2020-10-26 15:23:54 -05:00
|
|
|
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
|
2021-01-08 07:29:38 -06:00
|
|
|
index 44fde25bb221..044daa3a41ab 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/Documentation/admin-guide/kernel-parameters.txt
|
|
|
|
+++ b/Documentation/admin-guide/kernel-parameters.txt
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -4652,6 +4652,14 @@
|
2020-10-26 15:23:54 -05:00
|
|
|
Memory area to be used by remote processor image,
|
|
|
|
managed by CMA.
|
|
|
|
|
|
|
|
+ rqshare= [X86] Select the MuQSS scheduler runqueue sharing type.
|
|
|
|
+ Format: <string>
|
|
|
|
+ smt -- Share SMT (hyperthread) sibling runqueues
|
|
|
|
+ mc -- Share MC (multicore) sibling runqueues
|
|
|
|
+ smp -- Share SMP runqueues
|
|
|
|
+ none -- So not share any runqueues
|
|
|
|
+ Default value is mc
|
|
|
|
+
|
|
|
|
rw [KNL] Mount root device read-write on boot
|
|
|
|
|
|
|
|
S [KNL] Run init in single mode
|
|
|
|
diff --git a/Documentation/admin-guide/sysctl/kernel.rst b/Documentation/admin-guide/sysctl/kernel.rst
|
|
|
|
index d4b32cc32bb7..9e1e71fc66d0 100644
|
|
|
|
--- a/Documentation/admin-guide/sysctl/kernel.rst
|
|
|
|
+++ b/Documentation/admin-guide/sysctl/kernel.rst
|
|
|
|
@@ -436,6 +436,16 @@ this allows system administrators to override the
|
|
|
|
``IA64_THREAD_UAC_NOPRINT`` ``prctl`` and avoid logs being flooded.
|
|
|
|
|
|
|
|
|
|
|
|
+iso_cpu: (MuQSS CPU scheduler only)
|
|
|
|
+===================================
|
|
|
|
+
|
|
|
|
+This sets the percentage cpu that the unprivileged SCHED_ISO tasks can
|
|
|
|
+run effectively at realtime priority, averaged over a rolling five
|
|
|
|
+seconds over the -whole- system, meaning all cpus.
|
|
|
|
+
|
|
|
|
+Set to 70 (percent) by default.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
kexec_load_disabled
|
|
|
|
===================
|
|
|
|
|
|
|
|
@@ -1077,6 +1087,20 @@ ROM/Flash boot loader. Maybe to tell it what to do after
|
|
|
|
rebooting. ???
|
|
|
|
|
|
|
|
|
|
|
|
+rr_interval: (MuQSS CPU scheduler only)
|
|
|
|
+=======================================
|
|
|
|
+
|
|
|
|
+This is the smallest duration that any cpu process scheduling unit
|
|
|
|
+will run for. Increasing this value can increase throughput of cpu
|
|
|
|
+bound tasks substantially but at the expense of increased latencies
|
|
|
|
+overall. Conversely decreasing it will decrease average and maximum
|
|
|
|
+latencies but at the expense of throughput. This value is in
|
|
|
|
+milliseconds and the default value chosen depends on the number of
|
|
|
|
+cpus available at scheduler initialisation with a minimum of 6.
|
|
|
|
+
|
|
|
|
+Valid values are from 1-1000.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
sched_energy_aware
|
|
|
|
==================
|
|
|
|
|
|
|
|
@@ -1515,3 +1539,13 @@ is 10 seconds.
|
|
|
|
|
|
|
|
The softlockup threshold is (``2 * watchdog_thresh``). Setting this
|
|
|
|
tunable to zero will disable lockup detection altogether.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+yield_type: (MuQSS CPU scheduler only)
|
|
|
|
+======================================
|
|
|
|
+
|
|
|
|
+This determines what type of yield calls to sched_yield will perform.
|
|
|
|
+
|
|
|
|
+ 0: No yield.
|
|
|
|
+ 1: Yield only to better priority/deadline tasks. (default)
|
|
|
|
+ 2: Expire timeslice and recalculate deadline.
|
|
|
|
diff --git a/Documentation/scheduler/sched-BFS.txt b/Documentation/scheduler/sched-BFS.txt
|
|
|
|
new file mode 100644
|
|
|
|
index 000000000000..c0282002a079
|
|
|
|
--- /dev/null
|
|
|
|
+++ b/Documentation/scheduler/sched-BFS.txt
|
|
|
|
@@ -0,0 +1,351 @@
|
|
|
|
+BFS - The Brain Fuck Scheduler by Con Kolivas.
|
|
|
|
+
|
|
|
|
+Goals.
|
|
|
|
+
|
|
|
|
+The goal of the Brain Fuck Scheduler, referred to as BFS from here on, is to
|
|
|
|
+completely do away with the complex designs of the past for the cpu process
|
|
|
|
+scheduler and instead implement one that is very simple in basic design.
|
|
|
|
+The main focus of BFS is to achieve excellent desktop interactivity and
|
|
|
|
+responsiveness without heuristics and tuning knobs that are difficult to
|
|
|
|
+understand, impossible to model and predict the effect of, and when tuned to
|
|
|
|
+one workload cause massive detriment to another.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Design summary.
|
|
|
|
+
|
|
|
|
+BFS is best described as a single runqueue, O(n) lookup, earliest effective
|
|
|
|
+virtual deadline first design, loosely based on EEVDF (earliest eligible virtual
|
|
|
|
+deadline first) and my previous Staircase Deadline scheduler. Each component
|
|
|
|
+shall be described in order to understand the significance of, and reasoning for
|
|
|
|
+it. The codebase when the first stable version was released was approximately
|
|
|
|
+9000 lines less code than the existing mainline linux kernel scheduler (in
|
|
|
|
+2.6.31). This does not even take into account the removal of documentation and
|
|
|
|
+the cgroups code that is not used.
|
|
|
|
+
|
|
|
|
+Design reasoning.
|
|
|
|
+
|
|
|
|
+The single runqueue refers to the queued but not running processes for the
|
|
|
|
+entire system, regardless of the number of CPUs. The reason for going back to
|
|
|
|
+a single runqueue design is that once multiple runqueues are introduced,
|
|
|
|
+per-CPU or otherwise, there will be complex interactions as each runqueue will
|
|
|
|
+be responsible for the scheduling latency and fairness of the tasks only on its
|
|
|
|
+own runqueue, and to achieve fairness and low latency across multiple CPUs, any
|
|
|
|
+advantage in throughput of having CPU local tasks causes other disadvantages.
|
|
|
|
+This is due to requiring a very complex balancing system to at best achieve some
|
|
|
|
+semblance of fairness across CPUs and can only maintain relatively low latency
|
|
|
|
+for tasks bound to the same CPUs, not across them. To increase said fairness
|
|
|
|
+and latency across CPUs, the advantage of local runqueue locking, which makes
|
|
|
|
+for better scalability, is lost due to having to grab multiple locks.
|
|
|
|
+
|
|
|
|
+A significant feature of BFS is that all accounting is done purely based on CPU
|
|
|
|
+used and nowhere is sleep time used in any way to determine entitlement or
|
|
|
|
+interactivity. Interactivity "estimators" that use some kind of sleep/run
|
|
|
|
+algorithm are doomed to fail to detect all interactive tasks, and to falsely tag
|
|
|
|
+tasks that aren't interactive as being so. The reason for this is that it is
|
|
|
|
+close to impossible to determine that when a task is sleeping, whether it is
|
|
|
|
+doing it voluntarily, as in a userspace application waiting for input in the
|
|
|
|
+form of a mouse click or otherwise, or involuntarily, because it is waiting for
|
|
|
|
+another thread, process, I/O, kernel activity or whatever. Thus, such an
|
|
|
|
+estimator will introduce corner cases, and more heuristics will be required to
|
|
|
|
+cope with those corner cases, introducing more corner cases and failed
|
|
|
|
+interactivity detection and so on. Interactivity in BFS is built into the design
|
|
|
|
+by virtue of the fact that tasks that are waking up have not used up their quota
|
|
|
|
+of CPU time, and have earlier effective deadlines, thereby making it very likely
|
|
|
|
+they will preempt any CPU bound task of equivalent nice level. See below for
|
|
|
|
+more information on the virtual deadline mechanism. Even if they do not preempt
|
|
|
|
+a running task, because the rr interval is guaranteed to have a bound upper
|
|
|
|
+limit on how long a task will wait for, it will be scheduled within a timeframe
|
|
|
|
+that will not cause visible interface jitter.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Design details.
|
|
|
|
+
|
|
|
|
+Task insertion.
|
|
|
|
+
|
|
|
|
+BFS inserts tasks into each relevant queue as an O(1) insertion into a double
|
|
|
|
+linked list. On insertion, *every* running queue is checked to see if the newly
|
|
|
|
+queued task can run on any idle queue, or preempt the lowest running task on the
|
|
|
|
+system. This is how the cross-CPU scheduling of BFS achieves significantly lower
|
|
|
|
+latency per extra CPU the system has. In this case the lookup is, in the worst
|
|
|
|
+case scenario, O(n) where n is the number of CPUs on the system.
|
|
|
|
+
|
|
|
|
+Data protection.
|
|
|
|
+
|
|
|
|
+BFS has one single lock protecting the process local data of every task in the
|
|
|
|
+global queue. Thus every insertion, removal and modification of task data in the
|
|
|
|
+global runqueue needs to grab the global lock. However, once a task is taken by
|
|
|
|
+a CPU, the CPU has its own local data copy of the running process' accounting
|
|
|
|
+information which only that CPU accesses and modifies (such as during a
|
|
|
|
+timer tick) thus allowing the accounting data to be updated lockless. Once a
|
|
|
|
+CPU has taken a task to run, it removes it from the global queue. Thus the
|
|
|
|
+global queue only ever has, at most,
|
|
|
|
+
|
|
|
|
+ (number of tasks requesting cpu time) - (number of logical CPUs) + 1
|
|
|
|
+
|
|
|
|
+tasks in the global queue. This value is relevant for the time taken to look up
|
|
|
|
+tasks during scheduling. This will increase if many tasks with CPU affinity set
|
|
|
|
+in their policy to limit which CPUs they're allowed to run on if they outnumber
|
|
|
|
+the number of CPUs. The +1 is because when rescheduling a task, the CPU's
|
|
|
|
+currently running task is put back on the queue. Lookup will be described after
|
|
|
|
+the virtual deadline mechanism is explained.
|
|
|
|
+
|
|
|
|
+Virtual deadline.
|
|
|
|
+
|
|
|
|
+The key to achieving low latency, scheduling fairness, and "nice level"
|
|
|
|
+distribution in BFS is entirely in the virtual deadline mechanism. The one
|
|
|
|
+tunable in BFS is the rr_interval, or "round robin interval". This is the
|
|
|
|
+maximum time two SCHED_OTHER (or SCHED_NORMAL, the common scheduling policy)
|
|
|
|
+tasks of the same nice level will be running for, or looking at it the other
|
|
|
|
+way around, the longest duration two tasks of the same nice level will be
|
|
|
|
+delayed for. When a task requests cpu time, it is given a quota (time_slice)
|
|
|
|
+equal to the rr_interval and a virtual deadline. The virtual deadline is
|
|
|
|
+offset from the current time in jiffies by this equation:
|
|
|
|
+
|
|
|
|
+ jiffies + (prio_ratio * rr_interval)
|
|
|
|
+
|
|
|
|
+The prio_ratio is determined as a ratio compared to the baseline of nice -20
|
|
|
|
+and increases by 10% per nice level. The deadline is a virtual one only in that
|
|
|
|
+no guarantee is placed that a task will actually be scheduled by this time, but
|
|
|
|
+it is used to compare which task should go next. There are three components to
|
|
|
|
+how a task is next chosen. First is time_slice expiration. If a task runs out
|
|
|
|
+of its time_slice, it is descheduled, the time_slice is refilled, and the
|
|
|
|
+deadline reset to that formula above. Second is sleep, where a task no longer
|
|
|
|
+is requesting CPU for whatever reason. The time_slice and deadline are _not_
|
|
|
|
+adjusted in this case and are just carried over for when the task is next
|
|
|
|
+scheduled. Third is preemption, and that is when a newly waking task is deemed
|
|
|
|
+higher priority than a currently running task on any cpu by virtue of the fact
|
|
|
|
+that it has an earlier virtual deadline than the currently running task. The
|
|
|
|
+earlier deadline is the key to which task is next chosen for the first and
|
|
|
|
+second cases. Once a task is descheduled, it is put back on the queue, and an
|
|
|
|
+O(n) lookup of all queued-but-not-running tasks is done to determine which has
|
|
|
|
+the earliest deadline and that task is chosen to receive CPU next.
|
|
|
|
+
|
|
|
|
+The CPU proportion of different nice tasks works out to be approximately the
|
|
|
|
+
|
|
|
|
+ (prio_ratio difference)^2
|
|
|
|
+
|
|
|
|
+The reason it is squared is that a task's deadline does not change while it is
|
|
|
|
+running unless it runs out of time_slice. Thus, even if the time actually
|
|
|
|
+passes the deadline of another task that is queued, it will not get CPU time
|
|
|
|
+unless the current running task deschedules, and the time "base" (jiffies) is
|
|
|
|
+constantly moving.
|
|
|
|
+
|
|
|
|
+Task lookup.
|
|
|
|
+
|
|
|
|
+BFS has 103 priority queues. 100 of these are dedicated to the static priority
|
|
|
|
+of realtime tasks, and the remaining 3 are, in order of best to worst priority,
|
|
|
|
+SCHED_ISO (isochronous), SCHED_NORMAL, and SCHED_IDLEPRIO (idle priority
|
|
|
|
+scheduling). When a task of these priorities is queued, a bitmap of running
|
|
|
|
+priorities is set showing which of these priorities has tasks waiting for CPU
|
|
|
|
+time. When a CPU is made to reschedule, the lookup for the next task to get
|
|
|
|
+CPU time is performed in the following way:
|
|
|
|
+
|
|
|
|
+First the bitmap is checked to see what static priority tasks are queued. If
|
|
|
|
+any realtime priorities are found, the corresponding queue is checked and the
|
|
|
|
+first task listed there is taken (provided CPU affinity is suitable) and lookup
|
|
|
|
+is complete. If the priority corresponds to a SCHED_ISO task, they are also
|
|
|
|
+taken in FIFO order (as they behave like SCHED_RR). If the priority corresponds
|
|
|
|
+to either SCHED_NORMAL or SCHED_IDLEPRIO, then the lookup becomes O(n). At this
|
|
|
|
+stage, every task in the runlist that corresponds to that priority is checked
|
|
|
|
+to see which has the earliest set deadline, and (provided it has suitable CPU
|
|
|
|
+affinity) it is taken off the runqueue and given the CPU. If a task has an
|
|
|
|
+expired deadline, it is taken and the rest of the lookup aborted (as they are
|
|
|
|
+chosen in FIFO order).
|
|
|
|
+
|
|
|
|
+Thus, the lookup is O(n) in the worst case only, where n is as described
|
|
|
|
+earlier, as tasks may be chosen before the whole task list is looked over.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Scalability.
|
|
|
|
+
|
|
|
|
+The major limitations of BFS will be that of scalability, as the separate
|
|
|
|
+runqueue designs will have less lock contention as the number of CPUs rises.
|
|
|
|
+However they do not scale linearly even with separate runqueues as multiple
|
|
|
|
+runqueues will need to be locked concurrently on such designs to be able to
|
|
|
|
+achieve fair CPU balancing, to try and achieve some sort of nice-level fairness
|
|
|
|
+across CPUs, and to achieve low enough latency for tasks on a busy CPU when
|
|
|
|
+other CPUs would be more suited. BFS has the advantage that it requires no
|
|
|
|
+balancing algorithm whatsoever, as balancing occurs by proxy simply because
|
|
|
|
+all CPUs draw off the global runqueue, in priority and deadline order. Despite
|
|
|
|
+the fact that scalability is _not_ the prime concern of BFS, it both shows very
|
|
|
|
+good scalability to smaller numbers of CPUs and is likely a more scalable design
|
|
|
|
+at these numbers of CPUs.
|
|
|
|
+
|
|
|
|
+It also has some very low overhead scalability features built into the design
|
|
|
|
+when it has been deemed their overhead is so marginal that they're worth adding.
|
|
|
|
+The first is the local copy of the running process' data to the CPU it's running
|
|
|
|
+on to allow that data to be updated lockless where possible. Then there is
|
|
|
|
+deference paid to the last CPU a task was running on, by trying that CPU first
|
|
|
|
+when looking for an idle CPU to use the next time it's scheduled. Finally there
|
|
|
|
+is the notion of cache locality beyond the last running CPU. The sched_domains
|
|
|
|
+information is used to determine the relative virtual "cache distance" that
|
|
|
|
+other CPUs have from the last CPU a task was running on. CPUs with shared
|
|
|
|
+caches, such as SMT siblings, or multicore CPUs with shared caches, are treated
|
|
|
|
+as cache local. CPUs without shared caches are treated as not cache local, and
|
|
|
|
+CPUs on different NUMA nodes are treated as very distant. This "relative cache
|
|
|
|
+distance" is used by modifying the virtual deadline value when doing lookups.
|
|
|
|
+Effectively, the deadline is unaltered between "cache local" CPUs, doubled for
|
|
|
|
+"cache distant" CPUs, and quadrupled for "very distant" CPUs. The reasoning
|
|
|
|
+behind the doubling of deadlines is as follows. The real cost of migrating a
|
|
|
|
+task from one CPU to another is entirely dependant on the cache footprint of
|
|
|
|
+the task, how cache intensive the task is, how long it's been running on that
|
|
|
|
+CPU to take up the bulk of its cache, how big the CPU cache is, how fast and
|
|
|
|
+how layered the CPU cache is, how fast a context switch is... and so on. In
|
|
|
|
+other words, it's close to random in the real world where we do more than just
|
|
|
|
+one sole workload. The only thing we can be sure of is that it's not free. So
|
|
|
|
+BFS uses the principle that an idle CPU is a wasted CPU and utilising idle CPUs
|
|
|
|
+is more important than cache locality, and cache locality only plays a part
|
|
|
|
+after that. Doubling the effective deadline is based on the premise that the
|
|
|
|
+"cache local" CPUs will tend to work on the same tasks up to double the number
|
|
|
|
+of cache local CPUs, and once the workload is beyond that amount, it is likely
|
|
|
|
+that none of the tasks are cache warm anywhere anyway. The quadrupling for NUMA
|
|
|
|
+is a value I pulled out of my arse.
|
|
|
|
+
|
|
|
|
+When choosing an idle CPU for a waking task, the cache locality is determined
|
|
|
|
+according to where the task last ran and then idle CPUs are ranked from best
|
|
|
|
+to worst to choose the most suitable idle CPU based on cache locality, NUMA
|
|
|
|
+node locality and hyperthread sibling business. They are chosen in the
|
|
|
|
+following preference (if idle):
|
|
|
|
+
|
|
|
|
+* Same core, idle or busy cache, idle threads
|
|
|
|
+* Other core, same cache, idle or busy cache, idle threads.
|
|
|
|
+* Same node, other CPU, idle cache, idle threads.
|
|
|
|
+* Same node, other CPU, busy cache, idle threads.
|
|
|
|
+* Same core, busy threads.
|
|
|
|
+* Other core, same cache, busy threads.
|
|
|
|
+* Same node, other CPU, busy threads.
|
|
|
|
+* Other node, other CPU, idle cache, idle threads.
|
|
|
|
+* Other node, other CPU, busy cache, idle threads.
|
|
|
|
+* Other node, other CPU, busy threads.
|
|
|
|
+
|
|
|
|
+This shows the SMT or "hyperthread" awareness in the design as well which will
|
|
|
|
+choose a real idle core first before a logical SMT sibling which already has
|
|
|
|
+tasks on the physical CPU.
|
|
|
|
+
|
|
|
|
+Early benchmarking of BFS suggested scalability dropped off at the 16 CPU mark.
|
|
|
|
+However this benchmarking was performed on an earlier design that was far less
|
|
|
|
+scalable than the current one so it's hard to know how scalable it is in terms
|
|
|
|
+of both CPUs (due to the global runqueue) and heavily loaded machines (due to
|
|
|
|
+O(n) lookup) at this stage. Note that in terms of scalability, the number of
|
|
|
|
+_logical_ CPUs matters, not the number of _physical_ CPUs. Thus, a dual (2x)
|
|
|
|
+quad core (4X) hyperthreaded (2X) machine is effectively a 16X. Newer benchmark
|
|
|
|
+results are very promising indeed, without needing to tweak any knobs, features
|
|
|
|
+or options. Benchmark contributions are most welcome.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Features
|
|
|
|
+
|
|
|
|
+As the initial prime target audience for BFS was the average desktop user, it
|
|
|
|
+was designed to not need tweaking, tuning or have features set to obtain benefit
|
|
|
|
+from it. Thus the number of knobs and features has been kept to an absolute
|
|
|
|
+minimum and should not require extra user input for the vast majority of cases.
|
|
|
|
+There are precisely 2 tunables, and 2 extra scheduling policies. The rr_interval
|
|
|
|
+and iso_cpu tunables, and the SCHED_ISO and SCHED_IDLEPRIO policies. In addition
|
|
|
|
+to this, BFS also uses sub-tick accounting. What BFS does _not_ now feature is
|
|
|
|
+support for CGROUPS. The average user should neither need to know what these
|
|
|
|
+are, nor should they need to be using them to have good desktop behaviour.
|
|
|
|
+
|
|
|
|
+rr_interval
|
|
|
|
+
|
|
|
|
+There is only one "scheduler" tunable, the round robin interval. This can be
|
|
|
|
+accessed in
|
|
|
|
+
|
|
|
|
+ /proc/sys/kernel/rr_interval
|
|
|
|
+
|
|
|
|
+The value is in milliseconds, and the default value is set to 6 on a
|
|
|
|
+uniprocessor machine, and automatically set to a progressively higher value on
|
|
|
|
+multiprocessor machines. The reasoning behind increasing the value on more CPUs
|
|
|
|
+is that the effective latency is decreased by virtue of there being more CPUs on
|
|
|
|
+BFS (for reasons explained above), and increasing the value allows for less
|
|
|
|
+cache contention and more throughput. Valid values are from 1 to 1000
|
|
|
|
+Decreasing the value will decrease latencies at the cost of decreasing
|
|
|
|
+throughput, while increasing it will improve throughput, but at the cost of
|
|
|
|
+worsening latencies. The accuracy of the rr interval is limited by HZ resolution
|
|
|
|
+of the kernel configuration. Thus, the worst case latencies are usually slightly
|
|
|
|
+higher than this actual value. The default value of 6 is not an arbitrary one.
|
|
|
|
+It is based on the fact that humans can detect jitter at approximately 7ms, so
|
|
|
|
+aiming for much lower latencies is pointless under most circumstances. It is
|
|
|
|
+worth noting this fact when comparing the latency performance of BFS to other
|
|
|
|
+schedulers. Worst case latencies being higher than 7ms are far worse than
|
|
|
|
+average latencies not being in the microsecond range.
|
|
|
|
+
|
|
|
|
+Isochronous scheduling.
|
|
|
|
+
|
|
|
|
+Isochronous scheduling is a unique scheduling policy designed to provide
|
|
|
|
+near-real-time performance to unprivileged (ie non-root) users without the
|
|
|
|
+ability to starve the machine indefinitely. Isochronous tasks (which means
|
|
|
|
+"same time") are set using, for example, the schedtool application like so:
|
|
|
|
+
|
|
|
|
+ schedtool -I -e amarok
|
|
|
|
+
|
|
|
|
+This will start the audio application "amarok" as SCHED_ISO. How SCHED_ISO works
|
|
|
|
+is that it has a priority level between true realtime tasks and SCHED_NORMAL
|
|
|
|
+which would allow them to preempt all normal tasks, in a SCHED_RR fashion (ie,
|
|
|
|
+if multiple SCHED_ISO tasks are running, they purely round robin at rr_interval
|
|
|
|
+rate). However if ISO tasks run for more than a tunable finite amount of time,
|
|
|
|
+they are then demoted back to SCHED_NORMAL scheduling. This finite amount of
|
|
|
|
+time is the percentage of _total CPU_ available across the machine, configurable
|
|
|
|
+as a percentage in the following "resource handling" tunable (as opposed to a
|
|
|
|
+scheduler tunable):
|
|
|
|
+
|
|
|
|
+ /proc/sys/kernel/iso_cpu
|
|
|
|
+
|
|
|
|
+and is set to 70% by default. It is calculated over a rolling 5 second average
|
|
|
|
+Because it is the total CPU available, it means that on a multi CPU machine, it
|
|
|
|
+is possible to have an ISO task running as realtime scheduling indefinitely on
|
|
|
|
+just one CPU, as the other CPUs will be available. Setting this to 100 is the
|
|
|
|
+equivalent of giving all users SCHED_RR access and setting it to 0 removes the
|
|
|
|
+ability to run any pseudo-realtime tasks.
|
|
|
|
+
|
|
|
|
+A feature of BFS is that it detects when an application tries to obtain a
|
|
|
|
+realtime policy (SCHED_RR or SCHED_FIFO) and the caller does not have the
|
|
|
|
+appropriate privileges to use those policies. When it detects this, it will
|
|
|
|
+give the task SCHED_ISO policy instead. Thus it is transparent to the user.
|
|
|
|
+Because some applications constantly set their policy as well as their nice
|
|
|
|
+level, there is potential for them to undo the override specified by the user
|
|
|
|
+on the command line of setting the policy to SCHED_ISO. To counter this, once
|
|
|
|
+a task has been set to SCHED_ISO policy, it needs superuser privileges to set
|
|
|
|
+it back to SCHED_NORMAL. This will ensure the task remains ISO and all child
|
|
|
|
+processes and threads will also inherit the ISO policy.
|
|
|
|
+
|
|
|
|
+Idleprio scheduling.
|
|
|
|
+
|
|
|
|
+Idleprio scheduling is a scheduling policy designed to give out CPU to a task
|
|
|
|
+_only_ when the CPU would be otherwise idle. The idea behind this is to allow
|
|
|
|
+ultra low priority tasks to be run in the background that have virtually no
|
|
|
|
+effect on the foreground tasks. This is ideally suited to distributed computing
|
|
|
|
+clients (like setiathome, folding, mprime etc) but can also be used to start
|
|
|
|
+a video encode or so on without any slowdown of other tasks. To avoid this
|
|
|
|
+policy from grabbing shared resources and holding them indefinitely, if it
|
|
|
|
+detects a state where the task is waiting on I/O, the machine is about to
|
|
|
|
+suspend to ram and so on, it will transiently schedule them as SCHED_NORMAL. As
|
|
|
|
+per the Isochronous task management, once a task has been scheduled as IDLEPRIO,
|
|
|
|
+it cannot be put back to SCHED_NORMAL without superuser privileges. Tasks can
|
|
|
|
+be set to start as SCHED_IDLEPRIO with the schedtool command like so:
|
|
|
|
+
|
|
|
|
+ schedtool -D -e ./mprime
|
|
|
|
+
|
|
|
|
+Subtick accounting.
|
|
|
|
+
|
|
|
|
+It is surprisingly difficult to get accurate CPU accounting, and in many cases,
|
|
|
|
+the accounting is done by simply determining what is happening at the precise
|
|
|
|
+moment a timer tick fires off. This becomes increasingly inaccurate as the
|
|
|
|
+timer tick frequency (HZ) is lowered. It is possible to create an application
|
|
|
|
+which uses almost 100% CPU, yet by being descheduled at the right time, records
|
|
|
|
+zero CPU usage. While the main problem with this is that there are possible
|
|
|
|
+security implications, it is also difficult to determine how much CPU a task
|
|
|
|
+really does use. BFS tries to use the sub-tick accounting from the TSC clock,
|
|
|
|
+where possible, to determine real CPU usage. This is not entirely reliable, but
|
|
|
|
+is far more likely to produce accurate CPU usage data than the existing designs
|
|
|
|
+and will not show tasks as consuming no CPU usage when they actually are. Thus,
|
|
|
|
+the amount of CPU reported as being used by BFS will more accurately represent
|
|
|
|
+how much CPU the task itself is using (as is shown for example by the 'time'
|
|
|
|
+application), so the reported values may be quite different to other schedulers.
|
|
|
|
+Values reported as the 'load' are more prone to problems with this design, but
|
|
|
|
+per process values are closer to real usage. When comparing throughput of BFS
|
|
|
|
+to other designs, it is important to compare the actual completed work in terms
|
|
|
|
+of total wall clock time taken and total work done, rather than the reported
|
|
|
|
+"cpu usage".
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Con Kolivas <kernel@kolivas.org> Fri Aug 27 2010
|
|
|
|
diff --git a/Documentation/scheduler/sched-MuQSS.txt b/Documentation/scheduler/sched-MuQSS.txt
|
|
|
|
new file mode 100644
|
|
|
|
index 000000000000..ae28b85c9995
|
|
|
|
--- /dev/null
|
|
|
|
+++ b/Documentation/scheduler/sched-MuQSS.txt
|
|
|
|
@@ -0,0 +1,373 @@
|
|
|
|
+MuQSS - The Multiple Queue Skiplist Scheduler by Con Kolivas.
|
|
|
|
+
|
|
|
|
+MuQSS is a per-cpu runqueue variant of the original BFS scheduler with
|
|
|
|
+one 8 level skiplist per runqueue, and fine grained locking for much more
|
|
|
|
+scalability.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Goals.
|
|
|
|
+
|
|
|
|
+The goal of the Multiple Queue Skiplist Scheduler, referred to as MuQSS from
|
|
|
|
+here on (pronounced mux) is to completely do away with the complex designs of
|
|
|
|
+the past for the cpu process scheduler and instead implement one that is very
|
|
|
|
+simple in basic design. The main focus of MuQSS is to achieve excellent desktop
|
|
|
|
+interactivity and responsiveness without heuristics and tuning knobs that are
|
|
|
|
+difficult to understand, impossible to model and predict the effect of, and when
|
|
|
|
+tuned to one workload cause massive detriment to another, while still being
|
|
|
|
+scalable to many CPUs and processes.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Design summary.
|
|
|
|
+
|
|
|
|
+MuQSS is best described as per-cpu multiple runqueue, O(log n) insertion, O(1)
|
|
|
|
+lookup, earliest effective virtual deadline first tickless design, loosely based
|
|
|
|
+on EEVDF (earliest eligible virtual deadline first) and my previous Staircase
|
|
|
|
+Deadline scheduler, and evolved from the single runqueue O(n) BFS scheduler.
|
|
|
|
+Each component shall be described in order to understand the significance of,
|
|
|
|
+and reasoning for it.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Design reasoning.
|
|
|
|
+
|
|
|
|
+In BFS, the use of a single runqueue across all CPUs meant that each CPU would
|
|
|
|
+need to scan the entire runqueue looking for the process with the earliest
|
|
|
|
+deadline and schedule that next, regardless of which CPU it originally came
|
|
|
|
+from. This made BFS deterministic with respect to latency and provided
|
|
|
|
+guaranteed latencies dependent on number of processes and CPUs. The single
|
|
|
|
+runqueue, however, meant that all CPUs would compete for the single lock
|
|
|
|
+protecting it, which would lead to increasing lock contention as the number of
|
|
|
|
+CPUs rose and appeared to limit scalability of common workloads beyond 16
|
|
|
|
+logical CPUs. Additionally, the O(n) lookup of the runqueue list obviously
|
|
|
|
+increased overhead proportionate to the number of queued proecesses and led to
|
|
|
|
+cache thrashing while iterating over the linked list.
|
|
|
|
+
|
|
|
|
+MuQSS is an evolution of BFS, designed to maintain the same scheduling
|
|
|
|
+decision mechanism and be virtually deterministic without relying on the
|
|
|
|
+constrained design of the single runqueue by splitting out the single runqueue
|
|
|
|
+to be per-CPU and use skiplists instead of linked lists.
|
|
|
|
+
|
|
|
|
+The original reason for going back to a single runqueue design for BFS was that
|
|
|
|
+once multiple runqueues are introduced, per-CPU or otherwise, there will be
|
|
|
|
+complex interactions as each runqueue will be responsible for the scheduling
|
|
|
|
+latency and fairness of the tasks only on its own runqueue, and to achieve
|
|
|
|
+fairness and low latency across multiple CPUs, any advantage in throughput of
|
|
|
|
+having CPU local tasks causes other disadvantages. This is due to requiring a
|
|
|
|
+very complex balancing system to at best achieve some semblance of fairness
|
|
|
|
+across CPUs and can only maintain relatively low latency for tasks bound to the
|
|
|
|
+same CPUs, not across them. To increase said fairness and latency across CPUs,
|
|
|
|
+the advantage of local runqueue locking, which makes for better scalability, is
|
|
|
|
+lost due to having to grab multiple locks.
|
|
|
|
+
|
|
|
|
+MuQSS works around the problems inherent in multiple runqueue designs by
|
|
|
|
+making its skip lists priority ordered and through novel use of lockless
|
|
|
|
+examination of each other runqueue it can decide if it should take the earliest
|
|
|
|
+deadline task from another runqueue for latency reasons, or for CPU balancing
|
|
|
|
+reasons. It still does not have a balancing system, choosing to allow the
|
|
|
|
+next task scheduling decision and task wakeup CPU choice to allow balancing to
|
|
|
|
+happen by virtue of its choices.
|
|
|
|
+
|
|
|
|
+As a further evolution of the design, MuQSS normally configures sharing of
|
|
|
|
+runqueues in a logical fashion for when CPU resources are shared for improved
|
|
|
|
+latency and throughput. By default it shares runqueues and locks between
|
|
|
|
+multicore siblings. Optionally it can be configured to run with sharing of
|
|
|
|
+SMT siblings only, all SMP packages or no sharing at all. Additionally it can
|
|
|
|
+be selected at boot time.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Design details.
|
|
|
|
+
|
|
|
|
+Custom skip list implementation:
|
|
|
|
+
|
|
|
|
+To avoid the overhead of building up and tearing down skip list structures,
|
|
|
|
+the variant used by MuQSS has a number of optimisations making it specific for
|
|
|
|
+its use case in the scheduler. It uses static arrays of 8 'levels' instead of
|
|
|
|
+building up and tearing down structures dynamically. This makes each runqueue
|
|
|
|
+only scale O(log N) up to 64k tasks. However as there is one runqueue per CPU
|
|
|
|
+it means that it scales O(log N) up to 64k x number of logical CPUs which is
|
|
|
|
+far beyond the realistic task limits each CPU could handle. By being 8 levels
|
|
|
|
+it also makes the array exactly one cacheline in size. Additionally, each
|
|
|
|
+skip list node is bidirectional making insertion and removal amortised O(1),
|
|
|
|
+being O(k) where k is 1-8. Uniquely, we are only ever interested in the very
|
|
|
|
+first entry in each list at all times with MuQSS, so there is never a need to
|
|
|
|
+do a search and thus look up is always O(1). In interactive mode, the queues
|
|
|
|
+will be searched beyond their first entry if the first task is not suitable
|
|
|
|
+for affinity or SMT nice reasons.
|
|
|
|
+
|
|
|
|
+Task insertion:
|
|
|
|
+
|
|
|
|
+MuQSS inserts tasks into a per CPU runqueue as an O(log N) insertion into
|
|
|
|
+a custom skip list as described above (based on the original design by William
|
|
|
|
+Pugh). Insertion is ordered in such a way that there is never a need to do a
|
|
|
|
+search by ordering tasks according to static priority primarily, and then
|
|
|
|
+virtual deadline at the time of insertion.
|
|
|
|
+
|
|
|
|
+Niffies:
|
|
|
|
+
|
|
|
|
+Niffies are a monotonic forward moving timer not unlike the "jiffies" but are
|
|
|
|
+of nanosecond resolution. Niffies are calculated per-runqueue from the high
|
|
|
|
+resolution TSC timers, and in order to maintain fairness are synchronised
|
|
|
|
+between CPUs whenever both runqueues are locked concurrently.
|
|
|
|
+
|
|
|
|
+Virtual deadline:
|
|
|
|
+
|
|
|
|
+The key to achieving low latency, scheduling fairness, and "nice level"
|
|
|
|
+distribution in MuQSS is entirely in the virtual deadline mechanism. The one
|
|
|
|
+tunable in MuQSS is the rr_interval, or "round robin interval". This is the
|
|
|
|
+maximum time two SCHED_OTHER (or SCHED_NORMAL, the common scheduling policy)
|
|
|
|
+tasks of the same nice level will be running for, or looking at it the other
|
|
|
|
+way around, the longest duration two tasks of the same nice level will be
|
|
|
|
+delayed for. When a task requests cpu time, it is given a quota (time_slice)
|
|
|
|
+equal to the rr_interval and a virtual deadline. The virtual deadline is
|
|
|
|
+offset from the current time in niffies by this equation:
|
|
|
|
+
|
|
|
|
+ niffies + (prio_ratio * rr_interval)
|
|
|
|
+
|
|
|
|
+The prio_ratio is determined as a ratio compared to the baseline of nice -20
|
|
|
|
+and increases by 10% per nice level. The deadline is a virtual one only in that
|
|
|
|
+no guarantee is placed that a task will actually be scheduled by this time, but
|
|
|
|
+it is used to compare which task should go next. There are three components to
|
|
|
|
+how a task is next chosen. First is time_slice expiration. If a task runs out
|
|
|
|
+of its time_slice, it is descheduled, the time_slice is refilled, and the
|
|
|
|
+deadline reset to that formula above. Second is sleep, where a task no longer
|
|
|
|
+is requesting CPU for whatever reason. The time_slice and deadline are _not_
|
|
|
|
+adjusted in this case and are just carried over for when the task is next
|
|
|
|
+scheduled. Third is preemption, and that is when a newly waking task is deemed
|
|
|
|
+higher priority than a currently running task on any cpu by virtue of the fact
|
|
|
|
+that it has an earlier virtual deadline than the currently running task. The
|
|
|
|
+earlier deadline is the key to which task is next chosen for the first and
|
|
|
|
+second cases.
|
|
|
|
+
|
|
|
|
+The CPU proportion of different nice tasks works out to be approximately the
|
|
|
|
+
|
|
|
|
+ (prio_ratio difference)^2
|
|
|
|
+
|
|
|
|
+The reason it is squared is that a task's deadline does not change while it is
|
|
|
|
+running unless it runs out of time_slice. Thus, even if the time actually
|
|
|
|
+passes the deadline of another task that is queued, it will not get CPU time
|
|
|
|
+unless the current running task deschedules, and the time "base" (niffies) is
|
|
|
|
+constantly moving.
|
|
|
|
+
|
|
|
|
+Task lookup:
|
|
|
|
+
|
|
|
|
+As tasks are already pre-ordered according to anticipated scheduling order in
|
|
|
|
+the skip lists, lookup for the next suitable task per-runqueue is always a
|
|
|
|
+matter of simply selecting the first task in the 0th level skip list entry.
|
|
|
|
+In order to maintain optimal latency and fairness across CPUs, MuQSS does a
|
|
|
|
+novel examination of every other runqueue in cache locality order, choosing the
|
|
|
|
+best task across all runqueues. This provides near-determinism of how long any
|
|
|
|
+task across the entire system may wait before receiving CPU time. The other
|
|
|
|
+runqueues are first examine lockless and then trylocked to minimise the
|
|
|
|
+potential lock contention if they are likely to have a suitable better task.
|
|
|
|
+Each other runqueue lock is only held for as long as it takes to examine the
|
|
|
|
+entry for suitability. In "interactive" mode, the default setting, MuQSS will
|
|
|
|
+look for the best deadline task across all CPUs, while in !interactive mode,
|
|
|
|
+it will only select a better deadline task from another CPU if it is more
|
|
|
|
+heavily laden than the current one.
|
|
|
|
+
|
|
|
|
+Lookup is therefore O(k) where k is number of CPUs.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Latency.
|
|
|
|
+
|
|
|
|
+Through the use of virtual deadlines to govern the scheduling order of normal
|
|
|
|
+tasks, queue-to-activation latency per runqueue is guaranteed to be bound by
|
|
|
|
+the rr_interval tunable which is set to 6ms by default. This means that the
|
|
|
|
+longest a CPU bound task will wait for more CPU is proportional to the number
|
|
|
|
+of running tasks and in the common case of 0-2 running tasks per CPU, will be
|
|
|
|
+under the 7ms threshold for human perception of jitter. Additionally, as newly
|
|
|
|
+woken tasks will have an early deadline from their previous runtime, the very
|
|
|
|
+tasks that are usually latency sensitive will have the shortest interval for
|
|
|
|
+activation, usually preempting any existing CPU bound tasks.
|
|
|
|
+
|
|
|
|
+Tickless expiry:
|
|
|
|
+
|
|
|
|
+A feature of MuQSS is that it is not tied to the resolution of the chosen tick
|
|
|
|
+rate in Hz, instead depending entirely on the high resolution timers where
|
|
|
|
+possible for sub-millisecond accuracy on timeouts regarless of the underlying
|
|
|
|
+tick rate. This allows MuQSS to be run with the low overhead of low Hz rates
|
|
|
|
+such as 100 by default, benefiting from the improved throughput and lower
|
|
|
|
+power usage it provides. Another advantage of this approach is that in
|
|
|
|
+combination with the Full No HZ option, which disables ticks on running task
|
|
|
|
+CPUs instead of just idle CPUs, the tick can be disabled at all times
|
|
|
|
+regardless of how many tasks are running instead of being limited to just one
|
|
|
|
+running task. Note that this option is NOT recommended for regular desktop
|
|
|
|
+users.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Scalability and balancing.
|
|
|
|
+
|
|
|
|
+Unlike traditional approaches where balancing is a combination of CPU selection
|
|
|
|
+at task wakeup and intermittent balancing based on a vast array of rules set
|
|
|
|
+according to architecture, busyness calculations and special case management,
|
|
|
|
+MuQSS indirectly balances on the fly at task wakeup and next task selection.
|
|
|
|
+During initialisation, MuQSS creates a cache coherency ordered list of CPUs for
|
|
|
|
+each logical CPU and uses this to aid task/CPU selection when CPUs are busy.
|
|
|
|
+Additionally it selects any idle CPUs, if they are available, at any time over
|
|
|
|
+busy CPUs according to the following preference:
|
|
|
|
+
|
|
|
|
+ * Same thread, idle or busy cache, idle or busy threads
|
|
|
|
+ * Other core, same cache, idle or busy cache, idle threads.
|
|
|
|
+ * Same node, other CPU, idle cache, idle threads.
|
|
|
|
+ * Same node, other CPU, busy cache, idle threads.
|
|
|
|
+ * Other core, same cache, busy threads.
|
|
|
|
+ * Same node, other CPU, busy threads.
|
|
|
|
+ * Other node, other CPU, idle cache, idle threads.
|
|
|
|
+ * Other node, other CPU, busy cache, idle threads.
|
|
|
|
+ * Other node, other CPU, busy threads.
|
|
|
|
+
|
|
|
|
+Mux is therefore SMT, MC and Numa aware without the need for extra
|
|
|
|
+intermittent balancing to maintain CPUs busy and make the most of cache
|
|
|
|
+coherency.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Features
|
|
|
|
+
|
|
|
|
+As the initial prime target audience for MuQSS was the average desktop user, it
|
|
|
|
+was designed to not need tweaking, tuning or have features set to obtain benefit
|
|
|
|
+from it. Thus the number of knobs and features has been kept to an absolute
|
|
|
|
+minimum and should not require extra user input for the vast majority of cases.
|
|
|
|
+There are 3 optional tunables, and 2 extra scheduling policies. The rr_interval,
|
|
|
|
+interactive, and iso_cpu tunables, and the SCHED_ISO and SCHED_IDLEPRIO
|
|
|
|
+policies. In addition to this, MuQSS also uses sub-tick accounting. What MuQSS
|
|
|
|
+does _not_ now feature is support for CGROUPS. The average user should neither
|
|
|
|
+need to know what these are, nor should they need to be using them to have good
|
|
|
|
+desktop behaviour. However since some applications refuse to work without
|
|
|
|
+cgroups, one can enable them with MuQSS as a stub and the filesystem will be
|
|
|
|
+created which will allow the applications to work.
|
|
|
|
+
|
|
|
|
+rr_interval:
|
|
|
|
+
|
|
|
|
+ /proc/sys/kernel/rr_interval
|
|
|
|
+
|
|
|
|
+The value is in milliseconds, and the default value is set to 6. Valid values
|
|
|
|
+are from 1 to 1000 Decreasing the value will decrease latencies at the cost of
|
|
|
|
+decreasing throughput, while increasing it will improve throughput, but at the
|
|
|
|
+cost of worsening latencies. It is based on the fact that humans can detect
|
|
|
|
+jitter at approximately 7ms, so aiming for much lower latencies is pointless
|
|
|
|
+under most circumstances. It is worth noting this fact when comparing the
|
|
|
|
+latency performance of MuQSS to other schedulers. Worst case latencies being
|
|
|
|
+higher than 7ms are far worse than average latencies not being in the
|
|
|
|
+microsecond range.
|
|
|
|
+
|
|
|
|
+interactive:
|
|
|
|
+
|
|
|
|
+ /proc/sys/kernel/interactive
|
|
|
|
+
|
|
|
|
+The value is a simple boolean of 1 for on and 0 for off and is set to on by
|
|
|
|
+default. Disabling this will disable the near-determinism of MuQSS when
|
|
|
|
+selecting the next task by not examining all CPUs for the earliest deadline
|
|
|
|
+task, or which CPU to wake to, instead prioritising CPU balancing for improved
|
|
|
|
+throughput. Latency will still be bound by rr_interval, but on a per-CPU basis
|
|
|
|
+instead of across the whole system.
|
|
|
|
+
|
|
|
|
+Runqueue sharing.
|
|
|
|
+
|
|
|
|
+By default MuQSS chooses to share runqueue resources (specifically the skip
|
|
|
|
+list and locking) between multicore siblings. It is configurable at build time
|
|
|
|
+to select between None, SMT, MC and SMP, corresponding to no sharing, sharing
|
|
|
|
+only between simultaneous mulithreading siblings, multicore siblings, or
|
|
|
|
+symmetric multiprocessing physical packages. Additionally it can be se at
|
|
|
|
+bootime with the use of the rqshare parameter. The reason for configurability
|
|
|
|
+is that some architectures have CPUs with many multicore siblings (>= 16)
|
|
|
|
+where it may be detrimental to throughput to share runqueues and another
|
|
|
|
+sharing option may be desirable. Additionally, more sharing than usual can
|
|
|
|
+improve latency on a system-wide level at the expense of throughput if desired.
|
|
|
|
+
|
|
|
|
+The options are:
|
|
|
|
+none, smt, mc, smp
|
|
|
|
+
|
|
|
|
+eg:
|
|
|
|
+ rqshare=mc
|
|
|
|
+
|
|
|
|
+Isochronous scheduling:
|
|
|
|
+
|
|
|
|
+Isochronous scheduling is a unique scheduling policy designed to provide
|
|
|
|
+near-real-time performance to unprivileged (ie non-root) users without the
|
|
|
|
+ability to starve the machine indefinitely. Isochronous tasks (which means
|
|
|
|
+"same time") are set using, for example, the schedtool application like so:
|
|
|
|
+
|
|
|
|
+ schedtool -I -e amarok
|
|
|
|
+
|
|
|
|
+This will start the audio application "amarok" as SCHED_ISO. How SCHED_ISO works
|
|
|
|
+is that it has a priority level between true realtime tasks and SCHED_NORMAL
|
|
|
|
+which would allow them to preempt all normal tasks, in a SCHED_RR fashion (ie,
|
|
|
|
+if multiple SCHED_ISO tasks are running, they purely round robin at rr_interval
|
|
|
|
+rate). However if ISO tasks run for more than a tunable finite amount of time,
|
|
|
|
+they are then demoted back to SCHED_NORMAL scheduling. This finite amount of
|
|
|
|
+time is the percentage of CPU available per CPU, configurable as a percentage in
|
|
|
|
+the following "resource handling" tunable (as opposed to a scheduler tunable):
|
|
|
|
+
|
|
|
|
+iso_cpu:
|
|
|
|
+
|
|
|
|
+ /proc/sys/kernel/iso_cpu
|
|
|
|
+
|
|
|
|
+and is set to 70% by default. It is calculated over a rolling 5 second average
|
|
|
|
+Because it is the total CPU available, it means that on a multi CPU machine, it
|
|
|
|
+is possible to have an ISO task running as realtime scheduling indefinitely on
|
|
|
|
+just one CPU, as the other CPUs will be available. Setting this to 100 is the
|
|
|
|
+equivalent of giving all users SCHED_RR access and setting it to 0 removes the
|
|
|
|
+ability to run any pseudo-realtime tasks.
|
|
|
|
+
|
|
|
|
+A feature of MuQSS is that it detects when an application tries to obtain a
|
|
|
|
+realtime policy (SCHED_RR or SCHED_FIFO) and the caller does not have the
|
|
|
|
+appropriate privileges to use those policies. When it detects this, it will
|
|
|
|
+give the task SCHED_ISO policy instead. Thus it is transparent to the user.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Idleprio scheduling:
|
|
|
|
+
|
|
|
|
+Idleprio scheduling is a scheduling policy designed to give out CPU to a task
|
|
|
|
+_only_ when the CPU would be otherwise idle. The idea behind this is to allow
|
|
|
|
+ultra low priority tasks to be run in the background that have virtually no
|
|
|
|
+effect on the foreground tasks. This is ideally suited to distributed computing
|
|
|
|
+clients (like setiathome, folding, mprime etc) but can also be used to start a
|
|
|
|
+video encode or so on without any slowdown of other tasks. To avoid this policy
|
|
|
|
+from grabbing shared resources and holding them indefinitely, if it detects a
|
|
|
|
+state where the task is waiting on I/O, the machine is about to suspend to ram
|
|
|
|
+and so on, it will transiently schedule them as SCHED_NORMAL. Once a task has
|
|
|
|
+been scheduled as IDLEPRIO, it cannot be put back to SCHED_NORMAL without
|
|
|
|
+superuser privileges since it is effectively a lower scheduling policy. Tasks
|
|
|
|
+can be set to start as SCHED_IDLEPRIO with the schedtool command like so:
|
|
|
|
+
|
|
|
|
+schedtool -D -e ./mprime
|
|
|
|
+
|
|
|
|
+Subtick accounting:
|
|
|
|
+
|
|
|
|
+It is surprisingly difficult to get accurate CPU accounting, and in many cases,
|
|
|
|
+the accounting is done by simply determining what is happening at the precise
|
|
|
|
+moment a timer tick fires off. This becomes increasingly inaccurate as the timer
|
|
|
|
+tick frequency (HZ) is lowered. It is possible to create an application which
|
|
|
|
+uses almost 100% CPU, yet by being descheduled at the right time, records zero
|
|
|
|
+CPU usage. While the main problem with this is that there are possible security
|
|
|
|
+implications, it is also difficult to determine how much CPU a task really does
|
|
|
|
+use. Mux uses sub-tick accounting from the TSC clock to determine real CPU
|
|
|
|
+usage. Thus, the amount of CPU reported as being used by MuQSS will more
|
|
|
|
+accurately represent how much CPU the task itself is using (as is shown for
|
|
|
|
+example by the 'time' application), so the reported values may be quite
|
|
|
|
+different to other schedulers. When comparing throughput of MuQSS to other
|
|
|
|
+designs, it is important to compare the actual completed work in terms of total
|
|
|
|
+wall clock time taken and total work done, rather than the reported "cpu usage".
|
|
|
|
+
|
|
|
|
+Symmetric MultiThreading (SMT) aware nice:
|
|
|
|
+
|
|
|
|
+SMT, a.k.a. hyperthreading, is a very common feature on modern CPUs. While the
|
|
|
|
+logical CPU count rises by adding thread units to each CPU core, allowing more
|
|
|
|
+than one task to be run simultaneously on the same core, the disadvantage of it
|
|
|
|
+is that the CPU power is shared between the tasks, not summating to the power
|
|
|
|
+of two CPUs. The practical upshot of this is that two tasks running on
|
|
|
|
+separate threads of the same core run significantly slower than if they had one
|
|
|
|
+core each to run on. While smart CPU selection allows each task to have a core
|
|
|
|
+to itself whenever available (as is done on MuQSS), it cannot offset the
|
|
|
|
+slowdown that occurs when the cores are all loaded and only a thread is left.
|
|
|
|
+Most of the time this is harmless as the CPU is effectively overloaded at this
|
|
|
|
+point and the extra thread is of benefit. However when running a niced task in
|
|
|
|
+the presence of an un-niced task (say nice 19 v nice 0), the nice task gets
|
|
|
|
+precisely the same amount of CPU power as the unniced one. MuQSS has an
|
|
|
|
+optional configuration feature known as SMT-NICE which selectively idles the
|
|
|
|
+secondary niced thread for a period proportional to the nice difference,
|
|
|
|
+allowing CPU distribution according to nice level to be maintained, at the
|
|
|
|
+expense of a small amount of extra overhead. If this is configured in on a
|
|
|
|
+machine without SMT threads, the overhead is minimal.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Con Kolivas <kernel@kolivas.org> Sat, 29th October 2016
|
|
|
|
diff --git a/Makefile b/Makefile
|
2021-01-08 07:29:38 -06:00
|
|
|
index e30cf02da8b8..317a5c41c03f 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/Makefile
|
|
|
|
+++ b/Makefile
|
|
|
|
@@ -18,6 +18,10 @@ $(if $(filter __%, $(MAKECMDGOALS)), \
|
|
|
|
PHONY := __all
|
|
|
|
__all:
|
|
|
|
|
|
|
|
+CKVERSION = -ck1
|
|
|
|
+CKNAME = MuQSS Powered
|
|
|
|
+EXTRAVERSION := $(EXTRAVERSION)$(CKVERSION)
|
|
|
|
+
|
|
|
|
# We are using a recursive build, so we need to do a little thinking
|
|
|
|
# to get the ordering right.
|
|
|
|
#
|
|
|
|
diff --git a/arch/alpha/Kconfig b/arch/alpha/Kconfig
|
2021-01-08 07:29:38 -06:00
|
|
|
index d6e9fc7a7b19..f2d07b1939fd 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/arch/alpha/Kconfig
|
|
|
|
+++ b/arch/alpha/Kconfig
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -667,6 +667,8 @@ config HZ
|
2020-10-26 15:23:54 -05:00
|
|
|
default 1200 if HZ_1200
|
|
|
|
default 1024
|
|
|
|
|
|
|
|
+source "kernel/Kconfig.MuQSS"
|
|
|
|
+
|
|
|
|
config SRM_ENV
|
|
|
|
tristate "SRM environment through procfs"
|
|
|
|
depends on PROC_FS
|
|
|
|
diff --git a/arch/arc/configs/tb10x_defconfig b/arch/arc/configs/tb10x_defconfig
|
|
|
|
index a12656ec0072..b46b6ddc7636 100644
|
|
|
|
--- a/arch/arc/configs/tb10x_defconfig
|
|
|
|
+++ b/arch/arc/configs/tb10x_defconfig
|
|
|
|
@@ -29,7 +29,7 @@ CONFIG_ARC_PLAT_TB10X=y
|
|
|
|
CONFIG_ARC_CACHE_LINE_SHIFT=5
|
|
|
|
CONFIG_HZ=250
|
|
|
|
CONFIG_ARC_BUILTIN_DTB_NAME="abilis_tb100_dvk"
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
# CONFIG_COMPACTION is not set
|
|
|
|
CONFIG_NET=y
|
|
|
|
CONFIG_PACKET=y
|
|
|
|
diff --git a/arch/arm/Kconfig b/arch/arm/Kconfig
|
2021-01-08 07:29:38 -06:00
|
|
|
index 002e0cf025f5..a3045ba688ca 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/arch/arm/Kconfig
|
|
|
|
+++ b/arch/arm/Kconfig
|
|
|
|
@@ -1236,6 +1236,8 @@ config SCHED_SMT
|
|
|
|
MultiThreading at a cost of slightly increased overhead in some
|
|
|
|
places. If unsure say N here.
|
|
|
|
|
|
|
|
+source "kernel/Kconfig.MuQSS"
|
|
|
|
+
|
|
|
|
config HAVE_ARM_SCU
|
|
|
|
bool
|
|
|
|
help
|
|
|
|
diff --git a/arch/arm/configs/bcm2835_defconfig b/arch/arm/configs/bcm2835_defconfig
|
|
|
|
index 44ff9cd88d81..9c639c998015 100644
|
|
|
|
--- a/arch/arm/configs/bcm2835_defconfig
|
|
|
|
+++ b/arch/arm/configs/bcm2835_defconfig
|
|
|
|
@@ -29,7 +29,7 @@ CONFIG_MODULE_UNLOAD=y
|
|
|
|
CONFIG_ARCH_MULTI_V6=y
|
|
|
|
CONFIG_ARCH_BCM=y
|
|
|
|
CONFIG_ARCH_BCM2835=y
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
CONFIG_AEABI=y
|
|
|
|
CONFIG_KSM=y
|
|
|
|
CONFIG_CLEANCACHE=y
|
|
|
|
diff --git a/arch/arm/configs/imx_v6_v7_defconfig b/arch/arm/configs/imx_v6_v7_defconfig
|
2021-01-08 07:29:38 -06:00
|
|
|
index 221f5c340c86..2cb7a9a08a05 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/arch/arm/configs/imx_v6_v7_defconfig
|
|
|
|
+++ b/arch/arm/configs/imx_v6_v7_defconfig
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -33,6 +33,7 @@ CONFIG_PCI_MSI=y
|
2020-10-26 15:23:54 -05:00
|
|
|
CONFIG_PCI_IMX6=y
|
|
|
|
CONFIG_SMP=y
|
|
|
|
CONFIG_ARM_PSCI=y
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
CONFIG_HIGHMEM=y
|
|
|
|
CONFIG_FORCE_MAX_ZONEORDER=14
|
|
|
|
CONFIG_CMDLINE="noinitrd console=ttymxc0,115200"
|
|
|
|
diff --git a/arch/arm/configs/mps2_defconfig b/arch/arm/configs/mps2_defconfig
|
|
|
|
index 1d923dbb9928..9c1931f1fafd 100644
|
|
|
|
--- a/arch/arm/configs/mps2_defconfig
|
|
|
|
+++ b/arch/arm/configs/mps2_defconfig
|
|
|
|
@@ -18,7 +18,7 @@ CONFIG_ARCH_MPS2=y
|
|
|
|
CONFIG_SET_MEM_PARAM=y
|
|
|
|
CONFIG_DRAM_BASE=0x21000000
|
|
|
|
CONFIG_DRAM_SIZE=0x1000000
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
# CONFIG_ATAGS is not set
|
|
|
|
CONFIG_ZBOOT_ROM_TEXT=0x0
|
|
|
|
CONFIG_ZBOOT_ROM_BSS=0x0
|
|
|
|
diff --git a/arch/arm/configs/mxs_defconfig b/arch/arm/configs/mxs_defconfig
|
|
|
|
index a9c6f32a9b1c..870866aaa39d 100644
|
|
|
|
--- a/arch/arm/configs/mxs_defconfig
|
|
|
|
+++ b/arch/arm/configs/mxs_defconfig
|
|
|
|
@@ -1,7 +1,7 @@
|
|
|
|
CONFIG_SYSVIPC=y
|
|
|
|
CONFIG_NO_HZ=y
|
|
|
|
CONFIG_HIGH_RES_TIMERS=y
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
+CONFIG_PREEMPT_VOLUNTARY=n
|
|
|
|
CONFIG_TASKSTATS=y
|
|
|
|
CONFIG_TASK_DELAY_ACCT=y
|
|
|
|
CONFIG_TASK_XACCT=y
|
|
|
|
@@ -25,6 +25,13 @@ CONFIG_MODULE_UNLOAD=y
|
|
|
|
CONFIG_MODULE_FORCE_UNLOAD=y
|
|
|
|
CONFIG_MODVERSIONS=y
|
|
|
|
CONFIG_BLK_DEV_INTEGRITY=y
|
|
|
|
+# CONFIG_IOSCHED_DEADLINE is not set
|
|
|
|
+# CONFIG_IOSCHED_CFQ is not set
|
|
|
|
+# CONFIG_ARCH_MULTI_V7 is not set
|
|
|
|
+CONFIG_ARCH_MXS=y
|
|
|
|
+# CONFIG_ARM_THUMB is not set
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
+CONFIG_AEABI=y
|
|
|
|
CONFIG_NET=y
|
|
|
|
CONFIG_PACKET=y
|
|
|
|
CONFIG_UNIX=y
|
|
|
|
diff --git a/arch/arm64/Kconfig b/arch/arm64/Kconfig
|
2021-01-08 07:29:38 -06:00
|
|
|
index a6b5b7ef40ae..621c278bb5f2 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/arch/arm64/Kconfig
|
|
|
|
+++ b/arch/arm64/Kconfig
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -976,6 +976,8 @@ config SCHED_SMT
|
2020-10-26 15:23:54 -05:00
|
|
|
MultiThreading at a cost of slightly increased overhead in some
|
|
|
|
places. If unsure say N here.
|
|
|
|
|
|
|
|
+source "kernel/Kconfig.MuQSS"
|
|
|
|
+
|
|
|
|
config NR_CPUS
|
|
|
|
int "Maximum number of CPUs (2-4096)"
|
|
|
|
range 2 4096
|
|
|
|
diff --git a/arch/mips/configs/fuloong2e_defconfig b/arch/mips/configs/fuloong2e_defconfig
|
|
|
|
index 023b4e644b1c..013e630b96a6 100644
|
|
|
|
--- a/arch/mips/configs/fuloong2e_defconfig
|
|
|
|
+++ b/arch/mips/configs/fuloong2e_defconfig
|
|
|
|
@@ -4,7 +4,7 @@ CONFIG_SYSVIPC=y
|
|
|
|
CONFIG_POSIX_MQUEUE=y
|
|
|
|
CONFIG_NO_HZ=y
|
|
|
|
CONFIG_HIGH_RES_TIMERS=y
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
CONFIG_BSD_PROCESS_ACCT=y
|
|
|
|
CONFIG_IKCONFIG=y
|
|
|
|
CONFIG_IKCONFIG_PROC=y
|
|
|
|
diff --git a/arch/mips/configs/gpr_defconfig b/arch/mips/configs/gpr_defconfig
|
|
|
|
index 9085f4d6c698..fb23111d45f6 100644
|
|
|
|
--- a/arch/mips/configs/gpr_defconfig
|
|
|
|
+++ b/arch/mips/configs/gpr_defconfig
|
|
|
|
@@ -1,8 +1,8 @@
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
# CONFIG_LOCALVERSION_AUTO is not set
|
|
|
|
CONFIG_SYSVIPC=y
|
|
|
|
CONFIG_POSIX_MQUEUE=y
|
|
|
|
CONFIG_HIGH_RES_TIMERS=y
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
CONFIG_BSD_PROCESS_ACCT=y
|
|
|
|
CONFIG_BSD_PROCESS_ACCT_V3=y
|
|
|
|
CONFIG_RELAY=y
|
|
|
|
diff --git a/arch/mips/configs/ip22_defconfig b/arch/mips/configs/ip22_defconfig
|
|
|
|
index 21a1168ae301..529a1b1007cf 100644
|
|
|
|
--- a/arch/mips/configs/ip22_defconfig
|
|
|
|
+++ b/arch/mips/configs/ip22_defconfig
|
|
|
|
@@ -1,7 +1,7 @@
|
|
|
|
CONFIG_SYSVIPC=y
|
|
|
|
CONFIG_NO_HZ=y
|
|
|
|
CONFIG_HIGH_RES_TIMERS=y
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
CONFIG_IKCONFIG=y
|
|
|
|
CONFIG_IKCONFIG_PROC=y
|
|
|
|
CONFIG_LOG_BUF_SHIFT=14
|
|
|
|
diff --git a/arch/mips/configs/ip28_defconfig b/arch/mips/configs/ip28_defconfig
|
|
|
|
index 0921ef38e9fb..6da05cef46f8 100644
|
|
|
|
--- a/arch/mips/configs/ip28_defconfig
|
|
|
|
+++ b/arch/mips/configs/ip28_defconfig
|
|
|
|
@@ -1,5 +1,5 @@
|
|
|
|
CONFIG_SYSVIPC=y
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
CONFIG_IKCONFIG=y
|
|
|
|
CONFIG_IKCONFIG_PROC=y
|
|
|
|
CONFIG_LOG_BUF_SHIFT=14
|
|
|
|
diff --git a/arch/mips/configs/jazz_defconfig b/arch/mips/configs/jazz_defconfig
|
|
|
|
index 8c223035921f..a3bf87450343 100644
|
|
|
|
--- a/arch/mips/configs/jazz_defconfig
|
|
|
|
+++ b/arch/mips/configs/jazz_defconfig
|
|
|
|
@@ -1,8 +1,8 @@
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
CONFIG_SYSVIPC=y
|
|
|
|
CONFIG_POSIX_MQUEUE=y
|
|
|
|
CONFIG_NO_HZ=y
|
|
|
|
CONFIG_HIGH_RES_TIMERS=y
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
CONFIG_BSD_PROCESS_ACCT=y
|
|
|
|
CONFIG_LOG_BUF_SHIFT=14
|
|
|
|
CONFIG_RELAY=y
|
|
|
|
diff --git a/arch/mips/configs/mtx1_defconfig b/arch/mips/configs/mtx1_defconfig
|
|
|
|
index 914af125a7fa..76a64290373f 100644
|
|
|
|
--- a/arch/mips/configs/mtx1_defconfig
|
|
|
|
+++ b/arch/mips/configs/mtx1_defconfig
|
|
|
|
@@ -1,8 +1,8 @@
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
# CONFIG_LOCALVERSION_AUTO is not set
|
|
|
|
CONFIG_SYSVIPC=y
|
|
|
|
CONFIG_POSIX_MQUEUE=y
|
|
|
|
CONFIG_AUDIT=y
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
CONFIG_BSD_PROCESS_ACCT=y
|
|
|
|
CONFIG_BSD_PROCESS_ACCT_V3=y
|
|
|
|
CONFIG_RELAY=y
|
|
|
|
diff --git a/arch/mips/configs/nlm_xlr_defconfig b/arch/mips/configs/nlm_xlr_defconfig
|
|
|
|
index 4ecb157e56d4..ea7309283b01 100644
|
|
|
|
--- a/arch/mips/configs/nlm_xlr_defconfig
|
|
|
|
+++ b/arch/mips/configs/nlm_xlr_defconfig
|
|
|
|
@@ -1,10 +1,10 @@
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
# CONFIG_LOCALVERSION_AUTO is not set
|
|
|
|
CONFIG_SYSVIPC=y
|
|
|
|
CONFIG_POSIX_MQUEUE=y
|
|
|
|
CONFIG_AUDIT=y
|
|
|
|
CONFIG_NO_HZ=y
|
|
|
|
CONFIG_HIGH_RES_TIMERS=y
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
CONFIG_BSD_PROCESS_ACCT=y
|
|
|
|
CONFIG_BSD_PROCESS_ACCT_V3=y
|
|
|
|
CONFIG_TASKSTATS=y
|
|
|
|
diff --git a/arch/mips/configs/pic32mzda_defconfig b/arch/mips/configs/pic32mzda_defconfig
|
|
|
|
index 63fe2da1b37f..7f08ee237345 100644
|
|
|
|
--- a/arch/mips/configs/pic32mzda_defconfig
|
|
|
|
+++ b/arch/mips/configs/pic32mzda_defconfig
|
|
|
|
@@ -1,7 +1,7 @@
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
CONFIG_SYSVIPC=y
|
|
|
|
CONFIG_NO_HZ=y
|
|
|
|
CONFIG_HIGH_RES_TIMERS=y
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
CONFIG_IKCONFIG=y
|
|
|
|
CONFIG_IKCONFIG_PROC=y
|
|
|
|
CONFIG_LOG_BUF_SHIFT=14
|
|
|
|
diff --git a/arch/mips/configs/pistachio_defconfig b/arch/mips/configs/pistachio_defconfig
|
|
|
|
index b9adf15ebbec..0025b56dc300 100644
|
|
|
|
--- a/arch/mips/configs/pistachio_defconfig
|
|
|
|
+++ b/arch/mips/configs/pistachio_defconfig
|
|
|
|
@@ -1,9 +1,9 @@
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
# CONFIG_LOCALVERSION_AUTO is not set
|
|
|
|
CONFIG_DEFAULT_HOSTNAME="localhost"
|
|
|
|
CONFIG_SYSVIPC=y
|
|
|
|
CONFIG_NO_HZ=y
|
|
|
|
CONFIG_HIGH_RES_TIMERS=y
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
CONFIG_IKCONFIG=m
|
|
|
|
CONFIG_IKCONFIG_PROC=y
|
|
|
|
CONFIG_LOG_BUF_SHIFT=18
|
|
|
|
diff --git a/arch/mips/configs/rm200_defconfig b/arch/mips/configs/rm200_defconfig
|
|
|
|
index 30d7c3db884e..9e68acfa0d0e 100644
|
|
|
|
--- a/arch/mips/configs/rm200_defconfig
|
|
|
|
+++ b/arch/mips/configs/rm200_defconfig
|
|
|
|
@@ -1,6 +1,6 @@
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
CONFIG_SYSVIPC=y
|
|
|
|
CONFIG_POSIX_MQUEUE=y
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
CONFIG_BSD_PROCESS_ACCT=y
|
|
|
|
CONFIG_IKCONFIG=y
|
|
|
|
CONFIG_IKCONFIG_PROC=y
|
|
|
|
diff --git a/arch/parisc/configs/712_defconfig b/arch/parisc/configs/712_defconfig
|
|
|
|
new file mode 100644
|
|
|
|
index 000000000000..578524f80cc4
|
|
|
|
--- /dev/null
|
|
|
|
+++ b/arch/parisc/configs/712_defconfig
|
|
|
|
@@ -0,0 +1,181 @@
|
|
|
|
+# CONFIG_LOCALVERSION_AUTO is not set
|
|
|
|
+CONFIG_SYSVIPC=y
|
|
|
|
+CONFIG_POSIX_MQUEUE=y
|
|
|
|
+CONFIG_IKCONFIG=y
|
|
|
|
+CONFIG_IKCONFIG_PROC=y
|
|
|
|
+CONFIG_LOG_BUF_SHIFT=16
|
|
|
|
+CONFIG_BLK_DEV_INITRD=y
|
|
|
|
+CONFIG_KALLSYMS_ALL=y
|
|
|
|
+CONFIG_SLAB=y
|
|
|
|
+CONFIG_PROFILING=y
|
|
|
|
+CONFIG_OPROFILE=m
|
|
|
|
+CONFIG_MODULES=y
|
|
|
|
+CONFIG_MODULE_UNLOAD=y
|
|
|
|
+CONFIG_MODULE_FORCE_UNLOAD=y
|
|
|
|
+CONFIG_PA7100LC=y
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
+CONFIG_GSC_LASI=y
|
|
|
|
+# CONFIG_PDC_CHASSIS is not set
|
|
|
|
+CONFIG_BINFMT_MISC=m
|
|
|
|
+CONFIG_NET=y
|
|
|
|
+CONFIG_PACKET=y
|
|
|
|
+CONFIG_UNIX=y
|
|
|
|
+CONFIG_XFRM_USER=m
|
|
|
|
+CONFIG_NET_KEY=m
|
|
|
|
+CONFIG_INET=y
|
|
|
|
+CONFIG_IP_MULTICAST=y
|
|
|
|
+CONFIG_IP_PNP=y
|
|
|
|
+CONFIG_IP_PNP_DHCP=y
|
|
|
|
+CONFIG_IP_PNP_BOOTP=y
|
|
|
|
+CONFIG_INET_AH=m
|
|
|
|
+CONFIG_INET_ESP=m
|
|
|
|
+CONFIG_INET_DIAG=m
|
|
|
|
+# CONFIG_IPV6 is not set
|
|
|
|
+CONFIG_NETFILTER=y
|
|
|
|
+CONFIG_LLC2=m
|
|
|
|
+CONFIG_NET_PKTGEN=m
|
|
|
|
+CONFIG_DEVTMPFS=y
|
|
|
|
+CONFIG_DEVTMPFS_MOUNT=y
|
|
|
|
+# CONFIG_STANDALONE is not set
|
|
|
|
+# CONFIG_PREVENT_FIRMWARE_BUILD is not set
|
|
|
|
+CONFIG_PARPORT=y
|
|
|
|
+CONFIG_PARPORT_PC=m
|
|
|
|
+CONFIG_BLK_DEV_LOOP=y
|
|
|
|
+CONFIG_BLK_DEV_CRYPTOLOOP=y
|
|
|
|
+CONFIG_BLK_DEV_RAM=y
|
|
|
|
+CONFIG_BLK_DEV_RAM_SIZE=6144
|
|
|
|
+CONFIG_ATA_OVER_ETH=m
|
|
|
|
+CONFIG_SCSI=y
|
|
|
|
+CONFIG_BLK_DEV_SD=y
|
|
|
|
+CONFIG_CHR_DEV_ST=y
|
|
|
|
+CONFIG_BLK_DEV_SR=y
|
|
|
|
+CONFIG_CHR_DEV_SG=y
|
|
|
|
+CONFIG_SCSI_ISCSI_ATTRS=m
|
|
|
|
+CONFIG_SCSI_LASI700=y
|
|
|
|
+CONFIG_SCSI_DEBUG=m
|
|
|
|
+CONFIG_MD=y
|
|
|
|
+CONFIG_BLK_DEV_MD=m
|
|
|
|
+CONFIG_MD_LINEAR=m
|
|
|
|
+CONFIG_MD_RAID0=m
|
|
|
|
+CONFIG_MD_RAID1=m
|
|
|
|
+CONFIG_NETDEVICES=y
|
|
|
|
+CONFIG_BONDING=m
|
|
|
|
+CONFIG_DUMMY=m
|
|
|
|
+CONFIG_TUN=m
|
|
|
|
+CONFIG_LASI_82596=y
|
|
|
|
+CONFIG_PPP=m
|
|
|
|
+CONFIG_PPP_BSDCOMP=m
|
|
|
|
+CONFIG_PPP_DEFLATE=m
|
|
|
|
+CONFIG_PPP_MPPE=m
|
|
|
|
+CONFIG_PPPOE=m
|
|
|
|
+CONFIG_PPP_ASYNC=m
|
|
|
|
+CONFIG_PPP_SYNC_TTY=m
|
|
|
|
+# CONFIG_KEYBOARD_HIL_OLD is not set
|
|
|
|
+CONFIG_MOUSE_SERIAL=m
|
|
|
|
+CONFIG_LEGACY_PTY_COUNT=64
|
|
|
|
+CONFIG_SERIAL_8250=y
|
|
|
|
+CONFIG_SERIAL_8250_CONSOLE=y
|
|
|
|
+CONFIG_SERIAL_8250_NR_UARTS=17
|
|
|
|
+CONFIG_SERIAL_8250_EXTENDED=y
|
|
|
|
+CONFIG_SERIAL_8250_MANY_PORTS=y
|
|
|
|
+CONFIG_SERIAL_8250_SHARE_IRQ=y
|
|
|
|
+# CONFIG_SERIAL_MUX is not set
|
|
|
|
+CONFIG_PDC_CONSOLE=y
|
|
|
|
+CONFIG_PRINTER=m
|
|
|
|
+CONFIG_PPDEV=m
|
|
|
|
+# CONFIG_HW_RANDOM is not set
|
|
|
|
+CONFIG_RAW_DRIVER=y
|
|
|
|
+# CONFIG_HWMON is not set
|
|
|
|
+CONFIG_FB=y
|
|
|
|
+CONFIG_FB_MODE_HELPERS=y
|
|
|
|
+CONFIG_FB_TILEBLITTING=y
|
|
|
|
+CONFIG_DUMMY_CONSOLE_COLUMNS=128
|
|
|
|
+CONFIG_DUMMY_CONSOLE_ROWS=48
|
|
|
|
+CONFIG_FRAMEBUFFER_CONSOLE=y
|
|
|
|
+CONFIG_LOGO=y
|
|
|
|
+# CONFIG_LOGO_LINUX_MONO is not set
|
|
|
|
+# CONFIG_LOGO_LINUX_VGA16 is not set
|
|
|
|
+# CONFIG_LOGO_LINUX_CLUT224 is not set
|
|
|
|
+CONFIG_SOUND=y
|
|
|
|
+CONFIG_SND=y
|
|
|
|
+CONFIG_SND_SEQUENCER=y
|
|
|
|
+CONFIG_SND_HARMONY=y
|
|
|
|
+CONFIG_EXT2_FS=y
|
|
|
|
+CONFIG_EXT3_FS=y
|
|
|
|
+CONFIG_JFS_FS=m
|
|
|
|
+CONFIG_XFS_FS=m
|
|
|
|
+CONFIG_AUTOFS4_FS=y
|
|
|
|
+CONFIG_ISO9660_FS=y
|
|
|
|
+CONFIG_JOLIET=y
|
|
|
|
+CONFIG_UDF_FS=m
|
|
|
|
+CONFIG_MSDOS_FS=m
|
|
|
|
+CONFIG_VFAT_FS=m
|
|
|
|
+CONFIG_PROC_KCORE=y
|
|
|
|
+CONFIG_TMPFS=y
|
|
|
|
+CONFIG_UFS_FS=m
|
|
|
|
+CONFIG_NFS_FS=y
|
|
|
|
+CONFIG_NFS_V4=y
|
|
|
|
+CONFIG_ROOT_NFS=y
|
|
|
|
+CONFIG_NFSD=m
|
|
|
|
+CONFIG_NFSD_V4=y
|
|
|
|
+CONFIG_CIFS=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_437=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_737=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_775=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_850=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_852=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_855=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_857=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_860=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_861=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_862=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_863=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_864=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_865=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_866=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_869=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_936=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_950=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_932=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_949=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_874=m
|
|
|
|
+CONFIG_NLS_ISO8859_8=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_1250=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_1251=m
|
|
|
|
+CONFIG_NLS_ASCII=m
|
|
|
|
+CONFIG_NLS_ISO8859_1=m
|
|
|
|
+CONFIG_NLS_ISO8859_2=m
|
|
|
|
+CONFIG_NLS_ISO8859_3=m
|
|
|
|
+CONFIG_NLS_ISO8859_4=m
|
|
|
|
+CONFIG_NLS_ISO8859_5=m
|
|
|
|
+CONFIG_NLS_ISO8859_6=m
|
|
|
|
+CONFIG_NLS_ISO8859_7=m
|
|
|
|
+CONFIG_NLS_ISO8859_9=m
|
|
|
|
+CONFIG_NLS_ISO8859_13=m
|
|
|
|
+CONFIG_NLS_ISO8859_14=m
|
|
|
|
+CONFIG_NLS_ISO8859_15=m
|
|
|
|
+CONFIG_NLS_KOI8_R=m
|
|
|
|
+CONFIG_NLS_KOI8_U=m
|
|
|
|
+CONFIG_NLS_UTF8=m
|
|
|
|
+CONFIG_DEBUG_FS=y
|
|
|
|
+CONFIG_MAGIC_SYSRQ=y
|
|
|
|
+CONFIG_DEBUG_KERNEL=y
|
|
|
|
+CONFIG_DEBUG_MUTEXES=y
|
|
|
|
+CONFIG_CRYPTO_TEST=m
|
|
|
|
+CONFIG_CRYPTO_HMAC=y
|
|
|
|
+CONFIG_CRYPTO_MICHAEL_MIC=m
|
|
|
|
+CONFIG_CRYPTO_SHA512=m
|
|
|
|
+CONFIG_CRYPTO_TGR192=m
|
|
|
|
+CONFIG_CRYPTO_WP512=m
|
|
|
|
+CONFIG_CRYPTO_ANUBIS=m
|
|
|
|
+CONFIG_CRYPTO_BLOWFISH=m
|
|
|
|
+CONFIG_CRYPTO_CAST6=m
|
|
|
|
+CONFIG_CRYPTO_KHAZAD=m
|
|
|
|
+CONFIG_CRYPTO_SERPENT=m
|
|
|
|
+CONFIG_CRYPTO_TEA=m
|
|
|
|
+CONFIG_CRYPTO_TWOFISH=m
|
|
|
|
+CONFIG_CRYPTO_DEFLATE=m
|
|
|
|
+# CONFIG_CRYPTO_HW is not set
|
|
|
|
+CONFIG_FONTS=y
|
|
|
|
+CONFIG_FONT_8x8=y
|
|
|
|
+CONFIG_FONT_8x16=y
|
|
|
|
diff --git a/arch/parisc/configs/c3000_defconfig b/arch/parisc/configs/c3000_defconfig
|
|
|
|
new file mode 100644
|
|
|
|
index 000000000000..d1bdfad94048
|
|
|
|
--- /dev/null
|
|
|
|
+++ b/arch/parisc/configs/c3000_defconfig
|
|
|
|
@@ -0,0 +1,151 @@
|
|
|
|
+# CONFIG_LOCALVERSION_AUTO is not set
|
|
|
|
+CONFIG_SYSVIPC=y
|
|
|
|
+CONFIG_IKCONFIG=y
|
|
|
|
+CONFIG_IKCONFIG_PROC=y
|
|
|
|
+CONFIG_LOG_BUF_SHIFT=16
|
|
|
|
+CONFIG_BLK_DEV_INITRD=y
|
|
|
|
+CONFIG_EXPERT=y
|
|
|
|
+CONFIG_KALLSYMS_ALL=y
|
|
|
|
+CONFIG_SLAB=y
|
|
|
|
+CONFIG_PROFILING=y
|
|
|
|
+CONFIG_OPROFILE=m
|
|
|
|
+CONFIG_MODULES=y
|
|
|
|
+CONFIG_MODULE_UNLOAD=y
|
|
|
|
+CONFIG_MODULE_FORCE_UNLOAD=y
|
|
|
|
+CONFIG_PA8X00=y
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
+# CONFIG_GSC is not set
|
|
|
|
+CONFIG_PCI=y
|
|
|
|
+CONFIG_PCI_LBA=y
|
|
|
|
+# CONFIG_PDC_CHASSIS is not set
|
|
|
|
+CONFIG_NET=y
|
|
|
|
+CONFIG_PACKET=y
|
|
|
|
+CONFIG_UNIX=y
|
|
|
|
+CONFIG_XFRM_USER=m
|
|
|
|
+CONFIG_NET_KEY=m
|
|
|
|
+CONFIG_INET=y
|
|
|
|
+CONFIG_IP_MULTICAST=y
|
|
|
|
+CONFIG_IP_PNP=y
|
|
|
|
+CONFIG_IP_PNP_BOOTP=y
|
|
|
|
+# CONFIG_INET_DIAG is not set
|
|
|
|
+CONFIG_INET6_IPCOMP=m
|
|
|
|
+CONFIG_IPV6_TUNNEL=m
|
|
|
|
+CONFIG_NETFILTER=y
|
|
|
|
+CONFIG_NET_PKTGEN=m
|
|
|
|
+CONFIG_DEVTMPFS=y
|
|
|
|
+CONFIG_DEVTMPFS_MOUNT=y
|
|
|
|
+# CONFIG_STANDALONE is not set
|
|
|
|
+# CONFIG_PREVENT_FIRMWARE_BUILD is not set
|
|
|
|
+CONFIG_BLK_DEV_UMEM=m
|
|
|
|
+CONFIG_BLK_DEV_LOOP=y
|
|
|
|
+CONFIG_BLK_DEV_CRYPTOLOOP=m
|
|
|
|
+CONFIG_IDE=y
|
|
|
|
+CONFIG_BLK_DEV_IDECD=y
|
|
|
|
+CONFIG_BLK_DEV_NS87415=y
|
|
|
|
+CONFIG_SCSI=y
|
|
|
|
+CONFIG_BLK_DEV_SD=y
|
|
|
|
+CONFIG_CHR_DEV_ST=y
|
|
|
|
+CONFIG_BLK_DEV_SR=y
|
|
|
|
+CONFIG_CHR_DEV_SG=y
|
|
|
|
+CONFIG_SCSI_ISCSI_ATTRS=m
|
|
|
|
+CONFIG_SCSI_SYM53C8XX_2=y
|
|
|
|
+CONFIG_SCSI_SYM53C8XX_DMA_ADDRESSING_MODE=0
|
|
|
|
+CONFIG_SCSI_DEBUG=m
|
|
|
|
+CONFIG_MD=y
|
|
|
|
+CONFIG_BLK_DEV_MD=y
|
|
|
|
+CONFIG_MD_LINEAR=y
|
|
|
|
+CONFIG_MD_RAID0=y
|
|
|
|
+CONFIG_MD_RAID1=y
|
|
|
|
+CONFIG_BLK_DEV_DM=m
|
|
|
|
+CONFIG_DM_CRYPT=m
|
|
|
|
+CONFIG_DM_SNAPSHOT=m
|
|
|
|
+CONFIG_DM_MIRROR=m
|
|
|
|
+CONFIG_DM_ZERO=m
|
|
|
|
+CONFIG_DM_MULTIPATH=m
|
|
|
|
+CONFIG_FUSION=y
|
|
|
|
+CONFIG_FUSION_SPI=m
|
|
|
|
+CONFIG_FUSION_CTL=m
|
|
|
|
+CONFIG_NETDEVICES=y
|
|
|
|
+CONFIG_BONDING=m
|
|
|
|
+CONFIG_DUMMY=m
|
|
|
|
+CONFIG_TUN=m
|
|
|
|
+CONFIG_ACENIC=m
|
|
|
|
+CONFIG_TIGON3=m
|
|
|
|
+CONFIG_NET_TULIP=y
|
|
|
|
+CONFIG_DE2104X=m
|
|
|
|
+CONFIG_TULIP=y
|
|
|
|
+CONFIG_TULIP_MMIO=y
|
|
|
|
+CONFIG_E100=m
|
|
|
|
+CONFIG_E1000=m
|
|
|
|
+CONFIG_PPP=m
|
|
|
|
+CONFIG_PPP_BSDCOMP=m
|
|
|
|
+CONFIG_PPP_DEFLATE=m
|
|
|
|
+CONFIG_PPPOE=m
|
|
|
|
+CONFIG_PPP_ASYNC=m
|
|
|
|
+CONFIG_PPP_SYNC_TTY=m
|
|
|
|
+# CONFIG_KEYBOARD_ATKBD is not set
|
|
|
|
+# CONFIG_MOUSE_PS2 is not set
|
|
|
|
+CONFIG_SERIO=m
|
|
|
|
+CONFIG_SERIO_LIBPS2=m
|
|
|
|
+CONFIG_SERIAL_8250=y
|
|
|
|
+CONFIG_SERIAL_8250_CONSOLE=y
|
|
|
|
+CONFIG_SERIAL_8250_NR_UARTS=13
|
|
|
|
+CONFIG_SERIAL_8250_EXTENDED=y
|
|
|
|
+CONFIG_SERIAL_8250_MANY_PORTS=y
|
|
|
|
+CONFIG_SERIAL_8250_SHARE_IRQ=y
|
|
|
|
+# CONFIG_HW_RANDOM is not set
|
|
|
|
+CONFIG_RAW_DRIVER=y
|
|
|
|
+# CONFIG_HWMON is not set
|
|
|
|
+CONFIG_FB=y
|
|
|
|
+CONFIG_FRAMEBUFFER_CONSOLE=y
|
|
|
|
+CONFIG_LOGO=y
|
|
|
|
+# CONFIG_LOGO_LINUX_MONO is not set
|
|
|
|
+# CONFIG_LOGO_LINUX_VGA16 is not set
|
|
|
|
+# CONFIG_LOGO_LINUX_CLUT224 is not set
|
|
|
|
+CONFIG_SOUND=y
|
|
|
|
+CONFIG_SND=y
|
|
|
|
+CONFIG_SND_SEQUENCER=y
|
|
|
|
+CONFIG_SND_AD1889=y
|
|
|
|
+CONFIG_USB_HIDDEV=y
|
|
|
|
+CONFIG_USB=y
|
|
|
|
+CONFIG_USB_OHCI_HCD=y
|
|
|
|
+CONFIG_USB_PRINTER=m
|
|
|
|
+CONFIG_USB_STORAGE=m
|
|
|
|
+CONFIG_USB_STORAGE_USBAT=m
|
|
|
|
+CONFIG_USB_STORAGE_SDDR09=m
|
|
|
|
+CONFIG_USB_STORAGE_SDDR55=m
|
|
|
|
+CONFIG_USB_STORAGE_JUMPSHOT=m
|
|
|
|
+CONFIG_USB_MDC800=m
|
|
|
|
+CONFIG_USB_MICROTEK=m
|
|
|
|
+CONFIG_USB_LEGOTOWER=m
|
|
|
|
+CONFIG_EXT2_FS=y
|
|
|
|
+CONFIG_EXT3_FS=y
|
|
|
|
+CONFIG_XFS_FS=m
|
|
|
|
+CONFIG_AUTOFS4_FS=y
|
|
|
|
+CONFIG_ISO9660_FS=y
|
|
|
|
+CONFIG_JOLIET=y
|
|
|
|
+CONFIG_MSDOS_FS=m
|
|
|
|
+CONFIG_VFAT_FS=m
|
|
|
|
+CONFIG_PROC_KCORE=y
|
|
|
|
+CONFIG_TMPFS=y
|
|
|
|
+CONFIG_NFS_FS=y
|
|
|
|
+CONFIG_ROOT_NFS=y
|
|
|
|
+CONFIG_NFSD=y
|
|
|
|
+CONFIG_NFSD_V3=y
|
|
|
|
+CONFIG_NLS_CODEPAGE_437=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_850=m
|
|
|
|
+CONFIG_NLS_ASCII=m
|
|
|
|
+CONFIG_NLS_ISO8859_1=m
|
|
|
|
+CONFIG_NLS_ISO8859_15=m
|
|
|
|
+CONFIG_NLS_UTF8=m
|
|
|
|
+CONFIG_DEBUG_FS=y
|
|
|
|
+CONFIG_HEADERS_INSTALL=y
|
|
|
|
+CONFIG_HEADERS_CHECK=y
|
|
|
|
+CONFIG_MAGIC_SYSRQ=y
|
|
|
|
+CONFIG_DEBUG_MUTEXES=y
|
|
|
|
+# CONFIG_DEBUG_BUGVERBOSE is not set
|
|
|
|
+CONFIG_CRYPTO_TEST=m
|
|
|
|
+CONFIG_CRYPTO_MD5=m
|
|
|
|
+CONFIG_CRYPTO_BLOWFISH=m
|
|
|
|
+CONFIG_CRYPTO_DES=m
|
|
|
|
+# CONFIG_CRYPTO_HW is not set
|
|
|
|
diff --git a/arch/parisc/configs/defconfig b/arch/parisc/configs/defconfig
|
|
|
|
new file mode 100644
|
|
|
|
index 000000000000..0d976614934c
|
|
|
|
--- /dev/null
|
|
|
|
+++ b/arch/parisc/configs/defconfig
|
|
|
|
@@ -0,0 +1,206 @@
|
|
|
|
+# CONFIG_LOCALVERSION_AUTO is not set
|
|
|
|
+CONFIG_SYSVIPC=y
|
|
|
|
+CONFIG_POSIX_MQUEUE=y
|
|
|
|
+CONFIG_IKCONFIG=y
|
|
|
|
+CONFIG_IKCONFIG_PROC=y
|
|
|
|
+CONFIG_LOG_BUF_SHIFT=16
|
|
|
|
+CONFIG_BLK_DEV_INITRD=y
|
|
|
|
+CONFIG_KALLSYMS_ALL=y
|
|
|
|
+CONFIG_SLAB=y
|
|
|
|
+CONFIG_PROFILING=y
|
|
|
|
+CONFIG_OPROFILE=m
|
|
|
|
+CONFIG_MODULES=y
|
|
|
|
+CONFIG_MODULE_UNLOAD=y
|
|
|
|
+CONFIG_MODULE_FORCE_UNLOAD=y
|
|
|
|
+# CONFIG_BLK_DEV_BSG is not set
|
|
|
|
+CONFIG_PA7100LC=y
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
+CONFIG_IOMMU_CCIO=y
|
|
|
|
+CONFIG_GSC_LASI=y
|
|
|
|
+CONFIG_GSC_WAX=y
|
|
|
|
+CONFIG_EISA=y
|
|
|
|
+CONFIG_PCI=y
|
|
|
|
+CONFIG_GSC_DINO=y
|
|
|
|
+CONFIG_PCI_LBA=y
|
|
|
|
+CONFIG_PCCARD=y
|
|
|
|
+CONFIG_YENTA=y
|
|
|
|
+CONFIG_PD6729=y
|
|
|
|
+CONFIG_I82092=y
|
|
|
|
+CONFIG_BINFMT_MISC=m
|
|
|
|
+CONFIG_NET=y
|
|
|
|
+CONFIG_PACKET=y
|
|
|
|
+CONFIG_UNIX=y
|
|
|
|
+CONFIG_XFRM_USER=m
|
|
|
|
+CONFIG_NET_KEY=m
|
|
|
|
+CONFIG_INET=y
|
|
|
|
+CONFIG_IP_MULTICAST=y
|
|
|
|
+CONFIG_IP_PNP=y
|
|
|
|
+CONFIG_IP_PNP_DHCP=y
|
|
|
|
+CONFIG_IP_PNP_BOOTP=y
|
|
|
|
+CONFIG_INET_AH=m
|
|
|
|
+CONFIG_INET_ESP=m
|
|
|
|
+CONFIG_INET_DIAG=m
|
|
|
|
+CONFIG_INET6_AH=y
|
|
|
|
+CONFIG_INET6_ESP=y
|
|
|
|
+CONFIG_INET6_IPCOMP=y
|
|
|
|
+CONFIG_LLC2=m
|
|
|
|
+CONFIG_DEVTMPFS=y
|
|
|
|
+CONFIG_DEVTMPFS_MOUNT=y
|
|
|
|
+# CONFIG_STANDALONE is not set
|
|
|
|
+# CONFIG_PREVENT_FIRMWARE_BUILD is not set
|
|
|
|
+CONFIG_PARPORT=y
|
|
|
|
+CONFIG_PARPORT_PC=m
|
|
|
|
+CONFIG_PARPORT_PC_PCMCIA=m
|
|
|
|
+CONFIG_PARPORT_1284=y
|
|
|
|
+CONFIG_BLK_DEV_LOOP=y
|
|
|
|
+CONFIG_BLK_DEV_CRYPTOLOOP=y
|
|
|
|
+CONFIG_BLK_DEV_RAM=y
|
|
|
|
+CONFIG_BLK_DEV_RAM_SIZE=6144
|
|
|
|
+CONFIG_IDE=y
|
|
|
|
+CONFIG_BLK_DEV_IDECS=y
|
|
|
|
+CONFIG_BLK_DEV_IDECD=y
|
|
|
|
+CONFIG_BLK_DEV_GENERIC=y
|
|
|
|
+CONFIG_BLK_DEV_NS87415=y
|
|
|
|
+CONFIG_SCSI=y
|
|
|
|
+CONFIG_BLK_DEV_SD=y
|
|
|
|
+CONFIG_CHR_DEV_ST=y
|
|
|
|
+CONFIG_BLK_DEV_SR=y
|
|
|
|
+CONFIG_CHR_DEV_SG=y
|
|
|
|
+CONFIG_SCSI_LASI700=y
|
|
|
|
+CONFIG_SCSI_SYM53C8XX_2=y
|
|
|
|
+CONFIG_SCSI_ZALON=y
|
|
|
|
+CONFIG_MD=y
|
|
|
|
+CONFIG_BLK_DEV_MD=y
|
|
|
|
+CONFIG_MD_LINEAR=y
|
|
|
|
+CONFIG_MD_RAID0=y
|
|
|
|
+CONFIG_MD_RAID1=y
|
|
|
|
+CONFIG_MD_RAID10=y
|
|
|
|
+CONFIG_BLK_DEV_DM=y
|
|
|
|
+CONFIG_NETDEVICES=y
|
|
|
|
+CONFIG_BONDING=m
|
|
|
|
+CONFIG_DUMMY=m
|
|
|
|
+CONFIG_TUN=m
|
|
|
|
+CONFIG_ACENIC=y
|
|
|
|
+CONFIG_TIGON3=y
|
|
|
|
+CONFIG_NET_TULIP=y
|
|
|
|
+CONFIG_TULIP=y
|
|
|
|
+CONFIG_LASI_82596=y
|
|
|
|
+CONFIG_PPP=m
|
|
|
|
+CONFIG_PPP_BSDCOMP=m
|
|
|
|
+CONFIG_PPP_DEFLATE=m
|
|
|
|
+CONFIG_PPPOE=m
|
|
|
|
+CONFIG_PPP_ASYNC=m
|
|
|
|
+CONFIG_PPP_SYNC_TTY=m
|
|
|
|
+# CONFIG_KEYBOARD_HIL_OLD is not set
|
|
|
|
+CONFIG_MOUSE_SERIAL=y
|
|
|
|
+CONFIG_LEGACY_PTY_COUNT=64
|
|
|
|
+CONFIG_SERIAL_8250=y
|
|
|
|
+CONFIG_SERIAL_8250_CONSOLE=y
|
|
|
|
+CONFIG_SERIAL_8250_CS=y
|
|
|
|
+CONFIG_SERIAL_8250_NR_UARTS=17
|
|
|
|
+CONFIG_SERIAL_8250_EXTENDED=y
|
|
|
|
+CONFIG_SERIAL_8250_MANY_PORTS=y
|
|
|
|
+CONFIG_SERIAL_8250_SHARE_IRQ=y
|
|
|
|
+CONFIG_PRINTER=m
|
|
|
|
+CONFIG_PPDEV=m
|
|
|
|
+# CONFIG_HW_RANDOM is not set
|
|
|
|
+# CONFIG_HWMON is not set
|
|
|
|
+CONFIG_FB=y
|
|
|
|
+CONFIG_FB_MODE_HELPERS=y
|
|
|
|
+CONFIG_FB_TILEBLITTING=y
|
|
|
|
+CONFIG_DUMMY_CONSOLE_COLUMNS=128
|
|
|
|
+CONFIG_DUMMY_CONSOLE_ROWS=48
|
|
|
|
+CONFIG_FRAMEBUFFER_CONSOLE=y
|
|
|
|
+CONFIG_LOGO=y
|
|
|
|
+# CONFIG_LOGO_LINUX_MONO is not set
|
|
|
|
+# CONFIG_LOGO_LINUX_VGA16 is not set
|
|
|
|
+# CONFIG_LOGO_LINUX_CLUT224 is not set
|
|
|
|
+CONFIG_SOUND=y
|
|
|
|
+CONFIG_SND=y
|
|
|
|
+CONFIG_SND_DYNAMIC_MINORS=y
|
|
|
|
+CONFIG_SND_SEQUENCER=y
|
|
|
|
+CONFIG_SND_AD1889=y
|
|
|
|
+CONFIG_SND_HARMONY=y
|
|
|
|
+CONFIG_HID_GYRATION=y
|
|
|
|
+CONFIG_HID_NTRIG=y
|
|
|
|
+CONFIG_HID_PANTHERLORD=y
|
|
|
|
+CONFIG_HID_PETALYNX=y
|
|
|
|
+CONFIG_HID_SAMSUNG=y
|
|
|
|
+CONFIG_HID_SUNPLUS=y
|
|
|
|
+CONFIG_HID_TOPSEED=y
|
|
|
|
+CONFIG_USB=y
|
|
|
|
+CONFIG_USB_MON=y
|
|
|
|
+CONFIG_USB_OHCI_HCD=y
|
|
|
|
+CONFIG_USB_UHCI_HCD=y
|
|
|
|
+CONFIG_EXT2_FS=y
|
|
|
|
+CONFIG_EXT3_FS=y
|
|
|
|
+CONFIG_ISO9660_FS=y
|
|
|
|
+CONFIG_JOLIET=y
|
|
|
|
+CONFIG_VFAT_FS=y
|
|
|
|
+CONFIG_PROC_KCORE=y
|
|
|
|
+CONFIG_TMPFS=y
|
|
|
|
+CONFIG_NFS_FS=y
|
|
|
|
+CONFIG_ROOT_NFS=y
|
|
|
|
+CONFIG_NFSD=y
|
|
|
|
+CONFIG_NFSD_V4=y
|
|
|
|
+CONFIG_CIFS=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_437=y
|
|
|
|
+CONFIG_NLS_CODEPAGE_737=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_775=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_850=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_852=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_855=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_857=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_860=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_861=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_862=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_863=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_864=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_865=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_866=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_869=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_936=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_950=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_932=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_949=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_874=m
|
|
|
|
+CONFIG_NLS_ISO8859_8=m
|
|
|
|
+CONFIG_NLS_CODEPAGE_1250=y
|
|
|
|
+CONFIG_NLS_CODEPAGE_1251=m
|
|
|
|
+CONFIG_NLS_ASCII=m
|
|
|
|
+CONFIG_NLS_ISO8859_1=y
|
|
|
|
+CONFIG_NLS_ISO8859_2=m
|
|
|
|
+CONFIG_NLS_ISO8859_3=m
|
|
|
|
+CONFIG_NLS_ISO8859_4=m
|
|
|
|
+CONFIG_NLS_ISO8859_5=m
|
|
|
|
+CONFIG_NLS_ISO8859_6=m
|
|
|
|
+CONFIG_NLS_ISO8859_7=m
|
|
|
|
+CONFIG_NLS_ISO8859_9=m
|
|
|
|
+CONFIG_NLS_ISO8859_13=m
|
|
|
|
+CONFIG_NLS_ISO8859_14=m
|
|
|
|
+CONFIG_NLS_ISO8859_15=m
|
|
|
|
+CONFIG_NLS_KOI8_R=m
|
|
|
|
+CONFIG_NLS_KOI8_U=m
|
|
|
|
+CONFIG_NLS_UTF8=y
|
|
|
|
+CONFIG_DEBUG_FS=y
|
|
|
|
+CONFIG_HEADERS_INSTALL=y
|
|
|
|
+CONFIG_HEADERS_CHECK=y
|
|
|
|
+CONFIG_MAGIC_SYSRQ=y
|
|
|
|
+CONFIG_DEBUG_KERNEL=y
|
|
|
|
+CONFIG_DEBUG_MUTEXES=y
|
|
|
|
+CONFIG_KEYS=y
|
|
|
|
+CONFIG_CRYPTO_TEST=m
|
|
|
|
+CONFIG_CRYPTO_MICHAEL_MIC=m
|
|
|
|
+CONFIG_CRYPTO_SHA512=m
|
|
|
|
+CONFIG_CRYPTO_TGR192=m
|
|
|
|
+CONFIG_CRYPTO_WP512=m
|
|
|
|
+CONFIG_CRYPTO_ANUBIS=m
|
|
|
|
+CONFIG_CRYPTO_BLOWFISH=m
|
|
|
|
+CONFIG_CRYPTO_CAST6=m
|
|
|
|
+CONFIG_CRYPTO_KHAZAD=m
|
|
|
|
+CONFIG_CRYPTO_SERPENT=m
|
|
|
|
+CONFIG_CRYPTO_TEA=m
|
|
|
|
+CONFIG_CRYPTO_TWOFISH=m
|
|
|
|
+# CONFIG_CRYPTO_HW is not set
|
|
|
|
+CONFIG_LIBCRC32C=m
|
|
|
|
+CONFIG_FONTS=y
|
|
|
|
diff --git a/arch/powerpc/Kconfig b/arch/powerpc/Kconfig
|
2021-01-08 07:29:38 -06:00
|
|
|
index 5181872f9452..bf3a47193bb5 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/arch/powerpc/Kconfig
|
|
|
|
+++ b/arch/powerpc/Kconfig
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -888,6 +888,8 @@ config SCHED_SMT
|
2020-10-26 15:23:54 -05:00
|
|
|
when dealing with POWER5 cpus at a cost of slightly increased
|
|
|
|
overhead in some places. If unsure say N here.
|
|
|
|
|
|
|
|
+source "kernel/Kconfig.MuQSS"
|
|
|
|
+
|
|
|
|
config PPC_DENORMALISATION
|
|
|
|
bool "PowerPC denormalisation exception handling"
|
|
|
|
depends on PPC_BOOK3S_64
|
|
|
|
diff --git a/arch/powerpc/configs/ppc6xx_defconfig b/arch/powerpc/configs/ppc6xx_defconfig
|
|
|
|
index 66e9a0fd64ff..c8531232efb7 100644
|
|
|
|
--- a/arch/powerpc/configs/ppc6xx_defconfig
|
|
|
|
+++ b/arch/powerpc/configs/ppc6xx_defconfig
|
|
|
|
@@ -73,7 +73,7 @@ CONFIG_QE_GPIO=y
|
|
|
|
CONFIG_MCU_MPC8349EMITX=y
|
|
|
|
CONFIG_HIGHMEM=y
|
|
|
|
CONFIG_HZ_1000=y
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
CONFIG_BINFMT_MISC=y
|
|
|
|
CONFIG_HIBERNATION=y
|
|
|
|
CONFIG_PM_DEBUG=y
|
|
|
|
diff --git a/arch/powerpc/platforms/cell/spufs/sched.c b/arch/powerpc/platforms/cell/spufs/sched.c
|
|
|
|
index f18d5067cd0f..fe489fc01c73 100644
|
|
|
|
--- a/arch/powerpc/platforms/cell/spufs/sched.c
|
|
|
|
+++ b/arch/powerpc/platforms/cell/spufs/sched.c
|
|
|
|
@@ -51,11 +51,6 @@ static struct task_struct *spusched_task;
|
|
|
|
static struct timer_list spusched_timer;
|
|
|
|
static struct timer_list spuloadavg_timer;
|
|
|
|
|
|
|
|
-/*
|
|
|
|
- * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
|
|
|
|
- */
|
|
|
|
-#define NORMAL_PRIO 120
|
|
|
|
-
|
|
|
|
/*
|
|
|
|
* Frequency of the spu scheduler tick. By default we do one SPU scheduler
|
|
|
|
* tick for every 10 CPU scheduler ticks.
|
|
|
|
diff --git a/arch/sh/configs/se7712_defconfig b/arch/sh/configs/se7712_defconfig
|
|
|
|
index ee6d28ae08de..827e4693c5b2 100644
|
|
|
|
--- a/arch/sh/configs/se7712_defconfig
|
|
|
|
+++ b/arch/sh/configs/se7712_defconfig
|
|
|
|
@@ -21,7 +21,7 @@ CONFIG_FLATMEM_MANUAL=y
|
|
|
|
CONFIG_SH_SOLUTION_ENGINE=y
|
|
|
|
CONFIG_SH_PCLK_FREQ=66666666
|
|
|
|
CONFIG_HEARTBEAT=y
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
CONFIG_CMDLINE_OVERWRITE=y
|
|
|
|
CONFIG_CMDLINE="console=ttySC0,115200 root=/dev/sda1"
|
|
|
|
CONFIG_NET=y
|
|
|
|
diff --git a/arch/sh/configs/se7721_defconfig b/arch/sh/configs/se7721_defconfig
|
|
|
|
index bad921bc10f8..e8f42bc0d370 100644
|
|
|
|
--- a/arch/sh/configs/se7721_defconfig
|
|
|
|
+++ b/arch/sh/configs/se7721_defconfig
|
|
|
|
@@ -21,7 +21,7 @@ CONFIG_FLATMEM_MANUAL=y
|
|
|
|
CONFIG_SH_7721_SOLUTION_ENGINE=y
|
|
|
|
CONFIG_SH_PCLK_FREQ=33333333
|
|
|
|
CONFIG_HEARTBEAT=y
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
CONFIG_CMDLINE_OVERWRITE=y
|
|
|
|
CONFIG_CMDLINE="console=ttySC0,115200 root=/dev/sda2"
|
|
|
|
CONFIG_NET=y
|
|
|
|
diff --git a/arch/sh/configs/titan_defconfig b/arch/sh/configs/titan_defconfig
|
|
|
|
index ba887f1351be..4434e93b70bc 100644
|
|
|
|
--- a/arch/sh/configs/titan_defconfig
|
|
|
|
+++ b/arch/sh/configs/titan_defconfig
|
|
|
|
@@ -19,7 +19,7 @@ CONFIG_SH_TITAN=y
|
|
|
|
CONFIG_SH_PCLK_FREQ=30000000
|
|
|
|
CONFIG_SH_DMA=y
|
|
|
|
CONFIG_SH_DMA_API=y
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
CONFIG_CMDLINE_OVERWRITE=y
|
|
|
|
CONFIG_CMDLINE="console=ttySC1,38400N81 root=/dev/nfs ip=:::::eth1:autoconf rw"
|
|
|
|
CONFIG_PCI=y
|
|
|
|
diff --git a/arch/sparc/configs/sparc64_defconfig b/arch/sparc/configs/sparc64_defconfig
|
|
|
|
index bde4d21a8ac8..c054ec82d91b 100644
|
|
|
|
--- a/arch/sparc/configs/sparc64_defconfig
|
|
|
|
+++ b/arch/sparc/configs/sparc64_defconfig
|
|
|
|
@@ -22,7 +22,7 @@ CONFIG_NO_HZ=y
|
|
|
|
CONFIG_HIGH_RES_TIMERS=y
|
|
|
|
CONFIG_NUMA=y
|
|
|
|
CONFIG_DEFAULT_MMAP_MIN_ADDR=8192
|
|
|
|
-CONFIG_PREEMPT_VOLUNTARY=y
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
CONFIG_SUN_LDOMS=y
|
|
|
|
CONFIG_PCI=y
|
|
|
|
CONFIG_PCI_MSI=y
|
|
|
|
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
|
2021-01-08 07:29:38 -06:00
|
|
|
index fbf26e0f7a6a..ea408c778851 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/arch/x86/Kconfig
|
|
|
|
+++ b/arch/x86/Kconfig
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -1008,6 +1008,22 @@ config NR_CPUS
|
2020-10-26 15:23:54 -05:00
|
|
|
config SCHED_SMT
|
|
|
|
def_bool y if SMP
|
|
|
|
|
|
|
|
+config SMT_NICE
|
|
|
|
+ bool "SMT (Hyperthreading) aware nice priority and policy support"
|
|
|
|
+ depends on SCHED_MUQSS && SCHED_SMT
|
|
|
|
+ default y
|
|
|
|
+ help
|
|
|
|
+ Enabling Hyperthreading on Intel CPUs decreases the effectiveness
|
|
|
|
+ of the use of 'nice' levels and different scheduling policies
|
|
|
|
+ (e.g. realtime) due to sharing of CPU power between hyperthreads.
|
|
|
|
+ SMT nice support makes each logical CPU aware of what is running on
|
|
|
|
+ its hyperthread siblings, maintaining appropriate distribution of
|
|
|
|
+ CPU according to nice levels and scheduling policies at the expense
|
|
|
|
+ of slightly increased overhead.
|
|
|
|
+
|
|
|
|
+ If unsure say Y here.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
config SCHED_MC
|
|
|
|
def_bool y
|
|
|
|
prompt "Multi-core scheduler support"
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -1038,6 +1054,8 @@ config SCHED_MC_PRIO
|
2020-10-26 15:23:54 -05:00
|
|
|
|
|
|
|
If unsure say Y here.
|
|
|
|
|
|
|
|
+source "kernel/Kconfig.MuQSS"
|
|
|
|
+
|
|
|
|
config UP_LATE_INIT
|
|
|
|
def_bool y
|
|
|
|
depends on !SMP && X86_LOCAL_APIC
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -1422,7 +1440,7 @@ config HIGHMEM64G
|
2020-10-26 15:23:54 -05:00
|
|
|
endchoice
|
|
|
|
|
|
|
|
choice
|
|
|
|
- prompt "Memory split" if EXPERT
|
|
|
|
+ prompt "Memory split"
|
|
|
|
default VMSPLIT_3G
|
|
|
|
depends on X86_32
|
|
|
|
help
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -1442,17 +1460,17 @@ choice
|
2020-10-26 15:23:54 -05:00
|
|
|
option alone!
|
|
|
|
|
|
|
|
config VMSPLIT_3G
|
|
|
|
- bool "3G/1G user/kernel split"
|
|
|
|
+ bool "Default 896MB lowmem (3G/1G user/kernel split)"
|
|
|
|
config VMSPLIT_3G_OPT
|
|
|
|
depends on !X86_PAE
|
|
|
|
- bool "3G/1G user/kernel split (for full 1G low memory)"
|
|
|
|
+ bool "1GB lowmem (3G/1G user/kernel split)"
|
|
|
|
config VMSPLIT_2G
|
|
|
|
- bool "2G/2G user/kernel split"
|
|
|
|
+ bool "2GB lowmem (2G/2G user/kernel split)"
|
|
|
|
config VMSPLIT_2G_OPT
|
|
|
|
depends on !X86_PAE
|
|
|
|
- bool "2G/2G user/kernel split (for full 2G low memory)"
|
|
|
|
+ bool "2GB lowmem (2G/2G user/kernel split)"
|
|
|
|
config VMSPLIT_1G
|
|
|
|
- bool "1G/3G user/kernel split"
|
|
|
|
+ bool "3GB lowmem (1G/3G user/kernel split)"
|
|
|
|
endchoice
|
|
|
|
|
|
|
|
config PAGE_OFFSET
|
|
|
|
diff --git a/arch/x86/configs/i386_defconfig b/arch/x86/configs/i386_defconfig
|
|
|
|
index 78210793d357..0c4415b23002 100644
|
|
|
|
--- a/arch/x86/configs/i386_defconfig
|
|
|
|
+++ b/arch/x86/configs/i386_defconfig
|
|
|
|
@@ -23,6 +23,8 @@ CONFIG_PROFILING=y
|
|
|
|
CONFIG_SMP=y
|
|
|
|
CONFIG_X86_GENERIC=y
|
|
|
|
CONFIG_HPET_TIMER=y
|
|
|
|
+CONFIG_SCHED_SMT=y
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
CONFIG_X86_REROUTE_FOR_BROKEN_BOOT_IRQS=y
|
|
|
|
CONFIG_X86_REBOOTFIXUPS=y
|
|
|
|
CONFIG_MICROCODE_AMD=y
|
|
|
|
diff --git a/arch/x86/configs/x86_64_defconfig b/arch/x86/configs/x86_64_defconfig
|
|
|
|
index 9936528e1939..328c7d0a38a1 100644
|
|
|
|
--- a/arch/x86/configs/x86_64_defconfig
|
|
|
|
+++ b/arch/x86/configs/x86_64_defconfig
|
|
|
|
@@ -20,6 +20,9 @@ CONFIG_BLK_DEV_INITRD=y
|
|
|
|
# CONFIG_COMPAT_BRK is not set
|
|
|
|
CONFIG_PROFILING=y
|
|
|
|
CONFIG_SMP=y
|
|
|
|
+CONFIG_NR_CPUS=64
|
|
|
|
+CONFIG_SCHED_SMT=y
|
|
|
|
+CONFIG_PREEMPT=y
|
|
|
|
CONFIG_X86_REROUTE_FOR_BROKEN_BOOT_IRQS=y
|
|
|
|
CONFIG_MICROCODE_AMD=y
|
|
|
|
CONFIG_X86_MSR=y
|
|
|
|
diff --git a/drivers/accessibility/speakup/speakup_acntpc.c b/drivers/accessibility/speakup/speakup_acntpc.c
|
|
|
|
index c94328a5bd4a..6e7d4671aa69 100644
|
|
|
|
--- a/drivers/accessibility/speakup/speakup_acntpc.c
|
|
|
|
+++ b/drivers/accessibility/speakup/speakup_acntpc.c
|
|
|
|
@@ -198,7 +198,7 @@ static void do_catch_up(struct spk_synth *synth)
|
|
|
|
full_time_val = full_time->u.n.value;
|
|
|
|
spin_unlock_irqrestore(&speakup_info.spinlock, flags);
|
|
|
|
if (synth_full()) {
|
|
|
|
- schedule_timeout(msecs_to_jiffies(full_time_val));
|
|
|
|
+ schedule_msec_hrtimeout((full_time_val));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
set_current_state(TASK_RUNNING);
|
|
|
|
@@ -226,7 +226,7 @@ static void do_catch_up(struct spk_synth *synth)
|
|
|
|
jiffy_delta_val = jiffy_delta->u.n.value;
|
|
|
|
delay_time_val = delay_time->u.n.value;
|
|
|
|
spin_unlock_irqrestore(&speakup_info.spinlock, flags);
|
|
|
|
- schedule_timeout(msecs_to_jiffies(delay_time_val));
|
|
|
|
+ schedule_msec_hrtimeout(delay_time_val);
|
|
|
|
jiff_max = jiffies + jiffy_delta_val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
diff --git a/drivers/accessibility/speakup/speakup_apollo.c b/drivers/accessibility/speakup/speakup_apollo.c
|
|
|
|
index 0877b4044c28..627102d048c1 100644
|
|
|
|
--- a/drivers/accessibility/speakup/speakup_apollo.c
|
|
|
|
+++ b/drivers/accessibility/speakup/speakup_apollo.c
|
|
|
|
@@ -165,7 +165,7 @@ static void do_catch_up(struct spk_synth *synth)
|
|
|
|
if (!synth->io_ops->synth_out(synth, ch)) {
|
|
|
|
synth->io_ops->tiocmset(0, UART_MCR_RTS);
|
|
|
|
synth->io_ops->tiocmset(UART_MCR_RTS, 0);
|
|
|
|
- schedule_timeout(msecs_to_jiffies(full_time_val));
|
|
|
|
+ schedule_msec_hrtimeout(full_time_val);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (time_after_eq(jiffies, jiff_max) && (ch == SPACE)) {
|
|
|
|
diff --git a/drivers/accessibility/speakup/speakup_decext.c b/drivers/accessibility/speakup/speakup_decext.c
|
|
|
|
index 7408eb29cf38..938a0c35968f 100644
|
|
|
|
--- a/drivers/accessibility/speakup/speakup_decext.c
|
|
|
|
+++ b/drivers/accessibility/speakup/speakup_decext.c
|
|
|
|
@@ -180,7 +180,7 @@ static void do_catch_up(struct spk_synth *synth)
|
|
|
|
if (ch == '\n')
|
|
|
|
ch = 0x0D;
|
|
|
|
if (synth_full() || !synth->io_ops->synth_out(synth, ch)) {
|
|
|
|
- schedule_timeout(msecs_to_jiffies(delay_time_val));
|
|
|
|
+ schedule_msec_hrtimeout(delay_time_val);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
set_current_state(TASK_RUNNING);
|
|
|
|
diff --git a/drivers/accessibility/speakup/speakup_decpc.c b/drivers/accessibility/speakup/speakup_decpc.c
|
|
|
|
index 96f24c848cc5..1130dfe4da6c 100644
|
|
|
|
--- a/drivers/accessibility/speakup/speakup_decpc.c
|
|
|
|
+++ b/drivers/accessibility/speakup/speakup_decpc.c
|
|
|
|
@@ -398,7 +398,7 @@ static void do_catch_up(struct spk_synth *synth)
|
|
|
|
if (ch == '\n')
|
|
|
|
ch = 0x0D;
|
|
|
|
if (dt_sendchar(ch)) {
|
|
|
|
- schedule_timeout(msecs_to_jiffies(delay_time_val));
|
|
|
|
+ schedule_msec_hrtimeout((delay_time_val));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
set_current_state(TASK_RUNNING);
|
|
|
|
diff --git a/drivers/accessibility/speakup/speakup_dectlk.c b/drivers/accessibility/speakup/speakup_dectlk.c
|
|
|
|
index 780214b5ca16..7b91594c57aa 100644
|
|
|
|
--- a/drivers/accessibility/speakup/speakup_dectlk.c
|
|
|
|
+++ b/drivers/accessibility/speakup/speakup_dectlk.c
|
|
|
|
@@ -247,7 +247,7 @@ static void do_catch_up(struct spk_synth *synth)
|
|
|
|
if (ch == '\n')
|
|
|
|
ch = 0x0D;
|
|
|
|
if (synth_full_val || !synth->io_ops->synth_out(synth, ch)) {
|
|
|
|
- schedule_timeout(msecs_to_jiffies(delay_time_val));
|
|
|
|
+ schedule_msec_hrtimeout(delay_time_val);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
set_current_state(TASK_RUNNING);
|
|
|
|
diff --git a/drivers/accessibility/speakup/speakup_dtlk.c b/drivers/accessibility/speakup/speakup_dtlk.c
|
|
|
|
index dbebed0eeeec..6d83c13ca4a6 100644
|
|
|
|
--- a/drivers/accessibility/speakup/speakup_dtlk.c
|
|
|
|
+++ b/drivers/accessibility/speakup/speakup_dtlk.c
|
|
|
|
@@ -211,7 +211,7 @@ static void do_catch_up(struct spk_synth *synth)
|
|
|
|
delay_time_val = delay_time->u.n.value;
|
|
|
|
spin_unlock_irqrestore(&speakup_info.spinlock, flags);
|
|
|
|
if (synth_full()) {
|
|
|
|
- schedule_timeout(msecs_to_jiffies(delay_time_val));
|
|
|
|
+ schedule_msec_hrtimeout((delay_time_val));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
set_current_state(TASK_RUNNING);
|
|
|
|
@@ -227,7 +227,7 @@ static void do_catch_up(struct spk_synth *synth)
|
|
|
|
delay_time_val = delay_time->u.n.value;
|
|
|
|
jiffy_delta_val = jiffy_delta->u.n.value;
|
|
|
|
spin_unlock_irqrestore(&speakup_info.spinlock, flags);
|
|
|
|
- schedule_timeout(msecs_to_jiffies(delay_time_val));
|
|
|
|
+ schedule_msec_hrtimeout((delay_time_val));
|
|
|
|
jiff_max = jiffies + jiffy_delta_val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
diff --git a/drivers/accessibility/speakup/speakup_keypc.c b/drivers/accessibility/speakup/speakup_keypc.c
|
|
|
|
index 414827e888fc..cb31c9176daa 100644
|
|
|
|
--- a/drivers/accessibility/speakup/speakup_keypc.c
|
|
|
|
+++ b/drivers/accessibility/speakup/speakup_keypc.c
|
|
|
|
@@ -199,7 +199,7 @@ static void do_catch_up(struct spk_synth *synth)
|
|
|
|
full_time_val = full_time->u.n.value;
|
|
|
|
spin_unlock_irqrestore(&speakup_info.spinlock, flags);
|
|
|
|
if (synth_full()) {
|
|
|
|
- schedule_timeout(msecs_to_jiffies(full_time_val));
|
|
|
|
+ schedule_msec_hrtimeout((full_time_val));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
set_current_state(TASK_RUNNING);
|
|
|
|
@@ -232,7 +232,7 @@ static void do_catch_up(struct spk_synth *synth)
|
|
|
|
jiffy_delta_val = jiffy_delta->u.n.value;
|
|
|
|
delay_time_val = delay_time->u.n.value;
|
|
|
|
spin_unlock_irqrestore(&speakup_info.spinlock, flags);
|
|
|
|
- schedule_timeout(msecs_to_jiffies(delay_time_val));
|
|
|
|
+ schedule_msec_hrtimeout(delay_time_val);
|
|
|
|
jiff_max = jiffies + jiffy_delta_val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
diff --git a/drivers/accessibility/speakup/synth.c b/drivers/accessibility/speakup/synth.c
|
|
|
|
index ac47dbac7207..09f6ba829dfd 100644
|
|
|
|
--- a/drivers/accessibility/speakup/synth.c
|
|
|
|
+++ b/drivers/accessibility/speakup/synth.c
|
|
|
|
@@ -93,12 +93,8 @@ static void _spk_do_catch_up(struct spk_synth *synth, int unicode)
|
|
|
|
spin_unlock_irqrestore(&speakup_info.spinlock, flags);
|
|
|
|
if (ch == '\n')
|
|
|
|
ch = synth->procspeech;
|
|
|
|
- if (unicode)
|
|
|
|
- ret = synth->io_ops->synth_out_unicode(synth, ch);
|
|
|
|
- else
|
|
|
|
- ret = synth->io_ops->synth_out(synth, ch);
|
|
|
|
- if (!ret) {
|
|
|
|
- schedule_timeout(msecs_to_jiffies(full_time_val));
|
|
|
|
+ if (!synth->io_ops->synth_out(synth, ch)) {
|
|
|
|
+ schedule_msec_hrtimeout(full_time_val);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (time_after_eq(jiffies, jiff_max) && (ch == SPACE)) {
|
|
|
|
@@ -108,11 +104,9 @@ static void _spk_do_catch_up(struct spk_synth *synth, int unicode)
|
|
|
|
full_time_val = full_time->u.n.value;
|
|
|
|
spin_unlock_irqrestore(&speakup_info.spinlock, flags);
|
|
|
|
if (synth->io_ops->synth_out(synth, synth->procspeech))
|
|
|
|
- schedule_timeout(
|
|
|
|
- msecs_to_jiffies(delay_time_val));
|
|
|
|
+ schedule_msec_hrtimeout(delay_time_val);
|
|
|
|
else
|
|
|
|
- schedule_timeout(
|
|
|
|
- msecs_to_jiffies(full_time_val));
|
|
|
|
+ schedule_msec_hrtimeout(full_time_val);
|
|
|
|
jiff_max = jiffies + jiffy_delta_val;
|
|
|
|
}
|
|
|
|
set_current_state(TASK_RUNNING);
|
|
|
|
diff --git a/drivers/block/swim.c b/drivers/block/swim.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index 52dd1efa00f9..c7131359232d 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/drivers/block/swim.c
|
|
|
|
+++ b/drivers/block/swim.c
|
|
|
|
@@ -328,7 +328,7 @@ static inline void swim_motor(struct swim __iomem *base,
|
|
|
|
if (swim_readbit(base, MOTOR_ON))
|
|
|
|
break;
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
- schedule_timeout(1);
|
|
|
|
+ schedule_min_hrtimeout();
|
|
|
|
}
|
|
|
|
} else if (action == OFF) {
|
|
|
|
swim_action(base, MOTOR_OFF);
|
|
|
|
@@ -347,7 +347,7 @@ static inline void swim_eject(struct swim __iomem *base)
|
|
|
|
if (!swim_readbit(base, DISK_IN))
|
|
|
|
break;
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
- schedule_timeout(1);
|
|
|
|
+ schedule_min_hrtimeout();
|
|
|
|
}
|
|
|
|
swim_select(base, RELAX);
|
|
|
|
}
|
|
|
|
@@ -372,6 +372,7 @@ static inline int swim_step(struct swim __iomem *base)
|
|
|
|
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
schedule_timeout(1);
|
|
|
|
+ schedule_min_hrtimeout();
|
|
|
|
|
|
|
|
swim_select(base, RELAX);
|
|
|
|
if (!swim_readbit(base, STEP))
|
|
|
|
diff --git a/drivers/char/ipmi/ipmi_msghandler.c b/drivers/char/ipmi/ipmi_msghandler.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index 8774a3b8ff95..0097c92bec48 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/drivers/char/ipmi/ipmi_msghandler.c
|
|
|
|
+++ b/drivers/char/ipmi/ipmi_msghandler.c
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -3562,7 +3562,7 @@ static void cleanup_smi_msgs(struct ipmi_smi *intf)
|
2020-10-26 15:23:54 -05:00
|
|
|
/* Current message first, to preserve order */
|
|
|
|
while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
|
|
|
|
/* Wait for the message to clear out. */
|
|
|
|
- schedule_timeout(1);
|
|
|
|
+ schedule_min_hrtimeout();
|
|
|
|
}
|
|
|
|
|
|
|
|
/* No need for locks, the interface is down. */
|
|
|
|
diff --git a/drivers/char/ipmi/ipmi_ssif.c b/drivers/char/ipmi/ipmi_ssif.c
|
|
|
|
index 0416b9c9d410..9ce5fae0f1cf 100644
|
|
|
|
--- a/drivers/char/ipmi/ipmi_ssif.c
|
|
|
|
+++ b/drivers/char/ipmi/ipmi_ssif.c
|
|
|
|
@@ -1288,7 +1288,7 @@ static void shutdown_ssif(void *send_info)
|
|
|
|
|
|
|
|
/* make sure the driver is not looking for flags any more. */
|
|
|
|
while (ssif_info->ssif_state != SSIF_NORMAL)
|
|
|
|
- schedule_timeout(1);
|
|
|
|
+ schedule_min_hrtimeout();
|
|
|
|
|
|
|
|
ssif_info->stopping = true;
|
|
|
|
del_timer_sync(&ssif_info->watch_timer);
|
|
|
|
diff --git a/drivers/gpu/drm/vmwgfx/vmwgfx_fifo.c b/drivers/gpu/drm/vmwgfx/vmwgfx_fifo.c
|
|
|
|
index a95156fc5db7..8f07c8900184 100644
|
|
|
|
--- a/drivers/gpu/drm/vmwgfx/vmwgfx_fifo.c
|
|
|
|
+++ b/drivers/gpu/drm/vmwgfx/vmwgfx_fifo.c
|
|
|
|
@@ -235,7 +235,7 @@ static int vmw_fifo_wait_noirq(struct vmw_private *dev_priv,
|
|
|
|
DRM_ERROR("SVGA device lockup.\n");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
- schedule_timeout(1);
|
|
|
|
+ schedule_min_hrtimeout();
|
|
|
|
if (interruptible && signal_pending(current)) {
|
|
|
|
ret = -ERESTARTSYS;
|
|
|
|
break;
|
|
|
|
diff --git a/drivers/gpu/drm/vmwgfx/vmwgfx_irq.c b/drivers/gpu/drm/vmwgfx/vmwgfx_irq.c
|
|
|
|
index 75f3efee21a4..09b1932ce85b 100644
|
|
|
|
--- a/drivers/gpu/drm/vmwgfx/vmwgfx_irq.c
|
|
|
|
+++ b/drivers/gpu/drm/vmwgfx/vmwgfx_irq.c
|
|
|
|
@@ -203,7 +203,7 @@ int vmw_fallback_wait(struct vmw_private *dev_priv,
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (lazy)
|
|
|
|
- schedule_timeout(1);
|
|
|
|
+ schedule_min_hrtimeout();
|
|
|
|
else if ((++count & 0x0F) == 0) {
|
|
|
|
/**
|
|
|
|
* FIXME: Use schedule_hr_timeout here for
|
|
|
|
diff --git a/drivers/hwmon/fam15h_power.c b/drivers/hwmon/fam15h_power.c
|
|
|
|
index 29f5fed28c2a..974cb08c7aa7 100644
|
|
|
|
--- a/drivers/hwmon/fam15h_power.c
|
|
|
|
+++ b/drivers/hwmon/fam15h_power.c
|
|
|
|
@@ -221,7 +221,7 @@ static ssize_t power1_average_show(struct device *dev,
|
|
|
|
prev_ptsc[cu] = data->cpu_sw_pwr_ptsc[cu];
|
|
|
|
}
|
|
|
|
|
|
|
|
- leftover = schedule_timeout_interruptible(msecs_to_jiffies(data->power_period));
|
|
|
|
+ leftover = schedule_msec_hrtimeout_interruptible((data->power_period));
|
|
|
|
if (leftover)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
diff --git a/drivers/iio/light/tsl2563.c b/drivers/iio/light/tsl2563.c
|
|
|
|
index abc8d7db8dc1..baa9d6338a52 100644
|
|
|
|
--- a/drivers/iio/light/tsl2563.c
|
|
|
|
+++ b/drivers/iio/light/tsl2563.c
|
|
|
|
@@ -269,11 +269,7 @@ static void tsl2563_wait_adc(struct tsl2563_chip *chip)
|
|
|
|
default:
|
|
|
|
delay = 402;
|
|
|
|
}
|
|
|
|
- /*
|
|
|
|
- * TODO: Make sure that we wait at least required delay but why we
|
|
|
|
- * have to extend it one tick more?
|
|
|
|
- */
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies(delay) + 2);
|
|
|
|
+ schedule_msec_hrtimeout_interruptible(delay + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int tsl2563_adjust_gainlevel(struct tsl2563_chip *chip, u16 adc)
|
|
|
|
diff --git a/drivers/media/i2c/msp3400-driver.c b/drivers/media/i2c/msp3400-driver.c
|
|
|
|
index 39530d43590e..a7caf2eb5771 100644
|
|
|
|
--- a/drivers/media/i2c/msp3400-driver.c
|
|
|
|
+++ b/drivers/media/i2c/msp3400-driver.c
|
|
|
|
@@ -170,7 +170,7 @@ static int msp_read(struct i2c_client *client, int dev, int addr)
|
|
|
|
break;
|
|
|
|
dev_warn(&client->dev, "I/O error #%d (read 0x%02x/0x%02x)\n", err,
|
|
|
|
dev, addr);
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies(10));
|
|
|
|
+ schedule_msec_hrtimeout_interruptible((10));
|
|
|
|
}
|
|
|
|
if (err == 3) {
|
|
|
|
dev_warn(&client->dev, "resetting chip, sound will go off.\n");
|
|
|
|
@@ -211,7 +211,7 @@ static int msp_write(struct i2c_client *client, int dev, int addr, int val)
|
|
|
|
break;
|
|
|
|
dev_warn(&client->dev, "I/O error #%d (write 0x%02x/0x%02x)\n", err,
|
|
|
|
dev, addr);
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies(10));
|
|
|
|
+ schedule_msec_hrtimeout_interruptible((10));
|
|
|
|
}
|
|
|
|
if (err == 3) {
|
|
|
|
dev_warn(&client->dev, "resetting chip, sound will go off.\n");
|
|
|
|
diff --git a/drivers/media/pci/cx18/cx18-gpio.c b/drivers/media/pci/cx18/cx18-gpio.c
|
|
|
|
index cf7cfda94107..f63e17489547 100644
|
|
|
|
--- a/drivers/media/pci/cx18/cx18-gpio.c
|
|
|
|
+++ b/drivers/media/pci/cx18/cx18-gpio.c
|
|
|
|
@@ -81,11 +81,11 @@ static void gpio_reset_seq(struct cx18 *cx, u32 active_lo, u32 active_hi,
|
|
|
|
|
|
|
|
/* Assert */
|
|
|
|
gpio_update(cx, mask, ~active_lo);
|
|
|
|
- schedule_timeout_uninterruptible(msecs_to_jiffies(assert_msecs));
|
|
|
|
+ schedule_msec_hrtimeout_uninterruptible((assert_msecs));
|
|
|
|
|
|
|
|
/* Deassert */
|
|
|
|
gpio_update(cx, mask, ~active_hi);
|
|
|
|
- schedule_timeout_uninterruptible(msecs_to_jiffies(recovery_msecs));
|
|
|
|
+ schedule_msec_hrtimeout_uninterruptible((recovery_msecs));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
diff --git a/drivers/media/pci/ivtv/ivtv-gpio.c b/drivers/media/pci/ivtv/ivtv-gpio.c
|
|
|
|
index 856e7ab7f33e..766a26251337 100644
|
|
|
|
--- a/drivers/media/pci/ivtv/ivtv-gpio.c
|
|
|
|
+++ b/drivers/media/pci/ivtv/ivtv-gpio.c
|
|
|
|
@@ -105,7 +105,7 @@ void ivtv_reset_ir_gpio(struct ivtv *itv)
|
|
|
|
curout = (curout & ~0xF) | 1;
|
|
|
|
write_reg(curout, IVTV_REG_GPIO_OUT);
|
|
|
|
/* We could use something else for smaller time */
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies(1));
|
|
|
|
+ schedule_msec_hrtimeout_interruptible((1));
|
|
|
|
curout |= 2;
|
|
|
|
write_reg(curout, IVTV_REG_GPIO_OUT);
|
|
|
|
curdir &= ~0x80;
|
|
|
|
@@ -125,11 +125,11 @@ int ivtv_reset_tuner_gpio(void *dev, int component, int cmd, int value)
|
|
|
|
curout = read_reg(IVTV_REG_GPIO_OUT);
|
|
|
|
curout &= ~(1 << itv->card->xceive_pin);
|
|
|
|
write_reg(curout, IVTV_REG_GPIO_OUT);
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies(1));
|
|
|
|
+ schedule_msec_hrtimeout_interruptible((1));
|
|
|
|
|
|
|
|
curout |= 1 << itv->card->xceive_pin;
|
|
|
|
write_reg(curout, IVTV_REG_GPIO_OUT);
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies(1));
|
|
|
|
+ schedule_msec_hrtimeout_interruptible((1));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
diff --git a/drivers/media/pci/ivtv/ivtv-ioctl.c b/drivers/media/pci/ivtv/ivtv-ioctl.c
|
|
|
|
index 35dccb31174c..8181cd65e876 100644
|
|
|
|
--- a/drivers/media/pci/ivtv/ivtv-ioctl.c
|
|
|
|
+++ b/drivers/media/pci/ivtv/ivtv-ioctl.c
|
|
|
|
@@ -1139,7 +1139,7 @@ void ivtv_s_std_dec(struct ivtv *itv, v4l2_std_id std)
|
|
|
|
TASK_UNINTERRUPTIBLE);
|
|
|
|
if ((read_reg(IVTV_REG_DEC_LINE_FIELD) >> 16) < 100)
|
|
|
|
break;
|
|
|
|
- schedule_timeout(msecs_to_jiffies(25));
|
|
|
|
+ schedule_msec_hrtimeout((25));
|
|
|
|
}
|
|
|
|
finish_wait(&itv->vsync_waitq, &wait);
|
|
|
|
mutex_lock(&itv->serialize_lock);
|
|
|
|
diff --git a/drivers/media/pci/ivtv/ivtv-streams.c b/drivers/media/pci/ivtv/ivtv-streams.c
|
|
|
|
index f04ee84bab5f..c4469b4b8f99 100644
|
|
|
|
--- a/drivers/media/pci/ivtv/ivtv-streams.c
|
|
|
|
+++ b/drivers/media/pci/ivtv/ivtv-streams.c
|
|
|
|
@@ -849,7 +849,7 @@ int ivtv_stop_v4l2_encode_stream(struct ivtv_stream *s, int gop_end)
|
|
|
|
while (!test_bit(IVTV_F_I_EOS, &itv->i_flags) &&
|
|
|
|
time_before(jiffies,
|
|
|
|
then + msecs_to_jiffies(2000))) {
|
|
|
|
- schedule_timeout(msecs_to_jiffies(10));
|
|
|
|
+ schedule_msec_hrtimeout((10));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* To convert jiffies to ms, we must multiply by 1000
|
|
|
|
diff --git a/drivers/media/radio/radio-mr800.c b/drivers/media/radio/radio-mr800.c
|
|
|
|
index cb0437b4c331..163fffc0e1d4 100644
|
|
|
|
--- a/drivers/media/radio/radio-mr800.c
|
|
|
|
+++ b/drivers/media/radio/radio-mr800.c
|
|
|
|
@@ -366,7 +366,7 @@ static int vidioc_s_hw_freq_seek(struct file *file, void *priv,
|
|
|
|
retval = -ENODATA;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
- if (schedule_timeout_interruptible(msecs_to_jiffies(10))) {
|
|
|
|
+ if (schedule_msec_hrtimeout_interruptible((10))) {
|
|
|
|
retval = -ERESTARTSYS;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
diff --git a/drivers/media/radio/radio-tea5777.c b/drivers/media/radio/radio-tea5777.c
|
|
|
|
index fb9de7bbcd19..e53cf45e7f3f 100644
|
|
|
|
--- a/drivers/media/radio/radio-tea5777.c
|
|
|
|
+++ b/drivers/media/radio/radio-tea5777.c
|
|
|
|
@@ -235,7 +235,7 @@ static int radio_tea5777_update_read_reg(struct radio_tea5777 *tea, int wait)
|
|
|
|
}
|
|
|
|
|
|
|
|
if (wait) {
|
|
|
|
- if (schedule_timeout_interruptible(msecs_to_jiffies(wait)))
|
|
|
|
+ if (schedule_msec_hrtimeout_interruptible((wait)))
|
|
|
|
return -ERESTARTSYS;
|
|
|
|
}
|
|
|
|
|
|
|
|
diff --git a/drivers/media/radio/tea575x.c b/drivers/media/radio/tea575x.c
|
|
|
|
index c37315226c42..e73e6393403c 100644
|
|
|
|
--- a/drivers/media/radio/tea575x.c
|
|
|
|
+++ b/drivers/media/radio/tea575x.c
|
|
|
|
@@ -401,7 +401,7 @@ int snd_tea575x_s_hw_freq_seek(struct file *file, struct snd_tea575x *tea,
|
|
|
|
for (;;) {
|
|
|
|
if (time_after(jiffies, timeout))
|
|
|
|
break;
|
|
|
|
- if (schedule_timeout_interruptible(msecs_to_jiffies(10))) {
|
|
|
|
+ if (schedule_msec_hrtimeout_interruptible((10))) {
|
|
|
|
/* some signal arrived, stop search */
|
|
|
|
tea->val &= ~TEA575X_BIT_SEARCH;
|
|
|
|
snd_tea575x_set_freq(tea);
|
|
|
|
diff --git a/drivers/mfd/ucb1x00-core.c b/drivers/mfd/ucb1x00-core.c
|
|
|
|
index b690796d24d4..448b13da62b4 100644
|
|
|
|
--- a/drivers/mfd/ucb1x00-core.c
|
|
|
|
+++ b/drivers/mfd/ucb1x00-core.c
|
|
|
|
@@ -250,7 +250,7 @@ unsigned int ucb1x00_adc_read(struct ucb1x00 *ucb, int adc_channel, int sync)
|
|
|
|
break;
|
|
|
|
/* yield to other processes */
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
- schedule_timeout(1);
|
|
|
|
+ schedule_min_hrtimeout();
|
|
|
|
}
|
|
|
|
|
|
|
|
return UCB_ADC_DAT(val);
|
|
|
|
diff --git a/drivers/misc/sgi-xp/xpc_channel.c b/drivers/misc/sgi-xp/xpc_channel.c
|
|
|
|
index 8e6607fc8a67..b9ab770bbdb5 100644
|
|
|
|
--- a/drivers/misc/sgi-xp/xpc_channel.c
|
|
|
|
+++ b/drivers/misc/sgi-xp/xpc_channel.c
|
|
|
|
@@ -834,7 +834,7 @@ xpc_allocate_msg_wait(struct xpc_channel *ch)
|
|
|
|
|
|
|
|
atomic_inc(&ch->n_on_msg_allocate_wq);
|
|
|
|
prepare_to_wait(&ch->msg_allocate_wq, &wait, TASK_INTERRUPTIBLE);
|
|
|
|
- ret = schedule_timeout(1);
|
|
|
|
+ ret = schedule_min_hrtimeout();
|
|
|
|
finish_wait(&ch->msg_allocate_wq, &wait);
|
|
|
|
atomic_dec(&ch->n_on_msg_allocate_wq);
|
|
|
|
|
|
|
|
diff --git a/drivers/net/caif/caif_hsi.c b/drivers/net/caif/caif_hsi.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index 3d63b15bbaa1..164071e9d457 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/drivers/net/caif/caif_hsi.c
|
|
|
|
+++ b/drivers/net/caif/caif_hsi.c
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -924,7 +924,7 @@ static void cfhsi_wake_down(struct work_struct *work)
|
2020-10-26 15:23:54 -05:00
|
|
|
break;
|
|
|
|
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
- schedule_timeout(1);
|
|
|
|
+ schedule_min_hrtimeout();
|
|
|
|
retry--;
|
|
|
|
}
|
|
|
|
|
|
|
|
diff --git a/drivers/net/can/usb/peak_usb/pcan_usb.c b/drivers/net/can/usb/peak_usb/pcan_usb.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index 63bd2ed96697..80111182faf9 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/drivers/net/can/usb/peak_usb/pcan_usb.c
|
|
|
|
+++ b/drivers/net/can/usb/peak_usb/pcan_usb.c
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -290,7 +290,7 @@ static int pcan_usb_write_mode(struct peak_usb_device *dev, u8 onoff)
|
2020-10-26 15:23:54 -05:00
|
|
|
} else {
|
|
|
|
/* the PCAN-USB needs time to init */
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
- schedule_timeout(msecs_to_jiffies(PCAN_USB_STARTUP_TIMEOUT));
|
|
|
|
+ schedule_msec_hrtimeout((PCAN_USB_STARTUP_TIMEOUT));
|
|
|
|
}
|
|
|
|
|
|
|
|
return err;
|
|
|
|
diff --git a/drivers/net/usb/lan78xx.c b/drivers/net/usb/lan78xx.c
|
|
|
|
index 65b315bc60ab..2b3f71086f5f 100644
|
|
|
|
--- a/drivers/net/usb/lan78xx.c
|
|
|
|
+++ b/drivers/net/usb/lan78xx.c
|
|
|
|
@@ -2666,7 +2666,7 @@ static void lan78xx_terminate_urbs(struct lan78xx_net *dev)
|
|
|
|
while (!skb_queue_empty(&dev->rxq) &&
|
|
|
|
!skb_queue_empty(&dev->txq) &&
|
|
|
|
!skb_queue_empty(&dev->done)) {
|
|
|
|
- schedule_timeout(msecs_to_jiffies(UNLINK_TIMEOUT_MS));
|
|
|
|
+ schedule_msec_hrtimeout((UNLINK_TIMEOUT_MS));
|
|
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
|
|
netif_dbg(dev, ifdown, dev->net,
|
|
|
|
"waited for %d urb completions\n", temp);
|
|
|
|
diff --git a/drivers/net/usb/usbnet.c b/drivers/net/usb/usbnet.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index 6062dc27870e..d00eff8640d2 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/drivers/net/usb/usbnet.c
|
|
|
|
+++ b/drivers/net/usb/usbnet.c
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -764,7 +764,7 @@ static void wait_skb_queue_empty(struct sk_buff_head *q)
|
2020-10-26 15:23:54 -05:00
|
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
|
|
while (!skb_queue_empty(q)) {
|
|
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
|
|
- schedule_timeout(msecs_to_jiffies(UNLINK_TIMEOUT_MS));
|
|
|
|
+ schedule_msec_hrtimeout((UNLINK_TIMEOUT_MS));
|
|
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
|
|
}
|
|
|
|
diff --git a/drivers/net/wireless/intel/ipw2x00/ipw2100.c b/drivers/net/wireless/intel/ipw2x00/ipw2100.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index 23fbddd0c1f8..534ab3b894e2 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/drivers/net/wireless/intel/ipw2x00/ipw2100.c
|
|
|
|
+++ b/drivers/net/wireless/intel/ipw2x00/ipw2100.c
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -815,7 +815,7 @@ static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
|
2020-10-26 15:23:54 -05:00
|
|
|
* doesn't seem to have as many firmware restart cycles...
|
|
|
|
*
|
|
|
|
* As a test, we're sticking in a 1/100s delay here */
|
|
|
|
- schedule_timeout_uninterruptible(msecs_to_jiffies(10));
|
|
|
|
+ schedule_msec_hrtimeout_uninterruptible((10));
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -1266,7 +1266,7 @@ static int ipw2100_start_adapter(struct ipw2100_priv *priv)
|
2020-10-26 15:23:54 -05:00
|
|
|
IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
|
|
|
|
i = 5000;
|
|
|
|
do {
|
|
|
|
- schedule_timeout_uninterruptible(msecs_to_jiffies(40));
|
|
|
|
+ schedule_msec_hrtimeout_uninterruptible((40));
|
|
|
|
/* Todo... wait for sync command ... */
|
|
|
|
|
|
|
|
read_register(priv->net_dev, IPW_REG_INTA, &inta);
|
|
|
|
diff --git a/drivers/parport/ieee1284.c b/drivers/parport/ieee1284.c
|
|
|
|
index 4547ac44c8d4..8fa1a7fdf12c 100644
|
|
|
|
--- a/drivers/parport/ieee1284.c
|
|
|
|
+++ b/drivers/parport/ieee1284.c
|
|
|
|
@@ -202,7 +202,7 @@ int parport_wait_peripheral(struct parport *port,
|
|
|
|
/* parport_wait_event didn't time out, but the
|
|
|
|
* peripheral wasn't actually ready either.
|
|
|
|
* Wait for another 10ms. */
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies(10));
|
|
|
|
+ schedule_msec_hrtimeout_interruptible((10));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
diff --git a/drivers/parport/ieee1284_ops.c b/drivers/parport/ieee1284_ops.c
|
|
|
|
index 2c11bd3fe1fd..8cb6b61c0880 100644
|
|
|
|
--- a/drivers/parport/ieee1284_ops.c
|
|
|
|
+++ b/drivers/parport/ieee1284_ops.c
|
|
|
|
@@ -520,7 +520,7 @@ size_t parport_ieee1284_ecp_read_data (struct parport *port,
|
|
|
|
/* Yield the port for a while. */
|
|
|
|
if (count && dev->port->irq != PARPORT_IRQ_NONE) {
|
|
|
|
parport_release (dev);
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies(40));
|
|
|
|
+ schedule_msec_hrtimeout_interruptible((40));
|
|
|
|
parport_claim_or_block (dev);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
diff --git a/drivers/platform/x86/intel_ips.c b/drivers/platform/x86/intel_ips.c
|
|
|
|
index bffe548187ee..c2918ee3e100 100644
|
|
|
|
--- a/drivers/platform/x86/intel_ips.c
|
|
|
|
+++ b/drivers/platform/x86/intel_ips.c
|
|
|
|
@@ -798,7 +798,7 @@ static int ips_adjust(void *data)
|
|
|
|
ips_gpu_lower(ips);
|
|
|
|
|
|
|
|
sleep:
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
|
|
|
|
+ schedule_msec_hrtimeout_interruptible((IPS_ADJUST_PERIOD));
|
|
|
|
} while (!kthread_should_stop());
|
|
|
|
|
|
|
|
dev_dbg(ips->dev, "ips-adjust thread stopped\n");
|
|
|
|
@@ -974,7 +974,7 @@ static int ips_monitor(void *data)
|
|
|
|
seqno_timestamp = get_jiffies_64();
|
|
|
|
|
|
|
|
old_cpu_power = thm_readl(THM_CEC);
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
|
|
|
|
+ schedule_msec_hrtimeout_interruptible((IPS_SAMPLE_PERIOD));
|
|
|
|
|
|
|
|
/* Collect an initial average */
|
|
|
|
for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
|
|
|
|
@@ -1001,7 +1001,7 @@ static int ips_monitor(void *data)
|
|
|
|
mchp_samples[i] = mchp;
|
|
|
|
}
|
|
|
|
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
|
|
|
|
+ schedule_msec_hrtimeout_interruptible((IPS_SAMPLE_PERIOD));
|
|
|
|
if (kthread_should_stop())
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
@@ -1028,7 +1028,7 @@ static int ips_monitor(void *data)
|
|
|
|
* us to reduce the sample frequency if the CPU and GPU are idle.
|
|
|
|
*/
|
|
|
|
old_cpu_power = thm_readl(THM_CEC);
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
|
|
|
|
+ schedule_msec_hrtimeout_interruptible((IPS_SAMPLE_PERIOD));
|
|
|
|
last_sample_period = IPS_SAMPLE_PERIOD;
|
|
|
|
|
|
|
|
timer_setup(&ips->timer, monitor_timeout, TIMER_DEFERRABLE);
|
|
|
|
diff --git a/drivers/rtc/rtc-wm8350.c b/drivers/rtc/rtc-wm8350.c
|
|
|
|
index 2018614f258f..fc19b312c345 100644
|
|
|
|
--- a/drivers/rtc/rtc-wm8350.c
|
|
|
|
+++ b/drivers/rtc/rtc-wm8350.c
|
|
|
|
@@ -114,7 +114,7 @@ static int wm8350_rtc_settime(struct device *dev, struct rtc_time *tm)
|
|
|
|
/* Wait until confirmation of stopping */
|
|
|
|
do {
|
|
|
|
rtc_ctrl = wm8350_reg_read(wm8350, WM8350_RTC_TIME_CONTROL);
|
|
|
|
- schedule_timeout_uninterruptible(msecs_to_jiffies(1));
|
|
|
|
+ schedule_msec_hrtimeout_uninterruptible((1));
|
|
|
|
} while (--retries && !(rtc_ctrl & WM8350_RTC_STS));
|
|
|
|
|
|
|
|
if (!retries) {
|
|
|
|
@@ -197,7 +197,7 @@ static int wm8350_rtc_stop_alarm(struct wm8350 *wm8350)
|
|
|
|
/* Wait until confirmation of stopping */
|
|
|
|
do {
|
|
|
|
rtc_ctrl = wm8350_reg_read(wm8350, WM8350_RTC_TIME_CONTROL);
|
|
|
|
- schedule_timeout_uninterruptible(msecs_to_jiffies(1));
|
|
|
|
+ schedule_msec_hrtimeout_uninterruptible((1));
|
|
|
|
} while (retries-- && !(rtc_ctrl & WM8350_RTC_ALMSTS));
|
|
|
|
|
|
|
|
if (!(rtc_ctrl & WM8350_RTC_ALMSTS))
|
|
|
|
@@ -220,7 +220,7 @@ static int wm8350_rtc_start_alarm(struct wm8350 *wm8350)
|
|
|
|
/* Wait until confirmation */
|
|
|
|
do {
|
|
|
|
rtc_ctrl = wm8350_reg_read(wm8350, WM8350_RTC_TIME_CONTROL);
|
|
|
|
- schedule_timeout_uninterruptible(msecs_to_jiffies(1));
|
|
|
|
+ schedule_msec_hrtimeout_uninterruptible((1));
|
|
|
|
} while (retries-- && rtc_ctrl & WM8350_RTC_ALMSTS);
|
|
|
|
|
|
|
|
if (rtc_ctrl & WM8350_RTC_ALMSTS)
|
|
|
|
diff --git a/drivers/scsi/fnic/fnic_scsi.c b/drivers/scsi/fnic/fnic_scsi.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index d1f7b84bbfe8..94da04ef6174 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/drivers/scsi/fnic/fnic_scsi.c
|
|
|
|
+++ b/drivers/scsi/fnic/fnic_scsi.c
|
|
|
|
@@ -217,7 +217,7 @@ int fnic_fw_reset_handler(struct fnic *fnic)
|
|
|
|
|
|
|
|
/* wait for io cmpl */
|
|
|
|
while (atomic_read(&fnic->in_flight))
|
|
|
|
- schedule_timeout(msecs_to_jiffies(1));
|
|
|
|
+ schedule_msec_hrtimeout((1));
|
|
|
|
|
|
|
|
spin_lock_irqsave(&fnic->wq_copy_lock[0], flags);
|
|
|
|
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -2277,7 +2277,7 @@ static int fnic_clean_pending_aborts(struct fnic *fnic,
|
2020-10-26 15:23:54 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
- schedule_timeout(msecs_to_jiffies(2 * fnic->config.ed_tov));
|
|
|
|
+ schedule_msec_hrtimeout((2 * fnic->config.ed_tov));
|
|
|
|
|
|
|
|
/* walk again to check, if IOs are still pending in fw */
|
|
|
|
if (fnic_is_abts_pending(fnic, lr_sc))
|
|
|
|
diff --git a/drivers/scsi/lpfc/lpfc_scsi.c b/drivers/scsi/lpfc/lpfc_scsi.c
|
|
|
|
index 983eeb0e3d07..007966930f94 100644
|
|
|
|
--- a/drivers/scsi/lpfc/lpfc_scsi.c
|
|
|
|
+++ b/drivers/scsi/lpfc/lpfc_scsi.c
|
|
|
|
@@ -5194,7 +5194,7 @@ lpfc_reset_flush_io_context(struct lpfc_vport *vport, uint16_t tgt_id,
|
|
|
|
tgt_id, lun_id, context);
|
|
|
|
later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies;
|
|
|
|
while (time_after(later, jiffies) && cnt) {
|
|
|
|
- schedule_timeout_uninterruptible(msecs_to_jiffies(20));
|
|
|
|
+ schedule_msec_hrtimeout_uninterruptible((20));
|
|
|
|
cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context);
|
|
|
|
}
|
|
|
|
if (cnt) {
|
|
|
|
diff --git a/drivers/scsi/snic/snic_scsi.c b/drivers/scsi/snic/snic_scsi.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index 6dd0ff188bb4..aedf0b78f622 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/drivers/scsi/snic/snic_scsi.c
|
|
|
|
+++ b/drivers/scsi/snic/snic_scsi.c
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -2349,7 +2349,7 @@ snic_reset(struct Scsi_Host *shost, struct scsi_cmnd *sc)
|
2020-10-26 15:23:54 -05:00
|
|
|
|
|
|
|
/* Wait for all the IOs that are entered in Qcmd */
|
|
|
|
while (atomic_read(&snic->ios_inflight))
|
|
|
|
- schedule_timeout(msecs_to_jiffies(1));
|
|
|
|
+ schedule_msec_hrtimeout((1));
|
|
|
|
|
|
|
|
ret = snic_issue_hba_reset(snic, sc);
|
|
|
|
if (ret) {
|
|
|
|
diff --git a/drivers/staging/comedi/drivers/ni_mio_common.c b/drivers/staging/comedi/drivers/ni_mio_common.c
|
|
|
|
index 9266e13f6271..df5c53216d78 100644
|
|
|
|
--- a/drivers/staging/comedi/drivers/ni_mio_common.c
|
|
|
|
+++ b/drivers/staging/comedi/drivers/ni_mio_common.c
|
|
|
|
@@ -4748,7 +4748,7 @@ static int cs5529_wait_for_idle(struct comedi_device *dev)
|
|
|
|
if ((status & NI67XX_CAL_STATUS_BUSY) == 0)
|
|
|
|
break;
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
- if (schedule_timeout(1))
|
|
|
|
+ if (schedule_min_hrtimeout())
|
|
|
|
return -EIO;
|
|
|
|
}
|
|
|
|
if (i == timeout) {
|
|
|
|
diff --git a/drivers/staging/rts5208/rtsx.c b/drivers/staging/rts5208/rtsx.c
|
|
|
|
index 898add4d1fc8..0aa9dd467349 100644
|
|
|
|
--- a/drivers/staging/rts5208/rtsx.c
|
|
|
|
+++ b/drivers/staging/rts5208/rtsx.c
|
|
|
|
@@ -477,7 +477,7 @@ static int rtsx_polling_thread(void *__dev)
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
- schedule_timeout(msecs_to_jiffies(POLLING_INTERVAL));
|
|
|
|
+ schedule_msec_hrtimeout((POLLING_INTERVAL));
|
|
|
|
|
|
|
|
/* lock the device pointers */
|
|
|
|
mutex_lock(&dev->dev_mutex);
|
|
|
|
diff --git a/drivers/staging/unisys/visornic/visornic_main.c b/drivers/staging/unisys/visornic/visornic_main.c
|
|
|
|
index 0433536930a9..d8726f28843f 100644
|
|
|
|
--- a/drivers/staging/unisys/visornic/visornic_main.c
|
|
|
|
+++ b/drivers/staging/unisys/visornic/visornic_main.c
|
|
|
|
@@ -549,7 +549,7 @@ static int visornic_disable_with_timeout(struct net_device *netdev,
|
|
|
|
}
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
spin_unlock_irqrestore(&devdata->priv_lock, flags);
|
|
|
|
- wait += schedule_timeout(msecs_to_jiffies(10));
|
|
|
|
+ wait += schedule_msec_hrtimeout((10));
|
|
|
|
spin_lock_irqsave(&devdata->priv_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
@@ -560,7 +560,7 @@ static int visornic_disable_with_timeout(struct net_device *netdev,
|
|
|
|
while (1) {
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
spin_unlock_irqrestore(&devdata->priv_lock, flags);
|
|
|
|
- schedule_timeout(msecs_to_jiffies(10));
|
|
|
|
+ schedule_msec_hrtimeout((10));
|
|
|
|
spin_lock_irqsave(&devdata->priv_lock, flags);
|
|
|
|
if (atomic_read(&devdata->usage))
|
|
|
|
break;
|
|
|
|
@@ -714,7 +714,7 @@ static int visornic_enable_with_timeout(struct net_device *netdev,
|
|
|
|
}
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
spin_unlock_irqrestore(&devdata->priv_lock, flags);
|
|
|
|
- wait += schedule_timeout(msecs_to_jiffies(10));
|
|
|
|
+ wait += schedule_msec_hrtimeout((10));
|
|
|
|
spin_lock_irqsave(&devdata->priv_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
diff --git a/drivers/video/fbdev/omap/hwa742.c b/drivers/video/fbdev/omap/hwa742.c
|
|
|
|
index cfe63932f825..71c00ef772a3 100644
|
|
|
|
--- a/drivers/video/fbdev/omap/hwa742.c
|
|
|
|
+++ b/drivers/video/fbdev/omap/hwa742.c
|
|
|
|
@@ -913,7 +913,7 @@ static void hwa742_resume(void)
|
|
|
|
if (hwa742_read_reg(HWA742_PLL_DIV_REG) & (1 << 7))
|
|
|
|
break;
|
|
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
|
|
- schedule_timeout(msecs_to_jiffies(5));
|
|
|
|
+ schedule_msec_hrtimeout((5));
|
|
|
|
}
|
|
|
|
hwa742_set_update_mode(hwa742.update_mode_before_suspend);
|
|
|
|
}
|
|
|
|
diff --git a/drivers/video/fbdev/pxafb.c b/drivers/video/fbdev/pxafb.c
|
|
|
|
index f1551e00eb12..f0f651e92504 100644
|
|
|
|
--- a/drivers/video/fbdev/pxafb.c
|
|
|
|
+++ b/drivers/video/fbdev/pxafb.c
|
|
|
|
@@ -1287,7 +1287,7 @@ static int pxafb_smart_thread(void *arg)
|
|
|
|
mutex_unlock(&fbi->ctrlr_lock);
|
|
|
|
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
- schedule_timeout(msecs_to_jiffies(30));
|
|
|
|
+ schedule_msec_hrtimeout((30));
|
|
|
|
}
|
|
|
|
|
|
|
|
pr_debug("%s(): task ending\n", __func__);
|
|
|
|
diff --git a/fs/btrfs/inode-map.c b/fs/btrfs/inode-map.c
|
|
|
|
index 76d2e43817ea..6ba0604e2162 100644
|
|
|
|
--- a/fs/btrfs/inode-map.c
|
|
|
|
+++ b/fs/btrfs/inode-map.c
|
|
|
|
@@ -91,7 +91,7 @@ static int caching_kthread(void *data)
|
|
|
|
btrfs_release_path(path);
|
|
|
|
root->ino_cache_progress = last;
|
|
|
|
up_read(&fs_info->commit_root_sem);
|
|
|
|
- schedule_timeout(1);
|
|
|
|
+ schedule_min_hrtimeout();
|
|
|
|
goto again;
|
|
|
|
} else
|
|
|
|
continue;
|
|
|
|
diff --git a/fs/proc/base.c b/fs/proc/base.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index b362523a9829..38e4f305ddf0 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/fs/proc/base.c
|
|
|
|
+++ b/fs/proc/base.c
|
|
|
|
@@ -479,7 +479,7 @@ static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
|
|
|
|
seq_puts(m, "0 0 0\n");
|
|
|
|
else
|
|
|
|
seq_printf(m, "%llu %llu %lu\n",
|
|
|
|
- (unsigned long long)task->se.sum_exec_runtime,
|
|
|
|
+ (unsigned long long)tsk_seruntime(task),
|
|
|
|
(unsigned long long)task->sched_info.run_delay,
|
|
|
|
task->sched_info.pcount);
|
|
|
|
|
|
|
|
diff --git a/include/linux/freezer.h b/include/linux/freezer.h
|
|
|
|
index 27828145ca09..504cc97bf475 100644
|
|
|
|
--- a/include/linux/freezer.h
|
|
|
|
+++ b/include/linux/freezer.h
|
|
|
|
@@ -311,6 +311,7 @@ static inline void set_freezable(void) {}
|
|
|
|
#define wait_event_freezekillable_unsafe(wq, condition) \
|
|
|
|
wait_event_killable(wq, condition)
|
|
|
|
|
|
|
|
+#define pm_freezing (false)
|
|
|
|
#endif /* !CONFIG_FREEZER */
|
|
|
|
|
|
|
|
#endif /* FREEZER_H_INCLUDED */
|
|
|
|
diff --git a/include/linux/init_task.h b/include/linux/init_task.h
|
2021-01-08 07:29:38 -06:00
|
|
|
index b2412b4d4c20..0db390aeae9f 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/include/linux/init_task.h
|
|
|
|
+++ b/include/linux/init_task.h
|
|
|
|
@@ -36,7 +36,11 @@ extern struct cred init_cred;
|
|
|
|
#define INIT_PREV_CPUTIME(x)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
+#ifdef CONFIG_SCHED_MUQSS
|
|
|
|
+#define INIT_TASK_COMM "MuQSS"
|
|
|
|
+#else
|
|
|
|
#define INIT_TASK_COMM "swapper"
|
|
|
|
+#endif
|
|
|
|
|
|
|
|
/* Attach to the init_task data structure for proper alignment */
|
|
|
|
#ifdef CONFIG_ARCH_TASK_STRUCT_ON_STACK
|
|
|
|
diff --git a/include/linux/ioprio.h b/include/linux/ioprio.h
|
|
|
|
index e9bfe6972aed..16ba1c7e5bde 100644
|
|
|
|
--- a/include/linux/ioprio.h
|
|
|
|
+++ b/include/linux/ioprio.h
|
|
|
|
@@ -53,6 +53,8 @@ enum {
|
|
|
|
*/
|
|
|
|
static inline int task_nice_ioprio(struct task_struct *task)
|
|
|
|
{
|
|
|
|
+ if (iso_task(task))
|
|
|
|
+ return 0;
|
|
|
|
return (task_nice(task) + 20) / 5;
|
|
|
|
}
|
|
|
|
|
|
|
|
diff --git a/include/linux/sched.h b/include/linux/sched.h
|
2021-01-08 07:29:38 -06:00
|
|
|
index 76cd21fa5501..98f30ab29195 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/include/linux/sched.h
|
|
|
|
+++ b/include/linux/sched.h
|
|
|
|
@@ -35,6 +35,10 @@
|
|
|
|
#include <linux/seqlock.h>
|
|
|
|
#include <linux/kcsan.h>
|
|
|
|
|
|
|
|
+#ifdef CONFIG_SCHED_MUQSS
|
|
|
|
+#include <linux/skip_list.h>
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
/* task_struct member predeclarations (sorted alphabetically): */
|
|
|
|
struct audit_context;
|
|
|
|
struct backing_dev_info;
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -214,13 +218,40 @@ struct io_uring_task;
|
2020-10-26 15:23:54 -05:00
|
|
|
|
|
|
|
extern void scheduler_tick(void);
|
|
|
|
|
|
|
|
-#define MAX_SCHEDULE_TIMEOUT LONG_MAX
|
|
|
|
-
|
|
|
|
+#define MAX_SCHEDULE_TIMEOUT LONG_MAX
|
|
|
|
extern long schedule_timeout(long timeout);
|
|
|
|
extern long schedule_timeout_interruptible(long timeout);
|
|
|
|
extern long schedule_timeout_killable(long timeout);
|
|
|
|
extern long schedule_timeout_uninterruptible(long timeout);
|
|
|
|
extern long schedule_timeout_idle(long timeout);
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_HIGH_RES_TIMERS
|
|
|
|
+extern long schedule_msec_hrtimeout(long timeout);
|
|
|
|
+extern long schedule_min_hrtimeout(void);
|
|
|
|
+extern long schedule_msec_hrtimeout_interruptible(long timeout);
|
|
|
|
+extern long schedule_msec_hrtimeout_uninterruptible(long timeout);
|
|
|
|
+#else
|
|
|
|
+static inline long schedule_msec_hrtimeout(long timeout)
|
|
|
|
+{
|
|
|
|
+ return schedule_timeout(msecs_to_jiffies(timeout));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline long schedule_min_hrtimeout(void)
|
|
|
|
+{
|
|
|
|
+ return schedule_timeout(1);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline long schedule_msec_hrtimeout_interruptible(long timeout)
|
|
|
|
+{
|
|
|
|
+ return schedule_timeout_interruptible(msecs_to_jiffies(timeout));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline long schedule_msec_hrtimeout_uninterruptible(long timeout)
|
|
|
|
+{
|
|
|
|
+ return schedule_timeout_uninterruptible(msecs_to_jiffies(timeout));
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
asmlinkage void schedule(void);
|
|
|
|
extern void schedule_preempt_disabled(void);
|
|
|
|
asmlinkage void preempt_schedule_irq(void);
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -660,8 +691,10 @@ struct task_struct {
|
2020-10-26 15:23:54 -05:00
|
|
|
unsigned int flags;
|
|
|
|
unsigned int ptrace;
|
|
|
|
|
|
|
|
-#ifdef CONFIG_SMP
|
|
|
|
+#if defined(CONFIG_SMP) || defined(CONFIG_SCHED_MUQSS)
|
|
|
|
int on_cpu;
|
|
|
|
+#endif
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
struct __call_single_node wake_entry;
|
|
|
|
#ifdef CONFIG_THREAD_INFO_IN_TASK
|
|
|
|
/* Current CPU: */
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -687,10 +720,25 @@ struct task_struct {
|
2020-10-26 15:23:54 -05:00
|
|
|
int static_prio;
|
|
|
|
int normal_prio;
|
|
|
|
unsigned int rt_priority;
|
|
|
|
+#ifdef CONFIG_SCHED_MUQSS
|
|
|
|
+ int time_slice;
|
|
|
|
+ u64 deadline;
|
|
|
|
+ skiplist_node node; /* Skip list node */
|
|
|
|
+ u64 last_ran;
|
|
|
|
+ u64 sched_time; /* sched_clock time spent running */
|
|
|
|
+#ifdef CONFIG_SMT_NICE
|
|
|
|
+ int smt_bias; /* Policy/nice level bias across smt siblings */
|
|
|
|
+#endif
|
|
|
|
+#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
+ bool zerobound; /* Bound to CPU0 for hotplug */
|
|
|
|
+#endif
|
|
|
|
+ unsigned long rt_timeout;
|
|
|
|
+#else /* CONFIG_SCHED_MUQSS */
|
|
|
|
|
|
|
|
const struct sched_class *sched_class;
|
|
|
|
struct sched_entity se;
|
|
|
|
struct sched_rt_entity rt;
|
|
|
|
+#endif
|
|
|
|
#ifdef CONFIG_CGROUP_SCHED
|
|
|
|
struct task_group *sched_task_group;
|
|
|
|
#endif
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -886,6 +934,10 @@ struct task_struct {
|
2020-10-26 15:23:54 -05:00
|
|
|
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
|
|
|
|
u64 utimescaled;
|
|
|
|
u64 stimescaled;
|
|
|
|
+#endif
|
|
|
|
+#ifdef CONFIG_SCHED_MUQSS
|
|
|
|
+ /* Unbanked cpu time */
|
|
|
|
+ unsigned long utime_ns, stime_ns;
|
|
|
|
#endif
|
|
|
|
u64 gtime;
|
|
|
|
struct prev_cputime prev_cputime;
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -1365,6 +1417,40 @@ struct task_struct {
|
2020-10-26 15:23:54 -05:00
|
|
|
*/
|
|
|
|
};
|
|
|
|
|
|
|
|
+#ifdef CONFIG_SCHED_MUQSS
|
|
|
|
+#define tsk_seruntime(t) ((t)->sched_time)
|
|
|
|
+#define tsk_rttimeout(t) ((t)->rt_timeout)
|
|
|
|
+
|
|
|
|
+static inline void tsk_cpus_current(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void print_scheduler_version(void);
|
|
|
|
+
|
|
|
|
+static inline bool iso_task(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ return (p->policy == SCHED_ISO);
|
|
|
|
+}
|
|
|
|
+#else /* CFS */
|
|
|
|
+#define tsk_seruntime(t) ((t)->se.sum_exec_runtime)
|
|
|
|
+#define tsk_rttimeout(t) ((t)->rt.timeout)
|
|
|
|
+
|
|
|
|
+static inline void tsk_cpus_current(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ p->nr_cpus_allowed = current->nr_cpus_allowed;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void print_scheduler_version(void)
|
|
|
|
+{
|
|
|
|
+ printk(KERN_INFO "CFS CPU scheduler.\n");
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline bool iso_task(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ return false;
|
|
|
|
+}
|
|
|
|
+#endif /* CONFIG_SCHED_MUQSS */
|
|
|
|
+
|
|
|
|
static inline struct pid *task_pid(struct task_struct *task)
|
|
|
|
{
|
|
|
|
return task->thread_pid;
|
|
|
|
diff --git a/include/linux/sched/deadline.h b/include/linux/sched/deadline.h
|
|
|
|
index 1aff00b65f3c..73d6319a856a 100644
|
|
|
|
--- a/include/linux/sched/deadline.h
|
|
|
|
+++ b/include/linux/sched/deadline.h
|
|
|
|
@@ -28,7 +28,16 @@ static inline bool dl_time_before(u64 a, u64 b)
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
|
|
|
|
struct root_domain;
|
|
|
|
+#ifdef CONFIG_SCHED_MUQSS
|
|
|
|
+static inline void dl_clear_root_domain(struct root_domain *rd)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+static inline void dl_add_task_root_domain(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+#else /* CONFIG_SCHED_MUQSS */
|
|
|
|
extern void dl_add_task_root_domain(struct task_struct *p);
|
|
|
|
extern void dl_clear_root_domain(struct root_domain *rd);
|
|
|
|
+#endif /* CONFIG_SCHED_MUQSS */
|
|
|
|
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
diff --git a/include/linux/sched/nohz.h b/include/linux/sched/nohz.h
|
|
|
|
index 6d67e9a5af6b..101fe470aa8f 100644
|
|
|
|
--- a/include/linux/sched/nohz.h
|
|
|
|
+++ b/include/linux/sched/nohz.h
|
|
|
|
@@ -13,7 +13,7 @@ extern int get_nohz_timer_target(void);
|
|
|
|
static inline void nohz_balance_enter_idle(int cpu) { }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
-#ifdef CONFIG_NO_HZ_COMMON
|
|
|
|
+#if defined(CONFIG_NO_HZ_COMMON) && !defined(CONFIG_SCHED_MUQSS)
|
|
|
|
void calc_load_nohz_start(void);
|
|
|
|
void calc_load_nohz_remote(struct rq *rq);
|
|
|
|
void calc_load_nohz_stop(void);
|
|
|
|
diff --git a/include/linux/sched/prio.h b/include/linux/sched/prio.h
|
|
|
|
index 7d64feafc408..43c9d9e50c09 100644
|
|
|
|
--- a/include/linux/sched/prio.h
|
|
|
|
+++ b/include/linux/sched/prio.h
|
|
|
|
@@ -20,8 +20,20 @@
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define MAX_USER_RT_PRIO 100
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SCHED_MUQSS
|
|
|
|
+/* Note different MAX_RT_PRIO */
|
|
|
|
+#define MAX_RT_PRIO (MAX_USER_RT_PRIO + 1)
|
|
|
|
+
|
|
|
|
+#define ISO_PRIO (MAX_RT_PRIO)
|
|
|
|
+#define NORMAL_PRIO (MAX_RT_PRIO + 1)
|
|
|
|
+#define IDLE_PRIO (MAX_RT_PRIO + 2)
|
|
|
|
+#define PRIO_LIMIT ((IDLE_PRIO) + 1)
|
|
|
|
+#else /* CONFIG_SCHED_MUQSS */
|
|
|
|
#define MAX_RT_PRIO MAX_USER_RT_PRIO
|
|
|
|
|
|
|
|
+#endif /* CONFIG_SCHED_MUQSS */
|
|
|
|
+
|
|
|
|
#define MAX_PRIO (MAX_RT_PRIO + NICE_WIDTH)
|
|
|
|
#define DEFAULT_PRIO (MAX_RT_PRIO + NICE_WIDTH / 2)
|
|
|
|
|
|
|
|
diff --git a/include/linux/sched/rt.h b/include/linux/sched/rt.h
|
|
|
|
index e5af028c08b4..010b2244e0b6 100644
|
|
|
|
--- a/include/linux/sched/rt.h
|
|
|
|
+++ b/include/linux/sched/rt.h
|
|
|
|
@@ -24,8 +24,10 @@ static inline bool task_is_realtime(struct task_struct *tsk)
|
|
|
|
|
|
|
|
if (policy == SCHED_FIFO || policy == SCHED_RR)
|
|
|
|
return true;
|
|
|
|
+#ifndef CONFIG_SCHED_MUQSS
|
|
|
|
if (policy == SCHED_DEADLINE)
|
|
|
|
return true;
|
|
|
|
+#endif
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
diff --git a/include/linux/sched/task.h b/include/linux/sched/task.h
|
2021-01-08 07:29:38 -06:00
|
|
|
index 85fb2f34c59b..5feb3faee812 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/include/linux/sched/task.h
|
|
|
|
+++ b/include/linux/sched/task.h
|
|
|
|
@@ -93,7 +93,7 @@ int kernel_wait(pid_t pid, int *stat);
|
|
|
|
extern void free_task(struct task_struct *tsk);
|
|
|
|
|
|
|
|
/* sched_exec is called by processes performing an exec */
|
|
|
|
-#ifdef CONFIG_SMP
|
|
|
|
+#if defined(CONFIG_SMP) && !defined(CONFIG_SCHED_MUQSS)
|
|
|
|
extern void sched_exec(void);
|
|
|
|
#else
|
|
|
|
#define sched_exec() {}
|
|
|
|
diff --git a/include/linux/skip_list.h b/include/linux/skip_list.h
|
|
|
|
new file mode 100644
|
|
|
|
index 000000000000..d4be84ba273b
|
|
|
|
--- /dev/null
|
|
|
|
+++ b/include/linux/skip_list.h
|
|
|
|
@@ -0,0 +1,33 @@
|
|
|
|
+#ifndef _LINUX_SKIP_LISTS_H
|
|
|
|
+#define _LINUX_SKIP_LISTS_H
|
|
|
|
+typedef u64 keyType;
|
|
|
|
+typedef void *valueType;
|
|
|
|
+
|
|
|
|
+typedef struct nodeStructure skiplist_node;
|
|
|
|
+
|
|
|
|
+struct nodeStructure {
|
|
|
|
+ int level; /* Levels in this structure */
|
|
|
|
+ keyType key;
|
|
|
|
+ valueType value;
|
|
|
|
+ skiplist_node *next[8];
|
|
|
|
+ skiplist_node *prev[8];
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+typedef struct listStructure {
|
|
|
|
+ int entries;
|
|
|
|
+ int level; /* Maximum level of the list
|
|
|
|
+ (1 more than the number of levels in the list) */
|
|
|
|
+ skiplist_node *header; /* pointer to header */
|
|
|
|
+} skiplist;
|
|
|
|
+
|
|
|
|
+void skiplist_init(skiplist_node *slnode);
|
|
|
|
+skiplist *new_skiplist(skiplist_node *slnode);
|
|
|
|
+void free_skiplist(skiplist *l);
|
|
|
|
+void skiplist_node_init(skiplist_node *node);
|
|
|
|
+void skiplist_insert(skiplist *l, skiplist_node *node, keyType key, valueType value, unsigned int randseed);
|
|
|
|
+void skiplist_delete(skiplist *l, skiplist_node *node);
|
|
|
|
+
|
|
|
|
+static inline bool skiplist_node_empty(skiplist_node *node) {
|
|
|
|
+ return (!node->next[0]);
|
|
|
|
+}
|
|
|
|
+#endif /* _LINUX_SKIP_LISTS_H */
|
|
|
|
diff --git a/include/uapi/linux/sched.h b/include/uapi/linux/sched.h
|
|
|
|
index 3bac0a8ceab2..f48c5c5da651 100644
|
|
|
|
--- a/include/uapi/linux/sched.h
|
|
|
|
+++ b/include/uapi/linux/sched.h
|
|
|
|
@@ -115,9 +115,16 @@ struct clone_args {
|
|
|
|
#define SCHED_FIFO 1
|
|
|
|
#define SCHED_RR 2
|
|
|
|
#define SCHED_BATCH 3
|
|
|
|
-/* SCHED_ISO: reserved but not implemented yet */
|
|
|
|
+/* SCHED_ISO: Implemented on MuQSS only */
|
|
|
|
#define SCHED_IDLE 5
|
|
|
|
+#ifdef CONFIG_SCHED_MUQSS
|
|
|
|
+#define SCHED_ISO 4
|
|
|
|
+#define SCHED_IDLEPRIO SCHED_IDLE
|
|
|
|
+#define SCHED_MAX (SCHED_IDLEPRIO)
|
|
|
|
+#define SCHED_RANGE(policy) ((policy) <= SCHED_MAX)
|
|
|
|
+#else /* CONFIG_SCHED_MUQSS */
|
|
|
|
#define SCHED_DEADLINE 6
|
|
|
|
+#endif /* CONFIG_SCHED_MUQSS */
|
|
|
|
|
|
|
|
/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
|
|
|
|
#define SCHED_RESET_ON_FORK 0x40000000
|
|
|
|
diff --git a/init/Kconfig b/init/Kconfig
|
2021-01-08 07:29:38 -06:00
|
|
|
index 0872a5a2e759..f8aa9d2a9f51 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/init/Kconfig
|
|
|
|
+++ b/init/Kconfig
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -96,6 +96,18 @@ config THREAD_INFO_IN_TASK
|
2020-10-26 15:23:54 -05:00
|
|
|
|
|
|
|
menu "General setup"
|
|
|
|
|
|
|
|
+config SCHED_MUQSS
|
|
|
|
+ bool "MuQSS cpu scheduler"
|
|
|
|
+ select HIGH_RES_TIMERS
|
|
|
|
+ help
|
|
|
|
+ The Multiple Queue Skiplist Scheduler for excellent interactivity and
|
|
|
|
+ responsiveness on the desktop and highly scalable deterministic
|
|
|
|
+ low latency on any hardware.
|
|
|
|
+
|
|
|
|
+ Say Y here.
|
|
|
|
+ default y
|
|
|
|
+
|
|
|
|
+
|
|
|
|
config BROKEN
|
|
|
|
bool
|
|
|
|
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -514,6 +526,7 @@ config SCHED_THERMAL_PRESSURE
|
2020-10-26 15:23:54 -05:00
|
|
|
default y if ARM64
|
|
|
|
depends on SMP
|
|
|
|
depends on CPU_FREQ_THERMAL
|
|
|
|
+ depends on !SCHED_MUQSS
|
|
|
|
help
|
|
|
|
Select this option to enable thermal pressure accounting in the
|
|
|
|
scheduler. Thermal pressure is the value conveyed to the scheduler
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -863,6 +876,7 @@ config NUMA_BALANCING
|
2020-10-26 15:23:54 -05:00
|
|
|
depends on ARCH_SUPPORTS_NUMA_BALANCING
|
|
|
|
depends on !ARCH_WANT_NUMA_VARIABLE_LOCALITY
|
|
|
|
depends on SMP && NUMA && MIGRATION
|
|
|
|
+ depends on !SCHED_MUQSS
|
|
|
|
help
|
|
|
|
This option adds support for automatic NUMA aware memory/task placement.
|
|
|
|
The mechanism is quite primitive and is based on migrating memory when
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -947,9 +961,13 @@ menuconfig CGROUP_SCHED
|
2020-10-26 15:23:54 -05:00
|
|
|
help
|
|
|
|
This feature lets CPU scheduler recognize task groups and control CPU
|
|
|
|
bandwidth allocation to such task groups. It uses cgroups to group
|
|
|
|
- tasks.
|
|
|
|
+ tasks. In combination with MuQSS this is purely a STUB to create the
|
|
|
|
+ files associated with the CPU controller cgroup but most of the
|
|
|
|
+ controls do nothing. This is useful for working in environments and
|
|
|
|
+ with applications that will only work if this control group is
|
|
|
|
+ present.
|
|
|
|
|
|
|
|
-if CGROUP_SCHED
|
|
|
|
+if CGROUP_SCHED && !SCHED_MUQSS
|
|
|
|
config FAIR_GROUP_SCHED
|
|
|
|
bool "Group scheduling for SCHED_OTHER"
|
|
|
|
depends on CGROUP_SCHED
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -1078,6 +1096,7 @@ config CGROUP_DEVICE
|
2020-10-26 15:23:54 -05:00
|
|
|
|
|
|
|
config CGROUP_CPUACCT
|
|
|
|
bool "Simple CPU accounting controller"
|
|
|
|
+ depends on !SCHED_MUQSS
|
|
|
|
help
|
|
|
|
Provides a simple controller for monitoring the
|
|
|
|
total CPU consumed by the tasks in a cgroup.
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -1205,6 +1224,7 @@ config CHECKPOINT_RESTORE
|
2020-10-26 15:23:54 -05:00
|
|
|
|
|
|
|
config SCHED_AUTOGROUP
|
|
|
|
bool "Automatic process group scheduling"
|
|
|
|
+ depends on !SCHED_MUQSS
|
|
|
|
select CGROUPS
|
|
|
|
select CGROUP_SCHED
|
|
|
|
select FAIR_GROUP_SCHED
|
|
|
|
diff --git a/init/init_task.c b/init/init_task.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index a56f0abb63e9..d337ec0f36fc 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/init/init_task.c
|
|
|
|
+++ b/init/init_task.c
|
|
|
|
@@ -75,9 +75,17 @@ struct task_struct init_task
|
|
|
|
.stack = init_stack,
|
|
|
|
.usage = REFCOUNT_INIT(2),
|
|
|
|
.flags = PF_KTHREAD,
|
|
|
|
+#ifdef CONFIG_SCHED_MUQSS
|
|
|
|
+ .prio = NORMAL_PRIO,
|
|
|
|
+ .static_prio = MAX_PRIO - 20,
|
|
|
|
+ .normal_prio = NORMAL_PRIO,
|
|
|
|
+ .deadline = 0,
|
|
|
|
+ .time_slice = 1000000,
|
|
|
|
+#else
|
|
|
|
.prio = MAX_PRIO - 20,
|
|
|
|
.static_prio = MAX_PRIO - 20,
|
|
|
|
.normal_prio = MAX_PRIO - 20,
|
|
|
|
+#endif
|
|
|
|
.policy = SCHED_NORMAL,
|
|
|
|
.cpus_ptr = &init_task.cpus_mask,
|
|
|
|
.cpus_mask = CPU_MASK_ALL,
|
|
|
|
@@ -87,6 +95,7 @@ struct task_struct init_task
|
|
|
|
.restart_block = {
|
|
|
|
.fn = do_no_restart_syscall,
|
|
|
|
},
|
|
|
|
+#ifndef CONFIG_SCHED_MUQSS
|
|
|
|
.se = {
|
|
|
|
.group_node = LIST_HEAD_INIT(init_task.se.group_node),
|
|
|
|
},
|
|
|
|
@@ -94,6 +103,7 @@ struct task_struct init_task
|
|
|
|
.run_list = LIST_HEAD_INIT(init_task.rt.run_list),
|
|
|
|
.time_slice = RR_TIMESLICE,
|
|
|
|
},
|
|
|
|
+#endif
|
|
|
|
.tasks = LIST_HEAD_INIT(init_task.tasks),
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
.pushable_tasks = PLIST_NODE_INIT(init_task.pushable_tasks, MAX_PRIO),
|
|
|
|
diff --git a/init/main.c b/init/main.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index 32b2a8affafd..d3c0b60ff0cf 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/init/main.c
|
|
|
|
+++ b/init/main.c
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -1433,6 +1433,8 @@ static int __ref kernel_init(void *unused)
|
2020-10-26 15:23:54 -05:00
|
|
|
|
|
|
|
do_sysctl_args();
|
|
|
|
|
|
|
|
+ print_scheduler_version();
|
|
|
|
+
|
|
|
|
if (ramdisk_execute_command) {
|
|
|
|
ret = run_init_process(ramdisk_execute_command);
|
|
|
|
if (!ret)
|
|
|
|
diff --git a/kernel/Kconfig.MuQSS b/kernel/Kconfig.MuQSS
|
|
|
|
new file mode 100644
|
|
|
|
index 000000000000..a6a58781ef91
|
|
|
|
--- /dev/null
|
|
|
|
+++ b/kernel/Kconfig.MuQSS
|
|
|
|
@@ -0,0 +1,105 @@
|
|
|
|
+choice
|
|
|
|
+ prompt "CPU scheduler runqueue sharing"
|
|
|
|
+ default RQ_MC if SCHED_MUQSS
|
|
|
|
+ default RQ_NONE
|
|
|
|
+
|
|
|
|
+config RQ_NONE
|
|
|
|
+ bool "No sharing"
|
|
|
|
+ help
|
|
|
|
+ This is the default behaviour where the CPU scheduler has one runqueue
|
|
|
|
+ per CPU, whether it is a physical or logical CPU (hyperthread).
|
|
|
|
+
|
|
|
|
+ This can still be enabled runtime with the boot parameter
|
|
|
|
+ rqshare=none
|
|
|
|
+
|
|
|
|
+ If unsure, say N.
|
|
|
|
+
|
|
|
|
+config RQ_SMT
|
|
|
|
+ bool "SMT (hyperthread) siblings"
|
|
|
|
+ depends on SCHED_SMT && SCHED_MUQSS
|
|
|
|
+
|
|
|
|
+ help
|
|
|
|
+ With this option enabled, the CPU scheduler will have one runqueue
|
|
|
|
+ shared by SMT (hyperthread) siblings. As these logical cores share
|
|
|
|
+ one physical core, sharing the runqueue resource can lead to decreased
|
|
|
|
+ overhead, lower latency and higher throughput.
|
|
|
|
+
|
|
|
|
+ This can still be enabled runtime with the boot parameter
|
|
|
|
+ rqshare=smt
|
|
|
|
+
|
|
|
|
+ If unsure, say N.
|
|
|
|
+
|
|
|
|
+config RQ_MC
|
|
|
|
+ bool "Multicore siblings"
|
|
|
|
+ depends on SCHED_MC && SCHED_MUQSS
|
|
|
|
+ help
|
|
|
|
+ With this option enabled, the CPU scheduler will have one runqueue
|
|
|
|
+ shared by multicore siblings in addition to any SMT siblings.
|
|
|
|
+ As these physical cores share caches, sharing the runqueue resource
|
|
|
|
+ will lead to lower latency, but its effects on overhead and throughput
|
|
|
|
+ are less predictable. As a general rule, 6 or fewer cores will likely
|
|
|
|
+ benefit from this, while larger CPUs will only derive a latency
|
|
|
|
+ benefit. If your workloads are primarily single threaded, this will
|
|
|
|
+ possibly worsen throughput. If you are only concerned about latency
|
|
|
|
+ then enable this regardless of how many cores you have.
|
|
|
|
+
|
|
|
|
+ This can still be enabled runtime with the boot parameter
|
|
|
|
+ rqshare=mc
|
|
|
|
+
|
|
|
|
+ If unsure, say Y.
|
|
|
|
+
|
|
|
|
+config RQ_MC_LLC
|
|
|
|
+ bool "Multicore siblings (LLC)"
|
|
|
|
+ depends on SCHED_MC && SCHED_MUQSS
|
|
|
|
+ help
|
|
|
|
+ With this option enabled, the CPU scheduler will behave similarly as
|
|
|
|
+ with "Multicore siblings".
|
|
|
|
+ This option takes LLC cache into account when scheduling tasks.
|
|
|
|
+ Option may benefit CPUs with multiple LLC caches, such as Ryzen
|
|
|
|
+ and Xeon CPUs.
|
|
|
|
+
|
|
|
|
+ This can still be enabled runtime with the boot parameter
|
|
|
|
+ rqshare=llc
|
|
|
|
+
|
|
|
|
+ If unsure, say N.
|
|
|
|
+
|
|
|
|
+config RQ_SMP
|
|
|
|
+ bool "Symmetric Multi-Processing"
|
|
|
|
+ depends on SMP && SCHED_MUQSS
|
|
|
|
+ help
|
|
|
|
+ With this option enabled, the CPU scheduler will have one runqueue
|
|
|
|
+ shared by all physical CPUs unless they are on separate NUMA nodes.
|
|
|
|
+ As physical CPUs usually do not share resources, sharing the runqueue
|
|
|
|
+ will normally worsen throughput but improve latency. If you only
|
|
|
|
+ care about latency enable this.
|
|
|
|
+
|
|
|
|
+ This can still be enabled runtime with the boot parameter
|
|
|
|
+ rqshare=smp
|
|
|
|
+
|
|
|
|
+ If unsure, say N.
|
|
|
|
+
|
|
|
|
+config RQ_ALL
|
|
|
|
+ bool "NUMA"
|
|
|
|
+ depends on SMP && SCHED_MUQSS
|
|
|
|
+ help
|
|
|
|
+ With this option enabled, the CPU scheduler will have one runqueue
|
|
|
|
+ regardless of the architecture configuration, including across NUMA
|
|
|
|
+ nodes. This can substantially decrease throughput in NUMA
|
|
|
|
+ configurations, but light NUMA designs will not be dramatically
|
|
|
|
+ affected. This option should only be chosen if latency is the prime
|
|
|
|
+ concern.
|
|
|
|
+
|
|
|
|
+ This can still be enabled runtime with the boot parameter
|
|
|
|
+ rqshare=all
|
|
|
|
+
|
|
|
|
+ If unsure, say N.
|
|
|
|
+endchoice
|
|
|
|
+
|
|
|
|
+config SHARERQ
|
|
|
|
+ int
|
|
|
|
+ default 0 if RQ_NONE
|
|
|
|
+ default 1 if RQ_SMT
|
|
|
|
+ default 2 if RQ_MC
|
|
|
|
+ default 3 if RQ_MC_LLC
|
|
|
|
+ default 4 if RQ_SMP
|
|
|
|
+ default 5 if RQ_ALL
|
|
|
|
diff --git a/kernel/Kconfig.hz b/kernel/Kconfig.hz
|
|
|
|
index 38ef6d06888e..89ed751ac4e4 100644
|
|
|
|
--- a/kernel/Kconfig.hz
|
|
|
|
+++ b/kernel/Kconfig.hz
|
|
|
|
@@ -5,7 +5,8 @@
|
|
|
|
|
|
|
|
choice
|
|
|
|
prompt "Timer frequency"
|
|
|
|
- default HZ_250
|
|
|
|
+ default HZ_100 if SCHED_MUQSS
|
|
|
|
+ default HZ_250_NODEF if !SCHED_MUQSS
|
|
|
|
help
|
|
|
|
Allows the configuration of the timer frequency. It is customary
|
|
|
|
to have the timer interrupt run at 1000 Hz but 100 Hz may be more
|
|
|
|
@@ -20,11 +21,18 @@ choice
|
|
|
|
config HZ_100
|
|
|
|
bool "100 HZ"
|
|
|
|
help
|
|
|
|
+ 100 Hz is a suitable choice in combination with MuQSS which does
|
|
|
|
+ not rely on ticks for rescheduling interrupts, and is not Hz limited
|
|
|
|
+ for timeouts and sleeps from both the kernel and userspace.
|
|
|
|
+ This allows us to benefit from the lower overhead and higher
|
|
|
|
+ throughput of fewer timer ticks.
|
|
|
|
+
|
|
|
|
+ Non-MuQSS kernels:
|
|
|
|
100 Hz is a typical choice for servers, SMP and NUMA systems
|
|
|
|
with lots of processors that may show reduced performance if
|
|
|
|
too many timer interrupts are occurring.
|
|
|
|
|
|
|
|
- config HZ_250
|
|
|
|
+ config HZ_250_NODEF
|
|
|
|
bool "250 HZ"
|
|
|
|
help
|
|
|
|
250 Hz is a good compromise choice allowing server performance
|
|
|
|
@@ -32,7 +40,10 @@ choice
|
|
|
|
on SMP and NUMA systems. If you are going to be using NTSC video
|
|
|
|
or multimedia, selected 300Hz instead.
|
|
|
|
|
|
|
|
- config HZ_300
|
|
|
|
+ 250 Hz is the default choice for the mainline scheduler but not
|
|
|
|
+ advantageous in combination with MuQSS.
|
|
|
|
+
|
|
|
|
+ config HZ_300_NODEF
|
|
|
|
bool "300 HZ"
|
|
|
|
help
|
|
|
|
300 Hz is a good compromise choice allowing server performance
|
|
|
|
@@ -40,7 +51,7 @@ choice
|
|
|
|
on SMP and NUMA systems and exactly dividing by both PAL and
|
|
|
|
NTSC frame rates for video and multimedia work.
|
|
|
|
|
|
|
|
- config HZ_1000
|
|
|
|
+ config HZ_1000_NODEF
|
|
|
|
bool "1000 HZ"
|
|
|
|
help
|
|
|
|
1000 Hz is the preferred choice for desktop systems and other
|
|
|
|
@@ -51,9 +62,9 @@ endchoice
|
|
|
|
config HZ
|
|
|
|
int
|
|
|
|
default 100 if HZ_100
|
|
|
|
- default 250 if HZ_250
|
|
|
|
- default 300 if HZ_300
|
|
|
|
- default 1000 if HZ_1000
|
|
|
|
+ default 250 if HZ_250_NODEF
|
|
|
|
+ default 300 if HZ_300_NODEF
|
|
|
|
+ default 1000 if HZ_1000_NODEF
|
|
|
|
|
|
|
|
config SCHED_HRTICK
|
|
|
|
def_bool HIGH_RES_TIMERS
|
|
|
|
diff --git a/kernel/Kconfig.preempt b/kernel/Kconfig.preempt
|
|
|
|
index bf82259cff96..d9438eb6f91c 100644
|
|
|
|
--- a/kernel/Kconfig.preempt
|
|
|
|
+++ b/kernel/Kconfig.preempt
|
|
|
|
@@ -2,7 +2,7 @@
|
|
|
|
|
|
|
|
choice
|
|
|
|
prompt "Preemption Model"
|
|
|
|
- default PREEMPT_NONE
|
|
|
|
+ default PREEMPT
|
|
|
|
|
|
|
|
config PREEMPT_NONE
|
|
|
|
bool "No Forced Preemption (Server)"
|
|
|
|
@@ -18,7 +18,7 @@ config PREEMPT_NONE
|
|
|
|
latencies.
|
|
|
|
|
|
|
|
config PREEMPT_VOLUNTARY
|
|
|
|
- bool "Voluntary Kernel Preemption (Desktop)"
|
|
|
|
+ bool "Voluntary Kernel Preemption (Nothing)"
|
|
|
|
depends on !ARCH_NO_PREEMPT
|
|
|
|
help
|
|
|
|
This option reduces the latency of the kernel by adding more
|
|
|
|
@@ -33,7 +33,8 @@ config PREEMPT_VOLUNTARY
|
|
|
|
applications to run more 'smoothly' even when the system is
|
|
|
|
under load.
|
|
|
|
|
|
|
|
- Select this if you are building a kernel for a desktop system.
|
|
|
|
+ Select this for no system in particular (choose Preemptible
|
|
|
|
+ instead on a desktop if you know what's good for you).
|
|
|
|
|
|
|
|
config PREEMPT
|
|
|
|
bool "Preemptible Kernel (Low-Latency Desktop)"
|
|
|
|
diff --git a/kernel/Makefile b/kernel/Makefile
|
2021-01-08 07:29:38 -06:00
|
|
|
index 6c9f19911be0..bbd99777a89a 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/kernel/Makefile
|
|
|
|
+++ b/kernel/Makefile
|
|
|
|
@@ -10,7 +10,8 @@ obj-y = fork.o exec_domain.o panic.o \
|
|
|
|
extable.o params.o \
|
|
|
|
kthread.o sys_ni.o nsproxy.o \
|
|
|
|
notifier.o ksysfs.o cred.o reboot.o \
|
|
|
|
- async.o range.o smpboot.o ucount.o regset.o
|
|
|
|
+ async.o range.o smpboot.o ucount.o regset.o \
|
|
|
|
+ skip_list.o
|
|
|
|
|
2021-01-08 07:29:38 -06:00
|
|
|
obj-$(CONFIG_USERMODE_DRIVER) += usermode_driver.o
|
2020-10-26 15:23:54 -05:00
|
|
|
obj-$(CONFIG_MODULES) += kmod.o
|
|
|
|
diff --git a/kernel/delayacct.c b/kernel/delayacct.c
|
|
|
|
index 27725754ac99..769d773c7182 100644
|
|
|
|
--- a/kernel/delayacct.c
|
|
|
|
+++ b/kernel/delayacct.c
|
|
|
|
@@ -106,7 +106,7 @@ int __delayacct_add_tsk(struct taskstats *d, struct task_struct *tsk)
|
|
|
|
*/
|
|
|
|
t1 = tsk->sched_info.pcount;
|
|
|
|
t2 = tsk->sched_info.run_delay;
|
|
|
|
- t3 = tsk->se.sum_exec_runtime;
|
|
|
|
+ t3 = tsk_seruntime(tsk);
|
|
|
|
|
|
|
|
d->cpu_count += t1;
|
|
|
|
|
|
|
|
diff --git a/kernel/exit.c b/kernel/exit.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index 1f236ed375f8..f400301e2086 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/kernel/exit.c
|
|
|
|
+++ b/kernel/exit.c
|
|
|
|
@@ -121,7 +121,7 @@ static void __exit_signal(struct task_struct *tsk)
|
|
|
|
sig->curr_target = next_thread(tsk);
|
|
|
|
}
|
|
|
|
|
|
|
|
- add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
|
|
|
|
+ add_device_randomness((const void*) &tsk_seruntime(tsk),
|
|
|
|
sizeof(unsigned long long));
|
|
|
|
|
|
|
|
/*
|
|
|
|
@@ -142,7 +142,7 @@ static void __exit_signal(struct task_struct *tsk)
|
|
|
|
sig->inblock += task_io_get_inblock(tsk);
|
|
|
|
sig->oublock += task_io_get_oublock(tsk);
|
|
|
|
task_io_accounting_add(&sig->ioac, &tsk->ioac);
|
|
|
|
- sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
|
|
|
|
+ sig->sum_sched_runtime += tsk_seruntime(tsk);
|
|
|
|
sig->nr_threads--;
|
|
|
|
__unhash_process(tsk, group_dead);
|
|
|
|
write_sequnlock(&sig->stats_lock);
|
|
|
|
diff --git a/kernel/irq/Kconfig b/kernel/irq/Kconfig
|
2021-01-08 07:29:38 -06:00
|
|
|
index 164a031cfdb6..016a445f589e 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/kernel/irq/Kconfig
|
|
|
|
+++ b/kernel/irq/Kconfig
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -113,6 +113,23 @@ config GENERIC_IRQ_RESERVATION_MODE
|
2020-10-26 15:23:54 -05:00
|
|
|
config IRQ_FORCED_THREADING
|
|
|
|
bool
|
|
|
|
|
|
|
|
+config FORCE_IRQ_THREADING
|
|
|
|
+ bool "Make IRQ threading compulsory"
|
|
|
|
+ depends on IRQ_FORCED_THREADING
|
|
|
|
+ default n
|
|
|
|
+ help
|
|
|
|
+
|
|
|
|
+ Make IRQ threading mandatory for any IRQ handlers that support it
|
|
|
|
+ instead of being optional and requiring the threadirqs kernel
|
|
|
|
+ parameter. Instead they can be optionally disabled with the
|
|
|
|
+ nothreadirqs kernel parameter.
|
|
|
|
+
|
|
|
|
+ Enabling this may make some architectures not boot with runqueue
|
|
|
|
+ sharing and MuQSS.
|
|
|
|
+
|
|
|
|
+ Enable if you are building for a desktop or low latency system,
|
|
|
|
+ otherwise say N.
|
|
|
|
+
|
|
|
|
config SPARSE_IRQ
|
|
|
|
bool "Support sparse irq numbering" if MAY_HAVE_SPARSE_IRQ
|
|
|
|
help
|
|
|
|
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index c460e0496006..218fbcbb94e6 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/kernel/irq/manage.c
|
|
|
|
+++ b/kernel/irq/manage.c
|
|
|
|
@@ -25,9 +25,20 @@
|
|
|
|
#include "internals.h"
|
|
|
|
|
|
|
|
#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
|
|
|
|
+#ifdef CONFIG_FORCE_IRQ_THREADING
|
|
|
|
+__read_mostly bool force_irqthreads = true;
|
|
|
|
+#else
|
|
|
|
__read_mostly bool force_irqthreads;
|
|
|
|
+#endif
|
|
|
|
EXPORT_SYMBOL_GPL(force_irqthreads);
|
|
|
|
|
|
|
|
+static int __init setup_noforced_irqthreads(char *arg)
|
|
|
|
+{
|
|
|
|
+ force_irqthreads = false;
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+early_param("nothreadirqs", setup_noforced_irqthreads);
|
|
|
|
+
|
|
|
|
static int __init setup_forced_irqthreads(char *arg)
|
|
|
|
{
|
|
|
|
force_irqthreads = true;
|
|
|
|
diff --git a/kernel/kthread.c b/kernel/kthread.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index 933a625621b8..93ee79fc2b48 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/kernel/kthread.c
|
|
|
|
+++ b/kernel/kthread.c
|
|
|
|
@@ -471,6 +471,34 @@ void kthread_bind(struct task_struct *p, unsigned int cpu)
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(kthread_bind);
|
|
|
|
|
|
|
|
+#if defined(CONFIG_SCHED_MUQSS) && defined(CONFIG_SMP)
|
|
|
|
+extern void __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * new_kthread_bind is a special variant of __kthread_bind_mask.
|
|
|
|
+ * For new threads to work on muqss we want to call do_set_cpus_allowed
|
|
|
|
+ * without the task_cpu being set and the task rescheduled until they're
|
|
|
|
+ * rescheduled on their own so we call __do_set_cpus_allowed directly which
|
|
|
|
+ * only changes the cpumask. This is particularly important for smpboot threads
|
|
|
|
+ * to work.
|
|
|
|
+ */
|
|
|
|
+static void new_kthread_bind(struct task_struct *p, unsigned int cpu)
|
|
|
|
+{
|
|
|
|
+ unsigned long flags;
|
|
|
|
+
|
|
|
|
+ if (WARN_ON(!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ /* It's safe because the task is inactive. */
|
|
|
|
+ raw_spin_lock_irqsave(&p->pi_lock, flags);
|
|
|
|
+ __do_set_cpus_allowed(p, cpumask_of(cpu));
|
|
|
|
+ p->flags |= PF_NO_SETAFFINITY;
|
|
|
|
+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
|
|
+}
|
|
|
|
+#else
|
|
|
|
+#define new_kthread_bind(p, cpu) kthread_bind(p, cpu)
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
/**
|
|
|
|
* kthread_create_on_cpu - Create a cpu bound kthread
|
|
|
|
* @threadfn: the function to run until signal_pending(current).
|
|
|
|
@@ -491,7 +519,7 @@ struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
|
|
|
|
cpu);
|
|
|
|
if (IS_ERR(p))
|
|
|
|
return p;
|
|
|
|
- kthread_bind(p, cpu);
|
|
|
|
+ new_kthread_bind(p, cpu);
|
|
|
|
/* CPU hotplug need to bind once again when unparking the thread. */
|
|
|
|
set_bit(KTHREAD_IS_PER_CPU, &to_kthread(p)->flags);
|
|
|
|
to_kthread(p)->cpu = cpu;
|
|
|
|
diff --git a/kernel/livepatch/transition.c b/kernel/livepatch/transition.c
|
|
|
|
index f6310f848f34..825f9b8e228f 100644
|
|
|
|
--- a/kernel/livepatch/transition.c
|
|
|
|
+++ b/kernel/livepatch/transition.c
|
|
|
|
@@ -282,7 +282,7 @@ static bool klp_try_switch_task(struct task_struct *task)
|
|
|
|
{
|
|
|
|
static char err_buf[STACK_ERR_BUF_SIZE];
|
|
|
|
struct rq *rq;
|
|
|
|
- struct rq_flags flags;
|
|
|
|
+ struct rq_flags rf;
|
|
|
|
int ret;
|
|
|
|
bool success = false;
|
|
|
|
|
|
|
|
@@ -304,7 +304,7 @@ static bool klp_try_switch_task(struct task_struct *task)
|
|
|
|
* functions. If all goes well, switch the task to the target patch
|
|
|
|
* state.
|
|
|
|
*/
|
|
|
|
- rq = task_rq_lock(task, &flags);
|
|
|
|
+ rq = task_rq_lock(task, &rf);
|
|
|
|
|
|
|
|
if (task_running(rq, task) && task != current) {
|
|
|
|
snprintf(err_buf, STACK_ERR_BUF_SIZE,
|
|
|
|
@@ -323,7 +323,7 @@ static bool klp_try_switch_task(struct task_struct *task)
|
|
|
|
task->patch_state = klp_target_state;
|
|
|
|
|
|
|
|
done:
|
|
|
|
- task_rq_unlock(rq, task, &flags);
|
|
|
|
+ task_rq_unlock(rq, task, &rf);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Due to console deadlock issues, pr_debug() can't be used while
|
|
|
|
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
|
|
|
|
index 5fc9c9b70862..1ff14a21193d 100644
|
|
|
|
--- a/kernel/sched/Makefile
|
|
|
|
+++ b/kernel/sched/Makefile
|
|
|
|
@@ -22,15 +22,23 @@ ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y)
|
|
|
|
CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer
|
|
|
|
endif
|
|
|
|
|
|
|
|
+ifdef CONFIG_SCHED_MUQSS
|
|
|
|
+obj-y += MuQSS.o clock.o cputime.o
|
|
|
|
+obj-y += idle.o
|
|
|
|
+obj-y += wait.o wait_bit.o swait.o completion.o
|
|
|
|
+
|
|
|
|
+obj-$(CONFIG_SMP) += topology.o
|
|
|
|
+else
|
|
|
|
obj-y += core.o loadavg.o clock.o cputime.o
|
|
|
|
obj-y += idle.o fair.o rt.o deadline.o
|
|
|
|
obj-y += wait.o wait_bit.o swait.o completion.o
|
|
|
|
|
|
|
|
obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o topology.o stop_task.o pelt.o
|
|
|
|
obj-$(CONFIG_SCHED_AUTOGROUP) += autogroup.o
|
|
|
|
-obj-$(CONFIG_SCHEDSTATS) += stats.o
|
|
|
|
obj-$(CONFIG_SCHED_DEBUG) += debug.o
|
|
|
|
obj-$(CONFIG_CGROUP_CPUACCT) += cpuacct.o
|
|
|
|
+endif
|
|
|
|
+obj-$(CONFIG_SCHEDSTATS) += stats.o
|
|
|
|
obj-$(CONFIG_CPU_FREQ) += cpufreq.o
|
|
|
|
obj-$(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) += cpufreq_schedutil.o
|
|
|
|
obj-$(CONFIG_MEMBARRIER) += membarrier.o
|
|
|
|
diff --git a/kernel/sched/MuQSS.c b/kernel/sched/MuQSS.c
|
|
|
|
new file mode 100644
|
2021-01-08 07:29:38 -06:00
|
|
|
index 000000000000..9478e2d473b7
|
2020-10-26 15:23:54 -05:00
|
|
|
--- /dev/null
|
|
|
|
+++ b/kernel/sched/MuQSS.c
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -0,0 +1,7866 @@
|
2020-10-26 15:23:54 -05:00
|
|
|
+// SPDX-License-Identifier: GPL-2.0
|
|
|
|
+/*
|
|
|
|
+ * kernel/sched/MuQSS.c, was kernel/sched.c
|
|
|
|
+ *
|
|
|
|
+ * Kernel scheduler and related syscalls
|
|
|
|
+ *
|
|
|
|
+ * Copyright (C) 1991-2002 Linus Torvalds
|
|
|
|
+ *
|
|
|
|
+ * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
|
|
|
|
+ * make semaphores SMP safe
|
|
|
|
+ * 1998-11-19 Implemented schedule_timeout() and related stuff
|
|
|
|
+ * by Andrea Arcangeli
|
|
|
|
+ * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
|
|
|
|
+ * hybrid priority-list and round-robin design with
|
|
|
|
+ * an array-switch method of distributing timeslices
|
|
|
|
+ * and per-CPU runqueues. Cleanups and useful suggestions
|
|
|
|
+ * by Davide Libenzi, preemptible kernel bits by Robert Love.
|
|
|
|
+ * 2003-09-03 Interactivity tuning by Con Kolivas.
|
|
|
|
+ * 2004-04-02 Scheduler domains code by Nick Piggin
|
|
|
|
+ * 2007-04-15 Work begun on replacing all interactivity tuning with a
|
|
|
|
+ * fair scheduling design by Con Kolivas.
|
|
|
|
+ * 2007-05-05 Load balancing (smp-nice) and other improvements
|
|
|
|
+ * by Peter Williams
|
|
|
|
+ * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
|
|
|
|
+ * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
|
|
|
|
+ * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
|
|
|
|
+ * Thomas Gleixner, Mike Kravetz
|
|
|
|
+ * 2009-08-13 Brainfuck deadline scheduling policy by Con Kolivas deletes
|
|
|
|
+ * a whole lot of those previous things.
|
|
|
|
+ * 2016-10-01 Multiple Queue Skiplist Scheduler scalable evolution of BFS
|
|
|
|
+ * scheduler by Con Kolivas.
|
|
|
|
+ * 2019-08-31 LLC bits by Eduards Bezverhijs
|
|
|
|
+ */
|
|
|
|
+#define CREATE_TRACE_POINTS
|
|
|
|
+#include <trace/events/sched.h>
|
|
|
|
+#undef CREATE_TRACE_POINTS
|
|
|
|
+
|
|
|
|
+#include <linux/sched/isolation.h>
|
|
|
|
+#include <linux/sched/loadavg.h>
|
|
|
|
+
|
|
|
|
+#include <linux/binfmts.h>
|
|
|
|
+#include <linux/blkdev.h>
|
|
|
|
+#include <linux/compat.h>
|
|
|
|
+#include <linux/context_tracking.h>
|
|
|
|
+#include <linux/cpuset.h>
|
|
|
|
+#include <linux/delayacct.h>
|
|
|
|
+#include <linux/init_task.h>
|
|
|
|
+#include <linux/kcov.h>
|
|
|
|
+#include <linux/kprobes.h>
|
|
|
|
+#include <linux/mmu_context.h>
|
|
|
|
+#include <linux/module.h>
|
|
|
|
+#include <linux/nmi.h>
|
|
|
|
+#include <linux/prefetch.h>
|
|
|
|
+#include <linux/profile.h>
|
|
|
|
+#include <linux/rcupdate_wait.h>
|
|
|
|
+#include <linux/sched.h>
|
|
|
|
+#include <linux/scs.h>
|
|
|
|
+#include <linux/security.h>
|
|
|
|
+#include <linux/skip_list.h>
|
|
|
|
+#include <linux/syscalls.h>
|
|
|
|
+#include <linux/tick.h>
|
|
|
|
+#include <linux/wait_bit.h>
|
|
|
|
+
|
|
|
|
+#include <asm/irq_regs.h>
|
|
|
|
+#include <asm/switch_to.h>
|
|
|
|
+#include <asm/tlb.h>
|
|
|
|
+
|
|
|
|
+#include "../workqueue_internal.h"
|
|
|
|
+#include "../../fs/io-wq.h"
|
|
|
|
+#include "../smpboot.h"
|
|
|
|
+
|
|
|
|
+#include "MuQSS.h"
|
|
|
|
+#include "smp.h"
|
|
|
|
+
|
|
|
|
+#define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO)
|
|
|
|
+#define rt_task(p) rt_prio((p)->prio)
|
|
|
|
+#define batch_task(p) (unlikely((p)->policy == SCHED_BATCH))
|
|
|
|
+#define is_rt_policy(policy) ((policy) == SCHED_FIFO || \
|
|
|
|
+ (policy) == SCHED_RR)
|
|
|
|
+#define has_rt_policy(p) unlikely(is_rt_policy((p)->policy))
|
|
|
|
+
|
|
|
|
+#define is_idle_policy(policy) ((policy) == SCHED_IDLEPRIO)
|
|
|
|
+#define idleprio_task(p) unlikely(is_idle_policy((p)->policy))
|
|
|
|
+#define task_running_idle(p) unlikely((p)->prio == IDLE_PRIO)
|
|
|
|
+
|
|
|
|
+#define is_iso_policy(policy) ((policy) == SCHED_ISO)
|
|
|
|
+#define iso_task(p) unlikely(is_iso_policy((p)->policy))
|
|
|
|
+#define task_running_iso(p) unlikely((p)->prio == ISO_PRIO)
|
|
|
|
+
|
|
|
|
+#define rq_idle(rq) ((rq)->rq_prio == PRIO_LIMIT)
|
|
|
|
+
|
|
|
|
+#define ISO_PERIOD (5 * HZ)
|
|
|
|
+
|
|
|
|
+#define STOP_PRIO (MAX_RT_PRIO - 1)
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Some helpers for converting to/from various scales. Use shifts to get
|
|
|
|
+ * approximate multiples of ten for less overhead.
|
|
|
|
+ */
|
|
|
|
+#define APPROX_NS_PS (1073741824) /* Approximate ns per second */
|
|
|
|
+#define JIFFIES_TO_NS(TIME) ((TIME) * (APPROX_NS_PS / HZ))
|
|
|
|
+#define JIFFY_NS (APPROX_NS_PS / HZ)
|
|
|
|
+#define JIFFY_US (1048576 / HZ)
|
|
|
|
+#define NS_TO_JIFFIES(TIME) ((TIME) / JIFFY_NS)
|
|
|
|
+#define HALF_JIFFY_NS (APPROX_NS_PS / HZ / 2)
|
|
|
|
+#define HALF_JIFFY_US (1048576 / HZ / 2)
|
|
|
|
+#define MS_TO_NS(TIME) ((TIME) << 20)
|
|
|
|
+#define MS_TO_US(TIME) ((TIME) << 10)
|
|
|
|
+#define NS_TO_MS(TIME) ((TIME) >> 20)
|
|
|
|
+#define NS_TO_US(TIME) ((TIME) >> 10)
|
|
|
|
+#define US_TO_NS(TIME) ((TIME) << 10)
|
|
|
|
+#define TICK_APPROX_NS ((APPROX_NS_PS+HZ/2)/HZ)
|
|
|
|
+
|
|
|
|
+#define RESCHED_US (100) /* Reschedule if less than this many μs left */
|
|
|
|
+
|
|
|
|
+void print_scheduler_version(void)
|
|
|
|
+{
|
2021-01-08 07:29:38 -06:00
|
|
|
+ printk(KERN_INFO "MuQSS CPU scheduler v0.205 by Con Kolivas.\n");
|
2020-10-26 15:23:54 -05:00
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* Define RQ share levels */
|
|
|
|
+#define RQSHARE_NONE 0
|
|
|
|
+#define RQSHARE_SMT 1
|
|
|
|
+#define RQSHARE_MC 2
|
|
|
|
+#define RQSHARE_MC_LLC 3
|
|
|
|
+#define RQSHARE_SMP 4
|
|
|
|
+#define RQSHARE_ALL 5
|
|
|
|
+
|
|
|
|
+/* Define locality levels */
|
|
|
|
+#define LOCALITY_SAME 0
|
|
|
|
+#define LOCALITY_SMT 1
|
|
|
|
+#define LOCALITY_MC_LLC 2
|
|
|
|
+#define LOCALITY_MC 3
|
|
|
|
+#define LOCALITY_SMP 4
|
|
|
|
+#define LOCALITY_DISTANT 5
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * This determines what level of runqueue sharing will be done and is
|
|
|
|
+ * configurable at boot time with the bootparam rqshare =
|
|
|
|
+ */
|
|
|
|
+static int rqshare __read_mostly = CONFIG_SHARERQ; /* Default RQSHARE_MC */
|
|
|
|
+
|
|
|
|
+static int __init set_rqshare(char *str)
|
|
|
|
+{
|
|
|
|
+ if (!strncmp(str, "none", 4)) {
|
|
|
|
+ rqshare = RQSHARE_NONE;
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+ if (!strncmp(str, "smt", 3)) {
|
|
|
|
+ rqshare = RQSHARE_SMT;
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+ if (!strncmp(str, "mc", 2)) {
|
|
|
|
+ rqshare = RQSHARE_MC;
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+ if (!strncmp(str, "llc", 3)) {
|
|
|
|
+ rqshare = RQSHARE_MC_LLC;
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+ if (!strncmp(str, "smp", 3)) {
|
|
|
|
+ rqshare = RQSHARE_SMP;
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+ if (!strncmp(str, "all", 3)) {
|
|
|
|
+ rqshare = RQSHARE_ALL;
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+ return 1;
|
|
|
|
+}
|
|
|
|
+__setup("rqshare=", set_rqshare);
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * This is the time all tasks within the same priority round robin.
|
|
|
|
+ * Value is in ms and set to a minimum of 6ms.
|
|
|
|
+ * Tunable via /proc interface.
|
|
|
|
+ */
|
|
|
|
+int rr_interval __read_mostly = 6;
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Tunable to choose whether to prioritise latency or throughput, simple
|
|
|
|
+ * binary yes or no
|
|
|
|
+ */
|
|
|
|
+int sched_interactive __read_mostly = 1;
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * sched_iso_cpu - sysctl which determines the cpu percentage SCHED_ISO tasks
|
|
|
|
+ * are allowed to run five seconds as real time tasks. This is the total over
|
|
|
|
+ * all online cpus.
|
|
|
|
+ */
|
|
|
|
+int sched_iso_cpu __read_mostly = 70;
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * sched_yield_type - Choose what sort of yield sched_yield will perform.
|
|
|
|
+ * 0: No yield.
|
|
|
|
+ * 1: Yield only to better priority/deadline tasks. (default)
|
|
|
|
+ * 2: Expire timeslice and recalculate deadline.
|
|
|
|
+ */
|
|
|
|
+int sched_yield_type __read_mostly = 1;
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * The relative length of deadline for each priority(nice) level.
|
|
|
|
+ */
|
|
|
|
+static int prio_ratios[NICE_WIDTH] __read_mostly;
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * The quota handed out to tasks of all priority levels when refilling their
|
|
|
|
+ * time_slice.
|
|
|
|
+ */
|
|
|
|
+static inline int timeslice(void)
|
|
|
|
+{
|
|
|
|
+ return MS_TO_US(rr_interval);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+/*
|
|
|
|
+ * Total number of runqueues. Equals number of CPUs when there is no runqueue
|
|
|
|
+ * sharing but is usually less with SMT/MC sharing of runqueues.
|
|
|
|
+ */
|
|
|
|
+static int total_runqueues __read_mostly = 1;
|
|
|
|
+
|
|
|
|
+static cpumask_t cpu_idle_map ____cacheline_aligned_in_smp;
|
|
|
|
+
|
|
|
|
+struct rq *cpu_rq(int cpu)
|
|
|
|
+{
|
|
|
|
+ return &per_cpu(runqueues, (cpu));
|
|
|
|
+}
|
|
|
|
+#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * For asym packing, by default the lower numbered cpu has higher priority.
|
|
|
|
+ */
|
|
|
|
+int __weak arch_asym_cpu_priority(int cpu)
|
|
|
|
+{
|
|
|
|
+ return -cpu;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int __weak arch_sd_sibling_asym_packing(void)
|
|
|
|
+{
|
|
|
|
+ return 0*SD_ASYM_PACKING;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
|
|
+DEFINE_STATIC_KEY_FALSE(sched_smt_present);
|
|
|
|
+EXPORT_SYMBOL_GPL(sched_smt_present);
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#else
|
|
|
|
+struct rq *uprq;
|
|
|
|
+#endif /* CONFIG_SMP */
|
|
|
|
+
|
|
|
|
+#include "stats.h"
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * All common locking functions performed on rq->lock. rq->clock is local to
|
|
|
|
+ * the CPU accessing it so it can be modified just with interrupts disabled
|
|
|
|
+ * when we're not updating niffies.
|
|
|
|
+ * Looking up task_rq must be done under rq->lock to be safe.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * RQ-clock updating methods:
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+#ifdef HAVE_SCHED_AVG_IRQ
|
|
|
|
+static void update_irq_load_avg(struct rq *rq, long delta);
|
|
|
|
+#else
|
|
|
|
+static inline void update_irq_load_avg(struct rq *rq, long delta) {}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+static void update_rq_clock_task(struct rq *rq, s64 delta)
|
|
|
|
+{
|
|
|
|
+/*
|
|
|
|
+ * In theory, the compile should just see 0 here, and optimize out the call
|
|
|
|
+ * to sched_rt_avg_update. But I don't trust it...
|
|
|
|
+ */
|
|
|
|
+ s64 __maybe_unused steal = 0, irq_delta = 0;
|
|
|
|
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
|
|
+ irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Since irq_time is only updated on {soft,}irq_exit, we might run into
|
|
|
|
+ * this case when a previous update_rq_clock() happened inside a
|
|
|
|
+ * {soft,}irq region.
|
|
|
|
+ *
|
|
|
|
+ * When this happens, we stop ->clock_task and only update the
|
|
|
|
+ * prev_irq_time stamp to account for the part that fit, so that a next
|
|
|
|
+ * update will consume the rest. This ensures ->clock_task is
|
|
|
|
+ * monotonic.
|
|
|
|
+ *
|
|
|
|
+ * It does however cause some slight miss-attribution of {soft,}irq
|
|
|
|
+ * time, a more accurate solution would be to update the irq_time using
|
|
|
|
+ * the current rq->clock timestamp, except that would require using
|
|
|
|
+ * atomic ops.
|
|
|
|
+ */
|
|
|
|
+ if (irq_delta > delta)
|
|
|
|
+ irq_delta = delta;
|
|
|
|
+
|
|
|
|
+ rq->prev_irq_time += irq_delta;
|
|
|
|
+ delta -= irq_delta;
|
|
|
|
+#endif
|
|
|
|
+#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
|
|
|
|
+ if (static_key_false((¶virt_steal_rq_enabled))) {
|
|
|
|
+ steal = paravirt_steal_clock(cpu_of(rq));
|
|
|
|
+ steal -= rq->prev_steal_time_rq;
|
|
|
|
+
|
|
|
|
+ if (unlikely(steal > delta))
|
|
|
|
+ steal = delta;
|
|
|
|
+
|
|
|
|
+ rq->prev_steal_time_rq += steal;
|
|
|
|
+ delta -= steal;
|
|
|
|
+ }
|
|
|
|
+#endif
|
|
|
|
+ rq->clock_task += delta;
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
|
|
|
|
+ if (irq_delta + steal)
|
|
|
|
+ update_irq_load_avg(rq, irq_delta + steal);
|
|
|
|
+#endif
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void update_rq_clock(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ s64 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
|
|
|
|
+
|
|
|
|
+ if (unlikely(delta < 0))
|
|
|
|
+ return;
|
|
|
|
+ rq->clock += delta;
|
|
|
|
+ update_rq_clock_task(rq, delta);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Niffies are a globally increasing nanosecond counter. They're only used by
|
|
|
|
+ * update_load_avg and time_slice_expired, however deadlines are based on them
|
|
|
|
+ * across CPUs. Update them whenever we will call one of those functions, and
|
|
|
|
+ * synchronise them across CPUs whenever we hold both runqueue locks.
|
|
|
|
+ */
|
|
|
|
+static inline void update_clocks(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ s64 ndiff, minndiff;
|
|
|
|
+ long jdiff;
|
|
|
|
+
|
|
|
|
+ update_rq_clock(rq);
|
|
|
|
+ ndiff = rq->clock - rq->old_clock;
|
|
|
|
+ rq->old_clock = rq->clock;
|
|
|
|
+ jdiff = jiffies - rq->last_jiffy;
|
|
|
|
+
|
|
|
|
+ /* Subtract any niffies added by balancing with other rqs */
|
|
|
|
+ ndiff -= rq->niffies - rq->last_niffy;
|
|
|
|
+ minndiff = JIFFIES_TO_NS(jdiff) - rq->niffies + rq->last_jiffy_niffies;
|
|
|
|
+ if (minndiff < 0)
|
|
|
|
+ minndiff = 0;
|
|
|
|
+ ndiff = max(ndiff, minndiff);
|
|
|
|
+ rq->niffies += ndiff;
|
|
|
|
+ rq->last_niffy = rq->niffies;
|
|
|
|
+ if (jdiff) {
|
|
|
|
+ rq->last_jiffy += jdiff;
|
|
|
|
+ rq->last_jiffy_niffies = rq->niffies;
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Any time we have two runqueues locked we use that as an opportunity to
|
|
|
|
+ * synchronise niffies to the highest value as idle ticks may have artificially
|
|
|
|
+ * kept niffies low on one CPU and the truth can only be later.
|
|
|
|
+ */
|
|
|
|
+static inline void synchronise_niffies(struct rq *rq1, struct rq *rq2)
|
|
|
|
+{
|
|
|
|
+ if (rq1->niffies > rq2->niffies)
|
|
|
|
+ rq2->niffies = rq1->niffies;
|
|
|
|
+ else
|
|
|
|
+ rq1->niffies = rq2->niffies;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * double_rq_lock - safely lock two runqueues
|
|
|
|
+ *
|
|
|
|
+ * Note this does not disable interrupts like task_rq_lock,
|
|
|
|
+ * you need to do so manually before calling.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+/* For when we know rq1 != rq2 */
|
|
|
|
+static inline void __double_rq_lock(struct rq *rq1, struct rq *rq2)
|
|
|
|
+ __acquires(rq1->lock)
|
|
|
|
+ __acquires(rq2->lock)
|
|
|
|
+{
|
|
|
|
+ if (rq1 < rq2) {
|
|
|
|
+ raw_spin_lock(rq1->lock);
|
|
|
|
+ raw_spin_lock_nested(rq2->lock, SINGLE_DEPTH_NESTING);
|
|
|
|
+ } else {
|
|
|
|
+ raw_spin_lock(rq2->lock);
|
|
|
|
+ raw_spin_lock_nested(rq1->lock, SINGLE_DEPTH_NESTING);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
|
|
|
|
+ __acquires(rq1->lock)
|
|
|
|
+ __acquires(rq2->lock)
|
|
|
|
+{
|
|
|
|
+ BUG_ON(!irqs_disabled());
|
|
|
|
+ if (rq1->lock == rq2->lock) {
|
|
|
|
+ raw_spin_lock(rq1->lock);
|
|
|
|
+ __acquire(rq2->lock); /* Fake it out ;) */
|
|
|
|
+ } else
|
|
|
|
+ __double_rq_lock(rq1, rq2);
|
|
|
|
+ synchronise_niffies(rq1, rq2);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * double_rq_unlock - safely unlock two runqueues
|
|
|
|
+ *
|
|
|
|
+ * Note this does not restore interrupts like task_rq_unlock,
|
|
|
|
+ * you need to do so manually after calling.
|
|
|
|
+ */
|
|
|
|
+static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
|
|
|
|
+ __releases(rq1->lock)
|
|
|
|
+ __releases(rq2->lock)
|
|
|
|
+{
|
|
|
|
+ raw_spin_unlock(rq1->lock);
|
|
|
|
+ if (rq1->lock != rq2->lock)
|
|
|
|
+ raw_spin_unlock(rq2->lock);
|
|
|
|
+ else
|
|
|
|
+ __release(rq2->lock);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void lock_all_rqs(void)
|
|
|
|
+{
|
|
|
|
+ int cpu;
|
|
|
|
+
|
|
|
|
+ preempt_disable();
|
|
|
|
+ for_each_possible_cpu(cpu) {
|
|
|
|
+ struct rq *rq = cpu_rq(cpu);
|
|
|
|
+
|
|
|
|
+ do_raw_spin_lock(rq->lock);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void unlock_all_rqs(void)
|
|
|
|
+{
|
|
|
|
+ int cpu;
|
|
|
|
+
|
|
|
|
+ for_each_possible_cpu(cpu) {
|
|
|
|
+ struct rq *rq = cpu_rq(cpu);
|
|
|
|
+
|
|
|
|
+ do_raw_spin_unlock(rq->lock);
|
|
|
|
+ }
|
|
|
|
+ preempt_enable();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* Specially nest trylock an rq */
|
|
|
|
+static inline bool trylock_rq(struct rq *this_rq, struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ if (unlikely(!do_raw_spin_trylock(rq->lock)))
|
|
|
|
+ return false;
|
|
|
|
+ spin_acquire(&rq->lock->dep_map, SINGLE_DEPTH_NESTING, 1, _RET_IP_);
|
|
|
|
+ synchronise_niffies(this_rq, rq);
|
|
|
|
+ return true;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* Unlock a specially nested trylocked rq */
|
|
|
|
+static inline void unlock_rq(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ spin_release(&rq->lock->dep_map, _RET_IP_);
|
|
|
|
+ do_raw_spin_unlock(rq->lock);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * cmpxchg based fetch_or, macro so it works for different integer types
|
|
|
|
+ */
|
|
|
|
+#define fetch_or(ptr, mask) \
|
|
|
|
+ ({ \
|
|
|
|
+ typeof(ptr) _ptr = (ptr); \
|
|
|
|
+ typeof(mask) _mask = (mask); \
|
|
|
|
+ typeof(*_ptr) _old, _val = *_ptr; \
|
|
|
|
+ \
|
|
|
|
+ for (;;) { \
|
|
|
|
+ _old = cmpxchg(_ptr, _val, _val | _mask); \
|
|
|
|
+ if (_old == _val) \
|
|
|
|
+ break; \
|
|
|
|
+ _val = _old; \
|
|
|
|
+ } \
|
|
|
|
+ _old; \
|
|
|
|
+})
|
|
|
|
+
|
|
|
|
+#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
|
|
|
|
+/*
|
|
|
|
+ * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
|
|
|
|
+ * this avoids any races wrt polling state changes and thereby avoids
|
|
|
|
+ * spurious IPIs.
|
|
|
|
+ */
|
|
|
|
+static bool set_nr_and_not_polling(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ struct thread_info *ti = task_thread_info(p);
|
|
|
|
+ return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
|
|
|
|
+ *
|
|
|
|
+ * If this returns true, then the idle task promises to call
|
|
|
|
+ * sched_ttwu_pending() and reschedule soon.
|
|
|
|
+ */
|
|
|
|
+static bool set_nr_if_polling(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ struct thread_info *ti = task_thread_info(p);
|
|
|
|
+ typeof(ti->flags) old, val = READ_ONCE(ti->flags);
|
|
|
|
+
|
|
|
|
+ for (;;) {
|
|
|
|
+ if (!(val & _TIF_POLLING_NRFLAG))
|
|
|
|
+ return false;
|
|
|
|
+ if (val & _TIF_NEED_RESCHED)
|
|
|
|
+ return true;
|
|
|
|
+ old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
|
|
|
|
+ if (old == val)
|
|
|
|
+ break;
|
|
|
|
+ val = old;
|
|
|
|
+ }
|
|
|
|
+ return true;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#else
|
|
|
|
+static bool set_nr_and_not_polling(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ set_tsk_need_resched(p);
|
|
|
|
+ return true;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+static bool set_nr_if_polling(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ return false;
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
|
|
|
|
+{
|
|
|
|
+ struct wake_q_node *node = &task->wake_q;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Atomically grab the task, if ->wake_q is !nil already it means
|
|
|
|
+ * its already queued (either by us or someone else) and will get the
|
|
|
|
+ * wakeup due to that.
|
|
|
|
+ *
|
|
|
|
+ * In order to ensure that a pending wakeup will observe our pending
|
|
|
|
+ * state, even in the failed case, an explicit smp_mb() must be used.
|
|
|
|
+ */
|
|
|
|
+ smp_mb__before_atomic();
|
|
|
|
+ if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
|
|
|
|
+ return false;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * The head is context local, there can be no concurrency.
|
|
|
|
+ */
|
|
|
|
+ *head->lastp = node;
|
|
|
|
+ head->lastp = &node->next;
|
|
|
|
+ return true;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * wake_q_add() - queue a wakeup for 'later' waking.
|
|
|
|
+ * @head: the wake_q_head to add @task to
|
|
|
|
+ * @task: the task to queue for 'later' wakeup
|
|
|
|
+ *
|
|
|
|
+ * Queue a task for later wakeup, most likely by the wake_up_q() call in the
|
|
|
|
+ * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
|
|
|
|
+ * instantly.
|
|
|
|
+ *
|
|
|
|
+ * This function must be used as-if it were wake_up_process(); IOW the task
|
|
|
|
+ * must be ready to be woken at this location.
|
|
|
|
+ */
|
|
|
|
+void wake_q_add(struct wake_q_head *head, struct task_struct *task)
|
|
|
|
+{
|
|
|
|
+ if (__wake_q_add(head, task))
|
|
|
|
+ get_task_struct(task);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
|
|
|
|
+ * @head: the wake_q_head to add @task to
|
|
|
|
+ * @task: the task to queue for 'later' wakeup
|
|
|
|
+ *
|
|
|
|
+ * Queue a task for later wakeup, most likely by the wake_up_q() call in the
|
|
|
|
+ * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
|
|
|
|
+ * instantly.
|
|
|
|
+ *
|
|
|
|
+ * This function must be used as-if it were wake_up_process(); IOW the task
|
|
|
|
+ * must be ready to be woken at this location.
|
|
|
|
+ *
|
|
|
|
+ * This function is essentially a task-safe equivalent to wake_q_add(). Callers
|
|
|
|
+ * that already hold reference to @task can call the 'safe' version and trust
|
|
|
|
+ * wake_q to do the right thing depending whether or not the @task is already
|
|
|
|
+ * queued for wakeup.
|
|
|
|
+ */
|
|
|
|
+void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
|
|
|
|
+{
|
|
|
|
+ if (!__wake_q_add(head, task))
|
|
|
|
+ put_task_struct(task);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void wake_up_q(struct wake_q_head *head)
|
|
|
|
+{
|
|
|
|
+ struct wake_q_node *node = head->first;
|
|
|
|
+
|
|
|
|
+ while (node != WAKE_Q_TAIL) {
|
|
|
|
+ struct task_struct *task;
|
|
|
|
+
|
|
|
|
+ task = container_of(node, struct task_struct, wake_q);
|
|
|
|
+ BUG_ON(!task);
|
|
|
|
+ /* Task can safely be re-inserted now */
|
|
|
|
+ node = node->next;
|
|
|
|
+ task->wake_q.next = NULL;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * wake_up_process() executes a full barrier, which pairs with
|
|
|
|
+ * the queueing in wake_q_add() so as not to miss wakeups.
|
|
|
|
+ */
|
|
|
|
+ wake_up_process(task);
|
|
|
|
+ put_task_struct(task);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void smp_sched_reschedule(int cpu)
|
|
|
|
+{
|
|
|
|
+ if (likely(cpu_online(cpu)))
|
|
|
|
+ smp_send_reschedule(cpu);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * resched_task - mark a task 'to be rescheduled now'.
|
|
|
|
+ *
|
|
|
|
+ * On UP this means the setting of the need_resched flag, on SMP it
|
|
|
|
+ * might also involve a cross-CPU call to trigger the scheduler on
|
|
|
|
+ * the target CPU.
|
|
|
|
+ */
|
|
|
|
+void resched_task(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ int cpu;
|
|
|
|
+#ifdef CONFIG_LOCKDEP
|
|
|
|
+ /* Kernel threads call this when creating workqueues while still
|
|
|
|
+ * inactive from __kthread_bind_mask, holding only the pi_lock */
|
|
|
|
+ if (!(p->flags & PF_KTHREAD)) {
|
|
|
|
+ struct rq *rq = task_rq(p);
|
|
|
|
+
|
|
|
|
+ lockdep_assert_held(rq->lock);
|
|
|
|
+ }
|
|
|
|
+#endif
|
|
|
|
+ if (test_tsk_need_resched(p))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ cpu = task_cpu(p);
|
|
|
|
+ if (cpu == smp_processor_id()) {
|
|
|
|
+ set_tsk_need_resched(p);
|
|
|
|
+ set_preempt_need_resched();
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (set_nr_and_not_polling(p))
|
|
|
|
+ smp_sched_reschedule(cpu);
|
|
|
|
+ else
|
|
|
|
+ trace_sched_wake_idle_without_ipi(cpu);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * A task that is not running or queued will not have a node set.
|
|
|
|
+ * A task that is queued but not running will have a node set.
|
|
|
|
+ * A task that is currently running will have ->on_cpu set but no node set.
|
|
|
|
+ */
|
|
|
|
+static inline bool task_queued(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ return !skiplist_node_empty(&p->node);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
|
|
|
|
+static inline void resched_if_idle(struct rq *rq);
|
|
|
|
+
|
|
|
|
+static inline bool deadline_before(u64 deadline, u64 time)
|
|
|
|
+{
|
|
|
|
+ return (deadline < time);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Deadline is "now" in niffies + (offset by priority). Setting the deadline
|
|
|
|
+ * is the key to everything. It distributes cpu fairly amongst tasks of the
|
|
|
|
+ * same nice value, it proportions cpu according to nice level, it means the
|
|
|
|
+ * task that last woke up the longest ago has the earliest deadline, thus
|
|
|
|
+ * ensuring that interactive tasks get low latency on wake up. The CPU
|
|
|
|
+ * proportion works out to the square of the virtual deadline difference, so
|
|
|
|
+ * this equation will give nice 19 3% CPU compared to nice 0.
|
|
|
|
+ */
|
|
|
|
+static inline u64 prio_deadline_diff(int user_prio)
|
|
|
|
+{
|
|
|
|
+ return (prio_ratios[user_prio] * rr_interval * (MS_TO_NS(1) / 128));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline u64 task_deadline_diff(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ return prio_deadline_diff(TASK_USER_PRIO(p));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline u64 static_deadline_diff(int static_prio)
|
|
|
|
+{
|
|
|
|
+ return prio_deadline_diff(USER_PRIO(static_prio));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline int longest_deadline_diff(void)
|
|
|
|
+{
|
|
|
|
+ return prio_deadline_diff(39);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline int ms_longest_deadline_diff(void)
|
|
|
|
+{
|
|
|
|
+ return NS_TO_MS(longest_deadline_diff());
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline bool rq_local(struct rq *rq);
|
|
|
|
+
|
|
|
|
+#ifndef SCHED_CAPACITY_SCALE
|
|
|
|
+#define SCHED_CAPACITY_SCALE 1024
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+static inline int rq_load(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ return rq->nr_running;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Update the load average for feeding into cpu frequency governors. Use a
|
|
|
|
+ * rough estimate of a rolling average with ~ time constant of 32ms.
|
|
|
|
+ * 80/128 ~ 0.63. * 80 / 32768 / 128 == * 5 / 262144
|
|
|
|
+ * Make sure a call to update_clocks has been made before calling this to get
|
|
|
|
+ * an updated rq->niffies.
|
|
|
|
+ */
|
|
|
|
+static void update_load_avg(struct rq *rq, unsigned int flags)
|
|
|
|
+{
|
|
|
|
+ long us_interval, load;
|
|
|
|
+
|
|
|
|
+ us_interval = NS_TO_US(rq->niffies - rq->load_update);
|
|
|
|
+ if (unlikely(us_interval <= 0))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ load = rq->load_avg - (rq->load_avg * us_interval * 5 / 262144);
|
|
|
|
+ if (unlikely(load < 0))
|
|
|
|
+ load = 0;
|
|
|
|
+ load += rq_load(rq) * SCHED_CAPACITY_SCALE * us_interval * 5 / 262144;
|
|
|
|
+ rq->load_avg = load;
|
|
|
|
+
|
|
|
|
+ rq->load_update = rq->niffies;
|
|
|
|
+ update_irq_load_avg(rq, 0);
|
|
|
|
+ if (likely(rq_local(rq)))
|
|
|
|
+ cpufreq_trigger(rq, flags);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef HAVE_SCHED_AVG_IRQ
|
|
|
|
+/*
|
|
|
|
+ * IRQ variant of update_load_avg below. delta is actually time in nanoseconds
|
|
|
|
+ * here so we scale curload to how long it's been since the last update.
|
|
|
|
+ */
|
|
|
|
+static void update_irq_load_avg(struct rq *rq, long delta)
|
|
|
|
+{
|
|
|
|
+ long us_interval, load;
|
|
|
|
+
|
|
|
|
+ us_interval = NS_TO_US(rq->niffies - rq->irq_load_update);
|
|
|
|
+ if (unlikely(us_interval <= 0))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ load = rq->irq_load_avg - (rq->irq_load_avg * us_interval * 5 / 262144);
|
|
|
|
+ if (unlikely(load < 0))
|
|
|
|
+ load = 0;
|
|
|
|
+ load += NS_TO_US(delta) * SCHED_CAPACITY_SCALE * 5 / 262144;
|
|
|
|
+ rq->irq_load_avg = load;
|
|
|
|
+
|
|
|
|
+ rq->irq_load_update = rq->niffies;
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Removing from the runqueue. Enter with rq locked. Deleting a task
|
|
|
|
+ * from the skip list is done via the stored node reference in the task struct
|
|
|
|
+ * and does not require a full look up. Thus it occurs in O(k) time where k
|
|
|
|
+ * is the "level" of the list the task was stored at - usually < 4, max 8.
|
|
|
|
+ */
|
|
|
|
+static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
|
|
|
|
+{
|
|
|
|
+ skiplist_delete(rq->sl, &p->node);
|
|
|
|
+ rq->best_key = rq->node->next[0]->key;
|
|
|
|
+ update_clocks(rq);
|
|
|
|
+
|
|
|
|
+ if (!(flags & DEQUEUE_SAVE)) {
|
|
|
|
+ sched_info_dequeued(rq, p);
|
|
|
|
+ psi_dequeue(p, flags & DEQUEUE_SLEEP);
|
|
|
|
+ }
|
|
|
|
+ rq->nr_running--;
|
|
|
|
+ if (rt_task(p))
|
|
|
|
+ rq->rt_nr_running--;
|
|
|
|
+ update_load_avg(rq, flags);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_PREEMPT_RCU
|
|
|
|
+static bool rcu_read_critical(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ return p->rcu_read_unlock_special.b.blocked;
|
|
|
|
+}
|
|
|
|
+#else /* CONFIG_PREEMPT_RCU */
|
|
|
|
+#define rcu_read_critical(p) (false)
|
|
|
|
+#endif /* CONFIG_PREEMPT_RCU */
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * To determine if it's safe for a task of SCHED_IDLEPRIO to actually run as
|
|
|
|
+ * an idle task, we ensure none of the following conditions are met.
|
|
|
|
+ */
|
|
|
|
+static bool idleprio_suitable(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ return (!(p->sched_contributes_to_load) && !(p->flags & (PF_EXITING)) &&
|
|
|
|
+ !signal_pending(p) && !rcu_read_critical(p) && !freezing(p));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * To determine if a task of SCHED_ISO can run in pseudo-realtime, we check
|
|
|
|
+ * that the iso_refractory flag is not set.
|
|
|
|
+ */
|
|
|
|
+static inline bool isoprio_suitable(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ return !rq->iso_refractory;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void inc_nr_running(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ rq->nr_running++;
|
|
|
|
+ if (trace_sched_update_nr_running_tp_enabled()) {
|
|
|
|
+ call_trace_sched_update_nr_running(rq, 1);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void dec_nr_running(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ rq->nr_running--;
|
|
|
|
+ if (trace_sched_update_nr_running_tp_enabled()) {
|
|
|
|
+ call_trace_sched_update_nr_running(rq, -1);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Adding to the runqueue. Enter with rq locked.
|
|
|
|
+ */
|
|
|
|
+static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
|
|
|
|
+{
|
|
|
|
+ unsigned int randseed, cflags = 0;
|
|
|
|
+ u64 sl_id;
|
|
|
|
+
|
|
|
|
+ if (!rt_task(p)) {
|
|
|
|
+ /* Check it hasn't gotten rt from PI */
|
|
|
|
+ if ((idleprio_task(p) && idleprio_suitable(p)) ||
|
|
|
|
+ (iso_task(p) && isoprio_suitable(rq)))
|
|
|
|
+ p->prio = p->normal_prio;
|
|
|
|
+ else
|
|
|
|
+ p->prio = NORMAL_PRIO;
|
|
|
|
+ } else
|
|
|
|
+ rq->rt_nr_running++;
|
|
|
|
+ /*
|
|
|
|
+ * The sl_id key passed to the skiplist generates a sorted list.
|
|
|
|
+ * Realtime and sched iso tasks run FIFO so they only need be sorted
|
|
|
|
+ * according to priority. The skiplist will put tasks of the same
|
|
|
|
+ * key inserted later in FIFO order. Tasks of sched normal, batch
|
|
|
|
+ * and idleprio are sorted according to their deadlines. Idleprio
|
|
|
|
+ * tasks are offset by an impossibly large deadline value ensuring
|
|
|
|
+ * they get sorted into last positions, but still according to their
|
|
|
|
+ * own deadlines. This creates a "landscape" of skiplists running
|
|
|
|
+ * from priority 0 realtime in first place to the lowest priority
|
|
|
|
+ * idleprio tasks last. Skiplist insertion is an O(log n) process.
|
|
|
|
+ */
|
|
|
|
+ if (p->prio <= ISO_PRIO) {
|
|
|
|
+ sl_id = p->prio;
|
|
|
|
+ } else {
|
|
|
|
+ sl_id = p->deadline;
|
|
|
|
+ if (idleprio_task(p)) {
|
|
|
|
+ if (p->prio == IDLE_PRIO)
|
|
|
|
+ sl_id |= 0xF000000000000000;
|
|
|
|
+ else
|
|
|
|
+ sl_id += longest_deadline_diff();
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ /*
|
|
|
|
+ * Some architectures don't have better than microsecond resolution
|
|
|
|
+ * so mask out ~microseconds as the random seed for skiplist insertion.
|
|
|
|
+ */
|
|
|
|
+ update_clocks(rq);
|
|
|
|
+ if (!(flags & ENQUEUE_RESTORE)) {
|
|
|
|
+ sched_info_queued(rq, p);
|
|
|
|
+ psi_enqueue(p, flags & ENQUEUE_WAKEUP);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ randseed = (rq->niffies >> 10) & 0xFFFFFFFF;
|
|
|
|
+ skiplist_insert(rq->sl, &p->node, sl_id, p, randseed);
|
|
|
|
+ rq->best_key = rq->node->next[0]->key;
|
|
|
|
+ if (p->in_iowait)
|
|
|
|
+ cflags |= SCHED_CPUFREQ_IOWAIT;
|
|
|
|
+ inc_nr_running(rq);
|
|
|
|
+ update_load_avg(rq, cflags);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Returns the relative length of deadline all compared to the shortest
|
|
|
|
+ * deadline which is that of nice -20.
|
|
|
|
+ */
|
|
|
|
+static inline int task_prio_ratio(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ return prio_ratios[TASK_USER_PRIO(p)];
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * task_timeslice - all tasks of all priorities get the exact same timeslice
|
|
|
|
+ * length. CPU distribution is handled by giving different deadlines to
|
|
|
|
+ * tasks of different priorities. Use 128 as the base value for fast shifts.
|
|
|
|
+ */
|
|
|
|
+static inline int task_timeslice(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ return (rr_interval * task_prio_ratio(p) / 128);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+/* Entered with rq locked */
|
|
|
|
+static inline void resched_if_idle(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ if (rq_idle(rq))
|
|
|
|
+ resched_task(rq->curr);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline bool rq_local(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ return (rq->cpu == smp_processor_id());
|
|
|
|
+}
|
|
|
|
+#ifdef CONFIG_SMT_NICE
|
|
|
|
+static const cpumask_t *thread_cpumask(int cpu);
|
|
|
|
+
|
|
|
|
+/* Find the best real time priority running on any SMT siblings of cpu and if
|
|
|
|
+ * none are running, the static priority of the best deadline task running.
|
|
|
|
+ * The lookups to the other runqueues is done lockless as the occasional wrong
|
|
|
|
+ * value would be harmless. */
|
|
|
|
+static int best_smt_bias(struct rq *this_rq)
|
|
|
|
+{
|
|
|
|
+ int other_cpu, best_bias = 0;
|
|
|
|
+
|
|
|
|
+ for_each_cpu(other_cpu, &this_rq->thread_mask) {
|
|
|
|
+ struct rq *rq = cpu_rq(other_cpu);
|
|
|
|
+
|
|
|
|
+ if (rq_idle(rq))
|
|
|
|
+ continue;
|
|
|
|
+ if (unlikely(!rq->online))
|
|
|
|
+ continue;
|
|
|
|
+ if (!rq->rq_mm)
|
|
|
|
+ continue;
|
|
|
|
+ if (likely(rq->rq_smt_bias > best_bias))
|
|
|
|
+ best_bias = rq->rq_smt_bias;
|
|
|
|
+ }
|
|
|
|
+ return best_bias;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int task_prio_bias(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ if (rt_task(p))
|
|
|
|
+ return 1 << 30;
|
|
|
|
+ else if (task_running_iso(p))
|
|
|
|
+ return 1 << 29;
|
|
|
|
+ else if (task_running_idle(p))
|
|
|
|
+ return 0;
|
|
|
|
+ return MAX_PRIO - p->static_prio;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static bool smt_always_schedule(struct task_struct __maybe_unused *p, struct rq __maybe_unused *this_rq)
|
|
|
|
+{
|
|
|
|
+ return true;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static bool (*smt_schedule)(struct task_struct *p, struct rq *this_rq) = &smt_always_schedule;
|
|
|
|
+
|
|
|
|
+/* We've already decided p can run on CPU, now test if it shouldn't for SMT
|
|
|
|
+ * nice reasons. */
|
|
|
|
+static bool smt_should_schedule(struct task_struct *p, struct rq *this_rq)
|
|
|
|
+{
|
|
|
|
+ int best_bias, task_bias;
|
|
|
|
+
|
|
|
|
+ /* Kernel threads always run */
|
|
|
|
+ if (unlikely(!p->mm))
|
|
|
|
+ return true;
|
|
|
|
+ if (rt_task(p))
|
|
|
|
+ return true;
|
|
|
|
+ if (!idleprio_suitable(p))
|
|
|
|
+ return true;
|
|
|
|
+ best_bias = best_smt_bias(this_rq);
|
|
|
|
+ /* The smt siblings are all idle or running IDLEPRIO */
|
|
|
|
+ if (best_bias < 1)
|
|
|
|
+ return true;
|
|
|
|
+ task_bias = task_prio_bias(p);
|
|
|
|
+ if (task_bias < 1)
|
|
|
|
+ return false;
|
|
|
|
+ if (task_bias >= best_bias)
|
|
|
|
+ return true;
|
|
|
|
+ /* Dither 25% cpu of normal tasks regardless of nice difference */
|
|
|
|
+ if (best_bias % 4 == 1)
|
|
|
|
+ return true;
|
|
|
|
+ /* Sorry, you lose */
|
|
|
|
+ return false;
|
|
|
|
+}
|
|
|
|
+#else /* CONFIG_SMT_NICE */
|
|
|
|
+#define smt_schedule(p, this_rq) (true)
|
|
|
|
+#endif /* CONFIG_SMT_NICE */
|
|
|
|
+
|
|
|
|
+static inline void atomic_set_cpu(int cpu, cpumask_t *cpumask)
|
|
|
|
+{
|
|
|
|
+ set_bit(cpu, (volatile unsigned long *)cpumask);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * The cpu_idle_map stores a bitmap of all the CPUs currently idle to
|
|
|
|
+ * allow easy lookup of whether any suitable idle CPUs are available.
|
|
|
|
+ * It's cheaper to maintain a binary yes/no if there are any idle CPUs on the
|
|
|
|
+ * idle_cpus variable than to do a full bitmask check when we are busy. The
|
|
|
|
+ * bits are set atomically but read locklessly as occasional false positive /
|
|
|
|
+ * negative is harmless.
|
|
|
|
+ */
|
|
|
|
+static inline void set_cpuidle_map(int cpu)
|
|
|
|
+{
|
|
|
|
+ if (likely(cpu_online(cpu)))
|
|
|
|
+ atomic_set_cpu(cpu, &cpu_idle_map);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void atomic_clear_cpu(int cpu, cpumask_t *cpumask)
|
|
|
|
+{
|
|
|
|
+ clear_bit(cpu, (volatile unsigned long *)cpumask);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void clear_cpuidle_map(int cpu)
|
|
|
|
+{
|
|
|
|
+ atomic_clear_cpu(cpu, &cpu_idle_map);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static bool suitable_idle_cpus(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ return (cpumask_intersects(p->cpus_ptr, &cpu_idle_map));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Resched current on rq. We don't know if rq is local to this CPU nor if it
|
|
|
|
+ * is locked so we do not use an intermediate variable for the task to avoid
|
|
|
|
+ * having it dereferenced.
|
|
|
|
+ */
|
|
|
|
+static void resched_curr(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ int cpu;
|
|
|
|
+
|
|
|
|
+ if (test_tsk_need_resched(rq->curr))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ rq->preempt = rq->curr;
|
|
|
|
+ cpu = rq->cpu;
|
|
|
|
+
|
|
|
|
+ /* We're doing this without holding the rq lock if it's not task_rq */
|
|
|
|
+
|
|
|
|
+ if (cpu == smp_processor_id()) {
|
|
|
|
+ set_tsk_need_resched(rq->curr);
|
|
|
|
+ set_preempt_need_resched();
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (set_nr_and_not_polling(rq->curr))
|
|
|
|
+ smp_sched_reschedule(cpu);
|
|
|
|
+ else
|
|
|
|
+ trace_sched_wake_idle_without_ipi(cpu);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#define CPUIDLE_DIFF_THREAD (1)
|
|
|
|
+#define CPUIDLE_DIFF_CORE_LLC (2)
|
|
|
|
+#define CPUIDLE_DIFF_CORE (4)
|
|
|
|
+#define CPUIDLE_CACHE_BUSY (8)
|
|
|
|
+#define CPUIDLE_DIFF_CPU (16)
|
|
|
|
+#define CPUIDLE_THREAD_BUSY (32)
|
|
|
|
+#define CPUIDLE_DIFF_NODE (64)
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * The best idle CPU is chosen according to the CPUIDLE ranking above where the
|
|
|
|
+ * lowest value would give the most suitable CPU to schedule p onto next. The
|
|
|
|
+ * order works out to be the following:
|
|
|
|
+ *
|
|
|
|
+ * Same thread, idle or busy cache, idle or busy threads
|
|
|
|
+ * Other core, same cache, idle or busy cache, idle threads.
|
|
|
|
+ * Same node, other CPU, idle cache, idle threads.
|
|
|
|
+ * Same node, other CPU, busy cache, idle threads.
|
|
|
|
+ * Other core, same cache, busy threads.
|
|
|
|
+ * Same node, other CPU, busy threads.
|
|
|
|
+ * Other node, other CPU, idle cache, idle threads.
|
|
|
|
+ * Other node, other CPU, busy cache, idle threads.
|
|
|
|
+ * Other node, other CPU, busy threads.
|
|
|
|
+ */
|
|
|
|
+static int best_mask_cpu(int best_cpu, struct rq *rq, cpumask_t *tmpmask)
|
|
|
|
+{
|
|
|
|
+ int best_ranking = CPUIDLE_DIFF_NODE | CPUIDLE_THREAD_BUSY |
|
|
|
|
+ CPUIDLE_DIFF_CPU | CPUIDLE_CACHE_BUSY | CPUIDLE_DIFF_CORE |
|
|
|
|
+ CPUIDLE_DIFF_CORE_LLC | CPUIDLE_DIFF_THREAD;
|
|
|
|
+ int cpu_tmp;
|
|
|
|
+
|
|
|
|
+ if (cpumask_test_cpu(best_cpu, tmpmask))
|
|
|
|
+ goto out;
|
|
|
|
+
|
|
|
|
+ for_each_cpu(cpu_tmp, tmpmask) {
|
|
|
|
+ int ranking, locality;
|
|
|
|
+ struct rq *tmp_rq;
|
|
|
|
+
|
|
|
|
+ ranking = 0;
|
|
|
|
+ tmp_rq = cpu_rq(cpu_tmp);
|
|
|
|
+
|
|
|
|
+ locality = rq->cpu_locality[cpu_tmp];
|
|
|
|
+#ifdef CONFIG_NUMA
|
|
|
|
+ if (locality > LOCALITY_SMP)
|
|
|
|
+ ranking |= CPUIDLE_DIFF_NODE;
|
|
|
|
+ else
|
|
|
|
+#endif
|
|
|
|
+ if (locality > LOCALITY_MC)
|
|
|
|
+ ranking |= CPUIDLE_DIFF_CPU;
|
|
|
|
+#ifdef CONFIG_SCHED_MC
|
|
|
|
+ else if (locality == LOCALITY_MC_LLC)
|
|
|
|
+ ranking |= CPUIDLE_DIFF_CORE_LLC;
|
|
|
|
+ else if (locality == LOCALITY_MC)
|
|
|
|
+ ranking |= CPUIDLE_DIFF_CORE;
|
|
|
|
+ if (!(tmp_rq->cache_idle(tmp_rq)))
|
|
|
|
+ ranking |= CPUIDLE_CACHE_BUSY;
|
|
|
|
+#endif
|
|
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
|
|
+ if (locality == LOCALITY_SMT)
|
|
|
|
+ ranking |= CPUIDLE_DIFF_THREAD;
|
|
|
|
+#endif
|
|
|
|
+ if (ranking < best_ranking
|
|
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
|
|
+ || (ranking == best_ranking && (tmp_rq->siblings_idle(tmp_rq)))
|
|
|
|
+#endif
|
|
|
|
+ ) {
|
|
|
|
+ best_cpu = cpu_tmp;
|
|
|
|
+ best_ranking = ranking;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+out:
|
|
|
|
+ return best_cpu;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+bool cpus_share_cache(int this_cpu, int that_cpu)
|
|
|
|
+{
|
|
|
|
+ struct rq *this_rq = cpu_rq(this_cpu);
|
|
|
|
+
|
|
|
|
+ return (this_rq->cpu_locality[that_cpu] < LOCALITY_SMP);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* As per resched_curr but only will resched idle task */
|
|
|
|
+static inline void resched_idle(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ if (test_tsk_need_resched(rq->idle))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ rq->preempt = rq->idle;
|
|
|
|
+
|
|
|
|
+ set_tsk_need_resched(rq->idle);
|
|
|
|
+
|
|
|
|
+ if (rq_local(rq)) {
|
|
|
|
+ set_preempt_need_resched();
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ smp_sched_reschedule(rq->cpu);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+DEFINE_PER_CPU(cpumask_t, idlemask);
|
|
|
|
+
|
|
|
|
+static struct rq *resched_best_idle(struct task_struct *p, int cpu)
|
|
|
|
+{
|
|
|
|
+ cpumask_t *tmpmask = &(per_cpu(idlemask, cpu));
|
|
|
|
+ struct rq *rq;
|
|
|
|
+ int best_cpu;
|
|
|
|
+
|
|
|
|
+ cpumask_and(tmpmask, p->cpus_ptr, &cpu_idle_map);
|
|
|
|
+ best_cpu = best_mask_cpu(cpu, task_rq(p), tmpmask);
|
|
|
|
+ rq = cpu_rq(best_cpu);
|
|
|
|
+ if (!smt_schedule(p, rq))
|
|
|
|
+ return NULL;
|
|
|
|
+ rq->preempt = p;
|
|
|
|
+ resched_idle(rq);
|
|
|
|
+ return rq;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void resched_suitable_idle(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ if (suitable_idle_cpus(p))
|
|
|
|
+ resched_best_idle(p, task_cpu(p));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline struct rq *rq_order(struct rq *rq, int cpu)
|
|
|
|
+{
|
|
|
|
+ return rq->rq_order[cpu];
|
|
|
|
+}
|
|
|
|
+#else /* CONFIG_SMP */
|
|
|
|
+static inline void set_cpuidle_map(int cpu)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void clear_cpuidle_map(int cpu)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline bool suitable_idle_cpus(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ return uprq->curr == uprq->idle;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void resched_suitable_idle(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void resched_curr(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ resched_task(rq->curr);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void resched_if_idle(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline bool rq_local(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ return true;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline struct rq *rq_order(struct rq *rq, int cpu)
|
|
|
|
+{
|
|
|
|
+ return rq;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline bool smt_schedule(struct task_struct *p, struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ return true;
|
|
|
|
+}
|
|
|
|
+#endif /* CONFIG_SMP */
|
|
|
|
+
|
|
|
|
+static inline int normal_prio(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ if (has_rt_policy(p))
|
|
|
|
+ return MAX_RT_PRIO - 1 - p->rt_priority;
|
|
|
|
+ if (idleprio_task(p))
|
|
|
|
+ return IDLE_PRIO;
|
|
|
|
+ if (iso_task(p))
|
|
|
|
+ return ISO_PRIO;
|
|
|
|
+ return NORMAL_PRIO;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Calculate the current priority, i.e. the priority
|
|
|
|
+ * taken into account by the scheduler. This value might
|
|
|
|
+ * be boosted by RT tasks as it will be RT if the task got
|
|
|
|
+ * RT-boosted. If not then it returns p->normal_prio.
|
|
|
|
+ */
|
|
|
|
+static int effective_prio(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ p->normal_prio = normal_prio(p);
|
|
|
|
+ /*
|
|
|
|
+ * If we are RT tasks or we were boosted to RT priority,
|
|
|
|
+ * keep the priority unchanged. Otherwise, update priority
|
|
|
|
+ * to the normal priority:
|
|
|
|
+ */
|
|
|
|
+ if (!rt_prio(p->prio))
|
|
|
|
+ return p->normal_prio;
|
|
|
|
+ return p->prio;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * activate_task - move a task to the runqueue. Enter with rq locked.
|
|
|
|
+ */
|
|
|
|
+static void activate_task(struct rq *rq, struct task_struct *p, int flags)
|
|
|
|
+{
|
|
|
|
+ resched_if_idle(rq);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Sleep time is in units of nanosecs, so shift by 20 to get a
|
|
|
|
+ * milliseconds-range estimation of the amount of time that the task
|
|
|
|
+ * spent sleeping:
|
|
|
|
+ */
|
|
|
|
+ if (unlikely(prof_on == SLEEP_PROFILING)) {
|
|
|
|
+ if (p->state == TASK_UNINTERRUPTIBLE)
|
|
|
|
+ profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
|
|
|
|
+ (rq->niffies - p->last_ran) >> 20);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ p->prio = effective_prio(p);
|
|
|
|
+ enqueue_task(rq, p, flags);
|
|
|
|
+ p->on_rq = TASK_ON_RQ_QUEUED;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * deactivate_task - If it's running, it's not on the runqueue and we can just
|
|
|
|
+ * decrement the nr_running. Enter with rq locked.
|
|
|
|
+ */
|
|
|
|
+static inline void deactivate_task(struct task_struct *p, struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ p->on_rq = 0;
|
|
|
|
+ sched_info_dequeued(rq, p);
|
|
|
|
+ /* deactivate_task is always DEQUEUE_SLEEP in muqss */
|
|
|
|
+ psi_dequeue(p, DEQUEUE_SLEEP);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq;
|
|
|
|
+
|
|
|
|
+ if (task_cpu(p) == new_cpu)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ /* Do NOT call set_task_cpu on a currently queued task as we will not
|
|
|
|
+ * be reliably holding the rq lock after changing CPU. */
|
|
|
|
+ BUG_ON(task_queued(p));
|
|
|
|
+ rq = task_rq(p);
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_LOCKDEP
|
|
|
|
+ /*
|
|
|
|
+ * The caller should hold either p->pi_lock or rq->lock, when changing
|
|
|
|
+ * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
|
|
|
|
+ *
|
|
|
|
+ * Furthermore, all task_rq users should acquire both locks, see
|
|
|
|
+ * task_rq_lock().
|
|
|
|
+ */
|
|
|
|
+ WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
|
|
|
|
+ lockdep_is_held(rq->lock)));
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ trace_sched_migrate_task(p, new_cpu);
|
|
|
|
+ rseq_migrate(p);
|
|
|
|
+ perf_event_task_migrate(p);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
|
|
|
|
+ * successfully executed on another CPU. We must ensure that updates of
|
|
|
|
+ * per-task data have been completed by this moment.
|
|
|
|
+ */
|
|
|
|
+ smp_wmb();
|
|
|
|
+
|
|
|
|
+ p->wake_cpu = new_cpu;
|
|
|
|
+
|
|
|
|
+ if (task_running(rq, p)) {
|
|
|
|
+ /*
|
|
|
|
+ * We should only be calling this on a running task if we're
|
|
|
|
+ * holding rq lock.
|
|
|
|
+ */
|
|
|
|
+ lockdep_assert_held(rq->lock);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * We can't change the task_thread_info CPU on a running task
|
|
|
|
+ * as p will still be protected by the rq lock of the CPU it
|
|
|
|
+ * is still running on so we only set the wake_cpu for it to be
|
|
|
|
+ * lazily updated once off the CPU.
|
|
|
|
+ */
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_THREAD_INFO_IN_TASK
|
|
|
|
+ WRITE_ONCE(p->cpu, new_cpu);
|
|
|
|
+#else
|
|
|
|
+ WRITE_ONCE(task_thread_info(p)->cpu, new_cpu);
|
|
|
|
+#endif
|
|
|
|
+ /* We're no longer protecting p after this point since we're holding
|
|
|
|
+ * the wrong runqueue lock. */
|
|
|
|
+}
|
|
|
|
+#endif /* CONFIG_SMP */
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Move a task off the runqueue and take it to a cpu for it will
|
|
|
|
+ * become the running task.
|
|
|
|
+ */
|
|
|
|
+static inline void take_task(struct rq *rq, int cpu, struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ struct rq *p_rq = task_rq(p);
|
|
|
|
+
|
|
|
|
+ dequeue_task(p_rq, p, DEQUEUE_SAVE);
|
|
|
|
+ if (p_rq != rq) {
|
|
|
|
+ sched_info_dequeued(p_rq, p);
|
|
|
|
+ sched_info_queued(rq, p);
|
|
|
|
+ }
|
|
|
|
+ set_task_cpu(p, cpu);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Returns a descheduling task to the runqueue unless it is being
|
|
|
|
+ * deactivated.
|
|
|
|
+ */
|
|
|
|
+static inline void return_task(struct task_struct *p, struct rq *rq,
|
|
|
|
+ int cpu, bool deactivate)
|
|
|
|
+{
|
|
|
|
+ if (deactivate)
|
|
|
|
+ deactivate_task(p, rq);
|
|
|
|
+ else {
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ /*
|
|
|
|
+ * set_task_cpu was called on the running task that doesn't
|
|
|
|
+ * want to deactivate so it has to be enqueued to a different
|
|
|
|
+ * CPU and we need its lock. Tag it to be moved with as the
|
|
|
|
+ * lock is dropped in finish_lock_switch.
|
|
|
|
+ */
|
|
|
|
+ if (unlikely(p->wake_cpu != cpu))
|
|
|
|
+ WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
|
|
|
|
+ else
|
|
|
|
+#endif
|
|
|
|
+ enqueue_task(rq, p, ENQUEUE_RESTORE);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* Enter with rq lock held. We know p is on the local cpu */
|
|
|
|
+static inline void __set_tsk_resched(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ set_tsk_need_resched(p);
|
|
|
|
+ set_preempt_need_resched();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * task_curr - is this task currently executing on a CPU?
|
|
|
|
+ * @p: the task in question.
|
|
|
|
+ *
|
|
|
|
+ * Return: 1 if the task is currently executing. 0 otherwise.
|
|
|
|
+ */
|
|
|
|
+inline int task_curr(const struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ return cpu_curr(task_cpu(p)) == p;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+/*
|
|
|
|
+ * wait_task_inactive - wait for a thread to unschedule.
|
|
|
|
+ *
|
|
|
|
+ * If @match_state is nonzero, it's the @p->state value just checked and
|
|
|
|
+ * not expected to change. If it changes, i.e. @p might have woken up,
|
|
|
|
+ * then return zero. When we succeed in waiting for @p to be off its CPU,
|
|
|
|
+ * we return a positive number (its total switch count). If a second call
|
|
|
|
+ * a short while later returns the same number, the caller can be sure that
|
|
|
|
+ * @p has remained unscheduled the whole time.
|
|
|
|
+ *
|
|
|
|
+ * The caller must ensure that the task *will* unschedule sometime soon,
|
|
|
|
+ * else this function might spin for a *long* time. This function can't
|
|
|
|
+ * be called with interrupts off, or it may introduce deadlock with
|
|
|
|
+ * smp_call_function() if an IPI is sent by the same process we are
|
|
|
|
+ * waiting to become inactive.
|
|
|
|
+ */
|
|
|
|
+unsigned long wait_task_inactive(struct task_struct *p, long match_state)
|
|
|
|
+{
|
|
|
|
+ int running, queued;
|
|
|
|
+ struct rq_flags rf;
|
|
|
|
+ unsigned long ncsw;
|
|
|
|
+ struct rq *rq;
|
|
|
|
+
|
|
|
|
+ for (;;) {
|
|
|
|
+ rq = task_rq(p);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * If the task is actively running on another CPU
|
|
|
|
+ * still, just relax and busy-wait without holding
|
|
|
|
+ * any locks.
|
|
|
|
+ *
|
|
|
|
+ * NOTE! Since we don't hold any locks, it's not
|
|
|
|
+ * even sure that "rq" stays as the right runqueue!
|
|
|
|
+ * But we don't care, since this will return false
|
|
|
|
+ * if the runqueue has changed and p is actually now
|
|
|
|
+ * running somewhere else!
|
|
|
|
+ */
|
|
|
|
+ while (task_running(rq, p)) {
|
|
|
|
+ if (match_state && unlikely(p->state != match_state))
|
|
|
|
+ return 0;
|
|
|
|
+ cpu_relax();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Ok, time to look more closely! We need the rq
|
|
|
|
+ * lock now, to be *sure*. If we're wrong, we'll
|
|
|
|
+ * just go back and repeat.
|
|
|
|
+ */
|
|
|
|
+ rq = task_rq_lock(p, &rf);
|
|
|
|
+ trace_sched_wait_task(p);
|
|
|
|
+ running = task_running(rq, p);
|
|
|
|
+ queued = task_on_rq_queued(p);
|
|
|
|
+ ncsw = 0;
|
|
|
|
+ if (!match_state || p->state == match_state)
|
|
|
|
+ ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
|
|
|
|
+ task_rq_unlock(rq, p, &rf);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * If it changed from the expected state, bail out now.
|
|
|
|
+ */
|
|
|
|
+ if (unlikely(!ncsw))
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Was it really running after all now that we
|
|
|
|
+ * checked with the proper locks actually held?
|
|
|
|
+ *
|
|
|
|
+ * Oops. Go back and try again..
|
|
|
|
+ */
|
|
|
|
+ if (unlikely(running)) {
|
|
|
|
+ cpu_relax();
|
|
|
|
+ continue;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * It's not enough that it's not actively running,
|
|
|
|
+ * it must be off the runqueue _entirely_, and not
|
|
|
|
+ * preempted!
|
|
|
|
+ *
|
|
|
|
+ * So if it was still runnable (but just not actively
|
|
|
|
+ * running right now), it's preempted, and we should
|
|
|
|
+ * yield - it could be a while.
|
|
|
|
+ */
|
|
|
|
+ if (unlikely(queued)) {
|
|
|
|
+ ktime_t to = NSEC_PER_SEC / HZ;
|
|
|
|
+
|
|
|
|
+ set_current_state(TASK_UNINTERRUPTIBLE);
|
|
|
|
+ schedule_hrtimeout(&to, HRTIMER_MODE_REL);
|
|
|
|
+ continue;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Ahh, all good. It wasn't running, and it wasn't
|
|
|
|
+ * runnable, which means that it will never become
|
|
|
|
+ * running in the future either. We're all done!
|
|
|
|
+ */
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return ncsw;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/***
|
|
|
|
+ * kick_process - kick a running thread to enter/exit the kernel
|
|
|
|
+ * @p: the to-be-kicked thread
|
|
|
|
+ *
|
|
|
|
+ * Cause a process which is running on another CPU to enter
|
|
|
|
+ * kernel-mode, without any delay. (to get signals handled.)
|
|
|
|
+ *
|
|
|
|
+ * NOTE: this function doesn't have to take the runqueue lock,
|
|
|
|
+ * because all it wants to ensure is that the remote task enters
|
|
|
|
+ * the kernel. If the IPI races and the task has been migrated
|
|
|
|
+ * to another CPU then no harm is done and the purpose has been
|
|
|
|
+ * achieved as well.
|
|
|
|
+ */
|
|
|
|
+void kick_process(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ int cpu;
|
|
|
|
+
|
|
|
|
+ preempt_disable();
|
|
|
|
+ cpu = task_cpu(p);
|
|
|
|
+ if ((cpu != smp_processor_id()) && task_curr(p))
|
|
|
|
+ smp_sched_reschedule(cpu);
|
|
|
|
+ preempt_enable();
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL_GPL(kick_process);
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * RT tasks preempt purely on priority. SCHED_NORMAL tasks preempt on the
|
|
|
|
+ * basis of earlier deadlines. SCHED_IDLEPRIO don't preempt anything else or
|
|
|
|
+ * between themselves, they cooperatively multitask. An idle rq scores as
|
|
|
|
+ * prio PRIO_LIMIT so it is always preempted.
|
|
|
|
+ */
|
|
|
|
+static inline bool
|
|
|
|
+can_preempt(struct task_struct *p, int prio, u64 deadline)
|
|
|
|
+{
|
|
|
|
+ /* Better static priority RT task or better policy preemption */
|
|
|
|
+ if (p->prio < prio)
|
|
|
|
+ return true;
|
|
|
|
+ if (p->prio > prio)
|
|
|
|
+ return false;
|
|
|
|
+ if (p->policy == SCHED_BATCH)
|
|
|
|
+ return false;
|
|
|
|
+ /* SCHED_NORMAL and ISO will preempt based on deadline */
|
|
|
|
+ if (!deadline_before(p->deadline, deadline))
|
|
|
|
+ return false;
|
|
|
|
+ return true;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Per-CPU kthreads are allowed to run on !active && online CPUs, see
|
|
|
|
+ * __set_cpus_allowed_ptr().
|
|
|
|
+ */
|
|
|
|
+static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
|
|
|
|
+{
|
|
|
|
+ if (!cpumask_test_cpu(cpu, p->cpus_ptr))
|
|
|
|
+ return false;
|
|
|
|
+
|
|
|
|
+ if (is_per_cpu_kthread(p))
|
|
|
|
+ return cpu_online(cpu);
|
|
|
|
+
|
|
|
|
+ return cpu_active(cpu);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Check to see if p can run on cpu, and if not, whether there are any online
|
|
|
|
+ * CPUs it can run on instead. This only happens with the hotplug threads that
|
|
|
|
+ * bring up the CPUs.
|
|
|
|
+ */
|
|
|
|
+static inline bool sched_other_cpu(struct task_struct *p, int cpu)
|
|
|
|
+{
|
|
|
|
+ if (likely(cpumask_test_cpu(cpu, p->cpus_ptr)))
|
|
|
|
+ return false;
|
|
|
|
+ if (p->nr_cpus_allowed == 1) {
|
|
|
|
+ cpumask_t valid_mask;
|
|
|
|
+
|
|
|
|
+ cpumask_and(&valid_mask, p->cpus_ptr, cpu_online_mask);
|
|
|
|
+ if (unlikely(cpumask_empty(&valid_mask)))
|
|
|
|
+ return false;
|
|
|
|
+ }
|
|
|
|
+ return true;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline bool needs_other_cpu(struct task_struct *p, int cpu)
|
|
|
|
+{
|
|
|
|
+ if (cpumask_test_cpu(cpu, p->cpus_ptr))
|
|
|
|
+ return false;
|
|
|
|
+ return true;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#define cpu_online_map (*(cpumask_t *)cpu_online_mask)
|
|
|
|
+
|
|
|
|
+static void try_preempt(struct task_struct *p, struct rq *this_rq)
|
|
|
|
+{
|
|
|
|
+ int i, this_entries = rq_load(this_rq);
|
|
|
|
+ cpumask_t tmp;
|
|
|
|
+
|
|
|
|
+ if (suitable_idle_cpus(p) && resched_best_idle(p, task_cpu(p)))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ /* IDLEPRIO tasks never preempt anything but idle */
|
|
|
|
+ if (p->policy == SCHED_IDLEPRIO)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ cpumask_and(&tmp, &cpu_online_map, p->cpus_ptr);
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < num_online_cpus(); i++) {
|
|
|
|
+ struct rq *rq = this_rq->cpu_order[i];
|
|
|
|
+
|
|
|
|
+ if (!cpumask_test_cpu(rq->cpu, &tmp))
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ if (!sched_interactive && rq != this_rq && rq_load(rq) <= this_entries)
|
|
|
|
+ continue;
|
|
|
|
+ if (smt_schedule(p, rq) && can_preempt(p, rq->rq_prio, rq->rq_deadline)) {
|
|
|
|
+ /* We set rq->preempting lockless, it's a hint only */
|
|
|
|
+ rq->preempting = p;
|
|
|
|
+ resched_curr(rq);
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int __set_cpus_allowed_ptr(struct task_struct *p,
|
|
|
|
+ const struct cpumask *new_mask, bool check);
|
|
|
|
+#else /* CONFIG_SMP */
|
|
|
|
+static inline bool needs_other_cpu(struct task_struct *p, int cpu)
|
|
|
|
+{
|
|
|
|
+ return false;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void try_preempt(struct task_struct *p, struct rq *this_rq)
|
|
|
|
+{
|
|
|
|
+ if (p->policy == SCHED_IDLEPRIO)
|
|
|
|
+ return;
|
|
|
|
+ if (can_preempt(p, uprq->rq_prio, uprq->rq_deadline))
|
|
|
|
+ resched_curr(uprq);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline int __set_cpus_allowed_ptr(struct task_struct *p,
|
|
|
|
+ const struct cpumask *new_mask, bool check)
|
|
|
|
+{
|
|
|
|
+ return set_cpus_allowed_ptr(p, new_mask);
|
|
|
|
+}
|
|
|
|
+#endif /* CONFIG_SMP */
|
|
|
|
+
|
|
|
|
+static void
|
|
|
|
+ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq;
|
|
|
|
+
|
|
|
|
+ if (!schedstat_enabled())
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ rq = this_rq();
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ if (cpu == rq->cpu) {
|
|
|
|
+ __schedstat_inc(rq->ttwu_local);
|
|
|
|
+ } else {
|
|
|
|
+ struct sched_domain *sd;
|
|
|
|
+
|
|
|
|
+ rcu_read_lock();
|
|
|
|
+ for_each_domain(rq->cpu, sd) {
|
|
|
|
+ if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
|
|
|
|
+ __schedstat_inc(sd->ttwu_wake_remote);
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+#endif /* CONFIG_SMP */
|
|
|
|
+
|
|
|
|
+ __schedstat_inc(rq->ttwu_count);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Mark the task runnable and perform wakeup-preemption.
|
|
|
|
+ */
|
|
|
|
+static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
|
|
|
|
+{
|
|
|
|
+ /*
|
|
|
|
+ * Sync wakeups (i.e. those types of wakeups where the waker
|
|
|
|
+ * has indicated that it will leave the CPU in short order)
|
|
|
|
+ * don't trigger a preemption if there are no idle cpus,
|
|
|
|
+ * instead waiting for current to deschedule.
|
|
|
|
+ */
|
|
|
|
+ if (wake_flags & WF_SYNC)
|
|
|
|
+ resched_suitable_idle(p);
|
|
|
|
+ else
|
|
|
|
+ try_preempt(p, rq);
|
|
|
|
+ p->state = TASK_RUNNING;
|
|
|
|
+ trace_sched_wakeup(p);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void
|
|
|
|
+ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
|
|
|
|
+{
|
|
|
|
+ int en_flags = ENQUEUE_WAKEUP;
|
|
|
|
+
|
|
|
|
+ lockdep_assert_held(rq->lock);
|
|
|
|
+
|
|
|
|
+ if (p->sched_contributes_to_load)
|
|
|
|
+ rq->nr_uninterruptible--;
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ if (wake_flags & WF_MIGRATED)
|
|
|
|
+ en_flags |= ENQUEUE_MIGRATED;
|
2021-01-08 07:29:38 -06:00
|
|
|
+ else
|
2020-10-26 15:23:54 -05:00
|
|
|
+#endif
|
2021-01-08 07:29:38 -06:00
|
|
|
+ if (p->in_iowait) {
|
|
|
|
+ delayacct_blkio_end(p);
|
|
|
|
+ atomic_dec(&task_rq(p)->nr_iowait);
|
|
|
|
+ }
|
2020-10-26 15:23:54 -05:00
|
|
|
+
|
|
|
|
+ activate_task(rq, p, en_flags);
|
|
|
|
+ ttwu_do_wakeup(rq, p, wake_flags);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Consider @p being inside a wait loop:
|
|
|
|
+ *
|
|
|
|
+ * for (;;) {
|
|
|
|
+ * set_current_state(TASK_UNINTERRUPTIBLE);
|
|
|
|
+ *
|
|
|
|
+ * if (CONDITION)
|
|
|
|
+ * break;
|
|
|
|
+ *
|
|
|
|
+ * schedule();
|
|
|
|
+ * }
|
|
|
|
+ * __set_current_state(TASK_RUNNING);
|
|
|
|
+ *
|
|
|
|
+ * between set_current_state() and schedule(). In this case @p is still
|
|
|
|
+ * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
|
|
|
|
+ * an atomic manner.
|
|
|
|
+ *
|
|
|
|
+ * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
|
|
|
|
+ * then schedule() must still happen and p->state can be changed to
|
|
|
|
+ * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
|
|
|
|
+ * need to do a full wakeup with enqueue.
|
|
|
|
+ *
|
|
|
|
+ * Returns: %true when the wakeup is done,
|
|
|
|
+ * %false otherwise.
|
|
|
|
+ */
|
|
|
|
+static int ttwu_runnable(struct task_struct *p, int wake_flags)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq;
|
|
|
|
+ int ret = 0;
|
|
|
|
+
|
|
|
|
+ rq = __task_rq_lock(p, NULL);
|
|
|
|
+ if (likely(task_on_rq_queued(p))) {
|
|
|
|
+ ttwu_do_wakeup(rq, p, wake_flags);
|
|
|
|
+ ret = 1;
|
|
|
|
+ }
|
|
|
|
+ __task_rq_unlock(rq, NULL);
|
|
|
|
+
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+void sched_ttwu_pending(void *arg)
|
|
|
|
+{
|
|
|
|
+ struct llist_node *llist = arg;
|
|
|
|
+ struct rq *rq = this_rq();
|
|
|
|
+ struct task_struct *p, *t;
|
|
|
|
+ struct rq_flags rf;
|
|
|
|
+
|
|
|
|
+ if (!llist)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * rq::ttwu_pending racy indication of out-standing wakeups.
|
|
|
|
+ * Races such that false-negatives are possible, since they
|
|
|
|
+ * are shorter lived that false-positives would be.
|
|
|
|
+ */
|
|
|
|
+ WRITE_ONCE(rq->ttwu_pending, 0);
|
|
|
|
+
|
|
|
|
+ rq_lock_irqsave(rq, &rf);
|
|
|
|
+
|
|
|
|
+ llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
|
|
|
|
+ if (WARN_ON_ONCE(p->on_cpu))
|
|
|
|
+ smp_cond_load_acquire(&p->on_cpu, !VAL);
|
|
|
|
+
|
|
|
|
+ if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
|
|
|
|
+ set_task_cpu(p, cpu_of(rq));
|
|
|
|
+
|
|
|
|
+ ttwu_do_activate(rq, p, 0);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ rq_unlock_irqrestore(rq, &rf);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void send_call_function_single_ipi(int cpu)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq = cpu_rq(cpu);
|
|
|
|
+
|
|
|
|
+ if (!set_nr_if_polling(rq->idle))
|
|
|
|
+ arch_send_call_function_single_ipi(cpu);
|
|
|
|
+ else
|
|
|
|
+ trace_sched_wake_idle_without_ipi(cpu);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
|
|
|
|
+ * necessary. The wakee CPU on receipt of the IPI will queue the task
|
|
|
|
+ * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
|
|
|
|
+ * of the wakeup instead of the waker.
|
|
|
|
+ */
|
|
|
|
+static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq = cpu_rq(cpu);
|
|
|
|
+
|
|
|
|
+ WRITE_ONCE(rq->ttwu_pending, 1);
|
|
|
|
+ __smp_call_single_queue(cpu, &p->wake_entry.llist);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void wake_up_if_idle(int cpu)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq = cpu_rq(cpu);
|
|
|
|
+ struct rq_flags rf;
|
|
|
|
+
|
|
|
|
+ rcu_read_lock();
|
|
|
|
+
|
|
|
|
+ if (!is_idle_task(rcu_dereference(rq->curr)))
|
|
|
|
+ goto out;
|
|
|
|
+
|
|
|
|
+ if (set_nr_if_polling(rq->idle)) {
|
|
|
|
+ trace_sched_wake_idle_without_ipi(cpu);
|
|
|
|
+ } else {
|
|
|
|
+ rq_lock_irqsave(rq, &rf);
|
|
|
|
+ if (likely(is_idle_task(rq->curr)))
|
|
|
|
+ smp_sched_reschedule(cpu);
|
|
|
|
+ /* Else cpu is not in idle, do nothing here */
|
|
|
|
+ rq_unlock_irqrestore(rq, &rf);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+out:
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline bool ttwu_queue_cond(int cpu, int wake_flags)
|
|
|
|
+{
|
|
|
|
+ /*
|
|
|
|
+ * If the CPU does not share cache, then queue the task on the
|
|
|
|
+ * remote rqs wakelist to avoid accessing remote data.
|
|
|
|
+ */
|
|
|
|
+ if (!cpus_share_cache(smp_processor_id(), cpu))
|
|
|
|
+ return true;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * If the task is descheduling and the only running task on the
|
|
|
|
+ * CPU then use the wakelist to offload the task activation to
|
|
|
|
+ * the soon-to-be-idle CPU as the current CPU is likely busy.
|
|
|
|
+ * nr_running is checked to avoid unnecessary task stacking.
|
|
|
|
+ */
|
|
|
|
+ if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
|
|
|
|
+ return true;
|
|
|
|
+
|
|
|
|
+ return false;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
|
|
|
|
+{
|
|
|
|
+ if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
|
|
|
|
+ if (WARN_ON_ONCE(cpu == smp_processor_id()))
|
|
|
|
+ return false;
|
|
|
|
+
|
|
|
|
+ sched_clock_cpu(cpu); /* Sync clocks across CPUs */
|
|
|
|
+ __ttwu_queue_wakelist(p, cpu, wake_flags);
|
|
|
|
+ return true;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return false;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int valid_task_cpu(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ cpumask_t valid_mask;
|
|
|
|
+
|
|
|
|
+ if (p->flags & PF_KTHREAD)
|
|
|
|
+ cpumask_and(&valid_mask, p->cpus_ptr, cpu_all_mask);
|
|
|
|
+ else
|
|
|
|
+ cpumask_and(&valid_mask, p->cpus_ptr, cpu_active_mask);
|
|
|
|
+
|
|
|
|
+ if (unlikely(!cpumask_weight(&valid_mask))) {
|
|
|
|
+ /* We shouldn't be hitting this any more */
|
|
|
|
+ printk(KERN_WARNING "SCHED: No cpumask for %s/%d weight %d\n", p->comm,
|
|
|
|
+ p->pid, cpumask_weight(p->cpus_ptr));
|
|
|
|
+ return cpumask_any(p->cpus_ptr);
|
|
|
|
+ }
|
|
|
|
+ return cpumask_any(&valid_mask);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * For a task that's just being woken up we have a valuable balancing
|
|
|
|
+ * opportunity so choose the nearest cache most lightly loaded runqueue.
|
|
|
|
+ * Entered with rq locked and returns with the chosen runqueue locked.
|
|
|
|
+ */
|
|
|
|
+static inline int select_best_cpu(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ unsigned int idlest = ~0U;
|
|
|
|
+ struct rq *rq = NULL;
|
|
|
|
+ int i;
|
|
|
|
+
|
|
|
|
+ if (suitable_idle_cpus(p)) {
|
|
|
|
+ int cpu = task_cpu(p);
|
|
|
|
+
|
|
|
|
+ if (unlikely(needs_other_cpu(p, cpu)))
|
|
|
|
+ cpu = valid_task_cpu(p);
|
|
|
|
+ rq = resched_best_idle(p, cpu);
|
|
|
|
+ if (likely(rq))
|
|
|
|
+ return rq->cpu;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < num_online_cpus(); i++) {
|
|
|
|
+ struct rq *other_rq = task_rq(p)->cpu_order[i];
|
|
|
|
+ int entries;
|
|
|
|
+
|
|
|
|
+ if (!other_rq->online)
|
|
|
|
+ continue;
|
|
|
|
+ if (needs_other_cpu(p, other_rq->cpu))
|
|
|
|
+ continue;
|
|
|
|
+ entries = rq_load(other_rq);
|
|
|
|
+ if (entries >= idlest)
|
|
|
|
+ continue;
|
|
|
|
+ idlest = entries;
|
|
|
|
+ rq = other_rq;
|
|
|
|
+ }
|
|
|
|
+ if (unlikely(!rq))
|
|
|
|
+ return task_cpu(p);
|
|
|
|
+ return rq->cpu;
|
|
|
|
+}
|
|
|
|
+#else /* CONFIG_SMP */
|
|
|
|
+
|
|
|
|
+static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
|
|
|
|
+{
|
|
|
|
+ return false;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int valid_task_cpu(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline int select_best_cpu(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static struct rq *resched_best_idle(struct task_struct *p, int cpu)
|
|
|
|
+{
|
|
|
|
+ return NULL;
|
|
|
|
+}
|
|
|
|
+#endif /* CONFIG_SMP */
|
|
|
|
+
|
|
|
|
+static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq = cpu_rq(cpu);
|
|
|
|
+
|
|
|
|
+ if (ttwu_queue_wakelist(p, cpu, wake_flags))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ rq_lock(rq);
|
|
|
|
+ update_rq_clock(rq);
|
|
|
|
+ ttwu_do_activate(rq, p, wake_flags);
|
|
|
|
+ rq_unlock(rq);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/***
|
|
|
|
+ * try_to_wake_up - wake up a thread
|
|
|
|
+ * @p: the thread to be awakened
|
|
|
|
+ * @state: the mask of task states that can be woken
|
|
|
|
+ * @wake_flags: wake modifier flags (WF_*)
|
|
|
|
+ *
|
|
|
|
+ * Put it on the run-queue if it's not already there. The "current"
|
|
|
|
+ * thread is always on the run-queue (except when the actual
|
|
|
|
+ * re-schedule is in progress), and as such you're allowed to do
|
|
|
|
+ * the simpler "current->state = TASK_RUNNING" to mark yourself
|
|
|
|
+ * runnable without the overhead of this.
|
|
|
|
+ *
|
|
|
|
+ * Return: %true if @p was woken up, %false if it was already running.
|
|
|
|
+ * or @state didn't match @p's state.
|
|
|
|
+ */
|
|
|
|
+static int
|
|
|
|
+try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
|
|
|
|
+{
|
|
|
|
+ unsigned long flags;
|
|
|
|
+ int cpu, success = 0;
|
|
|
|
+
|
|
|
|
+ preempt_disable();
|
|
|
|
+ if (p == current) {
|
|
|
|
+ /*
|
|
|
|
+ * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
|
|
|
|
+ * == smp_processor_id()'. Together this means we can special
|
|
|
|
+ * case the whole 'p->on_rq && ttwu_runnable()' case below
|
|
|
|
+ * without taking any locks.
|
|
|
|
+ *
|
|
|
|
+ * In particular:
|
|
|
|
+ * - we rely on Program-Order guarantees for all the ordering,
|
|
|
|
+ * - we're serialized against set_special_state() by virtue of
|
|
|
|
+ * it disabling IRQs (this allows not taking ->pi_lock).
|
|
|
|
+ */
|
|
|
|
+ if (!(p->state & state))
|
|
|
|
+ goto out;
|
|
|
|
+
|
|
|
|
+ success = 1;
|
|
|
|
+ trace_sched_waking(p);
|
|
|
|
+ p->state = TASK_RUNNING;
|
|
|
|
+ trace_sched_wakeup(p);
|
|
|
|
+ goto out;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * If we are going to wake up a thread waiting for CONDITION we
|
|
|
|
+ * need to ensure that CONDITION=1 done by the caller can not be
|
|
|
|
+ * reordered with p->state check below. This pairs with smp_store_mb()
|
|
|
|
+ * in set_current_state() that the waiting thread does.
|
|
|
|
+ */
|
|
|
|
+ raw_spin_lock_irqsave(&p->pi_lock, flags);
|
|
|
|
+ smp_mb__after_spinlock();
|
|
|
|
+ if (!(p->state & state))
|
|
|
|
+ goto unlock;
|
|
|
|
+
|
|
|
|
+ trace_sched_waking(p);
|
|
|
|
+
|
|
|
|
+ /* We're going to change ->state: */
|
|
|
|
+ success = 1;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Ensure we load p->on_rq _after_ p->state, otherwise it would
|
|
|
|
+ * be possible to, falsely, observe p->on_rq == 0 and get stuck
|
|
|
|
+ * in smp_cond_load_acquire() below.
|
|
|
|
+ *
|
|
|
|
+ * sched_ttwu_pending() try_to_wake_up()
|
|
|
|
+ * STORE p->on_rq = 1 LOAD p->state
|
|
|
|
+ * UNLOCK rq->lock
|
|
|
|
+ *
|
|
|
|
+ * __schedule() (switch to task 'p')
|
|
|
|
+ * LOCK rq->lock smp_rmb();
|
|
|
|
+ * smp_mb__after_spinlock();
|
|
|
|
+ * UNLOCK rq->lock
|
|
|
|
+ *
|
|
|
|
+ * [task p]
|
|
|
|
+ * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
|
|
|
|
+ *
|
|
|
|
+ * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
|
|
|
|
+ * __schedule(). See the comment for smp_mb__after_spinlock().
|
|
|
|
+ */
|
|
|
|
+ smp_rmb();
|
|
|
|
+ if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
|
|
|
|
+ goto unlock;
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ /*
|
|
|
|
+ * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
|
|
|
|
+ * possible to, falsely, observe p->on_cpu == 0.
|
|
|
|
+ *
|
|
|
|
+ * One must be running (->on_cpu == 1) in order to remove oneself
|
|
|
|
+ * from the runqueue.
|
|
|
|
+ *
|
|
|
|
+ * __schedule() (switch to task 'p') try_to_wake_up()
|
|
|
|
+ * STORE p->on_cpu = 1 LOAD p->on_rq
|
|
|
|
+ * UNLOCK rq->lock
|
|
|
|
+ *
|
|
|
|
+ * __schedule() (put 'p' to sleep)
|
|
|
|
+ * LOCK rq->lock smp_rmb();
|
|
|
|
+ * smp_mb__after_spinlock();
|
|
|
|
+ * STORE p->on_rq = 0 LOAD p->on_cpu
|
|
|
|
+ *
|
|
|
|
+ * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
|
|
|
|
+ * __schedule(). See the comment for smp_mb__after_spinlock().
|
|
|
|
+ *
|
|
|
|
+ * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
|
|
|
|
+ * schedule()'s deactivate_task() has 'happened' and p will no longer
|
|
|
|
+ * care about it's own p->state. See the comment in __schedule().
|
|
|
|
+ */
|
|
|
|
+ smp_acquire__after_ctrl_dep();
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
|
|
|
|
+ * == 0), which means we need to do an enqueue, change p->state to
|
|
|
|
+ * TASK_WAKING such that we can unlock p->pi_lock before doing the
|
|
|
|
+ * enqueue, such as ttwu_queue_wakelist().
|
|
|
|
+ */
|
|
|
|
+ p->state = TASK_WAKING;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * If the owning (remote) CPU is still in the middle of schedule() with
|
|
|
|
+ * this task as prev, considering queueing p on the remote CPUs wake_list
|
|
|
|
+ * which potentially sends an IPI instead of spinning on p->on_cpu to
|
|
|
|
+ * let the waker make forward progress. This is safe because IRQs are
|
|
|
|
+ * disabled and the IPI will deliver after on_cpu is cleared.
|
|
|
|
+ *
|
|
|
|
+ * Ensure we load task_cpu(p) after p->on_cpu:
|
|
|
|
+ *
|
|
|
|
+ * set_task_cpu(p, cpu);
|
|
|
|
+ * STORE p->cpu = @cpu
|
|
|
|
+ * __schedule() (switch to task 'p')
|
|
|
|
+ * LOCK rq->lock
|
|
|
|
+ * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
|
|
|
|
+ * STORE p->on_cpu = 1 LOAD p->cpu
|
|
|
|
+ *
|
|
|
|
+ * to ensure we observe the correct CPU on which the task is currently
|
|
|
|
+ * scheduling.
|
|
|
|
+ */
|
|
|
|
+ if (smp_load_acquire(&p->on_cpu) &&
|
|
|
|
+ ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
|
|
|
|
+ goto unlock;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * If the owning (remote) CPU is still in the middle of schedule() with
|
|
|
|
+ * this task as prev, wait until its done referencing the task.
|
|
|
|
+ *
|
|
|
|
+ * Pairs with the smp_store_release() in finish_task().
|
|
|
|
+ *
|
|
|
|
+ * This ensures that tasks getting woken will be fully ordered against
|
|
|
|
+ * their previous state and preserve Program Order.
|
|
|
|
+ */
|
|
|
|
+ smp_cond_load_acquire(&p->on_cpu, !VAL);
|
|
|
|
+
|
|
|
|
+ cpu = select_best_cpu(p);
|
|
|
|
+ if (task_cpu(p) != cpu) {
|
2021-01-08 07:29:38 -06:00
|
|
|
+ if (p->in_iowait) {
|
|
|
|
+ delayacct_blkio_end(p);
|
|
|
|
+ atomic_dec(&task_rq(p)->nr_iowait);
|
|
|
|
+ }
|
|
|
|
+
|
2020-10-26 15:23:54 -05:00
|
|
|
+ wake_flags |= WF_MIGRATED;
|
|
|
|
+ psi_ttwu_dequeue(p);
|
|
|
|
+ set_task_cpu(p, cpu);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+#else
|
|
|
|
+ cpu = task_cpu(p);
|
|
|
|
+#endif /* CONFIG_SMP */
|
|
|
|
+
|
|
|
|
+ ttwu_queue(p, cpu, wake_flags);
|
|
|
|
+unlock:
|
|
|
|
+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
|
|
+out:
|
|
|
|
+ if (success)
|
|
|
|
+ ttwu_stat(p, task_cpu(p), wake_flags);
|
|
|
|
+ preempt_enable();
|
|
|
|
+
|
|
|
|
+ return success;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
|
|
|
|
+ * @p: Process for which the function is to be invoked.
|
|
|
|
+ * @func: Function to invoke.
|
|
|
|
+ * @arg: Argument to function.
|
|
|
|
+ *
|
|
|
|
+ * If the specified task can be quickly locked into a definite state
|
|
|
|
+ * (either sleeping or on a given runqueue), arrange to keep it in that
|
|
|
|
+ * state while invoking @func(@arg). This function can use ->on_rq and
|
|
|
|
+ * task_curr() to work out what the state is, if required. Given that
|
|
|
|
+ * @func can be invoked with a runqueue lock held, it had better be quite
|
|
|
|
+ * lightweight.
|
|
|
|
+ *
|
|
|
|
+ * Returns:
|
|
|
|
+ * @false if the task slipped out from under the locks.
|
|
|
|
+ * @true if the task was locked onto a runqueue or is sleeping.
|
|
|
|
+ * However, @func can override this by returning @false.
|
|
|
|
+ */
|
|
|
|
+bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
|
|
|
|
+{
|
|
|
|
+ bool ret = false;
|
|
|
|
+ struct rq *rq;
|
|
|
|
+
|
|
|
|
+ lockdep_assert_irqs_enabled();
|
|
|
|
+ raw_spin_lock_irq(&p->pi_lock);
|
|
|
|
+ if (p->on_rq) {
|
|
|
|
+ rq = __task_rq_lock(p, NULL);
|
|
|
|
+ if (task_rq(p) == rq)
|
|
|
|
+ ret = func(p, arg);
|
|
|
|
+ rq_unlock(rq);
|
|
|
|
+ } else {
|
|
|
|
+ switch (p->state) {
|
|
|
|
+ case TASK_RUNNING:
|
|
|
|
+ case TASK_WAKING:
|
|
|
|
+ break;
|
|
|
|
+ default:
|
|
|
|
+ smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
|
|
|
|
+ if (!p->on_rq)
|
|
|
|
+ ret = func(p, arg);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ raw_spin_unlock_irq(&p->pi_lock);
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * wake_up_process - Wake up a specific process
|
|
|
|
+ * @p: The process to be woken up.
|
|
|
|
+ *
|
|
|
|
+ * Attempt to wake up the nominated process and move it to the set of runnable
|
|
|
|
+ * processes.
|
|
|
|
+ *
|
|
|
|
+ * Return: 1 if the process was woken up, 0 if it was already running.
|
|
|
|
+ *
|
|
|
|
+ * This function executes a full memory barrier before accessing the task state.
|
|
|
|
+ */
|
|
|
|
+int wake_up_process(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ return try_to_wake_up(p, TASK_NORMAL, 0);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL(wake_up_process);
|
|
|
|
+
|
|
|
|
+int wake_up_state(struct task_struct *p, unsigned int state)
|
|
|
|
+{
|
|
|
|
+ return try_to_wake_up(p, state, 0);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void time_slice_expired(struct task_struct *p, struct rq *rq);
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Perform scheduler related setup for a newly forked process p.
|
|
|
|
+ * p is forked by current.
|
|
|
|
+ */
|
|
|
|
+int sched_fork(unsigned long __maybe_unused clone_flags, struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ unsigned long flags;
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_PREEMPT_NOTIFIERS
|
|
|
|
+ INIT_HLIST_HEAD(&p->preempt_notifiers);
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_COMPACTION
|
|
|
|
+ p->capture_control = NULL;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ p->wake_entry.u_flags = CSD_TYPE_TTWU;
|
|
|
|
+#endif
|
|
|
|
+ /*
|
|
|
|
+ * We mark the process as NEW here. This guarantees that
|
|
|
|
+ * nobody will actually run it, and a signal or other external
|
|
|
|
+ * event cannot wake it up and insert it on the runqueue either.
|
|
|
|
+ */
|
|
|
|
+ p->state = TASK_NEW;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * The process state is set to the same value of the process executing
|
|
|
|
+ * do_fork() code. That is running. This guarantees that nobody will
|
|
|
|
+ * actually run it, and a signal or other external event cannot wake
|
|
|
|
+ * it up and insert it on the runqueue either.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+ /* Should be reset in fork.c but done here for ease of MuQSS patching */
|
|
|
|
+ p->on_cpu =
|
|
|
|
+ p->on_rq =
|
|
|
|
+ p->utime =
|
|
|
|
+ p->stime =
|
|
|
|
+ p->sched_time =
|
|
|
|
+ p->stime_ns =
|
|
|
|
+ p->utime_ns = 0;
|
|
|
|
+ skiplist_node_init(&p->node);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Revert to default priority/policy on fork if requested.
|
|
|
|
+ */
|
|
|
|
+ if (unlikely(p->sched_reset_on_fork)) {
|
|
|
|
+ if (p->policy == SCHED_FIFO || p->policy == SCHED_RR || p-> policy == SCHED_ISO) {
|
|
|
|
+ p->policy = SCHED_NORMAL;
|
|
|
|
+ p->normal_prio = normal_prio(p);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (PRIO_TO_NICE(p->static_prio) < 0) {
|
|
|
|
+ p->static_prio = NICE_TO_PRIO(0);
|
|
|
|
+ p->normal_prio = p->static_prio;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * We don't need the reset flag anymore after the fork. It has
|
|
|
|
+ * fulfilled its duty:
|
|
|
|
+ */
|
|
|
|
+ p->sched_reset_on_fork = 0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Silence PROVE_RCU.
|
|
|
|
+ */
|
|
|
|
+ raw_spin_lock_irqsave(&p->pi_lock, flags);
|
|
|
|
+ rseq_migrate(p);
|
|
|
|
+ set_task_cpu(p, smp_processor_id());
|
|
|
|
+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SCHED_INFO
|
|
|
|
+ if (unlikely(sched_info_on()))
|
|
|
|
+ memset(&p->sched_info, 0, sizeof(p->sched_info));
|
|
|
|
+#endif
|
|
|
|
+ init_task_preempt_count(p);
|
|
|
|
+
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void sched_post_fork(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SCHEDSTATS
|
|
|
|
+
|
|
|
|
+DEFINE_STATIC_KEY_FALSE(sched_schedstats);
|
|
|
|
+static bool __initdata __sched_schedstats = false;
|
|
|
|
+
|
|
|
|
+static void set_schedstats(bool enabled)
|
|
|
|
+{
|
|
|
|
+ if (enabled)
|
|
|
|
+ static_branch_enable(&sched_schedstats);
|
|
|
|
+ else
|
|
|
|
+ static_branch_disable(&sched_schedstats);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void force_schedstat_enabled(void)
|
|
|
|
+{
|
|
|
|
+ if (!schedstat_enabled()) {
|
|
|
|
+ pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
|
|
|
|
+ static_branch_enable(&sched_schedstats);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int __init setup_schedstats(char *str)
|
|
|
|
+{
|
|
|
|
+ int ret = 0;
|
|
|
|
+ if (!str)
|
|
|
|
+ goto out;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * This code is called before jump labels have been set up, so we can't
|
|
|
|
+ * change the static branch directly just yet. Instead set a temporary
|
|
|
|
+ * variable so init_schedstats() can do it later.
|
|
|
|
+ */
|
|
|
|
+ if (!strcmp(str, "enable")) {
|
|
|
|
+ __sched_schedstats = true;
|
|
|
|
+ ret = 1;
|
|
|
|
+ } else if (!strcmp(str, "disable")) {
|
|
|
|
+ __sched_schedstats = false;
|
|
|
|
+ ret = 1;
|
|
|
|
+ }
|
|
|
|
+out:
|
|
|
|
+ if (!ret)
|
|
|
|
+ pr_warn("Unable to parse schedstats=\n");
|
|
|
|
+
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+__setup("schedstats=", setup_schedstats);
|
|
|
|
+
|
|
|
|
+static void __init init_schedstats(void)
|
|
|
|
+{
|
|
|
|
+ set_schedstats(__sched_schedstats);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_PROC_SYSCTL
|
|
|
|
+int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
|
|
|
|
+ size_t *lenp, loff_t *ppos)
|
|
|
|
+{
|
|
|
|
+ struct ctl_table t;
|
|
|
|
+ int err;
|
|
|
|
+ int state = static_branch_likely(&sched_schedstats);
|
|
|
|
+
|
|
|
|
+ if (write && !capable(CAP_SYS_ADMIN))
|
|
|
|
+ return -EPERM;
|
|
|
|
+
|
|
|
|
+ t = *table;
|
|
|
|
+ t.data = &state;
|
|
|
|
+ err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
|
|
|
|
+ if (err < 0)
|
|
|
|
+ return err;
|
|
|
|
+ if (write)
|
|
|
|
+ set_schedstats(state);
|
|
|
|
+ return err;
|
|
|
|
+}
|
|
|
|
+#endif /* CONFIG_PROC_SYSCTL */
|
|
|
|
+#else /* !CONFIG_SCHEDSTATS */
|
|
|
|
+static inline void init_schedstats(void) {}
|
|
|
|
+#endif /* CONFIG_SCHEDSTATS */
|
|
|
|
+
|
|
|
|
+static void update_cpu_clock_switch(struct rq *rq, struct task_struct *p);
|
|
|
|
+
|
|
|
|
+static void account_task_cpu(struct rq *rq, struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ update_clocks(rq);
|
|
|
|
+ /* This isn't really a context switch but accounting is the same */
|
|
|
|
+ update_cpu_clock_switch(rq, p);
|
|
|
|
+ p->last_ran = rq->niffies;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+bool sched_smp_initialized __read_mostly;
|
|
|
|
+
|
|
|
|
+static inline int hrexpiry_enabled(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ if (unlikely(!cpu_active(cpu_of(rq)) || !sched_smp_initialized))
|
|
|
|
+ return 0;
|
|
|
|
+ return hrtimer_is_hres_active(&rq->hrexpiry_timer);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Use HR-timers to deliver accurate preemption points.
|
|
|
|
+ */
|
|
|
|
+static inline void hrexpiry_clear(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ if (!hrexpiry_enabled(rq))
|
|
|
|
+ return;
|
|
|
|
+ if (hrtimer_active(&rq->hrexpiry_timer))
|
|
|
|
+ hrtimer_cancel(&rq->hrexpiry_timer);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * High-resolution time_slice expiry.
|
|
|
|
+ * Runs from hardirq context with interrupts disabled.
|
|
|
|
+ */
|
|
|
|
+static enum hrtimer_restart hrexpiry(struct hrtimer *timer)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq = container_of(timer, struct rq, hrexpiry_timer);
|
|
|
|
+ struct task_struct *p;
|
|
|
|
+
|
|
|
|
+ /* This can happen during CPU hotplug / resume */
|
|
|
|
+ if (unlikely(cpu_of(rq) != smp_processor_id()))
|
|
|
|
+ goto out;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * We're doing this without the runqueue lock but this should always
|
|
|
|
+ * be run on the local CPU. Time slice should run out in __schedule
|
|
|
|
+ * but we set it to zero here in case niffies is slightly less.
|
|
|
|
+ */
|
|
|
|
+ p = rq->curr;
|
|
|
|
+ p->time_slice = 0;
|
|
|
|
+ __set_tsk_resched(p);
|
|
|
|
+out:
|
|
|
|
+ return HRTIMER_NORESTART;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Called to set the hrexpiry timer state.
|
|
|
|
+ *
|
|
|
|
+ * called with irqs disabled from the local CPU only
|
|
|
|
+ */
|
|
|
|
+static void hrexpiry_start(struct rq *rq, u64 delay)
|
|
|
|
+{
|
|
|
|
+ if (!hrexpiry_enabled(rq))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ hrtimer_start(&rq->hrexpiry_timer, ns_to_ktime(delay),
|
|
|
|
+ HRTIMER_MODE_REL_PINNED);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void init_rq_hrexpiry(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ hrtimer_init(&rq->hrexpiry_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
|
|
+ rq->hrexpiry_timer.function = hrexpiry;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline int rq_dither(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ if (!hrexpiry_enabled(rq))
|
|
|
|
+ return HALF_JIFFY_US;
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * wake_up_new_task - wake up a newly created task for the first time.
|
|
|
|
+ *
|
|
|
|
+ * This function will do some initial scheduler statistics housekeeping
|
|
|
|
+ * that must be done for every newly created context, then puts the task
|
|
|
|
+ * on the runqueue and wakes it.
|
|
|
|
+ */
|
|
|
|
+void wake_up_new_task(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ struct task_struct *parent, *rq_curr;
|
|
|
|
+ struct rq *rq, *new_rq;
|
|
|
|
+ unsigned long flags;
|
|
|
|
+
|
|
|
|
+ parent = p->parent;
|
|
|
|
+
|
|
|
|
+ raw_spin_lock_irqsave(&p->pi_lock, flags);
|
|
|
|
+ p->state = TASK_RUNNING;
|
|
|
|
+ /* Task_rq can't change yet on a new task */
|
|
|
|
+ new_rq = rq = task_rq(p);
|
|
|
|
+ if (unlikely(needs_other_cpu(p, task_cpu(p)))) {
|
|
|
|
+ set_task_cpu(p, valid_task_cpu(p));
|
|
|
|
+ new_rq = task_rq(p);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ double_rq_lock(rq, new_rq);
|
|
|
|
+ rq_curr = rq->curr;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Make sure we do not leak PI boosting priority to the child.
|
|
|
|
+ */
|
|
|
|
+ p->prio = rq_curr->normal_prio;
|
|
|
|
+
|
|
|
|
+ trace_sched_wakeup_new(p);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Share the timeslice between parent and child, thus the
|
|
|
|
+ * total amount of pending timeslices in the system doesn't change,
|
|
|
|
+ * resulting in more scheduling fairness. If it's negative, it won't
|
|
|
|
+ * matter since that's the same as being 0. rq->rq_deadline is only
|
|
|
|
+ * modified within schedule() so it is always equal to
|
|
|
|
+ * current->deadline.
|
|
|
|
+ */
|
|
|
|
+ account_task_cpu(rq, rq_curr);
|
|
|
|
+ p->last_ran = rq_curr->last_ran;
|
|
|
|
+ if (likely(rq_curr->policy != SCHED_FIFO)) {
|
|
|
|
+ rq_curr->time_slice /= 2;
|
|
|
|
+ if (rq_curr->time_slice < RESCHED_US) {
|
|
|
|
+ /*
|
|
|
|
+ * Forking task has run out of timeslice. Reschedule it and
|
|
|
|
+ * start its child with a new time slice and deadline. The
|
|
|
|
+ * child will end up running first because its deadline will
|
|
|
|
+ * be slightly earlier.
|
|
|
|
+ */
|
|
|
|
+ __set_tsk_resched(rq_curr);
|
|
|
|
+ time_slice_expired(p, new_rq);
|
|
|
|
+ if (suitable_idle_cpus(p))
|
|
|
|
+ resched_best_idle(p, task_cpu(p));
|
|
|
|
+ else if (unlikely(rq != new_rq))
|
|
|
|
+ try_preempt(p, new_rq);
|
|
|
|
+ } else {
|
|
|
|
+ p->time_slice = rq_curr->time_slice;
|
|
|
|
+ if (rq_curr == parent && rq == new_rq && !suitable_idle_cpus(p)) {
|
|
|
|
+ /*
|
|
|
|
+ * The VM isn't cloned, so we're in a good position to
|
|
|
|
+ * do child-runs-first in anticipation of an exec. This
|
|
|
|
+ * usually avoids a lot of COW overhead.
|
|
|
|
+ */
|
|
|
|
+ __set_tsk_resched(rq_curr);
|
|
|
|
+ } else {
|
|
|
|
+ /*
|
|
|
|
+ * Adjust the hrexpiry since rq_curr will keep
|
|
|
|
+ * running and its timeslice has been shortened.
|
|
|
|
+ */
|
|
|
|
+ hrexpiry_start(rq, US_TO_NS(rq_curr->time_slice));
|
|
|
|
+ try_preempt(p, new_rq);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ time_slice_expired(p, new_rq);
|
|
|
|
+ try_preempt(p, new_rq);
|
|
|
|
+ }
|
|
|
|
+ activate_task(new_rq, p, 0);
|
|
|
|
+ double_rq_unlock(rq, new_rq);
|
|
|
|
+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_PREEMPT_NOTIFIERS
|
|
|
|
+
|
|
|
|
+static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
|
|
|
|
+
|
|
|
|
+void preempt_notifier_inc(void)
|
|
|
|
+{
|
|
|
|
+ static_branch_inc(&preempt_notifier_key);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL_GPL(preempt_notifier_inc);
|
|
|
|
+
|
|
|
|
+void preempt_notifier_dec(void)
|
|
|
|
+{
|
|
|
|
+ static_branch_dec(&preempt_notifier_key);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL_GPL(preempt_notifier_dec);
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * preempt_notifier_register - tell me when current is being preempted & rescheduled
|
|
|
|
+ * @notifier: notifier struct to register
|
|
|
|
+ */
|
|
|
|
+void preempt_notifier_register(struct preempt_notifier *notifier)
|
|
|
|
+{
|
|
|
|
+ if (!static_branch_unlikely(&preempt_notifier_key))
|
|
|
|
+ WARN(1, "registering preempt_notifier while notifiers disabled\n");
|
|
|
|
+
|
|
|
|
+ hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL_GPL(preempt_notifier_register);
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * preempt_notifier_unregister - no longer interested in preemption notifications
|
|
|
|
+ * @notifier: notifier struct to unregister
|
|
|
|
+ *
|
|
|
|
+ * This is *not* safe to call from within a preemption notifier.
|
|
|
|
+ */
|
|
|
|
+void preempt_notifier_unregister(struct preempt_notifier *notifier)
|
|
|
|
+{
|
|
|
|
+ hlist_del(¬ifier->link);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
|
|
|
|
+
|
|
|
|
+static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
|
|
|
|
+{
|
|
|
|
+ struct preempt_notifier *notifier;
|
|
|
|
+
|
|
|
|
+ hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
|
|
|
|
+ notifier->ops->sched_in(notifier, raw_smp_processor_id());
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
|
|
|
|
+{
|
|
|
|
+ if (static_branch_unlikely(&preempt_notifier_key))
|
|
|
|
+ __fire_sched_in_preempt_notifiers(curr);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void
|
|
|
|
+__fire_sched_out_preempt_notifiers(struct task_struct *curr,
|
|
|
|
+ struct task_struct *next)
|
|
|
|
+{
|
|
|
|
+ struct preempt_notifier *notifier;
|
|
|
|
+
|
|
|
|
+ hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
|
|
|
|
+ notifier->ops->sched_out(notifier, next);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static __always_inline void
|
|
|
|
+fire_sched_out_preempt_notifiers(struct task_struct *curr,
|
|
|
|
+ struct task_struct *next)
|
|
|
|
+{
|
|
|
|
+ if (static_branch_unlikely(&preempt_notifier_key))
|
|
|
|
+ __fire_sched_out_preempt_notifiers(curr, next);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#else /* !CONFIG_PREEMPT_NOTIFIERS */
|
|
|
|
+
|
|
|
|
+static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void
|
|
|
|
+fire_sched_out_preempt_notifiers(struct task_struct *curr,
|
|
|
|
+ struct task_struct *next)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#endif /* CONFIG_PREEMPT_NOTIFIERS */
|
|
|
|
+
|
|
|
|
+static inline void prepare_task(struct task_struct *next)
|
|
|
|
+{
|
|
|
|
+ /*
|
|
|
|
+ * Claim the task as running, we do this before switching to it
|
|
|
|
+ * such that any running task will have this set.
|
|
|
|
+ */
|
|
|
|
+ next->on_cpu = 1;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void finish_task(struct task_struct *prev)
|
|
|
|
+{
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ /*
|
|
|
|
+ * This must be the very last reference to @prev from this CPU. After
|
|
|
|
+ * p->on_cpu is cleared, the task can be moved to a different CPU. We
|
|
|
|
+ * must ensure this doesn't happen until the switch is completely
|
|
|
|
+ * finished.
|
|
|
|
+ *
|
|
|
|
+ * In particular, the load of prev->state in finish_task_switch() must
|
|
|
|
+ * happen before this.
|
|
|
|
+ *
|
|
|
|
+ * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
|
|
|
|
+ */
|
|
|
|
+ smp_store_release(&prev->on_cpu, 0);
|
|
|
|
+#endif
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void
|
|
|
|
+prepare_lock_switch(struct rq *rq, struct task_struct *next)
|
|
|
|
+{
|
|
|
|
+ /*
|
|
|
|
+ * Since the runqueue lock will be released by the next
|
|
|
|
+ * task (which is an invalid locking op but in the case
|
|
|
|
+ * of the scheduler it's an obvious special-case), so we
|
|
|
|
+ * do an early lockdep release here:
|
|
|
|
+ */
|
|
|
|
+ spin_release(&rq->lock->dep_map, _THIS_IP_);
|
|
|
|
+#ifdef CONFIG_DEBUG_SPINLOCK
|
|
|
|
+ /* this is a valid case when another task releases the spinlock */
|
|
|
|
+ rq->lock->owner = next;
|
|
|
|
+#endif
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
|
|
|
|
+{
|
|
|
|
+ /*
|
|
|
|
+ * If we are tracking spinlock dependencies then we have to
|
|
|
|
+ * fix up the runqueue lock - which gets 'carried over' from
|
|
|
|
+ * prev into current:
|
|
|
|
+ */
|
|
|
|
+ spin_acquire(&rq->lock->dep_map, 0, 0, _THIS_IP_);
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ /*
|
|
|
|
+ * If prev was marked as migrating to another CPU in return_task, drop
|
|
|
|
+ * the local runqueue lock but leave interrupts disabled and grab the
|
|
|
|
+ * remote lock we're migrating it to before enabling them.
|
|
|
|
+ */
|
|
|
|
+ if (unlikely(task_on_rq_migrating(prev))) {
|
|
|
|
+ sched_info_dequeued(rq, prev);
|
|
|
|
+ /*
|
|
|
|
+ * We move the ownership of prev to the new cpu now. ttwu can't
|
|
|
|
+ * activate prev to the wrong cpu since it has to grab this
|
|
|
|
+ * runqueue in ttwu_remote.
|
|
|
|
+ */
|
|
|
|
+#ifdef CONFIG_THREAD_INFO_IN_TASK
|
|
|
|
+ prev->cpu = prev->wake_cpu;
|
|
|
|
+#else
|
|
|
|
+ task_thread_info(prev)->cpu = prev->wake_cpu;
|
|
|
|
+#endif
|
|
|
|
+ raw_spin_unlock(rq->lock);
|
|
|
|
+
|
|
|
|
+ raw_spin_lock(&prev->pi_lock);
|
|
|
|
+ rq = __task_rq_lock(prev, NULL);
|
|
|
|
+ /* Check that someone else hasn't already queued prev */
|
|
|
|
+ if (likely(!task_queued(prev))) {
|
|
|
|
+ enqueue_task(rq, prev, 0);
|
|
|
|
+ prev->on_rq = TASK_ON_RQ_QUEUED;
|
|
|
|
+ /* Wake up the CPU if it's not already running */
|
|
|
|
+ resched_if_idle(rq);
|
|
|
|
+ }
|
|
|
|
+ raw_spin_unlock(&prev->pi_lock);
|
|
|
|
+ }
|
|
|
|
+#endif
|
|
|
|
+ rq_unlock(rq);
|
|
|
|
+ local_irq_enable();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifndef prepare_arch_switch
|
|
|
|
+# define prepare_arch_switch(next) do { } while (0)
|
|
|
|
+#endif
|
|
|
|
+#ifndef finish_arch_switch
|
|
|
|
+# define finish_arch_switch(prev) do { } while (0)
|
|
|
|
+#endif
|
|
|
|
+#ifndef finish_arch_post_lock_switch
|
|
|
|
+# define finish_arch_post_lock_switch() do { } while (0)
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * prepare_task_switch - prepare to switch tasks
|
|
|
|
+ * @rq: the runqueue preparing to switch
|
|
|
|
+ * @next: the task we are going to switch to.
|
|
|
|
+ *
|
|
|
|
+ * This is called with the rq lock held and interrupts off. It must
|
|
|
|
+ * be paired with a subsequent finish_task_switch after the context
|
|
|
|
+ * switch.
|
|
|
|
+ *
|
|
|
|
+ * prepare_task_switch sets up locking and calls architecture specific
|
|
|
|
+ * hooks.
|
|
|
|
+ */
|
|
|
|
+static inline void
|
|
|
|
+prepare_task_switch(struct rq *rq, struct task_struct *prev,
|
|
|
|
+ struct task_struct *next)
|
|
|
|
+{
|
|
|
|
+ kcov_prepare_switch(prev);
|
|
|
|
+ sched_info_switch(rq, prev, next);
|
|
|
|
+ perf_event_task_sched_out(prev, next);
|
|
|
|
+ rseq_preempt(prev);
|
|
|
|
+ fire_sched_out_preempt_notifiers(prev, next);
|
|
|
|
+ prepare_task(next);
|
|
|
|
+ prepare_arch_switch(next);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * finish_task_switch - clean up after a task-switch
|
|
|
|
+ * @rq: runqueue associated with task-switch
|
|
|
|
+ * @prev: the thread we just switched away from.
|
|
|
|
+ *
|
|
|
|
+ * finish_task_switch must be called after the context switch, paired
|
|
|
|
+ * with a prepare_task_switch call before the context switch.
|
|
|
|
+ * finish_task_switch will reconcile locking set up by prepare_task_switch,
|
|
|
|
+ * and do any other architecture-specific cleanup actions.
|
|
|
|
+ *
|
|
|
|
+ * Note that we may have delayed dropping an mm in context_switch(). If
|
|
|
|
+ * so, we finish that here outside of the runqueue lock. (Doing it
|
|
|
|
+ * with the lock held can cause deadlocks; see schedule() for
|
|
|
|
+ * details.)
|
|
|
|
+ *
|
|
|
|
+ * The context switch have flipped the stack from under us and restored the
|
|
|
|
+ * local variables which were saved when this task called schedule() in the
|
|
|
|
+ * past. prev == current is still correct but we need to recalculate this_rq
|
|
|
|
+ * because prev may have moved to another CPU.
|
|
|
|
+ */
|
|
|
|
+static void finish_task_switch(struct task_struct *prev)
|
|
|
|
+ __releases(rq->lock)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq = this_rq();
|
|
|
|
+ struct mm_struct *mm = rq->prev_mm;
|
|
|
|
+ long prev_state;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * The previous task will have left us with a preempt_count of 2
|
|
|
|
+ * because it left us after:
|
|
|
|
+ *
|
|
|
|
+ * schedule()
|
|
|
|
+ * preempt_disable(); // 1
|
|
|
|
+ * __schedule()
|
|
|
|
+ * raw_spin_lock_irq(rq->lock) // 2
|
|
|
|
+ *
|
|
|
|
+ * Also, see FORK_PREEMPT_COUNT.
|
|
|
|
+ */
|
|
|
|
+ if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
|
|
|
|
+ "corrupted preempt_count: %s/%d/0x%x\n",
|
|
|
|
+ current->comm, current->pid, preempt_count()))
|
|
|
|
+ preempt_count_set(FORK_PREEMPT_COUNT);
|
|
|
|
+
|
|
|
|
+ rq->prev_mm = NULL;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * A task struct has one reference for the use as "current".
|
|
|
|
+ * If a task dies, then it sets TASK_DEAD in tsk->state and calls
|
|
|
|
+ * schedule one last time. The schedule call will never return, and
|
|
|
|
+ * the scheduled task must drop that reference.
|
|
|
|
+ *
|
|
|
|
+ * We must observe prev->state before clearing prev->on_cpu (in
|
|
|
|
+ * finish_task), otherwise a concurrent wakeup can get prev
|
|
|
|
+ * running on another CPU and we could rave with its RUNNING -> DEAD
|
|
|
|
+ * transition, resulting in a double drop.
|
|
|
|
+ */
|
|
|
|
+ prev_state = prev->state;
|
|
|
|
+ vtime_task_switch(prev);
|
|
|
|
+ perf_event_task_sched_in(prev, current);
|
|
|
|
+ finish_task(prev);
|
|
|
|
+ finish_lock_switch(rq, prev);
|
|
|
|
+ finish_arch_post_lock_switch();
|
|
|
|
+ kcov_finish_switch(current);
|
|
|
|
+
|
|
|
|
+ fire_sched_in_preempt_notifiers(current);
|
|
|
|
+ /*
|
|
|
|
+ * When switching through a kernel thread, the loop in
|
|
|
|
+ * membarrier_{private,global}_expedited() may have observed that
|
|
|
|
+ * kernel thread and not issued an IPI. It is therefore possible to
|
|
|
|
+ * schedule between user->kernel->user threads without passing though
|
|
|
|
+ * switch_mm(). Membarrier requires a barrier after storing to
|
|
|
|
+ * rq->curr, before returning to userspace, so provide them here:
|
|
|
|
+ *
|
|
|
|
+ * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
|
|
|
|
+ * provided by mmdrop(),
|
|
|
|
+ * - a sync_core for SYNC_CORE.
|
|
|
|
+ */
|
|
|
|
+ if (mm) {
|
|
|
|
+ membarrier_mm_sync_core_before_usermode(mm);
|
|
|
|
+ mmdrop(mm);
|
|
|
|
+ }
|
|
|
|
+ if (unlikely(prev_state == TASK_DEAD)) {
|
|
|
|
+ /*
|
|
|
|
+ * Remove function-return probe instances associated with this
|
|
|
|
+ * task and put them back on the free list.
|
|
|
|
+ */
|
|
|
|
+ kprobe_flush_task(prev);
|
|
|
|
+
|
|
|
|
+ /* Task is done with its stack. */
|
|
|
|
+ put_task_stack(prev);
|
|
|
|
+
|
|
|
|
+ put_task_struct_rcu_user(prev);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * schedule_tail - first thing a freshly forked thread must call.
|
|
|
|
+ * @prev: the thread we just switched away from.
|
|
|
|
+ */
|
|
|
|
+asmlinkage __visible void schedule_tail(struct task_struct *prev)
|
|
|
|
+{
|
|
|
|
+ /*
|
|
|
|
+ * New tasks start with FORK_PREEMPT_COUNT, see there and
|
|
|
|
+ * finish_task_switch() for details.
|
|
|
|
+ *
|
|
|
|
+ * finish_task_switch() will drop rq->lock() and lower preempt_count
|
|
|
|
+ * and the preempt_enable() will end up enabling preemption (on
|
|
|
|
+ * PREEMPT_COUNT kernels).
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+ finish_task_switch(prev);
|
|
|
|
+ preempt_enable();
|
|
|
|
+
|
|
|
|
+ if (current->set_child_tid)
|
|
|
|
+ put_user(task_pid_vnr(current), current->set_child_tid);
|
|
|
|
+
|
|
|
|
+ calculate_sigpending();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * context_switch - switch to the new MM and the new thread's register state.
|
|
|
|
+ */
|
|
|
|
+static __always_inline void
|
|
|
|
+context_switch(struct rq *rq, struct task_struct *prev,
|
|
|
|
+ struct task_struct *next)
|
|
|
|
+{
|
|
|
|
+ prepare_task_switch(rq, prev, next);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * For paravirt, this is coupled with an exit in switch_to to
|
|
|
|
+ * combine the page table reload and the switch backend into
|
|
|
|
+ * one hypercall.
|
|
|
|
+ */
|
|
|
|
+ arch_start_context_switch(prev);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * kernel -> kernel lazy + transfer active
|
|
|
|
+ * user -> kernel lazy + mmgrab() active
|
|
|
|
+ *
|
|
|
|
+ * kernel -> user switch + mmdrop() active
|
|
|
|
+ * user -> user switch
|
|
|
|
+ */
|
|
|
|
+ if (!next->mm) { // to kernel
|
|
|
|
+ enter_lazy_tlb(prev->active_mm, next);
|
|
|
|
+
|
|
|
|
+ next->active_mm = prev->active_mm;
|
|
|
|
+ if (prev->mm) // from user
|
|
|
|
+ mmgrab(prev->active_mm);
|
|
|
|
+ else
|
|
|
|
+ prev->active_mm = NULL;
|
|
|
|
+ } else { // to user
|
|
|
|
+ membarrier_switch_mm(rq, prev->active_mm, next->mm);
|
|
|
|
+ /*
|
|
|
|
+ * sys_membarrier() requires an smp_mb() between setting
|
|
|
|
+ * rq->curr / membarrier_switch_mm() and returning to userspace.
|
|
|
|
+ *
|
|
|
|
+ * The below provides this either through switch_mm(), or in
|
|
|
|
+ * case 'prev->active_mm == next->mm' through
|
|
|
|
+ * finish_task_switch()'s mmdrop().
|
|
|
|
+ */
|
|
|
|
+ switch_mm_irqs_off(prev->active_mm, next->mm, next);
|
|
|
|
+
|
|
|
|
+ if (!prev->mm) { // from kernel
|
|
|
|
+ /* will mmdrop() in finish_task_switch(). */
|
|
|
|
+ rq->prev_mm = prev->active_mm;
|
|
|
|
+ prev->active_mm = NULL;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ prepare_lock_switch(rq, next);
|
|
|
|
+
|
|
|
|
+ /* Here we just switch the register state and the stack. */
|
|
|
|
+ switch_to(prev, next, prev);
|
|
|
|
+ barrier();
|
|
|
|
+
|
|
|
|
+ finish_task_switch(prev);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * nr_running, nr_uninterruptible and nr_context_switches:
|
|
|
|
+ *
|
|
|
|
+ * externally visible scheduler statistics: current number of runnable
|
|
|
|
+ * threads, total number of context switches performed since bootup.
|
|
|
|
+ */
|
|
|
|
+unsigned long nr_running(void)
|
|
|
|
+{
|
|
|
|
+ unsigned long i, sum = 0;
|
|
|
|
+
|
|
|
|
+ for_each_online_cpu(i)
|
|
|
|
+ sum += cpu_rq(i)->nr_running;
|
|
|
|
+
|
|
|
|
+ return sum;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static unsigned long nr_uninterruptible(void)
|
|
|
|
+{
|
|
|
|
+ unsigned long i, sum = 0;
|
|
|
|
+
|
|
|
|
+ for_each_online_cpu(i)
|
|
|
|
+ sum += cpu_rq(i)->nr_uninterruptible;
|
|
|
|
+
|
|
|
|
+ return sum;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Check if only the current task is running on the CPU.
|
|
|
|
+ *
|
|
|
|
+ * Caution: this function does not check that the caller has disabled
|
|
|
|
+ * preemption, thus the result might have a time-of-check-to-time-of-use
|
|
|
|
+ * race. The caller is responsible to use it correctly, for example:
|
|
|
|
+ *
|
|
|
|
+ * - from a non-preemptible section (of course)
|
|
|
|
+ *
|
|
|
|
+ * - from a thread that is bound to a single CPU
|
|
|
|
+ *
|
|
|
|
+ * - in a loop with very short iterations (e.g. a polling loop)
|
|
|
|
+ */
|
|
|
|
+bool single_task_running(void)
|
|
|
|
+{
|
|
|
|
+ if (rq_load(raw_rq()) == 1)
|
|
|
|
+ return true;
|
|
|
|
+ else
|
|
|
|
+ return false;
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL(single_task_running);
|
|
|
|
+
|
|
|
|
+unsigned long long nr_context_switches(void)
|
|
|
|
+{
|
|
|
|
+ int cpu;
|
|
|
|
+ unsigned long long sum = 0;
|
|
|
|
+
|
|
|
|
+ for_each_possible_cpu(cpu)
|
|
|
|
+ sum += cpu_rq(cpu)->nr_switches;
|
|
|
|
+
|
|
|
|
+ return sum;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Consumers of these two interfaces, like for example the cpufreq menu
|
|
|
|
+ * governor are using nonsensical data. Boosting frequency for a CPU that has
|
|
|
|
+ * IO-wait which might not even end up running the task when it does become
|
|
|
|
+ * runnable.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+unsigned long nr_iowait_cpu(int cpu)
|
|
|
|
+{
|
|
|
|
+ return atomic_read(&cpu_rq(cpu)->nr_iowait);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * IO-wait accounting, and how its mostly bollocks (on SMP).
|
|
|
|
+ *
|
|
|
|
+ * The idea behind IO-wait account is to account the idle time that we could
|
|
|
|
+ * have spend running if it were not for IO. That is, if we were to improve the
|
|
|
|
+ * storage performance, we'd have a proportional reduction in IO-wait time.
|
|
|
|
+ *
|
|
|
|
+ * This all works nicely on UP, where, when a task blocks on IO, we account
|
|
|
|
+ * idle time as IO-wait, because if the storage were faster, it could've been
|
|
|
|
+ * running and we'd not be idle.
|
|
|
|
+ *
|
|
|
|
+ * This has been extended to SMP, by doing the same for each CPU. This however
|
|
|
|
+ * is broken.
|
|
|
|
+ *
|
|
|
|
+ * Imagine for instance the case where two tasks block on one CPU, only the one
|
|
|
|
+ * CPU will have IO-wait accounted, while the other has regular idle. Even
|
|
|
|
+ * though, if the storage were faster, both could've ran at the same time,
|
|
|
|
+ * utilising both CPUs.
|
|
|
|
+ *
|
|
|
|
+ * This means, that when looking globally, the current IO-wait accounting on
|
|
|
|
+ * SMP is a lower bound, by reason of under accounting.
|
|
|
|
+ *
|
|
|
|
+ * Worse, since the numbers are provided per CPU, they are sometimes
|
|
|
|
+ * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
|
|
|
|
+ * associated with any one particular CPU, it can wake to another CPU than it
|
|
|
|
+ * blocked on. This means the per CPU IO-wait number is meaningless.
|
|
|
|
+ *
|
|
|
|
+ * Task CPU affinities can make all that even more 'interesting'.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+unsigned long nr_iowait(void)
|
|
|
|
+{
|
|
|
|
+ unsigned long cpu, sum = 0;
|
|
|
|
+
|
|
|
|
+ for_each_possible_cpu(cpu)
|
|
|
|
+ sum += nr_iowait_cpu(cpu);
|
|
|
|
+
|
|
|
|
+ return sum;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+unsigned long nr_active(void)
|
|
|
|
+{
|
|
|
|
+ return nr_running() + nr_uninterruptible();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* Variables and functions for calc_load */
|
|
|
|
+static unsigned long calc_load_update;
|
|
|
|
+unsigned long avenrun[3];
|
|
|
|
+EXPORT_SYMBOL(avenrun);
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * get_avenrun - get the load average array
|
|
|
|
+ * @loads: pointer to dest load array
|
|
|
|
+ * @offset: offset to add
|
|
|
|
+ * @shift: shift count to shift the result left
|
|
|
|
+ *
|
|
|
|
+ * These values are estimates at best, so no need for locking.
|
|
|
|
+ */
|
|
|
|
+void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
|
|
|
|
+{
|
|
|
|
+ loads[0] = (avenrun[0] + offset) << shift;
|
|
|
|
+ loads[1] = (avenrun[1] + offset) << shift;
|
|
|
|
+ loads[2] = (avenrun[2] + offset) << shift;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * calc_load - update the avenrun load estimates every LOAD_FREQ seconds.
|
|
|
|
+ */
|
|
|
|
+void calc_global_load(void)
|
|
|
|
+{
|
|
|
|
+ long active;
|
|
|
|
+
|
|
|
|
+ if (time_before(jiffies, READ_ONCE(calc_load_update)))
|
|
|
|
+ return;
|
|
|
|
+ active = nr_active() * FIXED_1;
|
|
|
|
+
|
|
|
|
+ avenrun[0] = calc_load(avenrun[0], EXP_1, active);
|
|
|
|
+ avenrun[1] = calc_load(avenrun[1], EXP_5, active);
|
|
|
|
+ avenrun[2] = calc_load(avenrun[2], EXP_15, active);
|
|
|
|
+
|
|
|
|
+ calc_load_update = jiffies + LOAD_FREQ;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * fixed_power_int - compute: x^n, in O(log n) time
|
|
|
|
+ *
|
|
|
|
+ * @x: base of the power
|
|
|
|
+ * @frac_bits: fractional bits of @x
|
|
|
|
+ * @n: power to raise @x to.
|
|
|
|
+ *
|
|
|
|
+ * By exploiting the relation between the definition of the natural power
|
|
|
|
+ * function: x^n := x*x*...*x (x multiplied by itself for n times), and
|
|
|
|
+ * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
|
|
|
|
+ * (where: n_i \elem {0, 1}, the binary vector representing n),
|
|
|
|
+ * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
|
|
|
|
+ * of course trivially computable in O(log_2 n), the length of our binary
|
|
|
|
+ * vector.
|
|
|
|
+ */
|
|
|
|
+static unsigned long
|
|
|
|
+fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
|
|
|
|
+{
|
|
|
|
+ unsigned long result = 1UL << frac_bits;
|
|
|
|
+
|
|
|
|
+ if (n) {
|
|
|
|
+ for (;;) {
|
|
|
|
+ if (n & 1) {
|
|
|
|
+ result *= x;
|
|
|
|
+ result += 1UL << (frac_bits - 1);
|
|
|
|
+ result >>= frac_bits;
|
|
|
|
+ }
|
|
|
|
+ n >>= 1;
|
|
|
|
+ if (!n)
|
|
|
|
+ break;
|
|
|
|
+ x *= x;
|
|
|
|
+ x += 1UL << (frac_bits - 1);
|
|
|
|
+ x >>= frac_bits;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return result;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * a1 = a0 * e + a * (1 - e)
|
|
|
|
+ *
|
|
|
|
+ * a2 = a1 * e + a * (1 - e)
|
|
|
|
+ * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
|
|
|
|
+ * = a0 * e^2 + a * (1 - e) * (1 + e)
|
|
|
|
+ *
|
|
|
|
+ * a3 = a2 * e + a * (1 - e)
|
|
|
|
+ * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
|
|
|
|
+ * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
|
|
|
|
+ *
|
|
|
|
+ * ...
|
|
|
|
+ *
|
|
|
|
+ * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
|
|
|
|
+ * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
|
|
|
|
+ * = a0 * e^n + a * (1 - e^n)
|
|
|
|
+ *
|
|
|
|
+ * [1] application of the geometric series:
|
|
|
|
+ *
|
|
|
|
+ * n 1 - x^(n+1)
|
|
|
|
+ * S_n := \Sum x^i = -------------
|
|
|
|
+ * i=0 1 - x
|
|
|
|
+ */
|
|
|
|
+unsigned long
|
|
|
|
+calc_load_n(unsigned long load, unsigned long exp,
|
|
|
|
+ unsigned long active, unsigned int n)
|
|
|
|
+{
|
|
|
|
+ return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+DEFINE_PER_CPU(struct kernel_stat, kstat);
|
|
|
|
+DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
|
|
|
|
+
|
|
|
|
+EXPORT_PER_CPU_SYMBOL(kstat);
|
|
|
|
+EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_PARAVIRT
|
|
|
|
+static inline u64 steal_ticks(u64 steal)
|
|
|
|
+{
|
|
|
|
+ if (unlikely(steal > NSEC_PER_SEC))
|
|
|
|
+ return div_u64(steal, TICK_NSEC);
|
|
|
|
+
|
|
|
|
+ return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifndef nsecs_to_cputime
|
|
|
|
+# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * On each tick, add the number of nanoseconds to the unbanked variables and
|
|
|
|
+ * once one tick's worth has accumulated, account it allowing for accurate
|
|
|
|
+ * sub-tick accounting and totals. Use the TICK_APPROX_NS to match the way we
|
|
|
|
+ * deduct nanoseconds.
|
|
|
|
+ */
|
|
|
|
+static void pc_idle_time(struct rq *rq, struct task_struct *idle, unsigned long ns)
|
|
|
|
+{
|
|
|
|
+ u64 *cpustat = kcpustat_this_cpu->cpustat;
|
|
|
|
+ unsigned long ticks;
|
|
|
|
+
|
|
|
|
+ if (atomic_read(&rq->nr_iowait) > 0) {
|
|
|
|
+ rq->iowait_ns += ns;
|
|
|
|
+ if (rq->iowait_ns >= JIFFY_NS) {
|
|
|
|
+ ticks = NS_TO_JIFFIES(rq->iowait_ns);
|
|
|
|
+ cpustat[CPUTIME_IOWAIT] += (__force u64)TICK_APPROX_NS * ticks;
|
|
|
|
+ rq->iowait_ns %= JIFFY_NS;
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ rq->idle_ns += ns;
|
|
|
|
+ if (rq->idle_ns >= JIFFY_NS) {
|
|
|
|
+ ticks = NS_TO_JIFFIES(rq->idle_ns);
|
|
|
|
+ cpustat[CPUTIME_IDLE] += (__force u64)TICK_APPROX_NS * ticks;
|
|
|
|
+ rq->idle_ns %= JIFFY_NS;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ acct_update_integrals(idle);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void pc_system_time(struct rq *rq, struct task_struct *p,
|
|
|
|
+ int hardirq_offset, unsigned long ns)
|
|
|
|
+{
|
|
|
|
+ u64 *cpustat = kcpustat_this_cpu->cpustat;
|
|
|
|
+ unsigned long ticks;
|
|
|
|
+
|
|
|
|
+ p->stime_ns += ns;
|
|
|
|
+ if (p->stime_ns >= JIFFY_NS) {
|
|
|
|
+ ticks = NS_TO_JIFFIES(p->stime_ns);
|
|
|
|
+ p->stime_ns %= JIFFY_NS;
|
|
|
|
+ p->stime += (__force u64)TICK_APPROX_NS * ticks;
|
|
|
|
+ account_group_system_time(p, TICK_APPROX_NS * ticks);
|
|
|
|
+ }
|
|
|
|
+ p->sched_time += ns;
|
|
|
|
+ account_group_exec_runtime(p, ns);
|
|
|
|
+
|
|
|
|
+ if (hardirq_count() - hardirq_offset) {
|
|
|
|
+ rq->irq_ns += ns;
|
|
|
|
+ if (rq->irq_ns >= JIFFY_NS) {
|
|
|
|
+ ticks = NS_TO_JIFFIES(rq->irq_ns);
|
|
|
|
+ cpustat[CPUTIME_IRQ] += (__force u64)TICK_APPROX_NS * ticks;
|
|
|
|
+ rq->irq_ns %= JIFFY_NS;
|
|
|
|
+ }
|
|
|
|
+ } else if (in_serving_softirq()) {
|
|
|
|
+ rq->softirq_ns += ns;
|
|
|
|
+ if (rq->softirq_ns >= JIFFY_NS) {
|
|
|
|
+ ticks = NS_TO_JIFFIES(rq->softirq_ns);
|
|
|
|
+ cpustat[CPUTIME_SOFTIRQ] += (__force u64)TICK_APPROX_NS * ticks;
|
|
|
|
+ rq->softirq_ns %= JIFFY_NS;
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ rq->system_ns += ns;
|
|
|
|
+ if (rq->system_ns >= JIFFY_NS) {
|
|
|
|
+ ticks = NS_TO_JIFFIES(rq->system_ns);
|
|
|
|
+ cpustat[CPUTIME_SYSTEM] += (__force u64)TICK_APPROX_NS * ticks;
|
|
|
|
+ rq->system_ns %= JIFFY_NS;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ acct_update_integrals(p);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void pc_user_time(struct rq *rq, struct task_struct *p, unsigned long ns)
|
|
|
|
+{
|
|
|
|
+ u64 *cpustat = kcpustat_this_cpu->cpustat;
|
|
|
|
+ unsigned long ticks;
|
|
|
|
+
|
|
|
|
+ p->utime_ns += ns;
|
|
|
|
+ if (p->utime_ns >= JIFFY_NS) {
|
|
|
|
+ ticks = NS_TO_JIFFIES(p->utime_ns);
|
|
|
|
+ p->utime_ns %= JIFFY_NS;
|
|
|
|
+ p->utime += (__force u64)TICK_APPROX_NS * ticks;
|
|
|
|
+ account_group_user_time(p, TICK_APPROX_NS * ticks);
|
|
|
|
+ }
|
|
|
|
+ p->sched_time += ns;
|
|
|
|
+ account_group_exec_runtime(p, ns);
|
|
|
|
+
|
|
|
|
+ if (this_cpu_ksoftirqd() == p) {
|
|
|
|
+ /*
|
|
|
|
+ * ksoftirqd time do not get accounted in cpu_softirq_time.
|
|
|
|
+ * So, we have to handle it separately here.
|
|
|
|
+ */
|
|
|
|
+ rq->softirq_ns += ns;
|
|
|
|
+ if (rq->softirq_ns >= JIFFY_NS) {
|
|
|
|
+ ticks = NS_TO_JIFFIES(rq->softirq_ns);
|
|
|
|
+ cpustat[CPUTIME_SOFTIRQ] += (__force u64)TICK_APPROX_NS * ticks;
|
|
|
|
+ rq->softirq_ns %= JIFFY_NS;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (task_nice(p) > 0 || idleprio_task(p)) {
|
|
|
|
+ rq->nice_ns += ns;
|
|
|
|
+ if (rq->nice_ns >= JIFFY_NS) {
|
|
|
|
+ ticks = NS_TO_JIFFIES(rq->nice_ns);
|
|
|
|
+ cpustat[CPUTIME_NICE] += (__force u64)TICK_APPROX_NS * ticks;
|
|
|
|
+ rq->nice_ns %= JIFFY_NS;
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ rq->user_ns += ns;
|
|
|
|
+ if (rq->user_ns >= JIFFY_NS) {
|
|
|
|
+ ticks = NS_TO_JIFFIES(rq->user_ns);
|
|
|
|
+ cpustat[CPUTIME_USER] += (__force u64)TICK_APPROX_NS * ticks;
|
|
|
|
+ rq->user_ns %= JIFFY_NS;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ acct_update_integrals(p);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * This is called on clock ticks.
|
|
|
|
+ * Bank in p->sched_time the ns elapsed since the last tick or switch.
|
|
|
|
+ * CPU scheduler quota accounting is also performed here in microseconds.
|
|
|
|
+ */
|
|
|
|
+static void update_cpu_clock_tick(struct rq *rq, struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ s64 account_ns = rq->niffies - p->last_ran;
|
|
|
|
+ struct task_struct *idle = rq->idle;
|
|
|
|
+
|
|
|
|
+ /* Accurate tick timekeeping */
|
|
|
|
+ if (user_mode(get_irq_regs()))
|
|
|
|
+ pc_user_time(rq, p, account_ns);
|
|
|
|
+ else if (p != idle || (irq_count() != HARDIRQ_OFFSET)) {
|
|
|
|
+ pc_system_time(rq, p, HARDIRQ_OFFSET, account_ns);
|
|
|
|
+ } else
|
|
|
|
+ pc_idle_time(rq, idle, account_ns);
|
|
|
|
+
|
|
|
|
+ /* time_slice accounting is done in usecs to avoid overflow on 32bit */
|
|
|
|
+ if (p->policy != SCHED_FIFO && p != idle)
|
|
|
|
+ p->time_slice -= NS_TO_US(account_ns);
|
|
|
|
+
|
|
|
|
+ p->last_ran = rq->niffies;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * This is called on context switches.
|
|
|
|
+ * Bank in p->sched_time the ns elapsed since the last tick or switch.
|
|
|
|
+ * CPU scheduler quota accounting is also performed here in microseconds.
|
|
|
|
+ */
|
|
|
|
+static void update_cpu_clock_switch(struct rq *rq, struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ s64 account_ns = rq->niffies - p->last_ran;
|
|
|
|
+ struct task_struct *idle = rq->idle;
|
|
|
|
+
|
|
|
|
+ /* Accurate subtick timekeeping */
|
|
|
|
+ if (p != idle)
|
|
|
|
+ pc_user_time(rq, p, account_ns);
|
|
|
|
+ else
|
|
|
|
+ pc_idle_time(rq, idle, account_ns);
|
|
|
|
+
|
|
|
|
+ /* time_slice accounting is done in usecs to avoid overflow on 32bit */
|
|
|
|
+ if (p->policy != SCHED_FIFO && p != idle)
|
|
|
|
+ p->time_slice -= NS_TO_US(account_ns);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Return any ns on the sched_clock that have not yet been accounted in
|
|
|
|
+ * @p in case that task is currently running.
|
|
|
|
+ *
|
|
|
|
+ * Called with task_rq_lock(p) held.
|
|
|
|
+ */
|
|
|
|
+static inline u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ u64 ns = 0;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Must be ->curr _and_ ->on_rq. If dequeued, we would
|
|
|
|
+ * project cycles that may never be accounted to this
|
|
|
|
+ * thread, breaking clock_gettime().
|
|
|
|
+ */
|
|
|
|
+ if (p == rq->curr && task_on_rq_queued(p)) {
|
|
|
|
+ update_clocks(rq);
|
|
|
|
+ ns = rq->niffies - p->last_ran;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return ns;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Return accounted runtime for the task.
|
|
|
|
+ * Return separately the current's pending runtime that have not been
|
|
|
|
+ * accounted yet.
|
|
|
|
+ */
|
|
|
|
+unsigned long long task_sched_runtime(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ struct rq_flags rf;
|
|
|
|
+ struct rq *rq;
|
|
|
|
+ u64 ns;
|
|
|
|
+
|
|
|
|
+#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
|
|
|
|
+ /*
|
|
|
|
+ * 64-bit doesn't need locks to atomically read a 64-bit value.
|
|
|
|
+ * So we have a optimisation chance when the task's delta_exec is 0.
|
|
|
|
+ * Reading ->on_cpu is racy, but this is ok.
|
|
|
|
+ *
|
|
|
|
+ * If we race with it leaving CPU, we'll take a lock. So we're correct.
|
|
|
|
+ * If we race with it entering CPU, unaccounted time is 0. This is
|
|
|
|
+ * indistinguishable from the read occurring a few cycles earlier.
|
|
|
|
+ * If we see ->on_cpu without ->on_rq, the task is leaving, and has
|
|
|
|
+ * been accounted, so we're correct here as well.
|
|
|
|
+ */
|
|
|
|
+ if (!p->on_cpu || !task_on_rq_queued(p))
|
|
|
|
+ return tsk_seruntime(p);
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ rq = task_rq_lock(p, &rf);
|
|
|
|
+ ns = p->sched_time + do_task_delta_exec(p, rq);
|
|
|
|
+ task_rq_unlock(rq, p, &rf);
|
|
|
|
+
|
|
|
|
+ return ns;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Functions to test for when SCHED_ISO tasks have used their allocated
|
|
|
|
+ * quota as real time scheduling and convert them back to SCHED_NORMAL. All
|
|
|
|
+ * data is modified only by the local runqueue during scheduler_tick with
|
|
|
|
+ * interrupts disabled.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Test if SCHED_ISO tasks have run longer than their alloted period as RT
|
|
|
|
+ * tasks and set the refractory flag if necessary. There is 10% hysteresis
|
|
|
|
+ * for unsetting the flag. 115/128 is ~90/100 as a fast shift instead of a
|
|
|
|
+ * slow division.
|
|
|
|
+ */
|
|
|
|
+static inline void iso_tick(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ rq->iso_ticks = rq->iso_ticks * (ISO_PERIOD - 1) / ISO_PERIOD;
|
|
|
|
+ rq->iso_ticks += 100;
|
|
|
|
+ if (rq->iso_ticks > ISO_PERIOD * sched_iso_cpu) {
|
|
|
|
+ rq->iso_refractory = true;
|
|
|
|
+ if (unlikely(rq->iso_ticks > ISO_PERIOD * 100))
|
|
|
|
+ rq->iso_ticks = ISO_PERIOD * 100;
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* No SCHED_ISO task was running so decrease rq->iso_ticks */
|
|
|
|
+static inline void no_iso_tick(struct rq *rq, int ticks)
|
|
|
|
+{
|
|
|
|
+ if (rq->iso_ticks > 0 || rq->iso_refractory) {
|
|
|
|
+ rq->iso_ticks = rq->iso_ticks * (ISO_PERIOD - ticks) / ISO_PERIOD;
|
|
|
|
+ if (rq->iso_ticks < ISO_PERIOD * (sched_iso_cpu * 115 / 128)) {
|
|
|
|
+ rq->iso_refractory = false;
|
|
|
|
+ if (unlikely(rq->iso_ticks < 0))
|
|
|
|
+ rq->iso_ticks = 0;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* This manages tasks that have run out of timeslice during a scheduler_tick */
|
|
|
|
+static void task_running_tick(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ struct task_struct *p = rq->curr;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * If a SCHED_ISO task is running we increment the iso_ticks. In
|
|
|
|
+ * order to prevent SCHED_ISO tasks from causing starvation in the
|
|
|
|
+ * presence of true RT tasks we account those as iso_ticks as well.
|
|
|
|
+ */
|
|
|
|
+ if (rt_task(p) || task_running_iso(p))
|
|
|
|
+ iso_tick(rq);
|
|
|
|
+ else
|
|
|
|
+ no_iso_tick(rq, 1);
|
|
|
|
+
|
|
|
|
+ /* SCHED_FIFO tasks never run out of timeslice. */
|
|
|
|
+ if (p->policy == SCHED_FIFO)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ if (iso_task(p)) {
|
|
|
|
+ if (task_running_iso(p)) {
|
|
|
|
+ if (rq->iso_refractory) {
|
|
|
|
+ /*
|
|
|
|
+ * SCHED_ISO task is running as RT and limit
|
|
|
|
+ * has been hit. Force it to reschedule as
|
|
|
|
+ * SCHED_NORMAL by zeroing its time_slice
|
|
|
|
+ */
|
|
|
|
+ p->time_slice = 0;
|
|
|
|
+ }
|
|
|
|
+ } else if (!rq->iso_refractory) {
|
|
|
|
+ /* Can now run again ISO. Reschedule to pick up prio */
|
|
|
|
+ goto out_resched;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Tasks that were scheduled in the first half of a tick are not
|
|
|
|
+ * allowed to run into the 2nd half of the next tick if they will
|
|
|
|
+ * run out of time slice in the interim. Otherwise, if they have
|
|
|
|
+ * less than RESCHED_US μs of time slice left they will be rescheduled.
|
|
|
|
+ * Dither is used as a backup for when hrexpiry is disabled or high res
|
|
|
|
+ * timers not configured in.
|
|
|
|
+ */
|
|
|
|
+ if (p->time_slice - rq->dither >= RESCHED_US)
|
|
|
|
+ return;
|
|
|
|
+out_resched:
|
|
|
|
+ rq_lock(rq);
|
|
|
|
+ __set_tsk_resched(p);
|
|
|
|
+ rq_unlock(rq);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void task_tick(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ if (!rq_idle(rq))
|
|
|
|
+ task_running_tick(rq);
|
|
|
|
+ else if (rq->last_jiffy > rq->last_scheduler_tick)
|
|
|
|
+ no_iso_tick(rq, rq->last_jiffy - rq->last_scheduler_tick);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_NO_HZ_FULL
|
|
|
|
+/*
|
|
|
|
+ * We can stop the timer tick any time highres timers are active since
|
|
|
|
+ * we rely entirely on highres timeouts for task expiry rescheduling.
|
|
|
|
+ */
|
|
|
|
+static void sched_stop_tick(struct rq *rq, int cpu)
|
|
|
|
+{
|
|
|
|
+ if (!hrexpiry_enabled(rq))
|
|
|
|
+ return;
|
|
|
|
+ if (!tick_nohz_full_enabled())
|
|
|
|
+ return;
|
|
|
|
+ if (!tick_nohz_full_cpu(cpu))
|
|
|
|
+ return;
|
|
|
|
+ tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void sched_start_tick(struct rq *rq, int cpu)
|
|
|
|
+{
|
|
|
|
+ tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+struct tick_work {
|
|
|
|
+ int cpu;
|
|
|
|
+ atomic_t state;
|
|
|
|
+ struct delayed_work work;
|
|
|
|
+};
|
|
|
|
+/* Values for ->state, see diagram below. */
|
|
|
|
+#define TICK_SCHED_REMOTE_OFFLINE 0
|
|
|
|
+#define TICK_SCHED_REMOTE_OFFLINING 1
|
|
|
|
+#define TICK_SCHED_REMOTE_RUNNING 2
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * State diagram for ->state:
|
|
|
|
+ *
|
|
|
|
+ *
|
|
|
|
+ * TICK_SCHED_REMOTE_OFFLINE
|
|
|
|
+ * | ^
|
|
|
|
+ * | |
|
|
|
|
+ * | | sched_tick_remote()
|
|
|
|
+ * | |
|
|
|
|
+ * | |
|
|
|
|
+ * +--TICK_SCHED_REMOTE_OFFLINING
|
|
|
|
+ * | ^
|
|
|
|
+ * | |
|
|
|
|
+ * sched_tick_start() | | sched_tick_stop()
|
|
|
|
+ * | |
|
|
|
|
+ * V |
|
|
|
|
+ * TICK_SCHED_REMOTE_RUNNING
|
|
|
|
+ *
|
|
|
|
+ *
|
|
|
|
+ * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
|
|
|
|
+ * and sched_tick_start() are happy to leave the state in RUNNING.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+static struct tick_work __percpu *tick_work_cpu;
|
|
|
|
+
|
|
|
|
+static void sched_tick_remote(struct work_struct *work)
|
|
|
|
+{
|
|
|
|
+ struct delayed_work *dwork = to_delayed_work(work);
|
|
|
|
+ struct tick_work *twork = container_of(dwork, struct tick_work, work);
|
|
|
|
+ int cpu = twork->cpu;
|
|
|
|
+ struct rq *rq = cpu_rq(cpu);
|
|
|
|
+ struct task_struct *curr;
|
|
|
|
+ u64 delta;
|
|
|
|
+ int os;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Handle the tick only if it appears the remote CPU is running in full
|
|
|
|
+ * dynticks mode. The check is racy by nature, but missing a tick or
|
|
|
|
+ * having one too much is no big deal because the scheduler tick updates
|
|
|
|
+ * statistics and checks timeslices in a time-independent way, regardless
|
|
|
|
+ * of when exactly it is running.
|
|
|
|
+ */
|
|
|
|
+ if (!tick_nohz_tick_stopped_cpu(cpu))
|
|
|
|
+ goto out_requeue;
|
|
|
|
+
|
|
|
|
+ rq_lock_irq(rq);
|
|
|
|
+ if (cpu_is_offline(cpu))
|
|
|
|
+ goto out_unlock;
|
|
|
|
+
|
|
|
|
+ curr = rq->curr;
|
|
|
|
+ update_rq_clock(rq);
|
|
|
|
+
|
|
|
|
+ if (!is_idle_task(curr)) {
|
|
|
|
+ /*
|
|
|
|
+ * Make sure the next tick runs within a reasonable
|
|
|
|
+ * amount of time.
|
|
|
|
+ */
|
|
|
|
+ delta = rq_clock_task(rq) - curr->last_ran;
|
|
|
|
+ WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
|
|
|
|
+ }
|
|
|
|
+ task_tick(rq);
|
|
|
|
+
|
|
|
|
+out_unlock:
|
|
|
|
+ rq_unlock_irq(rq, NULL);
|
|
|
|
+
|
|
|
|
+out_requeue:
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Run the remote tick once per second (1Hz). This arbitrary
|
|
|
|
+ * frequency is large enough to avoid overload but short enough
|
|
|
|
+ * to keep scheduler internal stats reasonably up to date. But
|
|
|
|
+ * first update state to reflect hotplug activity if required.
|
|
|
|
+ */
|
|
|
|
+ os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
|
|
|
|
+ WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
|
|
|
|
+ if (os == TICK_SCHED_REMOTE_RUNNING)
|
|
|
|
+ queue_delayed_work(system_unbound_wq, dwork, HZ);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void sched_tick_start(int cpu)
|
|
|
|
+{
|
|
|
|
+ struct tick_work *twork;
|
|
|
|
+ int os;
|
|
|
|
+
|
|
|
|
+ if (housekeeping_cpu(cpu, HK_FLAG_TICK))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ WARN_ON_ONCE(!tick_work_cpu);
|
|
|
|
+
|
|
|
|
+ twork = per_cpu_ptr(tick_work_cpu, cpu);
|
|
|
|
+ os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
|
|
|
|
+ WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
|
|
|
|
+ if (os == TICK_SCHED_REMOTE_OFFLINE) {
|
|
|
|
+ twork->cpu = cpu;
|
|
|
|
+ INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
|
|
|
|
+ queue_delayed_work(system_unbound_wq, &twork->work, HZ);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
+static void sched_tick_stop(int cpu)
|
|
|
|
+{
|
|
|
|
+ struct tick_work *twork;
|
|
|
|
+ int os;
|
|
|
|
+
|
|
|
|
+ if (housekeeping_cpu(cpu, HK_FLAG_TICK))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ WARN_ON_ONCE(!tick_work_cpu);
|
|
|
|
+
|
|
|
|
+ twork = per_cpu_ptr(tick_work_cpu, cpu);
|
|
|
|
+ /* There cannot be competing actions, but don't rely on stop-machine. */
|
|
|
|
+ os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
|
|
|
|
+ WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
|
|
|
|
+ /* Don't cancel, as this would mess up the state machine. */
|
|
|
|
+}
|
|
|
|
+#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
+
|
|
|
|
+int __init sched_tick_offload_init(void)
|
|
|
|
+{
|
|
|
|
+ tick_work_cpu = alloc_percpu(struct tick_work);
|
|
|
|
+ BUG_ON(!tick_work_cpu);
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#else /* !CONFIG_NO_HZ_FULL */
|
|
|
|
+static inline void sched_stop_tick(struct rq *rq, int cpu) {}
|
|
|
|
+static inline void sched_start_tick(struct rq *rq, int cpu) {}
|
|
|
|
+static inline void sched_tick_start(int cpu) { }
|
|
|
|
+static inline void sched_tick_stop(int cpu) { }
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * This function gets called by the timer code, with HZ frequency.
|
|
|
|
+ * We call it with interrupts disabled.
|
|
|
|
+ */
|
|
|
|
+void scheduler_tick(void)
|
|
|
|
+{
|
|
|
|
+ int cpu __maybe_unused = smp_processor_id();
|
|
|
|
+ struct rq *rq = cpu_rq(cpu);
|
|
|
|
+
|
|
|
|
+ arch_scale_freq_tick();
|
|
|
|
+ sched_clock_tick();
|
|
|
|
+ update_clocks(rq);
|
|
|
|
+ update_load_avg(rq, 0);
|
|
|
|
+ update_cpu_clock_tick(rq, rq->curr);
|
|
|
|
+ task_tick(rq);
|
|
|
|
+ rq->last_scheduler_tick = rq->last_jiffy;
|
|
|
|
+ rq->last_tick = rq->clock;
|
|
|
|
+ psi_task_tick(rq);
|
|
|
|
+ perf_event_task_tick();
|
|
|
|
+ sched_stop_tick(rq, cpu);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
|
|
|
|
+ defined(CONFIG_TRACE_PREEMPT_TOGGLE))
|
|
|
|
+/*
|
|
|
|
+ * If the value passed in is equal to the current preempt count
|
|
|
|
+ * then we just disabled preemption. Start timing the latency.
|
|
|
|
+ */
|
|
|
|
+static inline void preempt_latency_start(int val)
|
|
|
|
+{
|
|
|
|
+ if (preempt_count() == val) {
|
|
|
|
+ unsigned long ip = get_lock_parent_ip();
|
|
|
|
+#ifdef CONFIG_DEBUG_PREEMPT
|
|
|
|
+ current->preempt_disable_ip = ip;
|
|
|
|
+#endif
|
|
|
|
+ trace_preempt_off(CALLER_ADDR0, ip);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void preempt_count_add(int val)
|
|
|
|
+{
|
|
|
|
+#ifdef CONFIG_DEBUG_PREEMPT
|
|
|
|
+ /*
|
|
|
|
+ * Underflow?
|
|
|
|
+ */
|
|
|
|
+ if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
|
|
|
|
+ return;
|
|
|
|
+#endif
|
|
|
|
+ __preempt_count_add(val);
|
|
|
|
+#ifdef CONFIG_DEBUG_PREEMPT
|
|
|
|
+ /*
|
|
|
|
+ * Spinlock count overflowing soon?
|
|
|
|
+ */
|
|
|
|
+ DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
|
|
|
|
+ PREEMPT_MASK - 10);
|
|
|
|
+#endif
|
|
|
|
+ preempt_latency_start(val);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL(preempt_count_add);
|
|
|
|
+NOKPROBE_SYMBOL(preempt_count_add);
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * If the value passed in equals to the current preempt count
|
|
|
|
+ * then we just enabled preemption. Stop timing the latency.
|
|
|
|
+ */
|
|
|
|
+static inline void preempt_latency_stop(int val)
|
|
|
|
+{
|
|
|
|
+ if (preempt_count() == val)
|
|
|
|
+ trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void preempt_count_sub(int val)
|
|
|
|
+{
|
|
|
|
+#ifdef CONFIG_DEBUG_PREEMPT
|
|
|
|
+ /*
|
|
|
|
+ * Underflow?
|
|
|
|
+ */
|
|
|
|
+ if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
|
|
|
|
+ return;
|
|
|
|
+ /*
|
|
|
|
+ * Is the spinlock portion underflowing?
|
|
|
|
+ */
|
|
|
|
+ if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
|
|
|
|
+ !(preempt_count() & PREEMPT_MASK)))
|
|
|
|
+ return;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ preempt_latency_stop(val);
|
|
|
|
+ __preempt_count_sub(val);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL(preempt_count_sub);
|
|
|
|
+NOKPROBE_SYMBOL(preempt_count_sub);
|
|
|
|
+
|
|
|
|
+#else
|
|
|
|
+static inline void preempt_latency_start(int val) { }
|
|
|
|
+static inline void preempt_latency_stop(int val) { }
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+#ifdef CONFIG_DEBUG_PREEMPT
|
|
|
|
+ return p->preempt_disable_ip;
|
|
|
|
+#else
|
|
|
|
+ return 0;
|
|
|
|
+#endif
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * The time_slice is only refilled when it is empty and that is when we set a
|
|
|
|
+ * new deadline. Make sure update_clocks has been called recently to update
|
|
|
|
+ * rq->niffies.
|
|
|
|
+ */
|
|
|
|
+static void time_slice_expired(struct task_struct *p, struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ p->time_slice = timeslice();
|
|
|
|
+ p->deadline = rq->niffies + task_deadline_diff(p);
|
|
|
|
+#ifdef CONFIG_SMT_NICE
|
|
|
|
+ if (!p->mm)
|
|
|
|
+ p->smt_bias = 0;
|
|
|
|
+ else if (rt_task(p))
|
|
|
|
+ p->smt_bias = 1 << 30;
|
|
|
|
+ else if (task_running_iso(p))
|
|
|
|
+ p->smt_bias = 1 << 29;
|
|
|
|
+ else if (idleprio_task(p)) {
|
|
|
|
+ if (task_running_idle(p))
|
|
|
|
+ p->smt_bias = 0;
|
|
|
|
+ else
|
|
|
|
+ p->smt_bias = 1;
|
|
|
|
+ } else if (--p->smt_bias < 1)
|
|
|
|
+ p->smt_bias = MAX_PRIO - p->static_prio;
|
|
|
|
+#endif
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Timeslices below RESCHED_US are considered as good as expired as there's no
|
|
|
|
+ * point rescheduling when there's so little time left. SCHED_BATCH tasks
|
|
|
|
+ * have been flagged be not latency sensitive and likely to be fully CPU
|
|
|
|
+ * bound so every time they're rescheduled they have their time_slice
|
|
|
|
+ * refilled, but get a new later deadline to have little effect on
|
|
|
|
+ * SCHED_NORMAL tasks.
|
|
|
|
+
|
|
|
|
+ */
|
|
|
|
+static inline void check_deadline(struct task_struct *p, struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ if (p->time_slice < RESCHED_US || batch_task(p))
|
|
|
|
+ time_slice_expired(p, rq);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Task selection with skiplists is a simple matter of picking off the first
|
|
|
|
+ * task in the sorted list, an O(1) operation. The lookup is amortised O(1)
|
|
|
|
+ * being bound to the number of processors.
|
|
|
|
+ *
|
|
|
|
+ * Runqueues are selectively locked based on their unlocked data and then
|
|
|
|
+ * unlocked if not needed. At most 3 locks will be held at any time and are
|
|
|
|
+ * released as soon as they're no longer needed. All balancing between CPUs
|
|
|
|
+ * is thus done here in an extremely simple first come best fit manner.
|
|
|
|
+ *
|
|
|
|
+ * This iterates over runqueues in cache locality order. In interactive mode
|
|
|
|
+ * it iterates over all CPUs and finds the task with the best key/deadline.
|
|
|
|
+ * In non-interactive mode it will only take a task if it's from the current
|
|
|
|
+ * runqueue or a runqueue with more tasks than the current one with a better
|
|
|
|
+ * key/deadline.
|
|
|
|
+ */
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+static inline struct task_struct
|
|
|
|
+*earliest_deadline_task(struct rq *rq, int cpu, struct task_struct *idle)
|
|
|
|
+{
|
|
|
|
+ struct rq *locked = NULL, *chosen = NULL;
|
|
|
|
+ struct task_struct *edt = idle;
|
|
|
|
+ int i, best_entries = 0;
|
|
|
|
+ u64 best_key = ~0ULL;
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < total_runqueues; i++) {
|
|
|
|
+ struct rq *other_rq = rq_order(rq, i);
|
|
|
|
+ skiplist_node *next;
|
|
|
|
+ int entries;
|
|
|
|
+
|
|
|
|
+ entries = other_rq->sl->entries;
|
|
|
|
+ /*
|
|
|
|
+ * Check for queued entres lockless first. The local runqueue
|
|
|
|
+ * is locked so entries will always be accurate.
|
|
|
|
+ */
|
|
|
|
+ if (!sched_interactive) {
|
|
|
|
+ /*
|
|
|
|
+ * Don't reschedule balance across nodes unless the CPU
|
|
|
|
+ * is idle.
|
|
|
|
+ */
|
|
|
|
+ if (edt != idle && rq->cpu_locality[other_rq->cpu] > LOCALITY_SMP)
|
|
|
|
+ break;
|
|
|
|
+ if (entries <= best_entries)
|
|
|
|
+ continue;
|
|
|
|
+ } else if (!entries)
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ /* if (i) implies other_rq != rq */
|
|
|
|
+ if (i) {
|
|
|
|
+ /* Check for best id queued lockless first */
|
|
|
|
+ if (other_rq->best_key >= best_key)
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ if (unlikely(!trylock_rq(rq, other_rq)))
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ /* Need to reevaluate entries after locking */
|
|
|
|
+ entries = other_rq->sl->entries;
|
|
|
|
+ if (unlikely(!entries)) {
|
|
|
|
+ unlock_rq(other_rq);
|
|
|
|
+ continue;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ next = other_rq->node;
|
|
|
|
+ /*
|
|
|
|
+ * In interactive mode we check beyond the best entry on other
|
|
|
|
+ * runqueues if we can't get the best for smt or affinity
|
|
|
|
+ * reasons.
|
|
|
|
+ */
|
|
|
|
+ while ((next = next->next[0]) != other_rq->node) {
|
|
|
|
+ struct task_struct *p;
|
|
|
|
+ u64 key = next->key;
|
|
|
|
+
|
|
|
|
+ /* Reevaluate key after locking */
|
|
|
|
+ if (key >= best_key)
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ p = next->value;
|
|
|
|
+ if (!smt_schedule(p, rq)) {
|
|
|
|
+ if (i && !sched_interactive)
|
|
|
|
+ break;
|
|
|
|
+ continue;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (sched_other_cpu(p, cpu)) {
|
|
|
|
+ if (sched_interactive || !i)
|
|
|
|
+ continue;
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ /* Make sure affinity is ok */
|
|
|
|
+ if (i) {
|
|
|
|
+ /* From this point on p is the best so far */
|
|
|
|
+ if (locked)
|
|
|
|
+ unlock_rq(locked);
|
|
|
|
+ chosen = locked = other_rq;
|
|
|
|
+ }
|
|
|
|
+ best_entries = entries;
|
|
|
|
+ best_key = key;
|
|
|
|
+ edt = p;
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ /* rq->preempting is a hint only as the state may have changed
|
|
|
|
+ * since it was set with the resched call but if we have met
|
|
|
|
+ * the condition we can break out here. */
|
|
|
|
+ if (edt == rq->preempting)
|
|
|
|
+ break;
|
|
|
|
+ if (i && other_rq != chosen)
|
|
|
|
+ unlock_rq(other_rq);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (likely(edt != idle))
|
|
|
|
+ take_task(rq, cpu, edt);
|
|
|
|
+
|
|
|
|
+ if (locked)
|
|
|
|
+ unlock_rq(locked);
|
|
|
|
+
|
|
|
|
+ rq->preempting = NULL;
|
|
|
|
+
|
|
|
|
+ return edt;
|
|
|
|
+}
|
|
|
|
+#else /* CONFIG_SMP */
|
|
|
|
+static inline struct task_struct
|
|
|
|
+*earliest_deadline_task(struct rq *rq, int cpu, struct task_struct *idle)
|
|
|
|
+{
|
|
|
|
+ struct task_struct *edt;
|
|
|
|
+
|
|
|
|
+ if (unlikely(!rq->sl->entries))
|
|
|
|
+ return idle;
|
|
|
|
+ edt = rq->node->next[0]->value;
|
|
|
|
+ take_task(rq, cpu, edt);
|
|
|
|
+ return edt;
|
|
|
|
+}
|
|
|
|
+#endif /* CONFIG_SMP */
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Print scheduling while atomic bug:
|
|
|
|
+ */
|
|
|
|
+static noinline void __schedule_bug(struct task_struct *prev)
|
|
|
|
+{
|
|
|
|
+ /* Save this before calling printk(), since that will clobber it */
|
|
|
|
+ unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
|
|
|
|
+
|
|
|
|
+ if (oops_in_progress)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
|
|
|
|
+ prev->comm, prev->pid, preempt_count());
|
|
|
|
+
|
|
|
|
+ debug_show_held_locks(prev);
|
|
|
|
+ print_modules();
|
|
|
|
+ if (irqs_disabled())
|
|
|
|
+ print_irqtrace_events(prev);
|
|
|
|
+ if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
|
|
|
|
+ && in_atomic_preempt_off()) {
|
|
|
|
+ pr_err("Preemption disabled at:");
|
|
|
|
+ print_ip_sym(KERN_ERR, preempt_disable_ip);
|
|
|
|
+ }
|
|
|
|
+ dump_stack();
|
|
|
|
+ add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Various schedule()-time debugging checks and statistics:
|
|
|
|
+ */
|
|
|
|
+static inline void schedule_debug(struct task_struct *prev, bool preempt)
|
|
|
|
+{
|
|
|
|
+#ifdef CONFIG_SCHED_STACK_END_CHECK
|
|
|
|
+ if (task_stack_end_corrupted(prev))
|
|
|
|
+ panic("corrupted stack end detected inside scheduler\n");
|
|
|
|
+
|
|
|
|
+ if (task_scs_end_corrupted(prev))
|
|
|
|
+ panic("corrupted shadow stack detected inside scheduler\n");
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
|
|
|
|
+ if (!preempt && prev->state && prev->non_block_count) {
|
|
|
|
+ printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
|
|
|
|
+ prev->comm, prev->pid, prev->non_block_count);
|
|
|
|
+ dump_stack();
|
|
|
|
+ add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
|
|
|
|
+ }
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ if (unlikely(in_atomic_preempt_off())) {
|
|
|
|
+ __schedule_bug(prev);
|
|
|
|
+ preempt_count_set(PREEMPT_DISABLED);
|
|
|
|
+ }
|
|
|
|
+ rcu_sleep_check();
|
|
|
|
+
|
|
|
|
+ profile_hit(SCHED_PROFILING, __builtin_return_address(0));
|
|
|
|
+
|
|
|
|
+ schedstat_inc(this_rq()->sched_count);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * The currently running task's information is all stored in rq local data
|
|
|
|
+ * which is only modified by the local CPU.
|
|
|
|
+ */
|
|
|
|
+static inline void set_rq_task(struct rq *rq, struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ if (p == rq->idle || p->policy == SCHED_FIFO)
|
|
|
|
+ hrexpiry_clear(rq);
|
|
|
|
+ else
|
|
|
|
+ hrexpiry_start(rq, US_TO_NS(p->time_slice));
|
|
|
|
+ if (rq->clock - rq->last_tick > HALF_JIFFY_NS)
|
|
|
|
+ rq->dither = 0;
|
|
|
|
+ else
|
|
|
|
+ rq->dither = rq_dither(rq);
|
|
|
|
+
|
|
|
|
+ rq->rq_deadline = p->deadline;
|
|
|
|
+ rq->rq_prio = p->prio;
|
|
|
|
+#ifdef CONFIG_SMT_NICE
|
|
|
|
+ rq->rq_mm = p->mm;
|
|
|
|
+ rq->rq_smt_bias = p->smt_bias;
|
|
|
|
+#endif
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMT_NICE
|
|
|
|
+static void check_no_siblings(struct rq __maybe_unused *this_rq) {}
|
|
|
|
+static void wake_no_siblings(struct rq __maybe_unused *this_rq) {}
|
|
|
|
+static void (*check_siblings)(struct rq *this_rq) = &check_no_siblings;
|
|
|
|
+static void (*wake_siblings)(struct rq *this_rq) = &wake_no_siblings;
|
|
|
|
+
|
|
|
|
+/* Iterate over smt siblings when we've scheduled a process on cpu and decide
|
|
|
|
+ * whether they should continue running or be descheduled. */
|
|
|
|
+static void check_smt_siblings(struct rq *this_rq)
|
|
|
|
+{
|
|
|
|
+ int other_cpu;
|
|
|
|
+
|
|
|
|
+ for_each_cpu(other_cpu, &this_rq->thread_mask) {
|
|
|
|
+ struct task_struct *p;
|
|
|
|
+ struct rq *rq;
|
|
|
|
+
|
|
|
|
+ rq = cpu_rq(other_cpu);
|
|
|
|
+ if (rq_idle(rq))
|
|
|
|
+ continue;
|
|
|
|
+ p = rq->curr;
|
|
|
|
+ if (!smt_schedule(p, this_rq))
|
|
|
|
+ resched_curr(rq);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void wake_smt_siblings(struct rq *this_rq)
|
|
|
|
+{
|
|
|
|
+ int other_cpu;
|
|
|
|
+
|
|
|
|
+ for_each_cpu(other_cpu, &this_rq->thread_mask) {
|
|
|
|
+ struct rq *rq;
|
|
|
|
+
|
|
|
|
+ rq = cpu_rq(other_cpu);
|
|
|
|
+ if (rq_idle(rq))
|
|
|
|
+ resched_idle(rq);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+#else
|
|
|
|
+static void check_siblings(struct rq __maybe_unused *this_rq) {}
|
|
|
|
+static void wake_siblings(struct rq __maybe_unused *this_rq) {}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * schedule() is the main scheduler function.
|
|
|
|
+ *
|
|
|
|
+ * The main means of driving the scheduler and thus entering this function are:
|
|
|
|
+ *
|
|
|
|
+ * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
|
|
|
|
+ *
|
|
|
|
+ * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
|
|
|
|
+ * paths. For example, see arch/x86/entry_64.S.
|
|
|
|
+ *
|
|
|
|
+ * To drive preemption between tasks, the scheduler sets the flag in timer
|
|
|
|
+ * interrupt handler scheduler_tick().
|
|
|
|
+ *
|
|
|
|
+ * 3. Wakeups don't really cause entry into schedule(). They add a
|
|
|
|
+ * task to the run-queue and that's it.
|
|
|
|
+ *
|
|
|
|
+ * Now, if the new task added to the run-queue preempts the current
|
|
|
|
+ * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
|
|
|
|
+ * called on the nearest possible occasion:
|
|
|
|
+ *
|
|
|
|
+ * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
|
|
|
|
+ *
|
|
|
|
+ * - in syscall or exception context, at the next outmost
|
|
|
|
+ * preempt_enable(). (this might be as soon as the wake_up()'s
|
|
|
|
+ * spin_unlock()!)
|
|
|
|
+ *
|
|
|
|
+ * - in IRQ context, return from interrupt-handler to
|
|
|
|
+ * preemptible context
|
|
|
|
+ *
|
|
|
|
+ * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
|
|
|
|
+ * then at the next:
|
|
|
|
+ *
|
|
|
|
+ * - cond_resched() call
|
|
|
|
+ * - explicit schedule() call
|
|
|
|
+ * - return from syscall or exception to user-space
|
|
|
|
+ * - return from interrupt-handler to user-space
|
|
|
|
+ *
|
|
|
|
+ * WARNING: must be called with preemption disabled!
|
|
|
|
+ */
|
|
|
|
+static void __sched notrace __schedule(bool preempt)
|
|
|
|
+{
|
|
|
|
+ struct task_struct *prev, *next, *idle;
|
|
|
|
+ unsigned long *switch_count;
|
|
|
|
+ unsigned long prev_state;
|
|
|
|
+ bool deactivate = false;
|
|
|
|
+ struct rq *rq;
|
|
|
|
+ u64 niffies;
|
|
|
|
+ int cpu;
|
|
|
|
+
|
|
|
|
+ cpu = smp_processor_id();
|
|
|
|
+ rq = cpu_rq(cpu);
|
|
|
|
+ prev = rq->curr;
|
|
|
|
+ idle = rq->idle;
|
|
|
|
+
|
|
|
|
+ schedule_debug(prev, preempt);
|
|
|
|
+
|
|
|
|
+ local_irq_disable();
|
|
|
|
+ rcu_note_context_switch(preempt);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Make sure that signal_pending_state()->signal_pending() below
|
|
|
|
+ * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
|
|
|
|
+ * done by the caller to avoid the race with signal_wake_up():
|
|
|
|
+ *
|
|
|
|
+ * __set_current_state(@state) signal_wake_up()
|
|
|
|
+ * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
|
|
|
|
+ * wake_up_state(p, state)
|
|
|
|
+ * LOCK rq->lock LOCK p->pi_state
|
|
|
|
+ * smp_mb__after_spinlock() smp_mb__after_spinlock()
|
|
|
|
+ * if (signal_pending_state()) if (p->state & @state)
|
|
|
|
+ *
|
|
|
|
+ * Also, the membarrier system call requires a full memory barrier
|
|
|
|
+ * after coming from user-space, before storing to rq->curr.
|
|
|
|
+ */
|
|
|
|
+ rq_lock(rq);
|
|
|
|
+ smp_mb__after_spinlock();
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ if (rq->preempt) {
|
|
|
|
+ /*
|
|
|
|
+ * Make sure resched_curr hasn't triggered a preemption
|
|
|
|
+ * locklessly on a task that has since scheduled away. Spurious
|
|
|
|
+ * wakeup of idle is okay though.
|
|
|
|
+ */
|
|
|
|
+ if (unlikely(preempt && prev != idle && !test_tsk_need_resched(prev))) {
|
|
|
|
+ rq->preempt = NULL;
|
|
|
|
+ clear_preempt_need_resched();
|
|
|
|
+ rq_unlock_irq(rq, NULL);
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+ rq->preempt = NULL;
|
|
|
|
+ }
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ switch_count = &prev->nivcsw;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * We must load prev->state once (task_struct::state is volatile), such
|
|
|
|
+ * that:
|
|
|
|
+ *
|
|
|
|
+ * - we form a control dependency vs deactivate_task() below.
|
|
|
|
+ * - ptrace_{,un}freeze_traced() can change ->state underneath us.
|
|
|
|
+ */
|
|
|
|
+ prev_state = prev->state;
|
|
|
|
+ if (!preempt && prev_state) {
|
|
|
|
+ if (signal_pending_state(prev_state, prev)) {
|
|
|
|
+ prev->state = TASK_RUNNING;
|
|
|
|
+ } else {
|
|
|
|
+ prev->sched_contributes_to_load =
|
|
|
|
+ (prev_state & TASK_UNINTERRUPTIBLE) &&
|
|
|
|
+ !(prev_state & TASK_NOLOAD) &&
|
|
|
|
+ !(prev->flags & PF_FROZEN);
|
|
|
|
+
|
|
|
|
+ if (prev->sched_contributes_to_load)
|
|
|
|
+ rq->nr_uninterruptible++;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * __schedule() ttwu()
|
|
|
|
+ * prev_state = prev->state; if (p->on_rq && ...)
|
|
|
|
+ * if (prev_state) goto out;
|
|
|
|
+ * p->on_rq = 0; smp_acquire__after_ctrl_dep();
|
|
|
|
+ * p->state = TASK_WAKING
|
|
|
|
+ *
|
|
|
|
+ * Where __schedule() and ttwu() have matching control dependencies.
|
|
|
|
+ *
|
|
|
|
+ * After this, schedule() must not care about p->state any more.
|
|
|
|
+ */
|
|
|
|
+ deactivate = true;
|
|
|
|
+
|
|
|
|
+ if (prev->in_iowait) {
|
|
|
|
+ atomic_inc(&rq->nr_iowait);
|
|
|
|
+ delayacct_blkio_start();
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ switch_count = &prev->nvcsw;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Store the niffy value here for use by the next task's last_ran
|
|
|
|
+ * below to avoid losing niffies due to update_clocks being called
|
|
|
|
+ * again after this point.
|
|
|
|
+ */
|
|
|
|
+ update_clocks(rq);
|
|
|
|
+ niffies = rq->niffies;
|
|
|
|
+ update_cpu_clock_switch(rq, prev);
|
|
|
|
+
|
|
|
|
+ clear_tsk_need_resched(prev);
|
|
|
|
+ clear_preempt_need_resched();
|
|
|
|
+
|
|
|
|
+ if (idle != prev) {
|
|
|
|
+ check_deadline(prev, rq);
|
|
|
|
+ return_task(prev, rq, cpu, deactivate);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ next = earliest_deadline_task(rq, cpu, idle);
|
|
|
|
+ if (likely(next->prio != PRIO_LIMIT))
|
|
|
|
+ clear_cpuidle_map(cpu);
|
|
|
|
+ else {
|
|
|
|
+ set_cpuidle_map(cpu);
|
|
|
|
+ update_load_avg(rq, 0);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ set_rq_task(rq, next);
|
|
|
|
+ next->last_ran = niffies;
|
|
|
|
+
|
|
|
|
+ if (likely(prev != next)) {
|
|
|
|
+ /*
|
|
|
|
+ * Don't reschedule an idle task or deactivated tasks
|
|
|
|
+ */
|
|
|
|
+ if (prev == idle) {
|
|
|
|
+ inc_nr_running(rq);
|
|
|
|
+ if (rt_task(next))
|
|
|
|
+ rq->rt_nr_running++;
|
|
|
|
+ } else if (!deactivate)
|
|
|
|
+ resched_suitable_idle(prev);
|
|
|
|
+ if (unlikely(next == idle)) {
|
|
|
|
+ dec_nr_running(rq);
|
|
|
|
+ if (rt_task(prev))
|
|
|
|
+ rq->rt_nr_running--;
|
|
|
|
+ wake_siblings(rq);
|
|
|
|
+ } else
|
|
|
|
+ check_siblings(rq);
|
|
|
|
+ rq->nr_switches++;
|
|
|
|
+ /*
|
|
|
|
+ * RCU users of rcu_dereference(rq->curr) may not see
|
|
|
|
+ * changes to task_struct made by pick_next_task().
|
|
|
|
+ */
|
|
|
|
+ RCU_INIT_POINTER(rq->curr, next);
|
|
|
|
+ /*
|
|
|
|
+ * The membarrier system call requires each architecture
|
|
|
|
+ * to have a full memory barrier after updating
|
|
|
|
+ * rq->curr, before returning to user-space.
|
|
|
|
+ *
|
|
|
|
+ * Here are the schemes providing that barrier on the
|
|
|
|
+ * various architectures:
|
|
|
|
+ * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
|
|
|
|
+ * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
|
|
|
|
+ * - finish_lock_switch() for weakly-ordered
|
|
|
|
+ * architectures where spin_unlock is a full barrier,
|
|
|
|
+ * - switch_to() for arm64 (weakly-ordered, spin_unlock
|
|
|
|
+ * is a RELEASE barrier),
|
|
|
|
+ */
|
|
|
|
+ ++*switch_count;
|
|
|
|
+
|
|
|
|
+ psi_sched_switch(prev, next, !task_on_rq_queued(prev));
|
|
|
|
+
|
|
|
|
+ trace_sched_switch(preempt, prev, next);
|
|
|
|
+ context_switch(rq, prev, next); /* unlocks the rq */
|
|
|
|
+ } else {
|
|
|
|
+ check_siblings(rq);
|
|
|
|
+ rq_unlock(rq);
|
|
|
|
+ local_irq_enable();
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void __noreturn do_task_dead(void)
|
|
|
|
+{
|
|
|
|
+ /* Causes final put_task_struct in finish_task_switch(). */
|
|
|
|
+ set_special_state(TASK_DEAD);
|
|
|
|
+
|
|
|
|
+ /* Tell freezer to ignore us: */
|
|
|
|
+ current->flags |= PF_NOFREEZE;
|
|
|
|
+ __schedule(false);
|
|
|
|
+ BUG();
|
|
|
|
+
|
|
|
|
+ /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
|
|
|
|
+ for (;;)
|
|
|
|
+ cpu_relax();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void sched_submit_work(struct task_struct *tsk)
|
|
|
|
+{
|
2021-01-08 07:29:38 -06:00
|
|
|
+ unsigned int task_flags;
|
|
|
|
+
|
2020-10-26 15:23:54 -05:00
|
|
|
+ if (!tsk->state)
|
|
|
|
+ return;
|
|
|
|
+
|
2021-01-08 07:29:38 -06:00
|
|
|
+ task_flags = tsk->flags;
|
2020-10-26 15:23:54 -05:00
|
|
|
+ /*
|
|
|
|
+ * If a worker went to sleep, notify and ask workqueue whether
|
|
|
|
+ * it wants to wake up a task to maintain concurrency.
|
|
|
|
+ * As this function is called inside the schedule() context,
|
|
|
|
+ * we disable preemption to avoid it calling schedule() again
|
|
|
|
+ * in the possible wakeup of a kworker and because wq_worker_sleeping()
|
|
|
|
+ * requires it.
|
|
|
|
+ */
|
2021-01-08 07:29:38 -06:00
|
|
|
+ if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
|
2020-10-26 15:23:54 -05:00
|
|
|
+ preempt_disable();
|
2021-01-08 07:29:38 -06:00
|
|
|
+ if (task_flags & PF_WQ_WORKER)
|
2020-10-26 15:23:54 -05:00
|
|
|
+ wq_worker_sleeping(tsk);
|
|
|
|
+ else
|
|
|
|
+ io_wq_worker_sleeping(tsk);
|
|
|
|
+ preempt_enable_no_resched();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (tsk_is_pi_blocked(tsk))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * If we are going to sleep and we have plugged IO queued,
|
|
|
|
+ * make sure to submit it to avoid deadlocks.
|
|
|
|
+ */
|
|
|
|
+ if (blk_needs_flush_plug(tsk))
|
|
|
|
+ blk_schedule_flush_plug(tsk);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void sched_update_worker(struct task_struct *tsk)
|
|
|
|
+{
|
|
|
|
+ if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
|
|
|
|
+ if (tsk->flags & PF_WQ_WORKER)
|
|
|
|
+ wq_worker_running(tsk);
|
|
|
|
+ else
|
|
|
|
+ io_wq_worker_running(tsk);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+asmlinkage __visible void __sched schedule(void)
|
|
|
|
+{
|
|
|
|
+ struct task_struct *tsk = current;
|
|
|
|
+
|
|
|
|
+ sched_submit_work(tsk);
|
|
|
|
+ do {
|
|
|
|
+ preempt_disable();
|
|
|
|
+ __schedule(false);
|
|
|
|
+ sched_preempt_enable_no_resched();
|
|
|
|
+ } while (need_resched());
|
|
|
|
+ sched_update_worker(tsk);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+EXPORT_SYMBOL(schedule);
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
|
|
|
|
+ * state (have scheduled out non-voluntarily) by making sure that all
|
|
|
|
+ * tasks have either left the run queue or have gone into user space.
|
|
|
|
+ * As idle tasks do not do either, they must not ever be preempted
|
|
|
|
+ * (schedule out non-voluntarily).
|
|
|
|
+ *
|
|
|
|
+ * schedule_idle() is similar to schedule_preempt_disable() except that it
|
|
|
|
+ * never enables preemption because it does not call sched_submit_work().
|
|
|
|
+ */
|
|
|
|
+void __sched schedule_idle(void)
|
|
|
|
+{
|
|
|
|
+ /*
|
|
|
|
+ * As this skips calling sched_submit_work(), which the idle task does
|
|
|
|
+ * regardless because that function is a nop when the task is in a
|
|
|
|
+ * TASK_RUNNING state, make sure this isn't used someplace that the
|
|
|
|
+ * current task can be in any other state. Note, idle is always in the
|
|
|
|
+ * TASK_RUNNING state.
|
|
|
|
+ */
|
|
|
|
+ WARN_ON_ONCE(current->state);
|
|
|
|
+ do {
|
|
|
|
+ __schedule(false);
|
|
|
|
+ } while (need_resched());
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_CONTEXT_TRACKING
|
|
|
|
+asmlinkage __visible void __sched schedule_user(void)
|
|
|
|
+{
|
|
|
|
+ /*
|
|
|
|
+ * If we come here after a random call to set_need_resched(),
|
|
|
|
+ * or we have been woken up remotely but the IPI has not yet arrived,
|
|
|
|
+ * we haven't yet exited the RCU idle mode. Do it here manually until
|
|
|
|
+ * we find a better solution.
|
|
|
|
+ *
|
|
|
|
+ * NB: There are buggy callers of this function. Ideally we
|
|
|
|
+ * should warn if prev_state != IN_USER, but that will trigger
|
|
|
|
+ * too frequently to make sense yet.
|
|
|
|
+ */
|
|
|
|
+ enum ctx_state prev_state = exception_enter();
|
|
|
|
+ schedule();
|
|
|
|
+ exception_exit(prev_state);
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * schedule_preempt_disabled - called with preemption disabled
|
|
|
|
+ *
|
|
|
|
+ * Returns with preemption disabled. Note: preempt_count must be 1
|
|
|
|
+ */
|
|
|
|
+void __sched schedule_preempt_disabled(void)
|
|
|
|
+{
|
|
|
|
+ sched_preempt_enable_no_resched();
|
|
|
|
+ schedule();
|
|
|
|
+ preempt_disable();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void __sched notrace preempt_schedule_common(void)
|
|
|
|
+{
|
|
|
|
+ do {
|
|
|
|
+ /*
|
|
|
|
+ * Because the function tracer can trace preempt_count_sub()
|
|
|
|
+ * and it also uses preempt_enable/disable_notrace(), if
|
|
|
|
+ * NEED_RESCHED is set, the preempt_enable_notrace() called
|
|
|
|
+ * by the function tracer will call this function again and
|
|
|
|
+ * cause infinite recursion.
|
|
|
|
+ *
|
|
|
|
+ * Preemption must be disabled here before the function
|
|
|
|
+ * tracer can trace. Break up preempt_disable() into two
|
|
|
|
+ * calls. One to disable preemption without fear of being
|
|
|
|
+ * traced. The other to still record the preemption latency,
|
|
|
|
+ * which can also be traced by the function tracer.
|
|
|
|
+ */
|
|
|
|
+ preempt_disable_notrace();
|
|
|
|
+ preempt_latency_start(1);
|
|
|
|
+ __schedule(true);
|
|
|
|
+ preempt_latency_stop(1);
|
|
|
|
+ preempt_enable_no_resched_notrace();
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Check again in case we missed a preemption opportunity
|
|
|
|
+ * between schedule and now.
|
|
|
|
+ */
|
|
|
|
+ } while (need_resched());
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_PREEMPTION
|
|
|
|
+/*
|
|
|
|
+ * This is the entry point to schedule() from in-kernel preemption
|
|
|
|
+ * off of preempt_enable.
|
|
|
|
+ */
|
|
|
|
+asmlinkage __visible void __sched notrace preempt_schedule(void)
|
|
|
|
+{
|
|
|
|
+ /*
|
|
|
|
+ * If there is a non-zero preempt_count or interrupts are disabled,
|
|
|
|
+ * we do not want to preempt the current task. Just return..
|
|
|
|
+ */
|
|
|
|
+ if (likely(!preemptible()))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ preempt_schedule_common();
|
|
|
|
+}
|
|
|
|
+NOKPROBE_SYMBOL(preempt_schedule);
|
|
|
|
+EXPORT_SYMBOL(preempt_schedule);
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * preempt_schedule_notrace - preempt_schedule called by tracing
|
|
|
|
+ *
|
|
|
|
+ * The tracing infrastructure uses preempt_enable_notrace to prevent
|
|
|
|
+ * recursion and tracing preempt enabling caused by the tracing
|
|
|
|
+ * infrastructure itself. But as tracing can happen in areas coming
|
|
|
|
+ * from userspace or just about to enter userspace, a preempt enable
|
|
|
|
+ * can occur before user_exit() is called. This will cause the scheduler
|
|
|
|
+ * to be called when the system is still in usermode.
|
|
|
|
+ *
|
|
|
|
+ * To prevent this, the preempt_enable_notrace will use this function
|
|
|
|
+ * instead of preempt_schedule() to exit user context if needed before
|
|
|
|
+ * calling the scheduler.
|
|
|
|
+ */
|
|
|
|
+asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
|
|
|
|
+{
|
|
|
|
+ enum ctx_state prev_ctx;
|
|
|
|
+
|
|
|
|
+ if (likely(!preemptible()))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ do {
|
|
|
|
+ /*
|
|
|
|
+ * Because the function tracer can trace preempt_count_sub()
|
|
|
|
+ * and it also uses preempt_enable/disable_notrace(), if
|
|
|
|
+ * NEED_RESCHED is set, the preempt_enable_notrace() called
|
|
|
|
+ * by the function tracer will call this function again and
|
|
|
|
+ * cause infinite recursion.
|
|
|
|
+ *
|
|
|
|
+ * Preemption must be disabled here before the function
|
|
|
|
+ * tracer can trace. Break up preempt_disable() into two
|
|
|
|
+ * calls. One to disable preemption without fear of being
|
|
|
|
+ * traced. The other to still record the preemption latency,
|
|
|
|
+ * which can also be traced by the function tracer.
|
|
|
|
+ */
|
|
|
|
+ preempt_disable_notrace();
|
|
|
|
+ preempt_latency_start(1);
|
|
|
|
+ /*
|
|
|
|
+ * Needs preempt disabled in case user_exit() is traced
|
|
|
|
+ * and the tracer calls preempt_enable_notrace() causing
|
|
|
|
+ * an infinite recursion.
|
|
|
|
+ */
|
|
|
|
+ prev_ctx = exception_enter();
|
|
|
|
+ __schedule(true);
|
|
|
|
+ exception_exit(prev_ctx);
|
|
|
|
+
|
|
|
|
+ preempt_latency_stop(1);
|
|
|
|
+ preempt_enable_no_resched_notrace();
|
|
|
|
+ } while (need_resched());
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
|
|
|
|
+
|
|
|
|
+#endif /* CONFIG_PREEMPTION */
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * This is the entry point to schedule() from kernel preemption
|
|
|
|
+ * off of irq context.
|
|
|
|
+ * Note, that this is called and return with irqs disabled. This will
|
|
|
|
+ * protect us against recursive calling from irq.
|
|
|
|
+ */
|
|
|
|
+asmlinkage __visible void __sched preempt_schedule_irq(void)
|
|
|
|
+{
|
|
|
|
+ enum ctx_state prev_state;
|
|
|
|
+
|
|
|
|
+ /* Catch callers which need to be fixed */
|
|
|
|
+ BUG_ON(preempt_count() || !irqs_disabled());
|
|
|
|
+
|
|
|
|
+ prev_state = exception_enter();
|
|
|
|
+
|
|
|
|
+ do {
|
|
|
|
+ preempt_disable();
|
|
|
|
+ local_irq_enable();
|
|
|
|
+ __schedule(true);
|
|
|
|
+ local_irq_disable();
|
|
|
|
+ sched_preempt_enable_no_resched();
|
|
|
|
+ } while (need_resched());
|
|
|
|
+
|
|
|
|
+ exception_exit(prev_state);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
|
|
|
|
+ void *key)
|
|
|
|
+{
|
|
|
|
+ WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
|
|
|
|
+ return try_to_wake_up(curr->private, mode, wake_flags);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL(default_wake_function);
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_RT_MUTEXES
|
|
|
|
+
|
|
|
|
+static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
|
|
|
|
+{
|
|
|
|
+ if (pi_task)
|
|
|
|
+ prio = min(prio, pi_task->prio);
|
|
|
|
+
|
|
|
|
+ return prio;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline int rt_effective_prio(struct task_struct *p, int prio)
|
|
|
|
+{
|
|
|
|
+ struct task_struct *pi_task = rt_mutex_get_top_task(p);
|
|
|
|
+
|
|
|
|
+ return __rt_effective_prio(pi_task, prio);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * rt_mutex_setprio - set the current priority of a task
|
|
|
|
+ * @p: task to boost
|
|
|
|
+ * @pi_task: donor task
|
|
|
|
+ *
|
|
|
|
+ * This function changes the 'effective' priority of a task. It does
|
|
|
|
+ * not touch ->normal_prio like __setscheduler().
|
|
|
|
+ *
|
|
|
|
+ * Used by the rt_mutex code to implement priority inheritance
|
|
|
|
+ * logic. Call site only calls if the priority of the task changed.
|
|
|
|
+ */
|
|
|
|
+void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
|
|
|
|
+{
|
|
|
|
+ int prio, oldprio;
|
|
|
|
+ struct rq *rq;
|
|
|
|
+
|
|
|
|
+ /* XXX used to be waiter->prio, not waiter->task->prio */
|
|
|
|
+ prio = __rt_effective_prio(pi_task, p->normal_prio);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * If nothing changed; bail early.
|
|
|
|
+ */
|
|
|
|
+ if (p->pi_top_task == pi_task && prio == p->prio)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ rq = __task_rq_lock(p, NULL);
|
|
|
|
+ update_rq_clock(rq);
|
|
|
|
+ /*
|
|
|
|
+ * Set under pi_lock && rq->lock, such that the value can be used under
|
|
|
|
+ * either lock.
|
|
|
|
+ *
|
|
|
|
+ * Note that there is loads of tricky to make this pointer cache work
|
|
|
|
+ * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
|
|
|
|
+ * ensure a task is de-boosted (pi_task is set to NULL) before the
|
|
|
|
+ * task is allowed to run again (and can exit). This ensures the pointer
|
|
|
|
+ * points to a blocked task -- which guaratees the task is present.
|
|
|
|
+ */
|
|
|
|
+ p->pi_top_task = pi_task;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * For FIFO/RR we only need to set prio, if that matches we're done.
|
|
|
|
+ */
|
|
|
|
+ if (prio == p->prio)
|
|
|
|
+ goto out_unlock;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Idle task boosting is a nono in general. There is one
|
|
|
|
+ * exception, when PREEMPT_RT and NOHZ is active:
|
|
|
|
+ *
|
|
|
|
+ * The idle task calls get_next_timer_interrupt() and holds
|
|
|
|
+ * the timer wheel base->lock on the CPU and another CPU wants
|
|
|
|
+ * to access the timer (probably to cancel it). We can safely
|
|
|
|
+ * ignore the boosting request, as the idle CPU runs this code
|
|
|
|
+ * with interrupts disabled and will complete the lock
|
|
|
|
+ * protected section without being interrupted. So there is no
|
|
|
|
+ * real need to boost.
|
|
|
|
+ */
|
|
|
|
+ if (unlikely(p == rq->idle)) {
|
|
|
|
+ WARN_ON(p != rq->curr);
|
|
|
|
+ WARN_ON(p->pi_blocked_on);
|
|
|
|
+ goto out_unlock;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ trace_sched_pi_setprio(p, pi_task);
|
|
|
|
+ oldprio = p->prio;
|
|
|
|
+ p->prio = prio;
|
|
|
|
+ if (task_running(rq, p)){
|
|
|
|
+ if (prio > oldprio)
|
|
|
|
+ resched_task(p);
|
|
|
|
+ } else if (task_queued(p)) {
|
|
|
|
+ dequeue_task(rq, p, DEQUEUE_SAVE);
|
|
|
|
+ enqueue_task(rq, p, ENQUEUE_RESTORE);
|
|
|
|
+ if (prio < oldprio)
|
|
|
|
+ try_preempt(p, rq);
|
|
|
|
+ }
|
|
|
|
+out_unlock:
|
2021-01-08 07:29:38 -06:00
|
|
|
+ /* Avoid rq from going away on us: */
|
|
|
|
+ preempt_disable();
|
2020-10-26 15:23:54 -05:00
|
|
|
+ __task_rq_unlock(rq, NULL);
|
2021-01-08 07:29:38 -06:00
|
|
|
+ preempt_enable();
|
2020-10-26 15:23:54 -05:00
|
|
|
+}
|
|
|
|
+#else
|
|
|
|
+static inline int rt_effective_prio(struct task_struct *p, int prio)
|
|
|
|
+{
|
|
|
|
+ return prio;
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Adjust the deadline for when the priority is to change, before it's
|
|
|
|
+ * changed.
|
|
|
|
+ */
|
|
|
|
+static inline void adjust_deadline(struct task_struct *p, int new_prio)
|
|
|
|
+{
|
|
|
|
+ p->deadline += static_deadline_diff(new_prio) - task_deadline_diff(p);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void set_user_nice(struct task_struct *p, long nice)
|
|
|
|
+{
|
|
|
|
+ int new_static, old_static;
|
|
|
|
+ struct rq_flags rf;
|
|
|
|
+ struct rq *rq;
|
|
|
|
+
|
|
|
|
+ if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
|
|
|
|
+ return;
|
|
|
|
+ new_static = NICE_TO_PRIO(nice);
|
|
|
|
+ /*
|
|
|
|
+ * We have to be careful, if called from sys_setpriority(),
|
|
|
|
+ * the task might be in the middle of scheduling on another CPU.
|
|
|
|
+ */
|
|
|
|
+ rq = task_rq_lock(p, &rf);
|
|
|
|
+ update_rq_clock(rq);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * The RT priorities are set via sched_setscheduler(), but we still
|
|
|
|
+ * allow the 'normal' nice value to be set - but as expected
|
|
|
|
+ * it wont have any effect on scheduling until the task is
|
|
|
|
+ * not SCHED_NORMAL/SCHED_BATCH:
|
|
|
|
+ */
|
|
|
|
+ if (has_rt_policy(p)) {
|
|
|
|
+ p->static_prio = new_static;
|
|
|
|
+ goto out_unlock;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ adjust_deadline(p, new_static);
|
|
|
|
+ old_static = p->static_prio;
|
|
|
|
+ p->static_prio = new_static;
|
|
|
|
+ p->prio = effective_prio(p);
|
|
|
|
+
|
|
|
|
+ if (task_queued(p)) {
|
|
|
|
+ dequeue_task(rq, p, DEQUEUE_SAVE);
|
|
|
|
+ enqueue_task(rq, p, ENQUEUE_RESTORE);
|
|
|
|
+ if (new_static < old_static)
|
|
|
|
+ try_preempt(p, rq);
|
|
|
|
+ } else if (task_running(rq, p)) {
|
|
|
|
+ set_rq_task(rq, p);
|
|
|
|
+ if (old_static < new_static)
|
|
|
|
+ resched_task(p);
|
|
|
|
+ }
|
|
|
|
+out_unlock:
|
|
|
|
+ task_rq_unlock(rq, p, &rf);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL(set_user_nice);
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * can_nice - check if a task can reduce its nice value
|
|
|
|
+ * @p: task
|
|
|
|
+ * @nice: nice value
|
|
|
|
+ */
|
|
|
|
+int can_nice(const struct task_struct *p, const int nice)
|
|
|
|
+{
|
|
|
|
+ /* Convert nice value [19,-20] to rlimit style value [1,40] */
|
|
|
|
+ int nice_rlim = nice_to_rlimit(nice);
|
|
|
|
+
|
|
|
|
+ return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
|
|
|
|
+ capable(CAP_SYS_NICE));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef __ARCH_WANT_SYS_NICE
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * sys_nice - change the priority of the current process.
|
|
|
|
+ * @increment: priority increment
|
|
|
|
+ *
|
|
|
|
+ * sys_setpriority is a more generic, but much slower function that
|
|
|
|
+ * does similar things.
|
|
|
|
+ */
|
|
|
|
+SYSCALL_DEFINE1(nice, int, increment)
|
|
|
|
+{
|
|
|
|
+ long nice, retval;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Setpriority might change our priority at the same moment.
|
|
|
|
+ * We don't have to worry. Conceptually one call occurs first
|
|
|
|
+ * and we have a single winner.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+ increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
|
|
|
|
+ nice = task_nice(current) + increment;
|
|
|
|
+
|
|
|
|
+ nice = clamp_val(nice, MIN_NICE, MAX_NICE);
|
|
|
|
+ if (increment < 0 && !can_nice(current, nice))
|
|
|
|
+ return -EPERM;
|
|
|
|
+
|
|
|
|
+ retval = security_task_setnice(current, nice);
|
|
|
|
+ if (retval)
|
|
|
|
+ return retval;
|
|
|
|
+
|
|
|
|
+ set_user_nice(current, nice);
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * task_prio - return the priority value of a given task.
|
|
|
|
+ * @p: the task in question.
|
|
|
|
+ *
|
|
|
|
+ * Return: The priority value as seen by users in /proc.
|
|
|
|
+ * RT tasks are offset by -100. Normal tasks are centered around 1, value goes
|
|
|
|
+ * from 0 (SCHED_ISO) up to 82 (nice +19 SCHED_IDLEPRIO).
|
|
|
|
+ */
|
|
|
|
+int task_prio(const struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ int delta, prio = p->prio - MAX_RT_PRIO;
|
|
|
|
+
|
|
|
|
+ /* rt tasks and iso tasks */
|
|
|
|
+ if (prio <= 0)
|
|
|
|
+ goto out;
|
|
|
|
+
|
|
|
|
+ /* Convert to ms to avoid overflows */
|
|
|
|
+ delta = NS_TO_MS(p->deadline - task_rq(p)->niffies);
|
|
|
|
+ if (unlikely(delta < 0))
|
|
|
|
+ delta = 0;
|
|
|
|
+ delta = delta * 40 / ms_longest_deadline_diff();
|
|
|
|
+ if (delta <= 80)
|
|
|
|
+ prio += delta;
|
|
|
|
+ if (idleprio_task(p))
|
|
|
|
+ prio += 40;
|
|
|
|
+out:
|
|
|
|
+ return prio;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * idle_cpu - is a given CPU idle currently?
|
|
|
|
+ * @cpu: the processor in question.
|
|
|
|
+ *
|
|
|
|
+ * Return: 1 if the CPU is currently idle. 0 otherwise.
|
|
|
|
+ */
|
|
|
|
+int idle_cpu(int cpu)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq = cpu_rq(cpu);
|
|
|
|
+
|
|
|
|
+ if (rq->curr != rq->idle)
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ if (rq->nr_running)
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ if (rq->ttwu_pending)
|
|
|
|
+ return 0;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ return 1;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * available_idle_cpu - is a given CPU idle for enqueuing work.
|
|
|
|
+ * @cpu: the CPU in question.
|
|
|
|
+ *
|
|
|
|
+ * Return: 1 if the CPU is currently idle. 0 otherwise.
|
|
|
|
+ */
|
|
|
|
+int available_idle_cpu(int cpu)
|
|
|
|
+{
|
|
|
|
+ if (!idle_cpu(cpu))
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ if (vcpu_is_preempted(cpu))
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ return 1;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * idle_task - return the idle task for a given CPU.
|
|
|
|
+ * @cpu: the processor in question.
|
|
|
|
+ *
|
|
|
|
+ * Return: The idle task for the CPU @cpu.
|
|
|
|
+ */
|
|
|
|
+struct task_struct *idle_task(int cpu)
|
|
|
|
+{
|
|
|
|
+ return cpu_rq(cpu)->idle;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * find_process_by_pid - find a process with a matching PID value.
|
|
|
|
+ * @pid: the pid in question.
|
|
|
|
+ *
|
|
|
|
+ * The task of @pid, if found. %NULL otherwise.
|
|
|
|
+ */
|
|
|
|
+static inline struct task_struct *find_process_by_pid(pid_t pid)
|
|
|
|
+{
|
|
|
|
+ return pid ? find_task_by_vpid(pid) : current;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* Actually do priority change: must hold rq lock. */
|
|
|
|
+static void __setscheduler(struct task_struct *p, struct rq *rq, int policy,
|
|
|
|
+ int prio, const struct sched_attr *attr,
|
|
|
|
+ bool keep_boost)
|
|
|
|
+{
|
|
|
|
+ int oldrtprio, oldprio;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * If params can't change scheduling class changes aren't allowed
|
|
|
|
+ * either.
|
|
|
|
+ */
|
|
|
|
+ if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ p->policy = policy;
|
|
|
|
+ oldrtprio = p->rt_priority;
|
|
|
|
+ p->rt_priority = prio;
|
|
|
|
+ p->normal_prio = normal_prio(p);
|
|
|
|
+ oldprio = p->prio;
|
|
|
|
+ /*
|
|
|
|
+ * Keep a potential priority boosting if called from
|
|
|
|
+ * sched_setscheduler().
|
|
|
|
+ */
|
|
|
|
+ p->prio = normal_prio(p);
|
|
|
|
+ if (keep_boost)
|
|
|
|
+ p->prio = rt_effective_prio(p, p->prio);
|
|
|
|
+
|
|
|
|
+ if (task_running(rq, p)) {
|
|
|
|
+ set_rq_task(rq, p);
|
|
|
|
+ resched_task(p);
|
|
|
|
+ } else if (task_queued(p)) {
|
|
|
|
+ dequeue_task(rq, p, DEQUEUE_SAVE);
|
|
|
|
+ enqueue_task(rq, p, ENQUEUE_RESTORE);
|
|
|
|
+ if (p->prio < oldprio || p->rt_priority > oldrtprio)
|
|
|
|
+ try_preempt(p, rq);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Check the target process has a UID that matches the current process's
|
|
|
|
+ */
|
|
|
|
+static bool check_same_owner(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ const struct cred *cred = current_cred(), *pcred;
|
|
|
|
+ bool match;
|
|
|
|
+
|
|
|
|
+ rcu_read_lock();
|
|
|
|
+ pcred = __task_cred(p);
|
|
|
|
+ match = (uid_eq(cred->euid, pcred->euid) ||
|
|
|
|
+ uid_eq(cred->euid, pcred->uid));
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+ return match;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int __sched_setscheduler(struct task_struct *p,
|
|
|
|
+ const struct sched_attr *attr,
|
|
|
|
+ bool user, bool pi)
|
|
|
|
+{
|
|
|
|
+ int retval, policy = attr->sched_policy, oldpolicy = -1, priority = attr->sched_priority;
|
|
|
|
+ unsigned long rlim_rtprio = 0;
|
|
|
|
+ struct rq_flags rf;
|
|
|
|
+ int reset_on_fork;
|
|
|
|
+ struct rq *rq;
|
|
|
|
+
|
|
|
|
+ /* The pi code expects interrupts enabled */
|
|
|
|
+ BUG_ON(pi && in_interrupt());
|
|
|
|
+
|
|
|
|
+ if (is_rt_policy(policy) && !capable(CAP_SYS_NICE)) {
|
|
|
|
+ unsigned long lflags;
|
|
|
|
+
|
|
|
|
+ if (!lock_task_sighand(p, &lflags))
|
|
|
|
+ return -ESRCH;
|
|
|
|
+ rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
|
|
|
|
+ unlock_task_sighand(p, &lflags);
|
|
|
|
+ if (rlim_rtprio)
|
|
|
|
+ goto recheck;
|
|
|
|
+ /*
|
|
|
|
+ * If the caller requested an RT policy without having the
|
|
|
|
+ * necessary rights, we downgrade the policy to SCHED_ISO.
|
|
|
|
+ * We also set the parameter to zero to pass the checks.
|
|
|
|
+ */
|
|
|
|
+ policy = SCHED_ISO;
|
|
|
|
+ priority = 0;
|
|
|
|
+ }
|
|
|
|
+recheck:
|
|
|
|
+ /* Double check policy once rq lock held */
|
|
|
|
+ if (policy < 0) {
|
|
|
|
+ reset_on_fork = p->sched_reset_on_fork;
|
|
|
|
+ policy = oldpolicy = p->policy;
|
|
|
|
+ } else {
|
|
|
|
+ reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
|
|
|
|
+ policy &= ~SCHED_RESET_ON_FORK;
|
|
|
|
+
|
|
|
|
+ if (!SCHED_RANGE(policy))
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
|
|
|
|
+ return -EINVAL;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Valid priorities for SCHED_FIFO and SCHED_RR are
|
|
|
|
+ * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
|
|
|
|
+ * SCHED_BATCH is 0.
|
|
|
|
+ */
|
|
|
|
+ if (priority < 0 ||
|
|
|
|
+ (p->mm && priority > MAX_USER_RT_PRIO - 1) ||
|
|
|
|
+ (!p->mm && priority > MAX_RT_PRIO - 1))
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ if (is_rt_policy(policy) != (priority != 0))
|
|
|
|
+ return -EINVAL;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Allow unprivileged RT tasks to decrease priority:
|
|
|
|
+ */
|
|
|
|
+ if (user && !capable(CAP_SYS_NICE)) {
|
|
|
|
+ if (is_rt_policy(policy)) {
|
|
|
|
+ unsigned long rlim_rtprio =
|
|
|
|
+ task_rlimit(p, RLIMIT_RTPRIO);
|
|
|
|
+
|
|
|
|
+ /* Can't set/change the rt policy */
|
|
|
|
+ if (policy != p->policy && !rlim_rtprio)
|
|
|
|
+ return -EPERM;
|
|
|
|
+
|
|
|
|
+ /* Can't increase priority */
|
|
|
|
+ if (priority > p->rt_priority &&
|
|
|
|
+ priority > rlim_rtprio)
|
|
|
|
+ return -EPERM;
|
|
|
|
+ } else {
|
|
|
|
+ switch (p->policy) {
|
|
|
|
+ /*
|
|
|
|
+ * Can only downgrade policies but not back to
|
|
|
|
+ * SCHED_NORMAL
|
|
|
|
+ */
|
|
|
|
+ case SCHED_ISO:
|
|
|
|
+ if (policy == SCHED_ISO)
|
|
|
|
+ goto out;
|
|
|
|
+ if (policy != SCHED_NORMAL)
|
|
|
|
+ return -EPERM;
|
|
|
|
+ break;
|
|
|
|
+ case SCHED_BATCH:
|
|
|
|
+ if (policy == SCHED_BATCH)
|
|
|
|
+ goto out;
|
|
|
|
+ if (policy != SCHED_IDLEPRIO)
|
|
|
|
+ return -EPERM;
|
|
|
|
+ break;
|
|
|
|
+ case SCHED_IDLEPRIO:
|
|
|
|
+ if (policy == SCHED_IDLEPRIO)
|
|
|
|
+ goto out;
|
|
|
|
+ return -EPERM;
|
|
|
|
+ default:
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* Can't change other user's priorities */
|
|
|
|
+ if (!check_same_owner(p))
|
|
|
|
+ return -EPERM;
|
|
|
|
+
|
|
|
|
+ /* Normal users shall not reset the sched_reset_on_fork flag: */
|
|
|
|
+ if (p->sched_reset_on_fork && !reset_on_fork)
|
|
|
|
+ return -EPERM;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (user) {
|
|
|
|
+ retval = security_task_setscheduler(p);
|
|
|
|
+ if (retval)
|
|
|
|
+ return retval;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (pi)
|
|
|
|
+ cpuset_read_lock();
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Make sure no PI-waiters arrive (or leave) while we are
|
|
|
|
+ * changing the priority of the task:
|
|
|
|
+ *
|
|
|
|
+ * To be able to change p->policy safely, the runqueue lock must be
|
|
|
|
+ * held.
|
|
|
|
+ */
|
|
|
|
+ rq = task_rq_lock(p, &rf);
|
|
|
|
+ update_rq_clock(rq);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Changing the policy of the stop threads its a very bad idea:
|
|
|
|
+ */
|
|
|
|
+ if (p == rq->stop) {
|
|
|
|
+ retval = -EINVAL;
|
|
|
|
+ goto unlock;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * If not changing anything there's no need to proceed further:
|
|
|
|
+ */
|
|
|
|
+ if (unlikely(policy == p->policy && (!is_rt_policy(policy) ||
|
|
|
|
+ priority == p->rt_priority))) {
|
|
|
|
+ retval = 0;
|
|
|
|
+ goto unlock;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* Re-check policy now with rq lock held */
|
|
|
|
+ if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
|
|
|
|
+ policy = oldpolicy = -1;
|
|
|
|
+ task_rq_unlock(rq, p, &rf);
|
|
|
|
+ if (pi)
|
|
|
|
+ cpuset_read_unlock();
|
|
|
|
+ goto recheck;
|
|
|
|
+ }
|
|
|
|
+ p->sched_reset_on_fork = reset_on_fork;
|
|
|
|
+
|
|
|
|
+ __setscheduler(p, rq, policy, priority, attr, pi);
|
|
|
|
+
|
|
|
|
+ /* Avoid rq from going away on us: */
|
|
|
|
+ preempt_disable();
|
|
|
|
+ task_rq_unlock(rq, p, &rf);
|
|
|
|
+
|
|
|
|
+ if (pi) {
|
|
|
|
+ cpuset_read_unlock();
|
|
|
|
+ rt_mutex_adjust_pi(p);
|
|
|
|
+ }
|
|
|
|
+ preempt_enable();
|
|
|
|
+out:
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+unlock:
|
|
|
|
+ task_rq_unlock(rq, p, &rf);
|
|
|
|
+ if (pi)
|
|
|
|
+ cpuset_read_unlock();
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int _sched_setscheduler(struct task_struct *p, int policy,
|
|
|
|
+ const struct sched_param *param, bool check)
|
|
|
|
+{
|
|
|
|
+ struct sched_attr attr = {
|
|
|
|
+ .sched_policy = policy,
|
|
|
|
+ .sched_priority = param->sched_priority,
|
|
|
|
+ .sched_nice = PRIO_TO_NICE(p->static_prio),
|
|
|
|
+ };
|
|
|
|
+
|
|
|
|
+ return __sched_setscheduler(p, &attr, check, true);
|
|
|
|
+}
|
|
|
|
+/**
|
|
|
|
+ * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
|
|
|
|
+ * @p: the task in question.
|
|
|
|
+ * @policy: new policy.
|
|
|
|
+ * @param: structure containing the new RT priority.
|
|
|
|
+ *
|
|
|
|
+ * Use sched_set_fifo(), read its comment.
|
|
|
|
+ *
|
|
|
|
+ * Return: 0 on success. An error code otherwise.
|
|
|
|
+ *
|
|
|
|
+ * NOTE that the task may be already dead.
|
|
|
|
+ */
|
|
|
|
+int sched_setscheduler(struct task_struct *p, int policy,
|
|
|
|
+ const struct sched_param *param)
|
|
|
|
+{
|
|
|
|
+ return _sched_setscheduler(p, policy, param, true);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
|
|
|
|
+{
|
|
|
|
+ return __sched_setscheduler(p, attr, true, true);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
|
|
|
|
+{
|
|
|
|
+ return __sched_setscheduler(p, attr, false, true);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
|
|
|
|
+ * @p: the task in question.
|
|
|
|
+ * @policy: new policy.
|
|
|
|
+ * @param: structure containing the new RT priority.
|
|
|
|
+ *
|
|
|
|
+ * Just like sched_setscheduler, only don't bother checking if the
|
|
|
|
+ * current context has permission. For example, this is needed in
|
|
|
|
+ * stop_machine(): we create temporary high priority worker threads,
|
|
|
|
+ * but our caller might not have that capability.
|
|
|
|
+ *
|
|
|
|
+ * Return: 0 on success. An error code otherwise.
|
|
|
|
+ */
|
|
|
|
+int sched_setscheduler_nocheck(struct task_struct *p, int policy,
|
|
|
|
+ const struct sched_param *param)
|
|
|
|
+{
|
|
|
|
+ return _sched_setscheduler(p, policy, param, false);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
|
|
|
|
+ * incapable of resource management, which is the one thing an OS really should
|
|
|
|
+ * be doing.
|
|
|
|
+ *
|
|
|
|
+ * This is of course the reason it is limited to privileged users only.
|
|
|
|
+ *
|
|
|
|
+ * Worse still; it is fundamentally impossible to compose static priority
|
|
|
|
+ * workloads. You cannot take two correctly working static prio workloads
|
|
|
|
+ * and smash them together and still expect them to work.
|
|
|
|
+ *
|
|
|
|
+ * For this reason 'all' FIFO tasks the kernel creates are basically at:
|
|
|
|
+ *
|
|
|
|
+ * MAX_RT_PRIO / 2
|
|
|
|
+ *
|
|
|
|
+ * The administrator _MUST_ configure the system, the kernel simply doesn't
|
|
|
|
+ * know enough information to make a sensible choice.
|
|
|
|
+ */
|
|
|
|
+void sched_set_fifo(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
|
|
|
|
+ WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL_GPL(sched_set_fifo);
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
|
|
|
|
+ */
|
|
|
|
+void sched_set_fifo_low(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ struct sched_param sp = { .sched_priority = 1 };
|
|
|
|
+ WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL_GPL(sched_set_fifo_low);
|
|
|
|
+
|
|
|
|
+void sched_set_normal(struct task_struct *p, int nice)
|
|
|
|
+{
|
|
|
|
+ struct sched_attr attr = {
|
|
|
|
+ .sched_policy = SCHED_NORMAL,
|
|
|
|
+ .sched_nice = nice,
|
|
|
|
+ };
|
|
|
|
+ WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL_GPL(sched_set_normal);
|
|
|
|
+
|
|
|
|
+static int
|
|
|
|
+do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
|
|
|
|
+{
|
|
|
|
+ struct sched_param lparam;
|
|
|
|
+ struct task_struct *p;
|
|
|
|
+ int retval;
|
|
|
|
+
|
|
|
|
+ if (!param || pid < 0)
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
|
|
|
|
+ return -EFAULT;
|
|
|
|
+
|
|
|
|
+ rcu_read_lock();
|
|
|
|
+ retval = -ESRCH;
|
|
|
|
+ p = find_process_by_pid(pid);
|
|
|
|
+ if (likely(p))
|
|
|
|
+ get_task_struct(p);
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+
|
|
|
|
+ if (likely(p)) {
|
|
|
|
+ retval = sched_setscheduler(p, policy, &lparam);
|
|
|
|
+ put_task_struct(p);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Mimics kernel/events/core.c perf_copy_attr().
|
|
|
|
+ */
|
|
|
|
+static int sched_copy_attr(struct sched_attr __user *uattr,
|
|
|
|
+ struct sched_attr *attr)
|
|
|
|
+{
|
|
|
|
+ u32 size;
|
|
|
|
+ int ret;
|
|
|
|
+
|
|
|
|
+ /* Zero the full structure, so that a short copy will be nice: */
|
|
|
|
+ memset(attr, 0, sizeof(*attr));
|
|
|
|
+
|
|
|
|
+ ret = get_user(size, &uattr->size);
|
|
|
|
+ if (ret)
|
|
|
|
+ return ret;
|
|
|
|
+
|
|
|
|
+ /* ABI compatibility quirk: */
|
|
|
|
+ if (!size)
|
|
|
|
+ size = SCHED_ATTR_SIZE_VER0;
|
|
|
|
+
|
|
|
|
+ if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
|
|
|
|
+ goto err_size;
|
|
|
|
+
|
|
|
|
+ ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
|
|
|
|
+ if (ret) {
|
|
|
|
+ if (ret == -E2BIG)
|
|
|
|
+ goto err_size;
|
|
|
|
+ return ret;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * XXX: Do we want to be lenient like existing syscalls; or do we want
|
|
|
|
+ * to be strict and return an error on out-of-bounds values?
|
|
|
|
+ */
|
|
|
|
+ attr->sched_nice = clamp(attr->sched_nice, -20, 19);
|
|
|
|
+
|
|
|
|
+ /* sched/core.c uses zero here but we already know ret is zero */
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+err_size:
|
|
|
|
+ put_user(sizeof(*attr), &uattr->size);
|
|
|
|
+ return -E2BIG;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * sched_setparam() passes in -1 for its policy, to let the functions
|
|
|
|
+ * it calls know not to change it.
|
|
|
|
+ */
|
|
|
|
+#define SETPARAM_POLICY -1
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * sys_sched_setscheduler - set/change the scheduler policy and RT priority
|
|
|
|
+ * @pid: the pid in question.
|
|
|
|
+ * @policy: new policy.
|
|
|
|
+ * @param: structure containing the new RT priority.
|
|
|
|
+ *
|
|
|
|
+ * Return: 0 on success. An error code otherwise.
|
|
|
|
+ */
|
|
|
|
+SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
|
|
|
|
+{
|
|
|
|
+ if (policy < 0)
|
|
|
|
+ return -EINVAL;
|
|
|
|
+
|
|
|
|
+ return do_sched_setscheduler(pid, policy, param);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * sys_sched_setparam - set/change the RT priority of a thread
|
|
|
|
+ * @pid: the pid in question.
|
|
|
|
+ * @param: structure containing the new RT priority.
|
|
|
|
+ *
|
|
|
|
+ * Return: 0 on success. An error code otherwise.
|
|
|
|
+ */
|
|
|
|
+SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
|
|
|
|
+{
|
|
|
|
+ return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * sys_sched_setattr - same as above, but with extended sched_attr
|
|
|
|
+ * @pid: the pid in question.
|
|
|
|
+ * @uattr: structure containing the extended parameters.
|
|
|
|
+ */
|
|
|
|
+SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
|
|
|
|
+ unsigned int, flags)
|
|
|
|
+{
|
|
|
|
+ struct sched_attr attr;
|
|
|
|
+ struct task_struct *p;
|
|
|
|
+ int retval;
|
|
|
|
+
|
|
|
|
+ if (!uattr || pid < 0 || flags)
|
|
|
|
+ return -EINVAL;
|
|
|
|
+
|
|
|
|
+ retval = sched_copy_attr(uattr, &attr);
|
|
|
|
+ if (retval)
|
|
|
|
+ return retval;
|
|
|
|
+
|
|
|
|
+ if ((int)attr.sched_policy < 0)
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
|
|
|
|
+ attr.sched_policy = SETPARAM_POLICY;
|
|
|
|
+
|
|
|
|
+ rcu_read_lock();
|
|
|
|
+ retval = -ESRCH;
|
|
|
|
+ p = find_process_by_pid(pid);
|
|
|
|
+ if (likely(p))
|
|
|
|
+ get_task_struct(p);
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+
|
|
|
|
+ if (likely(p)) {
|
|
|
|
+ retval = sched_setattr(p, &attr);
|
|
|
|
+ put_task_struct(p);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * sys_sched_getscheduler - get the policy (scheduling class) of a thread
|
|
|
|
+ * @pid: the pid in question.
|
|
|
|
+ *
|
|
|
|
+ * Return: On success, the policy of the thread. Otherwise, a negative error
|
|
|
|
+ * code.
|
|
|
|
+ */
|
|
|
|
+SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
|
|
|
|
+{
|
|
|
|
+ struct task_struct *p;
|
|
|
|
+ int retval = -EINVAL;
|
|
|
|
+
|
|
|
|
+ if (pid < 0)
|
|
|
|
+ goto out_nounlock;
|
|
|
|
+
|
|
|
|
+ retval = -ESRCH;
|
|
|
|
+ rcu_read_lock();
|
|
|
|
+ p = find_process_by_pid(pid);
|
|
|
|
+ if (p) {
|
|
|
|
+ retval = security_task_getscheduler(p);
|
|
|
|
+ if (!retval)
|
|
|
|
+ retval = p->policy;
|
|
|
|
+ }
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+
|
|
|
|
+out_nounlock:
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * sys_sched_getscheduler - get the RT priority of a thread
|
|
|
|
+ * @pid: the pid in question.
|
|
|
|
+ * @param: structure containing the RT priority.
|
|
|
|
+ *
|
|
|
|
+ * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
|
|
|
|
+ * code.
|
|
|
|
+ */
|
|
|
|
+SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
|
|
|
|
+{
|
|
|
|
+ struct sched_param lp = { .sched_priority = 0 };
|
|
|
|
+ struct task_struct *p;
|
|
|
|
+ int retval = -EINVAL;
|
|
|
|
+
|
|
|
|
+ if (!param || pid < 0)
|
|
|
|
+ goto out_nounlock;
|
|
|
|
+
|
|
|
|
+ rcu_read_lock();
|
|
|
|
+ p = find_process_by_pid(pid);
|
|
|
|
+ retval = -ESRCH;
|
|
|
|
+ if (!p)
|
|
|
|
+ goto out_unlock;
|
|
|
|
+
|
|
|
|
+ retval = security_task_getscheduler(p);
|
|
|
|
+ if (retval)
|
|
|
|
+ goto out_unlock;
|
|
|
|
+
|
|
|
|
+ if (has_rt_policy(p))
|
|
|
|
+ lp.sched_priority = p->rt_priority;
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * This one might sleep, we cannot do it with a spinlock held ...
|
|
|
|
+ */
|
|
|
|
+ retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
|
|
|
|
+
|
|
|
|
+out_nounlock:
|
|
|
|
+ return retval;
|
|
|
|
+
|
|
|
|
+out_unlock:
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Copy the kernel size attribute structure (which might be larger
|
|
|
|
+ * than what user-space knows about) to user-space.
|
|
|
|
+ *
|
|
|
|
+ * Note that all cases are valid: user-space buffer can be larger or
|
|
|
|
+ * smaller than the kernel-space buffer. The usual case is that both
|
|
|
|
+ * have the same size.
|
|
|
|
+ */
|
|
|
|
+static int
|
|
|
|
+sched_attr_copy_to_user(struct sched_attr __user *uattr,
|
|
|
|
+ struct sched_attr *kattr,
|
|
|
|
+ unsigned int usize)
|
|
|
|
+{
|
|
|
|
+ unsigned int ksize = sizeof(*kattr);
|
|
|
|
+
|
|
|
|
+ if (!access_ok(uattr, usize))
|
|
|
|
+ return -EFAULT;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * sched_getattr() ABI forwards and backwards compatibility:
|
|
|
|
+ *
|
|
|
|
+ * If usize == ksize then we just copy everything to user-space and all is good.
|
|
|
|
+ *
|
|
|
|
+ * If usize < ksize then we only copy as much as user-space has space for,
|
|
|
|
+ * this keeps ABI compatibility as well. We skip the rest.
|
|
|
|
+ *
|
|
|
|
+ * If usize > ksize then user-space is using a newer version of the ABI,
|
|
|
|
+ * which part the kernel doesn't know about. Just ignore it - tooling can
|
|
|
|
+ * detect the kernel's knowledge of attributes from the attr->size value
|
|
|
|
+ * which is set to ksize in this case.
|
|
|
|
+ */
|
|
|
|
+ kattr->size = min(usize, ksize);
|
|
|
|
+
|
|
|
|
+ if (copy_to_user(uattr, kattr, kattr->size))
|
|
|
|
+ return -EFAULT;
|
|
|
|
+
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * sys_sched_getattr - similar to sched_getparam, but with sched_attr
|
|
|
|
+ * @pid: the pid in question.
|
|
|
|
+ * @uattr: structure containing the extended parameters.
|
|
|
|
+ * @usize: sizeof(attr) for fwd/bwd comp.
|
|
|
|
+ * @flags: for future extension.
|
|
|
|
+ */
|
|
|
|
+SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
|
|
|
|
+ unsigned int, usize, unsigned int, flags)
|
|
|
|
+{
|
|
|
|
+ struct sched_attr kattr = { };
|
|
|
|
+ struct task_struct *p;
|
|
|
|
+ int retval;
|
|
|
|
+
|
|
|
|
+ if (!uattr || pid < 0 || usize > PAGE_SIZE ||
|
|
|
|
+ usize < SCHED_ATTR_SIZE_VER0 || flags)
|
|
|
|
+ return -EINVAL;
|
|
|
|
+
|
|
|
|
+ rcu_read_lock();
|
|
|
|
+ p = find_process_by_pid(pid);
|
|
|
|
+ retval = -ESRCH;
|
|
|
|
+ if (!p)
|
|
|
|
+ goto out_unlock;
|
|
|
|
+
|
|
|
|
+ retval = security_task_getscheduler(p);
|
|
|
|
+ if (retval)
|
|
|
|
+ goto out_unlock;
|
|
|
|
+
|
|
|
|
+ kattr.sched_policy = p->policy;
|
|
|
|
+ if (rt_task(p))
|
|
|
|
+ kattr.sched_priority = p->rt_priority;
|
|
|
|
+ else
|
|
|
|
+ kattr.sched_nice = task_nice(p);
|
|
|
|
+
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+
|
|
|
|
+ return sched_attr_copy_to_user(uattr, &kattr, usize);
|
|
|
|
+
|
|
|
|
+out_unlock:
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
|
|
|
|
+{
|
|
|
|
+ cpumask_var_t cpus_allowed, new_mask;
|
|
|
|
+ struct task_struct *p;
|
|
|
|
+ int retval;
|
|
|
|
+
|
|
|
|
+ rcu_read_lock();
|
|
|
|
+
|
|
|
|
+ p = find_process_by_pid(pid);
|
|
|
|
+ if (!p) {
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+ return -ESRCH;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* Prevent p going away */
|
|
|
|
+ get_task_struct(p);
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+
|
|
|
|
+ if (p->flags & PF_NO_SETAFFINITY) {
|
|
|
|
+ retval = -EINVAL;
|
|
|
|
+ goto out_put_task;
|
|
|
|
+ }
|
|
|
|
+ if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
|
|
|
|
+ retval = -ENOMEM;
|
|
|
|
+ goto out_put_task;
|
|
|
|
+ }
|
|
|
|
+ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
|
|
|
|
+ retval = -ENOMEM;
|
|
|
|
+ goto out_free_cpus_allowed;
|
|
|
|
+ }
|
|
|
|
+ retval = -EPERM;
|
|
|
|
+ if (!check_same_owner(p)) {
|
|
|
|
+ rcu_read_lock();
|
|
|
|
+ if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+ goto out_unlock;
|
|
|
|
+ }
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ retval = security_task_setscheduler(p);
|
|
|
|
+ if (retval)
|
|
|
|
+ goto out_unlock;
|
|
|
|
+
|
|
|
|
+ cpuset_cpus_allowed(p, cpus_allowed);
|
|
|
|
+ cpumask_and(new_mask, in_mask, cpus_allowed);
|
|
|
|
+again:
|
|
|
|
+ retval = __set_cpus_allowed_ptr(p, new_mask, true);
|
|
|
|
+
|
|
|
|
+ if (!retval) {
|
|
|
|
+ cpuset_cpus_allowed(p, cpus_allowed);
|
|
|
|
+ if (!cpumask_subset(new_mask, cpus_allowed)) {
|
|
|
|
+ /*
|
|
|
|
+ * We must have raced with a concurrent cpuset
|
|
|
|
+ * update. Just reset the cpus_allowed to the
|
|
|
|
+ * cpuset's cpus_allowed
|
|
|
|
+ */
|
|
|
|
+ cpumask_copy(new_mask, cpus_allowed);
|
|
|
|
+ goto again;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+out_unlock:
|
|
|
|
+ free_cpumask_var(new_mask);
|
|
|
|
+out_free_cpus_allowed:
|
|
|
|
+ free_cpumask_var(cpus_allowed);
|
|
|
|
+out_put_task:
|
|
|
|
+ put_task_struct(p);
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
|
|
|
|
+ cpumask_t *new_mask)
|
|
|
|
+{
|
|
|
|
+ if (len < cpumask_size())
|
|
|
|
+ cpumask_clear(new_mask);
|
|
|
|
+ else if (len > cpumask_size())
|
|
|
|
+ len = cpumask_size();
|
|
|
|
+
|
|
|
|
+ return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * sys_sched_setaffinity - set the CPU affinity of a process
|
|
|
|
+ * @pid: pid of the process
|
|
|
|
+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
|
|
|
|
+ * @user_mask_ptr: user-space pointer to the new CPU mask
|
|
|
|
+ *
|
|
|
|
+ * Return: 0 on success. An error code otherwise.
|
|
|
|
+ */
|
|
|
|
+SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
|
|
|
|
+ unsigned long __user *, user_mask_ptr)
|
|
|
|
+{
|
|
|
|
+ cpumask_var_t new_mask;
|
|
|
|
+ int retval;
|
|
|
|
+
|
|
|
|
+ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
|
|
|
|
+ return -ENOMEM;
|
|
|
|
+
|
|
|
|
+ retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
|
|
|
|
+ if (retval == 0)
|
|
|
|
+ retval = sched_setaffinity(pid, new_mask);
|
|
|
|
+ free_cpumask_var(new_mask);
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+long sched_getaffinity(pid_t pid, cpumask_t *mask)
|
|
|
|
+{
|
|
|
|
+ struct task_struct *p;
|
|
|
|
+ unsigned long flags;
|
|
|
|
+ int retval;
|
|
|
|
+
|
|
|
|
+ get_online_cpus();
|
|
|
|
+ rcu_read_lock();
|
|
|
|
+
|
|
|
|
+ retval = -ESRCH;
|
|
|
|
+ p = find_process_by_pid(pid);
|
|
|
|
+ if (!p)
|
|
|
|
+ goto out_unlock;
|
|
|
|
+
|
|
|
|
+ retval = security_task_getscheduler(p);
|
|
|
|
+ if (retval)
|
|
|
|
+ goto out_unlock;
|
|
|
|
+
|
|
|
|
+ raw_spin_lock_irqsave(&p->pi_lock, flags);
|
|
|
|
+ cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
|
|
|
|
+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
|
|
+
|
|
|
|
+out_unlock:
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+ put_online_cpus();
|
|
|
|
+
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * sys_sched_getaffinity - get the CPU affinity of a process
|
|
|
|
+ * @pid: pid of the process
|
|
|
|
+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
|
|
|
|
+ * @user_mask_ptr: user-space pointer to hold the current CPU mask
|
|
|
|
+ *
|
|
|
|
+ * Return: 0 on success. An error code otherwise.
|
|
|
|
+ */
|
|
|
|
+SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
|
|
|
|
+ unsigned long __user *, user_mask_ptr)
|
|
|
|
+{
|
|
|
|
+ int ret;
|
|
|
|
+ cpumask_var_t mask;
|
|
|
|
+
|
|
|
|
+ if ((len * BITS_PER_BYTE) < nr_cpu_ids)
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ if (len & (sizeof(unsigned long)-1))
|
|
|
|
+ return -EINVAL;
|
|
|
|
+
|
|
|
|
+ if (!alloc_cpumask_var(&mask, GFP_KERNEL))
|
|
|
|
+ return -ENOMEM;
|
|
|
|
+
|
|
|
|
+ ret = sched_getaffinity(pid, mask);
|
|
|
|
+ if (ret == 0) {
|
|
|
|
+ unsigned int retlen = min(len, cpumask_size());
|
|
|
|
+
|
|
|
|
+ if (copy_to_user(user_mask_ptr, mask, retlen))
|
|
|
|
+ ret = -EFAULT;
|
|
|
|
+ else
|
|
|
|
+ ret = retlen;
|
|
|
|
+ }
|
|
|
|
+ free_cpumask_var(mask);
|
|
|
|
+
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * sys_sched_yield - yield the current processor to other threads.
|
|
|
|
+ *
|
|
|
|
+ * This function yields the current CPU to other tasks. It does this by
|
|
|
|
+ * scheduling away the current task. If it still has the earliest deadline
|
|
|
|
+ * it will be scheduled again as the next task.
|
|
|
|
+ *
|
|
|
|
+ * Return: 0.
|
|
|
|
+ */
|
|
|
|
+static void do_sched_yield(void)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq;
|
|
|
|
+
|
|
|
|
+ if (!sched_yield_type)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ local_irq_disable();
|
|
|
|
+ rq = this_rq();
|
|
|
|
+ rq_lock(rq);
|
|
|
|
+
|
|
|
|
+ if (sched_yield_type > 1)
|
|
|
|
+ time_slice_expired(current, rq);
|
|
|
|
+ schedstat_inc(rq->yld_count);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Since we are going to call schedule() anyway, there's
|
|
|
|
+ * no need to preempt or enable interrupts:
|
|
|
|
+ */
|
|
|
|
+ preempt_disable();
|
|
|
|
+ rq_unlock(rq);
|
|
|
|
+ sched_preempt_enable_no_resched();
|
|
|
|
+
|
|
|
|
+ schedule();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+SYSCALL_DEFINE0(sched_yield)
|
|
|
|
+{
|
|
|
|
+ do_sched_yield();
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifndef CONFIG_PREEMPTION
|
|
|
|
+int __sched _cond_resched(void)
|
|
|
|
+{
|
|
|
|
+ if (should_resched(0)) {
|
|
|
|
+ preempt_schedule_common();
|
|
|
|
+ return 1;
|
|
|
|
+ }
|
|
|
|
+ rcu_all_qs();
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL(_cond_resched);
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
|
|
|
|
+ * call schedule, and on return reacquire the lock.
|
|
|
|
+ *
|
|
|
|
+ * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
|
|
|
|
+ * operations here to prevent schedule() from being called twice (once via
|
|
|
|
+ * spin_unlock(), once by hand).
|
|
|
|
+ */
|
|
|
|
+int __cond_resched_lock(spinlock_t *lock)
|
|
|
|
+{
|
|
|
|
+ int resched = should_resched(PREEMPT_LOCK_OFFSET);
|
|
|
|
+ int ret = 0;
|
|
|
|
+
|
|
|
|
+ lockdep_assert_held(lock);
|
|
|
|
+
|
|
|
|
+ if (spin_needbreak(lock) || resched) {
|
|
|
|
+ spin_unlock(lock);
|
|
|
|
+ if (resched)
|
|
|
|
+ preempt_schedule_common();
|
|
|
|
+ else
|
|
|
|
+ cpu_relax();
|
|
|
|
+ ret = 1;
|
|
|
|
+ spin_lock(lock);
|
|
|
|
+ }
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL(__cond_resched_lock);
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * yield - yield the current processor to other threads.
|
|
|
|
+ *
|
|
|
|
+ * Do not ever use this function, there's a 99% chance you're doing it wrong.
|
|
|
|
+ *
|
|
|
|
+ * The scheduler is at all times free to pick the calling task as the most
|
|
|
|
+ * eligible task to run, if removing the yield() call from your code breaks
|
|
|
|
+ * it, its already broken.
|
|
|
|
+ *
|
|
|
|
+ * Typical broken usage is:
|
|
|
|
+ *
|
|
|
|
+ * while (!event)
|
|
|
|
+ * yield();
|
|
|
|
+ *
|
|
|
|
+ * where one assumes that yield() will let 'the other' process run that will
|
|
|
|
+ * make event true. If the current task is a SCHED_FIFO task that will never
|
|
|
|
+ * happen. Never use yield() as a progress guarantee!!
|
|
|
|
+ *
|
|
|
|
+ * If you want to use yield() to wait for something, use wait_event().
|
|
|
|
+ * If you want to use yield() to be 'nice' for others, use cond_resched().
|
|
|
|
+ * If you still want to use yield(), do not!
|
|
|
|
+ */
|
|
|
|
+void __sched yield(void)
|
|
|
|
+{
|
|
|
|
+ set_current_state(TASK_RUNNING);
|
|
|
|
+ do_sched_yield();
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL(yield);
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * yield_to - yield the current processor to another thread in
|
|
|
|
+ * your thread group, or accelerate that thread toward the
|
|
|
|
+ * processor it's on.
|
|
|
|
+ * @p: target task
|
|
|
|
+ * @preempt: whether task preemption is allowed or not
|
|
|
|
+ *
|
|
|
|
+ * It's the caller's job to ensure that the target task struct
|
|
|
|
+ * can't go away on us before we can do any checks.
|
|
|
|
+ *
|
|
|
|
+ * Return:
|
|
|
|
+ * true (>0) if we indeed boosted the target task.
|
|
|
|
+ * false (0) if we failed to boost the target.
|
|
|
|
+ * -ESRCH if there's no task to yield to.
|
|
|
|
+ */
|
|
|
|
+int __sched yield_to(struct task_struct *p, bool preempt)
|
|
|
|
+{
|
|
|
|
+ struct task_struct *rq_p;
|
|
|
|
+ struct rq *rq, *p_rq;
|
|
|
|
+ unsigned long flags;
|
|
|
|
+ int yielded = 0;
|
|
|
|
+
|
|
|
|
+ local_irq_save(flags);
|
|
|
|
+ rq = this_rq();
|
|
|
|
+
|
|
|
|
+again:
|
|
|
|
+ p_rq = task_rq(p);
|
|
|
|
+ /*
|
|
|
|
+ * If we're the only runnable task on the rq and target rq also
|
|
|
|
+ * has only one task, there's absolutely no point in yielding.
|
|
|
|
+ */
|
|
|
|
+ if (task_running(p_rq, p) || p->state) {
|
|
|
|
+ yielded = -ESRCH;
|
|
|
|
+ goto out_irq;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ double_rq_lock(rq, p_rq);
|
|
|
|
+ if (unlikely(task_rq(p) != p_rq)) {
|
|
|
|
+ double_rq_unlock(rq, p_rq);
|
|
|
|
+ goto again;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ yielded = 1;
|
|
|
|
+ schedstat_inc(rq->yld_count);
|
|
|
|
+ rq_p = rq->curr;
|
|
|
|
+ if (p->deadline > rq_p->deadline)
|
|
|
|
+ p->deadline = rq_p->deadline;
|
|
|
|
+ p->time_slice += rq_p->time_slice;
|
|
|
|
+ if (p->time_slice > timeslice())
|
|
|
|
+ p->time_slice = timeslice();
|
|
|
|
+ time_slice_expired(rq_p, rq);
|
|
|
|
+ if (preempt && rq != p_rq)
|
|
|
|
+ resched_task(p_rq->curr);
|
|
|
|
+ double_rq_unlock(rq, p_rq);
|
|
|
|
+out_irq:
|
|
|
|
+ local_irq_restore(flags);
|
|
|
|
+
|
|
|
|
+ if (yielded > 0)
|
|
|
|
+ schedule();
|
|
|
|
+ return yielded;
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL_GPL(yield_to);
|
|
|
|
+
|
|
|
|
+int io_schedule_prepare(void)
|
|
|
|
+{
|
|
|
|
+ int old_iowait = current->in_iowait;
|
|
|
|
+
|
|
|
|
+ current->in_iowait = 1;
|
|
|
|
+ blk_schedule_flush_plug(current);
|
|
|
|
+
|
|
|
|
+ return old_iowait;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void io_schedule_finish(int token)
|
|
|
|
+{
|
|
|
|
+ current->in_iowait = token;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * This task is about to go to sleep on IO. Increment rq->nr_iowait so
|
|
|
|
+ * that process accounting knows that this is a task in IO wait state.
|
|
|
|
+ *
|
|
|
|
+ * But don't do that if it is a deliberate, throttling IO wait (this task
|
|
|
|
+ * has set its backing_dev_info: the queue against which it should throttle)
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+long __sched io_schedule_timeout(long timeout)
|
|
|
|
+{
|
|
|
|
+ int token;
|
|
|
|
+ long ret;
|
|
|
|
+
|
|
|
|
+ token = io_schedule_prepare();
|
|
|
|
+ ret = schedule_timeout(timeout);
|
|
|
|
+ io_schedule_finish(token);
|
|
|
|
+
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL(io_schedule_timeout);
|
|
|
|
+
|
|
|
|
+void __sched io_schedule(void)
|
|
|
|
+{
|
|
|
|
+ int token;
|
|
|
|
+
|
|
|
|
+ token = io_schedule_prepare();
|
|
|
|
+ schedule();
|
|
|
|
+ io_schedule_finish(token);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL(io_schedule);
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * sys_sched_get_priority_max - return maximum RT priority.
|
|
|
|
+ * @policy: scheduling class.
|
|
|
|
+ *
|
|
|
|
+ * Return: On success, this syscall returns the maximum
|
|
|
|
+ * rt_priority that can be used by a given scheduling class.
|
|
|
|
+ * On failure, a negative error code is returned.
|
|
|
|
+ */
|
|
|
|
+SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
|
|
|
|
+{
|
|
|
|
+ int ret = -EINVAL;
|
|
|
|
+
|
|
|
|
+ switch (policy) {
|
|
|
|
+ case SCHED_FIFO:
|
|
|
|
+ case SCHED_RR:
|
|
|
|
+ ret = MAX_USER_RT_PRIO-1;
|
|
|
|
+ break;
|
|
|
|
+ case SCHED_NORMAL:
|
|
|
|
+ case SCHED_BATCH:
|
|
|
|
+ case SCHED_ISO:
|
|
|
|
+ case SCHED_IDLEPRIO:
|
|
|
|
+ ret = 0;
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * sys_sched_get_priority_min - return minimum RT priority.
|
|
|
|
+ * @policy: scheduling class.
|
|
|
|
+ *
|
|
|
|
+ * Return: On success, this syscall returns the minimum
|
|
|
|
+ * rt_priority that can be used by a given scheduling class.
|
|
|
|
+ * On failure, a negative error code is returned.
|
|
|
|
+ */
|
|
|
|
+SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
|
|
|
|
+{
|
|
|
|
+ int ret = -EINVAL;
|
|
|
|
+
|
|
|
|
+ switch (policy) {
|
|
|
|
+ case SCHED_FIFO:
|
|
|
|
+ case SCHED_RR:
|
|
|
|
+ ret = 1;
|
|
|
|
+ break;
|
|
|
|
+ case SCHED_NORMAL:
|
|
|
|
+ case SCHED_BATCH:
|
|
|
|
+ case SCHED_ISO:
|
|
|
|
+ case SCHED_IDLEPRIO:
|
|
|
|
+ ret = 0;
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
|
|
|
|
+{
|
|
|
|
+ struct task_struct *p;
|
|
|
|
+ unsigned int time_slice;
|
|
|
|
+ struct rq_flags rf;
|
|
|
|
+ struct rq *rq;
|
|
|
|
+ int retval;
|
|
|
|
+
|
|
|
|
+ if (pid < 0)
|
|
|
|
+ return -EINVAL;
|
|
|
|
+
|
|
|
|
+ retval = -ESRCH;
|
|
|
|
+ rcu_read_lock();
|
|
|
|
+ p = find_process_by_pid(pid);
|
|
|
|
+ if (!p)
|
|
|
|
+ goto out_unlock;
|
|
|
|
+
|
|
|
|
+ retval = security_task_getscheduler(p);
|
|
|
|
+ if (retval)
|
|
|
|
+ goto out_unlock;
|
|
|
|
+
|
|
|
|
+ rq = task_rq_lock(p, &rf);
|
|
|
|
+ time_slice = p->policy == SCHED_FIFO ? 0 : MS_TO_NS(task_timeslice(p));
|
|
|
|
+ task_rq_unlock(rq, p, &rf);
|
|
|
|
+
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+ *t = ns_to_timespec64(time_slice);
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+out_unlock:
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * sys_sched_rr_get_interval - return the default timeslice of a process.
|
|
|
|
+ * @pid: pid of the process.
|
|
|
|
+ * @interval: userspace pointer to the timeslice value.
|
|
|
|
+ *
|
|
|
|
+ * this syscall writes the default timeslice value of a given process
|
|
|
|
+ * into the user-space timespec buffer. A value of '0' means infinity.
|
|
|
|
+ *
|
|
|
|
+ * Return: On success, 0 and the timeslice is in @interval. Otherwise,
|
|
|
|
+ * an error code.
|
|
|
|
+ */
|
|
|
|
+SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
|
|
|
|
+ struct __kernel_timespec __user *, interval)
|
|
|
|
+{
|
|
|
|
+ struct timespec64 t;
|
|
|
|
+ int retval = sched_rr_get_interval(pid, &t);
|
|
|
|
+
|
|
|
|
+ if (retval == 0)
|
|
|
|
+ retval = put_timespec64(&t, interval);
|
|
|
|
+
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_COMPAT_32BIT_TIME
|
|
|
|
+SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
|
|
|
|
+ struct old_timespec32 __user *, interval)
|
|
|
|
+{
|
|
|
|
+ struct timespec64 t;
|
|
|
|
+ int retval = sched_rr_get_interval(pid, &t);
|
|
|
|
+
|
|
|
|
+ if (retval == 0)
|
|
|
|
+ retval = put_old_timespec32(&t, interval);
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+void sched_show_task(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ unsigned long free = 0;
|
|
|
|
+ int ppid;
|
|
|
|
+
|
|
|
|
+ if (!try_get_task_stack(p))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
|
|
|
|
+
|
|
|
|
+ if (p->state == TASK_RUNNING)
|
|
|
|
+ printk(KERN_CONT " running task ");
|
|
|
|
+#ifdef CONFIG_DEBUG_STACK_USAGE
|
|
|
|
+ free = stack_not_used(p);
|
|
|
|
+#endif
|
|
|
|
+ ppid = 0;
|
|
|
|
+ rcu_read_lock();
|
|
|
|
+ if (pid_alive(p))
|
|
|
|
+ ppid = task_pid_nr(rcu_dereference(p->real_parent));
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+ pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
|
|
|
|
+ free, task_pid_nr(p), ppid,
|
|
|
|
+ (unsigned long)task_thread_info(p)->flags);
|
|
|
|
+
|
|
|
|
+ print_worker_info(KERN_INFO, p);
|
|
|
|
+ show_stack(p, NULL, KERN_INFO);
|
|
|
|
+ put_task_stack(p);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL_GPL(sched_show_task);
|
|
|
|
+
|
|
|
|
+static inline bool
|
|
|
|
+state_filter_match(unsigned long state_filter, struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ /* no filter, everything matches */
|
|
|
|
+ if (!state_filter)
|
|
|
|
+ return true;
|
|
|
|
+
|
|
|
|
+ /* filter, but doesn't match */
|
|
|
|
+ if (!(p->state & state_filter))
|
|
|
|
+ return false;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
|
|
|
|
+ * TASK_KILLABLE).
|
|
|
|
+ */
|
|
|
|
+ if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
|
|
|
|
+ return false;
|
|
|
|
+
|
|
|
|
+ return true;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void show_state_filter(unsigned long state_filter)
|
|
|
|
+{
|
|
|
|
+ struct task_struct *g, *p;
|
|
|
|
+
|
|
|
|
+ rcu_read_lock();
|
|
|
|
+ for_each_process_thread(g, p) {
|
|
|
|
+ /*
|
|
|
|
+ * reset the NMI-timeout, listing all files on a slow
|
|
|
|
+ * console might take a lot of time:
|
|
|
|
+ * Also, reset softlockup watchdogs on all CPUs, because
|
|
|
|
+ * another CPU might be blocked waiting for us to process
|
|
|
|
+ * an IPI.
|
|
|
|
+ */
|
|
|
|
+ touch_nmi_watchdog();
|
|
|
|
+ touch_all_softlockup_watchdogs();
|
|
|
|
+ if (state_filter_match(state_filter, p))
|
|
|
|
+ sched_show_task(p);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+ /*
|
|
|
|
+ * Only show locks if all tasks are dumped:
|
|
|
|
+ */
|
|
|
|
+ if (!state_filter)
|
|
|
|
+ debug_show_all_locks();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void dump_cpu_task(int cpu)
|
|
|
|
+{
|
|
|
|
+ pr_info("Task dump for CPU %d:\n", cpu);
|
|
|
|
+ sched_show_task(cpu_curr(cpu));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
|
|
|
|
+{
|
|
|
|
+ cpumask_copy(&p->cpus_mask, new_mask);
|
|
|
|
+ p->nr_cpus_allowed = cpumask_weight(new_mask);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq = task_rq(p);
|
|
|
|
+
|
|
|
|
+ lockdep_assert_held(&p->pi_lock);
|
|
|
|
+
|
|
|
|
+ cpumask_copy(&p->cpus_mask, new_mask);
|
|
|
|
+
|
|
|
|
+ if (task_queued(p)) {
|
|
|
|
+ /*
|
|
|
|
+ * Because __kthread_bind() calls this on blocked tasks without
|
|
|
|
+ * holding rq->lock.
|
|
|
|
+ */
|
|
|
|
+ lockdep_assert_held(rq->lock);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Calling do_set_cpus_allowed from outside the scheduler code should not be
|
|
|
|
+ * called on a running or queued task. We should be holding pi_lock.
|
|
|
|
+ */
|
|
|
|
+void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
|
|
|
|
+{
|
|
|
|
+ __do_set_cpus_allowed(p, new_mask);
|
|
|
|
+ if (needs_other_cpu(p, task_cpu(p))) {
|
|
|
|
+ struct rq *rq;
|
|
|
|
+
|
|
|
|
+ rq = __task_rq_lock(p, NULL);
|
|
|
|
+ set_task_cpu(p, valid_task_cpu(p));
|
|
|
|
+ resched_task(p);
|
|
|
|
+ __task_rq_unlock(rq, NULL);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * init_idle - set up an idle thread for a given CPU
|
|
|
|
+ * @idle: task in question
|
|
|
|
+ * @cpu: cpu the idle task belongs to
|
|
|
|
+ *
|
|
|
|
+ * NOTE: this function does not set the idle thread's NEED_RESCHED
|
|
|
|
+ * flag, to make booting more robust.
|
|
|
|
+ */
|
|
|
|
+void init_idle(struct task_struct *idle, int cpu)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq = cpu_rq(cpu);
|
|
|
|
+ unsigned long flags;
|
|
|
|
+
|
|
|
|
+ raw_spin_lock_irqsave(&idle->pi_lock, flags);
|
|
|
|
+ raw_spin_lock(rq->lock);
|
|
|
|
+ idle->last_ran = rq->niffies;
|
|
|
|
+ time_slice_expired(idle, rq);
|
|
|
|
+ idle->state = TASK_RUNNING;
|
|
|
|
+ /* Setting prio to illegal value shouldn't matter when never queued */
|
|
|
|
+ idle->prio = PRIO_LIMIT;
|
|
|
|
+ idle->flags |= PF_IDLE;
|
|
|
|
+
|
|
|
|
+ scs_task_reset(idle);
|
|
|
|
+ kasan_unpoison_task_stack(idle);
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ /*
|
|
|
|
+ * It's possible that init_idle() gets called multiple times on a task,
|
|
|
|
+ * in that case do_set_cpus_allowed() will not do the right thing.
|
|
|
|
+ *
|
|
|
|
+ * And since this is boot we can forgo the serialisation.
|
|
|
|
+ */
|
|
|
|
+ set_cpus_allowed_common(idle, cpumask_of(cpu));
|
|
|
|
+#ifdef CONFIG_SMT_NICE
|
|
|
|
+ idle->smt_bias = 0;
|
|
|
|
+#endif
|
|
|
|
+#endif
|
|
|
|
+ set_rq_task(rq, idle);
|
|
|
|
+
|
|
|
|
+ /* Silence PROVE_RCU */
|
|
|
|
+ rcu_read_lock();
|
|
|
|
+ set_task_cpu(idle, cpu);
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+
|
|
|
|
+ rq->idle = idle;
|
|
|
|
+ rcu_assign_pointer(rq->curr, idle);
|
|
|
|
+ idle->on_rq = TASK_ON_RQ_QUEUED;
|
|
|
|
+ raw_spin_unlock(rq->lock);
|
|
|
|
+ raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
|
|
|
|
+
|
|
|
|
+ /* Set the preempt count _outside_ the spinlocks! */
|
|
|
|
+ init_idle_preempt_count(idle, cpu);
|
|
|
|
+
|
|
|
|
+ ftrace_graph_init_idle_task(idle, cpu);
|
|
|
|
+ vtime_init_idle(idle, cpu);
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
|
|
|
|
+#endif
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int cpuset_cpumask_can_shrink(const struct cpumask __maybe_unused *cur,
|
|
|
|
+ const struct cpumask __maybe_unused *trial)
|
|
|
|
+{
|
|
|
|
+ return 1;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int task_can_attach(struct task_struct *p,
|
|
|
|
+ const struct cpumask *cs_cpus_allowed)
|
|
|
|
+{
|
|
|
|
+ int ret = 0;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Kthreads which disallow setaffinity shouldn't be moved
|
|
|
|
+ * to a new cpuset; we don't want to change their CPU
|
|
|
|
+ * affinity and isolating such threads by their set of
|
|
|
|
+ * allowed nodes is unnecessary. Thus, cpusets are not
|
|
|
|
+ * applicable for such threads. This prevents checking for
|
|
|
|
+ * success of set_cpus_allowed_ptr() on all attached tasks
|
|
|
|
+ * before cpus_mask may be changed.
|
|
|
|
+ */
|
|
|
|
+ if (p->flags & PF_NO_SETAFFINITY)
|
|
|
|
+ ret = -EINVAL;
|
|
|
|
+
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void resched_cpu(int cpu)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq = cpu_rq(cpu);
|
|
|
|
+ struct rq_flags rf;
|
|
|
|
+
|
|
|
|
+ rq_lock_irqsave(rq, &rf);
|
|
|
|
+ if (cpu_online(cpu) || cpu == smp_processor_id())
|
|
|
|
+ resched_curr(rq);
|
|
|
|
+ rq_unlock_irqrestore(rq, &rf);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+#ifdef CONFIG_NO_HZ_COMMON
|
|
|
|
+void select_nohz_load_balancer(int stop_tick)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void set_cpu_sd_state_idle(void) {}
|
|
|
|
+void nohz_balance_enter_idle(int cpu) {}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * In the semi idle case, use the nearest busy CPU for migrating timers
|
|
|
|
+ * from an idle CPU. This is good for power-savings.
|
|
|
|
+ *
|
|
|
|
+ * We don't do similar optimization for completely idle system, as
|
|
|
|
+ * selecting an idle CPU will add more delays to the timers than intended
|
|
|
|
+ * (as that CPU's timer base may not be uptodate wrt jiffies etc).
|
|
|
|
+ */
|
|
|
|
+int get_nohz_timer_target(void)
|
|
|
|
+{
|
|
|
|
+ int i, cpu = smp_processor_id(), default_cpu = -1;
|
|
|
|
+ struct sched_domain *sd;
|
|
|
|
+
|
|
|
|
+ if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
|
|
|
|
+ if (!idle_cpu(cpu))
|
|
|
|
+ return cpu;
|
|
|
|
+ default_cpu = cpu;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ rcu_read_lock();
|
|
|
|
+ for_each_domain(cpu, sd) {
|
|
|
|
+ for_each_cpu_and(i, sched_domain_span(sd),
|
|
|
|
+ housekeeping_cpumask(HK_FLAG_TIMER)) {
|
|
|
|
+ if (cpu == i)
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ if (!idle_cpu(i)) {
|
|
|
|
+ cpu = i;
|
|
|
|
+ goto unlock;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (default_cpu == -1)
|
|
|
|
+ default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
|
|
|
|
+ cpu = default_cpu;
|
|
|
|
+unlock:
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+ return cpu;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * When add_timer_on() enqueues a timer into the timer wheel of an
|
|
|
|
+ * idle CPU then this timer might expire before the next timer event
|
|
|
|
+ * which is scheduled to wake up that CPU. In case of a completely
|
|
|
|
+ * idle system the next event might even be infinite time into the
|
|
|
|
+ * future. wake_up_idle_cpu() ensures that the CPU is woken up and
|
|
|
|
+ * leaves the inner idle loop so the newly added timer is taken into
|
|
|
|
+ * account when the CPU goes back to idle and evaluates the timer
|
|
|
|
+ * wheel for the next timer event.
|
|
|
|
+ */
|
|
|
|
+void wake_up_idle_cpu(int cpu)
|
|
|
|
+{
|
|
|
|
+ if (cpu == smp_processor_id())
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ if (set_nr_and_not_polling(cpu_rq(cpu)->idle))
|
|
|
|
+ smp_sched_reschedule(cpu);
|
|
|
|
+ else
|
|
|
|
+ trace_sched_wake_idle_without_ipi(cpu);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static bool wake_up_full_nohz_cpu(int cpu)
|
|
|
|
+{
|
|
|
|
+ /*
|
|
|
|
+ * We just need the target to call irq_exit() and re-evaluate
|
|
|
|
+ * the next tick. The nohz full kick at least implies that.
|
|
|
|
+ * If needed we can still optimize that later with an
|
|
|
|
+ * empty IRQ.
|
|
|
|
+ */
|
|
|
|
+ if (cpu_is_offline(cpu))
|
|
|
|
+ return true; /* Don't try to wake offline CPUs. */
|
|
|
|
+ if (tick_nohz_full_cpu(cpu)) {
|
|
|
|
+ if (cpu != smp_processor_id() ||
|
|
|
|
+ tick_nohz_tick_stopped())
|
|
|
|
+ tick_nohz_full_kick_cpu(cpu);
|
|
|
|
+ return true;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return false;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Wake up the specified CPU. If the CPU is going offline, it is the
|
|
|
|
+ * caller's responsibility to deal with the lost wakeup, for example,
|
|
|
|
+ * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
|
|
|
|
+ */
|
|
|
|
+void wake_up_nohz_cpu(int cpu)
|
|
|
|
+{
|
|
|
|
+ if (!wake_up_full_nohz_cpu(cpu))
|
|
|
|
+ wake_up_idle_cpu(cpu);
|
|
|
|
+}
|
|
|
|
+#endif /* CONFIG_NO_HZ_COMMON */
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Change a given task's CPU affinity. Migrate the thread to a
|
|
|
|
+ * proper CPU and schedule it away if the CPU it's executing on
|
|
|
|
+ * is removed from the allowed bitmask.
|
|
|
|
+ *
|
|
|
|
+ * NOTE: the caller must have a valid reference to the task, the
|
|
|
|
+ * task must not exit() & deallocate itself prematurely. The
|
|
|
|
+ * call is not atomic; no spinlocks may be held.
|
|
|
|
+ */
|
|
|
|
+static int __set_cpus_allowed_ptr(struct task_struct *p,
|
|
|
|
+ const struct cpumask *new_mask, bool check)
|
|
|
|
+{
|
|
|
|
+ const struct cpumask *cpu_valid_mask = cpu_active_mask;
|
|
|
|
+ bool queued = false, running_wrong = false, kthread;
|
|
|
|
+ unsigned int dest_cpu;
|
|
|
|
+ struct rq_flags rf;
|
|
|
|
+ struct rq *rq;
|
|
|
|
+ int ret = 0;
|
|
|
|
+
|
|
|
|
+ rq = task_rq_lock(p, &rf);
|
|
|
|
+ update_rq_clock(rq);
|
|
|
|
+
|
|
|
|
+ kthread = !!(p->flags & PF_KTHREAD);
|
|
|
|
+ if (kthread) {
|
|
|
|
+ /*
|
|
|
|
+ * Kernel threads are allowed on online && !active CPUs
|
|
|
|
+ */
|
|
|
|
+ cpu_valid_mask = cpu_online_mask;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Must re-check here, to close a race against __kthread_bind(),
|
|
|
|
+ * sched_setaffinity() is not guaranteed to observe the flag.
|
|
|
|
+ */
|
|
|
|
+ if (check && (p->flags & PF_NO_SETAFFINITY)) {
|
|
|
|
+ ret = -EINVAL;
|
|
|
|
+ goto out;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (cpumask_equal(&p->cpus_mask, new_mask))
|
|
|
|
+ goto out;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Picking a ~random cpu helps in cases where we are changing affinity
|
|
|
|
+ * for groups of tasks (ie. cpuset), so that load balancing is not
|
|
|
|
+ * immediately required to distribute the tasks within their new mask.
|
|
|
|
+ */
|
|
|
|
+ dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
|
|
|
|
+ if (dest_cpu >= nr_cpu_ids) {
|
|
|
|
+ ret = -EINVAL;
|
|
|
|
+ goto out;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ queued = task_queued(p);
|
|
|
|
+ __do_set_cpus_allowed(p, new_mask);
|
|
|
|
+
|
|
|
|
+ if (kthread) {
|
|
|
|
+ /*
|
|
|
|
+ * For kernel threads that do indeed end up on online &&
|
|
|
|
+ * !active we want to ensure they are strict per-CPU threads.
|
|
|
|
+ */
|
|
|
|
+ WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
|
|
|
|
+ !cpumask_intersects(new_mask, cpu_active_mask) &&
|
|
|
|
+ p->nr_cpus_allowed != 1);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* Can the task run on the task's current CPU? If so, we're done */
|
|
|
|
+ if (cpumask_test_cpu(task_cpu(p), new_mask))
|
|
|
|
+ goto out;
|
|
|
|
+
|
|
|
|
+ if (task_running(rq, p)) {
|
|
|
|
+ /* Task is running on the wrong cpu now, reschedule it. */
|
|
|
|
+ if (rq == this_rq()) {
|
|
|
|
+ set_task_cpu(p, dest_cpu);
|
|
|
|
+ set_tsk_need_resched(p);
|
|
|
|
+ running_wrong = true;
|
|
|
|
+ } else
|
|
|
|
+ resched_task(p);
|
|
|
|
+ } else {
|
|
|
|
+ if (queued) {
|
|
|
|
+ /*
|
|
|
|
+ * Switch runqueue locks after dequeueing the task
|
|
|
|
+ * here while still holding the pi_lock to be holding
|
|
|
|
+ * the correct lock for enqueueing.
|
|
|
|
+ */
|
|
|
|
+ dequeue_task(rq, p, 0);
|
|
|
|
+ rq_unlock(rq);
|
|
|
|
+
|
|
|
|
+ rq = cpu_rq(dest_cpu);
|
|
|
|
+ rq_lock(rq);
|
|
|
|
+ }
|
|
|
|
+ set_task_cpu(p, dest_cpu);
|
|
|
|
+ if (queued)
|
|
|
|
+ enqueue_task(rq, p, 0);
|
|
|
|
+ }
|
|
|
|
+ if (queued)
|
|
|
|
+ try_preempt(p, rq);
|
|
|
|
+ if (running_wrong)
|
|
|
|
+ preempt_disable();
|
|
|
|
+out:
|
|
|
|
+ task_rq_unlock(rq, p, &rf);
|
|
|
|
+
|
|
|
|
+ if (running_wrong) {
|
|
|
|
+ __schedule(true);
|
|
|
|
+ preempt_enable();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
|
|
|
|
+{
|
|
|
|
+ return __set_cpus_allowed_ptr(p, new_mask, false);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
+/*
|
|
|
|
+ * Run through task list and find tasks affined to the dead cpu, then remove
|
|
|
|
+ * that cpu from the list, enable cpu0 and set the zerobound flag. Must hold
|
|
|
|
+ * cpu 0 and src_cpu's runqueue locks. We should be holding both rq lock and
|
|
|
|
+ * pi_lock to change cpus_mask but it's not going to matter here.
|
|
|
|
+ */
|
|
|
|
+static void bind_zero(int src_cpu)
|
|
|
|
+{
|
|
|
|
+ struct task_struct *p, *t;
|
|
|
|
+ struct rq *rq0;
|
|
|
|
+ int bound = 0;
|
|
|
|
+
|
|
|
|
+ if (src_cpu == 0)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ rq0 = cpu_rq(0);
|
|
|
|
+
|
|
|
|
+ do_each_thread(t, p) {
|
|
|
|
+ if (cpumask_test_cpu(src_cpu, p->cpus_ptr)) {
|
|
|
|
+ bool local = (task_cpu(p) == src_cpu);
|
|
|
|
+ struct rq *rq = task_rq(p);
|
|
|
|
+
|
|
|
|
+ /* task_running is the cpu stopper thread */
|
|
|
|
+ if (local && task_running(rq, p))
|
|
|
|
+ continue;
|
|
|
|
+ atomic_clear_cpu(src_cpu, &p->cpus_mask);
|
|
|
|
+ atomic_set_cpu(0, &p->cpus_mask);
|
|
|
|
+ p->zerobound = true;
|
|
|
|
+ bound++;
|
|
|
|
+ if (local) {
|
|
|
|
+ bool queued = task_queued(p);
|
|
|
|
+
|
|
|
|
+ if (queued)
|
|
|
|
+ dequeue_task(rq, p, 0);
|
|
|
|
+ set_task_cpu(p, 0);
|
|
|
|
+ if (queued)
|
|
|
|
+ enqueue_task(rq0, p, 0);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ } while_each_thread(t, p);
|
|
|
|
+
|
|
|
|
+ if (bound) {
|
|
|
|
+ printk(KERN_INFO "MuQSS removed affinity for %d processes to cpu %d\n",
|
|
|
|
+ bound, src_cpu);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* Find processes with the zerobound flag and reenable their affinity for the
|
|
|
|
+ * CPU coming alive. */
|
|
|
|
+static void unbind_zero(int src_cpu)
|
|
|
|
+{
|
|
|
|
+ int unbound = 0, zerobound = 0;
|
|
|
|
+ struct task_struct *p, *t;
|
|
|
|
+
|
|
|
|
+ if (src_cpu == 0)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ do_each_thread(t, p) {
|
|
|
|
+ if (!p->mm)
|
|
|
|
+ p->zerobound = false;
|
|
|
|
+ if (p->zerobound) {
|
|
|
|
+ unbound++;
|
|
|
|
+ cpumask_set_cpu(src_cpu, &p->cpus_mask);
|
|
|
|
+ /* Once every CPU affinity has been re-enabled, remove
|
|
|
|
+ * the zerobound flag */
|
|
|
|
+ if (cpumask_subset(cpu_possible_mask, p->cpus_ptr)) {
|
|
|
|
+ p->zerobound = false;
|
|
|
|
+ zerobound++;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ } while_each_thread(t, p);
|
|
|
|
+
|
|
|
|
+ if (unbound) {
|
|
|
|
+ printk(KERN_INFO "MuQSS added affinity for %d processes to cpu %d\n",
|
|
|
|
+ unbound, src_cpu);
|
|
|
|
+ }
|
|
|
|
+ if (zerobound) {
|
|
|
|
+ printk(KERN_INFO "MuQSS released forced binding to cpu0 for %d processes\n",
|
|
|
|
+ zerobound);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Ensure that the idle task is using init_mm right before its cpu goes
|
|
|
|
+ * offline.
|
|
|
|
+ */
|
|
|
|
+void idle_task_exit(void)
|
|
|
|
+{
|
|
|
|
+ struct mm_struct *mm = current->active_mm;
|
|
|
|
+
|
|
|
|
+ BUG_ON(cpu_online(smp_processor_id()));
|
|
|
|
+ BUG_ON(current != this_rq()->idle);
|
|
|
|
+
|
|
|
|
+ if (mm != &init_mm) {
|
|
|
|
+ switch_mm(mm, &init_mm, current);
|
|
|
|
+ finish_arch_post_lock_switch();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
|
|
|
|
+}
|
|
|
|
+#else /* CONFIG_HOTPLUG_CPU */
|
|
|
|
+static void unbind_zero(int src_cpu) {}
|
|
|
|
+#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
+
|
|
|
|
+void sched_set_stop_task(int cpu, struct task_struct *stop)
|
|
|
|
+{
|
|
|
|
+ struct sched_param stop_param = { .sched_priority = STOP_PRIO };
|
|
|
|
+ struct sched_param start_param = { .sched_priority = 0 };
|
|
|
|
+ struct task_struct *old_stop = cpu_rq(cpu)->stop;
|
|
|
|
+
|
|
|
|
+ if (stop) {
|
|
|
|
+ /*
|
|
|
|
+ * Make it appear like a SCHED_FIFO task, its something
|
|
|
|
+ * userspace knows about and won't get confused about.
|
|
|
|
+ *
|
|
|
|
+ * Also, it will make PI more or less work without too
|
|
|
|
+ * much confusion -- but then, stop work should not
|
|
|
|
+ * rely on PI working anyway.
|
|
|
|
+ */
|
|
|
|
+ sched_setscheduler_nocheck(stop, SCHED_FIFO, &stop_param);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ cpu_rq(cpu)->stop = stop;
|
|
|
|
+
|
|
|
|
+ if (old_stop) {
|
|
|
|
+ /*
|
|
|
|
+ * Reset it back to a normal scheduling policy so that
|
|
|
|
+ * it can die in pieces.
|
|
|
|
+ */
|
|
|
|
+ sched_setscheduler_nocheck(old_stop, SCHED_NORMAL, &start_param);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
|
|
|
|
+
|
|
|
|
+static struct ctl_table sd_ctl_dir[] = {
|
|
|
|
+ {
|
|
|
|
+ .procname = "sched_domain",
|
|
|
|
+ .mode = 0555,
|
|
|
|
+ },
|
|
|
|
+ {}
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+static struct ctl_table sd_ctl_root[] = {
|
|
|
|
+ {
|
|
|
|
+ .procname = "kernel",
|
|
|
|
+ .mode = 0555,
|
|
|
|
+ .child = sd_ctl_dir,
|
|
|
|
+ },
|
|
|
|
+ {}
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+static struct ctl_table *sd_alloc_ctl_entry(int n)
|
|
|
|
+{
|
|
|
|
+ struct ctl_table *entry =
|
|
|
|
+ kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
|
|
|
|
+
|
|
|
|
+ return entry;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void sd_free_ctl_entry(struct ctl_table **tablep)
|
|
|
|
+{
|
|
|
|
+ struct ctl_table *entry;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * In the intermediate directories, both the child directory and
|
|
|
|
+ * procname are dynamically allocated and could fail but the mode
|
|
|
|
+ * will always be set. In the lowest directory the names are
|
|
|
|
+ * static strings and all have proc handlers.
|
|
|
|
+ */
|
|
|
|
+ for (entry = *tablep; entry->mode; entry++) {
|
|
|
|
+ if (entry->child)
|
|
|
|
+ sd_free_ctl_entry(&entry->child);
|
|
|
|
+ if (entry->proc_handler == NULL)
|
|
|
|
+ kfree(entry->procname);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ kfree(*tablep);
|
|
|
|
+ *tablep = NULL;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void
|
|
|
|
+set_table_entry(struct ctl_table *entry,
|
|
|
|
+ const char *procname, void *data, int maxlen,
|
|
|
|
+ umode_t mode, proc_handler *proc_handler)
|
|
|
|
+{
|
|
|
|
+ entry->procname = procname;
|
|
|
|
+ entry->data = data;
|
|
|
|
+ entry->maxlen = maxlen;
|
|
|
|
+ entry->mode = mode;
|
|
|
|
+ entry->proc_handler = proc_handler;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static struct ctl_table *
|
|
|
|
+sd_alloc_ctl_domain_table(struct sched_domain *sd)
|
|
|
|
+{
|
|
|
|
+ struct ctl_table *table = sd_alloc_ctl_entry(9);
|
|
|
|
+
|
|
|
|
+ if (table == NULL)
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ set_table_entry(&table[0], "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax);
|
|
|
|
+ set_table_entry(&table[1], "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax);
|
|
|
|
+ set_table_entry(&table[2], "busy_factor", &sd->busy_factor, sizeof(int), 0644, proc_dointvec_minmax);
|
|
|
|
+ set_table_entry(&table[3], "imbalance_pct", &sd->imbalance_pct, sizeof(int), 0644, proc_dointvec_minmax);
|
|
|
|
+ set_table_entry(&table[4], "cache_nice_tries", &sd->cache_nice_tries, sizeof(int), 0644, proc_dointvec_minmax);
|
|
|
|
+ set_table_entry(&table[5], "flags", &sd->flags, sizeof(int), 0644, proc_dointvec_minmax);
|
|
|
|
+ set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax);
|
|
|
|
+ set_table_entry(&table[7], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring);
|
|
|
|
+ /* &table[8] is terminator */
|
|
|
|
+
|
|
|
|
+ return table;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
|
|
|
|
+{
|
|
|
|
+ struct ctl_table *entry, *table;
|
|
|
|
+ struct sched_domain *sd;
|
|
|
|
+ int domain_num = 0, i;
|
|
|
|
+ char buf[32];
|
|
|
|
+
|
|
|
|
+ for_each_domain(cpu, sd)
|
|
|
|
+ domain_num++;
|
|
|
|
+ entry = table = sd_alloc_ctl_entry(domain_num + 1);
|
|
|
|
+ if (table == NULL)
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ i = 0;
|
|
|
|
+ for_each_domain(cpu, sd) {
|
|
|
|
+ snprintf(buf, 32, "domain%d", i);
|
|
|
|
+ entry->procname = kstrdup(buf, GFP_KERNEL);
|
|
|
|
+ entry->mode = 0555;
|
|
|
|
+ entry->child = sd_alloc_ctl_domain_table(sd);
|
|
|
|
+ entry++;
|
|
|
|
+ i++;
|
|
|
|
+ }
|
|
|
|
+ return table;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static cpumask_var_t sd_sysctl_cpus;
|
|
|
|
+static struct ctl_table_header *sd_sysctl_header;
|
|
|
|
+
|
|
|
|
+void register_sched_domain_sysctl(void)
|
|
|
|
+{
|
|
|
|
+ static struct ctl_table *cpu_entries;
|
|
|
|
+ static struct ctl_table **cpu_idx;
|
|
|
|
+ char buf[32];
|
|
|
|
+ int i;
|
|
|
|
+
|
|
|
|
+ if (!cpu_entries) {
|
|
|
|
+ cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
|
|
|
|
+ if (!cpu_entries)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ WARN_ON(sd_ctl_dir[0].child);
|
|
|
|
+ sd_ctl_dir[0].child = cpu_entries;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (!cpu_idx) {
|
|
|
|
+ struct ctl_table *e = cpu_entries;
|
|
|
|
+
|
|
|
|
+ cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
|
|
|
|
+ if (!cpu_idx)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ /* deal with sparse possible map */
|
|
|
|
+ for_each_possible_cpu(i) {
|
|
|
|
+ cpu_idx[i] = e;
|
|
|
|
+ e++;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (!cpumask_available(sd_sysctl_cpus)) {
|
|
|
|
+ if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ /* init to possible to not have holes in @cpu_entries */
|
|
|
|
+ cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for_each_cpu(i, sd_sysctl_cpus) {
|
|
|
|
+ struct ctl_table *e = cpu_idx[i];
|
|
|
|
+
|
|
|
|
+ if (e->child)
|
|
|
|
+ sd_free_ctl_entry(&e->child);
|
|
|
|
+
|
|
|
|
+ if (!e->procname) {
|
|
|
|
+ snprintf(buf, 32, "cpu%d", i);
|
|
|
|
+ e->procname = kstrdup(buf, GFP_KERNEL);
|
|
|
|
+ }
|
|
|
|
+ e->mode = 0555;
|
|
|
|
+ e->child = sd_alloc_ctl_cpu_table(i);
|
|
|
|
+
|
|
|
|
+ __cpumask_clear_cpu(i, sd_sysctl_cpus);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ WARN_ON(sd_sysctl_header);
|
|
|
|
+ sd_sysctl_header = register_sysctl_table(sd_ctl_root);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void dirty_sched_domain_sysctl(int cpu)
|
|
|
|
+{
|
|
|
|
+ if (cpumask_available(sd_sysctl_cpus))
|
|
|
|
+ __cpumask_set_cpu(cpu, sd_sysctl_cpus);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* may be called multiple times per register */
|
|
|
|
+void unregister_sched_domain_sysctl(void)
|
|
|
|
+{
|
|
|
|
+ unregister_sysctl_table(sd_sysctl_header);
|
|
|
|
+ sd_sysctl_header = NULL;
|
|
|
|
+}
|
|
|
|
+#endif /* CONFIG_SYSCTL */
|
|
|
|
+
|
|
|
|
+void set_rq_online(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ if (!rq->online) {
|
|
|
|
+ cpumask_set_cpu(cpu_of(rq), rq->rd->online);
|
|
|
|
+ rq->online = true;
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void set_rq_offline(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ if (rq->online) {
|
|
|
|
+ int cpu = cpu_of(rq);
|
|
|
|
+
|
|
|
|
+ cpumask_clear_cpu(cpu, rq->rd->online);
|
|
|
|
+ rq->online = false;
|
|
|
|
+ clear_cpuidle_map(cpu);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * used to mark begin/end of suspend/resume:
|
|
|
|
+ */
|
|
|
|
+static int num_cpus_frozen;
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Update cpusets according to cpu_active mask. If cpusets are
|
|
|
|
+ * disabled, cpuset_update_active_cpus() becomes a simple wrapper
|
|
|
|
+ * around partition_sched_domains().
|
|
|
|
+ *
|
|
|
|
+ * If we come here as part of a suspend/resume, don't touch cpusets because we
|
|
|
|
+ * want to restore it back to its original state upon resume anyway.
|
|
|
|
+ */
|
|
|
|
+static void cpuset_cpu_active(void)
|
|
|
|
+{
|
|
|
|
+ if (cpuhp_tasks_frozen) {
|
|
|
|
+ /*
|
|
|
|
+ * num_cpus_frozen tracks how many CPUs are involved in suspend
|
|
|
|
+ * resume sequence. As long as this is not the last online
|
|
|
|
+ * operation in the resume sequence, just build a single sched
|
|
|
|
+ * domain, ignoring cpusets.
|
|
|
|
+ */
|
|
|
|
+ partition_sched_domains(1, NULL, NULL);
|
|
|
|
+ if (--num_cpus_frozen)
|
|
|
|
+ return;
|
|
|
|
+ /*
|
|
|
|
+ * This is the last CPU online operation. So fall through and
|
|
|
|
+ * restore the original sched domains by considering the
|
|
|
|
+ * cpuset configurations.
|
|
|
|
+ */
|
|
|
|
+ cpuset_force_rebuild();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ cpuset_update_active_cpus();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int cpuset_cpu_inactive(unsigned int cpu)
|
|
|
|
+{
|
|
|
|
+ if (!cpuhp_tasks_frozen) {
|
|
|
|
+ cpuset_update_active_cpus();
|
|
|
|
+ } else {
|
|
|
|
+ num_cpus_frozen++;
|
|
|
|
+ partition_sched_domains(1, NULL, NULL);
|
|
|
|
+ }
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int sched_cpu_activate(unsigned int cpu)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq = cpu_rq(cpu);
|
|
|
|
+ struct rq_flags rf;
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
|
|
+ /*
|
|
|
|
+ * When going up, increment the number of cores with SMT present.
|
|
|
|
+ */
|
|
|
|
+ if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
|
|
|
|
+ static_branch_inc_cpuslocked(&sched_smt_present);
|
|
|
|
+#endif
|
|
|
|
+ set_cpu_active(cpu, true);
|
|
|
|
+
|
|
|
|
+ if (sched_smp_initialized) {
|
|
|
|
+ sched_domains_numa_masks_set(cpu);
|
|
|
|
+ cpuset_cpu_active();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Put the rq online, if not already. This happens:
|
|
|
|
+ *
|
|
|
|
+ * 1) In the early boot process, because we build the real domains
|
|
|
|
+ * after all CPUs have been brought up.
|
|
|
|
+ *
|
|
|
|
+ * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
|
|
|
|
+ * domains.
|
|
|
|
+ */
|
|
|
|
+ rq_lock_irqsave(rq, &rf);
|
|
|
|
+ if (rq->rd) {
|
|
|
|
+ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
|
|
|
|
+ set_rq_online(rq);
|
|
|
|
+ }
|
|
|
|
+ unbind_zero(cpu);
|
|
|
|
+ rq_unlock_irqrestore(rq, &rf);
|
|
|
|
+
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int sched_cpu_deactivate(unsigned int cpu)
|
|
|
|
+{
|
|
|
|
+ int ret;
|
|
|
|
+
|
|
|
|
+ set_cpu_active(cpu, false);
|
|
|
|
+ /*
|
|
|
|
+ * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
|
|
|
|
+ * users of this state to go away such that all new such users will
|
|
|
|
+ * observe it.
|
|
|
|
+ *
|
|
|
|
+ * Do sync before park smpboot threads to take care the rcu boost case.
|
|
|
|
+ */
|
|
|
|
+ synchronize_rcu();
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
|
|
+ /*
|
|
|
|
+ * When going down, decrement the number of cores with SMT present.
|
|
|
|
+ */
|
|
|
|
+ if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
|
|
|
|
+ static_branch_dec_cpuslocked(&sched_smt_present);
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ if (!sched_smp_initialized)
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ ret = cpuset_cpu_inactive(cpu);
|
|
|
|
+ if (ret) {
|
|
|
|
+ set_cpu_active(cpu, true);
|
|
|
|
+ return ret;
|
|
|
|
+ }
|
|
|
|
+ sched_domains_numa_masks_clear(cpu);
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int sched_cpu_starting(unsigned int cpu)
|
|
|
|
+{
|
|
|
|
+ sched_tick_start(cpu);
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
+int sched_cpu_dying(unsigned int cpu)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq = cpu_rq(cpu);
|
|
|
|
+ unsigned long flags;
|
|
|
|
+
|
|
|
|
+ /* Handle pending wakeups and then migrate everything off */
|
|
|
|
+ sched_tick_stop(cpu);
|
|
|
|
+
|
|
|
|
+ local_irq_save(flags);
|
|
|
|
+ double_rq_lock(rq, cpu_rq(0));
|
|
|
|
+ if (rq->rd) {
|
|
|
|
+ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
|
|
|
|
+ set_rq_offline(rq);
|
|
|
|
+ }
|
|
|
|
+ bind_zero(cpu);
|
|
|
|
+ double_rq_unlock(rq, cpu_rq(0));
|
|
|
|
+ sched_start_tick(rq, cpu);
|
|
|
|
+ hrexpiry_clear(rq);
|
|
|
|
+ local_irq_restore(flags);
|
|
|
|
+
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
|
|
|
|
+/*
|
|
|
|
+ * Cheaper version of the below functions in case support for SMT and MC is
|
|
|
|
+ * compiled in but CPUs have no siblings.
|
|
|
|
+ */
|
|
|
|
+static bool sole_cpu_idle(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ return rq_idle(rq);
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
|
|
+static const cpumask_t *thread_cpumask(int cpu)
|
|
|
|
+{
|
|
|
|
+ return topology_sibling_cpumask(cpu);
|
|
|
|
+}
|
|
|
|
+/* All this CPU's SMT siblings are idle */
|
|
|
|
+static bool siblings_cpu_idle(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ return cpumask_subset(&rq->thread_mask, &cpu_idle_map);
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+#ifdef CONFIG_SCHED_MC
|
|
|
|
+static const cpumask_t *core_cpumask(int cpu)
|
|
|
|
+{
|
|
|
|
+ return topology_core_cpumask(cpu);
|
|
|
|
+}
|
|
|
|
+/* All this CPU's shared cache siblings are idle */
|
|
|
|
+static bool cache_cpu_idle(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ return cpumask_subset(&rq->core_mask, &cpu_idle_map);
|
|
|
|
+}
|
|
|
|
+/* MC siblings CPU mask which share the same LLC */
|
|
|
|
+static const cpumask_t *llc_core_cpumask(int cpu)
|
|
|
|
+{
|
|
|
|
+#ifdef CONFIG_X86
|
|
|
|
+ return per_cpu(cpu_llc_shared_map, cpu);
|
|
|
|
+#else
|
|
|
|
+ return topology_core_cpumask(cpu);
|
|
|
|
+#endif
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+enum sched_domain_level {
|
|
|
|
+ SD_LV_NONE = 0,
|
|
|
|
+ SD_LV_SIBLING,
|
|
|
|
+ SD_LV_MC,
|
|
|
|
+ SD_LV_BOOK,
|
|
|
|
+ SD_LV_CPU,
|
|
|
|
+ SD_LV_NODE,
|
|
|
|
+ SD_LV_ALLNODES,
|
|
|
|
+ SD_LV_MAX
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Set up the relative cache distance of each online cpu from each
|
|
|
|
+ * other in a simple array for quick lookup. Locality is determined
|
|
|
|
+ * by the closest sched_domain that CPUs are separated by. CPUs with
|
|
|
|
+ * shared cache in SMT and MC are treated as local. Separate CPUs
|
|
|
|
+ * (within the same package or physically) within the same node are
|
|
|
|
+ * treated as not local. CPUs not even in the same domain (different
|
|
|
|
+ * nodes) are treated as very distant.
|
|
|
|
+ */
|
|
|
|
+static void __init select_leaders(void)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq, *other_rq, *leader;
|
|
|
|
+ struct sched_domain *sd;
|
|
|
|
+ int cpu, other_cpu;
|
|
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
|
|
+ bool smt_threads = false;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ for (cpu = 0; cpu < num_online_cpus(); cpu++) {
|
|
|
|
+ rq = cpu_rq(cpu);
|
|
|
|
+ leader = NULL;
|
|
|
|
+ /* First check if this cpu is in the same node */
|
|
|
|
+ for_each_domain(cpu, sd) {
|
|
|
|
+ if (sd->level > SD_LV_MC)
|
|
|
|
+ continue;
|
|
|
|
+ if (rqshare != RQSHARE_ALL)
|
|
|
|
+ leader = NULL;
|
|
|
|
+ /* Set locality to local node if not already found lower */
|
|
|
|
+ for_each_cpu(other_cpu, sched_domain_span(sd)) {
|
|
|
|
+ if (rqshare >= RQSHARE_SMP) {
|
|
|
|
+ other_rq = cpu_rq(other_cpu);
|
|
|
|
+
|
|
|
|
+ /* Set the smp_leader to the first CPU */
|
|
|
|
+ if (!leader)
|
|
|
|
+ leader = rq;
|
|
|
|
+ if (!other_rq->smp_leader)
|
|
|
|
+ other_rq->smp_leader = leader;
|
|
|
|
+ }
|
|
|
|
+ if (rq->cpu_locality[other_cpu] > LOCALITY_SMP)
|
|
|
|
+ rq->cpu_locality[other_cpu] = LOCALITY_SMP;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Each runqueue has its own function in case it doesn't have
|
|
|
|
+ * siblings of its own allowing mixed topologies.
|
|
|
|
+ */
|
|
|
|
+#ifdef CONFIG_SCHED_MC
|
|
|
|
+ leader = NULL;
|
|
|
|
+ if (cpumask_weight(core_cpumask(cpu)) > 1) {
|
|
|
|
+ cpumask_copy(&rq->core_mask, llc_core_cpumask(cpu));
|
|
|
|
+ cpumask_clear_cpu(cpu, &rq->core_mask);
|
|
|
|
+ for_each_cpu(other_cpu, core_cpumask(cpu)) {
|
|
|
|
+ if (rqshare == RQSHARE_MC ||
|
|
|
|
+ (rqshare == RQSHARE_MC_LLC && cpumask_test_cpu(other_cpu, llc_core_cpumask(cpu)))) {
|
|
|
|
+ other_rq = cpu_rq(other_cpu);
|
|
|
|
+
|
|
|
|
+ /* Set the mc_leader to the first CPU */
|
|
|
|
+ if (!leader)
|
|
|
|
+ leader = rq;
|
|
|
|
+ if (!other_rq->mc_leader)
|
|
|
|
+ other_rq->mc_leader = leader;
|
|
|
|
+ }
|
|
|
|
+ if (rq->cpu_locality[other_cpu] > LOCALITY_MC) {
|
|
|
|
+ /* this is to get LLC into play even in case LLC sharing is not used */
|
|
|
|
+ if (cpumask_test_cpu(other_cpu, llc_core_cpumask(cpu)))
|
|
|
|
+ rq->cpu_locality[other_cpu] = LOCALITY_MC_LLC;
|
|
|
|
+ else
|
|
|
|
+ rq->cpu_locality[other_cpu] = LOCALITY_MC;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ rq->cache_idle = cache_cpu_idle;
|
|
|
|
+ }
|
|
|
|
+#endif
|
|
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
|
|
+ leader = NULL;
|
|
|
|
+ if (cpumask_weight(thread_cpumask(cpu)) > 1) {
|
|
|
|
+ cpumask_copy(&rq->thread_mask, thread_cpumask(cpu));
|
|
|
|
+ cpumask_clear_cpu(cpu, &rq->thread_mask);
|
|
|
|
+ for_each_cpu(other_cpu, thread_cpumask(cpu)) {
|
|
|
|
+ if (rqshare == RQSHARE_SMT) {
|
|
|
|
+ other_rq = cpu_rq(other_cpu);
|
|
|
|
+
|
|
|
|
+ /* Set the smt_leader to the first CPU */
|
|
|
|
+ if (!leader)
|
|
|
|
+ leader = rq;
|
|
|
|
+ if (!other_rq->smt_leader)
|
|
|
|
+ other_rq->smt_leader = leader;
|
|
|
|
+ }
|
|
|
|
+ if (rq->cpu_locality[other_cpu] > LOCALITY_SMT)
|
|
|
|
+ rq->cpu_locality[other_cpu] = LOCALITY_SMT;
|
|
|
|
+ }
|
|
|
|
+ rq->siblings_idle = siblings_cpu_idle;
|
|
|
|
+ smt_threads = true;
|
|
|
|
+ }
|
|
|
|
+#endif
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMT_NICE
|
|
|
|
+ if (smt_threads) {
|
|
|
|
+ check_siblings = &check_smt_siblings;
|
|
|
|
+ wake_siblings = &wake_smt_siblings;
|
|
|
|
+ smt_schedule = &smt_should_schedule;
|
|
|
|
+ }
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ for_each_online_cpu(cpu) {
|
|
|
|
+ rq = cpu_rq(cpu);
|
|
|
|
+ for_each_online_cpu(other_cpu) {
|
|
|
|
+ printk(KERN_DEBUG "MuQSS locality CPU %d to %d: %d\n", cpu, other_cpu, rq->cpu_locality[other_cpu]);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* FIXME freeing locked spinlock */
|
|
|
|
+static void __init share_and_free_rq(struct rq *leader, struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ WARN_ON(rq->nr_running > 0);
|
|
|
|
+
|
|
|
|
+ kfree(rq->node);
|
|
|
|
+ kfree(rq->sl);
|
|
|
|
+ kfree(rq->lock);
|
|
|
|
+ rq->node = leader->node;
|
|
|
|
+ rq->sl = leader->sl;
|
|
|
|
+ rq->lock = leader->lock;
|
|
|
|
+ rq->is_leader = false;
|
|
|
|
+ barrier();
|
|
|
|
+ /* To make up for not unlocking the freed runlock */
|
|
|
|
+ preempt_enable();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void __init share_rqs(void)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq, *leader;
|
|
|
|
+ int cpu;
|
|
|
|
+
|
|
|
|
+ for_each_online_cpu(cpu) {
|
|
|
|
+ rq = cpu_rq(cpu);
|
|
|
|
+ leader = rq->smp_leader;
|
|
|
|
+
|
|
|
|
+ rq_lock(rq);
|
|
|
|
+ if (leader && rq != leader) {
|
|
|
|
+ printk(KERN_INFO "MuQSS sharing SMP runqueue from CPU %d to CPU %d\n",
|
|
|
|
+ leader->cpu, rq->cpu);
|
|
|
|
+ share_and_free_rq(leader, rq);
|
|
|
|
+ } else
|
|
|
|
+ rq_unlock(rq);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SCHED_MC
|
|
|
|
+ for_each_online_cpu(cpu) {
|
|
|
|
+ rq = cpu_rq(cpu);
|
|
|
|
+ leader = rq->mc_leader;
|
|
|
|
+
|
|
|
|
+ rq_lock(rq);
|
|
|
|
+ if (leader && rq != leader) {
|
|
|
|
+ printk(KERN_INFO "MuQSS sharing MC runqueue from CPU %d to CPU %d\n",
|
|
|
|
+ leader->cpu, rq->cpu);
|
|
|
|
+ share_and_free_rq(leader, rq);
|
|
|
|
+ } else
|
|
|
|
+ rq_unlock(rq);
|
|
|
|
+ }
|
|
|
|
+#endif /* CONFIG_SCHED_MC */
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
|
|
+ for_each_online_cpu(cpu) {
|
|
|
|
+ rq = cpu_rq(cpu);
|
|
|
|
+ leader = rq->smt_leader;
|
|
|
|
+
|
|
|
|
+ rq_lock(rq);
|
|
|
|
+ if (leader && rq != leader) {
|
|
|
|
+ printk(KERN_INFO "MuQSS sharing SMT runqueue from CPU %d to CPU %d\n",
|
|
|
|
+ leader->cpu, rq->cpu);
|
|
|
|
+ share_and_free_rq(leader, rq);
|
|
|
|
+ } else
|
|
|
|
+ rq_unlock(rq);
|
|
|
|
+ }
|
|
|
|
+#endif /* CONFIG_SCHED_SMT */
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void __init setup_rq_orders(void)
|
|
|
|
+{
|
|
|
|
+ int *selected_cpus, *ordered_cpus;
|
|
|
|
+ struct rq *rq, *other_rq;
|
|
|
|
+ int cpu, other_cpu, i;
|
|
|
|
+
|
|
|
|
+ selected_cpus = kmalloc(sizeof(int) * NR_CPUS, GFP_ATOMIC);
|
|
|
|
+ ordered_cpus = kmalloc(sizeof(int) * NR_CPUS, GFP_ATOMIC);
|
|
|
|
+
|
|
|
|
+ total_runqueues = 0;
|
|
|
|
+ for_each_online_cpu(cpu) {
|
|
|
|
+ int locality, total_rqs = 0, total_cpus = 0;
|
|
|
|
+
|
|
|
|
+ rq = cpu_rq(cpu);
|
|
|
|
+ if (rq->is_leader)
|
|
|
|
+ total_runqueues++;
|
|
|
|
+
|
|
|
|
+ for (locality = LOCALITY_SAME; locality <= LOCALITY_DISTANT; locality++) {
|
|
|
|
+ int selected_cpu_cnt, selected_cpu_idx, test_cpu_idx, cpu_idx, best_locality, test_cpu;
|
|
|
|
+ int ordered_cpus_idx;
|
|
|
|
+
|
|
|
|
+ ordered_cpus_idx = -1;
|
|
|
|
+ selected_cpu_cnt = 0;
|
|
|
|
+
|
|
|
|
+ for_each_online_cpu(test_cpu) {
|
|
|
|
+ if (cpu < num_online_cpus() / 2)
|
|
|
|
+ other_cpu = cpu + test_cpu;
|
|
|
|
+ else
|
|
|
|
+ other_cpu = cpu - test_cpu;
|
|
|
|
+ if (other_cpu < 0)
|
|
|
|
+ other_cpu += num_online_cpus();
|
|
|
|
+ else
|
|
|
|
+ other_cpu %= num_online_cpus();
|
|
|
|
+ /* gather CPUs of the same locality */
|
|
|
|
+ if (rq->cpu_locality[other_cpu] == locality) {
|
|
|
|
+ selected_cpus[selected_cpu_cnt] = other_cpu;
|
|
|
|
+ selected_cpu_cnt++;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* reserve first CPU as starting point */
|
|
|
|
+ if (selected_cpu_cnt > 0) {
|
|
|
|
+ ordered_cpus_idx++;
|
|
|
|
+ ordered_cpus[ordered_cpus_idx] = selected_cpus[ordered_cpus_idx];
|
|
|
|
+ selected_cpus[ordered_cpus_idx] = -1;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* take each CPU and sort it within the same locality based on each inter-CPU localities */
|
|
|
|
+ for (test_cpu_idx = 1; test_cpu_idx < selected_cpu_cnt; test_cpu_idx++) {
|
|
|
|
+ /* starting point with worst locality and current CPU */
|
|
|
|
+ best_locality = LOCALITY_DISTANT;
|
|
|
|
+ selected_cpu_idx = test_cpu_idx;
|
|
|
|
+
|
|
|
|
+ /* try to find the best locality within group */
|
|
|
|
+ for (cpu_idx = 1; cpu_idx < selected_cpu_cnt; cpu_idx++) {
|
|
|
|
+ /* if CPU has not been used and locality is better */
|
|
|
|
+ if (selected_cpus[cpu_idx] > -1) {
|
|
|
|
+ other_rq = cpu_rq(ordered_cpus[ordered_cpus_idx]);
|
|
|
|
+ if (best_locality > other_rq->cpu_locality[selected_cpus[cpu_idx]]) {
|
|
|
|
+ /* assign best locality and best CPU idx in array */
|
|
|
|
+ best_locality = other_rq->cpu_locality[selected_cpus[cpu_idx]];
|
|
|
|
+ selected_cpu_idx = cpu_idx;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* add our next best CPU to ordered list */
|
|
|
|
+ ordered_cpus_idx++;
|
|
|
|
+ ordered_cpus[ordered_cpus_idx] = selected_cpus[selected_cpu_idx];
|
|
|
|
+ /* mark this CPU as used */
|
|
|
|
+ selected_cpus[selected_cpu_idx] = -1;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* set up RQ and CPU orders */
|
|
|
|
+ for (test_cpu = 0; test_cpu <= ordered_cpus_idx; test_cpu++) {
|
|
|
|
+ other_rq = cpu_rq(ordered_cpus[test_cpu]);
|
|
|
|
+ /* set up cpu orders */
|
|
|
|
+ rq->cpu_order[total_cpus++] = other_rq;
|
|
|
|
+ if (other_rq->is_leader) {
|
|
|
|
+ /* set up RQ orders */
|
|
|
|
+ rq->rq_order[total_rqs++] = other_rq;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ kfree(selected_cpus);
|
|
|
|
+ kfree(ordered_cpus);
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_X86
|
|
|
|
+ for_each_online_cpu(cpu) {
|
|
|
|
+ rq = cpu_rq(cpu);
|
|
|
|
+ for (i = 0; i < total_runqueues; i++) {
|
|
|
|
+ printk(KERN_DEBUG "MuQSS CPU %d llc %d RQ order %d RQ %d llc %d\n", cpu, per_cpu(cpu_llc_id, cpu), i,
|
|
|
|
+ rq->rq_order[i]->cpu, per_cpu(cpu_llc_id, rq->rq_order[i]->cpu));
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for_each_online_cpu(cpu) {
|
|
|
|
+ rq = cpu_rq(cpu);
|
|
|
|
+ for (i = 0; i < num_online_cpus(); i++) {
|
|
|
|
+ printk(KERN_DEBUG "MuQSS CPU %d llc %d CPU order %d RQ %d llc %d\n", cpu, per_cpu(cpu_llc_id, cpu), i,
|
|
|
|
+ rq->cpu_order[i]->cpu, per_cpu(cpu_llc_id, rq->cpu_order[i]->cpu));
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+#endif
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void __init sched_init_smp(void)
|
|
|
|
+{
|
|
|
|
+ sched_init_numa();
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * There's no userspace yet to cause hotplug operations; hence all the
|
|
|
|
+ * cpu masks are stable and all blatant races in the below code cannot
|
|
|
|
+ * happen.
|
|
|
|
+ */
|
|
|
|
+ mutex_lock(&sched_domains_mutex);
|
|
|
|
+ sched_init_domains(cpu_active_mask);
|
|
|
|
+ mutex_unlock(&sched_domains_mutex);
|
|
|
|
+
|
|
|
|
+ /* Move init over to a non-isolated CPU */
|
|
|
|
+ if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
|
|
|
|
+ BUG();
|
|
|
|
+
|
|
|
|
+ local_irq_disable();
|
|
|
|
+ mutex_lock(&sched_domains_mutex);
|
|
|
|
+ lock_all_rqs();
|
|
|
|
+
|
|
|
|
+ printk(KERN_INFO "MuQSS possible/present/online CPUs: %d/%d/%d\n",
|
|
|
|
+ num_possible_cpus(), num_present_cpus(), num_online_cpus());
|
|
|
|
+
|
|
|
|
+ select_leaders();
|
|
|
|
+
|
|
|
|
+ unlock_all_rqs();
|
|
|
|
+ mutex_unlock(&sched_domains_mutex);
|
|
|
|
+
|
|
|
|
+ share_rqs();
|
|
|
|
+
|
|
|
|
+ local_irq_enable();
|
|
|
|
+
|
|
|
|
+ setup_rq_orders();
|
|
|
|
+
|
|
|
|
+ switch (rqshare) {
|
|
|
|
+ case RQSHARE_ALL:
|
|
|
|
+ /* This should only ever read 1 */
|
|
|
|
+ printk(KERN_INFO "MuQSS runqueue share type ALL total runqueues: %d\n",
|
|
|
|
+ total_runqueues);
|
|
|
|
+ break;
|
|
|
|
+ case RQSHARE_SMP:
|
|
|
|
+ printk(KERN_INFO "MuQSS runqueue share type SMP total runqueues: %d\n",
|
|
|
|
+ total_runqueues);
|
|
|
|
+ break;
|
|
|
|
+ case RQSHARE_MC:
|
|
|
|
+ printk(KERN_INFO "MuQSS runqueue share type MC total runqueues: %d\n",
|
|
|
|
+ total_runqueues);
|
|
|
|
+ break;
|
|
|
|
+ case RQSHARE_MC_LLC:
|
|
|
|
+ printk(KERN_INFO "MuQSS runqueue share type LLC total runqueues: %d\n",
|
|
|
|
+ total_runqueues);
|
|
|
|
+ break;
|
|
|
|
+ case RQSHARE_SMT:
|
|
|
|
+ printk(KERN_INFO "MuQSS runqueue share type SMT total runqueues: %d\n",
|
|
|
|
+ total_runqueues);
|
|
|
|
+ break;
|
|
|
|
+ case RQSHARE_NONE:
|
|
|
|
+ printk(KERN_INFO "MuQSS runqueue share type NONE total runqueues: %d\n",
|
|
|
|
+ total_runqueues);
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ sched_smp_initialized = true;
|
|
|
|
+}
|
|
|
|
+#else
|
|
|
|
+void __init sched_init_smp(void)
|
|
|
|
+{
|
|
|
|
+ sched_smp_initialized = true;
|
|
|
|
+}
|
|
|
|
+#endif /* CONFIG_SMP */
|
|
|
|
+
|
|
|
|
+int in_sched_functions(unsigned long addr)
|
|
|
|
+{
|
|
|
|
+ return in_lock_functions(addr) ||
|
|
|
|
+ (addr >= (unsigned long)__sched_text_start
|
|
|
|
+ && addr < (unsigned long)__sched_text_end);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_CGROUP_SCHED
|
|
|
|
+/* task group related information */
|
|
|
|
+struct task_group {
|
|
|
|
+ struct cgroup_subsys_state css;
|
|
|
|
+
|
|
|
|
+ struct rcu_head rcu;
|
|
|
|
+ struct list_head list;
|
|
|
|
+
|
|
|
|
+ struct task_group *parent;
|
|
|
|
+ struct list_head siblings;
|
|
|
|
+ struct list_head children;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Default task group.
|
|
|
|
+ * Every task in system belongs to this group at bootup.
|
|
|
|
+ */
|
|
|
|
+struct task_group root_task_group;
|
|
|
|
+LIST_HEAD(task_groups);
|
|
|
|
+
|
|
|
|
+/* Cacheline aligned slab cache for task_group */
|
|
|
|
+static struct kmem_cache *task_group_cache __read_mostly;
|
|
|
|
+#endif /* CONFIG_CGROUP_SCHED */
|
|
|
|
+
|
|
|
|
+void __init sched_init(void)
|
|
|
|
+{
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ int cpu_ids;
|
|
|
|
+#endif
|
|
|
|
+ int i;
|
|
|
|
+ struct rq *rq;
|
|
|
|
+
|
|
|
|
+ wait_bit_init();
|
|
|
|
+
|
|
|
|
+ prio_ratios[0] = 128;
|
|
|
|
+ for (i = 1 ; i < NICE_WIDTH ; i++)
|
|
|
|
+ prio_ratios[i] = prio_ratios[i - 1] * 11 / 10;
|
|
|
|
+
|
|
|
|
+ skiplist_node_init(&init_task.node);
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ init_defrootdomain();
|
|
|
|
+ cpumask_clear(&cpu_idle_map);
|
|
|
|
+#else
|
|
|
|
+ uprq = &per_cpu(runqueues, 0);
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_CGROUP_SCHED
|
|
|
|
+ task_group_cache = KMEM_CACHE(task_group, 0);
|
|
|
|
+
|
|
|
|
+ list_add(&root_task_group.list, &task_groups);
|
|
|
|
+ INIT_LIST_HEAD(&root_task_group.children);
|
|
|
|
+ INIT_LIST_HEAD(&root_task_group.siblings);
|
|
|
|
+#endif /* CONFIG_CGROUP_SCHED */
|
|
|
|
+ for_each_possible_cpu(i) {
|
|
|
|
+ rq = cpu_rq(i);
|
|
|
|
+ rq->node = kmalloc(sizeof(skiplist_node), GFP_ATOMIC);
|
|
|
|
+ skiplist_init(rq->node);
|
|
|
|
+ rq->sl = new_skiplist(rq->node);
|
|
|
|
+ rq->lock = kmalloc(sizeof(raw_spinlock_t), GFP_ATOMIC);
|
|
|
|
+ raw_spin_lock_init(rq->lock);
|
|
|
|
+ rq->nr_running = 0;
|
|
|
|
+ rq->nr_uninterruptible = 0;
|
|
|
|
+ rq->nr_switches = 0;
|
|
|
|
+ rq->clock = rq->old_clock = rq->last_niffy = rq->niffies = 0;
|
|
|
|
+ rq->last_jiffy = jiffies;
|
|
|
|
+ rq->user_ns = rq->nice_ns = rq->softirq_ns = rq->system_ns =
|
|
|
|
+ rq->iowait_ns = rq->idle_ns = 0;
|
|
|
|
+ rq->dither = 0;
|
|
|
|
+ set_rq_task(rq, &init_task);
|
|
|
|
+ rq->iso_ticks = 0;
|
|
|
|
+ rq->iso_refractory = false;
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ rq->is_leader = true;
|
|
|
|
+ rq->smp_leader = NULL;
|
|
|
|
+#ifdef CONFIG_SCHED_MC
|
|
|
|
+ rq->mc_leader = NULL;
|
|
|
|
+#endif
|
|
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
|
|
+ rq->smt_leader = NULL;
|
|
|
|
+#endif
|
|
|
|
+ rq->sd = NULL;
|
|
|
|
+ rq->rd = NULL;
|
|
|
|
+ rq->online = false;
|
|
|
|
+ rq->cpu = i;
|
|
|
|
+ rq_attach_root(rq, &def_root_domain);
|
|
|
|
+#endif
|
|
|
|
+ init_rq_hrexpiry(rq);
|
|
|
|
+ atomic_set(&rq->nr_iowait, 0);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ cpu_ids = i;
|
|
|
|
+ /*
|
|
|
|
+ * Set the base locality for cpu cache distance calculation to
|
|
|
|
+ * "distant" (3). Make sure the distance from a CPU to itself is 0.
|
|
|
|
+ */
|
|
|
|
+ for_each_possible_cpu(i) {
|
|
|
|
+ int j;
|
|
|
|
+
|
|
|
|
+ rq = cpu_rq(i);
|
|
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
|
|
+ rq->siblings_idle = sole_cpu_idle;
|
|
|
|
+#endif
|
|
|
|
+#ifdef CONFIG_SCHED_MC
|
|
|
|
+ rq->cache_idle = sole_cpu_idle;
|
|
|
|
+#endif
|
|
|
|
+ rq->cpu_locality = kmalloc(cpu_ids * sizeof(int *), GFP_ATOMIC);
|
|
|
|
+ for_each_possible_cpu(j) {
|
|
|
|
+ if (i == j)
|
|
|
|
+ rq->cpu_locality[j] = LOCALITY_SAME;
|
|
|
|
+ else
|
|
|
|
+ rq->cpu_locality[j] = LOCALITY_DISTANT;
|
|
|
|
+ }
|
|
|
|
+ rq->rq_order = kmalloc(cpu_ids * sizeof(struct rq *), GFP_ATOMIC);
|
|
|
|
+ rq->cpu_order = kmalloc(cpu_ids * sizeof(struct rq *), GFP_ATOMIC);
|
|
|
|
+ rq->rq_order[0] = rq->cpu_order[0] = rq;
|
|
|
|
+ for (j = 1; j < cpu_ids; j++)
|
|
|
|
+ rq->rq_order[j] = rq->cpu_order[j] = cpu_rq(j);
|
|
|
|
+ }
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * The boot idle thread does lazy MMU switching as well:
|
|
|
|
+ */
|
|
|
|
+ mmgrab(&init_mm);
|
|
|
|
+ enter_lazy_tlb(&init_mm, current);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Make us the idle thread. Technically, schedule() should not be
|
|
|
|
+ * called from this thread, however somewhere below it might be,
|
|
|
|
+ * but because we are the idle thread, we just pick up running again
|
|
|
|
+ * when this runqueue becomes "idle".
|
|
|
|
+ */
|
|
|
|
+ init_idle(current, smp_processor_id());
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ idle_thread_set_boot_cpu();
|
|
|
|
+#endif /* SMP */
|
|
|
|
+
|
|
|
|
+ init_schedstats();
|
|
|
|
+
|
|
|
|
+ psi_init();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
|
|
|
|
+static inline int preempt_count_equals(int preempt_offset)
|
|
|
|
+{
|
|
|
|
+ int nested = preempt_count() + rcu_preempt_depth();
|
|
|
|
+
|
|
|
|
+ return (nested == preempt_offset);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void __might_sleep(const char *file, int line, int preempt_offset)
|
|
|
|
+{
|
|
|
|
+ /*
|
|
|
|
+ * Blocking primitives will set (and therefore destroy) current->state,
|
|
|
|
+ * since we will exit with TASK_RUNNING make sure we enter with it,
|
|
|
|
+ * otherwise we will destroy state.
|
|
|
|
+ */
|
|
|
|
+ WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
|
|
|
|
+ "do not call blocking ops when !TASK_RUNNING; "
|
|
|
|
+ "state=%lx set at [<%p>] %pS\n",
|
|
|
|
+ current->state,
|
|
|
|
+ (void *)current->task_state_change,
|
|
|
|
+ (void *)current->task_state_change);
|
|
|
|
+
|
|
|
|
+ ___might_sleep(file, line, preempt_offset);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL(__might_sleep);
|
|
|
|
+
|
|
|
|
+void __cant_sleep(const char *file, int line, int preempt_offset)
|
|
|
|
+{
|
|
|
|
+ static unsigned long prev_jiffy;
|
|
|
|
+
|
|
|
|
+ if (irqs_disabled())
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ if (preempt_count() > preempt_offset)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
|
|
|
|
+ return;
|
|
|
|
+ prev_jiffy = jiffies;
|
|
|
|
+
|
|
|
|
+ printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
|
|
|
|
+ printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
|
|
|
|
+ in_atomic(), irqs_disabled(),
|
|
|
|
+ current->pid, current->comm);
|
|
|
|
+
|
|
|
|
+ debug_show_held_locks(current);
|
|
|
|
+ dump_stack();
|
|
|
|
+ add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL_GPL(__cant_sleep);
|
|
|
|
+
|
|
|
|
+void ___might_sleep(const char *file, int line, int preempt_offset)
|
|
|
|
+{
|
|
|
|
+ /* Ratelimiting timestamp: */
|
|
|
|
+ static unsigned long prev_jiffy;
|
|
|
|
+
|
|
|
|
+ unsigned long preempt_disable_ip;
|
|
|
|
+
|
|
|
|
+ /* WARN_ON_ONCE() by default, no rate limit required: */
|
|
|
|
+ rcu_sleep_check();
|
|
|
|
+
|
|
|
|
+ if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
|
|
|
|
+ !is_idle_task(current) && !current->non_block_count) ||
|
|
|
|
+ system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
|
|
|
|
+ oops_in_progress)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
|
|
|
|
+ return;
|
|
|
|
+ prev_jiffy = jiffies;
|
|
|
|
+
|
|
|
|
+ /* Save this before calling printk(), since that will clobber it: */
|
|
|
|
+ preempt_disable_ip = get_preempt_disable_ip(current);
|
|
|
|
+
|
|
|
|
+ printk(KERN_ERR
|
|
|
|
+ "BUG: sleeping function called from invalid context at %s:%d\n",
|
|
|
|
+ file, line);
|
|
|
|
+ printk(KERN_ERR
|
|
|
|
+ "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
|
|
|
|
+ in_atomic(), irqs_disabled(), current->non_block_count,
|
|
|
|
+ current->pid, current->comm);
|
|
|
|
+
|
|
|
|
+ if (task_stack_end_corrupted(current))
|
|
|
|
+ printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
|
|
|
|
+
|
|
|
|
+ debug_show_held_locks(current);
|
|
|
|
+ if (irqs_disabled())
|
|
|
|
+ print_irqtrace_events(current);
|
|
|
|
+ if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
|
|
|
|
+ && !preempt_count_equals(preempt_offset)) {
|
|
|
|
+ pr_err("Preemption disabled at:");
|
|
|
|
+ print_ip_sym(KERN_ERR, preempt_disable_ip);
|
|
|
|
+ }
|
|
|
|
+ dump_stack();
|
|
|
|
+ add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL(___might_sleep);
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_MAGIC_SYSRQ
|
|
|
|
+static inline void normalise_rt_tasks(void)
|
|
|
|
+{
|
|
|
|
+ struct sched_attr attr = {};
|
|
|
|
+ struct task_struct *g, *p;
|
|
|
|
+ struct rq_flags rf;
|
|
|
|
+ struct rq *rq;
|
|
|
|
+
|
|
|
|
+ read_lock(&tasklist_lock);
|
|
|
|
+ for_each_process_thread(g, p) {
|
|
|
|
+ /*
|
|
|
|
+ * Only normalize user tasks:
|
|
|
|
+ */
|
|
|
|
+ if (p->flags & PF_KTHREAD)
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ if (!rt_task(p) && !iso_task(p))
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ rq = task_rq_lock(p, &rf);
|
|
|
|
+ __setscheduler(p, rq, SCHED_NORMAL, 0, &attr, false);
|
|
|
|
+ task_rq_unlock(rq, p, &rf);
|
|
|
|
+ }
|
|
|
|
+ read_unlock(&tasklist_lock);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void normalize_rt_tasks(void)
|
|
|
|
+{
|
|
|
|
+ normalise_rt_tasks();
|
|
|
|
+}
|
|
|
|
+#endif /* CONFIG_MAGIC_SYSRQ */
|
|
|
|
+
|
|
|
|
+#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
|
|
|
|
+/*
|
|
|
|
+ * These functions are only useful for the IA64 MCA handling, or kdb.
|
|
|
|
+ *
|
|
|
|
+ * They can only be called when the whole system has been
|
|
|
|
+ * stopped - every CPU needs to be quiescent, and no scheduling
|
|
|
|
+ * activity can take place. Using them for anything else would
|
|
|
|
+ * be a serious bug, and as a result, they aren't even visible
|
|
|
|
+ * under any other configuration.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * curr_task - return the current task for a given CPU.
|
|
|
|
+ * @cpu: the processor in question.
|
|
|
|
+ *
|
|
|
|
+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
|
|
|
|
+ *
|
|
|
|
+ * Return: The current task for @cpu.
|
|
|
|
+ */
|
|
|
|
+struct task_struct *curr_task(int cpu)
|
|
|
|
+{
|
|
|
|
+ return cpu_curr(cpu);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_IA64
|
|
|
|
+/**
|
|
|
|
+ * ia64_set_curr_task - set the current task for a given CPU.
|
|
|
|
+ * @cpu: the processor in question.
|
|
|
|
+ * @p: the task pointer to set.
|
|
|
|
+ *
|
|
|
|
+ * Description: This function must only be used when non-maskable interrupts
|
|
|
|
+ * are serviced on a separate stack. It allows the architecture to switch the
|
|
|
|
+ * notion of the current task on a CPU in a non-blocking manner. This function
|
|
|
|
+ * must be called with all CPU's synchronised, and interrupts disabled, the
|
|
|
|
+ * and caller must save the original value of the current task (see
|
|
|
|
+ * curr_task() above) and restore that value before reenabling interrupts and
|
|
|
|
+ * re-starting the system.
|
|
|
|
+ *
|
|
|
|
+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
|
|
|
|
+ */
|
|
|
|
+void ia64_set_curr_task(int cpu, struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ cpu_curr(cpu) = p;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+void init_idle_bootup_task(struct task_struct *idle)
|
|
|
|
+{}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SCHED_DEBUG
|
|
|
|
+__read_mostly bool sched_debug_enabled;
|
|
|
|
+
|
|
|
|
+void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
|
|
|
|
+ struct seq_file *m)
|
|
|
|
+{
|
|
|
|
+ seq_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
|
|
|
|
+ get_nr_threads(p));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void proc_sched_set_task(struct task_struct *p)
|
|
|
|
+{}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_CGROUP_SCHED
|
|
|
|
+static void sched_free_group(struct task_group *tg)
|
|
|
|
+{
|
|
|
|
+ kmem_cache_free(task_group_cache, tg);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* allocate runqueue etc for a new task group */
|
|
|
|
+struct task_group *sched_create_group(struct task_group *parent)
|
|
|
|
+{
|
|
|
|
+ struct task_group *tg;
|
|
|
|
+
|
|
|
|
+ tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
|
|
|
|
+ if (!tg)
|
|
|
|
+ return ERR_PTR(-ENOMEM);
|
|
|
|
+
|
|
|
|
+ return tg;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void sched_online_group(struct task_group *tg, struct task_group *parent)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* rcu callback to free various structures associated with a task group */
|
|
|
|
+static void sched_free_group_rcu(struct rcu_head *rhp)
|
|
|
|
+{
|
|
|
|
+ /* Now it should be safe to free those cfs_rqs */
|
|
|
|
+ sched_free_group(container_of(rhp, struct task_group, rcu));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void sched_destroy_group(struct task_group *tg)
|
|
|
|
+{
|
|
|
|
+ /* Wait for possible concurrent references to cfs_rqs complete */
|
|
|
|
+ call_rcu(&tg->rcu, sched_free_group_rcu);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void sched_offline_group(struct task_group *tg)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
|
|
|
|
+{
|
|
|
|
+ return css ? container_of(css, struct task_group, css) : NULL;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static struct cgroup_subsys_state *
|
|
|
|
+cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
|
|
|
|
+{
|
|
|
|
+ struct task_group *parent = css_tg(parent_css);
|
|
|
|
+ struct task_group *tg;
|
|
|
|
+
|
|
|
|
+ if (!parent) {
|
|
|
|
+ /* This is early initialization for the top cgroup */
|
|
|
|
+ return &root_task_group.css;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ tg = sched_create_group(parent);
|
|
|
|
+ if (IS_ERR(tg))
|
|
|
|
+ return ERR_PTR(-ENOMEM);
|
|
|
|
+ return &tg->css;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* Expose task group only after completing cgroup initialization */
|
|
|
|
+static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
|
|
|
|
+{
|
|
|
|
+ struct task_group *tg = css_tg(css);
|
|
|
|
+ struct task_group *parent = css_tg(css->parent);
|
|
|
|
+
|
|
|
|
+ if (parent)
|
|
|
|
+ sched_online_group(tg, parent);
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
|
|
|
|
+{
|
|
|
|
+ struct task_group *tg = css_tg(css);
|
|
|
|
+
|
|
|
|
+ sched_offline_group(tg);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
|
|
|
|
+{
|
|
|
|
+ struct task_group *tg = css_tg(css);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Relies on the RCU grace period between css_released() and this.
|
|
|
|
+ */
|
|
|
|
+ sched_free_group(tg);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void cpu_cgroup_fork(struct task_struct *task)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
|
|
|
|
+{
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void cpu_cgroup_attach(struct cgroup_taskset *tset)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static struct cftype cpu_legacy_files[] = {
|
|
|
|
+ { } /* Terminate */
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+static struct cftype cpu_files[] = {
|
|
|
|
+ { } /* terminate */
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+static int cpu_extra_stat_show(struct seq_file *sf,
|
|
|
|
+ struct cgroup_subsys_state *css)
|
|
|
|
+{
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+struct cgroup_subsys cpu_cgrp_subsys = {
|
|
|
|
+ .css_alloc = cpu_cgroup_css_alloc,
|
|
|
|
+ .css_online = cpu_cgroup_css_online,
|
|
|
|
+ .css_released = cpu_cgroup_css_released,
|
|
|
|
+ .css_free = cpu_cgroup_css_free,
|
|
|
|
+ .css_extra_stat_show = cpu_extra_stat_show,
|
|
|
|
+ .fork = cpu_cgroup_fork,
|
|
|
|
+ .can_attach = cpu_cgroup_can_attach,
|
|
|
|
+ .attach = cpu_cgroup_attach,
|
|
|
|
+ .legacy_cftypes = cpu_files,
|
|
|
|
+ .legacy_cftypes = cpu_legacy_files,
|
|
|
|
+ .dfl_cftypes = cpu_files,
|
|
|
|
+ .early_init = true,
|
|
|
|
+ .threaded = true,
|
|
|
|
+};
|
|
|
|
+#endif /* CONFIG_CGROUP_SCHED */
|
|
|
|
+
|
|
|
|
+void call_trace_sched_update_nr_running(struct rq *rq, int count)
|
|
|
|
+{
|
|
|
|
+ trace_sched_update_nr_running_tp(rq, count);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* CFS Compat */
|
|
|
|
+#ifdef CONFIG_RCU_TORTURE_TEST
|
|
|
|
+int sysctl_sched_rt_runtime;
|
|
|
|
+#endif
|
|
|
|
diff --git a/kernel/sched/MuQSS.h b/kernel/sched/MuQSS.h
|
|
|
|
new file mode 100644
|
|
|
|
index 000000000000..09a1f2fe64ba
|
|
|
|
--- /dev/null
|
|
|
|
+++ b/kernel/sched/MuQSS.h
|
|
|
|
@@ -0,0 +1,1070 @@
|
|
|
|
+/* SPDX-License-Identifier: GPL-2.0 */
|
|
|
|
+#ifndef MUQSS_SCHED_H
|
|
|
|
+#define MUQSS_SCHED_H
|
|
|
|
+
|
|
|
|
+#include <linux/sched/clock.h>
|
|
|
|
+#include <linux/sched/cpufreq.h>
|
|
|
|
+#include <linux/sched/cputime.h>
|
|
|
|
+#include <linux/sched/deadline.h>
|
|
|
|
+#include <linux/sched/debug.h>
|
|
|
|
+#include <linux/sched/hotplug.h>
|
|
|
|
+#include <linux/sched/init.h>
|
|
|
|
+#include <linux/sched/isolation.h>
|
|
|
|
+#include <linux/sched/mm.h>
|
|
|
|
+#include <linux/sched/nohz.h>
|
|
|
|
+#include <linux/sched/signal.h>
|
|
|
|
+#include <linux/sched/smt.h>
|
|
|
|
+#include <linux/sched/stat.h>
|
|
|
|
+#include <linux/sched/task.h>
|
|
|
|
+#include <linux/sched/task_stack.h>
|
|
|
|
+#include <linux/sched/topology.h>
|
|
|
|
+#include <linux/sched/wake_q.h>
|
|
|
|
+
|
|
|
|
+#include <uapi/linux/sched/types.h>
|
|
|
|
+
|
|
|
|
+#include <linux/cgroup.h>
|
|
|
|
+#include <linux/cpufreq.h>
|
|
|
|
+#include <linux/cpuidle.h>
|
|
|
|
+#include <linux/cpuset.h>
|
|
|
|
+#include <linux/ctype.h>
|
|
|
|
+#include <linux/energy_model.h>
|
|
|
|
+#include <linux/freezer.h>
|
|
|
|
+#include <linux/kernel_stat.h>
|
|
|
|
+#include <linux/kthread.h>
|
|
|
|
+#include <linux/membarrier.h>
|
|
|
|
+#include <linux/livepatch.h>
|
|
|
|
+#include <linux/proc_fs.h>
|
|
|
|
+#include <linux/psi.h>
|
|
|
|
+#include <linux/sched.h>
|
|
|
|
+#include <linux/slab.h>
|
|
|
|
+#include <linux/skip_list.h>
|
|
|
|
+#include <linux/stop_machine.h>
|
|
|
|
+#include <linux/suspend.h>
|
|
|
|
+#include <linux/swait.h>
|
|
|
|
+#include <linux/syscalls.h>
|
|
|
|
+#include <linux/tick.h>
|
|
|
|
+#include <linux/tsacct_kern.h>
|
|
|
|
+#include <linux/u64_stats_sync.h>
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_PARAVIRT
|
|
|
|
+#include <asm/paravirt.h>
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#include "cpupri.h"
|
|
|
|
+
|
|
|
|
+#include <trace/events/sched.h>
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SCHED_DEBUG
|
|
|
|
+# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
|
|
|
|
+#else
|
|
|
|
+# define SCHED_WARN_ON(x) ((void)(x))
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * wake flags
|
|
|
|
+ */
|
|
|
|
+#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
|
|
|
|
+#define WF_FORK 0x02 /* child wakeup after fork */
|
|
|
|
+#define WF_MIGRATED 0x04 /* internal use, task got migrated */
|
|
|
|
+#define WF_ON_CPU 0x08 /* Wakee is on_cpu */
|
|
|
|
+
|
|
|
|
+/* task_struct::on_rq states: */
|
|
|
|
+#define TASK_ON_RQ_QUEUED 1
|
|
|
|
+#define TASK_ON_RQ_MIGRATING 2
|
|
|
|
+
|
|
|
|
+extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
|
|
|
|
+
|
|
|
|
+struct rq;
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+
|
|
|
|
+static inline bool sched_asym_prefer(int a, int b)
|
|
|
|
+{
|
|
|
|
+ return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+struct perf_domain {
|
|
|
|
+ struct em_perf_domain *em_pd;
|
|
|
|
+ struct perf_domain *next;
|
|
|
|
+ struct rcu_head rcu;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+/* Scheduling group status flags */
|
|
|
|
+#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
|
|
|
|
+#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * We add the notion of a root-domain which will be used to define per-domain
|
|
|
|
+ * variables. Each exclusive cpuset essentially defines an island domain by
|
|
|
|
+ * fully partitioning the member cpus from any other cpuset. Whenever a new
|
|
|
|
+ * exclusive cpuset is created, we also create and attach a new root-domain
|
|
|
|
+ * object.
|
|
|
|
+ *
|
|
|
|
+ */
|
|
|
|
+struct root_domain {
|
|
|
|
+ atomic_t refcount;
|
|
|
|
+ atomic_t rto_count;
|
|
|
|
+ struct rcu_head rcu;
|
|
|
|
+ cpumask_var_t span;
|
|
|
|
+ cpumask_var_t online;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Indicate pullable load on at least one CPU, e.g:
|
|
|
|
+ * - More than one runnable task
|
|
|
|
+ * - Running task is misfit
|
|
|
|
+ */
|
|
|
|
+ int overload;
|
|
|
|
+
|
|
|
|
+ /* Indicate one or more cpus over-utilized (tipping point) */
|
|
|
|
+ int overutilized;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * The bit corresponding to a CPU gets set here if such CPU has more
|
|
|
|
+ * than one runnable -deadline task (as it is below for RT tasks).
|
|
|
|
+ */
|
|
|
|
+ cpumask_var_t dlo_mask;
|
|
|
|
+ atomic_t dlo_count;
|
|
|
|
+ /* Replace unused CFS structures with void */
|
|
|
|
+ //struct dl_bw dl_bw;
|
|
|
|
+ //struct cpudl cpudl;
|
|
|
|
+ void *dl_bw;
|
|
|
|
+ void *cpudl;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * The "RT overload" flag: it gets set if a CPU has more than
|
|
|
|
+ * one runnable RT task.
|
|
|
|
+ */
|
|
|
|
+ cpumask_var_t rto_mask;
|
|
|
|
+ //struct cpupri cpupri;
|
|
|
|
+ void *cpupri;
|
|
|
|
+
|
|
|
|
+ unsigned long max_cpu_capacity;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * NULL-terminated list of performance domains intersecting with the
|
|
|
|
+ * CPUs of the rd. Protected by RCU.
|
|
|
|
+ */
|
|
|
|
+ struct perf_domain *pd;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+extern void init_defrootdomain(void);
|
|
|
|
+extern int sched_init_domains(const struct cpumask *cpu_map);
|
|
|
|
+extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
|
|
|
|
+
|
|
|
|
+static inline void cpupri_cleanup(void __maybe_unused *cpupri)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void cpudl_cleanup(void __maybe_unused *cpudl)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void init_dl_bw(void __maybe_unused *dl_bw)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline int cpudl_init(void __maybe_unused *dl_bw)
|
|
|
|
+{
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline int cpupri_init(void __maybe_unused *cpupri)
|
|
|
|
+{
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+#endif /* CONFIG_SMP */
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * This is the main, per-CPU runqueue data structure.
|
|
|
|
+ * This data should only be modified by the local cpu.
|
|
|
|
+ */
|
|
|
|
+struct rq {
|
|
|
|
+ raw_spinlock_t *lock;
|
|
|
|
+ raw_spinlock_t *orig_lock;
|
|
|
|
+
|
|
|
|
+ struct task_struct __rcu *curr;
|
|
|
|
+ struct task_struct *idle;
|
|
|
|
+ struct task_struct *stop;
|
|
|
|
+ struct mm_struct *prev_mm;
|
|
|
|
+
|
|
|
|
+ unsigned int nr_running;
|
|
|
|
+ /*
|
|
|
|
+ * This is part of a global counter where only the total sum
|
|
|
|
+ * over all CPUs matters. A task can increase this counter on
|
|
|
|
+ * one CPU and if it got migrated afterwards it may decrease
|
|
|
|
+ * it on another CPU. Always updated under the runqueue lock:
|
|
|
|
+ */
|
|
|
|
+ unsigned long nr_uninterruptible;
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ unsigned int ttwu_pending;
|
|
|
|
+#endif
|
|
|
|
+ u64 nr_switches;
|
|
|
|
+
|
|
|
|
+ /* Stored data about rq->curr to work outside rq lock */
|
|
|
|
+ u64 rq_deadline;
|
|
|
|
+ int rq_prio;
|
|
|
|
+
|
|
|
|
+ /* Best queued id for use outside lock */
|
|
|
|
+ u64 best_key;
|
|
|
|
+
|
|
|
|
+ unsigned long last_scheduler_tick; /* Last jiffy this RQ ticked */
|
|
|
|
+ unsigned long last_jiffy; /* Last jiffy this RQ updated rq clock */
|
|
|
|
+ u64 niffies; /* Last time this RQ updated rq clock */
|
|
|
|
+ u64 last_niffy; /* Last niffies as updated by local clock */
|
|
|
|
+ u64 last_jiffy_niffies; /* Niffies @ last_jiffy */
|
|
|
|
+
|
|
|
|
+ u64 load_update; /* When we last updated load */
|
|
|
|
+ unsigned long load_avg; /* Rolling load average */
|
|
|
|
+#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
|
|
|
|
+ u64 irq_load_update; /* When we last updated IRQ load */
|
|
|
|
+ unsigned long irq_load_avg; /* Rolling IRQ load average */
|
|
|
|
+#endif
|
|
|
|
+#ifdef CONFIG_SMT_NICE
|
|
|
|
+ struct mm_struct *rq_mm;
|
|
|
|
+ int rq_smt_bias; /* Policy/nice level bias across smt siblings */
|
|
|
|
+#endif
|
|
|
|
+ /* Accurate timekeeping data */
|
|
|
|
+ unsigned long user_ns, nice_ns, irq_ns, softirq_ns, system_ns,
|
|
|
|
+ iowait_ns, idle_ns;
|
|
|
|
+ atomic_t nr_iowait;
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_MEMBARRIER
|
|
|
|
+ int membarrier_state;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ skiplist_node *node;
|
|
|
|
+ skiplist *sl;
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ struct task_struct *preempt; /* Preempt triggered on this task */
|
|
|
|
+ struct task_struct *preempting; /* Hint only, what task is preempting */
|
|
|
|
+
|
|
|
|
+ int cpu; /* cpu of this runqueue */
|
|
|
|
+ bool online;
|
|
|
|
+
|
|
|
|
+ struct root_domain *rd;
|
|
|
|
+ struct sched_domain *sd;
|
|
|
|
+
|
|
|
|
+ unsigned long cpu_capacity_orig;
|
|
|
|
+
|
|
|
|
+ int *cpu_locality; /* CPU relative cache distance */
|
|
|
|
+ struct rq **rq_order; /* Shared RQs ordered by relative cache distance */
|
|
|
|
+ struct rq **cpu_order; /* RQs of discrete CPUs ordered by distance */
|
|
|
|
+
|
|
|
|
+ bool is_leader;
|
|
|
|
+ struct rq *smp_leader; /* First physical CPU per node */
|
|
|
|
+#ifdef CONFIG_SCHED_THERMAL_PRESSURE
|
|
|
|
+ struct sched_avg avg_thermal;
|
|
|
|
+#endif /* CONFIG_SCHED_THERMAL_PRESSURE */
|
|
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
|
|
+ struct rq *smt_leader; /* First logical CPU in SMT siblings */
|
|
|
|
+ cpumask_t thread_mask;
|
|
|
|
+ bool (*siblings_idle)(struct rq *rq);
|
|
|
|
+ /* See if all smt siblings are idle */
|
|
|
|
+#endif /* CONFIG_SCHED_SMT */
|
|
|
|
+#ifdef CONFIG_SCHED_MC
|
|
|
|
+ struct rq *mc_leader; /* First logical CPU in MC siblings */
|
|
|
|
+ cpumask_t core_mask;
|
|
|
|
+ bool (*cache_idle)(struct rq *rq);
|
|
|
|
+ /* See if all cache siblings are idle */
|
|
|
|
+#endif /* CONFIG_SCHED_MC */
|
|
|
|
+#endif /* CONFIG_SMP */
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
|
|
+ u64 prev_irq_time;
|
|
|
|
+#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
|
|
|
|
+#ifdef CONFIG_PARAVIRT
|
|
|
|
+ u64 prev_steal_time;
|
|
|
|
+#endif /* CONFIG_PARAVIRT */
|
|
|
|
+#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
|
|
|
|
+ u64 prev_steal_time_rq;
|
|
|
|
+#endif /* CONFIG_PARAVIRT_TIME_ACCOUNTING */
|
|
|
|
+
|
|
|
|
+ u64 clock, old_clock, last_tick;
|
|
|
|
+ /* Ensure that all clocks are in the same cache line */
|
|
|
|
+ u64 clock_task ____cacheline_aligned;
|
|
|
|
+ int dither;
|
|
|
|
+
|
|
|
|
+ int iso_ticks;
|
|
|
|
+ bool iso_refractory;
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_HIGH_RES_TIMERS
|
|
|
|
+ struct hrtimer hrexpiry_timer;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ int rt_nr_running; /* Number real time tasks running */
|
|
|
|
+#ifdef CONFIG_SCHEDSTATS
|
|
|
|
+
|
|
|
|
+ /* latency stats */
|
|
|
|
+ struct sched_info rq_sched_info;
|
|
|
|
+ unsigned long long rq_cpu_time;
|
|
|
|
+ /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
|
|
|
|
+
|
|
|
|
+ /* sys_sched_yield() stats */
|
|
|
|
+ unsigned int yld_count;
|
|
|
|
+
|
|
|
|
+ /* schedule() stats */
|
|
|
|
+ unsigned int sched_switch;
|
|
|
|
+ unsigned int sched_count;
|
|
|
|
+ unsigned int sched_goidle;
|
|
|
|
+
|
|
|
|
+ /* try_to_wake_up() stats */
|
|
|
|
+ unsigned int ttwu_count;
|
|
|
|
+ unsigned int ttwu_local;
|
|
|
|
+#endif /* CONFIG_SCHEDSTATS */
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_CPU_IDLE
|
|
|
|
+ /* Must be inspected within a rcu lock section */
|
|
|
|
+ struct cpuidle_state *idle_state;
|
|
|
|
+#endif
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+static inline u64 __rq_clock_broken(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ return READ_ONCE(rq->clock);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline u64 rq_clock(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ lockdep_assert_held(rq->lock);
|
|
|
|
+
|
|
|
|
+ return rq->clock;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline u64 rq_clock_task(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ lockdep_assert_held(rq->lock);
|
|
|
|
+
|
|
|
|
+ return rq->clock_task;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * By default the decay is the default pelt decay period.
|
|
|
|
+ * The decay shift can change the decay period in
|
|
|
|
+ * multiples of 32.
|
|
|
|
+ * Decay shift Decay period(ms)
|
|
|
|
+ * 0 32
|
|
|
|
+ * 1 64
|
|
|
|
+ * 2 128
|
|
|
|
+ * 3 256
|
|
|
|
+ * 4 512
|
|
|
|
+ */
|
|
|
|
+extern int sched_thermal_decay_shift;
|
|
|
|
+
|
|
|
|
+static inline u64 rq_clock_thermal(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ return rq_clock_task(rq) >> sched_thermal_decay_shift;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+struct rq_flags {
|
|
|
|
+ unsigned long flags;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+struct rq *cpu_rq(int cpu);
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifndef CONFIG_SMP
|
|
|
|
+extern struct rq *uprq;
|
|
|
|
+#define cpu_rq(cpu) (uprq)
|
|
|
|
+#define this_rq() (uprq)
|
|
|
|
+#define raw_rq() (uprq)
|
|
|
|
+#define task_rq(p) (uprq)
|
|
|
|
+#define cpu_curr(cpu) ((uprq)->curr)
|
|
|
|
+#else /* CONFIG_SMP */
|
|
|
|
+DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
|
|
|
|
+#define this_rq() this_cpu_ptr(&runqueues)
|
|
|
|
+#define raw_rq() raw_cpu_ptr(&runqueues)
|
|
|
|
+#define task_rq(p) cpu_rq(task_cpu(p))
|
|
|
|
+#endif /* CONFIG_SMP */
|
|
|
|
+
|
|
|
|
+static inline int task_current(struct rq *rq, struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ return rq->curr == p;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline int task_running(struct rq *rq, struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+ return p->on_cpu;
|
|
|
|
+#else
|
|
|
|
+ return task_current(rq, p);
|
|
|
|
+#endif
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline int task_on_rq_queued(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ return p->on_rq == TASK_ON_RQ_QUEUED;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline int task_on_rq_migrating(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void rq_lock(struct rq *rq)
|
|
|
|
+ __acquires(rq->lock)
|
|
|
|
+{
|
|
|
|
+ raw_spin_lock(rq->lock);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void rq_unlock(struct rq *rq)
|
|
|
|
+ __releases(rq->lock)
|
|
|
|
+{
|
|
|
|
+ raw_spin_unlock(rq->lock);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void rq_lock_irq(struct rq *rq)
|
|
|
|
+ __acquires(rq->lock)
|
|
|
|
+{
|
|
|
|
+ raw_spin_lock_irq(rq->lock);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void rq_unlock_irq(struct rq *rq, struct rq_flags __always_unused *rf)
|
|
|
|
+ __releases(rq->lock)
|
|
|
|
+{
|
|
|
|
+ raw_spin_unlock_irq(rq->lock);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
|
|
|
|
+ __acquires(rq->lock)
|
|
|
|
+{
|
|
|
|
+ raw_spin_lock_irqsave(rq->lock, rf->flags);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
|
|
|
|
+ __releases(rq->lock)
|
|
|
|
+{
|
|
|
|
+ raw_spin_unlock_irqrestore(rq->lock, rf->flags);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
|
|
|
|
+ __acquires(p->pi_lock)
|
|
|
|
+ __acquires(rq->lock)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq;
|
|
|
|
+
|
|
|
|
+ while (42) {
|
|
|
|
+ raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
|
|
|
|
+ rq = task_rq(p);
|
|
|
|
+ raw_spin_lock(rq->lock);
|
|
|
|
+ if (likely(rq == task_rq(p)))
|
|
|
|
+ break;
|
|
|
|
+ raw_spin_unlock(rq->lock);
|
|
|
|
+ raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
|
|
|
|
+ }
|
|
|
|
+ return rq;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
|
|
|
|
+ __releases(rq->lock)
|
|
|
|
+ __releases(p->pi_lock)
|
|
|
|
+{
|
|
|
|
+ rq_unlock(rq);
|
|
|
|
+ raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags __always_unused *rf)
|
|
|
|
+ __acquires(rq->lock)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq;
|
|
|
|
+
|
|
|
|
+ lockdep_assert_held(&p->pi_lock);
|
|
|
|
+
|
|
|
|
+ while (42) {
|
|
|
|
+ rq = task_rq(p);
|
|
|
|
+ raw_spin_lock(rq->lock);
|
|
|
|
+ if (likely(rq == task_rq(p)))
|
|
|
|
+ break;
|
|
|
|
+ raw_spin_unlock(rq->lock);
|
|
|
|
+ }
|
|
|
|
+ return rq;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void __task_rq_unlock(struct rq *rq, struct rq_flags __always_unused *rf)
|
|
|
|
+{
|
|
|
|
+ rq_unlock(rq);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline struct rq *
|
|
|
|
+this_rq_lock_irq(struct rq_flags *rf)
|
|
|
|
+ __acquires(rq->lock)
|
|
|
|
+{
|
|
|
|
+ struct rq *rq;
|
|
|
|
+
|
|
|
|
+ local_irq_disable();
|
|
|
|
+ rq = this_rq();
|
|
|
|
+ rq_lock(rq);
|
|
|
|
+ return rq;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * {de,en}queue flags: Most not used on MuQSS.
|
|
|
|
+ *
|
|
|
|
+ * DEQUEUE_SLEEP - task is no longer runnable
|
|
|
|
+ * ENQUEUE_WAKEUP - task just became runnable
|
|
|
|
+ *
|
|
|
|
+ * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
|
|
|
|
+ * are in a known state which allows modification. Such pairs
|
|
|
|
+ * should preserve as much state as possible.
|
|
|
|
+ *
|
|
|
|
+ * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
|
|
|
|
+ * in the runqueue.
|
|
|
|
+ *
|
|
|
|
+ * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
|
|
|
|
+ * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
|
|
|
|
+ * ENQUEUE_MIGRATED - the task was migrated during wakeup
|
|
|
|
+ *
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+#define DEQUEUE_SLEEP 0x01
|
|
|
|
+#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
|
|
|
|
+
|
|
|
|
+#define ENQUEUE_WAKEUP 0x01
|
|
|
|
+#define ENQUEUE_RESTORE 0x02
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+#define ENQUEUE_MIGRATED 0x40
|
|
|
|
+#else
|
|
|
|
+#define ENQUEUE_MIGRATED 0x00
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_NUMA
|
|
|
|
+enum numa_topology_type {
|
|
|
|
+ NUMA_DIRECT,
|
|
|
|
+ NUMA_GLUELESS_MESH,
|
|
|
|
+ NUMA_BACKPLANE,
|
|
|
|
+};
|
|
|
|
+extern enum numa_topology_type sched_numa_topology_type;
|
|
|
|
+extern int sched_max_numa_distance;
|
|
|
|
+extern bool find_numa_distance(int distance);
|
|
|
|
+extern void sched_init_numa(void);
|
|
|
|
+extern void sched_domains_numa_masks_set(unsigned int cpu);
|
|
|
|
+extern void sched_domains_numa_masks_clear(unsigned int cpu);
|
|
|
|
+extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
|
|
|
|
+#else
|
|
|
|
+static inline void sched_init_numa(void) { }
|
|
|
|
+static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
|
|
|
|
+static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
|
|
|
|
+static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
|
|
|
|
+{
|
|
|
|
+ return nr_cpu_ids;
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+extern struct mutex sched_domains_mutex;
|
|
|
|
+extern struct static_key_false sched_schedstats;
|
|
|
|
+
|
|
|
|
+#define rcu_dereference_check_sched_domain(p) \
|
|
|
|
+ rcu_dereference_check((p), \
|
|
|
|
+ lockdep_is_held(&sched_domains_mutex))
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
|
|
|
|
+ * See destroy_sched_domains: call_rcu for details.
|
|
|
|
+ *
|
|
|
|
+ * The domain tree of any CPU may only be accessed from within
|
|
|
|
+ * preempt-disabled sections.
|
|
|
|
+ */
|
|
|
|
+#define for_each_domain(cpu, __sd) \
|
|
|
|
+ for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
|
|
|
|
+ __sd; __sd = __sd->parent)
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * highest_flag_domain - Return highest sched_domain containing flag.
|
|
|
|
+ * @cpu: The cpu whose highest level of sched domain is to
|
|
|
|
+ * be returned.
|
|
|
|
+ * @flag: The flag to check for the highest sched_domain
|
|
|
|
+ * for the given cpu.
|
|
|
|
+ *
|
|
|
|
+ * Returns the highest sched_domain of a cpu which contains the given flag.
|
|
|
|
+ */
|
|
|
|
+static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
|
|
|
|
+{
|
|
|
|
+ struct sched_domain *sd, *hsd = NULL;
|
|
|
|
+
|
|
|
|
+ for_each_domain(cpu, sd) {
|
|
|
|
+ if (!(sd->flags & flag))
|
|
|
|
+ break;
|
|
|
|
+ hsd = sd;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return hsd;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
|
|
|
|
+{
|
|
|
|
+ struct sched_domain *sd;
|
|
|
|
+
|
|
|
|
+ for_each_domain(cpu, sd) {
|
|
|
|
+ if (sd->flags & flag)
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return sd;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+DECLARE_PER_CPU(struct sched_domain *, sd_llc);
|
|
|
|
+DECLARE_PER_CPU(int, sd_llc_size);
|
|
|
|
+DECLARE_PER_CPU(int, sd_llc_id);
|
|
|
|
+DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
|
|
|
|
+DECLARE_PER_CPU(struct sched_domain *, sd_numa);
|
|
|
|
+DECLARE_PER_CPU(struct sched_domain *, sd_asym_packing);
|
|
|
|
+DECLARE_PER_CPU(struct sched_domain *, sd_asym_cpucapacity);
|
|
|
|
+
|
|
|
|
+struct sched_group_capacity {
|
|
|
|
+ atomic_t ref;
|
|
|
|
+ /*
|
|
|
|
+ * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
|
|
|
|
+ * for a single CPU.
|
|
|
|
+ */
|
|
|
|
+ unsigned long capacity;
|
|
|
|
+ unsigned long min_capacity; /* Min per-CPU capacity in group */
|
|
|
|
+ unsigned long max_capacity; /* Max per-CPU capacity in group */
|
|
|
|
+ unsigned long next_update;
|
|
|
|
+ int imbalance; /* XXX unrelated to capacity but shared group state */
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SCHED_DEBUG
|
|
|
|
+ int id;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ unsigned long cpumask[]; /* balance mask */
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+struct sched_group {
|
|
|
|
+ struct sched_group *next; /* Must be a circular list */
|
|
|
|
+ atomic_t ref;
|
|
|
|
+
|
|
|
|
+ unsigned int group_weight;
|
|
|
|
+ struct sched_group_capacity *sgc;
|
|
|
|
+ int asym_prefer_cpu; /* cpu of highest priority in group */
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * The CPUs this group covers.
|
|
|
|
+ *
|
|
|
|
+ * NOTE: this field is variable length. (Allocated dynamically
|
|
|
|
+ * by attaching extra space to the end of the structure,
|
|
|
|
+ * depending on how many CPUs the kernel has booted up with)
|
|
|
|
+ */
|
|
|
|
+ unsigned long cpumask[0];
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+static inline struct cpumask *sched_group_span(struct sched_group *sg)
|
|
|
|
+{
|
|
|
|
+ return to_cpumask(sg->cpumask);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * See build_balance_mask().
|
|
|
|
+ */
|
|
|
|
+static inline struct cpumask *group_balance_mask(struct sched_group *sg)
|
|
|
|
+{
|
|
|
|
+ return to_cpumask(sg->sgc->cpumask);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
|
|
|
|
+ * @group: The group whose first cpu is to be returned.
|
|
|
|
+ */
|
|
|
|
+static inline unsigned int group_first_cpu(struct sched_group *group)
|
|
|
|
+{
|
|
|
|
+ return cpumask_first(sched_group_span(group));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
|
|
|
|
+void register_sched_domain_sysctl(void);
|
|
|
|
+void dirty_sched_domain_sysctl(int cpu);
|
|
|
|
+void unregister_sched_domain_sysctl(void);
|
|
|
|
+#else
|
|
|
|
+static inline void register_sched_domain_sysctl(void)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+static inline void dirty_sched_domain_sysctl(int cpu)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+static inline void unregister_sched_domain_sysctl(void)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+extern void flush_smp_call_function_from_idle(void);
|
|
|
|
+
|
|
|
|
+extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
|
|
|
|
+extern void set_rq_online (struct rq *rq);
|
|
|
|
+extern void set_rq_offline(struct rq *rq);
|
|
|
|
+extern bool sched_smp_initialized;
|
|
|
|
+
|
|
|
|
+static inline void update_group_capacity(struct sched_domain *sd, int cpu)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void trigger_load_balance(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#define sched_feat(x) 0
|
|
|
|
+
|
|
|
|
+#else /* CONFIG_SMP */
|
|
|
|
+
|
|
|
|
+static inline void flush_smp_call_function_from_idle(void) { }
|
|
|
|
+
|
|
|
|
+#endif /* CONFIG_SMP */
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_CPU_IDLE
|
|
|
|
+static inline void idle_set_state(struct rq *rq,
|
|
|
|
+ struct cpuidle_state *idle_state)
|
|
|
|
+{
|
|
|
|
+ rq->idle_state = idle_state;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline struct cpuidle_state *idle_get_state(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ SCHED_WARN_ON(!rcu_read_lock_held());
|
|
|
|
+ return rq->idle_state;
|
|
|
|
+}
|
|
|
|
+#else
|
|
|
|
+static inline void idle_set_state(struct rq *rq,
|
|
|
|
+ struct cpuidle_state *idle_state)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline struct cpuidle_state *idle_get_state(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ return NULL;
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SCHED_DEBUG
|
|
|
|
+extern bool sched_debug_enabled;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+extern void schedule_idle(void);
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
|
|
+struct irqtime {
|
|
|
|
+ u64 total;
|
|
|
|
+ u64 tick_delta;
|
|
|
|
+ u64 irq_start_time;
|
|
|
|
+ struct u64_stats_sync sync;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Returns the irqtime minus the softirq time computed by ksoftirqd.
|
|
|
|
+ * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
|
|
|
|
+ * and never move forward.
|
|
|
|
+ */
|
|
|
|
+static inline u64 irq_time_read(int cpu)
|
|
|
|
+{
|
|
|
|
+ struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
|
|
|
|
+ unsigned int seq;
|
|
|
|
+ u64 total;
|
|
|
|
+
|
|
|
|
+ do {
|
|
|
|
+ seq = __u64_stats_fetch_begin(&irqtime->sync);
|
|
|
|
+ total = irqtime->total;
|
|
|
|
+ } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
|
|
|
|
+
|
|
|
|
+ return total;
|
|
|
|
+}
|
|
|
|
+#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
|
|
|
|
+
|
|
|
|
+static inline bool sched_stop_runnable(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ return rq->stop && task_on_rq_queued(rq->stop);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+static inline int cpu_of(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ return rq->cpu;
|
|
|
|
+}
|
|
|
|
+#else /* CONFIG_SMP */
|
|
|
|
+static inline int cpu_of(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_CPU_FREQ
|
|
|
|
+DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
|
|
|
|
+
|
|
|
|
+static inline void cpufreq_trigger(struct rq *rq, unsigned int flags)
|
|
|
|
+{
|
|
|
|
+ struct update_util_data *data;
|
|
|
|
+
|
|
|
|
+ data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
|
|
|
|
+ cpu_of(rq)));
|
|
|
|
+
|
|
|
|
+ if (data)
|
|
|
|
+ data->func(data, rq->niffies, flags);
|
|
|
|
+}
|
|
|
|
+#else
|
|
|
|
+static inline void cpufreq_trigger(struct rq *rq, unsigned int flag)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+#endif /* CONFIG_CPU_FREQ */
|
|
|
|
+
|
|
|
|
+static __always_inline
|
|
|
|
+unsigned int uclamp_rq_util_with(struct rq __maybe_unused *rq, unsigned int util,
|
|
|
|
+ struct task_struct __maybe_unused *p)
|
|
|
|
+{
|
|
|
|
+ return util;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline bool uclamp_is_used(void)
|
|
|
|
+{
|
|
|
|
+ return false;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifndef arch_scale_freq_tick
|
|
|
|
+static __always_inline
|
|
|
|
+void arch_scale_freq_tick(void)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifdef arch_scale_freq_capacity
|
|
|
|
+#ifndef arch_scale_freq_invariant
|
|
|
|
+#define arch_scale_freq_invariant() (true)
|
|
|
|
+#endif
|
|
|
|
+#else /* arch_scale_freq_capacity */
|
|
|
|
+#define arch_scale_freq_invariant() (false)
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_64BIT
|
|
|
|
+static inline u64 read_sum_exec_runtime(struct task_struct *t)
|
|
|
|
+{
|
|
|
|
+ return tsk_seruntime(t);
|
|
|
|
+}
|
|
|
|
+#else
|
|
|
|
+static inline u64 read_sum_exec_runtime(struct task_struct *t)
|
|
|
|
+{
|
|
|
|
+ struct rq_flags rf;
|
|
|
|
+ u64 ns;
|
|
|
|
+ struct rq *rq;
|
|
|
|
+
|
|
|
|
+ rq = task_rq_lock(t, &rf);
|
|
|
|
+ ns = tsk_seruntime(t);
|
|
|
|
+ task_rq_unlock(rq, t, &rf);
|
|
|
|
+
|
|
|
|
+ return ns;
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifndef arch_scale_freq_capacity
|
|
|
|
+/**
|
|
|
|
+ * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
|
|
|
|
+ * @cpu: the CPU in question.
|
|
|
|
+ *
|
|
|
|
+ * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
|
|
|
|
+ *
|
|
|
|
+ * f_curr
|
|
|
|
+ * ------ * SCHED_CAPACITY_SCALE
|
|
|
|
+ * f_max
|
|
|
|
+ */
|
|
|
|
+static __always_inline
|
|
|
|
+unsigned long arch_scale_freq_capacity(int cpu)
|
|
|
|
+{
|
|
|
|
+ return SCHED_CAPACITY_SCALE;
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_NO_HZ_FULL
|
|
|
|
+extern bool sched_can_stop_tick(struct rq *rq);
|
|
|
|
+extern int __init sched_tick_offload_init(void);
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Tick may be needed by tasks in the runqueue depending on their policy and
|
|
|
|
+ * requirements. If tick is needed, lets send the target an IPI to kick it out of
|
|
|
|
+ * nohz mode if necessary.
|
|
|
|
+ */
|
|
|
|
+static inline void sched_update_tick_dependency(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ int cpu = cpu_of(rq);
|
|
|
|
+
|
|
|
|
+ if (!tick_nohz_full_cpu(cpu))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ if (sched_can_stop_tick(rq))
|
|
|
|
+ tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
|
|
|
|
+ else
|
|
|
|
+ tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
|
|
|
|
+}
|
|
|
|
+#else
|
|
|
|
+static inline int sched_tick_offload_init(void) { return 0; }
|
|
|
|
+static inline void sched_update_tick_dependency(struct rq *rq) { }
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#define SCHED_FLAG_SUGOV 0x10000000
|
|
|
|
+
|
|
|
|
+static inline bool rt_rq_is_runnable(struct rq *rt_rq)
|
|
|
|
+{
|
|
|
|
+ return rt_rq->rt_nr_running;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * enum schedutil_type - CPU utilization type
|
|
|
|
+ * @FREQUENCY_UTIL: Utilization used to select frequency
|
|
|
|
+ * @ENERGY_UTIL: Utilization used during energy calculation
|
|
|
|
+ *
|
|
|
|
+ * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
|
|
|
|
+ * need to be aggregated differently depending on the usage made of them. This
|
|
|
|
+ * enum is used within schedutil_freq_util() to differentiate the types of
|
|
|
|
+ * utilization expected by the callers, and adjust the aggregation accordingly.
|
|
|
|
+ */
|
|
|
|
+enum schedutil_type {
|
|
|
|
+ FREQUENCY_UTIL,
|
|
|
|
+ ENERGY_UTIL,
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
|
|
|
|
+
|
|
|
|
+unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
|
|
|
|
+ unsigned long max, enum schedutil_type type,
|
|
|
|
+ struct task_struct *p);
|
|
|
|
+
|
|
|
|
+static inline unsigned long cpu_bw_dl(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline unsigned long cpu_util_dl(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline unsigned long cpu_util_cfs(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ unsigned long ret = READ_ONCE(rq->load_avg);
|
|
|
|
+
|
|
|
|
+ if (ret > SCHED_CAPACITY_SCALE)
|
|
|
|
+ ret = SCHED_CAPACITY_SCALE;
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline unsigned long cpu_util_rt(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ unsigned long ret = READ_ONCE(rq->rt_nr_running);
|
|
|
|
+
|
|
|
|
+ if (ret > SCHED_CAPACITY_SCALE)
|
|
|
|
+ ret = SCHED_CAPACITY_SCALE;
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
|
|
|
|
+static inline unsigned long cpu_util_irq(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ unsigned long ret = READ_ONCE(rq->irq_load_avg);
|
|
|
|
+
|
|
|
|
+ if (ret > SCHED_CAPACITY_SCALE)
|
|
|
|
+ ret = SCHED_CAPACITY_SCALE;
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline
|
|
|
|
+unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
|
|
|
|
+{
|
|
|
|
+ util *= (max - irq);
|
|
|
|
+ util /= max;
|
|
|
|
+
|
|
|
|
+ return util;
|
|
|
|
+
|
|
|
|
+}
|
|
|
|
+#else
|
|
|
|
+static inline unsigned long cpu_util_irq(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline
|
|
|
|
+unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
|
|
|
|
+{
|
|
|
|
+ return util;
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
|
|
|
|
+#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
|
|
|
|
+
|
|
|
|
+DECLARE_STATIC_KEY_FALSE(sched_energy_present);
|
|
|
|
+
|
|
|
|
+static inline bool sched_energy_enabled(void)
|
|
|
|
+{
|
|
|
|
+ return static_branch_unlikely(&sched_energy_present);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
|
|
|
|
+
|
|
|
|
+#define perf_domain_span(pd) NULL
|
|
|
|
+static inline bool sched_energy_enabled(void) { return false; }
|
|
|
|
+
|
|
|
|
+#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_MEMBARRIER
|
|
|
|
+/*
|
|
|
|
+ * The scheduler provides memory barriers required by membarrier between:
|
|
|
|
+ * - prior user-space memory accesses and store to rq->membarrier_state,
|
|
|
|
+ * - store to rq->membarrier_state and following user-space memory accesses.
|
|
|
|
+ * In the same way it provides those guarantees around store to rq->curr.
|
|
|
|
+ */
|
|
|
|
+static inline void membarrier_switch_mm(struct rq *rq,
|
|
|
|
+ struct mm_struct *prev_mm,
|
|
|
|
+ struct mm_struct *next_mm)
|
|
|
|
+{
|
|
|
|
+ int membarrier_state;
|
|
|
|
+
|
|
|
|
+ if (prev_mm == next_mm)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ membarrier_state = atomic_read(&next_mm->membarrier_state);
|
|
|
|
+ if (READ_ONCE(rq->membarrier_state) == membarrier_state)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ WRITE_ONCE(rq->membarrier_state, membarrier_state);
|
|
|
|
+}
|
|
|
|
+#else
|
|
|
|
+static inline void membarrier_switch_mm(struct rq *rq,
|
|
|
|
+ struct mm_struct *prev_mm,
|
|
|
|
+ struct mm_struct *next_mm)
|
|
|
|
+{
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
|
+static inline bool is_per_cpu_kthread(struct task_struct *p)
|
|
|
|
+{
|
|
|
|
+ if (!(p->flags & PF_KTHREAD))
|
|
|
|
+ return false;
|
|
|
|
+
|
|
|
|
+ if (p->nr_cpus_allowed != 1)
|
|
|
|
+ return false;
|
|
|
|
+
|
|
|
|
+ return true;
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+void swake_up_all_locked(struct swait_queue_head *q);
|
|
|
|
+void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
|
|
|
|
+
|
|
|
|
+/* pelt.h compat CONFIG_SCHED_THERMAL_PRESSURE impossible with MUQSS */
|
|
|
|
+static inline int
|
|
|
|
+update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
|
|
|
|
+{
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline u64 thermal_load_avg(struct rq *rq)
|
|
|
|
+{
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_RCU_TORTURE_TEST
|
|
|
|
+extern int sysctl_sched_rt_runtime;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#endif /* MUQSS_SCHED_H */
|
|
|
|
diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index 97d318b0cd0c..fb466c681a1f 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/kernel/sched/cpufreq_schedutil.c
|
|
|
|
+++ b/kernel/sched/cpufreq_schedutil.c
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -172,6 +172,12 @@ static unsigned int get_next_freq(struct sugov_policy *sg_policy,
|
2020-10-26 15:23:54 -05:00
|
|
|
return cpufreq_driver_resolve_freq(policy, freq);
|
|
|
|
}
|
|
|
|
|
|
|
|
+#ifdef CONFIG_SCHED_MUQSS
|
|
|
|
+#define rt_rq_runnable(rq_rt) rt_rq_is_runnable(rq)
|
|
|
|
+#else
|
|
|
|
+#define rt_rq_runnable(rq_rt) rt_rq_is_runnable(&rq->rt)
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
/*
|
|
|
|
* This function computes an effective utilization for the given CPU, to be
|
|
|
|
* used for frequency selection given the linear relation: f = u * f_max.
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -200,7 +206,7 @@ unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
|
2020-10-26 15:23:54 -05:00
|
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
|
|
|
|
if (!uclamp_is_used() &&
|
|
|
|
- type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
|
|
|
|
+ type == FREQUENCY_UTIL && rt_rq_runnable(rq)) {
|
|
|
|
return max;
|
|
|
|
}
|
|
|
|
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -642,7 +648,11 @@ static int sugov_kthread_create(struct sugov_policy *sg_policy)
|
2020-10-26 15:23:54 -05:00
|
|
|
struct task_struct *thread;
|
|
|
|
struct sched_attr attr = {
|
|
|
|
.size = sizeof(struct sched_attr),
|
|
|
|
+#ifdef CONFIG_SCHED_MUQSS
|
|
|
|
+ .sched_policy = SCHED_RR,
|
|
|
|
+#else
|
|
|
|
.sched_policy = SCHED_DEADLINE,
|
|
|
|
+#endif
|
|
|
|
.sched_flags = SCHED_FLAG_SUGOV,
|
|
|
|
.sched_nice = 0,
|
|
|
|
.sched_priority = 0,
|
|
|
|
diff --git a/kernel/sched/cpupri.h b/kernel/sched/cpupri.h
|
|
|
|
index efbb492bb94c..f0288c32ab17 100644
|
|
|
|
--- a/kernel/sched/cpupri.h
|
|
|
|
+++ b/kernel/sched/cpupri.h
|
|
|
|
@@ -17,6 +17,7 @@ struct cpupri {
|
|
|
|
int *cpu_to_pri;
|
|
|
|
};
|
|
|
|
|
|
|
|
+#ifndef CONFIG_SCHED_MUQSS
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
int cpupri_find(struct cpupri *cp, struct task_struct *p,
|
|
|
|
struct cpumask *lowest_mask);
|
|
|
|
@@ -27,3 +28,4 @@ void cpupri_set(struct cpupri *cp, int cpu, int pri);
|
|
|
|
int cpupri_init(struct cpupri *cp);
|
|
|
|
void cpupri_cleanup(struct cpupri *cp);
|
|
|
|
#endif
|
|
|
|
+#endif
|
|
|
|
diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
|
|
|
|
index 5a55d2300452..283a580754a7 100644
|
|
|
|
--- a/kernel/sched/cputime.c
|
|
|
|
+++ b/kernel/sched/cputime.c
|
|
|
|
@@ -266,26 +266,6 @@ static inline u64 account_other_time(u64 max)
|
|
|
|
return accounted;
|
|
|
|
}
|
|
|
|
|
|
|
|
-#ifdef CONFIG_64BIT
|
|
|
|
-static inline u64 read_sum_exec_runtime(struct task_struct *t)
|
|
|
|
-{
|
|
|
|
- return t->se.sum_exec_runtime;
|
|
|
|
-}
|
|
|
|
-#else
|
|
|
|
-static u64 read_sum_exec_runtime(struct task_struct *t)
|
|
|
|
-{
|
|
|
|
- u64 ns;
|
|
|
|
- struct rq_flags rf;
|
|
|
|
- struct rq *rq;
|
|
|
|
-
|
|
|
|
- rq = task_rq_lock(t, &rf);
|
|
|
|
- ns = t->se.sum_exec_runtime;
|
|
|
|
- task_rq_unlock(rq, t, &rf);
|
|
|
|
-
|
|
|
|
- return ns;
|
|
|
|
-}
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
/*
|
|
|
|
* Accumulate raw cputime values of dead tasks (sig->[us]time) and live
|
|
|
|
* tasks (sum on group iteration) belonging to @tsk's group.
|
|
|
|
@@ -614,7 +594,7 @@ void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
|
|
|
|
void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
|
|
|
|
{
|
|
|
|
struct task_cputime cputime = {
|
|
|
|
- .sum_exec_runtime = p->se.sum_exec_runtime,
|
|
|
|
+ .sum_exec_runtime = tsk_seruntime(p),
|
|
|
|
};
|
|
|
|
|
|
|
|
task_cputime(p, &cputime.utime, &cputime.stime);
|
|
|
|
diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index c6932b8f4467..3fc76869cf5f 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/kernel/sched/idle.c
|
|
|
|
+++ b/kernel/sched/idle.c
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -395,6 +395,7 @@ void cpu_startup_entry(enum cpuhp_state state)
|
2020-10-26 15:23:54 -05:00
|
|
|
do_idle();
|
|
|
|
}
|
|
|
|
|
|
|
|
+#ifndef CONFIG_SCHED_MUQSS
|
|
|
|
/*
|
|
|
|
* idle-task scheduling class.
|
|
|
|
*/
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -508,3 +509,4 @@ const struct sched_class idle_sched_class
|
2020-10-26 15:23:54 -05:00
|
|
|
.switched_to = switched_to_idle,
|
|
|
|
.update_curr = update_curr_idle,
|
|
|
|
};
|
|
|
|
+#endif /* CONFIG_SCHED_MUQSS */
|
|
|
|
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
|
2021-01-08 07:29:38 -06:00
|
|
|
index df80bfcea92e..e17785e91f0e 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/kernel/sched/sched.h
|
|
|
|
+++ b/kernel/sched/sched.h
|
|
|
|
@@ -2,6 +2,19 @@
|
|
|
|
/*
|
|
|
|
* Scheduler internal types and methods:
|
|
|
|
*/
|
|
|
|
+#ifdef CONFIG_SCHED_MUQSS
|
|
|
|
+#include "MuQSS.h"
|
|
|
|
+
|
|
|
|
+/* Begin compatibility wrappers for MuQSS/CFS differences */
|
|
|
|
+#define rq_rt_nr_running(rq) ((rq)->rt_nr_running)
|
|
|
|
+#define rq_h_nr_running(rq) ((rq)->nr_running)
|
|
|
|
+
|
|
|
|
+#else /* CONFIG_SCHED_MUQSS */
|
|
|
|
+
|
|
|
|
+#define rq_rt_nr_running(rq) ((rq)->rt.rt_nr_running)
|
|
|
|
+#define rq_h_nr_running(rq) ((rq)->cfs.h_nr_running)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
#include <linux/sched.h>
|
|
|
|
|
|
|
|
#include <linux/sched/autogroup.h>
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -2633,3 +2646,25 @@ static inline bool is_per_cpu_kthread(struct task_struct *p)
|
2020-10-26 15:23:54 -05:00
|
|
|
|
|
|
|
void swake_up_all_locked(struct swait_queue_head *q);
|
|
|
|
void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
|
|
|
|
+
|
|
|
|
+/* MuQSS compatibility functions */
|
|
|
|
+#ifdef CONFIG_64BIT
|
|
|
|
+static inline u64 read_sum_exec_runtime(struct task_struct *t)
|
|
|
|
+{
|
|
|
|
+ return t->se.sum_exec_runtime;
|
|
|
|
+}
|
|
|
|
+#else
|
|
|
|
+static inline u64 read_sum_exec_runtime(struct task_struct *t)
|
|
|
|
+{
|
|
|
|
+ u64 ns;
|
|
|
|
+ struct rq_flags rf;
|
|
|
|
+ struct rq *rq;
|
|
|
|
+
|
|
|
|
+ rq = task_rq_lock(t, &rf);
|
|
|
|
+ ns = t->se.sum_exec_runtime;
|
|
|
|
+ task_rq_unlock(rq, t, &rf);
|
|
|
|
+
|
|
|
|
+ return ns;
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+#endif /* CONFIG_SCHED_MUQSS */
|
|
|
|
diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index dd7770226086..4bd57a89aa6a 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/kernel/sched/topology.c
|
|
|
|
+++ b/kernel/sched/topology.c
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -454,7 +454,11 @@ void rq_attach_root(struct rq *rq, struct root_domain *rd)
|
2020-10-26 15:23:54 -05:00
|
|
|
struct root_domain *old_rd = NULL;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
+#ifdef CONFIG_SCHED_MUQSS
|
|
|
|
+ raw_spin_lock_irqsave(rq->lock, flags);
|
|
|
|
+#else
|
|
|
|
raw_spin_lock_irqsave(&rq->lock, flags);
|
|
|
|
+#endif
|
|
|
|
|
|
|
|
if (rq->rd) {
|
|
|
|
old_rd = rq->rd;
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -480,7 +484,11 @@ void rq_attach_root(struct rq *rq, struct root_domain *rd)
|
2020-10-26 15:23:54 -05:00
|
|
|
if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
|
|
|
|
set_rq_online(rq);
|
|
|
|
|
|
|
|
+#ifdef CONFIG_SCHED_MUQSS
|
|
|
|
+ raw_spin_unlock_irqrestore(rq->lock, flags);
|
|
|
|
+#else
|
|
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
|
|
+#endif
|
|
|
|
|
|
|
|
if (old_rd)
|
|
|
|
call_rcu(&old_rd->rcu, free_rootdomain);
|
|
|
|
diff --git a/kernel/skip_list.c b/kernel/skip_list.c
|
|
|
|
new file mode 100644
|
|
|
|
index 000000000000..bf5c6e97e139
|
|
|
|
--- /dev/null
|
|
|
|
+++ b/kernel/skip_list.c
|
|
|
|
@@ -0,0 +1,148 @@
|
|
|
|
+/*
|
|
|
|
+ Copyright (C) 2011,2016 Con Kolivas.
|
|
|
|
+
|
|
|
|
+ Code based on example originally by William Pugh.
|
|
|
|
+
|
|
|
|
+Skip Lists are a probabilistic alternative to balanced trees, as
|
|
|
|
+described in the June 1990 issue of CACM and were invented by
|
|
|
|
+William Pugh in 1987.
|
|
|
|
+
|
|
|
|
+A couple of comments about this implementation:
|
|
|
|
+The routine randomLevel has been hard-coded to generate random
|
|
|
|
+levels using p=0.25. It can be easily changed.
|
|
|
|
+
|
|
|
|
+The insertion routine has been implemented so as to use the
|
|
|
|
+dirty hack described in the CACM paper: if a random level is
|
|
|
|
+generated that is more than the current maximum level, the
|
|
|
|
+current maximum level plus one is used instead.
|
|
|
|
+
|
|
|
|
+Levels start at zero and go up to MaxLevel (which is equal to
|
|
|
|
+MaxNumberOfLevels-1).
|
|
|
|
+
|
|
|
|
+The routines defined in this file are:
|
|
|
|
+
|
|
|
|
+init: defines slnode
|
|
|
|
+
|
|
|
|
+new_skiplist: returns a new, empty list
|
|
|
|
+
|
|
|
|
+randomLevel: Returns a random level based on a u64 random seed passed to it.
|
|
|
|
+In MuQSS, the "niffy" time is used for this purpose.
|
|
|
|
+
|
|
|
|
+insert(l,key, value): inserts the binding (key, value) into l. This operation
|
|
|
|
+occurs in O(log n) time.
|
|
|
|
+
|
|
|
|
+delnode(slnode, l, node): deletes any binding of key from the l based on the
|
|
|
|
+actual node value. This operation occurs in O(k) time where k is the
|
|
|
|
+number of levels of the node in question (max 8). The original delete
|
|
|
|
+function occurred in O(log n) time and involved a search.
|
|
|
|
+
|
|
|
|
+MuQSS Notes: In this implementation of skiplists, there are bidirectional
|
|
|
|
+next/prev pointers and the insert function returns a pointer to the actual
|
|
|
|
+node the value is stored. The key here is chosen by the scheduler so as to
|
|
|
|
+sort tasks according to the priority list requirements and is no longer used
|
|
|
|
+by the scheduler after insertion. The scheduler lookup, however, occurs in
|
|
|
|
+O(1) time because it is always the first item in the level 0 linked list.
|
|
|
|
+Since the task struct stores a copy of the node pointer upon skiplist_insert,
|
|
|
|
+it can also remove it much faster than the original implementation with the
|
|
|
|
+aid of prev<->next pointer manipulation and no searching.
|
|
|
|
+
|
|
|
|
+*/
|
|
|
|
+
|
|
|
|
+#include <linux/slab.h>
|
|
|
|
+#include <linux/skip_list.h>
|
|
|
|
+
|
|
|
|
+#define MaxNumberOfLevels 8
|
|
|
|
+#define MaxLevel (MaxNumberOfLevels - 1)
|
|
|
|
+
|
|
|
|
+void skiplist_init(skiplist_node *slnode)
|
|
|
|
+{
|
|
|
|
+ int i;
|
|
|
|
+
|
|
|
|
+ slnode->key = 0xFFFFFFFFFFFFFFFF;
|
|
|
|
+ slnode->level = 0;
|
|
|
|
+ slnode->value = NULL;
|
|
|
|
+ for (i = 0; i < MaxNumberOfLevels; i++)
|
|
|
|
+ slnode->next[i] = slnode->prev[i] = slnode;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+skiplist *new_skiplist(skiplist_node *slnode)
|
|
|
|
+{
|
|
|
|
+ skiplist *l = kzalloc(sizeof(skiplist), GFP_ATOMIC);
|
|
|
|
+
|
|
|
|
+ BUG_ON(!l);
|
|
|
|
+ l->header = slnode;
|
|
|
|
+ return l;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void free_skiplist(skiplist *l)
|
|
|
|
+{
|
|
|
|
+ skiplist_node *p, *q;
|
|
|
|
+
|
|
|
|
+ p = l->header;
|
|
|
|
+ do {
|
|
|
|
+ q = p->next[0];
|
|
|
|
+ p->next[0]->prev[0] = q->prev[0];
|
|
|
|
+ skiplist_node_init(p);
|
|
|
|
+ p = q;
|
|
|
|
+ } while (p != l->header);
|
|
|
|
+ kfree(l);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void skiplist_node_init(skiplist_node *node)
|
|
|
|
+{
|
|
|
|
+ memset(node, 0, sizeof(skiplist_node));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline unsigned int randomLevel(const long unsigned int randseed)
|
|
|
|
+{
|
|
|
|
+ return find_first_bit(&randseed, MaxLevel) / 2;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void skiplist_insert(skiplist *l, skiplist_node *node, keyType key, valueType value, unsigned int randseed)
|
|
|
|
+{
|
|
|
|
+ skiplist_node *update[MaxNumberOfLevels];
|
|
|
|
+ skiplist_node *p, *q;
|
|
|
|
+ int k = l->level;
|
|
|
|
+
|
|
|
|
+ p = l->header;
|
|
|
|
+ do {
|
|
|
|
+ while (q = p->next[k], q->key <= key)
|
|
|
|
+ p = q;
|
|
|
|
+ update[k] = p;
|
|
|
|
+ } while (--k >= 0);
|
|
|
|
+
|
|
|
|
+ ++l->entries;
|
|
|
|
+ k = randomLevel(randseed);
|
|
|
|
+ if (k > l->level) {
|
|
|
|
+ k = ++l->level;
|
|
|
|
+ update[k] = l->header;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ node->level = k;
|
|
|
|
+ node->key = key;
|
|
|
|
+ node->value = value;
|
|
|
|
+ do {
|
|
|
|
+ p = update[k];
|
|
|
|
+ node->next[k] = p->next[k];
|
|
|
|
+ p->next[k] = node;
|
|
|
|
+ node->prev[k] = p;
|
|
|
|
+ node->next[k]->prev[k] = node;
|
|
|
|
+ } while (--k >= 0);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void skiplist_delete(skiplist *l, skiplist_node *node)
|
|
|
|
+{
|
|
|
|
+ int k, m = node->level;
|
|
|
|
+
|
|
|
|
+ for (k = 0; k <= m; k++) {
|
|
|
|
+ node->prev[k]->next[k] = node->next[k];
|
|
|
|
+ node->next[k]->prev[k] = node->prev[k];
|
|
|
|
+ }
|
|
|
|
+ skiplist_node_init(node);
|
|
|
|
+ if (m == l->level) {
|
|
|
|
+ while (l->header->next[m] == l->header && l->header->prev[m] == l->header && m > 0)
|
|
|
|
+ m--;
|
|
|
|
+ l->level = m;
|
|
|
|
+ }
|
|
|
|
+ l->entries--;
|
|
|
|
+}
|
|
|
|
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
|
|
|
|
index afad085960b8..d2e35cd54f94 100644
|
|
|
|
--- a/kernel/sysctl.c
|
|
|
|
+++ b/kernel/sysctl.c
|
|
|
|
@@ -120,7 +120,17 @@ static unsigned long long_max = LONG_MAX;
|
|
|
|
static int one_hundred = 100;
|
|
|
|
static int two_hundred = 200;
|
|
|
|
static int one_thousand = 1000;
|
|
|
|
-#ifdef CONFIG_PRINTK
|
|
|
|
+static int zero = 0;
|
|
|
|
+static int one = 1;
|
|
|
|
+#ifdef CONFIG_SCHED_MUQSS
|
|
|
|
+extern int rr_interval;
|
|
|
|
+extern int sched_interactive;
|
|
|
|
+extern int sched_iso_cpu;
|
|
|
|
+extern int sched_yield_type;
|
|
|
|
+#endif
|
|
|
|
+extern int hrtimer_granularity_us;
|
|
|
|
+extern int hrtimeout_min_us;
|
|
|
|
+#if defined(CONFIG_PRINTK) || defined(CONFIG_SCHED_MUQSS)
|
|
|
|
static int ten_thousand = 10000;
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
|
|
@@ -184,7 +194,7 @@ static enum sysctl_writes_mode sysctl_writes_strict = SYSCTL_WRITES_STRICT;
|
|
|
|
int sysctl_legacy_va_layout;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
-#ifdef CONFIG_SCHED_DEBUG
|
|
|
|
+#if defined(CONFIG_SCHED_DEBUG) && !defined(CONFIG_SCHED_MUQSS)
|
|
|
|
static int min_sched_granularity_ns = 100000; /* 100 usecs */
|
|
|
|
static int max_sched_granularity_ns = NSEC_PER_SEC; /* 1 second */
|
|
|
|
static int min_wakeup_granularity_ns; /* 0 usecs */
|
|
|
|
@@ -193,7 +203,7 @@ static int max_wakeup_granularity_ns = NSEC_PER_SEC; /* 1 second */
|
|
|
|
static int min_sched_tunable_scaling = SCHED_TUNABLESCALING_NONE;
|
|
|
|
static int max_sched_tunable_scaling = SCHED_TUNABLESCALING_END-1;
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
-#endif /* CONFIG_SCHED_DEBUG */
|
|
|
|
+#endif /* CONFIG_SCHED_DEBUG && !CONFIG_SCHED_MUQSS */
|
|
|
|
|
|
|
|
#ifdef CONFIG_COMPACTION
|
|
|
|
static int min_extfrag_threshold;
|
|
|
|
@@ -1652,6 +1662,7 @@ int proc_do_static_key(struct ctl_table *table, int write,
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct ctl_table kern_table[] = {
|
|
|
|
+#ifndef CONFIG_SCHED_MUQSS
|
|
|
|
{
|
|
|
|
.procname = "sched_child_runs_first",
|
|
|
|
.data = &sysctl_sched_child_runs_first,
|
|
|
|
@@ -1843,6 +1854,73 @@ static struct ctl_table kern_table[] = {
|
|
|
|
.extra1 = SYSCTL_ONE,
|
|
|
|
},
|
|
|
|
#endif
|
|
|
|
+#elif defined(CONFIG_SCHED_MUQSS)
|
|
|
|
+ {
|
|
|
|
+ .procname = "rr_interval",
|
|
|
|
+ .data = &rr_interval,
|
|
|
|
+ .maxlen = sizeof (int),
|
|
|
|
+ .mode = 0644,
|
|
|
|
+ .proc_handler = &proc_dointvec_minmax,
|
|
|
|
+ .extra1 = &one,
|
|
|
|
+ .extra2 = &one_thousand,
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ .procname = "interactive",
|
|
|
|
+ .data = &sched_interactive,
|
|
|
|
+ .maxlen = sizeof(int),
|
|
|
|
+ .mode = 0644,
|
|
|
|
+ .proc_handler = &proc_dointvec_minmax,
|
|
|
|
+ .extra1 = &zero,
|
|
|
|
+ .extra2 = &one,
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ .procname = "iso_cpu",
|
|
|
|
+ .data = &sched_iso_cpu,
|
|
|
|
+ .maxlen = sizeof (int),
|
|
|
|
+ .mode = 0644,
|
|
|
|
+ .proc_handler = &proc_dointvec_minmax,
|
|
|
|
+ .extra1 = &zero,
|
|
|
|
+ .extra2 = &one_hundred,
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ .procname = "yield_type",
|
|
|
|
+ .data = &sched_yield_type,
|
|
|
|
+ .maxlen = sizeof (int),
|
|
|
|
+ .mode = 0644,
|
|
|
|
+ .proc_handler = &proc_dointvec_minmax,
|
|
|
|
+ .extra1 = &zero,
|
|
|
|
+ .extra2 = &two,
|
|
|
|
+ },
|
|
|
|
+#if defined(CONFIG_SMP) && defined(CONFIG_SCHEDSTATS)
|
|
|
|
+ {
|
|
|
|
+ .procname = "sched_schedstats",
|
|
|
|
+ .data = NULL,
|
|
|
|
+ .maxlen = sizeof(unsigned int),
|
|
|
|
+ .mode = 0644,
|
|
|
|
+ .proc_handler = sysctl_schedstats,
|
|
|
|
+ .extra1 = SYSCTL_ZERO,
|
|
|
|
+ .extra2 = SYSCTL_ONE,
|
|
|
|
+ },
|
|
|
|
+#endif /* CONFIG_SMP && CONFIG_SCHEDSTATS */
|
|
|
|
+#endif /* CONFIG_SCHED_MUQSS */
|
|
|
|
+ {
|
|
|
|
+ .procname = "hrtimer_granularity_us",
|
|
|
|
+ .data = &hrtimer_granularity_us,
|
|
|
|
+ .maxlen = sizeof(int),
|
|
|
|
+ .mode = 0644,
|
|
|
|
+ .proc_handler = &proc_dointvec_minmax,
|
|
|
|
+ .extra1 = &one,
|
|
|
|
+ .extra2 = &ten_thousand,
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ .procname = "hrtimeout_min_us",
|
|
|
|
+ .data = &hrtimeout_min_us,
|
|
|
|
+ .maxlen = sizeof(int),
|
|
|
|
+ .mode = 0644,
|
|
|
|
+ .proc_handler = &proc_dointvec_minmax,
|
|
|
|
+ .extra1 = &one,
|
|
|
|
+ .extra2 = &ten_thousand,
|
|
|
|
+ },
|
|
|
|
#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
|
|
|
|
{
|
|
|
|
.procname = "sched_energy_aware",
|
|
|
|
diff --git a/kernel/time/Kconfig b/kernel/time/Kconfig
|
|
|
|
index a09b1d61df6a..e7662101fcc3 100644
|
|
|
|
--- a/kernel/time/Kconfig
|
|
|
|
+++ b/kernel/time/Kconfig
|
|
|
|
@@ -75,6 +75,9 @@ config NO_HZ_COMMON
|
|
|
|
depends on !ARCH_USES_GETTIMEOFFSET && GENERIC_CLOCKEVENTS
|
|
|
|
select TICK_ONESHOT
|
|
|
|
|
|
|
|
+config NO_HZ_FULL
|
|
|
|
+ bool
|
|
|
|
+
|
|
|
|
choice
|
|
|
|
prompt "Timer tick handling"
|
|
|
|
default NO_HZ_IDLE if NO_HZ
|
|
|
|
@@ -96,8 +99,9 @@ config NO_HZ_IDLE
|
|
|
|
|
|
|
|
Most of the time you want to say Y here.
|
|
|
|
|
|
|
|
-config NO_HZ_FULL
|
|
|
|
+config NO_HZ_FULL_NODEF
|
|
|
|
bool "Full dynticks system (tickless)"
|
|
|
|
+ select NO_HZ_FULL
|
|
|
|
# NO_HZ_COMMON dependency
|
|
|
|
depends on !ARCH_USES_GETTIMEOFFSET && GENERIC_CLOCKEVENTS
|
|
|
|
# We need at least one periodic CPU for timekeeping
|
|
|
|
@@ -123,6 +127,8 @@ config NO_HZ_FULL
|
|
|
|
transitions: syscalls, exceptions and interrupts. Even when it's
|
|
|
|
dynamically off.
|
|
|
|
|
|
|
|
+ Not recommended for desktops,laptops, or mobile devices.
|
|
|
|
+
|
|
|
|
Say N.
|
|
|
|
|
|
|
|
endchoice
|
|
|
|
@@ -132,7 +138,7 @@ config CONTEXT_TRACKING
|
|
|
|
|
|
|
|
config CONTEXT_TRACKING_FORCE
|
|
|
|
bool "Force context tracking"
|
|
|
|
- depends on CONTEXT_TRACKING
|
|
|
|
+ depends on CONTEXT_TRACKING && !SCHED_MUQSS
|
|
|
|
default y if !NO_HZ_FULL
|
|
|
|
help
|
|
|
|
The major pre-requirement for full dynticks to work is to
|
|
|
|
diff --git a/kernel/time/clockevents.c b/kernel/time/clockevents.c
|
|
|
|
index f5490222e134..544c58c29267 100644
|
|
|
|
--- a/kernel/time/clockevents.c
|
|
|
|
+++ b/kernel/time/clockevents.c
|
|
|
|
@@ -190,8 +190,9 @@ int clockevents_tick_resume(struct clock_event_device *dev)
|
|
|
|
|
|
|
|
#ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
|
|
|
|
|
|
|
|
-/* Limit min_delta to a jiffie */
|
|
|
|
-#define MIN_DELTA_LIMIT (NSEC_PER_SEC / HZ)
|
|
|
|
+int __read_mostly hrtimer_granularity_us = 100;
|
|
|
|
+/* Limit min_delta to 100us */
|
|
|
|
+#define MIN_DELTA_LIMIT (hrtimer_granularity_us * NSEC_PER_USEC)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* clockevents_increase_min_delta - raise minimum delta of a clock event device
|
|
|
|
diff --git a/kernel/time/hrtimer.c b/kernel/time/hrtimer.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index 387b4bef7dd1..fffc7c5f712f 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/kernel/time/hrtimer.c
|
|
|
|
+++ b/kernel/time/hrtimer.c
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -2218,3 +2218,113 @@ int __sched schedule_hrtimeout(ktime_t *expires,
|
2020-10-26 15:23:54 -05:00
|
|
|
return schedule_hrtimeout_range(expires, 0, mode);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(schedule_hrtimeout);
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * As per schedule_hrtimeout but taskes a millisecond value and returns how
|
|
|
|
+ * many milliseconds are left.
|
|
|
|
+ */
|
|
|
|
+long __sched schedule_msec_hrtimeout(long timeout)
|
|
|
|
+{
|
|
|
|
+ struct hrtimer_sleeper t;
|
|
|
|
+ int delta, jiffs;
|
|
|
|
+ ktime_t expires;
|
|
|
|
+
|
|
|
|
+ if (!timeout) {
|
|
|
|
+ __set_current_state(TASK_RUNNING);
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ jiffs = msecs_to_jiffies(timeout);
|
|
|
|
+ /*
|
|
|
|
+ * If regular timer resolution is adequate or hrtimer resolution is not
|
|
|
|
+ * (yet) better than Hz, as would occur during startup, use regular
|
|
|
|
+ * timers.
|
|
|
|
+ */
|
|
|
|
+ if (jiffs > 4 || hrtimer_resolution >= NSEC_PER_SEC / HZ || pm_freezing)
|
|
|
|
+ return schedule_timeout(jiffs);
|
|
|
|
+
|
|
|
|
+ delta = (timeout % 1000) * NSEC_PER_MSEC;
|
|
|
|
+ expires = ktime_set(0, delta);
|
|
|
|
+
|
|
|
|
+ hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
|
|
+ hrtimer_set_expires_range_ns(&t.timer, expires, delta);
|
|
|
|
+
|
|
|
|
+ hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
|
|
|
|
+
|
|
|
|
+ if (likely(t.task))
|
|
|
|
+ schedule();
|
|
|
|
+
|
|
|
|
+ hrtimer_cancel(&t.timer);
|
|
|
|
+ destroy_hrtimer_on_stack(&t.timer);
|
|
|
|
+
|
|
|
|
+ __set_current_state(TASK_RUNNING);
|
|
|
|
+
|
|
|
|
+ expires = hrtimer_expires_remaining(&t.timer);
|
|
|
|
+ timeout = ktime_to_ms(expires);
|
|
|
|
+ return timeout < 0 ? 0 : timeout;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+EXPORT_SYMBOL(schedule_msec_hrtimeout);
|
|
|
|
+
|
|
|
|
+#define USECS_PER_SEC 1000000
|
|
|
|
+extern int hrtimer_granularity_us;
|
|
|
|
+
|
|
|
|
+static inline long schedule_usec_hrtimeout(long timeout)
|
|
|
|
+{
|
|
|
|
+ struct hrtimer_sleeper t;
|
|
|
|
+ ktime_t expires;
|
|
|
|
+ int delta;
|
|
|
|
+
|
|
|
|
+ if (!timeout) {
|
|
|
|
+ __set_current_state(TASK_RUNNING);
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (hrtimer_resolution >= NSEC_PER_SEC / HZ)
|
|
|
|
+ return schedule_timeout(usecs_to_jiffies(timeout));
|
|
|
|
+
|
|
|
|
+ if (timeout < hrtimer_granularity_us)
|
|
|
|
+ timeout = hrtimer_granularity_us;
|
|
|
|
+ delta = (timeout % USECS_PER_SEC) * NSEC_PER_USEC;
|
|
|
|
+ expires = ktime_set(0, delta);
|
|
|
|
+
|
|
|
|
+ hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
|
|
+ hrtimer_set_expires_range_ns(&t.timer, expires, delta);
|
|
|
|
+
|
|
|
|
+ hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
|
|
|
|
+
|
|
|
|
+ if (likely(t.task))
|
|
|
|
+ schedule();
|
|
|
|
+
|
|
|
|
+ hrtimer_cancel(&t.timer);
|
|
|
|
+ destroy_hrtimer_on_stack(&t.timer);
|
|
|
|
+
|
|
|
|
+ __set_current_state(TASK_RUNNING);
|
|
|
|
+
|
|
|
|
+ expires = hrtimer_expires_remaining(&t.timer);
|
|
|
|
+ timeout = ktime_to_us(expires);
|
|
|
|
+ return timeout < 0 ? 0 : timeout;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int __read_mostly hrtimeout_min_us = 500;
|
|
|
|
+
|
|
|
|
+long __sched schedule_min_hrtimeout(void)
|
|
|
|
+{
|
|
|
|
+ return usecs_to_jiffies(schedule_usec_hrtimeout(hrtimeout_min_us));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+EXPORT_SYMBOL(schedule_min_hrtimeout);
|
|
|
|
+
|
|
|
|
+long __sched schedule_msec_hrtimeout_interruptible(long timeout)
|
|
|
|
+{
|
|
|
|
+ __set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
+ return schedule_msec_hrtimeout(timeout);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL(schedule_msec_hrtimeout_interruptible);
|
|
|
|
+
|
|
|
|
+long __sched schedule_msec_hrtimeout_uninterruptible(long timeout)
|
|
|
|
+{
|
|
|
|
+ __set_current_state(TASK_UNINTERRUPTIBLE);
|
|
|
|
+ return schedule_msec_hrtimeout(timeout);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL(schedule_msec_hrtimeout_uninterruptible);
|
|
|
|
diff --git a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c
|
|
|
|
index a71758e34e45..ebb84a65d928 100644
|
|
|
|
--- a/kernel/time/posix-cpu-timers.c
|
|
|
|
+++ b/kernel/time/posix-cpu-timers.c
|
|
|
|
@@ -216,7 +216,7 @@ static void task_sample_cputime(struct task_struct *p, u64 *samples)
|
|
|
|
u64 stime, utime;
|
|
|
|
|
|
|
|
task_cputime(p, &utime, &stime);
|
|
|
|
- store_samples(samples, stime, utime, p->se.sum_exec_runtime);
|
|
|
|
+ store_samples(samples, stime, utime, tsk_seruntime(p));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
|
|
|
|
@@ -850,7 +850,7 @@ static void check_thread_timers(struct task_struct *tsk,
|
|
|
|
soft = task_rlimit(tsk, RLIMIT_RTTIME);
|
|
|
|
if (soft != RLIM_INFINITY) {
|
|
|
|
/* Task RT timeout is accounted in jiffies. RTTIME is usec */
|
|
|
|
- unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
|
|
|
|
+ unsigned long rttime = tsk_rttimeout(tsk) * (USEC_PER_SEC / HZ);
|
|
|
|
unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
|
|
|
|
|
|
|
|
/* At the hard limit, send SIGKILL. No further action. */
|
|
|
|
diff --git a/kernel/time/timer.c b/kernel/time/timer.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index c3ad64fb9d8b..0411a289ccde 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/kernel/time/timer.c
|
|
|
|
+++ b/kernel/time/timer.c
|
|
|
|
@@ -44,6 +44,7 @@
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/compat.h>
|
|
|
|
#include <linux/random.h>
|
|
|
|
+#include <linux/freezer.h>
|
|
|
|
|
|
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <asm/unistd.h>
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -1584,7 +1585,7 @@ static unsigned long __next_timer_interrupt(struct timer_base *base)
|
2020-10-26 15:23:54 -05:00
|
|
|
* Check, if the next hrtimer event is before the next timer wheel
|
|
|
|
* event:
|
|
|
|
*/
|
|
|
|
-static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
|
|
|
|
+static u64 cmp_next_hrtimer_event(struct timer_base *base, u64 basem, u64 expires)
|
|
|
|
{
|
|
|
|
u64 nextevt = hrtimer_get_next_event();
|
|
|
|
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -1602,6 +1603,9 @@ static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
|
2020-10-26 15:23:54 -05:00
|
|
|
if (nextevt <= basem)
|
|
|
|
return basem;
|
|
|
|
|
|
|
|
+ if (nextevt < expires && nextevt - basem <= TICK_NSEC)
|
|
|
|
+ base->is_idle = false;
|
|
|
|
+
|
|
|
|
/*
|
|
|
|
* Round up to the next jiffie. High resolution timers are
|
|
|
|
* off, so the hrtimers are expired in the tick and we need to
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -1671,7 +1675,7 @@ u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
|
2020-10-26 15:23:54 -05:00
|
|
|
}
|
|
|
|
raw_spin_unlock(&base->lock);
|
|
|
|
|
|
|
|
- return cmp_next_hrtimer_event(basem, expires);
|
|
|
|
+ return cmp_next_hrtimer_event(base, basem, expires);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -1865,6 +1869,18 @@ signed long __sched schedule_timeout(signed long timeout)
|
2020-10-26 15:23:54 -05:00
|
|
|
|
|
|
|
expire = timeout + jiffies;
|
|
|
|
|
|
|
|
+#ifdef CONFIG_HIGH_RES_TIMERS
|
|
|
|
+ if (timeout == 1 && hrtimer_resolution < NSEC_PER_SEC / HZ) {
|
|
|
|
+ /*
|
|
|
|
+ * Special case 1 as being a request for the minimum timeout
|
|
|
|
+ * and use highres timers to timeout after 1ms to workaround
|
|
|
|
+ * the granularity of low Hz tick timers.
|
|
|
|
+ */
|
|
|
|
+ if (!schedule_min_hrtimeout())
|
|
|
|
+ return 0;
|
|
|
|
+ goto out_timeout;
|
|
|
|
+ }
|
|
|
|
+#endif
|
|
|
|
timer.task = current;
|
|
|
|
timer_setup_on_stack(&timer.timer, process_timeout, 0);
|
|
|
|
__mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -1873,10 +1889,10 @@ signed long __sched schedule_timeout(signed long timeout)
|
2020-10-26 15:23:54 -05:00
|
|
|
|
|
|
|
/* Remove the timer from the object tracker */
|
|
|
|
destroy_timer_on_stack(&timer.timer);
|
|
|
|
-
|
|
|
|
+out_timeout:
|
|
|
|
timeout = expire - jiffies;
|
|
|
|
|
|
|
|
- out:
|
|
|
|
+out:
|
|
|
|
return timeout < 0 ? 0 : timeout;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(schedule_timeout);
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -2019,7 +2035,19 @@ void __init init_timers(void)
|
2020-10-26 15:23:54 -05:00
|
|
|
*/
|
|
|
|
void msleep(unsigned int msecs)
|
|
|
|
{
|
|
|
|
- unsigned long timeout = msecs_to_jiffies(msecs) + 1;
|
|
|
|
+ int jiffs = msecs_to_jiffies(msecs);
|
|
|
|
+ unsigned long timeout;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Use high resolution timers where the resolution of tick based
|
|
|
|
+ * timers is inadequate.
|
|
|
|
+ */
|
|
|
|
+ if (jiffs < 5 && hrtimer_resolution < NSEC_PER_SEC / HZ && !pm_freezing) {
|
|
|
|
+ while (msecs)
|
|
|
|
+ msecs = schedule_msec_hrtimeout_uninterruptible(msecs);
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+ timeout = jiffs + 1;
|
|
|
|
|
|
|
|
while (timeout)
|
|
|
|
timeout = schedule_timeout_uninterruptible(timeout);
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -2033,7 +2061,15 @@ EXPORT_SYMBOL(msleep);
|
2020-10-26 15:23:54 -05:00
|
|
|
*/
|
|
|
|
unsigned long msleep_interruptible(unsigned int msecs)
|
|
|
|
{
|
|
|
|
- unsigned long timeout = msecs_to_jiffies(msecs) + 1;
|
|
|
|
+ int jiffs = msecs_to_jiffies(msecs);
|
|
|
|
+ unsigned long timeout;
|
|
|
|
+
|
|
|
|
+ if (jiffs < 5 && hrtimer_resolution < NSEC_PER_SEC / HZ && !pm_freezing) {
|
|
|
|
+ while (msecs && !signal_pending(current))
|
|
|
|
+ msecs = schedule_msec_hrtimeout_interruptible(msecs);
|
|
|
|
+ return msecs;
|
|
|
|
+ }
|
|
|
|
+ timeout = jiffs + 1;
|
|
|
|
|
|
|
|
while (timeout && !signal_pending(current))
|
|
|
|
timeout = schedule_timeout_interruptible(timeout);
|
|
|
|
diff --git a/kernel/trace/trace_selftest.c b/kernel/trace/trace_selftest.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index 4738ad48a667..f050201c0574 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/kernel/trace/trace_selftest.c
|
|
|
|
+++ b/kernel/trace/trace_selftest.c
|
2021-01-08 07:29:38 -06:00
|
|
|
@@ -1053,10 +1053,15 @@ static int trace_wakeup_test_thread(void *data)
|
2020-10-26 15:23:54 -05:00
|
|
|
{
|
|
|
|
/* Make this a -deadline thread */
|
|
|
|
static const struct sched_attr attr = {
|
|
|
|
+#ifdef CONFIG_SCHED_MUQSS
|
|
|
|
+ /* No deadline on MuQSS, use RR */
|
|
|
|
+ .sched_policy = SCHED_RR,
|
|
|
|
+#else
|
|
|
|
.sched_policy = SCHED_DEADLINE,
|
|
|
|
.sched_runtime = 100000ULL,
|
|
|
|
.sched_deadline = 10000000ULL,
|
|
|
|
.sched_period = 10000000ULL
|
|
|
|
+#endif
|
|
|
|
};
|
|
|
|
struct wakeup_test_data *x = data;
|
|
|
|
|
|
|
|
diff --git a/mm/vmscan.c b/mm/vmscan.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index 7b4e31eac2cf..b35d95e83abd 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/mm/vmscan.c
|
|
|
|
+++ b/mm/vmscan.c
|
|
|
|
@@ -169,7 +169,7 @@ struct scan_control {
|
|
|
|
/*
|
|
|
|
* From 0 .. 200. Higher means more swappy.
|
|
|
|
*/
|
|
|
|
-int vm_swappiness = 60;
|
|
|
|
+int vm_swappiness = 33;
|
|
|
|
|
|
|
|
static void set_task_reclaim_state(struct task_struct *task,
|
|
|
|
struct reclaim_state *rs)
|
|
|
|
diff --git a/net/core/pktgen.c b/net/core/pktgen.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index 105978604ffd..cf509f492abb 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/net/core/pktgen.c
|
|
|
|
+++ b/net/core/pktgen.c
|
|
|
|
@@ -1894,7 +1894,7 @@ static void pktgen_mark_device(const struct pktgen_net *pn, const char *ifname)
|
|
|
|
mutex_unlock(&pktgen_thread_lock);
|
|
|
|
pr_debug("%s: waiting for %s to disappear....\n",
|
|
|
|
__func__, ifname);
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies(msec_per_try));
|
|
|
|
+ schedule_msec_hrtimeout_interruptible((msec_per_try));
|
|
|
|
mutex_lock(&pktgen_thread_lock);
|
|
|
|
|
|
|
|
if (++i >= max_tries) {
|
|
|
|
diff --git a/sound/pci/maestro3.c b/sound/pci/maestro3.c
|
|
|
|
index 40232a278b1a..d87fae1113aa 100644
|
|
|
|
--- a/sound/pci/maestro3.c
|
|
|
|
+++ b/sound/pci/maestro3.c
|
|
|
|
@@ -1995,7 +1995,7 @@ static void snd_m3_ac97_reset(struct snd_m3 *chip)
|
|
|
|
outw(0, io + GPIO_DATA);
|
|
|
|
outw(dir | GPO_PRIMARY_AC97, io + GPIO_DIRECTION);
|
|
|
|
|
|
|
|
- schedule_timeout_uninterruptible(msecs_to_jiffies(delay1));
|
|
|
|
+ schedule_msec_hrtimeout_uninterruptible((delay1));
|
|
|
|
|
|
|
|
outw(GPO_PRIMARY_AC97, io + GPIO_DATA);
|
|
|
|
udelay(5);
|
|
|
|
@@ -2003,7 +2003,7 @@ static void snd_m3_ac97_reset(struct snd_m3 *chip)
|
|
|
|
outw(IO_SRAM_ENABLE | SERIAL_AC_LINK_ENABLE, io + RING_BUS_CTRL_A);
|
|
|
|
outw(~0, io + GPIO_MASK);
|
|
|
|
|
|
|
|
- schedule_timeout_uninterruptible(msecs_to_jiffies(delay2));
|
|
|
|
+ schedule_msec_hrtimeout_uninterruptible((delay2));
|
|
|
|
|
|
|
|
if (! snd_m3_try_read_vendor(chip))
|
|
|
|
break;
|
|
|
|
diff --git a/sound/soc/codecs/rt5631.c b/sound/soc/codecs/rt5631.c
|
|
|
|
index 653da3eaf355..d77d12902594 100644
|
|
|
|
--- a/sound/soc/codecs/rt5631.c
|
|
|
|
+++ b/sound/soc/codecs/rt5631.c
|
|
|
|
@@ -417,7 +417,7 @@ static void onebit_depop_mute_stage(struct snd_soc_component *component, int ena
|
|
|
|
hp_zc = snd_soc_component_read(component, RT5631_INT_ST_IRQ_CTRL_2);
|
|
|
|
snd_soc_component_write(component, RT5631_INT_ST_IRQ_CTRL_2, hp_zc & 0xf7ff);
|
|
|
|
if (enable) {
|
|
|
|
- schedule_timeout_uninterruptible(msecs_to_jiffies(10));
|
|
|
|
+ schedule_msec_hrtimeout_uninterruptible((10));
|
|
|
|
/* config one-bit depop parameter */
|
|
|
|
rt5631_write_index(component, RT5631_SPK_INTL_CTRL, 0x307f);
|
|
|
|
snd_soc_component_update_bits(component, RT5631_HP_OUT_VOL,
|
|
|
|
@@ -529,7 +529,7 @@ static void depop_seq_mute_stage(struct snd_soc_component *component, int enable
|
|
|
|
hp_zc = snd_soc_component_read(component, RT5631_INT_ST_IRQ_CTRL_2);
|
|
|
|
snd_soc_component_write(component, RT5631_INT_ST_IRQ_CTRL_2, hp_zc & 0xf7ff);
|
|
|
|
if (enable) {
|
|
|
|
- schedule_timeout_uninterruptible(msecs_to_jiffies(10));
|
|
|
|
+ schedule_msec_hrtimeout_uninterruptible((10));
|
|
|
|
|
|
|
|
/* config depop sequence parameter */
|
|
|
|
rt5631_write_index(component, RT5631_SPK_INTL_CTRL, 0x302f);
|
|
|
|
diff --git a/sound/soc/codecs/wm8350.c b/sound/soc/codecs/wm8350.c
|
|
|
|
index a6aa212fa0c8..8bfa549b38db 100644
|
|
|
|
--- a/sound/soc/codecs/wm8350.c
|
|
|
|
+++ b/sound/soc/codecs/wm8350.c
|
|
|
|
@@ -233,10 +233,10 @@ static void wm8350_pga_work(struct work_struct *work)
|
|
|
|
out2->ramp == WM8350_RAMP_UP) {
|
|
|
|
/* delay is longer over 0dB as increases are larger */
|
|
|
|
if (i >= WM8350_OUTn_0dB)
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies
|
|
|
|
+ schedule_msec_hrtimeout_interruptible(
|
|
|
|
(2));
|
|
|
|
else
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies
|
|
|
|
+ schedule_msec_hrtimeout_interruptible(
|
|
|
|
(1));
|
|
|
|
} else
|
|
|
|
udelay(50); /* doesn't matter if we delay longer */
|
|
|
|
@@ -1120,7 +1120,7 @@ static int wm8350_set_bias_level(struct snd_soc_component *component,
|
|
|
|
(platform->dis_out4 << 6));
|
|
|
|
|
|
|
|
/* wait for discharge */
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies
|
|
|
|
+ schedule_msec_hrtimeout_interruptible(
|
|
|
|
(platform->
|
|
|
|
cap_discharge_msecs));
|
|
|
|
|
|
|
|
@@ -1136,7 +1136,7 @@ static int wm8350_set_bias_level(struct snd_soc_component *component,
|
|
|
|
WM8350_VBUFEN);
|
|
|
|
|
|
|
|
/* wait for vmid */
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies
|
|
|
|
+ schedule_msec_hrtimeout_interruptible(
|
|
|
|
(platform->
|
|
|
|
vmid_charge_msecs));
|
|
|
|
|
|
|
|
@@ -1187,7 +1187,7 @@ static int wm8350_set_bias_level(struct snd_soc_component *component,
|
|
|
|
wm8350_reg_write(wm8350, WM8350_POWER_MGMT_1, pm1);
|
|
|
|
|
|
|
|
/* wait */
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies
|
|
|
|
+ schedule_msec_hrtimeout_interruptible(
|
|
|
|
(platform->
|
|
|
|
vmid_discharge_msecs));
|
|
|
|
|
|
|
|
@@ -1205,7 +1205,7 @@ static int wm8350_set_bias_level(struct snd_soc_component *component,
|
|
|
|
pm1 | WM8350_OUTPUT_DRAIN_EN);
|
|
|
|
|
|
|
|
/* wait */
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies
|
|
|
|
+ schedule_msec_hrtimeout_interruptible(
|
|
|
|
(platform->drain_msecs));
|
|
|
|
|
|
|
|
pm1 &= ~WM8350_BIASEN;
|
|
|
|
diff --git a/sound/soc/codecs/wm8900.c b/sound/soc/codecs/wm8900.c
|
|
|
|
index a9a6d766a176..45bf31de6282 100644
|
|
|
|
--- a/sound/soc/codecs/wm8900.c
|
|
|
|
+++ b/sound/soc/codecs/wm8900.c
|
|
|
|
@@ -1104,7 +1104,7 @@ static int wm8900_set_bias_level(struct snd_soc_component *component,
|
|
|
|
/* Need to let things settle before stopping the clock
|
|
|
|
* to ensure that restart works, see "Stopping the
|
|
|
|
* master clock" in the datasheet. */
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies(1));
|
|
|
|
+ schedule_msec_hrtimeout_interruptible(1);
|
|
|
|
snd_soc_component_write(component, WM8900_REG_POWER2,
|
|
|
|
WM8900_REG_POWER2_SYSCLK_ENA);
|
|
|
|
break;
|
|
|
|
diff --git a/sound/soc/codecs/wm9713.c b/sound/soc/codecs/wm9713.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index f333e2ff4a16..3033cc2d4005 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/sound/soc/codecs/wm9713.c
|
|
|
|
+++ b/sound/soc/codecs/wm9713.c
|
|
|
|
@@ -199,7 +199,7 @@ static int wm9713_voice_shutdown(struct snd_soc_dapm_widget *w,
|
|
|
|
|
|
|
|
/* Gracefully shut down the voice interface. */
|
|
|
|
snd_soc_component_update_bits(component, AC97_HANDSET_RATE, 0x0f00, 0x0200);
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies(1));
|
|
|
|
+ schedule_msec_hrtimeout_interruptible(1);
|
|
|
|
snd_soc_component_update_bits(component, AC97_HANDSET_RATE, 0x0f00, 0x0f00);
|
|
|
|
snd_soc_component_update_bits(component, AC97_EXTENDED_MID, 0x1000, 0x1000);
|
|
|
|
|
|
|
|
@@ -868,7 +868,7 @@ static int wm9713_set_pll(struct snd_soc_component *component,
|
|
|
|
wm9713->pll_in = freq_in;
|
|
|
|
|
|
|
|
/* wait 10ms AC97 link frames for the link to stabilise */
|
|
|
|
- schedule_timeout_interruptible(msecs_to_jiffies(10));
|
|
|
|
+ schedule_msec_hrtimeout_interruptible((10));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
diff --git a/sound/soc/soc-dapm.c b/sound/soc/soc-dapm.c
|
2021-01-08 07:29:38 -06:00
|
|
|
index 7f87b449f950..71a8d59afb55 100644
|
2020-10-26 15:23:54 -05:00
|
|
|
--- a/sound/soc/soc-dapm.c
|
|
|
|
+++ b/sound/soc/soc-dapm.c
|
|
|
|
@@ -154,7 +154,7 @@ static void dapm_assert_locked(struct snd_soc_dapm_context *dapm)
|
|
|
|
static void pop_wait(u32 pop_time)
|
|
|
|
{
|
|
|
|
if (pop_time)
|
|
|
|
- schedule_timeout_uninterruptible(msecs_to_jiffies(pop_time));
|
|
|
|
+ schedule_msec_hrtimeout_uninterruptible((pop_time));
|
|
|
|
}
|
|
|
|
|
|
|
|
__printf(3, 4)
|
|
|
|
diff --git a/sound/usb/line6/pcm.c b/sound/usb/line6/pcm.c
|
|
|
|
index fdbdfb7bce92..fa8e8faf3eb3 100644
|
|
|
|
--- a/sound/usb/line6/pcm.c
|
|
|
|
+++ b/sound/usb/line6/pcm.c
|
|
|
|
@@ -127,7 +127,7 @@ static void line6_wait_clear_audio_urbs(struct snd_line6_pcm *line6pcm,
|
|
|
|
if (!alive)
|
|
|
|
break;
|
|
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
|
|
- schedule_timeout(1);
|
|
|
|
+ schedule_min_hrtimeout();
|
|
|
|
} while (--timeout > 0);
|
|
|
|
if (alive)
|
|
|
|
dev_err(line6pcm->line6->ifcdev,
|