
Events II, ValueChangeListener
ActionListener was used for buttons. Form was automatically submitted
when clicked, unless immediate attribute is true

ValueChangeListener applies to enythig that can take value:
combobox, listbox, radio button, checkbox, textfield, etc.

Difference between ValueChangeListener and ActionListener
• Form not automatically submitted
• Need to add JavaScript to submit the form onclick="submit()"

or onchange="submit()"
• If you take out the onchange or onclick attribute, the form

will not be submitted when let's say selected menu item is
changed

Useful ValueChangeEvent methods
getComponent
getOldValue
getNewValue

– Needed since bean has probably not been populated
– Value for checkbox is of type Boolean
– Value for radio button or textfield corresponds to request parameter

Example
public void someMethod(ValueChangeEvent event) {
 Boolean flag = (Boolean)event.getNewValue();
 takeActionBasedOn(flag);
}

1 Of 11

Immediate Components

Model-view-controller architecture (MVC)

Presentation is JSF pages (View)

Application Logic
1. Managed Beans interacting with Presentation doing navigation and validation via EVENTS.
2. Interacts with the Business Logic via PLACE holders

Model
The data in the database. The Business Logic manipulates the data of the database .

All software applications let users manipulate certain data, such as shopping carts, travel itineraries, etc. . This data is
called the model, in a database.

Web Services (run in background) ALLOW other applications (Android programs, IPhones, any program) to interact
with the database.

The view component can be wired to a bean property of a model object, such as:
<h:inputText value="#{user.name}"/>
So, the JSF implementation operates as the controller that reacts to the user by processing action and value change
events, to the Managed Bean and updates the model or the view or both.
Example, User Login

1. User clicks <h:commandButton value="Login" action="#{user.check}"/>
2. JSF implementation invokes the check method of the Managed Bean user .
3. The method will check the database via a PlaceHolder variable, and it returns the ID of the next page

to be displayed.

2 Of 11

Rendering Pages in Browser

This process is called encoding.
 0. All text that is not a JSF tag is passed through.

1. The h:form, h:inputText, h:inputSecret, and h:commandButton tags are converted to HTML.
2. Each of these tags gives rise to an associated component.
3. Each component has a renderer that produces HTML output, reflecting the component

state. For example, the renderer for the component that corresponds to the h:inputText tag produces the
following output:
<input type="text" name="unique ID" value="current value"/>

The IDs can look rather random, such as _id_id12:_id_id21.
The encoded page is sent to the browser, and the browser displays it .

This process is called decoding.
1. The form data is placed in a hash table that all components can access.

2. The JSF implementation gives each component a chance to inspect that hash table. Each component decides on
its own how to interpret the form data.

For a login form has three component objects: two UIInput objects that correspond to the text fields on the
form and one UICommand object that corresponds to the submit button.

• The UIInput components updates the bean properties referenced in the value
 attributes: they invoke the setter methods with the values that the user supplied.

• The UICommand component checks whether the button was clicked. If so, it fires an action event to
launch the login action referenced in the action attribute. That event tells the navigation handler to look
up the successor page, welcome.xhtml .

Now the cycle of encoding/decoding repeats.

3 Of 11

The JSF Life Cycle during the Encoding-Decoding
The JSF specification defines six distinct phases:

1. Restore View
1. Retrieves the component tree for the requested page if it was displayed previously or constructs a new
component tree if it is displayed for the first time.

2. If there are no request values (no query data) , the JSF implementation skips ahead to the Render
Response phase. This happens when a page is displayed for the first time.

2. Apply Request Values
 JSF implementation iterates over the component objects in the component tree.
Each component object checks which request values belong to it and stores them. (i.e text box Component
stores the text of the textbook). They are called “local values”.

3. Process Validation
1. IF you can attach validators in tags the JSF perform correctness checks on the local values.
2. IF a conversion or validation errors occur, we skip to Render Response (6) phase directly, redisplaying

the current page so that the user has another chance to provide correct inputs.

4. Update Model Values
 If converters(can be our converters we will see examine them later) and validators had no errors, it is the
local values are used to update the managed beans wired to the components.

5. Invoke Application
Actions for a method with String return type for the button or link component that caused the form submission
is executed. The action method returns the string that is passed to JSF-navigation-handler, if not void. The
navigation handler looks up the next page.

6. Render Response
 Encodes the response and sends it to the browser.

When a user submits a form, clicks a link, or otherwise generates a new request, the cycle starts anew.

4 Of 11

Events in the Life Cycle

• Starting AFTER the Apply Request Values phase, the JSF
implementation may create
events and add them to an event queue DURING EACH phase as
shown in Figure 8.1.
That is, After each phase, the JSF implementation broadcasts
queued events to registered listeners.

• Validation occurs only ONCE.

Event listeners can affect the JSF life cycle in one of three ways:
1. Let the life cycle proceed normally.

2. Call the renderResponse method of the FacesContext class to skip the rest of
the life cycle up to Render Response. Render Response will render.

3. Call the responseComplete method of the FacesContext class to skip the rest of
the life cycle entirely. Render Response will NOT render.

5 Of 11

How to Monitor Phases Programmatically via a Phase Listener
Clean and build Eventslab6_Phase_WithFlags Web App.

The f:phaseListener (line 14 of JSF page listens to phases the FormBean is called.

In PhaseListenerASDV
1. line 12 is used to bind the actual JSF phase to the instance var phase.
2. The Logger, writes to the Glassfish server. Good for the debugging, is bettter

than souts.
3. We override methods of interface PhaseListener

6 Of 11

Attribute Immediate = TRUE

Line 21, calls method submit() of bean testImmediate WITHOUT the rest of the
form elements to be sent to the bean

7 Of 11

The f:attribute of a Button
It allows us to pass data (value) from the f:attribute to a bean's via the action Listener
which can retrieve the component (button)

Clean and build Eventslab6_fAttribute Web App.

Lines 15, 23 of JSF page has a action-change listeners. The bean's method
changeLocale calls getLanguageCode() which retries the value using the name of the
commandLink “languageCode” by using the Map of attributes.

8 Of 11

The f:param of a Button
It allows us to pass data (value) from the f:param to a bean's via the action Listener
which can retrieve the component (button)

Clean and build Eventslab6_fPAram Web App.

Lines 14, 19 of JSF page has a action-change listeners. The bean's method
changeLocale calls getLanguageCode() which retrieves the value using the name of
the commandLink “languageCode” by using the Map of parameters

9 Of 11

Passing values to an action method rom JSF page
It allows us to pass data (value) directly from the link to the action method

Clean and build Eventslab6_method Web App.

10 Of 11

How to create a Tabbed Pane

1. Clean and build Eventslab6_TabbedPane Web App.
2. Observe lines 45 to 48 in the JSF page. All presidents appear in the same Pane

ONE at a TIME, via the navigation of bean. Use the technique TO KEEP THE
SAME MENU (links, buttons) , , while the content (US presidents change).

Each president in JSF MUST be in composition tag(line 7, line 15)

11 Of 11

