Refactor software renderer (#6621)
This commit is contained in:
@@ -1,901 +0,0 @@
|
||||
// Copyright 2014 Citra Emulator Project
|
||||
// Licensed under GPLv2 or any later version
|
||||
// Refer to the license.txt file included.
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cmath>
|
||||
#include <tuple>
|
||||
#include "common/assert.h"
|
||||
#include "common/bit_field.h"
|
||||
#include "common/color.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/logging/log.h"
|
||||
#include "common/microprofile.h"
|
||||
#include "common/quaternion.h"
|
||||
#include "common/vector_math.h"
|
||||
#include "core/hw/gpu.h"
|
||||
#include "core/memory.h"
|
||||
#include "video_core/debug_utils/debug_utils.h"
|
||||
#include "video_core/pica_state.h"
|
||||
#include "video_core/pica_types.h"
|
||||
#include "video_core/regs_framebuffer.h"
|
||||
#include "video_core/regs_rasterizer.h"
|
||||
#include "video_core/regs_texturing.h"
|
||||
#include "video_core/renderer_software/rasterizer.h"
|
||||
#include "video_core/renderer_software/sw_framebuffer.h"
|
||||
#include "video_core/renderer_software/sw_lighting.h"
|
||||
#include "video_core/renderer_software/sw_proctex.h"
|
||||
#include "video_core/renderer_software/sw_texturing.h"
|
||||
#include "video_core/shader/shader.h"
|
||||
#include "video_core/texture/texture_decode.h"
|
||||
#include "video_core/utils.h"
|
||||
#include "video_core/video_core.h"
|
||||
|
||||
namespace Pica::Rasterizer {
|
||||
|
||||
// NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values
|
||||
struct Fix12P4 {
|
||||
Fix12P4() {}
|
||||
Fix12P4(u16 val) : val(val) {}
|
||||
|
||||
static u16 FracMask() {
|
||||
return 0xF;
|
||||
}
|
||||
static u16 IntMask() {
|
||||
return (u16)~0xF;
|
||||
}
|
||||
|
||||
operator u16() const {
|
||||
return val;
|
||||
}
|
||||
|
||||
bool operator<(const Fix12P4& oth) const {
|
||||
return (u16) * this < (u16)oth;
|
||||
}
|
||||
|
||||
private:
|
||||
u16 val;
|
||||
};
|
||||
|
||||
/**
|
||||
* Calculate signed area of the triangle spanned by the three argument vertices.
|
||||
* The sign denotes an orientation.
|
||||
*
|
||||
* @todo define orientation concretely.
|
||||
*/
|
||||
static int SignedArea(const Common::Vec2<Fix12P4>& vtx1, const Common::Vec2<Fix12P4>& vtx2,
|
||||
const Common::Vec2<Fix12P4>& vtx3) {
|
||||
const auto vec1 = Common::MakeVec(vtx2 - vtx1, 0);
|
||||
const auto vec2 = Common::MakeVec(vtx3 - vtx1, 0);
|
||||
// TODO: There is a very small chance this will overflow for sizeof(int) == 4
|
||||
return Common::Cross(vec1, vec2).z;
|
||||
};
|
||||
|
||||
/// Convert a 3D vector for cube map coordinates to 2D texture coordinates along with the face name
|
||||
static std::tuple<float24, float24, float24, PAddr> ConvertCubeCoord(float24 u, float24 v,
|
||||
float24 w,
|
||||
const TexturingRegs& regs) {
|
||||
const float abs_u = std::abs(u.ToFloat32());
|
||||
const float abs_v = std::abs(v.ToFloat32());
|
||||
const float abs_w = std::abs(w.ToFloat32());
|
||||
float24 x, y, z;
|
||||
PAddr addr;
|
||||
if (abs_u > abs_v && abs_u > abs_w) {
|
||||
if (u > float24::FromFloat32(0)) {
|
||||
addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::PositiveX);
|
||||
y = -v;
|
||||
} else {
|
||||
addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::NegativeX);
|
||||
y = v;
|
||||
}
|
||||
x = -w;
|
||||
z = u;
|
||||
} else if (abs_v > abs_w) {
|
||||
if (v > float24::FromFloat32(0)) {
|
||||
addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::PositiveY);
|
||||
x = u;
|
||||
} else {
|
||||
addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::NegativeY);
|
||||
x = -u;
|
||||
}
|
||||
y = w;
|
||||
z = v;
|
||||
} else {
|
||||
if (w > float24::FromFloat32(0)) {
|
||||
addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::PositiveZ);
|
||||
y = -v;
|
||||
} else {
|
||||
addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::NegativeZ);
|
||||
y = v;
|
||||
}
|
||||
x = u;
|
||||
z = w;
|
||||
}
|
||||
float24 z_abs = float24::FromFloat32(std::abs(z.ToFloat32()));
|
||||
const float24 half = float24::FromFloat32(0.5f);
|
||||
return std::make_tuple(x / z * half + half, y / z * half + half, z_abs, addr);
|
||||
}
|
||||
|
||||
MICROPROFILE_DEFINE(GPU_Rasterization, "GPU", "Rasterization", MP_RGB(50, 50, 240));
|
||||
|
||||
/**
|
||||
* Helper function for ProcessTriangle with the "reversed" flag to allow for implementing
|
||||
* culling via recursion.
|
||||
*/
|
||||
static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Vertex& v2,
|
||||
bool reversed = false) {
|
||||
const auto& regs = g_state.regs;
|
||||
MICROPROFILE_SCOPE(GPU_Rasterization);
|
||||
|
||||
// vertex positions in rasterizer coordinates
|
||||
static auto FloatToFix = [](float24 flt) {
|
||||
// TODO: Rounding here is necessary to prevent garbage pixels at
|
||||
// triangle borders. Is it that the correct solution, though?
|
||||
return Fix12P4(static_cast<unsigned short>(round(flt.ToFloat32() * 16.0f)));
|
||||
};
|
||||
static auto ScreenToRasterizerCoordinates = [](const Common::Vec3<float24>& vec) {
|
||||
return Common::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)};
|
||||
};
|
||||
|
||||
Common::Vec3<Fix12P4> vtxpos[3]{ScreenToRasterizerCoordinates(v0.screenpos),
|
||||
ScreenToRasterizerCoordinates(v1.screenpos),
|
||||
ScreenToRasterizerCoordinates(v2.screenpos)};
|
||||
|
||||
if (regs.rasterizer.cull_mode == RasterizerRegs::CullMode::KeepAll) {
|
||||
// Make sure we always end up with a triangle wound counter-clockwise
|
||||
if (!reversed && SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) {
|
||||
ProcessTriangleInternal(v0, v2, v1, true);
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
if (!reversed && regs.rasterizer.cull_mode == RasterizerRegs::CullMode::KeepClockWise) {
|
||||
// Reverse vertex order and use the CCW code path.
|
||||
ProcessTriangleInternal(v0, v2, v1, true);
|
||||
return;
|
||||
}
|
||||
|
||||
// Cull away triangles which are wound clockwise.
|
||||
if (SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0)
|
||||
return;
|
||||
}
|
||||
|
||||
u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
|
||||
u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
|
||||
u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
|
||||
u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
|
||||
|
||||
// Convert the scissor box coordinates to 12.4 fixed point
|
||||
u16 scissor_x1 = (u16)(regs.rasterizer.scissor_test.x1 << 4);
|
||||
u16 scissor_y1 = (u16)(regs.rasterizer.scissor_test.y1 << 4);
|
||||
// x2,y2 have +1 added to cover the entire sub-pixel area
|
||||
u16 scissor_x2 = (u16)((regs.rasterizer.scissor_test.x2 + 1) << 4);
|
||||
u16 scissor_y2 = (u16)((regs.rasterizer.scissor_test.y2 + 1) << 4);
|
||||
|
||||
if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Include) {
|
||||
// Calculate the new bounds
|
||||
min_x = std::max(min_x, scissor_x1);
|
||||
min_y = std::max(min_y, scissor_y1);
|
||||
max_x = std::min(max_x, scissor_x2);
|
||||
max_y = std::min(max_y, scissor_y2);
|
||||
}
|
||||
|
||||
min_x &= Fix12P4::IntMask();
|
||||
min_y &= Fix12P4::IntMask();
|
||||
max_x = ((max_x + Fix12P4::FracMask()) & Fix12P4::IntMask());
|
||||
max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask());
|
||||
|
||||
// Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not
|
||||
// drawn. Pixels on any other triangle border are drawn. This is implemented with three bias
|
||||
// values which are added to the barycentric coordinates w0, w1 and w2, respectively.
|
||||
// NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones...
|
||||
auto IsRightSideOrFlatBottomEdge = [](const Common::Vec2<Fix12P4>& vtx,
|
||||
const Common::Vec2<Fix12P4>& line1,
|
||||
const Common::Vec2<Fix12P4>& line2) {
|
||||
if (line1.y == line2.y) {
|
||||
// just check if vertex is above us => bottom line parallel to x-axis
|
||||
return vtx.y < line1.y;
|
||||
} else {
|
||||
// check if vertex is on our left => right side
|
||||
// TODO: Not sure how likely this is to overflow
|
||||
return (int)vtx.x < (int)line1.x + ((int)line2.x - (int)line1.x) *
|
||||
((int)vtx.y - (int)line1.y) /
|
||||
((int)line2.y - (int)line1.y);
|
||||
}
|
||||
};
|
||||
int bias0 =
|
||||
IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0;
|
||||
int bias1 =
|
||||
IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0;
|
||||
int bias2 =
|
||||
IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
|
||||
|
||||
auto w_inverse = Common::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w);
|
||||
|
||||
auto textures = regs.texturing.GetTextures();
|
||||
auto tev_stages = regs.texturing.GetTevStages();
|
||||
|
||||
bool stencil_action_enable =
|
||||
g_state.regs.framebuffer.output_merger.stencil_test.enable &&
|
||||
g_state.regs.framebuffer.framebuffer.depth_format == FramebufferRegs::DepthFormat::D24S8;
|
||||
const auto stencil_test = g_state.regs.framebuffer.output_merger.stencil_test;
|
||||
|
||||
// Enter rasterization loop, starting at the center of the topleft bounding box corner.
|
||||
// TODO: Not sure if looping through x first might be faster
|
||||
for (u16 y = min_y + 8; y < max_y; y += 0x10) {
|
||||
for (u16 x = min_x + 8; x < max_x; x += 0x10) {
|
||||
|
||||
// Do not process the pixel if it's inside the scissor box and the scissor mode is set
|
||||
// to Exclude
|
||||
if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Exclude) {
|
||||
if (x >= scissor_x1 && x < scissor_x2 && y >= scissor_y1 && y < scissor_y2)
|
||||
continue;
|
||||
}
|
||||
|
||||
// Calculate the barycentric coordinates w0, w1 and w2
|
||||
int w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
|
||||
int w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y});
|
||||
int w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y});
|
||||
int wsum = w0 + w1 + w2;
|
||||
|
||||
// If current pixel is not covered by the current primitive
|
||||
if (w0 < 0 || w1 < 0 || w2 < 0)
|
||||
continue;
|
||||
|
||||
auto baricentric_coordinates =
|
||||
Common::MakeVec(float24::FromFloat32(static_cast<float>(w0)),
|
||||
float24::FromFloat32(static_cast<float>(w1)),
|
||||
float24::FromFloat32(static_cast<float>(w2)));
|
||||
float24 interpolated_w_inverse =
|
||||
float24::FromFloat32(1.0f) / Common::Dot(w_inverse, baricentric_coordinates);
|
||||
|
||||
// interpolated_z = z / w
|
||||
float interpolated_z_over_w =
|
||||
(v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 +
|
||||
v2.screenpos[2].ToFloat32() * w2) /
|
||||
wsum;
|
||||
|
||||
// Not fully accurate. About 3 bits in precision are missing.
|
||||
// Z-Buffer (z / w * scale + offset)
|
||||
float depth_scale = float24::FromRaw(regs.rasterizer.viewport_depth_range).ToFloat32();
|
||||
float depth_offset =
|
||||
float24::FromRaw(regs.rasterizer.viewport_depth_near_plane).ToFloat32();
|
||||
float depth = interpolated_z_over_w * depth_scale + depth_offset;
|
||||
|
||||
// Potentially switch to W-Buffer
|
||||
if (regs.rasterizer.depthmap_enable ==
|
||||
Pica::RasterizerRegs::DepthBuffering::WBuffering) {
|
||||
// W-Buffer (z * scale + w * offset = (z / w * scale + offset) * w)
|
||||
depth *= interpolated_w_inverse.ToFloat32() * wsum;
|
||||
}
|
||||
|
||||
// Clamp the result
|
||||
depth = std::clamp(depth, 0.0f, 1.0f);
|
||||
|
||||
// Perspective correct attribute interpolation:
|
||||
// Attribute values cannot be calculated by simple linear interpolation since
|
||||
// they are not linear in screen space. For example, when interpolating a
|
||||
// texture coordinate across two vertices, something simple like
|
||||
// u = (u0*w0 + u1*w1)/(w0+w1)
|
||||
// will not work. However, the attribute value divided by the
|
||||
// clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear
|
||||
// in screenspace. Hence, we can linearly interpolate these two independently and
|
||||
// calculate the interpolated attribute by dividing the results.
|
||||
// I.e.
|
||||
// u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1)
|
||||
// one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1)
|
||||
// u = u_over_w / one_over_w
|
||||
//
|
||||
// The generalization to three vertices is straightforward in baricentric coordinates.
|
||||
auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) {
|
||||
auto attr_over_w = Common::MakeVec(attr0, attr1, attr2);
|
||||
float24 interpolated_attr_over_w =
|
||||
Common::Dot(attr_over_w, baricentric_coordinates);
|
||||
return interpolated_attr_over_w * interpolated_w_inverse;
|
||||
};
|
||||
|
||||
Common::Vec4<u8> primary_color{
|
||||
static_cast<u8>(round(
|
||||
GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() *
|
||||
255)),
|
||||
static_cast<u8>(round(
|
||||
GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() *
|
||||
255)),
|
||||
static_cast<u8>(round(
|
||||
GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() *
|
||||
255)),
|
||||
static_cast<u8>(round(
|
||||
GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() *
|
||||
255)),
|
||||
};
|
||||
|
||||
Common::Vec2<float24> uv[3];
|
||||
uv[0].u() = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u());
|
||||
uv[0].v() = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v());
|
||||
uv[1].u() = GetInterpolatedAttribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u());
|
||||
uv[1].v() = GetInterpolatedAttribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v());
|
||||
uv[2].u() = GetInterpolatedAttribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u());
|
||||
uv[2].v() = GetInterpolatedAttribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v());
|
||||
|
||||
Common::Vec4<u8> texture_color[4]{};
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
const auto& texture = textures[i];
|
||||
if (!texture.enabled)
|
||||
continue;
|
||||
|
||||
if (texture.config.address == 0) {
|
||||
texture_color[i] = {0, 0, 0, 255};
|
||||
continue;
|
||||
}
|
||||
|
||||
int coordinate_i =
|
||||
(i == 2 && regs.texturing.main_config.texture2_use_coord1) ? 1 : i;
|
||||
float24 u = uv[coordinate_i].u();
|
||||
float24 v = uv[coordinate_i].v();
|
||||
|
||||
// Only unit 0 respects the texturing type (according to 3DBrew)
|
||||
// TODO: Refactor so cubemaps and shadowmaps can be handled
|
||||
PAddr texture_address = texture.config.GetPhysicalAddress();
|
||||
float24 shadow_z;
|
||||
if (i == 0) {
|
||||
switch (texture.config.type) {
|
||||
case TexturingRegs::TextureConfig::Texture2D:
|
||||
break;
|
||||
case TexturingRegs::TextureConfig::ShadowCube:
|
||||
case TexturingRegs::TextureConfig::TextureCube: {
|
||||
auto w = GetInterpolatedAttribute(v0.tc0_w, v1.tc0_w, v2.tc0_w);
|
||||
std::tie(u, v, shadow_z, texture_address) =
|
||||
ConvertCubeCoord(u, v, w, regs.texturing);
|
||||
break;
|
||||
}
|
||||
case TexturingRegs::TextureConfig::Projection2D: {
|
||||
auto tc0_w = GetInterpolatedAttribute(v0.tc0_w, v1.tc0_w, v2.tc0_w);
|
||||
u /= tc0_w;
|
||||
v /= tc0_w;
|
||||
break;
|
||||
}
|
||||
case TexturingRegs::TextureConfig::Shadow2D: {
|
||||
auto tc0_w = GetInterpolatedAttribute(v0.tc0_w, v1.tc0_w, v2.tc0_w);
|
||||
if (!regs.texturing.shadow.orthographic) {
|
||||
u /= tc0_w;
|
||||
v /= tc0_w;
|
||||
}
|
||||
|
||||
shadow_z = float24::FromFloat32(std::abs(tc0_w.ToFloat32()));
|
||||
break;
|
||||
}
|
||||
case TexturingRegs::TextureConfig::Disabled:
|
||||
continue; // skip this unit and continue to the next unit
|
||||
default:
|
||||
LOG_ERROR(HW_GPU, "Unhandled texture type {:x}", (int)texture.config.type);
|
||||
UNIMPLEMENTED();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
int s = (int)(u * float24::FromFloat32(static_cast<float>(texture.config.width)))
|
||||
.ToFloat32();
|
||||
int t = (int)(v * float24::FromFloat32(static_cast<float>(texture.config.height)))
|
||||
.ToFloat32();
|
||||
|
||||
bool use_border_s = false;
|
||||
bool use_border_t = false;
|
||||
|
||||
if (texture.config.wrap_s == TexturingRegs::TextureConfig::ClampToBorder) {
|
||||
use_border_s = s < 0 || s >= static_cast<int>(texture.config.width);
|
||||
} else if (texture.config.wrap_s == TexturingRegs::TextureConfig::ClampToBorder2) {
|
||||
use_border_s = s >= static_cast<int>(texture.config.width);
|
||||
}
|
||||
|
||||
if (texture.config.wrap_t == TexturingRegs::TextureConfig::ClampToBorder) {
|
||||
use_border_t = t < 0 || t >= static_cast<int>(texture.config.height);
|
||||
} else if (texture.config.wrap_t == TexturingRegs::TextureConfig::ClampToBorder2) {
|
||||
use_border_t = t >= static_cast<int>(texture.config.height);
|
||||
}
|
||||
|
||||
if (use_border_s || use_border_t) {
|
||||
auto border_color = texture.config.border_color;
|
||||
texture_color[i] =
|
||||
Common::MakeVec(border_color.r.Value(), border_color.g.Value(),
|
||||
border_color.b.Value(), border_color.a.Value())
|
||||
.Cast<u8>();
|
||||
} else {
|
||||
// Textures are laid out from bottom to top, hence we invert the t coordinate.
|
||||
// NOTE: This may not be the right place for the inversion.
|
||||
// TODO: Check if this applies to ETC textures, too.
|
||||
s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width);
|
||||
t = texture.config.height - 1 -
|
||||
GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height);
|
||||
|
||||
const u8* texture_data =
|
||||
VideoCore::g_memory->GetPhysicalPointer(texture_address);
|
||||
auto info =
|
||||
Texture::TextureInfo::FromPicaRegister(texture.config, texture.format);
|
||||
|
||||
// TODO: Apply the min and mag filters to the texture
|
||||
texture_color[i] = Texture::LookupTexture(texture_data, s, t, info);
|
||||
}
|
||||
|
||||
if (i == 0 && (texture.config.type == TexturingRegs::TextureConfig::Shadow2D ||
|
||||
texture.config.type == TexturingRegs::TextureConfig::ShadowCube)) {
|
||||
|
||||
s32 z_int = static_cast<s32>(std::min(shadow_z.ToFloat32(), 1.0f) * 0xFFFFFF);
|
||||
z_int -= regs.texturing.shadow.bias << 1;
|
||||
auto& color = texture_color[i];
|
||||
s32 z_ref = (color.w << 16) | (color.z << 8) | color.y;
|
||||
u8 density;
|
||||
if (z_ref >= z_int) {
|
||||
density = color.x;
|
||||
} else {
|
||||
density = 0;
|
||||
}
|
||||
texture_color[i] = {density, density, density, density};
|
||||
}
|
||||
}
|
||||
|
||||
// sample procedural texture
|
||||
if (regs.texturing.main_config.texture3_enable) {
|
||||
const auto& proctex_uv = uv[regs.texturing.main_config.texture3_coordinates];
|
||||
texture_color[3] = ProcTex(proctex_uv.u().ToFloat32(), proctex_uv.v().ToFloat32(),
|
||||
g_state.regs.texturing, g_state.proctex);
|
||||
}
|
||||
|
||||
// Texture environment - consists of 6 stages of color and alpha combining.
|
||||
//
|
||||
// Color combiners take three input color values from some source (e.g. interpolated
|
||||
// vertex color, texture color, previous stage, etc), perform some very simple
|
||||
// operations on each of them (e.g. inversion) and then calculate the output color
|
||||
// with some basic arithmetic. Alpha combiners can be configured separately but work
|
||||
// analogously.
|
||||
Common::Vec4<u8> combiner_output;
|
||||
Common::Vec4<u8> combiner_buffer = {0, 0, 0, 0};
|
||||
Common::Vec4<u8> next_combiner_buffer =
|
||||
Common::MakeVec(regs.texturing.tev_combiner_buffer_color.r.Value(),
|
||||
regs.texturing.tev_combiner_buffer_color.g.Value(),
|
||||
regs.texturing.tev_combiner_buffer_color.b.Value(),
|
||||
regs.texturing.tev_combiner_buffer_color.a.Value())
|
||||
.Cast<u8>();
|
||||
|
||||
Common::Vec4<u8> primary_fragment_color = {0, 0, 0, 0};
|
||||
Common::Vec4<u8> secondary_fragment_color = {0, 0, 0, 0};
|
||||
|
||||
if (!g_state.regs.lighting.disable) {
|
||||
Common::Quaternion<float> normquat =
|
||||
Common::Quaternion<float>{
|
||||
{GetInterpolatedAttribute(v0.quat.x, v1.quat.x, v2.quat.x).ToFloat32(),
|
||||
GetInterpolatedAttribute(v0.quat.y, v1.quat.y, v2.quat.y).ToFloat32(),
|
||||
GetInterpolatedAttribute(v0.quat.z, v1.quat.z, v2.quat.z).ToFloat32()},
|
||||
GetInterpolatedAttribute(v0.quat.w, v1.quat.w, v2.quat.w).ToFloat32(),
|
||||
}
|
||||
.Normalized();
|
||||
|
||||
Common::Vec3<float> view{
|
||||
GetInterpolatedAttribute(v0.view.x, v1.view.x, v2.view.x).ToFloat32(),
|
||||
GetInterpolatedAttribute(v0.view.y, v1.view.y, v2.view.y).ToFloat32(),
|
||||
GetInterpolatedAttribute(v0.view.z, v1.view.z, v2.view.z).ToFloat32(),
|
||||
};
|
||||
std::tie(primary_fragment_color, secondary_fragment_color) = ComputeFragmentsColors(
|
||||
g_state.regs.lighting, g_state.lighting, normquat, view, texture_color);
|
||||
}
|
||||
|
||||
for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size();
|
||||
++tev_stage_index) {
|
||||
const auto& tev_stage = tev_stages[tev_stage_index];
|
||||
using Source = TexturingRegs::TevStageConfig::Source;
|
||||
|
||||
auto GetSource = [&](Source source) -> Common::Vec4<u8> {
|
||||
switch (source) {
|
||||
case Source::PrimaryColor:
|
||||
return primary_color;
|
||||
|
||||
case Source::PrimaryFragmentColor:
|
||||
return primary_fragment_color;
|
||||
|
||||
case Source::SecondaryFragmentColor:
|
||||
return secondary_fragment_color;
|
||||
|
||||
case Source::Texture0:
|
||||
return texture_color[0];
|
||||
|
||||
case Source::Texture1:
|
||||
return texture_color[1];
|
||||
|
||||
case Source::Texture2:
|
||||
return texture_color[2];
|
||||
|
||||
case Source::Texture3:
|
||||
return texture_color[3];
|
||||
|
||||
case Source::PreviousBuffer:
|
||||
return combiner_buffer;
|
||||
|
||||
case Source::Constant:
|
||||
return Common::MakeVec(tev_stage.const_r.Value(), tev_stage.const_g.Value(),
|
||||
tev_stage.const_b.Value(), tev_stage.const_a.Value())
|
||||
.Cast<u8>();
|
||||
|
||||
case Source::Previous:
|
||||
return combiner_output;
|
||||
|
||||
default:
|
||||
LOG_ERROR(HW_GPU, "Unknown color combiner source {}", (int)source);
|
||||
UNIMPLEMENTED();
|
||||
return {0, 0, 0, 0};
|
||||
}
|
||||
};
|
||||
|
||||
// color combiner
|
||||
// NOTE: Not sure if the alpha combiner might use the color output of the previous
|
||||
// stage as input. Hence, we currently don't directly write the result to
|
||||
// combiner_output.rgb(), but instead store it in a temporary variable until
|
||||
// alpha combining has been done.
|
||||
Common::Vec3<u8> color_result[3] = {
|
||||
GetColorModifier(tev_stage.color_modifier1, GetSource(tev_stage.color_source1)),
|
||||
GetColorModifier(tev_stage.color_modifier2, GetSource(tev_stage.color_source2)),
|
||||
GetColorModifier(tev_stage.color_modifier3, GetSource(tev_stage.color_source3)),
|
||||
};
|
||||
auto color_output = ColorCombine(tev_stage.color_op, color_result);
|
||||
|
||||
u8 alpha_output;
|
||||
if (tev_stage.color_op == TexturingRegs::TevStageConfig::Operation::Dot3_RGBA) {
|
||||
// result of Dot3_RGBA operation is also placed to the alpha component
|
||||
alpha_output = color_output.x;
|
||||
} else {
|
||||
// alpha combiner
|
||||
std::array<u8, 3> alpha_result = {{
|
||||
GetAlphaModifier(tev_stage.alpha_modifier1,
|
||||
GetSource(tev_stage.alpha_source1)),
|
||||
GetAlphaModifier(tev_stage.alpha_modifier2,
|
||||
GetSource(tev_stage.alpha_source2)),
|
||||
GetAlphaModifier(tev_stage.alpha_modifier3,
|
||||
GetSource(tev_stage.alpha_source3)),
|
||||
}};
|
||||
alpha_output = AlphaCombine(tev_stage.alpha_op, alpha_result);
|
||||
}
|
||||
|
||||
combiner_output[0] =
|
||||
std::min((unsigned)255, color_output.r() * tev_stage.GetColorMultiplier());
|
||||
combiner_output[1] =
|
||||
std::min((unsigned)255, color_output.g() * tev_stage.GetColorMultiplier());
|
||||
combiner_output[2] =
|
||||
std::min((unsigned)255, color_output.b() * tev_stage.GetColorMultiplier());
|
||||
combiner_output[3] =
|
||||
std::min((unsigned)255, alpha_output * tev_stage.GetAlphaMultiplier());
|
||||
|
||||
combiner_buffer = next_combiner_buffer;
|
||||
|
||||
if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor(
|
||||
tev_stage_index)) {
|
||||
next_combiner_buffer.r() = combiner_output.r();
|
||||
next_combiner_buffer.g() = combiner_output.g();
|
||||
next_combiner_buffer.b() = combiner_output.b();
|
||||
}
|
||||
|
||||
if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha(
|
||||
tev_stage_index)) {
|
||||
next_combiner_buffer.a() = combiner_output.a();
|
||||
}
|
||||
}
|
||||
|
||||
const auto& output_merger = regs.framebuffer.output_merger;
|
||||
|
||||
if (output_merger.fragment_operation_mode ==
|
||||
FramebufferRegs::FragmentOperationMode::Shadow) {
|
||||
u32 depth_int = static_cast<u32>(depth * 0xFFFFFF);
|
||||
// use green color as the shadow intensity
|
||||
u8 stencil = combiner_output.y;
|
||||
DrawShadowMapPixel(x >> 4, y >> 4, depth_int, stencil);
|
||||
// skip the normal output merger pipeline if it is in shadow mode
|
||||
continue;
|
||||
}
|
||||
|
||||
// TODO: Does alpha testing happen before or after stencil?
|
||||
if (output_merger.alpha_test.enable) {
|
||||
bool pass = false;
|
||||
|
||||
switch (output_merger.alpha_test.func) {
|
||||
case FramebufferRegs::CompareFunc::Never:
|
||||
pass = false;
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::Always:
|
||||
pass = true;
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::Equal:
|
||||
pass = combiner_output.a() == output_merger.alpha_test.ref;
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::NotEqual:
|
||||
pass = combiner_output.a() != output_merger.alpha_test.ref;
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::LessThan:
|
||||
pass = combiner_output.a() < output_merger.alpha_test.ref;
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::LessThanOrEqual:
|
||||
pass = combiner_output.a() <= output_merger.alpha_test.ref;
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::GreaterThan:
|
||||
pass = combiner_output.a() > output_merger.alpha_test.ref;
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::GreaterThanOrEqual:
|
||||
pass = combiner_output.a() >= output_merger.alpha_test.ref;
|
||||
break;
|
||||
}
|
||||
|
||||
if (!pass)
|
||||
continue;
|
||||
}
|
||||
|
||||
// Apply fog combiner
|
||||
// Not fully accurate. We'd have to know what data type is used to
|
||||
// store the depth etc. Using float for now until we know more
|
||||
// about Pica datatypes
|
||||
if (regs.texturing.fog_mode == TexturingRegs::FogMode::Fog) {
|
||||
const Common::Vec3<u8> fog_color =
|
||||
Common::MakeVec(regs.texturing.fog_color.r.Value(),
|
||||
regs.texturing.fog_color.g.Value(),
|
||||
regs.texturing.fog_color.b.Value())
|
||||
.Cast<u8>();
|
||||
|
||||
// Get index into fog LUT
|
||||
float fog_index;
|
||||
if (g_state.regs.texturing.fog_flip) {
|
||||
fog_index = (1.0f - depth) * 128.0f;
|
||||
} else {
|
||||
fog_index = depth * 128.0f;
|
||||
}
|
||||
|
||||
// Generate clamped fog factor from LUT for given fog index
|
||||
float fog_i = std::clamp(floorf(fog_index), 0.0f, 127.0f);
|
||||
float fog_f = fog_index - fog_i;
|
||||
const auto& fog_lut_entry = g_state.fog.lut[static_cast<unsigned int>(fog_i)];
|
||||
float fog_factor = fog_lut_entry.ToFloat() + fog_lut_entry.DiffToFloat() * fog_f;
|
||||
fog_factor = std::clamp(fog_factor, 0.0f, 1.0f);
|
||||
|
||||
// Blend the fog
|
||||
for (unsigned i = 0; i < 3; i++) {
|
||||
combiner_output[i] = static_cast<u8>(fog_factor * combiner_output[i] +
|
||||
(1.0f - fog_factor) * fog_color[i]);
|
||||
}
|
||||
}
|
||||
|
||||
u8 old_stencil = 0;
|
||||
|
||||
auto UpdateStencil = [stencil_test, x, y,
|
||||
&old_stencil](Pica::FramebufferRegs::StencilAction action) {
|
||||
u8 new_stencil =
|
||||
PerformStencilAction(action, old_stencil, stencil_test.reference_value);
|
||||
if (g_state.regs.framebuffer.framebuffer.allow_depth_stencil_write != 0)
|
||||
SetStencil(x >> 4, y >> 4,
|
||||
(new_stencil & stencil_test.write_mask) |
|
||||
(old_stencil & ~stencil_test.write_mask));
|
||||
};
|
||||
|
||||
if (stencil_action_enable) {
|
||||
old_stencil = GetStencil(x >> 4, y >> 4);
|
||||
u8 dest = old_stencil & stencil_test.input_mask;
|
||||
u8 ref = stencil_test.reference_value & stencil_test.input_mask;
|
||||
|
||||
bool pass = false;
|
||||
switch (stencil_test.func) {
|
||||
case FramebufferRegs::CompareFunc::Never:
|
||||
pass = false;
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::Always:
|
||||
pass = true;
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::Equal:
|
||||
pass = (ref == dest);
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::NotEqual:
|
||||
pass = (ref != dest);
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::LessThan:
|
||||
pass = (ref < dest);
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::LessThanOrEqual:
|
||||
pass = (ref <= dest);
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::GreaterThan:
|
||||
pass = (ref > dest);
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::GreaterThanOrEqual:
|
||||
pass = (ref >= dest);
|
||||
break;
|
||||
}
|
||||
|
||||
if (!pass) {
|
||||
UpdateStencil(stencil_test.action_stencil_fail);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// Convert float to integer
|
||||
unsigned num_bits =
|
||||
FramebufferRegs::DepthBitsPerPixel(regs.framebuffer.framebuffer.depth_format);
|
||||
u32 z = (u32)(depth * ((1 << num_bits) - 1));
|
||||
|
||||
if (output_merger.depth_test_enable) {
|
||||
u32 ref_z = GetDepth(x >> 4, y >> 4);
|
||||
|
||||
bool pass = false;
|
||||
|
||||
switch (output_merger.depth_test_func) {
|
||||
case FramebufferRegs::CompareFunc::Never:
|
||||
pass = false;
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::Always:
|
||||
pass = true;
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::Equal:
|
||||
pass = z == ref_z;
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::NotEqual:
|
||||
pass = z != ref_z;
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::LessThan:
|
||||
pass = z < ref_z;
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::LessThanOrEqual:
|
||||
pass = z <= ref_z;
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::GreaterThan:
|
||||
pass = z > ref_z;
|
||||
break;
|
||||
|
||||
case FramebufferRegs::CompareFunc::GreaterThanOrEqual:
|
||||
pass = z >= ref_z;
|
||||
break;
|
||||
}
|
||||
|
||||
if (!pass) {
|
||||
if (stencil_action_enable)
|
||||
UpdateStencil(stencil_test.action_depth_fail);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
if (regs.framebuffer.framebuffer.allow_depth_stencil_write != 0 &&
|
||||
output_merger.depth_write_enable) {
|
||||
|
||||
SetDepth(x >> 4, y >> 4, z);
|
||||
}
|
||||
|
||||
// The stencil depth_pass action is executed even if depth testing is disabled
|
||||
if (stencil_action_enable)
|
||||
UpdateStencil(stencil_test.action_depth_pass);
|
||||
|
||||
auto dest = GetPixel(x >> 4, y >> 4);
|
||||
Common::Vec4<u8> blend_output = combiner_output;
|
||||
|
||||
if (output_merger.alphablend_enable) {
|
||||
auto params = output_merger.alpha_blending;
|
||||
|
||||
auto LookupFactor = [&](unsigned channel,
|
||||
FramebufferRegs::BlendFactor factor) -> u8 {
|
||||
DEBUG_ASSERT(channel < 4);
|
||||
|
||||
const Common::Vec4<u8> blend_const =
|
||||
Common::MakeVec(output_merger.blend_const.r.Value(),
|
||||
output_merger.blend_const.g.Value(),
|
||||
output_merger.blend_const.b.Value(),
|
||||
output_merger.blend_const.a.Value())
|
||||
.Cast<u8>();
|
||||
|
||||
switch (factor) {
|
||||
case FramebufferRegs::BlendFactor::Zero:
|
||||
return 0;
|
||||
|
||||
case FramebufferRegs::BlendFactor::One:
|
||||
return 255;
|
||||
|
||||
case FramebufferRegs::BlendFactor::SourceColor:
|
||||
return combiner_output[channel];
|
||||
|
||||
case FramebufferRegs::BlendFactor::OneMinusSourceColor:
|
||||
return 255 - combiner_output[channel];
|
||||
|
||||
case FramebufferRegs::BlendFactor::DestColor:
|
||||
return dest[channel];
|
||||
|
||||
case FramebufferRegs::BlendFactor::OneMinusDestColor:
|
||||
return 255 - dest[channel];
|
||||
|
||||
case FramebufferRegs::BlendFactor::SourceAlpha:
|
||||
return combiner_output.a();
|
||||
|
||||
case FramebufferRegs::BlendFactor::OneMinusSourceAlpha:
|
||||
return 255 - combiner_output.a();
|
||||
|
||||
case FramebufferRegs::BlendFactor::DestAlpha:
|
||||
return dest.a();
|
||||
|
||||
case FramebufferRegs::BlendFactor::OneMinusDestAlpha:
|
||||
return 255 - dest.a();
|
||||
|
||||
case FramebufferRegs::BlendFactor::ConstantColor:
|
||||
return blend_const[channel];
|
||||
|
||||
case FramebufferRegs::BlendFactor::OneMinusConstantColor:
|
||||
return 255 - blend_const[channel];
|
||||
|
||||
case FramebufferRegs::BlendFactor::ConstantAlpha:
|
||||
return blend_const.a();
|
||||
|
||||
case FramebufferRegs::BlendFactor::OneMinusConstantAlpha:
|
||||
return 255 - blend_const.a();
|
||||
|
||||
case FramebufferRegs::BlendFactor::SourceAlphaSaturate:
|
||||
// Returns 1.0 for the alpha channel
|
||||
if (channel == 3)
|
||||
return 255;
|
||||
return std::min(combiner_output.a(), static_cast<u8>(255 - dest.a()));
|
||||
|
||||
default:
|
||||
LOG_CRITICAL(HW_GPU, "Unknown blend factor {:x}", factor);
|
||||
UNIMPLEMENTED();
|
||||
break;
|
||||
}
|
||||
|
||||
return combiner_output[channel];
|
||||
};
|
||||
|
||||
auto srcfactor = Common::MakeVec(LookupFactor(0, params.factor_source_rgb),
|
||||
LookupFactor(1, params.factor_source_rgb),
|
||||
LookupFactor(2, params.factor_source_rgb),
|
||||
LookupFactor(3, params.factor_source_a));
|
||||
|
||||
auto dstfactor = Common::MakeVec(LookupFactor(0, params.factor_dest_rgb),
|
||||
LookupFactor(1, params.factor_dest_rgb),
|
||||
LookupFactor(2, params.factor_dest_rgb),
|
||||
LookupFactor(3, params.factor_dest_a));
|
||||
|
||||
blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor,
|
||||
params.blend_equation_rgb);
|
||||
blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest,
|
||||
dstfactor, params.blend_equation_a)
|
||||
.a();
|
||||
} else {
|
||||
blend_output =
|
||||
Common::MakeVec(LogicOp(combiner_output.r(), dest.r(), output_merger.logic_op),
|
||||
LogicOp(combiner_output.g(), dest.g(), output_merger.logic_op),
|
||||
LogicOp(combiner_output.b(), dest.b(), output_merger.logic_op),
|
||||
LogicOp(combiner_output.a(), dest.a(), output_merger.logic_op));
|
||||
}
|
||||
|
||||
const Common::Vec4<u8> result = {
|
||||
output_merger.red_enable ? blend_output.r() : dest.r(),
|
||||
output_merger.green_enable ? blend_output.g() : dest.g(),
|
||||
output_merger.blue_enable ? blend_output.b() : dest.b(),
|
||||
output_merger.alpha_enable ? blend_output.a() : dest.a(),
|
||||
};
|
||||
|
||||
if (regs.framebuffer.framebuffer.allow_color_write != 0)
|
||||
DrawPixel(x >> 4, y >> 4, result);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ProcessTriangle(const Vertex& v0, const Vertex& v1, const Vertex& v2) {
|
||||
ProcessTriangleInternal(v0, v1, v2);
|
||||
}
|
||||
|
||||
} // namespace Pica::Rasterizer
|
@@ -1,44 +0,0 @@
|
||||
// Copyright 2014 Citra Emulator Project
|
||||
// Licensed under GPLv2 or any later version
|
||||
// Refer to the license.txt file included.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "video_core/shader/shader.h"
|
||||
|
||||
namespace Pica::Rasterizer {
|
||||
|
||||
struct Vertex : Shader::OutputVertex {
|
||||
Vertex(const OutputVertex& v) : OutputVertex(v) {}
|
||||
|
||||
// Attributes used to store intermediate results
|
||||
// position after perspective divide
|
||||
Common::Vec3<float24> screenpos;
|
||||
|
||||
// Linear interpolation
|
||||
// factor: 0=this, 1=vtx
|
||||
// Note: This function cannot be called after perspective divide
|
||||
void Lerp(float24 factor, const Vertex& vtx) {
|
||||
pos = pos * factor + vtx.pos * (float24::FromFloat32(1) - factor);
|
||||
quat = quat * factor + vtx.quat * (float24::FromFloat32(1) - factor);
|
||||
color = color * factor + vtx.color * (float24::FromFloat32(1) - factor);
|
||||
tc0 = tc0 * factor + vtx.tc0 * (float24::FromFloat32(1) - factor);
|
||||
tc1 = tc1 * factor + vtx.tc1 * (float24::FromFloat32(1) - factor);
|
||||
tc0_w = tc0_w * factor + vtx.tc0_w * (float24::FromFloat32(1) - factor);
|
||||
view = view * factor + vtx.view * (float24::FromFloat32(1) - factor);
|
||||
tc2 = tc2 * factor + vtx.tc2 * (float24::FromFloat32(1) - factor);
|
||||
}
|
||||
|
||||
// Linear interpolation
|
||||
// factor: 0=v0, 1=v1
|
||||
// Note: This function cannot be called after perspective divide
|
||||
static Vertex Lerp(float24 factor, const Vertex& v0, const Vertex& v1) {
|
||||
Vertex ret = v0;
|
||||
ret.Lerp(factor, v1);
|
||||
return ret;
|
||||
}
|
||||
};
|
||||
|
||||
void ProcessTriangle(const Vertex& v0, const Vertex& v1, const Vertex& v2);
|
||||
|
||||
} // namespace Pica::Rasterizer
|
@@ -2,18 +2,86 @@
|
||||
// Licensed under GPLv2 or any later version
|
||||
// Refer to the license.txt file included.
|
||||
|
||||
#include "common/color.h"
|
||||
#include "core/core.h"
|
||||
#include "core/hw/gpu.h"
|
||||
#include "core/hw/hw.h"
|
||||
#include "core/hw/lcd.h"
|
||||
#include "video_core/renderer_software/renderer_software.h"
|
||||
|
||||
namespace VideoCore {
|
||||
namespace SwRenderer {
|
||||
|
||||
RendererSoftware::RendererSoftware(Core::System& system, Frontend::EmuWindow& window)
|
||||
: VideoCore::RendererBase{system, window, nullptr},
|
||||
rasterizer{std::make_unique<RasterizerSoftware>()} {}
|
||||
: VideoCore::RendererBase{system, window, nullptr}, memory{system.Memory()},
|
||||
rasterizer{std::make_unique<RasterizerSoftware>(system.Memory())} {}
|
||||
|
||||
RendererSoftware::~RendererSoftware() = default;
|
||||
|
||||
void RendererSoftware::SwapBuffers() {
|
||||
PrepareRenderTarget();
|
||||
EndFrame();
|
||||
}
|
||||
|
||||
} // namespace VideoCore
|
||||
void RendererSoftware::PrepareRenderTarget() {
|
||||
for (int i : {0, 1, 2}) {
|
||||
const int fb_id = i == 2 ? 1 : 0;
|
||||
const auto& framebuffer = GPU::g_regs.framebuffer_config[fb_id];
|
||||
auto& info = screen_infos[i];
|
||||
|
||||
u32 lcd_color_addr =
|
||||
(fb_id == 0) ? LCD_REG_INDEX(color_fill_top) : LCD_REG_INDEX(color_fill_bottom);
|
||||
lcd_color_addr = HW::VADDR_LCD + 4 * lcd_color_addr;
|
||||
LCD::Regs::ColorFill color_fill = {0};
|
||||
LCD::Read(color_fill.raw, lcd_color_addr);
|
||||
|
||||
if (!color_fill.is_enabled) {
|
||||
const u32 old_width = std::exchange(info.width, framebuffer.width);
|
||||
const u32 old_height = std::exchange(info.height, framebuffer.height);
|
||||
if (framebuffer.width != old_width || framebuffer.height != old_height) [[unlikely]] {
|
||||
info.pixels.resize(framebuffer.width * framebuffer.height * 4);
|
||||
}
|
||||
CopyPixels(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void RendererSoftware::CopyPixels(int i) {
|
||||
const u32 fb_id = i == 2 ? 1 : 0;
|
||||
const auto& framebuffer = GPU::g_regs.framebuffer_config[fb_id];
|
||||
|
||||
const PAddr framebuffer_addr =
|
||||
framebuffer.active_fb == 0 ? framebuffer.address_left1 : framebuffer.address_left2;
|
||||
const s32 bpp = GPU::Regs::BytesPerPixel(framebuffer.color_format);
|
||||
const u8* framebuffer_data = memory.GetPhysicalPointer(framebuffer_addr);
|
||||
|
||||
const s32 stride = framebuffer.stride;
|
||||
const s32 height = framebuffer.height;
|
||||
ASSERT(stride * height != 0);
|
||||
|
||||
u32 output_offset = 0;
|
||||
for (u32 y = 0; y < framebuffer.height; y++) {
|
||||
for (u32 x = 0; x < framebuffer.width; x++) {
|
||||
const u8* pixel = framebuffer_data + (y * stride + x) * bpp;
|
||||
const Common::Vec4 color = [&] {
|
||||
switch (framebuffer.color_format) {
|
||||
case GPU::Regs::PixelFormat::RGBA8:
|
||||
return Common::Color::DecodeRGBA8(pixel);
|
||||
case GPU::Regs::PixelFormat::RGB8:
|
||||
return Common::Color::DecodeRGB8(pixel);
|
||||
case GPU::Regs::PixelFormat::RGB565:
|
||||
return Common::Color::DecodeRGB565(pixel);
|
||||
case GPU::Regs::PixelFormat::RGB5A1:
|
||||
return Common::Color::DecodeRGB5A1(pixel);
|
||||
case GPU::Regs::PixelFormat::RGBA4:
|
||||
return Common::Color::DecodeRGBA4(pixel);
|
||||
}
|
||||
UNREACHABLE();
|
||||
}();
|
||||
u8* dest = screen_infos[i].pixels.data() + output_offset;
|
||||
std::memcpy(dest, color.AsArray(), sizeof(color));
|
||||
output_offset += sizeof(color);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace SwRenderer
|
||||
|
@@ -11,7 +11,13 @@ namespace Core {
|
||||
class System;
|
||||
}
|
||||
|
||||
namespace VideoCore {
|
||||
namespace SwRenderer {
|
||||
|
||||
struct ScreenInfo {
|
||||
u32 width;
|
||||
u32 height;
|
||||
std::vector<u8> pixels;
|
||||
};
|
||||
|
||||
class RendererSoftware : public VideoCore::RendererBase {
|
||||
public:
|
||||
@@ -22,12 +28,22 @@ public:
|
||||
return rasterizer.get();
|
||||
}
|
||||
|
||||
[[nodiscard]] const ScreenInfo& Screen(VideoCore::ScreenId id) const noexcept {
|
||||
return screen_infos[static_cast<u32>(id)];
|
||||
}
|
||||
|
||||
void SwapBuffers() override;
|
||||
void TryPresent(int timeout_ms, bool is_secondary) override {}
|
||||
void Sync() override {}
|
||||
|
||||
private:
|
||||
void PrepareRenderTarget();
|
||||
void CopyPixels(int i);
|
||||
|
||||
private:
|
||||
Memory::MemorySystem& memory;
|
||||
std::unique_ptr<RasterizerSoftware> rasterizer;
|
||||
std::array<ScreenInfo, 3> screen_infos{};
|
||||
};
|
||||
|
||||
} // namespace VideoCore
|
||||
} // namespace SwRenderer
|
||||
|
@@ -1,196 +1,88 @@
|
||||
// Copyright 2014 Citra Emulator Project
|
||||
// Copyright 2023 Citra Emulator Project
|
||||
// Licensed under GPLv2 or any later version
|
||||
// Refer to the license.txt file included.
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cstddef>
|
||||
#include <boost/container/static_vector.hpp>
|
||||
#include "common/bit_field.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/logging/log.h"
|
||||
#include "common/vector_math.h"
|
||||
#include "video_core/pica_state.h"
|
||||
#include "video_core/pica_types.h"
|
||||
#include "video_core/renderer_software/rasterizer.h"
|
||||
#include "video_core/regs_texturing.h"
|
||||
#include "video_core/renderer_software/sw_clipper.h"
|
||||
#include "video_core/shader/shader.h"
|
||||
|
||||
using Pica::Rasterizer::Vertex;
|
||||
namespace SwRenderer {
|
||||
|
||||
namespace Pica::Clipper {
|
||||
using Pica::TexturingRegs;
|
||||
|
||||
struct ClippingEdge {
|
||||
public:
|
||||
ClippingEdge(Common::Vec4<float24> coeffs,
|
||||
Common::Vec4<float24> bias = Common::Vec4<float24>(float24::FromFloat32(0),
|
||||
float24::FromFloat32(0),
|
||||
float24::FromFloat32(0),
|
||||
float24::FromFloat32(0)))
|
||||
: coeffs(coeffs), bias(bias) {}
|
||||
|
||||
bool IsInside(const Vertex& vertex) const {
|
||||
return Common::Dot(vertex.pos + bias, coeffs) >= float24::FromFloat32(0);
|
||||
void FlipQuaternionIfOpposite(Common::Vec4<f24>& a, const Common::Vec4<f24>& b) {
|
||||
if (Common::Dot(a, b) < f24::Zero()) {
|
||||
a *= f24::FromFloat32(-1.0f);
|
||||
}
|
||||
|
||||
bool IsOutSide(const Vertex& vertex) const {
|
||||
return !IsInside(vertex);
|
||||
}
|
||||
|
||||
Vertex GetIntersection(const Vertex& v0, const Vertex& v1) const {
|
||||
float24 dp = Common::Dot(v0.pos + bias, coeffs);
|
||||
float24 dp_prev = Common::Dot(v1.pos + bias, coeffs);
|
||||
float24 factor = dp_prev / (dp_prev - dp);
|
||||
|
||||
return Vertex::Lerp(factor, v0, v1);
|
||||
}
|
||||
|
||||
private:
|
||||
[[maybe_unused]] float24 pos;
|
||||
Common::Vec4<float24> coeffs;
|
||||
Common::Vec4<float24> bias;
|
||||
};
|
||||
|
||||
static void InitScreenCoordinates(Vertex& vtx) {
|
||||
struct {
|
||||
float24 halfsize_x;
|
||||
float24 offset_x;
|
||||
float24 halfsize_y;
|
||||
float24 offset_y;
|
||||
float24 zscale;
|
||||
float24 offset_z;
|
||||
} viewport;
|
||||
int SignedArea(const Common::Vec2<Fix12P4>& vtx1, const Common::Vec2<Fix12P4>& vtx2,
|
||||
const Common::Vec2<Fix12P4>& vtx3) {
|
||||
const auto vec1 = Common::MakeVec(vtx2 - vtx1, 0);
|
||||
const auto vec2 = Common::MakeVec(vtx3 - vtx1, 0);
|
||||
// TODO: There is a very small chance this will overflow for sizeof(int) == 4
|
||||
return Common::Cross(vec1, vec2).z;
|
||||
};
|
||||
|
||||
const auto& regs = g_state.regs;
|
||||
viewport.halfsize_x = float24::FromRaw(regs.rasterizer.viewport_size_x);
|
||||
viewport.halfsize_y = float24::FromRaw(regs.rasterizer.viewport_size_y);
|
||||
viewport.offset_x = float24::FromFloat32(static_cast<float>(regs.rasterizer.viewport_corner.x));
|
||||
viewport.offset_y = float24::FromFloat32(static_cast<float>(regs.rasterizer.viewport_corner.y));
|
||||
|
||||
float24 inv_w = float24::FromFloat32(1.f) / vtx.pos.w;
|
||||
vtx.pos.w = inv_w;
|
||||
vtx.quat *= inv_w;
|
||||
vtx.color *= inv_w;
|
||||
vtx.tc0 *= inv_w;
|
||||
vtx.tc1 *= inv_w;
|
||||
vtx.tc0_w *= inv_w;
|
||||
vtx.view *= inv_w;
|
||||
vtx.tc2 *= inv_w;
|
||||
|
||||
vtx.screenpos[0] =
|
||||
(vtx.pos.x * inv_w + float24::FromFloat32(1.0)) * viewport.halfsize_x + viewport.offset_x;
|
||||
vtx.screenpos[1] =
|
||||
(vtx.pos.y * inv_w + float24::FromFloat32(1.0)) * viewport.halfsize_y + viewport.offset_y;
|
||||
vtx.screenpos[2] = vtx.pos.z * inv_w;
|
||||
}
|
||||
|
||||
void ProcessTriangle(const OutputVertex& v0, const OutputVertex& v1, const OutputVertex& v2) {
|
||||
using boost::container::static_vector;
|
||||
|
||||
// Clipping a planar n-gon against a plane will remove at least 1 vertex and introduces 2 at
|
||||
// the new edge (or less in degenerate cases). As such, we can say that each clipping plane
|
||||
// introduces at most 1 new vertex to the polygon. Since we start with a triangle and have a
|
||||
// fixed 6 clipping planes, the maximum number of vertices of the clipped polygon is 3 + 6 = 9.
|
||||
static const std::size_t MAX_VERTICES = 9;
|
||||
static_vector<Vertex, MAX_VERTICES> buffer_a = {v0, v1, v2};
|
||||
static_vector<Vertex, MAX_VERTICES> buffer_b;
|
||||
|
||||
auto FlipQuaternionIfOpposite = [](auto& a, const auto& b) {
|
||||
if (Common::Dot(a, b) < float24::Zero())
|
||||
a = a * float24::FromFloat32(-1.0f);
|
||||
};
|
||||
|
||||
// Flip the quaternions if they are opposite to prevent interpolating them over the wrong
|
||||
// direction.
|
||||
FlipQuaternionIfOpposite(buffer_a[1].quat, buffer_a[0].quat);
|
||||
FlipQuaternionIfOpposite(buffer_a[2].quat, buffer_a[0].quat);
|
||||
|
||||
auto* output_list = &buffer_a;
|
||||
auto* input_list = &buffer_b;
|
||||
|
||||
// NOTE: We clip against a w=epsilon plane to guarantee that the output has a positive w value.
|
||||
// TODO: Not sure if this is a valid approach. Also should probably instead use the smallest
|
||||
// epsilon possible within float24 accuracy.
|
||||
static const float24 EPSILON = float24::FromFloat32(0.00001f);
|
||||
static const float24 f0 = float24::FromFloat32(0.0);
|
||||
static const float24 f1 = float24::FromFloat32(1.0);
|
||||
static const std::array<ClippingEdge, 7> clipping_edges = {{
|
||||
{Common::MakeVec(-f1, f0, f0, f1)}, // x = +w
|
||||
{Common::MakeVec(f1, f0, f0, f1)}, // x = -w
|
||||
{Common::MakeVec(f0, -f1, f0, f1)}, // y = +w
|
||||
{Common::MakeVec(f0, f1, f0, f1)}, // y = -w
|
||||
{Common::MakeVec(f0, f0, -f1, f0)}, // z = 0
|
||||
{Common::MakeVec(f0, f0, f1, f1)}, // z = -w
|
||||
{Common::MakeVec(f0, f0, f0, f1),
|
||||
Common::Vec4<float24>(f0, f0, f0, EPSILON)}, // w = EPSILON
|
||||
}};
|
||||
|
||||
// Simple implementation of the Sutherland-Hodgman clipping algorithm.
|
||||
// TODO: Make this less inefficient (currently lots of useless buffering overhead happens here)
|
||||
auto Clip = [&](const ClippingEdge& edge) {
|
||||
std::swap(input_list, output_list);
|
||||
output_list->clear();
|
||||
|
||||
const Vertex* reference_vertex = &input_list->back();
|
||||
|
||||
for (const auto& vertex : *input_list) {
|
||||
// NOTE: This algorithm changes vertex order in some cases!
|
||||
if (edge.IsInside(vertex)) {
|
||||
if (edge.IsOutSide(*reference_vertex)) {
|
||||
output_list->push_back(edge.GetIntersection(vertex, *reference_vertex));
|
||||
}
|
||||
|
||||
output_list->push_back(vertex);
|
||||
} else if (edge.IsInside(*reference_vertex)) {
|
||||
output_list->push_back(edge.GetIntersection(vertex, *reference_vertex));
|
||||
}
|
||||
reference_vertex = &vertex;
|
||||
std::tuple<f24, f24, f24, PAddr> ConvertCubeCoord(f24 u, f24 v, f24 w,
|
||||
const Pica::TexturingRegs& regs) {
|
||||
const float abs_u = std::abs(u.ToFloat32());
|
||||
const float abs_v = std::abs(v.ToFloat32());
|
||||
const float abs_w = std::abs(w.ToFloat32());
|
||||
f24 x, y, z;
|
||||
PAddr addr;
|
||||
if (abs_u > abs_v && abs_u > abs_w) {
|
||||
if (u > f24::Zero()) {
|
||||
addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::PositiveX);
|
||||
y = -v;
|
||||
} else {
|
||||
addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::NegativeX);
|
||||
y = v;
|
||||
}
|
||||
};
|
||||
|
||||
for (auto edge : clipping_edges) {
|
||||
Clip(edge);
|
||||
|
||||
// Need to have at least a full triangle to continue...
|
||||
if (output_list->size() < 3)
|
||||
return;
|
||||
x = -w;
|
||||
z = u;
|
||||
} else if (abs_v > abs_w) {
|
||||
if (v > f24::Zero()) {
|
||||
addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::PositiveY);
|
||||
x = u;
|
||||
} else {
|
||||
addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::NegativeY);
|
||||
x = -u;
|
||||
}
|
||||
y = w;
|
||||
z = v;
|
||||
} else {
|
||||
if (w > f24::Zero()) {
|
||||
addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::PositiveZ);
|
||||
y = -v;
|
||||
} else {
|
||||
addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::NegativeZ);
|
||||
y = v;
|
||||
}
|
||||
x = u;
|
||||
z = w;
|
||||
}
|
||||
const f24 z_abs = f24::FromFloat32(std::abs(z.ToFloat32()));
|
||||
const f24 half = f24::FromFloat32(0.5f);
|
||||
return std::make_tuple(x / z * half + half, y / z * half + half, z_abs, addr);
|
||||
}
|
||||
|
||||
if (g_state.regs.rasterizer.clip_enable) {
|
||||
ClippingEdge custom_edge{g_state.regs.rasterizer.GetClipCoef()};
|
||||
Clip(custom_edge);
|
||||
|
||||
if (output_list->size() < 3)
|
||||
return;
|
||||
}
|
||||
|
||||
InitScreenCoordinates((*output_list)[0]);
|
||||
InitScreenCoordinates((*output_list)[1]);
|
||||
|
||||
for (std::size_t i = 0; i < output_list->size() - 2; i++) {
|
||||
Vertex& vtx0 = (*output_list)[0];
|
||||
Vertex& vtx1 = (*output_list)[i + 1];
|
||||
Vertex& vtx2 = (*output_list)[i + 2];
|
||||
|
||||
InitScreenCoordinates(vtx2);
|
||||
|
||||
LOG_TRACE(
|
||||
Render_Software,
|
||||
"Triangle {}/{} at position ({:.3}, {:.3}, {:.3}, {:.3f}), "
|
||||
"({:.3}, {:.3}, {:.3}, {:.3}), ({:.3}, {:.3}, {:.3}, {:.3}) and "
|
||||
"screen position ({:.2}, {:.2}, {:.2}), ({:.2}, {:.2}, {:.2}), ({:.2}, {:.2}, {:.2})",
|
||||
i + 1, output_list->size() - 2, vtx0.pos.x.ToFloat32(), vtx0.pos.y.ToFloat32(),
|
||||
vtx0.pos.z.ToFloat32(), vtx0.pos.w.ToFloat32(), vtx1.pos.x.ToFloat32(),
|
||||
vtx1.pos.y.ToFloat32(), vtx1.pos.z.ToFloat32(), vtx1.pos.w.ToFloat32(),
|
||||
vtx2.pos.x.ToFloat32(), vtx2.pos.y.ToFloat32(), vtx2.pos.z.ToFloat32(),
|
||||
vtx2.pos.w.ToFloat32(), vtx0.screenpos.x.ToFloat32(), vtx0.screenpos.y.ToFloat32(),
|
||||
vtx0.screenpos.z.ToFloat32(), vtx1.screenpos.x.ToFloat32(),
|
||||
vtx1.screenpos.y.ToFloat32(), vtx1.screenpos.z.ToFloat32(),
|
||||
vtx2.screenpos.x.ToFloat32(), vtx2.screenpos.y.ToFloat32(),
|
||||
vtx2.screenpos.z.ToFloat32());
|
||||
|
||||
Rasterizer::ProcessTriangle(vtx0, vtx1, vtx2);
|
||||
bool IsRightSideOrFlatBottomEdge(const Common::Vec2<Fix12P4>& vtx,
|
||||
const Common::Vec2<Fix12P4>& line1,
|
||||
const Common::Vec2<Fix12P4>& line2) {
|
||||
if (line1.y == line2.y) {
|
||||
// Just check if vertex is above us => bottom line parallel to x-axis
|
||||
return vtx.y < line1.y;
|
||||
} else {
|
||||
// Check if vertex is on our left => right side
|
||||
// TODO: Not sure how likely this is to overflow
|
||||
const auto svtx = vtx.Cast<s32>();
|
||||
const auto sline1 = line1.Cast<s32>();
|
||||
const auto sline2 = line2.Cast<s32>();
|
||||
return svtx.x <
|
||||
sline1.x + (sline2.x - sline1.x) * (svtx.y - sline1.y) / (sline2.y - sline1.y);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Pica::Clipper
|
||||
} // namespace SwRenderer
|
||||
|
@@ -1,19 +1,87 @@
|
||||
// Copyright 2014 Citra Emulator Project
|
||||
// Copyright 2023 Citra Emulator Project
|
||||
// Licensed under GPLv2 or any later version
|
||||
// Refer to the license.txt file included.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "common/vector_math.h"
|
||||
#include "video_core/pica_types.h"
|
||||
|
||||
namespace Pica {
|
||||
namespace Shader {
|
||||
struct OutputVertex;
|
||||
struct TexturingRegs;
|
||||
}
|
||||
|
||||
namespace Clipper {
|
||||
namespace SwRenderer {
|
||||
|
||||
using Shader::OutputVertex;
|
||||
using Pica::f24;
|
||||
|
||||
void ProcessTriangle(const OutputVertex& v0, const OutputVertex& v1, const OutputVertex& v2);
|
||||
// NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values
|
||||
struct Fix12P4 {
|
||||
Fix12P4() {}
|
||||
Fix12P4(u16 val) : val(val) {}
|
||||
|
||||
} // namespace Clipper
|
||||
} // namespace Pica
|
||||
static Fix12P4 FromFloat24(f24 flt) {
|
||||
// TODO: Rounding here is necessary to prevent garbage pixels at
|
||||
// triangle borders. Is it that the correct solution, though?
|
||||
return Fix12P4(static_cast<u16>(round(flt.ToFloat32() * 16.0f)));
|
||||
}
|
||||
|
||||
static u16 FracMask() {
|
||||
return 0xF;
|
||||
}
|
||||
static u16 IntMask() {
|
||||
return static_cast<u16>(~0xF);
|
||||
}
|
||||
|
||||
operator u16() const {
|
||||
return val;
|
||||
}
|
||||
|
||||
bool operator<(const Fix12P4& oth) const {
|
||||
return (u16) * this < (u16)oth;
|
||||
}
|
||||
|
||||
private:
|
||||
u16 val;
|
||||
};
|
||||
|
||||
struct Viewport {
|
||||
f24 halfsize_x;
|
||||
f24 offset_x;
|
||||
f24 halfsize_y;
|
||||
f24 offset_y;
|
||||
f24 zscale;
|
||||
f24 offset_z;
|
||||
};
|
||||
|
||||
/**
|
||||
* Flips the quaternions if they are opposite to prevent
|
||||
* interpolating them over the wrong direction.
|
||||
*/
|
||||
void FlipQuaternionIfOpposite(Common::Vec4<f24>& a, const Common::Vec4<f24>& b);
|
||||
|
||||
/**
|
||||
* Calculate signed area of the triangle spanned by the three argument vertices.
|
||||
* The sign denotes an orientation.
|
||||
**/
|
||||
int SignedArea(const Common::Vec2<Fix12P4>& vtx1, const Common::Vec2<Fix12P4>& vtx2,
|
||||
const Common::Vec2<Fix12P4>& vtx3);
|
||||
|
||||
/**
|
||||
* Convert a 3D vector for cube map coordinates to 2D texture coordinates along with the face name.
|
||||
**/
|
||||
std::tuple<f24, f24, f24, PAddr> ConvertCubeCoord(f24 u, f24 v, f24 w,
|
||||
const Pica::TexturingRegs& regs);
|
||||
|
||||
/**
|
||||
* Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not
|
||||
* drawn. Pixels on any other triangle border are drawn. This is implemented with three bias
|
||||
* values which are added to the barycentric coordinates w0, w1 and w2, respectively.
|
||||
* NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones...
|
||||
**/
|
||||
bool IsRightSideOrFlatBottomEdge(const Common::Vec2<Fix12P4>& vtx,
|
||||
const Common::Vec2<Fix12P4>& line1,
|
||||
const Common::Vec2<Fix12P4>& line2);
|
||||
|
||||
} // namespace SwRenderer
|
||||
|
@@ -3,23 +3,46 @@
|
||||
// Refer to the license.txt file included.
|
||||
|
||||
#include <algorithm>
|
||||
#include "common/assert.h"
|
||||
#include "common/color.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/logging/log.h"
|
||||
#include "common/vector_math.h"
|
||||
#include "core/hw/gpu.h"
|
||||
#include "core/memory.h"
|
||||
#include "video_core/pica_state.h"
|
||||
#include "video_core/pica_types.h"
|
||||
#include "video_core/regs_framebuffer.h"
|
||||
#include "video_core/renderer_software/sw_framebuffer.h"
|
||||
#include "video_core/utils.h"
|
||||
#include "video_core/video_core.h"
|
||||
|
||||
namespace Pica::Rasterizer {
|
||||
namespace SwRenderer {
|
||||
|
||||
void DrawPixel(int x, int y, const Common::Vec4<u8>& color) {
|
||||
const auto& framebuffer = g_state.regs.framebuffer.framebuffer;
|
||||
using Pica::f16;
|
||||
using Pica::FramebufferRegs;
|
||||
|
||||
namespace {
|
||||
|
||||
/// Decode/Encode for shadow map format. It is similar to D24S8 format,
|
||||
/// but the depth field is in big-endian.
|
||||
const Common::Vec2<u32> DecodeD24S8Shadow(const u8* bytes) {
|
||||
return {static_cast<u32>((bytes[0] << 16) | (bytes[1] << 8) | bytes[2]), bytes[3]};
|
||||
}
|
||||
|
||||
void EncodeD24X8Shadow(u32 depth, u8* bytes) {
|
||||
bytes[2] = depth & 0xFF;
|
||||
bytes[1] = (depth >> 8) & 0xFF;
|
||||
bytes[0] = (depth >> 16) & 0xFF;
|
||||
}
|
||||
|
||||
void EncodeX24S8Shadow(u8 stencil, u8* bytes) {
|
||||
bytes[3] = stencil;
|
||||
}
|
||||
} // Anonymous namespace
|
||||
|
||||
Framebuffer::Framebuffer(Memory::MemorySystem& memory_, const Pica::FramebufferRegs& regs_)
|
||||
: memory{memory_}, regs{regs_} {}
|
||||
|
||||
Framebuffer::~Framebuffer() = default;
|
||||
|
||||
void Framebuffer::DrawPixel(int x, int y, const Common::Vec4<u8>& color) const {
|
||||
const auto& framebuffer = regs.framebuffer;
|
||||
const PAddr addr = framebuffer.GetColorBufferPhysicalAddress();
|
||||
|
||||
// Similarly to textures, the render framebuffer is laid out from bottom to top, too.
|
||||
@@ -27,33 +50,29 @@ void DrawPixel(int x, int y, const Common::Vec4<u8>& color) {
|
||||
y = framebuffer.height - y;
|
||||
|
||||
const u32 coarse_y = y & ~7;
|
||||
u32 bytes_per_pixel =
|
||||
const u32 bytes_per_pixel =
|
||||
GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value()));
|
||||
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) +
|
||||
coarse_y * framebuffer.width * bytes_per_pixel;
|
||||
u8* dst_pixel = VideoCore::g_memory->GetPhysicalPointer(addr) + dst_offset;
|
||||
const u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) +
|
||||
coarse_y * framebuffer.width * bytes_per_pixel;
|
||||
u8* depth_buffer = memory.GetPhysicalPointer(addr);
|
||||
u8* dst_pixel = depth_buffer + dst_offset;
|
||||
|
||||
switch (framebuffer.color_format) {
|
||||
case FramebufferRegs::ColorFormat::RGBA8:
|
||||
Common::Color::EncodeRGBA8(color, dst_pixel);
|
||||
break;
|
||||
|
||||
case FramebufferRegs::ColorFormat::RGB8:
|
||||
Common::Color::EncodeRGB8(color, dst_pixel);
|
||||
break;
|
||||
|
||||
case FramebufferRegs::ColorFormat::RGB5A1:
|
||||
Common::Color::EncodeRGB5A1(color, dst_pixel);
|
||||
break;
|
||||
|
||||
case FramebufferRegs::ColorFormat::RGB565:
|
||||
Common::Color::EncodeRGB565(color, dst_pixel);
|
||||
break;
|
||||
|
||||
case FramebufferRegs::ColorFormat::RGBA4:
|
||||
Common::Color::EncodeRGBA4(color, dst_pixel);
|
||||
break;
|
||||
|
||||
default:
|
||||
LOG_CRITICAL(Render_Software, "Unknown framebuffer color format {:x}",
|
||||
static_cast<u32>(framebuffer.color_format.Value()));
|
||||
@@ -61,35 +80,31 @@ void DrawPixel(int x, int y, const Common::Vec4<u8>& color) {
|
||||
}
|
||||
}
|
||||
|
||||
const Common::Vec4<u8> GetPixel(int x, int y) {
|
||||
const auto& framebuffer = g_state.regs.framebuffer.framebuffer;
|
||||
const Common::Vec4<u8> Framebuffer::GetPixel(int x, int y) const {
|
||||
const auto& framebuffer = regs.framebuffer;
|
||||
const PAddr addr = framebuffer.GetColorBufferPhysicalAddress();
|
||||
|
||||
y = framebuffer.height - y;
|
||||
|
||||
const u32 coarse_y = y & ~7;
|
||||
u32 bytes_per_pixel =
|
||||
const u32 bytes_per_pixel =
|
||||
GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value()));
|
||||
u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) +
|
||||
coarse_y * framebuffer.width * bytes_per_pixel;
|
||||
u8* src_pixel = VideoCore::g_memory->GetPhysicalPointer(addr) + src_offset;
|
||||
const u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) +
|
||||
coarse_y * framebuffer.width * bytes_per_pixel;
|
||||
const u8* color_buffer = memory.GetPhysicalPointer(addr);
|
||||
const u8* src_pixel = color_buffer + src_offset;
|
||||
|
||||
switch (framebuffer.color_format) {
|
||||
case FramebufferRegs::ColorFormat::RGBA8:
|
||||
return Common::Color::DecodeRGBA8(src_pixel);
|
||||
|
||||
case FramebufferRegs::ColorFormat::RGB8:
|
||||
return Common::Color::DecodeRGB8(src_pixel);
|
||||
|
||||
case FramebufferRegs::ColorFormat::RGB5A1:
|
||||
return Common::Color::DecodeRGB5A1(src_pixel);
|
||||
|
||||
case FramebufferRegs::ColorFormat::RGB565:
|
||||
return Common::Color::DecodeRGB565(src_pixel);
|
||||
|
||||
case FramebufferRegs::ColorFormat::RGBA4:
|
||||
return Common::Color::DecodeRGBA4(src_pixel);
|
||||
|
||||
default:
|
||||
LOG_CRITICAL(Render_Software, "Unknown framebuffer color format {:x}",
|
||||
static_cast<u32>(framebuffer.color_format.Value()));
|
||||
@@ -99,19 +114,19 @@ const Common::Vec4<u8> GetPixel(int x, int y) {
|
||||
return {0, 0, 0, 0};
|
||||
}
|
||||
|
||||
u32 GetDepth(int x, int y) {
|
||||
const auto& framebuffer = g_state.regs.framebuffer.framebuffer;
|
||||
u32 Framebuffer::GetDepth(int x, int y) const {
|
||||
const auto& framebuffer = regs.framebuffer;
|
||||
const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress();
|
||||
u8* depth_buffer = VideoCore::g_memory->GetPhysicalPointer(addr);
|
||||
|
||||
y = framebuffer.height - y;
|
||||
|
||||
const u32 coarse_y = y & ~7;
|
||||
u32 bytes_per_pixel = FramebufferRegs::BytesPerDepthPixel(framebuffer.depth_format);
|
||||
u32 stride = framebuffer.width * bytes_per_pixel;
|
||||
const u32 bytes_per_pixel = FramebufferRegs::BytesPerDepthPixel(framebuffer.depth_format);
|
||||
const u32 stride = framebuffer.width * bytes_per_pixel;
|
||||
|
||||
u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride;
|
||||
u8* src_pixel = depth_buffer + src_offset;
|
||||
const u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride;
|
||||
const u8* depth_buffer = memory.GetPhysicalPointer(addr);
|
||||
const u8* src_pixel = depth_buffer + src_offset;
|
||||
|
||||
switch (framebuffer.depth_format) {
|
||||
case FramebufferRegs::DepthFormat::D16:
|
||||
@@ -128,24 +143,23 @@ u32 GetDepth(int x, int y) {
|
||||
}
|
||||
}
|
||||
|
||||
u8 GetStencil(int x, int y) {
|
||||
const auto& framebuffer = g_state.regs.framebuffer.framebuffer;
|
||||
u8 Framebuffer::GetStencil(int x, int y) const {
|
||||
const auto& framebuffer = regs.framebuffer;
|
||||
const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress();
|
||||
u8* depth_buffer = VideoCore::g_memory->GetPhysicalPointer(addr);
|
||||
|
||||
y = framebuffer.height - y;
|
||||
|
||||
const u32 coarse_y = y & ~7;
|
||||
u32 bytes_per_pixel = Pica::FramebufferRegs::BytesPerDepthPixel(framebuffer.depth_format);
|
||||
u32 stride = framebuffer.width * bytes_per_pixel;
|
||||
const u32 bytes_per_pixel = Pica::FramebufferRegs::BytesPerDepthPixel(framebuffer.depth_format);
|
||||
const u32 stride = framebuffer.width * bytes_per_pixel;
|
||||
|
||||
u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride;
|
||||
u8* src_pixel = depth_buffer + src_offset;
|
||||
const u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride;
|
||||
const u8* depth_buffer = memory.GetPhysicalPointer(addr);
|
||||
const u8* src_pixel = depth_buffer + src_offset;
|
||||
|
||||
switch (framebuffer.depth_format) {
|
||||
case FramebufferRegs::DepthFormat::D24S8:
|
||||
return Common::Color::DecodeD24S8(src_pixel).y;
|
||||
|
||||
default:
|
||||
LOG_WARNING(
|
||||
HW_GPU,
|
||||
@@ -155,33 +169,30 @@ u8 GetStencil(int x, int y) {
|
||||
}
|
||||
}
|
||||
|
||||
void SetDepth(int x, int y, u32 value) {
|
||||
const auto& framebuffer = g_state.regs.framebuffer.framebuffer;
|
||||
void Framebuffer::SetDepth(int x, int y, u32 value) const {
|
||||
const auto& framebuffer = regs.framebuffer;
|
||||
const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress();
|
||||
u8* depth_buffer = VideoCore::g_memory->GetPhysicalPointer(addr);
|
||||
|
||||
y = framebuffer.height - y;
|
||||
|
||||
const u32 coarse_y = y & ~7;
|
||||
u32 bytes_per_pixel = FramebufferRegs::BytesPerDepthPixel(framebuffer.depth_format);
|
||||
u32 stride = framebuffer.width * bytes_per_pixel;
|
||||
const u32 bytes_per_pixel = FramebufferRegs::BytesPerDepthPixel(framebuffer.depth_format);
|
||||
const u32 stride = framebuffer.width * bytes_per_pixel;
|
||||
|
||||
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride;
|
||||
const u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride;
|
||||
u8* depth_buffer = memory.GetPhysicalPointer(addr);
|
||||
u8* dst_pixel = depth_buffer + dst_offset;
|
||||
|
||||
switch (framebuffer.depth_format) {
|
||||
case FramebufferRegs::DepthFormat::D16:
|
||||
Common::Color::EncodeD16(value, dst_pixel);
|
||||
break;
|
||||
|
||||
case FramebufferRegs::DepthFormat::D24:
|
||||
Common::Color::EncodeD24(value, dst_pixel);
|
||||
break;
|
||||
|
||||
case FramebufferRegs::DepthFormat::D24S8:
|
||||
Common::Color::EncodeD24X8(value, dst_pixel);
|
||||
break;
|
||||
|
||||
default:
|
||||
LOG_CRITICAL(HW_GPU, "Unimplemented depth format {}",
|
||||
static_cast<u32>(framebuffer.depth_format.Value()));
|
||||
@@ -190,18 +201,18 @@ void SetDepth(int x, int y, u32 value) {
|
||||
}
|
||||
}
|
||||
|
||||
void SetStencil(int x, int y, u8 value) {
|
||||
const auto& framebuffer = g_state.regs.framebuffer.framebuffer;
|
||||
void Framebuffer::SetStencil(int x, int y, u8 value) const {
|
||||
const auto& framebuffer = regs.framebuffer;
|
||||
const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress();
|
||||
u8* depth_buffer = VideoCore::g_memory->GetPhysicalPointer(addr);
|
||||
|
||||
y = framebuffer.height - y;
|
||||
|
||||
const u32 coarse_y = y & ~7;
|
||||
u32 bytes_per_pixel = Pica::FramebufferRegs::BytesPerDepthPixel(framebuffer.depth_format);
|
||||
u32 stride = framebuffer.width * bytes_per_pixel;
|
||||
const u32 bytes_per_pixel = Pica::FramebufferRegs::BytesPerDepthPixel(framebuffer.depth_format);
|
||||
const u32 stride = framebuffer.width * bytes_per_pixel;
|
||||
|
||||
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride;
|
||||
const u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride;
|
||||
u8* depth_buffer = memory.GetPhysicalPointer(addr);
|
||||
u8* dst_pixel = depth_buffer + dst_offset;
|
||||
|
||||
switch (framebuffer.depth_format) {
|
||||
@@ -209,11 +220,9 @@ void SetStencil(int x, int y, u8 value) {
|
||||
case Pica::FramebufferRegs::DepthFormat::D24:
|
||||
// Nothing to do
|
||||
break;
|
||||
|
||||
case Pica::FramebufferRegs::DepthFormat::D24S8:
|
||||
Common::Color::EncodeX24S8(value, dst_pixel);
|
||||
break;
|
||||
|
||||
default:
|
||||
LOG_CRITICAL(HW_GPU, "Unimplemented depth format {}",
|
||||
static_cast<u32>(framebuffer.depth_format.Value()));
|
||||
@@ -222,36 +231,65 @@ void SetStencil(int x, int y, u8 value) {
|
||||
}
|
||||
}
|
||||
|
||||
void Framebuffer::DrawShadowMapPixel(int x, int y, u32 depth, u8 stencil) const {
|
||||
const auto& framebuffer = regs.framebuffer;
|
||||
const auto& shadow = regs.shadow;
|
||||
const PAddr addr = framebuffer.GetColorBufferPhysicalAddress();
|
||||
|
||||
y = framebuffer.height - y;
|
||||
|
||||
const u32 coarse_y = y & ~7;
|
||||
u32 bytes_per_pixel = 4;
|
||||
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) +
|
||||
coarse_y * framebuffer.width * bytes_per_pixel;
|
||||
u8* shadow_buffer = memory.GetPhysicalPointer(addr);
|
||||
u8* dst_pixel = shadow_buffer + dst_offset;
|
||||
|
||||
const auto ref = DecodeD24S8Shadow(dst_pixel);
|
||||
const u32 ref_z = ref.x;
|
||||
const u32 ref_s = ref.y;
|
||||
|
||||
if (depth >= ref_z) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (stencil == 0) {
|
||||
EncodeD24X8Shadow(depth, dst_pixel);
|
||||
} else {
|
||||
const f16 constant = f16::FromRaw(shadow.constant);
|
||||
const f16 linear = f16::FromRaw(shadow.linear);
|
||||
const f16 x_ = f16::FromFloat32(static_cast<float>(depth) / ref_z);
|
||||
const f16 stencil_new = f16::FromFloat32(stencil) / (constant + linear * x_);
|
||||
stencil = static_cast<u8>(std::clamp(stencil_new.ToFloat32(), 0.0f, 255.0f));
|
||||
|
||||
if (stencil < ref_s) {
|
||||
EncodeX24S8Shadow(stencil, dst_pixel);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
u8 PerformStencilAction(FramebufferRegs::StencilAction action, u8 old_stencil, u8 ref) {
|
||||
switch (action) {
|
||||
case FramebufferRegs::StencilAction::Keep:
|
||||
return old_stencil;
|
||||
|
||||
case FramebufferRegs::StencilAction::Zero:
|
||||
return 0;
|
||||
|
||||
case FramebufferRegs::StencilAction::Replace:
|
||||
return ref;
|
||||
|
||||
case FramebufferRegs::StencilAction::Increment:
|
||||
// Saturated increment
|
||||
return std::min<u8>(old_stencil, 254) + 1;
|
||||
|
||||
case FramebufferRegs::StencilAction::Decrement:
|
||||
// Saturated decrement
|
||||
return std::max<u8>(old_stencil, 1) - 1;
|
||||
|
||||
case FramebufferRegs::StencilAction::Invert:
|
||||
return ~old_stencil;
|
||||
|
||||
case FramebufferRegs::StencilAction::IncrementWrap:
|
||||
return old_stencil + 1;
|
||||
|
||||
case FramebufferRegs::StencilAction::DecrementWrap:
|
||||
return old_stencil - 1;
|
||||
|
||||
default:
|
||||
LOG_CRITICAL(HW_GPU, "Unknown stencil action {:x}", (int)action);
|
||||
LOG_CRITICAL(HW_GPU, "Unknown stencil action {:x}", static_cast<int>(action));
|
||||
UNIMPLEMENTED();
|
||||
return 0;
|
||||
}
|
||||
@@ -262,24 +300,21 @@ Common::Vec4<u8> EvaluateBlendEquation(const Common::Vec4<u8>& src,
|
||||
const Common::Vec4<u8>& dest,
|
||||
const Common::Vec4<u8>& destfactor,
|
||||
FramebufferRegs::BlendEquation equation) {
|
||||
Common::Vec4<int> result;
|
||||
Common::Vec4i result;
|
||||
|
||||
auto src_result = (src * srcfactor).Cast<int>();
|
||||
auto dst_result = (dest * destfactor).Cast<int>();
|
||||
const auto src_result = (src * srcfactor).Cast<s32>();
|
||||
const auto dst_result = (dest * destfactor).Cast<s32>();
|
||||
|
||||
switch (equation) {
|
||||
case FramebufferRegs::BlendEquation::Add:
|
||||
result = (src_result + dst_result) / 255;
|
||||
break;
|
||||
|
||||
case FramebufferRegs::BlendEquation::Subtract:
|
||||
result = (src_result - dst_result) / 255;
|
||||
break;
|
||||
|
||||
case FramebufferRegs::BlendEquation::ReverseSubtract:
|
||||
result = (dst_result - src_result) / 255;
|
||||
break;
|
||||
|
||||
// TODO: How do these two actually work? OpenGL doesn't include the blend factors in the
|
||||
// min/max computations, but is this what the 3DS actually does?
|
||||
case FramebufferRegs::BlendEquation::Min:
|
||||
@@ -288,14 +323,12 @@ Common::Vec4<u8> EvaluateBlendEquation(const Common::Vec4<u8>& src,
|
||||
result.b() = std::min(src.b(), dest.b());
|
||||
result.a() = std::min(src.a(), dest.a());
|
||||
break;
|
||||
|
||||
case FramebufferRegs::BlendEquation::Max:
|
||||
result.r() = std::max(src.r(), dest.r());
|
||||
result.g() = std::max(src.g(), dest.g());
|
||||
result.b() = std::max(src.b(), dest.b());
|
||||
result.a() = std::max(src.a(), dest.a());
|
||||
break;
|
||||
|
||||
default:
|
||||
LOG_CRITICAL(HW_GPU, "Unknown RGB blend equation 0x{:x}", equation);
|
||||
UNIMPLEMENTED();
|
||||
@@ -309,103 +342,38 @@ u8 LogicOp(u8 src, u8 dest, FramebufferRegs::LogicOp op) {
|
||||
switch (op) {
|
||||
case FramebufferRegs::LogicOp::Clear:
|
||||
return 0;
|
||||
|
||||
case FramebufferRegs::LogicOp::And:
|
||||
return src & dest;
|
||||
|
||||
case FramebufferRegs::LogicOp::AndReverse:
|
||||
return src & ~dest;
|
||||
|
||||
case FramebufferRegs::LogicOp::Copy:
|
||||
return src;
|
||||
|
||||
case FramebufferRegs::LogicOp::Set:
|
||||
return 255;
|
||||
|
||||
case FramebufferRegs::LogicOp::CopyInverted:
|
||||
return ~src;
|
||||
|
||||
case FramebufferRegs::LogicOp::NoOp:
|
||||
return dest;
|
||||
|
||||
case FramebufferRegs::LogicOp::Invert:
|
||||
return ~dest;
|
||||
|
||||
case FramebufferRegs::LogicOp::Nand:
|
||||
return ~(src & dest);
|
||||
|
||||
case FramebufferRegs::LogicOp::Or:
|
||||
return src | dest;
|
||||
|
||||
case FramebufferRegs::LogicOp::Nor:
|
||||
return ~(src | dest);
|
||||
|
||||
case FramebufferRegs::LogicOp::Xor:
|
||||
return src ^ dest;
|
||||
|
||||
case FramebufferRegs::LogicOp::Equiv:
|
||||
return ~(src ^ dest);
|
||||
|
||||
case FramebufferRegs::LogicOp::AndInverted:
|
||||
return ~src & dest;
|
||||
|
||||
case FramebufferRegs::LogicOp::OrReverse:
|
||||
return src | ~dest;
|
||||
|
||||
case FramebufferRegs::LogicOp::OrInverted:
|
||||
return ~src | dest;
|
||||
}
|
||||
|
||||
UNREACHABLE();
|
||||
};
|
||||
|
||||
// Decode/Encode for shadow map format. It is similar to D24S8 format, but the depth field is in
|
||||
// big-endian
|
||||
static const Common::Vec2<u32> DecodeD24S8Shadow(const u8* bytes) {
|
||||
return {static_cast<u32>((bytes[0] << 16) | (bytes[1] << 8) | bytes[2]), bytes[3]};
|
||||
}
|
||||
|
||||
static void EncodeD24X8Shadow(u32 depth, u8* bytes) {
|
||||
bytes[2] = depth & 0xFF;
|
||||
bytes[1] = (depth >> 8) & 0xFF;
|
||||
bytes[0] = (depth >> 16) & 0xFF;
|
||||
}
|
||||
|
||||
static void EncodeX24S8Shadow(u8 stencil, u8* bytes) {
|
||||
bytes[3] = stencil;
|
||||
}
|
||||
|
||||
void DrawShadowMapPixel(int x, int y, u32 depth, u8 stencil) {
|
||||
const auto& framebuffer = g_state.regs.framebuffer.framebuffer;
|
||||
const auto& shadow = g_state.regs.framebuffer.shadow;
|
||||
const PAddr addr = framebuffer.GetColorBufferPhysicalAddress();
|
||||
|
||||
y = framebuffer.height - y;
|
||||
|
||||
const u32 coarse_y = y & ~7;
|
||||
u32 bytes_per_pixel = 4;
|
||||
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) +
|
||||
coarse_y * framebuffer.width * bytes_per_pixel;
|
||||
u8* dst_pixel = VideoCore::g_memory->GetPhysicalPointer(addr) + dst_offset;
|
||||
|
||||
auto ref = DecodeD24S8Shadow(dst_pixel);
|
||||
u32 ref_z = ref.x;
|
||||
u32 ref_s = ref.y;
|
||||
|
||||
if (depth < ref_z) {
|
||||
if (stencil == 0) {
|
||||
EncodeD24X8Shadow(depth, dst_pixel);
|
||||
} else {
|
||||
float16 constant = float16::FromRaw(shadow.constant);
|
||||
float16 linear = float16::FromRaw(shadow.linear);
|
||||
float16 x_ = float16::FromFloat32(static_cast<float>(depth) / ref_z);
|
||||
float16 stencil_new = float16::FromFloat32(stencil) / (constant + linear * x_);
|
||||
stencil = static_cast<u8>(std::clamp(stencil_new.ToFloat32(), 0.0f, 255.0f));
|
||||
|
||||
if (stencil < ref_s)
|
||||
EncodeX24S8Shadow(stencil, dst_pixel);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Pica::Rasterizer
|
||||
} // namespace SwRenderer
|
||||
|
@@ -8,24 +8,55 @@
|
||||
#include "common/vector_math.h"
|
||||
#include "video_core/regs_framebuffer.h"
|
||||
|
||||
namespace Pica::Rasterizer {
|
||||
namespace Memory {
|
||||
class MemorySystem;
|
||||
}
|
||||
|
||||
void DrawPixel(int x, int y, const Common::Vec4<u8>& color);
|
||||
const Common::Vec4<u8> GetPixel(int x, int y);
|
||||
u32 GetDepth(int x, int y);
|
||||
u8 GetStencil(int x, int y);
|
||||
void SetDepth(int x, int y, u32 value);
|
||||
void SetStencil(int x, int y, u8 value);
|
||||
u8 PerformStencilAction(FramebufferRegs::StencilAction action, u8 old_stencil, u8 ref);
|
||||
namespace Pica {
|
||||
struct FramebufferRegs;
|
||||
}
|
||||
|
||||
namespace SwRenderer {
|
||||
|
||||
class Framebuffer {
|
||||
public:
|
||||
explicit Framebuffer(Memory::MemorySystem& memory, const Pica::FramebufferRegs& framebuffer);
|
||||
~Framebuffer();
|
||||
|
||||
/// Draws a pixel at the specified coordinates.
|
||||
void DrawPixel(int x, int y, const Common::Vec4<u8>& color) const;
|
||||
|
||||
/// Returns the current color at the specified coordinates.
|
||||
[[nodiscard]] const Common::Vec4<u8> GetPixel(int x, int y) const;
|
||||
|
||||
/// Returns the depth value at the specified coordinates.
|
||||
[[nodiscard]] u32 GetDepth(int x, int y) const;
|
||||
|
||||
/// Returns the stencil value at the specified coordinates.
|
||||
[[nodiscard]] u8 GetStencil(int x, int y) const;
|
||||
|
||||
/// Stores the provided depth value at the specified coordinates.
|
||||
void SetDepth(int x, int y, u32 value) const;
|
||||
|
||||
/// Stores the provided stencil value at the specified coordinates.
|
||||
void SetStencil(int x, int y, u8 value) const;
|
||||
|
||||
/// Draws a pixel to the shadow buffer.
|
||||
void DrawShadowMapPixel(int x, int y, u32 depth, u8 stencil) const;
|
||||
|
||||
private:
|
||||
Memory::MemorySystem& memory;
|
||||
const Pica::FramebufferRegs& regs;
|
||||
};
|
||||
|
||||
u8 PerformStencilAction(Pica::FramebufferRegs::StencilAction action, u8 old_stencil, u8 ref);
|
||||
|
||||
Common::Vec4<u8> EvaluateBlendEquation(const Common::Vec4<u8>& src,
|
||||
const Common::Vec4<u8>& srcfactor,
|
||||
const Common::Vec4<u8>& dest,
|
||||
const Common::Vec4<u8>& destfactor,
|
||||
FramebufferRegs::BlendEquation equation);
|
||||
Pica::FramebufferRegs::BlendEquation equation);
|
||||
|
||||
u8 LogicOp(u8 src, u8 dest, FramebufferRegs::LogicOp op);
|
||||
u8 LogicOp(u8 src, u8 dest, Pica::FramebufferRegs::LogicOp op);
|
||||
|
||||
void DrawShadowMapPixel(int x, int y, u32 depth, u8 stencil);
|
||||
|
||||
} // namespace Pica::Rasterizer
|
||||
} // namespace SwRenderer
|
||||
|
@@ -5,7 +5,10 @@
|
||||
#include <algorithm>
|
||||
#include "video_core/renderer_software/sw_lighting.h"
|
||||
|
||||
namespace Pica {
|
||||
namespace SwRenderer {
|
||||
|
||||
using Pica::f16;
|
||||
using Pica::LightingRegs;
|
||||
|
||||
static float LookupLightingLut(const Pica::State::Lighting& lighting, std::size_t lut_index,
|
||||
u8 index, float delta) {
|
||||
@@ -14,18 +17,18 @@ static float LookupLightingLut(const Pica::State::Lighting& lighting, std::size_
|
||||
|
||||
const auto& lut = lighting.luts[lut_index][index];
|
||||
|
||||
float lut_value = lut.ToFloat();
|
||||
float lut_diff = lut.DiffToFloat();
|
||||
const float lut_value = lut.ToFloat();
|
||||
const float lut_diff = lut.DiffToFloat();
|
||||
|
||||
return lut_value + lut_diff * delta;
|
||||
}
|
||||
|
||||
std::tuple<Common::Vec4<u8>, Common::Vec4<u8>> ComputeFragmentsColors(
|
||||
std::pair<Common::Vec4<u8>, Common::Vec4<u8>> ComputeFragmentsColors(
|
||||
const Pica::LightingRegs& lighting, const Pica::State::Lighting& lighting_state,
|
||||
const Common::Quaternion<float>& normquat, const Common::Vec3<float>& view,
|
||||
const Common::Vec4<u8> (&texture_color)[4]) {
|
||||
const Common::Quaternion<f32>& normquat, const Common::Vec3f& view,
|
||||
std::span<const Common::Vec4<u8>, 4> texture_color) {
|
||||
|
||||
Common::Vec4<float> shadow;
|
||||
Common::Vec4f shadow;
|
||||
if (lighting.config0.enable_shadow) {
|
||||
shadow = texture_color[lighting.config0.shadow_selector].Cast<float>() / 255.0f;
|
||||
if (lighting.config0.shadow_invert) {
|
||||
@@ -35,16 +38,16 @@ std::tuple<Common::Vec4<u8>, Common::Vec4<u8>> ComputeFragmentsColors(
|
||||
shadow = Common::MakeVec(1.0f, 1.0f, 1.0f, 1.0f);
|
||||
}
|
||||
|
||||
Common::Vec3<float> surface_normal{};
|
||||
Common::Vec3<float> surface_tangent{};
|
||||
Common::Vec3f surface_normal{};
|
||||
Common::Vec3f surface_tangent{};
|
||||
|
||||
if (lighting.config0.bump_mode != LightingRegs::LightingBumpMode::None) {
|
||||
Common::Vec3<float> perturbation =
|
||||
Common::Vec3f perturbation =
|
||||
texture_color[lighting.config0.bump_selector].xyz().Cast<float>() / 127.5f -
|
||||
Common::MakeVec(1.0f, 1.0f, 1.0f);
|
||||
if (lighting.config0.bump_mode == LightingRegs::LightingBumpMode::NormalMap) {
|
||||
if (!lighting.config0.disable_bump_renorm) {
|
||||
const float z_square = 1 - perturbation.xy().Length2();
|
||||
const f32 z_square = 1 - perturbation.xy().Length2();
|
||||
perturbation.z = std::sqrt(std::max(z_square, 0.0f));
|
||||
}
|
||||
surface_normal = perturbation;
|
||||
@@ -65,66 +68,64 @@ std::tuple<Common::Vec4<u8>, Common::Vec4<u8>> ComputeFragmentsColors(
|
||||
auto normal = Common::QuaternionRotate(normquat, surface_normal);
|
||||
auto tangent = Common::QuaternionRotate(normquat, surface_tangent);
|
||||
|
||||
Common::Vec4<float> diffuse_sum = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
Common::Vec4<float> specular_sum = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
Common::Vec4f diffuse_sum = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
Common::Vec4f specular_sum = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
|
||||
for (unsigned light_index = 0; light_index <= lighting.max_light_index; ++light_index) {
|
||||
unsigned num = lighting.light_enable.GetNum(light_index);
|
||||
for (u32 light_index = 0; light_index <= lighting.max_light_index; ++light_index) {
|
||||
u32 num = lighting.light_enable.GetNum(light_index);
|
||||
const auto& light_config = lighting.light[num];
|
||||
|
||||
Common::Vec3<float> refl_value = {};
|
||||
Common::Vec3<float> position = {float16::FromRaw(light_config.x).ToFloat32(),
|
||||
float16::FromRaw(light_config.y).ToFloat32(),
|
||||
float16::FromRaw(light_config.z).ToFloat32()};
|
||||
Common::Vec3<float> light_vector;
|
||||
const Common::Vec3f position = {f16::FromRaw(light_config.x).ToFloat32(),
|
||||
f16::FromRaw(light_config.y).ToFloat32(),
|
||||
f16::FromRaw(light_config.z).ToFloat32()};
|
||||
Common::Vec3f refl_value{};
|
||||
Common::Vec3f light_vector{};
|
||||
|
||||
if (light_config.config.directional)
|
||||
if (light_config.config.directional) {
|
||||
light_vector = position;
|
||||
else
|
||||
} else {
|
||||
light_vector = position + view;
|
||||
}
|
||||
|
||||
[[maybe_unused]] float length = light_vector.Normalize();
|
||||
[[maybe_unused]] const f32 length = light_vector.Normalize();
|
||||
|
||||
Common::Vec3<float> norm_view = view.Normalized();
|
||||
Common::Vec3<float> half_vector = norm_view + light_vector;
|
||||
Common::Vec3f norm_view = view.Normalized();
|
||||
Common::Vec3f half_vector = norm_view + light_vector;
|
||||
|
||||
float dist_atten = 1.0f;
|
||||
f32 dist_atten = 1.0f;
|
||||
if (!lighting.IsDistAttenDisabled(num)) {
|
||||
float scale = Pica::float20::FromRaw(light_config.dist_atten_scale).ToFloat32();
|
||||
float bias = Pica::float20::FromRaw(light_config.dist_atten_bias).ToFloat32();
|
||||
std::size_t lut =
|
||||
const f32 scale = Pica::f20::FromRaw(light_config.dist_atten_scale).ToFloat32();
|
||||
const f32 bias = Pica::f20::FromRaw(light_config.dist_atten_bias).ToFloat32();
|
||||
const std::size_t lut =
|
||||
static_cast<std::size_t>(LightingRegs::LightingSampler::DistanceAttenuation) + num;
|
||||
|
||||
float sample_loc = std::clamp(scale * length + bias, 0.0f, 1.0f);
|
||||
const f32 sample_loc = std::clamp(scale * length + bias, 0.0f, 1.0f);
|
||||
|
||||
u8 lutindex =
|
||||
const u8 lutindex =
|
||||
static_cast<u8>(std::clamp(std::floor(sample_loc * 256.0f), 0.0f, 255.0f));
|
||||
float delta = sample_loc * 256 - lutindex;
|
||||
const f32 delta = sample_loc * 256 - lutindex;
|
||||
|
||||
dist_atten = LookupLightingLut(lighting_state, lut, lutindex, delta);
|
||||
}
|
||||
|
||||
auto GetLutValue = [&](LightingRegs::LightingLutInput input, bool abs,
|
||||
LightingRegs::LightingScale scale_enum,
|
||||
LightingRegs::LightingSampler sampler) {
|
||||
float result = 0.0f;
|
||||
auto get_lut_value = [&](LightingRegs::LightingLutInput input, bool abs,
|
||||
LightingRegs::LightingScale scale_enum,
|
||||
LightingRegs::LightingSampler sampler) {
|
||||
f32 result = 0.0f;
|
||||
|
||||
switch (input) {
|
||||
case LightingRegs::LightingLutInput::NH:
|
||||
result = Common::Dot(normal, half_vector.Normalized());
|
||||
break;
|
||||
|
||||
case LightingRegs::LightingLutInput::VH:
|
||||
result = Common::Dot(norm_view, half_vector.Normalized());
|
||||
break;
|
||||
|
||||
case LightingRegs::LightingLutInput::NV:
|
||||
result = Common::Dot(normal, norm_view);
|
||||
break;
|
||||
|
||||
case LightingRegs::LightingLutInput::LN:
|
||||
result = Common::Dot(light_vector, normal);
|
||||
break;
|
||||
|
||||
case LightingRegs::LightingLutInput::SP: {
|
||||
Common::Vec3<s32> spot_dir{light_config.spot_x.Value(), light_config.spot_y.Value(),
|
||||
light_config.spot_z.Value()};
|
||||
@@ -133,8 +134,8 @@ std::tuple<Common::Vec4<u8>, Common::Vec4<u8>> ComputeFragmentsColors(
|
||||
}
|
||||
case LightingRegs::LightingLutInput::CP:
|
||||
if (lighting.config0.config == LightingRegs::LightingConfig::Config7) {
|
||||
const Common::Vec3<float> norm_half_vector = half_vector.Normalized();
|
||||
const Common::Vec3<float> half_vector_proj =
|
||||
const Common::Vec3f norm_half_vector = half_vector.Normalized();
|
||||
const Common::Vec3f half_vector_proj =
|
||||
norm_half_vector - normal * Common::Dot(normal, norm_half_vector);
|
||||
result = Common::Dot(half_vector_proj, tangent);
|
||||
} else {
|
||||
@@ -148,58 +149,60 @@ std::tuple<Common::Vec4<u8>, Common::Vec4<u8>> ComputeFragmentsColors(
|
||||
}
|
||||
|
||||
u8 index;
|
||||
float delta;
|
||||
f32 delta;
|
||||
|
||||
if (abs) {
|
||||
if (light_config.config.two_sided_diffuse)
|
||||
if (light_config.config.two_sided_diffuse) {
|
||||
result = std::abs(result);
|
||||
else
|
||||
} else {
|
||||
result = std::max(result, 0.0f);
|
||||
}
|
||||
|
||||
float flr = std::floor(result * 256.0f);
|
||||
const f32 flr = std::floor(result * 256.0f);
|
||||
index = static_cast<u8>(std::clamp(flr, 0.0f, 255.0f));
|
||||
delta = result * 256 - index;
|
||||
} else {
|
||||
float flr = std::floor(result * 128.0f);
|
||||
s8 signed_index = static_cast<s8>(std::clamp(flr, -128.0f, 127.0f));
|
||||
const f32 flr = std::floor(result * 128.0f);
|
||||
const s8 signed_index = static_cast<s8>(std::clamp(flr, -128.0f, 127.0f));
|
||||
delta = result * 128.0f - signed_index;
|
||||
index = static_cast<u8>(signed_index);
|
||||
}
|
||||
|
||||
float scale = lighting.lut_scale.GetScale(scale_enum);
|
||||
const f32 scale = lighting.lut_scale.GetScale(scale_enum);
|
||||
return scale * LookupLightingLut(lighting_state, static_cast<std::size_t>(sampler),
|
||||
index, delta);
|
||||
};
|
||||
|
||||
// If enabled, compute spot light attenuation value
|
||||
float spot_atten = 1.0f;
|
||||
f32 spot_atten = 1.0f;
|
||||
if (!lighting.IsSpotAttenDisabled(num) &&
|
||||
LightingRegs::IsLightingSamplerSupported(
|
||||
lighting.config0.config, LightingRegs::LightingSampler::SpotlightAttenuation)) {
|
||||
auto lut = LightingRegs::SpotlightAttenuationSampler(num);
|
||||
spot_atten = GetLutValue(lighting.lut_input.sp, lighting.abs_lut_input.disable_sp == 0,
|
||||
lighting.lut_scale.sp, lut);
|
||||
spot_atten =
|
||||
get_lut_value(lighting.lut_input.sp, lighting.abs_lut_input.disable_sp == 0,
|
||||
lighting.lut_scale.sp, lut);
|
||||
}
|
||||
|
||||
// Specular 0 component
|
||||
float d0_lut_value = 1.0f;
|
||||
f32 d0_lut_value = 1.0f;
|
||||
if (lighting.config1.disable_lut_d0 == 0 &&
|
||||
LightingRegs::IsLightingSamplerSupported(
|
||||
lighting.config0.config, LightingRegs::LightingSampler::Distribution0)) {
|
||||
d0_lut_value =
|
||||
GetLutValue(lighting.lut_input.d0, lighting.abs_lut_input.disable_d0 == 0,
|
||||
lighting.lut_scale.d0, LightingRegs::LightingSampler::Distribution0);
|
||||
get_lut_value(lighting.lut_input.d0, lighting.abs_lut_input.disable_d0 == 0,
|
||||
lighting.lut_scale.d0, LightingRegs::LightingSampler::Distribution0);
|
||||
}
|
||||
|
||||
Common::Vec3<float> specular_0 = d0_lut_value * light_config.specular_0.ToVec3f();
|
||||
Common::Vec3f specular_0 = d0_lut_value * light_config.specular_0.ToVec3f();
|
||||
|
||||
// If enabled, lookup ReflectRed value, otherwise, 1.0 is used
|
||||
if (lighting.config1.disable_lut_rr == 0 &&
|
||||
LightingRegs::IsLightingSamplerSupported(lighting.config0.config,
|
||||
LightingRegs::LightingSampler::ReflectRed)) {
|
||||
refl_value.x =
|
||||
GetLutValue(lighting.lut_input.rr, lighting.abs_lut_input.disable_rr == 0,
|
||||
lighting.lut_scale.rr, LightingRegs::LightingSampler::ReflectRed);
|
||||
get_lut_value(lighting.lut_input.rr, lighting.abs_lut_input.disable_rr == 0,
|
||||
lighting.lut_scale.rr, LightingRegs::LightingSampler::ReflectRed);
|
||||
} else {
|
||||
refl_value.x = 1.0f;
|
||||
}
|
||||
@@ -209,8 +212,8 @@ std::tuple<Common::Vec4<u8>, Common::Vec4<u8>> ComputeFragmentsColors(
|
||||
LightingRegs::IsLightingSamplerSupported(lighting.config0.config,
|
||||
LightingRegs::LightingSampler::ReflectGreen)) {
|
||||
refl_value.y =
|
||||
GetLutValue(lighting.lut_input.rg, lighting.abs_lut_input.disable_rg == 0,
|
||||
lighting.lut_scale.rg, LightingRegs::LightingSampler::ReflectGreen);
|
||||
get_lut_value(lighting.lut_input.rg, lighting.abs_lut_input.disable_rg == 0,
|
||||
lighting.lut_scale.rg, LightingRegs::LightingSampler::ReflectGreen);
|
||||
} else {
|
||||
refl_value.y = refl_value.x;
|
||||
}
|
||||
@@ -220,24 +223,23 @@ std::tuple<Common::Vec4<u8>, Common::Vec4<u8>> ComputeFragmentsColors(
|
||||
LightingRegs::IsLightingSamplerSupported(lighting.config0.config,
|
||||
LightingRegs::LightingSampler::ReflectBlue)) {
|
||||
refl_value.z =
|
||||
GetLutValue(lighting.lut_input.rb, lighting.abs_lut_input.disable_rb == 0,
|
||||
lighting.lut_scale.rb, LightingRegs::LightingSampler::ReflectBlue);
|
||||
get_lut_value(lighting.lut_input.rb, lighting.abs_lut_input.disable_rb == 0,
|
||||
lighting.lut_scale.rb, LightingRegs::LightingSampler::ReflectBlue);
|
||||
} else {
|
||||
refl_value.z = refl_value.x;
|
||||
}
|
||||
|
||||
// Specular 1 component
|
||||
float d1_lut_value = 1.0f;
|
||||
f32 d1_lut_value = 1.0f;
|
||||
if (lighting.config1.disable_lut_d1 == 0 &&
|
||||
LightingRegs::IsLightingSamplerSupported(
|
||||
lighting.config0.config, LightingRegs::LightingSampler::Distribution1)) {
|
||||
d1_lut_value =
|
||||
GetLutValue(lighting.lut_input.d1, lighting.abs_lut_input.disable_d1 == 0,
|
||||
lighting.lut_scale.d1, LightingRegs::LightingSampler::Distribution1);
|
||||
get_lut_value(lighting.lut_input.d1, lighting.abs_lut_input.disable_d1 == 0,
|
||||
lighting.lut_scale.d1, LightingRegs::LightingSampler::Distribution1);
|
||||
}
|
||||
|
||||
Common::Vec3<float> specular_1 =
|
||||
d1_lut_value * refl_value * light_config.specular_1.ToVec3f();
|
||||
Common::Vec3f specular_1 = d1_lut_value * refl_value * light_config.specular_1.ToVec3f();
|
||||
|
||||
// Fresnel
|
||||
// Note: only the last entry in the light slots applies the Fresnel factor
|
||||
@@ -245,9 +247,9 @@ std::tuple<Common::Vec4<u8>, Common::Vec4<u8>> ComputeFragmentsColors(
|
||||
LightingRegs::IsLightingSamplerSupported(lighting.config0.config,
|
||||
LightingRegs::LightingSampler::Fresnel)) {
|
||||
|
||||
float lut_value =
|
||||
GetLutValue(lighting.lut_input.fr, lighting.abs_lut_input.disable_fr == 0,
|
||||
lighting.lut_scale.fr, LightingRegs::LightingSampler::Fresnel);
|
||||
const f32 lut_value =
|
||||
get_lut_value(lighting.lut_input.fr, lighting.abs_lut_input.disable_fr == 0,
|
||||
lighting.lut_scale.fr, LightingRegs::LightingSampler::Fresnel);
|
||||
|
||||
// Enabled for diffuse lighting alpha component
|
||||
if (lighting.config0.enable_primary_alpha) {
|
||||
@@ -261,18 +263,19 @@ std::tuple<Common::Vec4<u8>, Common::Vec4<u8>> ComputeFragmentsColors(
|
||||
}
|
||||
|
||||
auto dot_product = Common::Dot(light_vector, normal);
|
||||
if (light_config.config.two_sided_diffuse)
|
||||
if (light_config.config.two_sided_diffuse) {
|
||||
dot_product = std::abs(dot_product);
|
||||
else
|
||||
} else {
|
||||
dot_product = std::max(dot_product, 0.0f);
|
||||
}
|
||||
|
||||
float clamp_highlights = 1.0f;
|
||||
f32 clamp_highlights = 1.0f;
|
||||
if (lighting.config0.clamp_highlights) {
|
||||
clamp_highlights = dot_product == 0.0f ? 0.0f : 1.0f;
|
||||
}
|
||||
|
||||
if (light_config.config.geometric_factor_0 || light_config.config.geometric_factor_1) {
|
||||
float geo_factor = half_vector.Length2();
|
||||
f32 geo_factor = half_vector.Length2();
|
||||
geo_factor = geo_factor == 0.0f ? 0.0f : std::min(dot_product / geo_factor, 1.0f);
|
||||
if (light_config.config.geometric_factor_0) {
|
||||
specular_0 *= geo_factor;
|
||||
@@ -315,17 +318,17 @@ std::tuple<Common::Vec4<u8>, Common::Vec4<u8>> ComputeFragmentsColors(
|
||||
|
||||
diffuse_sum += Common::MakeVec(lighting.global_ambient.ToVec3f(), 0.0f);
|
||||
|
||||
auto diffuse = Common::MakeVec<float>(std::clamp(diffuse_sum.x, 0.0f, 1.0f) * 255,
|
||||
std::clamp(diffuse_sum.y, 0.0f, 1.0f) * 255,
|
||||
std::clamp(diffuse_sum.z, 0.0f, 1.0f) * 255,
|
||||
std::clamp(diffuse_sum.w, 0.0f, 1.0f) * 255)
|
||||
.Cast<u8>();
|
||||
auto specular = Common::MakeVec<float>(std::clamp(specular_sum.x, 0.0f, 1.0f) * 255,
|
||||
std::clamp(specular_sum.y, 0.0f, 1.0f) * 255,
|
||||
std::clamp(specular_sum.z, 0.0f, 1.0f) * 255,
|
||||
std::clamp(specular_sum.w, 0.0f, 1.0f) * 255)
|
||||
.Cast<u8>();
|
||||
return std::make_tuple(diffuse, specular);
|
||||
const auto diffuse = Common::MakeVec(std::clamp(diffuse_sum.x, 0.0f, 1.0f) * 255,
|
||||
std::clamp(diffuse_sum.y, 0.0f, 1.0f) * 255,
|
||||
std::clamp(diffuse_sum.z, 0.0f, 1.0f) * 255,
|
||||
std::clamp(diffuse_sum.w, 0.0f, 1.0f) * 255)
|
||||
.Cast<u8>();
|
||||
const auto specular = Common::MakeVec(std::clamp(specular_sum.x, 0.0f, 1.0f) * 255,
|
||||
std::clamp(specular_sum.y, 0.0f, 1.0f) * 255,
|
||||
std::clamp(specular_sum.z, 0.0f, 1.0f) * 255,
|
||||
std::clamp(specular_sum.w, 0.0f, 1.0f) * 255)
|
||||
.Cast<u8>();
|
||||
return std::make_pair(diffuse, specular);
|
||||
}
|
||||
|
||||
} // namespace Pica
|
||||
} // namespace SwRenderer
|
||||
|
@@ -4,16 +4,18 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <tuple>
|
||||
#include <span>
|
||||
#include <utility>
|
||||
|
||||
#include "common/quaternion.h"
|
||||
#include "common/vector_math.h"
|
||||
#include "video_core/pica_state.h"
|
||||
|
||||
namespace Pica {
|
||||
namespace SwRenderer {
|
||||
|
||||
std::tuple<Common::Vec4<u8>, Common::Vec4<u8>> ComputeFragmentsColors(
|
||||
std::pair<Common::Vec4<u8>, Common::Vec4<u8>> ComputeFragmentsColors(
|
||||
const Pica::LightingRegs& lighting, const Pica::State::Lighting& lighting_state,
|
||||
const Common::Quaternion<float>& normquat, const Common::Vec3<float>& view,
|
||||
const Common::Vec4<u8> (&texture_color)[4]);
|
||||
const Common::Quaternion<f32>& normquat, const Common::Vec3f& view,
|
||||
std::span<const Common::Vec4<u8>, 4> texture_color);
|
||||
|
||||
} // namespace Pica
|
||||
} // namespace SwRenderer
|
||||
|
@@ -4,17 +4,18 @@
|
||||
|
||||
#include <array>
|
||||
#include <cmath>
|
||||
#include "common/math_util.h"
|
||||
#include "video_core/renderer_software/sw_proctex.h"
|
||||
|
||||
namespace Pica::Rasterizer {
|
||||
namespace SwRenderer {
|
||||
|
||||
using ProcTexClamp = TexturingRegs::ProcTexClamp;
|
||||
using ProcTexShift = TexturingRegs::ProcTexShift;
|
||||
using ProcTexCombiner = TexturingRegs::ProcTexCombiner;
|
||||
using ProcTexFilter = TexturingRegs::ProcTexFilter;
|
||||
namespace {
|
||||
using ProcTexClamp = Pica::TexturingRegs::ProcTexClamp;
|
||||
using ProcTexShift = Pica::TexturingRegs::ProcTexShift;
|
||||
using ProcTexCombiner = Pica::TexturingRegs::ProcTexCombiner;
|
||||
using ProcTexFilter = Pica::TexturingRegs::ProcTexFilter;
|
||||
using Pica::f16;
|
||||
|
||||
static float LookupLUT(const std::array<State::ProcTex::ValueEntry, 128>& lut, float coord) {
|
||||
float LookupLUT(const std::array<Pica::State::ProcTex::ValueEntry, 128>& lut, float coord) {
|
||||
// For NoiseLUT/ColorMap/AlphaMap, coord=0.0 is lut[0], coord=127.0/128.0 is lut[127] and
|
||||
// coord=1.0 is lut[127]+lut_diff[127]. For other indices, the result is interpolated using
|
||||
// value entries and difference entries.
|
||||
@@ -26,13 +27,13 @@ static float LookupLUT(const std::array<State::ProcTex::ValueEntry, 128>& lut, f
|
||||
|
||||
// These function are used to generate random noise for procedural texture. Their results are
|
||||
// verified against real hardware, but it's not known if the algorithm is the same as hardware.
|
||||
static unsigned int NoiseRand1D(unsigned int v) {
|
||||
unsigned int NoiseRand1D(unsigned int v) {
|
||||
static constexpr std::array<unsigned int, 16> table{
|
||||
{0, 4, 10, 8, 4, 9, 7, 12, 5, 15, 13, 14, 11, 15, 2, 11}};
|
||||
return ((v % 9 + 2) * 3 & 0xF) ^ table[(v / 9) & 0xF];
|
||||
}
|
||||
|
||||
static float NoiseRand2D(unsigned int x, unsigned int y) {
|
||||
float NoiseRand2D(unsigned int x, unsigned int y) {
|
||||
static constexpr std::array<unsigned int, 16> table{
|
||||
{10, 2, 15, 8, 0, 7, 4, 5, 5, 13, 2, 6, 13, 9, 3, 14}};
|
||||
unsigned int u2 = NoiseRand1D(x);
|
||||
@@ -45,11 +46,12 @@ static float NoiseRand2D(unsigned int x, unsigned int y) {
|
||||
return -1.0f + v2 * 2.0f / 15.0f;
|
||||
}
|
||||
|
||||
static float NoiseCoef(float u, float v, const TexturingRegs& regs, const State::ProcTex& state) {
|
||||
const float freq_u = float16::FromRaw(regs.proctex_noise_frequency.u).ToFloat32();
|
||||
const float freq_v = float16::FromRaw(regs.proctex_noise_frequency.v).ToFloat32();
|
||||
const float phase_u = float16::FromRaw(regs.proctex_noise_u.phase).ToFloat32();
|
||||
const float phase_v = float16::FromRaw(regs.proctex_noise_v.phase).ToFloat32();
|
||||
float NoiseCoef(float u, float v, const Pica::TexturingRegs& regs,
|
||||
const Pica::State::ProcTex& state) {
|
||||
const float freq_u = f16::FromRaw(regs.proctex_noise_frequency.u).ToFloat32();
|
||||
const float freq_v = f16::FromRaw(regs.proctex_noise_frequency.v).ToFloat32();
|
||||
const float phase_u = f16::FromRaw(regs.proctex_noise_u.phase).ToFloat32();
|
||||
const float phase_v = f16::FromRaw(regs.proctex_noise_v.phase).ToFloat32();
|
||||
const float x = 9 * freq_u * std::abs(u + phase_u);
|
||||
const float y = 9 * freq_v * std::abs(v + phase_v);
|
||||
const int x_int = static_cast<int>(x);
|
||||
@@ -66,7 +68,7 @@ static float NoiseCoef(float u, float v, const TexturingRegs& regs, const State:
|
||||
return Common::BilinearInterp(g0, g1, g2, g3, x_noise, y_noise);
|
||||
}
|
||||
|
||||
static float GetShiftOffset(float v, ProcTexShift mode, ProcTexClamp clamp_mode) {
|
||||
float GetShiftOffset(float v, ProcTexShift mode, ProcTexClamp clamp_mode) {
|
||||
const float offset = (clamp_mode == ProcTexClamp::MirroredRepeat) ? 1 : 0.5f;
|
||||
switch (mode) {
|
||||
case ProcTexShift::None:
|
||||
@@ -81,7 +83,7 @@ static float GetShiftOffset(float v, ProcTexShift mode, ProcTexClamp clamp_mode)
|
||||
}
|
||||
};
|
||||
|
||||
static void ClampCoord(float& coord, ProcTexClamp mode) {
|
||||
void ClampCoord(float& coord, ProcTexClamp mode) {
|
||||
switch (mode) {
|
||||
case ProcTexClamp::ToZero:
|
||||
if (coord > 1.0f)
|
||||
@@ -112,8 +114,8 @@ static void ClampCoord(float& coord, ProcTexClamp mode) {
|
||||
}
|
||||
}
|
||||
|
||||
static float CombineAndMap(float u, float v, ProcTexCombiner combiner,
|
||||
const std::array<State::ProcTex::ValueEntry, 128>& map_table) {
|
||||
float CombineAndMap(float u, float v, ProcTexCombiner combiner,
|
||||
const std::array<Pica::State::ProcTex::ValueEntry, 128>& map_table) {
|
||||
float f;
|
||||
switch (combiner) {
|
||||
case ProcTexCombiner::U:
|
||||
@@ -122,28 +124,28 @@ static float CombineAndMap(float u, float v, ProcTexCombiner combiner,
|
||||
case ProcTexCombiner::U2:
|
||||
f = u * u;
|
||||
break;
|
||||
case TexturingRegs::ProcTexCombiner::V:
|
||||
case ProcTexCombiner::V:
|
||||
f = v;
|
||||
break;
|
||||
case TexturingRegs::ProcTexCombiner::V2:
|
||||
case ProcTexCombiner::V2:
|
||||
f = v * v;
|
||||
break;
|
||||
case TexturingRegs::ProcTexCombiner::Add:
|
||||
case ProcTexCombiner::Add:
|
||||
f = (u + v) * 0.5f;
|
||||
break;
|
||||
case TexturingRegs::ProcTexCombiner::Add2:
|
||||
case ProcTexCombiner::Add2:
|
||||
f = (u * u + v * v) * 0.5f;
|
||||
break;
|
||||
case TexturingRegs::ProcTexCombiner::SqrtAdd2:
|
||||
case ProcTexCombiner::SqrtAdd2:
|
||||
f = std::min(std::sqrt(u * u + v * v), 1.0f);
|
||||
break;
|
||||
case TexturingRegs::ProcTexCombiner::Min:
|
||||
case ProcTexCombiner::Min:
|
||||
f = std::min(u, v);
|
||||
break;
|
||||
case TexturingRegs::ProcTexCombiner::Max:
|
||||
case ProcTexCombiner::Max:
|
||||
f = std::max(u, v);
|
||||
break;
|
||||
case TexturingRegs::ProcTexCombiner::RMax:
|
||||
case ProcTexCombiner::RMax:
|
||||
f = std::min(((u + v) * 0.5f + std::sqrt(u * u + v * v)) * 0.5f, 1.0f);
|
||||
break;
|
||||
default:
|
||||
@@ -153,8 +155,10 @@ static float CombineAndMap(float u, float v, ProcTexCombiner combiner,
|
||||
}
|
||||
return LookupLUT(map_table, f);
|
||||
}
|
||||
} // Anonymous namespace
|
||||
|
||||
Common::Vec4<u8> ProcTex(float u, float v, const TexturingRegs& regs, const State::ProcTex& state) {
|
||||
Common::Vec4<u8> ProcTex(float u, float v, const Pica::TexturingRegs& regs,
|
||||
const Pica::State::ProcTex& state) {
|
||||
u = std::abs(u);
|
||||
v = std::abs(v);
|
||||
|
||||
@@ -218,4 +222,4 @@ Common::Vec4<u8> ProcTex(float u, float v, const TexturingRegs& regs, const Stat
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Pica::Rasterizer
|
||||
} // namespace SwRenderer
|
||||
|
@@ -8,9 +8,10 @@
|
||||
#include "common/vector_math.h"
|
||||
#include "video_core/pica_state.h"
|
||||
|
||||
namespace Pica::Rasterizer {
|
||||
namespace SwRenderer {
|
||||
|
||||
/// Generates procedural texture color for the given coordinates
|
||||
Common::Vec4<u8> ProcTex(float u, float v, const TexturingRegs& regs, const State::ProcTex& state);
|
||||
Common::Vec4<u8> ProcTex(float u, float v, const Pica::TexturingRegs& regs,
|
||||
const Pica::State::ProcTex& state);
|
||||
|
||||
} // namespace Pica::Rasterizer
|
||||
} // namespace SwRenderer
|
||||
|
@@ -2,15 +2,937 @@
|
||||
// Licensed under GPLv2 or any later version
|
||||
// Refer to the license.txt file included.
|
||||
|
||||
#include "video_core/renderer_software/sw_clipper.h"
|
||||
#include <boost/container/static_vector.hpp>
|
||||
#include "common/logging/log.h"
|
||||
#include "common/microprofile.h"
|
||||
#include "common/quaternion.h"
|
||||
#include "common/vector_math.h"
|
||||
#include "core/memory.h"
|
||||
#include "video_core/pica_state.h"
|
||||
#include "video_core/pica_types.h"
|
||||
#include "video_core/renderer_software/sw_framebuffer.h"
|
||||
#include "video_core/renderer_software/sw_lighting.h"
|
||||
#include "video_core/renderer_software/sw_proctex.h"
|
||||
#include "video_core/renderer_software/sw_rasterizer.h"
|
||||
#include "video_core/renderer_software/sw_texturing.h"
|
||||
#include "video_core/shader/shader.h"
|
||||
#include "video_core/texture/texture_decode.h"
|
||||
|
||||
namespace VideoCore {
|
||||
namespace SwRenderer {
|
||||
|
||||
using Pica::f24;
|
||||
using Pica::FramebufferRegs;
|
||||
using Pica::RasterizerRegs;
|
||||
using Pica::TexturingRegs;
|
||||
using Pica::Texture::LookupTexture;
|
||||
using Pica::Texture::TextureInfo;
|
||||
|
||||
struct Vertex : Pica::Shader::OutputVertex {
|
||||
Vertex(const OutputVertex& v) : OutputVertex(v) {}
|
||||
|
||||
/// Attributes used to store intermediate results position after perspective divide.
|
||||
Common::Vec3<f24> screenpos;
|
||||
|
||||
/**
|
||||
* Linear interpolation
|
||||
* factor: 0=this, 1=vtx
|
||||
* Note: This function cannot be called after perspective divide.
|
||||
**/
|
||||
void Lerp(f24 factor, const Vertex& vtx) {
|
||||
pos = pos * factor + vtx.pos * (f24::One() - factor);
|
||||
quat = quat * factor + vtx.quat * (f24::One() - factor);
|
||||
color = color * factor + vtx.color * (f24::One() - factor);
|
||||
tc0 = tc0 * factor + vtx.tc0 * (f24::One() - factor);
|
||||
tc1 = tc1 * factor + vtx.tc1 * (f24::One() - factor);
|
||||
tc0_w = tc0_w * factor + vtx.tc0_w * (f24::One() - factor);
|
||||
view = view * factor + vtx.view * (f24::One() - factor);
|
||||
tc2 = tc2 * factor + vtx.tc2 * (f24::One() - factor);
|
||||
}
|
||||
|
||||
/**
|
||||
* Linear interpolation
|
||||
* factor: 0=v0, 1=v1
|
||||
* Note: This function cannot be called after perspective divide.
|
||||
**/
|
||||
static Vertex Lerp(f24 factor, const Vertex& v0, const Vertex& v1) {
|
||||
Vertex ret = v0;
|
||||
ret.Lerp(factor, v1);
|
||||
return ret;
|
||||
}
|
||||
};
|
||||
|
||||
namespace {
|
||||
|
||||
MICROPROFILE_DEFINE(GPU_Rasterization, "GPU", "Rasterization", MP_RGB(50, 50, 240));
|
||||
|
||||
struct ClippingEdge {
|
||||
public:
|
||||
constexpr ClippingEdge(Common::Vec4<f24> coeffs,
|
||||
Common::Vec4<f24> bias = Common::Vec4<f24>(f24::Zero(), f24::Zero(),
|
||||
f24::Zero(), f24::Zero()))
|
||||
: pos(f24::Zero()), coeffs(coeffs), bias(bias) {}
|
||||
|
||||
bool IsInside(const Vertex& vertex) const {
|
||||
return Common::Dot(vertex.pos + bias, coeffs) >= f24::Zero();
|
||||
}
|
||||
|
||||
bool IsOutSide(const Vertex& vertex) const {
|
||||
return !IsInside(vertex);
|
||||
}
|
||||
|
||||
Vertex GetIntersection(const Vertex& v0, const Vertex& v1) const {
|
||||
const f24 dp = Common::Dot(v0.pos + bias, coeffs);
|
||||
const f24 dp_prev = Common::Dot(v1.pos + bias, coeffs);
|
||||
const f24 factor = dp_prev / (dp_prev - dp);
|
||||
return Vertex::Lerp(factor, v0, v1);
|
||||
}
|
||||
|
||||
private:
|
||||
[[maybe_unused]] f24 pos;
|
||||
Common::Vec4<f24> coeffs;
|
||||
Common::Vec4<f24> bias;
|
||||
};
|
||||
|
||||
} // Anonymous namespace
|
||||
|
||||
RasterizerSoftware::RasterizerSoftware(Memory::MemorySystem& memory_)
|
||||
: memory{memory_}, state{Pica::g_state}, regs{state.regs}, fb{memory, regs.framebuffer} {}
|
||||
|
||||
void RasterizerSoftware::AddTriangle(const Pica::Shader::OutputVertex& v0,
|
||||
const Pica::Shader::OutputVertex& v1,
|
||||
const Pica::Shader::OutputVertex& v2) {
|
||||
Pica::Clipper::ProcessTriangle(v0, v1, v2);
|
||||
/**
|
||||
* Clipping a planar n-gon against a plane will remove at least 1 vertex and introduces 2 at
|
||||
* the new edge (or less in degenerate cases). As such, we can say that each clipping plane
|
||||
* introduces at most 1 new vertex to the polygon. Since we start with a triangle and have a
|
||||
* fixed 6 clipping planes, the maximum number of vertices of the clipped polygon is 3 + 6 = 9.
|
||||
**/
|
||||
static constexpr std::size_t MAX_VERTICES = 9;
|
||||
|
||||
boost::container::static_vector<Vertex, MAX_VERTICES> buffer_a = {v0, v1, v2};
|
||||
boost::container::static_vector<Vertex, MAX_VERTICES> buffer_b;
|
||||
|
||||
FlipQuaternionIfOpposite(buffer_a[1].quat, buffer_a[0].quat);
|
||||
FlipQuaternionIfOpposite(buffer_a[2].quat, buffer_a[0].quat);
|
||||
|
||||
auto* output_list = &buffer_a;
|
||||
auto* input_list = &buffer_b;
|
||||
|
||||
// NOTE: We clip against a w=epsilon plane to guarantee that the output has a positive w value.
|
||||
// TODO: Not sure if this is a valid approach. Also should probably instead use the smallest
|
||||
// epsilon possible within f24 accuracy.
|
||||
static constexpr f24 EPSILON = f24::FromFloat32(0.00001f);
|
||||
static constexpr f24 f0 = f24::Zero();
|
||||
static constexpr f24 f1 = f24::One();
|
||||
static constexpr std::array<ClippingEdge, 7> clipping_edges = {{
|
||||
{Common::MakeVec(-f1, f0, f0, f1)}, // x = +w
|
||||
{Common::MakeVec(f1, f0, f0, f1)}, // x = -w
|
||||
{Common::MakeVec(f0, -f1, f0, f1)}, // y = +w
|
||||
{Common::MakeVec(f0, f1, f0, f1)}, // y = -w
|
||||
{Common::MakeVec(f0, f0, -f1, f0)}, // z = 0
|
||||
{Common::MakeVec(f0, f0, f1, f1)}, // z = -w
|
||||
{Common::MakeVec(f0, f0, f0, f1), Common::Vec4<f24>(f0, f0, f0, EPSILON)}, // w = EPSILON
|
||||
}};
|
||||
|
||||
// Simple implementation of the Sutherland-Hodgman clipping algorithm.
|
||||
// TODO: Make this less inefficient (currently lots of useless buffering overhead happens here)
|
||||
const auto clip = [&](const ClippingEdge& edge) {
|
||||
std::swap(input_list, output_list);
|
||||
output_list->clear();
|
||||
|
||||
const Vertex* reference_vertex = &input_list->back();
|
||||
for (const auto& vertex : *input_list) {
|
||||
// NOTE: This algorithm changes vertex order in some cases!
|
||||
if (edge.IsInside(vertex)) {
|
||||
if (edge.IsOutSide(*reference_vertex)) {
|
||||
output_list->push_back(edge.GetIntersection(vertex, *reference_vertex));
|
||||
}
|
||||
output_list->push_back(vertex);
|
||||
} else if (edge.IsInside(*reference_vertex)) {
|
||||
output_list->push_back(edge.GetIntersection(vertex, *reference_vertex));
|
||||
}
|
||||
reference_vertex = &vertex;
|
||||
}
|
||||
};
|
||||
|
||||
for (const ClippingEdge& edge : clipping_edges) {
|
||||
clip(edge);
|
||||
if (output_list->size() < 3) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (state.regs.rasterizer.clip_enable) {
|
||||
const ClippingEdge custom_edge{state.regs.rasterizer.GetClipCoef()};
|
||||
clip(custom_edge);
|
||||
if (output_list->size() < 3) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
MakeScreenCoords((*output_list)[0]);
|
||||
MakeScreenCoords((*output_list)[1]);
|
||||
|
||||
for (std::size_t i = 0; i < output_list->size() - 2; i++) {
|
||||
Vertex& vtx0 = (*output_list)[0];
|
||||
Vertex& vtx1 = (*output_list)[i + 1];
|
||||
Vertex& vtx2 = (*output_list)[i + 2];
|
||||
|
||||
MakeScreenCoords(vtx2);
|
||||
|
||||
LOG_TRACE(
|
||||
Render_Software,
|
||||
"Triangle {}/{} at position ({:.3}, {:.3}, {:.3}, {:.3f}), "
|
||||
"({:.3}, {:.3}, {:.3}, {:.3}), ({:.3}, {:.3}, {:.3}, {:.3}) and "
|
||||
"screen position ({:.2}, {:.2}, {:.2}), ({:.2}, {:.2}, {:.2}), ({:.2}, {:.2}, {:.2})",
|
||||
i + 1, output_list->size() - 2, vtx0.pos.x.ToFloat32(), vtx0.pos.y.ToFloat32(),
|
||||
vtx0.pos.z.ToFloat32(), vtx0.pos.w.ToFloat32(), vtx1.pos.x.ToFloat32(),
|
||||
vtx1.pos.y.ToFloat32(), vtx1.pos.z.ToFloat32(), vtx1.pos.w.ToFloat32(),
|
||||
vtx2.pos.x.ToFloat32(), vtx2.pos.y.ToFloat32(), vtx2.pos.z.ToFloat32(),
|
||||
vtx2.pos.w.ToFloat32(), vtx0.screenpos.x.ToFloat32(), vtx0.screenpos.y.ToFloat32(),
|
||||
vtx0.screenpos.z.ToFloat32(), vtx1.screenpos.x.ToFloat32(),
|
||||
vtx1.screenpos.y.ToFloat32(), vtx1.screenpos.z.ToFloat32(),
|
||||
vtx2.screenpos.x.ToFloat32(), vtx2.screenpos.y.ToFloat32(),
|
||||
vtx2.screenpos.z.ToFloat32());
|
||||
|
||||
ProcessTriangle(vtx0, vtx1, vtx2);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace VideoCore
|
||||
void RasterizerSoftware::MakeScreenCoords(Vertex& vtx) {
|
||||
Viewport viewport{};
|
||||
viewport.halfsize_x = f24::FromRaw(regs.rasterizer.viewport_size_x);
|
||||
viewport.halfsize_y = f24::FromRaw(regs.rasterizer.viewport_size_y);
|
||||
viewport.offset_x = f24::FromFloat32(static_cast<f32>(regs.rasterizer.viewport_corner.x));
|
||||
viewport.offset_y = f24::FromFloat32(static_cast<f32>(regs.rasterizer.viewport_corner.y));
|
||||
|
||||
f24 inv_w = f24::One() / vtx.pos.w;
|
||||
vtx.pos.w = inv_w;
|
||||
vtx.quat *= inv_w;
|
||||
vtx.color *= inv_w;
|
||||
vtx.tc0 *= inv_w;
|
||||
vtx.tc1 *= inv_w;
|
||||
vtx.tc0_w *= inv_w;
|
||||
vtx.view *= inv_w;
|
||||
vtx.tc2 *= inv_w;
|
||||
|
||||
vtx.screenpos[0] = (vtx.pos.x * inv_w + f24::One()) * viewport.halfsize_x + viewport.offset_x;
|
||||
vtx.screenpos[1] = (vtx.pos.y * inv_w + f24::One()) * viewport.halfsize_y + viewport.offset_y;
|
||||
vtx.screenpos[2] = vtx.pos.z * inv_w;
|
||||
}
|
||||
|
||||
void RasterizerSoftware::ProcessTriangle(const Vertex& v0, const Vertex& v1, const Vertex& v2,
|
||||
bool reversed) {
|
||||
MICROPROFILE_SCOPE(GPU_Rasterization);
|
||||
|
||||
// Vertex positions in rasterizer coordinates
|
||||
static auto screen_to_rasterizer_coords = [](const Common::Vec3<f24>& vec) {
|
||||
return Common::Vec3{Fix12P4::FromFloat24(vec.x), Fix12P4::FromFloat24(vec.y),
|
||||
Fix12P4::FromFloat24(vec.z)};
|
||||
};
|
||||
|
||||
const std::array<Common::Vec3<Fix12P4>, 3> vtxpos = {
|
||||
screen_to_rasterizer_coords(v0.screenpos),
|
||||
screen_to_rasterizer_coords(v1.screenpos),
|
||||
screen_to_rasterizer_coords(v2.screenpos),
|
||||
};
|
||||
|
||||
if (regs.rasterizer.cull_mode == RasterizerRegs::CullMode::KeepAll) {
|
||||
// Make sure we always end up with a triangle wound counter-clockwise
|
||||
if (!reversed && SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) {
|
||||
ProcessTriangle(v0, v2, v1, true);
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
if (!reversed && regs.rasterizer.cull_mode == RasterizerRegs::CullMode::KeepClockWise) {
|
||||
// Reverse vertex order and use the CCW code path.
|
||||
ProcessTriangle(v0, v2, v1, true);
|
||||
return;
|
||||
}
|
||||
// Cull away triangles which are wound clockwise.
|
||||
if (SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
|
||||
u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
|
||||
u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
|
||||
u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
|
||||
|
||||
// Convert the scissor box coordinates to 12.4 fixed point
|
||||
const u16 scissor_x1 = static_cast<u16>(regs.rasterizer.scissor_test.x1 << 4);
|
||||
const u16 scissor_y1 = static_cast<u16>(regs.rasterizer.scissor_test.y1 << 4);
|
||||
// x2,y2 have +1 added to cover the entire sub-pixel area
|
||||
const u16 scissor_x2 = static_cast<u16>((regs.rasterizer.scissor_test.x2 + 1) << 4);
|
||||
const u16 scissor_y2 = static_cast<u16>((regs.rasterizer.scissor_test.y2 + 1) << 4);
|
||||
|
||||
if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Include) {
|
||||
// Calculate the new bounds
|
||||
min_x = std::max(min_x, scissor_x1);
|
||||
min_y = std::max(min_y, scissor_y1);
|
||||
max_x = std::min(max_x, scissor_x2);
|
||||
max_y = std::min(max_y, scissor_y2);
|
||||
}
|
||||
|
||||
min_x &= Fix12P4::IntMask();
|
||||
min_y &= Fix12P4::IntMask();
|
||||
max_x = ((max_x + Fix12P4::FracMask()) & Fix12P4::IntMask());
|
||||
max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask());
|
||||
|
||||
const int bias0 =
|
||||
IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0;
|
||||
const int bias1 =
|
||||
IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0;
|
||||
const int bias2 =
|
||||
IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
|
||||
|
||||
const auto w_inverse = Common::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w);
|
||||
|
||||
auto textures = regs.texturing.GetTextures();
|
||||
const auto tev_stages = regs.texturing.GetTevStages();
|
||||
|
||||
const bool stencil_action_enable =
|
||||
regs.framebuffer.output_merger.stencil_test.enable &&
|
||||
regs.framebuffer.framebuffer.depth_format == FramebufferRegs::DepthFormat::D24S8;
|
||||
const auto stencil_test = regs.framebuffer.output_merger.stencil_test;
|
||||
|
||||
// Enter rasterization loop, starting at the center of the topleft bounding box corner.
|
||||
// TODO: Not sure if looping through x first might be faster
|
||||
for (u16 y = min_y + 8; y < max_y; y += 0x10) {
|
||||
for (u16 x = min_x + 8; x < max_x; x += 0x10) {
|
||||
// Do not process the pixel if it's inside the scissor box and the scissor mode is set
|
||||
// to Exclude.
|
||||
if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Exclude) {
|
||||
if (x >= scissor_x1 && x < scissor_x2 && y >= scissor_y1 && y < scissor_y2) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate the barycentric coordinates w0, w1 and w2
|
||||
const s32 w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
|
||||
const s32 w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y});
|
||||
const s32 w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y});
|
||||
const s32 wsum = w0 + w1 + w2;
|
||||
|
||||
// If current pixel is not covered by the current primitive
|
||||
if (w0 < 0 || w1 < 0 || w2 < 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const auto baricentric_coordinates = Common::MakeVec(
|
||||
f24::FromFloat32(static_cast<f32>(w0)), f24::FromFloat32(static_cast<f32>(w1)),
|
||||
f24::FromFloat32(static_cast<f32>(w2)));
|
||||
const f24 interpolated_w_inverse =
|
||||
f24::One() / Common::Dot(w_inverse, baricentric_coordinates);
|
||||
|
||||
// interpolated_z = z / w
|
||||
const float interpolated_z_over_w =
|
||||
(v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 +
|
||||
v2.screenpos[2].ToFloat32() * w2) /
|
||||
wsum;
|
||||
|
||||
// Not fully accurate. About 3 bits in precision are missing.
|
||||
// Z-Buffer (z / w * scale + offset)
|
||||
const float depth_scale =
|
||||
f24::FromRaw(regs.rasterizer.viewport_depth_range).ToFloat32();
|
||||
const float depth_offset =
|
||||
f24::FromRaw(regs.rasterizer.viewport_depth_near_plane).ToFloat32();
|
||||
float depth = interpolated_z_over_w * depth_scale + depth_offset;
|
||||
|
||||
// Potentially switch to W-Buffer
|
||||
if (regs.rasterizer.depthmap_enable ==
|
||||
Pica::RasterizerRegs::DepthBuffering::WBuffering) {
|
||||
// W-Buffer (z * scale + w * offset = (z / w * scale + offset) * w)
|
||||
depth *= interpolated_w_inverse.ToFloat32() * wsum;
|
||||
}
|
||||
|
||||
// Clamp the result
|
||||
depth = std::clamp(depth, 0.0f, 1.0f);
|
||||
|
||||
/**
|
||||
* Perspective correct attribute interpolation:
|
||||
* Attribute values cannot be calculated by simple linear interpolation since
|
||||
* they are not linear in screen space. For example, when interpolating a
|
||||
* texture coordinate across two vertices, something simple like
|
||||
* u = (u0*w0 + u1*w1)/(w0+w1)
|
||||
* will not work. However, the attribute value divided by the
|
||||
* clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear
|
||||
* in screenspace. Hence, we can linearly interpolate these two independently and
|
||||
* calculate the interpolated attribute by dividing the results.
|
||||
* I.e.
|
||||
* u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1)
|
||||
* one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1)
|
||||
* u = u_over_w / one_over_w
|
||||
*
|
||||
* The generalization to three vertices is straightforward in baricentric coordinates.
|
||||
**/
|
||||
const auto get_interpolated_attribute = [&](f24 attr0, f24 attr1, f24 attr2) {
|
||||
auto attr_over_w = Common::MakeVec(attr0, attr1, attr2);
|
||||
f24 interpolated_attr_over_w = Common::Dot(attr_over_w, baricentric_coordinates);
|
||||
return interpolated_attr_over_w * interpolated_w_inverse;
|
||||
};
|
||||
|
||||
const Common::Vec4<u8> primary_color{
|
||||
static_cast<u8>(
|
||||
round(get_interpolated_attribute(v0.color.r(), v1.color.r(), v2.color.r())
|
||||
.ToFloat32() *
|
||||
255)),
|
||||
static_cast<u8>(
|
||||
round(get_interpolated_attribute(v0.color.g(), v1.color.g(), v2.color.g())
|
||||
.ToFloat32() *
|
||||
255)),
|
||||
static_cast<u8>(
|
||||
round(get_interpolated_attribute(v0.color.b(), v1.color.b(), v2.color.b())
|
||||
.ToFloat32() *
|
||||
255)),
|
||||
static_cast<u8>(
|
||||
round(get_interpolated_attribute(v0.color.a(), v1.color.a(), v2.color.a())
|
||||
.ToFloat32() *
|
||||
255)),
|
||||
};
|
||||
|
||||
std::array<Common::Vec2<f24>, 3> uv;
|
||||
uv[0].u() = get_interpolated_attribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u());
|
||||
uv[0].v() = get_interpolated_attribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v());
|
||||
uv[1].u() = get_interpolated_attribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u());
|
||||
uv[1].v() = get_interpolated_attribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v());
|
||||
uv[2].u() = get_interpolated_attribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u());
|
||||
uv[2].v() = get_interpolated_attribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v());
|
||||
|
||||
// Sample bound texture units.
|
||||
const f24 tc0_w = get_interpolated_attribute(v0.tc0_w, v1.tc0_w, v2.tc0_w);
|
||||
const auto texture_color = TextureColor(uv, textures, tc0_w);
|
||||
|
||||
Common::Vec4<u8> primary_fragment_color{0, 0, 0, 0};
|
||||
Common::Vec4<u8> secondary_fragment_color{0, 0, 0, 0};
|
||||
if (!regs.lighting.disable) {
|
||||
const auto normquat =
|
||||
Common::Quaternion<f32>{
|
||||
{get_interpolated_attribute(v0.quat.x, v1.quat.x, v2.quat.x).ToFloat32(),
|
||||
get_interpolated_attribute(v0.quat.y, v1.quat.y, v2.quat.y).ToFloat32(),
|
||||
get_interpolated_attribute(v0.quat.z, v1.quat.z, v2.quat.z).ToFloat32()},
|
||||
get_interpolated_attribute(v0.quat.w, v1.quat.w, v2.quat.w).ToFloat32(),
|
||||
}
|
||||
.Normalized();
|
||||
|
||||
const Common::Vec3f view{
|
||||
get_interpolated_attribute(v0.view.x, v1.view.x, v2.view.x).ToFloat32(),
|
||||
get_interpolated_attribute(v0.view.y, v1.view.y, v2.view.y).ToFloat32(),
|
||||
get_interpolated_attribute(v0.view.z, v1.view.z, v2.view.z).ToFloat32(),
|
||||
};
|
||||
std::tie(primary_fragment_color, secondary_fragment_color) = ComputeFragmentsColors(
|
||||
regs.lighting, state.lighting, normquat, view, texture_color);
|
||||
}
|
||||
|
||||
// Write the TEV stages.
|
||||
Common::Vec4<u8> combiner_output =
|
||||
WriteTevConfig(texture_color, tev_stages, primary_color, primary_fragment_color,
|
||||
secondary_fragment_color);
|
||||
|
||||
const auto& output_merger = regs.framebuffer.output_merger;
|
||||
if (output_merger.fragment_operation_mode ==
|
||||
FramebufferRegs::FragmentOperationMode::Shadow) {
|
||||
u32 depth_int = static_cast<u32>(depth * 0xFFFFFF);
|
||||
// Use green color as the shadow intensity
|
||||
u8 stencil = combiner_output.y;
|
||||
fb.DrawShadowMapPixel(x >> 4, y >> 4, depth_int, stencil);
|
||||
// Skip the normal output merger pipeline if it is in shadow mode
|
||||
continue;
|
||||
}
|
||||
|
||||
// Does alpha testing happen before or after stencil?
|
||||
if (!DoAlphaTest(combiner_output.a())) {
|
||||
continue;
|
||||
}
|
||||
WriteFog(combiner_output, depth);
|
||||
if (!DoDepthStencilTest(x, y, depth, stencil_action_enable)) {
|
||||
continue;
|
||||
}
|
||||
const auto result = PixelColor(x, y, combiner_output);
|
||||
if (regs.framebuffer.framebuffer.allow_color_write != 0) {
|
||||
fb.DrawPixel(x >> 4, y >> 4, result);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::array<Common::Vec4<u8>, 4> RasterizerSoftware::TextureColor(
|
||||
std::span<const Common::Vec2<f24>, 3> uv,
|
||||
std::span<const Pica::TexturingRegs::FullTextureConfig, 3> textures, f24 tc0_w) const {
|
||||
std::array<Common::Vec4<u8>, 4> texture_color{};
|
||||
for (u32 i = 0; i < 3; ++i) {
|
||||
const auto& texture = textures[i];
|
||||
if (!texture.enabled) [[unlikely]] {
|
||||
continue;
|
||||
}
|
||||
if (texture.config.address == 0) [[unlikely]] {
|
||||
texture_color[i] = {0, 0, 0, 255};
|
||||
continue;
|
||||
}
|
||||
|
||||
const s32 coordinate_i = (i == 2 && regs.texturing.main_config.texture2_use_coord1) ? 1 : i;
|
||||
f24 u = uv[coordinate_i].u();
|
||||
f24 v = uv[coordinate_i].v();
|
||||
|
||||
// Only unit 0 respects the texturing type (according to 3DBrew)
|
||||
PAddr texture_address = texture.config.GetPhysicalAddress();
|
||||
f24 shadow_z;
|
||||
if (i == 0) {
|
||||
switch (texture.config.type) {
|
||||
case TexturingRegs::TextureConfig::Texture2D:
|
||||
break;
|
||||
case TexturingRegs::TextureConfig::ShadowCube:
|
||||
case TexturingRegs::TextureConfig::TextureCube: {
|
||||
std::tie(u, v, shadow_z, texture_address) =
|
||||
ConvertCubeCoord(u, v, tc0_w, regs.texturing);
|
||||
break;
|
||||
}
|
||||
case TexturingRegs::TextureConfig::Projection2D: {
|
||||
u /= tc0_w;
|
||||
v /= tc0_w;
|
||||
break;
|
||||
}
|
||||
case TexturingRegs::TextureConfig::Shadow2D: {
|
||||
if (!regs.texturing.shadow.orthographic) {
|
||||
u /= tc0_w;
|
||||
v /= tc0_w;
|
||||
}
|
||||
shadow_z = f24::FromFloat32(std::abs(tc0_w.ToFloat32()));
|
||||
break;
|
||||
}
|
||||
case TexturingRegs::TextureConfig::Disabled:
|
||||
continue; // skip this unit and continue to the next unit
|
||||
default:
|
||||
LOG_ERROR(HW_GPU, "Unhandled texture type {:x}", (int)texture.config.type);
|
||||
UNIMPLEMENTED();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
const f24 width = f24::FromFloat32(static_cast<f32>(texture.config.width));
|
||||
const f24 height = f24::FromFloat32(static_cast<f32>(texture.config.height));
|
||||
s32 s = static_cast<s32>((u * width).ToFloat32());
|
||||
s32 t = static_cast<s32>((v * height).ToFloat32());
|
||||
|
||||
bool use_border_s = false;
|
||||
bool use_border_t = false;
|
||||
|
||||
if (texture.config.wrap_s == TexturingRegs::TextureConfig::ClampToBorder) {
|
||||
use_border_s = s < 0 || s >= static_cast<s32>(texture.config.width);
|
||||
} else if (texture.config.wrap_s == TexturingRegs::TextureConfig::ClampToBorder2) {
|
||||
use_border_s = s >= static_cast<s32>(texture.config.width);
|
||||
}
|
||||
|
||||
if (texture.config.wrap_t == TexturingRegs::TextureConfig::ClampToBorder) {
|
||||
use_border_t = t < 0 || t >= static_cast<s32>(texture.config.height);
|
||||
} else if (texture.config.wrap_t == TexturingRegs::TextureConfig::ClampToBorder2) {
|
||||
use_border_t = t >= static_cast<s32>(texture.config.height);
|
||||
}
|
||||
|
||||
if (use_border_s || use_border_t) {
|
||||
const auto border_color = texture.config.border_color;
|
||||
texture_color[i] = Common::MakeVec(border_color.r.Value(), border_color.g.Value(),
|
||||
border_color.b.Value(), border_color.a.Value())
|
||||
.Cast<u8>();
|
||||
} else {
|
||||
// Textures are laid out from bottom to top, hence we invert the t coordinate.
|
||||
// NOTE: This may not be the right place for the inversion.
|
||||
// TODO: Check if this applies to ETC textures, too.
|
||||
s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width);
|
||||
t = texture.config.height - 1 -
|
||||
GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height);
|
||||
|
||||
const u8* texture_data = memory.GetPhysicalPointer(texture_address);
|
||||
const auto info = TextureInfo::FromPicaRegister(texture.config, texture.format);
|
||||
|
||||
// TODO: Apply the min and mag filters to the texture
|
||||
texture_color[i] = LookupTexture(texture_data, s, t, info);
|
||||
}
|
||||
|
||||
if (i == 0 && (texture.config.type == TexturingRegs::TextureConfig::Shadow2D ||
|
||||
texture.config.type == TexturingRegs::TextureConfig::ShadowCube)) {
|
||||
|
||||
s32 z_int = static_cast<s32>(std::min(shadow_z.ToFloat32(), 1.0f) * 0xFFFFFF);
|
||||
z_int -= regs.texturing.shadow.bias << 1;
|
||||
const auto& color = texture_color[i];
|
||||
const s32 z_ref = (color.w << 16) | (color.z << 8) | color.y;
|
||||
u8 density;
|
||||
if (z_ref >= z_int) {
|
||||
density = color.x;
|
||||
} else {
|
||||
density = 0;
|
||||
}
|
||||
texture_color[i] = {density, density, density, density};
|
||||
}
|
||||
}
|
||||
|
||||
// Sample procedural texture
|
||||
if (regs.texturing.main_config.texture3_enable) {
|
||||
const auto& proctex_uv = uv[regs.texturing.main_config.texture3_coordinates];
|
||||
texture_color[3] = ProcTex(proctex_uv.u().ToFloat32(), proctex_uv.v().ToFloat32(),
|
||||
regs.texturing, state.proctex);
|
||||
}
|
||||
|
||||
return texture_color;
|
||||
}
|
||||
|
||||
Common::Vec4<u8> RasterizerSoftware::PixelColor(u16 x, u16 y,
|
||||
Common::Vec4<u8>& combiner_output) const {
|
||||
const auto dest = fb.GetPixel(x >> 4, y >> 4);
|
||||
Common::Vec4<u8> blend_output = combiner_output;
|
||||
|
||||
const auto& output_merger = regs.framebuffer.output_merger;
|
||||
if (output_merger.alphablend_enable) {
|
||||
const auto params = output_merger.alpha_blending;
|
||||
const auto lookup_factor = [&](u32 channel, FramebufferRegs::BlendFactor factor) -> u8 {
|
||||
DEBUG_ASSERT(channel < 4);
|
||||
|
||||
const Common::Vec4<u8> blend_const =
|
||||
Common::MakeVec(
|
||||
output_merger.blend_const.r.Value(), output_merger.blend_const.g.Value(),
|
||||
output_merger.blend_const.b.Value(), output_merger.blend_const.a.Value())
|
||||
.Cast<u8>();
|
||||
|
||||
switch (factor) {
|
||||
case FramebufferRegs::BlendFactor::Zero:
|
||||
return 0;
|
||||
case FramebufferRegs::BlendFactor::One:
|
||||
return 255;
|
||||
case FramebufferRegs::BlendFactor::SourceColor:
|
||||
return combiner_output[channel];
|
||||
case FramebufferRegs::BlendFactor::OneMinusSourceColor:
|
||||
return 255 - combiner_output[channel];
|
||||
case FramebufferRegs::BlendFactor::DestColor:
|
||||
return dest[channel];
|
||||
case FramebufferRegs::BlendFactor::OneMinusDestColor:
|
||||
return 255 - dest[channel];
|
||||
case FramebufferRegs::BlendFactor::SourceAlpha:
|
||||
return combiner_output.a();
|
||||
case FramebufferRegs::BlendFactor::OneMinusSourceAlpha:
|
||||
return 255 - combiner_output.a();
|
||||
case FramebufferRegs::BlendFactor::DestAlpha:
|
||||
return dest.a();
|
||||
case FramebufferRegs::BlendFactor::OneMinusDestAlpha:
|
||||
return 255 - dest.a();
|
||||
case FramebufferRegs::BlendFactor::ConstantColor:
|
||||
return blend_const[channel];
|
||||
case FramebufferRegs::BlendFactor::OneMinusConstantColor:
|
||||
return 255 - blend_const[channel];
|
||||
case FramebufferRegs::BlendFactor::ConstantAlpha:
|
||||
return blend_const.a();
|
||||
case FramebufferRegs::BlendFactor::OneMinusConstantAlpha:
|
||||
return 255 - blend_const.a();
|
||||
case FramebufferRegs::BlendFactor::SourceAlphaSaturate:
|
||||
// Returns 1.0 for the alpha channel
|
||||
if (channel == 3) {
|
||||
return 255;
|
||||
}
|
||||
return std::min(combiner_output.a(), static_cast<u8>(255 - dest.a()));
|
||||
default:
|
||||
LOG_CRITICAL(HW_GPU, "Unknown blend factor {:x}", factor);
|
||||
UNIMPLEMENTED();
|
||||
break;
|
||||
}
|
||||
return combiner_output[channel];
|
||||
};
|
||||
|
||||
const auto srcfactor = Common::MakeVec(
|
||||
lookup_factor(0, params.factor_source_rgb), lookup_factor(1, params.factor_source_rgb),
|
||||
lookup_factor(2, params.factor_source_rgb), lookup_factor(3, params.factor_source_a));
|
||||
|
||||
const auto dstfactor = Common::MakeVec(
|
||||
lookup_factor(0, params.factor_dest_rgb), lookup_factor(1, params.factor_dest_rgb),
|
||||
lookup_factor(2, params.factor_dest_rgb), lookup_factor(3, params.factor_dest_a));
|
||||
|
||||
blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor,
|
||||
params.blend_equation_rgb);
|
||||
blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor,
|
||||
params.blend_equation_a)
|
||||
.a();
|
||||
} else {
|
||||
blend_output =
|
||||
Common::MakeVec(LogicOp(combiner_output.r(), dest.r(), output_merger.logic_op),
|
||||
LogicOp(combiner_output.g(), dest.g(), output_merger.logic_op),
|
||||
LogicOp(combiner_output.b(), dest.b(), output_merger.logic_op),
|
||||
LogicOp(combiner_output.a(), dest.a(), output_merger.logic_op));
|
||||
}
|
||||
|
||||
const Common::Vec4<u8> result = {
|
||||
output_merger.red_enable ? blend_output.r() : dest.r(),
|
||||
output_merger.green_enable ? blend_output.g() : dest.g(),
|
||||
output_merger.blue_enable ? blend_output.b() : dest.b(),
|
||||
output_merger.alpha_enable ? blend_output.a() : dest.a(),
|
||||
};
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
Common::Vec4<u8> RasterizerSoftware::WriteTevConfig(
|
||||
std::span<const Common::Vec4<u8>, 4> texture_color,
|
||||
std::span<const Pica::TexturingRegs::TevStageConfig, 6> tev_stages,
|
||||
Common::Vec4<u8> primary_color, Common::Vec4<u8> primary_fragment_color,
|
||||
Common::Vec4<u8> secondary_fragment_color) const {
|
||||
/**
|
||||
* Texture environment - consists of 6 stages of color and alpha combining.
|
||||
* Color combiners take three input color values from some source (e.g. interpolated
|
||||
* vertex color, texture color, previous stage, etc), perform some very simple
|
||||
* operations on each of them (e.g. inversion) and then calculate the output color
|
||||
* with some basic arithmetic. Alpha combiners can be configured separately but work
|
||||
* analogously.
|
||||
**/
|
||||
Common::Vec4<u8> combiner_output;
|
||||
Common::Vec4<u8> combiner_buffer = {0, 0, 0, 0};
|
||||
Common::Vec4<u8> next_combiner_buffer =
|
||||
Common::MakeVec(regs.texturing.tev_combiner_buffer_color.r.Value(),
|
||||
regs.texturing.tev_combiner_buffer_color.g.Value(),
|
||||
regs.texturing.tev_combiner_buffer_color.b.Value(),
|
||||
regs.texturing.tev_combiner_buffer_color.a.Value())
|
||||
.Cast<u8>();
|
||||
|
||||
for (u32 tev_stage_index = 0; tev_stage_index < tev_stages.size(); ++tev_stage_index) {
|
||||
const auto& tev_stage = tev_stages[tev_stage_index];
|
||||
using Source = TexturingRegs::TevStageConfig::Source;
|
||||
|
||||
auto get_source = [&](Source source) -> Common::Vec4<u8> {
|
||||
switch (source) {
|
||||
case Source::PrimaryColor:
|
||||
return primary_color;
|
||||
case Source::PrimaryFragmentColor:
|
||||
return primary_fragment_color;
|
||||
case Source::SecondaryFragmentColor:
|
||||
return secondary_fragment_color;
|
||||
case Source::Texture0:
|
||||
return texture_color[0];
|
||||
case Source::Texture1:
|
||||
return texture_color[1];
|
||||
case Source::Texture2:
|
||||
return texture_color[2];
|
||||
case Source::Texture3:
|
||||
return texture_color[3];
|
||||
case Source::PreviousBuffer:
|
||||
return combiner_buffer;
|
||||
case Source::Constant:
|
||||
return Common::MakeVec(tev_stage.const_r.Value(), tev_stage.const_g.Value(),
|
||||
tev_stage.const_b.Value(), tev_stage.const_a.Value())
|
||||
.Cast<u8>();
|
||||
case Source::Previous:
|
||||
return combiner_output;
|
||||
default:
|
||||
LOG_ERROR(HW_GPU, "Unknown color combiner source {}", (int)source);
|
||||
UNIMPLEMENTED();
|
||||
return {0, 0, 0, 0};
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Color combiner
|
||||
* NOTE: Not sure if the alpha combiner might use the color output of the previous
|
||||
* stage as input. Hence, we currently don't directly write the result to
|
||||
* combiner_output.rgb(), but instead store it in a temporary variable until
|
||||
* alpha combining has been done.
|
||||
**/
|
||||
const std::array<Common::Vec3<u8>, 3> color_result = {
|
||||
GetColorModifier(tev_stage.color_modifier1, get_source(tev_stage.color_source1)),
|
||||
GetColorModifier(tev_stage.color_modifier2, get_source(tev_stage.color_source2)),
|
||||
GetColorModifier(tev_stage.color_modifier3, get_source(tev_stage.color_source3)),
|
||||
};
|
||||
const Common::Vec3<u8> color_output = ColorCombine(tev_stage.color_op, color_result);
|
||||
|
||||
u8 alpha_output;
|
||||
if (tev_stage.color_op == TexturingRegs::TevStageConfig::Operation::Dot3_RGBA) {
|
||||
// result of Dot3_RGBA operation is also placed to the alpha component
|
||||
alpha_output = color_output.x;
|
||||
} else {
|
||||
// alpha combiner
|
||||
const std::array<u8, 3> alpha_result = {{
|
||||
GetAlphaModifier(tev_stage.alpha_modifier1, get_source(tev_stage.alpha_source1)),
|
||||
GetAlphaModifier(tev_stage.alpha_modifier2, get_source(tev_stage.alpha_source2)),
|
||||
GetAlphaModifier(tev_stage.alpha_modifier3, get_source(tev_stage.alpha_source3)),
|
||||
}};
|
||||
alpha_output = AlphaCombine(tev_stage.alpha_op, alpha_result);
|
||||
}
|
||||
|
||||
combiner_output[0] = std::min(255U, color_output.r() * tev_stage.GetColorMultiplier());
|
||||
combiner_output[1] = std::min(255U, color_output.g() * tev_stage.GetColorMultiplier());
|
||||
combiner_output[2] = std::min(255U, color_output.b() * tev_stage.GetColorMultiplier());
|
||||
combiner_output[3] = std::min(255U, alpha_output * tev_stage.GetAlphaMultiplier());
|
||||
|
||||
combiner_buffer = next_combiner_buffer;
|
||||
|
||||
if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor(
|
||||
tev_stage_index)) {
|
||||
next_combiner_buffer.r() = combiner_output.r();
|
||||
next_combiner_buffer.g() = combiner_output.g();
|
||||
next_combiner_buffer.b() = combiner_output.b();
|
||||
}
|
||||
|
||||
if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha(
|
||||
tev_stage_index)) {
|
||||
next_combiner_buffer.a() = combiner_output.a();
|
||||
}
|
||||
}
|
||||
return combiner_output;
|
||||
}
|
||||
|
||||
void RasterizerSoftware::WriteFog(Common::Vec4<u8>& combiner_output, float depth) const {
|
||||
/**
|
||||
* Apply fog combiner. Not fully accurate. We'd have to know what data type is used to
|
||||
* store the depth etc. Using float for now until we know more about Pica datatypes.
|
||||
**/
|
||||
if (regs.texturing.fog_mode == TexturingRegs::FogMode::Fog) {
|
||||
const Common::Vec3<u8> fog_color =
|
||||
Common::MakeVec(regs.texturing.fog_color.r.Value(), regs.texturing.fog_color.g.Value(),
|
||||
regs.texturing.fog_color.b.Value())
|
||||
.Cast<u8>();
|
||||
|
||||
float fog_index;
|
||||
if (regs.texturing.fog_flip) {
|
||||
fog_index = (1.0f - depth) * 128.0f;
|
||||
} else {
|
||||
fog_index = depth * 128.0f;
|
||||
}
|
||||
|
||||
// Generate clamped fog factor from LUT for given fog index
|
||||
const f32 fog_i = std::clamp(floorf(fog_index), 0.0f, 127.0f);
|
||||
const f32 fog_f = fog_index - fog_i;
|
||||
const auto& fog_lut_entry = state.fog.lut[static_cast<u32>(fog_i)];
|
||||
f32 fog_factor = fog_lut_entry.ToFloat() + fog_lut_entry.DiffToFloat() * fog_f;
|
||||
fog_factor = std::clamp(fog_factor, 0.0f, 1.0f);
|
||||
for (u32 i = 0; i < 3; i++) {
|
||||
combiner_output[i] = static_cast<u8>(fog_factor * combiner_output[i] +
|
||||
(1.0f - fog_factor) * fog_color[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool RasterizerSoftware::DoAlphaTest(u8 alpha) const {
|
||||
const auto& output_merger = regs.framebuffer.output_merger;
|
||||
if (!output_merger.alpha_test.enable) {
|
||||
return true;
|
||||
}
|
||||
switch (output_merger.alpha_test.func) {
|
||||
case FramebufferRegs::CompareFunc::Never:
|
||||
return false;
|
||||
case FramebufferRegs::CompareFunc::Always:
|
||||
return true;
|
||||
case FramebufferRegs::CompareFunc::Equal:
|
||||
return alpha == output_merger.alpha_test.ref;
|
||||
case FramebufferRegs::CompareFunc::NotEqual:
|
||||
return alpha != output_merger.alpha_test.ref;
|
||||
case FramebufferRegs::CompareFunc::LessThan:
|
||||
return alpha < output_merger.alpha_test.ref;
|
||||
case FramebufferRegs::CompareFunc::LessThanOrEqual:
|
||||
return alpha <= output_merger.alpha_test.ref;
|
||||
case FramebufferRegs::CompareFunc::GreaterThan:
|
||||
return alpha > output_merger.alpha_test.ref;
|
||||
case FramebufferRegs::CompareFunc::GreaterThanOrEqual:
|
||||
return alpha >= output_merger.alpha_test.ref;
|
||||
}
|
||||
}
|
||||
|
||||
bool RasterizerSoftware::DoDepthStencilTest(u16 x, u16 y, float depth,
|
||||
bool stencil_action_enable) const {
|
||||
const auto& framebuffer = regs.framebuffer.framebuffer;
|
||||
const auto stencil_test = regs.framebuffer.output_merger.stencil_test;
|
||||
u8 old_stencil = 0;
|
||||
|
||||
const auto update_stencil = [&](Pica::FramebufferRegs::StencilAction action) {
|
||||
const u8 new_stencil =
|
||||
PerformStencilAction(action, old_stencil, stencil_test.reference_value);
|
||||
if (framebuffer.allow_depth_stencil_write != 0) {
|
||||
const u8 stencil =
|
||||
(new_stencil & stencil_test.write_mask) | (old_stencil & ~stencil_test.write_mask);
|
||||
fb.SetStencil(x >> 4, y >> 4, stencil);
|
||||
}
|
||||
};
|
||||
|
||||
if (stencil_action_enable) {
|
||||
old_stencil = fb.GetStencil(x >> 4, y >> 4);
|
||||
const u8 dest = old_stencil & stencil_test.input_mask;
|
||||
const u8 ref = stencil_test.reference_value & stencil_test.input_mask;
|
||||
bool pass = false;
|
||||
switch (stencil_test.func) {
|
||||
case FramebufferRegs::CompareFunc::Never:
|
||||
pass = false;
|
||||
break;
|
||||
case FramebufferRegs::CompareFunc::Always:
|
||||
pass = true;
|
||||
break;
|
||||
case FramebufferRegs::CompareFunc::Equal:
|
||||
pass = (ref == dest);
|
||||
break;
|
||||
case FramebufferRegs::CompareFunc::NotEqual:
|
||||
pass = (ref != dest);
|
||||
break;
|
||||
case FramebufferRegs::CompareFunc::LessThan:
|
||||
pass = (ref < dest);
|
||||
break;
|
||||
case FramebufferRegs::CompareFunc::LessThanOrEqual:
|
||||
pass = (ref <= dest);
|
||||
break;
|
||||
case FramebufferRegs::CompareFunc::GreaterThan:
|
||||
pass = (ref > dest);
|
||||
break;
|
||||
case FramebufferRegs::CompareFunc::GreaterThanOrEqual:
|
||||
pass = (ref >= dest);
|
||||
break;
|
||||
}
|
||||
if (!pass) {
|
||||
update_stencil(stencil_test.action_stencil_fail);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
const u32 num_bits = FramebufferRegs::DepthBitsPerPixel(framebuffer.depth_format);
|
||||
const u32 z = static_cast<u32>(depth * ((1 << num_bits) - 1));
|
||||
|
||||
const auto& output_merger = regs.framebuffer.output_merger;
|
||||
if (output_merger.depth_test_enable) {
|
||||
const u32 ref_z = fb.GetDepth(x >> 4, y >> 4);
|
||||
bool pass = false;
|
||||
switch (output_merger.depth_test_func) {
|
||||
case FramebufferRegs::CompareFunc::Never:
|
||||
pass = false;
|
||||
break;
|
||||
case FramebufferRegs::CompareFunc::Always:
|
||||
pass = true;
|
||||
break;
|
||||
case FramebufferRegs::CompareFunc::Equal:
|
||||
pass = z == ref_z;
|
||||
break;
|
||||
case FramebufferRegs::CompareFunc::NotEqual:
|
||||
pass = z != ref_z;
|
||||
break;
|
||||
case FramebufferRegs::CompareFunc::LessThan:
|
||||
pass = z < ref_z;
|
||||
break;
|
||||
case FramebufferRegs::CompareFunc::LessThanOrEqual:
|
||||
pass = z <= ref_z;
|
||||
break;
|
||||
case FramebufferRegs::CompareFunc::GreaterThan:
|
||||
pass = z > ref_z;
|
||||
break;
|
||||
case FramebufferRegs::CompareFunc::GreaterThanOrEqual:
|
||||
pass = z >= ref_z;
|
||||
break;
|
||||
}
|
||||
if (!pass) {
|
||||
if (stencil_action_enable) {
|
||||
update_stencil(stencil_test.action_depth_fail);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (framebuffer.allow_depth_stencil_write != 0 && output_merger.depth_write_enable) {
|
||||
fb.SetDepth(x >> 4, y >> 4, z);
|
||||
}
|
||||
// The stencil depth_pass action is executed even if depth testing is disabled
|
||||
if (stencil_action_enable) {
|
||||
update_stencil(stencil_test.action_depth_pass);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace SwRenderer
|
||||
|
@@ -4,16 +4,30 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include <span>
|
||||
|
||||
#include "video_core/rasterizer_interface.h"
|
||||
#include "video_core/regs_texturing.h"
|
||||
#include "video_core/renderer_software/sw_clipper.h"
|
||||
#include "video_core/renderer_software/sw_framebuffer.h"
|
||||
|
||||
namespace Pica::Shader {
|
||||
struct OutputVertex;
|
||||
} // namespace Pica::Shader
|
||||
}
|
||||
|
||||
namespace VideoCore {
|
||||
namespace Pica {
|
||||
struct State;
|
||||
struct Regs;
|
||||
} // namespace Pica
|
||||
|
||||
namespace SwRenderer {
|
||||
|
||||
struct Vertex;
|
||||
|
||||
class RasterizerSoftware : public VideoCore::RasterizerInterface {
|
||||
public:
|
||||
explicit RasterizerSoftware(Memory::MemorySystem& memory);
|
||||
|
||||
class RasterizerSoftware : public RasterizerInterface {
|
||||
void AddTriangle(const Pica::Shader::OutputVertex& v0, const Pica::Shader::OutputVertex& v1,
|
||||
const Pica::Shader::OutputVertex& v2) override;
|
||||
void DrawTriangles() override {}
|
||||
@@ -23,6 +37,44 @@ class RasterizerSoftware : public RasterizerInterface {
|
||||
void InvalidateRegion(PAddr addr, u32 size) override {}
|
||||
void FlushAndInvalidateRegion(PAddr addr, u32 size) override {}
|
||||
void ClearAll(bool flush) override {}
|
||||
|
||||
private:
|
||||
/// Computes the screen coordinates of the provided vertex.
|
||||
void MakeScreenCoords(Vertex& vtx);
|
||||
|
||||
/// Processes the triangle defined by the provided vertices.
|
||||
void ProcessTriangle(const Vertex& v0, const Vertex& v1, const Vertex& v2,
|
||||
bool reversed = false);
|
||||
|
||||
/// Returns the texture color of the currently processed pixel.
|
||||
std::array<Common::Vec4<u8>, 4> TextureColor(
|
||||
std::span<const Common::Vec2<f24>, 3> uv,
|
||||
std::span<const Pica::TexturingRegs::FullTextureConfig, 3> textures, f24 tc0_w) const;
|
||||
|
||||
/// Returns the final pixel color with blending or logic ops applied.
|
||||
Common::Vec4<u8> PixelColor(u16 x, u16 y, Common::Vec4<u8>& combiner_output) const;
|
||||
|
||||
/// Emulates the TEV configuration and returns the combiner output.
|
||||
Common::Vec4<u8> WriteTevConfig(
|
||||
std::span<const Common::Vec4<u8>, 4> texture_color,
|
||||
std::span<const Pica::TexturingRegs::TevStageConfig, 6> tev_stages,
|
||||
Common::Vec4<u8> primary_color, Common::Vec4<u8> primary_fragment_color,
|
||||
Common::Vec4<u8> secondary_fragment_color) const;
|
||||
|
||||
/// Blends fog to the combiner output if enabled.
|
||||
void WriteFog(Common::Vec4<u8>& combiner_output, float depth) const;
|
||||
|
||||
/// Performs the alpha test. Returns false if the test failed.
|
||||
bool DoAlphaTest(u8 alpha) const;
|
||||
|
||||
/// Performs the depth stencil test. Returns false if the test failed.
|
||||
bool DoDepthStencilTest(u16 x, u16 y, float depth, bool stencil_action_enable) const;
|
||||
|
||||
private:
|
||||
Memory::MemorySystem& memory;
|
||||
Pica::State& state;
|
||||
const Pica::Regs& regs;
|
||||
Framebuffer fb;
|
||||
};
|
||||
|
||||
} // namespace VideoCore
|
||||
} // namespace SwRenderer
|
||||
|
@@ -9,41 +9,40 @@
|
||||
#include "video_core/regs_texturing.h"
|
||||
#include "video_core/renderer_software/sw_texturing.h"
|
||||
|
||||
namespace Pica::Rasterizer {
|
||||
namespace SwRenderer {
|
||||
|
||||
using TevStageConfig = TexturingRegs::TevStageConfig;
|
||||
using TevStageConfig = Pica::TexturingRegs::TevStageConfig;
|
||||
|
||||
int GetWrappedTexCoord(Pica::TexturingRegs::TextureConfig::WrapMode mode, s32 val, u32 size) {
|
||||
using TextureConfig = Pica::TexturingRegs::TextureConfig;
|
||||
|
||||
int GetWrappedTexCoord(TexturingRegs::TextureConfig::WrapMode mode, int val, unsigned size) {
|
||||
switch (mode) {
|
||||
case TexturingRegs::TextureConfig::ClampToEdge2:
|
||||
case TextureConfig::ClampToEdge2:
|
||||
// For negative coordinate, ClampToEdge2 behaves the same as Repeat
|
||||
if (val < 0) {
|
||||
return static_cast<int>(static_cast<unsigned>(val) % size);
|
||||
return static_cast<s32>(static_cast<u32>(val) % size);
|
||||
}
|
||||
// [[fallthrough]]
|
||||
case TexturingRegs::TextureConfig::ClampToEdge:
|
||||
[[fallthrough]];
|
||||
case TextureConfig::ClampToEdge:
|
||||
val = std::max(val, 0);
|
||||
val = std::min(val, static_cast<int>(size) - 1);
|
||||
val = std::min(val, static_cast<s32>(size) - 1);
|
||||
return val;
|
||||
|
||||
case TexturingRegs::TextureConfig::ClampToBorder:
|
||||
case TextureConfig::ClampToBorder:
|
||||
return val;
|
||||
|
||||
case TexturingRegs::TextureConfig::ClampToBorder2:
|
||||
case TextureConfig::ClampToBorder2:
|
||||
// For ClampToBorder2, the case of positive coordinate beyond the texture size is already
|
||||
// handled outside. Here we only handle the negative coordinate in the same way as Repeat.
|
||||
case TexturingRegs::TextureConfig::Repeat2:
|
||||
case TexturingRegs::TextureConfig::Repeat3:
|
||||
case TexturingRegs::TextureConfig::Repeat:
|
||||
return static_cast<int>(static_cast<unsigned>(val) % size);
|
||||
|
||||
case TexturingRegs::TextureConfig::MirroredRepeat: {
|
||||
unsigned int coord = (static_cast<unsigned>(val) % (2 * size));
|
||||
if (coord >= size)
|
||||
case TextureConfig::Repeat2:
|
||||
case TextureConfig::Repeat3:
|
||||
case TextureConfig::Repeat:
|
||||
return static_cast<s32>(static_cast<u32>(val) % size);
|
||||
case TextureConfig::MirroredRepeat: {
|
||||
u32 coord = (static_cast<u32>(val) % (2 * size));
|
||||
if (coord >= size) {
|
||||
coord = 2 * size - 1 - coord;
|
||||
return static_cast<int>(coord);
|
||||
}
|
||||
return static_cast<s32>(coord);
|
||||
}
|
||||
|
||||
default:
|
||||
LOG_ERROR(HW_GPU, "Unknown texture coordinate wrapping mode {:x}", (int)mode);
|
||||
UNIMPLEMENTED();
|
||||
@@ -58,35 +57,25 @@ Common::Vec3<u8> GetColorModifier(TevStageConfig::ColorModifier factor,
|
||||
switch (factor) {
|
||||
case ColorModifier::SourceColor:
|
||||
return values.rgb();
|
||||
|
||||
case ColorModifier::OneMinusSourceColor:
|
||||
return (Common::Vec3<u8>(255, 255, 255) - values.rgb()).Cast<u8>();
|
||||
|
||||
case ColorModifier::SourceAlpha:
|
||||
return values.aaa();
|
||||
|
||||
case ColorModifier::OneMinusSourceAlpha:
|
||||
return (Common::Vec3<u8>(255, 255, 255) - values.aaa()).Cast<u8>();
|
||||
|
||||
case ColorModifier::SourceRed:
|
||||
return values.rrr();
|
||||
|
||||
case ColorModifier::OneMinusSourceRed:
|
||||
return (Common::Vec3<u8>(255, 255, 255) - values.rrr()).Cast<u8>();
|
||||
|
||||
case ColorModifier::SourceGreen:
|
||||
return values.ggg();
|
||||
|
||||
case ColorModifier::OneMinusSourceGreen:
|
||||
return (Common::Vec3<u8>(255, 255, 255) - values.ggg()).Cast<u8>();
|
||||
|
||||
case ColorModifier::SourceBlue:
|
||||
return values.bbb();
|
||||
|
||||
case ColorModifier::OneMinusSourceBlue:
|
||||
return (Common::Vec3<u8>(255, 255, 255) - values.bbb()).Cast<u8>();
|
||||
}
|
||||
|
||||
UNREACHABLE();
|
||||
};
|
||||
|
||||
@@ -96,42 +85,33 @@ u8 GetAlphaModifier(TevStageConfig::AlphaModifier factor, const Common::Vec4<u8>
|
||||
switch (factor) {
|
||||
case AlphaModifier::SourceAlpha:
|
||||
return values.a();
|
||||
|
||||
case AlphaModifier::OneMinusSourceAlpha:
|
||||
return 255 - values.a();
|
||||
|
||||
case AlphaModifier::SourceRed:
|
||||
return values.r();
|
||||
|
||||
case AlphaModifier::OneMinusSourceRed:
|
||||
return 255 - values.r();
|
||||
|
||||
case AlphaModifier::SourceGreen:
|
||||
return values.g();
|
||||
|
||||
case AlphaModifier::OneMinusSourceGreen:
|
||||
return 255 - values.g();
|
||||
|
||||
case AlphaModifier::SourceBlue:
|
||||
return values.b();
|
||||
|
||||
case AlphaModifier::OneMinusSourceBlue:
|
||||
return 255 - values.b();
|
||||
}
|
||||
|
||||
UNREACHABLE();
|
||||
};
|
||||
|
||||
Common::Vec3<u8> ColorCombine(TevStageConfig::Operation op, const Common::Vec3<u8> input[3]) {
|
||||
Common::Vec3<u8> ColorCombine(TevStageConfig::Operation op,
|
||||
std::span<const Common::Vec3<u8>, 3> input) {
|
||||
using Operation = TevStageConfig::Operation;
|
||||
|
||||
switch (op) {
|
||||
case Operation::Replace:
|
||||
return input[0];
|
||||
|
||||
case Operation::Modulate:
|
||||
return ((input[0] * input[1]) / 255).Cast<u8>();
|
||||
|
||||
case Operation::Add: {
|
||||
auto result = input[0] + input[1];
|
||||
result.r() = std::min(255, result.r());
|
||||
@@ -139,46 +119,41 @@ Common::Vec3<u8> ColorCombine(TevStageConfig::Operation op, const Common::Vec3<u
|
||||
result.b() = std::min(255, result.b());
|
||||
return result.Cast<u8>();
|
||||
}
|
||||
|
||||
case Operation::AddSigned: {
|
||||
// TODO(bunnei): Verify that the color conversion from (float) 0.5f to
|
||||
// (byte) 128 is correct
|
||||
auto result =
|
||||
input[0].Cast<int>() + input[1].Cast<int>() - Common::MakeVec<int>(128, 128, 128);
|
||||
result.r() = std::clamp<int>(result.r(), 0, 255);
|
||||
result.g() = std::clamp<int>(result.g(), 0, 255);
|
||||
result.b() = std::clamp<int>(result.b(), 0, 255);
|
||||
Common::Vec3i result =
|
||||
input[0].Cast<s32>() + input[1].Cast<s32>() - Common::MakeVec<s32>(128, 128, 128);
|
||||
result.r() = std::clamp<s32>(result.r(), 0, 255);
|
||||
result.g() = std::clamp<s32>(result.g(), 0, 255);
|
||||
result.b() = std::clamp<s32>(result.b(), 0, 255);
|
||||
return result.Cast<u8>();
|
||||
}
|
||||
|
||||
case Operation::Lerp:
|
||||
return ((input[0] * input[2] +
|
||||
input[1] * (Common::MakeVec<u8>(255, 255, 255) - input[2]).Cast<u8>()) /
|
||||
255)
|
||||
.Cast<u8>();
|
||||
|
||||
case Operation::Subtract: {
|
||||
auto result = input[0].Cast<int>() - input[1].Cast<int>();
|
||||
auto result = input[0].Cast<s32>() - input[1].Cast<s32>();
|
||||
result.r() = std::max(0, result.r());
|
||||
result.g() = std::max(0, result.g());
|
||||
result.b() = std::max(0, result.b());
|
||||
return result.Cast<u8>();
|
||||
}
|
||||
|
||||
case Operation::MultiplyThenAdd: {
|
||||
auto result = (input[0] * input[1] + 255 * input[2].Cast<int>()) / 255;
|
||||
auto result = (input[0] * input[1] + 255 * input[2].Cast<s32>()) / 255;
|
||||
result.r() = std::min(255, result.r());
|
||||
result.g() = std::min(255, result.g());
|
||||
result.b() = std::min(255, result.b());
|
||||
return result.Cast<u8>();
|
||||
}
|
||||
|
||||
case Operation::AddThenMultiply: {
|
||||
auto result = input[0] + input[1];
|
||||
result.r() = std::min(255, result.r());
|
||||
result.g() = std::min(255, result.g());
|
||||
result.b() = std::min(255, result.b());
|
||||
result = (result * input[2].Cast<int>()) / 255;
|
||||
result = (result * input[2].Cast<s32>()) / 255;
|
||||
return result.Cast<u8>();
|
||||
}
|
||||
case Operation::Dot3_RGB:
|
||||
@@ -187,11 +162,11 @@ Common::Vec3<u8> ColorCombine(TevStageConfig::Operation op, const Common::Vec3<u
|
||||
// indicate that the per-component computation can't have a higher precision than 1/256,
|
||||
// while dot3_rgb((0x80,g0,b0), (0x7F,g1,b1)) and dot3_rgb((0x80,g0,b0), (0x80,g1,b1)) give
|
||||
// different results.
|
||||
int result = ((input[0].r() * 2 - 255) * (input[1].r() * 2 - 255) + 128) / 256 +
|
||||
s32 result = ((input[0].r() * 2 - 255) * (input[1].r() * 2 - 255) + 128) / 256 +
|
||||
((input[0].g() * 2 - 255) * (input[1].g() * 2 - 255) + 128) / 256 +
|
||||
((input[0].b() * 2 - 255) * (input[1].b() * 2 - 255) + 128) / 256;
|
||||
result = std::max(0, std::min(255, result));
|
||||
return {(u8)result, (u8)result, (u8)result};
|
||||
result = std::clamp(result, 0, 255);
|
||||
return Common::Vec3{result, result, result}.Cast<u8>();
|
||||
}
|
||||
default:
|
||||
LOG_ERROR(HW_GPU, "Unknown color combiner operation {}", (int)op);
|
||||
@@ -205,31 +180,23 @@ u8 AlphaCombine(TevStageConfig::Operation op, const std::array<u8, 3>& input) {
|
||||
using Operation = TevStageConfig::Operation;
|
||||
case Operation::Replace:
|
||||
return input[0];
|
||||
|
||||
case Operation::Modulate:
|
||||
return input[0] * input[1] / 255;
|
||||
|
||||
case Operation::Add:
|
||||
return std::min(255, input[0] + input[1]);
|
||||
|
||||
case Operation::AddSigned: {
|
||||
// TODO(bunnei): Verify that the color conversion from (float) 0.5f to (byte) 128 is correct
|
||||
auto result = static_cast<int>(input[0]) + static_cast<int>(input[1]) - 128;
|
||||
return static_cast<u8>(std::clamp<int>(result, 0, 255));
|
||||
auto result = static_cast<s32>(input[0]) + static_cast<s32>(input[1]) - 128;
|
||||
return static_cast<u8>(std::clamp<s32>(result, 0, 255));
|
||||
}
|
||||
|
||||
case Operation::Lerp:
|
||||
return (input[0] * input[2] + input[1] * (255 - input[2])) / 255;
|
||||
|
||||
case Operation::Subtract:
|
||||
return std::max(0, (int)input[0] - (int)input[1]);
|
||||
|
||||
return std::max(0, static_cast<s32>(input[0]) - static_cast<s32>(input[1]));
|
||||
case Operation::MultiplyThenAdd:
|
||||
return std::min(255, (input[0] * input[1] + 255 * input[2]) / 255);
|
||||
|
||||
case Operation::AddThenMultiply:
|
||||
return (std::min(255, (input[0] + input[1])) * input[2]) / 255;
|
||||
|
||||
default:
|
||||
LOG_ERROR(HW_GPU, "Unknown alpha combiner operation {}", (int)op);
|
||||
UNIMPLEMENTED();
|
||||
@@ -237,4 +204,4 @@ u8 AlphaCombine(TevStageConfig::Operation op, const std::array<u8, 3>& input) {
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Pica::Rasterizer
|
||||
} // namespace SwRenderer
|
||||
|
@@ -4,23 +4,25 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <span>
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "common/vector_math.h"
|
||||
#include "video_core/regs_texturing.h"
|
||||
|
||||
namespace Pica::Rasterizer {
|
||||
namespace SwRenderer {
|
||||
|
||||
int GetWrappedTexCoord(TexturingRegs::TextureConfig::WrapMode mode, int val, unsigned size);
|
||||
int GetWrappedTexCoord(Pica::TexturingRegs::TextureConfig::WrapMode mode, s32 val, u32 size);
|
||||
|
||||
Common::Vec3<u8> GetColorModifier(TexturingRegs::TevStageConfig::ColorModifier factor,
|
||||
Common::Vec3<u8> GetColorModifier(Pica::TexturingRegs::TevStageConfig::ColorModifier factor,
|
||||
const Common::Vec4<u8>& values);
|
||||
|
||||
u8 GetAlphaModifier(TexturingRegs::TevStageConfig::AlphaModifier factor,
|
||||
u8 GetAlphaModifier(Pica::TexturingRegs::TevStageConfig::AlphaModifier factor,
|
||||
const Common::Vec4<u8>& values);
|
||||
|
||||
Common::Vec3<u8> ColorCombine(TexturingRegs::TevStageConfig::Operation op,
|
||||
const Common::Vec3<u8> input[3]);
|
||||
Common::Vec3<u8> ColorCombine(Pica::TexturingRegs::TevStageConfig::Operation op,
|
||||
std::span<const Common::Vec3<u8>, 3> input);
|
||||
|
||||
u8 AlphaCombine(TexturingRegs::TevStageConfig::Operation op, const std::array<u8, 3>& input);
|
||||
u8 AlphaCombine(Pica::TexturingRegs::TevStageConfig::Operation op, const std::array<u8, 3>& input);
|
||||
|
||||
} // namespace Pica::Rasterizer
|
||||
} // namespace SwRenderer
|
||||
|
Reference in New Issue
Block a user