Scopes
JSF 1.0
request, session, application

- JSF 2.0 and 2.1 scopes added
view, hohe, custom

- JSF 2.2 scopes
added flow-scope

Request Scope: Interpretation

Meaning

- A new instance of the bean is created for every HTTP
request, regardless of whether it is the same user or the
same page. This is the most commonly used scope in all

of JSF (session scope is second-most common).

* Annotation
- @RequestScoped
- Request scope is default, so developers may omit the
annotation

Request Scope: Example

- Java

@Named(value = "bankingBean")
@RequestScoped

public class BankingBean

{

Facelets(J SF page)

<h:input Text value="#{bankBean.customerId}"/>

* Behavior

Bean is instantiated twice for each submission: once
when form is displayed (and getCustomerId is called) and
again when form is submitted (and textfield value is
passed to setCustomerId).

- If same bean name appears on a different page, different
instances are used.

Application Scope: Interpretation

* Meaning

- The bean is instantiated the first time any page with that bean
name is accessed. From then on, the same bean instance is

used, even if it is different user or different page. However,
different Web apps are independent.

* Never use application scope for beans that contain user datal
Testing on your local machine with a single user might show
correct results, but with multiple simultaneous users, you have
race conditions with one user's data overwriting another’s.

« Annotation
@Named(value = "colorOptions")

@ApplicationScoped // Slightly better than making data static
public class ColorOptions

{
private String[] colorNames =
{
"red", "orange", "yellow", "green", "blue", "purple"
¥
}

Facelets (JSF page)
#{colorOptions .colorNames }
Behavior

The first time this page (or any page with that bean
name) is accessed, ColorOptions bean is instantiated. From then
on, the same bean instance is used for all users and on all
pages that use that bean name.

Session Scope: Interpretation

* Meaning

- The bean is instantiated the first time any page with that bean
name is accessed by a particular user. From then on, the same
bean instance is used if it is same bean name and same user,
even if it is different page.

Different users get different instances. User determined by
JSESSIONID -- a cookie(usually) or by jsessionid URL parameter

(sometimes).
+ Second-most common scope, affer request scope.

+ Used for accumulating data over time (shopping carts, questions on exams).
* The bean should be Serializable so that session data can live

across server restarts and so that on server, session
data can be shared between nodes.

Session Scope:
Example

@Named(value = "quizBean")
@SessionScoped
public class QuizBean implements Serializable

{

private ArrayList<Problem> problems = new ArrayList<Problem>();
private int currentIndexProblem;
private int score;

- Facelets

#{quizbean.score}

» Behavior
- Bean is instantiated first time a particular user accesses
any page that refers to that bean name.

- Same instance is used for that user on all pages that use
that bean name.

* Annotation
- @SessionScoped

quizbean.score : The score is RETAINED throughout the quiz.

Annotations

@RequestScoped

Default. Make a new instance for every HTTP request.
Since beans are also used for initial values in input form,
this means bean is generally instantiated twice (once
when form is displayed, once when form is submitted).

@SessionScoped
- If same user with same cookie (JSESSIONID) returns
before session timeout, same bean instance is used. You
should make bean Serializable.

@ApplicationScoped

Shared by all users. Bean either should have no mutable
state or you must carefully synchronize access. Usually
immutable.

@ViewScoped
Same bean instance is used as long as same user is on same
page . Bean should implement Serializable

@FlowScoped
Same bean instance is used as long as it is same user on same
set of pages

@CustomScoped(value="#{someMap}")

Bean is stored in Map; programmer can control lifecycle

@NoneScoped

Bean is not placed in a scope. Useful for beans that are
referenced by other beans that are in scopes

JSF Flow of Control

balance.xhtml

Uses <h:commandButton ...
action="#{bankingBean.findBalance}"/>

and <h:inputText value="#{bankingBean.customerld}"/>

When form first displayed, getCustomerld is
called. If it is non-empty, it becomes initial
value of the textfield.

When form submitted, textfield value passed to setCustomerld.

A v
Run Setter Business The results get stored in the placeholder.E.g., a
Logic Customer that corresponds to the customer ID is found
thhOds and placed in an instance variable of main bean.
Tlresults
submit form Find Run Action retum | Choose |__forward result! xhtml
POST request balance jsf Bean Controller Method| value Page result2 xhtml

This is the method listed in the

If bean is request-scoped, instantiate it. For other action of h-commandButton resultN.xhtml

scopes (e.g., session), you might use existing

b;; S bean instance. (e.g., findBalance) Uses
*so;-,eq sgd,e"'::% #{bankingBean.someProperty}
e g g o to display bean properties

by 6
e ey US@
Sty " Cage Coyys Doy
Tess), © User Sog, COISF
ng. Segy g On
‘5'Ofy

Gos
e, 65+
B g

This could be #{bankingBean.customerld}, where customerld was passed in
by the user, or it could be #{bankingBean.customer.balance}, where
getCustomer returns the Customer object found by the business logic, and
getBalance returns that customer’s bank account balance.

Session Scope: Example

A variation of session-scoped banking example using
redirects instead of forwards

- names of results pages are exposed to end users, who can bookmark
them and navigate to them directly.

- This is extra work, because you must consider situation where user
follows bookmark in new session, when there is no stored data.
However, point is that this is possible with session data, but not
with request data.

- What we need

- Add faces-redirect=true to end of return values, to tell

JSF to redirect (instead of forward) to results pages
- Allows users to access results pages directly

1. Copy and paste the Banking Lab (lab3) and rename it:
lab6Managedbeans3_1_scope
2. Create a new JSF Bean BankingBeanScope:

Files I Services |Projects X | 1 @ banking.xhtml |@ BankingBeanScope.java @BankingBean.java X

v @ lab6Managedbeans3_1_scope Source History &~ g RS R R R O CEE @ B =
v |Gl Web Pages .

S| e package edu.slcc.asdv.beans;

> B css import |...3 lines

> images
[€] banking.xhtml @amed(value = "bankingBeanScope™)
[€] high-balance.xhtml @SessionScoped
[¢] index.xhtml public class BankingBeanScope extends BankingBean implements Serializable

1

2

3

6

7

¥

W

[§ negative-balance.xhtml 10 {

@ normal-balance.xhtml 11
@ unknown-customer.xhtml 12

[€ wrong-password.xhtml| 13 T
v [[j Source Packages 14
v [edu.slcc.asdv.beans 13
16
17
18
19

@ BankingBean.java

public BankingBeanScope()

: 7

@ BankingBeanScope.java
» [edu.slcc.asdv.bl

A ToctDocl @Override
BankingBeanScope - Navigator = @ public String showBalance()
~ ~ [21
Members V) | <empty> v W] 22 String origResult = super.showBalance();
v o BankingBeanScope :: BankingBean : Serializable 23 return (origResult + "?faces-redirect=true");
<» BankingBeanScope() 24
% clone() : Object 25
© equals(Object obj) : boolean 26 }
T@ finalize() 27

© getClass() : Class<?>
@ getCustomer() : Customer

3. Modify the JSF banking.xhtml| to access the scoped bean.

v @ lab6Managedbeans3_1_scope Source History BE- Bl- Q& & &G & & B ¢ e
v |Gl Web Pages Zxml Ton="1.0" ding="UTF=8' 7
51| NELE @) <?xml version='1. encoding= -8' 7> o o
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN http://www.w3,0rg/TR
> B oss 3 <html xmlns="http://www.w3,0rg/1999/xhtml"
> B images 4 xmlns:h="http://xmlns.jcp.org/jsf/html">
[¢] banking.xhtml 5 B <h:head;
[€] high-balance.xhtml 6 <title>Banking</title>
[€] index.xhtml 7| F </h:head>
[€ negative-balance.xhtml 8| B <h:body>
[#] normal-balance.xhtml 9 E <h:form>
@ unknown-customer.xhtml 10
[€] wrong-password.xhtml (=] Legal ids are id@@l, id@@2, and id@@3. Password is 'secret".

v [Source Packages 12
v [edu.slcc.asdv.beans 13 Customer ID: <h:inputText value="#{bankingBeanScope.customerId}"/>

& BankingBean.java 14
[#] BankingBeanScope.java 15 Password: <h:inputSecret value="#{bankingBeanScope.password}"/>

» [edu.slcc.asdv.bl 16
A= Toip o 17| B <h:commandButton value="Show Current Balance"
M 18| action="#{bankingBeanScope.showBalance}"/>
19| - </h:form>
> humi 20| | </h:body>
21, - </html>
22
23
4. Modify the high-balance.xhtm to access the bankingBeanScope
|&] banking.xhtml O'@ high-balance.xhtml
Source | History | [@ [Bl Q B HFE G ¥ e D TR OO
o] <?xml version='1.0' encoding='UTF-8' 7>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.0rg/TR/
3 <html xmlns="http://www.,w3.0rg/1999/xhtml"
4 xmlns:h="http://xmlns.jcp.org/jsf/html">
5| E <h:head>
6 <title>Banking</title>
AR </h:head>
8 g <h:body>
9| B <h:form>
10
11 Legal ids are ide@l, id@@2, and id@@3. Password is "secret".

12
13 Customer ID: <h:inputText value="#{bankingBeanScope.customerId}"/>

14
15 Password: <h:inputSecret value="#{bankingBeanScope.password}'"/>

16
17| & <h:commandButton value="Show Current Balance"
18 action="#{bankingBeanScope.showBalance}' />
19 </h:form>
200 </h:body>
21 - </html>
22

5. Clean build and run. You will see the redirection in your browser.

