
ASDV 2620 Web App Dev II
 Ajax I

Ajax and JSF
Ajax requests differ from regular HTTP requests in only two ways: 1. Ajax partially processes forms on
the server during the Ajax call. 2. Ajax partially renders Document Object Model (DOM) elements on the
client after the Ajax call returns from the server.
This sequence of events is illustrated in Figure below which illustrates an Ajax call that validates a single
input, presumably when the field loses focus.

 1. JSF Ajax requests partially process components on the server
2. JSF Ajax partially renders components on the client when the request returns.

1

The Ajax life cycle has EXECUTE and RENDER cycles
On any given Ajax request, you specify a set of components that JSF executes, and another set of
components that it renders.

EXECUTE Cycle
The Ajax Life cycle for execute (where components are executed)
The execute part of the life cycle executes inputs on the server side.

1. Converts and validates the
component’s value (if the
component is an input)
2. Pushes valid input values to the
model (if the component is wired
to a bean property)
3. Executes actions and action
listeners (if the component is an
action)

The Ajax life cycle for render
The render part of the life cycle, renders components on the client side. For regular HTTP requests, all
components in a form are both executed and rendered, whereas for Ajax requests, JSF executes one or
more components, and renders zero or more components.

2

The JSF Ajax Execute and Render
1. Associate a component and an event with an Ajax request.
2. Identify components to execute on the server during the Ajax request.
3. Identify components to render after the Ajax request.

Example
1. Associate an Ajax call with an event, such as keyup or blur, fired by a specific component.
2. specify the components that you want to execute, and the components you want to render.

<h:inputText id="name" value="#{user.name}">
<f:ajax event="blur" execute="@this" render="nameError"/>

 </h:inputText>
Here, the code triggers an Ajax event when the input loses focus. That Ajax request executes the “name”
component on the server—the @this value for the execute attribute refers to the f:ajax tag’s
surrounding input.
Then, renders a component whose id is nameError on the client, when the Ajax call returns.

3

Let us check out the Ajax tag and write a program that echos every character the user types.

1. Copy and paste and older project that has messages. properties and the configuration file. Then
refactor it into LabAjax1Echo.

2. Create the UserBean shown below with setters and getters

The messages.properties file:

4

The index.xhtml JSF file: Observe the the id=”echo” at line 17 is used also at line 29 to echo. Without
the id echo, no echo will occur.

The faces-config.xml

The welcome.xhtml JSF

5

6

Naming convention JSF uses for events
Take the JavaScript event name, and strip the leading on. So onblur becomes blur, onkeyup becomes
keyup, etc.

Events can be the component events action and valueChange, instead of JavaScript events.

The onerror and onevent attributes are JavaScript functions that JSF calls when certain predetermined
events happen in the Ajax life cycle.

For a successful Ajax request, JSF invokes the onevent function three times: when the Ajax request
begins, when it completes, and again after completion,.
JSF invokes the onerror JavaScript function after an unsuccessful Ajax request. The value for the
listener attribute is a method expression. JSF calls that Java method once per Ajax call (in the Invoke
Application phase of the JSF life cycle).

7

