId);
}
}
}

So now the caller accesses the function through the namespace, like this:
<f:ajax event="blur" render="nameError" onevent="com.corejsf.showProgress"/>

JavaScript namespacing not only prevents others from overwriting your func-
tions, but it also indicates to readers of your code that you are a JavaScript
coder of some substance.

% NOTE: Besides creating an ad-hoc namespace by putting JavaScript func-
tions in a map, you can also put data in a map.

Namespacing data is a consideration when you implement custom compo-
nents that maintain data on the client. If you have multiple instances of the
component, they will overwrite each other’s data. Putting the data in a map,
keyed by the client identifier of the component to which the data is associ-
ated, is a way to ensure that multiple Ajax-based custom components of the
same type that store data on the client, can co-exist in a single page.

1. The map is actually an object literal—JavaScript does not have a map data
structure—but semantically a JavaScript object literal is similar to a map.

From the Library of Wow! eBook

Chapter 10 B Ajax

Handling Ajax Errors

You can use f:ajax’s onerror attribute to handle errors, like this:
<f:ajax onerror="handleAjaxError"/>

The value of the onerror attribute is a JavaScript function. JSF calls that function
when there’s an error during the processing of the Ajax request. Like f:ajax’s
onevent attribute, JSF passes the onerror function a data object. The values for that
object are the same as the values for the data object that JSF passes to the event
function, as listed in Table 104, except for the status property. Valid values for
the status property are listed in Table 10-5.

Table 10-5 data.status Values for Error Functions

Attribute Description

httpError Response status null or undefined or status < 200 or
status = 300.

emptyResponse There was no response from the server.

malformedXML The response was not well-formed XML.

serverError The Ajax response contains an error element from the
server.

For errors, the data object also contains three properties not present for events:

U description
. errorName
. errorMessage

So far in this chapter, we’ve shown you how to use f:ajax to implement some
common Ajax use cases, such as validation and request monitoring. f:ajax is a
simple, but versatile tool, especially with it’s support for grouping; however,
it’s beneficial to know how it works beneath the covers. For that, we'll look at
the JavaScript library that JSF uses to implement f:ajax, and we’ll also look at
what JSF Ajax responses look like.

Ajax Responses

The response from a JSF Ajax request is an XML document that tells JSF how to
update the XHTML page from which the request was launched. That response
is handled by the jsf.ajax.response() function. You can view JSF Ajax responses
using Firebug in Firefox, as shown in Figure 10-7.

From the Library of Wow! eBook

Ajax Responses m

oy

Welcome to Places =

N O -
'._\1 LBl G 2c) i (. http:/ flocalhost:8080/ places /views /login.faces 12V B
mn
Places
Wels » tn Places a
peadiabililan Please log in
ﬁ 16
ir | Name
Password
(Log In
| -
¥
v
5% 1 Console HTML €55 Script DOM Réseau~ | YSlow Q @@ of

Effacer | Tous HTML €55 J5 @TLD Images Flash
o Panneau Réseau activé, Quand le panneau est désactivé, aucune requéte n'est affichée.,
¥ POST login.faces 200 0K

localnost:8080 191 8 [y zaas

En-tétes Post Réponse Cache

<Pxml version="1.0" encoding="utf-8"7>
“partial-responses¢changes>fupdate id="javax.faces ViewState"s»<![CDATA[-2320071602500456729:6642791020027828201

11=</updatex</ck {pactial-c
1 requéte 1918 (191 B & partir du cache) 2223
Terminé 4 [yslow 04895

Figure 10-7 Viewing an Ajax response using Firebug

JSF’s Ajax response is XML. For example, here is the response returned from
the validation Ajax request discussed in “Ajax Field Validation” on page 394,
when validation fails because the Name field contained an underscore:

<?xml version="1.0" encoding="utf-8"?>
<partial-response>
<changes>
<update id="j_idt18:nameError">
<! [CDATA[
Name cannot contain underscores
]]>
</update>

<update id="javax.faces.ViewState">
<! [CDATA[-4047143760309857992:5238789135448605596] 1>
</update>
</changes>
</partial-response>

From the Library of Wow! eBook

m Chapter 10 B Ajax

Table 10-6 lists the valid XML elements for JSF Ajax responses.

Table 10-6 JSF Ajax Response Elements

Element Description

insert Inserts a DOM element with the specified ID before an existing element:

<insert id="insert id" before="before id">
<![CDATAL...1]>
</insert>

update Updates a DOM element:

<update id="update id">
<![CDATA[...]]>
</insert>

In addition to specifying a client ID of a DOM element to update, the
update id can be one of the following:

javax.faces.VienRoot: updates the entire DOM
javax.faces.ViewState: updates the entire state of the submitting form
javax.faces.ViewBody: updates the body of the page

delete Deletes the DOM element with the specified ID:

<delete id="delete id">
<! [CDATA[...]]>
</attribute>

attributes ~ Updates one or more attributes of a DOM element:

<attributes id="element id">
<attribute name="attribute name" value="attribute value"/>

</attribute>

error Generates a server error with the enclosed name and message:

<error>
<error-name>fully qualified exception class</error-name>
<error-message>error message</error-message>

</error>

redirect Redirects the request to a new URL:
<redirect url="redirect url"/>

From the Library of Wow! eBook

The JSF 2.0 JavaScript Library m

In practice, the particulars of the Ajax response are somewhat academic unless
you want to generate or process the response directly.

By default, JSF generates the response from changes that you make to the com-
ponent tree during the Ajax response. For example, if you specify a component
to render with h:ajax’s render attribute, and you change that component’s style
attribute during an Ajax call, JSF generates a partial response that updates the
DOM element associated with that component.

JSF processes the response with the jsf.ajax.response() function that’s defined in
the JavaScript that comes with JSE.

% NOTE: You can find the XML schema for JSF Ajax responses in Appendix
A, section 1.3 of the JSF specification.

The JSF 2.0 JavaScript Library

The f:ajax tag is a convenient way to implement simple Ajax functionality.
Because it’s a tag, however, f:ajax offers limited functionality. But because that
tag is built on JSF’s built-in JavaScript library, you can use that JavaScript
directly to implement more complicated Ajax scenarios.

You can access JSF’s built-in JavaScript library in your XHTML files like this:
<h:outputScript Tlibrary="javax.faces" name="jsf.js"/>

The library comes with a set of Ajax functions, listed in Table 10-7.

Table 10-7 jsf.ajax Functions

Function Description

addOnError(callback) A JavaScript function that JSF invokes
when an Ajax call results in an error.

addOnEvent(callback) A JavaScript function that JSF calls for Ajax
events. This function will be called three

times throughout the lifetime of a success-
ful Ajax call:

® begin
e complete
® success

From the Library of Wow! eBook

m Chapter 10 B Ajax

Table 10-7 jsf.ajax Functions (cont.)

Function Description

isAutoExec() Returns true if the browser executes eval’d
JavaScript.

request(source, event, options) Sends an Ajax request. The arguments of
this function correspond to f:ajax
attributes.

response(request, context) Processes the Ajax response. The response
is XML.

The request() method sends an Ajax request to the server. That request is always:

e A POST to the surrounding form’s action

¢ Asynchronous

* Queued with other Ajax requests

Because f:ajax uses the Ajax JavaScript API in Table 10-7, you can bypass

that tag and use the API directly in your XHTML pages. For example, instead
of:

<h:inputText...>
<f:ajax event="blur" render="nameError" onevent="com.corejsf.showProgress"/>
</h:inputText>

You can do this:
<h:outputScript library="javax.faces" name="jsf.js"/>
<h:inputText
onblur="jsf.ajax.request(this, event,
{ render: 'nameError',
onevent: com.corejsf.showProgress

D'/

Notice one subtle difference between the preceding identical uses of f:ajax and
the JavaScript API: f:ajax’s attributes are always strings, whereas the onevent
attribute of the options sent to jsf.ajax.request() is a method, not a string.

Table 10-8 lists the valid keys and values for jsf.ajax.request()’s options map.

From the Library of Wow! eBook

Passing Additional Ajax Request Parameters m

Table 10-8 Keys and Values for the Options in
jsf.ajax.request(source, event, options)

Key Value

execute A space-separated list of components that JSF runs through
the execute phase of the life cycle. Keywords:

e (@this
e @form
o @all

® (@none

render A space-separated list of components that JSF will run
through the render phase of the life cycle.

onevent A JavaScript function that JSF calls for Ajax events. This
function will be called three times throughout the lifetime
of an Ajax call:

e begin
e complete
® success

onerror A JavaScript function that JSF will call if the Ajax call
results in an error.

You can find extensive documentation for the JSF JavaScript library both in the
JSF specification, and in the JavaScript documentation that comes with JSE.
You can also download the JSF reference implementation source code, which
includes the JavaScript library.

Besides specifying the things in Table 10-8 for an Ajax request, you can also
add additional parameters for any Ajax request.

Passing Additional Ajax Request Parameters

Sometimes you need to perform additional operations in conjunction with an
Ajax call. For example, in the autocomplete textbox component that we discuss
in “Using Ajax in Composite Components” on page 409, we calculate the loca-
tion of a listbox containing completion items, that we show under a text input.
Then we pass that information along with the Ajax request, like this:

From the Library of Wow! eBook

Chapter 10 B Ajax

if (!com) var com = {};

if (lcom.corejsf) {
var focusLostTimeout;

com.corejsf = {
updateCompletionItems: function(input, event) {
var keystrokeTimeout;

var ajaxRequest = function() {
jsf.ajax.request(input, event,
{ render: com.corejsf.getListboxId(input),
x: Element.cumulativeOffset(input)[0],
y: Element.cumulativeOffset(input)[1] + Element.getHeight(input)
b
}

window. cTearTimeout (keystrokeTimeout);
keystrokeTimeout = window.setTimeout(ajaxRequest, 350);

h
}

JSF passes any key/value pairs in the Ajax options that are not listed in

Table 10-8 to the Ajax request as parameters. The names of the parameters are
the keys, and the parameter values are the values associated with the key. In
the preceeding code, those values are the x and y values of the listbox. We use
Prototype’s Element. cumulativeOffset() function to compute those coordinates.

For the preceding Ajax call, we use those x and y coordinates on the server, like
this:

package com.corejsf;

@ManagedBean()
@SessionScoped()
pubTic class Autocompletelistener {

private void setListboxStyle(int rows, Map<String, Object> attrs) {
if (rows > 0) {
Map<String, String> reqParams = FacesContext.getCurrentInstance()
.getExternalContext().getRequestParameterMap();

attrs.put("style", "display: inline; position: absolute; Teft: "

From the Library of Wow! eBook

Queueing Events 407

+ reqParams.get("x") + "px;" + " top: " + reqParams.get("y") + "px");

}
else
attrs.put("style", "display: none;");

}

Queueing Events

JSF automatically queues Ajax requests and executes those requests serially, so
the last Ajax request always finishes before the next one starts.

However, JSF only queues Ajax calls—it does not queue regular HTTP
requests. Because JSF does not queue regular HTTP requests, that means that
mixing Ajax and HTTP requests can result in indeterminate behavior. For
example, consider this:

<h:form>
<h:inputText ...>
<f:ajax onblur="..."/>

</h:inputText>

<h:commandButton value="submit" action="nextPage"/>
</h:form>

In the preceding markup, we have an Ajax input inside a form with a non-Ajax
button. Consider what happens when the input has focus and the user clicks
on the button: The input loses focus and starts an Ajax call, and immediately
afterward, JSF makes a regular form submission as a result of the button activa-
tion. Does the Ajax call complete before the form submission? Perhaps,
depending on how long the Ajax call takes, but odds are that the form submis-
sion will interrupt the Ajax call, and since the point of Ajax is to manipulate
server-side data, it’s easy to wind up in an indeterminate state.

The solution to mixing Ajax and regular HTTP requests is simple: Don’t do it.
Instead, make the regular HTTP request an Ajax request, too, and JSF will
queue those Ajax calls, making sure that the first Ajax request finishes before
the second begins. In the preceding markup, then, you would just Ajaxify the
button:

<h:form>
<h:inputText ...>
<f:ajax onblur="..."/>

</h:inputText>

From the Library of Wow! eBook

408

Chapter 10 B Ajax

<h:commandButton value="submit" action="nextPage">
<f:ajax/>
</h:commandButton>
</h:form>

Coalescing Events

In general, Ajax can sometimes be tricky. For example, for an Ajax-enabled text
input, a user could theoretically type fast enough to encounter a perceptible
delay between fingers and display.

In such cases, you might want to coalesce Ajax calls so that you periodically
make calls to the server, instead of making calls for every event. JSF 2.0 has no
explicit support for coalescing Ajax calls, but it’s simple to do yourself with a
JavaScript timer. For example, the autocomplete component, discussed in
“Using Ajax in Composite Components” on page 409, coalesces Ajax calls with
a JavaScript function:

<h:inputText id="input" value="#{cc.attrs.value}"
onkeyup="com.corejsf.updateCompletionItems(this, event)" ... />

The updateCompTetionItems function coalesces events:

updateCompletionItems: function(input, event) {
var keystrokeTimeout;
var ajaxRequest = function() {
jsf.ajax.request(input, event,

{ render: corejsf.getlisthoxId(input),
x: Element.cumulativeOffset(input)[0],
y: Element.cumulativeOffset(input)[1] + Element.getHeight(input)

b

}

window.clearTimeout (keystrokeTimeout);
keystrokeTimeout = window.setTimeout(ajaxRequest, 350);

}
-

When a keyup event occurs in an input, we schedule an Ajax call in 350ms. If
there is an ensuing keyup event within that 350ms, we cancel the previous Ajax
call, and schedule a new one in 350ms. Therefore, we only submit an Ajax call
to the server when the user pauses for 350ms or more between keystrokes.

From the Library of Wow! eBook

Using Ajax in Composite Components m

Intercepting jsf.ajax.request()

JSF lets you associate a Java function with an Ajax request with f:ajax’s listener
attribute, like this:

<h:inputText value="...">
<f:ajax event="keyup" Tistener="#{someBean.someMethod}"/>

</h:inputText>
However, f:ajax only lets you add a listener for a particular event tied to a par-
ticular component. Sometimes, you may want to add some functionality to
every Ajax request. The reasons for wanting to do so are myriad. Perhaps you
want to add security to every Ajax call, or you want to log every Ajax call to the
server. For that kind of functionality, JSF has no explicit solution.

In “JavaScript Namespaces” on page 398, we showed you how to use a map to
implement an ad-hoc JavaScript namespace that helps protect your JavaScript
functions from being intercepted by other functions with the same name.

JSF Ajax requests are implemented with a JavaScript function—jsf.ajax. request(),
to be specific—and like any JavaScript function, it can be easily intercepted,
like this:

var builtinAjaxRequestFunction = jsf.ajax.request;
jsf.ajax.request = function(c,e,0) {
alert("hello")
builtinAjaxRequestFunction(c,e,0)
alert("bye")
}
After intercepting jsf.ajax.request() with the JavaScript above, every Ajax call,
whether it initiates from an f:ajax tag or is invoked with jsf.ajax.request(),
results in a call to the intercepted function, which in this case just shows alerts
before and after the Ajax call to the server. You will probably want to modify
the markup to do something more useful than just showing alerts.

Using Ajax in Composite Components

Arguably, the two most important features in JSF 2.0 are built-in Ajax, and
support for composite components. Those features are easy to combine, mak-
ing it simple to implement Ajax-based composite components. For example,
Figure 10-8 shows an autocomplete textbox that’s implemented as a JSF com-
posite component with built-in Ajax.

From the Library of Wow! eBook

m Chapter 10 B Ajax

An Autocomplete composite component

| » ||+ [Enttp://localhost:8080/places views/autoCompleteTest.faces G | (Qr Google

Locations
[Arvada
Colorade Springs
Baltimore
Brittany
Bahamas
Belgrade An Autocomplete composite component
::::" « ; > e hup:.f.flotalhosr:EDBDIplaces,.'views.raulncnmpIE(eTesr.faczs ¢ | (Qr Google
Brighton |
Buffalo
Denver . N
Dixie Locations b
Evergreen Baltimore
Ft. Collins Britrany
Los Anglel Bahamas
Los Lobos Belgrade
Las Vegas Boulder
Leveland Bayou
Vail Brighton
Buffalo

An Autocomplete composite component

| » + f'rmn { /localhost:BOBO/places/views/autoCompleteTest.faces & | | Qr Coogle

Locations Boulder

Figure 10-8 An autocomplete composite component

The autocomplete component consists of four files:

1. An XHTML file that defines the component’s interface and implementation
2. AJavaScript file with code specific to the component

3. The JavaScript file for the Prototype JavaScript library
4

A Java class that implements listener methods for the autcomplete
component’s text input and listbox

The autocomplete component is also comprised of a text input and a listbox.
Initially, the listbox is hidden.

Subsequently, in response to keyup events in the text input, JSF makes Ajax
calls to the server. On the server, a value change listener associated with the
text input checks the input’s value against the list of completion items associ-
ated with the input, and populates the listbox with matching items. If there are

From the Library of Wow! eBook

Using Ajax in Composite Components m

any matching items, the value change listener sets the style of the listbox, so
that it is displayed underneath the associated input.

Here’s how we use the autocomplete component shown in Figure 10-8:

<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmlns:f="http://java.sun.com/jsf/core"
xmIns:h="http://java.sun.com/jsf/htm1"
xmins:util="http://java.sun.com/jsf/composite/util">

<h:head><title>An Autocomplete composite component</title></h:head>

<h:body>
<div style="padding: 20px;">
<h:form>
<h:panelGrid columns="2">

Locations

<util:autoComplete value="#{user.city}"
completionItems="#{autoComplete.locations}" />

</h:panelGrid>
</h:form>
</div>
</h:body>
</htm1>

In the preceding markup, we simply declare a namespace for the component
(util), and use the component’s tag (util:autoComplete). The completionItems
attribute points to a String[] property of an autoComplete managed bean. That
bean has a simple implementation:

@ApplicationScoped
pubTic class AutoComplete {
public String[] getLocations() {
return new String[] {

"Arvada", "Colorado Springs", "Baltimore", "Brittany", "Bahamas",
"Belgrade", "Boulder", "Bayou", "Brighton", "Buffalo", "Denver", "Dixie",
"Evergreen”, "Ft. Collins", "Los Angeles", "Los Lobos", "Las Vegas",
"Loveland", "Vail"

b

}

Listings 10-2 through 10-4 show the code for the autocomplete component,
including the definition of the component, and its associated JavaScript and
backing bean.

From the Library of Wow! eBook

Chapter 10 B Ajax

There are a few things to note about the autocomplete component:

¢ Listing 10-2. The autocomplete component uses both f:ajax and the JSF
JavaScript APL

e Listing 10-3. The autocomplete component adds two request parameters
to an Ajax request: the x and y location for the upper left-hand corner of
the listbox.

e Listing 10-3. The application coalesces keyup events, only firing an Ajax
call when the user stops typing for 350ms. This avoids making many
requests to the server when a fast typist has control of the text input.

e Listing 10-3. When the autocomplete’s text input loses focus, the compos-
ite component hides the listbox.

e Listing 10—4. Each autocomplete component stores its list of completion
items (the items shown in the listbox) in an attribute of the autocomplete
component’s listbox. That ensures that you can put multiple autocom-
plete components in a single page.

However, if the text input loses focus, the listbox never sees the item selection
because the listbox was hidden when the input lost focus. So, using the same
trick as coalsceing events, the composite component waits for 200ms when the
input loses focus before actually hiding the listbox. That leaves the listbox visi-
ble when the user selects an item.

BTV TR LS autoComplete/web/resources/util/autoComplete. xhtml

<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:ui="http://java.sun.com/jsf/facelets"
xmins:f="http://java.sun.com/jsf/core"
xmins:h="http://java.sun.com/jsf/html"
xmlns:composite="http://java.sun.com/jsf/composite">
<head><title>IGNORED</tit1e></head>
<body>
<ui:composition>
<composite:interface>
<composite:attribute name="value" required="true"/>
<composite:attribute name="completionItems" required="true"/>
</composite:interface>
<composite:implementation>
<h:outputScript Tibrary="javascript"
name="prototype-1.6.0.2.js" target="head"/>
<h:outputScript Tibrary="javascript"
name="autoComplete.js" target="head"/>

From the Library of Wow! eBook

Using Ajax in Composite Components m

<h:inputText id="input" value="#{cc.attrs.value}"
valueChangelistener="#{autocompletelListener.valueChanged}"
onkeyup="com.corejsf.updateCompletionItems(this, event)"
onblur="com.corejsf.inputLostFocus(this)"/>

<h:selectOneListbox id="Tistbox" style="display: none"
valueChangelistener="#{autocompleteListener.completionItemSelected}
onfocus="com.corejsf.1listboxGainedFocus()">

n

<fiselectItems value="#{cc.attrs.completionItems}"/>
<f:ajax render="input"/>

</h:selectOnelisthox>
</composite:implementation>
</ui:composition>
</body>
</htm1>

BET50 @ O ERN autoComplete/web/resources/javascript/autoComplete. js

if (lcom) var com = {}
if (!com.corejsf) {
var focusLostTimeout
com.corejsf = {
errorHandler: function(data) {
alert("Error occurred during Ajax call:

+ data.description)

b

updateCompletionItems: function(input, event) {
var keystrokeTimeout

jsf.ajax.addOnError(com.corejsf.erroriandler)

var ajaxRequest = function() {
jsf.ajax.request(input, event, {
render: com.corejsf.getListboxId(input),
x: Element.cumulativeOffset(input)[0],
y: Element.cumulativeOffset(input)[1] + Element.getHeight(input)
b
}

window. cTearTimeout (keystrokeTimeout)
keystrokeTimeout = window.setTimeout(ajaxRequest, 350)

I3

From the Library of Wow! eBook

m Chapter 10 B Ajax

inputLostFocus: function(input) {
var hidelListbox = function() {
Element.hide(com.corejsf.getListboxId(input))
}

focusLostTimeout = window.setTimeout(hideListbox, 200)

h

getListboxId: function(input) {
var clientId = new String(input.name)
var lastIndex = clientId.lastIndex0Of(":")
return clientId.substring(@, lastIndex) + ":Tistbox"
}
}
}

TRV 0 2l autoComplete/src/java/com/corejsf/AutoCompletelistener. java

package com.corejsf;

import java.util.Arraylist;
import java.util.list;
import java.util.Map;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;
import javax.faces.component.UIInput;
import javax.faces.component.UISeTectItems;
import javax.faces.component.UISelectOne;
import javax.faces.context.FacesContext;
import javax.faces.event.ValueChangeEvent;

@Named // @ManagedBean
@SessionScoped
public class AutocompleteListener {
private static String COMPLETION_ITEMS_ATTR = "corejsf.completionItems";

public void valueChanged(ValueChangeEvent e) {
UILInput input = (UIInput)e.getSource();
UISelectOne Tisthox = (UISelectOne)input.findComponent("1istbox");

if (1istbox != null) {
UISelectItems items = (UISelectItems)listbox.getChildren().get(0);

From the Library of Wow! eBook

Using Ajax in Composite Components m

Map<String, Object> attrs = Tistbox.getAttributes();
List<String> newItems = getNewItems((String)input.getValue(),
getCompletionItems(1isthox, items, attrs));

items.setValue(newItems.toArray());
setListboxStyle(newItems.size(), attrs)
}
}

private List<String> getNewItems(String inputValue, String[] completionItems) {
List<String> newItems = new ArraylList<String>()

for (String item : completionItems) {
String s = item.substring(@, inputValue.length());
if (s.equalsIgnoreCase(inputValue))
newItems.add(item);

}

return newltems;

}

private void setListboxStyle(int rows, Map<String, Object> attrs) {
if (rows > 0) {
Map<String, String> regParams = FacesContext.getCurrentInstance()
.getExternalContext().getRequestParameterMap();
attrs.put("style", "display: inline; position: absolute; Teft: "
+ regParams.get("x") + "px;" + " top: " + regParams.get("y") + "px");
}
else
attrs.put("style", "display: none;");
}

private String[] getCompletionItems(UISelectOne Tisthox,
UISelectItems items, Map<String, Object> attrs) {
String[] completionItems = (String[])attrs.get(COMPLETION_ITEMS_ATTR);

if (completionItems == null) {
completionItems = (String[])items.getValue();
attrs.put(COMPLETION_ITEMS_ATTR, completionItems);
}
return completionItems;

}

public void completionItemSelected(ValueChangeEvent e) {
UISelectOne Tistbox = (UISelectOne)e.getSource();
ULInput input = (UIInput)Tistbox.findComponent(™input");

From the Library of Wow! eBook

n Chapter 10 B Ajax

if(input != null) {
input.setValue(1isthox.getValue());
}
Map<String, Object> attrs = listbox.getAttributes();
attrs.put("style", "display: none");
}
}

Conclusion

JSF 2.0 provides a solid Ajax infrastructure that you can use to implement rich
user interfaces. At the highest level of abstraction, JSF provides the f:ajax tag,
which lets you attach Ajax behaviors to components. The f:ajax tag results in
uniformity with other JSF behaviors, such as validators and converters, which
are also attached to components through an embedded tag from the core JSF
library (f:validator and f:converter, respectively). That uniformity makes Ajax
via the f:ajax tag very natural to JSF developers.

At the lowest level of abstraction, you can use JSF’s JavaScript API (which JSF

uses to implement the f:ajax tag) directly. Using the JavaScript API directly is a
little more verbose than using the f:ajax tag, but it gives you much more flexi-

bility because you can attach additional functionality to Ajax calls.

The built-in Ajax functionality in JSF 2.0 will suffice for many Ajax use cases.
Future versions of JSF will undoubtedly build on that base of functionality by
expanding the Ajax capabilities the framework provides.

From the Library of Wow! eBook

This page intentionally left blank

From the Library of Wow! eBook

CUSTOM COMPONENTS,
CONVERTERS, AND
VALIDATORS

¥ Topics in This Chapter

“Implementing a Component Class” on page 420
“Encoding: Generating Markup” on page 424
“Decoding: Processing Request Values” on page 427
“The Tag Library Descriptor” on page 433

“Using an External Renderer” on page 438
“Processing Tag Attributes” on page 441

“Encoding JavaScript” on page 453

“Using Child Components and Facets” on page 457
“Saving and Restoring State” on page 468

“Building Ajax Components” on page 473

From the Library of Wow! eBook

JSF provides a basic set of components for building HTML-based web applica-
tions, such as text fields, checkboxes, buttons, and so on. You saw in Chapter 9
how to compose these components into more advanced components. However,
composite components are limited to relatively simple layouts. For example, you
could not display a tree or a tabular calendar as a composite component. Fortu-
nately, JSF makes it possible to build custom components with rich behavior.

The JSF API lets you implement custom components and associated tags with
the same features as the JSF standard tags. For example, h:inputText uses a value
expression to associate a text field’s value with a bean property, so you could
use a value expression of type java.util.Date in a calendar component. JSF stan-
dard input components fire value change events when their value changes, so
you could fire value change events when a different date is selected in a calen-
dar, for example.

We start the chapter with a spinner component (see Figure 11-1) that illustrates
basic issues that you encounter in all custom components. We then enhance the
spinner to show more advanced issues:

* “Using an External Renderer” on page 438

e “Processing Tag Attributes” on page 441

e “Encoding JavaScript” on page 453

419

From the Library of Wow! eBook

Chapter 11 B Custom Components, Converters, and Validators

|ﬁ_5pinner Test - Mozilla Firefox

file Cdit View History Dookmarks Tools llelp

@ 3 Ié http://localhost:2080/spinner/ v

Please enter your credit card expiration date:

Month:1 | <[>
Year: 2000 | <] >
[Next | [®|Mt. Rushmore Tabbed Pane - Mozilla Firefox

file Cdit View History Dookmarks Tools llelp

L v B & | [@ | httpy/incalhnst:28080/abhedpane/facesfinde: v

Done

||efferson Roosevelt| Lincoln Washington

Theodore Roosevelt was the 26th president of the United
States. In 1901 he became president after the assassination of
President McKinley. At only 42 years of age, he was the
youngest president in US history.

http://localhost:8080/tabbedpaneffaces/index.xhtml# @ 0:31 #
T

Figure 11-1 The spinner and the tabbed pane

We then turn to a tabbed pane component (also shown in Figure 11-1) that
illustrates the following aspects of custom component development:

* “Processing SelectIten Children” page 460

e “Processing Facets” on page 461

* “Using Hidden Fields” on page 462

* “Saving and Restoring State” on page 468

Finally, we return to the spinner to show you how you can Ajax-enable your
custom components—see “Building Ajax Components” on page 473.

Implementing a Component Class

When you provide a custom component, you need to implement a component
class with the following responsibilities:

o To maintain the component state (for example, the minimum, maximum,
and current value of a spinner)

e To encode the user interface by writing markup (in the case of the spinner,
the HTML code for the input field and buttons)

e Todecode HTTP requests (such as clicks on the spinner buttons)

From the Library of Wow! eBook

Implementing a Component Class m

By convention, the component class name has a UI prefix—for example,
UISpinner.

Component classes can delegate encoding and decoding to a separate renderer.
By using different renderers, you can support multiple clients, such as web
browsers and cell phones. Initially, our spinner component will render itself,
but in “Using an External Renderer” on page 438, we show you how to imple-
ment a separate renderer for the spinner.

A component class must be a subclass of the UIComponent class. That class defines
over 40 abstract methods, so you will want to extend an existing class that
implements them. You can choose from the classes shown in Figure 11-2.

You usually subclass one of the following three standard component classes:

e UIOutput, if your component displays a value, but does not allow the user
to edit it

* UIlnput, if your component reads a value from the user (such as the
spinner)

e UICommand, if your component produces actions similar to a command
button or link

If you look at Figure 11-2, you will find that these three classes implement
interfaces that specify these distinct responsibilities:

e ValueHolder defines methods for managing a component value, a local
value, and a converter.

* EditableValueHolder extends ValueHolder and adds methods for managing
validators and value change listeners.

* ActionSource defines methods for managing action listeners.

® ActionSource2 defines methods for managing actions.

% NOTE: The ActionSource? interface was added in JSF 1.2. In JSF 1.1, the
ActionSource interface handled both actions and action listeners.

The UIComponent class manages several important categories of data. These include:

e Alist of child components. For example, the children of the h:panelGrid com-
ponent are the components that are placed in the grid location. However,
a component need not have any children.

* A map of facet components. Facets are similar to child components, but
each facet has a key, not a position in a list. It is up to the component how
to lay out its facets. For example, the h:dataTable component has header
and footer facets.

From the Library of Wow! eBook

m Chapter 11 B Custom Components, Converters, and Validators

e A map of attributes. This is a general-purpose map that you can use to
store arbitrary key/value pairs.

* A map of value expressions. This is another general-purpose map that
you can use to store arbitrary value expressions. For example, if a spinner
tag has an attribute value="#{cardExpirationDate.month}", then the component
stores a ValueExpression object for the given value expression under the key

"value".

® A collection of event listeners. The listeners are notified when broadcasting
an event whose source is this component.

<<interface>>
StateHolder
M ~

UlComponent
A

<<interface>>
ActionSource

<<interface>>
ActionSource?

Ullnput

UlCommand

<<interface>>
NamingContainer

A
5

UlForm

UlMessages

[UlGraphic] [UIMessage]

[UlSelectOne] [UISeIectMany]

UlSelectBoolean

UlColumn '

UlData '

Figure 11-2 JSF component hierarchy (not all classes are shown)

Let us now look closely at the spinner component. A spinner lets you enter a
number in a text field, either by typing it directly into the field or by activat-
ing an increment or decrement button. Figure 11-3 shows an application that
uses two spinners for a credit card’s expiration date, one for the month and

another for the year.

From the Library of Wow! eBook

Implementing a Component Class m

In Figure 11-3, from top to bottom, all proceeds as expected. The user enters
valid values, so navigation takes us to a designated JSF page that echoes those
values.

[®Spinner Test - Mozilla Firefox A
file Cdit View History Dookmarks Tools llelp

« v &2 @ | (8| http:/localhost:2080/spinner/facesfindex.xl v

Please enter your credit card expiration date:

Month:[6 | = L= [®[Spinner Test - Mozilla Firefox A
Year: |2011 <= file Cdit Wiew listory Dookmarks Tools llelp

« v &2 @ | (8| http:/localhost:2080/spinner/facesfindex.xl v

| Next |

You entered:

Done Expiration Date 6 / 2011

| Try again

Done @ 0:31 #

Figure 11-3 Using the spinner component

Here is how you use corejsf:spinner:

<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:h="http://java.sun.com/jsf/htm1"
xmins:corejsf="http://corejsf.com">

<corejsfispinner value="#{cardExpirationDate.month}"
minimum="1" maximum="12" size="3"/>

<corejsf:spinner value="#{cardExpirationDate.year}"
minimum="1900" maximum="2100" size="5"/>
The minimum and maximum attributes let you assign a range of valid values—for
example, the month spinner has a minimum of 1 and a maximum of 12. You
can also limit the size of the spinner’s text field with the size attribute.

In the following sections, we will implement the UISpinner component that
handles the responsibilities of encoding and decoding.

From the Library of Wow! eBook

Chapter 11 B Custom Components, Converters, and Validators

Encoding: Generating Markup

JSF components generate markup for their user interfaces. By default, the stan-
dard JSF components generate HTML. Components can do their own encod-
ing, or they can delegate encoding to a separate renderer. The latter is the more
elegant approach because it lets you plug in different renderers—for example
to encode markup in something other than HTML. However, for simplicity, we
will start out with a spinner that renders itself.

Components encode markup with three methods:

o encodeBegin()
o encodeChildren()
o encodeEnd()

The methods are called by JSF at the end of the life cycle, in the order in which
they are listed above. JSF invokes encodeChildren only if a component returns true
from its getRendersChildren method. (Most standard components return false,
leaving it to the JSF implementation to render the children.)

For simple components, like our spinner, that do not have children, you do not
need to implement encodeChildren. Because we do not need to worry what gets
encoded before or after the children, we do all our encoding in encodeBegin.

The spinner generates HITML for a text field and two buttons; that HTML looks
like this:

<input type="text" name="..." size="..." value="current value"/>
<input type="submit" name="..." value="<"/>
<input type="submit" name="..." value=">"/>

Here is how that HTML is encoded in UISpinner:

pubTic void encodeBegin(FacesContext context) throws IOException {
ResponseWriter writer = context.getResponseWriter();
String clientId = getClientId(context);

// Encode input field

writer.startElement("input", this);
writer.writeAttribute("name", clientId, null)

Object v = getValue();

if (v != null) writer.writeAttribute("value", v, "value");
Object size = getAttributes().get("size");

if (size !'= null) writer.writeAttribute("size", size, "size");
writer.endETlement("input");

// Encode decrement button

writer.startElement("input", this);
writer.writeAttribute("type", "submit", null);

From the Library of Wow! eBook

Encoding: Generating Markup m

writer.writeAttribute("name", clientId + ".less”, null);

writer.writeAttribute("value", "<", "value");
writer.endETement("input");

// Encode increment button

}...

The Responseliriter class is used for writing the markup. It has convenience meth-
ods for starting and ending HTML elements and for writing element attributes.
The startElement and endElement methods produce the element delimiters. They
keep track of child elements, so you do not have to worry about the distinction
between <input .../> and <input ...>...</input>. The writeAttribute method writes
an attribute name/value pair with the appropriate escape characters.

The last parameter of the startETement and writeAttribute methods is intended for
tool support. You are supposed to pass the component object or attribute
name, or null if the output does not directly correspond to a component or
attribute. This parameter is not used by the reference implementation, but
other implementations may replace the Responseliriter and make use of it.

The UISpinner.encodeBegin method faces two challenges. First, it must get the
current state of the spinner. The numerical value is easily obtained with the
getValue method that the spinner inherits from UIInput. The size is retrieved from
the component’s attribute map, using the getAttributes method.

Second, the encoding method needs to come up with names for the HTML ele-
ments the spinner encodes. It calls the getClientId method to obtain the client ID
of the component, which is composed of the ID of the enclosing form and the
ID of this component, such as _idl:monthSpinner.

That identifier is created by the JSF implementation. The increment and decre-

ment button names start with the client ID and end in .more and .Tess, respec-

tively. Here is a complete example of the HTML generated by the spinner:
<input type="text" name="_idl:monthSpinner" value="1" size="3"/>

<input type="submit" name="_idl:monthSpinner.less" value="<"/>
<input type="submit" name="_idl:monthSpinner.more" value=">"/>

In the next section, we discuss how those names are used by the spinner’s
decode method.

From the Library of Wow! eBook

Chapter 11 B Custom Components, Converters, and Validators

[javax.faces.component.UIComponent

void encodeBegin(FacesContext context) throws IOException
The method is called in the Render Response phase of the JSF life cycle,
when the component’s renderer type is null.

(>

e String getClientId(FacesContext context)
Returns the client ID for this component. The JSF framework creates the
client ID from the ID of the enclosing form (or, more generally, the enclos-
ing naming container) and the ID of this component.

e Map<String, Object> getAttributes()
Returns a mutable map of component attributes and properties. You use
this method to view, add, update, or remove attributes from a component.
You can also use this map to view or update properties. The map’s get and
put methods check whether the key matches a component property. If so,
the property getter or setter is called.

As of JSF 1.2, the map also gets attributes that are defined by value expres-
sions. If get is called with a name that is not a property or attribute but a
key in the component’s value expression map, then the value of the associ-
ated expression is returned.

NOTE: The spinner is a simple component with no children, so its encoding is
i rather basic. For a more complicated example, see how the tabbed pane ren-
derer encodes markup. That renderer is shown in Listing 11-11 on page 462.

NOTE: JSF invokes a component’s encodeChildren method if the component
; returns true from getRendersChildren. Interestingly, it does not matter whether
the component actually has children—as long as the component’s getRenders-
Children method returns true, JSF calls encodeChildren even if the component
has no children.

A[P[T javax.faces.context.FacesContext

e Responselriter getResponseWriter()
Returns a reference to the response writer. You can plug your own
response writer into JSF if you want. By default, JSF uses a response writer
that can write HTML tags.

From the Library of Wow! eBook

Decoding: Processing Request Values 427

ABf javax.faces.context.ResponseWriter

=

void startElement(String elementName, UIComponent component)

Writes the start tag for the specified element. The component parameter lets
tools associate a component and its markup. Currently, the JSF reference
implementation ignores this attribute.

e void endElement(String elementName)
Writes the end tag for the specified element.

e void writeAttribute(String attributeName, String attributeValue,
String componentProperty)
Writes an attribute and its value. This method can only be called between
calls to startElement() and endETement(). The componentProperty is the name of the
component property that corresponds to the attribute. This parameter is
intended for tools and is not used by the JSF reference implementation.

Decoding: Processing Request Values

To understand the decoding process, keep in mind how a web application
works. The server sends an HTML form to the browser. When the user submits
the form, the browser sends back a POST request that consists of name/value
pairs. That POST request is the only data that the server can use to interpret the
user’s actions inside the browser.

If the user clicks the increment or decrement button, the ensuing POST request
includes the names and values of all text fields, but only the name and value of
the clicked button. For example, if the user clicks the month spinner’s increment
button in the application shown in Figure 11-1 on page 420, the following
request parameters are transferred to the server from the browser:

Name Value
_idL:monthSpinner 1
_idl:yearSpinner 2010
_idL:monthSpinner.more >

When our spinner decodes an HTTP request, it looks for the request parameter
names that match its client ID and processes the associated values. The spin-
ner’s decode method is listed next.

From the Library of Wow! eBook

m Chapter 11 B Custom Components, Converters, and Validators

pubTic void decode(FacesContext context) {
Map requestMap = context.getExternalContext().getRequestParameterMap();
String clientId = getClientId(context);

int increment;

if (requestMap.containsKey(clientId + MORE)) increment = 1;

else if (requestMap.containskey(clientId + LESS)) increment = -1;
else increment = 0;

try {

int submittedValue
= Integer.parseInt((String) requestMap.get(clientId));

int newValue = getIncrementedValue(submittedvalue, increment);
setSubmittedvalue("" + newValue);

}

catch (NumberFormatException ex) {
// et the converter take care of bad input, but we still have
// to set the submitted value or the converter won't have
// any input to deal with
setSubmittedvalue((String) requestMap.get(clientId))

}

}

The decode method looks at the request parameters to determine which of the
spinner’s buttons, if any, triggered the request. If a request parameter named
clientld.less exists, where clientId is the client ID of the spinner we are decoding,
then we know that the decrement button was activated. If the decode method
finds a request parameter named clientId.more, then we know that the increment
button was activated.

If neither parameter exists, we know that the request was not initiated by the
spinner, so we set the increment to zero. We still need to update the value—the
user might have typed a value into the text field and clicked the “Next” button.

Our naming convention works for multiple spinners in a page because each
spinner is encoded with the spinner component’s client ID, which is guaran-
teed to be unique. If you have multiple spinners in a single page, each spinner
component decodes its own request.

Once the decode method determines that one of the spinner’s buttons was
clicked, it increments the spinner’s value by 1 or -1, depending on which
button the user activated. That incremented value is calculated by a private
getIncrementedvalue method:

private int getIncrementedValue(int submittedvalue, int increment) {
Integer minimum = toInteger(getAttributes().get("minimum"));
Integer maximum = toInteger(getAttributes().get("maximum"));

From the Library of Wow! eBook

Decoding: Processing Request Values m

int newValue = submittedvValue + increment;

if ((minimum == null || newValue >= minimum.intValue()) &&
(maximum == null || newValue <= maximum.intValue()))
return newValue;

else
return submittedvalue;

}

The getIncrementedvalue method checks the value the user entered in the spinner
against the spinner’s minimum and maximum attributes.

Here, we use a helper method toInteger that converts an attribute value to an
integer. Keep in mind that an attribute value can be an arbitrary Object. The
attribute could have been set as a string:

minimum="1"

In that case, it is an object of type String. Alternatively, it could have been the
result of a value expression:

minimum="#{someBean. someProperty}"

If the property value has type int or Integer, the attribute has type Integer. The
toInteger method deals with these cases:

private static Integer toInteger(Object value) {
if (value == null) return null;
if (value instanceof Number) return ((Number) value).intValue();
if (value instanceof String) return Integer.parseInt((String) value);
throw new I1legalArgumentException("Cannot convert " + value);

}

After it gets the incremented value, the decode method calls the spinner compo-
nent’s setSubmittedvalue method. That method stores the submitted value in the
component.

Note that you set the submitted value as a string. The spinner component uses
the standard JSF integer converter to convert strings to Integer objects, and vice
versa. The UISpinner constructor simply calls setConverter, like this:

pubTic class UISpinner extends UIInput {
public UISpinner() {
setConverter(new IntegerConverter()); // to convert the submitted value
setRendererType(null); // this component renders itself

}

From the Library of Wow! eBook

Chapter 11 B Custom Components, Converters, and Validators

The spinner’s decode method traps invalid inputs in a NumberFormatException catch
clause. Instead of reporting the error, it sets the component’s submitted value
to the user input. Later on in the JSF life cycle, the standard integer converter
will try to convert that value and will generate an appropriate error message
for bad input.

Listing 11-1 contains the complete code for the UISpinner class.

spinner/src/java/com/corejsf/UISpinner.java

package com.corejsf;

import java.io.IOException;
import java.util.Map;

import javax.faces.component.FacesComponent;
import javax.faces.component.UIInput;
import javax.faces.context.FacesContext;
import javax.faces.context.ResponseWriter;
import javax.faces.convert.IntegerConverter;

@FacesComponent("com.corejsf.Spinner")

pubTic class UISpinner extends UIInput {
private static final String MORE = ".more";
private static final String LESS = ".Tess";

public UISpinner() {
setConverter(new IntegerConverter()); // to convert the submitted value
setRendererType(null); // this component renders itself

}

public void encodeBegin(FacesContext context) throws IOException {
ResponseWriter writer = context.getResponseWriter();
String clientld = getClientId(context);

encodeInputField(writer, clientId);
encodeDecrementButton(writer, clientId);
encodeIncrementButton(writer, clientId);

}

public void decode(FacesContext context) {
Map<String, String> requestMap
= context.getExternalContext().getRequestParameterMap();
String clientId = getClientId(context);

int increment;
if (requestMap.containskey(clientId + MORE)) increment = 1;

From the Library of Wow! eBook

Decoding: Processing Request Values m

else if(requestMap.containsKey(clientId + LESS)) increment = -1;
else increment = 0;

try {
int submittedValue
= Integer.parseInt((String) requestMap.get(clientld));

int newvalue = getIncrementedValue(submittedvalue, increment);
setSubmittedvalue("" + newvValue);

}

catch(NumberFormatException ex) {
// Tet the converter take care of bad input, but we still have
// to set the submitted value, or the converter won't have
// any input to deal with
setSubmittedvalue((String) requestMap.get(clientId));

}

}

private void encodeInputField(ResponseWriter writer, String clientId)
throws IOException {
writer.startETlement("input", this)
writer.writeAttribute("name", clientId, null);

Object v = getValue();
if (v '= null) writer.writeAttribute("value", v, "value");

Object size = getAttributes().get("size");
if (size != null) writer.writeAttribute("size", size, "size");

writer.endETement("input");

}

private void encodeDecrementButton(ResponseWriter writer, String clientId)
throws IOException {
writer.startETlement("input", this)
writer.writeAttribute("type", "submit", null);
writer.writeAttribute("name", clientId + LESS, null)
writer.writeAttribute("value", "<", "value")
writer.endETement("input");

}

private void encodeIncrementButton(ResponseWriter writer, String clientId)
throws IOException {
writer.startETlement("input", this)
writer.writeAttribute("type", "submit", null);
writer.writeAttribute("name", clientId + MORE, null);

writer.writeAttribute("value", ">", "value");
writer.endETement("input");

From the Library of Wow! eBook

m Chapter 11 B Custom Components, Converters, and Validators

}

private int getIncrementedValue(int submittedValue, int increment) {
Integer minimum = toInteger(getAttributes().get("minimum"));
Integer maximum = toInteger(getAttributes().get("maximum"));
int newValue = submittedValue + increment;

if ((minimum == nu1l || newValue >= minimum.intValue()) &&
(maximum == null || newValue <= maximum.intValue()))
return newalue;

else
return submittedValue;

}

private static Integer toInteger(Object value) {
if (value == null) return null;
if (value instanceof Number) return ((Number) value).intValue();
if (value instanceof String) return Integer.parseInt((String) value);
throw new I11egalArgumentException("Cannot convert " + value);

©i javax.faces.component.UIComponent

(=

void decode(FacesContext context)

The method called by JSF at the beginning of the JSF life cycle—only if the
component’s renderer type is null, signifying that the component renders
itself.

The decode method decodes request parameters. Typically, components
transfer request parameter values to component properties or attributes.
Components that fire action events queue them in this method.

(e

P(1 javax. faces.context.FacesContext

B €

ExternalContext getExternalContext()

Returns a reference to a context proxy. Typically, the real context is a serv-
let or portlet context. If you use the external context instead of using the
real context directly, your applications can work with servlets and portlets.

From the Library of Wow! eBook

The Tag Library Descriptor m

ff[javax.faces.context.ExternalContext

e Map getRequestParameterMap()

>

Returns a map of request parameters. Custom components typically call
this method in decode() to see if they were the component that triggered the
request.

(e

PlT Jjavax. faces. component. EditableValueHolder

B
§

void setSubmittedvalue(Object submittedvValue)

Sets a component’s submitted value—input components have editable
values, so UIInput implements the EditableValueHolder interface. The submit-
ted value is the value the user entered, presumably in a web page. For
HTML-based applications, that value is always a string, but the method
accepts an Object reference in deference to other display technologies.

ww

ot Javax. faces. component. ValueHolder

B

void setConverter(Converter converter)

Input and output components both have values and, therefore, both imple-
ment the ValueHolder interface. Values must be converted, so the ValueHolder
interface defines a method for setting the converter. Custom components use
this method to associate themselves with standard or custom converters.

The Tag Library Descriptor | JSF 2.0 |

In addition to implementing a custom component class, you also need to pro-
vide a descriptor file that specifies how your custom component tags can be
used in a JSF page.

JSF NOTE: Because JSF 1.0 was built on top of JSP, custom component devel-

yAl opers had to carry out a tremendous amount of tedious busywork for pro-
cessing tags. This aspect of custom component development has been
greatly simplified in JSF 2.0.

When you provide a custom component, you need to produce a tag library
descriptor file that specifies:

. A namespace (such as http://coresf.com)
e For each tag, a name (such as spinner) and a component type

From the Library of Wow! eBook

http://coresf.com

Chapter 11 B Custom Components, Converters, and Validators

For example:

<facelet-taglib ...>
<namespace>http://corejsf.com</namespace>
<tag>
<tag-name>spinner</tag-name>
<component>
<component-type>com.corejsf.Spinner</component-type>
</component>
</tag>
</facelet-taglib>

You have already encountered tag library descriptor files in Chapter 5. Recall
that the file name must end in taglib.xml, for example corejsf.taglib.xml.

The component type is an identifier for the component class that must get
mapped to the actual class. You can set the ID with an annotation of the
component class:

@FacesComponent("com.corejsf.Spinner")
pubTic class UISpinner extends UIInput

You can think of the component type as the analog of a converter or validator
ID, which was described in Chapter 7.

Listing 11-2 on page 435 shows the descriptor file for the spinner component.

NOTE: You can specify the names and types of the tag attributes in the
taglib descriptor file, but that information is only for documentation pur-
poses. It is not used by the JSF implementation.

You can set the file location in web.xml, like this:

<context-param>
<param-name>javax.faces.FACELETS_LIBRARIES</pararm-name>
<param-value>/WEB-INF/corejsf.taglib.xml</param-value>
</context-param>

In our simple example, we will use this approach.

However, if you want to package the spinner component so that it is reusable
across multiple projects, you should provide a JAR file that can be added to the
WEB-INF/1ib directory of any web application.

You will want to make the JAR file self-contained so that users do not have to
worry about editing tag library descriptor or configuration files. Follow these
steps:

From the Library of Wow! eBook

The Tag Library Descriptor m

1. Place the tag library descriptor file into the META-INF directory.

2. If youneed a faces-config.xml file, also place it into the META-INF directory.

3. Place any resources (such as images, scripts, or CSS files) into the
META-INF/resources directory.

4. Avoid name clashes by using an appropriate prefix for the global names,
such as component names, message keys, or loggers, used by your
implementation.

You have now seen all the parts that are required for the spinner test applica-
tion shown in Figure 11-1 on page 420. The directory structure is shown in
Figure 11-4. Listings 11-3 and 114 show the JSF pages, and Listing 11-5 shows
the managed bean class.

[E spinner.war
[index.xhtml
_ next.xhtml
¥ (& WEB-INF
[beans.xml
[corejsf.taglib.xml
: faces-config.xml
_' web.xml
¥ (& classes
v [E com
¥ (& corejsf
| ") CreditCardExpiration.class
__' UlSpinner.class
[7] messages.properties
¥ ﬁ resources
v (& css

| '] styles.css

Figure 11-4 Directory structure for the spinner example

spinner/web/WEB-INF/corejsf.taglib.xml

<?xml version="1.0" encoding="UTF-8"?>

<facelet-taglib version="2.0"
xmlIns="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facelettaglibary_2_0.xsd">
<namespace>http://corejsf.com</namespace>
<tag>

<tag-name>spinner</tag-name>

From the Library of Wow! eBook

Chapter 11 B Custom Components, Converters, and Validators

<component>
<component-type>com. corejsf.Spinner</component-type>
</component>
</tag>
</facelet-taglib>

spinner/web/index. xhtm1

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:h="http://java.sun.com/jsf/html"
xmins:corejsf="http://corejsf.com">
<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<title>#{msgs.windowTitle}</title>
</h:head>

<h:body>
<h:form id="spinnerForm">
<h:outputText value="#{msgs.creditCardExpirationPrompt}"
styleClass="pageTitle"/>

<p/>

<h:panelGrid columns="3">
#{msgs.monthPrompt}
<corejsfispinner value="#{cardExpirationDate.month}"

id="monthSpinner" minimum="1" maximum="12" size="3"/>

<h:message for="monthSpinner"/>
#{msgs.yearPrompt}
<corejsf:spinner value="#{cardExpirationDate.year}"

id="yearSpinner" minimum="1900" maximum="2100" size="5"/>

<h:message for="yearSpinner"/>
</h:panelGrid>
<p/>

<h:commandButton value="#{msgs.nextButtonPrompt}" action="next"/>

</h:form>
</h:body>
</html>

From the Library of Wow! eBook

The Tag Library Descriptor m

| BTTE T B spinner/web/next.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<title>#{msgs.windowTitle}</title>
</h:head>
<h:body>
<h:forms>
<h:outputText value="#{msgs.youEnteredPrompt}" styleClass="pageTitle"/>
<p>#{msgs.expirationDatePrompt} #{cardExpirationDate.month} /
#{cardExpirationDate.year}</p>
<p><h:commandButton value="Try again" action="index"/></p>
</h:form>
</h:body>
</htm1>

spinner/src/java/com/corejsf/CreditCardExpiration.java

package com.corejsf;
import java.io.Serializable;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;

@SessionScoped
@Named("cardExpirationDate") // or @ManagedBean(name="cardExpirationDate")
public class CreditCardExpiration implements Serializable {

private int month = 1;

private int year = 2010;

public int getMonth() { return month; }
public void setMonth(int newValue) { month = newValue; }

public int getYear() { return year; }
public void setYear(int newValue) { year = newValue; }

From the Library of Wow! eBook

Chapter 11 B Custom Components, Converters, and Validators

Using an External Renderer

In the preceding example, the UISpinner class was in charge of its own rendering.
However, Ul classes can delegate rendering to a separate class. When JSF was
first created, it was envisioned to have renderers that encode markup other
than HTML or decode input other than HTTP. This generality has never been
seriously exploited, and we will not dwell on it. However, it still can be handy
to separate component and renderer classes because you can reuse each of
them separately.

Just like every component has an ID called the component type, every renderer
has an ID called the renderer type.

The names of the standard HTML tags are meant to indicate the component
type and the renderer type. For example, an h:selectOneMenu has component type
javax.faces.SelectOne and renderer type javax.faces.Menu. Similarly, h:selectManyMenu
has component type javax.faces.SelectMany, and it has the same renderer type,
javax.faces.Menu.

Unfortunately, that naming scheme did not work so well. The renderer type for
h:inputText and h:outputText is javax.faces.Text. But you can’t render the input and
output components in the same way. To render an h:inputText component, one
writes an HTML input text field. To render an h:outputText tag, one just writes the
text and possibly a span. The renderers have nothing in common!

So, instead of identifying renderers by individual components, renderers are
determined by the component family and renderer type. For all standard JSF
components, the component family is identical to the component type. (The
distinction seems a bit pointless—it is just another example of “just in case”
generality that is so pervasive in the JSF specification.)

The renderer type is specified in the tag library descriptor, like this:

<tag>
<tag-name>spinner</tag-name>
<component>
<component-type>com. corejsf.Spinner</component-type>
<renderer-type>com.corejsf.Spinner</renderer-type>
</component>
</tag>

Use the @FacesRenderer annotation to specify the component family and renderer
type for a renderer class:

@FacesRenderer(componentFamily="javax.faces.Input",
rendererType="com.corejsf.Spinner")
pubTic class SpinnerRenderer extends Renderer {

From the Library of Wow! eBook

Using an External Renderer m

% NOTE: Component IDs and renderer IDs have separate namespaces. It is
okay to use the same string as a component ID and a renderer ID.

It is also a good idea to set the renderer type in the component constructor:

pubTic UISpinner() {

setRendererType("com.corejsf.Spinner"); // this component has a renderer

}

Then the renderer type is properly set if a component is used programmati-
cally, without the use of tags.

The final step is implementing the renderer itself. Renderers extend the
javax.faces.render.Renderer class. That class has seven methods, four of which are
familiar:

. void encodeBegin(FacesContext context, UIComponent component)

. void encodeChildren(FacesContext context, UIComponent component)
. void encodeEnd(FacesContext context, UIComponent component)

. void decode(FacesContext context, UIComponent component)

The renderer methods listed above are almost identical to their component
counterparts except that the renderer methods take an additional argument: a
reference to the component being rendered.

Since the renderer methods receive a reference to the component as a generic
UIComponent parameter, you must apply a cast in order to use methods that are
specific to your component. Rather than casting to a specific class, such as
UISpinner, cast to one of the interface types ValueHolder, EditableValueHolder, Action-
Source, or ActionSource2. That makes it easier to reuse your code in other render-
ers. For example, in the UISpinner renderer we use the EditableValueHolder
interface.

Here are the remaining renderer methods:

. boolean getRendersChildren()

. String convertClientId(FacesContext context, String clientId)

. Object getConvertedvalue(FacesContext context, UIComponent component,
Object submittedvValue)

The getRendersChildren method specifies whether a renderer is responsible for
rendering its component’s children. If that method returns true, the renderer’s
encodeChildren method will be called; if it returns false (the default behavior), the
JSF implementation will not call that method and the children will be encoded
separately.

From the Library of Wow! eBook

Chapter 11 B Custom Components, Converters, and Validators

The convert(lientId method converts an ID string (such as _idl:monthSpinner) so
that it can be used on the client—some clients may place restrictions on IDs,
such as disallowing special characters. The default implementation returns the
original ID string, and that is fine for HTML renderers.

The getConvertedValue method converts a component’s submitted value from a
string to an object. The default implementation in the Renderer class simply
returns the submitted value. Unfortunately, that is a problem for components
that use converters. When the spinner delegates to a renderer, it can no longer
rely on the UIInput mechanism for conversion. Since the JSF API does not
expose the conversion code, you must replicate it in any renderer that uses a
converter. We placed that code in the static getConvertedValue method of the class
com.corejsf.util.Renderers (see Listing 11-8 on page 450) and call it in the ren-
derer’s getConvertedValue method.

NOTE: The conversion code in UIInput resides in the protected UIInput.get-
° ConvertedValue method, which looks like this in the JSF 2.0 Reference
Implementation:

// This code is from the javax.faces.component.UIInput class:
protected void getConvertedvValue(FacesContext context, Object
newSubmittedvalue) throws ConverterException {
Object newValue = newSubmittedValue;
if (renderer != null) {
newValue = renderer.getConvertedValue(context, this, newSubmittedValue);
} else if (newSubmittedValue instanceof String) {
Converter converter = getConverterWithType(context); // a private method
if (converter != null) {
newValue = converter.getAsObject(context, this,
(String) newSubmittedValue);
}
}
return newValue;

}

The private getConverterWithType method looks up the appropriate converter
for the component value.

Because UIInput’s conversion code is buried in protected and private meth-
ods, it is not available for a renderer to reuse. Custom components that use
converters must duplicate the code—see, for example, the implementation

of com.sun.faces.renderkit.html_basic.HtmIBasicInputRenderer in the reference
implementation. Our com.corejsf.util.Renderers class provides the code for

use in your own classes.

From the Library of Wow! eBook

Processing Tag Attributes m

If you compare Listing 11-6 on page 446 and Listing 11-7 on page 447 with
Listing 11-1 on page 430, you will see that we moved most of the code from the
original component class to a new renderer class.

Processing Tag Attributes | JSF 2.0 |

When you use a component tag in a JSF page, you supply tag attributes to spec-
ify the tag’s properties. For example, the spinner tag has attributes for setting
the minimum, maximum, and current value of the spinner. In our first exam-
ple, we simply obtained the tag values from the component’s attribute map.

In this section, we examine the handling of tag attributes in greater detail. A tag
handler processes the tag attributes and their values. The default tag handler
has rules for the most common attributes and takes a reasonable action for the
attributes that it does not know. If that default is not appropriate for your com-
ponent, you can add a custom handler.

To see why attribute handling is not trivial, consider the spinner tag from our
first example:

<corejsfispinner value="#{cardExpirationDate.month}" minimum="1" maximum="12" />

Note that the component must store the value expression #{cardExpiration-
Date.month} without evaluating it. After all, whenever the JSF implementation
decodes and converts a value, it must execute the setMonth property setter of the
cardExpirationDate bean. The tag handler converts the string "#{cardExpiration-
Date.month}" to a ValueExpression object and stores it in the component’s value
expression map, using the key "value". The UIInput class uses that value expres-
sion when it updates the model value after successful validation.

This is a special case that is hardwired into the default tag handler. If your
component implements the ValueHolder interface, its value attribute is correctly
handled. There are special cases for the following attributes:

* The value attribute of ValueHolder instances

. The validator and valueChangelistener attributes of EditableValueHolder instances
* The actionListener attribute of ActionSource instances

* The action attribute of ActionSource? instances

However, the default handler knows nothing about our mininum and maximum
attributes. First, the handler will look whether the component has property set-
ters setMinimum or setMaximum. If so, it will invoke them, evaluating value expres-
sion strings and, if the target type is a numeric or Boolean type, converting
string literals to the target type.

From the Library of Wow! eBook

Chapter 11 B Custom Components, Converters, and Validators

If there is no property setter, then the tag handler places the attribute name and
value into the component’s attribute map. It evaluates value expressions but
does not convert strings.

This is what happens with the mininum and maximum attributes. They are stored in the
component’s attribute map, with values "1" and "12". Note that the values are
strings, not numbers—the tag handler has no knowledge of the intended type.

To summarize, here is what the default tag handler does:

. If the attribute is value, validator, valueChangelListener, action, or actionlListener,
use a special rule.

o Else, if there is a property setter for the attribute, call it, evaluating value
expressions and converting string values as necessary.

e Else add an entry to the component’s attribute map. Value expressions
are evaluated, but strings are not converted.

Now consider the renderer that uses the tag attribute settings. In our spinner
class, we use a call such as

component.getAttributes().get("minimum")

to retrieve the attribute values. However, there is more in this call than meets
the eye. The map returned by the UIComponent.getAttributes method is smart: It
accesses component properties, the attribute map, and the value reference
map. For example, if you call the map’s get method with an attribute whose
name is "value", the getValue method is called. If the attribute name is "minimum",
and there is no getMinimum method, the component’s attribute map is queried for
the entry with key "minimum".

To complete a long discussion, as a component author, you have to make a
choice for your tag attributes. Either provide a property setter or use the
attribute map. The property setter approach has a small advantage: you get
automatic conversion from strings to numbers or Boolean values. The disad-
vantage is that you then need to worry about state saving. (See “Saving and
Restoring State” on page 468.)

Supporting Value Change Listeners

If your custom component is an input component, you can fire value change
events to interested listeners. For example, in a calendar application, you may
want to update another component whenever a month spinner value changes.

Fortunately, it is easy to support value change listeners. The UIInput class
automatically generates value change events whenever the input value has
changed. Recall that there are two ways of attaching a value change listener.
You can add one or more listeners with f:valueChangelistener, like this:

From the Library of Wow! eBook

Processing Tag Attributes m

<corejsfispinner ...>
<f:valueChangeListener type="com.corejsf.SpinnerListener"/>

</corejsf:spinner>
Or you can use a valueChangelistener attribute:

<corejsfispinner value="#{cardExpirationDate.month}"
id="monthSpinner" minimum="1" maximum="12" size="3"
valueChangeListener="#{cardExpirationDate.changelListener}"/>

In the sample program, we demonstrate the value change listener by keeping a
count of all value changes that we display on the form (see Figure 11-5):

pubTic class CreditCardExpiration {
private int changes = 0;
// to demonstrate the value change listener
public void changelistener(ValueChangeEvent e) {
changes++;
}
}

|ﬁ_5pinner Test - Mozilla Firefox

file Cdit View History Dookmarks Tools llelp

L v & @ | (@] http:localhost:8080/spinner2/facesfindex. v

Please enter your credit card expiration date:

Month: 6 | <[=

Year: 201 | < || >

Changes: 6

| Next |

Done @ 0:31 #

Figure 11-5 Counting the value changes

Supporting Method Expressions

The special attributes valueChangelistener, validator, action, and actionListener auto-
matically support method expressions. If you want to support method expres-
sions for your own attributes, you have to do a bit of work.

We give you a slightly contrived example. The second version of our spinner
supports attributes atMax and atMin that can be set to method expressions. The
methods are called when a user tries to increment a spinner past its maximum
or minimum. In our example program, we set the atMax attribute to a method
that increments the year and sets the month to 1. Thus, if a user increments the
current month past 12, the date is automatically set to January of the next year.

From the Library of Wow! eBook

Chapter 11 B Custom Components, Converters, and Validators

The JSF page contains the method reference:

<corejsfispinner value="#{cardExpirationDate.month}"
minimum="1" maximum="12" size="3"
atMax="#{cardExpirationDate.incrementYear}" .../>

where the incrementYear method is defined like this:

@Named("cardExpirationDate")
public class CreditCardExpiration {

public void incrementYear(ActionEvent event) { year++; month = 1; }

}

Unfortunately, the default tag handler cannot tell that "#{cardExpiration-
Date.incrementYear}" is a method reference. This is a weakness of the EL. API.
Therefore, you must modify the tag handler. Here is how.

Supply a handler class SpinnerHandler and declare it in your tag library
descriptor:

<facelet-taglib ...>
<namespace>http://corejsf.com</namespace>
<tag>
<tag-name>spinner</tag-name>
<component>
<component-type>com.corejsf.Spinner</component-type>
<renderer-type>com. corejsf.Spinner</renderer-type>
<handler-class>com.corejsf.SpinnerHandler</handler-class>
</component>
</tag>
</facelet-taglib>

In the SpinnerHandler class, declare rules for handling the atMax and atMin
attributes:

public class SpinnerHandler extends ComponentHandler {
pubTic SpinnerHandler(ComponentConfig config) { super(config); }

protected MetaRuleset createMetaRuleset(Class<?> type) {
return super.createMetaRuleset(type)
.addRule(new MethodRule("atMax", Void.class, ActionEvent.class))
.addRuTe(new MethodRule("atMin", Void.class, ActionEvent.class));
}
}

The details of the createMetaRuleset method are a bit arcane, and we will not
dwell upon it. If you need to support method expressions in your tag, you can
simply follow this model.

From the Library of Wow! eBook

Processing Tag Attributes m

The handler class sets the atMin and atMax attributes to MethodExpression objects. In
the next section, we explain how to make use of them.

Queuing Events

Suppose the user reaches the maximum value of a spinner. We want to execute
the atMax method expression, but we only want to do so after the request values
have been submitted and validated. Executing the method expression immedi-
ately in the decode method is pointless since the model values will be overwrit-
ten with the submitted values.

To delay the execution of the method expression, we need to queue an event
that the JSF implementation executes in the Invoke Application phase:

FacesEvent event = new ActionEvent(spinner);
event.setPhaseId(PhaseId.INVOKE_APPLICATION);
spinner.queueEvent(event);

If the minimum or maximum has been exceeded, the spinner renderer adds a
MethodExpressionActionListener that was constructed with the atMin or atMax method
expression. When the event is broadcast to the listener, the method is executed.
The listener is removed when the component is rendered.

The details are a bit messy because the methods for adding and removing lis-
teners are protected methods in UIComponent; see Listings 11-6 and 11-7.

NOTE: It is a bit unusual to install listeners dynamically in the renderer. With
the standard actionListener attribute, the tag handler installs the listener.

The Sample Application

Figure 11-6 shows the directory structure of the second spinner application in
which we use a separate renderer.

Listings 11-6 and 11-7 show the code for the spinner component and the ren-
derer, respectively.

We rely on the Renderers convenience class in Listing 11-8 that contains
the code for invoking the converter. (The Renderers class also contains a
getSelectedItems method that we need later in this chapter—ignore it for now.)

From the Library of Wow! eBook

m Chapter 11 B Custom Components, Converters, and Validators

[E spinner2.war
[index.xhtml
[next.xhtml
¥ (& WEB-INF
[beans.xml
[corejsf.taglib.xm!
[faces-config.xml

|| web.xml
¥ (& classes
¥ (& com
¥ (& corejsf
| % creditCardExpiration.class
[1) spinnerHandler.class
[7] spinnerRenderer.class
[% vIspinner.class
[%) messages.properties
¥ (& util
[) MethodEvent.class
[) MethodListener.class
[MethodRules$1.class
[") MethodRule.class
|) Renderers.class
¥ (& resources
¥ (& css

[styles.css

Figure 11-6 Directory structure of the revisited spinner example

spinner2/src/java/com/corejsf/UISpinner.java

. package com.corejsf;

. import javax.faces.component.FacesComponent;
. import javax.faces.component.UIInput;

. import javax.faces.convert.IntegerConverter;
.import javax.faces.event.FacesListener;

O ~NOOCI A WN =

. @FacesComponent("com.corejsf.Spinner™)
.pubTic class UISpinner extends UIInput {
10. private FacesListener maxMinListener;
11, public UISpinner() {

©

12. setConverter(new IntegerConverter()); // to convert the submitted value
13. setRendererType("com.corejsf.Spinner");

14. '}

15.

From the Library of Wow! eBook

Processing Tag Attributes m

public void addMaxMinListener(FacesListener Tistener) {
if (listener != null) addFacesListener(1istener);
maxMinListener = listener;

}

public void removeMaxMinListener() {
if (maxMinListener != null) {
removeFacesListener(maxMinListener)
maxMinListener = null;
}
}
}

B350 - WA spinner2/src/java/com/corejsf/SpinnerRenderer.java

package com.corejsf;

import java.io.IOException;
import java.util.Map;

import javax.el.MethodExpression;

import javax.faces.component.EditableValueHolder;
import javax.faces.component.UIComponent;

import javax.faces.component.UIInput;

import javax.faces.context.FacesContext;

import javax.faces.context.ResponseWriter;

import javax.faces.convert.ConverterException;
import javax.faces.event.ActionEvent;

import javax.faces.event.ActionListener;

import javax.faces.event.FacesEvent;

import javax.faces.event.MethodExpressionActionListener;
import javax.faces.event.Phaseld;

import javax.faces.render.FacesRenderer;

import javax.faces.render.Renderer;

@FacesRenderer(componentFamily="javax.faces.Input",
rendererType="com.corejsf.Spinner")

public class SpinnerRenderer extends Renderer {
private static final String MORE = ".more";
private static final String LESS = ".Tess";

public Object getConvertedValue(FacesContext context, UIComponent component,
Object submittedvalue) throws ConverterException {
return com.corejsf.util.Renderers.getConvertedValue(context, component,
submittedvValue);

From the Library of Wow! eBook

448 Chapter 11 B Custom Components, Converters, and Validators

public void encodeBegin(FacesContext context, UIComponent spinner)
throws IOException {
ResponseWriter writer = context.getResponseWriter();
String clientId = spinner.getClientId(context);

encodeInputField(spinner, writer, clientId);
encodeDecrementButton(spinner, writer, clientld);
encodeIncrementButton(spinner, writer, clientld);

((UISpinner) spinner).removeMaxMinListener();

}

public void decode(FacesContext context, UIComponent component) {
EditableValueHolder spinner = (EditableValueHolder) component;
Map<String, String> requestMap
= context.getExternalContext().getRequestParameterMap();
String clientId = component.getClientId(context);

int increment;

if (requestMap.containsKey(clientId + MORE)) increment = 1;

else if (requestMap.containskey(cTientId + LESS)) increment = -1;
else increment = 0;

try {
int submittedvalue
= Integer.parseInt((String) requestMap.get(clientld));

int newalue = getIncrementedValue(component, submittedValue,
increment);

spinner.setSubmittedvValue(
}
catch(NumberFormatException ex) {

// et the converter take care of bad input, but we still have

// to set the submitted value, or the converter won't have

// any input to deal with

spinner.setSubmittedvalue((String) requestMap.get(clientId));
}

nn

+ newValue);

}

private void encodeInputField(UIComponent spinner, ResponseWriter writer,
String clientId) throws IOException {
writer.startETement("input", spinner)
writer.writeAttribute("name", clientId, null);

Object v = ((UIInput) spinner).getValue();
if (v = null)

From the Library of Wow! eBook

Processing Tag Attributes m

writer.writeAttribute("value", v, "value");

Object size = spinner.getAttributes().get("size")
if (size != null)
writer.writeAttribute("size", size, "size");

writer.endETement("input");

}

private void encodeDecrementButton(UIComponent spinner,
ResponseWriter writer, String clientId) throws IOException {
writer.startElement("input", spinner);
writer.writeAttribute("type", "submit", null);
writer.writeAttribute("name", clientId + LESS, null)
writer.writeAttribute("value", "<", "value")
writer.endETement("input");

}

private void encodeIncrementButton(UIComponent spinner,
ResponseWriter writer, String clientId) throws IOException {
writer.startETlement("input", spinner)
writer.writeAttribute("type", "submit", null);
writer.writeAttribute("name", clientId + MORE, null)
writer.writeAttribute("value", ">", "value");
writer.endETement("input");

}

private int getIncrementedValue(UIComponent spinner, int submittedValue,
int increment) {
Integer minimum = toInteger(spinner.getAttributes().get("minimum"));
Integer maximum = toInteger(spinner.getAttributes().get("maximum"));
int newValue = submittedValue + increment;

ActionListener listener = null;

MethodExpression minMethod
= (MethodExpression) spinner.getAttributes().get("atMin");

if (minimum != null & newValue < minimum && minMethod != null) {
Tistener = new MethodExpressionActionListener(minMethod);
FacesEvent event = new ActionEvent(spinner);
event.setPhaseId(Phaseld.INVOKE_APPLICATION);
spinner.queueEvent(event);

}

MethodExpression maxMethod
= (MethodExpression) spinner.getAttributes().get("atMax");

if (maximum != null && newValue > maximum && maxMethod != null) {
Tistener = new MethodExpressionActionListener(maxMethod);

From the Library of Wow! eBook

m Chapter 11 B Custom Components, Converters, and Validators

FacesEvent event = new ActionEvent(spinner);
event.setPhaseId(PhaseId.INVOKE_APPLICATION);
spinner.queueEvent(event);

}
((UISpinner) spinner).addMaxMinListener(1listener);

if ((minimum == nu1l || newValue >= minimum.intValue()) &&
(maximum == null || newValue <= maximum.intValue()))
return newalue;

else
return submittedvValue;

}

private static Integer toInteger(Object value) {
if (value == null) return null;
if (value instanceof Number) return ((Number) value).intValue();
if (value instanceof String) return Integer.parseInt((String) value);
throw new I11egalArgumentException("Cannot convert " + value);
}
}

 BTTE VT BB spinner?/src/java/com/corejst/util/Renderers.java

package com.corejsf.util;

import java.util.Arraylist;
import java.util.Arrays;
import java.util.Collection;
import java.util.list;
import java.util.Map;

import javax.el.ValueExpression;

import javax.faces.application.Application;
import javax.faces.component.UIComponent;
import javax.faces.component.UIForm;

import javax.faces.component.UISelectItem;
import javax.faces.component.UISelectItems;
import javax.faces.component.ValueHolder;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;
import javax.faces.convert.ConverterException;
import javax.faces.model.SelectItem;

pubTic class Renderers {
public static Object getConvertedValue(FacesContext context,

From the Library of Wow! eBook

Processing Tag Attributes ﬂ

UIComponent component, Object submittedValue)
throws ConverterException {
if (submittedvValue instanceof String) {
Converter converter = getConverter(context, component);
if (converter != null) {
return converter.getAsObject(context, component,
(String) submittedvalue);
}
}
return submittedvalue;

}

public static Converter getConverter(FacesContext context,
UIComponent component) {
if (!(component instanceof ValueHolder)) return null;
ValueHolder holder = (ValueHolder) component;

Converter converter = holder.getConverter();
if (converter != null)
return converter;

ValueExpression expr = component.getValueExpression("value");
if (expr == null) return null;

(Tass<?> targetType = expr.getType(context.getELContext());

if (targetType == null) return null;

// Version 1.0 of the reference implementation will not apply a converter
// if the target type is String or Object, but that is a bug.

AppTication app = context.getApplication();
return app.createConverter(targetType);

}

public static String getFormId(FacesContext context, UIComponent component) {
UIComponent parent = component;
while (!(parent instanceof UIForm))
parent = parent.getParent();
return parent.getClientId(context);

}

public static List<SelectItem> getSelectItems(UIComponent component) {
ArrayList<SelectItem> Tist = new ArraylList<SelectItem>();
for (UIComponent child : component.getChildren()) {
if (child instanceof UISelectItem) {
Object value = ((UISelectItem) child).getValue()
if (value == nu1l) {
UISeTectItem item = (UISelectItem) child;

From the Library of Wow! eBook

ﬂ Chapter 11 B Custom Components, Converters, and Validators

list.add(new SelectItem(item.getItemValue(),
item.getItemLabel(),
item.getItemDescription(),
item.isItemDisabled()));
} else if (value instanceof SelectItem) {
Tist.add((SelectItem) value);
}
} else if (child instanceof UISelectItems) {
Object value = ((UISelectItems) child).getValue();
if (value instanceof SelectItem)
Tist.add((SelectItem) value);
else if (value instanceof SelectItem[])
list.addA11(Arrays.asList((SelectItem[]) value));
else if (value instanceof Collection<?>) {
@SuppressWarnings("unchecked")
Collection<SelectItem> values = (Collection<SelectItems>) value;
Tist.addAT1(values);
}
// warning
else if (value instanceof Map<?, ?>) {
for (Map.Entry<?, ?> entry : ((Map<?, ?>) value).entrySet())
Tist.add(new SelectItem(entry.getKey(),
"" 4 entry.getValue()));
}
}
}

return Tist;

—

[Pt javax. faces.component .UIComponent

* ValueExpression getValueExpression(String name) |NEYEIVA
Returns the value expression associated with the given name.

P javax. faces. component. ValueHolder

=
([y
=

{
e (Converter getConverter()
Returns the converter associated with a component.

P|

i

=

javax.faces.context.FacesContext

(

e ElContext getELContext()

Returns the “expression language context” object that is necessary for eval-
uating expressions.

From the Library of Wow! eBook

Encoding JavaScript m

ww

Eh javax.el.Valuekxpression |NEYFEIWA

e (lass getType(ELContext context)
Returns the type of this value expression.

>

P[1 javax. faces.application.Application

§

> (¢

Converter createConverter(Class targetClass)

Creates a converter, given its target class. JSF implementations maintain a
map of valid converter types, which you typically specify in a faces config-
uration file. If targetClass is a key in that map, this method creates an
instance of the associated converter (specified as the value for the target-
(lass key) and returns it.

If targetClass is not in the map, this method searches the map for a key that
corresponds to targetClass’s interfaces and superclasses, in that order, until
it finds a matching class. Once a matching class is found, this method cre-
ates an associated converter and returns it. If no converter is found for the
targetClass, its interfaces, or its superclasses, this method returns null.

Encoding JavaScript

The spinner component performs a roundtrip to the server every time you click
one of its buttons. That roundtrip updates the spinner’s value on the server.
Those roundtrips can take a severe bite out of the spinner’s performance, so in
almost all circumstances, it is better to store the spinner’s value on the client and
update the component’s value only when the form in which the spinner resides
is submitted. We can do that with JavaScript that looks like this:

<input type="text" name="_idl:monthSpinner" value="1"/>

<script language="JavaScript">
document.forms['_id1']['_idl:monthSpinner'].min = 1;
document.forms['_id1']['_idl:monthSpinner'].max = 12;
</script>

<input type="button" value="<" onclick=
"com.corejsf.spinner.spin(document.forms['_id1']['_idl:monthSpinner'], -1);"/>
<input type="button" value=">" onclick=
"com.corejsf.spinner.spin(document.forms['_idl']['_idl:monthSpinner'], 1);"/>
The spin function is defined in a JavaScript file spinner-js/web/resources/
javascript/spinner.js, shown in Listing 11-9 on page 454.

From the Library of Wow! eBook

Chapter 11 B Custom Components, Converters, and Validators

In order to ensure that the JavaScript resource is included in every JSF page
using the spinner, you simply annotate the renderer with the @ResourceDependency
annotation:

@FacesRenderer(...)
@ResourceDependency(Tibrary="javascript", name="spinner.js")
pubTic class JSSpinnerRenderer extends Renderer

When you write JavaScript code that accesses fields in a form, you need to
specify the field with an expression, such as:

document.forms['_id1']['_id1l:monthSpinner']

The first array index is the client ID of the form, and the second index is the cli-
ent ID of the component.

Obtaining the form ID is a common task, and we added a convenience method
to the com.corejsf.util.Renderers class for this purpose:

public static String getFormId(FacesContext context, UIComponent component) {
UIComponent parent = component;
while (!(parent instanceof UIForm)) parent = parent.getParent();
return parent.getClientId(context);

}

We will not go into the details of JavaScript programming here, but note that
we are a bit paranoid about injecting global JavaScript functions and variables
into an unknown page.

Rather than writing a global spin function, we define spin to be a method of the
com.corejsf.spinner object. We use a similar approach with the minimum and max-
imum values of each spinner, adding min and max variables to each input field.

The spinner renderer that encodes the preceding JavaScript is shown in Listing
11-10.

Note that the UISpinner component is completely unaffected by this change.
Only the renderer has been updated, thus demonstrating the power of plug-
gable renderers.

 BTTR T BB spinner-js/web/resources/javascript/spinner.js

if ('com) var com = {};
if (!com.corejsf) com.corejsf = {};
com.corejsf.spinner = {
spin: function(field, increment) {
var v = parseInt(field.value) + increment;
if (isNaN(v)) return;
if ("'min' in field && v < field.min) return;

From the Library of Wow! eBook

Encoding JavaScript m

if ("max" in field & v > field.max) return;
field.value = v;
}
b

spinner-js/src/java/com/corejsf/1SSpinnerRenderer. java

package com.corejsf;

import java.io.IOException;
import java.text.MessageFormat;
import java.util.Map;

import javax.faces.application.ResourceDependency;
import javax.faces.component.EditableValueHolder;
import javax.faces.component.UIComponent;

import javax.faces.component.UIInput;

import javax.faces.context.FacesContext;

import javax.faces.context.Responselriter;

import javax.faces.convert.ConverterException;
import javax.faces.render.FacesRenderer;

import javax.faces.render.Renderer;

@FacesRenderer(componentFamily="javax.faces.Input",
rendererType="com.corejsf.Spinner")
@ResourceDependency(Tibrary="javascript", name="spinner.js")
pubTlic class JSSpinnerRenderer extends Renderer {
public Object getConvertedValue(FacesContext context, UIComponent component,
Object submittedValue) throws ConverterException {
return com.corejsf.util.Renderers.getConvertedvalue(context, component,
submittedvValue);
}

public void encodeBegin(FacesContext context, UIComponent component)
throws IOException {
ResponseWriter writer = context.getResponseWriter();
String clientId = component.getClientId(context);
String formId = com.corejsf.util.Renderers.getFormId(context, component);

UIInput spinner = (UIInput) component;

String min = component.getAttributes().get("minimum").toString();
String max = component.getAttributes().get("maximum").toString();
String size = component.getAttributes().get("size").toString();

writer.startElement("input", spinner);

writer.writeAttribute("type", "text", null);
writer.writeAttribute("name", clientId , null);
writer.writeAttribute("value", spinner.getValue().toString(), "value");

From the Library of Wow! eBook

ﬂ Chapter 11 B Custom Components, Converters, and Validators

if (size != null) writer.writeAttribute("size", size , null)
writer.endETlement("input");

writer.startETement("script", spinner);
writer.writeAttribute("language", "JavaScript", null);
if (min != nu1l) {
writer.write(MessageFormat. format(
"document.forms['"'{0}""'1["'"{1}' 'T.min = {2};",
formId, clientId, min));

}
if (max != null) {
writer.write(MessageFormat. format(
"document.forms[''{0}"']1[""{1}''].max = {2};",
formId, clientId, max));
}

writer.endElement("script");

writer.startETement("input", spinner)
writer.writeAttribute("type", "button", null);
writer.writeAttribute("value", "<", null);
writer.writeAttribute("onclick",

MessageFormat. format (
"com.corejsf.spinner.spin(document.forms[''{0}"'I1['"{1}''], -1);",
formId, clientId),

null);

writer.endETlement("input");

writer.startETement("input", spinner)
writer.writeAttribute("type", "button", null);
writer.writeAttribute("value", ">", null);
writer.writeAttribute("onclick",

MessageFormat. format (
"com.corejsf.spinner.spin(document.forms["''{0}"'1['"{1}''], 1);",
formId, clientId),

null);

writer.endETlement("input");

}

public void decode(FacesContext context, UIComponent component) {
EditableValueHolder spinner = (EditableValueHolder) component;
Map<String, String> requestMap
= context.getExternalContext().getRequestParameterMap();
String clientId = component.getClientId(context);
spinner.setSubmittedvalue((String) requestMap.get(clientld));
spinner.setValid(true);

From the Library of Wow! eBook

Using Child Components and Facets m

Using Child Components and Facets

The spinner discussed in the first half of this chapter is a simple component that
has no children. To illustrate how a component can manage other components,
we implement a tabbed pane, as shown in Figure 11-7.

The tabbed pane component differs from the tabbed pane implementation in
Chapter 8 in an essential way. The implementation in Chapter 8 was ad hoc,
composed of standard JSF tags, such as h:graphicImage and h:commandLink. We will now
develop a reusable component that page authors can simply drop into their pages.

[®]Mt. Rushmore Tabbed Pane - Mozilla Firefox M=E]

File Edit View History Bookmarks Tools Help

€« ~ 2 F |I§I http://localhost:8080/tabbedpane/faces/inde: V|

| Jefferson | | Roosevelt | | Lincoln ‘ | Washington |

[®]Mt. Rushmore Tabbed Pane - Mozilla Firefox =Ed

File Edit View History Bookmarks Tools Help

Thomas Jefferson, the 3|
Virginia. Jefferson was
as a great public speake —
in 1785. after Benjamin « v &2 [| [@] | http://localhost:8080/tabbedpane/faces/inde! V‘
Jefferson was a reluctan
winning the election by |lefferson||Roosevelt||LincoIn||Washington‘
president from [801-18

Theodore Roosevelt was the 26th president of the United
States. In 1901 he became president after the assassination of
http://localhost:8080/tabbedpane/faces|| President McKinley. At only 42 years of age, he was the

I youngest president in US history.

ore Tabbed Pane o a efo |
File Edit View History Bookmarks Tools Help

€« ~ & @ |I§I http:/flocalhost:8080/tabbedpane/faces/inde: V|
||effersan||Raasevelt|‘Linculn||Washingtan| dex.xhtml: @ 034 .

UPNPUNRININE) Mt. Rushmore Tabbed Pane - Mozilla Firefox EES

because he was instrume| File Edit View History Bookmarks Tools Help

States. He was bom into| 4a v &
elected president in 1860
Booth in 1865.

1t ||§I http://localhost:8080/tabbedpane/faces/inde: V|

||efferson | | Roosevelt | ‘ Lincoln | | Washington|

George Washington was the first president of the United States.
He was born in 1732 in Virginia and was elected Commander
in Chief of the Continental Army in 1775 and forced the
surrender of Comwallis at Yorktown in 1781, He was
inaugurated on April 30, 1789.

http:/flocalhost:8080/tabbedpane/facesi
|

http:/flocalhost:8080/tabbedpane/faces/index.xhtml# #0334 &
I

Figure 11-7 The tabbed pane component

From the Library of Wow! eBook

Chapter 11 B Custom Components, Converters, and Validators

You specify tabs with f:selectItem tags (or f:selectItems), the way the standard
JSE menu and listbox tags specify menu or listbox items. These are children of
the tabbed pane.

You specify tabbed pane content with a facet (which the renderer renders). For
example, you could specify the content for the “Washington” tab in Figure 11-7
as washington. Then the renderer looks for a facet of the tabbed pane named
washington. This use of facets is similar to the use of header and footer facets in the
h:dataTable tag.

Here is a simple example of using the tabbed pane component:

<corejsf:tabbedPane >
<f:selectItem itemLabel="Jefferson" itemValue="jefferson"/>
<f:selectItem itemLabel="Roosevelt" itemValue="roosevelt"/>
<f:selectItem itemLabel="Lincoln" itemValue="Tincoln"/>
<f:selectItem itemLabel="Washington" itemValue="washington"/>
<f:facet name="jefferson">
<h:panelGrid columns="2">
<h:graphicImage value="/images/jefferson.jpg"/>
<h:outputText value="#{msgs.jeffersonDiscussion}"/>
</h:panelGrid>
</f:facet>
<!-- three more facets -->

</corejsf:tabbedPane>

The preceding code results in a rather plain-looking tabbed pane, as shown in
Figure 11-8.

ene Mt. Rushmore Tabbed Pane
4, = C + | @ http://localhost:B080/tabbedpane/index.faces @ = CQr Google

Jefferson Roosevelt Lincoln Washington

Theodore Roosevelt was the 26th president of the United States. In 1901 he
became president after the assassination of President McKinley. At only 42
years of age, he was the youngest president in US history.

Refrach \

Figure 11-8 A plain tabbed pane

From the Library of Wow! eBook

Using Child Components and Facets m

To get the effect shown in Figure 11-7, you can use CSS styles, like this:

<corejsf:tabbedPane styleClass="tabbedPane"
tab(lass="tab" selectedTabClass="selectedTabh">
You can also use a single f:selectItems tag in lieu of multiple f:selectitem tags,
like this:

<corejsf:tabbedPane styleClass="tabbedPane"
tabClass="tab" selectedTabClass="selectedTab">
<fiselectItems value="#{myBean.tabs}"/>

</corejsf:tabbedPane>
Here, the tabs are defined inside a bean.

In the previous example we directly specified the text displayed in each tab as
select item labels: “Jefferson”, “Roosevelt”, etc. Before the tabbed pane ren-
derer encodes a tab, it looks to see if those labels are keys in a resource bun-
dle—if so, the renderer encodes the key’s value. If the labels are not keys in a
resource bundle, the renderer just encodes the labels as they are. You specify
the resource bundle with the resourceBundle attribute, like this:

<corejsf:tabbedPane resourceBundle="com.corejsf.messages">
<fiselectItem itemLabel="jeffersonTabText" itemValue="jefferson"/>
<fiselectItem itemLabel="rooseveltTabText" itemValue="roosevelt"/>
<f:selectItem itemLabel="TincoInTabText" itemValue="Tincoln"/>
<fiselectItem itemLabel="washingtonTabText" itemValue="washington"/>

</corejsf:tabbedPane>

Notice the item labels—they are all keys in the messages resource bundle:

jeffersonTabText=Jefferson
rooseveltTabText=Roosevelt
TincolInTabText=Lincoln
washingtonTabText=Washington

Finally, the tabbed pane component fires an action event when a user selects a
tab. You can use the f:actionListener tag to add one or more action listeners, or
you can specify a method that handles action events with the tabbed pane’s
actionListener attribute, like this:

<corejsf:tabbedPane ... actionlListener="#{tabbedPaneBean.presidentSelected}">
<f:selectItems value="#{tabbedPaneBean.tabs}"/>
</corejsf:tabbedPane>

From the Library of Wow! eBook

Chapter 11 B Custom Components, Converters, and Validators

In the following sections, you will see how the tabbed pane features are
implemented.

Processing SelectIten Children

The tabbed pane lets you specify tabs with f:selectItem or f:selectItems. Those
tags create UISelectItem components and add them to the tabbed pane as chil-
dren. Because the tabbed pane renderer has children and because it renders
those children, it overrides getRendersChildren() and encodeChildren():

pubTic boolean getRendersChildren() {
return true;

public void encodeChildren(FacesContext context, UIComponent component)
throws java.io.IOException {
// if the tabbedpane component has no children, this method is still called
if (component.getChildCount() == 0) {
return;

}

for (SelectItem item : com.corejsf.util.Renderers.getSelectItems(component))
encodeTab(context, writer, item, component);

}

Generally, a component that processes its children contains code, such as the
following:

for (UIComponent child : component.getChildren())
processChild(context, writer, child, component);

However, our situation is more complex. Recall from Chapter 4 that you can
specify a single select item, a collection of select items, an array of select items,
or a map of Java objects as the value for the f:selectItems tag. Whenever your
class processes children that are of type SelectItem or SelectItems, you need to
deal with this mix of possibilities.

The com.corejsf.util.Renderers.getSelectItems method accounts for all those data
types and synthesizes them into a list of SelectItem objects. You can find the
code for the helper method in Listing 11-8 on page 450.

The encodeChildren method of the TabbedPaneRenderer calls the getSelectItems method
and encodes each child into a tab. You will see the details in “Using Hidden
Fields” on page 462.

From the Library of Wow! eBook

Using Child Components and Facets m

Processing Facets

The tabbed pane uses facet names for the content associated with a particular
tag. The encodeEnd method is responsible for rendering the selected facet:

public void encodeEnd(FacesContext context, UIComponent component)
throws java.io.IOException {
ResponseWriter writer = context.getResponseWriter();
UITabbedPane tabbedPane = (UITabbedPane) component;
String content = tabbedPane.getContent();

if (content != null) {
UIComponent facet = component.getFacet(content);
if (facet != null) {
if (facet.isRendered()) {
facet.encodeBegin(context);
if (facet.getRendersChildren())
facet.encodeChildren(context);
facet.encodeEnd(context);
}
}
}
}

The UITabbedPane class has an instance variable content that stores the facet name
or URL of the currently displayed tab.

The encodeEnd method checks to see whether the content of the currently selected
tab is the name of a facet of this component. If so, it encodes the facet by invok-
ing its encodeBegin, encodeChildren, and encodeEnd methods. Whenever a renderer
renders its own children, it needs to take over this responsibility.

A[pi[javax.faces.component.UIComponent
==

e UIComponent getFacet(String facetName)
Returns a reference to the facet if it exists. If the facet does not exist, the
method returns null.

e hoolean getRendersChildren()
Returns true if the component renders its children; otherwise, false. A com-
ponent’s encodeChildren method won't be called if this method does not
return true. By default, getRendersChildren returns false.

e boolean isRendered()
Returns the rendered property. The component is only rendered if the
rendered property is true.

From the Library of Wow! eBook

Chapter 11 B Custom Components, Converters, and Validators

Using Hidden Fields
Each tab in the tabbed pane is encoded as a hyperlink, like this:

<a href="#" onclick="document.forms[formld][clientld] .value=content;
document. forms[formId].submit();"/>

When a user clicks a particular hyperlink, the form is submitted (the href value
corresponds to the current page). Of course, the server needs to know which
tab was selected. This information is stored in a hidden field that is placed after
all the tabs:

<input type="hidden" name="clientId" />

When the form is submitted, the name and value of the hidden field are sent
back to the server, allowing the decode method to activate the selected tab.

The renderer’s encodeTab method produces the hyperlink tags. The encodeEnd
method calls encodeHiddenFields(), which encodes the hidden field. You can see
the details in Listing 11-11.

When the tabbed pane renderer decodes the incoming request, it uses the
request parameter, associated with the hidden field, to set the tabbed pane
component’s content.

We also queue an action event in order to invoke any attached action listeners:

pubTic void decode(FacesContext context, UIComponent component) {

Map<String, String> requestParams =
context.getExternalContext().getRequestParameterMap();

String clientId = component.getClientId(context);

String content = (String) (requestParams.get(clientId))

if (content != null && !content.equals("")) {
UITabbedPane tabbedPane = (UITabbedPane) component;
tabbedPane.setContent(content);

}

component. queueEvent (new ActionEvent(component));

}
This completes the discussion of the TabbedPaneRenderer class. You will find the
complete code in Listing 11-11.

tabbedpane/src/java/com/corejsf/TabbedPaneRenderer. java

package com.corejsf;
import java.io.IOException;

import java.util.Map;
import java.util.logging.Level;

From the Library of Wow! eBook

Using Child Components and Facets m

import java.util.logging.Logger;

import javax.faces.
import javax.faces.
import javax.faces.
import javax.faces.
import javax.faces.
import javax.faces.
import javax.faces.
import javax.faces.

component.UIComponent;
context.ExternalContext;
context.FacesContext;
context.ResponselWriter;
event.ActionEvent;
model.SelectItem;
render.FacesRenderer;
render.Renderer;

import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;

// Renderer for the UITabbedPane component

@FacesRenderer(componentFamily="javax.faces.Command",
rendererType="com.corejsf.TabbedPane")
pubTic class TabbedPaneRenderer extends Renderer {
private static Logger logger = Logger.getLogger("com.corejsf.util");

// By default, getRendersChildren() returns false, so encodeChildren()
// won't be invoked unless we override getRendersChildren() to return true

public boolean getRendersChildren() {

return true;

}

// The decode method gets the value of the request parameter whose name
// is the client Id of the tabbedpane component. The request parameter
// is encoded as a hidden field by encodeHiddenField, which is called by
// encodeEnd. The value for the parameter is set by JavaScript generated
// by the encodeTab method. It is the name of a facet or a ISP page.

// The decode method uses the request parameter value to set the

// tabbedpane component's content attribute.

// Finally, decode() queues an action event that's fired to registered

// Tisteners in the Invoke Application phase of the JSF Tifecycle. Action

// Tlisteners can be specified with the <corejsf:tabbedpane>'s actionListener
// attribute or with <f:actionListener> tags in the body of the

// <corejsf:tabbedpane> tag.

public void decode(FacesContext context, UIComponent component) {

Map<String, String> requestParams

= context.getExternalContext().getRequestParameterMap();
String clientId = component.getClientId(context);

From the Library of Wow! eBook

m Chapter 11 B Custom Components, Converters, and Validators

String content = (String) (requestParams.get(clientId));

if (content != null && !content.equals("")) {
UITabbedPane tabbedPane = (UITabbedPane) component;
tabbedPane.setContent(content);

}

component. queueEvent (new ActionEvent(component));

}

// The encodeBegin method writes the starting <table> HTML element
// with the CSS class specified by the <corejsf:tabbedpane>'s styleClass
// attribute (if supplied)

public void encodeBegin(FacesContext context, UIComponent component)
throws java.io.IOException {
ResponseWriter writer = context.getResponseWriter();
writer.startETement("table", component);

String styleClass = (String) component.getAttributes().get("styleClass");
if (styleClass != null)
writer.writeAttribute("class", styleClass, null);

writer.write("\n"); // to make generated HTML easier to read

}

// encodeChildren() is invoked by the JSF implementation after encodeBegin().
// The children of the <corejsf:tabbedpane> component are UISelectItem

// components, set with one or more <f:selectItem> tags or a single

// <fiselectItems> tag in the body of <corejsf:tabbedpane>

public void encodeChildren(FacesContext context, UIComponent component)
throws java.io.IOException {
// if the tabbedpane component has no children, this method is still
// called
if (component.getChildCount() == 0) {
return;

}

ResponseWriter writer = context.getResponseWriter();
writer.startElement("thead", component);
writer.startETement("tr", component);
writer.startElement("th", component);

writer.startElement("table", component);

writer.startElement("thody", component);
writer.startElement("tr", component);

From the Library of Wow! eBook

Using Child Components and Facets m

for (SelectItem item : com.corejsf.util.Renderers.getSelectItems(component))
encodeTab(context, writer, item, component);

writer.endElement("tr");
writer.endETement("thody");
writer.endElement("table");

writer.endElement("th");

writer.endElement("tr");

writer.endElement("thead");

writer.write("\n"); // to make generated HTML easier to read

}

// encodeEnd() is invoked by the JSF implementation after encodeChildren().
// encodeEnd() writes the table body and encodes the tabbedpane's content
// in a single table row.

// The content for the tabbed pane can be specified as either a URL for
// a ISP page or a facet name, so encodeEnd() checks to see if it's a facet;
// if so, it encodes it; if not, it includes the JSP page

public void encodeEnd(FacesContext context, UIComponent component)
throws java.io.IOException {
ResponseWriter writer = context.getResponseWriter();
UITabbedPane tabbedPane = (UITabbedPane) component;
String content = tabbedPane.getContent();

writer.startElement("tbhody", component);
writer.startElement("tr", component);
writer.startETement("td", component);

if (content != null) {
UIComponent facet = component.getFacet(content);
if (facet != null) {
if (facet.isRendered()) {
facet.encodeBegin(context);
if (facet.getRendersChildren())
facet.encodeChildren(context);
facet.encodeEnd(context);
}
} else
includePage(context, component);

}

writer.endElement("td");
writer.endElement("tr");
writer.endETement("thody");

From the Library of Wow! eBook

ﬂ Chapter 11 B Custom Components, Converters, and Validators

// Close off the column, row, and table elements
writer.endElement("table");

encodeHiddenField(context, writer, component);

}

// The encodeHiddenField method is called at the end of encodeEnd().
// See the decode method for an explanation of the field and its value.

private void encodeHiddenField(FacesContext context, ResponseWriter writer,
UIComponent component) throws java.io.IOException {
// write hidden field whose name is the tabbedpane's client Id
writer.startElement("input", component);
writer.writeAttribute("type", "hidden", null);
writer.writeAttribute("name", component.getClientId(context), null);
writer.endElement("input");

}

// encodeTab, which is called by encodeChildren, encodes an HTML anchor

// element with an onclick attribute which sets the value of the hidden

// field encoded by encodeHiddenField and submits the tabbedpane's enclosing
// form. See the decode method for more information about the hidden field.
// encodeTab also writes out a class attribute for each tab corresponding

// to either the tabClass attribute (for unselected tabs) or the

// selectedTabClass attribute (for the selected tab).

private void encodeTab(FacesContext context, ResponseWriter writer,
SelectItem item, UIComponent component) throws java.io.IOException {
String tabText = getlocalizedTabText(component, item.getLabel());
String content = (String) item.getValue();

writer.startElement("td", component);
writer.startElement("a", component);
writer.writeAttribute("href", "#", "href")

String clientId = component.getClientId(context);
String formId = com.corejsf.util.Renderers.getFormId(context, component);

writer.writeAttribute("onclick",
// write value for hidden field whose name is the tabbedpane's client Id

"document.forms['" + formId + "']['" + clientId + "'].value=""

" n

+ content + "'; " 4

// submit form in which the tabbedpane resides
"document.forms['" + formId + "'].submit(); ", null);

From the Library of Wow! eBook

Using Child Components and Facets 467

UITabbedPane tabbedPane = (UITabbedPane) component;
String selectedContent = tabbedPane.getContent();

String tabClass = null;
if (content.equals(selectedContent))

tabClass = (String) component.getAttributes().get("selectedTabClass");
else

tabClass = (String) component.getAttributes().get("tabClass");

if (tabClass != null)
writer.writeAttribute("class", tabClass, null);

writer.write(tabText);

writer.endElement("a");
writer.endElement("td");
writer.write("\n"); // to make generated HTML easier to read

}

// Text for the tabs in the tabbedpane component can be specified as

// a key in a resource bundle, or as the actual text that's displayed

// in the tab. Given that text, the getlocalizedTabText method tries to
// retrieve a value from the resource bundle specified with the

// <corejsf:tabbedpane>'s resourceBundle attribute. If no value is found,
// getlocalizedTabhText just returns the string it was passed.

private String getlLocalizedTabText(UIComponent tabbedPane, String key) {
String bundle = (String) tabbedPane.getAttributes().get("resourceBundle");
String localizedText = null;

if (bundle != null) {
localizedText = com.corejsf.util.Messages.getString(bundle, key, null);

if (localizedText == null)
TocalizedText = key;
// The key parameter was not really a key in the resource bundle,
// so just return the string as is
return TocalizedText;

}

// includePage uses the servlet request dispatcher to include the page
// corresponding to the selected tab.

private void includePage(FacesContext fc, UIComponent component) {

ExternalContext ec = fc.getExternalContext();
ServletContext sc = (ServietContext) ec.getContext();

From the Library of Wow! eBook

468 Chapter 11 B Custom Components, Converters, and Validators

UITabbedPane tabbedPane = (UITabbedPane) component;
String content = tabbedPane.getContent();

ServletRequest request = (ServletRequest) ec.getRequest();
ServletResponse response = (ServletResponse) ec.getResponse();
try {
sc.getRequestDispatcher(content).include(request, response);
} catch (ServletException ex) {
Togger.log(Level.WARNING, "Couldn't Toad page: " + content, ex);
} catch (IOException ex) {
logger.Tog(Level.WARNING, "Couldn't Toad page: " + content, ex);
}
}
}

Saving and Restoring State

The JSF implementation saves and restores the view state between requests.
This state includes components, converters, validators, and event listeners.
You need to make sure that your custom components can participate in the
state saving process.

When your application saves the state on the server, then the view objects are
held in memory. However, when the state is saved on the client, then the view
objects are encoded and stored in a hidden field, in a very long string that looks
like this:

<input type="hidden" name="javax.faces.ViewState" id="javax.faces.ViewState"
value="r00ABXNyACBjb20uc3VuLmzhY2VzLnV0aWwuVHI1ZVNOcnVjdHVYZRRmGOQC TWAGAQAETAAL. . .
.. . 4ANXBwcHBwcHBwcHBwcHBWCHBXAHAANXEATgALcHBwCHQABNNLYm1pdHVXAHAALAAAAAA=" />

Saving state on the client is required to support users who turn off cookies, and
it reduces the amount of data that the server needs to store for each user of a
web application.

One approach is to implement the saveState and restoreState methods of the
StateHolder interface.

These methods have the following form:

public Object saveState(FacesContext context) {
Object[] values = new Object[n];
values[@] = super.saveState(context);
values[1] = instance variable #1;
values[2] = instance variable #2;

return values;

From the Library of Wow! eBook

Saving and Restoring State m

pubTic void restoreState(FacesContext context, Object state) {
Object values[] = (Object[]) state;
super.restoreState(context, values[0]);
instance variable #1 = (Type) values[1];
instance variable #2 = (Type) values[2];

}

Here, we assume that the values in the instance variables are serializable. If
they are not, then you need to come up with a serializable representation of the
component state.

% NOTE: You may wonder why the implementors did not simply use the stan-
dard Java serialization algorithm. However, Java serialization, while quite
general, is not necessarily the most efficient format for encoding component
state. The JSF architecture allows JSF implementations to provide more
efficient mechanisms.

TIP: If you store all of your component state as attributes, you do not have

¥ to implement the saveState and restoreState methods because component
attributes are automatically saved by the JSF implementation. For example, the
tabbed pane can use a content attribute instead of the content instance variable.

Then you do not need the UITabbedPane class at all. Use the UICommand super-
class and declare the component class, like this:

<component>
<component-type>com. corejsf.TabbedPane</component-type>
<component-class>javax.faces.component.UICommand</component-class>
</component>

Partial State Saving !1

JSF 2.0 provides an improved algorithm for state saving that is based on a sim-
ple observation. There is no need for the components of a page to store the ini-
tial state that is established when the view is constructed. After all, that state
can be obtained by building the view again. Only the difference between the
initial and current state needs to be saved. A StateHelper class tracks whether
values have been added or changed after the view has been constructed.

If you want to benefit from partial state saving, you need to store your compo-
nent properties in the component’s state helper. The UITabbedPane class has one

From the Library of Wow! eBook

m Chapter 11 B Custom Components, Converters, and Validators

property: the facet name of the currently displayed tab. Here is how you can
store that property in the state helper:

private enum PropertyKeys { content };

pubTic String getContent() {
return (String) getStateHelper().get(PropertyKeys.content);
}

public void setContent(String newValue) {
getStateHelper().put(PropertyKeys.content, newValue);
}

When you use a state helper, you need not implement the saveState and restore-
State methods.

To test why state saving is necessary, run this experiment:

1. Replace the getContent and setContent methods with
private String content;

pubTic String getContent() { return content; }
public void setContent(String newvalue) { content = newValue; }
2. Activate client-side state saving by adding these lines to web.xml:

<context-param>
<param-name>javax. faces.STATE_SAVING_METHOD</param-name>
<param-value>client</param-value>

</context-params>

3. Add abutton <h:commandButton value="Test State Saving"/> to index.faces.
4. Run the application and click a tab.

5. Click the “Test State Saving” button. The current page is redisplayed, but
no tab is selected!

Listing 11-12 shows how the UITabbedPane class saves and restores its state. List-
ing 11-13 shows the JSF page for the tabbed pane application.

tabbedpane/web/index.xhtml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:h="http://java.sun.com/jsf/html"
xmins:f="http://java.sun.com/jsf/core"
xmins:corejsf="http://corejsf.com">

From the Library of Wow! eBook

Saving and Restoring State 471

<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<title>#{msgs.windowTitle}</title>
</h:head>
<h:body>
<h:forms>
<corejsf:tabbedPane styleClass="tabbedPane" tabClass="tab"
selectedTabClass="selectedTab">
<f:facet name="jefferson">
<h:panelGrid columns="2">
<h:graphicImage Tibrary="images" name="jefferson.jpg"/>
<h:outputText value="#{msgs.jeffersonDiscussion}"
styleClass="tabbedPaneContent"/>
</h:panelGrid>
</f:facet>
<f:facet name="roosevelt">
<h:panelGrid columns="2">
<h:graphicImage library="images" name="roosevelt.jpg"/>
<h:outputText value="#{msgs.rooseveltDiscussion}"
styleClass="tabbedPaneContent"/>
</h:panelGrid>
</f:facet>
<f:facet name="lincoln">
<h:panelGrid columns="2">
<h:graphicImage library="images" name="Tincoln.jpg"/>
<h:outputText value="#{msgs.lincolnDiscussion}"
styleClass="tabbedPaneContent"/>
</h:panelGrid>
</f:facet>
<f:facet name="washington">
<h:panelGrid columns="2">
<h:graphicImage Tibrary="images" name="washington.jpg"/>
<h:outputText value="#{msgs.washingtonDiscussion}"
styleClass="tabbedPaneContent"/>
</h:panelGrid>
</f:facet>

<fiselectItem itemLabel="#{msgs.jeffersonTabText}"
itemValue="jefferson"/>
<fiselectItem itemLabel="#{msgs.rooseveltTabText}"
itemValue="roosevelt"/>
<fiselectItem itemLabel="#{msgs.lincolnTabText}"
itemValue="Tincoln"/>
<fiselectItem itemLabel="#{msgs.washingtonTabText}"
itemValue="washington"/>
</corejsf:tabbedPane>
<!-- <h:commandButton value="Test State Saving"/> -->

From the Library of Wow! eBook

m Chapter 11 B Custom Components, Converters, and Validators

</h:form>
</h:body>
</htm1>

tabbedpane/src/java/com/corejsf/UITabbedPane. java

package com.corejsf;

import javax.faces.component.FacesComponent;
import javax.faces.component.UICommand;

@FacesComponent("com.corejsf.TabbedPane")
public class UITabbedPane extends UICommand {
private enum PropertyKeys { content };

public String getContent() {
return (String) getStateHelper().get(PropertyKeys.content);
}

public void setContent(String newValue) {
getStateHelper().put(PropertyKeys.content, newValue);

}

Use this version to test what happens when the component state is not saved.

private String content;

public String getContent() { return content; }
public void setContent(String newValue) { content = newValue; }

-

pl1 Jjavax. faces. component. Statefolder

=
[y
§

Object saveState(FacesContext context)
Returns a Serializable object that saves the state of this object.

e void restoreState(FacesContext context, Object state)
Restores the state of this object from the given state object, which is a copy
of an object previously obtained from calling saveState.

e void setTransient(boolean newvalue)

e boolean isTransient()
Sets and gets the transient property. When this property is set, the state is
not saved.

From the Library of Wow! eBook

Building Ajax Components 473

il javax. faces. component. StateHe Iper JSF 2.0

>

Object put(Serializable key, Object value)
Puts a key/value pair into this state helper map and returns the previous
value or null if there was none.

e (Object get(Serializable key)
Gets the value associated with key in this state helper map, or null if none is
present.

Building Ajax Components | JSF 2.0 |

There are two ways to add Ajax functionality to your custom components.

1. Embed Ajax into your custom component. Typically, you do that by
implementing a custom renderer that generates JavaScript, which in turn
uses the JSF 2.0 Ajax library to make Ajax calls.

2. Ajax-enable your custom component by supporting the f:ajax tag. Page
authors can then use f:ajax to with your component to implement their
own Ajax functionality.

Both options are equally valid. For example, you might want to implement a
date picker that has pull-downs for month and day. When the user selects the
month, your date picker would use Ajax to update the list of select items for
the day pull-down. In that case, you would want to embed that Ajax function-
ality into your date picker.

It’s also convenient for page authors if your custom components work with
fiajax, so that page authors can attach their own ad-hoc Ajax functionality to
your custom components.

In the next two sections, we show you how to embed Ajax functionality into
your custom components, and how to support f:ajax. We illustrate those tech-
niques with a font spinner, as shown in Figure 11-9.

The font spinner is simple. When the user changes the spinner’s value, we
make an Ajax call to the server, and subsequently update the font size of the
characters below the spinner to reflect the new font size.

The example shown Figure 11-9 uses a custom font spinner component that
implements self contained Ajax. The page author just adds a corejsf:fontSpinner
tag to the page, and the font spinner component takes care of all the Ajax
details.

From the Library of Wow! eBook

Chapter 11 B Custom Components, Converters, and Validators

We also implemented a second example, that looks and behaves identically to
the application shown in Figure 11-9, but the second example adds f:ajax sup-
port to the spinner discussed in “Encoding JavaScript” on page 453, and the
Ajax functionality is implemented by the page author in an XHTML file.

We discuss both implementations of the font spinner in the next two sections.

Font Spinner Test

‘.iu http:/ flocalhost:8080/spinner-ajax/ 1y ¥)

@

Select a font size

Font Size 17 em (<)(=

Font Spinner Test

[} http://localhost:8080/spinner-ajax/ 14 ¥)

Select a font size

Font Size 10 em

Terminé

/ano

G:D (@) (%) ([hup:/localhost:a080/spinner- -ajax/ 17 v)

Font Spinner Test

Select a font size

] p —
Font Size 3 em(<)}(>)

Aa

& B Yslow 4

& @ Yslow

Terminé

Figure 11-9 A font spinner

From the Library of Wow! eBook

Building Ajax Components 475

Implementing Self-Contained Ajax in Custom Components

In our self-contained version of the font spinner, the font spinner encapsulates
all of its Ajax functionality, so all a page author has to do is add the font spin-
ner tag to a view:

<h:form id="spinnerForm">
#{msgs.fontSizePrompt}
<corejsf:fontSpinner value="#{fontSpecifics.size}"
id="fontSpinner" minimum="1" maximum="100" size="3"/>
</h:form>

The value of the font spinner points to a property of a simple managed bean:

pubTlic class FontSpecifics implements Serializable {
private int size = 1;
public int getSize() { return size; }
public void setSize(int size) { this.size = size; }
}
The font spinner is similar to the spinner component we discussed earlier in
this chapter, except that we added the two-character display below the spinner.
The interesting code is in the font spinner’s renderer, which is given in Listing
11-14.

The font spinner renderer generates JavaScript that makes an Ajax call to the
server. That JavaScript uses the built-in JavaScript library that comes with JSF
2.0. The renderer makes sure that the built-in JavaScript library is injected into
the page with a ResourceDependency annotation:

@ResourceDependencies({
@ResourceDependency(Tibrary="javascript", name="spinner.js"),
@ResourceDependency(1ibrary="javax.faces", name="jsf.js")

H

Notice that our font spinner actually requires two JavaScript libraries, so we
use the ResourceDependencies annotation for that requirement.

Once we have the required JavaScript libraries, we create some JavaScript:

String ajaxScript = MessageFormat.format(
"if(document.forms["'{0}'"]['"{1}''].value != '""") {2};",
formId, clientId, getAjaxScript(context, spinner));

The script is generated by a getAjaxScript() method, but that script is only exe-
cuted if the value of the spinner is not an empty string. That avoids the edge
case where the spinner tries to display a 0 point font.

From the Library of Wow! eBook

Chapter 11 B Custom Components, Converters, and Validators

The getAjaxScript() method returns a script that makes an Ajax call. That script
looks like this:

"jsf.ajax.request('" + component.getClientId() +
"ty null, { 'render': '" + component.getParent().getClientId() + "' })"

The script calls the jsf.ajax.request() function, with the spinner as the compo-
nent that fired the Ajax call, and an unspecified event (the nul1 parameter). The
script also specifies that the parent of the spinner component (in this case, a
form) is rendered after the Ajax call.

The font spinner renderer uses that generated JavaScript to make an Ajax call
when there’s a keyup event in the spinner’s text input, and when there’s an
onclick event in the buttons.

The Ajax call made by the font spinner executes the spinner on the server,
which stores the spinner’s value in the spinner component. When the Ajax
call returns, JSF renders the spinner, including the text displayed below the
spinner:

writer.startElement("span", spinner);

String s = ((Integer) spinner.getValue()).toString();
writer.writeAttribute("style", "font-size: " + s + "em;", null);
writer.write("Aa");

writer.endElement("span");

The renderer adjusts the font size of the characters below the spinner to reflect
the spinner’s value.

SR BES B spinner-ajax/src/java/com/corejsf/FontSpinnerRenderer.java

package com.corejsf;

import java.io.IOException;
import java.text.MessageFormat;
import java.util.Map;

import javax.faces.application.ResourceDependencies;
import javax.faces.application.ResourceDependency;
import javax.faces.component.EditableValueHolder;
import javax.faces.component.UIComponent;

import javax.faces.component.UIInput;

import javax.faces.context.FacesContext;

import javax.faces.context.ResponseWriter;

import javax.faces.convert.ConverterException;
import javax.faces.render.FacesRenderer;

import javax.faces.render.Renderer;

From the Library of Wow! eBook

Building Ajax Components 477

@FacesRenderer(componentFamily="javax.faces.Input",
rendererType="com.corejsf.FontSpinner")

@ResourceDependencies({
@ResourceDependency(Tibrary="javascript", name="spinner.js")
@ResourceDependency(library="javax.faces", name="jsf.js")
)
pubTic class FontSpinnerRenderer extends Renderer {
public Object getConvertedValue(FacesContext context, UIComponent component,
Object submittedvalue) throws ConverterException {
return com.corejsf.util.Renderers.getConvertedValue(context, component,
submittedValue);
}

public void encodeBegin(FacesContext context, UIComponent component)

throws IOException {

ResponseWriter writer = context.getResponseWriter();

String clientId = component.getClientId(context);

String formId = com.corejsf.util.Renderers.getFormId(context, component);

UIInput spinner = (UIInput) component;

String ajaxScript = MessageFormat. format(
"if(document.forms["''{0}""1[""'{1}''].value != '"'") {2};",
formId, clientId, getChangeScript(context, spinner));

String min = component.getAttributes().get("minimum").toString()
String max = component.getAttributes().get("maximum").toString()
String size = component.getAttributes().get("size").toString();

writer.startETement("input", spinner)

writer.writeAttribute("type", "text", null);
writer.writeAttribute("name", clientId , null);
writer.writeAttribute("id", clientId, null);
writer.writeAttribute("value", spinner.getValue().toString(), "value");
if (size != null) writer.writeAttribute("size", size , null);

writer.writeAttribute("onkeyup", ajaxScript, null);
writer.endETement("input");

writer.startETement("script", spinner);
writer.writeAttribute("language", "JavaScript", null);
if (min = null) {
writer.write(MessageFormat.format(
"document.forms[''{0}"'1[""{1}''].min = {2};",
formId, clientId, min));

}
if (max != null) {

From the Library of Wow! eBook

478

Chapter 11 B Custom Components, Converters, and Validators

}

writer.write(MessageFormat. format(
"document.forms[''{0}"']1[""{1}''].max = {2};",
formId, clientId, max));
}
writer.endElement("script");
writer.write(" em ");

String spinScript = MessageFormat. format(
"com.corejsf.spinner.spin(document.forms[''{0}"']1['"{1}''], -1);",
formId, clientId);

writer.startElement("input", spinner)
writer.writeAttribute("type", "button", null);
writer.writeAttribute("value", "<", null);
writer.writeAttribute("onclick", spinScript + ajaxScript, null);
writer.endETlement("input");

spinScript = MessageFormat. format(
"com.corejsf.spinner.spin(document.forms["''{0}"'1['"{1}''], 1);",
formId, clientId);

writer.startElement("input", spinner);
writer.writeAttribute("type", "button", null);
writer.writeAttribute("value", ">", null);
writer.writeAttribute("onclick", spinScript + ajaxScript, null);

writer.endETlement("input");

writer.startElement("br", spinner)
writer.endElement("br");

writer.startElement("span", spinner);

String s = ((Integer)spinner.getValue()).toString();
writer.writeAttribute("style", "font-size: " + s + "em;", null);
writer.write("Aa");

writer.endETement("span");

public void decode(FacesContext context, UIComponent component) {

}

EditableValueHolder spinner = (EditableValueHolder) component;
Map<String, String> requestMap

= context.getExternalContext().getRequestParameterMap();
String clientId = component.getClientId(context);
spinner.setSubmittedvalue((String) requestMap.get(clientld));
spinner.setValid(true);

protected final String getChangeScript(FacesContext context, UIInput component)

From the Library of Wow! eBook

Building Ajax Components 479

throws IOException {
return
"jsf.ajax.request('" + component.getClientId() +
"' onull, { 'render': '" 4+
component.getParent().getClientId() + "' })";
}
}

Supporting f:ajax in Custom Components

In many cases, it makes sense to implement self-contained Ajax functionality in
a custom component, as we did in the preceding section. However, it’s also a
good idea to support f:ajax for your custom components so that page authors
can attach Ajax functionality to your custom components.

In this section we look at an alternate implementation of the font spinner that
we discussed in the last section. Instead of embedding the Ajax functionality to
update the character display when a user changes the spinner value, we let the
page author specify that behavior:

<h:form id="spinnerForm">
#{msgs.fontSizePrompt}
<corejsfi:spinner value="#{fontSpecifics.size}"
id="fontSpinner" minimum="1" maximum="100" size="3">
<f:ajax render="fontPreview"/>
</corejsf:spinner>

<h:outputText id="fontPreview" value="Aa"
style="font-size: #{fontSpecifics.size}em"/>
</h:form>

In the preceding markup it’s the page author, and not the spinner component,
who creates the two-character display below the spinner. It’s also the page
author, and not the component, who implements the Ajax functionality, simply
by adding an f:ajax tag to the spinner.

When the default Ajax event occurs in the spinner (indicating that the user
changed the spinner’s value), the client makes an Ajax call to the server, which
stores the font size in a managed bean property. When that Ajax call returns,
the client re-renders the two-character display, and specifies the font size of
that output text to correspond to the value the user entered in the spinner.

To support f:ajax, custom components must implement the ClientBehaviorHolder
interface. The f:ajax tag attaches client behaviors to the tag’s surrounding com-
ponent, so our spinner tag must be able to hold onto that client behavior: thus,
the name of the interface.

From the Library of Wow! eBook

480 Chapter 11 B Custom Components, Converters, and Validators

The ClientBehaviorHolder interface defines four methods:

void addCTientBehavior(String event, ClientBehavior behavior)
Map<String, List<ClientBehavior>> getClientBehaviors()
String getDefaultEventName()

Collection<String> getEventNames()

For your convenience, the UIComponentBase class (from which the spinner compo-
nent ultimately inherits) provides default implementations of the four meth-
ods, even though UIComponentBase does not itself implement the ClientBehaviorHolder
interface.

We are happy with the UIComponentBase implementations of addClientBehavior() and
getClientBehaviors(), but we must tell JSF what events we support for Ajax calls,
and what event is the default event that will trigger an Ajax call. In this case,
the default event is click, so when a page author adds an f:ajax with no event
specified to the spinner, JSF associates that Ajax behavior with the click event.
Here is the UISpinner class:

@FacesComponent("com.corejsf.Spinner")
pubTic class UISpinner extends UIInput implements ClientBehaviorHolder {
private static List<String> eventNames = Arrays.asList("click");
public UISpinner() {
setConverter(new IntegerConverter()); // to convert the submitted value
setRendererType("com.corejsf.1SSpinner"); // this component has a renderer

}
@verride public String getDefaultEventName() { return "click"; }
@verride public Collection<String> getEventNames() { return eventNames; }

}

Most of the spinner’s support for f:ajax, however, is implemented in the spin-
ner’s renderer, which is provided in Listing 11-15.

This version of the spinner renderer is similar to the renderer provided in
Listing 11-14 on page 476. Both renderers generate JavaScript that makes an
Ajax call, and both renderers attach that JavaScript to the spinner’s input and
buttons. So when the user performs a keyup in the spinner’s input, or a click on
one of the buttons, JSF makes an Ajax call to the server.

The difference between the two renderers is where they get the JavaScript that
makes the Ajax call. The renderer listed in Listing 11-14 on page 476 generated
the script directly by using the JSF 2.0 built-in JavaScript. However, the ren-
derer in the preceding listing gets the script from a client behavior that f:ajax
attached to the spinner component, like this:

public final String getAjaxScript(FacesContext context, UIInput component)
throws IOException {

From the Library of Wow! eBook

Building Ajax Components m

String script = null;
(lientBehaviorContext behaviorContext
= (TientBehaviorContext.createClientBehaviorContext(context,
component, "click", component.getClientId(context), null);

Map<String,List<ClientBehavior>> behaviors =
((UIInput) component).getClientBehaviors();

if (behaviors.containsKey("click"))
script = behaviors.get("click").get(0).getScript(behaviorContext);
return script;

}

In the preceding code, we are looking for the "click" behavior attached to the
spinner component. Remember that the spinner component told JSF that the
default Ajax event was a click, and the page author didn’t explicitly specify an
event for the f:ajax tag, so JSF associates the f:ajax tag’s behavior with the click
event. Of course, we are not being entirely honest with JSF because we execute
the "click" behavior’s script not only when the user clicks the spinner’s buttons,
but also when the user performs a key up event in the spinner’s inputs. But
that’s our business, and is none of JSF’s concern.

Finally, the renderer in Listing 11-15 decodes all of the client behaviors
attached to the spinner component. Client behaviors, like components and ren-
derers, are able to decode request parameters. In our example, the client behav-
ior attached to our spinner by f:ajax does nothing when told to decode, so you
can remove the call to decodeBehaviors() in that renderer, and the example will
still work. However, it’s a good idea to always decode all behaviors attached to
your custom component in case one or more of those behaviors needs to get
some information from the request when a call is made to the server.

BTTE T BB B spinner-ajax2/src/java/com/corejsf/ISSpinnerRenderer. java

package com.corejsf;

import java.io.IOException;
import java.text.MessageFormat;
import java.util.list;

import java.util.Map;

import javax.faces.application.ResourceDependencies;
import javax.faces.application.ResourceDependency;
import javax.faces.component.EditableValueHolder;
import javax.faces.component.UIComponent;

import javax.faces.component.UIInput;

From the Library of Wow! eBook

m Chapter 11 B Custom Components, Converters, and Validators

import javax.faces.component.behavior.ClientBehavior;

import javax.faces.component.behavior.ClientBehaviorContext;
import javax.faces.component.behavior.ClientBehaviorHolder;
import javax.faces.context.ExternalContext;

import javax.faces.context.FacesContext;

import javax.faces.context.ResponseWriter;

import javax.faces.convert.ConverterException;

import javax.faces.render.FacesRenderer;

import javax.faces.render.Renderer;

@FacesRenderer(componentFamily="javax.faces.Input",
rendererType="com.corejsf.Spinner")
@ResourceDependencies({
@ResourceDependency(Tibrary="javascript", name="spinner.js")
@ResourceDependency(library="javax.faces", name="jsf.js")
)
public class JSSpinnerRenderer extends Renderer {
public Object getConvertedValue(FacesContext context, UIComponent component,
Object submittedvalue) throws ConverterException {
return com.corejsf.util.Renderers.getConvertedvalue(context, component,
submittedValue);
}

public void encodeBegin(FacesContext context, UIComponent component)

throws IOException {

ResponseWriter writer = context.getResponseWriter();

String clientId = component.getClientId(context);

String formId = com.corejsf.util.Renderers.getFormId(context, component);

ULInput spinner = (UIInput) component;

String ajaxScript = MessageFormat.format(
"if(document.forms["''{0}"'1["''{1}''].value = """") {2};",
formId, clientId, getChangeScript(context, spinner));

String min = component.getAttributes().get("minimum").toString();
String max = component.getAttributes().get("maximum").toString();
String size = component.getAttributes().get("size").toString();

writer.startElement("input", spinner);

writer.writeAttribute("type", "text", null);
writer.writeAttribute("name", clientId , null);
writer.writeAttribute("id", clientId, null);
writer.writeAttribute("value", spinner.getValue().toString(), "value")
if (size !'= null) writer.writeAttribute("size", size , null)

writer.writeAttribute("onkeyup", ajaxScript, null);
writer.endETlement("input");

From the Library of Wow! eBook

Building Ajax Components m

writer.startETement("script", spinner);
writer.writeAttribute("Tanguage", "JavaScript", null);
if (min != nu1l) {
writer.write(MessageFormat.format (
"document.forms["'{0}""1["'"'{1}"'].min = {2};",
formId, clientId, min));
}
if (max != null) {
writer.write(MessageFormat. format(
"document.forms[''{0}"']1[""{1}''].max = {2};",
formId, clientId, max));
}

writer.endETement("script");

String spinScript = MessageFormat. format(
"com.corejsf.spinner.spin(document.forms[''{0}"']1['"{1}''], -1);",
formId, clientId);

writer.startETlement("input", spinner)
writer.writeAttribute("type", "button", null);
writer.writeAttribute("value", "<", null);
writer.writeAttribute("onclick", spinScript + ajaxScript, null);

writer.endETement("input");

spinScript = MessageFormat. format(
"com.corejsf.spinner.spin(document.forms[''{0}"']1['"{1}''], 1);",
formId, clientId);

writer.startElement("input", spinner)
writer.writeAttribute("type", "button", null);
writer.writeAttribute("value", ">", null);
writer.writeAttribute("onclick", spinScript + ajaxScript, null);
writer.endETement("input");

}

public void decode(FacesContext context, UIComponent component) {
EditableValueHolder spinner = (EditableValueHolder) component;
Map<String, String> requestMap
= context.getExternalContext().getRequestParameterMap();
String clientId = component.getClientId(context);
spinner.setSubmittedvalue((String) requestMap.get(clientId));
spinner.setValid(true);

decodeBehaviors(context, component);

}

public final String getChangeScript(FacesContext context, UIInput component)

From the Library of Wow! eBook

484 Chapter 11 B Custom Components, Converters, and Validators

throws IOException {
String script = null;
ClientBehaviorContext behaviorContext =
(TientBehaviorContext.createClientBehaviorContext(context,
component, "click", component.getClientId(context), null);

Map<String,List<ClientBehavior>> behaviors

= ((UIInput)component).getClientBehaviors();
if (behaviors.containsKey("click"))

script = behaviors.get("click").get(0).getScript(behaviorContext);
return script;

}

public final void decodeBehaviors(FacesContext context, UIComponent component) {
if (!(component instanceof ClientBehaviorHolder)) return;
(TientBehaviorHolder holder = (ClientBehaviorHolder)component;
Map<String, List<ClientBehavior>> behaviors = holder.getClientBehaviors();
if (behaviors.isEmpty()) return;

ExternalContext external = context.getExternalContext();
Map<String, String> params = external.getRequestParameterMap();
String behaviorEvent = params.get("javax.faces.behavior.event");

if (behaviorEvent != null) {
List<ClientBehavior> behaviorsForEvent = behaviors.get(behaviorEvent);

if (behaviors.size() > 0) {
String behaviorSource = params.get("javax.faces.source");
String clientId = component.getClientId();
if (nu1l != behaviorSource & behaviorSource.equals(clientId))

for (ClientBehavior behavior: behaviorsForEvent)
behavior.decode(context, component);
}
}
}
}

Conclusion

You have now seen how to write a JSF custom component. Implementing cus-
tom components is a complex task, and it is a good idea to consider a composite
component first. However, for components with rich behavior, a custom compo-
nent is sometimes your only choice. You will see more examples in Chapter 13.

The next chapter shows you how to access external services, such as databases
and email, from a JSF application.

From the Library of Wow! eBook

This page intentionally left blank

From the Library of Wow! eBook

EXTERNAL SERVICES

Topics in This Chapter

e “Database Access with JDBC” on page 487
e “Configuring a Data Source” on page 495

e “Using the Java Persistence Architecture” on
page 507

e “Container-Managed Authentication and
Authorization” on page 519

e “Sending Mail” on page 532
e “Using Web Services” on page 537

From the Library of Wow! eBook

In this chapter, you learn how to access external services from your JSF appli-
cation. We show you how to access databases, send email, and connect to web
services.

Database Access with JDBC

In the following sections, we give you a brief refresher of the Java Database
Connectivity (JDBC) APIL. We assume that you are familiar with basic Struc-
tured Query Language (SQL) commands. A more thorough introduction to
these topics can be found in Cay Horstmann and Gary Cornell, Core Java™, 8th
ed., Santa Clara, CA: Sun Microsystems Press/Prentice Hall, 2008, Vol. 2,
Chapter 4.

Issuing SQL Statements

To issue SQL statements to a database, you need a connection object. There are
various methods of obtaining a connection. The most elegant one is to use a
data source.

DataSource source = . . .;
Connection conn = source.getConnection();

The section “Accessing a Container-Managed Resource” on page 495 describes
how to obtain a data source in the GlassFish and Tomcat containers. For now,
we assume that the data source is properly configured to connect to your
favorite database.

487

From the Library of Wow! eBook

488 Chapter 12 m External Services

Once you have the Connection object, you create a Statement object that you use to
send SQL statements to the database. You use the executeUpdate method for SQL
statements that update the database and the executeQuery method for queries
that return a result set:

Statement stat = conn.createStatement();
stat.executeUpdate("INSERT INTO Credentials VALUES ('troosevelt', 'jabberwock')");
ResultSet result = stat.executeQuery("SELECT % FROM Credentials");

The ResultSet class has an unusual iteration protocol. First you call the next
method to advance the cursor to the first row. (The next method returns false if
no further rows are available.) To get a field value as a string, you call the
getString method. For example:

while (result.next()) {

username = result.getString("username");
password = result.getString("passwd");

% NOTE: We use passwd as the column name throughout this chapter
because password is a SQL reserved word, and some databases (such as
PostgreSQL) do not allow it as a column name.

When you are done using the database, be certain to close the connection. To
ensure that the connection is closed under all circumstances, even when an
exception occurs, wrap the query code inside a try/finally block, like this:

Connection conn = source.getConnection();
try {
}
finally {
conn.close();

}

Of course, there is much more to the JDBC API, but these simple concepts are
sufficient to get you started.

% NOTE: Here we show you how to execute SQL statements from your web
application. This approach is fine for lightweight applications that have mod-
est storage requirements. For complex applications, you would want to use
an object-relational mapping technology, such as JPA (the Java Persis-
tence API), which we discuss later in this chapter.

From the Library of Wow! eBook

Database Access with JDBC 489

Connection Management

One of the more vexing issues for the web developer is the management of
database connections. There are two conflicting concerns. First, opening a con-
nection to a database can be time consuming. Several seconds may elapse for
the processes of connecting, authenticating, and acquiring resources to be com-
pleted. Thus, you cannot simply open a new connection for every page request.

On the flip side, you cannot keep open a huge number of connections to the
database. Connections consume resources, both in the client program and in
the database server. Commonly, a database puts a limit on the maximum num-
ber of concurrent connections that it allows. Thus, your application cannot sim-
ply open a connection whenever a user logs on and leave it open until the user
logs off. After all, your user might walk away and never log off.

One common mechanism for solving these concerns is to pool the database con-
nections. A connection pool holds database connections that are already opened.
Application programs obtain connections from the pool. When the connections
are no longer needed, they are returned to the pool, but they are not closed.
Thus, the pool minimizes the time lag of establishing database connections.

Implementing a database connection pool is not easy, and it certainly should
not be the responsibility of the application programmer. As of version 2.0, JDBC
supports pooling in a pleasantly transparent way. When you receive a pooled
Connection object, it is actually instrumented so that its close method merely
returns it to the pool. It is up to the application server to set up the pool and to
give you a data source whose getConnection method yields pooled connections.

Each application server has its own way of configuring the database connec-
tion pool. The details are not part of any Java standard—the JDBC specification
is completely silent on this issue. In the next section, we describe how to
configure GlassFish and Tomcat for connection pooling. The basic principle is
the same with other application servers, but of course the details may differ
considerably.

To maintain the pool, it is still essential that you close every connection object
when you are done using it. Otherwise the pool will run dry, and new physical
connections to the database will need to be opened. Properly closing connec-
tions is the topic of the next section.

From the Library of Wow! eBook

Chapter 12 m External Services

Plugging Connection Leaks
Consider this simple sequence of statements:

DataSource source = . . .;

Connection conn = source.getConnection();

Statement stat = conn.createStatement();

String command = "INSERT INTO Credentials VALUES ('troosevelt', 'jabberwock')";
stat.executeUpdate(command);

conn.close();

The code looks clean—we open a connection, issue a command, and immedi-
ately close the connection. But there is a fatal flaw. If one of the method calls
throws an exception, the call to the close method never happens!

In that case, an irate user may resubmit the request many times in frustration,
leaking another connection object with every click.

To overcome this issue, always place the call to close inside a finally block:

DataSource source = . . .;

Connection conn = source.getConnection();

try {
Statement stat = conn.createStatement();
String command = "INSERT INTO Credentials VALUES ('troosevelt', 'jabberwock')";
stat.executeUpdate(command);

t
finally {
conn.close();

}
This simple rule completely solves the problem of leaking connections.

The rule is most effective if you do not combine this try/finally construct with
any other exception handling code. In particular, do not attempt to catch a
SQLException in the same try block:

// we recommend that you do NOT do this
Connection conn = null;
try {
conn = source.getConnection();
Statement stat = conn.createStatement();
String command = "INSERT INTO Credentials VALUES ('troosevelt', 'jabberwock')";
stat.executeUpdate(command);
t
catch (SQLException) {
// Tog error
t

From the Library of Wow! eBook

Database Access with JDBC m

finally {
conn.close(); // ERROR
}

That code has two subtle mistakes. First, if the call to getConnection throws an
exception, then conn is still null, and you can’t call close. Moreover, the call to
close can also throw an SQLException. You could clutter up the finally clause with
more code, but the result is a mess. Instead, use two separate try blocks:

// we recommend that you use separate try bhlocks
try {
Connection conn = source.getConnection();
try {
Statement stat = conn.createStatement();
String command = "INSERT INTO Credentials VALUES ('troosevelt', 'jabberwock')";
stat.executeUpdate(command);
}
finally {
conn.close();

}

t

catch (SQLException) {
// Tlog error

}

The inner try block ensures that the connection is closed. The outer try block
ensures that the exception is logged.

% NOTE: Of course, you can also tag your method with throws SQLException
and leave the outer try block to the caller. That is often the best solution.

Using Prepared Statements

A common optimization technique for JDBC programs is the use of the Prepared-
Statement class. You use a prepared statement to speed up database operations if
your code issues the same type of query multiple times. Consider the lookup of
user passwords. You will repeatedly need to issue a query of the form:

SELECT passwd FROM Credentials WHERE username=...

A prepared statement asks the database to precompile a query—that is, parse
the SQL statement and compute a query strategy. That information is kept
with the prepared statement and reused whenever the query is reissued.

You create a prepared statement with the prepareStatement method of the
Connection class. Use a ? character for each parameter:

From the Library of Wow! eBook

Chapter 12 m External Services

PreparedStatement stat = conn.prepareStatement(
"SELECT passwd FROM Credentials WHERE username=?");

When you are ready to issue a prepared statement, first set the parameter values:
stat.setString(1, name);

(Note that the index value 1 denotes the first parameter.) Then issue the state-
ment in the usual way:

ResultSet result = stat.executeQuery();

At first glance, it appears as if prepared statements would not be of much ben-
efit in a web application. After all, you close the connection whenever you
complete a user request. A prepared statement is tied to a database connection,
and all the work of establishing it is lost when the physical connection to the
database is terminated.

However, if the physical database connections are kept in a pool, then there is a
good chance that the prepared statement is still usable when you retrieve a con-
nection. Many connection pool implementations will cache prepared statements.

When you call prepareStatement, the pool will first look inside the statement cache,
using the query string as a key. If the prepared statement is found, then it is
reused. Otherwise, a new prepared statement is created and added to the cache.

All this activity is transparent to the application programmer. You request
PreparedStatement objects and hope that, at least some of the time, the pool can
retrieve an existing object for the given query.

CAUTION: You cannot keep a PreparedStatement object and reuse it beyond
a single request scope. Once you close a pooled connection, all associated
PreparedStatement objects also revert to the pool. Thus, you should not hang
on to PreparedStatement objects beyond the current request. Instead, keep
calling the prepareStatement method with the same query string, and chances
are good that you will get a cached statement object.

NOTE: Even if you are not interested in performance, there is another good
' reason to use prepared statements: to guard against SQL injection attacks.
When a query is formed by concatening SQL code and user input, a mali-
cious user can supply SQL code in the input that modifies the meaning of
the query. With a prepared statement, the user input is never interpreted as
SQL.

From the Library of Wow! eBook

Database Access with JDBC m

Transactions

You can group a set of statements to form a transaction. The transaction can be
committed when all has gone well. Or, if an error has occurred in one of them, it
can be rolled back as if none of the statements had been issued.

You group statements into transactions for two reasons: database integrity and
concurrent access. For example, suppose you want to transfer money from one
bank account to another. Then, it is important to simultaneously debit one
account and credit another. If the system fails after debiting the first account
but before crediting the other account, the debit needs to be undone. Similarly,
if there are two concurrent accesses to an account, they need to be serialized.

By default, a database connection is in autocommit mode, and each SQL state-
ment is committed to the database as soon as it is executed. Once a statement
is committed, you cannot roll it back. Turn off this default when you use
transactions:

conn. setAutoCommit(false);

Execute queries and updates in the normal way. If all statements have been
executed without error, call the commit method:

conn.commit();

However, if an error occurred, call:

conn.rollback();

Then, all statements until the last commit are automatically reversed. It is a bit
painful to make sure that the call to the rollback method occurs when an excep-
tion is thrown. The following code outline guarantees this:

conn. setAutoCommit(false);
boolean committed = false;
try {
database operations
conn.commit();
committed = true;
} finally {
if (!committed) conn.rollback();

}
Using the Derby Database

To get started with the programs in this chapter, we recommend that you
use the Apache Derby database that is a part of GlassFish and some versions
of the JDK. (If you don’t already have Derby, download Apache Derby from
http://db.apache.org/derby.)

From the Library of Wow! eBook

http://db.apache.org/derby

Chapter 12 m External Services

% NOTE: Oracle refers to the version of Apache Derby that is included in the
JDK as JavaDB. To avoid confusion, we will call it Derby in this chapter.

The database server needs to be started before you can connect to it. The details
depend on your database.

With the Derby database, follow these steps:
1. If you use GlassFish, simply run the following:
glassfish/bin/asadmin start-database

Otherwise, locate the file derbyrun.jar. With some versions of the JDK, it is
contained in the jdk/db/1ib directory, with others in a separate JavaDB
installation directory. We denote the directory containing Tib/derbyrun. jar
with derby. Run the command:

java -jar derby/1ib/derbyrun.jar server start

2. Double-check that the database is working correctly. Create a file
ij.properties that contains these lines:

ij.driver=org.apache.derby.jdbc.ClientDriver
ij.protocol=jdbc:derby://localhost:1527/
ij.database=CORE]SF;create=true

Run Derby’s interactive scripting tool (called ij) by executing:
java -jar derby/1ib/derbyrun.jar ij -p ij.properties
Now you can issue SQL commands, such as:

CREATE TABLE Greetings (Message VARCHAR(20));
INSERT INTO Greetings VALUES ('Hello, World!');
SELECT * FROM Greetings;

DROP TABLE Greetings;

Note that each command must be terminated by a semicolon. To exit, type:
EXIT;

3. When you are done using the database, stop the server with the command:
Qlassfish/bin/asadmin stop-database
Or, if you don’t use GlassFish:

java -jar derby/T1ib/derbyrun.jar server shutdown

From the Library of Wow! eBook

Configuring a Data Source m

NOTE: If you use the GlassFish asadmin tool, your databases are located in
the glassfish/databases directory. However, if you happen to have a file
derby.log in the directory from which you issue the asadmin command, then
they are created in that directory. If you don’t use GlassFish, your databases
are located in the directory from which you start Derby.

If you no longer need a database, simply stop the database server and
remove the database directory.

If you use another database, you need to consult the documentation to find out
how to start and stop your database server, and how to connect to it and issue
SQL commands.

Configuring a Data Source

In the following sections, we show you how to configure a data source in your
application server, such as GlassFish and Tomcat, and how to access the data
source from a web application.

Accessing a Container-Managed Resource

Your application accesses a resource, such as a data source by a symbolic name
(for example, jdbc/mydb). There are two ways for obtaining the resource from the
name. The most elegant one is resource injection. You declare a field in a man-
aged bean and mark it with an annotation, like this:

@Resource(name="jdbc/mydb") private DataSource source;

When the application server loads the managed bean, then the field is automat-
ically initialized.

Table 12-1 lists the annotations that you can use to inject resources into a JSF
managed bean.

CAUTION: The resources in Table 12—1 are not serializable. This is not a
problem with CDI. The container will null out the injected resources before
serializing a bean and reinject them after deserialization. However, when
you use JSF managed beans and enable clustering, do not inject these
resources into session- or application-scoped beans.

From the Library of Wow! eBook

m Chapter 12 m External Services

Table 12-1 Annotations for Resource Injection

Annotation Resource Type

@Resource, @Resources Arbitrary JNDI Resource
@WebServiceRef, @WebServiceRefs Web Service Port

@EJB, @EJBs EJB Session Bean
@PersistenceContext, @PersistenceContexts Persistent Entity Manager
@Persistencelnit, @Persistencelnits Persistent Entity Manager Factory

Configuring a Database Resource in GlassFish

GlassFish has a convenient web-based administration interface that you can
use to configure a data source. Point your browser to http://localhost:4848 and
log on. (The default username is admin and the default password is adminadmin.)

1. Configure a database pool. Select “Connection Pools” and set up a new
pool. Give a name to the pool, select a resource type (javax.sql.DataSource),
and pick your database vendor (see Figure 12-1).

®) [New JDBC Connection Pool (5tep 1 of 2} - Mozilla Firefox

Eile Edir Aiew History Bookmarks Tools Help

@ ® v @ ﬁ ||o' httpej/lacalhost -4 B4 f/jdbe/jdboCannectionPoolNew jsf ~ |

Home Version
User: anonymous Domaln: domaini | Server: localhost

GlassFish™ v3 Administration Console

Tree
New JDBC Connection Pool (Step 1 of 2) Mext | | Cancel

Identify the general settings for the connection pool.

[common Tasks

[& Registration
s GlassFish News General Settings
Q Application Server
* [Applications Name:
v | Resources Resource Type: | javax sq DataSource |
" [J0BC Musl be specificd if the dalascurce class implements more than 1 of the
» {3 Connectors interface.
JavaMail Sessions D vendor: [Javaos | -1
v [@4 Configuration
{5 Web Container
Transoction Survice
9‘ Access Logaing
* [virtual Servers
- Threod Pools
- 9‘ Network Config
|Em Monitoring
= f§) Securily
I system Properties
£51 | IecAata Toed
i

* Indisates required field

* corejsfPool

[T

Done

Figure 12-1 Configuring a connection pool in GlassFish

From the Library of Wow! eBook

Configuring a Data Source

2. On the next screen, you specify the data source class
(org.apache.derby.jdbc.ClientDataSource) and database connection
options such as username and password (see Figure 12-2).

497

7 (New JDBC Connection Pool (Step 2 of 2) - Mozilla Firefox

Hle Edit View History Bookmarks Jools Help
& ~ @ @ | [@) | hitpejlocalbost:4 848 fjdbejdboConnectionPoolNew? jsi | ~ |
Home Version
User: anonymous Role: domaini Server: localnost
GlassFish™ v3 Administration Console
A Restan Required
Tree Additio S =
Common Tasks il 52 (8 AddiBropertysl | Delets Properties
|1 Registration | Name +, | Value
8; GlassFish News O | connectionAttnbutes
[Appiication Server 0| CreateDatabase true
» 5 Applications | | | DataSourceName
¥ [Resources [|Databasename COREJSF
* [JoBC O |pesenption
* & Connectors O | LoginTimeout 0
5 JavaMail Sessions | | |Password APP|
v [Configuration 3 O [PortNurmiber 1527
= Web Container [|RetneveMessagaText true
& Transaction Service [[SecurityMechanism 4
@, Access Logging [[ServerName localhost B
r ﬁ Virdusl Servers O | ShuldownDalabase
L ﬁ Thread Pools 0 TraceDirectory L
* @, Network Config O [TraceFile [
@ Mesiitcring [[TraceFileAppend false
'r 2 S:::? s |1 Tracet evel -1 I
ﬁ Ilyr\:aln T!I';rmn T D wser APP - F
| it [F " >
Done

Figure 12-2 Specifying database connection options

3. Next, you configure a new data source. Give it the name jdbc/mydb and

select the pool that you just set up (see Figure 12-3).

% NOTE: If you aren’t using the built-in Derby database, you need to place the
JAR file for the database driver file into the domains/domainl/1ib/ext subdirec-
tory of your GlassFish installation.

From the Library of Wow! eBook

498 Chapter 12 m External Services

) [New JDBC Resource - Mozilla Firefox

Eile Edit wiew History Bookmarks Tnols Help
4 v B ﬂ ||Q’ http:jflocalhost:4a4/jdbejjdbcResourceb ew. jsf L

Home Version
User: anonymous Domaln: domaini | Server: localhost

GlassFish™ v3 Administration Console
£ Restart Required

Tree
New JDBC Resource Cancel
[common Tasks E l—l
Specify a unique JNDI name that identifies the JDBC rescurce you want to create. Mame must
[& Registration contain only Alphanumernc, underscors, dash, or dol characters
i GlassFish Noews Iw]
Q Application Server
» [Applications
v g Rusourcus JNDI Namae: * | jabeimydr
= [JoBC Pool Name: | corejslPool _vl
* i Connectors Use the JOBC Connection Pools page to create new pools
B JavaMail Sessions Object Type: |usar k|
v @4 Configuration 1 ption:
¥ Web Container -
Status: JEnabled
Transaction Service ® EZEnabice|
@ Access Logging Additional Properties (0)
* [virtual Servers Delete Properties
L4 h Thrcad Pools
L3 Q Network Config
@ Menitering
*) Security
3 system Properties =
51 1 Irdaba Toad ad
| n [T]

Done

Figure 12-3 Configuring a data source

Configuring a Database Resource in Tomcat

In this section, we walk you through the steps of configuring a database
resource pool in the Tomcat 6 container.

1. Copy the driver JAR file (derbyclient.jar for the Derby database) to the
tomeat/1ib directory.

2. Add a file META-INF/context.xm] that defines the connection parameters. Here
is an example for Derby:

<Context>
<Resource

name="jdbc/mydh"

auth="Container"

type="javax.sql.DataSource"

username="APP"

password="APP"

driverClassName="org.apache.derby.jdbc.ClientDriver"

url="jdbc:derby://Tocalhost:1527/COREISF;create=true" />
</Context>

This configures the resource for a specific application.

From the Library of Wow! eBook

Configuring a Data Source m

3. Add the following entry to your web.xml file:

<resource-ref>
<res-ref-name>jdbc/mydb</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>

TIP: You can find detailed configuration instructions for a number of
popular databases at http://jakarta.apache.org/tomcat/tomcat-6.0-doc/
jndi-datasource-examples-howto.html.

A Complete Database Example

In this example, we show you how to verify a username/password combina-
tion. As with the example program in Chapter 1, we start with a simple login
screen (Figure 12—4). If the username/password combination is correct, we
show a welcome screen (Figure 12-5). Otherwise, we prompt the user to try

again (Figure 12-6). Finally, if a database error occurred, we show an error
screen (Figure 12-7).

Thus, we have four JSF pages, shown in Listings 12-1 through 12—4. Listing
12-5 gives the code for the UserBean.

Hile Edit View History Bookmarks Jools Help |

= £y [[@)| ntep:/ocalhost:zoso/dby v |

Please enter your name and password.

Name troosevelt

Password eeeesesese
Login

Figure 12-4 Login screen

From the Library of Wow! eBook

http://jakarta.apache.org/tomcat/tomcat-6.0-doc/jndi-datasource-examples-howto.html
http://jakarta.apache.org/tomcat/tomcat-6.0-doc/jndi-datasource-examples-howto.html

Chapter 12 m External Services

Hle Edit View History Bookmarks Jools Help

@,II L Fj ﬂ' | @) | http:/flocalhost:8080/dbjfaces/index. xhtml w
Welcome to JavaServer Faces, troosevelt!
This is your Lhird visil.

| gt

Done
T =

Figure 12-5 Welcome screen

Hile Edit View History Bookmarks Jools Help

& v =) |o http:/flocalhost:8080/dbyfaces/index. xhtmi v

Authentication Error

Sorry, your username/password combination was not found. Please try again.

Continue

Done
T =

Figure 12-6 Authentication error screen

Hile Edit View History Bookmarks Jools Help

& v =) |o http://localhost:8080/dbyfaces/index. xhmi v

Internal Error

To our chagrin, an internal error has occurred. Please report this problem to our technical
staff.

Conlinus

Done
T =

Figure 12-7 Internal error screen

In our simple example, we add the database code directly into the UserBean class.
We place the code for database access into the separate method:

public void doLogin() throws SQLException

From the Library of Wow! eBook

Configuring a Data Source m

That method queries the database for the username/password combination
and sets the loggedIn field to true if the username and password match. It then
increments the login count that is displayed on the welcome page.

The button on the index.xhtml page references the Togin method of the user bean.
That method calls the doLogin method and returns a result string for the naviga-
tion handler. The Togin method also deals with exceptions that the doLogin
method reports.

We assume that the doLogin method is focused on the database, not the user
interface. If an exception occurs, doLogin should report it and take no further
action. The login method, on the other hand, logs exceptions and returns a
result string "internalError" to the navigation handler.

pubTlic String Togin() {
try {
doLogin();
}
catch (SQLException ex) {
logger.log(Level.SEVERE, "login failed", ex);
return "internalError";
}
if (ToggedIn)
return "ToginSuccess";
else
return "loginFailure";

}

Before running this example, you need to start your database and create a table
named Credentials and add one or more username/password entries:
CREATE TABLE Credentials (username VARCHAR(20), passwd VARCHAR(20),
logincount INTEGER)

INSERT INTO Credentials VALUES ('troosevelt', 'jabberwock', 0)
INSERT INTO Credentials VALUES ('tjefferson', 'mockturtle', 0)

You can then deploy and test your application.

Figure 12-8 shows the directory structure for this application, and Figure 12-9
shows the navigation map. The before mentioned application files follow in
Listings 121 through 12-5.

% NOTE: Lots of things can go wrong with database configurations. If
the application has an internal error, look at the log file. In GlassFish,
the default log file is domains/domainl/Togs/server.log. In Tomcat, it is
logs/catalina.out.

From the Library of Wow! eBook

m Chapter 12 m External Services

ﬁ db.war
" error.xhtml
" index.xhtml
| sorry.xhtml
| welcome.xhtml
¥ (& WEB-INF
| beans.xml
" faces-config.xml
") web.xml
¥ (& classes
v (& META-INF
| MANIFEST.MF
:l context.xml
¥ & com
v ﬁ corejsf
| | UserBean.class
" messages.properties

I

C

Figure 12-8 Directory structure of the database application

loginSuccess login loginFailure login internalError login

Figure 12-9 Navigation map of the database application

db/web/index. xhtm1

. <?xm] version="1.0" encoding="UTF-8"?>
. <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
. "http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
. <html xmlns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core" xmins:h="http://java.sun.com/jsf/htm1">
<h:head>
<title>#{msgs.title}</title>
</h:head>
<h:body>

OO ~NOOOOI&WN =

From the Library of Wow! eBook

Configuring a Data Source m

<h:forms>
<h1>#{msgs.enterNameAndPassword}</h1>
<h:panelGrid columns="2">
#{msgs.name}
<h:inputText value="#{user.name}"/>

#{msgs.password}
<h:inputSecret value="#{user.password}"/>
</h:panelGrid>
<h:commandButton value="#{msgs.login}" action="#{user.login}"/>
</h:form>
</h:body>
</html>

db/web/welcome.xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm]1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core" xmlns:h="http://java.sun.com/jsf/htm1">
<h:head>
<title>#{msgs.title}</title>
</h:head>
<h:body>
<h:forms>
<p>#{msgs.welcome} <h:outputText value="#{user.name}"/>!</p>
<p>
<h:outputFormat value="#{msgs.visits}">
<fiparam value="#{user.count}"/>
</h:outputFormat>
</p>

<p><h:commandButton value="#{msgs.logout}" action="#{user.logout}"/>
</p>
</h:form>
</h:body>
</htm1>

db/web/sorry . xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core" xmins:h="http://java.sun.com/jsf/html">

From the Library of Wow! eBook

m Chapter 12 m External Services

<h:head>
<title>#{msgs.title}</title>
</h:head>
<h:body>
<h:forms>
<h1>#{msgs.authError}</h1>
<p>#{msgs.authError_detail}</p>
<p><h:commandButton value="#{msgs.continue}" action="Tlogin"/></p>
</h:form>
</h:body>
</html>

db/web/error.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:f="http://java.sun.com/jsf/core" xmins:h="http://java.sun.com/jsf/htm1">
<h:head>
<titles#{msgs.title}</title>
</h:head>
<h:body>
<h:forms>
<h1>#{msgs.internalError}</h1l>
<p>#{msgs.internalError_detail}</p>
<p><h:commandButton value="#{msgs.continue}" action="index"/></p>
</h:form>
</h:body>
</html>

db/src/java/com/corejsf/UserBean.java

package com.corejsf;

import java.io.Serializable;
import java.sql.Connection;

import java.sql.PreparedStatement;
import java.sql.ResultSet;

import java.sql.SQLException;
import java.util.logging.Level;
import java.util.logging.Logger;

import javax.annotation.Resource;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;

From the Library of Wow! eBook

Configuring a Data Source m

import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;
import javax.sql.DataSource;

@Named("user") // or @ManagedBean(name="user")
@SessionScoped
pubTic class UserBean implements Serializable {

private String name;

private String password;

private int count;

private boolean ToggedIn;

private Logger logger = Logger.getLogger("com.corejsf");

@Resource(name="jdbc/mydb")
private DataSource ds;

/1‘:
If your web container does not support resource injection, add this constructor:
public UserBean()
{
try {
Context ctx = new InitialContext();
ds = (DataSource) ctx.Tookup("java:comp/env/jdoc/mydb");
} catch (NamingException ex) {
logger.log(Level.SEVERE, "DataSource lookup failed", ex);
}
}
:‘r/

public String getName() { return name; }
public void setName(String newValue) { name = newValue; }

public String getPassword() { return password; }
public void setPassword(String newvalue) { password = newValue; }

public int getCount() { return count; }

public String Togin() {
try {
doLogin();
}

catch (SQLException ex) {
logger.log(Level.SEVERE, "login failed", ex);
return "internalError"

}

if (ToggedIn)
return "ToginSuccess";

From the Library of Wow! eBook

m Chapter 12 m External Services

else
return "loginFailure";

}

public String Togout() {
loggedIn = false;
return "Togin";

}

public void doLogin() throws SQLException {
if (ds == nu1l) throw new SQLException("No data source");
Connection conn = ds.getConnection();
if (conn == null) throw new SQLException("No connection");

try {
conn.setAutoCommit(false);
boolean committed = false;
try
{
PreparedStatement passwordQuery = conn.prepareStatement(
"SELECT passwd, Togincount from Credentials WHERE username = ?");
passwordQuery.setString(1, name);

ResuTtSet result = passwordQuery.executeQuery();

if (!result.next()) return;

String storedPassword = result.getString("passwd");
loggedIn = password.equals(storedPassword.trim());
count = result.getInt("Togincount");

PreparedStatement updateCounterStat = conn.prepareStatement(
"UPDATE Credentials SET Tlogincount = logincount + 1"
+ " WHERE USERNAME = ?");
updateCounterStat.setString(1, name);
updateCounterStat.executeUpdate();

conn.commit();
committed = true;
} finally {
if (!committed) conn.rollback();
}
}
finally {
conn.close();

}

From the Library of Wow! eBook

Using the Java Persistence Architecture 507

Using the Java Persistence Architecture

In the preceding section, you have seen how to access a database with JDBC.
Nowadays, many programmers prefer to use an object/relational (O/R) map-
per rather than raw SQL commands. The Java Persistence Architecture (JPA)
provides a standard O/R mapper for the Java EE technology stack. In the fol-
lowing sections, we show you how your JSF applications can access a database
through JPA.

A Crash Course in JPA

An O/R mapper translates between database tables and Java objects that

you manipulate in your program. Your program never touches the database
directly. In JPA, you use annotations to mark the classes that should be stored
in the database. (These classes are called entities.) For example, here is a
Credentials class with the requisite annotations:

@Entity public class Credentials {
@Id private String username;
private String passwd;
private int ToginCount;

public Credentials() {}

}
For a class to be an entity, there are three requirements:

o The class must be annotated with @Entity.

* Each object must have a unique primary key, marked with the @Id
annotation.

. The class must have a default constructor.

You use additional annotations to denote relationships between entities. For
example, here is how you express the fact that each Person has one associated
Credentials entity and zero or more associated roles:

@Entity public class Person {
@0neToOne private Credentials creds;
@neToMany private Set<Role> roles;

}

The O/R mapper translates these annotations into foreign keys or join tables.

From the Library of Wow! eBook

Chapter 12 m External Services

You use an entity manager to create, read, update, and delete entity objects. The
following call adds a new entity to the database:

EntityManager em = ...; // See the following sections on how to initialize em
em.persist(entity);

To change an existing entity, modify the Java object and commit the current
transaction. The changes are automatically saved. You remove an entity by
calling em.remove(entity).

To read data, you issue a query in JPQL, an object-oriented query language
that is similar to SQL. For example, the following query finds the Credentials
objects for a given username:

SELECT ¢ FROM Credentials ¢ WHERE c.username = :username

The colon indicates a parameter that should be set when issuing the query.
Here is how to get the query results:

Query query = em.createQuery(
"SELECT ¢ FROM Credentials c WHERE c.username = :username")
.setParameter("username", name);
@SuppressWarnings("unchecked")
List<Credentials> result = query.getResultList();

We use a @SuppressWarnings annotation because the getResultList method returns a
raw List, and that list is assigned to a parameterized List<Credentials>. We want a
list with the appropriate type parameter so that we can get the elements as
Credentials objects.

Behind the scenes, the entity manager issues an SQL query, constructs
Credentials objects from the result (or finds them in its cache), and returns
them in a list.

We do not discuss the mapping annotations, the entity manager, or JPQL
further; see Chapters 19 and 21 of the Java EE 6 tutorial at http://java.sun.com/
javaee/6/docs/tutorial/doc for more information.

Using JPA in a Web Application

When using JPA in a web application, you need to deal with two issues:

1. Obtaining an entity manager
2. Handling transactions

As you will see in the next section, both of these issues are much simpler when
you use an EJB session bean—but then you need to run a full EE application
server, not just a web container.

From the Library of Wow! eBook

http://java.sun.com/javaee/6/docs/tutorial/doc
http://java.sun.com/javaee/6/docs/tutorial/doc

Using the Java Persistence Architecture m

To get an entity manager, you first obtain an entity manager factory, which the
JSF implementation will inject into a managed bean. Place this annotated field
into the managed bean class:

@PersistenceUnit(unitName="default") private EntityManagerFactory emf;

“Persistence units” are configured in an XML file jpa/src/java/META-INF/persis-
tence.xml—see Listing 12-8. Each unit has a name (here, "default"), a data source,
and various configuration parameters.

You obtain an entity manager by calling:
EntityManager em = emf.createEntityManager();
When you are done with the entity manager, call:

em.close();

NOTE: In a request scoped managed bean, you can inject an entity man-
- ager directly (as shown in the next section). This is not feasible for other
scopes because the entity manager is not threadsafe. However, the entity
manager factory is threadsafe.

You should wrap any work with the entity manager into a transaction. Obtain
a transaction manager with the injection:

@Resource private UserTransaction utx;
Then use this outline:

utx.begin();
em.joinTransaction();
boolean committed = false;
try {
carry out work with em
utx.commit();
committed = true;
} finally {
if (!committed) utx.rollback();
}

Our example program carries out the same work as the preceding program.
However, it uses JPA to access the database instead of SQL. Listing 12-6 shows
the Credentials entity. The UserBean is in Listing 12-7 (note the changed dolLogin
method). Listing 12-8 shows the persistence.xml file. In the WAR file, the persis-
tence.xn file is inside the WEB-INF/classes/META-INF directory—see Figure 12-10.

From the Library of Wow! eBook

m Chapter 12 m External Services

% NOTE: While it is possible to add a JPA provider to Tomcat, the process is
complex and we do not discuss it here. You should run this example on
GlassFish or another Java EE application server.

[E jpa.war
| error.xhtml
_ index.xhtml
[sorry.xhtml
[welcome.xhtml
¥ (&5 WEB-INF
: beans.xml
[7 faces-config.xml
[web.xml
v ﬁ classes
¥ (& META-INF
| context.xml
__' persistence.xml
¥ (& com
¥ (& corejsf
| 5 credentials.class
|| UserBean.class

|| messages.properties

Figure 12-10 Directory structure of the JPA demo application

jpa/src/java/com/corejsf/Credentials.java

package com.corejsf;

import java.io.Serializable;
import javax.persistence.Entity;
import javax.persistence.Id;

@Entity
pubTic class Credentials implements Serializable {
@Id
private String username;
private String passwd;
private int loginCount;

public Credentials() {} // Required by JPA

public Credentials(String username, String password) {

From the Library of Wow! eBook

Using the Java Persistence Architecture m

this.username = username;
this.passwd = password;
}
public String getPasswd() { return passwd; }
public String getUsername() { return username; }
public int incrementLoginCount() { loginCount++; return ToginCount; }

}

jpa/src/java/com/corejsf/UserBean.java

package com.corejsf;

import java.io.Serializable;
import java.util.List;

import java.util.logging.Level;
import java.util.logging.Logger;

import javax.annotation.Resource;
import javax.inject.Named;

// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;

// or import javax.faces.bean.SessionScoped;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistencelnit;
import javax.persistence.Query;
import javax.transaction.HeuristicMixedException;
import javax.transaction.HeuristicRolTbackException;
import javax.transaction.NotSupportedException;
import javax.transaction.RollbackException;
import javax.transaction.SystemException;
import javax.transaction.UserTransaction;

@amed("user") // or @ManagedBean(name="user")
@SessionScoped
pubTic class UserBean implements Serializable {
private String name;
private String password;
private int count;
private boolean ToggedIn;

@PersistenceUnit(unitName="default")
private EntityManagerFactory emf;

@Resource
private UserTransaction utx;

From the Library of Wow! eBook

Chapter 12 m External Services

public String getName() { return name; }
public void setName(String newValue) { name = newValue; }

public String getPassword() { return password; }
public void setPassword(String newValue) { password = newvalue; }

public int getCount() { return count; }

public String Togin() {
try {
doLogin();
} catch (Exception ex) {
Logger.getLogger("com.corejsf").log(Level.SEVERE, "Togin failed", ex);
return "internalError";

}
if (ToggedIn)

return "ToginSuccess";
else

return "loginFailure";

}

public String Togout() {
loggedIn = false;
return "Togin";

}

public void doLogin() throws NotSupportedException, SystemException,
RoTTbackException, HeuristicMixedException, HeuristicRollbackException {
EntityManager em = emf.createEntityManager();
try {
utx.begin();
em.joinTransaction();
boolean committed = false;
try {
Query query = em.createQuery(
"SELECT ¢ FROM Credentials c WHERE c.username = :username")
.setParameter("username", name);
@SuppressWarnings("unchecked")
List<Credentials> result = query.getResultList();

if (result.size() == 1) {
Credentials ¢ = result.get(0);
if (c.getPasswd().trim().equals(password)) {
loggedIn = true;
count = c.incrementLoginCount();

}

From the Library of Wow! eBook

Using the Java Persistence Architecture m

}
utx.commit();
committed = true;
} finally {
if (!committed) utx.rollback();
}
} finally {
em.close();

}
}
}
jpa/src/java/META-INF/persistence.xm]

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="1.0"
xmIns="http://java.sun.com/xml/ns/persistence"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">
<persistence-unit name="default" transaction-type="JTA">
<providersorg.eclipse.persistence.jpa.PersistenceProvider</provider>
<jta-data-source>jdbc/mydh</jta-data-source>
<exclude-unlisted-classes>false</exclude-unlisted-classes>
<properties>
<property name="eclipselink.dd1-generation" value="create-tables"/>
</properties>
</persistence-unit>
</persistence>

Using Managed Beans and Stateless Session Beans

We now move to a full EJB architecture where the JSF managed beans communi-
cate with stateless session beans, objects that are managed by the application
server. There is a significant benefit: By default, session bean methods are auto-
matically transactional. The application server takes care of the transaction han-
dling whenever a session bean method is invoked. Similarly, the application
server takes care of threading, simply by providing a pool of beans and issuing
one for each request. The beans are called stateless because they should keep no
state between requests. That feature enables the application server to pick any
available bean for a particular request, or to create new ones when needed.

% NOTE: In this section, we describe the simplified “no interface” version of
session beans that is introduced in Java EE 6.

From the Library of Wow! eBook

Chapter 12 m External Services

A stateless session bean is annoted with @Stateless. You inject an entity manager
and simply use it, without declaring any transactions:

@Stateless public class CredentialsManager {
@PersistenceContext(unitName="default") private EntityManager em;

public int checkCredentials(String name, String password) {
Query query = em.createQuery(...).setParameter("username", name);
@SuppressWarnings ("unchecked") List<Credentials> result
= query.getResultList();

}
}

Then inject the stateless session bean into one or more managed beans with the
@EJB annotation:

@ManagedBean(name="user") @RequestScoped public class UserBean {
@EIB private CredentialsManager cm;

public String Togin() {
count = cm.checkCredentials(name, password);

}
}

This is a very straightforward programming model. You place the application
logic into the managed beans and the business logic into the stateless session
beans. The only drawback is that you need to transport a fair amount of data
between the two types of beans. Traditionally, this problem was addressed with
“data access objects”, objects whose sole purpose is to transport data between
architectural layers. Naturally, implementing and maintaining these objects is
quite tedious. With E]B 3, you can use entity objects instead, but you have to be
aware of a significant restriction.

When an entity object is returned from a stateless session bean to a JSF man-
aged bean, it becomes detached. The entity manager no longer knows about the
object. If the managed bean changes the entity, it must merge it back into the
entity manager. That is usually achieved by a call to another session bean
method, which calls em.merge(entity).

Detached entities have another issue. When an entity holds a collection of other
entities, that collection is not a simple hash set or array list, but by default a lazy
collection that only fetches elements on demand. If you want to send such an
entity to a JSF managed bean, you need to ensure that the dependent entities
are prefetched, usually by adding fetch instructions in the JPQL query.

From the Library of Wow! eBook

Using the Java Persistence Architecture m

If you use stateless session beans in your JSF application, you need to learn
enough about EJB 3 entities to solve these issues, or you need to use data access
objects. The next section shows how you can avoid this issue by using stateful
session beans.

We continue our sample application, now implementing the same functionality
with a managed bean (Listing 12-9) and a stateless session bean (Listing 12-10).

slsb/src/java/com/corejsf/UserBean.java

package com.corejsf;

import java.io.Serializable;
import java.util.logging.lLevel;
import java.util.logging.Logger;

import javax.ejb.E]B;
import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;

@amed("user") // or @anagedBean(name="user")
@SessionScoped
public class UserBean implements Serializable {

private String name;

private String password;

private boolean ToggedIn;

private int count;

private Logger Togger = Logger.getLogger("com.corejsf");

@EJB private CredentialsManager cm;

public String getName() { return name; }
public void setName(String newValue) { name = newValue; }

public String getPassword() { return password; }
public void setPassword(String newValue) { password = newvalue; }

public int getCount() { return count; }

public String Togin() {
try {
count = cm.checkCredentials(name, password);
loggedIn = count > 0;
} catch (Exception ex) {

From the Library of Wow! eBook

m Chapter 12 m External Services

Togger.Tog(Level.SEVERE, "Togin failed", ex);
return "internalError";
}
if (loggedIn)
return "ToginSuccess";
else
return "loginFailure";

}

public String Togout() {
loggedIn = false;
return "login";
}
}

slsh/src/java/com/corejsf/CredentialsManager. java

package com.corejsf;
import java.util.List;

import javax.ejb.Stateless;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.Query;

@Stateless

pubTic class CredentialsManager {
@PersistenceContext(unitName="default")
private EntityManager em;

public int checkCredentials(String name, String password) {

Query query = em.createQuery("SELECT ¢ FROM Credentials ¢
WHERE c.username = :username")
.setParameter("username", name);

@SuppressWarnings ("unchecked")

List<Credentials> result = query.getResultList();

if (result.size() != 1) return 0;

Credentials ¢ = result.get(0);

String storedPassword = c.getPasswd();

if (password.equals(storedPassword.trim()))
return c.incrementLoginCount();

else
return 0;

From the Library of Wow! eBook

Using the Java Persistence Architecture 517

Stateful Session Beans

A stateless session bean is essentially a place to put one or more methods—it is
a rather degenerate object. The EJB architecture also defines stateful session
beans, which can hold state, just like regular Java objects. Of course, stateful
session beans are much more heavyweight. The EJB container manages them,
perhaps caching them or moving them to another server for load balancing.
The container also provides for access control and transaction support when
methods are invoked.

The Seam framework (http://seamframework.org) pioneered the ability to use state-
ful session beans instead of JSF managed beans. The Contexts and Dependency
Injection (CDI) specification adds this capability to Java EE 6.

With CDJ, your application can be composed of stateful session beans and
entity beans, both managed by the EJB container. The JSF pages reference state-
ful session beans directly. Then the issue of detached entities goes away, and it
becomes very simple to access the database from your web application. Of
course, you are now relying on the EJB container to manage all your beans. For
a simple single-server application, this is a significant overhead, even though
EJB containers have become lighter weight and faster than they used to be. As
your application grows, it is easier to cluster an EJB application, and the inven-
tors of Seam argue that it is no less efficient.

Here is how you use a stateful session bean with JSF:

@Named("user") @SessionScoped @Stateful
pubTic class UserBean {
private String name;
@PersistenceContext(unitName="default") private EntityManager em;

public String getName() { return name; } // Accessed in JSF page
public void setName(String newValue) { name = newValue; }

public String Togin() { // Called from JSF page
doLogin();
if (ToggedIn) return "loginSuccess";
else return "loginFailure";

}

public void doLogin() { // Accesses database
Query query = em.createQuery(...).setParameter("username", name);
@SuppressWarnings ("unchecked") List<Credentials> result
= query.getResultList();

From the Library of Wow! eBook

http://seamframework.org

m Chapter 12 m External Services

In the JSF page, you use #{user.name} and #{user.login} in the usual way.

Our sample application has now become extremely simple. The stateful session
bean interacts with the JSF pages and the database—see Listing 12-11. The use
of JPA has eliminated cumbersome SQL. Transaction handling is automatic.

S50 T RSB I sfsh/src/java/com/corejsf/UserBean. java

package com.corejsf;

import java.util.list;
import java.util.logging.lLevel;
import java.util.logging.Logger;

import javax.ejb.Stateful;

import javax.enterprise.context.SessionScoped;
import javax.inject.Named;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;
import javax.persistence.Query;

@Named("user")

@SessionScoped

@Stateful

pubTic class UserBean {
private String name;
private String password;
private boolean ToggedIn;
private int count;

@PersistenceContext(unitName="default")
private EntityManager em;

public String getName() { return name; }
public void setName(String newValue) { name = newValue; }

public String getPassword() { return password; }
public void setPassword(String newValue) { password = newValue; }

public int getCount() { return count; }

public String Togin() {
try {
doLogin();
}

catch (Exception ex) {

From the Library of Wow! eBook

Container-Managed Authentication and Authorization m

Logger.getLogger("com.corejsf").log(Level.SEVERE, "Togin failed", ex);
return "“internalError"
}
if (ToggedIn)
return "ToginSuccess";
else
return "loginFailure";

}

public String Togout() {
loggedIn = false;
return "Togin";

}

public void doLogin() {
Query query = em.createQuery(
"SELECT c FROM Credentials c WHERE c.username = :username")
.setParameter("username", name);
@SuppressWarnings ("unchecked")
List<Credentials> result = query.getResultList();
if (result.size() == 1) {
Credentials c = result.get(0);
String storedPassword = c.getPasswd();
loggedIn = password.equals(storedPassword.trim());
count = c.incrementLoginCount()
}
}
}

Container-Managed Authentication and Authorization

In the preceding sections, you saw how a web application can use a database to
look up user information. It is up to the application to use that information
appropriately, to allow or deny users access to certain resources. In this section,
we discuss an alternative approach: container-managed authentication. This
mechanism puts the burden of authenticating users on the application server.

It is much easier to ensure that security is handled consistently for an entire
web application if the container manages authentication and authorization.
The application programmer can then focus on the flow of the web application
without worrying about user privileges.

% NOTE: Most of the configuration details in this chapter are specific to Glass-
Fish and Tomcat, but other application servers have similar mechanisms.

From the Library of Wow! eBook

Chapter 12 m External Services

To protect a set of pages, you specify access control information in the web.xml
file. For example, the following security constraint restricts all pages in the
protected subdirectory to authenticated users who have the role of registereduser
or invitedguest:

<security-constraint>
<web-resource-collection>
<url-pattern>/faces/protected/«</url-pattern>
<url-pattern>/protected/«</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>registereduser</role-name>
<role-name>invitedguest</role-name>
</auth-constraint>
</security-constraint>

NOTE: If you use extension mapping, then you do not add a /faces prefix to
the URL pattern.

The role of a user is assigned during authentication. Roles, usernames, and
passwords are stored in a user directory, which can be an LDAP directory, a
database, or simply a text file.

Next, you need to specify how users authenticate themselves. The most flexible
approach is form-based authentication. Add the following entry to web.xml:

<login-config>
<auth-method>FORM</auth-method>
<form-Togin-config>
<form-Togin-page>/login.html</form-login-page>
<form-error-page>/noauth.html</form-error-page>
</form-Togin-config>
</login-config>

The form login configuration specifies a web page into which the user types
the username and password. You are free to design any desired appearance for
the login page, but you must include a mechanism to submit a request to
j_security_check with request parameters named j_username and j_password. The
following form will do the job:

<form method="POST" action="j_security_check">
User name: <input type="text" name="j_username"/>
Password: <input type="password" name="j_password"/>
<input type="submit" value="Login"/>

</form>

From the Library of Wow! eBook

Container-Managed Authentication and Authorization m

The error page can be any page at all.

When the user requests a protected resource, the login page is displayed (see
Figure 12-11). If the user supplies a valid username and password, then the
requested page appears. Otherwise, the error page is shown.

% NOTE: To securely transmit the login information from the client to the
server, you should use SSL (Secure Sockets Layer). Configuring a server
for SSL is beyond the scope of this book. For more information, turn to
http://java.sun.com/developer/technicalArticles/WebServices/appserv8-1.html
(GlassFish) or http://jakarta.apache.org/tomcat/tomcat-6.0-doc/ss1-howto. html
(Tomcat).

|W_Login Form - Mozilla Firefox

fle Cdit View History Dookmarks Tools llelp

o B v @ y Ié' http://localhost:R0R0/accesscontrolflogin. html v

You need to log in to access protected information.

User name: [troosevelt |

Password: |[eeeeesesse |

| Login

Done #
T T

Figure 12-11 Requesting a protected resource

You can also specify “basic” authentication by placing the following login
configuration into web.xml:
<login-config>
<auth-method>BASIC</auth-method>

<realm-name>This string shows up in the dialog</realm-name>
</login-config>

In that case, the browser pops up a password dialog (see Figure 12-12).
However, a professionally designed web site will probably use form-based
authentication.

From the Library of Wow! eBook

http://java.sun.com/developer/technicalArticles/WebServices/appserv8-1.html
http://jakarta.apache.org/tomcat/tomcat-6.0-doc/ssl-howto.html

Chapter 12 m External Services

[®[AuthenticationRequired x|

A username and password are being requested by http://localhost:8080. The site says:
"This string shows up in the dialog"

User Name: | troosevelt |

Password: | ssesseseny |

° Cancel: -('ﬂ Ok

Figure 12-12 Basic authentication

The web.xm1 file describes only which resources have access restrictions and
which roles are allowed access. It is silent on how users, passwords, and roles
are stored. You configure that information by specifying a realm for the web
application. A realm is any mechanism for looking up usernames, passwords,
and roles. Application servers commonly support several standard realms that
access user information from one of the following sources:

e An LDAP directory
. A relational database
. A file (such as Tomcat’s conf/tomcat-users.xml)

In GlassFish, you use the administration interface to configure a realm. We
will use a database realm and use our database of usernames and passwords.
In the Configuration -> Security -> Realms menu, create a new realm called
corejsfRealm (see Figure 12-13). Use the settings in Table 12-2 on page 524.

Make a Groups table in the COREJSF database with these instructions:

CREATE TABLE Groups (username VARCHAR(20), groupname VARCHAR(20));
INSERT INTO Groups VALUES ('troosevelt', 'registereduser');
INSERT INTO Groups VALUES ('troosevelt', 'invitedguest');

INSERT INTO Groups VALUES ('tjefferson', 'invitedguest');

By default, GlassFish wants to map the group names to role names. You can
turn off the mapping in the GlassFish admin console. Select “Security” and
check the option “Default Principal to Role Mapping”. Or, you can provide a
default mapping in a file WEB-INF/sun-web.xml with the following contents:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Application Server 9.0 Serviet 2.5//EN"
"http://www.sun.com/software/appserver/dtds/sun-web-app_2_5-0.dtd">
<sun-web-app>
<security-role-mapping>
<role-name>registereduser</role-name>

From the Library of Wow! eBook

Container-Managed Authentication and Authorization m

<group-name>registereduser</group-name>
</security-role-mapping>
<security-role-mapping>
<role-name>invitedguest</role-name>
<group-name>invitedguest</group-name>
</security-role-mapping>
</sun-web-app>

7 Edit Realm - Mozilla Firefox

File Edit WView History Bookmarks Tools Help

@ - € [[3)] hetpiifocalhost:asae ealms/realmedit jsF 9

Home ~ Version

User: anonymous Domaln: domainl - Server: localhosl

GlassFish™ v3 Administration Console

ver-config [~

(@] Amaya Binar... 3¢ i@ 13.2.2. Conh... 3 * DerbyDialect... 3{ | 1% SetUpADerby... 3¢ [a] A Database... 3¢ |[@] Edit Realm X |V

Trese H
Edit Realm
Common Tasks
Edil an exisling securily realm
#: ClassFish News * Indicates required fisld
E Application Server
v 5 Appiications Realm Name: corcjsfRealm
+ [Resources Class Name: (@) cnm_‘;*_enterpnse.secunzy.auth.realm.]dbc.JDBCHealm -
» | JUBC o
T) Comectors Class name for the realm you want to create
ﬁ JavaMail Sessions
v 5| Configuration
&4 Admin Service Properties specific to this Class
() 548 Contalnar JAAS Context: * jubcRealm
* a ORD
Web Container
] Jnoi: ¥ jheimydn
3 Transaction Service
HTTP Servi
@ view User Table: © Gredentials
» (3 vitual Servers
" Thread Pools
= User Name Column: * | usemame
¥ @ Melwork Config
Manitoding
o Password Column: * | passwd
* f§) Secunty
* |5 Reaims .
G Table:
@ cerlificale folp Tein Lo
@ e :
admin-ream Group Name Column: © | groupname
inn ' Assian Grouns:
» [Audit Modules gn Broups:
» 3 JACC Providers
/3 system Properties !
13 Updale Tool
Database Password:
Digest Algorithm: naone [l
[] [... Ix]1
Done

Figure 12-13 Specifying a realm in GlassFish

From the Library of Wow! eBook

m Chapter 12 m External Services

NOTE: Setting up a realm can be frustrating because so many things must
' be set correctly, and by default, there are no error messages besides “login
failure” Set javax.enterprise.system.core.security.com.sun.enterprise.secu-
rity.auth.realm.level to FINE in glassfish/domains/domainl/config/logging.prop-
erties to get better error messages.

Table 12-2 Realm Settings for the Database

Property Name Value Notes

Class name com.sun.enterprise.
security.auth.realm.
jdbc.JDBCRealm

JAAS context jdbcRealm This context is defined in
glassfish/domains/domainl/config/
Togin.conf.

JNDI jdbc/mydb The JDBC resource for the user

database—see “Configuring a
Database Resource in GlassFish”
on page 496.

User table Credentials Use the same table as for the
database examples.

User name column username The colum name must be the
same in the user and group tables.

Password column passwd Note that password is a reserved
word in PostgreSQL.

Group table Groups

Group name column groupname

Digest algorithm nhone For a production system, hash

the passwords. If you use MD5, you
can get the hash by running echo
password | mdSsum .

To configure a realm in Tomcat, you supply a Realm element in the conf/server.xml
file. Here is a typical example:

<Realm className="org.apache.catalina.realm.JDBCRealm" debug="99"
driverName="org.apache.derby.jdbc.ClientDriver"
connectionURL="jdbc:derby://localhost:1527/COREISF"

From the Library of Wow! eBook

Container-Managed Authentication and Authorization m

connectionName="APP” connectionPassword="APP”
userTable="Credentials" userNameCol="username" userCredCol="passwd"
userRoleTable="Groups" roleNameCol="groupname"/>

See http://tomcat.apache.org/tomcat-6.0-doc/realm-howto.html for additional infor-
mation about configuring a Tomcat realm.

Since the application server is in charge of authentication and authorization,
there is nothing for you to program. Nevertheless, you may want to have pro-
grammatic access to the user information. The HttpServletRequest yields a small
amount of information, in particular, the name of the user who logged in. You
get the request object from the external context:

ExternalContext external

= FacesContext.getCurrentInstance().getExternalContext();
HttpServletRequest request

= (HttpServietRequest) external.getRequest();
String user = request.getRemoteUser();

You can also test whether the current user belongs to a given role. For example:

String role = "admin";
boolean isAdmin = request.isUserInRole(role);

NOTE: Currently, there is no specification for logging off or for switching
- identities when using container-managed security. This is a problem, partic-
ularly for testing web applications. GlassFish and Tomcat use cookies to
represent the current user. You need to quit and restart your browser (or at
least clear personal data) whenever you want to switch your identity. We
resorted to using the text-only Lynx browser for testing because it starts up
much faster than a graphical web browser (see Figure 12—14).

We give you a skeleton application that shows container-managed security

at work. When you access the protected resource /faces/protected/welcome.xhtml
(Listing 12-12), then the authentication dialog of Listing 12-13 is displayed.
You can proceed only if you enter a username and password of a user belong-
ing to the registereduser or invitedguest role.

Upon successful authentication, the page shown in Figure 12-15 is displayed.
The welcome page shows the name of the registered user and lets you test for
role membership.

From the Library of Wow! eBook

http://tomcat.apache.org/tomcat-6.0-doc/realm-howto.html

Chapter 12 m External Services

Lile Edit Yiew Jerminal Help

You need to log in to access protected information.

User name:
Password: ®**essxxees

(Password entry field) Enter text. Use UP or DOWN arrows or tab to move off.
Enter t i the field by typi on the
ctrl-U to L1 t i ield, ce

Figure 12-14 Using Lynx for testing a web application

[® |Authentication successful - Mozilla Firefox
fle Cdit View History Dookmarks Tools llelp

@ v B @ | [@] | httpjlocalhost-8DR0/acc esscontralffac esjprotected /welcome xhiml v

You now have access to protected information!

Your user name troosevelt
Member of | registereduser 3 | true

Done +
T T

Figure 12-15 Welcome page of the authentication test application

From the Library of Wow! eBook

Container-Managed Authentication and Authorization m

 BEIEL T P S B accesscontrol/web/protected/welcome. xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-strict.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:h="http://java.sun.com/jsf/htm1"
xmins:f="http://java.sun.com/jsf/core">
<h:head>
<title>#{msgs.title}</title>
</h:head>
<h:body>
<h:forms>
<p>#{msgs.youHaveAccess}</p>
<h:panelGrid columns="2">
#{msgs.yourUserName}
<h:outputText value="#{user.name}" />

<h:panelGroup>
#{msgs.member0f}
<h:selectOneMenu onchange="submit()" value="#{user.role}">
<fiselectItem itemValue="" jtemLabel="Select a role" />
<fiselectItem itemValue="admin" itemLabel="admin" />
<fiselectItem itemValue="manager" itemLabel="manager" />
<fiselectItem itemValue="registereduser"
itemLabel="registereduser" />
<f:selectItem itemValue="invitedguest" itemLabel="invitedguest" />
</h:selectOneMenu>
</h:panelGroup>
<h:outputText value="#{user.inRole}" />
</h:panelGrid>
</h:form>
</h:body>
</htm1>

ISR LT B R accesscontrol/web/Togin.html

<!DOCTYPE html1 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-strict.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtm1">

<head>

<title>Login Form</title>

</head>

<body>
<form method="post" action="j_security_check">

From the Library of Wow! eBook

Chapter 12 m External Services

<p>You need to log in to access protected information.</p>
<table>
<tr>
<td>User name:</td>
<td><input type="text" name="j_username" /></td>
</tr>
<tr>
<td>Password:</td>
<td><input type="password" name="j_password" /></td>
</tr>
</table>
<p><input type="submit" value="Login" /></p>
</form>
</body>
</html>

Figure 12-16 shows the directory structure of the application. The web.xm1 file in
Listing 12-14 restricts access to the protected directory. Listing 12-15 contains
the page that is displayed when authorization fails. Listing 12-12 contains the
protected page. You can find the code for the user bean in Listing 12-16 and the
message strings in Listing 12-17.

(& accesscontrol.war
'_' index.html
_ login.html
_ noauth.html
¥ (& WEB-INF
[beans.xml
[faces-config.xml
| | web.xml
v (& classes
¥ (& com
v [ﬁ corejsf
;; UserBean.class
| ") messages.properties
v [E protected
[index.htm!
[welcome.xhtml

Figure 12-16 Directory structure of the access control application

From the Library of Wow! eBook

Container-Managed Authentication and Authorization m

 HE150 T S I accesscontrol/web/WEB-INF/web.xm]

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmIns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

version="2.5">

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServiet</serviet-class>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-patterns>/faces/«</url-pattern>

</servlet-mapping>

<welcome-file-Tist>
<welcome-file>index.xhtml</welcome-file>

</welcome-file-Tist>

<context-param>
<param-name>javax.faces.PROJECT_STAGE</param-name>
<param-value>Development</param-value>

</context-param>

<security-constraint>
<web-resource-collection>
<web-resource-name>Protected Pages</web-resource-name>
<url-pattern>/faces/protected/«</url-pattern>
<url-pattern>/protected/«</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>registereduser</role-name>
<role-name>invitedguest</role-name>
</auth-constraint>
</security-constraint>

<login-config>
<auth-method>FORM</auth-method>
<realm-name>corejsfRealm</realm-name>
<form-Togin-config>
<form-Togin-page>/login.html</form-Togin-page>
<form-error-page>/noauth.html</form-error-page>
</form-Togin-config>
</login-config>

From the Library of Wow! eBook

m Chapter 12 m External Services

<security-role>
<role-name>registereduser</role-name>
</security-role>
<security-role>
<role-name>invitedguest</role-name>
</security-role>
</web-app>

IBETR T PR Sl accesscontrol/web/noauth. html

<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-strict.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtm1">

<head>

<title>Authentication failed</title>

</head>

<body>
<p>Sorry--authentication failed. Please try again.</p>
</body>
</html>

IS TR T R G accesscontrol/src/java/com/corejst/UserBean.java

package com.corejsf;

import java.io.Serializable;
import java.util.logging.Logger;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;
import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;
import javax.servlet.http.HttpServletRequest;

@amed("user") // or @anagedBean(name="user")
@SessionScoped
public class UserBean implements Serializable {
private String name;
private String role;
private static Logger logger = Logger.getLogger("com.corejsf");

public String getName() {
if (name == null) getUserData();

From the Library of Wow! eBook

Container-Managed Authentication and Authorization m

}

return name == null ? "" : name;

public String getRole() { return role == null ? "" : role; }
public void setRole(String newValue) { role = newValue; }

public hoolean isInRole() {

}

ExternalContext context
= FacesContext.getCurrentInstance().getExternalContext();

Object requestObject = context.getRequest();

if (!(requestObject instanceof HttpServietRequest)) {
logger.severe("request object has type " + requestObject.getClass());
return false;

}

HttpServletRequest request = (HttpServletRequest) requestObject;

return request.isUserInRole(role);

private void getUserData() {

}
}

ExternalContext context
= FacesContext.getCurrentInstance().getExternalContext();

Object requestObject = context.getRequest();

if (!(requestObject instanceof HttpServietRequest)) {
logger.severe("request object has type " + requestObject.getClass());
return;

}

HttpServletRequest request = (HttpServletRequest) requestObject;

name = request.getRemoteUser();

ISETR LT BB WAl accesscontrol/src/java/com/corejst/messages.properties

title=Authentication successful

youHaveAccess=You now have access to protected information!
yourUserName=Your user name

memberOf=Member of

=y
=€
—

Javax. serviet.HttpServietRequest

String getRemoteUser() Serviet 2.2

Gets the name of the user who is currently logged in, or null if there is no
such user.

e hoolean isUserInRole(String role) Serviet 2.2
Tests whether the current user belongs to the given role.

From the Library of Wow! eBook

Chapter 12 m External Services

Sending Mail

It is fairly common to send mail in a web application. A typical example is a
registration confirmation or password reminder. In this section, we give you a
brief tutorial in the use of the JavaMail API in a JSF application.

The basic process is similar to using a database pool. You configure a mail
resource in your application server or web container. Figure 12-17 shows how
to use the GlassFish web interface.

[® [Edit JavaMail Session - Mozilla Firefox

Ole Edt Miew History Reokmarks Thols Help

@ - @ ﬁ l [@ http:/fiocalhost:4848 fjdbe/mailResaurceldit jst?alert Type ~successfalert Summary - New | values + successhully e

Home Vermion

User: anonymous Demain: domaini Server: incalhoat

GlassFish™ v3 Administration Console

A\ Restart Required

Tree [<]

o New values successfully saved.
& common Tasks

g GlassFish News Edit JavaMail Session | save | | cancel |

E Application Server A JavaMail session resource represents @ mail session in e Javabail AP
» @ Applcations

¥ g Resources

* g nac

* & Connectors

> (3 JavaMail Sessions
v gt Configuration

JNDI Name: malligmallAccount

Mall Host: * smtp.gmail.com
DNS name of the default mail server

A St Default User: cay harstmann
? ' = ngs Uhsen name Lo provide when connecling Lo a mail serves, must contain only
i Admin Service Alphanumenc, underacone, dash, of dot charActens
5 EIR Container Dafault Raturn * [cay. com
* &L ORB F-mail address of the default user

iﬂl Weh Container
& Transaction Service
g HIT TP Senvice

= B3 vinual Servers

Object Type: user I

Description: =
Makes It casier to find this session later

L D Ihread Pools Status: wICnabled
" @, Network Config Advanced
| Monitoring
») Secunty Stare Protacal: Imap
(@ Update Tool Elther IMAP or POP3; default Is IMAP
Store Protocol Class: com.sun.mall.imap.IMAPStor:
Uetault I3 com.sun.mail.imap.IMAFStore
Transport Protocol: amips
Default is SMTP
Transport Protocol Class: com.sun.mail. smtp. SMTPSSLTransport
Default is com.sun.mail.smtp. SMTPTransport
Debug: [Cenabicd|
Additional Properties (2)
|87 |8 | - Delete Properties
Hame + | Value + | Description
[| mai-password secret
[| maik-auth true L
L<l 7] s
Daone

Figure 12-17 Specifying mail session parameters in GlassFish

From the Library of Wow! eBook

Sending Mail m

Table 12-3 shows settings for a GMail account. (You should double-check that
GMail still accepts SMTP connections before trying out the sample program
with your GMail account.)

NOTE: For Tomcat instructions, see the section “JavaMail Sessions” in
http://tomcat.apache.org/tomcat-6.0-doc/jndi-resources-howto.html.

CAUTION: When specifying mail configuration parameters in GlassFish,
you must replace periods with dashes. For example, mail.auth becomes

mail-auth. Moreover, only parameters that start with mail- are placed into to
the mail session properties.

Table 12-3 Mail Session Parameters

Parameter Value Notes

JNDI Name mail/gmailAccount Use this name in the @Resource
annotation.

Mail Host smtp.gmail.com Substitute your SMTP server.

Default User your.account Your account name.

Default Return your.account@gmail.com The return address for your

Address messages.

Transport Protocol

smtps

Use smtp if your server doesn’t
use SSL/TLS.

Transport Protocol

com.sun.mail.smtp.

Use com.sun.mail.smtp.

Class SMTPSSLTransport SMTPTransport if your server
doesn’t use SSL/TLS.

Additional Parameter secret Substitute your own password

mail-password and note the dash in the param-
eter name.

Additional Parameter true Note the dash in the parameter

mail-auth

name.

Choose a J]NDI name for your mail resource and use it to inject a javax.mail.Session

object:

@Resource(name = "mail/gmailAccount™)
private Session mailSession;

From the Library of Wow! eBook

http://tomcat.apache.org/tomcat-6.0-doc/jndi-resources-howto.html

m Chapter 12 m External Services

When you are ready to send the message, use the following code outline:

MimeMessage message = new MimeMessage(mailSession);

Address toAddress = new InternetAddress(email address);
message.setRecipient(RecipientType.TO, toAddress);
message.setSubject (subject);

message. setText (message text);

message.saveChanges();

Transport tr = mailSession.getTransport();

String serverPassword = mailSession.getProperty("mail.password");
tr.connect(null, serverPassword);

tr.sendMessage(message, message.getAlIRecipients());

tr.close();

Note how we retrieve the account password that we placed as an additional
parameter when setting up the mail parameters.

% NOTE: Sending mail is notoriously error-prone since most mail servers

restrict who can access them in order to combat spam. You may not be able
to send mail through your corporate or university server from home, and
most free web mail services no longer support SMTP connections. Another
challenge with using JavaMail is getting the mail parameters right. If you
run into problems, get the JavaMail distribution from http://java.sun.com/
products/javamail/downloads and run the smtpsend test program. After you get
the right parameters for your mail server with the test program, go back to
the application server configuration.

Our sample program provides a registration service that is typical for web
applications. A user picks a desired username and supplies an email address.
The system generates a random password and emails the login information
(see Figure 12-18). For simplicity, we skip the steps of checking that the user-
name is available and of storing the credentials in the database.

Listing 12-18 shows the class that sends out the mail message. The index.xhtml
page simply sets the name and emailAddress properties; we do not show it here.
Listing 12-19 shows the message bundle.

From the Library of Wow! eBook

http://java.sun.com/products/javamail/downloads
http://java.sun.com/products/javamail/downloads

Sending Mail m

%) Sending Email in a]5F Application - Mozilla Firefox
file g6t yiew History Pookmarks Tools plelp

& v &2 (1) | hetpeifiocalhost:BOBO/mail

Please enter your user nhame
and email address.

Done

Back

& Inbox for cay@horstmann.com - Thunderbird
Fle Edt Vew Go Message Tools Help

%) Sending Email in a]5F Application - Mozilla Firefox -0l
Desired User Name |trocseveit File Edit Yiew History Bookmarks Tools Help
Your email address [ray@harstmann.com | & v 8 1) [9 hetpiifiocalhost:BUBO/mailifaces/index.shtmi ~
Create
Your username and password have been sent to cay@horstmann.com.

* . | Ly Lf -.,_, k. x 6" [== u - il r
Get Mail Write Address Book = Reply Reply all Forward Tag Delete Junk Print Back
All Folders % IJ_a I a | Subject |='a| Sendor |M | Date - ||-:
= -1 Aliencamel ~ - Facedets Project = wikis ran = 03:05 PM A
&= Inbox ') Images for |ava for Everyone cover (... * Gee, Lisa - Hoboken 03:33 PM
+ Drafts (42) g « Y Images for Java for Everyone cover (... * Gee, Lisa - Hoboken « DIIIPM
| Sent
4 Junk (117} -
07 Trash {84) From: : n:] :;E- mann@gmail.com
AddressBook N ” -
=[] Cay.Horstmann@sjsu.edu Date: 04:48 PM
& Intiox To: cay@hurstmann.com k
[Trash (14} You are now registered with user name troosevelt and password dklscéve.
= ki Local Folders
&= Inbox
Unsent
,# Drafts (13)
) Templates
| Sent
Sent2001
| Sent2002

Unread: 0 Total: 226

Figure 12-18 A JSF application that sends an email message

B 750 T RS K mail/src/java/com/corejst/NewAccount. java

. package com.corejsf;

.import java.io.Serializable;
.import java.text.MessageFormat;
.import java.util.ResourceBundle;
.import java.util.logging.Level;
.import java.util.logging.Logger;

O N O HA WN =

(1]

.import javax.annotation.Resource;
.import javax.inject.Named;

// or import javax.faces.bean.ManagedBean;
.import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;
.import javax.mail.Address;

.import javax.mail.MessagingException;

P S Y
(S0~ BT I —

From the Library of Wow! eBook

m Chapter 12 m External Services

import javax.mail.Session;

import javax.mail.Transport;

import javax.mail.Message.RecipientType;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;

@Named // or @ManagedBean

@SessionScoped

pubTic class NewAccount implements Serializable {
private String name;
private String emailAddress;
private String password;

@Resource(name="mail/gmailAccount")
private Session mailSession;

public String getName() { return name; }
public void setName(String newValue) { name = newValue; }

public String getEmailAddress() { return emailAddress; }
public void setEmailAddress(String newValue) { emailAddress = newvValue; }

pubTic String create() {
try {
createAccount();
sendNotification();
return "done";
}
catch (Exception ex) {
Logger.getLogger("com.corejsf").log(Level.SEVERE, "login failed", ex);
return "error";
}
}

private void createAccount() {
// Generate a random password; an 8-digit number in base 36.
int BASE = 36;
int LENGTH = 8;
password = Long.toString((long)(Math.pow(BASE, LENGTH) x Math.random()), BASE);
/x
* In a real application, we would now make sure that the username is available
+ and save the username/password in a database.
x/
}

private void sendNotification() throws MessagingException {
ResourceBundle bundle = ResourceBundle.getBundle("com.corejsf.messages");

From the Library of Wow! eBook

Using Web Services m

String subject = bundle.getString("subject");

String body = bundle.getString("body");

String messageText = MessageFormat.format(body, name, password);
mailSession.setDebug(true);

MimeMessage message = new MimeMessage(mailSession);

Address toAddress = new InternetAddress(emailAddress);
message.setRecipient(RecipientType.TO, toAddress);
message.setSubject(subject);
message.setText(messageText);

message.saveChanges();

Transport tr = mailSession.getTransport();
String serverPassword = mailSession.getProperty("mail.password");
tr.connect(null, serverPassword);
tr.sendMessage(message, message.getAllRecipients());
tr.close();
}
}

ISR LT BB Bl mail/src/java/com/corejst/messages.properties

title=Sending Email in a JSF Application

enterNameAndEmail=Please enter your user name and email address.

name=Desired User Name

email=Your email address

emailSent=Your username and password have been sent to {0}.

internalError=Internal Error

internalError_detail=To our chagrin, an internal error has occurred. \
Please report this problem to our technical staff.

create=Create

back=Back

subject=Your Registration Information

body=You are now registered with user name {0} and password {1}.

Using Web Services

When a web application needs to get information from an external source, it
typically uses a remote procedure call mechanism. Web services have emerged
as a popular technology for this purpose.

Currently, there are two different schools of thought on how to implement web
services. The “WS-*” approach uses XML for requests and responses and has a
well-developed (but complex) mechanism for encoding arbitrary data into XML.
The “RESTful” approach encodes requests in URLs and responses in a choice of

From the Library of Wow! eBook

Chapter 12 m External Services

formats (XML, JSON, plain text, and so on, as specified in an HTTP header). It is
up to the client how to read the response. There are merits to both approaches.

JSF has built-in support for consuming a WS-* web service, which we describe
in this section.

We will look at a simple weather service described at http://wiki.cdyne.com/wiki/
index.php?title=(DYNE_Weather. A primary attraction of web services is that they are
language-neutral. We will access the service by using the Java programming
language, but other developers can just as easily use C++ or PHP. A descriptor
file, written in the Web Services Definition Language (WSDL), describes the
services in a language-independent manner. For example, the WSDL for the
CDYNE weather service (located at http://ws.cdyne.com/WeatheriWS/Weather.asmx?wsd1)
describes an GetCityForecastByZIP operation as follows:

<wsd1:operation name="GetCityForecastByZIP">
<wsd1:input message="tns:GetCityForecastByZIPSoapIn"/>
<wsd1:output message="tns:GetCityForecastByZIPSoapOut"/>
</wsd1:operation>

<wsd1:message name="GetCityForecastByZIPSoapIn">

<wsd1:part name="parameters" element="tns:GetCityForecastByZIP"/>
</wsd1:message>
<wsd1:message name="GetCityForecastByZIPSoapOut">

<wsd1:part name="parameters" element="tns:GetCityForecastByZIPResponse"/>
</wsd1:message>

Here is the definition of the GetCityForecastByZIP and GetCityForecastByZIPResponse
type:
<s:element name="GetCityForecastByZIP">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="ZIP" type="s:string"/>
</s:sequence>
</s:complexType>
</s:element>

This simply means that the service requires an optional string named ZIP as a
parameter. The JAX-WS technology maps the WSDL type description to a Java
type, in this case String.

The return type is more complex:

<s:element name="GetCityForecastByZIPResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="GetCityForecastByZIPResult"

From the Library of Wow! eBook

http://wiki.cdyne.com/wiki/index.php?title=CDYNE_Weather
http://wiki.cdyne.com/wiki/index.php?title=CDYNE_Weather
http://ws.cdyne.com/WeatherWS/Weather.asmx?wsdl

Using Web Services m

type="tns:ForecastReturn"/>
</s:sequence>
</s:complexType>
</s:element>

<s:complexType name="ForecastReturn">
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="Success" type="s:boolean"/>
<s:element minOccurs="0" maxOccurs="1" name="ResponseText" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="State" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="City" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="WeatherStationCity"
type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="ForecastResult"
type="tns:ArrayOfForecast"/>
</s:sequence>
</s:complexType>

JAX-WS maps the return type to a Java class ForecastReturn with methods:

pubTlic boolean getSuccess()

public String getResponseText()

pubTic String getState()

pubTic String getCity()

pubTic String getWeatherStationCity()
public ArrayOfForecast getForecastResult()

The ArrayOfforecast type is also defined in the WSDL file. The corresponding
Java class has a method:

List<Forecast> getForecast()

Finally, the Forecast class has methods getDesciption [sic], getTemperatures, and so
on. We aren’t interested in the details of this particular service; what matters is
that the WSDL file contains all the information needed to process the parame-
ters and return values of the service.

To find out how to invoke the search service, locate the service element in the
WSDL file:

<wsdT1:service name="Weather">
<wsd1:port name="WeatherSoap" binding="tns:WeatherSoap">
<soap:address location="http://ws.cdyne.com/WeatherWS/Weather.asmx"/>
</wsd1:port>

</wsd1:service>

This tells us that we need to make the call through a “port” object of type Weath-
erSoap that we obtain from a “service” object of type Weather.

From the Library of Wow! eBook

Chapter 12 m External Services

You obtain the service object through dependency injection. Annotate a field
with the @WebServiceRef annotation:

@WebServiceRef(wsd1Location="http://ws.cdyne.com/WeatherWS/Weather.asmx?wsd1")
private Weather service;

Then call:
ForecastReturn ret = service.getWeatherSoap().getCityForecastByZIP(zip);

From the programmer’s point of view, calling a WS-* web service is extremely
simple. Just make a call to a Java method. Behind the scenes, the JAX-WS
framework translates your parameter objects from Java to XML, sends the
XML to the server (using a protocol called SOAP that you need not worry
about), retrieves the result, and translates it from XML to Java.

The hardest part of using a web service is figuring out the parameter and
return types, and that could be made easy by documenting them well.

Of course, you need to generate the classes that the service uses. The wsimport
tool (included in recent versions of the JDK and in GlassFish) automatically
generates the classes from the WSDL file. Unfortunately, it is a bit of a hassle to
generate classes that implement the Serializable interface. Place this magic into
a file jaxb-bindings.xml:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmIns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
elementFormDefault="qualified" attributeFormDefault="unqualified"
jaxb:extensionBindingPrefixes="xjc" jaxb:version="2.1">
<xs:annotation>
<xs:appinfo>
<jaxb:globalBindings>
<xjc:serializable />
</jaxb:globalBindings>
</xs:appinfo>
</xs:annotation>
</xs:schema>

Then run these commands:

wsimport -b jaxb-bindings.xml -p com.corejsf.ws
http://ws.cdyne.com/WeatherWS/Weather.asmx?wsd1
jar cvf weather-ws.jar com/corejsf/ws/«.class

(The first command must be typed on a single line.) Place the resulting JAR file
into the WEB-INF/Tib directory of your JSF application.

From the Library of Wow! eBook

Using Web Services m

Our sample application is straightforward. The user specifies a zip code and
clicks the “Search” button (see Figure 12-19).

U A Faces Application that Invokes a Web Service - Mozilla Firefox —|Olx
File Edit Yiew History Bookmarks Ipols Help
g ﬁ @ http:/flocalhost:8080/webservice/ w
Search Weather by Zip Code
Zip code:prim] sewh
Done
! d

Figure 12-19 Searching for weather information

The service returns seven days worth of weather information (see Figure 12-20).
This shows that the web service is successful. We leave it as the proverbial exer-
cise for the reader to extend the functionality of the application.

(@ A Faces Application that Invokes a Web Service - Mozilla Firefox
Eile Edit View History Hookmarks Jnols Help

&l v B @ | [@) | herp:ocalhost:aoB0 webservice faces/findex. xhemi ~

Seven Day Forecast for San Francisco

'Partly Cloudy ”Partly Cloudy ”Partly Cloudy ”Partly Cloudy 'Sunny “Sunny ”Partly Cloudy [
[| | | | | | | J I [

Low: 53 Low: 55 Low: 55 Low: 58 Low: 56 Low: 56 Low: 56

|High: 67 | High: 66 | High: 67 | High: 70 | High: 70 | High: 68 | High: 69

Back

Do

Figure 12-20 A weather forecast

The bean class in Listing 12-20 contains the call to the web service. We stash
away the city and list of Forecast objects so that the success.xhtml page can display
the result.

Listings 12-21 and 12-22 show the JSF pages. The success.xhtml page iterates
over the Forecast objects that were obtained from the weather service.

% NOTE: The Forecast class really has a property named desciption. Please
don’t send us any error reports about that.

From the Library of Wow! eBook

m Chapter 12 m External Services

B 700 - RV TV webservice/src/java/com/corejsf/WeatherBean. java

package com.corejsf;

import java.util.List;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;
import javax.xml.ws.WebServiceRef;

import com.corejsf.ws.Forecast;
import com.corejsf.ws.ForecastReturn;
import com.corejsf.ws.Weather;

import java.io.Serializable;

import java.util.logging.Level;
import java.util.logging.Logger;

@amed // or @ManagedBean

@SessionScoped

public class WeatherBean implements Serializable {
@WebServiceRef(wsd1Location="http://ws.cdyne.com/WeatherWS/Weather.asmx?wsd1")
private Weather service;

private String zip;
private String city;
private List<Forecast> response;

public String getZip() { return zip; }
public void setZip(String newValue) { zip = newValue; }

public List<Forecast> getResponse() { return response; }
public String getCity() { return city; }

public String search() {
try {
ForecastReturn ret = service.getWeatherSoap().getCityForecastByZIP(zip);
response = ret.getForecastResult().getForecast();
for (Forecast f : response)
if (f.getDesciption() == null || f.getDesciption().length() == 0)
f.setDesciption("Not Available");

city = ret.getCity();
return "success";

} catch(Exception e) {
Logger.getLogger("com.corejsf").log(Level.SEVERE, "Remote call failed", e);

From the Library of Wow! eBook

Using Web Services m

return "error";
}
}
}

IBETRL T 2B B webservices/web/index. xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<Tink href="styles.css" rel="stylesheet" type="text/css"/>
<titles#{msgs.title}</title>
</h:head>
<h:body>
<h:forms>
<h1>#{msgs.weatherSearch}</h1>
#{msgs.zip}
<h:inputText value="#{weatherBean.zip}"/>
<h:commandButton value="#{msgs.search}" action="#{weatherBean.search}"/>
</h:form>
</h:body>
</htm1>

B ETR LT P R P webservices/web/success. xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://java.sun.com/jsf/html"
xmins:f="http://java.sun.com/jsf/core"
xmns:ui="http://java.sun.com/jsf/facelets"
xmins:fn="http://java.sun.com/jsp/jst1/functions">
<h:head>
<titles#{msgs.title}</title>
</h:head>
<h:body>
<h:forms>
<hl>
<h:outputFormat value="#{msgs.searchResult}">
<fiparam value="#{weatherBean.city}"/>
</h:outputFormat>
</hl>

From the Library of Wow! eBook

Chapter 12 m External Services

<table>
<tr>
<ui:repeat value="#{weatherBean.response}" var="item">
<td>
<h:panelGrid columns="1"
style="width: 8em; border: thin dotted;">
<h:outputText value="#{item.desciption}"/>
<h:graphicImage library="images"
name="#{fn:replace(item.desciption, ' ', '")}.qif"/>
<h:outputText
value=
"#{msgs.Tow}: #{item.temperatures.morningLow}"/>
<h:outputText value=
"#{msgs.high}: #{item.temperatures.daytimeHigh}"/>
</h:panelGrid>
</td>
</ui:repeat>
</tr>
</table>
<h:commandButton value="#{msgs.back}" action="index"/>
</h:form>
</h:body>
</html>
Conclusion

You have now seen how your web applications can connect to external ser-
vices, such as databases, email, and web services. Application servers provide
common services for database connection pools, authentication realms, and so
on. Dependency injection provides a convenient and portable mechanism for
locating the classes that are needed to access these services.

From the Library of Wow! eBook

This page intentionally left blank

From the Library of Wow! eBook

How DoOI...?

J Topics in This Chapter

¢ “How do | find more components?” on page 547

e “How do | support file uploads?” on page 548

¢ “How do | show an image map?” on page 557

e “How do | produce binary data in a JSF page?” on page 559

e “How do | show a large data set, one page at a time?” on
page 568

e “How do | generate a pop-up window?” on page 573

e “How do | selectively show and hide parts of a page?” on
page 581

e “How do | customize error pages?” on page 582

e “How do | write my own client-side validation tag?” on page 588
¢ “How do I configure my application?” on page 595

e “How do | extend the JSF expression language?” on page 596

¢ “How do I add a function to the JSF expression language?” on
page 599

e “How do | monitor the traffic between the browser and the
server?” on page 601

¢ “How do | debug a stuck page?” on page 602

e “How do | use testing tools when developing a JSF application?”
on page 604

e “How do | use Scala with JSF?” on page 605
e “How do | use Groovy with JSF?” on page 607

From the Library of Wow! eBook

The preceding chapters covered the JSF technology in a systematic manner,
organized by core concepts. However, every technology has certain aspects
that defy systematic exposure, and JSF is no exception. At times, you will ask
yourself “How do I...?” and not find an answer, perhaps because JSF does
not really offer support for the feature or because the solution is unintuitive.
This chapter was designed to help out. We answer, in somewhat random
order, common questions that we found in discussion groups or that we
received from readers.

How do I find more components?

The JSF standard defines a minimal set of components. The only standard
component that goes beyond basic HTML is the data table. This comes as a
disappointment to anyone who is lured by the promise of JSF to be “Swing
for the web”.

You may well wonder why the JSF specification developers did not include a
set of professionally designed components such as trees, date and time pickers,
and the like. However, it takes tremendous skill to do this, and it is a skill that
is entirely different from being able to produce a technology specification.

547

From the Library of Wow! eBook

Chapter 13 ® How Dol ...?

Here are several component libraries that are worth investigating.

e ICEfaces (http://icefaces.org) is an open source library of components with
Ajax support. There is a Netbeans plugin for ICEfaces. Version 2 is com-
patible with JSF 2.0.

. RichFaces (http://www. jboss.org/jbossrichfaces/) is another open source com-
ponent library. It is a part of the JBoss application server but can also be
used separately. Version 4 is compatible with JSF 2.0.

. PrimeFaces (http://primefaces.org) and OpenFaces (http://openfaces.org) are
two promising open source libraries with very rich selections of compo-
nents.

. The ADF Faces component set by Oracle (http://oracle.com/technoTogy/
products/adf/adffaces) is free, but not open source. It too features a good set
of well-designed components, includes Ajax functionality, and the ability
to change the look and feel with skins.

o The Apache Trinidad library (http://myfaces.apache.org/trinidad) is an open
source library that originated with an earlier version of ADF Faces that
Oracle donated to the Apache foundation.

o The Apache Tomahawk library (http://myfaces.apache.org/tomahawk) has a
number of non-visual components that are useful to solve specific JSF
issues, but the visual components are not very attractive.

¢ The Java BluePrints project has developed a set of Ajax components
(https://blueprints.dev.java.net/ajaxcomponents.html). These include autocom-
pletion, Google map interfaces, pop-up balloons, a file upload with a
progress indicator, and several other pretty and useful components.

You can find a listing of additional components at http://jsfcentral.com/products/
components.

How do I support file uploads?

The users of your application may want to upload files, such as photos or doc-
uments (see Figure 13-1 and Figure 13-2).

Unfortunately, there is no standard file upload component in JSE. However, it
turns out that it is fairly straightforward to implement one. The hard work has
already been done by the folks at the Apache organization in the Commons file
upload library (see http://jakarta.apache.org/commons/fileupload). We will show you
how to incorporate the library into a JSF component.

From the Library of Wow! eBook

http://www.jboss.org/jbossrichfaces/
http://icefaces.org
http://primefaces.org
http://openfaces.org
http://oracle.com/technology/products/adf/adffaces
http://oracle.com/technology/products/adf/adffaces
http://myfaces.apache.org/trinidad
http://myfaces.apache.org/tomahawk
https://blueprints.dev.java.net/ajaxcomponents.html
http://jsfcentral.com/products/components
http://jsfcentral.com/products/components
http://jakarta.apache.org/commons/fileupload

How do I support file uploads? m

% NOTE: The Tomahawk component set contains a file upload component
with slightly different attributes from ours (see http://myfaces.apache.org/
tomahawk). The article http://today.java.net/pub/a/today/2006/02/09/
file-uploads-with-ajax-and-jsf.html shows how you can add an Ajax
progress bar to a file upload component.

A file upload is different from all other form requests. When the form data
(including the uploaded file) is sent from the client to the server, it is encoded
with the “multipart/form-data” encoding instead of the usual “application/
x-www-form-urlencoded” encoding.

Unfortunately, JSF does not handle this encoding at all. To overcome this issue,
we install a servlet filter that intercepts a file upload and turns uploaded files
into request attributes and all other form data into request parameters. (We use
a utility method in the Commons file upload library for the dirty work of
decoding a multipart/form-data request.)

=] A file upload test - Mozilla Firefox [=a[x
File EdilL View Go Bookmarks Tools Help
<:3 - E> - [%] . L1 http-flacalhast-B0R0fileuplaad] findex faces |E|
Back Forward Reload Stop ©
Upload a photo of yourself: !Jhomefcay!booksﬂsf}corejs Browse... I Submit |
(=] File Upload [x
B cay | tabbedpane ||Ir|1ngas|
EDESktOp Name ¥ | Moditied
File System
= Y Hjjefferson.jpg 03/10/2004
(=] CD-RW/DVD-ROM Drive . .
Ilncoln.]pg 03/10/2004
ruubeveIL.jpg 0371072004
[E@washington jpg 03/10/2004

R

l X cancel || = pen

I I

\=Dé

Figure 13-1 Uploading an image file

From the Library of Wow! eBook

http://myfaces.apache.org/tomahawk
http://myfaces.apache.org/tomahawk
http://today.java.net/pub/a/today/2006/02/09/file-uploads-with-ajax-and-jsf.html
http://today.java.net/pub/a/today/2006/02/09/file-uploads-with-ajax-and-jsf.html

Chapter 13 ® How Dol ...?

Testing file upload...... - Mozilla Firefox

File [Edit View Go Dookmarks Tools lelp

@ : &
- - = http:/llocalhost: 8080fileuploadl/uploadfuploadimaage fz
Back Forward Reload Stop = P P £ 2 IZ[

Here is your image:

Done
T T

Figure 13-2 Uploaded image

The JSF application then processes the request parameters, blissfully unaware
that they were not URL encoded. The decode method of the file upload component
either places the uploaded data into a disk file or stores it in a value expression.

The code for the servlet filter is in Listing 13-1 on page 552.

% NOTE: You can find general information about servlet filters at
http://java.sun.com/products/serviet/Filters.html.

You need to install the filter in the web.xml file, using this syntax:

<filter>
<filter-name>Upload Filter</filter-name>
<filter-class>com.corejsf.UploadFilter</filter-class>
<init-params>
<param-name>com. corejsf.UploadFilter.sizeThreshold</param-name>
<param-value>1024</param-value>
</init-param>
</filter>
<filter-mapping>
<filter-name>Upload Filter</filter-name>

From the Library of Wow! eBook

http://java.sun.com/products/servlet/Filters.html

How do I support file uploads? ﬂ

<url-pattern>/upload/«</url-pattern>
</filter-mapping>

Alternatively, you can use an annotation:

@WebFilter(urlPatterns="/upload/+", initParams={
@WebInitParam(name="com.corejsf.UploadFilter.sizeThreshold", value="1024")

)
public class UploadFilter

The filter uses the com.corejsf.UploadFilter.sizeThreshold initialization parameter to
configure the file upload object. Files larger than 1024 bytes are saved to a tem-
porary disk location rather than being held in memory. Our filter supports an
additional initialization parameter, com.corejsf.UpToadFilter.repositoryPath, the
temporary location for uploaded files before they are moved to a permanent
place. The filter sets the corresponding properties of the DiskFileUpload object of
the Commons file upload library.

The filter mapping restricts the filter to URLs that start with /faces/upload,.
Thus, we avoid unnecessary filtering of other requests.

Figure 13-3 shows the directory structure of the sample application.

ﬁ fileupload.war
| index.xhtml
| next.xhtml
v (& WEB-INF
| beans.xml
| corejsf.taglib.xml

| faces-config.xml
v & lib
'_‘ commons-fileupload-1.2.1.jar
| commons-io-1.4.jar
__ web.xml
v E classes
v ﬁ com
¥ (& corejsf
| UploadFilter$1.class
_ UploadFilter.class
'_‘ UploadRenderer.class
| UserBean.class
v ﬁ upload
"] uploadimage.xhtml

Figure 13-3 The directory structure of the file upload application

From the Library of Wow! eBook

m Chapter 13 ® How Dol ...?
fileupload/src/java/com/corejsf/UploadFilter. java

package com.corejsf;

import java.io.File;

import java.io.IOException;

import java.util.Collections;

import java.util.Enumeration;

import java.util.HashMap;

import java.util.list;

import java.util.Map;

import javax.servlet.Filter;

import javax.servlet.FilterChain;

import javax.servlet.FilterConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import javax.servlet.annotation.WebFilter;

import javax.servlet.http.HttpServietRequest;

import javax.servlet.http.HttpServietRequestWrapper;

import org.apache.commons.fileupload.FileItem;

import org.apache.commons.fileupload.FileUploadException;
import org.apache.commons.fileupload.disk.DiskFileItemFactory;
import org.apache.commons.fileupload.servlet.ServletFileUpload;

public class UploadFilter implements Filter {
private int sizeThreshold = -1;
private String repositoryPath;

public void init(FilterConfig config) throws ServletException {
repositoryPath = config.getInitParameter(
"com.corejst.UploadFilter.repositoryPath");
try {
String paramValue = config.getInitParameter(
"com.corejsf.UploadFiTter.sizeThreshold");
if (paramvalue != null)
sizeThreshold = Integer.parseInt(paramvalue);
}
catch (NumberFormatException ex) {
ServletException servletEx = new ServletException();
servletEx.initCause(ex);
throw servletEx;
}
}

public void destroy() {
}

From the Library of Wow! eBook

How do I support file uploads? m

public void doFilter(ServletRequest request,
ServletResponse response, FilterChain chain)
throws IOException, ServletException {

if (!(request instanceof HttpServietRequest)) {
chain.doFilter(request, response);
return;

}

HttpServletRequest httpRequest = (HttpServletRequest) request;

boolean isMultipartContent

= ServletFileUpload.isMultipartContent(httpRequest);
if (!isMultipartContent) {

chain.doFilter(request, response);

return;

}

DiskFileItemFactory factory = new DiskFileItemFactory();
if (sizeThreshold >= 0)
factory.setSizeThreshold(sizeThreshold);
if (repositoryPath != null)
factory.setRepository(new File(repositoryPath));
ServletFileUpload upload = new ServletFileUpload(factory);

try {
@SuppressWarnings("unchecked") List<FileItem> items
= (List<FileItem>) upload.parseRequest(httpRequest);
final Map<String, String[]> map = new HashMap<String, String[]>();
for (FileItem item : items) {
String str = item.getString();
if (item.isFormField())
map.put(item.getFieldName(), new String[] { str });
else
httpRequest.setAttribute(item.getFieldName(), item);
}

chain.doFilter(new
HttpServletRequestWrapper(httpRequest) {

pubTlic Map<String, String[]> getParameterMap() {
return map;

}

// busywork follows ... should have been part of the wrapper

pubTic String[] getParameterValues(String name) {
Map<String, String[]> map = getParameterMap()
return (String[]) map.get(name);

From the Library of Wow! eBook

m Chapter 13 ® How Dol ...?

}

public String getParameter(String name) {
String[] params = getParameterValues(name);
if (params == null) return null;
return params[0];

}

public Enumeration<String> getParameterNames() {
Map<String, String[]> map = getParameterMap()
return Collections.enumeration(map.keySet());

}
}, response);
} catch (FileUploadException ex) {
ServletException servletEx = new ServletException();
servietEx.initCause(ex);
throw servletEx;
}
}
}
Now we move on to the upload component. It supports two attributes: value
and target. The value attribute denotes a value expression into which the file
contents are stored. This makes sense for short files. More commonly, you will
use the target attribute to specify the target location of the file.

The implementation of the FileUpToadRenderer class in Listing 13-2 is straightfor-
ward. The encodeBegin method renders the HTML element. The decode method
retrieves the file items that the servlet filter placed into the request attributes
and disposes of them as directed by the tag attributes. The target attribute
denotes a file relative to the server directory containing the root of the web
application.

Finally, when using the file upload tag, you need to remember to set the form
encoding to “multipart/form-data” (see Listing 13-3).

fileupload/src/java/com/corejsf/UploadRenderer. java

package com.corejsf;

import java.io.File;

import java.io.IOException;

import java.io.InputStream;

import java.io.UnsupportedEncodingException;
import javax.el.ValueExpression;

import javax.faces.FacesException;

import javax.faces.component.EditableValueHolder;
import javax.faces.component.UIComponent;

From the Library of Wow! eBook

How do I support file uploads? E

import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;
import javax.faces.context.ResponseWriter;
import javax.faces.render.FacesRenderer;
import javax.faces.render.Renderer;

import javax.servlet.ServletContext;

import javax.servlet.http.HttpServletRequest;
import org.apache.commons.fileupload.FileItem;

@FacesRenderer(componentFamily="javax.faces.Input",
rendererType="com.corejsf.Upload")
pubTic class UploadRenderer extends Renderer {
public void encodeBegin(FacesContext context, UIComponent component)
throws IOException {
if (!component.isRendered()) return;
ResponseWriter writer = context.getResponseWriter();

String clientId = component.getClientId(context);

writer.startETlement("input", component);
writer.writeAttribute("type", "file", "type");
writer.writeAttribute("name", clientId, "clientId");
writer.endETement("input");
writer.flush();

}

public void decode(FacesContext context, UIComponent component) {
ExternalContext external = context.getExternalContext();
HttpServletRequest request = (HttpServietRequest) external.getRequest();
String clientId = component.getClientId(context);
FileItem item = (FileItem) request.getAttribute(clientld);

Object newValue;
ValueExpression valueExpr = component.getValueExpression("value");
if (valueExpr != null) {
(Tass<?> valueType = valueExpr.getType(context.getELContext());
if (valueType == byte[].class) {
newValue = item.get();
}
else if (valueType == InputStream.class) {
try {
newValue = item.getInputStream();
} catch (IOException ex) {
throw new FacesException(ex);
}
}

else {

From the Library of Wow! eBook

Chapter 13 ® How Dol ...?

String encoding = request.getCharacterEncoding();
if (encoding != null)
try {
newalue = item.getString(encoding);
} catch (UnsupportedEncodingException ex) {
newalue = item.getString();
}
else
newValue = item.getString();
}
((EditableValueHolder) component).setSubmittedValue(newValue);
((EditableValueHolder) component).setValid(true);
}

Object target = component.getAttributes().get("target");

if (target != null) {
File file;
if (target instanceof File)
file = (File) target;
else {
ServietContext servletContext
= (ServletContext) external.getContext();
String realPath = servletContext.getRealPath(target.toString());
file = new File(realPath);
}

try { // ugh--write is declared with "throws Exception”
item.write(file);

} catch (Exception ex) {
throw new FacesException(ex);

}

}
}
}

fileupload/web/upToad/upToadImage.xhtm]

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtm11/DTD/xhtm]1-strict.dtd">

<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:h="http://java.sun.com/jsf/htm1"
xmins:corejsf="http://corejsf.com">

<h:head>
<title>A file upload test</title>

</h:head>

From the Library of Wow! eBook

How do I show an image map? 557

<h:body>
<h:form enctype="multipart/form-data">
Upload a photo of yourself:
<corejsf:upload target="upload/#{user.id}_image.jpg" />
<h:commandButton value="Submit" action="/next" />
</h:form>
</h:body>
</htm1>

How do I show an image map?

To implement a client-side image map, supply the usemap attribute with the
h:outputImage element:

<h:outputImage value="image location" usemap="#alabel"/>
You can then specify the map in HTML in the JSF page:

<map name="alabel">

<area shape="polygon" coords="..." href="...">
<area shape="rect" coords="..." href="...">
</map>

However, this approach does not integrate well with JSF navigation. It would
be nicer if the map areas acted like command buttons or links.

Chapter 13 of the Java EE 5 tutorial (http://java.sun.com/javaee/5/docs/tutorial/doc)
includes sample map and area tags that overcome this limitation.

To see the image map in action, load the bookstore6 web application that is
included with the tutorial (see Figure 13—4). Here is how the tags are used in
the tutorial application:

<h:graphicImage id="mapImage" url="/template/world.jpg" alt="#{bundle.ChooseLocale}"
usemap="#worldMap" />
<b:map id="worldMap" current="NAmericas" immediate="true" action="bookstore"
actionlListener="#{1ocaleBean.chooselLocaleFromMap}" >
<b:area id="NAmerica" value="#{NA}" onmouseover="/template/world_namer.jpg"
onmouseout="/template/world.jpg" targetImage="mapImage" />
<b:area id="SAmerica" value="#{SA}" onmouseover="/template/world_samer.jpg"
onmouseout="/template/world.jpg" targetImage="mapImage" />

</b:map>
The area values are defined in faces-config.xml, such as:

<managed-bean>
<managed-bean-name> NA </managed-bean-name>
<managed-bean-class> com.sun.bookstore6.model.ImageArea </managed-bean-class>

From the Library of Wow! eBook

http://java.sun.com/javaee/5/docs/tutorial/doc

m Chapter 13 ® How Dol ...?

<managed-bean-scope> application </managed-hean-scope>
<managed-property>
<property-name>coords</property-name>
<value>
53,109,1,110,2,167,19,168,52,149,67,164,67,165,68,167,70,168,72,170,74,172,75,174,77,
175,79,177,81,179,80,179,77,179,81,179,81,178,80,178,82,211,28,238,15,233,15,242,31,
252,36,247,36,246,32,239,89,209,92,216,93,216,100,216,103,218,113,217,116,224,124,221,

128,230,163,234,185,189,178,177,162,188,143,173,79,173,73,163,79,157,64,142,54,139, 53,
109

</value>
</managed-property>
</managed-bean>

Alternatively, you can use a technique that we showed in Chapter 7. Put the

image inside a command button, and process the x and y coordinates on the
server side:

<h:commandButton image="..." actionListener="..."/>

= Duke's Bookstore - Mozilla Firefox E’E x
Eile Edit View Go Bookmarks Tpols Help

<::| - E> - lg |u http:/Mlocalhost:8080/bookstore s/

Back Forward Reload Stop

=]

[2]

Choose Your Preferred Locale From the Map

English German French Spanish

4]

Fmd:‘

(@I Find Next @ Find Previous [Z|Highlight all [] Match case
| Done
7

Figure 13-4 Image map sample component

From the Library of Wow! eBook

How do I produce binary data in a JSF page? ﬂ

Attach an action listener that gets the client ID of the button, attaches the suf-
fixes .x and .y, and looks up the coordinate values in the request map. Process
the values in any desired way. With this technique, the server application
needs to know the geometry of the image.

How do I produce binary data in a JSF page?

Sometimes you will want to dynamically produce binary data, such as an
image or a PDF file. It is difficult to do this in JSF because the default view
handler sends text output to a writer, not a stream. It would theoretically be
possible to replace the view handler, but it is far easier to use a helper servlet
for producing the binary data. Of course, you still want to use the comforts of
JSF—in particular, value expressions—to customize the output. Therefore, you
want to provide a JSF tag that gathers the customization data and sends it to a
servlet.

As an example, we implement a JSF tag that creates a chart image (see Figure
13-5). The image contains PNG-formatted data that was dynamically generated.

(@ [Generating binary data - Mozilla Firefax

Hle Edit View History Bookmarks Jools Help |

L 2] |g hitp:/flocalhost:8080/binary1/ v |

Here is your image:

Diameters of the Planets
1] 25,000 50,000 75,000

Mercury
Venus
Earth

Mars

Jupiter

Saturn

Uranus

Meptune

Pluto

Dane

Figure 13-5 Producing binary data

From the Library of Wow! eBook

Chapter 13 ® How Dol ...?

Listing 13-4 includes the chart with the following tag:

<corejsfichart width="500" height="500"
title="Diameters of the Planets"
names="#{planets.names}" values="#{planets.values}"/>

Here, names and values are value expression of type String[] and doubTe[]. The ren-
derer, whose code is shown in Listing 13-5, produces an image tag:

The image is produced by the BinaryServlet (see Listing 13-6).
To configure the servlet, add these lines to web.xm1:

<servlet>
<servlet-name>BinaryServlet</serviet-name>
<servlet-class>com.corejsf.BinaryServlet</serviet-class>
</serviet>
<servlet-mapping>
<servlet-name>BinaryServlet</servlet-name>
<url-pattern>/BinaryServiet</url-pattern>
</servlet-mapping>

Alternatively, you can use an annotation:
@WebServlet("/BinaryServlet") public class BinaryServlet

Of course, the servlet needs to know the customization data. The renderer
gathers the data from the component attributes in the usual way, bundles them
into a transfer object (see Listing 13-8), and places the transfer object into the
session map:

Map<String, Object> attributes = component.getAttributes();
Integer width = (Integer) attributes.get("width");

if (width == nul11) width = DEFAULT_WIDTH;

Integer height = (Integer) attributes.get("height");

if (height == null) height = DEFAULT_HEIGHT;

String title = (String) attributes.get("title");

if (title == nu1l) title = "";

String[] names = (String[]) attributes.get("names");
doubTe[] values = (double[]) attributes.get("values");

ChartData data = new ChartData();
data.setWidth(width);
data.setHeight(height);
data.setTitle(title);
data.setNames(names);
data.setValues(values);

From the Library of Wow! eBook

How do I produce binary data in a JSF page? m

String id = component.getClientId(context);

ExternalContext external = FacesContext.getCurrentInstance().getExternalContext();
Map<String, Object> session = external.getSessionMap();

session.put(id, data);

The servlet retrieves the transfer object from the session map and calls the trans-
fer object’s write method, which renders the image into the response stream:

HttpSession session = request.getSession();
String id = request.getParameter("id");
BinaryData data = (BinaryData) session.getAttribute(id);

response.setContentType(data.getContentType());
OutputStream out = response.getOutputStream();
data.write(out);

out.close();

To keep the servlet code general, we require that the transfer class implements
an interface BinaryData (see Listing 13-7).

% NOTE: To keep the code for generating the binary data short, we use the

JFreeChart library (http://jfree.org/jfreechart) for generating the image.

You need to add the jfreechart-version.jar and jcommon-version.jar files to

the WEB-INF/1ib directory. If you want to try out the code without the JFree-
Chart library, use the ChartData class from the next example.

You use the same approach to generate any kind of binary data. The only dif-
ference is the code for writing data to the output stream.

binaryl/web/index.xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:h="http://java.sun.com/jsf/htm1" xmIns:corejsf="http://corejsf.com">
<h:head>
<title>Generating binary data</title>
</h:head>
<h:body>
<h:forms>
<p>Here 1is your image:</p>
<corejsf:chart width="500" height="500" title="Diameters of the Planets"
names="#{planets.names}" values="#{planets.values}"/>
</h:form>
</h:body>
</html>

From the Library of Wow! eBook

http://jfree.org/jfreechart

m Chapter 13 ® How Dol ...?

binaryl/src/java/com/corejsf/ChartRenderer. java

package com.corejsf;

import java.io.IOException;

import java.util.Map;

import javax.faces.component.UIComponent;
import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;
import javax.faces.context.ResponseWriter;
import javax.faces.render.FacesRenderer;
import javax.faces.render.Renderer;

@FacesRenderer(componentFamily="javax.faces.Output",
rendererType="com.corejsf.Chart")
pubTic class ChartRenderer extends Renderer {
private static final int DEFAULT_WIDTH = 200;
private static final int DEFAULT_HEICHT = 200;

public void encodeBegin(FacesContext context, UIComponent component)
throws IOException {
if (!component.isRendered()) return;

Map<String, Object> attributes = component.getAttributes();
Integer width = toInteger(attributes.get("width"));

if (width == nu1l) width = DEFAULT_WIDTH;

Integer height = toInteger(attributes.get("height"));

if (height == null) height = DEFAULT_HEIGHT;

String title = (String) attributes.get("title");

if (title == null) title = "";

String[] names = (String[]) attributes.get("names");
double[] values = (double[]) attributes.get("values");

if (names == null || values == null) return;

ChartData data = new ChartData();
data.setWidth(width);
data.setHeight(height);
data.setTitle(title);
data.setNames(names);
data.setValues(values);

String id = component.getClientId(context);
ExternalContext external

= FacesContext.getCurrentInstance().getExternalContext();
Map<String, Object> session = external.getSessionMap();
session.put(id, data);

From the Library of Wow! eBook

How do I produce binary data in a JSF page? m

ResponseWriter writer = context.getResponseWriter();
writer.startElement("img", component);

writer.writeAttribute("width", width, null);
writer.writeAttribute("height", height, null);

String path = external.getRequestContextPath();
writer.writeAttribute("src", path + "/BinaryServlet?id=" + id, null);
writer.endETement("img");

context.responseComplete();

}

private static Integer toInteger(Object value) {
if (value == nu1l) return null;
if (value instanceof Number) return ((Number) value).intValue();
if (value instanceof String) return Integer.parseInt((String) value);
throw new I11egalArgumentException("Cannot convert " + value);
}
}

binaryl/src/java/com/corejsf/BinaryServlet.java

package com.corejsf;

import java.io.IOException;
import java.io.OutputStream;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

pubTic class BinaryServlet extends HttpServlet {
protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
HttpSession session = request.getSession();
String id = request.getParameter("id");
BinaryData data = (BinaryData) session.getAttribute(id);

response.setContentType(data.getContentType());
OutputStream out = response.getOutputStream();
data.write(out);

out.close();

From the Library of Wow! eBook

m Chapter 13 ® How Dol ...?

protected void doGet(HttpServietRequest request, HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

}

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);
}
}

binaryl/src/java/com/corejsf/BinaryData.java

package com.corejsf;

import java.io.IOException;
import java.io.OutputStream;

public interface BinaryData {
String getContentType();
void write(OutputStream out) throws IOException;

}

binaryl/src/java/com/corejsf/ChartData. java

package com.corejsf;

import java.io.IOException;
import java.io.OutputStream;

import org.jfree.chart.ChartFactory;

import org.jfree.chart.ChartUtilities;

import org.jfree.chart.JFreeChart;

import org.jfree.chart.plot.PlotOrientation;

import org.jfree.data.category.DefaultCategoryDataset;

public class ChartData implements BinaryData {
private int width, height;
private String title;
private String[] names;
private double[] values;

private static final int DEFAULT_WIDTH = 200;
private static final int DEFAULT_HEIGHT = 200;

From the Library of Wow! eBook

How do I produce binary data in a JSF page? m

public ChartData() {
width = DEFAULT_WIDTH;
height = DEFAULT_HEIGHT;
}

public void setWidth(int width) {
this.width = width;
}

public void setHeight(int height) {
this.height = height;
}

public void setTitle(String title) {
this.title = title;
}

public void setNames(String[] names) {
this.names = names;

}

public void setValues(double[] values) {
this.values = values;

}

public String getContentType() {
return "image/png";

}

public void write(OutputStream out) throws IOException {
DefaultCategoryDataset dataset = new DefaultCategoryDataset();
for (int i = 0; i < names.length; i++)
dataset.addValue(values[i], "", names[i])
JFreeChart chart = ChartFactory.createBarChart(
title, // title
" // domain axis Tabel
, // range axis label
dataset,
PTotOrientation.HORIZONTAL,
false, // legend
false, // tooltips
false // urls
);

nn

ChartUtilities.writeChartAsPNG(out, chart, width, height);
}
}

From the Library of Wow! eBook

Chapter 13 ® How Dol ...?

It is also possible to generate binary data directly from JSE, without a servlet.
However, you must be very careful with the timing and grab the servlet output
stream before the JSF implementation starts writing the response. Grabbing the
servlet output stream cannot happen in a component renderer. A JSF compo-
nent contributes to the page output, but it does not replace it.

Instead, we install a phase listener that is activated after the Restore View
phase. It writes the binary data and then calls the responseComplete method to
skip the other phases:

pubTic class BinaryPhaselListener implements Phaselistener {
public Phaseld getPhaseld() {
return PhaseId.RESTORE_VIEW;
}

pubTic void afterPhase(PhaseEvent event) {
if (levent.getFacesContext().getViewRoot().getViewId()
.startsWith("/binary")) return;
HttpServletResponse servietResponse
= (HttpServietResponse) external.getResponse();
servietResponse.setContentType(data.getContentType());
OutputStream out = servletResponse.getOutputStream();
write data to out
context.responseComplete();
}
}

The filter action happens only with view IDs that start with /binary. As with
the servlet solution, the key for the data transfer object is included as a GET
parameter.

To trigger the filter, the image URL needs to be a valid JSF URL such as
appname/binary.faces?id=key or appname/faces/binary?id=key. The exact type depends
on the mapping of the Faces servlet. The renderer obtains the correct format
from the view handler’s getActionURL method:

ViewHandler handler = context.getApplication().getViewHandler();
String url = handler.getActionURL(context, "/binary");

Listing 13-9 shows the phase listener. The following element is required in
faces-config.xml to install the listener:

<lifecycle>
<phase-Tistener>com.corejsf.BinaryPhaselistener</phase-Tisteners
</lifecycle>

From the Library of Wow! eBook

How do I produce binary data in a JSF page? L1.74

% NOTE: In the example code, we generate the chart from scratch without
using JFreeChart, illustrating that it doesn’'t matter how the binary data are
generated.

binary2/src/java/com/corejsf/BinaryPhaselistener.java

package com.corejsf;

import java.io.IOException;

import java.io.OutputStream;

import java.util.Map;

import javax.faces.FacesException;

import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;
import javax.faces.event.PhaseEvent;

import javax.faces.event.Phaseld;

import javax.faces.event.Phaselistener;

import javax.servlet.http.HttpServletResponse;

public class BinaryPhaselistener implements PhaselListener {
public static final String BINARY_PREFIX = "/binary";

public static final String DATA_ID_PARAM = "id";

public Phaseld getPhaseld() {
return PhaseId.RESTORE_VIEW;
}

public void beforePhase(PhaseEvent event) {

}

public void afterPhase(PhaseEvent event) {
if (levent.getFacesContext().getViewRoot().getViewId().startsWith(
BINARY_PREFIX))
return;

FacesContext context = event.getFacesContext();
ExternalContext external = context.getExternalContext();

String id = (String) external.getRequestParameterMap().get(DATA_ID_PARAM);
HttpServletResponse servletResponse =
(HttpServletResponse) external.getResponse();
try {
Map<String, Object> session = external.getSessionMap();

From the Library of Wow! eBook

m Chapter 13 ® How Dol ...?

BinaryData data = (BinaryData) session.get(id);

if (data != null) {
servletResponse.setContentType(data.getContentType());
OutputStream out = servletResponse.getOutputStream();
data.write(out);

}
} catch (IOException ex) {
throw new FacesException(ex);

}

context.responseComplete();

}
}

How do I show a large data set, one page at a time?

As you saw in Chapter 6, you can add scrollbars to a table. However, if the
table is truly large, you don’t want it sent to the client in its entirety. Down-
loading the table takes a long time, and chances are that the application user
wants to see only the first few rows anyway.

The standard user interface for navigating a large table is a pager, a set of links
to each page of the table, to the next and previous pages, and if there are a great
number of pages, to the next and previous batch of pages. Figure 13—6 shows
a pager that scrolls through a large data set—the predefined time zones,
obtained by a call to java.util.TimeZone.getAvailableIDs().

Unfortunately, JSF does not include a pager component. However, it is fairly
easy to write one, and we give you the code to use or modify in your own
applications.

The pager is a companion to a data table. You specify the ID of the data table,
the number of pages that the pager displays, and the styles for the selected and
unselected links. For example:

<h:dataTable id="timezones" value="#{bb.data}" var="row" rows="10">

</h:dataTable>
<corejsf:pager dataTableId="timezones" showpages="20"
selectedStyleClass="currentPage"/>

Suppose the user clicks the “>" link to move to the next page. The pager
locates the data table and updates its first property, adding the value of the
rows property. You will find that code in the decode method of the PagerRenderer
in Listing 13-10.

From the Library of Wow! eBook

How do I show a large data set, one page at a time? m

The encode method is a bit more involved. It generates a set of links. Similar to a
commandLink, clicking the link activates JavaScript code that sets a value in a hid-
den field and submits the form.

Listing 13-11 shows the index.xhtm] page that generates the table and the pager.
Listing 13-12 shows the trivial backing bean.

= Pager Test - Mozilla Firefox

File Edit View Go Bookmarks Tools Help

N &) :)
B<a13k - F-:r_\: . - Rg_gau crop L2 http:/flocalhost:8080/pager/index faces
AmericajArgentina/Ushuaia
America/Bahia
America/Belem
America/Buenos_Aires
America/Catamarca
America/Cayenne
AmericafCordoba
America/Fortaleza
America/Godthab
Americafjujuy
<< 2122232425202728293031323334353637383940>>>

Find: @ tind Next © Find Frevious Highnight all] Matgl

Done
T T

Figure 13-6 Table with a pager

% NOTE: The Apache Tomahawk dataScroller component offers similar
functionality.

pager/src/java/com/corejsf/PagerRenderer. java

package com.corejsf;

import java.io.IOException;

import java.util.Map;

import javax.faces.component.UIComponent;
import javax.faces.component.UIData;
import javax.faces.component.UIForm;
import javax.faces.context.FacesContext;
import javax.faces.context.ResponseWriter;
import javax.faces.render.FacesRenderer;
import javax.faces.render.Renderer;

From the Library of Wow! eBook

570 Chapter 13 ® How Dol ...?

@FacesRenderer(componentFamily="javax.faces.Command",
rendererType="com.corejsf.Pager")
pubTlic class PagerRenderer extends Renderer {
public void encodeBegin(FacesContext context, UIComponent component)
throws IOException {
String id = component.getClientId(context);
UIComponent parent = component;
while (!(parent instanceof UIForm)) parent = parent.getParent();
String formId = parent.getClientId(context);

ResponseWriter writer = context.getResponseWriter();

String styleClass = (String) component.getAttributes().get("styleClass");
String selectedStyleClass

= (String) component.getAttributes().get("selectedStyleClass");
String dataTableId = (String) component.getAttributes().get("dataTableld");
int showpages = toInt(component.getAttributes().get("showpages"));

// find the component with the given ID
UIData data = (UIData) component.findComponent(dataTableld);

int first = data.getFirst();

int itemcount = data.getRowCount();

int pagesize = data.getRows();

if (pagesize <= 0) pagesize = itemcount;

int pages = itemcount / pagesize;
if (itemcount % pagesize != Q) pages++;

int currentPage = first / pagesize;
if (first >= itemcount - pagesize) currentPage = pages - 1;
int startPage = 0;
int endPage = pages;
if (showpages > 0) {
startPage = (currentPage / showpages) # showpages;
endPage = Math.min(startPage + showpages, pages);
}
if (currentPage > 0)
writeLink(writer, component, formId, id, "<", styleClass);

if (startPage > 0)
writeLink(writer, component, formId, id, "<<", styleClass);

for (int i = startPage; i < endPage; i++) {

writeLink(writer, component, formId, id, "" + (i + 1),
i == currentPage ? selectedStyleClass : styleClass);

From the Library of Wow! eBook

How do I show a large data set, one page at a time? 571

}

if (endPage < pages)
writeLink(writer, component, formId, id, ">>", styleClass);

if (first < itemcount - pagesize)
writeLink(writer, component, formId, id, ">", styleClass);

// hidden field to hold result
writeHiddenField(writer, component, id);

}

private void writelLink(ResponseWriter writer, UIComponent component,
String formId, String id, String value, String styleClass)
throws IOException {
writer.writeText(" ", null);
writer.startElement("a", component);
writer.writeAttribute("href", "#", null);
writer.writeAttribute("onclick", onclickCode(formId, id, value), null);
if (styleClass != null)

writer.writeAttribute("class", styleClass, "styleClass");

writer.writeText(value, null);
writer.endElement("a");

}

private String onclickCode(String formId, String id, String value) {
return new StringBuilder().append("document.forms['")
.append(formId).append("']['")
.append(id).append("'].value="").append(value).append("'; document.forms['")
.append(formId).append("'].submit(); return false;").toString();

}

private void writeHiddenField(ResponseWriter writer, UIComponent component,
String id) throws IOException {
writer.startElement("input", component);
writer.writeAttribute("type", "hidden", null);
writer.writeAttribute("name", id, null);
writer.endElement("input");

}

public void decode(FacesContext context, UIComponent component) {
String id = component.getClientId(context);
Map<String, String> parameters
= context.getExternalContext().getRequestParameterMap();

String response = (String) parameters.get(id);
if (response == null || response.equals("")) return;

From the Library of Wow! eBook

m Chapter 13 ® How Dol ...?

String dataTableId = (String) component.getAttributes().get("dataTableId");
int showpages = toInt(component.getAttributes().get("showpages"));

UIData data = (UIData) component.findComponent(dataTableld);

int first = data.getFirst();

int itemcount = data.getRowCount();

int pagesize = data.getRows();

if (pagesize <= 0) pagesize = itemcount;

if (response.equals("<")) first -= pagesize;
else if (response.equals(">")) first += pagesize;
else if (response.equals("<<")) first -= pagesize = showpages;
else if (response.equals(">>")) first += pagesize » showpages;
else {
int page = Integer.parselnt(response);
first = (page - 1) = pagesize;
}
if (first + pagesize > itemcount) first = itemcount - pagesize;
if (first < @) first = 0;
data.setFirst(first);
}

private static int toInt(Object value) {
if (value == nu1l) return 0;
if (value instanceof Number) return ((Number) value).intValue();
if (value instanceof String) return Integer.parseInt((String) value);
throw new I11egalArgumentException("“Cannot convert " + value);
}
}

pager/web/index.xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtm]1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://java.sun.com/jsf/html"
xmins:ui="http://java.sun.com/jsf/facelets"
xmins:corejsf="http://corejsf.com">
<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<title>Pager Test</title>
</h:head>
<h:body>

From the Library of Wow! eBook

How do I generate a pop-up window? 573

<ui:debug/>
<h:forms>

<h:dataTable id="timezones" value="#{tz.data}" var="row" rows="10">

<h:column>#{row}</h:column>
</h:dataTable>
<corejsf:pager dataTableId="timezones" showpages="20"
selectedStyleClass="currentPage"/>
</h:form>
</h:body>
</htm1>

BRSSP pager/src/java/com/corejst/TimeZoneBean. java

package com.corejsf;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.RequestScoped;
// or import javax.faces.bean.RequestScoped;

@Named("tz") // or @ManagedBean(name="tz")

@RequestScoped

pubTic class TimeZoneBean {
private String[] data = java.util.TimeZone.getAvailableIDs();
public String[] getData() { return data; }

}

How do I generate a pop-up window?

The basic method for a pop-up window is simple. Use the JavaScript calls:

popup = window.open(url, name, features);
popup. focus();

The features parameter is a string, such as:

"height=300,width=200, toolbhar=no,menubar=no"

The pop-up window should be displayed when the user clicks a button or link.
Attach a function to the onclick handler of the button or link, and have the func-
tion return false so that the browser does not submit the form or follow the

link. For example:

<h:commandButton value="...

onclick="doPopup(this); return false;"/>

The doPopup function contains the JavaScript instructions for popping up the

window. It is contained in a script tag inside the page header.

From the Library of Wow! eBook

574 Chapter 13 B How Dol ...?

However, challenges arise when you need to transfer data between the main
window and the pop-up.

Now we look at a specific example. Figure 13-7 shows a page with a pop-up
window that lists the states of the USA or the provinces of Canada, depending
on the setting of the radio buttons. The list is generated by a backing bean on
the server.

How does the backing bean know which state was selected? After all, the form
has not yet been posted back to the server when the user requests the pop-up.
We show you two solutions—each of them is interesting in its own right and
may give you ideas for solving similar problems.

In the first solution, we pass the selection parameter to the pop-up URL, like
this:

window.open("popup.faces?country=" + country[i].value, "popup", features);

The popup. faces page retrieves the value of the country request parameter as
param.country:

<h:dataTable value="#{bb.states[param.country]}" var="state">

Here, the states property of the backing bean bb yields a map whose index is the
country name.

=] A Simple Java Server Faces Application - Mozilla Firefox [—[O]x
File Edit View Go Bookmarks JTools Help

@ . » . &

http://localhost: 8080/popup/index2faces H
Back Forward Reload Stop = .

Country: @ UsA ¢ Canada

State/Province: |

Next | E|http:fjlncalhnst:1_|l:||x
-

Alabama
Alaska
Arizana
Arkansas
California
Colorado
Connecticut
Delaware
@ Find: Florida revious [=]Highlight all [] Matg
Tone Georgia
T Hawaii I
Idaho

=

Figure 13-7 Popping up a window to select a state or province

From the Library of Wow! eBook

How do I generate a pop-up window? 575

The second solution (suggested by Marion Bass and Sergey Smirnov) is more
involved, but also more powerful. In this technique, the pop-up window is first
created as a blank window and then filled with the response to a JSF command.

The JSF command is issued by a form that contains a hidden field and an invis-
ible link, like this:
<h:form id="hidden" target="popup">
<h:inputHidden id="country" value="#{bb.country}"/>

<h:commandLink id="go" action="showStates"/>
</h:form>

Note the following details:

* The target of the form has the same name as the pop-up window. There-
fore, the browser will show the result of the action inside the pop-up.

¢ The hidden country field will be populated before the form is submitted.
It sets the bb.country value expression. This enables the backing bean to
return the appropriate set of states or provinces.

* The action attribute of the command link is used by the navigation
handler to select the JSF page that generates the pop-up contents.

The doPopup function initializes the hidden field and fires the link action:

document.getETlementById("hidden:country").value = country[i].value;
document.getETlementById("hidden:go").onclick(null);

The value of the selected state or province is transferred into the hidden field.
When the hidden form is submitted, that value will be stored in the backing
bean.

In this solution, the JSF page for the pop-up is more straightforward. The table
of states or provinces is populated by the bean property call:

<h:dataTable value="#{bb.statesForCountry}" var="state">

The statesForCountry property takes the country property into account—it was set
when the hidden form was decoded. This approach is more flexible than the
first approach because it allows arbitrary bean properties to be set before the
pop-up contents are computed.

With both approaches, it is necessary to send the pop-up data back to the origi-
nal page. However, this can be achieved with straightforward JavaScript. The
pop-up’s opener property is the window that opened the pop-up. When the user
clicks a link in the pop-up, the event handler sets the value of the correspond-
ing text field in the original page:

opener.document. forms[formId] [formId + ":state"].value = value;

From the Library of Wow! eBook

Chapter 13 ® How Dol ...?

How does the pop-up know the form ID of the original form? Here we take
advantage of the flexibility of JavaScript. You can add instance fields to any
object on-the-fly. We set an openerFornId field in the pop-up window when it is
constructed:

popup = window.open(...);
popup.openerFormId = source.form.id;

When we are ready to modify the form variables, we retrieve it from the pop-
up window, like this:

var formId = window.openerFormId;

These are the tricks that you need to know to deal with pop-up windows.
The following example shows the two approaches that we discussed. The
techniquel.xhtml, popupl.xhtml, and popupl.js files in Listings 13-13 through 13-15
show the first approach, using a request parameter to configure the pop-up
page.

The technique2.xhtml, popup2.xhtml, and popup2. js files in Listings 13-16 through
13-18 show the second approach, filling the pop-up page with the result of a
JSF action. Listing 13-19 shows the backing bean.

popup/web/techniquel.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:h="http://java.sun.com/jsf/html"
xmins:f="http://java.sun.com/jsf/core">
<h:head>
<h:outputScript Tibrary="javascript" name="popupl.js"/>
<title>Popup window technique 1</title>
</h:head>
<h:body>
<h:forms>
<table>
<tr>
<td>Country:</td>
<td><h:selectOneRadio id="country" value="#{bb.country}">
<fiselectItem itemLabel="USA" itemValue="USA"/>
<f:selectItem itemLabel="Canada" itemValue="Canada"/>
</h:selectOneRadio></td>
</tr>
<tr>
<td>State/Province:</td>

From the Library of Wow! eBook

How do I generate a pop-up window? 577

<td><h:inputText id="state" value="#{bb.state}"/></td>
<td><h:commandButton value="..."
onclick="doPopup(this); return false;"/></td>
</tr>
</table>
<p><h:commandButton value="Next" action="index"/></p>
</h:form>
</h:body>
</html>

popup/web/popupl.xhtml

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.o0rg/TR/xhtm11/DTD/xhtm]1-transitional.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<h:outputScript Tibrary="javascript" name="popupl.js"/>
<title>Select a state/province</title>

</h:head>
<h:body>
<h:forms>
<h:dataTable value="#{bb.states[param.country]}" var="state">
<h:column>
<h:outputLink value="#" onclick="doSave('#{state}');">

#{state}
</h:outputLink>
</h:coTumn>
</h:dataTable>
</h:form>
</h:body>
</html>

popup/web/resources/javascript/popupl.js

function doPopup(source) {
country = source.form{source.form.id + ":country"];
for (var i = 0; i < country.length; i++) {
if (country[i].checked) {
popup = window.open("popupl.xhtml?country="
+ country[i].value, "popup",
"height=300,width=200, toolbar=no,menubar=no,"
+ "scrollbars=yes");
popup.openerFormId = source.form.id;
popup. focus();

From the Library of Wow! eBook

578 Chapter 13 ® How Dol ...?

}
}

function doSave(value) {
var formId = window.openerFormId;
opener.document. forms[formId] [formId + ":state"].value = value;
window.cTose();

}

popup/web/technique2.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm] PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtm]1-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmIns:h="http://java.sun.com/jsf/htm1" xmins:f="http://java.sun.com/jsf/core">
<h:head>
<h:outputScript Tibrary="javascript" name="popupl.js"/>
<title>Popup window technique 2</title>
</h:head>
<h:body>
<h:forms>
<table>
<tr>
<td>Country:</td>
<td><h:selectOneRadio id="country" value="#{bb.country}">
<f:selectItem itemLabel="USA" itemValue="USA"/>
<f:selectItem itemLabel="Canada" itemValue="Canada"/>
</h:selectOneRadio></td>
</tr>
<tr>
<td>State/Province:</td>
<td><h:inputText id="state" value="#{bb.state}"/></td>
<td><h:commandButton value="..."
oncTlick="doPopup(this); return false;"/></td>
</tr>
</table>
<p><h:commandButton value="Next" action="1index"/></p>
</h:form>

<!-- This hidden form sends a request to a popup window. -->
<h:form id="hidden" target="popup">
<h:inputHidden id="country" value="#{bb.country}"/>
<h:commandLink id="go" action="popup2"/>
</h:form>
</h:body>
</html>

From the Library of Wow! eBook

How do I generate a pop-up window? 579

popup/web/popup2 . xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm]1-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<h:outputScript Tibrary="javascript" name="popupl.js"/>
<title>Select a state/province</title>

</h:head>
<h:body>
<h:forms>
<h:dataTable value="#{bb.statesForCountry}" var="state">
<h:column>
<h:outputLink value="#" onclick="doSave('#{state}');">

#{state}
</h:outputLink>
</h:column>
</h:dataTable>
</h:form>
</h:body>
</htm1>

popup/web/resources/javascript/popup2.js

function doPopup(source) {
country = source.form{source.form.id + ":country"];
for (var i = 0; i < country.length; i++) {
if (country[i].checked) {
popup = window.open("", "/faces/popup2.xhtml",
"height=300,width=200, toolbar=no,menubar=no,scrollbars=yes");
popup.openerFormId = source.form.id;
popup. focus();
document.getElementById("hidden:country").value = country[i].value;
document.getElementById("hidden:go").onclick(null);
}
}

}

function doSave(value) {
var formId = window.openerFormId;
opener.document. forms[formId] [formId + ":state"].value = value;
window.close();

}

From the Library of Wow! eBook

m Chapter 13 ® How Dol ...?
popup/src/java/com/corejsf/BackingBean.java

package com.corejsf;

import java.io.Serializable;
import java.util.HashMap;
import java.util.Map;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.SessionScoped;
// or import javax.faces.bean.SessionScoped;

@Named("bb") // or @ManagedBean(name="bb")
@SessionScoped
pubTic class BackingBean implements Serializable {
private String country = "USA";
private String state = "California";
private static Map<String, String[]> states;

public String getCountry() { return country; }
public void setCountry(String newvalue) { country = newValue; }

public String getState() { return state; }
public void setState(String newValue) { state = newValue; }

public Map<String, String[]> getStates() { return states; }
public String[] getStatesForCountry() { return (String[]) states.get(country); }

static {

states = new HashMap<String, String[]>();

states.put("USA",

new String[] {

"Alabama", "Alaska", "Arizona", "Arkansas", "California",
"Colorado", "Connecticut", "Delaware", "Florida", "Georgia",
"Hawaii", "Idaho", "I1Tinois", "Indiana", "Iowa", "Kansas",
"Kentucky", "Louisiana", "Maine", "Maryland", "Massachusetts",
"Michigan", "Minnesota", "Mississippi", "Missouri", "Montana",
"Nebraska", "Nevada", "New Hampshire", "New Jersey", "New Mexico",
"New York", "North Carolina", "North Dakota", "Ohio", "Oklahoma",
"Oregon", "Pennsylvania", "Rhode Island", "South Carolina",
"South Dakota", "Tennessee", "Texas", "Utah", "Vermont",
"Virginia", "Washington", "West Virginia", "Wisconsin", "Wyoming"

From the Library of Wow! eBook

How do I selectively show and hide parts of a page? m

states.put("Canada",
new String[] {
"Alberta", "British Columbia", "Manitoba", "New Brunswick",
"Newfoundland and Labrador", "Northwest Territories",
"Nova Scotia", "Nunavut", "Ontario", "Prince Edward Island",
"Quebec", "Saskatchewan", "Yukon"
1;
}
}

How do I selectively show and hide parts of a page?

It is very common to show or hide parts of a page, depending on some condi-
tion. For example, when a user is not logged on, you may want to show input
fields for the username and password. But if a user is logged on, you would
want to show the username and a logout button.

It would be wasteful to design two separate pages that differ in this small
detail. Instead, we want to include all components in our page and selectively
display them.

You can solve this issue with the JSTL c:if or c:choose construct. If you prefer not
to mix JSF and JSTL tags, it is easy to achieve the same effect with JSF alone.

If you want to enable or disable one component (or a container like a panel
group), use the rendered property, such as:

<h:panelGroup rendered="#{userBean.loggedIn}">...</h:panelGroup>

If you want to switch between two component sets, you can use complemen-
tary rendered attributes:
<h:panelGroup rendered="#{!userBean.loggedIn}">...</h:panelGroup>
<h:panelGroup rendered="#{userBean.loggedIn}">...</h:panelGroup>
For more than two choices, it is best to use a component, such as panelStack in
the Apache MyFaces components library (http://myfaces.apache.org/tomahawk). A
panel stack is similar to the tabbed pane that you saw in Chapter 11, except that
there are no tabs. Instead, one of the child components is selected programmat-
ically.
With the panelStack, each child component must have an ID. The selectedPanel
attribute specifies the ID of the child that is rendered:
<t:panelStack selectedPanel="#{userBean.status}">
<h:panelGroup id="new">...</h:panelGroup>
<h:panelGroup id="loggedIn">...</h:panelGroup>

<h:panelGroup id="ToggedOut">...</h:panelGroup>
</t:panelStack>

From the Library of Wow! eBook

http://myfaces.apache.org/tomahawk

Chapter 13 ® How Dol ...?

The getStatus method of the user bean should return a string "new", "loggedIn", or
"ToggedOut".

If you want to choose between two entirely different pages, you can use
uizinclude tags inside c:choose:

<c:choose>
<c:when test="#{user.loggedIn}">
<ui:include src="main.xhtml" />
</c:when>
<c:otherwise>
<uizinclude src="login.xhtm1" />
</c:otherwise>
</c:choose>

How do I customize error pages?

When you run an application in the “development” project stage and you
encounter an error, you get an error message such as the one in Figure 13-8.

File Edit View History Bookmarks Tools Help

;'?:_‘,: ﬁ | | htlp:/fvcalhost:8080/errorf v

An Error Occurred:

java.lang.NullPointerException

+ Stack Trace
+ Component Tree

+ Scoped Variables

Jul 22, 2009 3:23:34 PM - Generated by mojarra/Facelets

Done
T

Figure 13-8 An error message in the development stage

From the Library of Wow! eBook

How do I customize error pages? m

You probably do not want your users to see that message in a production
application. However, setting the project stage to “production” in web.xm
makes matters worse—see Figure 13-9.

[® [GlassFish/v3 - Error report - Mozilla Firefox
File Edit View History Bookmarks Tools Help

= ﬁ |§! http://localhost:8080/error/ -

HTTP Status 500 -

{23 Exception report

T The server encountered an internal error () that prevented it from fulfilling this request.
javax.servlet.ServletException

java.lang.NullPointerException

[T The full etack traces of the exception and its root causes are available in the GlassFish/v3 loge.

Done

Figure 13-9 An error message in the production stage

You really don’t want your users to see that page.

To substitue a better error page, use the error-page tag in the web.xml file. Specify
either a Java exception class or an HTTP error code. For example:

<error-page>
<exception-type>java.lang.Exception</exception-type>
<location>/faces/exception.xhtml</Tocation>
</error-page>
<error-page>
<error-code>500</error-code>
<location>/faces/error.xhtml</Tocation>
</error-page>
<error-page>
<error-code>404</error-code>
<location>/faces/notfound.xhtml</Tocation>
</error-page>

From the Library of Wow! eBook

Chapter 13 ® How Dol ...?

If an exception occurs and an error page matches its type, then the matching
error page is displayed. Otherwise, an HTTP error 500 is generated.

If an HTTP error occurs and there is a matching error page, it is displayed.
Otherwise, the default error page is displayed.

CAUTION: If an error occurs while your application is trying to display a cus-
tom error page, the default error page is displayed instead. If your custom
error page stubbornly refuses to appear, check the log files for messages
relating to your error page.

When you use the error-page mechanism, several objects related to the error are
placed in the request map (see Table 13-1). You can use these values to display
information that describes the error.

Table 13-1 Servlet Exception Attributes

Key Value Type
javax.servlet.error.status_code The HTTP error code Integer
javax.servlet.error.message A description of the error String
javax.servlet.error.exception_type The class of the exception (Tass
javax.servlet.error.exception The exception object Throwable
javax.servlet.error.request_uri The path to the application String
resource that encountered the
error
javax.servlet.error.servlet_name The name of the servlet that String

encountered the error

The following sample application uses this technique. We purposely produce a
null pointer exception in the password property of the UserBean, resulting in the
error report shown in Figure 13-10. Listing 13—20 shows the web.xm] file that sets
the error page to errorDisplay.xhtm] (Listing 13-21).

Listing 13-22 shows the ErrorBean class. Its getStackTrace method assembles a
complete stack trace that contains all nested exceptions.

From the Library of Wow! eBook

How do I customize error pages? m

(@ [An error has occurred - Mozilla Firefox
File Edit View History Bookmarks Tools Help

% ﬁ |0_ hitp:/ucalhwst:8080/error/ v

To our chagrin, an internal error has occurred in this program. Please
contact technical support at 1-888 NOW-WHAT.

If instructed by our support staff, please copy and paste the following
report into an email message.

javax.servlet ServlietException
at javax.faces.webapp.Facesservlet.service(Facesservlet.java:323)
.apac‘;t‘. catalina. core.StandardWrapper. service(StandardWrapper. java: 1586)
.apac:tta. catalina.core.StandardwWrappervalve. invoke(Standardwrappervalve.java:2 g
org .apacﬁ%. catalina. core.StandardContextValve. invoke(StandardContextValve. java:l
a

on

w

ort

=1

org.apache.catalina. core.5tandardPipeline. invoke(5tandardrPipeline. java:b4l)

al com.sun.enterprise.web.WebPipeline. invoke(webPipeline, java:97)
com. sun .Ztnterp rise.web.PESessionLeckingStandardPipeline. invoke(PESessionLockingS
ury .dpdtj‘urf. calalina. core,StandardHustValve. invoke(StandardHos LValve. java: 185)
org .apac‘;:. catalina. core.StandardPipeline. invoke(StandardPipeline. java:641)

ar

ury.apache. calaling. conneclor . CoyoleAdapler .doService(CoyoleAdapler . java:351)

a
org.apache.catalina. connector.CoyoteAdapter.service(CoyoteAdapter.java:258)
at
com.sun.enterprise.v3.services. impl.ContainerMapper.service(ContainerMapper.java w
Done
T T

Figure 13-10 A customized error display

NOTE: If you use a custom error page, you can still include the standard
- Facelets error display in the development stage. Simply add the line:

<uizinclude src="javax.faces.error.xhtml"/>

During production stage, the error display is suppressed.

| BT150 T K E TV error/web/WEB-INF/web. xm]

1. <?xm] version="1.0" encoding="UTF-8"?>

2. <web-app xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
3. xmlns="http://java.sun.com/xml/ns/javaee"

4 xmIns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
5 xsi:schemalocation="http://java.sun.com/xml/ns/javaee

6. http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

7. version="2.5">
8

9

0

<servlet>
<servlet-name>Faces Servlet</servlet-name>

1 <servlet-class>javax.faces.webapp.FacesServiet</servlet-class>

From the Library of Wow! eBook

m Chapter 13 ® How Dol ...?

</serviet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/«</url-pattern>

</servlet-mapping>

<welcome-file-Tist>
<welcome-file>faces/index.xhtml</welcome-file>

</welcome-file-Tist>

<context-params>
<param-name>javax.faces.PROJECT_STAGE</param-name>
<param-value>Production</param-value>

</context-param>

<error-page>
<error-code>500</error-code>
<location>/faces/errorDisplay.xhtml</location>

</error-page>

</web-app>

| BRSO B B error/web/errorDisplay. xhtm]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>#{msgs.errorTitle}</title>
</h:head>
<h:body>
<h:forms>
<h:graphicImage Tibrary="images" name="error.png" style="float: left;"/>
<p>#{msgs.errorOccurred}</p>
<p>#{msgs.copyReport}</p>
<h:inputTextarea value="#{error.stackTrace}" rows="40" cols="80"
readonly="true"/>
</h:form>
</h:body>
</html>

5750 - KBV error/src/java/com/corejst/ErrorBean. java
package com.corejsf;
import java.io.PrintWriter;

import java.io.StringWriter;
import java.sql.SQLException;

From the Library of Wow! eBook

How do I customize error pages? m

import java.util.Map;

import javax.inject.Named;
// or import javax.faces.bean.ManagedBean;
import javax.enterprise.context.RequestScoped;
// or import javax.faces.bean.RequestScoped;
import javax.faces.context.FacesContext;
import javax.servlet.ServletException;

@Named("error") // or @ManagedBean(name="error")
@RequestScoped
pubTic class ErrorBean {
public String getStackTrace() {
FacesContext context = FacesContext.getCurrentInstance();
Map<String, Object> request
= context.getExternalContext().getRequestMap();
Throwable ex = (Throwable) request.get("javax.servlet.error.exception");
StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter(sw);
fillStackTrace(ex, pw);
return sw.toString();

}

private static void fillStackTrace(Throwable t, PrintWriter w) {
if (t == null) return;
t.printStackTrace(w);
if (t instanceof ServletException) {
Throwable cause = ((ServletException) t).getRootCause();
if (cause != null) {
w.printIn("Root cause:");
fil1StackTrace(cause, w);
}
} else if (t instanceof SQLException) {
Throwable cause = ((SQLException) t).getNextException();
if (cause != null) {
w.printIn("Next exception:")
fil1StackTrace(cause, w);
}
} else {
Throwable cause = t.getCause();
if (cause != null) {
w.printIn("Cause:");
fil1StackTrace(cause, w);
}
}
}
}

From the Library of Wow! eBook

588

Chapter 13 ® How Dol ...?

How do I write my own client-side validation tag?

Suppose you have developed a JavaScript function for validation and tested it
on multiple browsers. Now you would like to use it in your JSF applications.
You need two tags:

1. Avalidator tag that is attached to each component that requires validation.

2. A component tag that generates the JavaScript code for validating all
components on the form. The component tag must be added to the end of
the form. Note that you cannot use a validator tag for this purpose. Only
components can render output.

As an example, we show you how to make use of the credit card validation code
in the Apache Commons Validator project. You can download the code from
http://jakarta.apache.org/commons/validator.

We produce two tags: a creditCardvalidator tag that can be added to any JSF
input component and a component tag validatorScript that generates the
required JavaScript code.

The creditCardValidator tag has two attributes. The message attribute specifies the
error message template, such as:

{0} is not a valid credit card number

The arg attribute is the value that should be filled in for {0}, usually the field
name. For example:

<corejsf:creditCardvalidator
message="#{msgs.invalidCard}" arg="#{msgs.primaryCard}"/>
The code for the validator is in Listing 13-23 on page 590. The validator class
has two unrelated purposes: validation and error message formatting.

The class carries out a traditional server-side validation, independent of the
client-side JavaScript code. After all, it is not a good idea to rely solely on
client-side validation. Users may have deactivated JavaScript in their browsers.
Also, automated scripts or web-savvy hackers may send unvalidated HTTP
requests to your web application.

The getErrorMessage method formats an error message that will be included in the
client-side JavaScript code. The error message is constructed from the message
and arg attributes.

The validatorScript component is far more interesting (see Listing 1324 on page
592). Its encodeBegin method calls the recursive findCreditCardvalidators method,
which walks the component tree, locates all components, enumerates their

From the Library of Wow! eBook

http://jakarta.apache.org/commons/validator

How do I write my own client-side validation tag? m

validators, checks which ones are credit card validators, and gathers them in a
map object. The writeValidationFunctions method writes the JavaScript code that
invokes the validation function on all fields with credit card validators.

You must place the validatorScript tag inside the form, like this:

<h:form id="paymentForm" onsubmit="return validatePaymentForm(this);">

<corejsfivalidatorScript functionName="validatePaymentForm"/>
</h:form>

Listing 13-25 on page 594 shows a sample JSF page. Figure 13-11 shows the
error that is generated when a user tries to submit an invalid number.

=] An Application to Test ion - Mozilla Firefox [—[Ofx
File Edit View Go PBookmarks Tools Help
TN
¥ w ¥ L hup:/localhost:8080/clientside-valldator/index races Iz[
Back Forward Reload Stop

Please enter the payment information:

Amount: o.00

Credit Card: 2111111111111111

Expiration date (Month/Day/ e hitp:/flocathost:3080
Process | Linknown credit card type

Done

Figure 13-11 Client-side credit card validation

The details of the writeValidationFunctions method depend on the intricacies of
the JavaScript code in the Commons Validator project.

First, the writeValidationFunctions method produces the validation function that is
called in the onsubmit handler of the form:

var bCancel = false;
function functionName(form) { return bCancel || validateCreditCard(form); }

If a form contains “Cancel” or “Back” buttons, their onclick handlers should set
the bCancel variable to true, to bypass validation.

The validateCreditCard function is the entry point into the Commons Validator
code. It expects to find a function named formName_creditCard that constructs a

From the Library of Wow! eBook

Chapter 13 ® How Dol ...?

configuration object. The writeValidationFunctions method generates the code for
the creditCard function.

Unfortunately, the details are rather convoluted. The formName_creditCard function
returns an object with one instance variable for each validated form element.
Each instance field contains an array with three values: the ID of the form ele-
ment, the error message to display when validation fails, and a validator-specific
customization value. The credit card validator does not use this value; we sup-
ply the empty string.

The instance field names do not matter. In the writeValidationFunctions method,
we take advantage of the flexibility of JavaScript and call the fields 0, 1, 2, and
so on. For example:

function paymentForm_creditCard() {
this[0] = new Array("paymentForm:primary",
"Primary Credit Card is not a valid card number", "");
this[1] = new Array("paymentForm:backup",
"Backup Credit Card is not a valid card number", "");

}

If you design your own JavaScript functions, you can provide a saner mecha-
nism for bundling up the parameters.

e es clientside-validator/src/java/com/corejsf/
e RSl CreditCardvalidator. java

package com.corejsf;

import java.io.Serializable;

import java.text.MessageFormat;

import java.util.Locale;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import javax.faces.validator.FacesValidator;
import javax.faces.validator.Validator;

import javax.faces.validator.ValidatorException;

@FacesValidator("com.corejsf.CreditCard")

pubTic class CreditCardvValidator implements Validator, Serializable {
private String message;
private String arg;

public void setMessage(String newValue) { message = newValue; }

public void setArg(String newValue) { arg = newValue; }

From the Library of Wow! eBook

How do I write my own client-side validation tag? m

public String getArg() { return arg; }

public void validate(FacesContext context, UIComponent component,
Object value) {
if (value == null) return;
String cardNumber;
if (value instanceof CreditCard)
cardNumber = value.toString();
else
cardNumber = getDigitsOnly(value.toString());
if (!TuhnCheck(cardNumber)) {
FacesMessage message = new FacesMessage(FacesMessage.SEVERITY_ERROR,
getErrorMessage(value, context), null);
throw new ValidatorException(message);
}
}

public String getErrorMessage(Object value, FacesContext context) {
Object[] params = new Object[] { value };
if (message == null)
return com.corejsf.util.Messages.getString(
"com.corejsf.messages", "badLuhnCheck", params);
else {
Locale Tocale = context.getViewRoot().getLocale()
MessageFormat formatter = new MessageFormat(message, locale);
return formatter.format(params);
}
}

private static boolean TuhnCheck(String cardNumber) {
int sum = 0;

for (int i = cardNumber.length() - 1; i >=0; i -= 2) {
sum += Integer.parseInt(cardNumber.substring(i, i + 1));

if(i > 0) {
int d = 2 « Integer.parseInt(cardNumber.substring(i - 1, i));
if(d>9)d-=09;
sum += d;

}

}

return sum % 10 == 0;

}

private static String getDigitsOnly(String s) {
StringBuilder digitsOnly = new StringBuilder ();
char c;

From the Library of Wow! eBook

Chapter 13 ® How Dol ...?

for (int i = 0; i < s.length (); i++) {
c = s.charAt (i);
if (Character.isDigit(c)) {

digitsOnly.append(c);

}

}

return digitsOnly.toString ();

}
}

Y] clientside-validator/src/java/com/corejsf/
UIValidatorScript.java

package com.corejsf;

import java.io.IOException;
import java.util.Map;
import java.util.LinkedHashMap;

import javax.faces.application.ResourceDependency;
import javax.faces.component.EditableValueHolder;
import javax.faces.component.FacesComponent;
import javax.faces.component.UIComponent;

import javax.faces.component.UIComponentBase;
import javax.faces.context.FacesContext;

import javax.faces.context.ResponseWriter;

import javax.faces.validator.Validator;

@FacesComponent("com.corejsf.ValidatorScript")
@ResourceDependency(1ibrary="javascript", name="validateCreditCard.js",
target="head")
pubTlic class UIValidatorScript extends UIComponentBase {
private Map<String, Validator> validators
= new LinkedHashMap<String, Validator>();

public String getRendererType() { return null; }
public String getFamily() { return null; }

private void findCreditCardvalidators(UIComponent c, FacesContext context) {
if (c instanceof EditableValueHolder) {
EditableValueHolder h = (EditableValueHolder) c;
for (Validator v : h.getValidators()) {
if (v instanceof CreditCardValidator) {
String id = c.getClientId(context);
validators.put(id, v);
}
}

From the Library of Wow! eBook

How do I write my own client-side validation tag? m

}

for (UIComponent child : c.getChildren())
findCreditCardvalidators(child, context);

private void writeScriptStart(ResponseWriter writer) throws IOException {
writer.startETement("script", this);
writer.writeAttribute("type", "text/javascript", null);
writer.writeAttribute("language", "Javascriptl.1", null);
writer.write("\n<!--\n")

}

private void writeScriptEnd(ResponseWriter writer) throws IOException {
writer.write("\n-->\n");
writer.endElement("script")

private void writeValidationFunctions(ResponseWriter writer,
FacesContext context) throws IOException {
writer.write("var bCancel = false;\n");
writer.write("function ");
writer.write(getAttributes().get("functionName").toString());
writer.write("(form) { return bCancel || validateCreditCard(form); }\n");

— e~ —~ —~

writer.write("function ");
String formId = getParent().getClientId(context);
writer.write(formId);
writer.write("_creditCard() { \n")
// for each field validated by this type, add configuration object
int k = 0;
for (String id : validators.keySet()) {
CreditCardvalidator v = (CreditCardvalidator) validators.get(id);
writer.write("this[" + k + "] = ");
k++;
writer.write("
writer.write

("new Array('");

(id);
writer.write("',

(v

(

n
d
1 lll .
writer.write
writer.write
}

writer.write("Y\n");

getErrorMessage(v getArg(), context));
"to")\n"); // Third element unused for credit card validator

public void encodeBegin(FacesContext context) throws IOException {
ResponseWriter writer = context.getResponseWriter();

validators.clear();

From the Library of Wow! eBook

Chapter 13 ® How Dol ...?

findCreditCardvalidators(context.getViewRoot(), context);

writeScriptStart(writer);
writeValidationFunctions(writer, context);
writeScriptEnd(writer)
}
}

clientside-validator/web/index.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtm1"
xmins:h="http://java.sun.com/jsf/nhtm1" xmIns:f="http://java.sun.com/jsf/core"
xmins:corejsf="http://corejsf.com">
<h:head>
<h:outputStylesheet Tibrary="css" name="styles.css"/>
<title>#{msgs.title}</title>
</h:head>
<h:body>
<h:form id="paymentForm" onsubmit="return validatePaymentForm(this);">
<corejsfivalidatorScript functionName="validatePaymentForm"/>
<h1>#{msgs.enterPayment}</h1>
<h:panelGrid columns="3">
#{msgs.amount}
<h:inputText id="amount" value="#{payment.amount}">
<ficonvertNumber minFractionDigits="2"/>
</h:inputText>
<h:message for="amount" styleClass="errorMessage"/>

#{msgs.creditCard}
<h:inputText id="card" value="#{payment.card}" required="true">
<corejsf:creditCardvalidator message="#{msgs.unknownType}"
arg="#{msgs.creditCard}"/>
</h:inputText>
<h:message for="card" styleClass="errorMessage"/>

#{msgs.expirationDate}
<h:inputText id="date" value="#{payment.date}">
<f:convertDateTime pattern="MM/dd/yyyy"/>

</h:inputText>
<h:message for="date" styleClass="errorMessage"/>

</h:panelGrid>

<h:commandButton value="Process" action="result"/>

</h:form>
</h:body>
</html>

From the Library of Wow! eBook

How do I configure my application? m

% NOTE: Unfortunately, the Commons Validator displays a pop-up when
it finds a validation error. It would be nicer to place an error message
next to the offending field. This feature is supported in Cagatay Civici's
client-side validation package at http://jsf-comp.sourceforge.net/components/
clientvalidators/index.html.

How do I configure my application?

Many applications require some configuration parameters, such as paths to
external directories, default account names, and so on. Since these parameters
need to be updated by application deployers, it is not a good idea to place them
inside your application code.

A good place for supply configuration parameters is the web.xml file. Provide a
set of context-param elements inside the web-app element, such as:
<web-app>
<context-param>
<param-name>URL</param-name>

<param-value>Tldap://TocaThost:389</param-value>
</context-param>

</web-app>
To read a parameter, get the external context object. That object describes the
execution environment that launched your JSF application. If you use a servlet
container, then the external context is a wrapper around the ServietContext
object. The ExternalContext class has a number of convenience methods to access

properties of the underlying servlet context. The getInitParameter method
retrieves a context parameter value with a given name:

ExternalContext external = FacesContext.getCurrentInstance().getExternalContext();
String url = external.getInitParameter("URL");

CAUTION: Do not confuse context-param with init-param. The latter tag is
used for parameters that a servlet can process at startup. It is unfortunate
that the method for reading a context parameter is called getInitParameter.

Some applications prefer to process their own configuration files rather than
using web.xml. The challenge is to locate the file because you do not know where
the web container stores the files of your web application. In fact, the web

From the Library of Wow! eBook

http://jsf-comp.sourceforge.net/components/clientvalidators/index.html
http://jsf-comp.sourceforge.net/components/clientvalidators/index.html

Chapter 13 ® How Dol ...?

container need not physically store your files at all—it can choose to read them
out of the WAR file.

Instead, use the getResourceAsStream method of the ExternalContext class. For exam-
ple, suppose you want to read app.properties in the WEB-INF directory of your
application. Here is the required code:

FacesContext context = FacesContext.getCurrentInstance();
ExternalContext external = context.getExternalContext();
InputStream in = external.getResourceAsStream("/WEB-INF/app.properties");

How do I extend the JSF expression language?

Sometimes it is useful to extend the expression language. Consider, for example,

an extension that allows us to look up forms and components by ID, such as:
view.ToginForm

This is achieved by adding a resolver that processes an expression base.property
(or the equivalent base[property]), where base is the string "view" and property is the
form ID.

You extend the ELResolver class to implement a resolver. The key method is:
public Object getValue(ELContext context, Object base, Object property)

If your resolver knows how to resolve the expression base.property, then you call
context.setPropertyResolved(true);

and return the value of the expression.

There are several other methods for type inquiry and builder tool support; see
the API documentation for details.

Now let us implement the resolver for form and component IDs. Consider, for
example, the expression:

view.ToginForm.password.value

We want to find the component with the ID ToginForm inside the view root, then
the component with the ID password inside the form, and then call its getValue
method. Our resolver will handle expressions of the form component.name:

pubTic class ComponentIdResolver extends ELResolver {
public Object getValue(ELContext context, Object base, Object property) {
if (base instanceof UIComponent && property instanceof String) {
UIComponent r = ((UIComponent) base).findComponent((String) property);
if (r 1= null) {
context.setPropertyResolved(true);
return r;

From the Library of Wow! eBook

How do I extend the JSF expression language? 597

}
}

return null;

}
}

Note that our resolver is called to resolve the first two subexpressions
(view.ToginForm and view.ToginForm.password). The last expression is resolved by
the managed bean resolver that is part of the JSF implementation.

The initial expression view is a special case. Resolvers are called with base set to
null and property set to the initial expression string. The JSF implicit object
resolver resolves that expression, returning the UIViewRoot object of the page.

As another example, we build a resolver for system properties. For example,
the expression
sysprop['java.version']
should return the result of calling
System.getProperty("java.version");
To make matters more interesting, the expression
sysprop.java.version

should also work. This custom resolver must handle the special case in which
the base is nu11 and the property is "sysprop". It must also deal with partially
complete subexpressions, such as sysprop. java.

We collect the list of expressions in a nested class SystemPropertyResolver.Partial-
Resolution. Our resolver distinguishes two cases:

1. If baseis null and property is "sysprop", return an empty PartialResolution
object.

2. Ifbaseis a PartialResolution object and property is a string, add the property
to the end of the list. Then try to look up the system property whose key
is the dot-separated concatenation of the list entries. If the system prop-
erty exists, return it. Otherwise, return the augmented list.

The following code excerpt illustrates these cases:

pubTic class SystemPropertyResolver extends ELResolver {
pubTic Object getValue(ELContext context, Object base, Object property) {
if (base == null & "sysprop".equals(property)) {
context.setPropertyResolved(true);
return new PartialResolution();

From the Library of Wow! eBook

m Chapter 13 ® How Dol ...?

}

if (base instanceof PartialResolution &% property instanceof String) {
((PartialResolution) base).add((String) property);
Object r = System.getProperty(base.toString());
context.setPropertyResolved(true);
if (r == null) return base;
else return r;

}

return null;

}

public static class PartialResolution extends ArraylList<String> {
public String toString() {
StringBuilder r = new StringBuilder();
for (String s : this) {
if (r.length() > @) r.append('.");
r.append(s);
}

return r.toString();
}
}
}
To add the custom resolver to your JSF application, add elements, such as the
following to faces-config.xml (or another application configuration file):

<application>
<el-resolver>com.corejsf.ComponentIdResolver</el-resolvers

</application>
You will find the complete implementation for the two sample resolvers in the
ch13/extending-el example of the companion code.

% NOTE: In JSF 1.1, modifying the expression language is a bit more cumber-
some. The JSF 1.1 implementation provides concrete subclasses of the
abstract classes VariableResolver and PropertyResolver. A VariableResolver
resolves the initial subexpression, and the PropertyResolver is in charge of
evaluating the dot or bracket operator.

If you want to introduce your own variables, you supply your own variable
resolver and specify it in the application configuration file, like this:

<application>
<variable-resolver>
com.corejsf.CustomvariableResolver

From the Library of Wow! eBook

How do I add a function to the JSF expression language? m

</variable-resolver>

</application>

In your resolver class, supply a constructor with a single parameter of
type VariableResolver. Then the JSF implementation passes you its
default variable resolver. This makes it straightforward to use the decora-
tor pattern. Here is an example of a variable resolver that recognizes the
variable name sysprop:

pubTic class CustomVariableResolver extends VariableResolver {
private VariableResolver original;

public CustomVariableResolver(VariableResolver original) {
this.original = original;

}

pubTic Object resolveVariable(FacesContext context, String name) {
if (name.equals("sysprop")) return System.getProperties();
return original.resolveVariable(context, name);
}
}

The implementation of a PropertyResolver is similar.

How do I add a function to

the JSF expression language?

You can add your own function to the JSF expression language by following
this process:

1. Implement the function as a static method.

2. InaFacelets tag library file, map the function name to the implementa-
tion.

For example, suppose we want to define a function that reads a file and gets its
contents. A typical use might be:

<p>Page source:</p><pre>#{corejsf:getFile("/index.xhtm1")}</pre>

In Listing 13-26, the class implements the function as the static ELFunctions.get-
File method.

From the Library of Wow! eBook

m Chapter 13 ® How Dol ...?
BRI BT extending-el/src/java/com/corejsf/ELFunctions.java

package com.corejsf;

import java.io.InputStream;
import java.util.Scanner;
import javax.faces.context.FacesContext;

pubTlic class ELFunctions {
public static String getFile(String filename) {
FacesContext context = FacesContext.getCurrentInstance();
java.util.logging.Logger.getLogger("com.corejsf").info("context=" + context);
InputStream stream = context.getExternalContext().getResourceAsStream(filename);
Scanner in = new Scanner(stream);
java.util.logging.Logger.getLogger("com.corejsf").info("context=" + context);
StringBuilder builder = new StringBuilder();
while (in.hasNextLine()) { builder.append(in.nextLine()); builder.append('\n'); }
return builder.toString();
}
}

Listing 13-27 shows the tag library file.

extending-el/web/WEB-INF/corejsf.taglib.xml

<?xml version="1.0" encoding="UTF-8"?>
<facelet-taglib version="2.0"
xmins="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facelettaglibary_2_0.xsd">
<namespace>http://corejsf.com</namespace>
<function>
<function-name>getFile</function-name>
<function-class>com.corejsf.ELFunctions</function-class>
<function-signature>
java.lang.String getFile(java.lang.String)
</function-signature>
</function>
</facelet-taglib>

You can add your own methods to the JSF expression language by following
the same recipe.

From the Library of Wow! eBook

How do I monitor the traffic between the browser and the server? m

How do I monitor the traffic between
the browser and the server?

It is often helpful to know what parameters the client sent back to the server
when a form was submitted. Of course, you can simply embed the expression

#{param}
in a page, and you will get a listing of the parameter names and values.
But particularly for debugging Ajax applications, it is better to monitor the

entire traffic between client and server. Both Eclipse and Netbeans support this

monitoring.

In Eclipse 3.5, the details depend on the server adapter. Here are the instruc-

tions for Glassfish:

1. Right-click on the server in the Servers tab and select Monitoring >
Properties.

2. Click on Add and select port 8080 (see Figure 13-12).

3. Select Start.

[E[Properties for GlassFish v3 Java EE 6 at localhost [x
Monitoring -
General
_ The following ports are being monitored on server GlassFish v3 Java EE 6 at localhost:
Status Type Server Port | Monitor Port| Content 7 Add...
[Monitoring Ports Fq

The server GlassFish v3 Java EE 6 at localhost
has the following ports that can bc monitored:

Type Server Pol
Admin Server Port i 4848
A 000000 |

Monitor port: |8081

<

Content type: | All

Cancel | oK |

Restore Defaults | Apply

Cancel | oK

Figure 13-12 Activating HTTP monitoring in Eclipse

From the Library of Wow! eBook

Chapter 13 ® How Dol ...?

4. Point your browser to http://localhost:8081/contextRoot. Eclipse intercepts
the traffic on port 8081 and sends it to port 8080. More importantly, it
displays the decoded requests and responses (see Figure 13-13).

[Problems | & Tasks | [Properties i Servers [Console B TCPAP Monitor i3 - [Data Source Explorer (1 History . Search D o #f ¥=0O
Tal e Tagin-ajan] (=] Time: of request: 2:36.40.892 PM
gl 1eh01-login-ajaxfacesjavax faces. resource/fsfuncompressed js?in=javax. faces | Reponse Tame: 43 me
lal ffavicon.ice _| Type: HTTP

[al flavicon o
S —
Request: Incathost: 2081 Byte -~ | Rosponse: Incalhost: 8080
Size: 388 (1317) bytes = | S 286 (658) bytes
Header: POST fch01-login-ajax/faces/index xchtml HTTR/1.1 Header: HTTR1.1 200 0K
j 1d2059540600 Taczl836=] 1d2059540600 7aczléds&name=tro |- <?xml wversion="1.0" enceding="utf-8"7= |

<partial-responses<changess<update id="out®"s<![CDATA[<sp

Byte Z

) 3

Figure 13-13 The HTTP monitor in action

With NetBeans 6.8 and Glassfish, follow these steps:

1. Click the Services tab and expand the Servers node.

2. Right-click the GlassFish entry and select Properties.
3. Check “Use HTTP monitor”.
4

When you run your application, select the Window > Debugging > HTTP
Server Monitor menu option.

Unlike Eclipse, Netbeans does not require you to change the port number in
your URLs. Instead, it installs a filter in the web application.

% NOTE: You can also use a general-purpose TCP/IP sniffer such as
Wireshark (http://www.wireshark.org/).

How do I debug a stuck page?

Sometimes, a JSF page seems “stuck”. When you click the submit button, the
page is redisplayed. Here is what you can do to debug such a page:

. Make sure that the submit button is contained inside a h:form. If not, the
page will be rendered, but clicking on the submit button has no effect.

¢ Double-check the navigation rules to make sure that the page navigation
is indeed set up properly.

From the Library of Wow! eBook

http://www.wireshark.org/

How do | debug a stuck page? m

* A common reason for a stuck page is a validation or conversion error.
This is easy to check by placing a <h:messages/> tag on the page.

e If youstill do not spot the error, install a phase tracker. You saw a simple
implementation in Chapter 7, but for industrial-strength spying, check
out FacesTrace from http://code.google.com/p/primefaces-ext/. It gives you a
visual display of the phases (see Figure 13-14).

FacesTrace is easy to use. Add its JAR file and the Commons Logging JAR
file to your web application’s WEB-INF/1ib directory. Add a namespace
declaration to the htn1 tag:

xmins:ft="http://primefaces.prime.com.tr/facestrace"
Then add a tag at the end of your JSF page:

<ft:trace/>

%) (Welcome - Mozilla Firefox — (O
Fle Edit Yiew Higtory Bookmarks Tools Help
L] ~ B €y [[@) tutpunocalnost-8080/cho 1-loginfaces/index. xheml -
Please enter your name and password.
Name: [trooseveit
Password: |
Login
FacesTrace Log
Request Lifecycle
[Update Model Application
Oms Oms
Variables
Variable Key Value
i_id-153717177_790d5181 _id-153717177_790d5181
j_id-153717177_790d5181:j_id-153717177_790d51a7 troosevelt
param 1_id-133717177_790d5181:]_id-153717177_790d51ba
J_id-153717177_790d5181:)_id-153717177_790d 514d Login
Jjavax.faces.ViewState 497452 8858582405497:510923719. ...
com.sun. faces. context. flash. KeepAllRequestScopedData false
com.sun.faces.context.flash. RedirectAfterPost false
com.sun.faces.context.ExternalContextFactorvimpl KEY com.sun.faces.context.External... 4
Dane

Figure 13-14 FacesTrace in action

From the Library of Wow! eBook

http://code.google.com/p/primefaces-ext/

Chapter 13 ® How Dol ...?

How do I use testing tools when
developing a JSF application?

You can test managed beans in isolation, by calling the methods that the JSF
implementation would have called. For example, in a unit test, you might
invoke the setName and setPassword method to simulate the decoding of the field
values. Then invoke the Togin action method and check its return value. This is
very much in the spirit of unit testing.

Problems arise when your managed bean is connected to backend systems; for
example, a database. It is a good idea to separate out the database logic from
the managed beans. This division arises naturally if you use EJB session beans
for the database access. Then you can replace the E]B session beans with fake
classes that simulate the database activity. Of course, your test harness needs to
wire up the managed beans with the fake classes.

Providing classes that implement fake backend activities can get tedious. Most
application servers can be run in “embedded” mode, where the application
server runs in the same virtual machine as the test runner. This is quite a bit
faster than starting up the application server and connecting to it remotely, and
you can write tests that run against the actual backend.

Black-box test automation frameworks, such as HTMLUnit (http://htmlunit.
sourceforge.net) or Selenium (http://seleniunhg.org), let you write scripts that sim-
ulate browser sessions. In a test script, you feed inputs into form fields, and
submit forms, and analyze the response, in order to verify that the returned
pages have certain properties. These frameworks have their use, but they also
have significant limitations. In particular, if the user interface changes, tests
often break and must be updated.

The JSFUnit framework (http://ww. jboss.org/jsfunit) also runs your tests inside a
full container, but it allows you to query the state of the JSF implementation.
Here is a typical JSFUnit test method that verifies properties of a login page:

public void testInitialPage() throws IOException {
JSFSession jsfSession = new JSFSession("/faces/index.xhtm1");
JSFServerSession server = jsfSession.get]JSFServerSession();
assertEquals("/index.xhtml", server.getCurrentViewID());
UIComponent nameField = server.findComponent(''name");
assertTrue(nameField.isRendered());
assertEquals("troosevelt", server.getManagedBeanValue("#{user.name}"));

}

You deploy JSFUnit tests with your web application, together with the JAR files
for JSFUnit, Apache Cactus, and their dependencies.

From the Library of Wow! eBook

http://www.jboss.org/jsfunit
http://htmlunit.sourceforge.net
http://htmlunit.sourceforge.net
http://seleniumhq.org

How do I use Scala with JSF? m

A JSFUnit test can be run through a servlet that displays the test outcomes (see
Figure 13-15). Alternatively, you can run the test from the command line. In
that case, you must first start the application server. The JAR files on which
JSFUnit depends must be on the class path, and you need to set the system
property cactus.contextURL to the context URL of your application. You can either
invoke the test runner with

-Dcactus. contextURL=http://Tocalhost:8080/contextRoot
or add a static initializer

static {
System.setProperty("cactus.contextURL", "http://localhost:8080/contextRoot");
}

to your JUnit test class.

(® Mozilla Firefox

Eile Edit View Higtory Hookmarks Tools Help

& v B @ |a hetp:/flocalhast: BUBD/chD 1 -lagin-branch/Serviet TestRunner 7sLiite = com. corejst JSF LN Testxsla cactus-report xsl w

Unit Test Results

Summary
Testn Tatvures trrarn Pr—— Time
' 1 o aoom Lom

Mete: faurcs are anticipatol and Chocknd for i aUATTIans WABE GTEN A°E nSMECIGHbe.

TestCaze com.corgjsf. JSFUNItTast
mam N nmarn

L

Dome

Figure 13-15 JSFUnit output

None of these approaches are a “silver bullet” for testing JSF applications. You
should expect to use multiple approaches in your test suite.

How do I use Scala with JSF?

Scala (http://scala-Tang.org) is a popular programming language for the Java Vir-
tual Machine. Like Java, it is strongly typed and object-oriented, but it also sup-
ports functional programming. Many Java programmers are attracted to Scala
because it requires less boilerplate for common constructs, such as properties.
Of course, you can call any code in the Java library from Scala.

From the Library of Wow! eBook

http://scala-lang.org

Chapter 13 ® How Dol ...?

The following instructions refer to Java EE 6.

To implement a managed bean in Scala, simply annotate it, as you would in
Java, but with the Scala annotation syntax. For example:

@Named{val value="user"} // or @ManagedBean{val name="user"}
@SessionScoped
class UserBean {
@BeanProperty var name : String =
@BeanProperty var password : String =

nn

nn

}

The @BeanProperty annotation generates Java getters and setters. You can now
refer to EL expressions, such as #{user.name} in your JSF pages in the usual way.

You need the file scala-Tibrary. jar in the WEB-INF/1ib directory.

To inject a stateless session bean into a managed bean, use:
@EJB private[this] var mySessionBean: MySessionBean = _

It is important that you annotate the session bean with @LocalBean:
@Stateless @LocalBean class MySessionBean { ... }

Alternatively, if you use a trait (for example, because you want to the flexibility
of supplying a fake implementation for unit testing), use the @Local annotation:

@Local trait MySessionBean { ... }
@Stateless MySessionBeanImpl extends MySessionBean { ... }

These annotations are necessary because every Scala class implements an
interface that is unrelated to EJB but interferes with the session bean discovery
algorithm.

In your session beans, you can inject an entity manager like this:
@PersistenceContext private[this] var em: EntityManager = _

Your entity beans are annotated in the usual way. Add the @BeanProperty annota-
tion for automatic getter and setter annotations. For example:

@Entity public class Credentials {
@Id @BeanProperty var username : String = "";

nn,

@BeanProperty var password : String = "";

}

Eclipse offers a good way of becoming familiar with Scala and JSF. Simply
install the Scala plugin and add Scala classes to your web project in the usual
way.

From the Library of Wow! eBook

How do I use Groovy with JSF? 607

As you can see, using Scala with JSF and EJB is very straightforward. An
immediate reward is not having to write getters and setters for the ubiquitous
bean properties. As you become more familiar with Scala, you will appreciate
other features that contribute to its conciseness and elegance, while keeping the
benefits of strong typing and compatibility with Java.

How do I use Groovy with JSF?

Groovy (http://groovy.codehaus.org), inspired by Ruby, Smalltalk, and Python, is a
another popular programming language for the Java Virtual Machine. Groovy
is dynamically typed, and Groovy code can be more concise than the equiva-
lent Java code because you can omit types of variables and parameters.

Almost any Java code is legal Groovy. That makes it simple to get started with
Groovy in your JSF applications: Change the suffix of your code from .java to
.groovy, and use the Groovy compiler to compile your Groovy code to a .class
file. JSF deals in .class files, so it doesn’t know, or care, that you are using
Groovy to generate them.

The JSF reference implementation supports hot deployment of your Groovy
code. See http://blogs.sun.com/r1ubke/entry/groovy_mojarra for the configuration
details. When you change a Groovy source file, the JSF implementation auto-
matically recompiles it and deploys the class file to the web application. With
Groovy and JSF, you get the same instant turnaround that developers using
Ruby on Rails and PHP enjoy.

Of course, you will want to have IDE support. NetBeans supports Groovy out
of the box. If you use Eclipse, you should install the Groovy Eclipse Plugin
(http://groovy.codehaus.org/EcTipse+Plugin).

By default, the Groovy Eclipse Plugin sets the compiler output to /bin/groovy.
You will probably want to set the output directory to WEB-INF/classes, which you
can do with Eclipse preferences, as shown in Figure 13-16.

From the Library of Wow! eBook

http://groovy.codehaus.org
http://blogs.sun.com/rlubke/entry/groovy_mojarra
http://groovy.codehaus.org/Eclipse+Plugin

608

Chapter 13 ® How Dol ...?

Preferences

type filter text Groovy

Ceneral)

e Default Groovy compiler output location
n

Flex

cible Check Package Ma

(:"CIassFish Prufarencesé

Google Add Groovy Nature?

Groowy A
Developer o
Editar
Formatter
Templates

Help

Install/Update

Java

JavaScript

JPA

Plug-in Development

Remote Systems

Run/Debug

Server

Service Policies

WER-|MF /ciasses

Data Management Gicahle Groow mpller Generating Clas< Flles

Tasks

Team

Usage Data Collector r

Validation v
L § - "
(i)

Figure 13-16 Changing the Groovy compiler output directory

Conclusion

You have now reached the end of this book. Along the way, you have learned
how JSF enables the separation of page design and application logic, and how
you can implement web applications simply by combining predefined compo-
nents with your Java code. You have seen how JSF fits into the bigger picture of
a Java EE application, and how to extend JSF when its built-in capabilities are

insufficient for your tasks.

From the Library of Wow! eBook

Iradexx

#{...} delimiter, 38
${...} delimiter, 38

[] notation, 64

! (or not) operator, 69

A
accept attribute, 110
acceptcharset attribute, 110
Accept-Language value, 43
Access control application, 525-531
Access control information, 520
Action(s), compared to action listeners,
312
action attribute
ActionSource2, 441
of a button, 6, 73
h:commandButton, 135
h:commandLink, 135
as method expression, 75
requiring a method expression, 70
Action events, 29, 306, 312-320
Action listener classes, 319
Action listeners
adding, 312, 459
attaching
to buttons, 80

to links, 138
to login component's submit
button, 364

compared to actions, 312

invoking, 313-314

passing event objects, 327
Action methods

example of, 75

executing, 31

passing desired locale, 325

passing row items to, 225-226

returning null, 75

roles of, 80

setting locales, 324
Action sources, 306
actionListener attribute

of ActionSource, 441

h:button, 135

h:commandButton, 135

h:commandLink, 135

h:Tink, 135

requiring a method expression, 70
actionMethod attribute, 354
actionSource composite tag, 349, 364
ActionSource interface, 421
ActionSource? interface, 421

609

From the Library of Wow! eBook

Index

addOnError function, 403
addOnEvent function, 403
Address field, changing, 86-87
ADF Faces component set, 548
ADF Faces components, in JDeveloper, 15
Ajax, 21-24, 388-389
adding to custom components,
473-474
attaching to an input, 389
calls, associating with events, 388
in composite components, 409416
echoing output, 390
embedding into custom components,
473
events, 393
field validation, 394-396
functions in JavaScript Library, 403-404
groups of components, 392-394
handling errors, 400
implementing in custom components,
475-484
passing request parameters, 405-407
request monitoring, 396-398
requests
associating Java functions with, 409
associating with a group of Ajax
components, 392-393
queueing, 407
requests compared to HTTP requests,
386
responses, 400-403
supported by JSF, 26
validation monitoring application,
396-398
welcome message without a page flip,
22
XML elements for responses, 402
Ajax JavaScript APL, in XHTML pages,
404
@all, in execute attribute of f:ajax tag, 391
alt attribute, 110
Alternative renderers, 26
anchor attribute, 119
anchor element, generating, 134,
137-138
Annotations
defining bean scopes, 51
life cycle, 58

O/R mapper translating, 507
referencing the validator class, 272
for resource injection, 495496
validation, 270
Apache Derby database, 493-495
Apache MyFaces components library,
581-582
Apache Tomahawk, dataScroller
component, 569
Apache Tomahawk library,548
Apache Trinidad library,548
Application(s)
accessing external services, 487-544
analysis of a sample, 15-21
behind the scenes of, 26-31
building, 9-11
configuring, 595-596
cookies sent by, 52
deploying, 8, 11-12
ingredients of, 7
locale for, 43-44
registering symbolic ID with, 279
sample illustrating essential features
of beans, 45-51
testing tools for developing, 604-605
Application configuration file, 80,
85-86
Application scope, 51, 54
Application servers
authenticating users on, 519
compatible with Java EE 6, 10
realms supported, 522
starting, 11
Application source, directory structure
of, 9
applicationScope predefined object, 68
@ApplicationScoped annotation, 51
Application-scoped bean, marking as
eager, 59
Apply Request Values phase, 30, 247,307,
321
Arithmetic operators, 69
Array of names, 207, 208
ArrayDataModel instance, 236
Arraylist, displaying, 47
Arrays, with f:selectItems, 157-158
Asynchronous JavaScript with
XMLHttpRequest. See Ajax

From the Library of Wow! eBook

atMax attribute, 443-444
atMin attribute, 443444
Atomic methods, 188
Attacks
cross-site scripting, 131, 134
SQL injection, 492
attribute composite tag, 348
Attribute map, 104, 422, 442
Attribute value, converting to an integer,
429
Attributes
attaching JavaScript to components,
308
basic for HTML tags, 107-110
common for HTML tabs, 107-115
components and, 426
in the core library, 104
requiring method expressions, 70
specifying name and scope of a
managed bean, 17
supplying to converters, 289290
types of, 354-355
attributes element, 402
Authentication
basic, 521-522
error screen, 500
test application, 525-531
Autocommit mode, 493
autocomplete attribute, 124
Autocomplete composite component,
409416

B
Backing beans
existing tags with, 338-341
for web forms, 38-39
Backing components, 373-378
Basic authentication, 521-522
Bean(s). See also CDI (Contexts and
Dependency Injection) beans;
Java bean; Managed beans
annotations for naming, 7
application code contained in, 16
configuring, 56-63
creating and manipulating without
programming, 33
defined, 16
defining, 46, 59

definition of, 33-36
life cycle annotations, 58
managing, 17
managing user data, 7
properties of, 36-37
separating presentation and business
logic, 33
Bean classes, 36
Bean methods, 294-295
Bean name, deriving, 35
Bean scopes, 16, 51-56
Bean Validation Framework
annotations in, 270
compared to page-level validation, 271
directory structure of example, 273
extensibility of, 272
JSF 2.0 integrating with, 270
validator from, 266
Bean validators, validation groups for,
264
@BeanProperty annotation, 606
beans.xm] file, 7
begin attribute, 398
begin request status, 397
Behaviors, attaching to components, 385,
389
bgcolor attribute
h:dataTable, 210
h:panelGrid, 116
Binary data
generating directly from JSF, 566
producing, 559-568
Binding, value attribute, 161-162
binding attribute, 39
as a basic attribute, 107
f:param, 104
in JSF 1.2, 253, 265
specifying with a value expression, 109
ui:component, 198
Black-box test automation frameworks,
604
Bookmarkable GET request, 134
Bookmarkable links, 88, 92-96
boolean properties, prefixes, 37
border attribute, 150
h:dataTable, 210
h:panelGrid, 116
HTML pass-through, 110

From the Library of Wow! eBook

Index

Brackets, instead of dot notation, 64
Branching behavior, 75
British flag, link for, 324
Browser(s)
choosing the locale, 43
monitoring traffic with server,
601-602
pointing to default URLs, 12
rendering multiple select menus, 153
Browser language, switching to German,
47
Browser screen, JSF page for each, 17
Bundle files, supplying localized, 41
Bundle name, retrieving, 282
Business logic
separating from presentation, 33
separating from user interface logic,
314
of a Web application, 15
Buttons
attaching action listeners to, 80
firing action events, 312
tags supporting, 134-136
using, 136-141
Bypassing, validation, 266267

C
Cacheable pages, 89
Cagatay Civici's client-side validation
package, 595
Canada provinces, pop-up window
listing, 574
Cancel button, demonstrating validation
bypass, 267
caption facet, 213
captionClass attribute
h:dataTable, 210
h:panelGrid, 116
captionStyle attribute
h:dataTable, 210
h:panelGrid, 116
card property, of the PaymentBean, 279
cc predefined object, 68
CDI (Contexts and Dependency
Injection), 517
CDI (Contexts and Dependency
Injection) beans, 3940
injecting, 56

cellpadding attribute
h:dataTable, 210
h:panelGrid, 116,117
cellspacing attribute
h:dataTable, 210
h:panelGrid, 116,117
charset attribute, 110
Chart image, tag creating, 559-561
check method, of the user bean, 25
Checkboxes
rendering wired to a boolean bean
property, 146
selection example using, 164-171
tags for, 148-150
checkForm function, 369
checkPassword function, 120-121
Child components
managed by UIComponent, 421
placing name/value pairs in, 104
rendering supplied facets as, 366
setting day, month, and year values of,
376
Child elements, inside a JSF component,
198
Children
component processing, 460
inserting in composite components,
366-367
choice format, 43
c:if or c:choose construct, 581
Class files, directory holding, 10-11
Classes
implementing fake backend activities,
604
receiving system events, 330-331
requirements to be entities, 507
Click behavior, attached to spinner, 481
Client, saving state on, 468
Client behaviors, decoding, 481
Client devices, JSF framework interacting
with, 24
ClientBehaviorHolder interface, 479, 480
Client-side credit card validation, 589
Client-side scripts, 115
Client-side validation, 368, 588
Client-side validation tag, 588-595
close method, in a finally block, 490
Coalescing, events, 408

From the Library of Wow! eBook

Code, for this book, 10
Collections, with f:selectItems, 157-158
collectionType attribute, 147, 163
Colors, selecting, 148
cols attribute, 124, 126
Column headers, 212
columnClasses attribute
h:dataTable, 210
h:panelGrid, 116
Columns, CSS classes applied to, 117
columns attribute, h:panelGrid, 115-116
com.corejsf.util package, 283
Command links, 141-144. See also Links
commit method, 493
Committed transaction, 493
Commons file upload library, 548
Commons Validator, 595
complete attribute, of a data object, 398
complete request status, 397
Component(s), 3
attaching Ajax behavior to, 389
building
Ajax, 473-474
custom, 419
developing reusable, 457468
executing, 388, 389
exposing, 361
finding more, 547-548
paired with renderers, 107
referencing from other tags, 108
relationships between multiple,
295-297
specifying multiple listeners for, 320
in tables, 218-221
tags exposing composite, 364
validating a group of, 331-332
Component author, 348
Component classes
implementing, 420-423
responsibilities of, 420
standard, 421
Component developers, 25-26
Component hierarchy, 422
Component ID, 439
Component identifiers, aliasing, 362-363
Component libraries, 548
Component objects, request values in,
247-248

component predefined object, 68
Component tag, generating JavaScript
code, 588
Component tree
displaying in Debug Output, 199, 200
retrieving or constructing, 29
of the sample application, 2627
Component type, mapping, 434
Component/renderer pair, 205
Composed Method pattern, 188
Composite components
adding Java code to, 373
Ajax in, 409-416
configuring, 353-354
facets of, 365-366
implementing, 352-353
interfaces and implementations, 349
in JARs, 382
JavaScript with, 368-369
in JSF 2.0, 198, 347-348
localizing, 359-360
passing managed beans to, 358
tags exposing, 364
using, 350-352
Composite Components library, 101
Composite date application, 379-382
Composite date component, 373-378
Composite expressions, 69-70
Composite login sample application,
369-373
Composite tab library, 348-350
composite:actionSource tag, 363
composite:attribute tag, 355
composite:editableValueHolder tags,
360-363
composite:facet tag, 366
composite:insertChildren tag, 366, 367
composite:insertFacet tag, 366
composite:renderFacet tag, 366
composite:valueHolder tag, 363
Concurrent access, transactions for,493
Conditional navigation, 99
CONFIG_FILES initialization parameter, 59
Configuration file, 282, 291
Configuration parameters, for
applications, 595-596
Connection, closing, 488
Connection leaks, plugging, 490491

From the Library of Wow! eBook

Index

Connection object, 487, 488
Connection pool, 489, 496
Connections
closing properly, 490491
management of, 489
ConstraintValidator interface, 272
Constructors, 237
Container-managed authentication, 519
Container-managed resource, accessing,
495-496
Container-managed security application,
525-531
Content, defining pieces of, 188
Context
beans bound to, 39
external compared to real, 432433
Context parameter, reading, 595
Contexts and Dependency Injection
beans. See CDI (Contexts and
Dependency Injection) beans
Controller, JSF implementation as, 25
Controller servlet, processing requests,
306
Conversation scope, 51, 54-55
@ConversationScoped annotation, 55
Conversion error messages
displaying, 254-255
standard, 257-258
“Conversion error occurred”generic
message, 258
Conversion errors
actions taken, 253-259
reporting, 280-281
Conversion process, strings into types,
248
convertClientID method, 440
Converter(s), 275
associated with a component, 452
creating, 453
method for setting, 433
programming with custom, 275-297
registering as default, 279
in a resusable library, 282
specifying, 279-285
standard, 249-262
supplying attributes to, 289-290
converter attribute
adding to the component tag, 252

attaching a converter to a component,
109
as a basic attribute, 107, 108
compared to validator, 295
specifying converter ID, 279
Converter interface, 275
Converter object, 253
Converter sample, 259-262
ConverterException, throwing, 275, 280,
281
converterMessage attribute
as a basic attribute, 108
of the component, 259
cookie predefined object, 68
Cookies, tracking sessions, 52
coords attribute, HTML pass-through, 110
Core library, 101, 102-105
Core tags
in the core library, 102-105
defined by JSF, 17
representing objects added to
components, 103
corejsf-examples directory, 10
corejsf:planet tag, 195-198
corejsf:spinner, 423
createMetaRuleset method, 444
Credit card numbers
custom converter for, 276
verifying and generating, 271
Credit card validation, 588, 589
Cross-site scripting attacks, 131, 134
CSS classes
applying to messages, 172-173
specifying, 215-218
by column, 215-216
for different table parts, 117
for images, 355-356
by rows, 216-217
CSS layout, 115
CSS styles
applying to messages, 172-173
attributes, 112
rendering components, 112
specifying for column headers and
footers, 213
for a tabbed pane, 459
cumulativeOffset function, 406
currencyCode attribute, 251

From the Library of Wow! eBook

currencySymbol attribute, 251
Custom components, 25
adding Ajax functionality, 473-474
building, 419
duplicating code for converters, 440
self-contained Ajax in, 475-484
Custom converter
classes, 275-278
code for, 276, 277278
defining, 286, 288
error message, 259
programming, 254
sample application, 286289
tags, 297-303
Custom font spinner, 473-474
Custom scopes, 51, 56
Custom tags, 195-198
Custom validator(s)
classes, 290
example, 291-294
registering, 290-291
tags, 297-303
writing, 272

D
Data access objects, 514
Data comparator, 237
Data conversion, rules for, 25
Data model listener, 242
data object, 398
Data set, showing, 568-573
Data source
configuring, 495-506
using, 487
Data table, pager as a companion to, 568
Database, accessing with JPA, 509-513
Database application, complete example,
499-506
Database connection(s)
management of, 489
prepared statement tied to, 492
specifying in GlassFish, 497
Database connection pool, 489
Database example, directory structure of,
230
Database integrity, transactions for,493
Database resource
configuring in GlassFish, 496-498

configuring in Tomcat, 498499
Databases query, results of, 228232
DataModel API, 236-237
DataModel classes

constructors in, 237

getRowData method, 234

getRowIndex method, 233-234
Date picker, 473
Date value, 377, 378
Dates, conversion of, 249-253
dateStyTe attribute, 252
Date-valued property,378
Debug component

adding to the component tree, 198

directory structure of, 352

implementing, 352-353

using, 350
Debug Output window, 198-200
Debugging

h:message tag useful for, 256

parameter adding support for, 21

a stuck page, 602-603

tools, 329
decode method

calling, 432

calling setSubmittedValue method, 429

of the file upload component, 550

of PageRenderer, 568

of the spinner, 427-428

trapping invalid inputs, 430
Decoding process, 28
Decorators, 193
Default Ajax events, 393
Default tag handler, 441442
delete element, for Ajax responses, 402
Derby. See Apache Derby database
Design pattern, advocated by Smalltalk,

188
Detached entity object, 514
Detail, in a message, 172
Detail error message, 255
Development environments, 13-15, 39
Development stage, error message in, 582
DHTML events, 114-115
dir attribute

h:dataTable, 210

HTML pass-through, 110
Directory structure, 8-9

From the Library of Wow! eBook

Index

disabled attribute
fiajax tag, 391
HTML pass-through, 111
disabledClass attribute, 150
DiskFileUpload object, 551
Document Object Model (DOM)
elements, 386
doPopup function, 573, 575
Dot notation, 64
double value, 263
Drop-down lists, single-select menus as,
153
DRY (Don’t Repeat Yourself) principle,
181
Dynamic HTML (DHTML), 114-115
Dynamic navigation, 74-75
Dynamic target view IDs, 99

E
eager application-scoped bean, 59
eager attribute, 54
echo component, on the client, 390
echo output text, 390
Eclipse
Groovy Eclipse Plugin, 607-608
importing a project into, 13
monitoring traffic between browser
and server, 601-602
editable property,223
Editable value holders, 306
editableValueHolder composite tag, 349,
364
EditableValueHolder interface, 421, 433
@EJB annotation, 514
EJB container, 517
Element object, 397
Email message, application sending, 535
Embedded mode, application servers in,
604
empty operator, 69
emptyResponse value, 400
enabledClass attribute, 150
Encapsulation, 181
encode method, 569
encodeBegin method
described, 426
for encoding markup, 424
setting day, month, and year,376

of UISpinner, 425
encodeChildren method
calling, 439
for encoding markup, 424
getRendersChildren and, 461
invoking, 426
overriding, 460
encodeEnd method, 424, 461, 462
encodeTab method, 462
Encoding process, 27
endElement method, 425, 427
English locale, 142
Entities, in JPA, 507
Entity manager
with entity objects, 508
injecting in session beans, 606
obtaining, 509
Entity manager factory, 509
Error(s)
handling in Ajax, 400
handling of image paths, 25
Error display, 585
error element, 402
error facet, 367
Error facets, adding to login component,
365-366
Error functions, 400
Error messages
changing text of standard, 256-258
displaying, 254-256
getting from resource bundles,
281-284
placing data in request scope, 53
showing in a different color, 255
versions of, 255
Error pages, customizing, 582-587
Error sample application, 585-587
Error screens, for a database application,
499, 500
errorClass attribute, 172
error-page mechanism, servlet exception
attributes, 584
error-page tag, 583-584
errors CSS class, 175
errorStyle attribute, 172
escape attribute
fiselectItem, 154
h:outputFormat, 132

From the Library of Wow! eBook

Index

h:outputText, 132

as unique, 131

use of, 134
event attribute, f:ajax tag, 391
Event handlers, registering with

components, 305

Event handling

example demonstrating, 338-345

in the JSF life cycle, 306-307
Event listeners

affecting the JSF life cycle, 307

attaching, 331

collection managed by UIComponent, 422
Events

coalescing, 408

executed on the server, 306

JSF life cycle and, 306-307

kinds of, 305

naming convention for, 392

queueing, 407-408

specifying in Ajax, 393
ExceptionQueuedEvent, 330
execute attribute, of f:ajax tag, 391
execute components, in Ajax, 23
execute key, in Ajax, 405
execute list, in Ajax, 31
Execute portion, of the JSF life cycle, 387
executeQuery method, 230, 488
executeUpdate method, 488
Expression language (EL)

adding a function to, 599-600

compared to value expressions, 38

context object, 452

expressions in, 19

extending, 596-599

not part of JSF, 71

in the outcome attribute, 91

predefined objects in, 68

syntax, 63-71

syntax for method expression types, 71
Expressions, evaluation of, 38
extension composite tag, 349
Extension mapping, 20
External context, 432433
External context object, 595
External renderer, 438-441
External services, accessing, 487-544
ExternalContext class, 595

F
Facelets, 17, 179-180
Facelets error display, 585
Facelets library, 101
Facelets page, 17
Facelets tag library file, 599, 600
Facelets tags
categories of, 179
limitations of, 198
summary of, 180
templating with, 181-195
FACELETS_SKIP_COMMENTS context parameter,
201
.faces extension, 20
/faces prefix, 20
Faces servlet, 20
@FacesComponent annotation, 374
faces-config.xml file
associating converter ID with, 279
configuration information in, 7, 58
navigation elements in, 96
system event listener in, 331
in WEB-INF directory, 41
facesContext predefined object, 68
@FacesConverter annotation, 279
@FacesRenderer annotation, 438
FacesTrace, 603
Facet(s)
of a composite component, 365-366
in the core library, 104
rendering, 461
specifying column headers and
footers, 212-213
specifying tabbed pane content, 458
Facet components, 421
facet composite tag, 349
Facet map, 104
f:actionListener tag
adding action, 318-320
in the core library, 102
f:ajax tag, 389-392
adding a listener, 409
attaching behaviors to components,
385,416
attributes, 391-392
attributes as strings, 404
in the core library, 103
for custom components, 479

From the Library of Wow! eBook

617

Index

f:ajax tag (cont.)
limited functionality of, 403
nesting, 393-394
onevent attribute, 396
supporting, 473
fatalClass attribute, 172
fatalStyle attribute, 172
f:attribute tag
attaching a converter, 289
in the core library, 102,104
setting a component's attribute with,
326-327
f:convertDateTime converter, 250
ficonvertDateTime tag, 102
f:converter tag, 102, 279
f:convertNumber converter, 250
f:convertNumber tag, 102, 251
f:event tag, 102
f:facet tag, 102, 104, 340
Field validation, in Ajax, 394-396
Field value, from browser to model bean,
248
File upload application, 551-557
File upload object, 551
File uploads, supporting, 548-557
FileUpToadRenderer class, 554-556
finally block, 490
findComponent method, 108-109, 296
findCreditCardvalidators method, 588-589
Firebug, viewing Ajax responses,
400-401
first attribute, h:dataTable, 210, 211
Flags sample application, 142-144
Flash object, 88
flash predefined object, 68
f:loadBundle action, 41
f:loadBundle tag, 53, 103
f:metadata tag, 103
Font spinner, 473, 476
Font spinner renderer, 475
footer(lass attribute
h:column, 211
h:dataTable, 210
h:panelGrid, 116
Footers, 212,214
for attribute
f:actionListener, 364
h:message tags, 173

Form, containing a hidden field and
invisible link, 575
@form, in execute attribute, 391
Form controls, naming, 121
Form data, 28
Form elements, accessing, 120
Form ID, obtaining, 454
Form login configuration, 520
Form-based authentication, 520
fiparam tag
attaching parameter to a component,
325-326
in the core library, 102,104
embedding in an h:link tag, 139
overriding view parameters, 91
placeholders as child elements, 42
f:phaselistener tag, 102
fragment attribute, 135
frame attribute
h:dataTable, 210
h:panelGrid, 116,117
Frameworks, 3. See also Bean Validation
Framework; JSF framework;
Seam framework; Selenium test
automation framework;
Sitemesh framework
from-action element, 98
from-view-id element, 76, 97-98
fiselectItem tag, 153-155
in the core library, 103
in h:selectManyCheckbox, 148
populating radio buttons, 149
fiselectItems tag, 155-157
attributes, 156-157
collections and arrays, 157-158
in the core library, 103
in h:selectManyCheckbox, 148
maps with, 158-159
using a single, 459
values for, 460
var attribute in, 158
f:setPropertyActionListener tag, 102,
327-328
f:subview tag, 103
Function(s)
adding to JSF expression language,
599-600
calling, 66-67

From the Library of Wow! eBook

Functionality, defining common, 187
f:validateBean tag, 103, 264
f:validateDoubleRange tag, 102, 263
f:validatelength tag, 102, 263
f:validatelLongRange tag, 102, 263
f:validateRegex tag, 102, 263
f:validateRequired tag, 102, 263, 264
fivalidator tag

attaching a validator to a component,

264

in the core library, 102

specifying validator ID in, 291
f:valueChangelistener tag

adding change listeners, 318-320

adding one or more listeners with,

442-443

in the core library, 102
fiverbatim tag, 103, 141
f:view element, 44
fiview tag

in the core library, 103

enclosing a JSF page in, 329

enclosing a page in, 333

setting the locale, 44
f:viewParam tag, 103

G
German flag, link for, 324
German locale, 48
get method, 36
GET method, posting forms with, 119
GET requests

as idempotent, 89

links, 90-91

support for, 89-92
getAjaxScript method, 475-476
getAnswerComponent method, 39
getAsObject method, 276
getAsString method, 276
getAttributes method, 425, 442
getClientID method, 425, 426
getConnection method, 489
getConvertedvalue method, 377, 440
getConverter method, 452
getELContext method, 452
getExternalContext method, 432
getFacet method, 461
getFlash method, 88

getGreeting method, 23
getIncrementedValue method, 428-429
getInitParameter method, 595
getMessage method, 283
getName method, 19
getNames method, 233, 236
getRendersChildren method, 424, 439, 460,
461
getRequestParameterMap method, 433
getResourcesAsStream method, 596
getRowData method, 234, 236
getRowIndex method, 233-234
get/set methods, 16
getSkipOutcome method, 90
getStackTrace method, 584
getString method, 488
getType method, 453
getValue method, 425
getValueExpression method, 452
GlassFish
Apache Derby database, 493495
configuring
connection pool, 496
database resource, 496498
realm, 522-524
cookies representing current user, 525
deployment directory, 12
log file, 12, 501
specifying mail session parameters,
532
starting, 11
welcome page, 12
Global phase listeners, 328-329
globalOnly attribute, 173
GMail account, 533
graphicImage tag, 112
greeting property, 22-23
Groovy Eclipse Plugin, 607-608
Groovy programming language, 607-608
groupingUsed attribute, 251
GUI builder, 34

H

HashMap, 158

h:body tag, 105, 118

h:button tag, 106, 134
attributes, 135-136
examples of, 137

From the Library of Wow! eBook

Index

h:button tag (cont.)

issuing GET requests, 90

outcome attribute, 90
h:column tags, 106

attributes, 211

in the body of h:dataTable tags, 206
h: commandButton tag, 106, 134

action attribute, 19, 90

attributes, 135-136

converting to HTML, 27

examples of, 137

handling of image paths, 137
h:commandlink component, 104
h:commandLink tag, 106, 134

attributes, 135-136

examples of, 137-138

placing children, 138
h:dataTable tag, 106

attributes for, 210-211

attributes specifying styles, 215-218

creating an HTML table, 205-206

data as row oriented, 209

JSF page using, 229

reusing column classes, 216

sorting or filtering tables with, 234

wrapping in an HTML div, 242

wrapping objects in a model, 232
Header facets, 365-366
header predefined object, 68
header(lass attribute

h:column, 211

h:dataTable, 210

h:panelGrid, 116
headerValues predefined object, 68
Helper servlet, 559
h:form tag, 27, 105, 118-119
h:graphicImage tag, 106

attributes, 132-133

examples of, 133-134

handling of image paths, 137
h:head tag, 105, 118
Hibernate Validator JAR files, 271
Hidden fields

encoding, 462

placed after all tabs, 462

support for, 127
Hidden input field, 296
hideNoSelectionOption attribute, 147

h:inputHidden tag, 105, 124-125, 127
h:inputSecret tag, 105
attributes for, 124-125
converting to HTML, 27
uses of, 125-126
h:inputText tag, 105
attributes for, 124-125
converting to HTML, 27
uses of, 125-126
h:inputTextarea tag, 105
attributes for, 124-125
examples of, 126
specifying one long string for, 127
h:Tink tag, 106, 134
attributes, 135-136
embedding an f:param tag in, 139
examples of, 137-138
issuing GET requests, 90
h:message tags, 106, 172
attributes, 172-173
displaying validation errors, 265
showing details but not summaries, 176
h:messages tags, 106, 172
adding, 254
attributes, 172-173, 255
displaying all messages, 174-175
displaying validation errors, 265
layout attribute, 175
listing of all messages, 256
showing summaries but not details,
176
Hot fixes, 14
hotkey attribute, 199
h:ouputFormat tag, 106
h:ouputLabel tag, 106
h:ouputlLink tag, 106
h:ouputText tag, 106, 131
h:outputFormat tag, 42
attaching an f:param tag to, 326
attributes, 132
escape attribute, 131
formatting compound messages, 132
h:outputImage element, 557
h:outputlLink tag
attributes, 139
examples of, 139-140
generating an HTML anchor element,
134,139

From the Library of Wow! eBook

h:outputScript tag, 105
accessing JavaScript, 397
loading JavaScript with, 368
h:outputStylesheet tag, 105
h:outputText tag
attributes, 131-132
escape attribute, 131
examples of, 133-134
generating HTML input element, 134
h:panelGrid tag, 106
attributes, 116
implementing a tabbed pane, 340
using HTML tables for layout, 115
using with h:panelGroup, 117
h:panelGroup tag, 106, 214
attributes for, 117-118
with h:panelGrid, 117
hreflang attribute, 111
h:selectBooleanCheckbox tag, 106, 145, 146,
148
h:selectMany tags
value attribute, 161-162
value of a, 163
h:selectManyCheckbox tag, 106, 146
attributes, 150
creating a group of checkboxes, 148
example, 145
generating an HTML table element,
149
in selection example, 164
h:selectManyListbox tag, 106, 145, 146,
151-152, 159, 162-163
h:selectManyMenu tag, 106, 146, 152-153
h:selectOne tags, 161-162
h:selectOnelListhox tag, 106, 145, 146, 151
h:selectOneMenu components, 373-378
h:selectOneMenu tag, 106, 146, 152
onchange attribute, 308
in selection example, 164
h:selectOneRadio tag, 106, 146
attributes, 150
example, 145
generating an HTML table, 149
implementing radio buttons, 149
in selection example, 164
value attribute of, 149
HTML
attributes, supporting scripting, 114

distinction between menus and
listboxes, 153
elements
accessing client identifiers of, 368
unintentional generation of, 134
encoding in UISpinner, 424-425
form, compared to JSF page, 18
form tag, 119
generated by the spinner, 425
library, 101
markup, generating, 131
output, of the rendering process, 27-28
pages, rendering, 27
specification, accessing, 111
table, 205-206
tags
advanced aspects of, 338
categories of, 105
in JSF, 105-107
with a jsfc attribute, 18
in the login page file, 5
overview of, 105-115
HTML 4.0, pass-through attributes, 110-
111
HTMLUnit test automation framework,
604
HTTP 302 (Moved temporarily) status, 88
HTTP error, displaying, 584
HTTP monitoring, in Eclipse, 601
HTTP protocol, as stateless, 52
HTTP redirect, 86
HTTP requests, 386, 407
httpError value, 400
Hyperlinks, tabs encoded as, 462

I
ICEfaces open source library, 548
Icons, attributes of, 353
icon.xhtml file, 353-354
ID(s)
associating with a converter, 279
containing row numbers, 226
of converters, 252
placing restrictions on, 440
id attribute, 22
assigning names to HTML elements,
120

From the Library of Wow! eBook

Index

id attribute (cont.)
as a basic attribute, 107
described, 108-109
expressions accepted, 105
f:param, 104
specifying for forms, 119
ID strings, assigning, 27
ID values, generated by JSF
implementation, 121
Identifiers, adding to URLs, 52-53
Identities, switching, 525
IDEs, 13, 14
if element, 99
1j interactive scripting tool, in Derby, 494
Image(s)
displaying, 131-134
including from a library, 112
image attribute
h:button, 135
h:commandButton, 135
of an icon, 354
requiring, 355
Image map, showing, 557-559
img element, 132
immediate attribute, 322
adding to h:commandLink tag, 324
for a command, 267
of a component, 321
f:ajax tag, 391
h:button, 135
h:commandButton, 135
h:commandLink, 135
h:inputHidden, 124-125
h:inputSecret, 124
h:inputText, 124
h:inputTextarea, 124
h:1ink, 135
of an icon, 356
Immediate command components,
323-324
Immediate components, 320-321, 322
Immediate input components, 321-323
implementation composite tag, 348
Implicit objects, 67, 68
include directive, 340
Indexed properties, 37
index.xhtml page
reading, 26

with view parameter and h:1ink tag,
93-94
infoClass attribute, 173
infoStyle attribute, 173
Initial term, resolving, 67-69
initParam predefined object, 68
Injection process, 56. See also Resource
injection
Input, associating an Ajax call with, 388
Input components
for cells being edited, 223
exposing, 361
firing value change events, 307
input element, 149
Input field(s)
Ajax request for validating, 386
conversion options for, 253-254
displaying, 47
linking to object properties, 5
Input field values, bound with name user,
19
insert element, 402
insertChildren composite tag, 349
insertFacet composite tag, 349
Integer converter, 377
Integer index, 65
Integer wrapper type, 61
integerOnly attribute, 251
Interface, of a composite component, 353
interface composite tag, 348
Interface types, 439
Internal error screen, for a database
application, 500
Internationalization, 25, 47, 48
INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_A
S_NULL context parameter, 264
invalidate method, 53
Invoke Application phase, 31, 312
isAutoExec function, 404
ISO country codes, for locales, 243244
ISO-639 language codes, 42
isRendered method, 461
Ttem(s), 153-161
Item descriptions, 154
Item groups, 159-161
Item labels, 153-154, 459
itemDescription attribute, 157
itemDisabled attribute, 154, 157

From the Library of Wow! eBook

itemEscaped attribute, 157
itemLabel attribute, 156
itemValue attribute, 157
Iteration status, 218

J
JAR files

of the JSF implementation, 8
packaging composite components in,
382
packaging Facelets tags as, 197
providing, 434435
Java, serialization, 469
Java bean, 33
Java Blueprints conventions, 9
Java BluePrints project, 548
Java code, component references in,
108-109
Java Database Connectivity (J/DBC)
API, 487
database access with, 487-495
supporting pooling, 489
Java EE 5 tutorial, bookstore6 web
application, 557-559
Java EE 6 specification, 10
Java EE application server, 4,39
Java Persistence Architecture (JPA)
crash course in, 507-508
demo application, 509-513
in a web application, 508-513
Java Quiz application
directory structure of, 80, 81
navigation in, 77-86
transition diagram of, 82
JavaBeans specification, 33
JavaDB. See Apache Derby database
javaee subdirectory, 10
java.lang.0bject attribute values of type,
354
JavaMail API, 532-537
JavaScript
attaching to components with
attributes, 308
code accessing fields in a form, 454
with composite components, 368-369
encoding to update components, 453
456
form elements and, 120-123

libraries required by font spinner, 475
making an Ajax call to the server, 475
namespaces, 398-399
JavaScript API, using directly,416
JavaScript Library
accessing in XHTML files, 403
Ajax functions, 403-404
in JSF 2.0, 403-405
JavaScript sample application, 121-123
JavaScript timer, coalescing Ajax calls,
408
JavaServer Faces. See JSF (JavaServer
Faces)
java.util.Date, 374
javax.faces.model package
context parameter setting, 201
model classes in, 232-233
JAX-WS technology, 538-539
JDBC. See Java Database Connectivity
(JDBC)
JDeveloper, visual builder in, 14, 15
JDK (Java SE Development Kit) 5.0 or
higher, 10
JFreeChart library, 561
JNDI name, for a mail resource, 533
JPA. See Java Persistence Architecture
(JPA)
JPQL, query in, 508
JSF (JavaServer Faces)
application example, 4-9
code for event handling, 4
component hierarchy, 422
component-based, 3
development environment, 13-15
parts of, 3
registering standard validators, 291
with scripting languages, 120-123
JSF 1.0, components in, 347
JSF 1.2, tag libraries, 101
JSF2.0,4
Ajax with, 388-389
in Facelets, 17
integrating with Bean Validation
Framework, 270
JavaScript library, 403405
life cycles of, 388
tag libraries, 101
JSF applications. See Application(s)

From the Library of Wow! eBook

Index

JSF data table component, showing
database data, 228-232
JSF expression language. See Expression
language (EL)
.jsf extension, 20
JSF framework
error messages generated by, 174
overview of, 24
services, 24-26
JSF implementation
controlling beans, 35
defining converters with predefined
IDs, 252-253
handling events on the server, 308
initializing JSF code, 26
locating a bean class, 35
rendering or decoding table data, 235
JSF library, converters and validators in,
249-269
JSF life cycle, 29-31
executing, 306
parts of, 387
JSF pages, 17-19
accessing column data, 230
commenting out parts of, 200-201
compared to an HTML form, 18
encoding and decoding, 27
passing to Faces servlet, 20
for tabbed pane application, 470, 472
viewing without /faces prefix, 20
JSF tags
adding to XHTML pages, 17
in the login page file, 5
JSF URLs, format of, 20
jsfc attribute, 18
JSHlive cycle, firing phase events, 306
JSFUnit framework, 604
JSFUnit test, 605
JsP
replaced by Facelets, 179
syntax, 18
JSR 245 (JavaServer Pages), expression
language defined in, 71
JSR 303 implementation, 271
JSTL (JavaServer Pages Standard Tag
Library) constructs, 38
JSTL Core library, 101
JSTL Functions library, 66-67,101

K

key elements, for map-entry elements, 61

L
label attribute, 124, 147, 254
Labels, for menu items, 153-154
lang attribute, 111
Language, selecting preferred, 44
Language code, passing from Ul to
server, 325
languageCode attribute, 327
languageCode parameter, accessing, 326
TanguageCode property, 328
Tayout attribute
h:messages, 173, 256
as horizontal or vertical, 150
h:panelGroup, 118
Lazy collection, 514
left expression, evaluating in lvalue
mode, 64
LengthValidator standard message, 265
Libraries, of the resources directory, 112
Life cycle. See also JSF life cycle
annotations of beans, 58
of JSF, 29-31
skipping the rest of, 323
Lifetimes, of the standard JSF scopes, 56
LinkedHashMap, 158
Links
acting like buttons, 138
bookmarkable, 88
changing locales with, 323
firing action events, 312
registration, 367
RESTful, 92, 93
tags supporting, 134-136
List interface, 65
1ist layout, for messages, 175
List type, 60-62
Listbox items, grouping, 159-161
Listboxes
containing completion items, 405-407
multiselect, 151-152
selection example using, 164-171
single-select, 151
tags for, 151-153
Tistener attribute
f:ajax tag, 392, 409

From the Library of Wow! eBook

requiring a method expression, 70
Listener attributes, compared to tags,
318-320
Listeners
attaching, 319, 333
invoking, 329
specifying multiple, 320
Lists, initializing, 6062
@Local annotation, 606
Local values
converted values stored as, 248
validating, 30
Locale(s)
changing, 308, 323
getting current, 281
ISO country codes for, 243244
setting for applications, 43—44
setting programmatically, 44
using command links to change, 141
locale attribute
of f:convertDateTime, 252
of f:convertNumber, 251
Locale prefix, obtaining, 113
Locale suffix, adding to a bundle file, 42
localeChanger bean, 1anguageCode property,
328
localeChanger method, TanguageCode
parameter, 325
Localization, 281
Localized resources, 113
Log files
consulting, 12
for database configurations, 501
Logical operators, 69
Logical outcomes, 75
Login button, 22, 23-24
Login component
adding facets to, 365-366
attaching validators, 360-365
client-side validation for, 368
implementing a simple, 357-359
interacting with a managed bean,
356-357
making more accessible, 358-359
properties file, 359-360
with a registration link, 367
sample application, 369-373
Login form, 28

Login information, securely transmitting,
521
login method, 501
Login page
content area of, 190-191
for planets application, 181-182
viewing source of, 28
Login screen
for a database application, 499
file describing, 4-5
page defining, 7
Login view
header for, 188-189
sidebar for, 189-190
login.war file, 12
Togin.xhtm] page, 190-191
long value, validating, 263
Luhn check, 298
Luhn formula, 271
@LuhnCheck annotation, 271, 272
lvalue mode, 63—-64
Lynx browser, 525,526

M
Mail
as error-prone, 534
sending, 532-537
Mail sample program, 534-537
malformedXML value, 400
Managed beans, 16, 39
communicating with stateless session
beans, 513
configuring with XML, 58-63
implementing in Scala, 606
injecting, 57
injecting resources into, 495496
setting as property of another, 57
testing, 604
using, 40
@ManagedBean annotation, 35
managed-bean elements
defining a managed bean, 59
syntax diagram for, 61-62
@ManagedProperty annotation, 57
Map(s)
f:selectItems, 158-159
implementing as a namespace, 399
initializing, 60-62

From the Library of Wow! eBook

Index

Map(s) (cont.)
issues when using, 158-159
Map keys, turning into item labels, 159
Map type, initializing values of, 60—-62
Map values, turning into item values, 159
map-entry elements, 61
Markup, generating, 424427
maxFractionDigits attribute, 251
maxIntegerDigits attribute, 251
maxlength attribute, 111,126
Menu items, grouping, 159-161
menultems property, 159
Menus
multiselect, 152-153
selection example using, 164-171
single-select, 152
tags for, 151-153
Message(s)
created by objects, 171-177
displayed as a list, 175
displaying, 174
posted by invalid component, 253
types of, 172
with variable parts, 42—43
message attribute, 271
Message bundle files, 42
Message bundles, 4042, 257
Message strings, 40
message-bundle tag, 257
MessageFormat class, 42-43, 283
Messages sample application, 176-177
messages.properties file, 286
META-INF directory
in the JAR, 382
of aJAR file, 58
placing tag descriptor file into, 435
placing tag library file into, 197
META-INF/context.xml file, 498
Method expressions, 70-71
in an action attribute, 74
delaying execution of, 445
example of, 354
parameter values in, 71
for the submit button, 74
supporting, 443
taking parameters, 325
value of, 295
MethodExpressionActionListener, 445

Methods, calling, 66-67
method-signature attribute, 354, 355
minFractionDigits attribute, 251
minIntegerDigits attribute, 251
Model, 25
Model classes, 232-233
Model integrity, preserving, 248
Model-view-controller architecture,
25-26
Multi-component validation, 331-332
Multipart/form-data, 549, 554
Multiple select menus, 153
Multiselect listboxes, 151-152
Multiselect menus, 152-153

N
name attribute, 104
Name clashes, avoiding, 435
Name class, 208-209
name component, on the server, 390
name input, 394
name property
of a user object, 6
of UserBean, 16
Named anchors, links to, 140
@Named annotation, 39
nameError component, 395
Namespace declaration
for Facelets tags, 179
for sample application, 17
Namespaces
for composite components, 351
JavaScript, 398-399
Naming, a managed bean, 16
Naming convention
for composite components, 350-352
for multiple spinners in a page, 428
Naming pattern, for property getters and
setters, 36
Navigation
conditional, 99
dynamic, 74-75
static, 73-74
Navigation handler, 73, 98
Navigation handling, actions
participating in, 312
Navigation logic, 79
Navigation methods, 79

From the Library of Wow! eBook

Index

Navigation rules
advanced, 96-97
grouping multiple, 76
in JSE, 6
navigation-case element, 98
navigation-rule entries, 76
Netbeans
JSE support, 13
monitoring traffic between browser
and server, 601, 602
supporting Groovy, 607
Newline characters (\n), 127
next method, 488
@none, 391
none scope, 59
noSelectionOption attribute
fiselectItem, 154
fiselectItems, 157
“not in range” messages, 265
null, initializing a property with, 60
null-value element, 60
Number quiz application
code for, 47, 48-51
directory structure of, 48
illustrating essential features of beans,
45-51
NumberFormatException catch clause, 430
Numbers
conversion of, 249-253
formatting as currency amounts, 43
Numeric ranges, validating, 262-264

(0]
Object(s)
compared to beans, 33
saving state of, 472
Object literal, in JavaScript, 399
object/relational (O/R) mapper. See O/R
mapper
offset attribute, 217, 218
onchange attribute, 308
onerror attribute, 391, 392, 400
onerror key, 405
onevent attribute
f:ajax tag, 391, 396, 398
as JavaScript function, 392
onevent key, in Ajax request function, 405
OpenFaces open source library,548

Operator precedence, 69
Operators, in value expressions, 110
optgroup elements, nested, 161
O/R mapper
in Java Persistence Architecture (JPA),
507
translating annotations, 507
translating between database tables
and Java objects, 507
Original model, 236
Outcome, as value of the action attribute,
74
outcome attribute
h:button, 135
h:Tink, 135
target view ID specified by,90
Outcome string, parameters in, 91
Outcomes, mapping to view IDs, 75-77
outputScript tag, 112
Overloaded methods, not supported, 66

P
Page authors, 348
Page-level validation, 271
Pager, navigating a large table, 568
Pager widgets, scrolling with, 243-244
Pages. See also JSF pages; Web pages
building from common templates,
183-186
cacheable, 89
redisplaying current, 253
showing or hiding parts of, 581-582
stuck, 602-603
Panel stack, 581-582
Panels, 115-118
param predefined object, 68
Parameters
adding support for debugging, 21
in the core library, 104
key/value pairs in Ajax options as, 406
method expressions taking, 325
providing to actions of buttons and
links, 71
paramValues predefined object, 68
password property, 16
Passwords, checking, 361-362
@Past validation annotation, of birthday
property, 378

From the Library of Wow! eBook

627

Index

pattern attribute
f:convertDateTime, 252
f:convertNumber, 251
persistence.xml file, 509
Phase events, 306, 328-329
Phase listeners
activating after Restore View phase,
566, 567-568
attaching to view root, 328-329
implementing, 329
Phase tracker, installing, 603
Phaselistener interface, 329
Phases
of JSF, 29
specifying all, 329
Placeholders
numbering, 42
substituting values for, 283
Planet application, files comprising
template and views, 187
Planetarium, logging into, 181
Planetarium class, 196-197
Planets application, 181-193, 195-198
Pooling, database connections, 489
Pop-up data, sending to original page,
575
Pop-up window
creating as a blank window, 575
generating, 573-581
Pop-up window example application,
576-581
POST method, 119
POST requests, 28
browser sending back, 427
in a RESTful web application, 89
to the server, 88
PostAddToViewEvent, 330
@PostConstruct annotation, 58
PostConstructApplicationEvent, 330
PostConstructCustomScopeEvent, 330
PostConstructViewMapEvent, 330
PostRestoreStateEvent, 330
PostValidateEvent, 330, 331
listener to, 296

validating a group of components, 332

@PreDestroy annotation, 58
PreDestroyApplicationEvent, 330
PreDestroyCustomScopeEvent, 330

PreDestroyViewMapEvent, 330
Preemptive navigation, for target view
IDs, 90
Preferred language, 44
Prepared statements, 491492
prepareStatement method, 491-492
prependID attribute
for h:form tag, 119
setting, 22
PreRemoveFromViewEvent, 330
PreRenderComponentEvent, 330
PreRenderViewEvent, 330
Presentation layer
benefitting from operators, 69
separating from business logic, 16, 33
of a Web application, 15
pretty URLs, 89
PreValidateEvent, 330
PrimeFaces open source library, 548
ProblemBean class, 46
Process Validations phase, 30, 332
processAction method, 319, 364-365
Processing sequence. See Life cycle
Production stage, 583
Progress bar, on the client, 396
Project stage, setting to production,
583
PROJECT_STAGE parameter, 21
Properties
of beans, 36-37
defining, 16, 36, 46
naming, 37
specifying for tags, 441
.properties extension, 40
Properties file, for the login component,
359-360
Property setter
putting code into, 47
for tag attributes, 442
Property sheet dialog, property values
from, 34
Property values
converting to strings, 62
setting, 59-60
PropertyResolver class, 598
Protected resource, requesting, 521
Prototype JavaScript library, 397
Push button, generating, 136, 137

From the Library of Wow! eBook

Q

Queueing, events, 407408
Quiz applications, 45-51, 92-96
QuizBean application, 45-51

R
Radio buttons, 148-150, 164-171
Range validator, 263
readonly attribute, 111
Read-only properties, 16
Read-write property, 148
Realms
configuring in GlassFish, 522-524
configuring in Tomcat, 524-525
for web applications, 522
redirect element, 402
Redirection, to a new view, 86-87
redisplay attribute, 124, 125
Reference implementation, supporting
hot deployment, 607
Registration link, adding to login
component, 367
rel attribute, 111
Relational operators, 69
render attribute, 392
render components, 23
render key, 405
render list, 31
Render portion, of the JSF life cycle, 387
Render Response phase
displaying messages in a view, 171
of JSF life cycle, 29, 30, 31
rendered attribute
as a basic attribute, 107
including or excluding a component,
109-110
rendering content associated with
current tab, 340-341
ui:component, 198
Renderer(s)
by component family and renderer
type, 438
of font spinner, 475
implementing separate, 421
power of pluggable, 454
producing HTML output, 27
Renderer class, 438-439
Renderer type, 438, 439

Renderers convenience class, 445
renderfFacet composite tag, 349
Rendering

delegating to a separate class, 438

row numbers, 233-234
renderResponse method, 307, 322-323, 332
request function, 404-405, 409
Request parameter values, 153-154
Request parameters

passing in Ajax, 405-407

returning a map of, 433

specifying, 91-92
Request scope, 51, 53-54, 226
Request scoped beans

single-threaded, 54

using with a redirect, 87-88
Request values, 247

processing, 427433

as strings, 248
Requests

decoding, 28-29

monitoring, 396-398
requestScope predefined object, 68
@RequestScoped annotation, 51
required attribute(s)

adding to the Address field, 321-322

as a basic attribute, 108

h:inputHidden, 124-125

h:inputSecret, 124

h:inputText, 124

h:inputTextarea, 124

on image's composite:attribute tag, 356

in the input component, 264

of text fields, 174
Required values, 264265
requiredMessage attribute, 108, 265
Resolvers, 67, 596-599
Resource(s)

displaying missing, 283

localized versions of, 113
Resource bundles, 257

associating with composite

components, 359

error messages from, 281-284

getting, 282

specifying, 459
Resource ID, of a detail message, 282
Resource injection, 495

From the Library of Wow! eBook

Index

resource predefined object, 68
resourceBundle attribute, 459
resource-bundle tag, 257
@ResourceDependency annotation, 454, 475
resources directory, 112,132
response function, 400, 403, 404
Response writer, 426
responseCode attribute, 398
responseComplete method, 307, 566
Responses, Ajax, 400-403
responseText attribute, 398
ResponseWriter class, 425
responseXML attribute, 398
REST (Representational State Transfer)
architectural style, 89
RESTful approach, to web services,
537-538
RESTful links, 92, 93
Restore View phase, 29
restoreState method, 468-469, 472
Result sets, 230
ResultSet class, 488
Reusability, of components, 353-354
rev attribute, 111
Revisited spinner example, 446
RichFaces open source component
library, 548
right expression, evaluating in rvalue
mode, 64
Roles, assigned during authentication,
520
rollback method, 493
Rolled back transaction, 493
Roundtrips, to the server, 453
Row indexes, sorting, 236
Row numbers, rendering, 233234
rowClasses attribute
h:dataTable, 210, 216
h:panelGrid, 116
Row-oriented data, 209
Rows
CSS classes applied to, 117
deleting from tables, 225-228
finding selected, 234
rows attribute
h:dataTable, 210
h:inputTextarea, 124, 126
HTML pass-through, 111

rules attribute

h:dataTable, 210

h:panelGrid, 116,117
Rushmore application, 313-318
rvalue mode, 63-64

S
Sample application, behind scenes of,
26-31
saveState method, 468-469, 472
Scala programming language, 605-607
Scalar object, 206
Schema declaration, version of, 41
Scope, of a managed bean, 16
Scoped variables, displaying, 199, 200
Scopes
custom, 56
defining for beans, 51
of properties, 57
script tag, 201
Scripting languages, JS Faces with,
120-123
Scripts
generating, 475-476
simulating browser sessions, 604
Scrollable div, 242, 243
Scrollbar, in tables, 242243
Scrolling techniques, 242-244
Seam framework, 517
Search service, invoking, 539
sections directory, 188
select elements, generating HTML, 151
Selection example, using checkboxes,
radio buttons, menus, and
listboxes, 164-171
Selection items, specifying, 153-155
Selection tags
examples of, 145-146
in JSF, 145-153
SelectItem instance, 158
SelectItem objects, 162, 460
SelectItemGroup instances, 159-161
selectMany tags, 146, 162
selectOne tags, 146
Selenium test automation framework,
604
Serializable interface, 35, 298
Serialization algorithm, 469

From the Library of Wow! eBook

Server
monitoring traffic with browser,
601-602
passing data from the UI to, 324-328
saving state on, 468
serverError value, 400
Server-side components, 120-123
Server-side data, 356-359
Server-side validation, 588
Service object, obtaining, 540
Servlet containers, 52
Servlet filter, installing, 549, 550, 552-554
Servlet runner, 10
Session(s)
duration of, 35
tracking, 52
Session bean methods, 513
Session beans, not single-threaded, 54
Session scope, 51, 52-53
sessionScope map, 69
sessionScope predefined object, 68
@SessionScoped annotation, 40, 51
set method, 36
setConverter method, 429, 433
setCurrentUser method, 57
setLocale method, 44
setProperty action, 63
setRowIndex method, 236
setSubmitedValue method, 433
Setter method, 47
setUser method, 60
Severity, setting, 281
shape attribute, 111
showDetail attribute, 173, 174
showProgress function, 397, 398
showSummary attribute, 173, 174
Simple table, 207-209
Single-select listbox, 151
Single-select menu, 152
Sitemesh framework, 193
size attribute, 110
of h:selectOnelListbox, 151
HTML pass-through, 110, 111
specifying visible characters in a text
field, 126
of ui:repeat, 217
SMTP connections, 534
smtpsend test program, 534

Sorting, table columns, 235
Sorting model, 236
source attribute, of a data object, 398
span element, generating, 131
spin function, 453
Spinner application, 435437
revisited, 445-452
Spinner component, 419420
descriptor file for, 434
looking at closely, 422423
Spinner renderer, versions of, 480,
481-484
SpinnerHandler class, 444445
SQL injection attacks, 492
SQL statements, issuing, 487488
SQLException, try/finally construct and,
490-491
src/java directory, 9
SSL (Secure Sockets Layer), 521
Stack trace, assembling a complete, 584
Standard conversion error messages,
257-258
Standard converters
attributes, 251-252
JSF implementation selecting, 251
using, 249-262
Standard messages, replacing, 257
Standard validation error messages, 266
Standard validators
provided with JSF, 263
using, 262-269
startElement method, 425, 427
State
algorithm for saving, 469
saving and restoring, 468473
saving for converters or validators,
298
State helper, 470
State helper map, 473
Stateful session beans, 517
StateHelper class, 469
StateHolder interface, 468—469
@Stateless annotation, 514
Stateless session beans, 513, 517, 606
Statement object, 488
Static method, 599-600
Static navigation, 73-74
status attribute, 398

From the Library of Wow! eBook

Index

Status messages, 53
status property, 400
step attribute, 217
String conversion rules, 63
String length validator, 263
String lengths, validating, 262264
Strings
concatenating, 69-70
converting, 62-63, 429
request values as, 248
validating, 263
Structured Query Language (SQL)
commands, 487
Stuck page, debugging, 602-603
style attribute, 111,255
styleClass attribute
of h:messages, 255
HTML pass-through, 111
specifying a CSS style, 356
Styles
specifying by column, 215-216
specifying by row, 216217
specifying CSS classes, 215-218
Stylesheet
including with an HTML Tink tag, 112
inserting into head of a page, 184
Subexpressions, resolving, 597
Submit button, 363
submit function, 308
Submitted value, 248, 429, 433
subscribeToEvent method, 331
success attribute, 398
success request status, 397
Summary, in a message, 172
summary attribute
h:dataTable, 210
h:panelGrid, 116, 117
Summary error message, 255
@SuppressWarnings annotation, 508
System event demo application, 333-338
System events, 306, 329-331
using, 331-333
System properties, 597

T

Tabbed pane
application, 341-345
children of, 458

component, 420
implementing, 338-341, 457468
plain-looking, 458
poor man's implementation of, 338-345
renderer, 460
tabs encoded as hyperlinks, 462
using facet names, 461
TabbedPaneRenderer class, 462468
tabindex attribute, 111,340
Tables
caption, supplying, 213
cells, editing, 222-225
columns, sorting, 235
editing, 222-228
header, placing multiple components
in, 214
JSF components in, 218-221
markup, rendering for ui:repeat, 217
models, 232-242
models, decorating, 234, 235-236
rows, deleting, 225-228
scrolling through, 242-244
simple, 207-209
sorting or filtering, 234-242
Tabs, specifying, 458
Tabular data, displaying, 205
Tag attributes, 107-115, 441-445
Tag descriptor files, 297-298
Tag handler class, 26
Tag handlers, 26,441
Tag libraries, 17-18,101
Tag library descriptor file, 195-196,197,
433-435
Tag prefixes, in this book, 18
target attribute, 112
HTML pass-through, 111
of upload component, 554
Target view IDs, 90,99
targets attribute, 361
TCP /1P sniffer, 602
Template
building pages from, 183-186
decorating contents, 194
in Facelets, 181
for planets application, 183-184
putting ui:debug tag in, 199
shared by planet application pages,
182

From the Library of Wow! eBook

supplying arguments, 195
used by planets application, 185-186
Ternary ?: selection operator,69
Testing tools, developing applications,
604-605
Text
displaying, 131-134
localizing in composite components,
359-360
placing inside a tag, 141
Text areas, 127-130
Text fields
adding a validator to, 262
attaching a converter to, 250
using, 127-130
Text fields and text areas example
application, 128-130
Text inputs
validating, 389
for web applications, 123
@this keyword, 390, 391
Thread safety, 54
Tiles approach, 193
Time zones, predefined, 568, 569
timeStyle attribute, 252
timeZone attribute, 252
title attribute
associating a tooltip with each tab, 340
HTML pass-through, 111
toInteger method, 429
Tomahawk component set, 549
Tomcat
adding CDI reference implementation
to, 39
configuring a database resource,
498-499
configuring a realm in, 524-525
cookies representing current user, 525
deployment directory, 12
log file, 12, 501
starting, 11
tomcat subdirectory, 10
tooltip attribute, 173-174
toString method, 47
to-view-id element, 99
Traffic, monitoring, 601-602
Transaction manager, obtaining, 509
Transactions, forming, 493

Transient property,472
Transition diagram, 82
TreeMap, alphabetical order in, 158
try/finally block, 488
type attribute, 355
of a data object, 398
f:convertDateTime, 252
f:convertNumber, 251
h:commandButton, 135
h:commandLink, 135
h:1ink, 135
HTML pass-through, 111

U
UL See User interfaces
UI prefix, 421
UICommand class, 421
UICommand component, 29
UICommand object, 29
UICommand superclass, 469
UIComponent class
backing component as a subclass of,
373
categories of data, 421422
subclass of, 421
ui:component tag, 180, 198
UIComponentBase class, 480
ui:composition tag, 180
changing to ui:component, 198
compared to ui:decorator, 195
discarding surrounding XHTML tags,
188-189
with a template attribute, 184
UIData component, 206
ui:debug tag, 180, 198-200
ui:decorate tag, 180
generating a component, 198
inserting children of, 194
with a template attribute, 193
ui:define tags, 180, 195
inside the ui:composition tag, 185
overriding defaults, 194
ui:fragment tag, 180, 198
ui:include tag, 180, 184, 187
UIInput class, 39, 421
conversion code in, 440
extending, 374
UIInput components, 29

From the Library of Wow! eBook

Index

UIInput objects, 29
ui:insert tag, 180, 183, 184
UIOutput class, 39, 421
ui:param tag, 180, 195
ui:remove tag, 180, 201
ui:repeat tag, 180, 217-218
UISpinner class, 430-432, 480
UISpinner component, 423-433
UITabbedPane class
content instance variable, 461
property of, 469470
saving and restoring state, 470472
Unicode characters, encoding, 42
update element, 402
Update Model Values phase, 30, 31,248
Upload component, of the file upload
application, 554-557
URLs
browsers pointing to default, 12
format of JSF, 20
for POST requests, 28
pretty, 89
redirection updating in browsers, 87
rewriting, 52-53
USA states, pop-up window listing, 574
User(s)
gathering input from, 254
navigating with GET requests, 90
user attribute, login component declaring,
358
user bean
check methods of, 25
located on the server, 23
User events, responding to, 305
User information, programmatic access
to, 525
User input, 247, 248
User interface builder, 34
User interfaces
generating markup for, 424
implementing flexible, 179
logic, 314
passing data from to the server,
324-328
passing information to the server, 325
UserBean class, 16, 35
UserBean objects, 35
UserBean.java file, 7-8

Username/password combination,
499-506
Utility tags, in Facelets, 202

A"
validate method, 294
validateCreditCard function, 589-590
validateName method, 394, 395
Validating application, 299
Validation
built-in, 263
bypassing, 266267
client-side, 588
of fields in Ajax, 394-396
JavaScript function for, 588
in JSF, 25
of local values, 248
server-side, 588
skipping when a value change event
fires, 323
taking place on the server, 396
triggering, 355, 356
Validation annotations, 270
Validation error messages,266
Validation errors, displaying, 30, 265266
Validation method, 294
Validation sample, 267269
ValidationMessages.properties file, 271, 272
Validator(s)
attaching to the login component,
360-365
for local values, 30
nesting inside input component tag,
264
programming with custom, 275-297
provided with JSF, 263
registering custom, 290291
using standard, 262-269
validator attribute
as a basic attribute, 107, 108
of the component tag, 265
of EditabTeValueHolder, 441
input tags having, 109
requiring a method expression, 70
Validator classes
implementing custom, 290
referencing annotation type, 272

Validator interface, 290

From the Library of Wow! eBook

Validator messages, 265
Validator tags
adding, 262
attached to each component, 588
ValidatorException, 290
validatorMessage attribute, 108, 265
validatorScript component, 588-589,
592-594
validatorScript tag, 589
value attribute
as a basic attribute, 107, 108
binding, 161-162
described, 109
f:attribute, 104
f:param, 104
h:dataTable, 206, 211, 235
h:outputText, 131
tracking multiple selections, 162-164
of upload component, 554
of ValueHolder, 441
Value change events, 306, 307-312, 322
Value change listeners, 308, 442
Value change sample application,
308-312
Value changes, counting, 443
value element, containing a string, 62
Value expressions
accessing bean properties, 37-38
accessing message strings, 41
with CDI beans, 40
concatenating, 69-70
evaluating a.b, 65
example of, 354
indexed properties and, 65
invoking methods in, 66
map managed by UIComponent, 422
operators in, 69, 110
in the outcome string, 91
returning, 452, 453
supplying, 90
in user interface components, 64
using, 109
valueChangelistener attribute, 443
as a basic attribute, 107, 108
of EditableValueHolder, 441
h:inputHidden, 124-125
h:inputSecret, 124
h:inputText, 124

h:inputTextarea, 124
requiring a method expression, 70
ValueChangelistener interface, 319
valueHolder composite tag, 349, 364
ValueHolder interface, 421, 433, 441
Values
checking for required, 264265
specifying with a string, 109
var attribute
fiselectItems, 156, 157
h:dataTable, 206, 211
string expression accepted, 105
Variable parts, of messages, 42-43
Variable resolver, in JSF 1.1,599
VariableResolver class, in JSF 1.1, 598
varStatus attribute, 218
Versioning mechanism, for resource
libraries, 112-113
View component, wiring to a bean
property, 25
View handler, replacing, 17
View IDs, mapping outcomes to, 74,
75-77
View parameters
including in the query string, 91
passing values, 89-90
in a redirect link, 92
view predefined object, 68
View root, 328-329
View scope, 51, 55,75
View state. See State
Views
of the data model, 25
implementing, 188
organizing, 187-193
viewScope predefined object, 68
Visual builder tool, in an IDE, 14

w

.war extension, 8

WAR files
copying to a deployment directory, 12
deploying JSF applications, 8
directory structure of, 9

warnClass attribute, 173

warnStyle attribute, 173

Weather information, searching for,541

Weather service, accessing, 538

From the Library of Wow! eBook

Index

Web applications
displaying views of a model, 25
executing SQL statements from, 488
JPA in, 508-513
parts of, 15
placing most beans into session scope,
53
sending mail in, 532-537
web directory, 9
Web forms
backing beans for, 38-39
user filling in fields of, 247
Web pages
beans storing the state of, 35
design contained in, 16
making changes to, 21
values as always strings, 162
Web project, importing from existing
sources, 13
Web service sample application, 541-544
Web services, 537-544
Web Services Definition Language
(WSDL), 538
Web user interface,249
@WebServiceRef annotation, 540
web.xm1 file, 7, 19
configuration parameters in, 595
specifying a welcome page, 20
supplying, 21
Weekday objects, 158
Welcome message, using Ajax, 22
Welcome page
of authentication test application, 526
specifying, 20

Welcome screen
for a database application, 499, 500
page defining, 7
Whitespace, in Facelets pages, 202
width attribute, 111
Wildcards, in a navigation rule, 97-98
writeAttribute method, 425, 427
Write-only properties, 16
writeValidationFunctions method, 589, 590
WS-* approach, to web services, 537
WS-* web service
calling, 540
JSF built-in support for, 538
WSDL (Web Services Definition
Language), 538
wsimport tool, 540

X
.xhtm] extension, 17
XHTML file
implementing custom tag in, 195-196
namespace declaration to, 348
XHTML markup, 191-193
XHTML page, 17
XML
configuring managed beans with,
58-63
configuring property values with,
59-60
XML comments, value expressions in,
201
XML configuration, specifying
navigation rules in, 92
XML elements, for Ajax responses, 402

From the Library of Wow! eBook

	Contents
	Preface
	Acknowledgments
	1 GETTING STARTED
	Why JavaServer Faces?
	A Simple Example
	Ingredients
	Directory Structure
	Building a JSF Application
	Deploying a JSF Application

	Development Environments for JSF
	An Analysis of the Sample Application
	Beans
	JSF Pages
	Servlet Configuration

	A First Glimpse of Ajax: JSF 2.0
	JSF Framework Services
	Behind the Scenes
	Rendering Pages
	Decoding Requests
	The Life Cycle

	Conclusion

	2 MANAGED BEANS
	Definition of a Bean
	Bean Properties
	Value Expressions
	Backing Beans

	CDI Beans: CDI
	Message Bundles
	Messages with Variable Parts
	Setting the Application Locale

	A Sample Application
	Bean Scopes
	Session Scope
	Request Scope
	Application Scope
	Conversation Scope: CDI
	View Scope: JSF 2.0
	Custom Scopes: JSF 2.0

	Configuring Beans
	Injecting CDI Beans: CDI
	Injecting Managed Beans: JSF 2.0
	Bean Life Cycle Annotations
	Configuring Managed Beans with XML

	The Expression Language Syntax
	Lvalue and Rvalue Modes
	Using Brackets
	Map and List Expressions
	Calling Methods and Functions: JSF 2.0
	Resolving the Initial Term
	Composite Expressions
	Method Expressions
	Method Expression Parameters: JSF 2.0

	Conclusion

	3 NAVIGATION
	Static Navigation
	Dynamic Navigation
	Mapping Outcomes to View IDs
	The JavaQuiz Application

	Redirection
	Redirection and the Flash: JSF 2.0

	RESTful Navigation and Bookmarkable URLs: JSF 2.0
	View Parameters
	GET Request Links
	Specifying Request Parameters
	Adding Bookmarkable Links to the Quiz Application

	Advanced Navigation Rules
	Wildcards
	Using from-action
	Conditional Navigation Cases: JSF 2.0
	Dynamic Target View IDs: JSF 2.0

	Conclusion

	4 STANDARD JSF TAGS
	An Overview of the JSF Core Tags
	Attributes, Parameters, and Facets

	An Overview of the JSF HTML Tags
	Common Attributes

	Panels
	The Head, Body, and Form Tags
	Form Elements and JavaScript

	Text Fields and Text Areas
	Hidden Fields
	Using Text Fields and Text Areas
	Displaying Text and Images

	Buttons and Links
	Using Buttons
	Using Command Links

	Selection Tags
	Checkboxes and Radio Buttons
	Menus and Listboxes
	Items

	Messages
	Conclusion

	5 FACELETS: JSF 2.0
	Facelets Tags
	Templating with Facelets
	Building Pages from Common Templates
	Organizing Your Views
	Decorators
	Parameters

	Custom Tags
	Components and Fragments

	Loose Ends
	<ui:debug>
	<ui:remove>
	Handling Whitespace

	Conclusion

	6 DATA TABLES
	The Data Table Tag—h:dataTable
	A Simple Table
	h:dataTable Attributes
	h:column Attributes

	Headers, Footers, and Captions
	Styles
	Styles by Column
	Styles by Row
	The ui:repeat Tag: JSF 2.0

	JSF Components in Tables
	Editing Tables
	Editing Table Cells
	Deleting Rows: JSF 2.0

	Database Tables
	Table Models
	Rendering Row Numbers
	Finding the Selected Row
	Sorting and Filtering

	Scrolling Techniques
	Scrolling with a Scrollbar
	Scrolling with Pager Widgets

	Conclusion

	7 CONVERSION AND VALIDATION
	Overview of the Conversion and Validation Process
	Using Standard Converters
	Conversion of Numbers and Dates
	Conversion Errors
	A Complete Converter Example

	Using Standard Validators
	Validating String Lengths and Numeric Ranges
	Checking for Required Values
	Displaying Validation Errors
	Bypassing Validation
	A Complete Validation Example

	Bean Validation: JSF 2.0
	Programming with Custom Converters and Validators
	Implementing Custom Converter Classes
	Specifying Converters: JSF 2.0
	Reporting Conversion Errors
	Getting Error Messages from Resource Bundles
	The Custom Converter Sample Application
	Supplying Attributes to Converters
	Implementing Custom Validator Classes
	Registering Custom Validators
	Validating with Bean Methods
	Validating Relationships between Multiple Components

	Implementing Custom Converter and Validator Tags
	Conclusion

	8 EVENT HANDLING
	Events and the JSF Life Cycle
	Value Change Events
	Action Events
	Event Listener Tags
	The f:actionListener and f:valueChangeListener Tags

	Immediate Components
	Using Immediate Input Components
	Using Immediate Command Components

	Passing Data from the UI to the Server
	Method Expression Parameters: JSF 2.0
	The f:param Tag
	The f:attribute Tag
	The f:setPropertyActionListener Tag

	Phase Events
	System Events: JSF 2.0
	Multi-Component Validation
	Making Decisions before Rendering the View

	Putting It All Together
	Conclusion

	9 COMPOSITE COMPONENTS: JSF 2.0
	The Composite Tag Library
	Using Composite Components
	Implementing Composite Components
	Configuring Composite Components
	Attribute Types
	Required Attributes and Default Attribute Values
	Manipulating Server-Side Data
	Localizing Composite Components
	Exposing a Composite's Components
	Exposing Action Sources

	Facets
	Children
	JavaScript
	Backing Components
	Packaging Composite Components in JARs
	Conclusion

	10 AJAX: JSF 2.0
	Ajax and JSF
	The JSF Life Cycle and Ajax
	The JSF Ajax Recipe
	The f:ajax Tag
	Ajax Groups
	Ajax Field Validation
	Ajax Request Monitoring
	JavaScript Namespaces
	Handling Ajax Errors
	Ajax Responses
	The JSF 2.0 JavaScript Library
	Passing Additional Ajax Request Parameters
	Queueing Events
	Coalescing Events
	Intercepting jsf.ajax.request()
	Using Ajax in Composite Components
	Conclusion

	11 CUSTOM COMPONENTS, CONVERTERS, AND VALIDATORS
	Implementing a Component Class
	Encoding: Generating Markup
	Decoding: Processing Request Values
	The Tag Library Descriptor: JSF 2.0
	Using an External Renderer
	Processing Tag Attributes: JSF 2.0
	Supporting Value Change Listeners
	Supporting Method Expressions
	Queuing Events
	The Sample Application

	Encoding JavaScript
	Using Child Components and Facets
	Processing SelectItem Children
	Processing Facets
	Using Hidden Fields

	Saving and Restoring State
	Partial State Saving: JSF 2.0

	Building Ajax Components: JSF 2.0
	Implementing Self-Contained Ajax in Custom Components
	Supporting f:ajax in Custom Components

	Conclusion

	12 EXTERNAL SERVICES
	Database Access with JDBC
	Issuing SQL Statements
	Connection Management
	Plugging Connection Leaks
	Using Prepared Statements
	Transactions
	Using the Derby Database

	Configuring a Data Source
	Accessing a Container-Managed Resource
	Configuring a Database Resource in GlassFish
	Configuring a Database Resource in Tomcat
	A Complete Database Example

	Using the Java Persistence Architecture
	A Crash Course in JPA
	Using JPA in a Web Application
	Using Managed Beans and Stateless Session Beans
	Stateful Session Beans: CDI

	Container-Managed Authentication and Authorization
	Sending Mail
	Using Web Services
	Conclusion

	13 HOW DO I ... ?
	How do I find more components?
	How do I support file uploads?
	How do I show an image map?
	How do I produce binary data in a JSF page?
	How do I show a large data set, one page at a time?
	How do I generate a pop-up window?
	How do I selectively show and hide parts of a page?
	How do I customize error pages?
	How do I write my own client-side validation tag?
	How do I configure my application?
	How do I extend the JSF expression language?
	How do I add a function to the JSF expression language?: JSF 2.0
	How do I monitor the traffic between the browser and the server?
	How do I debug a stuck page?
	How do I use testing tools when developing a JSF application?
	How do I use Scala with JSF?
	How do I use Groovy with JSF?
	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

