From 0e49a7815da4ed347529d4a030df4f10fb8d51de Mon Sep 17 00:00:00 2001 From: Tk-Glitch Date: Wed, 21 Oct 2020 14:22:29 +0200 Subject: [PATCH] linux59-tkg: Import 5.9 version of the bcachefs patchset - https://github.com/koverstreet/bcachefs --- linux59-tkg/PKGBUILD | 5 +- linux59-tkg/customization.cfg | 3 + linux59-tkg/linux59-tkg-config/prepare | 32 +- .../0008-5.9-bcachefs.patch | 70821 ++++++++++++++++ 4 files changed, 70843 insertions(+), 18 deletions(-) create mode 100644 linux59-tkg/linux59-tkg-patches/0008-5.9-bcachefs.patch diff --git a/linux59-tkg/PKGBUILD b/linux59-tkg/PKGBUILD index aa3077a..39890ba 100644 --- a/linux59-tkg/PKGBUILD +++ b/linux59-tkg/PKGBUILD @@ -45,7 +45,7 @@ else fi pkgname=("${pkgbase}" "${pkgbase}-headers") pkgver="${_basekernel}"."${_sub}" -pkgrel=6 +pkgrel=7 pkgdesc='Linux-tkg' arch=('x86_64') # no i686 in here url="http://www.kernel.org/" @@ -75,7 +75,7 @@ source=("https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-${_basekernel}.tar.x 0005-glitched-pds.patch 0006-add-acs-overrides_iommu.patch 0007-v5.9-fsync.patch - #0008-5.8-bcachefs.patch + 0008-5.9-bcachefs.patch 0009-glitched-ondemand-bmq.patch 0009-glitched-bmq.patch 0009-prjc_v5.9-r0.patch @@ -99,6 +99,7 @@ sha256sums=('3239a4ee1250bf2048be988cc8cb46c487b2c8a0de5b1b032d38394d5c6b1a06' 'fca63d15ca4502aebd73e76d7499b243d2c03db71ff5ab0bf5cf268b2e576320' '19661ec0d39f9663452b34433214c755179894528bf73a42f6ba52ccf572832a' 'b302ba6c5bbe8ed19b20207505d513208fae1e678cf4d8e7ac0b154e5fe3f456' + '3956c324798f25bcf8e6c5f6d160551245304c5cfa3a2cba73e5b1e350c364ce' '9fad4a40449e09522899955762c8928ae17f4cdaa16e01239fd12592e9d58177' 'a557b342111849a5f920bbe1c129f3ff1fc1eff62c6bd6685e0972fc88e39911' '88c7e308e474c845e0cc09e09bd223fc39876eca757abf6d6c3b8321f49ce1f1' diff --git a/linux59-tkg/customization.cfg b/linux59-tkg/customization.cfg index 938dda5..1bca36b 100644 --- a/linux59-tkg/customization.cfg +++ b/linux59-tkg/customization.cfg @@ -98,6 +98,9 @@ _OFenable="false" # Set to "true" to use ACS override patch - https://wiki.archlinux.org/index.php/PCI_passthrough_via_OVMF#Bypassing_the_IOMMU_groups_.28ACS_override_patch.29 - Kernel default is "false" _acs_override="" +# Set to "true" to add Bcache filesystem support. You'll have to install bcachefs-tools-git from AUR for utilities - https://bcachefs.org/ - If in doubt, set to "false" +_bcachefs="" + # Set to "true" to add back missing symbol for AES-NI/AVX support on ZFS - https://github.com/NixOS/nixpkgs/blob/master/pkgs/os-specific/linux/kernel/export_kernel_fpu_functions.patch - Kernel default is "false" _zfsfix="true" diff --git a/linux59-tkg/linux59-tkg-config/prepare b/linux59-tkg/linux59-tkg-config/prepare index 08826c8..dc2eaba 100644 --- a/linux59-tkg/linux59-tkg-config/prepare +++ b/linux59-tkg/linux59-tkg-config/prepare @@ -732,22 +732,22 @@ _tkg_srcprep() { fi # bcachefs - #if [ -z "$_bcachefs" ]; then - # plain "" - # plain "Add Bcache filesystem support? You'll have to install bcachefs-tools-git from AUR for utilities." - # plain "https://bcachefs.org/" - # read -rp "`echo $' > N/y : '`" CONDITION8; - #fi - #if [[ "$CONDITION8" =~ [yY] ]] || [ "$_bcachefs" = "true" ]; then - # msg2 "Patching Bcache filesystem support override" - # patch -Np1 -i "$srcdir"/0008-5.8-bcachefs.patch - # echo "CONFIG_BCACHEFS_FS=m" >> ./.config - # echo "CONFIG_BCACHEFS_QUOTA=y" >> ./.config - # echo "CONFIG_BCACHEFS_POSIX_ACL=y" >> ./.config - # echo "# CONFIG_BCACHEFS_DEBUG is not set" >> ./.config - # echo "# CONFIG_BCACHEFS_TESTS is not set" >> ./.config - # echo "# CONFIG_DEBUG_CLOSURES is not set" >> ./.config - #fi + if [ -z "$_bcachefs" ]; then + plain "" + plain "Add Bcache filesystem support? You'll have to install bcachefs-tools-git from AUR for utilities." + plain "https://bcachefs.org/" + read -rp "`echo $' > N/y : '`" CONDITION8; + fi + if [[ "$CONDITION8" =~ [yY] ]] || [ "$_bcachefs" = "true" ]; then + msg2 "Patching Bcache filesystem support override" + patch -Np1 -i "$srcdir"/0008-5.9-bcachefs.patch + echo "CONFIG_BCACHEFS_FS=m" >> ./.config + echo "CONFIG_BCACHEFS_QUOTA=y" >> ./.config + echo "CONFIG_BCACHEFS_POSIX_ACL=y" >> ./.config + echo "# CONFIG_BCACHEFS_DEBUG is not set" >> ./.config + echo "# CONFIG_BCACHEFS_TESTS is not set" >> ./.config + echo "# CONFIG_DEBUG_CLOSURES is not set" >> ./.config + fi # fsync support if [ -z "$_fsync" ]; then diff --git a/linux59-tkg/linux59-tkg-patches/0008-5.9-bcachefs.patch b/linux59-tkg/linux59-tkg-patches/0008-5.9-bcachefs.patch new file mode 100644 index 0000000..5e81fb6 --- /dev/null +++ b/linux59-tkg/linux59-tkg-patches/0008-5.9-bcachefs.patch @@ -0,0 +1,70821 @@ +diff --git a/block/bio.c b/block/bio.c +index e865ea55b9f9..72a65c4113be 100644 +--- a/block/bio.c ++++ b/block/bio.c +@@ -1320,6 +1320,7 @@ void bio_set_pages_dirty(struct bio *bio) + set_page_dirty_lock(bvec->bv_page); + } + } ++EXPORT_SYMBOL_GPL(bio_set_pages_dirty); + + /* + * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. +@@ -1379,6 +1380,7 @@ void bio_check_pages_dirty(struct bio *bio) + spin_unlock_irqrestore(&bio_dirty_lock, flags); + schedule_work(&bio_dirty_work); + } ++EXPORT_SYMBOL_GPL(bio_check_pages_dirty); + + static inline bool bio_remaining_done(struct bio *bio) + { +diff --git a/block/blk-core.c b/block/blk-core.c +index 10c08ac50697..d68f24a7ee48 100644 +--- a/block/blk-core.c ++++ b/block/blk-core.c +@@ -213,18 +213,23 @@ int blk_status_to_errno(blk_status_t status) + } + EXPORT_SYMBOL_GPL(blk_status_to_errno); + +-static void print_req_error(struct request *req, blk_status_t status, +- const char *caller) ++const char *blk_status_to_str(blk_status_t status) + { + int idx = (__force int)status; + + if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) +- return; ++ return "(invalid error)"; ++ return blk_errors[idx].name; ++} ++EXPORT_SYMBOL_GPL(blk_status_to_str); + ++static void print_req_error(struct request *req, blk_status_t status, ++ const char *caller) ++{ + printk_ratelimited(KERN_ERR + "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " + "phys_seg %u prio class %u\n", +- caller, blk_errors[idx].name, ++ caller, blk_status_to_str(status), + req->rq_disk ? req->rq_disk->disk_name : "?", + blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), + req->cmd_flags & ~REQ_OP_MASK, +diff --git a/drivers/md/bcache/Kconfig b/drivers/md/bcache/Kconfig +index d1ca4d059c20..e63646b103c4 100644 +--- a/drivers/md/bcache/Kconfig ++++ b/drivers/md/bcache/Kconfig +@@ -3,6 +3,7 @@ + config BCACHE + tristate "Block device as cache" + select CRC64 ++ select CLOSURES + help + Allows a block device to be used as cache for other devices; uses + a btree for indexing and the layout is optimized for SSDs. +@@ -18,15 +19,6 @@ config BCACHE_DEBUG + Enables extra debugging tools, allows expensive runtime checks to be + turned on. + +-config BCACHE_CLOSURES_DEBUG +- bool "Debug closures" +- depends on BCACHE +- select DEBUG_FS +- help +- Keeps all active closures in a linked list and provides a debugfs +- interface to list them, which makes it possible to see asynchronous +- operations that get stuck. +- + config BCACHE_ASYNC_REGISTRATION + bool "Asynchronous device registration (EXPERIMENTAL)" + depends on BCACHE +diff --git a/drivers/md/bcache/Makefile b/drivers/md/bcache/Makefile +index 5b87e59676b8..054e8a33a7ab 100644 +--- a/drivers/md/bcache/Makefile ++++ b/drivers/md/bcache/Makefile +@@ -2,6 +2,6 @@ + + obj-$(CONFIG_BCACHE) += bcache.o + +-bcache-y := alloc.o bset.o btree.o closure.o debug.o extents.o\ +- io.o journal.o movinggc.o request.o stats.o super.o sysfs.o trace.o\ ++bcache-y := alloc.o bset.o btree.o debug.o extents.o io.o\ ++ journal.o movinggc.o request.o stats.o super.o sysfs.o trace.o\ + util.o writeback.o features.o +diff --git a/drivers/md/bcache/bcache.h b/drivers/md/bcache/bcache.h +index 4fd03d2496d8..498625095807 100644 +--- a/drivers/md/bcache/bcache.h ++++ b/drivers/md/bcache/bcache.h +@@ -180,6 +180,7 @@ + + #include + #include ++#include + #include + #include + #include +@@ -192,7 +193,6 @@ + + #include "bset.h" + #include "util.h" +-#include "closure.h" + + struct bucket { + atomic_t pin; +diff --git a/drivers/md/bcache/closure.c b/drivers/md/bcache/closure.c +deleted file mode 100644 +index 0164a1fe94a9..000000000000 +--- a/drivers/md/bcache/closure.c ++++ /dev/null +@@ -1,217 +0,0 @@ +-// SPDX-License-Identifier: GPL-2.0 +-/* +- * Asynchronous refcounty things +- * +- * Copyright 2010, 2011 Kent Overstreet +- * Copyright 2012 Google, Inc. +- */ +- +-#include +-#include +-#include +-#include +- +-#include "closure.h" +- +-static inline void closure_put_after_sub(struct closure *cl, int flags) +-{ +- int r = flags & CLOSURE_REMAINING_MASK; +- +- BUG_ON(flags & CLOSURE_GUARD_MASK); +- BUG_ON(!r && (flags & ~CLOSURE_DESTRUCTOR)); +- +- if (!r) { +- if (cl->fn && !(flags & CLOSURE_DESTRUCTOR)) { +- atomic_set(&cl->remaining, +- CLOSURE_REMAINING_INITIALIZER); +- closure_queue(cl); +- } else { +- struct closure *parent = cl->parent; +- closure_fn *destructor = cl->fn; +- +- closure_debug_destroy(cl); +- +- if (destructor) +- destructor(cl); +- +- if (parent) +- closure_put(parent); +- } +- } +-} +- +-/* For clearing flags with the same atomic op as a put */ +-void closure_sub(struct closure *cl, int v) +-{ +- closure_put_after_sub(cl, atomic_sub_return(v, &cl->remaining)); +-} +- +-/* +- * closure_put - decrement a closure's refcount +- */ +-void closure_put(struct closure *cl) +-{ +- closure_put_after_sub(cl, atomic_dec_return(&cl->remaining)); +-} +- +-/* +- * closure_wake_up - wake up all closures on a wait list, without memory barrier +- */ +-void __closure_wake_up(struct closure_waitlist *wait_list) +-{ +- struct llist_node *list; +- struct closure *cl, *t; +- struct llist_node *reverse = NULL; +- +- list = llist_del_all(&wait_list->list); +- +- /* We first reverse the list to preserve FIFO ordering and fairness */ +- reverse = llist_reverse_order(list); +- +- /* Then do the wakeups */ +- llist_for_each_entry_safe(cl, t, reverse, list) { +- closure_set_waiting(cl, 0); +- closure_sub(cl, CLOSURE_WAITING + 1); +- } +-} +- +-/** +- * closure_wait - add a closure to a waitlist +- * @waitlist: will own a ref on @cl, which will be released when +- * closure_wake_up() is called on @waitlist. +- * @cl: closure pointer. +- * +- */ +-bool closure_wait(struct closure_waitlist *waitlist, struct closure *cl) +-{ +- if (atomic_read(&cl->remaining) & CLOSURE_WAITING) +- return false; +- +- closure_set_waiting(cl, _RET_IP_); +- atomic_add(CLOSURE_WAITING + 1, &cl->remaining); +- llist_add(&cl->list, &waitlist->list); +- +- return true; +-} +- +-struct closure_syncer { +- struct task_struct *task; +- int done; +-}; +- +-static void closure_sync_fn(struct closure *cl) +-{ +- struct closure_syncer *s = cl->s; +- struct task_struct *p; +- +- rcu_read_lock(); +- p = READ_ONCE(s->task); +- s->done = 1; +- wake_up_process(p); +- rcu_read_unlock(); +-} +- +-void __sched __closure_sync(struct closure *cl) +-{ +- struct closure_syncer s = { .task = current }; +- +- cl->s = &s; +- continue_at(cl, closure_sync_fn, NULL); +- +- while (1) { +- set_current_state(TASK_UNINTERRUPTIBLE); +- if (s.done) +- break; +- schedule(); +- } +- +- __set_current_state(TASK_RUNNING); +-} +- +-#ifdef CONFIG_BCACHE_CLOSURES_DEBUG +- +-static LIST_HEAD(closure_list); +-static DEFINE_SPINLOCK(closure_list_lock); +- +-void closure_debug_create(struct closure *cl) +-{ +- unsigned long flags; +- +- BUG_ON(cl->magic == CLOSURE_MAGIC_ALIVE); +- cl->magic = CLOSURE_MAGIC_ALIVE; +- +- spin_lock_irqsave(&closure_list_lock, flags); +- list_add(&cl->all, &closure_list); +- spin_unlock_irqrestore(&closure_list_lock, flags); +-} +- +-void closure_debug_destroy(struct closure *cl) +-{ +- unsigned long flags; +- +- BUG_ON(cl->magic != CLOSURE_MAGIC_ALIVE); +- cl->magic = CLOSURE_MAGIC_DEAD; +- +- spin_lock_irqsave(&closure_list_lock, flags); +- list_del(&cl->all); +- spin_unlock_irqrestore(&closure_list_lock, flags); +-} +- +-static struct dentry *closure_debug; +- +-static int debug_seq_show(struct seq_file *f, void *data) +-{ +- struct closure *cl; +- +- spin_lock_irq(&closure_list_lock); +- +- list_for_each_entry(cl, &closure_list, all) { +- int r = atomic_read(&cl->remaining); +- +- seq_printf(f, "%p: %pS -> %pS p %p r %i ", +- cl, (void *) cl->ip, cl->fn, cl->parent, +- r & CLOSURE_REMAINING_MASK); +- +- seq_printf(f, "%s%s\n", +- test_bit(WORK_STRUCT_PENDING_BIT, +- work_data_bits(&cl->work)) ? "Q" : "", +- r & CLOSURE_RUNNING ? "R" : ""); +- +- if (r & CLOSURE_WAITING) +- seq_printf(f, " W %pS\n", +- (void *) cl->waiting_on); +- +- seq_printf(f, "\n"); +- } +- +- spin_unlock_irq(&closure_list_lock); +- return 0; +-} +- +-static int debug_seq_open(struct inode *inode, struct file *file) +-{ +- return single_open(file, debug_seq_show, NULL); +-} +- +-static const struct file_operations debug_ops = { +- .owner = THIS_MODULE, +- .open = debug_seq_open, +- .read = seq_read, +- .release = single_release +-}; +- +-void __init closure_debug_init(void) +-{ +- if (!IS_ERR_OR_NULL(bcache_debug)) +- /* +- * it is unnecessary to check return value of +- * debugfs_create_file(), we should not care +- * about this. +- */ +- closure_debug = debugfs_create_file( +- "closures", 0400, bcache_debug, NULL, &debug_ops); +-} +-#endif +- +-MODULE_AUTHOR("Kent Overstreet "); +-MODULE_LICENSE("GPL"); +diff --git a/drivers/md/bcache/closure.h b/drivers/md/bcache/closure.h +deleted file mode 100644 +index c88cdc4ae4ec..000000000000 +--- a/drivers/md/bcache/closure.h ++++ /dev/null +@@ -1,378 +0,0 @@ +-/* SPDX-License-Identifier: GPL-2.0 */ +-#ifndef _LINUX_CLOSURE_H +-#define _LINUX_CLOSURE_H +- +-#include +-#include +-#include +-#include +- +-/* +- * Closure is perhaps the most overused and abused term in computer science, but +- * since I've been unable to come up with anything better you're stuck with it +- * again. +- * +- * What are closures? +- * +- * They embed a refcount. The basic idea is they count "things that are in +- * progress" - in flight bios, some other thread that's doing something else - +- * anything you might want to wait on. +- * +- * The refcount may be manipulated with closure_get() and closure_put(). +- * closure_put() is where many of the interesting things happen, when it causes +- * the refcount to go to 0. +- * +- * Closures can be used to wait on things both synchronously and asynchronously, +- * and synchronous and asynchronous use can be mixed without restriction. To +- * wait synchronously, use closure_sync() - you will sleep until your closure's +- * refcount hits 1. +- * +- * To wait asynchronously, use +- * continue_at(cl, next_function, workqueue); +- * +- * passing it, as you might expect, the function to run when nothing is pending +- * and the workqueue to run that function out of. +- * +- * continue_at() also, critically, requires a 'return' immediately following the +- * location where this macro is referenced, to return to the calling function. +- * There's good reason for this. +- * +- * To use safely closures asynchronously, they must always have a refcount while +- * they are running owned by the thread that is running them. Otherwise, suppose +- * you submit some bios and wish to have a function run when they all complete: +- * +- * foo_endio(struct bio *bio) +- * { +- * closure_put(cl); +- * } +- * +- * closure_init(cl); +- * +- * do_stuff(); +- * closure_get(cl); +- * bio1->bi_endio = foo_endio; +- * bio_submit(bio1); +- * +- * do_more_stuff(); +- * closure_get(cl); +- * bio2->bi_endio = foo_endio; +- * bio_submit(bio2); +- * +- * continue_at(cl, complete_some_read, system_wq); +- * +- * If closure's refcount started at 0, complete_some_read() could run before the +- * second bio was submitted - which is almost always not what you want! More +- * importantly, it wouldn't be possible to say whether the original thread or +- * complete_some_read()'s thread owned the closure - and whatever state it was +- * associated with! +- * +- * So, closure_init() initializes a closure's refcount to 1 - and when a +- * closure_fn is run, the refcount will be reset to 1 first. +- * +- * Then, the rule is - if you got the refcount with closure_get(), release it +- * with closure_put() (i.e, in a bio->bi_endio function). If you have a refcount +- * on a closure because you called closure_init() or you were run out of a +- * closure - _always_ use continue_at(). Doing so consistently will help +- * eliminate an entire class of particularly pernicious races. +- * +- * Lastly, you might have a wait list dedicated to a specific event, and have no +- * need for specifying the condition - you just want to wait until someone runs +- * closure_wake_up() on the appropriate wait list. In that case, just use +- * closure_wait(). It will return either true or false, depending on whether the +- * closure was already on a wait list or not - a closure can only be on one wait +- * list at a time. +- * +- * Parents: +- * +- * closure_init() takes two arguments - it takes the closure to initialize, and +- * a (possibly null) parent. +- * +- * If parent is non null, the new closure will have a refcount for its lifetime; +- * a closure is considered to be "finished" when its refcount hits 0 and the +- * function to run is null. Hence +- * +- * continue_at(cl, NULL, NULL); +- * +- * returns up the (spaghetti) stack of closures, precisely like normal return +- * returns up the C stack. continue_at() with non null fn is better thought of +- * as doing a tail call. +- * +- * All this implies that a closure should typically be embedded in a particular +- * struct (which its refcount will normally control the lifetime of), and that +- * struct can very much be thought of as a stack frame. +- */ +- +-struct closure; +-struct closure_syncer; +-typedef void (closure_fn) (struct closure *); +-extern struct dentry *bcache_debug; +- +-struct closure_waitlist { +- struct llist_head list; +-}; +- +-enum closure_state { +- /* +- * CLOSURE_WAITING: Set iff the closure is on a waitlist. Must be set by +- * the thread that owns the closure, and cleared by the thread that's +- * waking up the closure. +- * +- * The rest are for debugging and don't affect behaviour: +- * +- * CLOSURE_RUNNING: Set when a closure is running (i.e. by +- * closure_init() and when closure_put() runs then next function), and +- * must be cleared before remaining hits 0. Primarily to help guard +- * against incorrect usage and accidentally transferring references. +- * continue_at() and closure_return() clear it for you, if you're doing +- * something unusual you can use closure_set_dead() which also helps +- * annotate where references are being transferred. +- */ +- +- CLOSURE_BITS_START = (1U << 26), +- CLOSURE_DESTRUCTOR = (1U << 26), +- CLOSURE_WAITING = (1U << 28), +- CLOSURE_RUNNING = (1U << 30), +-}; +- +-#define CLOSURE_GUARD_MASK \ +- ((CLOSURE_DESTRUCTOR|CLOSURE_WAITING|CLOSURE_RUNNING) << 1) +- +-#define CLOSURE_REMAINING_MASK (CLOSURE_BITS_START - 1) +-#define CLOSURE_REMAINING_INITIALIZER (1|CLOSURE_RUNNING) +- +-struct closure { +- union { +- struct { +- struct workqueue_struct *wq; +- struct closure_syncer *s; +- struct llist_node list; +- closure_fn *fn; +- }; +- struct work_struct work; +- }; +- +- struct closure *parent; +- +- atomic_t remaining; +- +-#ifdef CONFIG_BCACHE_CLOSURES_DEBUG +-#define CLOSURE_MAGIC_DEAD 0xc054dead +-#define CLOSURE_MAGIC_ALIVE 0xc054a11e +- +- unsigned int magic; +- struct list_head all; +- unsigned long ip; +- unsigned long waiting_on; +-#endif +-}; +- +-void closure_sub(struct closure *cl, int v); +-void closure_put(struct closure *cl); +-void __closure_wake_up(struct closure_waitlist *list); +-bool closure_wait(struct closure_waitlist *list, struct closure *cl); +-void __closure_sync(struct closure *cl); +- +-/** +- * closure_sync - sleep until a closure a closure has nothing left to wait on +- * +- * Sleeps until the refcount hits 1 - the thread that's running the closure owns +- * the last refcount. +- */ +-static inline void closure_sync(struct closure *cl) +-{ +- if ((atomic_read(&cl->remaining) & CLOSURE_REMAINING_MASK) != 1) +- __closure_sync(cl); +-} +- +-#ifdef CONFIG_BCACHE_CLOSURES_DEBUG +- +-void closure_debug_init(void); +-void closure_debug_create(struct closure *cl); +-void closure_debug_destroy(struct closure *cl); +- +-#else +- +-static inline void closure_debug_init(void) {} +-static inline void closure_debug_create(struct closure *cl) {} +-static inline void closure_debug_destroy(struct closure *cl) {} +- +-#endif +- +-static inline void closure_set_ip(struct closure *cl) +-{ +-#ifdef CONFIG_BCACHE_CLOSURES_DEBUG +- cl->ip = _THIS_IP_; +-#endif +-} +- +-static inline void closure_set_ret_ip(struct closure *cl) +-{ +-#ifdef CONFIG_BCACHE_CLOSURES_DEBUG +- cl->ip = _RET_IP_; +-#endif +-} +- +-static inline void closure_set_waiting(struct closure *cl, unsigned long f) +-{ +-#ifdef CONFIG_BCACHE_CLOSURES_DEBUG +- cl->waiting_on = f; +-#endif +-} +- +-static inline void closure_set_stopped(struct closure *cl) +-{ +- atomic_sub(CLOSURE_RUNNING, &cl->remaining); +-} +- +-static inline void set_closure_fn(struct closure *cl, closure_fn *fn, +- struct workqueue_struct *wq) +-{ +- closure_set_ip(cl); +- cl->fn = fn; +- cl->wq = wq; +- /* between atomic_dec() in closure_put() */ +- smp_mb__before_atomic(); +-} +- +-static inline void closure_queue(struct closure *cl) +-{ +- struct workqueue_struct *wq = cl->wq; +- /** +- * Changes made to closure, work_struct, or a couple of other structs +- * may cause work.func not pointing to the right location. +- */ +- BUILD_BUG_ON(offsetof(struct closure, fn) +- != offsetof(struct work_struct, func)); +- if (wq) { +- INIT_WORK(&cl->work, cl->work.func); +- BUG_ON(!queue_work(wq, &cl->work)); +- } else +- cl->fn(cl); +-} +- +-/** +- * closure_get - increment a closure's refcount +- */ +-static inline void closure_get(struct closure *cl) +-{ +-#ifdef CONFIG_BCACHE_CLOSURES_DEBUG +- BUG_ON((atomic_inc_return(&cl->remaining) & +- CLOSURE_REMAINING_MASK) <= 1); +-#else +- atomic_inc(&cl->remaining); +-#endif +-} +- +-/** +- * closure_init - Initialize a closure, setting the refcount to 1 +- * @cl: closure to initialize +- * @parent: parent of the new closure. cl will take a refcount on it for its +- * lifetime; may be NULL. +- */ +-static inline void closure_init(struct closure *cl, struct closure *parent) +-{ +- memset(cl, 0, sizeof(struct closure)); +- cl->parent = parent; +- if (parent) +- closure_get(parent); +- +- atomic_set(&cl->remaining, CLOSURE_REMAINING_INITIALIZER); +- +- closure_debug_create(cl); +- closure_set_ip(cl); +-} +- +-static inline void closure_init_stack(struct closure *cl) +-{ +- memset(cl, 0, sizeof(struct closure)); +- atomic_set(&cl->remaining, CLOSURE_REMAINING_INITIALIZER); +-} +- +-/** +- * closure_wake_up - wake up all closures on a wait list, +- * with memory barrier +- */ +-static inline void closure_wake_up(struct closure_waitlist *list) +-{ +- /* Memory barrier for the wait list */ +- smp_mb(); +- __closure_wake_up(list); +-} +- +-/** +- * continue_at - jump to another function with barrier +- * +- * After @cl is no longer waiting on anything (i.e. all outstanding refs have +- * been dropped with closure_put()), it will resume execution at @fn running out +- * of @wq (or, if @wq is NULL, @fn will be called by closure_put() directly). +- * +- * This is because after calling continue_at() you no longer have a ref on @cl, +- * and whatever @cl owns may be freed out from under you - a running closure fn +- * has a ref on its own closure which continue_at() drops. +- * +- * Note you are expected to immediately return after using this macro. +- */ +-#define continue_at(_cl, _fn, _wq) \ +-do { \ +- set_closure_fn(_cl, _fn, _wq); \ +- closure_sub(_cl, CLOSURE_RUNNING + 1); \ +-} while (0) +- +-/** +- * closure_return - finish execution of a closure +- * +- * This is used to indicate that @cl is finished: when all outstanding refs on +- * @cl have been dropped @cl's ref on its parent closure (as passed to +- * closure_init()) will be dropped, if one was specified - thus this can be +- * thought of as returning to the parent closure. +- */ +-#define closure_return(_cl) continue_at((_cl), NULL, NULL) +- +-/** +- * continue_at_nobarrier - jump to another function without barrier +- * +- * Causes @fn to be executed out of @cl, in @wq context (or called directly if +- * @wq is NULL). +- * +- * The ref the caller of continue_at_nobarrier() had on @cl is now owned by @fn, +- * thus it's not safe to touch anything protected by @cl after a +- * continue_at_nobarrier(). +- */ +-#define continue_at_nobarrier(_cl, _fn, _wq) \ +-do { \ +- set_closure_fn(_cl, _fn, _wq); \ +- closure_queue(_cl); \ +-} while (0) +- +-/** +- * closure_return_with_destructor - finish execution of a closure, +- * with destructor +- * +- * Works like closure_return(), except @destructor will be called when all +- * outstanding refs on @cl have been dropped; @destructor may be used to safely +- * free the memory occupied by @cl, and it is called with the ref on the parent +- * closure still held - so @destructor could safely return an item to a +- * freelist protected by @cl's parent. +- */ +-#define closure_return_with_destructor(_cl, _destructor) \ +-do { \ +- set_closure_fn(_cl, _destructor, NULL); \ +- closure_sub(_cl, CLOSURE_RUNNING - CLOSURE_DESTRUCTOR + 1); \ +-} while (0) +- +-/** +- * closure_call - execute @fn out of a new, uninitialized closure +- * +- * Typically used when running out of one closure, and we want to run @fn +- * asynchronously out of a new closure - @parent will then wait for @cl to +- * finish. +- */ +-static inline void closure_call(struct closure *cl, closure_fn fn, +- struct workqueue_struct *wq, +- struct closure *parent) +-{ +- closure_init(cl, parent); +- continue_at_nobarrier(cl, fn, wq); +-} +- +-#endif /* _LINUX_CLOSURE_H */ +diff --git a/drivers/md/bcache/super.c b/drivers/md/bcache/super.c +index 1bbdc410ee3c..3b9e991ea475 100644 +--- a/drivers/md/bcache/super.c ++++ b/drivers/md/bcache/super.c +@@ -2925,7 +2925,6 @@ static int __init bcache_init(void) + goto err; + + bch_debug_init(); +- closure_debug_init(); + + bcache_is_reboot = false; + +diff --git a/drivers/md/bcache/util.h b/drivers/md/bcache/util.h +index c029f7443190..59093f9f1793 100644 +--- a/drivers/md/bcache/util.h ++++ b/drivers/md/bcache/util.h +@@ -4,6 +4,7 @@ + #define _BCACHE_UTIL_H + + #include ++#include + #include + #include + #include +@@ -13,8 +14,6 @@ + #include + #include + +-#include "closure.h" +- + #define PAGE_SECTORS (PAGE_SIZE / 512) + + struct closure; +diff --git a/fs/Kconfig b/fs/Kconfig +index aa4c12282301..88082e3663cb 100644 +--- a/fs/Kconfig ++++ b/fs/Kconfig +@@ -40,6 +40,7 @@ source "fs/ocfs2/Kconfig" + source "fs/btrfs/Kconfig" + source "fs/nilfs2/Kconfig" + source "fs/f2fs/Kconfig" ++source "fs/bcachefs/Kconfig" + source "fs/zonefs/Kconfig" + + config FS_DAX +diff --git a/fs/Makefile b/fs/Makefile +index 1c7b0e3f6daa..8afa8e3bc14f 100644 +--- a/fs/Makefile ++++ b/fs/Makefile +@@ -130,6 +130,7 @@ obj-$(CONFIG_OCFS2_FS) += ocfs2/ + obj-$(CONFIG_BTRFS_FS) += btrfs/ + obj-$(CONFIG_GFS2_FS) += gfs2/ + obj-$(CONFIG_F2FS_FS) += f2fs/ ++obj-$(CONFIG_BCACHEFS_FS) += bcachefs/ + obj-$(CONFIG_CEPH_FS) += ceph/ + obj-$(CONFIG_PSTORE) += pstore/ + obj-$(CONFIG_EFIVAR_FS) += efivarfs/ +diff --git a/fs/bcachefs/Kconfig b/fs/bcachefs/Kconfig +new file mode 100644 +index 000000000000..5594af719b2a +--- /dev/null ++++ b/fs/bcachefs/Kconfig +@@ -0,0 +1,50 @@ ++ ++config BCACHEFS_FS ++ tristate "bcachefs filesystem support" ++ depends on BLOCK ++ select EXPORTFS ++ select CLOSURES ++ select LIBCRC32C ++ select CRC64 ++ select FS_POSIX_ACL ++ select LZ4_COMPRESS ++ select LZ4_DECOMPRESS ++ select ZLIB_DEFLATE ++ select ZLIB_INFLATE ++ select ZSTD_COMPRESS ++ select ZSTD_DECOMPRESS ++ select CRYPTO_SHA256 ++ select CRYPTO_CHACHA20 ++ select CRYPTO_POLY1305 ++ select KEYS ++ select SIXLOCKS ++ select RAID6_PQ ++ select XOR_BLOCKS ++ help ++ The bcachefs filesystem - a modern, copy on write filesystem, with ++ support for multiple devices, compression, checksumming, etc. ++ ++config BCACHEFS_QUOTA ++ bool "bcachefs quota support" ++ depends on BCACHEFS_FS ++ select QUOTACTL ++ ++config BCACHEFS_POSIX_ACL ++ bool "bcachefs POSIX ACL support" ++ depends on BCACHEFS_FS ++ select FS_POSIX_ACL ++ ++config BCACHEFS_DEBUG ++ bool "bcachefs debugging" ++ depends on BCACHEFS_FS ++ help ++ Enables many extra debugging checks and assertions. ++ ++ The resulting code will be significantly slower than normal; you ++ probably shouldn't select this option unless you're a developer. ++ ++config BCACHEFS_TESTS ++ bool "bcachefs unit and performance tests" ++ depends on BCACHEFS_FS ++ help ++ Include some unit and performance tests for the core btree code +diff --git a/fs/bcachefs/Makefile b/fs/bcachefs/Makefile +new file mode 100644 +index 000000000000..d85ced62c0dd +--- /dev/null ++++ b/fs/bcachefs/Makefile +@@ -0,0 +1,59 @@ ++ ++obj-$(CONFIG_BCACHEFS_FS) += bcachefs.o ++ ++bcachefs-y := \ ++ acl.o \ ++ alloc_background.o \ ++ alloc_foreground.o \ ++ bkey.o \ ++ bkey_methods.o \ ++ bkey_sort.o \ ++ bset.o \ ++ btree_cache.o \ ++ btree_gc.o \ ++ btree_io.o \ ++ btree_iter.o \ ++ btree_key_cache.o \ ++ btree_update_interior.o \ ++ btree_update_leaf.o \ ++ buckets.o \ ++ chardev.o \ ++ checksum.o \ ++ clock.o \ ++ compress.o \ ++ debug.o \ ++ dirent.o \ ++ disk_groups.o \ ++ ec.o \ ++ error.o \ ++ extents.o \ ++ extent_update.o \ ++ fs.o \ ++ fs-common.o \ ++ fs-ioctl.o \ ++ fs-io.o \ ++ fsck.o \ ++ inode.o \ ++ io.o \ ++ journal.o \ ++ journal_io.o \ ++ journal_reclaim.o \ ++ journal_seq_blacklist.o \ ++ keylist.o \ ++ migrate.o \ ++ move.o \ ++ movinggc.o \ ++ opts.o \ ++ quota.o \ ++ rebalance.o \ ++ recovery.o \ ++ reflink.o \ ++ replicas.o \ ++ siphash.o \ ++ super.o \ ++ super-io.o \ ++ sysfs.o \ ++ tests.o \ ++ trace.o \ ++ util.o \ ++ xattr.o +diff --git a/fs/bcachefs/acl.c b/fs/bcachefs/acl.c +new file mode 100644 +index 000000000000..76c98ddbf628 +--- /dev/null ++++ b/fs/bcachefs/acl.c +@@ -0,0 +1,388 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#ifdef CONFIG_BCACHEFS_POSIX_ACL ++ ++#include "bcachefs.h" ++ ++#include ++#include ++#include ++#include ++#include ++ ++#include "acl.h" ++#include "fs.h" ++#include "xattr.h" ++ ++static inline size_t bch2_acl_size(unsigned nr_short, unsigned nr_long) ++{ ++ return sizeof(bch_acl_header) + ++ sizeof(bch_acl_entry_short) * nr_short + ++ sizeof(bch_acl_entry) * nr_long; ++} ++ ++static inline int acl_to_xattr_type(int type) ++{ ++ switch (type) { ++ case ACL_TYPE_ACCESS: ++ return KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS; ++ case ACL_TYPE_DEFAULT: ++ return KEY_TYPE_XATTR_INDEX_POSIX_ACL_DEFAULT; ++ default: ++ BUG(); ++ } ++} ++ ++/* ++ * Convert from filesystem to in-memory representation. ++ */ ++static struct posix_acl *bch2_acl_from_disk(const void *value, size_t size) ++{ ++ const void *p, *end = value + size; ++ struct posix_acl *acl; ++ struct posix_acl_entry *out; ++ unsigned count = 0; ++ ++ if (!value) ++ return NULL; ++ if (size < sizeof(bch_acl_header)) ++ goto invalid; ++ if (((bch_acl_header *)value)->a_version != ++ cpu_to_le32(BCH_ACL_VERSION)) ++ goto invalid; ++ ++ p = value + sizeof(bch_acl_header); ++ while (p < end) { ++ const bch_acl_entry *entry = p; ++ ++ if (p + sizeof(bch_acl_entry_short) > end) ++ goto invalid; ++ ++ switch (le16_to_cpu(entry->e_tag)) { ++ case ACL_USER_OBJ: ++ case ACL_GROUP_OBJ: ++ case ACL_MASK: ++ case ACL_OTHER: ++ p += sizeof(bch_acl_entry_short); ++ break; ++ case ACL_USER: ++ case ACL_GROUP: ++ p += sizeof(bch_acl_entry); ++ break; ++ default: ++ goto invalid; ++ } ++ ++ count++; ++ } ++ ++ if (p > end) ++ goto invalid; ++ ++ if (!count) ++ return NULL; ++ ++ acl = posix_acl_alloc(count, GFP_KERNEL); ++ if (!acl) ++ return ERR_PTR(-ENOMEM); ++ ++ out = acl->a_entries; ++ ++ p = value + sizeof(bch_acl_header); ++ while (p < end) { ++ const bch_acl_entry *in = p; ++ ++ out->e_tag = le16_to_cpu(in->e_tag); ++ out->e_perm = le16_to_cpu(in->e_perm); ++ ++ switch (out->e_tag) { ++ case ACL_USER_OBJ: ++ case ACL_GROUP_OBJ: ++ case ACL_MASK: ++ case ACL_OTHER: ++ p += sizeof(bch_acl_entry_short); ++ break; ++ case ACL_USER: ++ out->e_uid = make_kuid(&init_user_ns, ++ le32_to_cpu(in->e_id)); ++ p += sizeof(bch_acl_entry); ++ break; ++ case ACL_GROUP: ++ out->e_gid = make_kgid(&init_user_ns, ++ le32_to_cpu(in->e_id)); ++ p += sizeof(bch_acl_entry); ++ break; ++ } ++ ++ out++; ++ } ++ ++ BUG_ON(out != acl->a_entries + acl->a_count); ++ ++ return acl; ++invalid: ++ pr_err("invalid acl entry"); ++ return ERR_PTR(-EINVAL); ++} ++ ++#define acl_for_each_entry(acl, acl_e) \ ++ for (acl_e = acl->a_entries; \ ++ acl_e < acl->a_entries + acl->a_count; \ ++ acl_e++) ++ ++/* ++ * Convert from in-memory to filesystem representation. ++ */ ++static struct bkey_i_xattr * ++bch2_acl_to_xattr(struct btree_trans *trans, ++ const struct posix_acl *acl, ++ int type) ++{ ++ struct bkey_i_xattr *xattr; ++ bch_acl_header *acl_header; ++ const struct posix_acl_entry *acl_e; ++ void *outptr; ++ unsigned nr_short = 0, nr_long = 0, acl_len, u64s; ++ ++ acl_for_each_entry(acl, acl_e) { ++ switch (acl_e->e_tag) { ++ case ACL_USER: ++ case ACL_GROUP: ++ nr_long++; ++ break; ++ case ACL_USER_OBJ: ++ case ACL_GROUP_OBJ: ++ case ACL_MASK: ++ case ACL_OTHER: ++ nr_short++; ++ break; ++ default: ++ return ERR_PTR(-EINVAL); ++ } ++ } ++ ++ acl_len = bch2_acl_size(nr_short, nr_long); ++ u64s = BKEY_U64s + xattr_val_u64s(0, acl_len); ++ ++ if (u64s > U8_MAX) ++ return ERR_PTR(-E2BIG); ++ ++ xattr = bch2_trans_kmalloc(trans, u64s * sizeof(u64)); ++ if (IS_ERR(xattr)) ++ return xattr; ++ ++ bkey_xattr_init(&xattr->k_i); ++ xattr->k.u64s = u64s; ++ xattr->v.x_type = acl_to_xattr_type(type); ++ xattr->v.x_name_len = 0, ++ xattr->v.x_val_len = cpu_to_le16(acl_len); ++ ++ acl_header = xattr_val(&xattr->v); ++ acl_header->a_version = cpu_to_le32(BCH_ACL_VERSION); ++ ++ outptr = (void *) acl_header + sizeof(*acl_header); ++ ++ acl_for_each_entry(acl, acl_e) { ++ bch_acl_entry *entry = outptr; ++ ++ entry->e_tag = cpu_to_le16(acl_e->e_tag); ++ entry->e_perm = cpu_to_le16(acl_e->e_perm); ++ switch (acl_e->e_tag) { ++ case ACL_USER: ++ entry->e_id = cpu_to_le32( ++ from_kuid(&init_user_ns, acl_e->e_uid)); ++ outptr += sizeof(bch_acl_entry); ++ break; ++ case ACL_GROUP: ++ entry->e_id = cpu_to_le32( ++ from_kgid(&init_user_ns, acl_e->e_gid)); ++ outptr += sizeof(bch_acl_entry); ++ break; ++ ++ case ACL_USER_OBJ: ++ case ACL_GROUP_OBJ: ++ case ACL_MASK: ++ case ACL_OTHER: ++ outptr += sizeof(bch_acl_entry_short); ++ break; ++ } ++ } ++ ++ BUG_ON(outptr != xattr_val(&xattr->v) + acl_len); ++ ++ return xattr; ++} ++ ++struct posix_acl *bch2_get_acl(struct inode *vinode, int type) ++{ ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c_xattr xattr; ++ struct posix_acl *acl = NULL; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++retry: ++ bch2_trans_begin(&trans); ++ ++ iter = bch2_hash_lookup(&trans, bch2_xattr_hash_desc, ++ &inode->ei_str_hash, inode->v.i_ino, ++ &X_SEARCH(acl_to_xattr_type(type), "", 0), ++ 0); ++ if (IS_ERR(iter)) { ++ if (PTR_ERR(iter) == -EINTR) ++ goto retry; ++ ++ if (PTR_ERR(iter) != -ENOENT) ++ acl = ERR_CAST(iter); ++ goto out; ++ } ++ ++ xattr = bkey_s_c_to_xattr(bch2_btree_iter_peek_slot(iter)); ++ ++ acl = bch2_acl_from_disk(xattr_val(xattr.v), ++ le16_to_cpu(xattr.v->x_val_len)); ++ ++ if (!IS_ERR(acl)) ++ set_cached_acl(&inode->v, type, acl); ++out: ++ bch2_trans_exit(&trans); ++ return acl; ++} ++ ++int bch2_set_acl_trans(struct btree_trans *trans, ++ struct bch_inode_unpacked *inode_u, ++ const struct bch_hash_info *hash_info, ++ struct posix_acl *acl, int type) ++{ ++ int ret; ++ ++ if (type == ACL_TYPE_DEFAULT && ++ !S_ISDIR(inode_u->bi_mode)) ++ return acl ? -EACCES : 0; ++ ++ if (acl) { ++ struct bkey_i_xattr *xattr = ++ bch2_acl_to_xattr(trans, acl, type); ++ if (IS_ERR(xattr)) ++ return PTR_ERR(xattr); ++ ++ ret = bch2_hash_set(trans, bch2_xattr_hash_desc, hash_info, ++ inode_u->bi_inum, &xattr->k_i, 0); ++ } else { ++ struct xattr_search_key search = ++ X_SEARCH(acl_to_xattr_type(type), "", 0); ++ ++ ret = bch2_hash_delete(trans, bch2_xattr_hash_desc, hash_info, ++ inode_u->bi_inum, &search); ++ } ++ ++ return ret == -ENOENT ? 0 : ret; ++} ++ ++int bch2_set_acl(struct inode *vinode, struct posix_acl *_acl, int type) ++{ ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct btree_trans trans; ++ struct btree_iter *inode_iter; ++ struct bch_inode_unpacked inode_u; ++ struct posix_acl *acl; ++ umode_t mode; ++ int ret; ++ ++ mutex_lock(&inode->ei_update_lock); ++ bch2_trans_init(&trans, c, 0, 0); ++retry: ++ bch2_trans_begin(&trans); ++ acl = _acl; ++ ++ inode_iter = bch2_inode_peek(&trans, &inode_u, inode->v.i_ino, ++ BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(inode_iter); ++ if (ret) ++ goto btree_err; ++ ++ mode = inode_u.bi_mode; ++ ++ if (type == ACL_TYPE_ACCESS) { ++ ret = posix_acl_update_mode(&inode->v, &mode, &acl); ++ if (ret) ++ goto err; ++ } ++ ++ ret = bch2_set_acl_trans(&trans, &inode_u, ++ &inode->ei_str_hash, ++ acl, type); ++ if (ret) ++ goto btree_err; ++ ++ inode_u.bi_ctime = bch2_current_time(c); ++ inode_u.bi_mode = mode; ++ ++ ret = bch2_inode_write(&trans, inode_iter, &inode_u) ?: ++ bch2_trans_commit(&trans, NULL, ++ &inode->ei_journal_seq, ++ BTREE_INSERT_NOUNLOCK); ++btree_err: ++ if (ret == -EINTR) ++ goto retry; ++ if (unlikely(ret)) ++ goto err; ++ ++ bch2_inode_update_after_write(c, inode, &inode_u, ++ ATTR_CTIME|ATTR_MODE); ++ ++ set_cached_acl(&inode->v, type, acl); ++err: ++ bch2_trans_exit(&trans); ++ mutex_unlock(&inode->ei_update_lock); ++ ++ return ret; ++} ++ ++int bch2_acl_chmod(struct btree_trans *trans, ++ struct bch_inode_info *inode, ++ umode_t mode, ++ struct posix_acl **new_acl) ++{ ++ struct btree_iter *iter; ++ struct bkey_s_c_xattr xattr; ++ struct bkey_i_xattr *new; ++ struct posix_acl *acl; ++ int ret = 0; ++ ++ iter = bch2_hash_lookup(trans, bch2_xattr_hash_desc, ++ &inode->ei_str_hash, inode->v.i_ino, ++ &X_SEARCH(KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS, "", 0), ++ BTREE_ITER_INTENT); ++ if (IS_ERR(iter)) ++ return PTR_ERR(iter) != -ENOENT ? PTR_ERR(iter) : 0; ++ ++ xattr = bkey_s_c_to_xattr(bch2_btree_iter_peek_slot(iter)); ++ ++ acl = bch2_acl_from_disk(xattr_val(xattr.v), ++ le16_to_cpu(xattr.v->x_val_len)); ++ if (IS_ERR_OR_NULL(acl)) ++ return PTR_ERR(acl); ++ ++ ret = __posix_acl_chmod(&acl, GFP_KERNEL, mode); ++ if (ret) ++ goto err; ++ ++ new = bch2_acl_to_xattr(trans, acl, ACL_TYPE_ACCESS); ++ if (IS_ERR(new)) { ++ ret = PTR_ERR(new); ++ goto err; ++ } ++ ++ new->k.p = iter->pos; ++ bch2_trans_update(trans, iter, &new->k_i, 0); ++ *new_acl = acl; ++ acl = NULL; ++err: ++ kfree(acl); ++ return ret; ++} ++ ++#endif /* CONFIG_BCACHEFS_POSIX_ACL */ +diff --git a/fs/bcachefs/acl.h b/fs/bcachefs/acl.h +new file mode 100644 +index 000000000000..cb62d502a7ff +--- /dev/null ++++ b/fs/bcachefs/acl.h +@@ -0,0 +1,59 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_ACL_H ++#define _BCACHEFS_ACL_H ++ ++struct bch_inode_unpacked; ++struct bch_hash_info; ++struct bch_inode_info; ++struct posix_acl; ++ ++#ifdef CONFIG_BCACHEFS_POSIX_ACL ++ ++#define BCH_ACL_VERSION 0x0001 ++ ++typedef struct { ++ __le16 e_tag; ++ __le16 e_perm; ++ __le32 e_id; ++} bch_acl_entry; ++ ++typedef struct { ++ __le16 e_tag; ++ __le16 e_perm; ++} bch_acl_entry_short; ++ ++typedef struct { ++ __le32 a_version; ++} bch_acl_header; ++ ++struct posix_acl *bch2_get_acl(struct inode *, int); ++ ++int bch2_set_acl_trans(struct btree_trans *, ++ struct bch_inode_unpacked *, ++ const struct bch_hash_info *, ++ struct posix_acl *, int); ++int bch2_set_acl(struct inode *, struct posix_acl *, int); ++int bch2_acl_chmod(struct btree_trans *, struct bch_inode_info *, ++ umode_t, struct posix_acl **); ++ ++#else ++ ++static inline int bch2_set_acl_trans(struct btree_trans *trans, ++ struct bch_inode_unpacked *inode_u, ++ const struct bch_hash_info *hash_info, ++ struct posix_acl *acl, int type) ++{ ++ return 0; ++} ++ ++static inline int bch2_acl_chmod(struct btree_trans *trans, ++ struct bch_inode_info *inode, ++ umode_t mode, ++ struct posix_acl **new_acl) ++{ ++ return 0; ++} ++ ++#endif /* CONFIG_BCACHEFS_POSIX_ACL */ ++ ++#endif /* _BCACHEFS_ACL_H */ +diff --git a/fs/bcachefs/alloc_background.c b/fs/bcachefs/alloc_background.c +new file mode 100644 +index 000000000000..97508de9f721 +--- /dev/null ++++ b/fs/bcachefs/alloc_background.c +@@ -0,0 +1,1477 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "alloc_foreground.h" ++#include "btree_cache.h" ++#include "btree_io.h" ++#include "btree_key_cache.h" ++#include "btree_update.h" ++#include "btree_update_interior.h" ++#include "btree_gc.h" ++#include "buckets.h" ++#include "clock.h" ++#include "debug.h" ++#include "ec.h" ++#include "error.h" ++#include "recovery.h" ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++static const char * const bch2_alloc_field_names[] = { ++#define x(name, bytes) #name, ++ BCH_ALLOC_FIELDS() ++#undef x ++ NULL ++}; ++ ++static void bch2_recalc_oldest_io(struct bch_fs *, struct bch_dev *, int); ++ ++/* Ratelimiting/PD controllers */ ++ ++static void pd_controllers_update(struct work_struct *work) ++{ ++ struct bch_fs *c = container_of(to_delayed_work(work), ++ struct bch_fs, ++ pd_controllers_update); ++ struct bch_dev *ca; ++ s64 free = 0, fragmented = 0; ++ unsigned i; ++ ++ for_each_member_device(ca, c, i) { ++ struct bch_dev_usage stats = bch2_dev_usage_read(ca); ++ ++ free += bucket_to_sector(ca, ++ __dev_buckets_free(ca, stats)) << 9; ++ /* ++ * Bytes of internal fragmentation, which can be ++ * reclaimed by copy GC ++ */ ++ fragmented += max_t(s64, 0, (bucket_to_sector(ca, ++ stats.buckets[BCH_DATA_user] + ++ stats.buckets[BCH_DATA_cached]) - ++ (stats.sectors[BCH_DATA_user] + ++ stats.sectors[BCH_DATA_cached])) << 9); ++ } ++ ++ bch2_pd_controller_update(&c->copygc_pd, free, fragmented, -1); ++ schedule_delayed_work(&c->pd_controllers_update, ++ c->pd_controllers_update_seconds * HZ); ++} ++ ++/* Persistent alloc info: */ ++ ++static inline u64 get_alloc_field(const struct bch_alloc *a, ++ const void **p, unsigned field) ++{ ++ unsigned bytes = BCH_ALLOC_FIELD_BYTES[field]; ++ u64 v; ++ ++ if (!(a->fields & (1 << field))) ++ return 0; ++ ++ switch (bytes) { ++ case 1: ++ v = *((const u8 *) *p); ++ break; ++ case 2: ++ v = le16_to_cpup(*p); ++ break; ++ case 4: ++ v = le32_to_cpup(*p); ++ break; ++ case 8: ++ v = le64_to_cpup(*p); ++ break; ++ default: ++ BUG(); ++ } ++ ++ *p += bytes; ++ return v; ++} ++ ++static inline void put_alloc_field(struct bkey_i_alloc *a, void **p, ++ unsigned field, u64 v) ++{ ++ unsigned bytes = BCH_ALLOC_FIELD_BYTES[field]; ++ ++ if (!v) ++ return; ++ ++ a->v.fields |= 1 << field; ++ ++ switch (bytes) { ++ case 1: ++ *((u8 *) *p) = v; ++ break; ++ case 2: ++ *((__le16 *) *p) = cpu_to_le16(v); ++ break; ++ case 4: ++ *((__le32 *) *p) = cpu_to_le32(v); ++ break; ++ case 8: ++ *((__le64 *) *p) = cpu_to_le64(v); ++ break; ++ default: ++ BUG(); ++ } ++ ++ *p += bytes; ++} ++ ++struct bkey_alloc_unpacked bch2_alloc_unpack(struct bkey_s_c k) ++{ ++ struct bkey_alloc_unpacked ret = { .gen = 0 }; ++ ++ if (k.k->type == KEY_TYPE_alloc) { ++ const struct bch_alloc *a = bkey_s_c_to_alloc(k).v; ++ const void *d = a->data; ++ unsigned idx = 0; ++ ++ ret.gen = a->gen; ++ ++#define x(_name, _bits) ret._name = get_alloc_field(a, &d, idx++); ++ BCH_ALLOC_FIELDS() ++#undef x ++ } ++ return ret; ++} ++ ++void bch2_alloc_pack(struct bkey_i_alloc *dst, ++ const struct bkey_alloc_unpacked src) ++{ ++ unsigned idx = 0; ++ void *d = dst->v.data; ++ unsigned bytes; ++ ++ dst->v.fields = 0; ++ dst->v.gen = src.gen; ++ ++#define x(_name, _bits) put_alloc_field(dst, &d, idx++, src._name); ++ BCH_ALLOC_FIELDS() ++#undef x ++ ++ bytes = (void *) d - (void *) &dst->v; ++ set_bkey_val_bytes(&dst->k, bytes); ++ memset_u64s_tail(&dst->v, 0, bytes); ++} ++ ++static unsigned bch_alloc_val_u64s(const struct bch_alloc *a) ++{ ++ unsigned i, bytes = offsetof(struct bch_alloc, data); ++ ++ for (i = 0; i < ARRAY_SIZE(BCH_ALLOC_FIELD_BYTES); i++) ++ if (a->fields & (1 << i)) ++ bytes += BCH_ALLOC_FIELD_BYTES[i]; ++ ++ return DIV_ROUND_UP(bytes, sizeof(u64)); ++} ++ ++const char *bch2_alloc_invalid(const struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k); ++ ++ if (k.k->p.inode >= c->sb.nr_devices || ++ !c->devs[k.k->p.inode]) ++ return "invalid device"; ++ ++ /* allow for unknown fields */ ++ if (bkey_val_u64s(a.k) < bch_alloc_val_u64s(a.v)) ++ return "incorrect value size"; ++ ++ return NULL; ++} ++ ++void bch2_alloc_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k); ++ const void *d = a.v->data; ++ unsigned i; ++ ++ pr_buf(out, "gen %u", a.v->gen); ++ ++ for (i = 0; i < BCH_ALLOC_FIELD_NR; i++) ++ if (a.v->fields & (1 << i)) ++ pr_buf(out, " %s %llu", ++ bch2_alloc_field_names[i], ++ get_alloc_field(a.v, &d, i)); ++} ++ ++static int bch2_alloc_read_fn(struct bch_fs *c, enum btree_id id, ++ unsigned level, struct bkey_s_c k) ++{ ++ struct bch_dev *ca; ++ struct bucket *g; ++ struct bkey_alloc_unpacked u; ++ ++ if (level || k.k->type != KEY_TYPE_alloc) ++ return 0; ++ ++ ca = bch_dev_bkey_exists(c, k.k->p.inode); ++ g = __bucket(ca, k.k->p.offset, 0); ++ u = bch2_alloc_unpack(k); ++ ++ g->_mark.gen = u.gen; ++ g->_mark.data_type = u.data_type; ++ g->_mark.dirty_sectors = u.dirty_sectors; ++ g->_mark.cached_sectors = u.cached_sectors; ++ g->io_time[READ] = u.read_time; ++ g->io_time[WRITE] = u.write_time; ++ g->oldest_gen = u.oldest_gen; ++ g->gen_valid = 1; ++ ++ return 0; ++} ++ ++int bch2_alloc_read(struct bch_fs *c, struct journal_keys *journal_keys) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ int ret = 0; ++ ++ down_read(&c->gc_lock); ++ ret = bch2_btree_and_journal_walk(c, journal_keys, BTREE_ID_ALLOC, ++ NULL, bch2_alloc_read_fn); ++ up_read(&c->gc_lock); ++ ++ if (ret) { ++ bch_err(c, "error reading alloc info: %i", ret); ++ return ret; ++ } ++ ++ percpu_down_write(&c->mark_lock); ++ bch2_dev_usage_from_buckets(c); ++ percpu_up_write(&c->mark_lock); ++ ++ mutex_lock(&c->bucket_clock[READ].lock); ++ for_each_member_device(ca, c, i) { ++ down_read(&ca->bucket_lock); ++ bch2_recalc_oldest_io(c, ca, READ); ++ up_read(&ca->bucket_lock); ++ } ++ mutex_unlock(&c->bucket_clock[READ].lock); ++ ++ mutex_lock(&c->bucket_clock[WRITE].lock); ++ for_each_member_device(ca, c, i) { ++ down_read(&ca->bucket_lock); ++ bch2_recalc_oldest_io(c, ca, WRITE); ++ up_read(&ca->bucket_lock); ++ } ++ mutex_unlock(&c->bucket_clock[WRITE].lock); ++ ++ return 0; ++} ++ ++static int bch2_alloc_write_key(struct btree_trans *trans, ++ struct btree_iter *iter, ++ unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_s_c k; ++ struct bch_dev *ca; ++ struct bucket_array *ba; ++ struct bucket *g; ++ struct bucket_mark m; ++ struct bkey_alloc_unpacked old_u, new_u; ++ __BKEY_PADDED(k, 8) alloc_key; /* hack: */ ++ struct bkey_i_alloc *a; ++ int ret; ++retry: ++ bch2_trans_begin(trans); ++ ++ ret = bch2_btree_key_cache_flush(trans, ++ BTREE_ID_ALLOC, iter->pos); ++ if (ret) ++ goto err; ++ ++ k = bch2_btree_iter_peek_slot(iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ old_u = bch2_alloc_unpack(k); ++ ++ percpu_down_read(&c->mark_lock); ++ ca = bch_dev_bkey_exists(c, iter->pos.inode); ++ ba = bucket_array(ca); ++ ++ g = &ba->b[iter->pos.offset]; ++ m = READ_ONCE(g->mark); ++ new_u = alloc_mem_to_key(g, m); ++ percpu_up_read(&c->mark_lock); ++ ++ if (!bkey_alloc_unpacked_cmp(old_u, new_u)) ++ return 0; ++ ++ a = bkey_alloc_init(&alloc_key.k); ++ a->k.p = iter->pos; ++ bch2_alloc_pack(a, new_u); ++ ++ bch2_trans_update(trans, iter, &a->k_i, ++ BTREE_TRIGGER_NORUN); ++ ret = bch2_trans_commit(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_USE_RESERVE| ++ flags); ++err: ++ if (ret == -EINTR) ++ goto retry; ++ return ret; ++} ++ ++int bch2_dev_alloc_write(struct bch_fs *c, struct bch_dev *ca, unsigned flags) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ u64 first_bucket, nbuckets; ++ int ret = 0; ++ ++ percpu_down_read(&c->mark_lock); ++ first_bucket = bucket_array(ca)->first_bucket; ++ nbuckets = bucket_array(ca)->nbuckets; ++ percpu_up_read(&c->mark_lock); ++ ++ BUG_ON(BKEY_ALLOC_VAL_U64s_MAX > 8); ++ ++ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_ALLOC, ++ POS(ca->dev_idx, first_bucket), ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT); ++ ++ while (iter->pos.offset < nbuckets) { ++ bch2_trans_cond_resched(&trans); ++ ++ ret = bch2_alloc_write_key(&trans, iter, flags); ++ if (ret) ++ break; ++ bch2_btree_iter_next_slot(iter); ++ } ++ ++ bch2_trans_exit(&trans); ++ ++ return ret; ++} ++ ++int bch2_alloc_write(struct bch_fs *c, unsigned flags) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ int ret = 0; ++ ++ for_each_rw_member(ca, c, i) { ++ bch2_dev_alloc_write(c, ca, flags); ++ if (ret) { ++ percpu_ref_put(&ca->io_ref); ++ break; ++ } ++ } ++ ++ return ret; ++} ++ ++/* Bucket IO clocks: */ ++ ++static void bch2_recalc_oldest_io(struct bch_fs *c, struct bch_dev *ca, int rw) ++{ ++ struct bucket_clock *clock = &c->bucket_clock[rw]; ++ struct bucket_array *buckets = bucket_array(ca); ++ struct bucket *g; ++ u16 max_last_io = 0; ++ unsigned i; ++ ++ lockdep_assert_held(&c->bucket_clock[rw].lock); ++ ++ /* Recalculate max_last_io for this device: */ ++ for_each_bucket(g, buckets) ++ max_last_io = max(max_last_io, bucket_last_io(c, g, rw)); ++ ++ ca->max_last_bucket_io[rw] = max_last_io; ++ ++ /* Recalculate global max_last_io: */ ++ max_last_io = 0; ++ ++ for_each_member_device(ca, c, i) ++ max_last_io = max(max_last_io, ca->max_last_bucket_io[rw]); ++ ++ clock->max_last_io = max_last_io; ++} ++ ++static void bch2_rescale_bucket_io_times(struct bch_fs *c, int rw) ++{ ++ struct bucket_clock *clock = &c->bucket_clock[rw]; ++ struct bucket_array *buckets; ++ struct bch_dev *ca; ++ struct bucket *g; ++ unsigned i; ++ ++ trace_rescale_prios(c); ++ ++ for_each_member_device(ca, c, i) { ++ down_read(&ca->bucket_lock); ++ buckets = bucket_array(ca); ++ ++ for_each_bucket(g, buckets) ++ g->io_time[rw] = clock->hand - ++ bucket_last_io(c, g, rw) / 2; ++ ++ bch2_recalc_oldest_io(c, ca, rw); ++ ++ up_read(&ca->bucket_lock); ++ } ++} ++ ++static inline u64 bucket_clock_freq(u64 capacity) ++{ ++ return max(capacity >> 10, 2028ULL); ++} ++ ++static void bch2_inc_clock_hand(struct io_timer *timer) ++{ ++ struct bucket_clock *clock = container_of(timer, ++ struct bucket_clock, rescale); ++ struct bch_fs *c = container_of(clock, ++ struct bch_fs, bucket_clock[clock->rw]); ++ struct bch_dev *ca; ++ u64 capacity; ++ unsigned i; ++ ++ mutex_lock(&clock->lock); ++ ++ /* if clock cannot be advanced more, rescale prio */ ++ if (clock->max_last_io >= U16_MAX - 2) ++ bch2_rescale_bucket_io_times(c, clock->rw); ++ ++ BUG_ON(clock->max_last_io >= U16_MAX - 2); ++ ++ for_each_member_device(ca, c, i) ++ ca->max_last_bucket_io[clock->rw]++; ++ clock->max_last_io++; ++ clock->hand++; ++ ++ mutex_unlock(&clock->lock); ++ ++ capacity = READ_ONCE(c->capacity); ++ ++ if (!capacity) ++ return; ++ ++ /* ++ * we only increment when 0.1% of the filesystem capacity has been read ++ * or written too, this determines if it's time ++ * ++ * XXX: we shouldn't really be going off of the capacity of devices in ++ * RW mode (that will be 0 when we're RO, yet we can still service ++ * reads) ++ */ ++ timer->expire += bucket_clock_freq(capacity); ++ ++ bch2_io_timer_add(&c->io_clock[clock->rw], timer); ++} ++ ++static void bch2_bucket_clock_init(struct bch_fs *c, int rw) ++{ ++ struct bucket_clock *clock = &c->bucket_clock[rw]; ++ ++ clock->hand = 1; ++ clock->rw = rw; ++ clock->rescale.fn = bch2_inc_clock_hand; ++ clock->rescale.expire = bucket_clock_freq(c->capacity); ++ mutex_init(&clock->lock); ++} ++ ++int bch2_bucket_io_time_reset(struct btree_trans *trans, unsigned dev, ++ size_t bucket_nr, int rw) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, dev); ++ struct btree_iter *iter; ++ struct bucket *g; ++ struct bkey_i_alloc *a; ++ struct bkey_alloc_unpacked u; ++ u16 *time; ++ int ret = 0; ++ ++ iter = bch2_trans_get_iter(trans, BTREE_ID_ALLOC, POS(dev, bucket_nr), ++ BTREE_ITER_CACHED| ++ BTREE_ITER_CACHED_NOFILL| ++ BTREE_ITER_INTENT); ++ if (IS_ERR(iter)) ++ return PTR_ERR(iter); ++ ++ a = bch2_trans_kmalloc(trans, BKEY_ALLOC_U64s_MAX * 8); ++ ret = PTR_ERR_OR_ZERO(a); ++ if (ret) ++ goto out; ++ ++ percpu_down_read(&c->mark_lock); ++ g = bucket(ca, bucket_nr); ++ u = alloc_mem_to_key(g, READ_ONCE(g->mark)); ++ percpu_up_read(&c->mark_lock); ++ ++ bkey_alloc_init(&a->k_i); ++ a->k.p = iter->pos; ++ ++ time = rw == READ ? &u.read_time : &u.write_time; ++ if (*time == c->bucket_clock[rw].hand) ++ goto out; ++ ++ *time = c->bucket_clock[rw].hand; ++ ++ bch2_alloc_pack(a, u); ++ ++ ret = bch2_trans_update(trans, iter, &a->k_i, 0) ?: ++ bch2_trans_commit(trans, NULL, NULL, 0); ++out: ++ bch2_trans_iter_put(trans, iter); ++ return ret; ++} ++ ++/* Background allocator thread: */ ++ ++/* ++ * Scans for buckets to be invalidated, invalidates them, rewrites prios/gens ++ * (marking them as invalidated on disk), then optionally issues discard ++ * commands to the newly free buckets, then puts them on the various freelists. ++ */ ++ ++/** ++ * wait_buckets_available - wait on reclaimable buckets ++ * ++ * If there aren't enough available buckets to fill up free_inc, wait until ++ * there are. ++ */ ++static int wait_buckets_available(struct bch_fs *c, struct bch_dev *ca) ++{ ++ unsigned long gc_count = c->gc_count; ++ u64 available; ++ int ret = 0; ++ ++ ca->allocator_state = ALLOCATOR_BLOCKED; ++ closure_wake_up(&c->freelist_wait); ++ ++ while (1) { ++ set_current_state(TASK_INTERRUPTIBLE); ++ if (kthread_should_stop()) { ++ ret = 1; ++ break; ++ } ++ ++ if (gc_count != c->gc_count) ++ ca->inc_gen_really_needs_gc = 0; ++ ++ available = max_t(s64, 0, dev_buckets_available(ca) - ++ ca->inc_gen_really_needs_gc); ++ ++ if (available > fifo_free(&ca->free_inc) || ++ (available && ++ (!fifo_full(&ca->free[RESERVE_BTREE]) || ++ !fifo_full(&ca->free[RESERVE_MOVINGGC])))) ++ break; ++ ++ up_read(&c->gc_lock); ++ schedule(); ++ try_to_freeze(); ++ down_read(&c->gc_lock); ++ } ++ ++ __set_current_state(TASK_RUNNING); ++ ca->allocator_state = ALLOCATOR_RUNNING; ++ closure_wake_up(&c->freelist_wait); ++ ++ return ret; ++} ++ ++static bool bch2_can_invalidate_bucket(struct bch_dev *ca, ++ size_t bucket, ++ struct bucket_mark mark) ++{ ++ u8 gc_gen; ++ ++ if (!is_available_bucket(mark)) ++ return false; ++ ++ if (ca->buckets_nouse && ++ test_bit(bucket, ca->buckets_nouse)) ++ return false; ++ ++ gc_gen = bucket_gc_gen(ca, bucket); ++ ++ if (gc_gen >= BUCKET_GC_GEN_MAX / 2) ++ ca->inc_gen_needs_gc++; ++ ++ if (gc_gen >= BUCKET_GC_GEN_MAX) ++ ca->inc_gen_really_needs_gc++; ++ ++ return gc_gen < BUCKET_GC_GEN_MAX; ++} ++ ++/* ++ * Determines what order we're going to reuse buckets, smallest bucket_key() ++ * first. ++ * ++ * ++ * - We take into account the read prio of the bucket, which gives us an ++ * indication of how hot the data is -- we scale the prio so that the prio ++ * farthest from the clock is worth 1/8th of the closest. ++ * ++ * - The number of sectors of cached data in the bucket, which gives us an ++ * indication of the cost in cache misses this eviction will cause. ++ * ++ * - If hotness * sectors used compares equal, we pick the bucket with the ++ * smallest bucket_gc_gen() - since incrementing the same bucket's generation ++ * number repeatedly forces us to run mark and sweep gc to avoid generation ++ * number wraparound. ++ */ ++ ++static unsigned long bucket_sort_key(struct bch_fs *c, struct bch_dev *ca, ++ size_t b, struct bucket_mark m) ++{ ++ unsigned last_io = bucket_last_io(c, bucket(ca, b), READ); ++ unsigned max_last_io = ca->max_last_bucket_io[READ]; ++ ++ /* ++ * Time since last read, scaled to [0, 8) where larger value indicates ++ * more recently read data: ++ */ ++ unsigned long hotness = (max_last_io - last_io) * 7 / max_last_io; ++ ++ /* How much we want to keep the data in this bucket: */ ++ unsigned long data_wantness = ++ (hotness + 1) * bucket_sectors_used(m); ++ ++ unsigned long needs_journal_commit = ++ bucket_needs_journal_commit(m, c->journal.last_seq_ondisk); ++ ++ return (data_wantness << 9) | ++ (needs_journal_commit << 8) | ++ (bucket_gc_gen(ca, b) / 16); ++} ++ ++static inline int bucket_alloc_cmp(alloc_heap *h, ++ struct alloc_heap_entry l, ++ struct alloc_heap_entry r) ++{ ++ return cmp_int(l.key, r.key) ?: ++ cmp_int(r.nr, l.nr) ?: ++ cmp_int(l.bucket, r.bucket); ++} ++ ++static inline int bucket_idx_cmp(const void *_l, const void *_r) ++{ ++ const struct alloc_heap_entry *l = _l, *r = _r; ++ ++ return cmp_int(l->bucket, r->bucket); ++} ++ ++static void find_reclaimable_buckets_lru(struct bch_fs *c, struct bch_dev *ca) ++{ ++ struct bucket_array *buckets; ++ struct alloc_heap_entry e = { 0 }; ++ size_t b, i, nr = 0; ++ ++ ca->alloc_heap.used = 0; ++ ++ mutex_lock(&c->bucket_clock[READ].lock); ++ down_read(&ca->bucket_lock); ++ ++ buckets = bucket_array(ca); ++ ++ bch2_recalc_oldest_io(c, ca, READ); ++ ++ /* ++ * Find buckets with lowest read priority, by building a maxheap sorted ++ * by read priority and repeatedly replacing the maximum element until ++ * all buckets have been visited. ++ */ ++ for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++) { ++ struct bucket_mark m = READ_ONCE(buckets->b[b].mark); ++ unsigned long key = bucket_sort_key(c, ca, b, m); ++ ++ if (!bch2_can_invalidate_bucket(ca, b, m)) ++ continue; ++ ++ if (e.nr && e.bucket + e.nr == b && e.key == key) { ++ e.nr++; ++ } else { ++ if (e.nr) ++ heap_add_or_replace(&ca->alloc_heap, e, ++ -bucket_alloc_cmp, NULL); ++ ++ e = (struct alloc_heap_entry) { ++ .bucket = b, ++ .nr = 1, ++ .key = key, ++ }; ++ } ++ ++ cond_resched(); ++ } ++ ++ if (e.nr) ++ heap_add_or_replace(&ca->alloc_heap, e, ++ -bucket_alloc_cmp, NULL); ++ ++ for (i = 0; i < ca->alloc_heap.used; i++) ++ nr += ca->alloc_heap.data[i].nr; ++ ++ while (nr - ca->alloc_heap.data[0].nr >= ALLOC_SCAN_BATCH(ca)) { ++ nr -= ca->alloc_heap.data[0].nr; ++ heap_pop(&ca->alloc_heap, e, -bucket_alloc_cmp, NULL); ++ } ++ ++ up_read(&ca->bucket_lock); ++ mutex_unlock(&c->bucket_clock[READ].lock); ++} ++ ++static void find_reclaimable_buckets_fifo(struct bch_fs *c, struct bch_dev *ca) ++{ ++ struct bucket_array *buckets = bucket_array(ca); ++ struct bucket_mark m; ++ size_t b, start; ++ ++ if (ca->fifo_last_bucket < ca->mi.first_bucket || ++ ca->fifo_last_bucket >= ca->mi.nbuckets) ++ ca->fifo_last_bucket = ca->mi.first_bucket; ++ ++ start = ca->fifo_last_bucket; ++ ++ do { ++ ca->fifo_last_bucket++; ++ if (ca->fifo_last_bucket == ca->mi.nbuckets) ++ ca->fifo_last_bucket = ca->mi.first_bucket; ++ ++ b = ca->fifo_last_bucket; ++ m = READ_ONCE(buckets->b[b].mark); ++ ++ if (bch2_can_invalidate_bucket(ca, b, m)) { ++ struct alloc_heap_entry e = { .bucket = b, .nr = 1, }; ++ ++ heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL); ++ if (heap_full(&ca->alloc_heap)) ++ break; ++ } ++ ++ cond_resched(); ++ } while (ca->fifo_last_bucket != start); ++} ++ ++static void find_reclaimable_buckets_random(struct bch_fs *c, struct bch_dev *ca) ++{ ++ struct bucket_array *buckets = bucket_array(ca); ++ struct bucket_mark m; ++ size_t checked, i; ++ ++ for (checked = 0; ++ checked < ca->mi.nbuckets / 2; ++ checked++) { ++ size_t b = bch2_rand_range(ca->mi.nbuckets - ++ ca->mi.first_bucket) + ++ ca->mi.first_bucket; ++ ++ m = READ_ONCE(buckets->b[b].mark); ++ ++ if (bch2_can_invalidate_bucket(ca, b, m)) { ++ struct alloc_heap_entry e = { .bucket = b, .nr = 1, }; ++ ++ heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL); ++ if (heap_full(&ca->alloc_heap)) ++ break; ++ } ++ ++ cond_resched(); ++ } ++ ++ sort(ca->alloc_heap.data, ++ ca->alloc_heap.used, ++ sizeof(ca->alloc_heap.data[0]), ++ bucket_idx_cmp, NULL); ++ ++ /* remove duplicates: */ ++ for (i = 0; i + 1 < ca->alloc_heap.used; i++) ++ if (ca->alloc_heap.data[i].bucket == ++ ca->alloc_heap.data[i + 1].bucket) ++ ca->alloc_heap.data[i].nr = 0; ++} ++ ++static size_t find_reclaimable_buckets(struct bch_fs *c, struct bch_dev *ca) ++{ ++ size_t i, nr = 0; ++ ++ ca->inc_gen_needs_gc = 0; ++ ++ switch (ca->mi.replacement) { ++ case CACHE_REPLACEMENT_LRU: ++ find_reclaimable_buckets_lru(c, ca); ++ break; ++ case CACHE_REPLACEMENT_FIFO: ++ find_reclaimable_buckets_fifo(c, ca); ++ break; ++ case CACHE_REPLACEMENT_RANDOM: ++ find_reclaimable_buckets_random(c, ca); ++ break; ++ } ++ ++ heap_resort(&ca->alloc_heap, bucket_alloc_cmp, NULL); ++ ++ for (i = 0; i < ca->alloc_heap.used; i++) ++ nr += ca->alloc_heap.data[i].nr; ++ ++ return nr; ++} ++ ++static inline long next_alloc_bucket(struct bch_dev *ca) ++{ ++ struct alloc_heap_entry e, *top = ca->alloc_heap.data; ++ ++ while (ca->alloc_heap.used) { ++ if (top->nr) { ++ size_t b = top->bucket; ++ ++ top->bucket++; ++ top->nr--; ++ return b; ++ } ++ ++ heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp, NULL); ++ } ++ ++ return -1; ++} ++ ++/* ++ * returns sequence number of most recent journal entry that updated this ++ * bucket: ++ */ ++static u64 bucket_journal_seq(struct bch_fs *c, struct bucket_mark m) ++{ ++ if (m.journal_seq_valid) { ++ u64 journal_seq = atomic64_read(&c->journal.seq); ++ u64 bucket_seq = journal_seq; ++ ++ bucket_seq &= ~((u64) U16_MAX); ++ bucket_seq |= m.journal_seq; ++ ++ if (bucket_seq > journal_seq) ++ bucket_seq -= 1 << 16; ++ ++ return bucket_seq; ++ } else { ++ return 0; ++ } ++} ++ ++static int bch2_invalidate_one_bucket2(struct btree_trans *trans, ++ struct bch_dev *ca, ++ struct btree_iter *iter, ++ u64 *journal_seq, unsigned flags) ++{ ++#if 0 ++ __BKEY_PADDED(k, BKEY_ALLOC_VAL_U64s_MAX) alloc_key; ++#else ++ /* hack: */ ++ __BKEY_PADDED(k, 8) alloc_key; ++#endif ++ struct bch_fs *c = trans->c; ++ struct bkey_i_alloc *a; ++ struct bkey_alloc_unpacked u; ++ struct bucket *g; ++ struct bucket_mark m; ++ bool invalidating_cached_data; ++ size_t b; ++ int ret = 0; ++ ++ BUG_ON(!ca->alloc_heap.used || ++ !ca->alloc_heap.data[0].nr); ++ b = ca->alloc_heap.data[0].bucket; ++ ++ /* first, put on free_inc and mark as owned by allocator: */ ++ percpu_down_read(&c->mark_lock); ++ spin_lock(&c->freelist_lock); ++ ++ verify_not_on_freelist(c, ca, b); ++ ++ BUG_ON(!fifo_push(&ca->free_inc, b)); ++ ++ g = bucket(ca, b); ++ m = READ_ONCE(g->mark); ++ ++ invalidating_cached_data = m.cached_sectors != 0; ++ ++ /* ++ * If we're not invalidating cached data, we only increment the bucket ++ * gen in memory here, the incremented gen will be updated in the btree ++ * by bch2_trans_mark_pointer(): ++ */ ++ ++ if (!invalidating_cached_data) ++ bch2_invalidate_bucket(c, ca, b, &m); ++ else ++ bch2_mark_alloc_bucket(c, ca, b, true, gc_pos_alloc(c, NULL), 0); ++ ++ spin_unlock(&c->freelist_lock); ++ percpu_up_read(&c->mark_lock); ++ ++ if (!invalidating_cached_data) ++ goto out; ++ ++ /* ++ * If the read-only path is trying to shut down, we can't be generating ++ * new btree updates: ++ */ ++ if (test_bit(BCH_FS_ALLOCATOR_STOPPING, &c->flags)) { ++ ret = 1; ++ goto out; ++ } ++ ++ BUG_ON(BKEY_ALLOC_VAL_U64s_MAX > 8); ++ ++ bch2_btree_iter_set_pos(iter, POS(ca->dev_idx, b)); ++retry: ++ ret = bch2_btree_iter_traverse(iter); ++ if (ret) ++ return ret; ++ ++ percpu_down_read(&c->mark_lock); ++ g = bucket(ca, iter->pos.offset); ++ m = READ_ONCE(g->mark); ++ u = alloc_mem_to_key(g, m); ++ ++ percpu_up_read(&c->mark_lock); ++ ++ invalidating_cached_data = u.cached_sectors != 0; ++ ++ u.gen++; ++ u.data_type = 0; ++ u.dirty_sectors = 0; ++ u.cached_sectors = 0; ++ u.read_time = c->bucket_clock[READ].hand; ++ u.write_time = c->bucket_clock[WRITE].hand; ++ ++ a = bkey_alloc_init(&alloc_key.k); ++ a->k.p = iter->pos; ++ bch2_alloc_pack(a, u); ++ ++ bch2_trans_update(trans, iter, &a->k_i, ++ BTREE_TRIGGER_BUCKET_INVALIDATE); ++ ++ /* ++ * XXX: ++ * when using deferred btree updates, we have journal reclaim doing ++ * btree updates and thus requiring the allocator to make forward ++ * progress, and here the allocator is requiring space in the journal - ++ * so we need a journal pre-reservation: ++ */ ++ ret = bch2_trans_commit(trans, NULL, ++ invalidating_cached_data ? journal_seq : NULL, ++ BTREE_INSERT_NOUNLOCK| ++ BTREE_INSERT_NOCHECK_RW| ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_USE_RESERVE| ++ BTREE_INSERT_USE_ALLOC_RESERVE| ++ flags); ++ if (ret == -EINTR) ++ goto retry; ++out: ++ if (!ret) { ++ /* remove from alloc_heap: */ ++ struct alloc_heap_entry e, *top = ca->alloc_heap.data; ++ ++ top->bucket++; ++ top->nr--; ++ ++ if (!top->nr) ++ heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp, NULL); ++ ++ /* ++ * Make sure we flush the last journal entry that updated this ++ * bucket (i.e. deleting the last reference) before writing to ++ * this bucket again: ++ */ ++ *journal_seq = max(*journal_seq, bucket_journal_seq(c, m)); ++ } else { ++ size_t b2; ++ ++ /* remove from free_inc: */ ++ percpu_down_read(&c->mark_lock); ++ spin_lock(&c->freelist_lock); ++ ++ bch2_mark_alloc_bucket(c, ca, b, false, ++ gc_pos_alloc(c, NULL), 0); ++ ++ BUG_ON(!fifo_pop_back(&ca->free_inc, b2)); ++ BUG_ON(b != b2); ++ ++ spin_unlock(&c->freelist_lock); ++ percpu_up_read(&c->mark_lock); ++ } ++ ++ return ret < 0 ? ret : 0; ++} ++ ++/* ++ * Pull buckets off ca->alloc_heap, invalidate them, move them to ca->free_inc: ++ */ ++static int bch2_invalidate_buckets(struct bch_fs *c, struct bch_dev *ca) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ u64 journal_seq = 0; ++ int ret = 0; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_ALLOC, ++ POS(ca->dev_idx, 0), ++ BTREE_ITER_CACHED| ++ BTREE_ITER_CACHED_NOFILL| ++ BTREE_ITER_INTENT); ++ ++ /* Only use nowait if we've already invalidated at least one bucket: */ ++ while (!ret && ++ !fifo_full(&ca->free_inc) && ++ ca->alloc_heap.used) ++ ret = bch2_invalidate_one_bucket2(&trans, ca, iter, &journal_seq, ++ BTREE_INSERT_GC_LOCK_HELD| ++ (!fifo_empty(&ca->free_inc) ++ ? BTREE_INSERT_NOWAIT : 0)); ++ ++ bch2_trans_exit(&trans); ++ ++ /* If we used NOWAIT, don't return the error: */ ++ if (!fifo_empty(&ca->free_inc)) ++ ret = 0; ++ if (ret) { ++ bch_err(ca, "error invalidating buckets: %i", ret); ++ return ret; ++ } ++ ++ if (journal_seq) ++ ret = bch2_journal_flush_seq(&c->journal, journal_seq); ++ if (ret) { ++ bch_err(ca, "journal error: %i", ret); ++ return ret; ++ } ++ ++ return 0; ++} ++ ++static int push_invalidated_bucket(struct bch_fs *c, struct bch_dev *ca, size_t bucket) ++{ ++ unsigned i; ++ int ret = 0; ++ ++ while (1) { ++ set_current_state(TASK_INTERRUPTIBLE); ++ ++ spin_lock(&c->freelist_lock); ++ for (i = 0; i < RESERVE_NR; i++) { ++ ++ /* ++ * Don't strand buckets on the copygc freelist until ++ * after recovery is finished: ++ */ ++ if (!test_bit(BCH_FS_STARTED, &c->flags) && ++ i == RESERVE_MOVINGGC) ++ continue; ++ ++ if (fifo_push(&ca->free[i], bucket)) { ++ fifo_pop(&ca->free_inc, bucket); ++ ++ closure_wake_up(&c->freelist_wait); ++ ca->allocator_state = ALLOCATOR_RUNNING; ++ ++ spin_unlock(&c->freelist_lock); ++ goto out; ++ } ++ } ++ ++ if (ca->allocator_state != ALLOCATOR_BLOCKED_FULL) { ++ ca->allocator_state = ALLOCATOR_BLOCKED_FULL; ++ closure_wake_up(&c->freelist_wait); ++ } ++ ++ spin_unlock(&c->freelist_lock); ++ ++ if ((current->flags & PF_KTHREAD) && ++ kthread_should_stop()) { ++ ret = 1; ++ break; ++ } ++ ++ schedule(); ++ try_to_freeze(); ++ } ++out: ++ __set_current_state(TASK_RUNNING); ++ return ret; ++} ++ ++/* ++ * Pulls buckets off free_inc, discards them (if enabled), then adds them to ++ * freelists, waiting until there's room if necessary: ++ */ ++static int discard_invalidated_buckets(struct bch_fs *c, struct bch_dev *ca) ++{ ++ while (!fifo_empty(&ca->free_inc)) { ++ size_t bucket = fifo_peek(&ca->free_inc); ++ ++ if (ca->mi.discard && ++ blk_queue_discard(bdev_get_queue(ca->disk_sb.bdev))) ++ blkdev_issue_discard(ca->disk_sb.bdev, ++ bucket_to_sector(ca, bucket), ++ ca->mi.bucket_size, GFP_NOIO, 0); ++ ++ if (push_invalidated_bucket(c, ca, bucket)) ++ return 1; ++ } ++ ++ return 0; ++} ++ ++/** ++ * bch_allocator_thread - move buckets from free_inc to reserves ++ * ++ * The free_inc FIFO is populated by find_reclaimable_buckets(), and ++ * the reserves are depleted by bucket allocation. When we run out ++ * of free_inc, try to invalidate some buckets and write out ++ * prios and gens. ++ */ ++static int bch2_allocator_thread(void *arg) ++{ ++ struct bch_dev *ca = arg; ++ struct bch_fs *c = ca->fs; ++ size_t nr; ++ int ret; ++ ++ set_freezable(); ++ ca->allocator_state = ALLOCATOR_RUNNING; ++ ++ while (1) { ++ cond_resched(); ++ if (kthread_should_stop()) ++ break; ++ ++ pr_debug("discarding %zu invalidated buckets", ++ fifo_used(&ca->free_inc)); ++ ++ ret = discard_invalidated_buckets(c, ca); ++ if (ret) ++ goto stop; ++ ++ down_read(&c->gc_lock); ++ ++ ret = bch2_invalidate_buckets(c, ca); ++ if (ret) { ++ up_read(&c->gc_lock); ++ goto stop; ++ } ++ ++ if (!fifo_empty(&ca->free_inc)) { ++ up_read(&c->gc_lock); ++ continue; ++ } ++ ++ pr_debug("free_inc now empty"); ++ ++ do { ++ /* ++ * Find some buckets that we can invalidate, either ++ * they're completely unused, or only contain clean data ++ * that's been written back to the backing device or ++ * another cache tier ++ */ ++ ++ pr_debug("scanning for reclaimable buckets"); ++ ++ nr = find_reclaimable_buckets(c, ca); ++ ++ pr_debug("found %zu buckets", nr); ++ ++ trace_alloc_batch(ca, nr, ca->alloc_heap.size); ++ ++ if ((ca->inc_gen_needs_gc >= ALLOC_SCAN_BATCH(ca) || ++ ca->inc_gen_really_needs_gc) && ++ c->gc_thread) { ++ atomic_inc(&c->kick_gc); ++ wake_up_process(c->gc_thread); ++ } ++ ++ /* ++ * If we found any buckets, we have to invalidate them ++ * before we scan for more - but if we didn't find very ++ * many we may want to wait on more buckets being ++ * available so we don't spin: ++ */ ++ if (!nr || ++ (nr < ALLOC_SCAN_BATCH(ca) && ++ !fifo_empty(&ca->free[RESERVE_NONE]))) { ++ ret = wait_buckets_available(c, ca); ++ if (ret) { ++ up_read(&c->gc_lock); ++ goto stop; ++ } ++ } ++ } while (!nr); ++ ++ up_read(&c->gc_lock); ++ ++ pr_debug("%zu buckets to invalidate", nr); ++ ++ /* ++ * alloc_heap is now full of newly-invalidated buckets: next, ++ * write out the new bucket gens: ++ */ ++ } ++ ++stop: ++ pr_debug("alloc thread stopping (ret %i)", ret); ++ ca->allocator_state = ALLOCATOR_STOPPED; ++ closure_wake_up(&c->freelist_wait); ++ return 0; ++} ++ ++/* Startup/shutdown (ro/rw): */ ++ ++void bch2_recalc_capacity(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ u64 capacity = 0, reserved_sectors = 0, gc_reserve, copygc_threshold = 0; ++ unsigned bucket_size_max = 0; ++ unsigned long ra_pages = 0; ++ unsigned i, j; ++ ++ lockdep_assert_held(&c->state_lock); ++ ++ for_each_online_member(ca, c, i) { ++ struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_bdi; ++ ++ ra_pages += bdi->ra_pages; ++ } ++ ++ bch2_set_ra_pages(c, ra_pages); ++ ++ for_each_rw_member(ca, c, i) { ++ u64 dev_reserve = 0; ++ ++ /* ++ * We need to reserve buckets (from the number ++ * of currently available buckets) against ++ * foreground writes so that mainly copygc can ++ * make forward progress. ++ * ++ * We need enough to refill the various reserves ++ * from scratch - copygc will use its entire ++ * reserve all at once, then run against when ++ * its reserve is refilled (from the formerly ++ * available buckets). ++ * ++ * This reserve is just used when considering if ++ * allocations for foreground writes must wait - ++ * not -ENOSPC calculations. ++ */ ++ for (j = 0; j < RESERVE_NONE; j++) ++ dev_reserve += ca->free[j].size; ++ ++ dev_reserve += 1; /* btree write point */ ++ dev_reserve += 1; /* copygc write point */ ++ dev_reserve += 1; /* rebalance write point */ ++ ++ dev_reserve *= ca->mi.bucket_size; ++ ++ copygc_threshold += dev_reserve; ++ ++ capacity += bucket_to_sector(ca, ca->mi.nbuckets - ++ ca->mi.first_bucket); ++ ++ reserved_sectors += dev_reserve * 2; ++ ++ bucket_size_max = max_t(unsigned, bucket_size_max, ++ ca->mi.bucket_size); ++ } ++ ++ gc_reserve = c->opts.gc_reserve_bytes ++ ? c->opts.gc_reserve_bytes >> 9 ++ : div64_u64(capacity * c->opts.gc_reserve_percent, 100); ++ ++ reserved_sectors = max(gc_reserve, reserved_sectors); ++ ++ reserved_sectors = min(reserved_sectors, capacity); ++ ++ c->copygc_threshold = copygc_threshold; ++ c->capacity = capacity - reserved_sectors; ++ ++ c->bucket_size_max = bucket_size_max; ++ ++ /* Wake up case someone was waiting for buckets */ ++ closure_wake_up(&c->freelist_wait); ++} ++ ++static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca) ++{ ++ struct open_bucket *ob; ++ bool ret = false; ++ ++ for (ob = c->open_buckets; ++ ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ++ ob++) { ++ spin_lock(&ob->lock); ++ if (ob->valid && !ob->on_partial_list && ++ ob->ptr.dev == ca->dev_idx) ++ ret = true; ++ spin_unlock(&ob->lock); ++ } ++ ++ return ret; ++} ++ ++/* device goes ro: */ ++void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca) ++{ ++ unsigned i; ++ ++ BUG_ON(ca->alloc_thread); ++ ++ /* First, remove device from allocation groups: */ ++ ++ for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++) ++ clear_bit(ca->dev_idx, c->rw_devs[i].d); ++ ++ /* ++ * Capacity is calculated based off of devices in allocation groups: ++ */ ++ bch2_recalc_capacity(c); ++ ++ /* Next, close write points that point to this device... */ ++ for (i = 0; i < ARRAY_SIZE(c->write_points); i++) ++ bch2_writepoint_stop(c, ca, &c->write_points[i]); ++ ++ bch2_writepoint_stop(c, ca, &c->copygc_write_point); ++ bch2_writepoint_stop(c, ca, &c->rebalance_write_point); ++ bch2_writepoint_stop(c, ca, &c->btree_write_point); ++ ++ mutex_lock(&c->btree_reserve_cache_lock); ++ while (c->btree_reserve_cache_nr) { ++ struct btree_alloc *a = ++ &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; ++ ++ bch2_open_buckets_put(c, &a->ob); ++ } ++ mutex_unlock(&c->btree_reserve_cache_lock); ++ ++ while (1) { ++ struct open_bucket *ob; ++ ++ spin_lock(&c->freelist_lock); ++ if (!ca->open_buckets_partial_nr) { ++ spin_unlock(&c->freelist_lock); ++ break; ++ } ++ ob = c->open_buckets + ++ ca->open_buckets_partial[--ca->open_buckets_partial_nr]; ++ ob->on_partial_list = false; ++ spin_unlock(&c->freelist_lock); ++ ++ bch2_open_bucket_put(c, ob); ++ } ++ ++ bch2_ec_stop_dev(c, ca); ++ ++ /* ++ * Wake up threads that were blocked on allocation, so they can notice ++ * the device can no longer be removed and the capacity has changed: ++ */ ++ closure_wake_up(&c->freelist_wait); ++ ++ /* ++ * journal_res_get() can block waiting for free space in the journal - ++ * it needs to notice there may not be devices to allocate from anymore: ++ */ ++ wake_up(&c->journal.wait); ++ ++ /* Now wait for any in flight writes: */ ++ ++ closure_wait_event(&c->open_buckets_wait, ++ !bch2_dev_has_open_write_point(c, ca)); ++} ++ ++/* device goes rw: */ ++void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca) ++{ ++ unsigned i; ++ ++ for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++) ++ if (ca->mi.data_allowed & (1 << i)) ++ set_bit(ca->dev_idx, c->rw_devs[i].d); ++} ++ ++void bch2_dev_allocator_quiesce(struct bch_fs *c, struct bch_dev *ca) ++{ ++ if (ca->alloc_thread) ++ closure_wait_event(&c->freelist_wait, ++ ca->allocator_state != ALLOCATOR_RUNNING); ++} ++ ++/* stop allocator thread: */ ++void bch2_dev_allocator_stop(struct bch_dev *ca) ++{ ++ struct task_struct *p; ++ ++ p = rcu_dereference_protected(ca->alloc_thread, 1); ++ ca->alloc_thread = NULL; ++ ++ /* ++ * We need an rcu barrier between setting ca->alloc_thread = NULL and ++ * the thread shutting down to avoid bch2_wake_allocator() racing: ++ * ++ * XXX: it would be better to have the rcu barrier be asynchronous ++ * instead of blocking us here ++ */ ++ synchronize_rcu(); ++ ++ if (p) { ++ kthread_stop(p); ++ put_task_struct(p); ++ } ++} ++ ++/* start allocator thread: */ ++int bch2_dev_allocator_start(struct bch_dev *ca) ++{ ++ struct task_struct *p; ++ ++ /* ++ * allocator thread already started? ++ */ ++ if (ca->alloc_thread) ++ return 0; ++ ++ p = kthread_create(bch2_allocator_thread, ca, ++ "bch_alloc[%s]", ca->name); ++ if (IS_ERR(p)) ++ return PTR_ERR(p); ++ ++ get_task_struct(p); ++ rcu_assign_pointer(ca->alloc_thread, p); ++ wake_up_process(p); ++ return 0; ++} ++ ++void bch2_fs_allocator_background_init(struct bch_fs *c) ++{ ++ spin_lock_init(&c->freelist_lock); ++ bch2_bucket_clock_init(c, READ); ++ bch2_bucket_clock_init(c, WRITE); ++ ++ c->pd_controllers_update_seconds = 5; ++ INIT_DELAYED_WORK(&c->pd_controllers_update, pd_controllers_update); ++} +diff --git a/fs/bcachefs/alloc_background.h b/fs/bcachefs/alloc_background.h +new file mode 100644 +index 000000000000..cbaff56f7473 +--- /dev/null ++++ b/fs/bcachefs/alloc_background.h +@@ -0,0 +1,105 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_ALLOC_BACKGROUND_H ++#define _BCACHEFS_ALLOC_BACKGROUND_H ++ ++#include "bcachefs.h" ++#include "alloc_types.h" ++#include "debug.h" ++ ++struct bkey_alloc_unpacked { ++ u8 gen; ++#define x(_name, _bits) u##_bits _name; ++ BCH_ALLOC_FIELDS() ++#undef x ++}; ++ ++/* How out of date a pointer gen is allowed to be: */ ++#define BUCKET_GC_GEN_MAX 96U ++ ++/* returns true if not equal */ ++static inline bool bkey_alloc_unpacked_cmp(struct bkey_alloc_unpacked l, ++ struct bkey_alloc_unpacked r) ++{ ++ return l.gen != r.gen ++#define x(_name, _bits) || l._name != r._name ++ BCH_ALLOC_FIELDS() ++#undef x ++ ; ++} ++ ++struct bkey_alloc_unpacked bch2_alloc_unpack(struct bkey_s_c); ++void bch2_alloc_pack(struct bkey_i_alloc *, ++ const struct bkey_alloc_unpacked); ++ ++int bch2_bucket_io_time_reset(struct btree_trans *, unsigned, size_t, int); ++ ++static inline struct bkey_alloc_unpacked ++alloc_mem_to_key(struct bucket *g, struct bucket_mark m) ++{ ++ return (struct bkey_alloc_unpacked) { ++ .gen = m.gen, ++ .oldest_gen = g->oldest_gen, ++ .data_type = m.data_type, ++ .dirty_sectors = m.dirty_sectors, ++ .cached_sectors = m.cached_sectors, ++ .read_time = g->io_time[READ], ++ .write_time = g->io_time[WRITE], ++ }; ++} ++ ++#define ALLOC_SCAN_BATCH(ca) max_t(size_t, 1, (ca)->mi.nbuckets >> 9) ++ ++const char *bch2_alloc_invalid(const struct bch_fs *, struct bkey_s_c); ++void bch2_alloc_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++ ++#define bch2_bkey_ops_alloc (struct bkey_ops) { \ ++ .key_invalid = bch2_alloc_invalid, \ ++ .val_to_text = bch2_alloc_to_text, \ ++} ++ ++struct journal_keys; ++int bch2_alloc_read(struct bch_fs *, struct journal_keys *); ++ ++static inline void bch2_wake_allocator(struct bch_dev *ca) ++{ ++ struct task_struct *p; ++ ++ rcu_read_lock(); ++ p = rcu_dereference(ca->alloc_thread); ++ if (p) { ++ wake_up_process(p); ++ ca->allocator_state = ALLOCATOR_RUNNING; ++ } ++ rcu_read_unlock(); ++} ++ ++static inline void verify_not_on_freelist(struct bch_fs *c, struct bch_dev *ca, ++ size_t bucket) ++{ ++ if (expensive_debug_checks(c)) { ++ size_t iter; ++ long i; ++ unsigned j; ++ ++ for (j = 0; j < RESERVE_NR; j++) ++ fifo_for_each_entry(i, &ca->free[j], iter) ++ BUG_ON(i == bucket); ++ fifo_for_each_entry(i, &ca->free_inc, iter) ++ BUG_ON(i == bucket); ++ } ++} ++ ++void bch2_recalc_capacity(struct bch_fs *); ++ ++void bch2_dev_allocator_remove(struct bch_fs *, struct bch_dev *); ++void bch2_dev_allocator_add(struct bch_fs *, struct bch_dev *); ++ ++void bch2_dev_allocator_quiesce(struct bch_fs *, struct bch_dev *); ++void bch2_dev_allocator_stop(struct bch_dev *); ++int bch2_dev_allocator_start(struct bch_dev *); ++ ++int bch2_dev_alloc_write(struct bch_fs *, struct bch_dev *, unsigned); ++int bch2_alloc_write(struct bch_fs *, unsigned); ++void bch2_fs_allocator_background_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_ALLOC_BACKGROUND_H */ +diff --git a/fs/bcachefs/alloc_foreground.c b/fs/bcachefs/alloc_foreground.c +new file mode 100644 +index 000000000000..7a92e3d53254 +--- /dev/null ++++ b/fs/bcachefs/alloc_foreground.c +@@ -0,0 +1,990 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Primary bucket allocation code ++ * ++ * Copyright 2012 Google, Inc. ++ * ++ * Allocation in bcache is done in terms of buckets: ++ * ++ * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in ++ * btree pointers - they must match for the pointer to be considered valid. ++ * ++ * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a ++ * bucket simply by incrementing its gen. ++ * ++ * The gens (along with the priorities; it's really the gens are important but ++ * the code is named as if it's the priorities) are written in an arbitrary list ++ * of buckets on disk, with a pointer to them in the journal header. ++ * ++ * When we invalidate a bucket, we have to write its new gen to disk and wait ++ * for that write to complete before we use it - otherwise after a crash we ++ * could have pointers that appeared to be good but pointed to data that had ++ * been overwritten. ++ * ++ * Since the gens and priorities are all stored contiguously on disk, we can ++ * batch this up: We fill up the free_inc list with freshly invalidated buckets, ++ * call prio_write(), and when prio_write() finishes we pull buckets off the ++ * free_inc list and optionally discard them. ++ * ++ * free_inc isn't the only freelist - if it was, we'd often have to sleep while ++ * priorities and gens were being written before we could allocate. c->free is a ++ * smaller freelist, and buckets on that list are always ready to be used. ++ * ++ * If we've got discards enabled, that happens when a bucket moves from the ++ * free_inc list to the free list. ++ * ++ * It's important to ensure that gens don't wrap around - with respect to ++ * either the oldest gen in the btree or the gen on disk. This is quite ++ * difficult to do in practice, but we explicitly guard against it anyways - if ++ * a bucket is in danger of wrapping around we simply skip invalidating it that ++ * time around, and we garbage collect or rewrite the priorities sooner than we ++ * would have otherwise. ++ * ++ * bch2_bucket_alloc() allocates a single bucket from a specific device. ++ * ++ * bch2_bucket_alloc_set() allocates one or more buckets from different devices ++ * in a given filesystem. ++ * ++ * invalidate_buckets() drives all the processes described above. It's called ++ * from bch2_bucket_alloc() and a few other places that need to make sure free ++ * buckets are ready. ++ * ++ * invalidate_buckets_(lru|fifo)() find buckets that are available to be ++ * invalidated, and then invalidate them and stick them on the free_inc list - ++ * in either lru or fifo order. ++ */ ++ ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "alloc_foreground.h" ++#include "btree_gc.h" ++#include "buckets.h" ++#include "clock.h" ++#include "debug.h" ++#include "disk_groups.h" ++#include "ec.h" ++#include "io.h" ++ ++#include ++#include ++#include ++#include ++ ++/* ++ * Open buckets represent a bucket that's currently being allocated from. They ++ * serve two purposes: ++ * ++ * - They track buckets that have been partially allocated, allowing for ++ * sub-bucket sized allocations - they're used by the sector allocator below ++ * ++ * - They provide a reference to the buckets they own that mark and sweep GC ++ * can find, until the new allocation has a pointer to it inserted into the ++ * btree ++ * ++ * When allocating some space with the sector allocator, the allocation comes ++ * with a reference to an open bucket - the caller is required to put that ++ * reference _after_ doing the index update that makes its allocation reachable. ++ */ ++ ++void __bch2_open_bucket_put(struct bch_fs *c, struct open_bucket *ob) ++{ ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev); ++ ++ if (ob->ec) { ++ bch2_ec_bucket_written(c, ob); ++ return; ++ } ++ ++ percpu_down_read(&c->mark_lock); ++ spin_lock(&ob->lock); ++ ++ bch2_mark_alloc_bucket(c, ca, PTR_BUCKET_NR(ca, &ob->ptr), ++ false, gc_pos_alloc(c, ob), 0); ++ ob->valid = false; ++ ob->type = 0; ++ ++ spin_unlock(&ob->lock); ++ percpu_up_read(&c->mark_lock); ++ ++ spin_lock(&c->freelist_lock); ++ ob->freelist = c->open_buckets_freelist; ++ c->open_buckets_freelist = ob - c->open_buckets; ++ c->open_buckets_nr_free++; ++ spin_unlock(&c->freelist_lock); ++ ++ closure_wake_up(&c->open_buckets_wait); ++} ++ ++void bch2_open_bucket_write_error(struct bch_fs *c, ++ struct open_buckets *obs, ++ unsigned dev) ++{ ++ struct open_bucket *ob; ++ unsigned i; ++ ++ open_bucket_for_each(c, obs, ob, i) ++ if (ob->ptr.dev == dev && ++ ob->ec) ++ bch2_ec_bucket_cancel(c, ob); ++} ++ ++static struct open_bucket *bch2_open_bucket_alloc(struct bch_fs *c) ++{ ++ struct open_bucket *ob; ++ ++ BUG_ON(!c->open_buckets_freelist || !c->open_buckets_nr_free); ++ ++ ob = c->open_buckets + c->open_buckets_freelist; ++ c->open_buckets_freelist = ob->freelist; ++ atomic_set(&ob->pin, 1); ++ ob->type = 0; ++ ++ c->open_buckets_nr_free--; ++ return ob; ++} ++ ++static void open_bucket_free_unused(struct bch_fs *c, ++ struct write_point *wp, ++ struct open_bucket *ob) ++{ ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev); ++ bool may_realloc = wp->type == BCH_DATA_user; ++ ++ BUG_ON(ca->open_buckets_partial_nr > ++ ARRAY_SIZE(ca->open_buckets_partial)); ++ ++ if (ca->open_buckets_partial_nr < ++ ARRAY_SIZE(ca->open_buckets_partial) && ++ may_realloc) { ++ spin_lock(&c->freelist_lock); ++ ob->on_partial_list = true; ++ ca->open_buckets_partial[ca->open_buckets_partial_nr++] = ++ ob - c->open_buckets; ++ spin_unlock(&c->freelist_lock); ++ ++ closure_wake_up(&c->open_buckets_wait); ++ closure_wake_up(&c->freelist_wait); ++ } else { ++ bch2_open_bucket_put(c, ob); ++ } ++} ++ ++static void verify_not_stale(struct bch_fs *c, const struct open_buckets *obs) ++{ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ struct open_bucket *ob; ++ unsigned i; ++ ++ open_bucket_for_each(c, obs, ob, i) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev); ++ ++ BUG_ON(ptr_stale(ca, &ob->ptr)); ++ } ++#endif ++} ++ ++/* _only_ for allocating the journal on a new device: */ ++long bch2_bucket_alloc_new_fs(struct bch_dev *ca) ++{ ++ struct bucket_array *buckets; ++ ssize_t b; ++ ++ rcu_read_lock(); ++ buckets = bucket_array(ca); ++ ++ for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++) ++ if (is_available_bucket(buckets->b[b].mark)) ++ goto success; ++ b = -1; ++success: ++ rcu_read_unlock(); ++ return b; ++} ++ ++static inline unsigned open_buckets_reserved(enum alloc_reserve reserve) ++{ ++ switch (reserve) { ++ case RESERVE_ALLOC: ++ return 0; ++ case RESERVE_BTREE: ++ return OPEN_BUCKETS_COUNT / 4; ++ default: ++ return OPEN_BUCKETS_COUNT / 2; ++ } ++} ++ ++/** ++ * bch_bucket_alloc - allocate a single bucket from a specific device ++ * ++ * Returns index of bucket on success, 0 on failure ++ * */ ++struct open_bucket *bch2_bucket_alloc(struct bch_fs *c, struct bch_dev *ca, ++ enum alloc_reserve reserve, ++ bool may_alloc_partial, ++ struct closure *cl) ++{ ++ struct bucket_array *buckets; ++ struct open_bucket *ob; ++ long bucket = 0; ++ ++ spin_lock(&c->freelist_lock); ++ ++ if (may_alloc_partial) { ++ int i; ++ ++ for (i = ca->open_buckets_partial_nr - 1; i >= 0; --i) { ++ ob = c->open_buckets + ca->open_buckets_partial[i]; ++ ++ if (reserve <= ob->alloc_reserve) { ++ array_remove_item(ca->open_buckets_partial, ++ ca->open_buckets_partial_nr, ++ i); ++ ob->on_partial_list = false; ++ ob->alloc_reserve = reserve; ++ spin_unlock(&c->freelist_lock); ++ return ob; ++ } ++ } ++ } ++ ++ if (unlikely(c->open_buckets_nr_free <= open_buckets_reserved(reserve))) { ++ if (cl) ++ closure_wait(&c->open_buckets_wait, cl); ++ ++ if (!c->blocked_allocate_open_bucket) ++ c->blocked_allocate_open_bucket = local_clock(); ++ ++ spin_unlock(&c->freelist_lock); ++ trace_open_bucket_alloc_fail(ca, reserve); ++ return ERR_PTR(-OPEN_BUCKETS_EMPTY); ++ } ++ ++ if (likely(fifo_pop(&ca->free[RESERVE_NONE], bucket))) ++ goto out; ++ ++ switch (reserve) { ++ case RESERVE_ALLOC: ++ if (fifo_pop(&ca->free[RESERVE_BTREE], bucket)) ++ goto out; ++ break; ++ case RESERVE_BTREE: ++ if (fifo_used(&ca->free[RESERVE_BTREE]) * 2 >= ++ ca->free[RESERVE_BTREE].size && ++ fifo_pop(&ca->free[RESERVE_BTREE], bucket)) ++ goto out; ++ break; ++ case RESERVE_MOVINGGC: ++ if (fifo_pop(&ca->free[RESERVE_MOVINGGC], bucket)) ++ goto out; ++ break; ++ default: ++ break; ++ } ++ ++ if (cl) ++ closure_wait(&c->freelist_wait, cl); ++ ++ if (!c->blocked_allocate) ++ c->blocked_allocate = local_clock(); ++ ++ spin_unlock(&c->freelist_lock); ++ ++ trace_bucket_alloc_fail(ca, reserve); ++ return ERR_PTR(-FREELIST_EMPTY); ++out: ++ verify_not_on_freelist(c, ca, bucket); ++ ++ ob = bch2_open_bucket_alloc(c); ++ ++ spin_lock(&ob->lock); ++ buckets = bucket_array(ca); ++ ++ ob->valid = true; ++ ob->sectors_free = ca->mi.bucket_size; ++ ob->alloc_reserve = reserve; ++ ob->ptr = (struct bch_extent_ptr) { ++ .type = 1 << BCH_EXTENT_ENTRY_ptr, ++ .gen = buckets->b[bucket].mark.gen, ++ .offset = bucket_to_sector(ca, bucket), ++ .dev = ca->dev_idx, ++ }; ++ ++ spin_unlock(&ob->lock); ++ ++ if (c->blocked_allocate_open_bucket) { ++ bch2_time_stats_update( ++ &c->times[BCH_TIME_blocked_allocate_open_bucket], ++ c->blocked_allocate_open_bucket); ++ c->blocked_allocate_open_bucket = 0; ++ } ++ ++ if (c->blocked_allocate) { ++ bch2_time_stats_update( ++ &c->times[BCH_TIME_blocked_allocate], ++ c->blocked_allocate); ++ c->blocked_allocate = 0; ++ } ++ ++ spin_unlock(&c->freelist_lock); ++ ++ bch2_wake_allocator(ca); ++ ++ trace_bucket_alloc(ca, reserve); ++ return ob; ++} ++ ++static int __dev_stripe_cmp(struct dev_stripe_state *stripe, ++ unsigned l, unsigned r) ++{ ++ return ((stripe->next_alloc[l] > stripe->next_alloc[r]) - ++ (stripe->next_alloc[l] < stripe->next_alloc[r])); ++} ++ ++#define dev_stripe_cmp(l, r) __dev_stripe_cmp(stripe, l, r) ++ ++struct dev_alloc_list bch2_dev_alloc_list(struct bch_fs *c, ++ struct dev_stripe_state *stripe, ++ struct bch_devs_mask *devs) ++{ ++ struct dev_alloc_list ret = { .nr = 0 }; ++ unsigned i; ++ ++ for_each_set_bit(i, devs->d, BCH_SB_MEMBERS_MAX) ++ ret.devs[ret.nr++] = i; ++ ++ bubble_sort(ret.devs, ret.nr, dev_stripe_cmp); ++ return ret; ++} ++ ++void bch2_dev_stripe_increment(struct bch_dev *ca, ++ struct dev_stripe_state *stripe) ++{ ++ u64 *v = stripe->next_alloc + ca->dev_idx; ++ u64 free_space = dev_buckets_free(ca); ++ u64 free_space_inv = free_space ++ ? div64_u64(1ULL << 48, free_space) ++ : 1ULL << 48; ++ u64 scale = *v / 4; ++ ++ if (*v + free_space_inv >= *v) ++ *v += free_space_inv; ++ else ++ *v = U64_MAX; ++ ++ for (v = stripe->next_alloc; ++ v < stripe->next_alloc + ARRAY_SIZE(stripe->next_alloc); v++) ++ *v = *v < scale ? 0 : *v - scale; ++} ++ ++#define BUCKET_MAY_ALLOC_PARTIAL (1 << 0) ++#define BUCKET_ALLOC_USE_DURABILITY (1 << 1) ++ ++static void add_new_bucket(struct bch_fs *c, ++ struct open_buckets *ptrs, ++ struct bch_devs_mask *devs_may_alloc, ++ unsigned *nr_effective, ++ bool *have_cache, ++ unsigned flags, ++ struct open_bucket *ob) ++{ ++ unsigned durability = ++ bch_dev_bkey_exists(c, ob->ptr.dev)->mi.durability; ++ ++ __clear_bit(ob->ptr.dev, devs_may_alloc->d); ++ *nr_effective += (flags & BUCKET_ALLOC_USE_DURABILITY) ++ ? durability : 1; ++ *have_cache |= !durability; ++ ++ ob_push(c, ptrs, ob); ++} ++ ++enum bucket_alloc_ret ++bch2_bucket_alloc_set(struct bch_fs *c, ++ struct open_buckets *ptrs, ++ struct dev_stripe_state *stripe, ++ struct bch_devs_mask *devs_may_alloc, ++ unsigned nr_replicas, ++ unsigned *nr_effective, ++ bool *have_cache, ++ enum alloc_reserve reserve, ++ unsigned flags, ++ struct closure *cl) ++{ ++ struct dev_alloc_list devs_sorted = ++ bch2_dev_alloc_list(c, stripe, devs_may_alloc); ++ struct bch_dev *ca; ++ enum bucket_alloc_ret ret = INSUFFICIENT_DEVICES; ++ unsigned i; ++ ++ BUG_ON(*nr_effective >= nr_replicas); ++ ++ for (i = 0; i < devs_sorted.nr; i++) { ++ struct open_bucket *ob; ++ ++ ca = rcu_dereference(c->devs[devs_sorted.devs[i]]); ++ if (!ca) ++ continue; ++ ++ if (!ca->mi.durability && *have_cache) ++ continue; ++ ++ ob = bch2_bucket_alloc(c, ca, reserve, ++ flags & BUCKET_MAY_ALLOC_PARTIAL, cl); ++ if (IS_ERR(ob)) { ++ ret = -PTR_ERR(ob); ++ ++ if (cl) ++ return ret; ++ continue; ++ } ++ ++ add_new_bucket(c, ptrs, devs_may_alloc, ++ nr_effective, have_cache, flags, ob); ++ ++ bch2_dev_stripe_increment(ca, stripe); ++ ++ if (*nr_effective >= nr_replicas) ++ return ALLOC_SUCCESS; ++ } ++ ++ return ret; ++} ++ ++/* Allocate from stripes: */ ++ ++/* ++ * if we can't allocate a new stripe because there are already too many ++ * partially filled stripes, force allocating from an existing stripe even when ++ * it's to a device we don't want: ++ */ ++ ++static void bucket_alloc_from_stripe(struct bch_fs *c, ++ struct open_buckets *ptrs, ++ struct write_point *wp, ++ struct bch_devs_mask *devs_may_alloc, ++ u16 target, ++ unsigned erasure_code, ++ unsigned nr_replicas, ++ unsigned *nr_effective, ++ bool *have_cache, ++ unsigned flags) ++{ ++ struct dev_alloc_list devs_sorted; ++ struct ec_stripe_head *h; ++ struct open_bucket *ob; ++ struct bch_dev *ca; ++ unsigned i, ec_idx; ++ ++ if (!erasure_code) ++ return; ++ ++ if (nr_replicas < 2) ++ return; ++ ++ if (ec_open_bucket(c, ptrs)) ++ return; ++ ++ h = bch2_ec_stripe_head_get(c, target, 0, nr_replicas - 1); ++ if (!h) ++ return; ++ ++ devs_sorted = bch2_dev_alloc_list(c, &wp->stripe, devs_may_alloc); ++ ++ for (i = 0; i < devs_sorted.nr; i++) ++ open_bucket_for_each(c, &h->s->blocks, ob, ec_idx) ++ if (ob->ptr.dev == devs_sorted.devs[i] && ++ !test_and_set_bit(h->s->data_block_idx[ec_idx], ++ h->s->blocks_allocated)) ++ goto got_bucket; ++ goto out_put_head; ++got_bucket: ++ ca = bch_dev_bkey_exists(c, ob->ptr.dev); ++ ++ ob->ec_idx = h->s->data_block_idx[ec_idx]; ++ ob->ec = h->s; ++ ++ add_new_bucket(c, ptrs, devs_may_alloc, ++ nr_effective, have_cache, flags, ob); ++ atomic_inc(&h->s->pin); ++out_put_head: ++ bch2_ec_stripe_head_put(c, h); ++} ++ ++/* Sector allocator */ ++ ++static void get_buckets_from_writepoint(struct bch_fs *c, ++ struct open_buckets *ptrs, ++ struct write_point *wp, ++ struct bch_devs_mask *devs_may_alloc, ++ unsigned nr_replicas, ++ unsigned *nr_effective, ++ bool *have_cache, ++ unsigned flags, ++ bool need_ec) ++{ ++ struct open_buckets ptrs_skip = { .nr = 0 }; ++ struct open_bucket *ob; ++ unsigned i; ++ ++ open_bucket_for_each(c, &wp->ptrs, ob, i) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev); ++ ++ if (*nr_effective < nr_replicas && ++ test_bit(ob->ptr.dev, devs_may_alloc->d) && ++ (ca->mi.durability || ++ (wp->type == BCH_DATA_user && !*have_cache)) && ++ (ob->ec || !need_ec)) { ++ add_new_bucket(c, ptrs, devs_may_alloc, ++ nr_effective, have_cache, ++ flags, ob); ++ } else { ++ ob_push(c, &ptrs_skip, ob); ++ } ++ } ++ wp->ptrs = ptrs_skip; ++} ++ ++static enum bucket_alloc_ret ++open_bucket_add_buckets(struct bch_fs *c, ++ struct open_buckets *ptrs, ++ struct write_point *wp, ++ struct bch_devs_list *devs_have, ++ u16 target, ++ unsigned erasure_code, ++ unsigned nr_replicas, ++ unsigned *nr_effective, ++ bool *have_cache, ++ enum alloc_reserve reserve, ++ unsigned flags, ++ struct closure *_cl) ++{ ++ struct bch_devs_mask devs; ++ struct open_bucket *ob; ++ struct closure *cl = NULL; ++ enum bucket_alloc_ret ret; ++ unsigned i; ++ ++ rcu_read_lock(); ++ devs = target_rw_devs(c, wp->type, target); ++ rcu_read_unlock(); ++ ++ /* Don't allocate from devices we already have pointers to: */ ++ for (i = 0; i < devs_have->nr; i++) ++ __clear_bit(devs_have->devs[i], devs.d); ++ ++ open_bucket_for_each(c, ptrs, ob, i) ++ __clear_bit(ob->ptr.dev, devs.d); ++ ++ if (erasure_code) { ++ if (!ec_open_bucket(c, ptrs)) { ++ get_buckets_from_writepoint(c, ptrs, wp, &devs, ++ nr_replicas, nr_effective, ++ have_cache, flags, true); ++ if (*nr_effective >= nr_replicas) ++ return 0; ++ } ++ ++ if (!ec_open_bucket(c, ptrs)) { ++ bucket_alloc_from_stripe(c, ptrs, wp, &devs, ++ target, erasure_code, ++ nr_replicas, nr_effective, ++ have_cache, flags); ++ if (*nr_effective >= nr_replicas) ++ return 0; ++ } ++ } ++ ++ get_buckets_from_writepoint(c, ptrs, wp, &devs, ++ nr_replicas, nr_effective, ++ have_cache, flags, false); ++ if (*nr_effective >= nr_replicas) ++ return 0; ++ ++ percpu_down_read(&c->mark_lock); ++ rcu_read_lock(); ++ ++retry_blocking: ++ /* ++ * Try nonblocking first, so that if one device is full we'll try from ++ * other devices: ++ */ ++ ret = bch2_bucket_alloc_set(c, ptrs, &wp->stripe, &devs, ++ nr_replicas, nr_effective, have_cache, ++ reserve, flags, cl); ++ if (ret && ret != INSUFFICIENT_DEVICES && !cl && _cl) { ++ cl = _cl; ++ goto retry_blocking; ++ } ++ ++ rcu_read_unlock(); ++ percpu_up_read(&c->mark_lock); ++ ++ return ret; ++} ++ ++void bch2_open_buckets_stop_dev(struct bch_fs *c, struct bch_dev *ca, ++ struct open_buckets *obs) ++{ ++ struct open_buckets ptrs = { .nr = 0 }; ++ struct open_bucket *ob, *ob2; ++ unsigned i, j; ++ ++ open_bucket_for_each(c, obs, ob, i) { ++ bool drop = !ca || ob->ptr.dev == ca->dev_idx; ++ ++ if (!drop && ob->ec) { ++ mutex_lock(&ob->ec->lock); ++ open_bucket_for_each(c, &ob->ec->blocks, ob2, j) ++ drop |= ob2->ptr.dev == ca->dev_idx; ++ open_bucket_for_each(c, &ob->ec->parity, ob2, j) ++ drop |= ob2->ptr.dev == ca->dev_idx; ++ mutex_unlock(&ob->ec->lock); ++ } ++ ++ if (drop) ++ bch2_open_bucket_put(c, ob); ++ else ++ ob_push(c, &ptrs, ob); ++ } ++ ++ *obs = ptrs; ++} ++ ++void bch2_writepoint_stop(struct bch_fs *c, struct bch_dev *ca, ++ struct write_point *wp) ++{ ++ mutex_lock(&wp->lock); ++ bch2_open_buckets_stop_dev(c, ca, &wp->ptrs); ++ mutex_unlock(&wp->lock); ++} ++ ++static inline struct hlist_head *writepoint_hash(struct bch_fs *c, ++ unsigned long write_point) ++{ ++ unsigned hash = ++ hash_long(write_point, ilog2(ARRAY_SIZE(c->write_points_hash))); ++ ++ return &c->write_points_hash[hash]; ++} ++ ++static struct write_point *__writepoint_find(struct hlist_head *head, ++ unsigned long write_point) ++{ ++ struct write_point *wp; ++ ++ hlist_for_each_entry_rcu(wp, head, node) ++ if (wp->write_point == write_point) ++ return wp; ++ ++ return NULL; ++} ++ ++static inline bool too_many_writepoints(struct bch_fs *c, unsigned factor) ++{ ++ u64 stranded = c->write_points_nr * c->bucket_size_max; ++ u64 free = bch2_fs_usage_read_short(c).free; ++ ++ return stranded * factor > free; ++} ++ ++static bool try_increase_writepoints(struct bch_fs *c) ++{ ++ struct write_point *wp; ++ ++ if (c->write_points_nr == ARRAY_SIZE(c->write_points) || ++ too_many_writepoints(c, 32)) ++ return false; ++ ++ wp = c->write_points + c->write_points_nr++; ++ hlist_add_head_rcu(&wp->node, writepoint_hash(c, wp->write_point)); ++ return true; ++} ++ ++static bool try_decrease_writepoints(struct bch_fs *c, ++ unsigned old_nr) ++{ ++ struct write_point *wp; ++ ++ mutex_lock(&c->write_points_hash_lock); ++ if (c->write_points_nr < old_nr) { ++ mutex_unlock(&c->write_points_hash_lock); ++ return true; ++ } ++ ++ if (c->write_points_nr == 1 || ++ !too_many_writepoints(c, 8)) { ++ mutex_unlock(&c->write_points_hash_lock); ++ return false; ++ } ++ ++ wp = c->write_points + --c->write_points_nr; ++ ++ hlist_del_rcu(&wp->node); ++ mutex_unlock(&c->write_points_hash_lock); ++ ++ bch2_writepoint_stop(c, NULL, wp); ++ return true; ++} ++ ++static struct write_point *writepoint_find(struct bch_fs *c, ++ unsigned long write_point) ++{ ++ struct write_point *wp, *oldest; ++ struct hlist_head *head; ++ ++ if (!(write_point & 1UL)) { ++ wp = (struct write_point *) write_point; ++ mutex_lock(&wp->lock); ++ return wp; ++ } ++ ++ head = writepoint_hash(c, write_point); ++restart_find: ++ wp = __writepoint_find(head, write_point); ++ if (wp) { ++lock_wp: ++ mutex_lock(&wp->lock); ++ if (wp->write_point == write_point) ++ goto out; ++ mutex_unlock(&wp->lock); ++ goto restart_find; ++ } ++restart_find_oldest: ++ oldest = NULL; ++ for (wp = c->write_points; ++ wp < c->write_points + c->write_points_nr; wp++) ++ if (!oldest || time_before64(wp->last_used, oldest->last_used)) ++ oldest = wp; ++ ++ mutex_lock(&oldest->lock); ++ mutex_lock(&c->write_points_hash_lock); ++ if (oldest >= c->write_points + c->write_points_nr || ++ try_increase_writepoints(c)) { ++ mutex_unlock(&c->write_points_hash_lock); ++ mutex_unlock(&oldest->lock); ++ goto restart_find_oldest; ++ } ++ ++ wp = __writepoint_find(head, write_point); ++ if (wp && wp != oldest) { ++ mutex_unlock(&c->write_points_hash_lock); ++ mutex_unlock(&oldest->lock); ++ goto lock_wp; ++ } ++ ++ wp = oldest; ++ hlist_del_rcu(&wp->node); ++ wp->write_point = write_point; ++ hlist_add_head_rcu(&wp->node, head); ++ mutex_unlock(&c->write_points_hash_lock); ++out: ++ wp->last_used = sched_clock(); ++ return wp; ++} ++ ++/* ++ * Get us an open_bucket we can allocate from, return with it locked: ++ */ ++struct write_point *bch2_alloc_sectors_start(struct bch_fs *c, ++ unsigned target, ++ unsigned erasure_code, ++ struct write_point_specifier write_point, ++ struct bch_devs_list *devs_have, ++ unsigned nr_replicas, ++ unsigned nr_replicas_required, ++ enum alloc_reserve reserve, ++ unsigned flags, ++ struct closure *cl) ++{ ++ struct write_point *wp; ++ struct open_bucket *ob; ++ struct open_buckets ptrs; ++ unsigned nr_effective, write_points_nr; ++ unsigned ob_flags = 0; ++ bool have_cache; ++ enum bucket_alloc_ret ret; ++ int i; ++ ++ if (!(flags & BCH_WRITE_ONLY_SPECIFIED_DEVS)) ++ ob_flags |= BUCKET_ALLOC_USE_DURABILITY; ++ ++ BUG_ON(!nr_replicas || !nr_replicas_required); ++retry: ++ ptrs.nr = 0; ++ nr_effective = 0; ++ write_points_nr = c->write_points_nr; ++ have_cache = false; ++ ++ wp = writepoint_find(c, write_point.v); ++ ++ if (wp->type == BCH_DATA_user) ++ ob_flags |= BUCKET_MAY_ALLOC_PARTIAL; ++ ++ /* metadata may not allocate on cache devices: */ ++ if (wp->type != BCH_DATA_user) ++ have_cache = true; ++ ++ if (!target || (flags & BCH_WRITE_ONLY_SPECIFIED_DEVS)) { ++ ret = open_bucket_add_buckets(c, &ptrs, wp, devs_have, ++ target, erasure_code, ++ nr_replicas, &nr_effective, ++ &have_cache, reserve, ++ ob_flags, cl); ++ } else { ++ ret = open_bucket_add_buckets(c, &ptrs, wp, devs_have, ++ target, erasure_code, ++ nr_replicas, &nr_effective, ++ &have_cache, reserve, ++ ob_flags, NULL); ++ if (!ret) ++ goto alloc_done; ++ ++ ret = open_bucket_add_buckets(c, &ptrs, wp, devs_have, ++ 0, erasure_code, ++ nr_replicas, &nr_effective, ++ &have_cache, reserve, ++ ob_flags, cl); ++ } ++alloc_done: ++ BUG_ON(!ret && nr_effective < nr_replicas); ++ ++ if (erasure_code && !ec_open_bucket(c, &ptrs)) ++ pr_debug("failed to get ec bucket: ret %u", ret); ++ ++ if (ret == INSUFFICIENT_DEVICES && ++ nr_effective >= nr_replicas_required) ++ ret = 0; ++ ++ if (ret) ++ goto err; ++ ++ /* Free buckets we didn't use: */ ++ open_bucket_for_each(c, &wp->ptrs, ob, i) ++ open_bucket_free_unused(c, wp, ob); ++ ++ wp->ptrs = ptrs; ++ ++ wp->sectors_free = UINT_MAX; ++ ++ open_bucket_for_each(c, &wp->ptrs, ob, i) ++ wp->sectors_free = min(wp->sectors_free, ob->sectors_free); ++ ++ BUG_ON(!wp->sectors_free || wp->sectors_free == UINT_MAX); ++ ++ verify_not_stale(c, &wp->ptrs); ++ ++ return wp; ++err: ++ open_bucket_for_each(c, &wp->ptrs, ob, i) ++ if (ptrs.nr < ARRAY_SIZE(ptrs.v)) ++ ob_push(c, &ptrs, ob); ++ else ++ open_bucket_free_unused(c, wp, ob); ++ wp->ptrs = ptrs; ++ ++ mutex_unlock(&wp->lock); ++ ++ if (ret == FREELIST_EMPTY && ++ try_decrease_writepoints(c, write_points_nr)) ++ goto retry; ++ ++ switch (ret) { ++ case OPEN_BUCKETS_EMPTY: ++ case FREELIST_EMPTY: ++ return cl ? ERR_PTR(-EAGAIN) : ERR_PTR(-ENOSPC); ++ case INSUFFICIENT_DEVICES: ++ return ERR_PTR(-EROFS); ++ default: ++ BUG(); ++ } ++} ++ ++/* ++ * Append pointers to the space we just allocated to @k, and mark @sectors space ++ * as allocated out of @ob ++ */ ++void bch2_alloc_sectors_append_ptrs(struct bch_fs *c, struct write_point *wp, ++ struct bkey_i *k, unsigned sectors) ++ ++{ ++ struct open_bucket *ob; ++ unsigned i; ++ ++ BUG_ON(sectors > wp->sectors_free); ++ wp->sectors_free -= sectors; ++ ++ open_bucket_for_each(c, &wp->ptrs, ob, i) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev); ++ struct bch_extent_ptr tmp = ob->ptr; ++ ++ tmp.cached = !ca->mi.durability && ++ wp->type == BCH_DATA_user; ++ ++ tmp.offset += ca->mi.bucket_size - ob->sectors_free; ++ bch2_bkey_append_ptr(k, tmp); ++ ++ BUG_ON(sectors > ob->sectors_free); ++ ob->sectors_free -= sectors; ++ } ++} ++ ++/* ++ * Append pointers to the space we just allocated to @k, and mark @sectors space ++ * as allocated out of @ob ++ */ ++void bch2_alloc_sectors_done(struct bch_fs *c, struct write_point *wp) ++{ ++ struct open_buckets ptrs = { .nr = 0 }, keep = { .nr = 0 }; ++ struct open_bucket *ob; ++ unsigned i; ++ ++ open_bucket_for_each(c, &wp->ptrs, ob, i) ++ ob_push(c, !ob->sectors_free ? &ptrs : &keep, ob); ++ wp->ptrs = keep; ++ ++ mutex_unlock(&wp->lock); ++ ++ bch2_open_buckets_put(c, &ptrs); ++} ++ ++static inline void writepoint_init(struct write_point *wp, ++ enum bch_data_type type) ++{ ++ mutex_init(&wp->lock); ++ wp->type = type; ++} ++ ++void bch2_fs_allocator_foreground_init(struct bch_fs *c) ++{ ++ struct open_bucket *ob; ++ struct write_point *wp; ++ ++ mutex_init(&c->write_points_hash_lock); ++ c->write_points_nr = ARRAY_SIZE(c->write_points); ++ ++ /* open bucket 0 is a sentinal NULL: */ ++ spin_lock_init(&c->open_buckets[0].lock); ++ ++ for (ob = c->open_buckets + 1; ++ ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) { ++ spin_lock_init(&ob->lock); ++ c->open_buckets_nr_free++; ++ ++ ob->freelist = c->open_buckets_freelist; ++ c->open_buckets_freelist = ob - c->open_buckets; ++ } ++ ++ writepoint_init(&c->btree_write_point, BCH_DATA_btree); ++ writepoint_init(&c->rebalance_write_point, BCH_DATA_user); ++ writepoint_init(&c->copygc_write_point, BCH_DATA_user); ++ ++ for (wp = c->write_points; ++ wp < c->write_points + c->write_points_nr; wp++) { ++ writepoint_init(wp, BCH_DATA_user); ++ ++ wp->last_used = sched_clock(); ++ wp->write_point = (unsigned long) wp; ++ hlist_add_head_rcu(&wp->node, ++ writepoint_hash(c, wp->write_point)); ++ } ++} +diff --git a/fs/bcachefs/alloc_foreground.h b/fs/bcachefs/alloc_foreground.h +new file mode 100644 +index 000000000000..c658295cb8e0 +--- /dev/null ++++ b/fs/bcachefs/alloc_foreground.h +@@ -0,0 +1,138 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_ALLOC_FOREGROUND_H ++#define _BCACHEFS_ALLOC_FOREGROUND_H ++ ++#include "bcachefs.h" ++#include "alloc_types.h" ++ ++#include ++ ++struct bkey; ++struct bch_dev; ++struct bch_fs; ++struct bch_devs_List; ++ ++enum bucket_alloc_ret { ++ ALLOC_SUCCESS, ++ OPEN_BUCKETS_EMPTY, ++ FREELIST_EMPTY, /* Allocator thread not keeping up */ ++ INSUFFICIENT_DEVICES, ++}; ++ ++struct dev_alloc_list { ++ unsigned nr; ++ u8 devs[BCH_SB_MEMBERS_MAX]; ++}; ++ ++struct dev_alloc_list bch2_dev_alloc_list(struct bch_fs *, ++ struct dev_stripe_state *, ++ struct bch_devs_mask *); ++void bch2_dev_stripe_increment(struct bch_dev *, struct dev_stripe_state *); ++ ++long bch2_bucket_alloc_new_fs(struct bch_dev *); ++ ++struct open_bucket *bch2_bucket_alloc(struct bch_fs *, struct bch_dev *, ++ enum alloc_reserve, bool, ++ struct closure *); ++ ++static inline void ob_push(struct bch_fs *c, struct open_buckets *obs, ++ struct open_bucket *ob) ++{ ++ BUG_ON(obs->nr >= ARRAY_SIZE(obs->v)); ++ ++ obs->v[obs->nr++] = ob - c->open_buckets; ++} ++ ++#define open_bucket_for_each(_c, _obs, _ob, _i) \ ++ for ((_i) = 0; \ ++ (_i) < (_obs)->nr && \ ++ ((_ob) = (_c)->open_buckets + (_obs)->v[_i], true); \ ++ (_i)++) ++ ++static inline struct open_bucket *ec_open_bucket(struct bch_fs *c, ++ struct open_buckets *obs) ++{ ++ struct open_bucket *ob; ++ unsigned i; ++ ++ open_bucket_for_each(c, obs, ob, i) ++ if (ob->ec) ++ return ob; ++ ++ return NULL; ++} ++ ++void bch2_open_bucket_write_error(struct bch_fs *, ++ struct open_buckets *, unsigned); ++ ++void __bch2_open_bucket_put(struct bch_fs *, struct open_bucket *); ++ ++static inline void bch2_open_bucket_put(struct bch_fs *c, struct open_bucket *ob) ++{ ++ if (atomic_dec_and_test(&ob->pin)) ++ __bch2_open_bucket_put(c, ob); ++} ++ ++static inline void bch2_open_buckets_put(struct bch_fs *c, ++ struct open_buckets *ptrs) ++{ ++ struct open_bucket *ob; ++ unsigned i; ++ ++ open_bucket_for_each(c, ptrs, ob, i) ++ bch2_open_bucket_put(c, ob); ++ ptrs->nr = 0; ++} ++ ++static inline void bch2_open_bucket_get(struct bch_fs *c, ++ struct write_point *wp, ++ struct open_buckets *ptrs) ++{ ++ struct open_bucket *ob; ++ unsigned i; ++ ++ open_bucket_for_each(c, &wp->ptrs, ob, i) { ++ ob->type = wp->type; ++ atomic_inc(&ob->pin); ++ ob_push(c, ptrs, ob); ++ } ++} ++ ++enum bucket_alloc_ret ++bch2_bucket_alloc_set(struct bch_fs *, struct open_buckets *, ++ struct dev_stripe_state *, struct bch_devs_mask *, ++ unsigned, unsigned *, bool *, enum alloc_reserve, ++ unsigned, struct closure *); ++ ++struct write_point *bch2_alloc_sectors_start(struct bch_fs *, ++ unsigned, unsigned, ++ struct write_point_specifier, ++ struct bch_devs_list *, ++ unsigned, unsigned, ++ enum alloc_reserve, ++ unsigned, ++ struct closure *); ++ ++void bch2_alloc_sectors_append_ptrs(struct bch_fs *, struct write_point *, ++ struct bkey_i *, unsigned); ++void bch2_alloc_sectors_done(struct bch_fs *, struct write_point *); ++ ++void bch2_open_buckets_stop_dev(struct bch_fs *, struct bch_dev *, ++ struct open_buckets *); ++ ++void bch2_writepoint_stop(struct bch_fs *, struct bch_dev *, ++ struct write_point *); ++ ++static inline struct write_point_specifier writepoint_hashed(unsigned long v) ++{ ++ return (struct write_point_specifier) { .v = v | 1 }; ++} ++ ++static inline struct write_point_specifier writepoint_ptr(struct write_point *wp) ++{ ++ return (struct write_point_specifier) { .v = (unsigned long) wp }; ++} ++ ++void bch2_fs_allocator_foreground_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_ALLOC_FOREGROUND_H */ +diff --git a/fs/bcachefs/alloc_types.h b/fs/bcachefs/alloc_types.h +new file mode 100644 +index 000000000000..20705460bb0a +--- /dev/null ++++ b/fs/bcachefs/alloc_types.h +@@ -0,0 +1,113 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_ALLOC_TYPES_H ++#define _BCACHEFS_ALLOC_TYPES_H ++ ++#include ++#include ++ ++#include "clock_types.h" ++#include "fifo.h" ++ ++struct ec_bucket_buf; ++ ++/* There's two of these clocks, one for reads and one for writes: */ ++struct bucket_clock { ++ /* ++ * "now" in (read/write) IO time - incremented whenever we do X amount ++ * of reads or writes. ++ * ++ * Goes with the bucket read/write prios: when we read or write to a ++ * bucket we reset the bucket's prio to the current hand; thus hand - ++ * prio = time since bucket was last read/written. ++ * ++ * The units are some amount (bytes/sectors) of data read/written, and ++ * the units can change on the fly if we need to rescale to fit ++ * everything in a u16 - your only guarantee is that the units are ++ * consistent. ++ */ ++ u16 hand; ++ u16 max_last_io; ++ ++ int rw; ++ ++ struct io_timer rescale; ++ struct mutex lock; ++}; ++ ++/* There is one reserve for each type of btree, one for prios and gens ++ * and one for moving GC */ ++enum alloc_reserve { ++ RESERVE_ALLOC = -1, ++ RESERVE_BTREE = 0, ++ RESERVE_MOVINGGC = 1, ++ RESERVE_NONE = 2, ++ RESERVE_NR = 3, ++}; ++ ++typedef FIFO(long) alloc_fifo; ++ ++#define OPEN_BUCKETS_COUNT 1024 ++ ++#define WRITE_POINT_HASH_NR 32 ++#define WRITE_POINT_MAX 32 ++ ++typedef u16 open_bucket_idx_t; ++ ++struct open_bucket { ++ spinlock_t lock; ++ atomic_t pin; ++ open_bucket_idx_t freelist; ++ ++ /* ++ * When an open bucket has an ec_stripe attached, this is the index of ++ * the block in the stripe this open_bucket corresponds to: ++ */ ++ u8 ec_idx; ++ u8 type; ++ unsigned valid:1; ++ unsigned on_partial_list:1; ++ int alloc_reserve:3; ++ unsigned sectors_free; ++ struct bch_extent_ptr ptr; ++ struct ec_stripe_new *ec; ++}; ++ ++#define OPEN_BUCKET_LIST_MAX 15 ++ ++struct open_buckets { ++ open_bucket_idx_t nr; ++ open_bucket_idx_t v[OPEN_BUCKET_LIST_MAX]; ++}; ++ ++struct dev_stripe_state { ++ u64 next_alloc[BCH_SB_MEMBERS_MAX]; ++}; ++ ++struct write_point { ++ struct hlist_node node; ++ struct mutex lock; ++ u64 last_used; ++ unsigned long write_point; ++ enum bch_data_type type; ++ bool is_ec; ++ ++ /* calculated based on how many pointers we're actually going to use: */ ++ unsigned sectors_free; ++ ++ struct open_buckets ptrs; ++ struct dev_stripe_state stripe; ++}; ++ ++struct write_point_specifier { ++ unsigned long v; ++}; ++ ++struct alloc_heap_entry { ++ size_t bucket; ++ size_t nr; ++ unsigned long key; ++}; ++ ++typedef HEAP(struct alloc_heap_entry) alloc_heap; ++ ++#endif /* _BCACHEFS_ALLOC_TYPES_H */ +diff --git a/fs/bcachefs/bcachefs.h b/fs/bcachefs/bcachefs.h +new file mode 100644 +index 000000000000..29f411635f29 +--- /dev/null ++++ b/fs/bcachefs/bcachefs.h +@@ -0,0 +1,882 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_H ++#define _BCACHEFS_H ++ ++/* ++ * SOME HIGH LEVEL CODE DOCUMENTATION: ++ * ++ * Bcache mostly works with cache sets, cache devices, and backing devices. ++ * ++ * Support for multiple cache devices hasn't quite been finished off yet, but ++ * it's about 95% plumbed through. A cache set and its cache devices is sort of ++ * like a md raid array and its component devices. Most of the code doesn't care ++ * about individual cache devices, the main abstraction is the cache set. ++ * ++ * Multiple cache devices is intended to give us the ability to mirror dirty ++ * cached data and metadata, without mirroring clean cached data. ++ * ++ * Backing devices are different, in that they have a lifetime independent of a ++ * cache set. When you register a newly formatted backing device it'll come up ++ * in passthrough mode, and then you can attach and detach a backing device from ++ * a cache set at runtime - while it's mounted and in use. Detaching implicitly ++ * invalidates any cached data for that backing device. ++ * ++ * A cache set can have multiple (many) backing devices attached to it. ++ * ++ * There's also flash only volumes - this is the reason for the distinction ++ * between struct cached_dev and struct bcache_device. A flash only volume ++ * works much like a bcache device that has a backing device, except the ++ * "cached" data is always dirty. The end result is that we get thin ++ * provisioning with very little additional code. ++ * ++ * Flash only volumes work but they're not production ready because the moving ++ * garbage collector needs more work. More on that later. ++ * ++ * BUCKETS/ALLOCATION: ++ * ++ * Bcache is primarily designed for caching, which means that in normal ++ * operation all of our available space will be allocated. Thus, we need an ++ * efficient way of deleting things from the cache so we can write new things to ++ * it. ++ * ++ * To do this, we first divide the cache device up into buckets. A bucket is the ++ * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+ ++ * works efficiently. ++ * ++ * Each bucket has a 16 bit priority, and an 8 bit generation associated with ++ * it. The gens and priorities for all the buckets are stored contiguously and ++ * packed on disk (in a linked list of buckets - aside from the superblock, all ++ * of bcache's metadata is stored in buckets). ++ * ++ * The priority is used to implement an LRU. We reset a bucket's priority when ++ * we allocate it or on cache it, and every so often we decrement the priority ++ * of each bucket. It could be used to implement something more sophisticated, ++ * if anyone ever gets around to it. ++ * ++ * The generation is used for invalidating buckets. Each pointer also has an 8 ++ * bit generation embedded in it; for a pointer to be considered valid, its gen ++ * must match the gen of the bucket it points into. Thus, to reuse a bucket all ++ * we have to do is increment its gen (and write its new gen to disk; we batch ++ * this up). ++ * ++ * Bcache is entirely COW - we never write twice to a bucket, even buckets that ++ * contain metadata (including btree nodes). ++ * ++ * THE BTREE: ++ * ++ * Bcache is in large part design around the btree. ++ * ++ * At a high level, the btree is just an index of key -> ptr tuples. ++ * ++ * Keys represent extents, and thus have a size field. Keys also have a variable ++ * number of pointers attached to them (potentially zero, which is handy for ++ * invalidating the cache). ++ * ++ * The key itself is an inode:offset pair. The inode number corresponds to a ++ * backing device or a flash only volume. The offset is the ending offset of the ++ * extent within the inode - not the starting offset; this makes lookups ++ * slightly more convenient. ++ * ++ * Pointers contain the cache device id, the offset on that device, and an 8 bit ++ * generation number. More on the gen later. ++ * ++ * Index lookups are not fully abstracted - cache lookups in particular are ++ * still somewhat mixed in with the btree code, but things are headed in that ++ * direction. ++ * ++ * Updates are fairly well abstracted, though. There are two different ways of ++ * updating the btree; insert and replace. ++ * ++ * BTREE_INSERT will just take a list of keys and insert them into the btree - ++ * overwriting (possibly only partially) any extents they overlap with. This is ++ * used to update the index after a write. ++ * ++ * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is ++ * overwriting a key that matches another given key. This is used for inserting ++ * data into the cache after a cache miss, and for background writeback, and for ++ * the moving garbage collector. ++ * ++ * There is no "delete" operation; deleting things from the index is ++ * accomplished by either by invalidating pointers (by incrementing a bucket's ++ * gen) or by inserting a key with 0 pointers - which will overwrite anything ++ * previously present at that location in the index. ++ * ++ * This means that there are always stale/invalid keys in the btree. They're ++ * filtered out by the code that iterates through a btree node, and removed when ++ * a btree node is rewritten. ++ * ++ * BTREE NODES: ++ * ++ * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and ++ * free smaller than a bucket - so, that's how big our btree nodes are. ++ * ++ * (If buckets are really big we'll only use part of the bucket for a btree node ++ * - no less than 1/4th - but a bucket still contains no more than a single ++ * btree node. I'd actually like to change this, but for now we rely on the ++ * bucket's gen for deleting btree nodes when we rewrite/split a node.) ++ * ++ * Anyways, btree nodes are big - big enough to be inefficient with a textbook ++ * btree implementation. ++ * ++ * The way this is solved is that btree nodes are internally log structured; we ++ * can append new keys to an existing btree node without rewriting it. This ++ * means each set of keys we write is sorted, but the node is not. ++ * ++ * We maintain this log structure in memory - keeping 1Mb of keys sorted would ++ * be expensive, and we have to distinguish between the keys we have written and ++ * the keys we haven't. So to do a lookup in a btree node, we have to search ++ * each sorted set. But we do merge written sets together lazily, so the cost of ++ * these extra searches is quite low (normally most of the keys in a btree node ++ * will be in one big set, and then there'll be one or two sets that are much ++ * smaller). ++ * ++ * This log structure makes bcache's btree more of a hybrid between a ++ * conventional btree and a compacting data structure, with some of the ++ * advantages of both. ++ * ++ * GARBAGE COLLECTION: ++ * ++ * We can't just invalidate any bucket - it might contain dirty data or ++ * metadata. If it once contained dirty data, other writes might overwrite it ++ * later, leaving no valid pointers into that bucket in the index. ++ * ++ * Thus, the primary purpose of garbage collection is to find buckets to reuse. ++ * It also counts how much valid data it each bucket currently contains, so that ++ * allocation can reuse buckets sooner when they've been mostly overwritten. ++ * ++ * It also does some things that are really internal to the btree ++ * implementation. If a btree node contains pointers that are stale by more than ++ * some threshold, it rewrites the btree node to avoid the bucket's generation ++ * wrapping around. It also merges adjacent btree nodes if they're empty enough. ++ * ++ * THE JOURNAL: ++ * ++ * Bcache's journal is not necessary for consistency; we always strictly ++ * order metadata writes so that the btree and everything else is consistent on ++ * disk in the event of an unclean shutdown, and in fact bcache had writeback ++ * caching (with recovery from unclean shutdown) before journalling was ++ * implemented. ++ * ++ * Rather, the journal is purely a performance optimization; we can't complete a ++ * write until we've updated the index on disk, otherwise the cache would be ++ * inconsistent in the event of an unclean shutdown. This means that without the ++ * journal, on random write workloads we constantly have to update all the leaf ++ * nodes in the btree, and those writes will be mostly empty (appending at most ++ * a few keys each) - highly inefficient in terms of amount of metadata writes, ++ * and it puts more strain on the various btree resorting/compacting code. ++ * ++ * The journal is just a log of keys we've inserted; on startup we just reinsert ++ * all the keys in the open journal entries. That means that when we're updating ++ * a node in the btree, we can wait until a 4k block of keys fills up before ++ * writing them out. ++ * ++ * For simplicity, we only journal updates to leaf nodes; updates to parent ++ * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth ++ * the complexity to deal with journalling them (in particular, journal replay) ++ * - updates to non leaf nodes just happen synchronously (see btree_split()). ++ */ ++ ++#undef pr_fmt ++#define pr_fmt(fmt) "bcachefs: %s() " fmt "\n", __func__ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include "bcachefs_format.h" ++#include "fifo.h" ++#include "opts.h" ++#include "util.h" ++ ++#define dynamic_fault(...) 0 ++#define race_fault(...) 0 ++ ++#define bch2_fs_init_fault(name) \ ++ dynamic_fault("bcachefs:bch_fs_init:" name) ++#define bch2_meta_read_fault(name) \ ++ dynamic_fault("bcachefs:meta:read:" name) ++#define bch2_meta_write_fault(name) \ ++ dynamic_fault("bcachefs:meta:write:" name) ++ ++#ifdef __KERNEL__ ++#define bch2_fmt(_c, fmt) "bcachefs (%s): " fmt "\n", ((_c)->name) ++#else ++#define bch2_fmt(_c, fmt) fmt "\n" ++#endif ++ ++#define bch_info(c, fmt, ...) \ ++ printk(KERN_INFO bch2_fmt(c, fmt), ##__VA_ARGS__) ++#define bch_notice(c, fmt, ...) \ ++ printk(KERN_NOTICE bch2_fmt(c, fmt), ##__VA_ARGS__) ++#define bch_warn(c, fmt, ...) \ ++ printk(KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__) ++#define bch_warn_ratelimited(c, fmt, ...) \ ++ printk_ratelimited(KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__) ++#define bch_err(c, fmt, ...) \ ++ printk(KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__) ++#define bch_err_ratelimited(c, fmt, ...) \ ++ printk_ratelimited(KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__) ++ ++#define bch_verbose(c, fmt, ...) \ ++do { \ ++ if ((c)->opts.verbose) \ ++ bch_info(c, fmt, ##__VA_ARGS__); \ ++} while (0) ++ ++#define pr_verbose_init(opts, fmt, ...) \ ++do { \ ++ if (opt_get(opts, verbose)) \ ++ pr_info(fmt, ##__VA_ARGS__); \ ++} while (0) ++ ++/* Parameters that are useful for debugging, but should always be compiled in: */ ++#define BCH_DEBUG_PARAMS_ALWAYS() \ ++ BCH_DEBUG_PARAM(key_merging_disabled, \ ++ "Disables merging of extents") \ ++ BCH_DEBUG_PARAM(btree_gc_always_rewrite, \ ++ "Causes mark and sweep to compact and rewrite every " \ ++ "btree node it traverses") \ ++ BCH_DEBUG_PARAM(btree_gc_rewrite_disabled, \ ++ "Disables rewriting of btree nodes during mark and sweep")\ ++ BCH_DEBUG_PARAM(btree_shrinker_disabled, \ ++ "Disables the shrinker callback for the btree node cache") ++ ++/* Parameters that should only be compiled in in debug mode: */ ++#define BCH_DEBUG_PARAMS_DEBUG() \ ++ BCH_DEBUG_PARAM(expensive_debug_checks, \ ++ "Enables various runtime debugging checks that " \ ++ "significantly affect performance") \ ++ BCH_DEBUG_PARAM(debug_check_iterators, \ ++ "Enables extra verification for btree iterators") \ ++ BCH_DEBUG_PARAM(debug_check_bkeys, \ ++ "Run bkey_debugcheck (primarily checking GC/allocation "\ ++ "information) when iterating over keys") \ ++ BCH_DEBUG_PARAM(verify_btree_ondisk, \ ++ "Reread btree nodes at various points to verify the " \ ++ "mergesort in the read path against modifications " \ ++ "done in memory") \ ++ BCH_DEBUG_PARAM(journal_seq_verify, \ ++ "Store the journal sequence number in the version " \ ++ "number of every btree key, and verify that btree " \ ++ "update ordering is preserved during recovery") \ ++ BCH_DEBUG_PARAM(inject_invalid_keys, \ ++ "Store the journal sequence number in the version " \ ++ "number of every btree key, and verify that btree " \ ++ "update ordering is preserved during recovery") \ ++ BCH_DEBUG_PARAM(test_alloc_startup, \ ++ "Force allocator startup to use the slowpath where it" \ ++ "can't find enough free buckets without invalidating" \ ++ "cached data") \ ++ BCH_DEBUG_PARAM(force_reconstruct_read, \ ++ "Force reads to use the reconstruct path, when reading" \ ++ "from erasure coded extents") \ ++ BCH_DEBUG_PARAM(test_restart_gc, \ ++ "Test restarting mark and sweep gc when bucket gens change") ++ ++#define BCH_DEBUG_PARAMS_ALL() BCH_DEBUG_PARAMS_ALWAYS() BCH_DEBUG_PARAMS_DEBUG() ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++#define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALL() ++#else ++#define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALWAYS() ++#endif ++ ++#define BCH_TIME_STATS() \ ++ x(btree_node_mem_alloc) \ ++ x(btree_node_split) \ ++ x(btree_node_sort) \ ++ x(btree_node_read) \ ++ x(btree_gc) \ ++ x(btree_lock_contended_read) \ ++ x(btree_lock_contended_intent) \ ++ x(btree_lock_contended_write) \ ++ x(data_write) \ ++ x(data_read) \ ++ x(data_promote) \ ++ x(journal_write) \ ++ x(journal_delay) \ ++ x(journal_flush_seq) \ ++ x(blocked_journal) \ ++ x(blocked_allocate) \ ++ x(blocked_allocate_open_bucket) ++ ++enum bch_time_stats { ++#define x(name) BCH_TIME_##name, ++ BCH_TIME_STATS() ++#undef x ++ BCH_TIME_STAT_NR ++}; ++ ++#include "alloc_types.h" ++#include "btree_types.h" ++#include "buckets_types.h" ++#include "clock_types.h" ++#include "ec_types.h" ++#include "journal_types.h" ++#include "keylist_types.h" ++#include "quota_types.h" ++#include "rebalance_types.h" ++#include "replicas_types.h" ++#include "super_types.h" ++ ++/* Number of nodes btree coalesce will try to coalesce at once */ ++#define GC_MERGE_NODES 4U ++ ++/* Maximum number of nodes we might need to allocate atomically: */ ++#define BTREE_RESERVE_MAX (BTREE_MAX_DEPTH + (BTREE_MAX_DEPTH - 1)) ++ ++/* Size of the freelist we allocate btree nodes from: */ ++#define BTREE_NODE_RESERVE (BTREE_RESERVE_MAX * 4) ++ ++#define BTREE_NODE_OPEN_BUCKET_RESERVE (BTREE_RESERVE_MAX * BCH_REPLICAS_MAX) ++ ++struct btree; ++ ++enum gc_phase { ++ GC_PHASE_NOT_RUNNING, ++ GC_PHASE_START, ++ GC_PHASE_SB, ++ ++ GC_PHASE_BTREE_EC, ++ GC_PHASE_BTREE_EXTENTS, ++ GC_PHASE_BTREE_INODES, ++ GC_PHASE_BTREE_DIRENTS, ++ GC_PHASE_BTREE_XATTRS, ++ GC_PHASE_BTREE_ALLOC, ++ GC_PHASE_BTREE_QUOTAS, ++ GC_PHASE_BTREE_REFLINK, ++ ++ GC_PHASE_PENDING_DELETE, ++ GC_PHASE_ALLOC, ++}; ++ ++struct gc_pos { ++ enum gc_phase phase; ++ struct bpos pos; ++ unsigned level; ++}; ++ ++struct io_count { ++ u64 sectors[2][BCH_DATA_NR]; ++}; ++ ++struct bch_dev { ++ struct kobject kobj; ++ struct percpu_ref ref; ++ struct completion ref_completion; ++ struct percpu_ref io_ref; ++ struct completion io_ref_completion; ++ ++ struct bch_fs *fs; ++ ++ u8 dev_idx; ++ /* ++ * Cached version of this device's member info from superblock ++ * Committed by bch2_write_super() -> bch_fs_mi_update() ++ */ ++ struct bch_member_cpu mi; ++ uuid_le uuid; ++ char name[BDEVNAME_SIZE]; ++ ++ struct bch_sb_handle disk_sb; ++ struct bch_sb *sb_read_scratch; ++ int sb_write_error; ++ ++ struct bch_devs_mask self; ++ ++ /* biosets used in cloned bios for writing multiple replicas */ ++ struct bio_set replica_set; ++ ++ /* ++ * Buckets: ++ * Per-bucket arrays are protected by c->mark_lock, bucket_lock and ++ * gc_lock, for device resize - holding any is sufficient for access: ++ * Or rcu_read_lock(), but only for ptr_stale(): ++ */ ++ struct bucket_array __rcu *buckets[2]; ++ unsigned long *buckets_nouse; ++ struct rw_semaphore bucket_lock; ++ ++ struct bch_dev_usage __percpu *usage[2]; ++ ++ /* Allocator: */ ++ struct task_struct __rcu *alloc_thread; ++ ++ /* ++ * free: Buckets that are ready to be used ++ * ++ * free_inc: Incoming buckets - these are buckets that currently have ++ * cached data in them, and we can't reuse them until after we write ++ * their new gen to disk. After prio_write() finishes writing the new ++ * gens/prios, they'll be moved to the free list (and possibly discarded ++ * in the process) ++ */ ++ alloc_fifo free[RESERVE_NR]; ++ alloc_fifo free_inc; ++ ++ open_bucket_idx_t open_buckets_partial[OPEN_BUCKETS_COUNT]; ++ open_bucket_idx_t open_buckets_partial_nr; ++ ++ size_t fifo_last_bucket; ++ ++ /* last calculated minimum prio */ ++ u16 max_last_bucket_io[2]; ++ ++ size_t inc_gen_needs_gc; ++ size_t inc_gen_really_needs_gc; ++ ++ /* ++ * XXX: this should be an enum for allocator state, so as to include ++ * error state ++ */ ++ enum { ++ ALLOCATOR_STOPPED, ++ ALLOCATOR_RUNNING, ++ ALLOCATOR_BLOCKED, ++ ALLOCATOR_BLOCKED_FULL, ++ } allocator_state; ++ ++ alloc_heap alloc_heap; ++ ++ atomic64_t rebalance_work; ++ ++ struct journal_device journal; ++ ++ struct work_struct io_error_work; ++ ++ /* The rest of this all shows up in sysfs */ ++ atomic64_t cur_latency[2]; ++ struct time_stats io_latency[2]; ++ ++#define CONGESTED_MAX 1024 ++ atomic_t congested; ++ u64 congested_last; ++ ++ struct io_count __percpu *io_done; ++}; ++ ++enum { ++ /* startup: */ ++ BCH_FS_ALLOC_READ_DONE, ++ BCH_FS_ALLOC_CLEAN, ++ BCH_FS_ALLOCATOR_RUNNING, ++ BCH_FS_ALLOCATOR_STOPPING, ++ BCH_FS_INITIAL_GC_DONE, ++ BCH_FS_BTREE_INTERIOR_REPLAY_DONE, ++ BCH_FS_FSCK_DONE, ++ BCH_FS_STARTED, ++ BCH_FS_RW, ++ ++ /* shutdown: */ ++ BCH_FS_STOPPING, ++ BCH_FS_EMERGENCY_RO, ++ BCH_FS_WRITE_DISABLE_COMPLETE, ++ ++ /* errors: */ ++ BCH_FS_ERROR, ++ BCH_FS_ERRORS_FIXED, ++ ++ /* misc: */ ++ BCH_FS_FIXED_GENS, ++ BCH_FS_ALLOC_WRITTEN, ++ BCH_FS_REBUILD_REPLICAS, ++ BCH_FS_HOLD_BTREE_WRITES, ++}; ++ ++struct btree_debug { ++ unsigned id; ++ struct dentry *btree; ++ struct dentry *btree_format; ++ struct dentry *failed; ++}; ++ ++struct bch_fs_pcpu { ++ u64 sectors_available; ++}; ++ ++struct journal_seq_blacklist_table { ++ size_t nr; ++ struct journal_seq_blacklist_table_entry { ++ u64 start; ++ u64 end; ++ bool dirty; ++ } entries[0]; ++}; ++ ++struct journal_keys { ++ struct journal_key { ++ enum btree_id btree_id:8; ++ unsigned level:8; ++ struct bkey_i *k; ++ u32 journal_seq; ++ u32 journal_offset; ++ } *d; ++ size_t nr; ++ u64 journal_seq_base; ++}; ++ ++struct bch_fs { ++ struct closure cl; ++ ++ struct list_head list; ++ struct kobject kobj; ++ struct kobject internal; ++ struct kobject opts_dir; ++ struct kobject time_stats; ++ unsigned long flags; ++ ++ int minor; ++ struct device *chardev; ++ struct super_block *vfs_sb; ++ char name[40]; ++ ++ /* ro/rw, add/remove/resize devices: */ ++ struct rw_semaphore state_lock; ++ ++ /* Counts outstanding writes, for clean transition to read-only */ ++ struct percpu_ref writes; ++ struct work_struct read_only_work; ++ ++ struct bch_dev __rcu *devs[BCH_SB_MEMBERS_MAX]; ++ ++ struct bch_replicas_cpu replicas; ++ struct bch_replicas_cpu replicas_gc; ++ struct mutex replicas_gc_lock; ++ ++ struct journal_entry_res replicas_journal_res; ++ ++ struct bch_disk_groups_cpu __rcu *disk_groups; ++ ++ struct bch_opts opts; ++ ++ /* Updated by bch2_sb_update():*/ ++ struct { ++ uuid_le uuid; ++ uuid_le user_uuid; ++ ++ u16 version; ++ u16 encoded_extent_max; ++ ++ u8 nr_devices; ++ u8 clean; ++ ++ u8 encryption_type; ++ ++ u64 time_base_lo; ++ u32 time_base_hi; ++ u32 time_precision; ++ u64 features; ++ u64 compat; ++ } sb; ++ ++ struct bch_sb_handle disk_sb; ++ ++ unsigned short block_bits; /* ilog2(block_size) */ ++ ++ u16 btree_foreground_merge_threshold; ++ ++ struct closure sb_write; ++ struct mutex sb_lock; ++ ++ /* BTREE CACHE */ ++ struct bio_set btree_bio; ++ ++ struct btree_root btree_roots[BTREE_ID_NR]; ++ struct mutex btree_root_lock; ++ ++ struct btree_cache btree_cache; ++ ++ /* ++ * Cache of allocated btree nodes - if we allocate a btree node and ++ * don't use it, if we free it that space can't be reused until going ++ * _all_ the way through the allocator (which exposes us to a livelock ++ * when allocating btree reserves fail halfway through) - instead, we ++ * can stick them here: ++ */ ++ struct btree_alloc btree_reserve_cache[BTREE_NODE_RESERVE * 2]; ++ unsigned btree_reserve_cache_nr; ++ struct mutex btree_reserve_cache_lock; ++ ++ mempool_t btree_interior_update_pool; ++ struct list_head btree_interior_update_list; ++ struct list_head btree_interior_updates_unwritten; ++ struct mutex btree_interior_update_lock; ++ struct closure_waitlist btree_interior_update_wait; ++ ++ struct workqueue_struct *btree_interior_update_worker; ++ struct work_struct btree_interior_update_work; ++ ++ /* btree_iter.c: */ ++ struct mutex btree_trans_lock; ++ struct list_head btree_trans_list; ++ mempool_t btree_iters_pool; ++ ++ struct btree_key_cache btree_key_cache; ++ ++ struct workqueue_struct *wq; ++ /* copygc needs its own workqueue for index updates.. */ ++ struct workqueue_struct *copygc_wq; ++ struct workqueue_struct *journal_reclaim_wq; ++ ++ /* ALLOCATION */ ++ struct delayed_work pd_controllers_update; ++ unsigned pd_controllers_update_seconds; ++ ++ struct bch_devs_mask rw_devs[BCH_DATA_NR]; ++ ++ u64 capacity; /* sectors */ ++ ++ /* ++ * When capacity _decreases_ (due to a disk being removed), we ++ * increment capacity_gen - this invalidates outstanding reservations ++ * and forces them to be revalidated ++ */ ++ u32 capacity_gen; ++ unsigned bucket_size_max; ++ ++ atomic64_t sectors_available; ++ ++ struct bch_fs_pcpu __percpu *pcpu; ++ ++ struct percpu_rw_semaphore mark_lock; ++ ++ seqcount_t usage_lock; ++ struct bch_fs_usage *usage_base; ++ struct bch_fs_usage __percpu *usage[2]; ++ struct bch_fs_usage __percpu *usage_gc; ++ ++ /* single element mempool: */ ++ struct mutex usage_scratch_lock; ++ struct bch_fs_usage *usage_scratch; ++ ++ /* ++ * When we invalidate buckets, we use both the priority and the amount ++ * of good data to determine which buckets to reuse first - to weight ++ * those together consistently we keep track of the smallest nonzero ++ * priority of any bucket. ++ */ ++ struct bucket_clock bucket_clock[2]; ++ ++ struct io_clock io_clock[2]; ++ ++ /* JOURNAL SEQ BLACKLIST */ ++ struct journal_seq_blacklist_table * ++ journal_seq_blacklist_table; ++ struct work_struct journal_seq_blacklist_gc_work; ++ ++ /* ALLOCATOR */ ++ spinlock_t freelist_lock; ++ struct closure_waitlist freelist_wait; ++ u64 blocked_allocate; ++ u64 blocked_allocate_open_bucket; ++ open_bucket_idx_t open_buckets_freelist; ++ open_bucket_idx_t open_buckets_nr_free; ++ struct closure_waitlist open_buckets_wait; ++ struct open_bucket open_buckets[OPEN_BUCKETS_COUNT]; ++ ++ struct write_point btree_write_point; ++ struct write_point rebalance_write_point; ++ ++ struct write_point write_points[WRITE_POINT_MAX]; ++ struct hlist_head write_points_hash[WRITE_POINT_HASH_NR]; ++ struct mutex write_points_hash_lock; ++ unsigned write_points_nr; ++ ++ /* GARBAGE COLLECTION */ ++ struct task_struct *gc_thread; ++ atomic_t kick_gc; ++ unsigned long gc_count; ++ ++ /* ++ * Tracks GC's progress - everything in the range [ZERO_KEY..gc_cur_pos] ++ * has been marked by GC. ++ * ++ * gc_cur_phase is a superset of btree_ids (BTREE_ID_EXTENTS etc.) ++ * ++ * Protected by gc_pos_lock. Only written to by GC thread, so GC thread ++ * can read without a lock. ++ */ ++ seqcount_t gc_pos_lock; ++ struct gc_pos gc_pos; ++ ++ /* ++ * The allocation code needs gc_mark in struct bucket to be correct, but ++ * it's not while a gc is in progress. ++ */ ++ struct rw_semaphore gc_lock; ++ ++ /* IO PATH */ ++ struct semaphore io_in_flight; ++ struct bio_set bio_read; ++ struct bio_set bio_read_split; ++ struct bio_set bio_write; ++ struct mutex bio_bounce_pages_lock; ++ mempool_t bio_bounce_pages; ++ struct rhashtable promote_table; ++ ++ mempool_t compression_bounce[2]; ++ mempool_t compress_workspace[BCH_COMPRESSION_TYPE_NR]; ++ mempool_t decompress_workspace; ++ ZSTD_parameters zstd_params; ++ ++ struct crypto_shash *sha256; ++ struct crypto_sync_skcipher *chacha20; ++ struct crypto_shash *poly1305; ++ ++ atomic64_t key_version; ++ ++ mempool_t large_bkey_pool; ++ ++ /* REBALANCE */ ++ struct bch_fs_rebalance rebalance; ++ ++ /* COPYGC */ ++ struct task_struct *copygc_thread; ++ copygc_heap copygc_heap; ++ struct bch_pd_controller copygc_pd; ++ struct write_point copygc_write_point; ++ u64 copygc_threshold; ++ ++ /* STRIPES: */ ++ GENRADIX(struct stripe) stripes[2]; ++ ++ ec_stripes_heap ec_stripes_heap; ++ spinlock_t ec_stripes_heap_lock; ++ ++ /* ERASURE CODING */ ++ struct list_head ec_stripe_head_list; ++ struct mutex ec_stripe_head_lock; ++ ++ struct list_head ec_stripe_new_list; ++ struct mutex ec_stripe_new_lock; ++ ++ struct work_struct ec_stripe_create_work; ++ u64 ec_stripe_hint; ++ ++ struct bio_set ec_bioset; ++ ++ struct work_struct ec_stripe_delete_work; ++ struct llist_head ec_stripe_delete_list; ++ ++ /* REFLINK */ ++ u64 reflink_hint; ++ ++ /* VFS IO PATH - fs-io.c */ ++ struct bio_set writepage_bioset; ++ struct bio_set dio_write_bioset; ++ struct bio_set dio_read_bioset; ++ ++ struct bio_list btree_write_error_list; ++ struct work_struct btree_write_error_work; ++ spinlock_t btree_write_error_lock; ++ ++ /* ERRORS */ ++ struct list_head fsck_errors; ++ struct mutex fsck_error_lock; ++ bool fsck_alloc_err; ++ ++ /* QUOTAS */ ++ struct bch_memquota_type quotas[QTYP_NR]; ++ ++ /* DEBUG JUNK */ ++ struct dentry *debug; ++ struct btree_debug btree_debug[BTREE_ID_NR]; ++#ifdef CONFIG_BCACHEFS_DEBUG ++ struct btree *verify_data; ++ struct btree_node *verify_ondisk; ++ struct mutex verify_lock; ++#endif ++ ++ u64 unused_inode_hint; ++ ++ /* ++ * A btree node on disk could have too many bsets for an iterator to fit ++ * on the stack - have to dynamically allocate them ++ */ ++ mempool_t fill_iter; ++ ++ mempool_t btree_bounce_pool; ++ ++ struct journal journal; ++ struct list_head journal_entries; ++ struct journal_keys journal_keys; ++ ++ u64 last_bucket_seq_cleanup; ++ ++ /* The rest of this all shows up in sysfs */ ++ atomic_long_t read_realloc_races; ++ atomic_long_t extent_migrate_done; ++ atomic_long_t extent_migrate_raced; ++ ++ unsigned btree_gc_periodic:1; ++ unsigned copy_gc_enabled:1; ++ bool promote_whole_extents; ++ ++#define BCH_DEBUG_PARAM(name, description) bool name; ++ BCH_DEBUG_PARAMS_ALL() ++#undef BCH_DEBUG_PARAM ++ ++ struct time_stats times[BCH_TIME_STAT_NR]; ++}; ++ ++static inline void bch2_set_ra_pages(struct bch_fs *c, unsigned ra_pages) ++{ ++#ifndef NO_BCACHEFS_FS ++ if (c->vfs_sb) ++ c->vfs_sb->s_bdi->ra_pages = ra_pages; ++#endif ++} ++ ++static inline unsigned bucket_bytes(const struct bch_dev *ca) ++{ ++ return ca->mi.bucket_size << 9; ++} ++ ++static inline unsigned block_bytes(const struct bch_fs *c) ++{ ++ return c->opts.block_size << 9; ++} ++ ++static inline struct timespec64 bch2_time_to_timespec(struct bch_fs *c, u64 time) ++{ ++ return ns_to_timespec64(time * c->sb.time_precision + c->sb.time_base_lo); ++} ++ ++static inline s64 timespec_to_bch2_time(struct bch_fs *c, struct timespec64 ts) ++{ ++ s64 ns = timespec64_to_ns(&ts) - c->sb.time_base_lo; ++ ++ if (c->sb.time_precision == 1) ++ return ns; ++ ++ return div_s64(ns, c->sb.time_precision); ++} ++ ++static inline s64 bch2_current_time(struct bch_fs *c) ++{ ++ struct timespec64 now; ++ ++ ktime_get_coarse_real_ts64(&now); ++ return timespec_to_bch2_time(c, now); ++} ++ ++static inline bool bch2_dev_exists2(const struct bch_fs *c, unsigned dev) ++{ ++ return dev < c->sb.nr_devices && c->devs[dev]; ++} ++ ++#endif /* _BCACHEFS_H */ +diff --git a/fs/bcachefs/bcachefs_format.h b/fs/bcachefs/bcachefs_format.h +new file mode 100644 +index 000000000000..d5a2230e403c +--- /dev/null ++++ b/fs/bcachefs/bcachefs_format.h +@@ -0,0 +1,1671 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_FORMAT_H ++#define _BCACHEFS_FORMAT_H ++ ++/* ++ * bcachefs on disk data structures ++ * ++ * OVERVIEW: ++ * ++ * There are three main types of on disk data structures in bcachefs (this is ++ * reduced from 5 in bcache) ++ * ++ * - superblock ++ * - journal ++ * - btree ++ * ++ * The btree is the primary structure; most metadata exists as keys in the ++ * various btrees. There are only a small number of btrees, they're not ++ * sharded - we have one btree for extents, another for inodes, et cetera. ++ * ++ * SUPERBLOCK: ++ * ++ * The superblock contains the location of the journal, the list of devices in ++ * the filesystem, and in general any metadata we need in order to decide ++ * whether we can start a filesystem or prior to reading the journal/btree ++ * roots. ++ * ++ * The superblock is extensible, and most of the contents of the superblock are ++ * in variable length, type tagged fields; see struct bch_sb_field. ++ * ++ * Backup superblocks do not reside in a fixed location; also, superblocks do ++ * not have a fixed size. To locate backup superblocks we have struct ++ * bch_sb_layout; we store a copy of this inside every superblock, and also ++ * before the first superblock. ++ * ++ * JOURNAL: ++ * ++ * The journal primarily records btree updates in the order they occurred; ++ * journal replay consists of just iterating over all the keys in the open ++ * journal entries and re-inserting them into the btrees. ++ * ++ * The journal also contains entry types for the btree roots, and blacklisted ++ * journal sequence numbers (see journal_seq_blacklist.c). ++ * ++ * BTREE: ++ * ++ * bcachefs btrees are copy on write b+ trees, where nodes are big (typically ++ * 128k-256k) and log structured. We use struct btree_node for writing the first ++ * entry in a given node (offset 0), and struct btree_node_entry for all ++ * subsequent writes. ++ * ++ * After the header, btree node entries contain a list of keys in sorted order. ++ * Values are stored inline with the keys; since values are variable length (and ++ * keys effectively are variable length too, due to packing) we can't do random ++ * access without building up additional in memory tables in the btree node read ++ * path. ++ * ++ * BTREE KEYS (struct bkey): ++ * ++ * The various btrees share a common format for the key - so as to avoid ++ * switching in fastpath lookup/comparison code - but define their own ++ * structures for the key values. ++ * ++ * The size of a key/value pair is stored as a u8 in units of u64s, so the max ++ * size is just under 2k. The common part also contains a type tag for the ++ * value, and a format field indicating whether the key is packed or not (and ++ * also meant to allow adding new key fields in the future, if desired). ++ * ++ * bkeys, when stored within a btree node, may also be packed. In that case, the ++ * bkey_format in that node is used to unpack it. Packed bkeys mean that we can ++ * be generous with field sizes in the common part of the key format (64 bit ++ * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost. ++ */ ++ ++#include ++#include ++#include ++#include ++ ++#define LE_BITMASK(_bits, name, type, field, offset, end) \ ++static const unsigned name##_OFFSET = offset; \ ++static const unsigned name##_BITS = (end - offset); \ ++static const __u##_bits name##_MAX = (1ULL << (end - offset)) - 1; \ ++ \ ++static inline __u64 name(const type *k) \ ++{ \ ++ return (__le##_bits##_to_cpu(k->field) >> offset) & \ ++ ~(~0ULL << (end - offset)); \ ++} \ ++ \ ++static inline void SET_##name(type *k, __u64 v) \ ++{ \ ++ __u##_bits new = __le##_bits##_to_cpu(k->field); \ ++ \ ++ new &= ~(~(~0ULL << (end - offset)) << offset); \ ++ new |= (v & ~(~0ULL << (end - offset))) << offset; \ ++ k->field = __cpu_to_le##_bits(new); \ ++} ++ ++#define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e) ++#define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e) ++#define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e) ++ ++struct bkey_format { ++ __u8 key_u64s; ++ __u8 nr_fields; ++ /* One unused slot for now: */ ++ __u8 bits_per_field[6]; ++ __le64 field_offset[6]; ++}; ++ ++/* Btree keys - all units are in sectors */ ++ ++struct bpos { ++ /* ++ * Word order matches machine byte order - btree code treats a bpos as a ++ * single large integer, for search/comparison purposes ++ * ++ * Note that wherever a bpos is embedded in another on disk data ++ * structure, it has to be byte swabbed when reading in metadata that ++ * wasn't written in native endian order: ++ */ ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ++ __u32 snapshot; ++ __u64 offset; ++ __u64 inode; ++#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ++ __u64 inode; ++ __u64 offset; /* Points to end of extent - sectors */ ++ __u32 snapshot; ++#else ++#error edit for your odd byteorder. ++#endif ++} __attribute__((packed, aligned(4))); ++ ++#define KEY_INODE_MAX ((__u64)~0ULL) ++#define KEY_OFFSET_MAX ((__u64)~0ULL) ++#define KEY_SNAPSHOT_MAX ((__u32)~0U) ++#define KEY_SIZE_MAX ((__u32)~0U) ++ ++static inline struct bpos POS(__u64 inode, __u64 offset) ++{ ++ struct bpos ret; ++ ++ ret.inode = inode; ++ ret.offset = offset; ++ ret.snapshot = 0; ++ ++ return ret; ++} ++ ++#define POS_MIN POS(0, 0) ++#define POS_MAX POS(KEY_INODE_MAX, KEY_OFFSET_MAX) ++ ++/* Empty placeholder struct, for container_of() */ ++struct bch_val { ++ __u64 __nothing[0]; ++}; ++ ++struct bversion { ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ++ __u64 lo; ++ __u32 hi; ++#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ++ __u32 hi; ++ __u64 lo; ++#endif ++} __attribute__((packed, aligned(4))); ++ ++struct bkey { ++ /* Size of combined key and value, in u64s */ ++ __u8 u64s; ++ ++ /* Format of key (0 for format local to btree node) */ ++#if defined(__LITTLE_ENDIAN_BITFIELD) ++ __u8 format:7, ++ needs_whiteout:1; ++#elif defined (__BIG_ENDIAN_BITFIELD) ++ __u8 needs_whiteout:1, ++ format:7; ++#else ++#error edit for your odd byteorder. ++#endif ++ ++ /* Type of the value */ ++ __u8 type; ++ ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ++ __u8 pad[1]; ++ ++ struct bversion version; ++ __u32 size; /* extent size, in sectors */ ++ struct bpos p; ++#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ++ struct bpos p; ++ __u32 size; /* extent size, in sectors */ ++ struct bversion version; ++ ++ __u8 pad[1]; ++#endif ++} __attribute__((packed, aligned(8))); ++ ++struct bkey_packed { ++ __u64 _data[0]; ++ ++ /* Size of combined key and value, in u64s */ ++ __u8 u64s; ++ ++ /* Format of key (0 for format local to btree node) */ ++ ++ /* ++ * XXX: next incompat on disk format change, switch format and ++ * needs_whiteout - bkey_packed() will be cheaper if format is the high ++ * bits of the bitfield ++ */ ++#if defined(__LITTLE_ENDIAN_BITFIELD) ++ __u8 format:7, ++ needs_whiteout:1; ++#elif defined (__BIG_ENDIAN_BITFIELD) ++ __u8 needs_whiteout:1, ++ format:7; ++#endif ++ ++ /* Type of the value */ ++ __u8 type; ++ __u8 key_start[0]; ++ ++ /* ++ * We copy bkeys with struct assignment in various places, and while ++ * that shouldn't be done with packed bkeys we can't disallow it in C, ++ * and it's legal to cast a bkey to a bkey_packed - so padding it out ++ * to the same size as struct bkey should hopefully be safest. ++ */ ++ __u8 pad[sizeof(struct bkey) - 3]; ++} __attribute__((packed, aligned(8))); ++ ++#define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64)) ++#define BKEY_U64s_MAX U8_MAX ++#define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s) ++ ++#define KEY_PACKED_BITS_START 24 ++ ++#define KEY_FORMAT_LOCAL_BTREE 0 ++#define KEY_FORMAT_CURRENT 1 ++ ++enum bch_bkey_fields { ++ BKEY_FIELD_INODE, ++ BKEY_FIELD_OFFSET, ++ BKEY_FIELD_SNAPSHOT, ++ BKEY_FIELD_SIZE, ++ BKEY_FIELD_VERSION_HI, ++ BKEY_FIELD_VERSION_LO, ++ BKEY_NR_FIELDS, ++}; ++ ++#define bkey_format_field(name, field) \ ++ [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8) ++ ++#define BKEY_FORMAT_CURRENT \ ++((struct bkey_format) { \ ++ .key_u64s = BKEY_U64s, \ ++ .nr_fields = BKEY_NR_FIELDS, \ ++ .bits_per_field = { \ ++ bkey_format_field(INODE, p.inode), \ ++ bkey_format_field(OFFSET, p.offset), \ ++ bkey_format_field(SNAPSHOT, p.snapshot), \ ++ bkey_format_field(SIZE, size), \ ++ bkey_format_field(VERSION_HI, version.hi), \ ++ bkey_format_field(VERSION_LO, version.lo), \ ++ }, \ ++}) ++ ++/* bkey with inline value */ ++struct bkey_i { ++ __u64 _data[0]; ++ ++ union { ++ struct { ++ /* Size of combined key and value, in u64s */ ++ __u8 u64s; ++ }; ++ struct { ++ struct bkey k; ++ struct bch_val v; ++ }; ++ }; ++}; ++ ++#define KEY(_inode, _offset, _size) \ ++((struct bkey) { \ ++ .u64s = BKEY_U64s, \ ++ .format = KEY_FORMAT_CURRENT, \ ++ .p = POS(_inode, _offset), \ ++ .size = _size, \ ++}) ++ ++static inline void bkey_init(struct bkey *k) ++{ ++ *k = KEY(0, 0, 0); ++} ++ ++#define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64)) ++ ++#define __BKEY_PADDED(key, pad) \ ++ struct { struct bkey_i key; __u64 key ## _pad[pad]; } ++ ++/* ++ * - DELETED keys are used internally to mark keys that should be ignored but ++ * override keys in composition order. Their version number is ignored. ++ * ++ * - DISCARDED keys indicate that the data is all 0s because it has been ++ * discarded. DISCARDs may have a version; if the version is nonzero the key ++ * will be persistent, otherwise the key will be dropped whenever the btree ++ * node is rewritten (like DELETED keys). ++ * ++ * - ERROR: any read of the data returns a read error, as the data was lost due ++ * to a failing device. Like DISCARDED keys, they can be removed (overridden) ++ * by new writes or cluster-wide GC. Node repair can also overwrite them with ++ * the same or a more recent version number, but not with an older version ++ * number. ++ * ++ * - WHITEOUT: for hash table btrees ++*/ ++#define BCH_BKEY_TYPES() \ ++ x(deleted, 0) \ ++ x(discard, 1) \ ++ x(error, 2) \ ++ x(cookie, 3) \ ++ x(whiteout, 4) \ ++ x(btree_ptr, 5) \ ++ x(extent, 6) \ ++ x(reservation, 7) \ ++ x(inode, 8) \ ++ x(inode_generation, 9) \ ++ x(dirent, 10) \ ++ x(xattr, 11) \ ++ x(alloc, 12) \ ++ x(quota, 13) \ ++ x(stripe, 14) \ ++ x(reflink_p, 15) \ ++ x(reflink_v, 16) \ ++ x(inline_data, 17) \ ++ x(btree_ptr_v2, 18) ++ ++enum bch_bkey_type { ++#define x(name, nr) KEY_TYPE_##name = nr, ++ BCH_BKEY_TYPES() ++#undef x ++ KEY_TYPE_MAX, ++}; ++ ++struct bch_cookie { ++ struct bch_val v; ++ __le64 cookie; ++}; ++ ++/* Extents */ ++ ++/* ++ * In extent bkeys, the value is a list of pointers (bch_extent_ptr), optionally ++ * preceded by checksum/compression information (bch_extent_crc32 or ++ * bch_extent_crc64). ++ * ++ * One major determining factor in the format of extents is how we handle and ++ * represent extents that have been partially overwritten and thus trimmed: ++ * ++ * If an extent is not checksummed or compressed, when the extent is trimmed we ++ * don't have to remember the extent we originally allocated and wrote: we can ++ * merely adjust ptr->offset to point to the start of the data that is currently ++ * live. The size field in struct bkey records the current (live) size of the ++ * extent, and is also used to mean "size of region on disk that we point to" in ++ * this case. ++ * ++ * Thus an extent that is not checksummed or compressed will consist only of a ++ * list of bch_extent_ptrs, with none of the fields in ++ * bch_extent_crc32/bch_extent_crc64. ++ * ++ * When an extent is checksummed or compressed, it's not possible to read only ++ * the data that is currently live: we have to read the entire extent that was ++ * originally written, and then return only the part of the extent that is ++ * currently live. ++ * ++ * Thus, in addition to the current size of the extent in struct bkey, we need ++ * to store the size of the originally allocated space - this is the ++ * compressed_size and uncompressed_size fields in bch_extent_crc32/64. Also, ++ * when the extent is trimmed, instead of modifying the offset field of the ++ * pointer, we keep a second smaller offset field - "offset into the original ++ * extent of the currently live region". ++ * ++ * The other major determining factor is replication and data migration: ++ * ++ * Each pointer may have its own bch_extent_crc32/64. When doing a replicated ++ * write, we will initially write all the replicas in the same format, with the ++ * same checksum type and compression format - however, when copygc runs later (or ++ * tiering/cache promotion, anything that moves data), it is not in general ++ * going to rewrite all the pointers at once - one of the replicas may be in a ++ * bucket on one device that has very little fragmentation while another lives ++ * in a bucket that has become heavily fragmented, and thus is being rewritten ++ * sooner than the rest. ++ * ++ * Thus it will only move a subset of the pointers (or in the case of ++ * tiering/cache promotion perhaps add a single pointer without dropping any ++ * current pointers), and if the extent has been partially overwritten it must ++ * write only the currently live portion (or copygc would not be able to reduce ++ * fragmentation!) - which necessitates a different bch_extent_crc format for ++ * the new pointer. ++ * ++ * But in the interests of space efficiency, we don't want to store one ++ * bch_extent_crc for each pointer if we don't have to. ++ * ++ * Thus, a bch_extent consists of bch_extent_crc32s, bch_extent_crc64s, and ++ * bch_extent_ptrs appended arbitrarily one after the other. We determine the ++ * type of a given entry with a scheme similar to utf8 (except we're encoding a ++ * type, not a size), encoding the type in the position of the first set bit: ++ * ++ * bch_extent_crc32 - 0b1 ++ * bch_extent_ptr - 0b10 ++ * bch_extent_crc64 - 0b100 ++ * ++ * We do it this way because bch_extent_crc32 is _very_ constrained on bits (and ++ * bch_extent_crc64 is the least constrained). ++ * ++ * Then, each bch_extent_crc32/64 applies to the pointers that follow after it, ++ * until the next bch_extent_crc32/64. ++ * ++ * If there are no bch_extent_crcs preceding a bch_extent_ptr, then that pointer ++ * is neither checksummed nor compressed. ++ */ ++ ++/* 128 bits, sufficient for cryptographic MACs: */ ++struct bch_csum { ++ __le64 lo; ++ __le64 hi; ++} __attribute__((packed, aligned(8))); ++ ++#define BCH_EXTENT_ENTRY_TYPES() \ ++ x(ptr, 0) \ ++ x(crc32, 1) \ ++ x(crc64, 2) \ ++ x(crc128, 3) \ ++ x(stripe_ptr, 4) ++#define BCH_EXTENT_ENTRY_MAX 5 ++ ++enum bch_extent_entry_type { ++#define x(f, n) BCH_EXTENT_ENTRY_##f = n, ++ BCH_EXTENT_ENTRY_TYPES() ++#undef x ++}; ++ ++/* Compressed/uncompressed size are stored biased by 1: */ ++struct bch_extent_crc32 { ++#if defined(__LITTLE_ENDIAN_BITFIELD) ++ __u32 type:2, ++ _compressed_size:7, ++ _uncompressed_size:7, ++ offset:7, ++ _unused:1, ++ csum_type:4, ++ compression_type:4; ++ __u32 csum; ++#elif defined (__BIG_ENDIAN_BITFIELD) ++ __u32 csum; ++ __u32 compression_type:4, ++ csum_type:4, ++ _unused:1, ++ offset:7, ++ _uncompressed_size:7, ++ _compressed_size:7, ++ type:2; ++#endif ++} __attribute__((packed, aligned(8))); ++ ++#define CRC32_SIZE_MAX (1U << 7) ++#define CRC32_NONCE_MAX 0 ++ ++struct bch_extent_crc64 { ++#if defined(__LITTLE_ENDIAN_BITFIELD) ++ __u64 type:3, ++ _compressed_size:9, ++ _uncompressed_size:9, ++ offset:9, ++ nonce:10, ++ csum_type:4, ++ compression_type:4, ++ csum_hi:16; ++#elif defined (__BIG_ENDIAN_BITFIELD) ++ __u64 csum_hi:16, ++ compression_type:4, ++ csum_type:4, ++ nonce:10, ++ offset:9, ++ _uncompressed_size:9, ++ _compressed_size:9, ++ type:3; ++#endif ++ __u64 csum_lo; ++} __attribute__((packed, aligned(8))); ++ ++#define CRC64_SIZE_MAX (1U << 9) ++#define CRC64_NONCE_MAX ((1U << 10) - 1) ++ ++struct bch_extent_crc128 { ++#if defined(__LITTLE_ENDIAN_BITFIELD) ++ __u64 type:4, ++ _compressed_size:13, ++ _uncompressed_size:13, ++ offset:13, ++ nonce:13, ++ csum_type:4, ++ compression_type:4; ++#elif defined (__BIG_ENDIAN_BITFIELD) ++ __u64 compression_type:4, ++ csum_type:4, ++ nonce:13, ++ offset:13, ++ _uncompressed_size:13, ++ _compressed_size:13, ++ type:4; ++#endif ++ struct bch_csum csum; ++} __attribute__((packed, aligned(8))); ++ ++#define CRC128_SIZE_MAX (1U << 13) ++#define CRC128_NONCE_MAX ((1U << 13) - 1) ++ ++/* ++ * @reservation - pointer hasn't been written to, just reserved ++ */ ++struct bch_extent_ptr { ++#if defined(__LITTLE_ENDIAN_BITFIELD) ++ __u64 type:1, ++ cached:1, ++ unused:1, ++ reservation:1, ++ offset:44, /* 8 petabytes */ ++ dev:8, ++ gen:8; ++#elif defined (__BIG_ENDIAN_BITFIELD) ++ __u64 gen:8, ++ dev:8, ++ offset:44, ++ reservation:1, ++ unused:1, ++ cached:1, ++ type:1; ++#endif ++} __attribute__((packed, aligned(8))); ++ ++struct bch_extent_stripe_ptr { ++#if defined(__LITTLE_ENDIAN_BITFIELD) ++ __u64 type:5, ++ block:8, ++ idx:51; ++#elif defined (__BIG_ENDIAN_BITFIELD) ++ __u64 idx:51, ++ block:8, ++ type:5; ++#endif ++}; ++ ++struct bch_extent_reservation { ++#if defined(__LITTLE_ENDIAN_BITFIELD) ++ __u64 type:6, ++ unused:22, ++ replicas:4, ++ generation:32; ++#elif defined (__BIG_ENDIAN_BITFIELD) ++ __u64 generation:32, ++ replicas:4, ++ unused:22, ++ type:6; ++#endif ++}; ++ ++union bch_extent_entry { ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ || __BITS_PER_LONG == 64 ++ unsigned long type; ++#elif __BITS_PER_LONG == 32 ++ struct { ++ unsigned long pad; ++ unsigned long type; ++ }; ++#else ++#error edit for your odd byteorder. ++#endif ++ ++#define x(f, n) struct bch_extent_##f f; ++ BCH_EXTENT_ENTRY_TYPES() ++#undef x ++}; ++ ++struct bch_btree_ptr { ++ struct bch_val v; ++ ++ struct bch_extent_ptr start[0]; ++ __u64 _data[0]; ++} __attribute__((packed, aligned(8))); ++ ++struct bch_btree_ptr_v2 { ++ struct bch_val v; ++ ++ __u64 mem_ptr; ++ __le64 seq; ++ __le16 sectors_written; ++ /* In case we ever decide to do variable size btree nodes: */ ++ __le16 sectors; ++ struct bpos min_key; ++ struct bch_extent_ptr start[0]; ++ __u64 _data[0]; ++} __attribute__((packed, aligned(8))); ++ ++struct bch_extent { ++ struct bch_val v; ++ ++ union bch_extent_entry start[0]; ++ __u64 _data[0]; ++} __attribute__((packed, aligned(8))); ++ ++struct bch_reservation { ++ struct bch_val v; ++ ++ __le32 generation; ++ __u8 nr_replicas; ++ __u8 pad[3]; ++} __attribute__((packed, aligned(8))); ++ ++/* Maximum size (in u64s) a single pointer could be: */ ++#define BKEY_EXTENT_PTR_U64s_MAX\ ++ ((sizeof(struct bch_extent_crc128) + \ ++ sizeof(struct bch_extent_ptr)) / sizeof(u64)) ++ ++/* Maximum possible size of an entire extent value: */ ++#define BKEY_EXTENT_VAL_U64s_MAX \ ++ (1 + BKEY_EXTENT_PTR_U64s_MAX * (BCH_REPLICAS_MAX + 1)) ++ ++#define BKEY_PADDED(key) __BKEY_PADDED(key, BKEY_EXTENT_VAL_U64s_MAX) ++ ++/* * Maximum possible size of an entire extent, key + value: */ ++#define BKEY_EXTENT_U64s_MAX (BKEY_U64s + BKEY_EXTENT_VAL_U64s_MAX) ++ ++/* Btree pointers don't carry around checksums: */ ++#define BKEY_BTREE_PTR_VAL_U64s_MAX \ ++ ((sizeof(struct bch_btree_ptr_v2) + \ ++ sizeof(struct bch_extent_ptr) * BCH_REPLICAS_MAX) / sizeof(u64)) ++#define BKEY_BTREE_PTR_U64s_MAX \ ++ (BKEY_U64s + BKEY_BTREE_PTR_VAL_U64s_MAX) ++ ++/* Inodes */ ++ ++#define BLOCKDEV_INODE_MAX 4096 ++ ++#define BCACHEFS_ROOT_INO 4096 ++ ++struct bch_inode { ++ struct bch_val v; ++ ++ __le64 bi_hash_seed; ++ __le32 bi_flags; ++ __le16 bi_mode; ++ __u8 fields[0]; ++} __attribute__((packed, aligned(8))); ++ ++struct bch_inode_generation { ++ struct bch_val v; ++ ++ __le32 bi_generation; ++ __le32 pad; ++} __attribute__((packed, aligned(8))); ++ ++#define BCH_INODE_FIELDS() \ ++ x(bi_atime, 64) \ ++ x(bi_ctime, 64) \ ++ x(bi_mtime, 64) \ ++ x(bi_otime, 64) \ ++ x(bi_size, 64) \ ++ x(bi_sectors, 64) \ ++ x(bi_uid, 32) \ ++ x(bi_gid, 32) \ ++ x(bi_nlink, 32) \ ++ x(bi_generation, 32) \ ++ x(bi_dev, 32) \ ++ x(bi_data_checksum, 8) \ ++ x(bi_compression, 8) \ ++ x(bi_project, 32) \ ++ x(bi_background_compression, 8) \ ++ x(bi_data_replicas, 8) \ ++ x(bi_promote_target, 16) \ ++ x(bi_foreground_target, 16) \ ++ x(bi_background_target, 16) \ ++ x(bi_erasure_code, 16) \ ++ x(bi_fields_set, 16) ++ ++/* subset of BCH_INODE_FIELDS */ ++#define BCH_INODE_OPTS() \ ++ x(data_checksum, 8) \ ++ x(compression, 8) \ ++ x(project, 32) \ ++ x(background_compression, 8) \ ++ x(data_replicas, 8) \ ++ x(promote_target, 16) \ ++ x(foreground_target, 16) \ ++ x(background_target, 16) \ ++ x(erasure_code, 16) ++ ++enum inode_opt_id { ++#define x(name, ...) \ ++ Inode_opt_##name, ++ BCH_INODE_OPTS() ++#undef x ++ Inode_opt_nr, ++}; ++ ++enum { ++ /* ++ * User flags (get/settable with FS_IOC_*FLAGS, correspond to FS_*_FL ++ * flags) ++ */ ++ __BCH_INODE_SYNC = 0, ++ __BCH_INODE_IMMUTABLE = 1, ++ __BCH_INODE_APPEND = 2, ++ __BCH_INODE_NODUMP = 3, ++ __BCH_INODE_NOATIME = 4, ++ ++ __BCH_INODE_I_SIZE_DIRTY= 5, ++ __BCH_INODE_I_SECTORS_DIRTY= 6, ++ __BCH_INODE_UNLINKED = 7, ++ ++ /* bits 20+ reserved for packed fields below: */ ++}; ++ ++#define BCH_INODE_SYNC (1 << __BCH_INODE_SYNC) ++#define BCH_INODE_IMMUTABLE (1 << __BCH_INODE_IMMUTABLE) ++#define BCH_INODE_APPEND (1 << __BCH_INODE_APPEND) ++#define BCH_INODE_NODUMP (1 << __BCH_INODE_NODUMP) ++#define BCH_INODE_NOATIME (1 << __BCH_INODE_NOATIME) ++#define BCH_INODE_I_SIZE_DIRTY (1 << __BCH_INODE_I_SIZE_DIRTY) ++#define BCH_INODE_I_SECTORS_DIRTY (1 << __BCH_INODE_I_SECTORS_DIRTY) ++#define BCH_INODE_UNLINKED (1 << __BCH_INODE_UNLINKED) ++ ++LE32_BITMASK(INODE_STR_HASH, struct bch_inode, bi_flags, 20, 24); ++LE32_BITMASK(INODE_NR_FIELDS, struct bch_inode, bi_flags, 24, 32); ++ ++/* Dirents */ ++ ++/* ++ * Dirents (and xattrs) have to implement string lookups; since our b-tree ++ * doesn't support arbitrary length strings for the key, we instead index by a ++ * 64 bit hash (currently truncated sha1) of the string, stored in the offset ++ * field of the key - using linear probing to resolve hash collisions. This also ++ * provides us with the readdir cookie posix requires. ++ * ++ * Linear probing requires us to use whiteouts for deletions, in the event of a ++ * collision: ++ */ ++ ++struct bch_dirent { ++ struct bch_val v; ++ ++ /* Target inode number: */ ++ __le64 d_inum; ++ ++ /* ++ * Copy of mode bits 12-15 from the target inode - so userspace can get ++ * the filetype without having to do a stat() ++ */ ++ __u8 d_type; ++ ++ __u8 d_name[]; ++} __attribute__((packed, aligned(8))); ++ ++#define BCH_NAME_MAX (U8_MAX * sizeof(u64) - \ ++ sizeof(struct bkey) - \ ++ offsetof(struct bch_dirent, d_name)) ++ ++ ++/* Xattrs */ ++ ++#define KEY_TYPE_XATTR_INDEX_USER 0 ++#define KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS 1 ++#define KEY_TYPE_XATTR_INDEX_POSIX_ACL_DEFAULT 2 ++#define KEY_TYPE_XATTR_INDEX_TRUSTED 3 ++#define KEY_TYPE_XATTR_INDEX_SECURITY 4 ++ ++struct bch_xattr { ++ struct bch_val v; ++ __u8 x_type; ++ __u8 x_name_len; ++ __le16 x_val_len; ++ __u8 x_name[]; ++} __attribute__((packed, aligned(8))); ++ ++/* Bucket/allocation information: */ ++ ++struct bch_alloc { ++ struct bch_val v; ++ __u8 fields; ++ __u8 gen; ++ __u8 data[]; ++} __attribute__((packed, aligned(8))); ++ ++#define BCH_ALLOC_FIELDS() \ ++ x(read_time, 16) \ ++ x(write_time, 16) \ ++ x(data_type, 8) \ ++ x(dirty_sectors, 16) \ ++ x(cached_sectors, 16) \ ++ x(oldest_gen, 8) ++ ++enum { ++#define x(name, bytes) BCH_ALLOC_FIELD_##name, ++ BCH_ALLOC_FIELDS() ++#undef x ++ BCH_ALLOC_FIELD_NR ++}; ++ ++static const unsigned BCH_ALLOC_FIELD_BYTES[] = { ++#define x(name, bits) [BCH_ALLOC_FIELD_##name] = bits / 8, ++ BCH_ALLOC_FIELDS() ++#undef x ++}; ++ ++#define x(name, bits) + (bits / 8) ++static const unsigned BKEY_ALLOC_VAL_U64s_MAX = ++ DIV_ROUND_UP(offsetof(struct bch_alloc, data) ++ BCH_ALLOC_FIELDS(), sizeof(u64)); ++#undef x ++ ++#define BKEY_ALLOC_U64s_MAX (BKEY_U64s + BKEY_ALLOC_VAL_U64s_MAX) ++ ++/* Quotas: */ ++ ++enum quota_types { ++ QTYP_USR = 0, ++ QTYP_GRP = 1, ++ QTYP_PRJ = 2, ++ QTYP_NR = 3, ++}; ++ ++enum quota_counters { ++ Q_SPC = 0, ++ Q_INO = 1, ++ Q_COUNTERS = 2, ++}; ++ ++struct bch_quota_counter { ++ __le64 hardlimit; ++ __le64 softlimit; ++}; ++ ++struct bch_quota { ++ struct bch_val v; ++ struct bch_quota_counter c[Q_COUNTERS]; ++} __attribute__((packed, aligned(8))); ++ ++/* Erasure coding */ ++ ++struct bch_stripe { ++ struct bch_val v; ++ __le16 sectors; ++ __u8 algorithm; ++ __u8 nr_blocks; ++ __u8 nr_redundant; ++ ++ __u8 csum_granularity_bits; ++ __u8 csum_type; ++ __u8 pad; ++ ++ struct bch_extent_ptr ptrs[0]; ++} __attribute__((packed, aligned(8))); ++ ++/* Reflink: */ ++ ++struct bch_reflink_p { ++ struct bch_val v; ++ __le64 idx; ++ ++ __le32 reservation_generation; ++ __u8 nr_replicas; ++ __u8 pad[3]; ++}; ++ ++struct bch_reflink_v { ++ struct bch_val v; ++ __le64 refcount; ++ union bch_extent_entry start[0]; ++ __u64 _data[0]; ++}; ++ ++/* Inline data */ ++ ++struct bch_inline_data { ++ struct bch_val v; ++ u8 data[0]; ++}; ++ ++/* Optional/variable size superblock sections: */ ++ ++struct bch_sb_field { ++ __u64 _data[0]; ++ __le32 u64s; ++ __le32 type; ++}; ++ ++#define BCH_SB_FIELDS() \ ++ x(journal, 0) \ ++ x(members, 1) \ ++ x(crypt, 2) \ ++ x(replicas_v0, 3) \ ++ x(quota, 4) \ ++ x(disk_groups, 5) \ ++ x(clean, 6) \ ++ x(replicas, 7) \ ++ x(journal_seq_blacklist, 8) ++ ++enum bch_sb_field_type { ++#define x(f, nr) BCH_SB_FIELD_##f = nr, ++ BCH_SB_FIELDS() ++#undef x ++ BCH_SB_FIELD_NR ++}; ++ ++/* BCH_SB_FIELD_journal: */ ++ ++struct bch_sb_field_journal { ++ struct bch_sb_field field; ++ __le64 buckets[0]; ++}; ++ ++/* BCH_SB_FIELD_members: */ ++ ++#define BCH_MIN_NR_NBUCKETS (1 << 6) ++ ++struct bch_member { ++ uuid_le uuid; ++ __le64 nbuckets; /* device size */ ++ __le16 first_bucket; /* index of first bucket used */ ++ __le16 bucket_size; /* sectors */ ++ __le32 pad; ++ __le64 last_mount; /* time_t */ ++ ++ __le64 flags[2]; ++}; ++ ++LE64_BITMASK(BCH_MEMBER_STATE, struct bch_member, flags[0], 0, 4) ++/* 4-10 unused, was TIER, HAS_(META)DATA */ ++LE64_BITMASK(BCH_MEMBER_REPLACEMENT, struct bch_member, flags[0], 10, 14) ++LE64_BITMASK(BCH_MEMBER_DISCARD, struct bch_member, flags[0], 14, 15) ++LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED, struct bch_member, flags[0], 15, 20) ++LE64_BITMASK(BCH_MEMBER_GROUP, struct bch_member, flags[0], 20, 28) ++LE64_BITMASK(BCH_MEMBER_DURABILITY, struct bch_member, flags[0], 28, 30) ++ ++#define BCH_TIER_MAX 4U ++ ++#if 0 ++LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0, 20); ++LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40); ++#endif ++ ++enum bch_member_state { ++ BCH_MEMBER_STATE_RW = 0, ++ BCH_MEMBER_STATE_RO = 1, ++ BCH_MEMBER_STATE_FAILED = 2, ++ BCH_MEMBER_STATE_SPARE = 3, ++ BCH_MEMBER_STATE_NR = 4, ++}; ++ ++enum cache_replacement { ++ CACHE_REPLACEMENT_LRU = 0, ++ CACHE_REPLACEMENT_FIFO = 1, ++ CACHE_REPLACEMENT_RANDOM = 2, ++ CACHE_REPLACEMENT_NR = 3, ++}; ++ ++struct bch_sb_field_members { ++ struct bch_sb_field field; ++ struct bch_member members[0]; ++}; ++ ++/* BCH_SB_FIELD_crypt: */ ++ ++struct nonce { ++ __le32 d[4]; ++}; ++ ++struct bch_key { ++ __le64 key[4]; ++}; ++ ++#define BCH_KEY_MAGIC \ ++ (((u64) 'b' << 0)|((u64) 'c' << 8)| \ ++ ((u64) 'h' << 16)|((u64) '*' << 24)| \ ++ ((u64) '*' << 32)|((u64) 'k' << 40)| \ ++ ((u64) 'e' << 48)|((u64) 'y' << 56)) ++ ++struct bch_encrypted_key { ++ __le64 magic; ++ struct bch_key key; ++}; ++ ++/* ++ * If this field is present in the superblock, it stores an encryption key which ++ * is used encrypt all other data/metadata. The key will normally be encrypted ++ * with the key userspace provides, but if encryption has been turned off we'll ++ * just store the master key unencrypted in the superblock so we can access the ++ * previously encrypted data. ++ */ ++struct bch_sb_field_crypt { ++ struct bch_sb_field field; ++ ++ __le64 flags; ++ __le64 kdf_flags; ++ struct bch_encrypted_key key; ++}; ++ ++LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4); ++ ++enum bch_kdf_types { ++ BCH_KDF_SCRYPT = 0, ++ BCH_KDF_NR = 1, ++}; ++ ++/* stored as base 2 log of scrypt params: */ ++LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16); ++LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32); ++LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48); ++ ++/* BCH_SB_FIELD_replicas: */ ++ ++#define BCH_DATA_TYPES() \ ++ x(none, 0) \ ++ x(sb, 1) \ ++ x(journal, 2) \ ++ x(btree, 3) \ ++ x(user, 4) \ ++ x(cached, 5) ++ ++enum bch_data_type { ++#define x(t, n) BCH_DATA_##t, ++ BCH_DATA_TYPES() ++#undef x ++ BCH_DATA_NR ++}; ++ ++struct bch_replicas_entry_v0 { ++ __u8 data_type; ++ __u8 nr_devs; ++ __u8 devs[0]; ++} __attribute__((packed)); ++ ++struct bch_sb_field_replicas_v0 { ++ struct bch_sb_field field; ++ struct bch_replicas_entry_v0 entries[0]; ++} __attribute__((packed, aligned(8))); ++ ++struct bch_replicas_entry { ++ __u8 data_type; ++ __u8 nr_devs; ++ __u8 nr_required; ++ __u8 devs[0]; ++} __attribute__((packed)); ++ ++#define replicas_entry_bytes(_i) \ ++ (offsetof(typeof(*(_i)), devs) + (_i)->nr_devs) ++ ++struct bch_sb_field_replicas { ++ struct bch_sb_field field; ++ struct bch_replicas_entry entries[0]; ++} __attribute__((packed, aligned(8))); ++ ++/* BCH_SB_FIELD_quota: */ ++ ++struct bch_sb_quota_counter { ++ __le32 timelimit; ++ __le32 warnlimit; ++}; ++ ++struct bch_sb_quota_type { ++ __le64 flags; ++ struct bch_sb_quota_counter c[Q_COUNTERS]; ++}; ++ ++struct bch_sb_field_quota { ++ struct bch_sb_field field; ++ struct bch_sb_quota_type q[QTYP_NR]; ++} __attribute__((packed, aligned(8))); ++ ++/* BCH_SB_FIELD_disk_groups: */ ++ ++#define BCH_SB_LABEL_SIZE 32 ++ ++struct bch_disk_group { ++ __u8 label[BCH_SB_LABEL_SIZE]; ++ __le64 flags[2]; ++} __attribute__((packed, aligned(8))); ++ ++LE64_BITMASK(BCH_GROUP_DELETED, struct bch_disk_group, flags[0], 0, 1) ++LE64_BITMASK(BCH_GROUP_DATA_ALLOWED, struct bch_disk_group, flags[0], 1, 6) ++LE64_BITMASK(BCH_GROUP_PARENT, struct bch_disk_group, flags[0], 6, 24) ++ ++struct bch_sb_field_disk_groups { ++ struct bch_sb_field field; ++ struct bch_disk_group entries[0]; ++} __attribute__((packed, aligned(8))); ++ ++/* ++ * On clean shutdown, store btree roots and current journal sequence number in ++ * the superblock: ++ */ ++struct jset_entry { ++ __le16 u64s; ++ __u8 btree_id; ++ __u8 level; ++ __u8 type; /* designates what this jset holds */ ++ __u8 pad[3]; ++ ++ union { ++ struct bkey_i start[0]; ++ __u64 _data[0]; ++ }; ++}; ++ ++struct bch_sb_field_clean { ++ struct bch_sb_field field; ++ ++ __le32 flags; ++ __le16 read_clock; ++ __le16 write_clock; ++ __le64 journal_seq; ++ ++ union { ++ struct jset_entry start[0]; ++ __u64 _data[0]; ++ }; ++}; ++ ++struct journal_seq_blacklist_entry { ++ __le64 start; ++ __le64 end; ++}; ++ ++struct bch_sb_field_journal_seq_blacklist { ++ struct bch_sb_field field; ++ ++ union { ++ struct journal_seq_blacklist_entry start[0]; ++ __u64 _data[0]; ++ }; ++}; ++ ++/* Superblock: */ ++ ++/* ++ * New versioning scheme: ++ * One common version number for all on disk data structures - superblock, btree ++ * nodes, journal entries ++ */ ++#define BCH_JSET_VERSION_OLD 2 ++#define BCH_BSET_VERSION_OLD 3 ++ ++enum bcachefs_metadata_version { ++ bcachefs_metadata_version_min = 9, ++ bcachefs_metadata_version_new_versioning = 10, ++ bcachefs_metadata_version_bkey_renumber = 10, ++ bcachefs_metadata_version_inode_btree_change = 11, ++ bcachefs_metadata_version_max = 12, ++}; ++ ++#define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1) ++ ++#define BCH_SB_SECTOR 8 ++#define BCH_SB_MEMBERS_MAX 64 /* XXX kill */ ++ ++struct bch_sb_layout { ++ uuid_le magic; /* bcachefs superblock UUID */ ++ __u8 layout_type; ++ __u8 sb_max_size_bits; /* base 2 of 512 byte sectors */ ++ __u8 nr_superblocks; ++ __u8 pad[5]; ++ __le64 sb_offset[61]; ++} __attribute__((packed, aligned(8))); ++ ++#define BCH_SB_LAYOUT_SECTOR 7 ++ ++/* ++ * @offset - sector where this sb was written ++ * @version - on disk format version ++ * @version_min - Oldest metadata version this filesystem contains; so we can ++ * safely drop compatibility code and refuse to mount filesystems ++ * we'd need it for ++ * @magic - identifies as a bcachefs superblock (BCACHE_MAGIC) ++ * @seq - incremented each time superblock is written ++ * @uuid - used for generating various magic numbers and identifying ++ * member devices, never changes ++ * @user_uuid - user visible UUID, may be changed ++ * @label - filesystem label ++ * @seq - identifies most recent superblock, incremented each time ++ * superblock is written ++ * @features - enabled incompatible features ++ */ ++struct bch_sb { ++ struct bch_csum csum; ++ __le16 version; ++ __le16 version_min; ++ __le16 pad[2]; ++ uuid_le magic; ++ uuid_le uuid; ++ uuid_le user_uuid; ++ __u8 label[BCH_SB_LABEL_SIZE]; ++ __le64 offset; ++ __le64 seq; ++ ++ __le16 block_size; ++ __u8 dev_idx; ++ __u8 nr_devices; ++ __le32 u64s; ++ ++ __le64 time_base_lo; ++ __le32 time_base_hi; ++ __le32 time_precision; ++ ++ __le64 flags[8]; ++ __le64 features[2]; ++ __le64 compat[2]; ++ ++ struct bch_sb_layout layout; ++ ++ union { ++ struct bch_sb_field start[0]; ++ __le64 _data[0]; ++ }; ++} __attribute__((packed, aligned(8))); ++ ++/* ++ * Flags: ++ * BCH_SB_INITALIZED - set on first mount ++ * BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect ++ * behaviour of mount/recovery path: ++ * BCH_SB_INODE_32BIT - limit inode numbers to 32 bits ++ * BCH_SB_128_BIT_MACS - 128 bit macs instead of 80 ++ * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides ++ * DATA/META_CSUM_TYPE. Also indicates encryption ++ * algorithm in use, if/when we get more than one ++ */ ++ ++LE16_BITMASK(BCH_SB_BLOCK_SIZE, struct bch_sb, block_size, 0, 16); ++ ++LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1); ++LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2); ++LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8); ++LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12); ++ ++LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28); ++ ++LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33); ++LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40); ++ ++LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44); ++LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48); ++ ++LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52); ++LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56); ++ ++LE64_BITMASK(BCH_SB_POSIX_ACL, struct bch_sb, flags[0], 56, 57); ++LE64_BITMASK(BCH_SB_USRQUOTA, struct bch_sb, flags[0], 57, 58); ++LE64_BITMASK(BCH_SB_GRPQUOTA, struct bch_sb, flags[0], 58, 59); ++LE64_BITMASK(BCH_SB_PRJQUOTA, struct bch_sb, flags[0], 59, 60); ++ ++LE64_BITMASK(BCH_SB_HAS_ERRORS, struct bch_sb, flags[0], 60, 61); ++ ++LE64_BITMASK(BCH_SB_REFLINK, struct bch_sb, flags[0], 61, 62); ++ ++/* 61-64 unused */ ++ ++LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4); ++LE64_BITMASK(BCH_SB_COMPRESSION_TYPE, struct bch_sb, flags[1], 4, 8); ++LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9); ++ ++LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10); ++LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14); ++ ++/* ++ * Max size of an extent that may require bouncing to read or write ++ * (checksummed, compressed): 64k ++ */ ++LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS, ++ struct bch_sb, flags[1], 14, 20); ++ ++LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24); ++LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28); ++ ++LE64_BITMASK(BCH_SB_PROMOTE_TARGET, struct bch_sb, flags[1], 28, 40); ++LE64_BITMASK(BCH_SB_FOREGROUND_TARGET, struct bch_sb, flags[1], 40, 52); ++LE64_BITMASK(BCH_SB_BACKGROUND_TARGET, struct bch_sb, flags[1], 52, 64); ++ ++LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE, ++ struct bch_sb, flags[2], 0, 4); ++LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES, struct bch_sb, flags[2], 4, 64); ++ ++LE64_BITMASK(BCH_SB_ERASURE_CODE, struct bch_sb, flags[3], 0, 16); ++ ++/* ++ * Features: ++ * ++ * journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist ++ * reflink: gates KEY_TYPE_reflink ++ * inline_data: gates KEY_TYPE_inline_data ++ * new_siphash: gates BCH_STR_HASH_SIPHASH ++ * new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE ++ */ ++#define BCH_SB_FEATURES() \ ++ x(lz4, 0) \ ++ x(gzip, 1) \ ++ x(zstd, 2) \ ++ x(atomic_nlink, 3) \ ++ x(ec, 4) \ ++ x(journal_seq_blacklist_v3, 5) \ ++ x(reflink, 6) \ ++ x(new_siphash, 7) \ ++ x(inline_data, 8) \ ++ x(new_extent_overwrite, 9) \ ++ x(incompressible, 10) \ ++ x(btree_ptr_v2, 11) \ ++ x(extents_above_btree_updates, 12) \ ++ x(btree_updates_journalled, 13) ++ ++#define BCH_SB_FEATURES_ALL \ ++ ((1ULL << BCH_FEATURE_new_siphash)| \ ++ (1ULL << BCH_FEATURE_new_extent_overwrite)| \ ++ (1ULL << BCH_FEATURE_btree_ptr_v2)| \ ++ (1ULL << BCH_FEATURE_extents_above_btree_updates)) ++ ++enum bch_sb_feature { ++#define x(f, n) BCH_FEATURE_##f, ++ BCH_SB_FEATURES() ++#undef x ++ BCH_FEATURE_NR, ++}; ++ ++enum bch_sb_compat { ++ BCH_COMPAT_FEAT_ALLOC_INFO = 0, ++ BCH_COMPAT_FEAT_ALLOC_METADATA = 1, ++}; ++ ++/* options: */ ++ ++#define BCH_REPLICAS_MAX 4U ++ ++enum bch_error_actions { ++ BCH_ON_ERROR_CONTINUE = 0, ++ BCH_ON_ERROR_RO = 1, ++ BCH_ON_ERROR_PANIC = 2, ++ BCH_NR_ERROR_ACTIONS = 3, ++}; ++ ++enum bch_str_hash_type { ++ BCH_STR_HASH_CRC32C = 0, ++ BCH_STR_HASH_CRC64 = 1, ++ BCH_STR_HASH_SIPHASH_OLD = 2, ++ BCH_STR_HASH_SIPHASH = 3, ++ BCH_STR_HASH_NR = 4, ++}; ++ ++enum bch_str_hash_opts { ++ BCH_STR_HASH_OPT_CRC32C = 0, ++ BCH_STR_HASH_OPT_CRC64 = 1, ++ BCH_STR_HASH_OPT_SIPHASH = 2, ++ BCH_STR_HASH_OPT_NR = 3, ++}; ++ ++enum bch_csum_type { ++ BCH_CSUM_NONE = 0, ++ BCH_CSUM_CRC32C_NONZERO = 1, ++ BCH_CSUM_CRC64_NONZERO = 2, ++ BCH_CSUM_CHACHA20_POLY1305_80 = 3, ++ BCH_CSUM_CHACHA20_POLY1305_128 = 4, ++ BCH_CSUM_CRC32C = 5, ++ BCH_CSUM_CRC64 = 6, ++ BCH_CSUM_NR = 7, ++}; ++ ++static const unsigned bch_crc_bytes[] = { ++ [BCH_CSUM_NONE] = 0, ++ [BCH_CSUM_CRC32C_NONZERO] = 4, ++ [BCH_CSUM_CRC32C] = 4, ++ [BCH_CSUM_CRC64_NONZERO] = 8, ++ [BCH_CSUM_CRC64] = 8, ++ [BCH_CSUM_CHACHA20_POLY1305_80] = 10, ++ [BCH_CSUM_CHACHA20_POLY1305_128] = 16, ++}; ++ ++static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type) ++{ ++ switch (type) { ++ case BCH_CSUM_CHACHA20_POLY1305_80: ++ case BCH_CSUM_CHACHA20_POLY1305_128: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++enum bch_csum_opts { ++ BCH_CSUM_OPT_NONE = 0, ++ BCH_CSUM_OPT_CRC32C = 1, ++ BCH_CSUM_OPT_CRC64 = 2, ++ BCH_CSUM_OPT_NR = 3, ++}; ++ ++#define BCH_COMPRESSION_TYPES() \ ++ x(none, 0) \ ++ x(lz4_old, 1) \ ++ x(gzip, 2) \ ++ x(lz4, 3) \ ++ x(zstd, 4) \ ++ x(incompressible, 5) ++ ++enum bch_compression_type { ++#define x(t, n) BCH_COMPRESSION_TYPE_##t, ++ BCH_COMPRESSION_TYPES() ++#undef x ++ BCH_COMPRESSION_TYPE_NR ++}; ++ ++#define BCH_COMPRESSION_OPTS() \ ++ x(none, 0) \ ++ x(lz4, 1) \ ++ x(gzip, 2) \ ++ x(zstd, 3) ++ ++enum bch_compression_opts { ++#define x(t, n) BCH_COMPRESSION_OPT_##t, ++ BCH_COMPRESSION_OPTS() ++#undef x ++ BCH_COMPRESSION_OPT_NR ++}; ++ ++/* ++ * Magic numbers ++ * ++ * The various other data structures have their own magic numbers, which are ++ * xored with the first part of the cache set's UUID ++ */ ++ ++#define BCACHE_MAGIC \ ++ UUID_LE(0xf67385c6, 0x1a4e, 0xca45, \ ++ 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81) ++ ++#define BCACHEFS_STATFS_MAGIC 0xca451a4e ++ ++#define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL) ++#define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL) ++ ++static inline __le64 __bch2_sb_magic(struct bch_sb *sb) ++{ ++ __le64 ret; ++ memcpy(&ret, &sb->uuid, sizeof(ret)); ++ return ret; ++} ++ ++static inline __u64 __jset_magic(struct bch_sb *sb) ++{ ++ return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC); ++} ++ ++static inline __u64 __bset_magic(struct bch_sb *sb) ++{ ++ return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC); ++} ++ ++/* Journal */ ++ ++#define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64)) ++ ++#define BCH_JSET_ENTRY_TYPES() \ ++ x(btree_keys, 0) \ ++ x(btree_root, 1) \ ++ x(prio_ptrs, 2) \ ++ x(blacklist, 3) \ ++ x(blacklist_v2, 4) \ ++ x(usage, 5) \ ++ x(data_usage, 6) ++ ++enum { ++#define x(f, nr) BCH_JSET_ENTRY_##f = nr, ++ BCH_JSET_ENTRY_TYPES() ++#undef x ++ BCH_JSET_ENTRY_NR ++}; ++ ++/* ++ * Journal sequence numbers can be blacklisted: bsets record the max sequence ++ * number of all the journal entries they contain updates for, so that on ++ * recovery we can ignore those bsets that contain index updates newer that what ++ * made it into the journal. ++ * ++ * This means that we can't reuse that journal_seq - we have to skip it, and ++ * then record that we skipped it so that the next time we crash and recover we ++ * don't think there was a missing journal entry. ++ */ ++struct jset_entry_blacklist { ++ struct jset_entry entry; ++ __le64 seq; ++}; ++ ++struct jset_entry_blacklist_v2 { ++ struct jset_entry entry; ++ __le64 start; ++ __le64 end; ++}; ++ ++enum { ++ FS_USAGE_RESERVED = 0, ++ FS_USAGE_INODES = 1, ++ FS_USAGE_KEY_VERSION = 2, ++ FS_USAGE_NR = 3 ++}; ++ ++struct jset_entry_usage { ++ struct jset_entry entry; ++ __le64 v; ++} __attribute__((packed)); ++ ++struct jset_entry_data_usage { ++ struct jset_entry entry; ++ __le64 v; ++ struct bch_replicas_entry r; ++} __attribute__((packed)); ++ ++/* ++ * On disk format for a journal entry: ++ * seq is monotonically increasing; every journal entry has its own unique ++ * sequence number. ++ * ++ * last_seq is the oldest journal entry that still has keys the btree hasn't ++ * flushed to disk yet. ++ * ++ * version is for on disk format changes. ++ */ ++struct jset { ++ struct bch_csum csum; ++ ++ __le64 magic; ++ __le64 seq; ++ __le32 version; ++ __le32 flags; ++ ++ __le32 u64s; /* size of d[] in u64s */ ++ ++ __u8 encrypted_start[0]; ++ ++ __le16 read_clock; ++ __le16 write_clock; ++ ++ /* Sequence number of oldest dirty journal entry */ ++ __le64 last_seq; ++ ++ ++ union { ++ struct jset_entry start[0]; ++ __u64 _data[0]; ++ }; ++} __attribute__((packed, aligned(8))); ++ ++LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4); ++LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5); ++ ++#define BCH_JOURNAL_BUCKETS_MIN 8 ++ ++/* Btree: */ ++ ++#define BCH_BTREE_IDS() \ ++ x(EXTENTS, 0, "extents") \ ++ x(INODES, 1, "inodes") \ ++ x(DIRENTS, 2, "dirents") \ ++ x(XATTRS, 3, "xattrs") \ ++ x(ALLOC, 4, "alloc") \ ++ x(QUOTAS, 5, "quotas") \ ++ x(EC, 6, "stripes") \ ++ x(REFLINK, 7, "reflink") ++ ++enum btree_id { ++#define x(kwd, val, name) BTREE_ID_##kwd = val, ++ BCH_BTREE_IDS() ++#undef x ++ BTREE_ID_NR ++}; ++ ++#define BTREE_MAX_DEPTH 4U ++ ++/* Btree nodes */ ++ ++/* ++ * Btree nodes ++ * ++ * On disk a btree node is a list/log of these; within each set the keys are ++ * sorted ++ */ ++struct bset { ++ __le64 seq; ++ ++ /* ++ * Highest journal entry this bset contains keys for. ++ * If on recovery we don't see that journal entry, this bset is ignored: ++ * this allows us to preserve the order of all index updates after a ++ * crash, since the journal records a total order of all index updates ++ * and anything that didn't make it to the journal doesn't get used. ++ */ ++ __le64 journal_seq; ++ ++ __le32 flags; ++ __le16 version; ++ __le16 u64s; /* count of d[] in u64s */ ++ ++ union { ++ struct bkey_packed start[0]; ++ __u64 _data[0]; ++ }; ++} __attribute__((packed, aligned(8))); ++ ++LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4); ++ ++LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5); ++LE32_BITMASK(BSET_SEPARATE_WHITEOUTS, ++ struct bset, flags, 5, 6); ++ ++struct btree_node { ++ struct bch_csum csum; ++ __le64 magic; ++ ++ /* this flags field is encrypted, unlike bset->flags: */ ++ __le64 flags; ++ ++ /* Closed interval: */ ++ struct bpos min_key; ++ struct bpos max_key; ++ struct bch_extent_ptr ptr; ++ struct bkey_format format; ++ ++ union { ++ struct bset keys; ++ struct { ++ __u8 pad[22]; ++ __le16 u64s; ++ __u64 _data[0]; ++ ++ }; ++ }; ++} __attribute__((packed, aligned(8))); ++ ++LE64_BITMASK(BTREE_NODE_ID, struct btree_node, flags, 0, 4); ++LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8); ++LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE, ++ struct btree_node, flags, 8, 9); ++/* 9-32 unused */ ++LE64_BITMASK(BTREE_NODE_SEQ, struct btree_node, flags, 32, 64); ++ ++struct btree_node_entry { ++ struct bch_csum csum; ++ ++ union { ++ struct bset keys; ++ struct { ++ __u8 pad[22]; ++ __le16 u64s; ++ __u64 _data[0]; ++ ++ }; ++ }; ++} __attribute__((packed, aligned(8))); ++ ++#endif /* _BCACHEFS_FORMAT_H */ +diff --git a/fs/bcachefs/bcachefs_ioctl.h b/fs/bcachefs/bcachefs_ioctl.h +new file mode 100644 +index 000000000000..d71157a3e073 +--- /dev/null ++++ b/fs/bcachefs/bcachefs_ioctl.h +@@ -0,0 +1,332 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_IOCTL_H ++#define _BCACHEFS_IOCTL_H ++ ++#include ++#include ++#include "bcachefs_format.h" ++ ++/* ++ * Flags common to multiple ioctls: ++ */ ++#define BCH_FORCE_IF_DATA_LOST (1 << 0) ++#define BCH_FORCE_IF_METADATA_LOST (1 << 1) ++#define BCH_FORCE_IF_DATA_DEGRADED (1 << 2) ++#define BCH_FORCE_IF_METADATA_DEGRADED (1 << 3) ++ ++#define BCH_FORCE_IF_DEGRADED \ ++ (BCH_FORCE_IF_DATA_DEGRADED| \ ++ BCH_FORCE_IF_METADATA_DEGRADED) ++ ++/* ++ * If cleared, ioctl that refer to a device pass it as a pointer to a pathname ++ * (e.g. /dev/sda1); if set, the dev field is the device's index within the ++ * filesystem: ++ */ ++#define BCH_BY_INDEX (1 << 4) ++ ++/* ++ * For BCH_IOCTL_READ_SUPER: get superblock of a specific device, not filesystem ++ * wide superblock: ++ */ ++#define BCH_READ_DEV (1 << 5) ++ ++/* global control dev: */ ++ ++/* These are currently broken, and probably unnecessary: */ ++#if 0 ++#define BCH_IOCTL_ASSEMBLE _IOW(0xbc, 1, struct bch_ioctl_assemble) ++#define BCH_IOCTL_INCREMENTAL _IOW(0xbc, 2, struct bch_ioctl_incremental) ++ ++struct bch_ioctl_assemble { ++ __u32 flags; ++ __u32 nr_devs; ++ __u64 pad; ++ __u64 devs[]; ++}; ++ ++struct bch_ioctl_incremental { ++ __u32 flags; ++ __u64 pad; ++ __u64 dev; ++}; ++#endif ++ ++/* filesystem ioctls: */ ++ ++#define BCH_IOCTL_QUERY_UUID _IOR(0xbc, 1, struct bch_ioctl_query_uuid) ++ ++/* These only make sense when we also have incremental assembly */ ++#if 0 ++#define BCH_IOCTL_START _IOW(0xbc, 2, struct bch_ioctl_start) ++#define BCH_IOCTL_STOP _IO(0xbc, 3) ++#endif ++ ++#define BCH_IOCTL_DISK_ADD _IOW(0xbc, 4, struct bch_ioctl_disk) ++#define BCH_IOCTL_DISK_REMOVE _IOW(0xbc, 5, struct bch_ioctl_disk) ++#define BCH_IOCTL_DISK_ONLINE _IOW(0xbc, 6, struct bch_ioctl_disk) ++#define BCH_IOCTL_DISK_OFFLINE _IOW(0xbc, 7, struct bch_ioctl_disk) ++#define BCH_IOCTL_DISK_SET_STATE _IOW(0xbc, 8, struct bch_ioctl_disk_set_state) ++#define BCH_IOCTL_DATA _IOW(0xbc, 10, struct bch_ioctl_data) ++#define BCH_IOCTL_FS_USAGE _IOWR(0xbc, 11, struct bch_ioctl_fs_usage) ++#define BCH_IOCTL_DEV_USAGE _IOWR(0xbc, 11, struct bch_ioctl_dev_usage) ++#define BCH_IOCTL_READ_SUPER _IOW(0xbc, 12, struct bch_ioctl_read_super) ++#define BCH_IOCTL_DISK_GET_IDX _IOW(0xbc, 13, struct bch_ioctl_disk_get_idx) ++#define BCH_IOCTL_DISK_RESIZE _IOW(0xbc, 14, struct bch_ioctl_disk_resize) ++ ++/* ioctl below act on a particular file, not the filesystem as a whole: */ ++ ++#define BCHFS_IOC_REINHERIT_ATTRS _IOR(0xbc, 64, const char __user *) ++ ++/* ++ * BCH_IOCTL_QUERY_UUID: get filesystem UUID ++ * ++ * Returns user visible UUID, not internal UUID (which may not ever be changed); ++ * the filesystem's sysfs directory may be found under /sys/fs/bcachefs with ++ * this UUID. ++ */ ++struct bch_ioctl_query_uuid { ++ uuid_le uuid; ++}; ++ ++#if 0 ++struct bch_ioctl_start { ++ __u32 flags; ++ __u32 pad; ++}; ++#endif ++ ++/* ++ * BCH_IOCTL_DISK_ADD: add a new device to an existing filesystem ++ * ++ * The specified device must not be open or in use. On success, the new device ++ * will be an online member of the filesystem just like any other member. ++ * ++ * The device must first be prepared by userspace by formatting with a bcachefs ++ * superblock, which is only used for passing in superblock options/parameters ++ * for that device (in struct bch_member). The new device's superblock should ++ * not claim to be a member of any existing filesystem - UUIDs on it will be ++ * ignored. ++ */ ++ ++/* ++ * BCH_IOCTL_DISK_REMOVE: permanently remove a member device from a filesystem ++ * ++ * Any data present on @dev will be permanently deleted, and @dev will be ++ * removed from its slot in the filesystem's list of member devices. The device ++ * may be either offline or offline. ++ * ++ * Will fail removing @dev would leave us with insufficient read write devices ++ * or degraded/unavailable data, unless the approprate BCH_FORCE_IF_* flags are ++ * set. ++ */ ++ ++/* ++ * BCH_IOCTL_DISK_ONLINE: given a disk that is already a member of a filesystem ++ * but is not open (e.g. because we started in degraded mode), bring it online ++ * ++ * all existing data on @dev will be available once the device is online, ++ * exactly as if @dev was present when the filesystem was first mounted ++ */ ++ ++/* ++ * BCH_IOCTL_DISK_OFFLINE: offline a disk, causing the kernel to close that ++ * block device, without removing it from the filesystem (so it can be brought ++ * back online later) ++ * ++ * Data present on @dev will be unavailable while @dev is offline (unless ++ * replicated), but will still be intact and untouched if @dev is brought back ++ * online ++ * ++ * Will fail (similarly to BCH_IOCTL_DISK_SET_STATE) if offlining @dev would ++ * leave us with insufficient read write devices or degraded/unavailable data, ++ * unless the approprate BCH_FORCE_IF_* flags are set. ++ */ ++ ++struct bch_ioctl_disk { ++ __u32 flags; ++ __u32 pad; ++ __u64 dev; ++}; ++ ++/* ++ * BCH_IOCTL_DISK_SET_STATE: modify state of a member device of a filesystem ++ * ++ * @new_state - one of the bch_member_state states (rw, ro, failed, ++ * spare) ++ * ++ * Will refuse to change member state if we would then have insufficient devices ++ * to write to, or if it would result in degraded data (when @new_state is ++ * failed or spare) unless the appropriate BCH_FORCE_IF_* flags are set. ++ */ ++struct bch_ioctl_disk_set_state { ++ __u32 flags; ++ __u8 new_state; ++ __u8 pad[3]; ++ __u64 dev; ++}; ++ ++enum bch_data_ops { ++ BCH_DATA_OP_SCRUB = 0, ++ BCH_DATA_OP_REREPLICATE = 1, ++ BCH_DATA_OP_MIGRATE = 2, ++ BCH_DATA_OP_NR = 3, ++}; ++ ++/* ++ * BCH_IOCTL_DATA: operations that walk and manipulate filesystem data (e.g. ++ * scrub, rereplicate, migrate). ++ * ++ * This ioctl kicks off a job in the background, and returns a file descriptor. ++ * Reading from the file descriptor returns a struct bch_ioctl_data_event, ++ * indicating current progress, and closing the file descriptor will stop the ++ * job. The file descriptor is O_CLOEXEC. ++ */ ++struct bch_ioctl_data { ++ __u32 op; ++ __u32 flags; ++ ++ struct bpos start; ++ struct bpos end; ++ ++ union { ++ struct { ++ __u32 dev; ++ __u32 pad; ++ } migrate; ++ struct { ++ __u64 pad[8]; ++ }; ++ }; ++} __attribute__((packed, aligned(8))); ++ ++enum bch_data_event { ++ BCH_DATA_EVENT_PROGRESS = 0, ++ /* XXX: add an event for reporting errors */ ++ BCH_DATA_EVENT_NR = 1, ++}; ++ ++struct bch_ioctl_data_progress { ++ __u8 data_type; ++ __u8 btree_id; ++ __u8 pad[2]; ++ struct bpos pos; ++ ++ __u64 sectors_done; ++ __u64 sectors_total; ++} __attribute__((packed, aligned(8))); ++ ++struct bch_ioctl_data_event { ++ __u8 type; ++ __u8 pad[7]; ++ union { ++ struct bch_ioctl_data_progress p; ++ __u64 pad2[15]; ++ }; ++} __attribute__((packed, aligned(8))); ++ ++struct bch_replicas_usage { ++ __u64 sectors; ++ struct bch_replicas_entry r; ++} __attribute__((packed)); ++ ++static inline struct bch_replicas_usage * ++replicas_usage_next(struct bch_replicas_usage *u) ++{ ++ return (void *) u + replicas_entry_bytes(&u->r) + 8; ++} ++ ++/* ++ * BCH_IOCTL_FS_USAGE: query filesystem disk space usage ++ * ++ * Returns disk space usage broken out by data type, number of replicas, and ++ * by component device ++ * ++ * @replica_entries_bytes - size, in bytes, allocated for replica usage entries ++ * ++ * On success, @replica_entries_bytes will be changed to indicate the number of ++ * bytes actually used. ++ * ++ * Returns -ERANGE if @replica_entries_bytes was too small ++ */ ++struct bch_ioctl_fs_usage { ++ __u64 capacity; ++ __u64 used; ++ __u64 online_reserved; ++ __u64 persistent_reserved[BCH_REPLICAS_MAX]; ++ ++ __u32 replica_entries_bytes; ++ __u32 pad; ++ ++ struct bch_replicas_usage replicas[0]; ++}; ++ ++/* ++ * BCH_IOCTL_DEV_USAGE: query device disk space usage ++ * ++ * Returns disk space usage broken out by data type - both by buckets and ++ * sectors. ++ */ ++struct bch_ioctl_dev_usage { ++ __u64 dev; ++ __u32 flags; ++ __u8 state; ++ __u8 pad[7]; ++ ++ __u32 bucket_size; ++ __u64 nr_buckets; ++ __u64 available_buckets; ++ ++ __u64 buckets[BCH_DATA_NR]; ++ __u64 sectors[BCH_DATA_NR]; ++ ++ __u64 ec_buckets; ++ __u64 ec_sectors; ++}; ++ ++/* ++ * BCH_IOCTL_READ_SUPER: read filesystem superblock ++ * ++ * Equivalent to reading the superblock directly from the block device, except ++ * avoids racing with the kernel writing the superblock or having to figure out ++ * which block device to read ++ * ++ * @sb - buffer to read into ++ * @size - size of userspace allocated buffer ++ * @dev - device to read superblock for, if BCH_READ_DEV flag is ++ * specified ++ * ++ * Returns -ERANGE if buffer provided is too small ++ */ ++struct bch_ioctl_read_super { ++ __u32 flags; ++ __u32 pad; ++ __u64 dev; ++ __u64 size; ++ __u64 sb; ++}; ++ ++/* ++ * BCH_IOCTL_DISK_GET_IDX: give a path to a block device, query filesystem to ++ * determine if disk is a (online) member - if so, returns device's index ++ * ++ * Returns -ENOENT if not found ++ */ ++struct bch_ioctl_disk_get_idx { ++ __u64 dev; ++}; ++ ++/* ++ * BCH_IOCTL_DISK_RESIZE: resize filesystem on a device ++ * ++ * @dev - member to resize ++ * @nbuckets - new number of buckets ++ */ ++struct bch_ioctl_disk_resize { ++ __u32 flags; ++ __u32 pad; ++ __u64 dev; ++ __u64 nbuckets; ++}; ++ ++#endif /* _BCACHEFS_IOCTL_H */ +diff --git a/fs/bcachefs/bkey.c b/fs/bcachefs/bkey.c +new file mode 100644 +index 000000000000..4d0c9129cd4a +--- /dev/null ++++ b/fs/bcachefs/bkey.c +@@ -0,0 +1,1154 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bkey.h" ++#include "bkey_methods.h" ++#include "bset.h" ++#include "util.h" ++ ++#undef EBUG_ON ++ ++#ifdef DEBUG_BKEYS ++#define EBUG_ON(cond) BUG_ON(cond) ++#else ++#define EBUG_ON(cond) ++#endif ++ ++const struct bkey_format bch2_bkey_format_current = BKEY_FORMAT_CURRENT; ++ ++struct bkey __bch2_bkey_unpack_key(const struct bkey_format *, ++ const struct bkey_packed *); ++ ++void bch2_to_binary(char *out, const u64 *p, unsigned nr_bits) ++{ ++ unsigned bit = high_bit_offset, done = 0; ++ ++ while (1) { ++ while (bit < 64) { ++ if (done && !(done % 8)) ++ *out++ = ' '; ++ *out++ = *p & (1ULL << (63 - bit)) ? '1' : '0'; ++ bit++; ++ done++; ++ if (done == nr_bits) { ++ *out++ = '\0'; ++ return; ++ } ++ } ++ ++ p = next_word(p); ++ bit = 0; ++ } ++} ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ ++static void bch2_bkey_pack_verify(const struct bkey_packed *packed, ++ const struct bkey *unpacked, ++ const struct bkey_format *format) ++{ ++ struct bkey tmp; ++ ++ BUG_ON(bkeyp_val_u64s(format, packed) != ++ bkey_val_u64s(unpacked)); ++ ++ BUG_ON(packed->u64s < bkeyp_key_u64s(format, packed)); ++ ++ tmp = __bch2_bkey_unpack_key(format, packed); ++ ++ if (memcmp(&tmp, unpacked, sizeof(struct bkey))) { ++ char buf1[160], buf2[160]; ++ char buf3[160], buf4[160]; ++ ++ bch2_bkey_to_text(&PBUF(buf1), unpacked); ++ bch2_bkey_to_text(&PBUF(buf2), &tmp); ++ bch2_to_binary(buf3, (void *) unpacked, 80); ++ bch2_to_binary(buf4, high_word(format, packed), 80); ++ ++ panic("keys differ: format u64s %u fields %u %u %u %u %u\n%s\n%s\n%s\n%s\n", ++ format->key_u64s, ++ format->bits_per_field[0], ++ format->bits_per_field[1], ++ format->bits_per_field[2], ++ format->bits_per_field[3], ++ format->bits_per_field[4], ++ buf1, buf2, buf3, buf4); ++ } ++} ++ ++#else ++static inline void bch2_bkey_pack_verify(const struct bkey_packed *packed, ++ const struct bkey *unpacked, ++ const struct bkey_format *format) {} ++#endif ++ ++struct pack_state { ++ const struct bkey_format *format; ++ unsigned bits; /* bits remaining in current word */ ++ u64 w; /* current word */ ++ u64 *p; /* pointer to next word */ ++}; ++ ++__always_inline ++static struct pack_state pack_state_init(const struct bkey_format *format, ++ struct bkey_packed *k) ++{ ++ u64 *p = high_word(format, k); ++ ++ return (struct pack_state) { ++ .format = format, ++ .bits = 64 - high_bit_offset, ++ .w = 0, ++ .p = p, ++ }; ++} ++ ++__always_inline ++static void pack_state_finish(struct pack_state *state, ++ struct bkey_packed *k) ++{ ++ EBUG_ON(state->p < k->_data); ++ EBUG_ON(state->p >= k->_data + state->format->key_u64s); ++ ++ *state->p = state->w; ++} ++ ++struct unpack_state { ++ const struct bkey_format *format; ++ unsigned bits; /* bits remaining in current word */ ++ u64 w; /* current word */ ++ const u64 *p; /* pointer to next word */ ++}; ++ ++__always_inline ++static struct unpack_state unpack_state_init(const struct bkey_format *format, ++ const struct bkey_packed *k) ++{ ++ const u64 *p = high_word(format, k); ++ ++ return (struct unpack_state) { ++ .format = format, ++ .bits = 64 - high_bit_offset, ++ .w = *p << high_bit_offset, ++ .p = p, ++ }; ++} ++ ++__always_inline ++static u64 get_inc_field(struct unpack_state *state, unsigned field) ++{ ++ unsigned bits = state->format->bits_per_field[field]; ++ u64 v = 0, offset = le64_to_cpu(state->format->field_offset[field]); ++ ++ if (bits >= state->bits) { ++ v = state->w >> (64 - bits); ++ bits -= state->bits; ++ ++ state->p = next_word(state->p); ++ state->w = *state->p; ++ state->bits = 64; ++ } ++ ++ /* avoid shift by 64 if bits is 0 - bits is never 64 here: */ ++ v |= (state->w >> 1) >> (63 - bits); ++ state->w <<= bits; ++ state->bits -= bits; ++ ++ return v + offset; ++} ++ ++__always_inline ++static bool set_inc_field(struct pack_state *state, unsigned field, u64 v) ++{ ++ unsigned bits = state->format->bits_per_field[field]; ++ u64 offset = le64_to_cpu(state->format->field_offset[field]); ++ ++ if (v < offset) ++ return false; ++ ++ v -= offset; ++ ++ if (fls64(v) > bits) ++ return false; ++ ++ if (bits > state->bits) { ++ bits -= state->bits; ++ /* avoid shift by 64 if bits is 0 - bits is never 64 here: */ ++ state->w |= (v >> 1) >> (bits - 1); ++ ++ *state->p = state->w; ++ state->p = next_word(state->p); ++ state->w = 0; ++ state->bits = 64; ++ } ++ ++ state->bits -= bits; ++ state->w |= v << state->bits; ++ ++ return true; ++} ++ ++/* ++ * Note: does NOT set out->format (we don't know what it should be here!) ++ * ++ * Also: doesn't work on extents - it doesn't preserve the invariant that ++ * if k is packed bkey_start_pos(k) will successfully pack ++ */ ++static bool bch2_bkey_transform_key(const struct bkey_format *out_f, ++ struct bkey_packed *out, ++ const struct bkey_format *in_f, ++ const struct bkey_packed *in) ++{ ++ struct pack_state out_s = pack_state_init(out_f, out); ++ struct unpack_state in_s = unpack_state_init(in_f, in); ++ unsigned i; ++ ++ out->_data[0] = 0; ++ ++ for (i = 0; i < BKEY_NR_FIELDS; i++) ++ if (!set_inc_field(&out_s, i, get_inc_field(&in_s, i))) ++ return false; ++ ++ /* Can't happen because the val would be too big to unpack: */ ++ EBUG_ON(in->u64s - in_f->key_u64s + out_f->key_u64s > U8_MAX); ++ ++ pack_state_finish(&out_s, out); ++ out->u64s = out_f->key_u64s + in->u64s - in_f->key_u64s; ++ out->needs_whiteout = in->needs_whiteout; ++ out->type = in->type; ++ ++ return true; ++} ++ ++bool bch2_bkey_transform(const struct bkey_format *out_f, ++ struct bkey_packed *out, ++ const struct bkey_format *in_f, ++ const struct bkey_packed *in) ++{ ++ if (!bch2_bkey_transform_key(out_f, out, in_f, in)) ++ return false; ++ ++ memcpy_u64s((u64 *) out + out_f->key_u64s, ++ (u64 *) in + in_f->key_u64s, ++ (in->u64s - in_f->key_u64s)); ++ return true; ++} ++ ++#define bkey_fields() \ ++ x(BKEY_FIELD_INODE, p.inode) \ ++ x(BKEY_FIELD_OFFSET, p.offset) \ ++ x(BKEY_FIELD_SNAPSHOT, p.snapshot) \ ++ x(BKEY_FIELD_SIZE, size) \ ++ x(BKEY_FIELD_VERSION_HI, version.hi) \ ++ x(BKEY_FIELD_VERSION_LO, version.lo) ++ ++struct bkey __bch2_bkey_unpack_key(const struct bkey_format *format, ++ const struct bkey_packed *in) ++{ ++ struct unpack_state state = unpack_state_init(format, in); ++ struct bkey out; ++ ++ EBUG_ON(format->nr_fields != BKEY_NR_FIELDS); ++ EBUG_ON(in->u64s < format->key_u64s); ++ EBUG_ON(in->format != KEY_FORMAT_LOCAL_BTREE); ++ EBUG_ON(in->u64s - format->key_u64s + BKEY_U64s > U8_MAX); ++ ++ out.u64s = BKEY_U64s + in->u64s - format->key_u64s; ++ out.format = KEY_FORMAT_CURRENT; ++ out.needs_whiteout = in->needs_whiteout; ++ out.type = in->type; ++ out.pad[0] = 0; ++ ++#define x(id, field) out.field = get_inc_field(&state, id); ++ bkey_fields() ++#undef x ++ ++ return out; ++} ++ ++#ifndef HAVE_BCACHEFS_COMPILED_UNPACK ++struct bpos __bkey_unpack_pos(const struct bkey_format *format, ++ const struct bkey_packed *in) ++{ ++ struct unpack_state state = unpack_state_init(format, in); ++ struct bpos out; ++ ++ EBUG_ON(format->nr_fields != BKEY_NR_FIELDS); ++ EBUG_ON(in->u64s < format->key_u64s); ++ EBUG_ON(in->format != KEY_FORMAT_LOCAL_BTREE); ++ ++ out.inode = get_inc_field(&state, BKEY_FIELD_INODE); ++ out.offset = get_inc_field(&state, BKEY_FIELD_OFFSET); ++ out.snapshot = get_inc_field(&state, BKEY_FIELD_SNAPSHOT); ++ ++ return out; ++} ++#endif ++ ++/** ++ * bch2_bkey_pack_key -- pack just the key, not the value ++ */ ++bool bch2_bkey_pack_key(struct bkey_packed *out, const struct bkey *in, ++ const struct bkey_format *format) ++{ ++ struct pack_state state = pack_state_init(format, out); ++ ++ EBUG_ON((void *) in == (void *) out); ++ EBUG_ON(format->nr_fields != BKEY_NR_FIELDS); ++ EBUG_ON(in->format != KEY_FORMAT_CURRENT); ++ ++ out->_data[0] = 0; ++ ++#define x(id, field) if (!set_inc_field(&state, id, in->field)) return false; ++ bkey_fields() ++#undef x ++ ++ /* ++ * Extents - we have to guarantee that if an extent is packed, a trimmed ++ * version will also pack: ++ */ ++ if (bkey_start_offset(in) < ++ le64_to_cpu(format->field_offset[BKEY_FIELD_OFFSET])) ++ return false; ++ ++ pack_state_finish(&state, out); ++ out->u64s = format->key_u64s + in->u64s - BKEY_U64s; ++ out->format = KEY_FORMAT_LOCAL_BTREE; ++ out->needs_whiteout = in->needs_whiteout; ++ out->type = in->type; ++ ++ bch2_bkey_pack_verify(out, in, format); ++ return true; ++} ++ ++/** ++ * bch2_bkey_unpack -- unpack the key and the value ++ */ ++void bch2_bkey_unpack(const struct btree *b, struct bkey_i *dst, ++ const struct bkey_packed *src) ++{ ++ __bkey_unpack_key(b, &dst->k, src); ++ ++ memcpy_u64s(&dst->v, ++ bkeyp_val(&b->format, src), ++ bkeyp_val_u64s(&b->format, src)); ++} ++ ++/** ++ * bch2_bkey_pack -- pack the key and the value ++ */ ++bool bch2_bkey_pack(struct bkey_packed *out, const struct bkey_i *in, ++ const struct bkey_format *format) ++{ ++ struct bkey_packed tmp; ++ ++ if (!bch2_bkey_pack_key(&tmp, &in->k, format)) ++ return false; ++ ++ memmove_u64s((u64 *) out + format->key_u64s, ++ &in->v, ++ bkey_val_u64s(&in->k)); ++ memcpy_u64s(out, &tmp, format->key_u64s); ++ ++ return true; ++} ++ ++__always_inline ++static bool set_inc_field_lossy(struct pack_state *state, unsigned field, u64 v) ++{ ++ unsigned bits = state->format->bits_per_field[field]; ++ u64 offset = le64_to_cpu(state->format->field_offset[field]); ++ bool ret = true; ++ ++ EBUG_ON(v < offset); ++ v -= offset; ++ ++ if (fls64(v) > bits) { ++ v = ~(~0ULL << bits); ++ ret = false; ++ } ++ ++ if (bits > state->bits) { ++ bits -= state->bits; ++ state->w |= (v >> 1) >> (bits - 1); ++ ++ *state->p = state->w; ++ state->p = next_word(state->p); ++ state->w = 0; ++ state->bits = 64; ++ } ++ ++ state->bits -= bits; ++ state->w |= v << state->bits; ++ ++ return ret; ++} ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++static bool bkey_packed_successor(struct bkey_packed *out, ++ const struct btree *b, ++ struct bkey_packed k) ++{ ++ const struct bkey_format *f = &b->format; ++ unsigned nr_key_bits = b->nr_key_bits; ++ unsigned first_bit, offset; ++ u64 *p; ++ ++ EBUG_ON(b->nr_key_bits != bkey_format_key_bits(f)); ++ ++ if (!nr_key_bits) ++ return false; ++ ++ *out = k; ++ ++ first_bit = high_bit_offset + nr_key_bits - 1; ++ p = nth_word(high_word(f, out), first_bit >> 6); ++ offset = 63 - (first_bit & 63); ++ ++ while (nr_key_bits) { ++ unsigned bits = min(64 - offset, nr_key_bits); ++ u64 mask = (~0ULL >> (64 - bits)) << offset; ++ ++ if ((*p & mask) != mask) { ++ *p += 1ULL << offset; ++ EBUG_ON(bkey_cmp_packed(b, out, &k) <= 0); ++ return true; ++ } ++ ++ *p &= ~mask; ++ p = prev_word(p); ++ nr_key_bits -= bits; ++ offset = 0; ++ } ++ ++ return false; ++} ++#endif ++ ++/* ++ * Returns a packed key that compares <= in ++ * ++ * This is used in bset_search_tree(), where we need a packed pos in order to be ++ * able to compare against the keys in the auxiliary search tree - and it's ++ * legal to use a packed pos that isn't equivalent to the original pos, ++ * _provided_ it compares <= to the original pos. ++ */ ++enum bkey_pack_pos_ret bch2_bkey_pack_pos_lossy(struct bkey_packed *out, ++ struct bpos in, ++ const struct btree *b) ++{ ++ const struct bkey_format *f = &b->format; ++ struct pack_state state = pack_state_init(f, out); ++#ifdef CONFIG_BCACHEFS_DEBUG ++ struct bpos orig = in; ++#endif ++ bool exact = true; ++ ++ out->_data[0] = 0; ++ ++ if (unlikely(in.snapshot < ++ le64_to_cpu(f->field_offset[BKEY_FIELD_SNAPSHOT]))) { ++ if (!in.offset-- && ++ !in.inode--) ++ return BKEY_PACK_POS_FAIL; ++ in.snapshot = KEY_SNAPSHOT_MAX; ++ exact = false; ++ } ++ ++ if (unlikely(in.offset < ++ le64_to_cpu(f->field_offset[BKEY_FIELD_OFFSET]))) { ++ if (!in.inode--) ++ return BKEY_PACK_POS_FAIL; ++ in.offset = KEY_OFFSET_MAX; ++ in.snapshot = KEY_SNAPSHOT_MAX; ++ exact = false; ++ } ++ ++ if (unlikely(in.inode < ++ le64_to_cpu(f->field_offset[BKEY_FIELD_INODE]))) ++ return BKEY_PACK_POS_FAIL; ++ ++ if (!set_inc_field_lossy(&state, BKEY_FIELD_INODE, in.inode)) { ++ in.offset = KEY_OFFSET_MAX; ++ in.snapshot = KEY_SNAPSHOT_MAX; ++ exact = false; ++ } ++ ++ if (!set_inc_field_lossy(&state, BKEY_FIELD_OFFSET, in.offset)) { ++ in.snapshot = KEY_SNAPSHOT_MAX; ++ exact = false; ++ } ++ ++ if (!set_inc_field_lossy(&state, BKEY_FIELD_SNAPSHOT, in.snapshot)) ++ exact = false; ++ ++ pack_state_finish(&state, out); ++ out->u64s = f->key_u64s; ++ out->format = KEY_FORMAT_LOCAL_BTREE; ++ out->type = KEY_TYPE_deleted; ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ if (exact) { ++ BUG_ON(bkey_cmp_left_packed(b, out, &orig)); ++ } else { ++ struct bkey_packed successor; ++ ++ BUG_ON(bkey_cmp_left_packed(b, out, &orig) >= 0); ++ BUG_ON(bkey_packed_successor(&successor, b, *out) && ++ bkey_cmp_left_packed(b, &successor, &orig) < 0); ++ } ++#endif ++ ++ return exact ? BKEY_PACK_POS_EXACT : BKEY_PACK_POS_SMALLER; ++} ++ ++void bch2_bkey_format_init(struct bkey_format_state *s) ++{ ++ unsigned i; ++ ++ for (i = 0; i < ARRAY_SIZE(s->field_min); i++) ++ s->field_min[i] = U64_MAX; ++ ++ for (i = 0; i < ARRAY_SIZE(s->field_max); i++) ++ s->field_max[i] = 0; ++ ++ /* Make sure we can store a size of 0: */ ++ s->field_min[BKEY_FIELD_SIZE] = 0; ++} ++ ++static void __bkey_format_add(struct bkey_format_state *s, ++ unsigned field, u64 v) ++{ ++ s->field_min[field] = min(s->field_min[field], v); ++ s->field_max[field] = max(s->field_max[field], v); ++} ++ ++/* ++ * Changes @format so that @k can be successfully packed with @format ++ */ ++void bch2_bkey_format_add_key(struct bkey_format_state *s, const struct bkey *k) ++{ ++#define x(id, field) __bkey_format_add(s, id, k->field); ++ bkey_fields() ++#undef x ++ __bkey_format_add(s, BKEY_FIELD_OFFSET, bkey_start_offset(k)); ++} ++ ++void bch2_bkey_format_add_pos(struct bkey_format_state *s, struct bpos p) ++{ ++ unsigned field = 0; ++ ++ __bkey_format_add(s, field++, p.inode); ++ __bkey_format_add(s, field++, p.offset); ++ __bkey_format_add(s, field++, p.snapshot); ++} ++ ++/* ++ * We don't want it to be possible for the packed format to represent fields ++ * bigger than a u64... that will cause confusion and issues (like with ++ * bkey_packed_successor()) ++ */ ++static void set_format_field(struct bkey_format *f, enum bch_bkey_fields i, ++ unsigned bits, u64 offset) ++{ ++ offset = bits == 64 ? 0 : min(offset, U64_MAX - ((1ULL << bits) - 1)); ++ ++ f->bits_per_field[i] = bits; ++ f->field_offset[i] = cpu_to_le64(offset); ++} ++ ++struct bkey_format bch2_bkey_format_done(struct bkey_format_state *s) ++{ ++ unsigned i, bits = KEY_PACKED_BITS_START; ++ struct bkey_format ret = { ++ .nr_fields = BKEY_NR_FIELDS, ++ }; ++ ++ for (i = 0; i < ARRAY_SIZE(s->field_min); i++) { ++ s->field_min[i] = min(s->field_min[i], s->field_max[i]); ++ ++ set_format_field(&ret, i, ++ fls64(s->field_max[i] - s->field_min[i]), ++ s->field_min[i]); ++ ++ bits += ret.bits_per_field[i]; ++ } ++ ++ /* allow for extent merging: */ ++ if (ret.bits_per_field[BKEY_FIELD_SIZE]) { ++ ret.bits_per_field[BKEY_FIELD_SIZE] += 4; ++ bits += 4; ++ } ++ ++ ret.key_u64s = DIV_ROUND_UP(bits, 64); ++ ++ /* if we have enough spare bits, round fields up to nearest byte */ ++ bits = ret.key_u64s * 64 - bits; ++ ++ for (i = 0; i < ARRAY_SIZE(ret.bits_per_field); i++) { ++ unsigned r = round_up(ret.bits_per_field[i], 8) - ++ ret.bits_per_field[i]; ++ ++ if (r <= bits) { ++ set_format_field(&ret, i, ++ ret.bits_per_field[i] + r, ++ le64_to_cpu(ret.field_offset[i])); ++ bits -= r; ++ } ++ } ++ ++ EBUG_ON(bch2_bkey_format_validate(&ret)); ++ return ret; ++} ++ ++const char *bch2_bkey_format_validate(struct bkey_format *f) ++{ ++ unsigned i, bits = KEY_PACKED_BITS_START; ++ ++ if (f->nr_fields != BKEY_NR_FIELDS) ++ return "incorrect number of fields"; ++ ++ for (i = 0; i < f->nr_fields; i++) { ++ u64 field_offset = le64_to_cpu(f->field_offset[i]); ++ ++ if (f->bits_per_field[i] > 64) ++ return "field too large"; ++ ++ if (field_offset && ++ (f->bits_per_field[i] == 64 || ++ (field_offset + ((1ULL << f->bits_per_field[i]) - 1) < ++ field_offset))) ++ return "offset + bits overflow"; ++ ++ bits += f->bits_per_field[i]; ++ } ++ ++ if (f->key_u64s != DIV_ROUND_UP(bits, 64)) ++ return "incorrect key_u64s"; ++ ++ return NULL; ++} ++ ++/* ++ * Most significant differing bit ++ * Bits are indexed from 0 - return is [0, nr_key_bits) ++ */ ++__pure ++unsigned bch2_bkey_greatest_differing_bit(const struct btree *b, ++ const struct bkey_packed *l_k, ++ const struct bkey_packed *r_k) ++{ ++ const u64 *l = high_word(&b->format, l_k); ++ const u64 *r = high_word(&b->format, r_k); ++ unsigned nr_key_bits = b->nr_key_bits; ++ unsigned word_bits = 64 - high_bit_offset; ++ u64 l_v, r_v; ++ ++ EBUG_ON(b->nr_key_bits != bkey_format_key_bits(&b->format)); ++ ++ /* for big endian, skip past header */ ++ l_v = *l & (~0ULL >> high_bit_offset); ++ r_v = *r & (~0ULL >> high_bit_offset); ++ ++ while (nr_key_bits) { ++ if (nr_key_bits < word_bits) { ++ l_v >>= word_bits - nr_key_bits; ++ r_v >>= word_bits - nr_key_bits; ++ nr_key_bits = 0; ++ } else { ++ nr_key_bits -= word_bits; ++ } ++ ++ if (l_v != r_v) ++ return fls64(l_v ^ r_v) - 1 + nr_key_bits; ++ ++ l = next_word(l); ++ r = next_word(r); ++ ++ l_v = *l; ++ r_v = *r; ++ word_bits = 64; ++ } ++ ++ return 0; ++} ++ ++/* ++ * First set bit ++ * Bits are indexed from 0 - return is [0, nr_key_bits) ++ */ ++__pure ++unsigned bch2_bkey_ffs(const struct btree *b, const struct bkey_packed *k) ++{ ++ const u64 *p = high_word(&b->format, k); ++ unsigned nr_key_bits = b->nr_key_bits; ++ unsigned ret = 0, offset; ++ ++ EBUG_ON(b->nr_key_bits != bkey_format_key_bits(&b->format)); ++ ++ offset = nr_key_bits; ++ while (offset > 64) { ++ p = next_word(p); ++ offset -= 64; ++ } ++ ++ offset = 64 - offset; ++ ++ while (nr_key_bits) { ++ unsigned bits = nr_key_bits + offset < 64 ++ ? nr_key_bits ++ : 64 - offset; ++ ++ u64 mask = (~0ULL >> (64 - bits)) << offset; ++ ++ if (*p & mask) ++ return ret + __ffs64(*p & mask) - offset; ++ ++ p = prev_word(p); ++ nr_key_bits -= bits; ++ ret += bits; ++ offset = 0; ++ } ++ ++ return 0; ++} ++ ++#ifdef CONFIG_X86_64 ++ ++static inline int __bkey_cmp_bits(const u64 *l, const u64 *r, ++ unsigned nr_key_bits) ++{ ++ long d0, d1, d2, d3; ++ int cmp; ++ ++ /* we shouldn't need asm for this, but gcc is being retarded: */ ++ ++ asm(".intel_syntax noprefix;" ++ "xor eax, eax;" ++ "xor edx, edx;" ++ "1:;" ++ "mov r8, [rdi];" ++ "mov r9, [rsi];" ++ "sub ecx, 64;" ++ "jl 2f;" ++ ++ "cmp r8, r9;" ++ "jnz 3f;" ++ ++ "lea rdi, [rdi - 8];" ++ "lea rsi, [rsi - 8];" ++ "jmp 1b;" ++ ++ "2:;" ++ "not ecx;" ++ "shr r8, 1;" ++ "shr r9, 1;" ++ "shr r8, cl;" ++ "shr r9, cl;" ++ "cmp r8, r9;" ++ ++ "3:\n" ++ "seta al;" ++ "setb dl;" ++ "sub eax, edx;" ++ ".att_syntax prefix;" ++ : "=&D" (d0), "=&S" (d1), "=&d" (d2), "=&c" (d3), "=&a" (cmp) ++ : "0" (l), "1" (r), "3" (nr_key_bits) ++ : "r8", "r9", "cc", "memory"); ++ ++ return cmp; ++} ++ ++#define I(_x) (*(out)++ = (_x)) ++#define I1(i0) I(i0) ++#define I2(i0, i1) (I1(i0), I(i1)) ++#define I3(i0, i1, i2) (I2(i0, i1), I(i2)) ++#define I4(i0, i1, i2, i3) (I3(i0, i1, i2), I(i3)) ++#define I5(i0, i1, i2, i3, i4) (I4(i0, i1, i2, i3), I(i4)) ++ ++static u8 *compile_bkey_field(const struct bkey_format *format, u8 *out, ++ enum bch_bkey_fields field, ++ unsigned dst_offset, unsigned dst_size, ++ bool *eax_zeroed) ++{ ++ unsigned bits = format->bits_per_field[field]; ++ u64 offset = le64_to_cpu(format->field_offset[field]); ++ unsigned i, byte, bit_offset, align, shl, shr; ++ ++ if (!bits && !offset) { ++ if (!*eax_zeroed) { ++ /* xor eax, eax */ ++ I2(0x31, 0xc0); ++ } ++ ++ *eax_zeroed = true; ++ goto set_field; ++ } ++ ++ if (!bits) { ++ /* just return offset: */ ++ ++ switch (dst_size) { ++ case 8: ++ if (offset > S32_MAX) { ++ /* mov [rdi + dst_offset], offset */ ++ I3(0xc7, 0x47, dst_offset); ++ memcpy(out, &offset, 4); ++ out += 4; ++ ++ I3(0xc7, 0x47, dst_offset + 4); ++ memcpy(out, (void *) &offset + 4, 4); ++ out += 4; ++ } else { ++ /* mov [rdi + dst_offset], offset */ ++ /* sign extended */ ++ I4(0x48, 0xc7, 0x47, dst_offset); ++ memcpy(out, &offset, 4); ++ out += 4; ++ } ++ break; ++ case 4: ++ /* mov [rdi + dst_offset], offset */ ++ I3(0xc7, 0x47, dst_offset); ++ memcpy(out, &offset, 4); ++ out += 4; ++ break; ++ default: ++ BUG(); ++ } ++ ++ return out; ++ } ++ ++ bit_offset = format->key_u64s * 64; ++ for (i = 0; i <= field; i++) ++ bit_offset -= format->bits_per_field[i]; ++ ++ byte = bit_offset / 8; ++ bit_offset -= byte * 8; ++ ++ *eax_zeroed = false; ++ ++ if (bit_offset == 0 && bits == 8) { ++ /* movzx eax, BYTE PTR [rsi + imm8] */ ++ I4(0x0f, 0xb6, 0x46, byte); ++ } else if (bit_offset == 0 && bits == 16) { ++ /* movzx eax, WORD PTR [rsi + imm8] */ ++ I4(0x0f, 0xb7, 0x46, byte); ++ } else if (bit_offset + bits <= 32) { ++ align = min(4 - DIV_ROUND_UP(bit_offset + bits, 8), byte & 3); ++ byte -= align; ++ bit_offset += align * 8; ++ ++ BUG_ON(bit_offset + bits > 32); ++ ++ /* mov eax, [rsi + imm8] */ ++ I3(0x8b, 0x46, byte); ++ ++ if (bit_offset) { ++ /* shr eax, imm8 */ ++ I3(0xc1, 0xe8, bit_offset); ++ } ++ ++ if (bit_offset + bits < 32) { ++ unsigned mask = ~0U >> (32 - bits); ++ ++ /* and eax, imm32 */ ++ I1(0x25); ++ memcpy(out, &mask, 4); ++ out += 4; ++ } ++ } else if (bit_offset + bits <= 64) { ++ align = min(8 - DIV_ROUND_UP(bit_offset + bits, 8), byte & 7); ++ byte -= align; ++ bit_offset += align * 8; ++ ++ BUG_ON(bit_offset + bits > 64); ++ ++ /* mov rax, [rsi + imm8] */ ++ I4(0x48, 0x8b, 0x46, byte); ++ ++ shl = 64 - bit_offset - bits; ++ shr = bit_offset + shl; ++ ++ if (shl) { ++ /* shl rax, imm8 */ ++ I4(0x48, 0xc1, 0xe0, shl); ++ } ++ ++ if (shr) { ++ /* shr rax, imm8 */ ++ I4(0x48, 0xc1, 0xe8, shr); ++ } ++ } else { ++ align = min(4 - DIV_ROUND_UP(bit_offset + bits, 8), byte & 3); ++ byte -= align; ++ bit_offset += align * 8; ++ ++ BUG_ON(bit_offset + bits > 96); ++ ++ /* mov rax, [rsi + byte] */ ++ I4(0x48, 0x8b, 0x46, byte); ++ ++ /* mov edx, [rsi + byte + 8] */ ++ I3(0x8b, 0x56, byte + 8); ++ ++ /* bits from next word: */ ++ shr = bit_offset + bits - 64; ++ BUG_ON(shr > bit_offset); ++ ++ /* shr rax, bit_offset */ ++ I4(0x48, 0xc1, 0xe8, shr); ++ ++ /* shl rdx, imm8 */ ++ I4(0x48, 0xc1, 0xe2, 64 - shr); ++ ++ /* or rax, rdx */ ++ I3(0x48, 0x09, 0xd0); ++ ++ shr = bit_offset - shr; ++ ++ if (shr) { ++ /* shr rax, imm8 */ ++ I4(0x48, 0xc1, 0xe8, shr); ++ } ++ } ++ ++ /* rax += offset: */ ++ if (offset > S32_MAX) { ++ /* mov rdx, imm64 */ ++ I2(0x48, 0xba); ++ memcpy(out, &offset, 8); ++ out += 8; ++ /* add %rdx, %rax */ ++ I3(0x48, 0x01, 0xd0); ++ } else if (offset + (~0ULL >> (64 - bits)) > U32_MAX) { ++ /* add rax, imm32 */ ++ I2(0x48, 0x05); ++ memcpy(out, &offset, 4); ++ out += 4; ++ } else if (offset) { ++ /* add eax, imm32 */ ++ I1(0x05); ++ memcpy(out, &offset, 4); ++ out += 4; ++ } ++set_field: ++ switch (dst_size) { ++ case 8: ++ /* mov [rdi + dst_offset], rax */ ++ I4(0x48, 0x89, 0x47, dst_offset); ++ break; ++ case 4: ++ /* mov [rdi + dst_offset], eax */ ++ I3(0x89, 0x47, dst_offset); ++ break; ++ default: ++ BUG(); ++ } ++ ++ return out; ++} ++ ++int bch2_compile_bkey_format(const struct bkey_format *format, void *_out) ++{ ++ bool eax_zeroed = false; ++ u8 *out = _out; ++ ++ /* ++ * rdi: dst - unpacked key ++ * rsi: src - packed key ++ */ ++ ++ /* k->u64s, k->format, k->type */ ++ ++ /* mov eax, [rsi] */ ++ I2(0x8b, 0x06); ++ ++ /* add eax, BKEY_U64s - format->key_u64s */ ++ I5(0x05, BKEY_U64s - format->key_u64s, KEY_FORMAT_CURRENT, 0, 0); ++ ++ /* and eax, imm32: mask out k->pad: */ ++ I5(0x25, 0xff, 0xff, 0xff, 0); ++ ++ /* mov [rdi], eax */ ++ I2(0x89, 0x07); ++ ++#define x(id, field) \ ++ out = compile_bkey_field(format, out, id, \ ++ offsetof(struct bkey, field), \ ++ sizeof(((struct bkey *) NULL)->field), \ ++ &eax_zeroed); ++ bkey_fields() ++#undef x ++ ++ /* retq */ ++ I1(0xc3); ++ ++ return (void *) out - _out; ++} ++ ++#else ++static inline int __bkey_cmp_bits(const u64 *l, const u64 *r, ++ unsigned nr_key_bits) ++{ ++ u64 l_v, r_v; ++ ++ if (!nr_key_bits) ++ return 0; ++ ++ /* for big endian, skip past header */ ++ nr_key_bits += high_bit_offset; ++ l_v = *l & (~0ULL >> high_bit_offset); ++ r_v = *r & (~0ULL >> high_bit_offset); ++ ++ while (1) { ++ if (nr_key_bits < 64) { ++ l_v >>= 64 - nr_key_bits; ++ r_v >>= 64 - nr_key_bits; ++ nr_key_bits = 0; ++ } else { ++ nr_key_bits -= 64; ++ } ++ ++ if (!nr_key_bits || l_v != r_v) ++ break; ++ ++ l = next_word(l); ++ r = next_word(r); ++ ++ l_v = *l; ++ r_v = *r; ++ } ++ ++ return cmp_int(l_v, r_v); ++} ++#endif ++ ++__pure ++int __bch2_bkey_cmp_packed_format_checked(const struct bkey_packed *l, ++ const struct bkey_packed *r, ++ const struct btree *b) ++{ ++ const struct bkey_format *f = &b->format; ++ int ret; ++ ++ EBUG_ON(!bkey_packed(l) || !bkey_packed(r)); ++ EBUG_ON(b->nr_key_bits != bkey_format_key_bits(f)); ++ ++ ret = __bkey_cmp_bits(high_word(f, l), ++ high_word(f, r), ++ b->nr_key_bits); ++ ++ EBUG_ON(ret != bkey_cmp(bkey_unpack_pos(b, l), ++ bkey_unpack_pos(b, r))); ++ return ret; ++} ++ ++__pure __flatten ++int __bch2_bkey_cmp_left_packed_format_checked(const struct btree *b, ++ const struct bkey_packed *l, ++ const struct bpos *r) ++{ ++ return bkey_cmp(bkey_unpack_pos_format_checked(b, l), *r); ++} ++ ++__pure __flatten ++int __bch2_bkey_cmp_packed(const struct bkey_packed *l, ++ const struct bkey_packed *r, ++ const struct btree *b) ++{ ++ struct bkey unpacked; ++ ++ if (likely(bkey_packed(l) && bkey_packed(r))) ++ return __bch2_bkey_cmp_packed_format_checked(l, r, b); ++ ++ if (bkey_packed(l)) { ++ __bkey_unpack_key_format_checked(b, &unpacked, l); ++ l = (void*) &unpacked; ++ } else if (bkey_packed(r)) { ++ __bkey_unpack_key_format_checked(b, &unpacked, r); ++ r = (void*) &unpacked; ++ } ++ ++ return bkey_cmp(((struct bkey *) l)->p, ((struct bkey *) r)->p); ++} ++ ++__pure __flatten ++int __bch2_bkey_cmp_left_packed(const struct btree *b, ++ const struct bkey_packed *l, ++ const struct bpos *r) ++{ ++ const struct bkey *l_unpacked; ++ ++ return unlikely(l_unpacked = packed_to_bkey_c(l)) ++ ? bkey_cmp(l_unpacked->p, *r) ++ : __bch2_bkey_cmp_left_packed_format_checked(b, l, r); ++} ++ ++void bch2_bpos_swab(struct bpos *p) ++{ ++ u8 *l = (u8 *) p; ++ u8 *h = ((u8 *) &p[1]) - 1; ++ ++ while (l < h) { ++ swap(*l, *h); ++ l++; ++ --h; ++ } ++} ++ ++void bch2_bkey_swab_key(const struct bkey_format *_f, struct bkey_packed *k) ++{ ++ const struct bkey_format *f = bkey_packed(k) ? _f : &bch2_bkey_format_current; ++ u8 *l = k->key_start; ++ u8 *h = (u8 *) (k->_data + f->key_u64s) - 1; ++ ++ while (l < h) { ++ swap(*l, *h); ++ l++; ++ --h; ++ } ++} ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++void bch2_bkey_pack_test(void) ++{ ++ struct bkey t = KEY(4134ULL, 1250629070527416633ULL, 0); ++ struct bkey_packed p; ++ ++ struct bkey_format test_format = { ++ .key_u64s = 2, ++ .nr_fields = BKEY_NR_FIELDS, ++ .bits_per_field = { ++ 13, ++ 64, ++ }, ++ }; ++ ++ struct unpack_state in_s = ++ unpack_state_init(&bch2_bkey_format_current, (void *) &t); ++ struct pack_state out_s = pack_state_init(&test_format, &p); ++ unsigned i; ++ ++ for (i = 0; i < out_s.format->nr_fields; i++) { ++ u64 a, v = get_inc_field(&in_s, i); ++ ++ switch (i) { ++#define x(id, field) case id: a = t.field; break; ++ bkey_fields() ++#undef x ++ default: ++ BUG(); ++ } ++ ++ if (a != v) ++ panic("got %llu actual %llu i %u\n", v, a, i); ++ ++ if (!set_inc_field(&out_s, i, v)) ++ panic("failed at %u\n", i); ++ } ++ ++ BUG_ON(!bch2_bkey_pack_key(&p, &t, &test_format)); ++} ++#endif +diff --git a/fs/bcachefs/bkey.h b/fs/bcachefs/bkey.h +new file mode 100644 +index 000000000000..cbcfbd26bc58 +--- /dev/null ++++ b/fs/bcachefs/bkey.h +@@ -0,0 +1,605 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BKEY_H ++#define _BCACHEFS_BKEY_H ++ ++#include ++#include "bcachefs_format.h" ++ ++#include "util.h" ++#include "vstructs.h" ++ ++#ifdef CONFIG_X86_64 ++#define HAVE_BCACHEFS_COMPILED_UNPACK 1 ++#endif ++ ++void bch2_to_binary(char *, const u64 *, unsigned); ++ ++/* bkey with split value, const */ ++struct bkey_s_c { ++ const struct bkey *k; ++ const struct bch_val *v; ++}; ++ ++/* bkey with split value */ ++struct bkey_s { ++ union { ++ struct { ++ struct bkey *k; ++ struct bch_val *v; ++ }; ++ struct bkey_s_c s_c; ++ }; ++}; ++ ++#define bkey_next(_k) vstruct_next(_k) ++ ++static inline struct bkey_packed *bkey_next_skip_noops(struct bkey_packed *k, ++ struct bkey_packed *end) ++{ ++ k = bkey_next(k); ++ ++ while (k != end && !k->u64s) ++ k = (void *) ((u64 *) k + 1); ++ return k; ++} ++ ++#define bkey_val_u64s(_k) ((_k)->u64s - BKEY_U64s) ++ ++static inline size_t bkey_val_bytes(const struct bkey *k) ++{ ++ return bkey_val_u64s(k) * sizeof(u64); ++} ++ ++static inline void set_bkey_val_u64s(struct bkey *k, unsigned val_u64s) ++{ ++ k->u64s = BKEY_U64s + val_u64s; ++} ++ ++static inline void set_bkey_val_bytes(struct bkey *k, unsigned bytes) ++{ ++ k->u64s = BKEY_U64s + DIV_ROUND_UP(bytes, sizeof(u64)); ++} ++ ++#define bkey_val_end(_k) ((void *) (((u64 *) (_k).v) + bkey_val_u64s((_k).k))) ++ ++#define bkey_deleted(_k) ((_k)->type == KEY_TYPE_deleted) ++ ++#define bkey_whiteout(_k) \ ++ ((_k)->type == KEY_TYPE_deleted || (_k)->type == KEY_TYPE_discard) ++ ++#define bkey_packed_typecheck(_k) \ ++({ \ ++ BUILD_BUG_ON(!type_is(_k, struct bkey *) && \ ++ !type_is(_k, struct bkey_packed *)); \ ++ type_is(_k, struct bkey_packed *); \ ++}) ++ ++enum bkey_lr_packed { ++ BKEY_PACKED_BOTH, ++ BKEY_PACKED_RIGHT, ++ BKEY_PACKED_LEFT, ++ BKEY_PACKED_NONE, ++}; ++ ++#define bkey_lr_packed_typecheck(_l, _r) \ ++ (!bkey_packed_typecheck(_l) + ((!bkey_packed_typecheck(_r)) << 1)) ++ ++#define bkey_lr_packed(_l, _r) \ ++ ((_l)->format + ((_r)->format << 1)) ++ ++#define bkey_copy(_dst, _src) \ ++do { \ ++ BUILD_BUG_ON(!type_is(_dst, struct bkey_i *) && \ ++ !type_is(_dst, struct bkey_packed *)); \ ++ BUILD_BUG_ON(!type_is(_src, struct bkey_i *) && \ ++ !type_is(_src, struct bkey_packed *)); \ ++ EBUG_ON((u64 *) (_dst) > (u64 *) (_src) && \ ++ (u64 *) (_dst) < (u64 *) (_src) + \ ++ ((struct bkey *) (_src))->u64s); \ ++ \ ++ memcpy_u64s_small((_dst), (_src), \ ++ ((struct bkey *) (_src))->u64s); \ ++} while (0) ++ ++struct btree; ++ ++struct bkey_format_state { ++ u64 field_min[BKEY_NR_FIELDS]; ++ u64 field_max[BKEY_NR_FIELDS]; ++}; ++ ++void bch2_bkey_format_init(struct bkey_format_state *); ++void bch2_bkey_format_add_key(struct bkey_format_state *, const struct bkey *); ++void bch2_bkey_format_add_pos(struct bkey_format_state *, struct bpos); ++struct bkey_format bch2_bkey_format_done(struct bkey_format_state *); ++const char *bch2_bkey_format_validate(struct bkey_format *); ++ ++__pure ++unsigned bch2_bkey_greatest_differing_bit(const struct btree *, ++ const struct bkey_packed *, ++ const struct bkey_packed *); ++__pure ++unsigned bch2_bkey_ffs(const struct btree *, const struct bkey_packed *); ++ ++__pure ++int __bch2_bkey_cmp_packed_format_checked(const struct bkey_packed *, ++ const struct bkey_packed *, ++ const struct btree *); ++ ++__pure ++int __bch2_bkey_cmp_left_packed_format_checked(const struct btree *, ++ const struct bkey_packed *, ++ const struct bpos *); ++ ++__pure ++int __bch2_bkey_cmp_packed(const struct bkey_packed *, ++ const struct bkey_packed *, ++ const struct btree *); ++ ++__pure ++int __bch2_bkey_cmp_left_packed(const struct btree *, ++ const struct bkey_packed *, ++ const struct bpos *); ++ ++static inline __pure ++int bkey_cmp_left_packed(const struct btree *b, ++ const struct bkey_packed *l, const struct bpos *r) ++{ ++ return __bch2_bkey_cmp_left_packed(b, l, r); ++} ++ ++/* ++ * we prefer to pass bpos by ref, but it's often enough terribly convenient to ++ * pass it by by val... as much as I hate c++, const ref would be nice here: ++ */ ++__pure __flatten ++static inline int bkey_cmp_left_packed_byval(const struct btree *b, ++ const struct bkey_packed *l, ++ struct bpos r) ++{ ++ return bkey_cmp_left_packed(b, l, &r); ++} ++ ++/* ++ * If @_l or @_r are struct bkey * (not bkey_packed *), uses type information to ++ * skip dispatching on k->format: ++ */ ++#define bkey_cmp_packed(_b, _l, _r) \ ++({ \ ++ int _cmp; \ ++ \ ++ switch (bkey_lr_packed_typecheck(_l, _r)) { \ ++ case BKEY_PACKED_NONE: \ ++ _cmp = bkey_cmp(((struct bkey *) (_l))->p, \ ++ ((struct bkey *) (_r))->p); \ ++ break; \ ++ case BKEY_PACKED_LEFT: \ ++ _cmp = bkey_cmp_left_packed((_b), \ ++ (struct bkey_packed *) (_l), \ ++ &((struct bkey *) (_r))->p); \ ++ break; \ ++ case BKEY_PACKED_RIGHT: \ ++ _cmp = -bkey_cmp_left_packed((_b), \ ++ (struct bkey_packed *) (_r), \ ++ &((struct bkey *) (_l))->p); \ ++ break; \ ++ case BKEY_PACKED_BOTH: \ ++ _cmp = __bch2_bkey_cmp_packed((void *) (_l), \ ++ (void *) (_r), (_b)); \ ++ break; \ ++ } \ ++ _cmp; \ ++}) ++ ++#if 1 ++static __always_inline int bkey_cmp(struct bpos l, struct bpos r) ++{ ++ if (l.inode != r.inode) ++ return l.inode < r.inode ? -1 : 1; ++ if (l.offset != r.offset) ++ return l.offset < r.offset ? -1 : 1; ++ if (l.snapshot != r.snapshot) ++ return l.snapshot < r.snapshot ? -1 : 1; ++ return 0; ++} ++#else ++int bkey_cmp(struct bpos l, struct bpos r); ++#endif ++ ++static inline struct bpos bpos_min(struct bpos l, struct bpos r) ++{ ++ return bkey_cmp(l, r) < 0 ? l : r; ++} ++ ++void bch2_bpos_swab(struct bpos *); ++void bch2_bkey_swab_key(const struct bkey_format *, struct bkey_packed *); ++ ++static __always_inline int bversion_cmp(struct bversion l, struct bversion r) ++{ ++ return cmp_int(l.hi, r.hi) ?: ++ cmp_int(l.lo, r.lo); ++} ++ ++#define ZERO_VERSION ((struct bversion) { .hi = 0, .lo = 0 }) ++#define MAX_VERSION ((struct bversion) { .hi = ~0, .lo = ~0ULL }) ++ ++static __always_inline int bversion_zero(struct bversion v) ++{ ++ return !bversion_cmp(v, ZERO_VERSION); ++} ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++/* statement expressions confusing unlikely()? */ ++#define bkey_packed(_k) \ ++ ({ EBUG_ON((_k)->format > KEY_FORMAT_CURRENT); \ ++ (_k)->format != KEY_FORMAT_CURRENT; }) ++#else ++#define bkey_packed(_k) ((_k)->format != KEY_FORMAT_CURRENT) ++#endif ++ ++/* ++ * It's safe to treat an unpacked bkey as a packed one, but not the reverse ++ */ ++static inline struct bkey_packed *bkey_to_packed(struct bkey_i *k) ++{ ++ return (struct bkey_packed *) k; ++} ++ ++static inline const struct bkey_packed *bkey_to_packed_c(const struct bkey_i *k) ++{ ++ return (const struct bkey_packed *) k; ++} ++ ++static inline struct bkey_i *packed_to_bkey(struct bkey_packed *k) ++{ ++ return bkey_packed(k) ? NULL : (struct bkey_i *) k; ++} ++ ++static inline const struct bkey *packed_to_bkey_c(const struct bkey_packed *k) ++{ ++ return bkey_packed(k) ? NULL : (const struct bkey *) k; ++} ++ ++static inline unsigned bkey_format_key_bits(const struct bkey_format *format) ++{ ++ return format->bits_per_field[BKEY_FIELD_INODE] + ++ format->bits_per_field[BKEY_FIELD_OFFSET] + ++ format->bits_per_field[BKEY_FIELD_SNAPSHOT]; ++} ++ ++static inline struct bpos bkey_successor(struct bpos p) ++{ ++ struct bpos ret = p; ++ ++ if (!++ret.offset) ++ BUG_ON(!++ret.inode); ++ ++ return ret; ++} ++ ++static inline struct bpos bkey_predecessor(struct bpos p) ++{ ++ struct bpos ret = p; ++ ++ if (!ret.offset--) ++ BUG_ON(!ret.inode--); ++ ++ return ret; ++} ++ ++static inline u64 bkey_start_offset(const struct bkey *k) ++{ ++ return k->p.offset - k->size; ++} ++ ++static inline struct bpos bkey_start_pos(const struct bkey *k) ++{ ++ return (struct bpos) { ++ .inode = k->p.inode, ++ .offset = bkey_start_offset(k), ++ .snapshot = k->p.snapshot, ++ }; ++} ++ ++/* Packed helpers */ ++ ++static inline unsigned bkeyp_key_u64s(const struct bkey_format *format, ++ const struct bkey_packed *k) ++{ ++ unsigned ret = bkey_packed(k) ? format->key_u64s : BKEY_U64s; ++ ++ EBUG_ON(k->u64s < ret); ++ return ret; ++} ++ ++static inline unsigned bkeyp_key_bytes(const struct bkey_format *format, ++ const struct bkey_packed *k) ++{ ++ return bkeyp_key_u64s(format, k) * sizeof(u64); ++} ++ ++static inline unsigned bkeyp_val_u64s(const struct bkey_format *format, ++ const struct bkey_packed *k) ++{ ++ return k->u64s - bkeyp_key_u64s(format, k); ++} ++ ++static inline size_t bkeyp_val_bytes(const struct bkey_format *format, ++ const struct bkey_packed *k) ++{ ++ return bkeyp_val_u64s(format, k) * sizeof(u64); ++} ++ ++static inline void set_bkeyp_val_u64s(const struct bkey_format *format, ++ struct bkey_packed *k, unsigned val_u64s) ++{ ++ k->u64s = bkeyp_key_u64s(format, k) + val_u64s; ++} ++ ++#define bkeyp_val(_format, _k) \ ++ ((struct bch_val *) ((_k)->_data + bkeyp_key_u64s(_format, _k))) ++ ++extern const struct bkey_format bch2_bkey_format_current; ++ ++bool bch2_bkey_transform(const struct bkey_format *, ++ struct bkey_packed *, ++ const struct bkey_format *, ++ const struct bkey_packed *); ++ ++struct bkey __bch2_bkey_unpack_key(const struct bkey_format *, ++ const struct bkey_packed *); ++ ++#ifndef HAVE_BCACHEFS_COMPILED_UNPACK ++struct bpos __bkey_unpack_pos(const struct bkey_format *, ++ const struct bkey_packed *); ++#endif ++ ++bool bch2_bkey_pack_key(struct bkey_packed *, const struct bkey *, ++ const struct bkey_format *); ++ ++enum bkey_pack_pos_ret { ++ BKEY_PACK_POS_EXACT, ++ BKEY_PACK_POS_SMALLER, ++ BKEY_PACK_POS_FAIL, ++}; ++ ++enum bkey_pack_pos_ret bch2_bkey_pack_pos_lossy(struct bkey_packed *, struct bpos, ++ const struct btree *); ++ ++static inline bool bkey_pack_pos(struct bkey_packed *out, struct bpos in, ++ const struct btree *b) ++{ ++ return bch2_bkey_pack_pos_lossy(out, in, b) == BKEY_PACK_POS_EXACT; ++} ++ ++void bch2_bkey_unpack(const struct btree *, struct bkey_i *, ++ const struct bkey_packed *); ++bool bch2_bkey_pack(struct bkey_packed *, const struct bkey_i *, ++ const struct bkey_format *); ++ ++static inline u64 bkey_field_max(const struct bkey_format *f, ++ enum bch_bkey_fields nr) ++{ ++ return f->bits_per_field[nr] < 64 ++ ? (le64_to_cpu(f->field_offset[nr]) + ++ ~(~0ULL << f->bits_per_field[nr])) ++ : U64_MAX; ++} ++ ++#ifdef HAVE_BCACHEFS_COMPILED_UNPACK ++ ++int bch2_compile_bkey_format(const struct bkey_format *, void *); ++ ++#else ++ ++static inline int bch2_compile_bkey_format(const struct bkey_format *format, ++ void *out) { return 0; } ++ ++#endif ++ ++static inline void bkey_reassemble(struct bkey_i *dst, ++ struct bkey_s_c src) ++{ ++ dst->k = *src.k; ++ memcpy_u64s_small(&dst->v, src.v, bkey_val_u64s(src.k)); ++} ++ ++#define bkey_s_null ((struct bkey_s) { .k = NULL }) ++#define bkey_s_c_null ((struct bkey_s_c) { .k = NULL }) ++ ++#define bkey_s_err(err) ((struct bkey_s) { .k = ERR_PTR(err) }) ++#define bkey_s_c_err(err) ((struct bkey_s_c) { .k = ERR_PTR(err) }) ++ ++static inline struct bkey_s bkey_to_s(struct bkey *k) ++{ ++ return (struct bkey_s) { .k = k, .v = NULL }; ++} ++ ++static inline struct bkey_s_c bkey_to_s_c(const struct bkey *k) ++{ ++ return (struct bkey_s_c) { .k = k, .v = NULL }; ++} ++ ++static inline struct bkey_s bkey_i_to_s(struct bkey_i *k) ++{ ++ return (struct bkey_s) { .k = &k->k, .v = &k->v }; ++} ++ ++static inline struct bkey_s_c bkey_i_to_s_c(const struct bkey_i *k) ++{ ++ return (struct bkey_s_c) { .k = &k->k, .v = &k->v }; ++} ++ ++/* ++ * For a given type of value (e.g. struct bch_extent), generates the types for ++ * bkey + bch_extent - inline, split, split const - and also all the conversion ++ * functions, which also check that the value is of the correct type. ++ * ++ * We use anonymous unions for upcasting - e.g. converting from e.g. a ++ * bkey_i_extent to a bkey_i - since that's always safe, instead of conversion ++ * functions. ++ */ ++#define BKEY_VAL_ACCESSORS(name) \ ++struct bkey_i_##name { \ ++ union { \ ++ struct bkey k; \ ++ struct bkey_i k_i; \ ++ }; \ ++ struct bch_##name v; \ ++}; \ ++ \ ++struct bkey_s_c_##name { \ ++ union { \ ++ struct { \ ++ const struct bkey *k; \ ++ const struct bch_##name *v; \ ++ }; \ ++ struct bkey_s_c s_c; \ ++ }; \ ++}; \ ++ \ ++struct bkey_s_##name { \ ++ union { \ ++ struct { \ ++ struct bkey *k; \ ++ struct bch_##name *v; \ ++ }; \ ++ struct bkey_s_c_##name c; \ ++ struct bkey_s s; \ ++ struct bkey_s_c s_c; \ ++ }; \ ++}; \ ++ \ ++static inline struct bkey_i_##name *bkey_i_to_##name(struct bkey_i *k) \ ++{ \ ++ EBUG_ON(k->k.type != KEY_TYPE_##name); \ ++ return container_of(&k->k, struct bkey_i_##name, k); \ ++} \ ++ \ ++static inline const struct bkey_i_##name * \ ++bkey_i_to_##name##_c(const struct bkey_i *k) \ ++{ \ ++ EBUG_ON(k->k.type != KEY_TYPE_##name); \ ++ return container_of(&k->k, struct bkey_i_##name, k); \ ++} \ ++ \ ++static inline struct bkey_s_##name bkey_s_to_##name(struct bkey_s k) \ ++{ \ ++ EBUG_ON(k.k->type != KEY_TYPE_##name); \ ++ return (struct bkey_s_##name) { \ ++ .k = k.k, \ ++ .v = container_of(k.v, struct bch_##name, v), \ ++ }; \ ++} \ ++ \ ++static inline struct bkey_s_c_##name bkey_s_c_to_##name(struct bkey_s_c k)\ ++{ \ ++ EBUG_ON(k.k->type != KEY_TYPE_##name); \ ++ return (struct bkey_s_c_##name) { \ ++ .k = k.k, \ ++ .v = container_of(k.v, struct bch_##name, v), \ ++ }; \ ++} \ ++ \ ++static inline struct bkey_s_##name name##_i_to_s(struct bkey_i_##name *k)\ ++{ \ ++ return (struct bkey_s_##name) { \ ++ .k = &k->k, \ ++ .v = &k->v, \ ++ }; \ ++} \ ++ \ ++static inline struct bkey_s_c_##name \ ++name##_i_to_s_c(const struct bkey_i_##name *k) \ ++{ \ ++ return (struct bkey_s_c_##name) { \ ++ .k = &k->k, \ ++ .v = &k->v, \ ++ }; \ ++} \ ++ \ ++static inline struct bkey_s_##name bkey_i_to_s_##name(struct bkey_i *k) \ ++{ \ ++ EBUG_ON(k->k.type != KEY_TYPE_##name); \ ++ return (struct bkey_s_##name) { \ ++ .k = &k->k, \ ++ .v = container_of(&k->v, struct bch_##name, v), \ ++ }; \ ++} \ ++ \ ++static inline struct bkey_s_c_##name \ ++bkey_i_to_s_c_##name(const struct bkey_i *k) \ ++{ \ ++ EBUG_ON(k->k.type != KEY_TYPE_##name); \ ++ return (struct bkey_s_c_##name) { \ ++ .k = &k->k, \ ++ .v = container_of(&k->v, struct bch_##name, v), \ ++ }; \ ++} \ ++ \ ++static inline struct bkey_i_##name *bkey_##name##_init(struct bkey_i *_k)\ ++{ \ ++ struct bkey_i_##name *k = \ ++ container_of(&_k->k, struct bkey_i_##name, k); \ ++ \ ++ bkey_init(&k->k); \ ++ memset(&k->v, 0, sizeof(k->v)); \ ++ k->k.type = KEY_TYPE_##name; \ ++ set_bkey_val_bytes(&k->k, sizeof(k->v)); \ ++ \ ++ return k; \ ++} ++ ++BKEY_VAL_ACCESSORS(cookie); ++BKEY_VAL_ACCESSORS(btree_ptr); ++BKEY_VAL_ACCESSORS(extent); ++BKEY_VAL_ACCESSORS(reservation); ++BKEY_VAL_ACCESSORS(inode); ++BKEY_VAL_ACCESSORS(inode_generation); ++BKEY_VAL_ACCESSORS(dirent); ++BKEY_VAL_ACCESSORS(xattr); ++BKEY_VAL_ACCESSORS(alloc); ++BKEY_VAL_ACCESSORS(quota); ++BKEY_VAL_ACCESSORS(stripe); ++BKEY_VAL_ACCESSORS(reflink_p); ++BKEY_VAL_ACCESSORS(reflink_v); ++BKEY_VAL_ACCESSORS(inline_data); ++BKEY_VAL_ACCESSORS(btree_ptr_v2); ++ ++/* byte order helpers */ ++ ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ++ ++static inline unsigned high_word_offset(const struct bkey_format *f) ++{ ++ return f->key_u64s - 1; ++} ++ ++#define high_bit_offset 0 ++#define nth_word(p, n) ((p) - (n)) ++ ++#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ++ ++static inline unsigned high_word_offset(const struct bkey_format *f) ++{ ++ return 0; ++} ++ ++#define high_bit_offset KEY_PACKED_BITS_START ++#define nth_word(p, n) ((p) + (n)) ++ ++#else ++#error edit for your odd byteorder. ++#endif ++ ++#define high_word(f, k) ((k)->_data + high_word_offset(f)) ++#define next_word(p) nth_word(p, 1) ++#define prev_word(p) nth_word(p, -1) ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++void bch2_bkey_pack_test(void); ++#else ++static inline void bch2_bkey_pack_test(void) {} ++#endif ++ ++#endif /* _BCACHEFS_BKEY_H */ +diff --git a/fs/bcachefs/bkey_methods.c b/fs/bcachefs/bkey_methods.c +new file mode 100644 +index 000000000000..36e0c5152b47 +--- /dev/null ++++ b/fs/bcachefs/bkey_methods.c +@@ -0,0 +1,353 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bkey_methods.h" ++#include "btree_types.h" ++#include "alloc_background.h" ++#include "dirent.h" ++#include "ec.h" ++#include "error.h" ++#include "extents.h" ++#include "inode.h" ++#include "quota.h" ++#include "reflink.h" ++#include "xattr.h" ++ ++const char * const bch2_bkey_types[] = { ++#define x(name, nr) #name, ++ BCH_BKEY_TYPES() ++#undef x ++ NULL ++}; ++ ++static const char *deleted_key_invalid(const struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ return NULL; ++} ++ ++#define bch2_bkey_ops_deleted (struct bkey_ops) { \ ++ .key_invalid = deleted_key_invalid, \ ++} ++ ++#define bch2_bkey_ops_discard (struct bkey_ops) { \ ++ .key_invalid = deleted_key_invalid, \ ++} ++ ++static const char *empty_val_key_invalid(const struct bch_fs *c, struct bkey_s_c k) ++{ ++ if (bkey_val_bytes(k.k)) ++ return "value size should be zero"; ++ ++ return NULL; ++} ++ ++#define bch2_bkey_ops_error (struct bkey_ops) { \ ++ .key_invalid = empty_val_key_invalid, \ ++} ++ ++static const char *key_type_cookie_invalid(const struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ if (bkey_val_bytes(k.k) != sizeof(struct bch_cookie)) ++ return "incorrect value size"; ++ ++ return NULL; ++} ++ ++#define bch2_bkey_ops_cookie (struct bkey_ops) { \ ++ .key_invalid = key_type_cookie_invalid, \ ++} ++ ++#define bch2_bkey_ops_whiteout (struct bkey_ops) { \ ++ .key_invalid = empty_val_key_invalid, \ ++} ++ ++static const char *key_type_inline_data_invalid(const struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ return NULL; ++} ++ ++static void key_type_inline_data_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ pr_buf(out, "(%zu bytes)", bkey_val_bytes(k.k)); ++} ++ ++#define bch2_bkey_ops_inline_data (struct bkey_ops) { \ ++ .key_invalid = key_type_inline_data_invalid, \ ++ .val_to_text = key_type_inline_data_to_text, \ ++} ++ ++static const struct bkey_ops bch2_bkey_ops[] = { ++#define x(name, nr) [KEY_TYPE_##name] = bch2_bkey_ops_##name, ++ BCH_BKEY_TYPES() ++#undef x ++}; ++ ++const char *bch2_bkey_val_invalid(struct bch_fs *c, struct bkey_s_c k) ++{ ++ if (k.k->type >= KEY_TYPE_MAX) ++ return "invalid type"; ++ ++ return bch2_bkey_ops[k.k->type].key_invalid(c, k); ++} ++ ++const char *__bch2_bkey_invalid(struct bch_fs *c, struct bkey_s_c k, ++ enum btree_node_type type) ++{ ++ if (k.k->u64s < BKEY_U64s) ++ return "u64s too small"; ++ ++ if (type == BKEY_TYPE_BTREE && ++ bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX) ++ return "value too big"; ++ ++ if (btree_node_type_is_extents(type)) { ++ if ((k.k->size == 0) != bkey_deleted(k.k)) ++ return "bad size field"; ++ ++ if (k.k->size > k.k->p.offset) ++ return "size greater than offset"; ++ } else { ++ if (k.k->size) ++ return "nonzero size field"; ++ } ++ ++ if (k.k->p.snapshot) ++ return "nonzero snapshot"; ++ ++ if (type != BKEY_TYPE_BTREE && ++ !bkey_cmp(k.k->p, POS_MAX)) ++ return "POS_MAX key"; ++ ++ return NULL; ++} ++ ++const char *bch2_bkey_invalid(struct bch_fs *c, struct bkey_s_c k, ++ enum btree_node_type type) ++{ ++ return __bch2_bkey_invalid(c, k, type) ?: ++ bch2_bkey_val_invalid(c, k); ++} ++ ++const char *bch2_bkey_in_btree_node(struct btree *b, struct bkey_s_c k) ++{ ++ if (bkey_cmp(k.k->p, b->data->min_key) < 0) ++ return "key before start of btree node"; ++ ++ if (bkey_cmp(k.k->p, b->data->max_key) > 0) ++ return "key past end of btree node"; ++ ++ return NULL; ++} ++ ++void bch2_bkey_debugcheck(struct bch_fs *c, struct btree *b, struct bkey_s_c k) ++{ ++ const struct bkey_ops *ops = &bch2_bkey_ops[k.k->type]; ++ const char *invalid; ++ ++ BUG_ON(!k.k->u64s); ++ ++ invalid = bch2_bkey_invalid(c, k, btree_node_type(b)) ?: ++ bch2_bkey_in_btree_node(b, k); ++ if (invalid) { ++ char buf[160]; ++ ++ bch2_bkey_val_to_text(&PBUF(buf), c, k); ++ bch2_fs_inconsistent(c, "invalid bkey %s: %s", buf, invalid); ++ return; ++ } ++ ++ if (ops->key_debugcheck) ++ ops->key_debugcheck(c, k); ++} ++ ++void bch2_bpos_to_text(struct printbuf *out, struct bpos pos) ++{ ++ if (!bkey_cmp(pos, POS_MIN)) ++ pr_buf(out, "POS_MIN"); ++ else if (!bkey_cmp(pos, POS_MAX)) ++ pr_buf(out, "POS_MAX"); ++ else ++ pr_buf(out, "%llu:%llu", pos.inode, pos.offset); ++} ++ ++void bch2_bkey_to_text(struct printbuf *out, const struct bkey *k) ++{ ++ if (k) { ++ pr_buf(out, "u64s %u type %s ", k->u64s, ++ bch2_bkey_types[k->type]); ++ ++ bch2_bpos_to_text(out, k->p); ++ ++ pr_buf(out, " snap %u len %u ver %llu", ++ k->p.snapshot, k->size, k->version.lo); ++ } else { ++ pr_buf(out, "(null)"); ++ } ++} ++ ++void bch2_val_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ const struct bkey_ops *ops = &bch2_bkey_ops[k.k->type]; ++ ++ if (likely(ops->val_to_text)) ++ ops->val_to_text(out, c, k); ++} ++ ++void bch2_bkey_val_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ bch2_bkey_to_text(out, k.k); ++ ++ if (k.k) { ++ pr_buf(out, ": "); ++ bch2_val_to_text(out, c, k); ++ } ++} ++ ++void bch2_bkey_swab_val(struct bkey_s k) ++{ ++ const struct bkey_ops *ops = &bch2_bkey_ops[k.k->type]; ++ ++ if (ops->swab) ++ ops->swab(k); ++} ++ ++bool bch2_bkey_normalize(struct bch_fs *c, struct bkey_s k) ++{ ++ const struct bkey_ops *ops = &bch2_bkey_ops[k.k->type]; ++ ++ return ops->key_normalize ++ ? ops->key_normalize(c, k) ++ : false; ++} ++ ++enum merge_result bch2_bkey_merge(struct bch_fs *c, ++ struct bkey_s l, struct bkey_s r) ++{ ++ const struct bkey_ops *ops = &bch2_bkey_ops[l.k->type]; ++ enum merge_result ret; ++ ++ if (key_merging_disabled(c) || ++ !ops->key_merge || ++ l.k->type != r.k->type || ++ bversion_cmp(l.k->version, r.k->version) || ++ bkey_cmp(l.k->p, bkey_start_pos(r.k))) ++ return BCH_MERGE_NOMERGE; ++ ++ ret = ops->key_merge(c, l, r); ++ ++ if (ret != BCH_MERGE_NOMERGE) ++ l.k->needs_whiteout |= r.k->needs_whiteout; ++ return ret; ++} ++ ++static const struct old_bkey_type { ++ u8 btree_node_type; ++ u8 old; ++ u8 new; ++} bkey_renumber_table[] = { ++ {BKEY_TYPE_BTREE, 128, KEY_TYPE_btree_ptr }, ++ {BKEY_TYPE_EXTENTS, 128, KEY_TYPE_extent }, ++ {BKEY_TYPE_EXTENTS, 129, KEY_TYPE_extent }, ++ {BKEY_TYPE_EXTENTS, 130, KEY_TYPE_reservation }, ++ {BKEY_TYPE_INODES, 128, KEY_TYPE_inode }, ++ {BKEY_TYPE_INODES, 130, KEY_TYPE_inode_generation }, ++ {BKEY_TYPE_DIRENTS, 128, KEY_TYPE_dirent }, ++ {BKEY_TYPE_DIRENTS, 129, KEY_TYPE_whiteout }, ++ {BKEY_TYPE_XATTRS, 128, KEY_TYPE_xattr }, ++ {BKEY_TYPE_XATTRS, 129, KEY_TYPE_whiteout }, ++ {BKEY_TYPE_ALLOC, 128, KEY_TYPE_alloc }, ++ {BKEY_TYPE_QUOTAS, 128, KEY_TYPE_quota }, ++}; ++ ++void bch2_bkey_renumber(enum btree_node_type btree_node_type, ++ struct bkey_packed *k, ++ int write) ++{ ++ const struct old_bkey_type *i; ++ ++ for (i = bkey_renumber_table; ++ i < bkey_renumber_table + ARRAY_SIZE(bkey_renumber_table); ++ i++) ++ if (btree_node_type == i->btree_node_type && ++ k->type == (write ? i->new : i->old)) { ++ k->type = write ? i->old : i->new; ++ break; ++ } ++} ++ ++void __bch2_bkey_compat(unsigned level, enum btree_id btree_id, ++ unsigned version, unsigned big_endian, ++ int write, ++ struct bkey_format *f, ++ struct bkey_packed *k) ++{ ++ const struct bkey_ops *ops; ++ struct bkey uk; ++ struct bkey_s u; ++ int i; ++ ++ /* ++ * Do these operations in reverse order in the write path: ++ */ ++ ++ for (i = 0; i < 4; i++) ++ switch (!write ? i : 3 - i) { ++ case 0: ++ if (big_endian != CPU_BIG_ENDIAN) ++ bch2_bkey_swab_key(f, k); ++ break; ++ case 1: ++ if (version < bcachefs_metadata_version_bkey_renumber) ++ bch2_bkey_renumber(__btree_node_type(level, btree_id), k, write); ++ break; ++ case 2: ++ if (version < bcachefs_metadata_version_inode_btree_change && ++ btree_id == BTREE_ID_INODES) { ++ if (!bkey_packed(k)) { ++ struct bkey_i *u = packed_to_bkey(k); ++ swap(u->k.p.inode, u->k.p.offset); ++ } else if (f->bits_per_field[BKEY_FIELD_INODE] && ++ f->bits_per_field[BKEY_FIELD_OFFSET]) { ++ struct bkey_format tmp = *f, *in = f, *out = &tmp; ++ ++ swap(tmp.bits_per_field[BKEY_FIELD_INODE], ++ tmp.bits_per_field[BKEY_FIELD_OFFSET]); ++ swap(tmp.field_offset[BKEY_FIELD_INODE], ++ tmp.field_offset[BKEY_FIELD_OFFSET]); ++ ++ if (!write) ++ swap(in, out); ++ ++ uk = __bch2_bkey_unpack_key(in, k); ++ swap(uk.p.inode, uk.p.offset); ++ BUG_ON(!bch2_bkey_pack_key(k, &uk, out)); ++ } ++ } ++ break; ++ case 3: ++ if (!bkey_packed(k)) { ++ u = bkey_i_to_s(packed_to_bkey(k)); ++ } else { ++ uk = __bch2_bkey_unpack_key(f, k); ++ u.k = &uk; ++ u.v = bkeyp_val(f, k); ++ } ++ ++ if (big_endian != CPU_BIG_ENDIAN) ++ bch2_bkey_swab_val(u); ++ ++ ops = &bch2_bkey_ops[k->type]; ++ ++ if (ops->compat) ++ ops->compat(btree_id, version, big_endian, write, u); ++ break; ++ default: ++ BUG(); ++ } ++} +diff --git a/fs/bcachefs/bkey_methods.h b/fs/bcachefs/bkey_methods.h +new file mode 100644 +index 000000000000..0bca725ae3b8 +--- /dev/null ++++ b/fs/bcachefs/bkey_methods.h +@@ -0,0 +1,82 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BKEY_METHODS_H ++#define _BCACHEFS_BKEY_METHODS_H ++ ++#include "bkey.h" ++ ++struct bch_fs; ++struct btree; ++struct bkey; ++enum btree_node_type; ++ ++extern const char * const bch2_bkey_types[]; ++ ++enum merge_result { ++ BCH_MERGE_NOMERGE, ++ ++ /* ++ * The keys were mergeable, but would have overflowed size - so instead ++ * l was changed to the maximum size, and both keys were modified: ++ */ ++ BCH_MERGE_PARTIAL, ++ BCH_MERGE_MERGE, ++}; ++ ++struct bkey_ops { ++ /* Returns reason for being invalid if invalid, else NULL: */ ++ const char * (*key_invalid)(const struct bch_fs *, ++ struct bkey_s_c); ++ void (*key_debugcheck)(struct bch_fs *, struct bkey_s_c); ++ void (*val_to_text)(struct printbuf *, struct bch_fs *, ++ struct bkey_s_c); ++ void (*swab)(struct bkey_s); ++ bool (*key_normalize)(struct bch_fs *, struct bkey_s); ++ enum merge_result (*key_merge)(struct bch_fs *, ++ struct bkey_s, struct bkey_s); ++ void (*compat)(enum btree_id id, unsigned version, ++ unsigned big_endian, int write, ++ struct bkey_s); ++}; ++ ++const char *bch2_bkey_val_invalid(struct bch_fs *, struct bkey_s_c); ++const char *__bch2_bkey_invalid(struct bch_fs *, struct bkey_s_c, ++ enum btree_node_type); ++const char *bch2_bkey_invalid(struct bch_fs *, struct bkey_s_c, ++ enum btree_node_type); ++const char *bch2_bkey_in_btree_node(struct btree *, struct bkey_s_c); ++ ++void bch2_bkey_debugcheck(struct bch_fs *, struct btree *, struct bkey_s_c); ++ ++void bch2_bpos_to_text(struct printbuf *, struct bpos); ++void bch2_bkey_to_text(struct printbuf *, const struct bkey *); ++void bch2_val_to_text(struct printbuf *, struct bch_fs *, ++ struct bkey_s_c); ++void bch2_bkey_val_to_text(struct printbuf *, struct bch_fs *, ++ struct bkey_s_c); ++ ++void bch2_bkey_swab_val(struct bkey_s); ++ ++bool bch2_bkey_normalize(struct bch_fs *, struct bkey_s); ++ ++enum merge_result bch2_bkey_merge(struct bch_fs *, ++ struct bkey_s, struct bkey_s); ++ ++void bch2_bkey_renumber(enum btree_node_type, struct bkey_packed *, int); ++ ++void __bch2_bkey_compat(unsigned, enum btree_id, unsigned, unsigned, ++ int, struct bkey_format *, struct bkey_packed *); ++ ++static inline void bch2_bkey_compat(unsigned level, enum btree_id btree_id, ++ unsigned version, unsigned big_endian, ++ int write, ++ struct bkey_format *f, ++ struct bkey_packed *k) ++{ ++ if (version < bcachefs_metadata_version_current || ++ big_endian != CPU_BIG_ENDIAN) ++ __bch2_bkey_compat(level, btree_id, version, ++ big_endian, write, f, k); ++ ++} ++ ++#endif /* _BCACHEFS_BKEY_METHODS_H */ +diff --git a/fs/bcachefs/bkey_on_stack.h b/fs/bcachefs/bkey_on_stack.h +new file mode 100644 +index 000000000000..f607a0cb37ed +--- /dev/null ++++ b/fs/bcachefs/bkey_on_stack.h +@@ -0,0 +1,43 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BKEY_ON_STACK_H ++#define _BCACHEFS_BKEY_ON_STACK_H ++ ++#include "bcachefs.h" ++ ++struct bkey_on_stack { ++ struct bkey_i *k; ++ u64 onstack[12]; ++}; ++ ++static inline void bkey_on_stack_realloc(struct bkey_on_stack *s, ++ struct bch_fs *c, unsigned u64s) ++{ ++ if (s->k == (void *) s->onstack && ++ u64s > ARRAY_SIZE(s->onstack)) { ++ s->k = mempool_alloc(&c->large_bkey_pool, GFP_NOFS); ++ memcpy(s->k, s->onstack, sizeof(s->onstack)); ++ } ++} ++ ++static inline void bkey_on_stack_reassemble(struct bkey_on_stack *s, ++ struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ bkey_on_stack_realloc(s, c, k.k->u64s); ++ bkey_reassemble(s->k, k); ++} ++ ++static inline void bkey_on_stack_init(struct bkey_on_stack *s) ++{ ++ s->k = (void *) s->onstack; ++} ++ ++static inline void bkey_on_stack_exit(struct bkey_on_stack *s, ++ struct bch_fs *c) ++{ ++ if (s->k != (void *) s->onstack) ++ mempool_free(s->k, &c->large_bkey_pool); ++ s->k = NULL; ++} ++ ++#endif /* _BCACHEFS_BKEY_ON_STACK_H */ +diff --git a/fs/bcachefs/bkey_sort.c b/fs/bcachefs/bkey_sort.c +new file mode 100644 +index 000000000000..839e78d1dc35 +--- /dev/null ++++ b/fs/bcachefs/bkey_sort.c +@@ -0,0 +1,515 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "bkey_on_stack.h" ++#include "bkey_sort.h" ++#include "bset.h" ++#include "extents.h" ++ ++typedef int (*sort_cmp_fn)(struct btree *, ++ struct bkey_packed *, ++ struct bkey_packed *); ++ ++static inline bool sort_iter_end(struct sort_iter *iter) ++{ ++ return !iter->used; ++} ++ ++static inline void __sort_iter_sift(struct sort_iter *iter, ++ unsigned from, ++ sort_cmp_fn cmp) ++{ ++ unsigned i; ++ ++ for (i = from; ++ i + 1 < iter->used && ++ cmp(iter->b, iter->data[i].k, iter->data[i + 1].k) > 0; ++ i++) ++ swap(iter->data[i], iter->data[i + 1]); ++} ++ ++static inline void sort_iter_sift(struct sort_iter *iter, sort_cmp_fn cmp) ++{ ++ ++ __sort_iter_sift(iter, 0, cmp); ++} ++ ++static inline void sort_iter_sort(struct sort_iter *iter, sort_cmp_fn cmp) ++{ ++ unsigned i = iter->used; ++ ++ while (i--) ++ __sort_iter_sift(iter, i, cmp); ++} ++ ++static inline struct bkey_packed *sort_iter_peek(struct sort_iter *iter) ++{ ++ return !sort_iter_end(iter) ? iter->data->k : NULL; ++} ++ ++static inline void __sort_iter_advance(struct sort_iter *iter, ++ unsigned idx, sort_cmp_fn cmp) ++{ ++ struct sort_iter_set *i = iter->data + idx; ++ ++ BUG_ON(idx >= iter->used); ++ ++ i->k = bkey_next_skip_noops(i->k, i->end); ++ ++ BUG_ON(i->k > i->end); ++ ++ if (i->k == i->end) ++ array_remove_item(iter->data, iter->used, idx); ++ else ++ __sort_iter_sift(iter, idx, cmp); ++} ++ ++static inline void sort_iter_advance(struct sort_iter *iter, sort_cmp_fn cmp) ++{ ++ __sort_iter_advance(iter, 0, cmp); ++} ++ ++static inline struct bkey_packed *sort_iter_next(struct sort_iter *iter, ++ sort_cmp_fn cmp) ++{ ++ struct bkey_packed *ret = sort_iter_peek(iter); ++ ++ if (ret) ++ sort_iter_advance(iter, cmp); ++ ++ return ret; ++} ++ ++/* ++ * If keys compare equal, compare by pointer order: ++ */ ++static inline int key_sort_fix_overlapping_cmp(struct btree *b, ++ struct bkey_packed *l, ++ struct bkey_packed *r) ++{ ++ return bkey_cmp_packed(b, l, r) ?: ++ cmp_int((unsigned long) l, (unsigned long) r); ++} ++ ++static inline bool should_drop_next_key(struct sort_iter *iter) ++{ ++ /* ++ * key_sort_cmp() ensures that when keys compare equal the older key ++ * comes first; so if l->k compares equal to r->k then l->k is older ++ * and should be dropped. ++ */ ++ return iter->used >= 2 && ++ !bkey_cmp_packed(iter->b, ++ iter->data[0].k, ++ iter->data[1].k); ++} ++ ++struct btree_nr_keys ++bch2_key_sort_fix_overlapping(struct bch_fs *c, struct bset *dst, ++ struct sort_iter *iter) ++{ ++ struct bkey_packed *out = dst->start; ++ struct bkey_packed *k; ++ struct btree_nr_keys nr; ++ ++ memset(&nr, 0, sizeof(nr)); ++ ++ sort_iter_sort(iter, key_sort_fix_overlapping_cmp); ++ ++ while ((k = sort_iter_peek(iter))) { ++ if (!bkey_whiteout(k) && ++ !should_drop_next_key(iter)) { ++ bkey_copy(out, k); ++ btree_keys_account_key_add(&nr, 0, out); ++ out = bkey_next(out); ++ } ++ ++ sort_iter_advance(iter, key_sort_fix_overlapping_cmp); ++ } ++ ++ dst->u64s = cpu_to_le16((u64 *) out - dst->_data); ++ return nr; ++} ++ ++static void extent_sort_append(struct bch_fs *c, ++ struct bkey_format *f, ++ struct btree_nr_keys *nr, ++ struct bkey_packed **out, ++ struct bkey_s k) ++{ ++ if (!bkey_whiteout(k.k)) { ++ if (!bch2_bkey_pack_key(*out, k.k, f)) ++ memcpy_u64s_small(*out, k.k, BKEY_U64s); ++ ++ memcpy_u64s_small(bkeyp_val(f, *out), k.v, bkey_val_u64s(k.k)); ++ ++ btree_keys_account_key_add(nr, 0, *out); ++ *out = bkey_next(*out); ++ } ++} ++ ++/* Sort + repack in a new format: */ ++struct btree_nr_keys ++bch2_sort_repack(struct bset *dst, struct btree *src, ++ struct btree_node_iter *src_iter, ++ struct bkey_format *out_f, ++ bool filter_whiteouts) ++{ ++ struct bkey_format *in_f = &src->format; ++ struct bkey_packed *in, *out = vstruct_last(dst); ++ struct btree_nr_keys nr; ++ ++ memset(&nr, 0, sizeof(nr)); ++ ++ while ((in = bch2_btree_node_iter_next_all(src_iter, src))) { ++ if (filter_whiteouts && bkey_whiteout(in)) ++ continue; ++ ++ if (bch2_bkey_transform(out_f, out, bkey_packed(in) ++ ? in_f : &bch2_bkey_format_current, in)) ++ out->format = KEY_FORMAT_LOCAL_BTREE; ++ else ++ bch2_bkey_unpack(src, (void *) out, in); ++ ++ btree_keys_account_key_add(&nr, 0, out); ++ out = bkey_next(out); ++ } ++ ++ dst->u64s = cpu_to_le16((u64 *) out - dst->_data); ++ return nr; ++} ++ ++/* Sort, repack, and call bch2_bkey_normalize() to drop stale pointers: */ ++struct btree_nr_keys ++bch2_sort_repack_merge(struct bch_fs *c, ++ struct bset *dst, struct btree *src, ++ struct btree_node_iter *iter, ++ struct bkey_format *out_f, ++ bool filter_whiteouts) ++{ ++ struct bkey_packed *out = vstruct_last(dst), *k_packed; ++ struct bkey_on_stack k; ++ struct btree_nr_keys nr; ++ ++ memset(&nr, 0, sizeof(nr)); ++ bkey_on_stack_init(&k); ++ ++ while ((k_packed = bch2_btree_node_iter_next_all(iter, src))) { ++ if (filter_whiteouts && bkey_whiteout(k_packed)) ++ continue; ++ ++ /* ++ * NOTE: ++ * bch2_bkey_normalize may modify the key we pass it (dropping ++ * stale pointers) and we don't have a write lock on the src ++ * node; we have to make a copy of the entire key before calling ++ * normalize ++ */ ++ bkey_on_stack_realloc(&k, c, k_packed->u64s + BKEY_U64s); ++ bch2_bkey_unpack(src, k.k, k_packed); ++ ++ if (filter_whiteouts && ++ bch2_bkey_normalize(c, bkey_i_to_s(k.k))) ++ continue; ++ ++ extent_sort_append(c, out_f, &nr, &out, bkey_i_to_s(k.k)); ++ } ++ ++ dst->u64s = cpu_to_le16((u64 *) out - dst->_data); ++ bkey_on_stack_exit(&k, c); ++ return nr; ++} ++ ++static inline int sort_keys_cmp(struct btree *b, ++ struct bkey_packed *l, ++ struct bkey_packed *r) ++{ ++ return bkey_cmp_packed(b, l, r) ?: ++ (int) bkey_deleted(r) - (int) bkey_deleted(l) ?: ++ (int) l->needs_whiteout - (int) r->needs_whiteout; ++} ++ ++unsigned bch2_sort_keys(struct bkey_packed *dst, ++ struct sort_iter *iter, ++ bool filter_whiteouts) ++{ ++ const struct bkey_format *f = &iter->b->format; ++ struct bkey_packed *in, *next, *out = dst; ++ ++ sort_iter_sort(iter, sort_keys_cmp); ++ ++ while ((in = sort_iter_next(iter, sort_keys_cmp))) { ++ bool needs_whiteout = false; ++ ++ if (bkey_whiteout(in) && ++ (filter_whiteouts || !in->needs_whiteout)) ++ continue; ++ ++ while ((next = sort_iter_peek(iter)) && ++ !bkey_cmp_packed(iter->b, in, next)) { ++ BUG_ON(in->needs_whiteout && ++ next->needs_whiteout); ++ needs_whiteout |= in->needs_whiteout; ++ in = sort_iter_next(iter, sort_keys_cmp); ++ } ++ ++ if (bkey_whiteout(in)) { ++ memcpy_u64s(out, in, bkeyp_key_u64s(f, in)); ++ set_bkeyp_val_u64s(f, out, 0); ++ } else { ++ bkey_copy(out, in); ++ } ++ out->needs_whiteout |= needs_whiteout; ++ out = bkey_next(out); ++ } ++ ++ return (u64 *) out - (u64 *) dst; ++} ++ ++/* Compat code for btree_node_old_extent_overwrite: */ ++ ++/* ++ * If keys compare equal, compare by pointer order: ++ * ++ * Necessary for sort_fix_overlapping() - if there are multiple keys that ++ * compare equal in different sets, we have to process them newest to oldest. ++ */ ++static inline int extent_sort_fix_overlapping_cmp(struct btree *b, ++ struct bkey_packed *l, ++ struct bkey_packed *r) ++{ ++ struct bkey ul = bkey_unpack_key(b, l); ++ struct bkey ur = bkey_unpack_key(b, r); ++ ++ return bkey_cmp(bkey_start_pos(&ul), ++ bkey_start_pos(&ur)) ?: ++ cmp_int((unsigned long) r, (unsigned long) l); ++} ++ ++/* ++ * The algorithm in extent_sort_fix_overlapping() relies on keys in the same ++ * bset being ordered by start offset - but 0 size whiteouts (which are always ++ * KEY_TYPE_deleted) break this ordering, so we need to skip over them: ++ */ ++static void extent_iter_advance(struct sort_iter *iter, unsigned idx) ++{ ++ struct sort_iter_set *i = iter->data + idx; ++ ++ do { ++ i->k = bkey_next_skip_noops(i->k, i->end); ++ } while (i->k != i->end && bkey_deleted(i->k)); ++ ++ if (i->k == i->end) ++ array_remove_item(iter->data, iter->used, idx); ++ else ++ __sort_iter_sift(iter, idx, extent_sort_fix_overlapping_cmp); ++} ++ ++struct btree_nr_keys ++bch2_extent_sort_fix_overlapping(struct bch_fs *c, struct bset *dst, ++ struct sort_iter *iter) ++{ ++ struct btree *b = iter->b; ++ struct bkey_format *f = &b->format; ++ struct sort_iter_set *_l = iter->data, *_r = iter->data + 1; ++ struct bkey_packed *out = dst->start; ++ struct bkey l_unpacked, r_unpacked; ++ struct bkey_s l, r; ++ struct btree_nr_keys nr; ++ struct bkey_on_stack split; ++ unsigned i; ++ ++ memset(&nr, 0, sizeof(nr)); ++ bkey_on_stack_init(&split); ++ ++ sort_iter_sort(iter, extent_sort_fix_overlapping_cmp); ++ for (i = 0; i < iter->used;) { ++ if (bkey_deleted(iter->data[i].k)) ++ __sort_iter_advance(iter, i, ++ extent_sort_fix_overlapping_cmp); ++ else ++ i++; ++ } ++ ++ while (!sort_iter_end(iter)) { ++ l = __bkey_disassemble(b, _l->k, &l_unpacked); ++ ++ if (iter->used == 1) { ++ extent_sort_append(c, f, &nr, &out, l); ++ extent_iter_advance(iter, 0); ++ continue; ++ } ++ ++ r = __bkey_disassemble(b, _r->k, &r_unpacked); ++ ++ /* If current key and next key don't overlap, just append */ ++ if (bkey_cmp(l.k->p, bkey_start_pos(r.k)) <= 0) { ++ extent_sort_append(c, f, &nr, &out, l); ++ extent_iter_advance(iter, 0); ++ continue; ++ } ++ ++ /* Skip 0 size keys */ ++ if (!r.k->size) { ++ extent_iter_advance(iter, 1); ++ continue; ++ } ++ ++ /* ++ * overlap: keep the newer key and trim the older key so they ++ * don't overlap. comparing pointers tells us which one is ++ * newer, since the bsets are appended one after the other. ++ */ ++ ++ /* can't happen because of comparison func */ ++ BUG_ON(_l->k < _r->k && ++ !bkey_cmp(bkey_start_pos(l.k), bkey_start_pos(r.k))); ++ ++ if (_l->k > _r->k) { ++ /* l wins, trim r */ ++ if (bkey_cmp(l.k->p, r.k->p) >= 0) { ++ extent_iter_advance(iter, 1); ++ } else { ++ bch2_cut_front_s(l.k->p, r); ++ extent_save(b, _r->k, r.k); ++ __sort_iter_sift(iter, 1, ++ extent_sort_fix_overlapping_cmp); ++ } ++ } else if (bkey_cmp(l.k->p, r.k->p) > 0) { ++ ++ /* ++ * r wins, but it overlaps in the middle of l - split l: ++ */ ++ bkey_on_stack_reassemble(&split, c, l.s_c); ++ bch2_cut_back(bkey_start_pos(r.k), split.k); ++ ++ bch2_cut_front_s(r.k->p, l); ++ extent_save(b, _l->k, l.k); ++ ++ __sort_iter_sift(iter, 0, ++ extent_sort_fix_overlapping_cmp); ++ ++ extent_sort_append(c, f, &nr, &out, ++ bkey_i_to_s(split.k)); ++ } else { ++ bch2_cut_back_s(bkey_start_pos(r.k), l); ++ extent_save(b, _l->k, l.k); ++ } ++ } ++ ++ dst->u64s = cpu_to_le16((u64 *) out - dst->_data); ++ ++ bkey_on_stack_exit(&split, c); ++ return nr; ++} ++ ++static inline int sort_extents_cmp(struct btree *b, ++ struct bkey_packed *l, ++ struct bkey_packed *r) ++{ ++ return bkey_cmp_packed(b, l, r) ?: ++ (int) bkey_deleted(l) - (int) bkey_deleted(r); ++} ++ ++unsigned bch2_sort_extents(struct bkey_packed *dst, ++ struct sort_iter *iter, ++ bool filter_whiteouts) ++{ ++ struct bkey_packed *in, *out = dst; ++ ++ sort_iter_sort(iter, sort_extents_cmp); ++ ++ while ((in = sort_iter_next(iter, sort_extents_cmp))) { ++ if (bkey_deleted(in)) ++ continue; ++ ++ if (bkey_whiteout(in) && ++ (filter_whiteouts || !in->needs_whiteout)) ++ continue; ++ ++ bkey_copy(out, in); ++ out = bkey_next(out); ++ } ++ ++ return (u64 *) out - (u64 *) dst; ++} ++ ++static inline int sort_extent_whiteouts_cmp(struct btree *b, ++ struct bkey_packed *l, ++ struct bkey_packed *r) ++{ ++ struct bkey ul = bkey_unpack_key(b, l); ++ struct bkey ur = bkey_unpack_key(b, r); ++ ++ return bkey_cmp(bkey_start_pos(&ul), bkey_start_pos(&ur)); ++} ++ ++unsigned bch2_sort_extent_whiteouts(struct bkey_packed *dst, ++ struct sort_iter *iter) ++{ ++ const struct bkey_format *f = &iter->b->format; ++ struct bkey_packed *in, *out = dst; ++ struct bkey_i l, r; ++ bool prev = false, l_packed = false; ++ u64 max_packed_size = bkey_field_max(f, BKEY_FIELD_SIZE); ++ u64 max_packed_offset = bkey_field_max(f, BKEY_FIELD_OFFSET); ++ u64 new_size; ++ ++ max_packed_size = min_t(u64, max_packed_size, KEY_SIZE_MAX); ++ ++ sort_iter_sort(iter, sort_extent_whiteouts_cmp); ++ ++ while ((in = sort_iter_next(iter, sort_extent_whiteouts_cmp))) { ++ if (bkey_deleted(in)) ++ continue; ++ ++ EBUG_ON(bkeyp_val_u64s(f, in)); ++ EBUG_ON(in->type != KEY_TYPE_discard); ++ ++ r.k = bkey_unpack_key(iter->b, in); ++ ++ if (prev && ++ bkey_cmp(l.k.p, bkey_start_pos(&r.k)) >= 0) { ++ if (bkey_cmp(l.k.p, r.k.p) >= 0) ++ continue; ++ ++ new_size = l_packed ++ ? min(max_packed_size, max_packed_offset - ++ bkey_start_offset(&l.k)) ++ : KEY_SIZE_MAX; ++ ++ new_size = min(new_size, r.k.p.offset - ++ bkey_start_offset(&l.k)); ++ ++ BUG_ON(new_size < l.k.size); ++ ++ bch2_key_resize(&l.k, new_size); ++ ++ if (bkey_cmp(l.k.p, r.k.p) >= 0) ++ continue; ++ ++ bch2_cut_front(l.k.p, &r); ++ } ++ ++ if (prev) { ++ if (!bch2_bkey_pack(out, &l, f)) { ++ BUG_ON(l_packed); ++ bkey_copy(out, &l); ++ } ++ out = bkey_next(out); ++ } ++ ++ l = r; ++ prev = true; ++ l_packed = bkey_packed(in); ++ } ++ ++ if (prev) { ++ if (!bch2_bkey_pack(out, &l, f)) { ++ BUG_ON(l_packed); ++ bkey_copy(out, &l); ++ } ++ out = bkey_next(out); ++ } ++ ++ return (u64 *) out - (u64 *) dst; ++} +diff --git a/fs/bcachefs/bkey_sort.h b/fs/bcachefs/bkey_sort.h +new file mode 100644 +index 000000000000..458a051fdac5 +--- /dev/null ++++ b/fs/bcachefs/bkey_sort.h +@@ -0,0 +1,57 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BKEY_SORT_H ++#define _BCACHEFS_BKEY_SORT_H ++ ++struct sort_iter { ++ struct btree *b; ++ unsigned used; ++ unsigned size; ++ ++ struct sort_iter_set { ++ struct bkey_packed *k, *end; ++ } data[MAX_BSETS + 1]; ++}; ++ ++static inline void sort_iter_init(struct sort_iter *iter, struct btree *b) ++{ ++ iter->b = b; ++ iter->used = 0; ++ iter->size = ARRAY_SIZE(iter->data); ++} ++ ++static inline void sort_iter_add(struct sort_iter *iter, ++ struct bkey_packed *k, ++ struct bkey_packed *end) ++{ ++ BUG_ON(iter->used >= iter->size); ++ ++ if (k != end) ++ iter->data[iter->used++] = (struct sort_iter_set) { k, end }; ++} ++ ++struct btree_nr_keys ++bch2_key_sort_fix_overlapping(struct bch_fs *, struct bset *, ++ struct sort_iter *); ++struct btree_nr_keys ++bch2_extent_sort_fix_overlapping(struct bch_fs *, struct bset *, ++ struct sort_iter *); ++ ++struct btree_nr_keys ++bch2_sort_repack(struct bset *, struct btree *, ++ struct btree_node_iter *, ++ struct bkey_format *, bool); ++struct btree_nr_keys ++bch2_sort_repack_merge(struct bch_fs *, ++ struct bset *, struct btree *, ++ struct btree_node_iter *, ++ struct bkey_format *, bool); ++ ++unsigned bch2_sort_keys(struct bkey_packed *, ++ struct sort_iter *, bool); ++unsigned bch2_sort_extents(struct bkey_packed *, ++ struct sort_iter *, bool); ++ ++unsigned bch2_sort_extent_whiteouts(struct bkey_packed *, ++ struct sort_iter *); ++ ++#endif /* _BCACHEFS_BKEY_SORT_H */ +diff --git a/fs/bcachefs/bset.c b/fs/bcachefs/bset.c +new file mode 100644 +index 000000000000..f7c2841ed8a7 +--- /dev/null ++++ b/fs/bcachefs/bset.c +@@ -0,0 +1,1742 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Code for working with individual keys, and sorted sets of keys with in a ++ * btree node ++ * ++ * Copyright 2012 Google, Inc. ++ */ ++ ++#include "bcachefs.h" ++#include "btree_cache.h" ++#include "bset.h" ++#include "eytzinger.h" ++#include "util.h" ++ ++#include ++#include ++#include ++#include ++ ++/* hack.. */ ++#include "alloc_types.h" ++#include ++ ++static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *, ++ struct btree *); ++ ++static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter) ++{ ++ unsigned n = ARRAY_SIZE(iter->data); ++ ++ while (n && __btree_node_iter_set_end(iter, n - 1)) ++ --n; ++ ++ return n; ++} ++ ++struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k) ++{ ++ unsigned offset = __btree_node_key_to_offset(b, k); ++ struct bset_tree *t; ++ ++ for_each_bset(b, t) ++ if (offset <= t->end_offset) { ++ EBUG_ON(offset < btree_bkey_first_offset(t)); ++ return t; ++ } ++ ++ BUG(); ++} ++ ++/* ++ * There are never duplicate live keys in the btree - but including keys that ++ * have been flagged as deleted (and will be cleaned up later) we _will_ see ++ * duplicates. ++ * ++ * Thus the sort order is: usual key comparison first, but for keys that compare ++ * equal the deleted key(s) come first, and the (at most one) live version comes ++ * last. ++ * ++ * The main reason for this is insertion: to handle overwrites, we first iterate ++ * over keys that compare equal to our insert key, and then insert immediately ++ * prior to the first key greater than the key we're inserting - our insert ++ * position will be after all keys that compare equal to our insert key, which ++ * by the time we actually do the insert will all be deleted. ++ */ ++ ++void bch2_dump_bset(struct bch_fs *c, struct btree *b, ++ struct bset *i, unsigned set) ++{ ++ struct bkey_packed *_k, *_n; ++ struct bkey uk, n; ++ struct bkey_s_c k; ++ char buf[200]; ++ ++ if (!i->u64s) ++ return; ++ ++ for (_k = i->start; ++ _k < vstruct_last(i); ++ _k = _n) { ++ _n = bkey_next_skip_noops(_k, vstruct_last(i)); ++ ++ k = bkey_disassemble(b, _k, &uk); ++ if (c) ++ bch2_bkey_val_to_text(&PBUF(buf), c, k); ++ else ++ bch2_bkey_to_text(&PBUF(buf), k.k); ++ printk(KERN_ERR "block %u key %5zu: %s\n", set, ++ _k->_data - i->_data, buf); ++ ++ if (_n == vstruct_last(i)) ++ continue; ++ ++ n = bkey_unpack_key(b, _n); ++ ++ if (bkey_cmp(bkey_start_pos(&n), k.k->p) < 0) { ++ printk(KERN_ERR "Key skipped backwards\n"); ++ continue; ++ } ++ ++ if (!bkey_deleted(k.k) && ++ !bkey_cmp(n.p, k.k->p)) ++ printk(KERN_ERR "Duplicate keys\n"); ++ } ++} ++ ++void bch2_dump_btree_node(struct bch_fs *c, struct btree *b) ++{ ++ struct bset_tree *t; ++ ++ console_lock(); ++ for_each_bset(b, t) ++ bch2_dump_bset(c, b, bset(b, t), t - b->set); ++ console_unlock(); ++} ++ ++void bch2_dump_btree_node_iter(struct btree *b, ++ struct btree_node_iter *iter) ++{ ++ struct btree_node_iter_set *set; ++ ++ printk(KERN_ERR "btree node iter with %u/%u sets:\n", ++ __btree_node_iter_used(iter), b->nsets); ++ ++ btree_node_iter_for_each(iter, set) { ++ struct bkey_packed *k = __btree_node_offset_to_key(b, set->k); ++ struct bset_tree *t = bch2_bkey_to_bset(b, k); ++ struct bkey uk = bkey_unpack_key(b, k); ++ char buf[100]; ++ ++ bch2_bkey_to_text(&PBUF(buf), &uk); ++ printk(KERN_ERR "set %zu key %u: %s\n", ++ t - b->set, set->k, buf); ++ } ++} ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ ++void __bch2_verify_btree_nr_keys(struct btree *b) ++{ ++ struct bset_tree *t; ++ struct bkey_packed *k; ++ struct btree_nr_keys nr = { 0 }; ++ ++ for_each_bset(b, t) ++ bset_tree_for_each_key(b, t, k) ++ if (!bkey_whiteout(k)) ++ btree_keys_account_key_add(&nr, t - b->set, k); ++ ++ BUG_ON(memcmp(&nr, &b->nr, sizeof(nr))); ++} ++ ++static void bch2_btree_node_iter_next_check(struct btree_node_iter *_iter, ++ struct btree *b) ++{ ++ struct btree_node_iter iter = *_iter; ++ const struct bkey_packed *k, *n; ++ ++ k = bch2_btree_node_iter_peek_all(&iter, b); ++ __bch2_btree_node_iter_advance(&iter, b); ++ n = bch2_btree_node_iter_peek_all(&iter, b); ++ ++ bkey_unpack_key(b, k); ++ ++ if (n && ++ bkey_iter_cmp(b, k, n) > 0) { ++ struct btree_node_iter_set *set; ++ struct bkey ku = bkey_unpack_key(b, k); ++ struct bkey nu = bkey_unpack_key(b, n); ++ char buf1[80], buf2[80]; ++ ++ bch2_dump_btree_node(NULL, b); ++ bch2_bkey_to_text(&PBUF(buf1), &ku); ++ bch2_bkey_to_text(&PBUF(buf2), &nu); ++ printk(KERN_ERR "out of order/overlapping:\n%s\n%s\n", ++ buf1, buf2); ++ printk(KERN_ERR "iter was:"); ++ ++ btree_node_iter_for_each(_iter, set) { ++ struct bkey_packed *k = __btree_node_offset_to_key(b, set->k); ++ struct bset_tree *t = bch2_bkey_to_bset(b, k); ++ printk(" [%zi %zi]", t - b->set, ++ k->_data - bset(b, t)->_data); ++ } ++ panic("\n"); ++ } ++} ++ ++void bch2_btree_node_iter_verify(struct btree_node_iter *iter, ++ struct btree *b) ++{ ++ struct btree_node_iter_set *set, *s2; ++ struct bkey_packed *k, *p; ++ struct bset_tree *t; ++ ++ if (bch2_btree_node_iter_end(iter)) ++ return; ++ ++ /* Verify no duplicates: */ ++ btree_node_iter_for_each(iter, set) ++ btree_node_iter_for_each(iter, s2) ++ BUG_ON(set != s2 && set->end == s2->end); ++ ++ /* Verify that set->end is correct: */ ++ btree_node_iter_for_each(iter, set) { ++ for_each_bset(b, t) ++ if (set->end == t->end_offset) ++ goto found; ++ BUG(); ++found: ++ BUG_ON(set->k < btree_bkey_first_offset(t) || ++ set->k >= t->end_offset); ++ } ++ ++ /* Verify iterator is sorted: */ ++ btree_node_iter_for_each(iter, set) ++ BUG_ON(set != iter->data && ++ btree_node_iter_cmp(b, set[-1], set[0]) > 0); ++ ++ k = bch2_btree_node_iter_peek_all(iter, b); ++ ++ for_each_bset(b, t) { ++ if (iter->data[0].end == t->end_offset) ++ continue; ++ ++ p = bch2_bkey_prev_all(b, t, ++ bch2_btree_node_iter_bset_pos(iter, b, t)); ++ ++ BUG_ON(p && bkey_iter_cmp(b, k, p) < 0); ++ } ++} ++ ++void bch2_verify_insert_pos(struct btree *b, struct bkey_packed *where, ++ struct bkey_packed *insert, unsigned clobber_u64s) ++{ ++ struct bset_tree *t = bch2_bkey_to_bset(b, where); ++ struct bkey_packed *prev = bch2_bkey_prev_all(b, t, where); ++ struct bkey_packed *next = (void *) (where->_data + clobber_u64s); ++#if 0 ++ BUG_ON(prev && ++ bkey_iter_cmp(b, prev, insert) > 0); ++#else ++ if (prev && ++ bkey_iter_cmp(b, prev, insert) > 0) { ++ struct bkey k1 = bkey_unpack_key(b, prev); ++ struct bkey k2 = bkey_unpack_key(b, insert); ++ char buf1[100]; ++ char buf2[100]; ++ ++ bch2_dump_btree_node(NULL, b); ++ bch2_bkey_to_text(&PBUF(buf1), &k1); ++ bch2_bkey_to_text(&PBUF(buf2), &k2); ++ ++ panic("prev > insert:\n" ++ "prev key %s\n" ++ "insert key %s\n", ++ buf1, buf2); ++ } ++#endif ++#if 0 ++ BUG_ON(next != btree_bkey_last(b, t) && ++ bkey_iter_cmp(b, insert, next) > 0); ++#else ++ if (next != btree_bkey_last(b, t) && ++ bkey_iter_cmp(b, insert, next) > 0) { ++ struct bkey k1 = bkey_unpack_key(b, insert); ++ struct bkey k2 = bkey_unpack_key(b, next); ++ char buf1[100]; ++ char buf2[100]; ++ ++ bch2_dump_btree_node(NULL, b); ++ bch2_bkey_to_text(&PBUF(buf1), &k1); ++ bch2_bkey_to_text(&PBUF(buf2), &k2); ++ ++ panic("insert > next:\n" ++ "insert key %s\n" ++ "next key %s\n", ++ buf1, buf2); ++ } ++#endif ++} ++ ++#else ++ ++static inline void bch2_btree_node_iter_next_check(struct btree_node_iter *iter, ++ struct btree *b) {} ++ ++#endif ++ ++/* Auxiliary search trees */ ++ ++#define BFLOAT_FAILED_UNPACKED U8_MAX ++#define BFLOAT_FAILED U8_MAX ++ ++struct bkey_float { ++ u8 exponent; ++ u8 key_offset; ++ u16 mantissa; ++}; ++#define BKEY_MANTISSA_BITS 16 ++ ++static unsigned bkey_float_byte_offset(unsigned idx) ++{ ++ return idx * sizeof(struct bkey_float); ++} ++ ++struct ro_aux_tree { ++ struct bkey_float f[0]; ++}; ++ ++struct rw_aux_tree { ++ u16 offset; ++ struct bpos k; ++}; ++ ++static unsigned bset_aux_tree_buf_end(const struct bset_tree *t) ++{ ++ BUG_ON(t->aux_data_offset == U16_MAX); ++ ++ switch (bset_aux_tree_type(t)) { ++ case BSET_NO_AUX_TREE: ++ return t->aux_data_offset; ++ case BSET_RO_AUX_TREE: ++ return t->aux_data_offset + ++ DIV_ROUND_UP(t->size * sizeof(struct bkey_float) + ++ t->size * sizeof(u8), 8); ++ case BSET_RW_AUX_TREE: ++ return t->aux_data_offset + ++ DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8); ++ default: ++ BUG(); ++ } ++} ++ ++static unsigned bset_aux_tree_buf_start(const struct btree *b, ++ const struct bset_tree *t) ++{ ++ return t == b->set ++ ? DIV_ROUND_UP(b->unpack_fn_len, 8) ++ : bset_aux_tree_buf_end(t - 1); ++} ++ ++static void *__aux_tree_base(const struct btree *b, ++ const struct bset_tree *t) ++{ ++ return b->aux_data + t->aux_data_offset * 8; ++} ++ ++static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b, ++ const struct bset_tree *t) ++{ ++ EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE); ++ ++ return __aux_tree_base(b, t); ++} ++ ++static u8 *ro_aux_tree_prev(const struct btree *b, ++ const struct bset_tree *t) ++{ ++ EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE); ++ ++ return __aux_tree_base(b, t) + bkey_float_byte_offset(t->size); ++} ++ ++static struct bkey_float *bkey_float(const struct btree *b, ++ const struct bset_tree *t, ++ unsigned idx) ++{ ++ return ro_aux_tree_base(b, t)->f + idx; ++} ++ ++static void bset_aux_tree_verify(struct btree *b) ++{ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ struct bset_tree *t; ++ ++ for_each_bset(b, t) { ++ if (t->aux_data_offset == U16_MAX) ++ continue; ++ ++ BUG_ON(t != b->set && ++ t[-1].aux_data_offset == U16_MAX); ++ ++ BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t)); ++ BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b)); ++ BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b)); ++ } ++#endif ++} ++ ++void bch2_btree_keys_init(struct btree *b, bool *expensive_debug_checks) ++{ ++ unsigned i; ++ ++ b->nsets = 0; ++ memset(&b->nr, 0, sizeof(b->nr)); ++#ifdef CONFIG_BCACHEFS_DEBUG ++ b->expensive_debug_checks = expensive_debug_checks; ++#endif ++ for (i = 0; i < MAX_BSETS; i++) ++ b->set[i].data_offset = U16_MAX; ++ ++ bch2_bset_set_no_aux_tree(b, b->set); ++} ++ ++/* Binary tree stuff for auxiliary search trees */ ++ ++/* ++ * Cacheline/offset <-> bkey pointer arithmetic: ++ * ++ * t->tree is a binary search tree in an array; each node corresponds to a key ++ * in one cacheline in t->set (BSET_CACHELINE bytes). ++ * ++ * This means we don't have to store the full index of the key that a node in ++ * the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and ++ * then bkey_float->m gives us the offset within that cacheline, in units of 8 ++ * bytes. ++ * ++ * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to ++ * make this work. ++ * ++ * To construct the bfloat for an arbitrary key we need to know what the key ++ * immediately preceding it is: we have to check if the two keys differ in the ++ * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size ++ * of the previous key so we can walk backwards to it from t->tree[j]'s key. ++ */ ++ ++static inline void *bset_cacheline(const struct btree *b, ++ const struct bset_tree *t, ++ unsigned cacheline) ++{ ++ return (void *) round_down((unsigned long) btree_bkey_first(b, t), ++ L1_CACHE_BYTES) + ++ cacheline * BSET_CACHELINE; ++} ++ ++static struct bkey_packed *cacheline_to_bkey(const struct btree *b, ++ const struct bset_tree *t, ++ unsigned cacheline, ++ unsigned offset) ++{ ++ return bset_cacheline(b, t, cacheline) + offset * 8; ++} ++ ++static unsigned bkey_to_cacheline(const struct btree *b, ++ const struct bset_tree *t, ++ const struct bkey_packed *k) ++{ ++ return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE; ++} ++ ++static ssize_t __bkey_to_cacheline_offset(const struct btree *b, ++ const struct bset_tree *t, ++ unsigned cacheline, ++ const struct bkey_packed *k) ++{ ++ return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline); ++} ++ ++static unsigned bkey_to_cacheline_offset(const struct btree *b, ++ const struct bset_tree *t, ++ unsigned cacheline, ++ const struct bkey_packed *k) ++{ ++ size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k); ++ ++ EBUG_ON(m > U8_MAX); ++ return m; ++} ++ ++static inline struct bkey_packed *tree_to_bkey(const struct btree *b, ++ const struct bset_tree *t, ++ unsigned j) ++{ ++ return cacheline_to_bkey(b, t, ++ __eytzinger1_to_inorder(j, t->size, t->extra), ++ bkey_float(b, t, j)->key_offset); ++} ++ ++static struct bkey_packed *tree_to_prev_bkey(const struct btree *b, ++ const struct bset_tree *t, ++ unsigned j) ++{ ++ unsigned prev_u64s = ro_aux_tree_prev(b, t)[j]; ++ ++ return (void *) (tree_to_bkey(b, t, j)->_data - prev_u64s); ++} ++ ++static struct rw_aux_tree *rw_aux_tree(const struct btree *b, ++ const struct bset_tree *t) ++{ ++ EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE); ++ ++ return __aux_tree_base(b, t); ++} ++ ++/* ++ * For the write set - the one we're currently inserting keys into - we don't ++ * maintain a full search tree, we just keep a simple lookup table in t->prev. ++ */ ++static struct bkey_packed *rw_aux_to_bkey(const struct btree *b, ++ struct bset_tree *t, ++ unsigned j) ++{ ++ return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset); ++} ++ ++static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t, ++ unsigned j, struct bkey_packed *k) ++{ ++ EBUG_ON(k >= btree_bkey_last(b, t)); ++ ++ rw_aux_tree(b, t)[j] = (struct rw_aux_tree) { ++ .offset = __btree_node_key_to_offset(b, k), ++ .k = bkey_unpack_pos(b, k), ++ }; ++} ++ ++static void bch2_bset_verify_rw_aux_tree(struct btree *b, ++ struct bset_tree *t) ++{ ++ struct bkey_packed *k = btree_bkey_first(b, t); ++ unsigned j = 0; ++ ++ if (!btree_keys_expensive_checks(b)) ++ return; ++ ++ BUG_ON(bset_has_ro_aux_tree(t)); ++ ++ if (!bset_has_rw_aux_tree(t)) ++ return; ++ ++ BUG_ON(t->size < 1); ++ BUG_ON(rw_aux_to_bkey(b, t, j) != k); ++ ++ goto start; ++ while (1) { ++ if (rw_aux_to_bkey(b, t, j) == k) { ++ BUG_ON(bkey_cmp(rw_aux_tree(b, t)[j].k, ++ bkey_unpack_pos(b, k))); ++start: ++ if (++j == t->size) ++ break; ++ ++ BUG_ON(rw_aux_tree(b, t)[j].offset <= ++ rw_aux_tree(b, t)[j - 1].offset); ++ } ++ ++ k = bkey_next_skip_noops(k, btree_bkey_last(b, t)); ++ BUG_ON(k >= btree_bkey_last(b, t)); ++ } ++} ++ ++/* returns idx of first entry >= offset: */ ++static unsigned rw_aux_tree_bsearch(struct btree *b, ++ struct bset_tree *t, ++ unsigned offset) ++{ ++ unsigned bset_offs = offset - btree_bkey_first_offset(t); ++ unsigned bset_u64s = t->end_offset - btree_bkey_first_offset(t); ++ unsigned idx = bset_u64s ? bset_offs * t->size / bset_u64s : 0; ++ ++ EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE); ++ EBUG_ON(!t->size); ++ EBUG_ON(idx > t->size); ++ ++ while (idx < t->size && ++ rw_aux_tree(b, t)[idx].offset < offset) ++ idx++; ++ ++ while (idx && ++ rw_aux_tree(b, t)[idx - 1].offset >= offset) ++ idx--; ++ ++ EBUG_ON(idx < t->size && ++ rw_aux_tree(b, t)[idx].offset < offset); ++ EBUG_ON(idx && rw_aux_tree(b, t)[idx - 1].offset >= offset); ++ EBUG_ON(idx + 1 < t->size && ++ rw_aux_tree(b, t)[idx].offset == ++ rw_aux_tree(b, t)[idx + 1].offset); ++ ++ return idx; ++} ++ ++static inline unsigned bkey_mantissa(const struct bkey_packed *k, ++ const struct bkey_float *f, ++ unsigned idx) ++{ ++ u64 v; ++ ++ EBUG_ON(!bkey_packed(k)); ++ ++ v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3))); ++ ++ /* ++ * In little endian, we're shifting off low bits (and then the bits we ++ * want are at the low end), in big endian we're shifting off high bits ++ * (and then the bits we want are at the high end, so we shift them ++ * back down): ++ */ ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ++ v >>= f->exponent & 7; ++#else ++ v >>= 64 - (f->exponent & 7) - BKEY_MANTISSA_BITS; ++#endif ++ return (u16) v; ++} ++ ++static void make_bfloat(struct btree *b, struct bset_tree *t, ++ unsigned j, ++ struct bkey_packed *min_key, ++ struct bkey_packed *max_key) ++{ ++ struct bkey_float *f = bkey_float(b, t, j); ++ struct bkey_packed *m = tree_to_bkey(b, t, j); ++ struct bkey_packed *l, *r; ++ unsigned mantissa; ++ int shift, exponent, high_bit; ++ ++ if (is_power_of_2(j)) { ++ l = min_key; ++ ++ if (!l->u64s) { ++ if (!bkey_pack_pos(l, b->data->min_key, b)) { ++ struct bkey_i tmp; ++ ++ bkey_init(&tmp.k); ++ tmp.k.p = b->data->min_key; ++ bkey_copy(l, &tmp); ++ } ++ } ++ } else { ++ l = tree_to_prev_bkey(b, t, j >> ffs(j)); ++ ++ EBUG_ON(m < l); ++ } ++ ++ if (is_power_of_2(j + 1)) { ++ r = max_key; ++ ++ if (!r->u64s) { ++ if (!bkey_pack_pos(r, t->max_key, b)) { ++ struct bkey_i tmp; ++ ++ bkey_init(&tmp.k); ++ tmp.k.p = t->max_key; ++ bkey_copy(r, &tmp); ++ } ++ } ++ } else { ++ r = tree_to_bkey(b, t, j >> (ffz(j) + 1)); ++ ++ EBUG_ON(m > r); ++ } ++ ++ /* ++ * for failed bfloats, the lookup code falls back to comparing against ++ * the original key. ++ */ ++ ++ if (!bkey_packed(l) || !bkey_packed(r) || !bkey_packed(m) || ++ !b->nr_key_bits) { ++ f->exponent = BFLOAT_FAILED_UNPACKED; ++ return; ++ } ++ ++ /* ++ * The greatest differing bit of l and r is the first bit we must ++ * include in the bfloat mantissa we're creating in order to do ++ * comparisons - that bit always becomes the high bit of ++ * bfloat->mantissa, and thus the exponent we're calculating here is ++ * the position of what will become the low bit in bfloat->mantissa: ++ * ++ * Note that this may be negative - we may be running off the low end ++ * of the key: we handle this later: ++ */ ++ high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r), ++ min_t(unsigned, BKEY_MANTISSA_BITS, b->nr_key_bits) - 1); ++ exponent = high_bit - (BKEY_MANTISSA_BITS - 1); ++ ++ /* ++ * Then we calculate the actual shift value, from the start of the key ++ * (k->_data), to get the key bits starting at exponent: ++ */ ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ++ shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent; ++ ++ EBUG_ON(shift + BKEY_MANTISSA_BITS > b->format.key_u64s * 64); ++#else ++ shift = high_bit_offset + ++ b->nr_key_bits - ++ exponent - ++ BKEY_MANTISSA_BITS; ++ ++ EBUG_ON(shift < KEY_PACKED_BITS_START); ++#endif ++ EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED); ++ ++ f->exponent = shift; ++ mantissa = bkey_mantissa(m, f, j); ++ ++ /* ++ * If we've got garbage bits, set them to all 1s - it's legal for the ++ * bfloat to compare larger than the original key, but not smaller: ++ */ ++ if (exponent < 0) ++ mantissa |= ~(~0U << -exponent); ++ ++ f->mantissa = mantissa; ++} ++ ++/* bytes remaining - only valid for last bset: */ ++static unsigned __bset_tree_capacity(struct btree *b, struct bset_tree *t) ++{ ++ bset_aux_tree_verify(b); ++ ++ return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64); ++} ++ ++static unsigned bset_ro_tree_capacity(struct btree *b, struct bset_tree *t) ++{ ++ return __bset_tree_capacity(b, t) / ++ (sizeof(struct bkey_float) + sizeof(u8)); ++} ++ ++static unsigned bset_rw_tree_capacity(struct btree *b, struct bset_tree *t) ++{ ++ return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree); ++} ++ ++static void __build_rw_aux_tree(struct btree *b, struct bset_tree *t) ++{ ++ struct bkey_packed *k; ++ ++ t->size = 1; ++ t->extra = BSET_RW_AUX_TREE_VAL; ++ rw_aux_tree(b, t)[0].offset = ++ __btree_node_key_to_offset(b, btree_bkey_first(b, t)); ++ ++ bset_tree_for_each_key(b, t, k) { ++ if (t->size == bset_rw_tree_capacity(b, t)) ++ break; ++ ++ if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) > ++ L1_CACHE_BYTES) ++ rw_aux_tree_set(b, t, t->size++, k); ++ } ++} ++ ++static void __build_ro_aux_tree(struct btree *b, struct bset_tree *t) ++{ ++ struct bkey_packed *prev = NULL, *k = btree_bkey_first(b, t); ++ struct bkey_packed min_key, max_key; ++ unsigned j, cacheline = 1; ++ ++ /* signal to make_bfloat() that they're uninitialized: */ ++ min_key.u64s = max_key.u64s = 0; ++ ++ t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)), ++ bset_ro_tree_capacity(b, t)); ++retry: ++ if (t->size < 2) { ++ t->size = 0; ++ t->extra = BSET_NO_AUX_TREE_VAL; ++ return; ++ } ++ ++ t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; ++ ++ /* First we figure out where the first key in each cacheline is */ ++ eytzinger1_for_each(j, t->size) { ++ while (bkey_to_cacheline(b, t, k) < cacheline) ++ prev = k, k = bkey_next_skip_noops(k, btree_bkey_last(b, t)); ++ ++ if (k >= btree_bkey_last(b, t)) { ++ /* XXX: this path sucks */ ++ t->size--; ++ goto retry; ++ } ++ ++ ro_aux_tree_prev(b, t)[j] = prev->u64s; ++ bkey_float(b, t, j)->key_offset = ++ bkey_to_cacheline_offset(b, t, cacheline++, k); ++ ++ EBUG_ON(tree_to_prev_bkey(b, t, j) != prev); ++ EBUG_ON(tree_to_bkey(b, t, j) != k); ++ } ++ ++ while (k != btree_bkey_last(b, t)) ++ prev = k, k = bkey_next_skip_noops(k, btree_bkey_last(b, t)); ++ ++ t->max_key = bkey_unpack_pos(b, prev); ++ ++ /* Then we build the tree */ ++ eytzinger1_for_each(j, t->size) ++ make_bfloat(b, t, j, &min_key, &max_key); ++} ++ ++static void bset_alloc_tree(struct btree *b, struct bset_tree *t) ++{ ++ struct bset_tree *i; ++ ++ for (i = b->set; i != t; i++) ++ BUG_ON(bset_has_rw_aux_tree(i)); ++ ++ bch2_bset_set_no_aux_tree(b, t); ++ ++ /* round up to next cacheline: */ ++ t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t), ++ SMP_CACHE_BYTES / sizeof(u64)); ++ ++ bset_aux_tree_verify(b); ++} ++ ++void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t, ++ bool writeable) ++{ ++ if (writeable ++ ? bset_has_rw_aux_tree(t) ++ : bset_has_ro_aux_tree(t)) ++ return; ++ ++ bset_alloc_tree(b, t); ++ ++ if (!__bset_tree_capacity(b, t)) ++ return; ++ ++ if (writeable) ++ __build_rw_aux_tree(b, t); ++ else ++ __build_ro_aux_tree(b, t); ++ ++ bset_aux_tree_verify(b); ++} ++ ++void bch2_bset_init_first(struct btree *b, struct bset *i) ++{ ++ struct bset_tree *t; ++ ++ BUG_ON(b->nsets); ++ ++ memset(i, 0, sizeof(*i)); ++ get_random_bytes(&i->seq, sizeof(i->seq)); ++ SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); ++ ++ t = &b->set[b->nsets++]; ++ set_btree_bset(b, t, i); ++} ++ ++void bch2_bset_init_next(struct bch_fs *c, struct btree *b, ++ struct btree_node_entry *bne) ++{ ++ struct bset *i = &bne->keys; ++ struct bset_tree *t; ++ ++ BUG_ON(bset_byte_offset(b, bne) >= btree_bytes(c)); ++ BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b))); ++ BUG_ON(b->nsets >= MAX_BSETS); ++ ++ memset(i, 0, sizeof(*i)); ++ i->seq = btree_bset_first(b)->seq; ++ SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); ++ ++ t = &b->set[b->nsets++]; ++ set_btree_bset(b, t, i); ++} ++ ++/* ++ * find _some_ key in the same bset as @k that precedes @k - not necessarily the ++ * immediate predecessor: ++ */ ++static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t, ++ struct bkey_packed *k) ++{ ++ struct bkey_packed *p; ++ unsigned offset; ++ int j; ++ ++ EBUG_ON(k < btree_bkey_first(b, t) || ++ k > btree_bkey_last(b, t)); ++ ++ if (k == btree_bkey_first(b, t)) ++ return NULL; ++ ++ switch (bset_aux_tree_type(t)) { ++ case BSET_NO_AUX_TREE: ++ p = btree_bkey_first(b, t); ++ break; ++ case BSET_RO_AUX_TREE: ++ j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k)); ++ ++ do { ++ p = j ? tree_to_bkey(b, t, ++ __inorder_to_eytzinger1(j--, ++ t->size, t->extra)) ++ : btree_bkey_first(b, t); ++ } while (p >= k); ++ break; ++ case BSET_RW_AUX_TREE: ++ offset = __btree_node_key_to_offset(b, k); ++ j = rw_aux_tree_bsearch(b, t, offset); ++ p = j ? rw_aux_to_bkey(b, t, j - 1) ++ : btree_bkey_first(b, t); ++ break; ++ } ++ ++ return p; ++} ++ ++struct bkey_packed *bch2_bkey_prev_filter(struct btree *b, ++ struct bset_tree *t, ++ struct bkey_packed *k, ++ unsigned min_key_type) ++{ ++ struct bkey_packed *p, *i, *ret = NULL, *orig_k = k; ++ ++ while ((p = __bkey_prev(b, t, k)) && !ret) { ++ for (i = p; i != k; i = bkey_next_skip_noops(i, k)) ++ if (i->type >= min_key_type) ++ ret = i; ++ ++ k = p; ++ } ++ ++ if (btree_keys_expensive_checks(b)) { ++ BUG_ON(ret >= orig_k); ++ ++ for (i = ret ++ ? bkey_next_skip_noops(ret, orig_k) ++ : btree_bkey_first(b, t); ++ i != orig_k; ++ i = bkey_next_skip_noops(i, orig_k)) ++ BUG_ON(i->type >= min_key_type); ++ } ++ ++ return ret; ++} ++ ++/* Insert */ ++ ++static void rw_aux_tree_fix_invalidated_key(struct btree *b, ++ struct bset_tree *t, ++ struct bkey_packed *k) ++{ ++ unsigned offset = __btree_node_key_to_offset(b, k); ++ unsigned j = rw_aux_tree_bsearch(b, t, offset); ++ ++ if (j < t->size && ++ rw_aux_tree(b, t)[j].offset == offset) ++ rw_aux_tree_set(b, t, j, k); ++ ++ bch2_bset_verify_rw_aux_tree(b, t); ++} ++ ++static void ro_aux_tree_fix_invalidated_key(struct btree *b, ++ struct bset_tree *t, ++ struct bkey_packed *k) ++{ ++ struct bkey_packed min_key, max_key; ++ unsigned inorder, j; ++ ++ EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE); ++ ++ /* signal to make_bfloat() that they're uninitialized: */ ++ min_key.u64s = max_key.u64s = 0; ++ ++ if (bkey_next_skip_noops(k, btree_bkey_last(b, t)) == btree_bkey_last(b, t)) { ++ t->max_key = bkey_unpack_pos(b, k); ++ ++ for (j = 1; j < t->size; j = j * 2 + 1) ++ make_bfloat(b, t, j, &min_key, &max_key); ++ } ++ ++ inorder = bkey_to_cacheline(b, t, k); ++ ++ if (inorder && ++ inorder < t->size) { ++ j = __inorder_to_eytzinger1(inorder, t->size, t->extra); ++ ++ if (k == tree_to_bkey(b, t, j)) { ++ /* Fix the node this key corresponds to */ ++ make_bfloat(b, t, j, &min_key, &max_key); ++ ++ /* Children for which this key is the right boundary */ ++ for (j = eytzinger1_left_child(j); ++ j < t->size; ++ j = eytzinger1_right_child(j)) ++ make_bfloat(b, t, j, &min_key, &max_key); ++ } ++ } ++ ++ if (inorder + 1 < t->size) { ++ j = __inorder_to_eytzinger1(inorder + 1, t->size, t->extra); ++ ++ if (k == tree_to_prev_bkey(b, t, j)) { ++ make_bfloat(b, t, j, &min_key, &max_key); ++ ++ /* Children for which this key is the left boundary */ ++ for (j = eytzinger1_right_child(j); ++ j < t->size; ++ j = eytzinger1_left_child(j)) ++ make_bfloat(b, t, j, &min_key, &max_key); ++ } ++ } ++} ++ ++/** ++ * bch2_bset_fix_invalidated_key() - given an existing key @k that has been ++ * modified, fix any auxiliary search tree by remaking all the nodes in the ++ * auxiliary search tree that @k corresponds to ++ */ ++void bch2_bset_fix_invalidated_key(struct btree *b, struct bkey_packed *k) ++{ ++ struct bset_tree *t = bch2_bkey_to_bset(b, k); ++ ++ switch (bset_aux_tree_type(t)) { ++ case BSET_NO_AUX_TREE: ++ break; ++ case BSET_RO_AUX_TREE: ++ ro_aux_tree_fix_invalidated_key(b, t, k); ++ break; ++ case BSET_RW_AUX_TREE: ++ rw_aux_tree_fix_invalidated_key(b, t, k); ++ break; ++ } ++} ++ ++static void bch2_bset_fix_lookup_table(struct btree *b, ++ struct bset_tree *t, ++ struct bkey_packed *_where, ++ unsigned clobber_u64s, ++ unsigned new_u64s) ++{ ++ int shift = new_u64s - clobber_u64s; ++ unsigned l, j, where = __btree_node_key_to_offset(b, _where); ++ ++ EBUG_ON(bset_has_ro_aux_tree(t)); ++ ++ if (!bset_has_rw_aux_tree(t)) ++ return; ++ ++ /* returns first entry >= where */ ++ l = rw_aux_tree_bsearch(b, t, where); ++ ++ if (!l) /* never delete first entry */ ++ l++; ++ else if (l < t->size && ++ where < t->end_offset && ++ rw_aux_tree(b, t)[l].offset == where) ++ rw_aux_tree_set(b, t, l++, _where); ++ ++ /* l now > where */ ++ ++ for (j = l; ++ j < t->size && ++ rw_aux_tree(b, t)[j].offset < where + clobber_u64s; ++ j++) ++ ; ++ ++ if (j < t->size && ++ rw_aux_tree(b, t)[j].offset + shift == ++ rw_aux_tree(b, t)[l - 1].offset) ++ j++; ++ ++ memmove(&rw_aux_tree(b, t)[l], ++ &rw_aux_tree(b, t)[j], ++ (void *) &rw_aux_tree(b, t)[t->size] - ++ (void *) &rw_aux_tree(b, t)[j]); ++ t->size -= j - l; ++ ++ for (j = l; j < t->size; j++) ++ rw_aux_tree(b, t)[j].offset += shift; ++ ++ EBUG_ON(l < t->size && ++ rw_aux_tree(b, t)[l].offset == ++ rw_aux_tree(b, t)[l - 1].offset); ++ ++ if (t->size < bset_rw_tree_capacity(b, t) && ++ (l < t->size ++ ? rw_aux_tree(b, t)[l].offset ++ : t->end_offset) - ++ rw_aux_tree(b, t)[l - 1].offset > ++ L1_CACHE_BYTES / sizeof(u64)) { ++ struct bkey_packed *start = rw_aux_to_bkey(b, t, l - 1); ++ struct bkey_packed *end = l < t->size ++ ? rw_aux_to_bkey(b, t, l) ++ : btree_bkey_last(b, t); ++ struct bkey_packed *k = start; ++ ++ while (1) { ++ k = bkey_next_skip_noops(k, end); ++ if (k == end) ++ break; ++ ++ if ((void *) k - (void *) start >= L1_CACHE_BYTES) { ++ memmove(&rw_aux_tree(b, t)[l + 1], ++ &rw_aux_tree(b, t)[l], ++ (void *) &rw_aux_tree(b, t)[t->size] - ++ (void *) &rw_aux_tree(b, t)[l]); ++ t->size++; ++ rw_aux_tree_set(b, t, l, k); ++ break; ++ } ++ } ++ } ++ ++ bch2_bset_verify_rw_aux_tree(b, t); ++ bset_aux_tree_verify(b); ++} ++ ++void bch2_bset_insert(struct btree *b, ++ struct btree_node_iter *iter, ++ struct bkey_packed *where, ++ struct bkey_i *insert, ++ unsigned clobber_u64s) ++{ ++ struct bkey_format *f = &b->format; ++ struct bset_tree *t = bset_tree_last(b); ++ struct bkey_packed packed, *src = bkey_to_packed(insert); ++ ++ bch2_bset_verify_rw_aux_tree(b, t); ++ bch2_verify_insert_pos(b, where, bkey_to_packed(insert), clobber_u64s); ++ ++ if (bch2_bkey_pack_key(&packed, &insert->k, f)) ++ src = &packed; ++ ++ if (!bkey_whiteout(&insert->k)) ++ btree_keys_account_key_add(&b->nr, t - b->set, src); ++ ++ if (src->u64s != clobber_u64s) { ++ u64 *src_p = where->_data + clobber_u64s; ++ u64 *dst_p = where->_data + src->u64s; ++ ++ EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) < ++ (int) clobber_u64s - src->u64s); ++ ++ memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p); ++ le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s); ++ set_btree_bset_end(b, t); ++ } ++ ++ memcpy_u64s(where, src, ++ bkeyp_key_u64s(f, src)); ++ memcpy_u64s(bkeyp_val(f, where), &insert->v, ++ bkeyp_val_u64s(f, src)); ++ ++ if (src->u64s != clobber_u64s) ++ bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s); ++ ++ bch2_verify_btree_nr_keys(b); ++} ++ ++void bch2_bset_delete(struct btree *b, ++ struct bkey_packed *where, ++ unsigned clobber_u64s) ++{ ++ struct bset_tree *t = bset_tree_last(b); ++ u64 *src_p = where->_data + clobber_u64s; ++ u64 *dst_p = where->_data; ++ ++ bch2_bset_verify_rw_aux_tree(b, t); ++ ++ EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s); ++ ++ memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p); ++ le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s); ++ set_btree_bset_end(b, t); ++ ++ bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0); ++} ++ ++/* Lookup */ ++ ++__flatten ++static struct bkey_packed *bset_search_write_set(const struct btree *b, ++ struct bset_tree *t, ++ struct bpos *search, ++ const struct bkey_packed *packed_search) ++{ ++ unsigned l = 0, r = t->size; ++ ++ while (l + 1 != r) { ++ unsigned m = (l + r) >> 1; ++ ++ if (bkey_cmp(rw_aux_tree(b, t)[m].k, *search) < 0) ++ l = m; ++ else ++ r = m; ++ } ++ ++ return rw_aux_to_bkey(b, t, l); ++} ++ ++static inline void prefetch_four_cachelines(void *p) ++{ ++#ifdef CONFIG_X86_64 ++ asm(".intel_syntax noprefix;" ++ "prefetcht0 [%0 - 127 + 64 * 0];" ++ "prefetcht0 [%0 - 127 + 64 * 1];" ++ "prefetcht0 [%0 - 127 + 64 * 2];" ++ "prefetcht0 [%0 - 127 + 64 * 3];" ++ ".att_syntax prefix;" ++ : ++ : "r" (p + 127)); ++#else ++ prefetch(p + L1_CACHE_BYTES * 0); ++ prefetch(p + L1_CACHE_BYTES * 1); ++ prefetch(p + L1_CACHE_BYTES * 2); ++ prefetch(p + L1_CACHE_BYTES * 3); ++#endif ++} ++ ++static inline bool bkey_mantissa_bits_dropped(const struct btree *b, ++ const struct bkey_float *f, ++ unsigned idx) ++{ ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ++ unsigned key_bits_start = b->format.key_u64s * 64 - b->nr_key_bits; ++ ++ return f->exponent > key_bits_start; ++#else ++ unsigned key_bits_end = high_bit_offset + b->nr_key_bits; ++ ++ return f->exponent + BKEY_MANTISSA_BITS < key_bits_end; ++#endif ++} ++ ++__flatten ++static struct bkey_packed *bset_search_tree(const struct btree *b, ++ struct bset_tree *t, ++ struct bpos *search, ++ const struct bkey_packed *packed_search) ++{ ++ struct ro_aux_tree *base = ro_aux_tree_base(b, t); ++ struct bkey_float *f; ++ struct bkey_packed *k; ++ unsigned inorder, n = 1, l, r; ++ int cmp; ++ ++ do { ++ if (likely(n << 4 < t->size)) ++ prefetch(&base->f[n << 4]); ++ ++ f = &base->f[n]; ++ ++ if (!unlikely(packed_search)) ++ goto slowpath; ++ if (unlikely(f->exponent >= BFLOAT_FAILED)) ++ goto slowpath; ++ ++ l = f->mantissa; ++ r = bkey_mantissa(packed_search, f, n); ++ ++ if (unlikely(l == r) && bkey_mantissa_bits_dropped(b, f, n)) ++ goto slowpath; ++ ++ n = n * 2 + (l < r); ++ continue; ++slowpath: ++ k = tree_to_bkey(b, t, n); ++ cmp = bkey_cmp_p_or_unp(b, k, packed_search, search); ++ if (!cmp) ++ return k; ++ ++ n = n * 2 + (cmp < 0); ++ } while (n < t->size); ++ ++ inorder = __eytzinger1_to_inorder(n >> 1, t->size, t->extra); ++ ++ /* ++ * n would have been the node we recursed to - the low bit tells us if ++ * we recursed left or recursed right. ++ */ ++ if (likely(!(n & 1))) { ++ --inorder; ++ if (unlikely(!inorder)) ++ return btree_bkey_first(b, t); ++ ++ f = &base->f[eytzinger1_prev(n >> 1, t->size)]; ++ } ++ ++ return cacheline_to_bkey(b, t, inorder, f->key_offset); ++} ++ ++static __always_inline __flatten ++struct bkey_packed *__bch2_bset_search(struct btree *b, ++ struct bset_tree *t, ++ struct bpos *search, ++ const struct bkey_packed *lossy_packed_search) ++{ ++ ++ /* ++ * First, we search for a cacheline, then lastly we do a linear search ++ * within that cacheline. ++ * ++ * To search for the cacheline, there's three different possibilities: ++ * * The set is too small to have a search tree, so we just do a linear ++ * search over the whole set. ++ * * The set is the one we're currently inserting into; keeping a full ++ * auxiliary search tree up to date would be too expensive, so we ++ * use a much simpler lookup table to do a binary search - ++ * bset_search_write_set(). ++ * * Or we use the auxiliary search tree we constructed earlier - ++ * bset_search_tree() ++ */ ++ ++ switch (bset_aux_tree_type(t)) { ++ case BSET_NO_AUX_TREE: ++ return btree_bkey_first(b, t); ++ case BSET_RW_AUX_TREE: ++ return bset_search_write_set(b, t, search, lossy_packed_search); ++ case BSET_RO_AUX_TREE: ++ /* ++ * Each node in the auxiliary search tree covers a certain range ++ * of bits, and keys above and below the set it covers might ++ * differ outside those bits - so we have to special case the ++ * start and end - handle that here: ++ */ ++ ++ if (bkey_cmp(*search, t->max_key) > 0) ++ return btree_bkey_last(b, t); ++ ++ return bset_search_tree(b, t, search, lossy_packed_search); ++ default: ++ unreachable(); ++ } ++} ++ ++static __always_inline __flatten ++struct bkey_packed *bch2_bset_search_linear(struct btree *b, ++ struct bset_tree *t, ++ struct bpos *search, ++ struct bkey_packed *packed_search, ++ const struct bkey_packed *lossy_packed_search, ++ struct bkey_packed *m) ++{ ++ if (lossy_packed_search) ++ while (m != btree_bkey_last(b, t) && ++ bkey_iter_cmp_p_or_unp(b, m, ++ lossy_packed_search, search) < 0) ++ m = bkey_next_skip_noops(m, btree_bkey_last(b, t)); ++ ++ if (!packed_search) ++ while (m != btree_bkey_last(b, t) && ++ bkey_iter_pos_cmp(b, m, search) < 0) ++ m = bkey_next_skip_noops(m, btree_bkey_last(b, t)); ++ ++ if (btree_keys_expensive_checks(b)) { ++ struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m); ++ ++ BUG_ON(prev && ++ bkey_iter_cmp_p_or_unp(b, prev, ++ packed_search, search) >= 0); ++ } ++ ++ return m; ++} ++ ++/* ++ * Returns the first key greater than or equal to @search ++ */ ++static __always_inline __flatten ++struct bkey_packed *bch2_bset_search(struct btree *b, ++ struct bset_tree *t, ++ struct bpos *search, ++ struct bkey_packed *packed_search, ++ const struct bkey_packed *lossy_packed_search) ++{ ++ struct bkey_packed *m = __bch2_bset_search(b, t, search, ++ lossy_packed_search); ++ ++ return bch2_bset_search_linear(b, t, search, ++ packed_search, lossy_packed_search, m); ++} ++ ++/* Btree node iterator */ ++ ++static inline void __bch2_btree_node_iter_push(struct btree_node_iter *iter, ++ struct btree *b, ++ const struct bkey_packed *k, ++ const struct bkey_packed *end) ++{ ++ if (k != end) { ++ struct btree_node_iter_set *pos; ++ ++ btree_node_iter_for_each(iter, pos) ++ ; ++ ++ BUG_ON(pos >= iter->data + ARRAY_SIZE(iter->data)); ++ *pos = (struct btree_node_iter_set) { ++ __btree_node_key_to_offset(b, k), ++ __btree_node_key_to_offset(b, end) ++ }; ++ } ++} ++ ++void bch2_btree_node_iter_push(struct btree_node_iter *iter, ++ struct btree *b, ++ const struct bkey_packed *k, ++ const struct bkey_packed *end) ++{ ++ __bch2_btree_node_iter_push(iter, b, k, end); ++ bch2_btree_node_iter_sort(iter, b); ++} ++ ++noinline __flatten __attribute__((cold)) ++static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter, ++ struct btree *b, struct bpos *search) ++{ ++ struct bset_tree *t; ++ ++ trace_bkey_pack_pos_fail(search); ++ ++ for_each_bset(b, t) ++ __bch2_btree_node_iter_push(iter, b, ++ bch2_bset_search(b, t, search, NULL, NULL), ++ btree_bkey_last(b, t)); ++ ++ bch2_btree_node_iter_sort(iter, b); ++} ++ ++/** ++ * bch_btree_node_iter_init - initialize a btree node iterator, starting from a ++ * given position ++ * ++ * Main entry point to the lookup code for individual btree nodes: ++ * ++ * NOTE: ++ * ++ * When you don't filter out deleted keys, btree nodes _do_ contain duplicate ++ * keys. This doesn't matter for most code, but it does matter for lookups. ++ * ++ * Some adjacent keys with a string of equal keys: ++ * i j k k k k l m ++ * ++ * If you search for k, the lookup code isn't guaranteed to return you any ++ * specific k. The lookup code is conceptually doing a binary search and ++ * iterating backwards is very expensive so if the pivot happens to land at the ++ * last k that's what you'll get. ++ * ++ * This works out ok, but it's something to be aware of: ++ * ++ * - For non extents, we guarantee that the live key comes last - see ++ * btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't ++ * see will only be deleted keys you don't care about. ++ * ++ * - For extents, deleted keys sort last (see the comment at the top of this ++ * file). But when you're searching for extents, you actually want the first ++ * key strictly greater than your search key - an extent that compares equal ++ * to the search key is going to have 0 sectors after the search key. ++ * ++ * But this does mean that we can't just search for ++ * bkey_successor(start_of_range) to get the first extent that overlaps with ++ * the range we want - if we're unlucky and there's an extent that ends ++ * exactly where we searched, then there could be a deleted key at the same ++ * position and we'd get that when we search instead of the preceding extent ++ * we needed. ++ * ++ * So we've got to search for start_of_range, then after the lookup iterate ++ * past any extents that compare equal to the position we searched for. ++ */ ++__flatten ++void bch2_btree_node_iter_init(struct btree_node_iter *iter, ++ struct btree *b, struct bpos *search) ++{ ++ struct bkey_packed p, *packed_search = NULL; ++ struct btree_node_iter_set *pos = iter->data; ++ struct bkey_packed *k[MAX_BSETS]; ++ unsigned i; ++ ++ EBUG_ON(bkey_cmp(*search, b->data->min_key) < 0); ++ bset_aux_tree_verify(b); ++ ++ memset(iter, 0, sizeof(*iter)); ++ ++ switch (bch2_bkey_pack_pos_lossy(&p, *search, b)) { ++ case BKEY_PACK_POS_EXACT: ++ packed_search = &p; ++ break; ++ case BKEY_PACK_POS_SMALLER: ++ packed_search = NULL; ++ break; ++ case BKEY_PACK_POS_FAIL: ++ btree_node_iter_init_pack_failed(iter, b, search); ++ return; ++ } ++ ++ for (i = 0; i < b->nsets; i++) { ++ k[i] = __bch2_bset_search(b, b->set + i, search, &p); ++ prefetch_four_cachelines(k[i]); ++ } ++ ++ for (i = 0; i < b->nsets; i++) { ++ struct bset_tree *t = b->set + i; ++ struct bkey_packed *end = btree_bkey_last(b, t); ++ ++ k[i] = bch2_bset_search_linear(b, t, search, ++ packed_search, &p, k[i]); ++ if (k[i] != end) ++ *pos++ = (struct btree_node_iter_set) { ++ __btree_node_key_to_offset(b, k[i]), ++ __btree_node_key_to_offset(b, end) ++ }; ++ } ++ ++ bch2_btree_node_iter_sort(iter, b); ++} ++ ++void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter, ++ struct btree *b) ++{ ++ struct bset_tree *t; ++ ++ memset(iter, 0, sizeof(*iter)); ++ ++ for_each_bset(b, t) ++ __bch2_btree_node_iter_push(iter, b, ++ btree_bkey_first(b, t), ++ btree_bkey_last(b, t)); ++ bch2_btree_node_iter_sort(iter, b); ++} ++ ++struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter, ++ struct btree *b, ++ struct bset_tree *t) ++{ ++ struct btree_node_iter_set *set; ++ ++ btree_node_iter_for_each(iter, set) ++ if (set->end == t->end_offset) ++ return __btree_node_offset_to_key(b, set->k); ++ ++ return btree_bkey_last(b, t); ++} ++ ++static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter, ++ struct btree *b, ++ unsigned first) ++{ ++ bool ret; ++ ++ if ((ret = (btree_node_iter_cmp(b, ++ iter->data[first], ++ iter->data[first + 1]) > 0))) ++ swap(iter->data[first], iter->data[first + 1]); ++ return ret; ++} ++ ++void bch2_btree_node_iter_sort(struct btree_node_iter *iter, ++ struct btree *b) ++{ ++ /* unrolled bubble sort: */ ++ ++ if (!__btree_node_iter_set_end(iter, 2)) { ++ btree_node_iter_sort_two(iter, b, 0); ++ btree_node_iter_sort_two(iter, b, 1); ++ } ++ ++ if (!__btree_node_iter_set_end(iter, 1)) ++ btree_node_iter_sort_two(iter, b, 0); ++} ++ ++void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter, ++ struct btree_node_iter_set *set) ++{ ++ struct btree_node_iter_set *last = ++ iter->data + ARRAY_SIZE(iter->data) - 1; ++ ++ memmove(&set[0], &set[1], (void *) last - (void *) set); ++ *last = (struct btree_node_iter_set) { 0, 0 }; ++} ++ ++static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter, ++ struct btree *b) ++{ ++ iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s; ++ ++ EBUG_ON(iter->data->k > iter->data->end); ++ ++ while (!__btree_node_iter_set_end(iter, 0) && ++ !__bch2_btree_node_iter_peek_all(iter, b)->u64s) ++ iter->data->k++; ++ ++ if (unlikely(__btree_node_iter_set_end(iter, 0))) { ++ bch2_btree_node_iter_set_drop(iter, iter->data); ++ return; ++ } ++ ++ if (__btree_node_iter_set_end(iter, 1)) ++ return; ++ ++ if (!btree_node_iter_sort_two(iter, b, 0)) ++ return; ++ ++ if (__btree_node_iter_set_end(iter, 2)) ++ return; ++ ++ btree_node_iter_sort_two(iter, b, 1); ++} ++ ++void bch2_btree_node_iter_advance(struct btree_node_iter *iter, ++ struct btree *b) ++{ ++ if (btree_keys_expensive_checks(b)) { ++ bch2_btree_node_iter_verify(iter, b); ++ bch2_btree_node_iter_next_check(iter, b); ++ } ++ ++ __bch2_btree_node_iter_advance(iter, b); ++} ++ ++/* ++ * Expensive: ++ */ ++struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *iter, ++ struct btree *b) ++{ ++ struct bkey_packed *k, *prev = NULL; ++ struct btree_node_iter_set *set; ++ struct bset_tree *t; ++ unsigned end = 0; ++ ++ if (btree_keys_expensive_checks(b)) ++ bch2_btree_node_iter_verify(iter, b); ++ ++ for_each_bset(b, t) { ++ k = bch2_bkey_prev_all(b, t, ++ bch2_btree_node_iter_bset_pos(iter, b, t)); ++ if (k && ++ (!prev || bkey_iter_cmp(b, k, prev) > 0)) { ++ prev = k; ++ end = t->end_offset; ++ } ++ } ++ ++ if (!prev) ++ return NULL; ++ ++ /* ++ * We're manually memmoving instead of just calling sort() to ensure the ++ * prev we picked ends up in slot 0 - sort won't necessarily put it ++ * there because of duplicate deleted keys: ++ */ ++ btree_node_iter_for_each(iter, set) ++ if (set->end == end) ++ goto found; ++ ++ BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]); ++found: ++ BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data)); ++ ++ memmove(&iter->data[1], ++ &iter->data[0], ++ (void *) set - (void *) &iter->data[0]); ++ ++ iter->data[0].k = __btree_node_key_to_offset(b, prev); ++ iter->data[0].end = end; ++ ++ if (btree_keys_expensive_checks(b)) ++ bch2_btree_node_iter_verify(iter, b); ++ return prev; ++} ++ ++struct bkey_packed *bch2_btree_node_iter_prev_filter(struct btree_node_iter *iter, ++ struct btree *b, ++ unsigned min_key_type) ++{ ++ struct bkey_packed *prev; ++ ++ do { ++ prev = bch2_btree_node_iter_prev_all(iter, b); ++ } while (prev && prev->type < min_key_type); ++ ++ return prev; ++} ++ ++struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter, ++ struct btree *b, ++ struct bkey *u) ++{ ++ struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b); ++ ++ return k ? bkey_disassemble(b, k, u) : bkey_s_c_null; ++} ++ ++/* Mergesort */ ++ ++void bch2_btree_keys_stats(struct btree *b, struct bset_stats *stats) ++{ ++ struct bset_tree *t; ++ ++ for_each_bset(b, t) { ++ enum bset_aux_tree_type type = bset_aux_tree_type(t); ++ size_t j; ++ ++ stats->sets[type].nr++; ++ stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) * ++ sizeof(u64); ++ ++ if (bset_has_ro_aux_tree(t)) { ++ stats->floats += t->size - 1; ++ ++ for (j = 1; j < t->size; j++) ++ stats->failed += ++ bkey_float(b, t, j)->exponent == ++ BFLOAT_FAILED; ++ } ++ } ++} ++ ++void bch2_bfloat_to_text(struct printbuf *out, struct btree *b, ++ struct bkey_packed *k) ++{ ++ struct bset_tree *t = bch2_bkey_to_bset(b, k); ++ struct bkey uk; ++ unsigned j, inorder; ++ ++ if (out->pos != out->end) ++ *out->pos = '\0'; ++ ++ if (!bset_has_ro_aux_tree(t)) ++ return; ++ ++ inorder = bkey_to_cacheline(b, t, k); ++ if (!inorder || inorder >= t->size) ++ return; ++ ++ j = __inorder_to_eytzinger1(inorder, t->size, t->extra); ++ if (k != tree_to_bkey(b, t, j)) ++ return; ++ ++ switch (bkey_float(b, t, j)->exponent) { ++ case BFLOAT_FAILED: ++ uk = bkey_unpack_key(b, k); ++ pr_buf(out, ++ " failed unpacked at depth %u\n" ++ "\t%llu:%llu\n", ++ ilog2(j), ++ uk.p.inode, uk.p.offset); ++ break; ++ } ++} +diff --git a/fs/bcachefs/bset.h b/fs/bcachefs/bset.h +new file mode 100644 +index 000000000000..5921cf689105 +--- /dev/null ++++ b/fs/bcachefs/bset.h +@@ -0,0 +1,661 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BSET_H ++#define _BCACHEFS_BSET_H ++ ++#include ++#include ++ ++#include "bcachefs_format.h" ++#include "bkey.h" ++#include "bkey_methods.h" ++#include "btree_types.h" ++#include "util.h" /* for time_stats */ ++#include "vstructs.h" ++ ++/* ++ * BKEYS: ++ * ++ * A bkey contains a key, a size field, a variable number of pointers, and some ++ * ancillary flag bits. ++ * ++ * We use two different functions for validating bkeys, bkey_invalid and ++ * bkey_deleted(). ++ * ++ * The one exception to the rule that ptr_invalid() filters out invalid keys is ++ * that it also filters out keys of size 0 - these are keys that have been ++ * completely overwritten. It'd be safe to delete these in memory while leaving ++ * them on disk, just unnecessary work - so we filter them out when resorting ++ * instead. ++ * ++ * We can't filter out stale keys when we're resorting, because garbage ++ * collection needs to find them to ensure bucket gens don't wrap around - ++ * unless we're rewriting the btree node those stale keys still exist on disk. ++ * ++ * We also implement functions here for removing some number of sectors from the ++ * front or the back of a bkey - this is mainly used for fixing overlapping ++ * extents, by removing the overlapping sectors from the older key. ++ * ++ * BSETS: ++ * ++ * A bset is an array of bkeys laid out contiguously in memory in sorted order, ++ * along with a header. A btree node is made up of a number of these, written at ++ * different times. ++ * ++ * There could be many of them on disk, but we never allow there to be more than ++ * 4 in memory - we lazily resort as needed. ++ * ++ * We implement code here for creating and maintaining auxiliary search trees ++ * (described below) for searching an individial bset, and on top of that we ++ * implement a btree iterator. ++ * ++ * BTREE ITERATOR: ++ * ++ * Most of the code in bcache doesn't care about an individual bset - it needs ++ * to search entire btree nodes and iterate over them in sorted order. ++ * ++ * The btree iterator code serves both functions; it iterates through the keys ++ * in a btree node in sorted order, starting from either keys after a specific ++ * point (if you pass it a search key) or the start of the btree node. ++ * ++ * AUXILIARY SEARCH TREES: ++ * ++ * Since keys are variable length, we can't use a binary search on a bset - we ++ * wouldn't be able to find the start of the next key. But binary searches are ++ * slow anyways, due to terrible cache behaviour; bcache originally used binary ++ * searches and that code topped out at under 50k lookups/second. ++ * ++ * So we need to construct some sort of lookup table. Since we only insert keys ++ * into the last (unwritten) set, most of the keys within a given btree node are ++ * usually in sets that are mostly constant. We use two different types of ++ * lookup tables to take advantage of this. ++ * ++ * Both lookup tables share in common that they don't index every key in the ++ * set; they index one key every BSET_CACHELINE bytes, and then a linear search ++ * is used for the rest. ++ * ++ * For sets that have been written to disk and are no longer being inserted ++ * into, we construct a binary search tree in an array - traversing a binary ++ * search tree in an array gives excellent locality of reference and is very ++ * fast, since both children of any node are adjacent to each other in memory ++ * (and their grandchildren, and great grandchildren...) - this means ++ * prefetching can be used to great effect. ++ * ++ * It's quite useful performance wise to keep these nodes small - not just ++ * because they're more likely to be in L2, but also because we can prefetch ++ * more nodes on a single cacheline and thus prefetch more iterations in advance ++ * when traversing this tree. ++ * ++ * Nodes in the auxiliary search tree must contain both a key to compare against ++ * (we don't want to fetch the key from the set, that would defeat the purpose), ++ * and a pointer to the key. We use a few tricks to compress both of these. ++ * ++ * To compress the pointer, we take advantage of the fact that one node in the ++ * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have ++ * a function (to_inorder()) that takes the index of a node in a binary tree and ++ * returns what its index would be in an inorder traversal, so we only have to ++ * store the low bits of the offset. ++ * ++ * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To ++ * compress that, we take advantage of the fact that when we're traversing the ++ * search tree at every iteration we know that both our search key and the key ++ * we're looking for lie within some range - bounded by our previous ++ * comparisons. (We special case the start of a search so that this is true even ++ * at the root of the tree). ++ * ++ * So we know the key we're looking for is between a and b, and a and b don't ++ * differ higher than bit 50, we don't need to check anything higher than bit ++ * 50. ++ * ++ * We don't usually need the rest of the bits, either; we only need enough bits ++ * to partition the key range we're currently checking. Consider key n - the ++ * key our auxiliary search tree node corresponds to, and key p, the key ++ * immediately preceding n. The lowest bit we need to store in the auxiliary ++ * search tree is the highest bit that differs between n and p. ++ * ++ * Note that this could be bit 0 - we might sometimes need all 80 bits to do the ++ * comparison. But we'd really like our nodes in the auxiliary search tree to be ++ * of fixed size. ++ * ++ * The solution is to make them fixed size, and when we're constructing a node ++ * check if p and n differed in the bits we needed them to. If they don't we ++ * flag that node, and when doing lookups we fallback to comparing against the ++ * real key. As long as this doesn't happen to often (and it seems to reliably ++ * happen a bit less than 1% of the time), we win - even on failures, that key ++ * is then more likely to be in cache than if we were doing binary searches all ++ * the way, since we're touching so much less memory. ++ * ++ * The keys in the auxiliary search tree are stored in (software) floating ++ * point, with an exponent and a mantissa. The exponent needs to be big enough ++ * to address all the bits in the original key, but the number of bits in the ++ * mantissa is somewhat arbitrary; more bits just gets us fewer failures. ++ * ++ * We need 7 bits for the exponent and 3 bits for the key's offset (since keys ++ * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes. ++ * We need one node per 128 bytes in the btree node, which means the auxiliary ++ * search trees take up 3% as much memory as the btree itself. ++ * ++ * Constructing these auxiliary search trees is moderately expensive, and we ++ * don't want to be constantly rebuilding the search tree for the last set ++ * whenever we insert another key into it. For the unwritten set, we use a much ++ * simpler lookup table - it's just a flat array, so index i in the lookup table ++ * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing ++ * within each byte range works the same as with the auxiliary search trees. ++ * ++ * These are much easier to keep up to date when we insert a key - we do it ++ * somewhat lazily; when we shift a key up we usually just increment the pointer ++ * to it, only when it would overflow do we go to the trouble of finding the ++ * first key in that range of bytes again. ++ */ ++ ++extern bool bch2_expensive_debug_checks; ++ ++static inline bool btree_keys_expensive_checks(const struct btree *b) ++{ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ return bch2_expensive_debug_checks || *b->expensive_debug_checks; ++#else ++ return false; ++#endif ++} ++ ++enum bset_aux_tree_type { ++ BSET_NO_AUX_TREE, ++ BSET_RO_AUX_TREE, ++ BSET_RW_AUX_TREE, ++}; ++ ++#define BSET_TREE_NR_TYPES 3 ++ ++#define BSET_NO_AUX_TREE_VAL (U16_MAX) ++#define BSET_RW_AUX_TREE_VAL (U16_MAX - 1) ++ ++static inline enum bset_aux_tree_type bset_aux_tree_type(const struct bset_tree *t) ++{ ++ switch (t->extra) { ++ case BSET_NO_AUX_TREE_VAL: ++ EBUG_ON(t->size); ++ return BSET_NO_AUX_TREE; ++ case BSET_RW_AUX_TREE_VAL: ++ EBUG_ON(!t->size); ++ return BSET_RW_AUX_TREE; ++ default: ++ EBUG_ON(!t->size); ++ return BSET_RO_AUX_TREE; ++ } ++} ++ ++/* ++ * BSET_CACHELINE was originally intended to match the hardware cacheline size - ++ * it used to be 64, but I realized the lookup code would touch slightly less ++ * memory if it was 128. ++ * ++ * It definites the number of bytes (in struct bset) per struct bkey_float in ++ * the auxiliar search tree - when we're done searching the bset_float tree we ++ * have this many bytes left that we do a linear search over. ++ * ++ * Since (after level 5) every level of the bset_tree is on a new cacheline, ++ * we're touching one fewer cacheline in the bset tree in exchange for one more ++ * cacheline in the linear search - but the linear search might stop before it ++ * gets to the second cacheline. ++ */ ++ ++#define BSET_CACHELINE 128 ++ ++static inline size_t btree_keys_cachelines(struct btree *b) ++{ ++ return (1U << b->byte_order) / BSET_CACHELINE; ++} ++ ++static inline size_t btree_aux_data_bytes(struct btree *b) ++{ ++ return btree_keys_cachelines(b) * 8; ++} ++ ++static inline size_t btree_aux_data_u64s(struct btree *b) ++{ ++ return btree_aux_data_bytes(b) / sizeof(u64); ++} ++ ++typedef void (*compiled_unpack_fn)(struct bkey *, const struct bkey_packed *); ++ ++static inline void ++__bkey_unpack_key_format_checked(const struct btree *b, ++ struct bkey *dst, ++ const struct bkey_packed *src) ++{ ++#ifdef HAVE_BCACHEFS_COMPILED_UNPACK ++ { ++ compiled_unpack_fn unpack_fn = b->aux_data; ++ unpack_fn(dst, src); ++ ++ if (btree_keys_expensive_checks(b)) { ++ struct bkey dst2 = __bch2_bkey_unpack_key(&b->format, src); ++ ++ BUG_ON(memcmp(dst, &dst2, sizeof(*dst))); ++ } ++ } ++#else ++ *dst = __bch2_bkey_unpack_key(&b->format, src); ++#endif ++} ++ ++static inline struct bkey ++bkey_unpack_key_format_checked(const struct btree *b, ++ const struct bkey_packed *src) ++{ ++ struct bkey dst; ++ ++ __bkey_unpack_key_format_checked(b, &dst, src); ++ return dst; ++} ++ ++static inline void __bkey_unpack_key(const struct btree *b, ++ struct bkey *dst, ++ const struct bkey_packed *src) ++{ ++ if (likely(bkey_packed(src))) ++ __bkey_unpack_key_format_checked(b, dst, src); ++ else ++ *dst = *packed_to_bkey_c(src); ++} ++ ++/** ++ * bkey_unpack_key -- unpack just the key, not the value ++ */ ++static inline struct bkey bkey_unpack_key(const struct btree *b, ++ const struct bkey_packed *src) ++{ ++ return likely(bkey_packed(src)) ++ ? bkey_unpack_key_format_checked(b, src) ++ : *packed_to_bkey_c(src); ++} ++ ++static inline struct bpos ++bkey_unpack_pos_format_checked(const struct btree *b, ++ const struct bkey_packed *src) ++{ ++#ifdef HAVE_BCACHEFS_COMPILED_UNPACK ++ return bkey_unpack_key_format_checked(b, src).p; ++#else ++ return __bkey_unpack_pos(&b->format, src); ++#endif ++} ++ ++static inline struct bpos bkey_unpack_pos(const struct btree *b, ++ const struct bkey_packed *src) ++{ ++ return likely(bkey_packed(src)) ++ ? bkey_unpack_pos_format_checked(b, src) ++ : packed_to_bkey_c(src)->p; ++} ++ ++/* Disassembled bkeys */ ++ ++static inline struct bkey_s_c bkey_disassemble(struct btree *b, ++ const struct bkey_packed *k, ++ struct bkey *u) ++{ ++ __bkey_unpack_key(b, u, k); ++ ++ return (struct bkey_s_c) { u, bkeyp_val(&b->format, k), }; ++} ++ ++/* non const version: */ ++static inline struct bkey_s __bkey_disassemble(struct btree *b, ++ struct bkey_packed *k, ++ struct bkey *u) ++{ ++ __bkey_unpack_key(b, u, k); ++ ++ return (struct bkey_s) { .k = u, .v = bkeyp_val(&b->format, k), }; ++} ++ ++#define for_each_bset(_b, _t) \ ++ for (_t = (_b)->set; _t < (_b)->set + (_b)->nsets; _t++) ++ ++#define bset_tree_for_each_key(_b, _t, _k) \ ++ for (_k = btree_bkey_first(_b, _t); \ ++ _k != btree_bkey_last(_b, _t); \ ++ _k = bkey_next_skip_noops(_k, btree_bkey_last(_b, _t))) ++ ++static inline bool bset_has_ro_aux_tree(struct bset_tree *t) ++{ ++ return bset_aux_tree_type(t) == BSET_RO_AUX_TREE; ++} ++ ++static inline bool bset_has_rw_aux_tree(struct bset_tree *t) ++{ ++ return bset_aux_tree_type(t) == BSET_RW_AUX_TREE; ++} ++ ++static inline void bch2_bset_set_no_aux_tree(struct btree *b, ++ struct bset_tree *t) ++{ ++ BUG_ON(t < b->set); ++ ++ for (; t < b->set + ARRAY_SIZE(b->set); t++) { ++ t->size = 0; ++ t->extra = BSET_NO_AUX_TREE_VAL; ++ t->aux_data_offset = U16_MAX; ++ } ++} ++ ++static inline void btree_node_set_format(struct btree *b, ++ struct bkey_format f) ++{ ++ int len; ++ ++ b->format = f; ++ b->nr_key_bits = bkey_format_key_bits(&f); ++ ++ len = bch2_compile_bkey_format(&b->format, b->aux_data); ++ BUG_ON(len < 0 || len > U8_MAX); ++ ++ b->unpack_fn_len = len; ++ ++ bch2_bset_set_no_aux_tree(b, b->set); ++} ++ ++static inline struct bset *bset_next_set(struct btree *b, ++ unsigned block_bytes) ++{ ++ struct bset *i = btree_bset_last(b); ++ ++ EBUG_ON(!is_power_of_2(block_bytes)); ++ ++ return ((void *) i) + round_up(vstruct_bytes(i), block_bytes); ++} ++ ++void bch2_btree_keys_init(struct btree *, bool *); ++ ++void bch2_bset_init_first(struct btree *, struct bset *); ++void bch2_bset_init_next(struct bch_fs *, struct btree *, ++ struct btree_node_entry *); ++void bch2_bset_build_aux_tree(struct btree *, struct bset_tree *, bool); ++void bch2_bset_fix_invalidated_key(struct btree *, struct bkey_packed *); ++ ++void bch2_bset_insert(struct btree *, struct btree_node_iter *, ++ struct bkey_packed *, struct bkey_i *, unsigned); ++void bch2_bset_delete(struct btree *, struct bkey_packed *, unsigned); ++ ++/* Bkey utility code */ ++ ++/* packed or unpacked */ ++static inline int bkey_cmp_p_or_unp(const struct btree *b, ++ const struct bkey_packed *l, ++ const struct bkey_packed *r_packed, ++ const struct bpos *r) ++{ ++ EBUG_ON(r_packed && !bkey_packed(r_packed)); ++ ++ if (unlikely(!bkey_packed(l))) ++ return bkey_cmp(packed_to_bkey_c(l)->p, *r); ++ ++ if (likely(r_packed)) ++ return __bch2_bkey_cmp_packed_format_checked(l, r_packed, b); ++ ++ return __bch2_bkey_cmp_left_packed_format_checked(b, l, r); ++} ++ ++struct bset_tree *bch2_bkey_to_bset(struct btree *, struct bkey_packed *); ++ ++struct bkey_packed *bch2_bkey_prev_filter(struct btree *, struct bset_tree *, ++ struct bkey_packed *, unsigned); ++ ++static inline struct bkey_packed * ++bch2_bkey_prev_all(struct btree *b, struct bset_tree *t, struct bkey_packed *k) ++{ ++ return bch2_bkey_prev_filter(b, t, k, 0); ++} ++ ++static inline struct bkey_packed * ++bch2_bkey_prev(struct btree *b, struct bset_tree *t, struct bkey_packed *k) ++{ ++ return bch2_bkey_prev_filter(b, t, k, KEY_TYPE_discard + 1); ++} ++ ++enum bch_extent_overlap { ++ BCH_EXTENT_OVERLAP_ALL = 0, ++ BCH_EXTENT_OVERLAP_BACK = 1, ++ BCH_EXTENT_OVERLAP_FRONT = 2, ++ BCH_EXTENT_OVERLAP_MIDDLE = 3, ++}; ++ ++/* Returns how k overlaps with m */ ++static inline enum bch_extent_overlap bch2_extent_overlap(const struct bkey *k, ++ const struct bkey *m) ++{ ++ int cmp1 = bkey_cmp(k->p, m->p) < 0; ++ int cmp2 = bkey_cmp(bkey_start_pos(k), ++ bkey_start_pos(m)) > 0; ++ ++ return (cmp1 << 1) + cmp2; ++} ++ ++/* Btree key iteration */ ++ ++void bch2_btree_node_iter_push(struct btree_node_iter *, struct btree *, ++ const struct bkey_packed *, ++ const struct bkey_packed *); ++void bch2_btree_node_iter_init(struct btree_node_iter *, struct btree *, ++ struct bpos *); ++void bch2_btree_node_iter_init_from_start(struct btree_node_iter *, ++ struct btree *); ++struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *, ++ struct btree *, ++ struct bset_tree *); ++ ++void bch2_btree_node_iter_sort(struct btree_node_iter *, struct btree *); ++void bch2_btree_node_iter_set_drop(struct btree_node_iter *, ++ struct btree_node_iter_set *); ++void bch2_btree_node_iter_advance(struct btree_node_iter *, struct btree *); ++ ++#define btree_node_iter_for_each(_iter, _set) \ ++ for (_set = (_iter)->data; \ ++ _set < (_iter)->data + ARRAY_SIZE((_iter)->data) && \ ++ (_set)->k != (_set)->end; \ ++ _set++) ++ ++static inline bool __btree_node_iter_set_end(struct btree_node_iter *iter, ++ unsigned i) ++{ ++ return iter->data[i].k == iter->data[i].end; ++} ++ ++static inline bool bch2_btree_node_iter_end(struct btree_node_iter *iter) ++{ ++ return __btree_node_iter_set_end(iter, 0); ++} ++ ++/* ++ * When keys compare equal, deleted keys compare first: ++ * ++ * XXX: only need to compare pointers for keys that are both within a ++ * btree_node_iterator - we need to break ties for prev() to work correctly ++ */ ++static inline int bkey_iter_cmp(const struct btree *b, ++ const struct bkey_packed *l, ++ const struct bkey_packed *r) ++{ ++ return bkey_cmp_packed(b, l, r) ++ ?: (int) bkey_deleted(r) - (int) bkey_deleted(l) ++ ?: cmp_int(l, r); ++} ++ ++static inline int btree_node_iter_cmp(const struct btree *b, ++ struct btree_node_iter_set l, ++ struct btree_node_iter_set r) ++{ ++ return bkey_iter_cmp(b, ++ __btree_node_offset_to_key(b, l.k), ++ __btree_node_offset_to_key(b, r.k)); ++} ++ ++/* These assume r (the search key) is not a deleted key: */ ++static inline int bkey_iter_pos_cmp(const struct btree *b, ++ const struct bkey_packed *l, ++ const struct bpos *r) ++{ ++ return bkey_cmp_left_packed(b, l, r) ++ ?: -((int) bkey_deleted(l)); ++} ++ ++static inline int bkey_iter_cmp_p_or_unp(const struct btree *b, ++ const struct bkey_packed *l, ++ const struct bkey_packed *r_packed, ++ const struct bpos *r) ++{ ++ return bkey_cmp_p_or_unp(b, l, r_packed, r) ++ ?: -((int) bkey_deleted(l)); ++} ++ ++static inline struct bkey_packed * ++__bch2_btree_node_iter_peek_all(struct btree_node_iter *iter, ++ struct btree *b) ++{ ++ return __btree_node_offset_to_key(b, iter->data->k); ++} ++ ++static inline struct bkey_packed * ++bch2_btree_node_iter_peek_filter(struct btree_node_iter *iter, ++ struct btree *b, ++ unsigned min_key_type) ++{ ++ while (!bch2_btree_node_iter_end(iter)) { ++ struct bkey_packed *k = __bch2_btree_node_iter_peek_all(iter, b); ++ ++ if (k->type >= min_key_type) ++ return k; ++ ++ bch2_btree_node_iter_advance(iter, b); ++ } ++ ++ return NULL; ++} ++ ++static inline struct bkey_packed * ++bch2_btree_node_iter_peek_all(struct btree_node_iter *iter, ++ struct btree *b) ++{ ++ return bch2_btree_node_iter_peek_filter(iter, b, 0); ++} ++ ++static inline struct bkey_packed * ++bch2_btree_node_iter_peek(struct btree_node_iter *iter, struct btree *b) ++{ ++ return bch2_btree_node_iter_peek_filter(iter, b, KEY_TYPE_discard + 1); ++} ++ ++static inline struct bkey_packed * ++bch2_btree_node_iter_next_all(struct btree_node_iter *iter, struct btree *b) ++{ ++ struct bkey_packed *ret = bch2_btree_node_iter_peek_all(iter, b); ++ ++ if (ret) ++ bch2_btree_node_iter_advance(iter, b); ++ ++ return ret; ++} ++ ++struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *, ++ struct btree *); ++struct bkey_packed *bch2_btree_node_iter_prev_filter(struct btree_node_iter *, ++ struct btree *, unsigned); ++ ++static inline struct bkey_packed * ++bch2_btree_node_iter_prev(struct btree_node_iter *iter, struct btree *b) ++{ ++ return bch2_btree_node_iter_prev_filter(iter, b, KEY_TYPE_discard + 1); ++} ++ ++struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *, ++ struct btree *, ++ struct bkey *); ++ ++#define for_each_btree_node_key_unpack(b, k, iter, unpacked) \ ++ for (bch2_btree_node_iter_init_from_start((iter), (b)); \ ++ (k = bch2_btree_node_iter_peek_unpack((iter), (b), (unpacked))).k;\ ++ bch2_btree_node_iter_advance(iter, b)) ++ ++/* Accounting: */ ++ ++static inline void btree_keys_account_key(struct btree_nr_keys *n, ++ unsigned bset, ++ struct bkey_packed *k, ++ int sign) ++{ ++ n->live_u64s += k->u64s * sign; ++ n->bset_u64s[bset] += k->u64s * sign; ++ ++ if (bkey_packed(k)) ++ n->packed_keys += sign; ++ else ++ n->unpacked_keys += sign; ++} ++ ++static inline void btree_keys_account_val_delta(struct btree *b, ++ struct bkey_packed *k, ++ int delta) ++{ ++ struct bset_tree *t = bch2_bkey_to_bset(b, k); ++ ++ b->nr.live_u64s += delta; ++ b->nr.bset_u64s[t - b->set] += delta; ++} ++ ++#define btree_keys_account_key_add(_nr, _bset_idx, _k) \ ++ btree_keys_account_key(_nr, _bset_idx, _k, 1) ++#define btree_keys_account_key_drop(_nr, _bset_idx, _k) \ ++ btree_keys_account_key(_nr, _bset_idx, _k, -1) ++ ++#define btree_account_key_add(_b, _k) \ ++ btree_keys_account_key(&(_b)->nr, \ ++ bch2_bkey_to_bset(_b, _k) - (_b)->set, _k, 1) ++#define btree_account_key_drop(_b, _k) \ ++ btree_keys_account_key(&(_b)->nr, \ ++ bch2_bkey_to_bset(_b, _k) - (_b)->set, _k, -1) ++ ++struct bset_stats { ++ struct { ++ size_t nr, bytes; ++ } sets[BSET_TREE_NR_TYPES]; ++ ++ size_t floats; ++ size_t failed; ++}; ++ ++void bch2_btree_keys_stats(struct btree *, struct bset_stats *); ++void bch2_bfloat_to_text(struct printbuf *, struct btree *, ++ struct bkey_packed *); ++ ++/* Debug stuff */ ++ ++void bch2_dump_bset(struct bch_fs *, struct btree *, struct bset *, unsigned); ++void bch2_dump_btree_node(struct bch_fs *, struct btree *); ++void bch2_dump_btree_node_iter(struct btree *, struct btree_node_iter *); ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ ++void __bch2_verify_btree_nr_keys(struct btree *); ++void bch2_btree_node_iter_verify(struct btree_node_iter *, struct btree *); ++void bch2_verify_insert_pos(struct btree *, struct bkey_packed *, ++ struct bkey_packed *, unsigned); ++ ++#else ++ ++static inline void __bch2_verify_btree_nr_keys(struct btree *b) {} ++static inline void bch2_btree_node_iter_verify(struct btree_node_iter *iter, ++ struct btree *b) {} ++static inline void bch2_verify_insert_pos(struct btree *b, ++ struct bkey_packed *where, ++ struct bkey_packed *insert, ++ unsigned clobber_u64s) {} ++#endif ++ ++static inline void bch2_verify_btree_nr_keys(struct btree *b) ++{ ++ if (btree_keys_expensive_checks(b)) ++ __bch2_verify_btree_nr_keys(b); ++} ++ ++#endif /* _BCACHEFS_BSET_H */ +diff --git a/fs/bcachefs/btree_cache.c b/fs/bcachefs/btree_cache.c +new file mode 100644 +index 000000000000..bb94fa2341ee +--- /dev/null ++++ b/fs/bcachefs/btree_cache.c +@@ -0,0 +1,1063 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "btree_cache.h" ++#include "btree_io.h" ++#include "btree_iter.h" ++#include "btree_locking.h" ++#include "debug.h" ++ ++#include ++#include ++#include ++ ++const char * const bch2_btree_ids[] = { ++#define x(kwd, val, name) name, ++ BCH_BTREE_IDS() ++#undef x ++ NULL ++}; ++ ++void bch2_recalc_btree_reserve(struct bch_fs *c) ++{ ++ unsigned i, reserve = 16; ++ ++ if (!c->btree_roots[0].b) ++ reserve += 8; ++ ++ for (i = 0; i < BTREE_ID_NR; i++) ++ if (c->btree_roots[i].b) ++ reserve += min_t(unsigned, 1, ++ c->btree_roots[i].b->c.level) * 8; ++ ++ c->btree_cache.reserve = reserve; ++} ++ ++static inline unsigned btree_cache_can_free(struct btree_cache *bc) ++{ ++ return max_t(int, 0, bc->used - bc->reserve); ++} ++ ++static void __btree_node_data_free(struct bch_fs *c, struct btree *b) ++{ ++ EBUG_ON(btree_node_write_in_flight(b)); ++ ++ kvpfree(b->data, btree_bytes(c)); ++ b->data = NULL; ++ vfree(b->aux_data); ++ b->aux_data = NULL; ++} ++ ++static void btree_node_data_free(struct bch_fs *c, struct btree *b) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ ++ __btree_node_data_free(c, b); ++ bc->used--; ++ list_move(&b->list, &bc->freed); ++} ++ ++static int bch2_btree_cache_cmp_fn(struct rhashtable_compare_arg *arg, ++ const void *obj) ++{ ++ const struct btree *b = obj; ++ const u64 *v = arg->key; ++ ++ return b->hash_val == *v ? 0 : 1; ++} ++ ++static const struct rhashtable_params bch_btree_cache_params = { ++ .head_offset = offsetof(struct btree, hash), ++ .key_offset = offsetof(struct btree, hash_val), ++ .key_len = sizeof(u64), ++ .obj_cmpfn = bch2_btree_cache_cmp_fn, ++}; ++ ++static int btree_node_data_alloc(struct bch_fs *c, struct btree *b, gfp_t gfp) ++{ ++ BUG_ON(b->data || b->aux_data); ++ ++ b->data = kvpmalloc(btree_bytes(c), gfp); ++ if (!b->data) ++ return -ENOMEM; ++ ++ b->aux_data = vmalloc_exec(btree_aux_data_bytes(b), gfp); ++ if (!b->aux_data) { ++ kvpfree(b->data, btree_bytes(c)); ++ b->data = NULL; ++ return -ENOMEM; ++ } ++ ++ return 0; ++} ++ ++static struct btree *__btree_node_mem_alloc(struct bch_fs *c) ++{ ++ struct btree *b = kzalloc(sizeof(struct btree), GFP_KERNEL); ++ if (!b) ++ return NULL; ++ ++ bkey_btree_ptr_init(&b->key); ++ six_lock_init(&b->c.lock); ++ INIT_LIST_HEAD(&b->list); ++ INIT_LIST_HEAD(&b->write_blocked); ++ b->byte_order = ilog2(btree_bytes(c)); ++ return b; ++} ++ ++static struct btree *btree_node_mem_alloc(struct bch_fs *c) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ struct btree *b = __btree_node_mem_alloc(c); ++ if (!b) ++ return NULL; ++ ++ if (btree_node_data_alloc(c, b, GFP_KERNEL)) { ++ kfree(b); ++ return NULL; ++ } ++ ++ bc->used++; ++ list_add(&b->list, &bc->freeable); ++ return b; ++} ++ ++/* Btree in memory cache - hash table */ ++ ++void bch2_btree_node_hash_remove(struct btree_cache *bc, struct btree *b) ++{ ++ rhashtable_remove_fast(&bc->table, &b->hash, bch_btree_cache_params); ++ ++ /* Cause future lookups for this node to fail: */ ++ b->hash_val = 0; ++ ++ six_lock_wakeup_all(&b->c.lock); ++} ++ ++int __bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b) ++{ ++ BUG_ON(b->hash_val); ++ b->hash_val = btree_ptr_hash_val(&b->key); ++ ++ return rhashtable_lookup_insert_fast(&bc->table, &b->hash, ++ bch_btree_cache_params); ++} ++ ++int bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b, ++ unsigned level, enum btree_id id) ++{ ++ int ret; ++ ++ b->c.level = level; ++ b->c.btree_id = id; ++ ++ mutex_lock(&bc->lock); ++ ret = __bch2_btree_node_hash_insert(bc, b); ++ if (!ret) ++ list_add(&b->list, &bc->live); ++ mutex_unlock(&bc->lock); ++ ++ return ret; ++} ++ ++__flatten ++static inline struct btree *btree_cache_find(struct btree_cache *bc, ++ const struct bkey_i *k) ++{ ++ u64 v = btree_ptr_hash_val(k); ++ ++ return rhashtable_lookup_fast(&bc->table, &v, bch_btree_cache_params); ++} ++ ++/* ++ * this version is for btree nodes that have already been freed (we're not ++ * reaping a real btree node) ++ */ ++static int __btree_node_reclaim(struct bch_fs *c, struct btree *b, bool flush) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ int ret = 0; ++ ++ lockdep_assert_held(&bc->lock); ++ ++ if (!six_trylock_intent(&b->c.lock)) ++ return -ENOMEM; ++ ++ if (!six_trylock_write(&b->c.lock)) ++ goto out_unlock_intent; ++ ++ if (btree_node_noevict(b)) ++ goto out_unlock; ++ ++ if (!btree_node_may_write(b)) ++ goto out_unlock; ++ ++ if (btree_node_dirty(b) && ++ test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags)) ++ goto out_unlock; ++ ++ if (btree_node_dirty(b) || ++ btree_node_write_in_flight(b) || ++ btree_node_read_in_flight(b)) { ++ if (!flush) ++ goto out_unlock; ++ ++ wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight, ++ TASK_UNINTERRUPTIBLE); ++ ++ /* ++ * Using the underscore version because we don't want to compact ++ * bsets after the write, since this node is about to be evicted ++ * - unless btree verify mode is enabled, since it runs out of ++ * the post write cleanup: ++ */ ++ if (verify_btree_ondisk(c)) ++ bch2_btree_node_write(c, b, SIX_LOCK_intent); ++ else ++ __bch2_btree_node_write(c, b, SIX_LOCK_read); ++ ++ /* wait for any in flight btree write */ ++ btree_node_wait_on_io(b); ++ } ++out: ++ if (b->hash_val && !ret) ++ trace_btree_node_reap(c, b); ++ return ret; ++out_unlock: ++ six_unlock_write(&b->c.lock); ++out_unlock_intent: ++ six_unlock_intent(&b->c.lock); ++ ret = -ENOMEM; ++ goto out; ++} ++ ++static int btree_node_reclaim(struct bch_fs *c, struct btree *b) ++{ ++ return __btree_node_reclaim(c, b, false); ++} ++ ++static int btree_node_write_and_reclaim(struct bch_fs *c, struct btree *b) ++{ ++ return __btree_node_reclaim(c, b, true); ++} ++ ++static unsigned long bch2_btree_cache_scan(struct shrinker *shrink, ++ struct shrink_control *sc) ++{ ++ struct bch_fs *c = container_of(shrink, struct bch_fs, ++ btree_cache.shrink); ++ struct btree_cache *bc = &c->btree_cache; ++ struct btree *b, *t; ++ unsigned long nr = sc->nr_to_scan; ++ unsigned long can_free; ++ unsigned long touched = 0; ++ unsigned long freed = 0; ++ unsigned i, flags; ++ ++ if (btree_shrinker_disabled(c)) ++ return SHRINK_STOP; ++ ++ /* Return -1 if we can't do anything right now */ ++ if (sc->gfp_mask & __GFP_FS) ++ mutex_lock(&bc->lock); ++ else if (!mutex_trylock(&bc->lock)) ++ return -1; ++ ++ flags = memalloc_nofs_save(); ++ ++ /* ++ * It's _really_ critical that we don't free too many btree nodes - we ++ * have to always leave ourselves a reserve. The reserve is how we ++ * guarantee that allocating memory for a new btree node can always ++ * succeed, so that inserting keys into the btree can always succeed and ++ * IO can always make forward progress: ++ */ ++ nr /= btree_pages(c); ++ can_free = btree_cache_can_free(bc); ++ nr = min_t(unsigned long, nr, can_free); ++ ++ i = 0; ++ list_for_each_entry_safe(b, t, &bc->freeable, list) { ++ touched++; ++ ++ if (freed >= nr) ++ break; ++ ++ if (++i > 3 && ++ !btree_node_reclaim(c, b)) { ++ btree_node_data_free(c, b); ++ six_unlock_write(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++ freed++; ++ } ++ } ++restart: ++ list_for_each_entry_safe(b, t, &bc->live, list) { ++ touched++; ++ ++ if (freed >= nr) { ++ /* Save position */ ++ if (&t->list != &bc->live) ++ list_move_tail(&bc->live, &t->list); ++ break; ++ } ++ ++ if (!btree_node_accessed(b) && ++ !btree_node_reclaim(c, b)) { ++ /* can't call bch2_btree_node_hash_remove under lock */ ++ freed++; ++ if (&t->list != &bc->live) ++ list_move_tail(&bc->live, &t->list); ++ ++ btree_node_data_free(c, b); ++ mutex_unlock(&bc->lock); ++ ++ bch2_btree_node_hash_remove(bc, b); ++ six_unlock_write(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++ ++ if (freed >= nr) ++ goto out; ++ ++ if (sc->gfp_mask & __GFP_FS) ++ mutex_lock(&bc->lock); ++ else if (!mutex_trylock(&bc->lock)) ++ goto out; ++ goto restart; ++ } else ++ clear_btree_node_accessed(b); ++ } ++ ++ memalloc_nofs_restore(flags); ++ mutex_unlock(&bc->lock); ++out: ++ return (unsigned long) freed * btree_pages(c); ++} ++ ++static unsigned long bch2_btree_cache_count(struct shrinker *shrink, ++ struct shrink_control *sc) ++{ ++ struct bch_fs *c = container_of(shrink, struct bch_fs, ++ btree_cache.shrink); ++ struct btree_cache *bc = &c->btree_cache; ++ ++ if (btree_shrinker_disabled(c)) ++ return 0; ++ ++ return btree_cache_can_free(bc) * btree_pages(c); ++} ++ ++void bch2_fs_btree_cache_exit(struct bch_fs *c) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ struct btree *b; ++ unsigned i, flags; ++ ++ if (bc->shrink.list.next) ++ unregister_shrinker(&bc->shrink); ++ ++ /* vfree() can allocate memory: */ ++ flags = memalloc_nofs_save(); ++ mutex_lock(&bc->lock); ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ if (c->verify_data) ++ list_move(&c->verify_data->list, &bc->live); ++ ++ kvpfree(c->verify_ondisk, btree_bytes(c)); ++#endif ++ ++ for (i = 0; i < BTREE_ID_NR; i++) ++ if (c->btree_roots[i].b) ++ list_add(&c->btree_roots[i].b->list, &bc->live); ++ ++ list_splice(&bc->freeable, &bc->live); ++ ++ while (!list_empty(&bc->live)) { ++ b = list_first_entry(&bc->live, struct btree, list); ++ ++ BUG_ON(btree_node_read_in_flight(b) || ++ btree_node_write_in_flight(b)); ++ ++ if (btree_node_dirty(b)) ++ bch2_btree_complete_write(c, b, btree_current_write(b)); ++ clear_btree_node_dirty(b); ++ ++ btree_node_data_free(c, b); ++ } ++ ++ while (!list_empty(&bc->freed)) { ++ b = list_first_entry(&bc->freed, struct btree, list); ++ list_del(&b->list); ++ kfree(b); ++ } ++ ++ mutex_unlock(&bc->lock); ++ memalloc_nofs_restore(flags); ++ ++ if (bc->table_init_done) ++ rhashtable_destroy(&bc->table); ++} ++ ++int bch2_fs_btree_cache_init(struct bch_fs *c) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ unsigned i; ++ int ret = 0; ++ ++ pr_verbose_init(c->opts, ""); ++ ++ ret = rhashtable_init(&bc->table, &bch_btree_cache_params); ++ if (ret) ++ goto out; ++ ++ bc->table_init_done = true; ++ ++ bch2_recalc_btree_reserve(c); ++ ++ for (i = 0; i < bc->reserve; i++) ++ if (!btree_node_mem_alloc(c)) { ++ ret = -ENOMEM; ++ goto out; ++ } ++ ++ list_splice_init(&bc->live, &bc->freeable); ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ mutex_init(&c->verify_lock); ++ ++ c->verify_ondisk = kvpmalloc(btree_bytes(c), GFP_KERNEL); ++ if (!c->verify_ondisk) { ++ ret = -ENOMEM; ++ goto out; ++ } ++ ++ c->verify_data = btree_node_mem_alloc(c); ++ if (!c->verify_data) { ++ ret = -ENOMEM; ++ goto out; ++ } ++ ++ list_del_init(&c->verify_data->list); ++#endif ++ ++ bc->shrink.count_objects = bch2_btree_cache_count; ++ bc->shrink.scan_objects = bch2_btree_cache_scan; ++ bc->shrink.seeks = 4; ++ bc->shrink.batch = btree_pages(c) * 2; ++ register_shrinker(&bc->shrink); ++out: ++ pr_verbose_init(c->opts, "ret %i", ret); ++ return ret; ++} ++ ++void bch2_fs_btree_cache_init_early(struct btree_cache *bc) ++{ ++ mutex_init(&bc->lock); ++ INIT_LIST_HEAD(&bc->live); ++ INIT_LIST_HEAD(&bc->freeable); ++ INIT_LIST_HEAD(&bc->freed); ++} ++ ++/* ++ * We can only have one thread cannibalizing other cached btree nodes at a time, ++ * or we'll deadlock. We use an open coded mutex to ensure that, which a ++ * cannibalize_bucket() will take. This means every time we unlock the root of ++ * the btree, we need to release this lock if we have it held. ++ */ ++void bch2_btree_cache_cannibalize_unlock(struct bch_fs *c) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ ++ if (bc->alloc_lock == current) { ++ trace_btree_node_cannibalize_unlock(c); ++ bc->alloc_lock = NULL; ++ closure_wake_up(&bc->alloc_wait); ++ } ++} ++ ++int bch2_btree_cache_cannibalize_lock(struct bch_fs *c, struct closure *cl) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ struct task_struct *old; ++ ++ old = cmpxchg(&bc->alloc_lock, NULL, current); ++ if (old == NULL || old == current) ++ goto success; ++ ++ if (!cl) { ++ trace_btree_node_cannibalize_lock_fail(c); ++ return -ENOMEM; ++ } ++ ++ closure_wait(&bc->alloc_wait, cl); ++ ++ /* Try again, after adding ourselves to waitlist */ ++ old = cmpxchg(&bc->alloc_lock, NULL, current); ++ if (old == NULL || old == current) { ++ /* We raced */ ++ closure_wake_up(&bc->alloc_wait); ++ goto success; ++ } ++ ++ trace_btree_node_cannibalize_lock_fail(c); ++ return -EAGAIN; ++ ++success: ++ trace_btree_node_cannibalize_lock(c); ++ return 0; ++} ++ ++static struct btree *btree_node_cannibalize(struct bch_fs *c) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ struct btree *b; ++ ++ list_for_each_entry_reverse(b, &bc->live, list) ++ if (!btree_node_reclaim(c, b)) ++ return b; ++ ++ while (1) { ++ list_for_each_entry_reverse(b, &bc->live, list) ++ if (!btree_node_write_and_reclaim(c, b)) ++ return b; ++ ++ /* ++ * Rare case: all nodes were intent-locked. ++ * Just busy-wait. ++ */ ++ WARN_ONCE(1, "btree cache cannibalize failed\n"); ++ cond_resched(); ++ } ++} ++ ++struct btree *bch2_btree_node_mem_alloc(struct bch_fs *c) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ struct btree *b; ++ u64 start_time = local_clock(); ++ unsigned flags; ++ ++ flags = memalloc_nofs_save(); ++ mutex_lock(&bc->lock); ++ ++ /* ++ * btree_free() doesn't free memory; it sticks the node on the end of ++ * the list. Check if there's any freed nodes there: ++ */ ++ list_for_each_entry(b, &bc->freeable, list) ++ if (!btree_node_reclaim(c, b)) ++ goto got_node; ++ ++ /* ++ * We never free struct btree itself, just the memory that holds the on ++ * disk node. Check the freed list before allocating a new one: ++ */ ++ list_for_each_entry(b, &bc->freed, list) ++ if (!btree_node_reclaim(c, b)) ++ goto got_node; ++ ++ b = NULL; ++got_node: ++ if (b) ++ list_del_init(&b->list); ++ mutex_unlock(&bc->lock); ++ ++ if (!b) { ++ b = __btree_node_mem_alloc(c); ++ if (!b) ++ goto err; ++ ++ BUG_ON(!six_trylock_intent(&b->c.lock)); ++ BUG_ON(!six_trylock_write(&b->c.lock)); ++ } ++ ++ if (!b->data) { ++ if (btree_node_data_alloc(c, b, __GFP_NOWARN|GFP_KERNEL)) ++ goto err; ++ ++ mutex_lock(&bc->lock); ++ bc->used++; ++ mutex_unlock(&bc->lock); ++ } ++ ++ BUG_ON(btree_node_hashed(b)); ++ BUG_ON(btree_node_write_in_flight(b)); ++out: ++ b->flags = 0; ++ b->written = 0; ++ b->nsets = 0; ++ b->sib_u64s[0] = 0; ++ b->sib_u64s[1] = 0; ++ b->whiteout_u64s = 0; ++ bch2_btree_keys_init(b, &c->expensive_debug_checks); ++ ++ bch2_time_stats_update(&c->times[BCH_TIME_btree_node_mem_alloc], ++ start_time); ++ ++ memalloc_nofs_restore(flags); ++ return b; ++err: ++ mutex_lock(&bc->lock); ++ ++ if (b) { ++ list_add(&b->list, &bc->freed); ++ six_unlock_write(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++ } ++ ++ /* Try to cannibalize another cached btree node: */ ++ if (bc->alloc_lock == current) { ++ b = btree_node_cannibalize(c); ++ list_del_init(&b->list); ++ mutex_unlock(&bc->lock); ++ ++ bch2_btree_node_hash_remove(bc, b); ++ ++ trace_btree_node_cannibalize(c); ++ goto out; ++ } ++ ++ mutex_unlock(&bc->lock); ++ memalloc_nofs_restore(flags); ++ return ERR_PTR(-ENOMEM); ++} ++ ++/* Slowpath, don't want it inlined into btree_iter_traverse() */ ++static noinline struct btree *bch2_btree_node_fill(struct bch_fs *c, ++ struct btree_iter *iter, ++ const struct bkey_i *k, ++ enum btree_id btree_id, ++ unsigned level, ++ enum six_lock_type lock_type, ++ bool sync) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ struct btree *b; ++ ++ BUG_ON(level + 1 >= BTREE_MAX_DEPTH); ++ /* ++ * Parent node must be locked, else we could read in a btree node that's ++ * been freed: ++ */ ++ if (iter && !bch2_btree_node_relock(iter, level + 1)) ++ return ERR_PTR(-EINTR); ++ ++ b = bch2_btree_node_mem_alloc(c); ++ if (IS_ERR(b)) ++ return b; ++ ++ bkey_copy(&b->key, k); ++ if (bch2_btree_node_hash_insert(bc, b, level, btree_id)) { ++ /* raced with another fill: */ ++ ++ /* mark as unhashed... */ ++ b->hash_val = 0; ++ ++ mutex_lock(&bc->lock); ++ list_add(&b->list, &bc->freeable); ++ mutex_unlock(&bc->lock); ++ ++ six_unlock_write(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++ return NULL; ++ } ++ ++ /* ++ * Unlock before doing IO: ++ * ++ * XXX: ideally should be dropping all btree node locks here ++ */ ++ if (iter && btree_node_read_locked(iter, level + 1)) ++ btree_node_unlock(iter, level + 1); ++ ++ bch2_btree_node_read(c, b, sync); ++ ++ six_unlock_write(&b->c.lock); ++ ++ if (!sync) { ++ six_unlock_intent(&b->c.lock); ++ return NULL; ++ } ++ ++ if (lock_type == SIX_LOCK_read) ++ six_lock_downgrade(&b->c.lock); ++ ++ return b; ++} ++ ++static int lock_node_check_fn(struct six_lock *lock, void *p) ++{ ++ struct btree *b = container_of(lock, struct btree, c.lock); ++ const struct bkey_i *k = p; ++ ++ return b->hash_val == btree_ptr_hash_val(k) ? 0 : -1; ++} ++ ++/** ++ * bch_btree_node_get - find a btree node in the cache and lock it, reading it ++ * in from disk if necessary. ++ * ++ * If IO is necessary and running under generic_make_request, returns -EAGAIN. ++ * ++ * The btree node will have either a read or a write lock held, depending on ++ * the @write parameter. ++ */ ++struct btree *bch2_btree_node_get(struct bch_fs *c, struct btree_iter *iter, ++ const struct bkey_i *k, unsigned level, ++ enum six_lock_type lock_type) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ struct btree *b; ++ struct bset_tree *t; ++ ++ EBUG_ON(level >= BTREE_MAX_DEPTH); ++ ++ b = btree_node_mem_ptr(k); ++ if (b) ++ goto lock_node; ++retry: ++ b = btree_cache_find(bc, k); ++ if (unlikely(!b)) { ++ /* ++ * We must have the parent locked to call bch2_btree_node_fill(), ++ * else we could read in a btree node from disk that's been ++ * freed: ++ */ ++ b = bch2_btree_node_fill(c, iter, k, iter->btree_id, ++ level, lock_type, true); ++ ++ /* We raced and found the btree node in the cache */ ++ if (!b) ++ goto retry; ++ ++ if (IS_ERR(b)) ++ return b; ++ } else { ++lock_node: ++ /* ++ * There's a potential deadlock with splits and insertions into ++ * interior nodes we have to avoid: ++ * ++ * The other thread might be holding an intent lock on the node ++ * we want, and they want to update its parent node so they're ++ * going to upgrade their intent lock on the parent node to a ++ * write lock. ++ * ++ * But if we're holding a read lock on the parent, and we're ++ * trying to get the intent lock they're holding, we deadlock. ++ * ++ * So to avoid this we drop the read locks on parent nodes when ++ * we're starting to take intent locks - and handle the race. ++ * ++ * The race is that they might be about to free the node we ++ * want, and dropping our read lock on the parent node lets them ++ * update the parent marking the node we want as freed, and then ++ * free it: ++ * ++ * To guard against this, btree nodes are evicted from the cache ++ * when they're freed - and b->hash_val is zeroed out, which we ++ * check for after we lock the node. ++ * ++ * Then, bch2_btree_node_relock() on the parent will fail - because ++ * the parent was modified, when the pointer to the node we want ++ * was removed - and we'll bail out: ++ */ ++ if (btree_node_read_locked(iter, level + 1)) ++ btree_node_unlock(iter, level + 1); ++ ++ if (!btree_node_lock(b, k->k.p, level, iter, lock_type, ++ lock_node_check_fn, (void *) k)) { ++ if (b->hash_val != btree_ptr_hash_val(k)) ++ goto retry; ++ return ERR_PTR(-EINTR); ++ } ++ ++ if (unlikely(b->hash_val != btree_ptr_hash_val(k) || ++ b->c.level != level || ++ race_fault())) { ++ six_unlock_type(&b->c.lock, lock_type); ++ if (bch2_btree_node_relock(iter, level + 1)) ++ goto retry; ++ ++ trace_trans_restart_btree_node_reused(iter->trans->ip); ++ return ERR_PTR(-EINTR); ++ } ++ } ++ ++ /* XXX: waiting on IO with btree locks held: */ ++ wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight, ++ TASK_UNINTERRUPTIBLE); ++ ++ prefetch(b->aux_data); ++ ++ for_each_bset(b, t) { ++ void *p = (u64 *) b->aux_data + t->aux_data_offset; ++ ++ prefetch(p + L1_CACHE_BYTES * 0); ++ prefetch(p + L1_CACHE_BYTES * 1); ++ prefetch(p + L1_CACHE_BYTES * 2); ++ } ++ ++ /* avoid atomic set bit if it's not needed: */ ++ if (!btree_node_accessed(b)) ++ set_btree_node_accessed(b); ++ ++ if (unlikely(btree_node_read_error(b))) { ++ six_unlock_type(&b->c.lock, lock_type); ++ return ERR_PTR(-EIO); ++ } ++ ++ EBUG_ON(b->c.btree_id != iter->btree_id || ++ BTREE_NODE_LEVEL(b->data) != level || ++ bkey_cmp(b->data->max_key, k->k.p)); ++ ++ return b; ++} ++ ++struct btree *bch2_btree_node_get_noiter(struct bch_fs *c, ++ const struct bkey_i *k, ++ enum btree_id btree_id, ++ unsigned level) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ struct btree *b; ++ struct bset_tree *t; ++ int ret; ++ ++ EBUG_ON(level >= BTREE_MAX_DEPTH); ++ ++ b = btree_node_mem_ptr(k); ++ if (b) ++ goto lock_node; ++retry: ++ b = btree_cache_find(bc, k); ++ if (unlikely(!b)) { ++ b = bch2_btree_node_fill(c, NULL, k, btree_id, ++ level, SIX_LOCK_read, true); ++ ++ /* We raced and found the btree node in the cache */ ++ if (!b) ++ goto retry; ++ ++ if (IS_ERR(b)) ++ return b; ++ } else { ++lock_node: ++ ret = six_lock_read(&b->c.lock, lock_node_check_fn, (void *) k); ++ if (ret) ++ goto retry; ++ ++ if (unlikely(b->hash_val != btree_ptr_hash_val(k) || ++ b->c.btree_id != btree_id || ++ b->c.level != level)) { ++ six_unlock_read(&b->c.lock); ++ goto retry; ++ } ++ } ++ ++ /* XXX: waiting on IO with btree locks held: */ ++ wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight, ++ TASK_UNINTERRUPTIBLE); ++ ++ prefetch(b->aux_data); ++ ++ for_each_bset(b, t) { ++ void *p = (u64 *) b->aux_data + t->aux_data_offset; ++ ++ prefetch(p + L1_CACHE_BYTES * 0); ++ prefetch(p + L1_CACHE_BYTES * 1); ++ prefetch(p + L1_CACHE_BYTES * 2); ++ } ++ ++ /* avoid atomic set bit if it's not needed: */ ++ if (!btree_node_accessed(b)) ++ set_btree_node_accessed(b); ++ ++ if (unlikely(btree_node_read_error(b))) { ++ six_unlock_read(&b->c.lock); ++ return ERR_PTR(-EIO); ++ } ++ ++ EBUG_ON(b->c.btree_id != btree_id || ++ BTREE_NODE_LEVEL(b->data) != level || ++ bkey_cmp(b->data->max_key, k->k.p)); ++ ++ return b; ++} ++ ++struct btree *bch2_btree_node_get_sibling(struct bch_fs *c, ++ struct btree_iter *iter, ++ struct btree *b, ++ enum btree_node_sibling sib) ++{ ++ struct btree_trans *trans = iter->trans; ++ struct btree *parent; ++ struct btree_node_iter node_iter; ++ struct bkey_packed *k; ++ BKEY_PADDED(k) tmp; ++ struct btree *ret = NULL; ++ unsigned level = b->c.level; ++ ++ parent = btree_iter_node(iter, level + 1); ++ if (!parent) ++ return NULL; ++ ++ /* ++ * There's a corner case where a btree_iter might have a node locked ++ * that is just outside its current pos - when ++ * bch2_btree_iter_set_pos_same_leaf() gets to the end of the node. ++ * ++ * But the lock ordering checks in __bch2_btree_node_lock() go off of ++ * iter->pos, not the node's key: so if the iterator is marked as ++ * needing to be traversed, we risk deadlock if we don't bail out here: ++ */ ++ if (iter->uptodate >= BTREE_ITER_NEED_TRAVERSE) ++ return ERR_PTR(-EINTR); ++ ++ if (!bch2_btree_node_relock(iter, level + 1)) { ++ ret = ERR_PTR(-EINTR); ++ goto out; ++ } ++ ++ node_iter = iter->l[parent->c.level].iter; ++ ++ k = bch2_btree_node_iter_peek_all(&node_iter, parent); ++ BUG_ON(bkey_cmp_left_packed(parent, k, &b->key.k.p)); ++ ++ k = sib == btree_prev_sib ++ ? bch2_btree_node_iter_prev(&node_iter, parent) ++ : (bch2_btree_node_iter_advance(&node_iter, parent), ++ bch2_btree_node_iter_peek(&node_iter, parent)); ++ if (!k) ++ goto out; ++ ++ bch2_bkey_unpack(parent, &tmp.k, k); ++ ++ ret = bch2_btree_node_get(c, iter, &tmp.k, level, ++ SIX_LOCK_intent); ++ ++ if (PTR_ERR_OR_ZERO(ret) == -EINTR && !trans->nounlock) { ++ struct btree_iter *linked; ++ ++ if (!bch2_btree_node_relock(iter, level + 1)) ++ goto out; ++ ++ /* ++ * We might have got -EINTR because trylock failed, and we're ++ * holding other locks that would cause us to deadlock: ++ */ ++ trans_for_each_iter(trans, linked) ++ if (btree_iter_cmp(iter, linked) < 0) ++ __bch2_btree_iter_unlock(linked); ++ ++ if (sib == btree_prev_sib) ++ btree_node_unlock(iter, level); ++ ++ ret = bch2_btree_node_get(c, iter, &tmp.k, level, ++ SIX_LOCK_intent); ++ ++ /* ++ * before btree_iter_relock() calls btree_iter_verify_locks(): ++ */ ++ if (btree_lock_want(iter, level + 1) == BTREE_NODE_UNLOCKED) ++ btree_node_unlock(iter, level + 1); ++ ++ if (!bch2_btree_node_relock(iter, level)) { ++ btree_iter_set_dirty(iter, BTREE_ITER_NEED_RELOCK); ++ ++ if (!IS_ERR(ret)) { ++ six_unlock_intent(&ret->c.lock); ++ ret = ERR_PTR(-EINTR); ++ } ++ } ++ ++ bch2_trans_relock(trans); ++ } ++out: ++ if (btree_lock_want(iter, level + 1) == BTREE_NODE_UNLOCKED) ++ btree_node_unlock(iter, level + 1); ++ ++ if (PTR_ERR_OR_ZERO(ret) == -EINTR) ++ bch2_btree_iter_upgrade(iter, level + 2); ++ ++ BUG_ON(!IS_ERR(ret) && !btree_node_locked(iter, level)); ++ ++ if (!IS_ERR_OR_NULL(ret)) { ++ struct btree *n1 = ret, *n2 = b; ++ ++ if (sib != btree_prev_sib) ++ swap(n1, n2); ++ ++ BUG_ON(bkey_cmp(bkey_successor(n1->key.k.p), ++ n2->data->min_key)); ++ } ++ ++ bch2_btree_trans_verify_locks(trans); ++ ++ return ret; ++} ++ ++void bch2_btree_node_prefetch(struct bch_fs *c, struct btree_iter *iter, ++ const struct bkey_i *k, unsigned level) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ struct btree *b; ++ ++ BUG_ON(!btree_node_locked(iter, level + 1)); ++ BUG_ON(level >= BTREE_MAX_DEPTH); ++ ++ b = btree_cache_find(bc, k); ++ if (b) ++ return; ++ ++ bch2_btree_node_fill(c, iter, k, iter->btree_id, ++ level, SIX_LOCK_read, false); ++} ++ ++void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c, ++ struct btree *b) ++{ ++ const struct bkey_format *f = &b->format; ++ struct bset_stats stats; ++ ++ memset(&stats, 0, sizeof(stats)); ++ ++ bch2_btree_keys_stats(b, &stats); ++ ++ pr_buf(out, ++ "l %u %llu:%llu - %llu:%llu:\n" ++ " ptrs: ", ++ b->c.level, ++ b->data->min_key.inode, ++ b->data->min_key.offset, ++ b->data->max_key.inode, ++ b->data->max_key.offset); ++ bch2_val_to_text(out, c, bkey_i_to_s_c(&b->key)); ++ pr_buf(out, "\n" ++ " format: u64s %u fields %u %u %u %u %u\n" ++ " unpack fn len: %u\n" ++ " bytes used %zu/%zu (%zu%% full)\n" ++ " sib u64s: %u, %u (merge threshold %zu)\n" ++ " nr packed keys %u\n" ++ " nr unpacked keys %u\n" ++ " floats %zu\n" ++ " failed unpacked %zu\n", ++ f->key_u64s, ++ f->bits_per_field[0], ++ f->bits_per_field[1], ++ f->bits_per_field[2], ++ f->bits_per_field[3], ++ f->bits_per_field[4], ++ b->unpack_fn_len, ++ b->nr.live_u64s * sizeof(u64), ++ btree_bytes(c) - sizeof(struct btree_node), ++ b->nr.live_u64s * 100 / btree_max_u64s(c), ++ b->sib_u64s[0], ++ b->sib_u64s[1], ++ BTREE_FOREGROUND_MERGE_THRESHOLD(c), ++ b->nr.packed_keys, ++ b->nr.unpacked_keys, ++ stats.floats, ++ stats.failed); ++} +diff --git a/fs/bcachefs/btree_cache.h b/fs/bcachefs/btree_cache.h +new file mode 100644 +index 000000000000..d0d3a85bb8be +--- /dev/null ++++ b/fs/bcachefs/btree_cache.h +@@ -0,0 +1,104 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_CACHE_H ++#define _BCACHEFS_BTREE_CACHE_H ++ ++#include "bcachefs.h" ++#include "btree_types.h" ++ ++struct btree_iter; ++ ++extern const char * const bch2_btree_ids[]; ++ ++void bch2_recalc_btree_reserve(struct bch_fs *); ++ ++void bch2_btree_node_hash_remove(struct btree_cache *, struct btree *); ++int __bch2_btree_node_hash_insert(struct btree_cache *, struct btree *); ++int bch2_btree_node_hash_insert(struct btree_cache *, struct btree *, ++ unsigned, enum btree_id); ++ ++void bch2_btree_cache_cannibalize_unlock(struct bch_fs *); ++int bch2_btree_cache_cannibalize_lock(struct bch_fs *, struct closure *); ++ ++struct btree *bch2_btree_node_mem_alloc(struct bch_fs *); ++ ++struct btree *bch2_btree_node_get(struct bch_fs *, struct btree_iter *, ++ const struct bkey_i *, unsigned, ++ enum six_lock_type); ++ ++struct btree *bch2_btree_node_get_noiter(struct bch_fs *, const struct bkey_i *, ++ enum btree_id, unsigned); ++ ++struct btree *bch2_btree_node_get_sibling(struct bch_fs *, struct btree_iter *, ++ struct btree *, enum btree_node_sibling); ++ ++void bch2_btree_node_prefetch(struct bch_fs *, struct btree_iter *, ++ const struct bkey_i *, unsigned); ++ ++void bch2_fs_btree_cache_exit(struct bch_fs *); ++int bch2_fs_btree_cache_init(struct bch_fs *); ++void bch2_fs_btree_cache_init_early(struct btree_cache *); ++ ++static inline u64 btree_ptr_hash_val(const struct bkey_i *k) ++{ ++ switch (k->k.type) { ++ case KEY_TYPE_btree_ptr: ++ return *((u64 *) bkey_i_to_btree_ptr_c(k)->v.start); ++ case KEY_TYPE_btree_ptr_v2: ++ return bkey_i_to_btree_ptr_v2_c(k)->v.seq; ++ default: ++ return 0; ++ } ++} ++ ++static inline struct btree *btree_node_mem_ptr(const struct bkey_i *k) ++{ ++ return k->k.type == KEY_TYPE_btree_ptr_v2 ++ ? (void *)(unsigned long)bkey_i_to_btree_ptr_v2_c(k)->v.mem_ptr ++ : NULL; ++} ++ ++/* is btree node in hash table? */ ++static inline bool btree_node_hashed(struct btree *b) ++{ ++ return b->hash_val != 0; ++} ++ ++#define for_each_cached_btree(_b, _c, _tbl, _iter, _pos) \ ++ for ((_tbl) = rht_dereference_rcu((_c)->btree_cache.table.tbl, \ ++ &(_c)->btree_cache.table), \ ++ _iter = 0; _iter < (_tbl)->size; _iter++) \ ++ rht_for_each_entry_rcu((_b), (_pos), _tbl, _iter, hash) ++ ++static inline size_t btree_bytes(struct bch_fs *c) ++{ ++ return c->opts.btree_node_size << 9; ++} ++ ++static inline size_t btree_max_u64s(struct bch_fs *c) ++{ ++ return (btree_bytes(c) - sizeof(struct btree_node)) / sizeof(u64); ++} ++ ++static inline size_t btree_pages(struct bch_fs *c) ++{ ++ return btree_bytes(c) / PAGE_SIZE; ++} ++ ++static inline unsigned btree_blocks(struct bch_fs *c) ++{ ++ return c->opts.btree_node_size >> c->block_bits; ++} ++ ++#define BTREE_SPLIT_THRESHOLD(c) (btree_max_u64s(c) * 2 / 3) ++ ++#define BTREE_FOREGROUND_MERGE_THRESHOLD(c) (btree_max_u64s(c) * 1 / 3) ++#define BTREE_FOREGROUND_MERGE_HYSTERESIS(c) \ ++ (BTREE_FOREGROUND_MERGE_THRESHOLD(c) + \ ++ (BTREE_FOREGROUND_MERGE_THRESHOLD(c) << 2)) ++ ++#define btree_node_root(_c, _b) ((_c)->btree_roots[(_b)->c.btree_id].b) ++ ++void bch2_btree_node_to_text(struct printbuf *, struct bch_fs *, ++ struct btree *); ++ ++#endif /* _BCACHEFS_BTREE_CACHE_H */ +diff --git a/fs/bcachefs/btree_gc.c b/fs/bcachefs/btree_gc.c +new file mode 100644 +index 000000000000..e8c1e752a25d +--- /dev/null ++++ b/fs/bcachefs/btree_gc.c +@@ -0,0 +1,1438 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Copyright (C) 2010 Kent Overstreet ++ * Copyright (C) 2014 Datera Inc. ++ */ ++ ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "alloc_foreground.h" ++#include "bkey_methods.h" ++#include "bkey_on_stack.h" ++#include "btree_locking.h" ++#include "btree_update_interior.h" ++#include "btree_io.h" ++#include "btree_gc.h" ++#include "buckets.h" ++#include "clock.h" ++#include "debug.h" ++#include "ec.h" ++#include "error.h" ++#include "extents.h" ++#include "journal.h" ++#include "keylist.h" ++#include "move.h" ++#include "recovery.h" ++#include "replicas.h" ++#include "super-io.h" ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos) ++{ ++ preempt_disable(); ++ write_seqcount_begin(&c->gc_pos_lock); ++ c->gc_pos = new_pos; ++ write_seqcount_end(&c->gc_pos_lock); ++ preempt_enable(); ++} ++ ++static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos) ++{ ++ BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0); ++ __gc_pos_set(c, new_pos); ++} ++ ++static int bch2_gc_check_topology(struct bch_fs *c, ++ struct bkey_s_c k, ++ struct bpos *expected_start, ++ struct bpos expected_end, ++ bool is_last) ++{ ++ int ret = 0; ++ ++ if (k.k->type == KEY_TYPE_btree_ptr_v2) { ++ struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); ++ ++ if (fsck_err_on(bkey_cmp(*expected_start, bp.v->min_key), c, ++ "btree node with incorrect min_key: got %llu:%llu, should be %llu:%llu", ++ bp.v->min_key.inode, ++ bp.v->min_key.offset, ++ expected_start->inode, ++ expected_start->offset)) { ++ BUG(); ++ } ++ } ++ ++ *expected_start = bkey_cmp(k.k->p, POS_MAX) ++ ? bkey_successor(k.k->p) ++ : k.k->p; ++ ++ if (fsck_err_on(is_last && ++ bkey_cmp(k.k->p, expected_end), c, ++ "btree node with incorrect max_key: got %llu:%llu, should be %llu:%llu", ++ k.k->p.inode, ++ k.k->p.offset, ++ expected_end.inode, ++ expected_end.offset)) { ++ BUG(); ++ } ++fsck_err: ++ return ret; ++} ++ ++/* marking of btree keys/nodes: */ ++ ++static int bch2_gc_mark_key(struct bch_fs *c, struct bkey_s_c k, ++ u8 *max_stale, bool initial) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ unsigned flags = ++ BTREE_TRIGGER_GC| ++ (initial ? BTREE_TRIGGER_NOATOMIC : 0); ++ int ret = 0; ++ ++ if (initial) { ++ BUG_ON(journal_seq_verify(c) && ++ k.k->version.lo > journal_cur_seq(&c->journal)); ++ ++ /* XXX change to fsck check */ ++ if (fsck_err_on(k.k->version.lo > atomic64_read(&c->key_version), c, ++ "key version number higher than recorded: %llu > %llu", ++ k.k->version.lo, ++ atomic64_read(&c->key_version))) ++ atomic64_set(&c->key_version, k.k->version.lo); ++ ++ if (test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) || ++ fsck_err_on(!bch2_bkey_replicas_marked(c, k), c, ++ "superblock not marked as containing replicas (type %u)", ++ k.k->type)) { ++ ret = bch2_mark_bkey_replicas(c, k); ++ if (ret) ++ return ret; ++ } ++ ++ bkey_for_each_ptr(ptrs, ptr) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ struct bucket *g = PTR_BUCKET(ca, ptr, true); ++ struct bucket *g2 = PTR_BUCKET(ca, ptr, false); ++ ++ if (mustfix_fsck_err_on(!g->gen_valid, c, ++ "bucket %u:%zu data type %s ptr gen %u missing in alloc btree", ++ ptr->dev, PTR_BUCKET_NR(ca, ptr), ++ bch2_data_types[ptr_data_type(k.k, ptr)], ++ ptr->gen)) { ++ g2->_mark.gen = g->_mark.gen = ptr->gen; ++ g2->gen_valid = g->gen_valid = true; ++ } ++ ++ if (mustfix_fsck_err_on(gen_cmp(ptr->gen, g->mark.gen) > 0, c, ++ "bucket %u:%zu data type %s ptr gen in the future: %u > %u", ++ ptr->dev, PTR_BUCKET_NR(ca, ptr), ++ bch2_data_types[ptr_data_type(k.k, ptr)], ++ ptr->gen, g->mark.gen)) { ++ g2->_mark.gen = g->_mark.gen = ptr->gen; ++ g2->gen_valid = g->gen_valid = true; ++ g2->_mark.data_type = 0; ++ g2->_mark.dirty_sectors = 0; ++ g2->_mark.cached_sectors = 0; ++ set_bit(BCH_FS_FIXED_GENS, &c->flags); ++ } ++ } ++ } ++ ++ bkey_for_each_ptr(ptrs, ptr) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ struct bucket *g = PTR_BUCKET(ca, ptr, true); ++ ++ if (gen_after(g->oldest_gen, ptr->gen)) ++ g->oldest_gen = ptr->gen; ++ ++ *max_stale = max(*max_stale, ptr_stale(ca, ptr)); ++ } ++ ++ bch2_mark_key(c, k, 0, k.k->size, NULL, 0, flags); ++fsck_err: ++ return ret; ++} ++ ++static int btree_gc_mark_node(struct bch_fs *c, struct btree *b, u8 *max_stale, ++ bool initial) ++{ ++ struct bpos next_node_start = b->data->min_key; ++ struct btree_node_iter iter; ++ struct bkey unpacked; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ *max_stale = 0; ++ ++ if (!btree_node_type_needs_gc(btree_node_type(b))) ++ return 0; ++ ++ bch2_btree_node_iter_init_from_start(&iter, b); ++ ++ while ((k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked)).k) { ++ bch2_bkey_debugcheck(c, b, k); ++ ++ ret = bch2_gc_mark_key(c, k, max_stale, initial); ++ if (ret) ++ break; ++ ++ bch2_btree_node_iter_advance(&iter, b); ++ ++ if (b->c.level) { ++ ret = bch2_gc_check_topology(c, k, ++ &next_node_start, ++ b->data->max_key, ++ bch2_btree_node_iter_end(&iter)); ++ if (ret) ++ break; ++ } ++ } ++ ++ return ret; ++} ++ ++static int bch2_gc_btree(struct bch_fs *c, enum btree_id btree_id, ++ bool initial, bool metadata_only) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct btree *b; ++ unsigned depth = metadata_only ? 1 ++ : expensive_debug_checks(c) ? 0 ++ : !btree_node_type_needs_gc(btree_id) ? 1 ++ : 0; ++ u8 max_stale = 0; ++ int ret = 0; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ gc_pos_set(c, gc_pos_btree(btree_id, POS_MIN, 0)); ++ ++ __for_each_btree_node(&trans, iter, btree_id, POS_MIN, ++ 0, depth, BTREE_ITER_PREFETCH, b) { ++ bch2_verify_btree_nr_keys(b); ++ ++ gc_pos_set(c, gc_pos_btree_node(b)); ++ ++ ret = btree_gc_mark_node(c, b, &max_stale, initial); ++ if (ret) ++ break; ++ ++ if (!initial) { ++ if (max_stale > 64) ++ bch2_btree_node_rewrite(c, iter, ++ b->data->keys.seq, ++ BTREE_INSERT_USE_RESERVE| ++ BTREE_INSERT_NOWAIT| ++ BTREE_INSERT_GC_LOCK_HELD); ++ else if (!btree_gc_rewrite_disabled(c) && ++ (btree_gc_always_rewrite(c) || max_stale > 16)) ++ bch2_btree_node_rewrite(c, iter, ++ b->data->keys.seq, ++ BTREE_INSERT_NOWAIT| ++ BTREE_INSERT_GC_LOCK_HELD); ++ } ++ ++ bch2_trans_cond_resched(&trans); ++ } ++ ret = bch2_trans_exit(&trans) ?: ret; ++ if (ret) ++ return ret; ++ ++ mutex_lock(&c->btree_root_lock); ++ b = c->btree_roots[btree_id].b; ++ if (!btree_node_fake(b)) ++ ret = bch2_gc_mark_key(c, bkey_i_to_s_c(&b->key), ++ &max_stale, initial); ++ gc_pos_set(c, gc_pos_btree_root(b->c.btree_id)); ++ mutex_unlock(&c->btree_root_lock); ++ ++ return ret; ++} ++ ++static int bch2_gc_btree_init_recurse(struct bch_fs *c, struct btree *b, ++ struct journal_keys *journal_keys, ++ unsigned target_depth) ++{ ++ struct btree_and_journal_iter iter; ++ struct bkey_s_c k; ++ struct bpos next_node_start = b->data->min_key; ++ u8 max_stale = 0; ++ int ret = 0; ++ ++ bch2_btree_and_journal_iter_init_node_iter(&iter, journal_keys, b); ++ ++ while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { ++ bch2_bkey_debugcheck(c, b, k); ++ ++ BUG_ON(bkey_cmp(k.k->p, b->data->min_key) < 0); ++ BUG_ON(bkey_cmp(k.k->p, b->data->max_key) > 0); ++ ++ ret = bch2_gc_mark_key(c, k, &max_stale, true); ++ if (ret) ++ break; ++ ++ if (b->c.level) { ++ struct btree *child; ++ BKEY_PADDED(k) tmp; ++ ++ bkey_reassemble(&tmp.k, k); ++ k = bkey_i_to_s_c(&tmp.k); ++ ++ bch2_btree_and_journal_iter_advance(&iter); ++ ++ ret = bch2_gc_check_topology(c, k, ++ &next_node_start, ++ b->data->max_key, ++ !bch2_btree_and_journal_iter_peek(&iter).k); ++ if (ret) ++ break; ++ ++ if (b->c.level > target_depth) { ++ child = bch2_btree_node_get_noiter(c, &tmp.k, ++ b->c.btree_id, b->c.level - 1); ++ ret = PTR_ERR_OR_ZERO(child); ++ if (ret) ++ break; ++ ++ ret = bch2_gc_btree_init_recurse(c, child, ++ journal_keys, target_depth); ++ six_unlock_read(&child->c.lock); ++ ++ if (ret) ++ break; ++ } ++ } else { ++ bch2_btree_and_journal_iter_advance(&iter); ++ } ++ } ++ ++ return ret; ++} ++ ++static int bch2_gc_btree_init(struct bch_fs *c, ++ struct journal_keys *journal_keys, ++ enum btree_id btree_id, ++ bool metadata_only) ++{ ++ struct btree *b; ++ unsigned target_depth = metadata_only ? 1 ++ : expensive_debug_checks(c) ? 0 ++ : !btree_node_type_needs_gc(btree_id) ? 1 ++ : 0; ++ u8 max_stale = 0; ++ int ret = 0; ++ ++ b = c->btree_roots[btree_id].b; ++ ++ if (btree_node_fake(b)) ++ return 0; ++ ++ six_lock_read(&b->c.lock, NULL, NULL); ++ if (fsck_err_on(bkey_cmp(b->data->min_key, POS_MIN), c, ++ "btree root with incorrect min_key: %llu:%llu", ++ b->data->min_key.inode, ++ b->data->min_key.offset)) { ++ BUG(); ++ } ++ ++ if (fsck_err_on(bkey_cmp(b->data->max_key, POS_MAX), c, ++ "btree root with incorrect min_key: %llu:%llu", ++ b->data->max_key.inode, ++ b->data->max_key.offset)) { ++ BUG(); ++ } ++ ++ if (b->c.level >= target_depth) ++ ret = bch2_gc_btree_init_recurse(c, b, ++ journal_keys, target_depth); ++ ++ if (!ret) ++ ret = bch2_gc_mark_key(c, bkey_i_to_s_c(&b->key), ++ &max_stale, true); ++fsck_err: ++ six_unlock_read(&b->c.lock); ++ ++ return ret; ++} ++ ++static inline int btree_id_gc_phase_cmp(enum btree_id l, enum btree_id r) ++{ ++ return (int) btree_id_to_gc_phase(l) - ++ (int) btree_id_to_gc_phase(r); ++} ++ ++static int bch2_gc_btrees(struct bch_fs *c, struct journal_keys *journal_keys, ++ bool initial, bool metadata_only) ++{ ++ enum btree_id ids[BTREE_ID_NR]; ++ unsigned i; ++ ++ for (i = 0; i < BTREE_ID_NR; i++) ++ ids[i] = i; ++ bubble_sort(ids, BTREE_ID_NR, btree_id_gc_phase_cmp); ++ ++ for (i = 0; i < BTREE_ID_NR; i++) { ++ enum btree_id id = ids[i]; ++ int ret = initial ++ ? bch2_gc_btree_init(c, journal_keys, ++ id, metadata_only) ++ : bch2_gc_btree(c, id, initial, metadata_only); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++static void mark_metadata_sectors(struct bch_fs *c, struct bch_dev *ca, ++ u64 start, u64 end, ++ enum bch_data_type type, ++ unsigned flags) ++{ ++ u64 b = sector_to_bucket(ca, start); ++ ++ do { ++ unsigned sectors = ++ min_t(u64, bucket_to_sector(ca, b + 1), end) - start; ++ ++ bch2_mark_metadata_bucket(c, ca, b, type, sectors, ++ gc_phase(GC_PHASE_SB), flags); ++ b++; ++ start += sectors; ++ } while (start < end); ++} ++ ++void bch2_mark_dev_superblock(struct bch_fs *c, struct bch_dev *ca, ++ unsigned flags) ++{ ++ struct bch_sb_layout *layout = &ca->disk_sb.sb->layout; ++ unsigned i; ++ u64 b; ++ ++ /* ++ * This conditional is kind of gross, but we may be called from the ++ * device add path, before the new device has actually been added to the ++ * running filesystem: ++ */ ++ if (c) { ++ lockdep_assert_held(&c->sb_lock); ++ percpu_down_read(&c->mark_lock); ++ } ++ ++ for (i = 0; i < layout->nr_superblocks; i++) { ++ u64 offset = le64_to_cpu(layout->sb_offset[i]); ++ ++ if (offset == BCH_SB_SECTOR) ++ mark_metadata_sectors(c, ca, 0, BCH_SB_SECTOR, ++ BCH_DATA_sb, flags); ++ ++ mark_metadata_sectors(c, ca, offset, ++ offset + (1 << layout->sb_max_size_bits), ++ BCH_DATA_sb, flags); ++ } ++ ++ for (i = 0; i < ca->journal.nr; i++) { ++ b = ca->journal.buckets[i]; ++ bch2_mark_metadata_bucket(c, ca, b, BCH_DATA_journal, ++ ca->mi.bucket_size, ++ gc_phase(GC_PHASE_SB), flags); ++ } ++ ++ if (c) ++ percpu_up_read(&c->mark_lock); ++} ++ ++static void bch2_mark_superblocks(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ ++ mutex_lock(&c->sb_lock); ++ gc_pos_set(c, gc_phase(GC_PHASE_SB)); ++ ++ for_each_online_member(ca, c, i) ++ bch2_mark_dev_superblock(c, ca, BTREE_TRIGGER_GC); ++ mutex_unlock(&c->sb_lock); ++} ++ ++#if 0 ++/* Also see bch2_pending_btree_node_free_insert_done() */ ++static void bch2_mark_pending_btree_node_frees(struct bch_fs *c) ++{ ++ struct btree_update *as; ++ struct pending_btree_node_free *d; ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE)); ++ ++ for_each_pending_btree_node_free(c, as, d) ++ if (d->index_update_done) ++ bch2_mark_key(c, bkey_i_to_s_c(&d->key), ++ 0, 0, NULL, 0, ++ BTREE_TRIGGER_GC); ++ ++ mutex_unlock(&c->btree_interior_update_lock); ++} ++#endif ++ ++static void bch2_mark_allocator_buckets(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ struct open_bucket *ob; ++ size_t i, j, iter; ++ unsigned ci; ++ ++ percpu_down_read(&c->mark_lock); ++ ++ spin_lock(&c->freelist_lock); ++ gc_pos_set(c, gc_pos_alloc(c, NULL)); ++ ++ for_each_member_device(ca, c, ci) { ++ fifo_for_each_entry(i, &ca->free_inc, iter) ++ bch2_mark_alloc_bucket(c, ca, i, true, ++ gc_pos_alloc(c, NULL), ++ BTREE_TRIGGER_GC); ++ ++ ++ ++ for (j = 0; j < RESERVE_NR; j++) ++ fifo_for_each_entry(i, &ca->free[j], iter) ++ bch2_mark_alloc_bucket(c, ca, i, true, ++ gc_pos_alloc(c, NULL), ++ BTREE_TRIGGER_GC); ++ } ++ ++ spin_unlock(&c->freelist_lock); ++ ++ for (ob = c->open_buckets; ++ ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ++ ob++) { ++ spin_lock(&ob->lock); ++ if (ob->valid) { ++ gc_pos_set(c, gc_pos_alloc(c, ob)); ++ ca = bch_dev_bkey_exists(c, ob->ptr.dev); ++ bch2_mark_alloc_bucket(c, ca, PTR_BUCKET_NR(ca, &ob->ptr), true, ++ gc_pos_alloc(c, ob), ++ BTREE_TRIGGER_GC); ++ } ++ spin_unlock(&ob->lock); ++ } ++ ++ percpu_up_read(&c->mark_lock); ++} ++ ++static void bch2_gc_free(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ ++ genradix_free(&c->stripes[1]); ++ ++ for_each_member_device(ca, c, i) { ++ kvpfree(rcu_dereference_protected(ca->buckets[1], 1), ++ sizeof(struct bucket_array) + ++ ca->mi.nbuckets * sizeof(struct bucket)); ++ ca->buckets[1] = NULL; ++ ++ free_percpu(ca->usage[1]); ++ ca->usage[1] = NULL; ++ } ++ ++ free_percpu(c->usage_gc); ++ c->usage_gc = NULL; ++} ++ ++static int bch2_gc_done(struct bch_fs *c, ++ bool initial, bool metadata_only) ++{ ++ struct bch_dev *ca; ++ bool verify = !metadata_only && ++ (!initial || ++ (c->sb.compat & (1ULL << BCH_COMPAT_FEAT_ALLOC_INFO))); ++ unsigned i; ++ int ret = 0; ++ ++#define copy_field(_f, _msg, ...) \ ++ if (dst->_f != src->_f) { \ ++ if (verify) \ ++ fsck_err(c, _msg ": got %llu, should be %llu" \ ++ , ##__VA_ARGS__, dst->_f, src->_f); \ ++ dst->_f = src->_f; \ ++ ret = 1; \ ++ } ++#define copy_stripe_field(_f, _msg, ...) \ ++ if (dst->_f != src->_f) { \ ++ if (verify) \ ++ fsck_err(c, "stripe %zu has wrong "_msg \ ++ ": got %u, should be %u", \ ++ dst_iter.pos, ##__VA_ARGS__, \ ++ dst->_f, src->_f); \ ++ dst->_f = src->_f; \ ++ dst->dirty = true; \ ++ ret = 1; \ ++ } ++#define copy_bucket_field(_f) \ ++ if (dst->b[b].mark._f != src->b[b].mark._f) { \ ++ if (verify) \ ++ fsck_err(c, "bucket %u:%zu gen %u data type %s has wrong " #_f \ ++ ": got %u, should be %u", i, b, \ ++ dst->b[b].mark.gen, \ ++ bch2_data_types[dst->b[b].mark.data_type],\ ++ dst->b[b].mark._f, src->b[b].mark._f); \ ++ dst->b[b]._mark._f = src->b[b].mark._f; \ ++ ret = 1; \ ++ } ++#define copy_dev_field(_f, _msg, ...) \ ++ copy_field(_f, "dev %u has wrong " _msg, i, ##__VA_ARGS__) ++#define copy_fs_field(_f, _msg, ...) \ ++ copy_field(_f, "fs has wrong " _msg, ##__VA_ARGS__) ++ ++ if (!metadata_only) { ++ struct genradix_iter dst_iter = genradix_iter_init(&c->stripes[0], 0); ++ struct genradix_iter src_iter = genradix_iter_init(&c->stripes[1], 0); ++ struct stripe *dst, *src; ++ unsigned i; ++ ++ c->ec_stripes_heap.used = 0; ++ ++ while ((dst = genradix_iter_peek(&dst_iter, &c->stripes[0])) && ++ (src = genradix_iter_peek(&src_iter, &c->stripes[1]))) { ++ BUG_ON(src_iter.pos != dst_iter.pos); ++ ++ copy_stripe_field(alive, "alive"); ++ copy_stripe_field(sectors, "sectors"); ++ copy_stripe_field(algorithm, "algorithm"); ++ copy_stripe_field(nr_blocks, "nr_blocks"); ++ copy_stripe_field(nr_redundant, "nr_redundant"); ++ copy_stripe_field(blocks_nonempty, ++ "blocks_nonempty"); ++ ++ for (i = 0; i < ARRAY_SIZE(dst->block_sectors); i++) ++ copy_stripe_field(block_sectors[i], ++ "block_sectors[%u]", i); ++ ++ if (dst->alive) { ++ spin_lock(&c->ec_stripes_heap_lock); ++ bch2_stripes_heap_insert(c, dst, dst_iter.pos); ++ spin_unlock(&c->ec_stripes_heap_lock); ++ } ++ ++ genradix_iter_advance(&dst_iter, &c->stripes[0]); ++ genradix_iter_advance(&src_iter, &c->stripes[1]); ++ } ++ } ++ ++ for_each_member_device(ca, c, i) { ++ struct bucket_array *dst = __bucket_array(ca, 0); ++ struct bucket_array *src = __bucket_array(ca, 1); ++ size_t b; ++ ++ for (b = 0; b < src->nbuckets; b++) { ++ copy_bucket_field(gen); ++ copy_bucket_field(data_type); ++ copy_bucket_field(owned_by_allocator); ++ copy_bucket_field(stripe); ++ copy_bucket_field(dirty_sectors); ++ copy_bucket_field(cached_sectors); ++ ++ dst->b[b].oldest_gen = src->b[b].oldest_gen; ++ } ++ }; ++ ++ bch2_fs_usage_acc_to_base(c, 0); ++ bch2_fs_usage_acc_to_base(c, 1); ++ ++ bch2_dev_usage_from_buckets(c); ++ ++ { ++ unsigned nr = fs_usage_u64s(c); ++ struct bch_fs_usage *dst = c->usage_base; ++ struct bch_fs_usage *src = (void *) ++ bch2_acc_percpu_u64s((void *) c->usage_gc, nr); ++ ++ copy_fs_field(hidden, "hidden"); ++ copy_fs_field(btree, "btree"); ++ ++ if (!metadata_only) { ++ copy_fs_field(data, "data"); ++ copy_fs_field(cached, "cached"); ++ copy_fs_field(reserved, "reserved"); ++ copy_fs_field(nr_inodes,"nr_inodes"); ++ ++ for (i = 0; i < BCH_REPLICAS_MAX; i++) ++ copy_fs_field(persistent_reserved[i], ++ "persistent_reserved[%i]", i); ++ } ++ ++ for (i = 0; i < c->replicas.nr; i++) { ++ struct bch_replicas_entry *e = ++ cpu_replicas_entry(&c->replicas, i); ++ char buf[80]; ++ ++ if (metadata_only && ++ (e->data_type == BCH_DATA_user || ++ e->data_type == BCH_DATA_cached)) ++ continue; ++ ++ bch2_replicas_entry_to_text(&PBUF(buf), e); ++ ++ copy_fs_field(replicas[i], "%s", buf); ++ } ++ } ++ ++#undef copy_fs_field ++#undef copy_dev_field ++#undef copy_bucket_field ++#undef copy_stripe_field ++#undef copy_field ++fsck_err: ++ return ret; ++} ++ ++static int bch2_gc_start(struct bch_fs *c, ++ bool metadata_only) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ int ret; ++ ++ BUG_ON(c->usage_gc); ++ ++ c->usage_gc = __alloc_percpu_gfp(fs_usage_u64s(c) * sizeof(u64), ++ sizeof(u64), GFP_KERNEL); ++ if (!c->usage_gc) { ++ bch_err(c, "error allocating c->usage_gc"); ++ return -ENOMEM; ++ } ++ ++ for_each_member_device(ca, c, i) { ++ BUG_ON(ca->buckets[1]); ++ BUG_ON(ca->usage[1]); ++ ++ ca->buckets[1] = kvpmalloc(sizeof(struct bucket_array) + ++ ca->mi.nbuckets * sizeof(struct bucket), ++ GFP_KERNEL|__GFP_ZERO); ++ if (!ca->buckets[1]) { ++ percpu_ref_put(&ca->ref); ++ bch_err(c, "error allocating ca->buckets[gc]"); ++ return -ENOMEM; ++ } ++ ++ ca->usage[1] = alloc_percpu(struct bch_dev_usage); ++ if (!ca->usage[1]) { ++ bch_err(c, "error allocating ca->usage[gc]"); ++ percpu_ref_put(&ca->ref); ++ return -ENOMEM; ++ } ++ } ++ ++ ret = bch2_ec_mem_alloc(c, true); ++ if (ret) { ++ bch_err(c, "error allocating ec gc mem"); ++ return ret; ++ } ++ ++ percpu_down_write(&c->mark_lock); ++ ++ /* ++ * indicate to stripe code that we need to allocate for the gc stripes ++ * radix tree, too ++ */ ++ gc_pos_set(c, gc_phase(GC_PHASE_START)); ++ ++ for_each_member_device(ca, c, i) { ++ struct bucket_array *dst = __bucket_array(ca, 1); ++ struct bucket_array *src = __bucket_array(ca, 0); ++ size_t b; ++ ++ dst->first_bucket = src->first_bucket; ++ dst->nbuckets = src->nbuckets; ++ ++ for (b = 0; b < src->nbuckets; b++) { ++ struct bucket *d = &dst->b[b]; ++ struct bucket *s = &src->b[b]; ++ ++ d->_mark.gen = dst->b[b].oldest_gen = s->mark.gen; ++ d->gen_valid = s->gen_valid; ++ ++ if (metadata_only && ++ (s->mark.data_type == BCH_DATA_user || ++ s->mark.data_type == BCH_DATA_cached)) { ++ d->_mark = s->mark; ++ d->_mark.owned_by_allocator = 0; ++ } ++ } ++ }; ++ ++ percpu_up_write(&c->mark_lock); ++ ++ return 0; ++} ++ ++/** ++ * bch2_gc - walk _all_ references to buckets, and recompute them: ++ * ++ * Order matters here: ++ * - Concurrent GC relies on the fact that we have a total ordering for ++ * everything that GC walks - see gc_will_visit_node(), ++ * gc_will_visit_root() ++ * ++ * - also, references move around in the course of index updates and ++ * various other crap: everything needs to agree on the ordering ++ * references are allowed to move around in - e.g., we're allowed to ++ * start with a reference owned by an open_bucket (the allocator) and ++ * move it to the btree, but not the reverse. ++ * ++ * This is necessary to ensure that gc doesn't miss references that ++ * move around - if references move backwards in the ordering GC ++ * uses, GC could skip past them ++ */ ++int bch2_gc(struct bch_fs *c, struct journal_keys *journal_keys, ++ bool initial, bool metadata_only) ++{ ++ struct bch_dev *ca; ++ u64 start_time = local_clock(); ++ unsigned i, iter = 0; ++ int ret; ++ ++ lockdep_assert_held(&c->state_lock); ++ trace_gc_start(c); ++ ++ down_write(&c->gc_lock); ++ ++ /* flush interior btree updates: */ ++ closure_wait_event(&c->btree_interior_update_wait, ++ !bch2_btree_interior_updates_nr_pending(c)); ++again: ++ ret = bch2_gc_start(c, metadata_only); ++ if (ret) ++ goto out; ++ ++ bch2_mark_superblocks(c); ++ ++ ret = bch2_gc_btrees(c, journal_keys, initial, metadata_only); ++ if (ret) ++ goto out; ++ ++#if 0 ++ bch2_mark_pending_btree_node_frees(c); ++#endif ++ bch2_mark_allocator_buckets(c); ++ ++ c->gc_count++; ++out: ++ if (!ret && ++ (test_bit(BCH_FS_FIXED_GENS, &c->flags) || ++ (!iter && test_restart_gc(c)))) { ++ /* ++ * XXX: make sure gens we fixed got saved ++ */ ++ if (iter++ <= 2) { ++ bch_info(c, "Fixed gens, restarting mark and sweep:"); ++ clear_bit(BCH_FS_FIXED_GENS, &c->flags); ++ __gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING)); ++ ++ percpu_down_write(&c->mark_lock); ++ bch2_gc_free(c); ++ percpu_up_write(&c->mark_lock); ++ /* flush fsck errors, reset counters */ ++ bch2_flush_fsck_errs(c); ++ ++ goto again; ++ } ++ ++ bch_info(c, "Unable to fix bucket gens, looping"); ++ ret = -EINVAL; ++ } ++ ++ if (!ret) { ++ bch2_journal_block(&c->journal); ++ ++ percpu_down_write(&c->mark_lock); ++ ret = bch2_gc_done(c, initial, metadata_only); ++ ++ bch2_journal_unblock(&c->journal); ++ } else { ++ percpu_down_write(&c->mark_lock); ++ } ++ ++ /* Indicates that gc is no longer in progress: */ ++ __gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING)); ++ ++ bch2_gc_free(c); ++ percpu_up_write(&c->mark_lock); ++ ++ up_write(&c->gc_lock); ++ ++ trace_gc_end(c); ++ bch2_time_stats_update(&c->times[BCH_TIME_btree_gc], start_time); ++ ++ /* ++ * Wake up allocator in case it was waiting for buckets ++ * because of not being able to inc gens ++ */ ++ for_each_member_device(ca, c, i) ++ bch2_wake_allocator(ca); ++ ++ /* ++ * At startup, allocations can happen directly instead of via the ++ * allocator thread - issue wakeup in case they blocked on gc_lock: ++ */ ++ closure_wake_up(&c->freelist_wait); ++ return ret; ++} ++ ++static bool gc_btree_gens_key(struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ ++ percpu_down_read(&c->mark_lock); ++ bkey_for_each_ptr(ptrs, ptr) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ struct bucket *g = PTR_BUCKET(ca, ptr, false); ++ ++ if (gen_after(g->mark.gen, ptr->gen) > 16) { ++ percpu_up_read(&c->mark_lock); ++ return true; ++ } ++ } ++ ++ bkey_for_each_ptr(ptrs, ptr) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ struct bucket *g = PTR_BUCKET(ca, ptr, false); ++ ++ if (gen_after(g->gc_gen, ptr->gen)) ++ g->gc_gen = ptr->gen; ++ } ++ percpu_up_read(&c->mark_lock); ++ ++ return false; ++} ++ ++/* ++ * For recalculating oldest gen, we only need to walk keys in leaf nodes; btree ++ * node pointers currently never have cached pointers that can become stale: ++ */ ++static int bch2_gc_btree_gens(struct bch_fs *c, enum btree_id btree_id) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ struct bkey_on_stack sk; ++ int ret = 0; ++ ++ bkey_on_stack_init(&sk); ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ iter = bch2_trans_get_iter(&trans, btree_id, POS_MIN, ++ BTREE_ITER_PREFETCH); ++ ++ while ((k = bch2_btree_iter_peek(iter)).k && ++ !(ret = bkey_err(k))) { ++ if (gc_btree_gens_key(c, k)) { ++ bkey_on_stack_reassemble(&sk, c, k); ++ bch2_extent_normalize(c, bkey_i_to_s(sk.k)); ++ ++ bch2_btree_iter_set_pos(iter, bkey_start_pos(&sk.k->k)); ++ ++ bch2_trans_update(&trans, iter, sk.k, 0); ++ ++ ret = bch2_trans_commit(&trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL); ++ if (ret == -EINTR) ++ continue; ++ if (ret) { ++ break; ++ } ++ } ++ ++ bch2_btree_iter_next(iter); ++ } ++ ++ bch2_trans_exit(&trans); ++ bkey_on_stack_exit(&sk, c); ++ ++ return ret; ++} ++ ++int bch2_gc_gens(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ struct bucket_array *buckets; ++ struct bucket *g; ++ unsigned i; ++ int ret; ++ ++ /* ++ * Ideally we would be using state_lock and not gc_lock here, but that ++ * introduces a deadlock in the RO path - we currently take the state ++ * lock at the start of going RO, thus the gc thread may get stuck: ++ */ ++ down_read(&c->gc_lock); ++ ++ for_each_member_device(ca, c, i) { ++ down_read(&ca->bucket_lock); ++ buckets = bucket_array(ca); ++ ++ for_each_bucket(g, buckets) ++ g->gc_gen = g->mark.gen; ++ up_read(&ca->bucket_lock); ++ } ++ ++ for (i = 0; i < BTREE_ID_NR; i++) ++ if (btree_node_type_needs_gc(i)) { ++ ret = bch2_gc_btree_gens(c, i); ++ if (ret) { ++ bch_err(c, "error recalculating oldest_gen: %i", ret); ++ goto err; ++ } ++ } ++ ++ for_each_member_device(ca, c, i) { ++ down_read(&ca->bucket_lock); ++ buckets = bucket_array(ca); ++ ++ for_each_bucket(g, buckets) ++ g->oldest_gen = g->gc_gen; ++ up_read(&ca->bucket_lock); ++ } ++ ++ c->gc_count++; ++err: ++ up_read(&c->gc_lock); ++ return ret; ++} ++ ++/* Btree coalescing */ ++ ++static void recalc_packed_keys(struct btree *b) ++{ ++ struct bset *i = btree_bset_first(b); ++ struct bkey_packed *k; ++ ++ memset(&b->nr, 0, sizeof(b->nr)); ++ ++ BUG_ON(b->nsets != 1); ++ ++ vstruct_for_each(i, k) ++ btree_keys_account_key_add(&b->nr, 0, k); ++} ++ ++static void bch2_coalesce_nodes(struct bch_fs *c, struct btree_iter *iter, ++ struct btree *old_nodes[GC_MERGE_NODES]) ++{ ++ struct btree *parent = btree_node_parent(iter, old_nodes[0]); ++ unsigned i, nr_old_nodes, nr_new_nodes, u64s = 0; ++ unsigned blocks = btree_blocks(c) * 2 / 3; ++ struct btree *new_nodes[GC_MERGE_NODES]; ++ struct btree_update *as; ++ struct keylist keylist; ++ struct bkey_format_state format_state; ++ struct bkey_format new_format; ++ ++ memset(new_nodes, 0, sizeof(new_nodes)); ++ bch2_keylist_init(&keylist, NULL); ++ ++ /* Count keys that are not deleted */ ++ for (i = 0; i < GC_MERGE_NODES && old_nodes[i]; i++) ++ u64s += old_nodes[i]->nr.live_u64s; ++ ++ nr_old_nodes = nr_new_nodes = i; ++ ++ /* Check if all keys in @old_nodes could fit in one fewer node */ ++ if (nr_old_nodes <= 1 || ++ __vstruct_blocks(struct btree_node, c->block_bits, ++ DIV_ROUND_UP(u64s, nr_old_nodes - 1)) > blocks) ++ return; ++ ++ /* Find a format that all keys in @old_nodes can pack into */ ++ bch2_bkey_format_init(&format_state); ++ ++ for (i = 0; i < nr_old_nodes; i++) ++ __bch2_btree_calc_format(&format_state, old_nodes[i]); ++ ++ new_format = bch2_bkey_format_done(&format_state); ++ ++ /* Check if repacking would make any nodes too big to fit */ ++ for (i = 0; i < nr_old_nodes; i++) ++ if (!bch2_btree_node_format_fits(c, old_nodes[i], &new_format)) { ++ trace_btree_gc_coalesce_fail(c, ++ BTREE_GC_COALESCE_FAIL_FORMAT_FITS); ++ return; ++ } ++ ++ if (bch2_keylist_realloc(&keylist, NULL, 0, ++ (BKEY_U64s + BKEY_EXTENT_U64s_MAX) * nr_old_nodes)) { ++ trace_btree_gc_coalesce_fail(c, ++ BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC); ++ return; ++ } ++ ++ as = bch2_btree_update_start(iter->trans, iter->btree_id, ++ btree_update_reserve_required(c, parent) + nr_old_nodes, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_USE_RESERVE, ++ NULL); ++ if (IS_ERR(as)) { ++ trace_btree_gc_coalesce_fail(c, ++ BTREE_GC_COALESCE_FAIL_RESERVE_GET); ++ bch2_keylist_free(&keylist, NULL); ++ return; ++ } ++ ++ trace_btree_gc_coalesce(c, old_nodes[0]); ++ ++ for (i = 0; i < nr_old_nodes; i++) ++ bch2_btree_interior_update_will_free_node(as, old_nodes[i]); ++ ++ /* Repack everything with @new_format and sort down to one bset */ ++ for (i = 0; i < nr_old_nodes; i++) ++ new_nodes[i] = ++ __bch2_btree_node_alloc_replacement(as, old_nodes[i], ++ new_format); ++ ++ /* ++ * Conceptually we concatenate the nodes together and slice them ++ * up at different boundaries. ++ */ ++ for (i = nr_new_nodes - 1; i > 0; --i) { ++ struct btree *n1 = new_nodes[i]; ++ struct btree *n2 = new_nodes[i - 1]; ++ ++ struct bset *s1 = btree_bset_first(n1); ++ struct bset *s2 = btree_bset_first(n2); ++ struct bkey_packed *k, *last = NULL; ++ ++ /* Calculate how many keys from @n2 we could fit inside @n1 */ ++ u64s = 0; ++ ++ for (k = s2->start; ++ k < vstruct_last(s2) && ++ vstruct_blocks_plus(n1->data, c->block_bits, ++ u64s + k->u64s) <= blocks; ++ k = bkey_next_skip_noops(k, vstruct_last(s2))) { ++ last = k; ++ u64s += k->u64s; ++ } ++ ++ if (u64s == le16_to_cpu(s2->u64s)) { ++ /* n2 fits entirely in n1 */ ++ n1->key.k.p = n1->data->max_key = n2->data->max_key; ++ ++ memcpy_u64s(vstruct_last(s1), ++ s2->start, ++ le16_to_cpu(s2->u64s)); ++ le16_add_cpu(&s1->u64s, le16_to_cpu(s2->u64s)); ++ ++ set_btree_bset_end(n1, n1->set); ++ ++ six_unlock_write(&n2->c.lock); ++ bch2_btree_node_free_never_inserted(c, n2); ++ six_unlock_intent(&n2->c.lock); ++ ++ memmove(new_nodes + i - 1, ++ new_nodes + i, ++ sizeof(new_nodes[0]) * (nr_new_nodes - i)); ++ new_nodes[--nr_new_nodes] = NULL; ++ } else if (u64s) { ++ /* move part of n2 into n1 */ ++ n1->key.k.p = n1->data->max_key = ++ bkey_unpack_pos(n1, last); ++ ++ n2->data->min_key = bkey_successor(n1->data->max_key); ++ ++ memcpy_u64s(vstruct_last(s1), ++ s2->start, u64s); ++ le16_add_cpu(&s1->u64s, u64s); ++ ++ memmove(s2->start, ++ vstruct_idx(s2, u64s), ++ (le16_to_cpu(s2->u64s) - u64s) * sizeof(u64)); ++ s2->u64s = cpu_to_le16(le16_to_cpu(s2->u64s) - u64s); ++ ++ set_btree_bset_end(n1, n1->set); ++ set_btree_bset_end(n2, n2->set); ++ } ++ } ++ ++ for (i = 0; i < nr_new_nodes; i++) { ++ struct btree *n = new_nodes[i]; ++ ++ recalc_packed_keys(n); ++ btree_node_reset_sib_u64s(n); ++ ++ bch2_btree_build_aux_trees(n); ++ ++ bch2_btree_update_add_new_node(as, n); ++ six_unlock_write(&n->c.lock); ++ ++ bch2_btree_node_write(c, n, SIX_LOCK_intent); ++ } ++ ++ /* ++ * The keys for the old nodes get deleted. We don't want to insert keys ++ * that compare equal to the keys for the new nodes we'll also be ++ * inserting - we can't because keys on a keylist must be strictly ++ * greater than the previous keys, and we also don't need to since the ++ * key for the new node will serve the same purpose (overwriting the key ++ * for the old node). ++ */ ++ for (i = 0; i < nr_old_nodes; i++) { ++ struct bkey_i delete; ++ unsigned j; ++ ++ for (j = 0; j < nr_new_nodes; j++) ++ if (!bkey_cmp(old_nodes[i]->key.k.p, ++ new_nodes[j]->key.k.p)) ++ goto next; ++ ++ bkey_init(&delete.k); ++ delete.k.p = old_nodes[i]->key.k.p; ++ bch2_keylist_add_in_order(&keylist, &delete); ++next: ++ i = i; ++ } ++ ++ /* ++ * Keys for the new nodes get inserted: bch2_btree_insert_keys() only ++ * does the lookup once and thus expects the keys to be in sorted order ++ * so we have to make sure the new keys are correctly ordered with ++ * respect to the deleted keys added in the previous loop ++ */ ++ for (i = 0; i < nr_new_nodes; i++) ++ bch2_keylist_add_in_order(&keylist, &new_nodes[i]->key); ++ ++ /* Insert the newly coalesced nodes */ ++ bch2_btree_insert_node(as, parent, iter, &keylist, 0); ++ ++ BUG_ON(!bch2_keylist_empty(&keylist)); ++ ++ BUG_ON(iter->l[old_nodes[0]->c.level].b != old_nodes[0]); ++ ++ bch2_btree_iter_node_replace(iter, new_nodes[0]); ++ ++ for (i = 0; i < nr_new_nodes; i++) ++ bch2_btree_update_get_open_buckets(as, new_nodes[i]); ++ ++ /* Free the old nodes and update our sliding window */ ++ for (i = 0; i < nr_old_nodes; i++) { ++ bch2_btree_node_free_inmem(c, old_nodes[i], iter); ++ ++ /* ++ * the index update might have triggered a split, in which case ++ * the nodes we coalesced - the new nodes we just created - ++ * might not be sibling nodes anymore - don't add them to the ++ * sliding window (except the first): ++ */ ++ if (!i) { ++ old_nodes[i] = new_nodes[i]; ++ } else { ++ old_nodes[i] = NULL; ++ } ++ } ++ ++ for (i = 0; i < nr_new_nodes; i++) ++ six_unlock_intent(&new_nodes[i]->c.lock); ++ ++ bch2_btree_update_done(as); ++ bch2_keylist_free(&keylist, NULL); ++} ++ ++static int bch2_coalesce_btree(struct bch_fs *c, enum btree_id btree_id) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct btree *b; ++ bool kthread = (current->flags & PF_KTHREAD) != 0; ++ unsigned i; ++ ++ /* Sliding window of adjacent btree nodes */ ++ struct btree *merge[GC_MERGE_NODES]; ++ u32 lock_seq[GC_MERGE_NODES]; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ /* ++ * XXX: We don't have a good way of positively matching on sibling nodes ++ * that have the same parent - this code works by handling the cases ++ * where they might not have the same parent, and is thus fragile. Ugh. ++ * ++ * Perhaps redo this to use multiple linked iterators? ++ */ ++ memset(merge, 0, sizeof(merge)); ++ ++ __for_each_btree_node(&trans, iter, btree_id, POS_MIN, ++ BTREE_MAX_DEPTH, 0, ++ BTREE_ITER_PREFETCH, b) { ++ memmove(merge + 1, merge, ++ sizeof(merge) - sizeof(merge[0])); ++ memmove(lock_seq + 1, lock_seq, ++ sizeof(lock_seq) - sizeof(lock_seq[0])); ++ ++ merge[0] = b; ++ ++ for (i = 1; i < GC_MERGE_NODES; i++) { ++ if (!merge[i] || ++ !six_relock_intent(&merge[i]->c.lock, lock_seq[i])) ++ break; ++ ++ if (merge[i]->c.level != merge[0]->c.level) { ++ six_unlock_intent(&merge[i]->c.lock); ++ break; ++ } ++ } ++ memset(merge + i, 0, (GC_MERGE_NODES - i) * sizeof(merge[0])); ++ ++ bch2_coalesce_nodes(c, iter, merge); ++ ++ for (i = 1; i < GC_MERGE_NODES && merge[i]; i++) { ++ lock_seq[i] = merge[i]->c.lock.state.seq; ++ six_unlock_intent(&merge[i]->c.lock); ++ } ++ ++ lock_seq[0] = merge[0]->c.lock.state.seq; ++ ++ if (kthread && kthread_should_stop()) { ++ bch2_trans_exit(&trans); ++ return -ESHUTDOWN; ++ } ++ ++ bch2_trans_cond_resched(&trans); ++ ++ /* ++ * If the parent node wasn't relocked, it might have been split ++ * and the nodes in our sliding window might not have the same ++ * parent anymore - blow away the sliding window: ++ */ ++ if (btree_iter_node(iter, iter->level + 1) && ++ !btree_node_intent_locked(iter, iter->level + 1)) ++ memset(merge + 1, 0, ++ (GC_MERGE_NODES - 1) * sizeof(merge[0])); ++ } ++ return bch2_trans_exit(&trans); ++} ++ ++/** ++ * bch_coalesce - coalesce adjacent nodes with low occupancy ++ */ ++void bch2_coalesce(struct bch_fs *c) ++{ ++ enum btree_id id; ++ ++ down_read(&c->gc_lock); ++ trace_gc_coalesce_start(c); ++ ++ for (id = 0; id < BTREE_ID_NR; id++) { ++ int ret = c->btree_roots[id].b ++ ? bch2_coalesce_btree(c, id) ++ : 0; ++ ++ if (ret) { ++ if (ret != -ESHUTDOWN) ++ bch_err(c, "btree coalescing failed: %d", ret); ++ return; ++ } ++ } ++ ++ trace_gc_coalesce_end(c); ++ up_read(&c->gc_lock); ++} ++ ++static int bch2_gc_thread(void *arg) ++{ ++ struct bch_fs *c = arg; ++ struct io_clock *clock = &c->io_clock[WRITE]; ++ unsigned long last = atomic_long_read(&clock->now); ++ unsigned last_kick = atomic_read(&c->kick_gc); ++ int ret; ++ ++ set_freezable(); ++ ++ while (1) { ++ while (1) { ++ set_current_state(TASK_INTERRUPTIBLE); ++ ++ if (kthread_should_stop()) { ++ __set_current_state(TASK_RUNNING); ++ return 0; ++ } ++ ++ if (atomic_read(&c->kick_gc) != last_kick) ++ break; ++ ++ if (c->btree_gc_periodic) { ++ unsigned long next = last + c->capacity / 16; ++ ++ if (atomic_long_read(&clock->now) >= next) ++ break; ++ ++ bch2_io_clock_schedule_timeout(clock, next); ++ } else { ++ schedule(); ++ } ++ ++ try_to_freeze(); ++ } ++ __set_current_state(TASK_RUNNING); ++ ++ last = atomic_long_read(&clock->now); ++ last_kick = atomic_read(&c->kick_gc); ++ ++ /* ++ * Full gc is currently incompatible with btree key cache: ++ */ ++#if 0 ++ ret = bch2_gc(c, NULL, false, false); ++#else ++ ret = bch2_gc_gens(c); ++#endif ++ if (ret < 0) ++ bch_err(c, "btree gc failed: %i", ret); ++ ++ debug_check_no_locks_held(); ++ } ++ ++ return 0; ++} ++ ++void bch2_gc_thread_stop(struct bch_fs *c) ++{ ++ struct task_struct *p; ++ ++ p = c->gc_thread; ++ c->gc_thread = NULL; ++ ++ if (p) { ++ kthread_stop(p); ++ put_task_struct(p); ++ } ++} ++ ++int bch2_gc_thread_start(struct bch_fs *c) ++{ ++ struct task_struct *p; ++ ++ BUG_ON(c->gc_thread); ++ ++ p = kthread_create(bch2_gc_thread, c, "bch_gc"); ++ if (IS_ERR(p)) ++ return PTR_ERR(p); ++ ++ get_task_struct(p); ++ c->gc_thread = p; ++ wake_up_process(p); ++ return 0; ++} +diff --git a/fs/bcachefs/btree_gc.h b/fs/bcachefs/btree_gc.h +new file mode 100644 +index 000000000000..3694a3df62a8 +--- /dev/null ++++ b/fs/bcachefs/btree_gc.h +@@ -0,0 +1,121 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_GC_H ++#define _BCACHEFS_BTREE_GC_H ++ ++#include "btree_types.h" ++ ++void bch2_coalesce(struct bch_fs *); ++ ++struct journal_keys; ++int bch2_gc(struct bch_fs *, struct journal_keys *, bool, bool); ++int bch2_gc_gens(struct bch_fs *); ++void bch2_gc_thread_stop(struct bch_fs *); ++int bch2_gc_thread_start(struct bch_fs *); ++void bch2_mark_dev_superblock(struct bch_fs *, struct bch_dev *, unsigned); ++ ++/* ++ * For concurrent mark and sweep (with other index updates), we define a total ++ * ordering of _all_ references GC walks: ++ * ++ * Note that some references will have the same GC position as others - e.g. ++ * everything within the same btree node; in those cases we're relying on ++ * whatever locking exists for where those references live, i.e. the write lock ++ * on a btree node. ++ * ++ * That locking is also required to ensure GC doesn't pass the updater in ++ * between the updater adding/removing the reference and updating the GC marks; ++ * without that, we would at best double count sometimes. ++ * ++ * That part is important - whenever calling bch2_mark_pointers(), a lock _must_ ++ * be held that prevents GC from passing the position the updater is at. ++ * ++ * (What about the start of gc, when we're clearing all the marks? GC clears the ++ * mark with the gc pos seqlock held, and bch_mark_bucket checks against the gc ++ * position inside its cmpxchg loop, so crap magically works). ++ */ ++ ++/* Position of (the start of) a gc phase: */ ++static inline struct gc_pos gc_phase(enum gc_phase phase) ++{ ++ return (struct gc_pos) { ++ .phase = phase, ++ .pos = POS_MIN, ++ .level = 0, ++ }; ++} ++ ++static inline int gc_pos_cmp(struct gc_pos l, struct gc_pos r) ++{ ++ if (l.phase != r.phase) ++ return l.phase < r.phase ? -1 : 1; ++ if (bkey_cmp(l.pos, r.pos)) ++ return bkey_cmp(l.pos, r.pos); ++ if (l.level != r.level) ++ return l.level < r.level ? -1 : 1; ++ return 0; ++} ++ ++static inline enum gc_phase btree_id_to_gc_phase(enum btree_id id) ++{ ++ switch (id) { ++#define x(n, v, s) case BTREE_ID_##n: return GC_PHASE_BTREE_##n; ++ BCH_BTREE_IDS() ++#undef x ++ default: ++ BUG(); ++ } ++} ++ ++static inline struct gc_pos gc_pos_btree(enum btree_id id, ++ struct bpos pos, unsigned level) ++{ ++ return (struct gc_pos) { ++ .phase = btree_id_to_gc_phase(id), ++ .pos = pos, ++ .level = level, ++ }; ++} ++ ++/* ++ * GC position of the pointers within a btree node: note, _not_ for &b->key ++ * itself, that lives in the parent node: ++ */ ++static inline struct gc_pos gc_pos_btree_node(struct btree *b) ++{ ++ return gc_pos_btree(b->c.btree_id, b->key.k.p, b->c.level); ++} ++ ++/* ++ * GC position of the pointer to a btree root: we don't use ++ * gc_pos_pointer_to_btree_node() here to avoid a potential race with ++ * btree_split() increasing the tree depth - the new root will have level > the ++ * old root and thus have a greater gc position than the old root, but that ++ * would be incorrect since once gc has marked the root it's not coming back. ++ */ ++static inline struct gc_pos gc_pos_btree_root(enum btree_id id) ++{ ++ return gc_pos_btree(id, POS_MAX, BTREE_MAX_DEPTH); ++} ++ ++static inline struct gc_pos gc_pos_alloc(struct bch_fs *c, struct open_bucket *ob) ++{ ++ return (struct gc_pos) { ++ .phase = GC_PHASE_ALLOC, ++ .pos = POS(ob ? ob - c->open_buckets : 0, 0), ++ }; ++} ++ ++static inline bool gc_visited(struct bch_fs *c, struct gc_pos pos) ++{ ++ unsigned seq; ++ bool ret; ++ ++ do { ++ seq = read_seqcount_begin(&c->gc_pos_lock); ++ ret = gc_pos_cmp(pos, c->gc_pos) <= 0; ++ } while (read_seqcount_retry(&c->gc_pos_lock, seq)); ++ ++ return ret; ++} ++ ++#endif /* _BCACHEFS_BTREE_GC_H */ +diff --git a/fs/bcachefs/btree_io.c b/fs/bcachefs/btree_io.c +new file mode 100644 +index 000000000000..2f5097218f9c +--- /dev/null ++++ b/fs/bcachefs/btree_io.c +@@ -0,0 +1,1834 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bkey_methods.h" ++#include "bkey_sort.h" ++#include "btree_cache.h" ++#include "btree_io.h" ++#include "btree_iter.h" ++#include "btree_locking.h" ++#include "btree_update.h" ++#include "btree_update_interior.h" ++#include "buckets.h" ++#include "checksum.h" ++#include "debug.h" ++#include "error.h" ++#include "extents.h" ++#include "io.h" ++#include "journal_reclaim.h" ++#include "journal_seq_blacklist.h" ++#include "super-io.h" ++ ++#include ++#include ++ ++static void verify_no_dups(struct btree *b, ++ struct bkey_packed *start, ++ struct bkey_packed *end, ++ bool extents) ++{ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ struct bkey_packed *k, *p; ++ ++ if (start == end) ++ return; ++ ++ for (p = start, k = bkey_next_skip_noops(start, end); ++ k != end; ++ p = k, k = bkey_next_skip_noops(k, end)) { ++ struct bkey l = bkey_unpack_key(b, p); ++ struct bkey r = bkey_unpack_key(b, k); ++ ++ BUG_ON(extents ++ ? bkey_cmp(l.p, bkey_start_pos(&r)) > 0 ++ : bkey_cmp(l.p, bkey_start_pos(&r)) >= 0); ++ //BUG_ON(bkey_cmp_packed(&b->format, p, k) >= 0); ++ } ++#endif ++} ++ ++static void set_needs_whiteout(struct bset *i, int v) ++{ ++ struct bkey_packed *k; ++ ++ for (k = i->start; ++ k != vstruct_last(i); ++ k = bkey_next_skip_noops(k, vstruct_last(i))) ++ k->needs_whiteout = v; ++} ++ ++static void btree_bounce_free(struct bch_fs *c, size_t size, ++ bool used_mempool, void *p) ++{ ++ if (used_mempool) ++ mempool_free(p, &c->btree_bounce_pool); ++ else ++ vpfree(p, size); ++} ++ ++static void *btree_bounce_alloc(struct bch_fs *c, size_t size, ++ bool *used_mempool) ++{ ++ unsigned flags = memalloc_nofs_save(); ++ void *p; ++ ++ BUG_ON(size > btree_bytes(c)); ++ ++ *used_mempool = false; ++ p = vpmalloc(size, __GFP_NOWARN|GFP_NOWAIT); ++ if (!p) { ++ *used_mempool = true; ++ p = mempool_alloc(&c->btree_bounce_pool, GFP_NOIO); ++ } ++ memalloc_nofs_restore(flags); ++ return p; ++} ++ ++static void sort_bkey_ptrs(const struct btree *bt, ++ struct bkey_packed **ptrs, unsigned nr) ++{ ++ unsigned n = nr, a = nr / 2, b, c, d; ++ ++ if (!a) ++ return; ++ ++ /* Heap sort: see lib/sort.c: */ ++ while (1) { ++ if (a) ++ a--; ++ else if (--n) ++ swap(ptrs[0], ptrs[n]); ++ else ++ break; ++ ++ for (b = a; c = 2 * b + 1, (d = c + 1) < n;) ++ b = bkey_cmp_packed(bt, ++ ptrs[c], ++ ptrs[d]) >= 0 ? c : d; ++ if (d == n) ++ b = c; ++ ++ while (b != a && ++ bkey_cmp_packed(bt, ++ ptrs[a], ++ ptrs[b]) >= 0) ++ b = (b - 1) / 2; ++ c = b; ++ while (b != a) { ++ b = (b - 1) / 2; ++ swap(ptrs[b], ptrs[c]); ++ } ++ } ++} ++ ++static void bch2_sort_whiteouts(struct bch_fs *c, struct btree *b) ++{ ++ struct bkey_packed *new_whiteouts, **ptrs, **ptrs_end, *k; ++ bool used_mempool = false; ++ size_t bytes = b->whiteout_u64s * sizeof(u64); ++ ++ if (!b->whiteout_u64s) ++ return; ++ ++ new_whiteouts = btree_bounce_alloc(c, bytes, &used_mempool); ++ ++ ptrs = ptrs_end = ((void *) new_whiteouts + bytes); ++ ++ for (k = unwritten_whiteouts_start(c, b); ++ k != unwritten_whiteouts_end(c, b); ++ k = bkey_next(k)) ++ *--ptrs = k; ++ ++ sort_bkey_ptrs(b, ptrs, ptrs_end - ptrs); ++ ++ k = new_whiteouts; ++ ++ while (ptrs != ptrs_end) { ++ bkey_copy(k, *ptrs); ++ k = bkey_next(k); ++ ptrs++; ++ } ++ ++ verify_no_dups(b, new_whiteouts, ++ (void *) ((u64 *) new_whiteouts + b->whiteout_u64s), ++ btree_node_old_extent_overwrite(b)); ++ ++ memcpy_u64s(unwritten_whiteouts_start(c, b), ++ new_whiteouts, b->whiteout_u64s); ++ ++ btree_bounce_free(c, bytes, used_mempool, new_whiteouts); ++} ++ ++static bool should_compact_bset(struct btree *b, struct bset_tree *t, ++ bool compacting, enum compact_mode mode) ++{ ++ if (!bset_dead_u64s(b, t)) ++ return false; ++ ++ switch (mode) { ++ case COMPACT_LAZY: ++ return should_compact_bset_lazy(b, t) || ++ (compacting && !bset_written(b, bset(b, t))); ++ case COMPACT_ALL: ++ return true; ++ default: ++ BUG(); ++ } ++} ++ ++static bool bch2_compact_extent_whiteouts(struct bch_fs *c, ++ struct btree *b, ++ enum compact_mode mode) ++{ ++ const struct bkey_format *f = &b->format; ++ struct bset_tree *t; ++ struct bkey_packed *whiteouts = NULL; ++ struct bkey_packed *u_start, *u_pos; ++ struct sort_iter sort_iter; ++ unsigned bytes, whiteout_u64s = 0, u64s; ++ bool used_mempool, compacting = false; ++ ++ BUG_ON(!btree_node_is_extents(b)); ++ ++ for_each_bset(b, t) ++ if (should_compact_bset(b, t, whiteout_u64s != 0, mode)) ++ whiteout_u64s += bset_dead_u64s(b, t); ++ ++ if (!whiteout_u64s) ++ return false; ++ ++ bch2_sort_whiteouts(c, b); ++ ++ sort_iter_init(&sort_iter, b); ++ ++ whiteout_u64s += b->whiteout_u64s; ++ bytes = whiteout_u64s * sizeof(u64); ++ ++ whiteouts = btree_bounce_alloc(c, bytes, &used_mempool); ++ u_start = u_pos = whiteouts; ++ ++ memcpy_u64s(u_pos, unwritten_whiteouts_start(c, b), ++ b->whiteout_u64s); ++ u_pos = (void *) u_pos + b->whiteout_u64s * sizeof(u64); ++ ++ sort_iter_add(&sort_iter, u_start, u_pos); ++ ++ for_each_bset(b, t) { ++ struct bset *i = bset(b, t); ++ struct bkey_packed *k, *n, *out, *start, *end; ++ struct btree_node_entry *src = NULL, *dst = NULL; ++ ++ if (t != b->set && !bset_written(b, i)) { ++ src = container_of(i, struct btree_node_entry, keys); ++ dst = max(write_block(b), ++ (void *) btree_bkey_last(b, t - 1)); ++ } ++ ++ if (src != dst) ++ compacting = true; ++ ++ if (!should_compact_bset(b, t, compacting, mode)) { ++ if (src != dst) { ++ memmove(dst, src, sizeof(*src) + ++ le16_to_cpu(src->keys.u64s) * ++ sizeof(u64)); ++ i = &dst->keys; ++ set_btree_bset(b, t, i); ++ } ++ continue; ++ } ++ ++ compacting = true; ++ u_start = u_pos; ++ start = i->start; ++ end = vstruct_last(i); ++ ++ if (src != dst) { ++ memmove(dst, src, sizeof(*src)); ++ i = &dst->keys; ++ set_btree_bset(b, t, i); ++ } ++ ++ out = i->start; ++ ++ for (k = start; k != end; k = n) { ++ n = bkey_next_skip_noops(k, end); ++ ++ if (bkey_deleted(k)) ++ continue; ++ ++ BUG_ON(bkey_whiteout(k) && ++ k->needs_whiteout && ++ bkey_written(b, k)); ++ ++ if (bkey_whiteout(k) && !k->needs_whiteout) ++ continue; ++ ++ if (bkey_whiteout(k)) { ++ memcpy_u64s(u_pos, k, bkeyp_key_u64s(f, k)); ++ set_bkeyp_val_u64s(f, u_pos, 0); ++ u_pos = bkey_next(u_pos); ++ } else { ++ bkey_copy(out, k); ++ out = bkey_next(out); ++ } ++ } ++ ++ sort_iter_add(&sort_iter, u_start, u_pos); ++ ++ i->u64s = cpu_to_le16((u64 *) out - i->_data); ++ set_btree_bset_end(b, t); ++ bch2_bset_set_no_aux_tree(b, t); ++ } ++ ++ b->whiteout_u64s = (u64 *) u_pos - (u64 *) whiteouts; ++ ++ BUG_ON((void *) unwritten_whiteouts_start(c, b) < ++ (void *) btree_bkey_last(b, bset_tree_last(b))); ++ ++ u64s = bch2_sort_extent_whiteouts(unwritten_whiteouts_start(c, b), ++ &sort_iter); ++ ++ BUG_ON(u64s > b->whiteout_u64s); ++ BUG_ON(u_pos != whiteouts && !u64s); ++ ++ if (u64s != b->whiteout_u64s) { ++ void *src = unwritten_whiteouts_start(c, b); ++ ++ b->whiteout_u64s = u64s; ++ memmove_u64s_up(unwritten_whiteouts_start(c, b), src, u64s); ++ } ++ ++ verify_no_dups(b, ++ unwritten_whiteouts_start(c, b), ++ unwritten_whiteouts_end(c, b), ++ true); ++ ++ btree_bounce_free(c, bytes, used_mempool, whiteouts); ++ ++ bch2_btree_build_aux_trees(b); ++ ++ bch_btree_keys_u64s_remaining(c, b); ++ bch2_verify_btree_nr_keys(b); ++ ++ return true; ++} ++ ++static bool bch2_drop_whiteouts(struct btree *b, enum compact_mode mode) ++{ ++ struct bset_tree *t; ++ bool ret = false; ++ ++ for_each_bset(b, t) { ++ struct bset *i = bset(b, t); ++ struct bkey_packed *k, *n, *out, *start, *end; ++ struct btree_node_entry *src = NULL, *dst = NULL; ++ ++ if (t != b->set && !bset_written(b, i)) { ++ src = container_of(i, struct btree_node_entry, keys); ++ dst = max(write_block(b), ++ (void *) btree_bkey_last(b, t - 1)); ++ } ++ ++ if (src != dst) ++ ret = true; ++ ++ if (!should_compact_bset(b, t, ret, mode)) { ++ if (src != dst) { ++ memmove(dst, src, sizeof(*src) + ++ le16_to_cpu(src->keys.u64s) * ++ sizeof(u64)); ++ i = &dst->keys; ++ set_btree_bset(b, t, i); ++ } ++ continue; ++ } ++ ++ start = btree_bkey_first(b, t); ++ end = btree_bkey_last(b, t); ++ ++ if (src != dst) { ++ memmove(dst, src, sizeof(*src)); ++ i = &dst->keys; ++ set_btree_bset(b, t, i); ++ } ++ ++ out = i->start; ++ ++ for (k = start; k != end; k = n) { ++ n = bkey_next_skip_noops(k, end); ++ ++ if (!bkey_whiteout(k)) { ++ bkey_copy(out, k); ++ out = bkey_next(out); ++ } else { ++ BUG_ON(k->needs_whiteout); ++ } ++ } ++ ++ i->u64s = cpu_to_le16((u64 *) out - i->_data); ++ set_btree_bset_end(b, t); ++ bch2_bset_set_no_aux_tree(b, t); ++ ret = true; ++ } ++ ++ bch2_verify_btree_nr_keys(b); ++ ++ bch2_btree_build_aux_trees(b); ++ ++ return ret; ++} ++ ++bool bch2_compact_whiteouts(struct bch_fs *c, struct btree *b, ++ enum compact_mode mode) ++{ ++ return !btree_node_old_extent_overwrite(b) ++ ? bch2_drop_whiteouts(b, mode) ++ : bch2_compact_extent_whiteouts(c, b, mode); ++} ++ ++static void btree_node_sort(struct bch_fs *c, struct btree *b, ++ struct btree_iter *iter, ++ unsigned start_idx, ++ unsigned end_idx, ++ bool filter_whiteouts) ++{ ++ struct btree_node *out; ++ struct sort_iter sort_iter; ++ struct bset_tree *t; ++ struct bset *start_bset = bset(b, &b->set[start_idx]); ++ bool used_mempool = false; ++ u64 start_time, seq = 0; ++ unsigned i, u64s = 0, bytes, shift = end_idx - start_idx - 1; ++ bool sorting_entire_node = start_idx == 0 && ++ end_idx == b->nsets; ++ ++ sort_iter_init(&sort_iter, b); ++ ++ for (t = b->set + start_idx; ++ t < b->set + end_idx; ++ t++) { ++ u64s += le16_to_cpu(bset(b, t)->u64s); ++ sort_iter_add(&sort_iter, ++ btree_bkey_first(b, t), ++ btree_bkey_last(b, t)); ++ } ++ ++ bytes = sorting_entire_node ++ ? btree_bytes(c) ++ : __vstruct_bytes(struct btree_node, u64s); ++ ++ out = btree_bounce_alloc(c, bytes, &used_mempool); ++ ++ start_time = local_clock(); ++ ++ if (btree_node_old_extent_overwrite(b)) ++ filter_whiteouts = bset_written(b, start_bset); ++ ++ u64s = (btree_node_old_extent_overwrite(b) ++ ? bch2_sort_extents ++ : bch2_sort_keys)(out->keys.start, ++ &sort_iter, ++ filter_whiteouts); ++ ++ out->keys.u64s = cpu_to_le16(u64s); ++ ++ BUG_ON(vstruct_end(&out->keys) > (void *) out + bytes); ++ ++ if (sorting_entire_node) ++ bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort], ++ start_time); ++ ++ /* Make sure we preserve bset journal_seq: */ ++ for (t = b->set + start_idx; t < b->set + end_idx; t++) ++ seq = max(seq, le64_to_cpu(bset(b, t)->journal_seq)); ++ start_bset->journal_seq = cpu_to_le64(seq); ++ ++ if (sorting_entire_node) { ++ unsigned u64s = le16_to_cpu(out->keys.u64s); ++ ++ BUG_ON(bytes != btree_bytes(c)); ++ ++ /* ++ * Our temporary buffer is the same size as the btree node's ++ * buffer, we can just swap buffers instead of doing a big ++ * memcpy() ++ */ ++ *out = *b->data; ++ out->keys.u64s = cpu_to_le16(u64s); ++ swap(out, b->data); ++ set_btree_bset(b, b->set, &b->data->keys); ++ } else { ++ start_bset->u64s = out->keys.u64s; ++ memcpy_u64s(start_bset->start, ++ out->keys.start, ++ le16_to_cpu(out->keys.u64s)); ++ } ++ ++ for (i = start_idx + 1; i < end_idx; i++) ++ b->nr.bset_u64s[start_idx] += ++ b->nr.bset_u64s[i]; ++ ++ b->nsets -= shift; ++ ++ for (i = start_idx + 1; i < b->nsets; i++) { ++ b->nr.bset_u64s[i] = b->nr.bset_u64s[i + shift]; ++ b->set[i] = b->set[i + shift]; ++ } ++ ++ for (i = b->nsets; i < MAX_BSETS; i++) ++ b->nr.bset_u64s[i] = 0; ++ ++ set_btree_bset_end(b, &b->set[start_idx]); ++ bch2_bset_set_no_aux_tree(b, &b->set[start_idx]); ++ ++ btree_bounce_free(c, bytes, used_mempool, out); ++ ++ bch2_verify_btree_nr_keys(b); ++} ++ ++void bch2_btree_sort_into(struct bch_fs *c, ++ struct btree *dst, ++ struct btree *src) ++{ ++ struct btree_nr_keys nr; ++ struct btree_node_iter src_iter; ++ u64 start_time = local_clock(); ++ ++ BUG_ON(dst->nsets != 1); ++ ++ bch2_bset_set_no_aux_tree(dst, dst->set); ++ ++ bch2_btree_node_iter_init_from_start(&src_iter, src); ++ ++ if (btree_node_is_extents(src)) ++ nr = bch2_sort_repack_merge(c, btree_bset_first(dst), ++ src, &src_iter, ++ &dst->format, ++ true); ++ else ++ nr = bch2_sort_repack(btree_bset_first(dst), ++ src, &src_iter, ++ &dst->format, ++ true); ++ ++ bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort], ++ start_time); ++ ++ set_btree_bset_end(dst, dst->set); ++ ++ dst->nr.live_u64s += nr.live_u64s; ++ dst->nr.bset_u64s[0] += nr.bset_u64s[0]; ++ dst->nr.packed_keys += nr.packed_keys; ++ dst->nr.unpacked_keys += nr.unpacked_keys; ++ ++ bch2_verify_btree_nr_keys(dst); ++} ++ ++#define SORT_CRIT (4096 / sizeof(u64)) ++ ++/* ++ * We're about to add another bset to the btree node, so if there's currently ++ * too many bsets - sort some of them together: ++ */ ++static bool btree_node_compact(struct bch_fs *c, struct btree *b, ++ struct btree_iter *iter) ++{ ++ unsigned unwritten_idx; ++ bool ret = false; ++ ++ for (unwritten_idx = 0; ++ unwritten_idx < b->nsets; ++ unwritten_idx++) ++ if (!bset_written(b, bset(b, &b->set[unwritten_idx]))) ++ break; ++ ++ if (b->nsets - unwritten_idx > 1) { ++ btree_node_sort(c, b, iter, unwritten_idx, ++ b->nsets, false); ++ ret = true; ++ } ++ ++ if (unwritten_idx > 1) { ++ btree_node_sort(c, b, iter, 0, unwritten_idx, false); ++ ret = true; ++ } ++ ++ return ret; ++} ++ ++void bch2_btree_build_aux_trees(struct btree *b) ++{ ++ struct bset_tree *t; ++ ++ for_each_bset(b, t) ++ bch2_bset_build_aux_tree(b, t, ++ !bset_written(b, bset(b, t)) && ++ t == bset_tree_last(b)); ++} ++ ++/* ++ * @bch_btree_init_next - initialize a new (unwritten) bset that can then be ++ * inserted into ++ * ++ * Safe to call if there already is an unwritten bset - will only add a new bset ++ * if @b doesn't already have one. ++ * ++ * Returns true if we sorted (i.e. invalidated iterators ++ */ ++void bch2_btree_init_next(struct bch_fs *c, struct btree *b, ++ struct btree_iter *iter) ++{ ++ struct btree_node_entry *bne; ++ bool did_sort; ++ ++ EBUG_ON(!(b->c.lock.state.seq & 1)); ++ EBUG_ON(iter && iter->l[b->c.level].b != b); ++ ++ did_sort = btree_node_compact(c, b, iter); ++ ++ bne = want_new_bset(c, b); ++ if (bne) ++ bch2_bset_init_next(c, b, bne); ++ ++ bch2_btree_build_aux_trees(b); ++ ++ if (iter && did_sort) ++ bch2_btree_iter_reinit_node(iter, b); ++} ++ ++static void btree_err_msg(struct printbuf *out, struct bch_fs *c, ++ struct btree *b, struct bset *i, ++ unsigned offset, int write) ++{ ++ pr_buf(out, "error validating btree node %sat btree %u level %u/%u\n" ++ "pos ", ++ write ? "before write " : "", ++ b->c.btree_id, b->c.level, ++ c->btree_roots[b->c.btree_id].level); ++ bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&b->key)); ++ ++ pr_buf(out, " node offset %u", b->written); ++ if (i) ++ pr_buf(out, " bset u64s %u", le16_to_cpu(i->u64s)); ++} ++ ++enum btree_err_type { ++ BTREE_ERR_FIXABLE, ++ BTREE_ERR_WANT_RETRY, ++ BTREE_ERR_MUST_RETRY, ++ BTREE_ERR_FATAL, ++}; ++ ++enum btree_validate_ret { ++ BTREE_RETRY_READ = 64, ++}; ++ ++#define btree_err(type, c, b, i, msg, ...) \ ++({ \ ++ __label__ out; \ ++ char _buf[300]; \ ++ struct printbuf out = PBUF(_buf); \ ++ \ ++ btree_err_msg(&out, c, b, i, b->written, write); \ ++ pr_buf(&out, ": " msg, ##__VA_ARGS__); \ ++ \ ++ if (type == BTREE_ERR_FIXABLE && \ ++ write == READ && \ ++ !test_bit(BCH_FS_INITIAL_GC_DONE, &c->flags)) { \ ++ mustfix_fsck_err(c, "%s", _buf); \ ++ goto out; \ ++ } \ ++ \ ++ switch (write) { \ ++ case READ: \ ++ bch_err(c, "%s", _buf); \ ++ \ ++ switch (type) { \ ++ case BTREE_ERR_FIXABLE: \ ++ ret = BCH_FSCK_ERRORS_NOT_FIXED; \ ++ goto fsck_err; \ ++ case BTREE_ERR_WANT_RETRY: \ ++ if (have_retry) { \ ++ ret = BTREE_RETRY_READ; \ ++ goto fsck_err; \ ++ } \ ++ break; \ ++ case BTREE_ERR_MUST_RETRY: \ ++ ret = BTREE_RETRY_READ; \ ++ goto fsck_err; \ ++ case BTREE_ERR_FATAL: \ ++ ret = BCH_FSCK_ERRORS_NOT_FIXED; \ ++ goto fsck_err; \ ++ } \ ++ break; \ ++ case WRITE: \ ++ bch_err(c, "corrupt metadata before write: %s", _buf); \ ++ \ ++ if (bch2_fs_inconsistent(c)) { \ ++ ret = BCH_FSCK_ERRORS_NOT_FIXED; \ ++ goto fsck_err; \ ++ } \ ++ break; \ ++ } \ ++out: \ ++ true; \ ++}) ++ ++#define btree_err_on(cond, ...) ((cond) ? btree_err(__VA_ARGS__) : false) ++ ++static int validate_bset(struct bch_fs *c, struct btree *b, ++ struct bset *i, unsigned sectors, ++ int write, bool have_retry) ++{ ++ unsigned version = le16_to_cpu(i->version); ++ const char *err; ++ int ret = 0; ++ ++ btree_err_on((version != BCH_BSET_VERSION_OLD && ++ version < bcachefs_metadata_version_min) || ++ version >= bcachefs_metadata_version_max, ++ BTREE_ERR_FATAL, c, b, i, ++ "unsupported bset version"); ++ ++ if (btree_err_on(b->written + sectors > c->opts.btree_node_size, ++ BTREE_ERR_FIXABLE, c, b, i, ++ "bset past end of btree node")) { ++ i->u64s = 0; ++ return 0; ++ } ++ ++ btree_err_on(b->written && !i->u64s, ++ BTREE_ERR_FIXABLE, c, b, i, ++ "empty bset"); ++ ++ if (!b->written) { ++ struct btree_node *bn = ++ container_of(i, struct btree_node, keys); ++ /* These indicate that we read the wrong btree node: */ ++ ++ if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { ++ struct bch_btree_ptr_v2 *bp = ++ &bkey_i_to_btree_ptr_v2(&b->key)->v; ++ ++ /* XXX endianness */ ++ btree_err_on(bp->seq != bn->keys.seq, ++ BTREE_ERR_MUST_RETRY, c, b, NULL, ++ "incorrect sequence number (wrong btree node)"); ++ } ++ ++ btree_err_on(BTREE_NODE_ID(bn) != b->c.btree_id, ++ BTREE_ERR_MUST_RETRY, c, b, i, ++ "incorrect btree id"); ++ ++ btree_err_on(BTREE_NODE_LEVEL(bn) != b->c.level, ++ BTREE_ERR_MUST_RETRY, c, b, i, ++ "incorrect level"); ++ ++ if (BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN) { ++ u64 *p = (u64 *) &bn->ptr; ++ ++ *p = swab64(*p); ++ } ++ ++ if (!write) ++ compat_btree_node(b->c.level, b->c.btree_id, version, ++ BSET_BIG_ENDIAN(i), write, bn); ++ ++ if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { ++ struct bch_btree_ptr_v2 *bp = ++ &bkey_i_to_btree_ptr_v2(&b->key)->v; ++ ++ btree_err_on(bkey_cmp(b->data->min_key, bp->min_key), ++ BTREE_ERR_MUST_RETRY, c, b, NULL, ++ "incorrect min_key: got %llu:%llu should be %llu:%llu", ++ b->data->min_key.inode, ++ b->data->min_key.offset, ++ bp->min_key.inode, ++ bp->min_key.offset); ++ } ++ ++ btree_err_on(bkey_cmp(bn->max_key, b->key.k.p), ++ BTREE_ERR_MUST_RETRY, c, b, i, ++ "incorrect max key"); ++ ++ if (write) ++ compat_btree_node(b->c.level, b->c.btree_id, version, ++ BSET_BIG_ENDIAN(i), write, bn); ++ ++ /* XXX: ideally we would be validating min_key too */ ++#if 0 ++ /* ++ * not correct anymore, due to btree node write error ++ * handling ++ * ++ * need to add bn->seq to btree keys and verify ++ * against that ++ */ ++ btree_err_on(!extent_contains_ptr(bkey_i_to_s_c_extent(&b->key), ++ bn->ptr), ++ BTREE_ERR_FATAL, c, b, i, ++ "incorrect backpointer"); ++#endif ++ err = bch2_bkey_format_validate(&bn->format); ++ btree_err_on(err, ++ BTREE_ERR_FATAL, c, b, i, ++ "invalid bkey format: %s", err); ++ ++ compat_bformat(b->c.level, b->c.btree_id, version, ++ BSET_BIG_ENDIAN(i), write, ++ &bn->format); ++ } ++fsck_err: ++ return ret; ++} ++ ++static int validate_bset_keys(struct bch_fs *c, struct btree *b, ++ struct bset *i, unsigned *whiteout_u64s, ++ int write, bool have_retry) ++{ ++ unsigned version = le16_to_cpu(i->version); ++ struct bkey_packed *k, *prev = NULL; ++ bool seen_non_whiteout = false; ++ int ret = 0; ++ ++ if (!BSET_SEPARATE_WHITEOUTS(i)) { ++ seen_non_whiteout = true; ++ *whiteout_u64s = 0; ++ } ++ ++ for (k = i->start; ++ k != vstruct_last(i);) { ++ struct bkey_s u; ++ struct bkey tmp; ++ const char *invalid; ++ ++ if (btree_err_on(bkey_next(k) > vstruct_last(i), ++ BTREE_ERR_FIXABLE, c, b, i, ++ "key extends past end of bset")) { ++ i->u64s = cpu_to_le16((u64 *) k - i->_data); ++ break; ++ } ++ ++ if (btree_err_on(k->format > KEY_FORMAT_CURRENT, ++ BTREE_ERR_FIXABLE, c, b, i, ++ "invalid bkey format %u", k->format)) { ++ i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s); ++ memmove_u64s_down(k, bkey_next(k), ++ (u64 *) vstruct_end(i) - (u64 *) k); ++ continue; ++ } ++ ++ /* XXX: validate k->u64s */ ++ if (!write) ++ bch2_bkey_compat(b->c.level, b->c.btree_id, version, ++ BSET_BIG_ENDIAN(i), write, ++ &b->format, k); ++ ++ u = __bkey_disassemble(b, k, &tmp); ++ ++ invalid = __bch2_bkey_invalid(c, u.s_c, btree_node_type(b)) ?: ++ bch2_bkey_in_btree_node(b, u.s_c) ?: ++ (write ? bch2_bkey_val_invalid(c, u.s_c) : NULL); ++ if (invalid) { ++ char buf[160]; ++ ++ bch2_bkey_val_to_text(&PBUF(buf), c, u.s_c); ++ btree_err(BTREE_ERR_FIXABLE, c, b, i, ++ "invalid bkey:\n%s\n%s", invalid, buf); ++ ++ i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s); ++ memmove_u64s_down(k, bkey_next(k), ++ (u64 *) vstruct_end(i) - (u64 *) k); ++ continue; ++ } ++ ++ if (write) ++ bch2_bkey_compat(b->c.level, b->c.btree_id, version, ++ BSET_BIG_ENDIAN(i), write, ++ &b->format, k); ++ ++ /* ++ * with the separate whiteouts thing (used for extents), the ++ * second set of keys actually can have whiteouts too, so we ++ * can't solely go off bkey_whiteout()... ++ */ ++ ++ if (!seen_non_whiteout && ++ (!bkey_whiteout(k) || ++ (prev && bkey_iter_cmp(b, prev, k) > 0))) { ++ *whiteout_u64s = k->_data - i->_data; ++ seen_non_whiteout = true; ++ } else if (prev && bkey_iter_cmp(b, prev, k) > 0) { ++ char buf1[80]; ++ char buf2[80]; ++ struct bkey up = bkey_unpack_key(b, prev); ++ ++ bch2_bkey_to_text(&PBUF(buf1), &up); ++ bch2_bkey_to_text(&PBUF(buf2), u.k); ++ ++ bch2_dump_bset(c, b, i, 0); ++ btree_err(BTREE_ERR_FATAL, c, b, i, ++ "keys out of order: %s > %s", ++ buf1, buf2); ++ /* XXX: repair this */ ++ } ++ ++ prev = k; ++ k = bkey_next_skip_noops(k, vstruct_last(i)); ++ } ++fsck_err: ++ return ret; ++} ++ ++int bch2_btree_node_read_done(struct bch_fs *c, struct btree *b, bool have_retry) ++{ ++ struct btree_node_entry *bne; ++ struct sort_iter *iter; ++ struct btree_node *sorted; ++ struct bkey_packed *k; ++ struct bch_extent_ptr *ptr; ++ struct bset *i; ++ bool used_mempool, blacklisted; ++ unsigned u64s; ++ int ret, retry_read = 0, write = READ; ++ ++ iter = mempool_alloc(&c->fill_iter, GFP_NOIO); ++ sort_iter_init(iter, b); ++ iter->size = (btree_blocks(c) + 1) * 2; ++ ++ if (bch2_meta_read_fault("btree")) ++ btree_err(BTREE_ERR_MUST_RETRY, c, b, NULL, ++ "dynamic fault"); ++ ++ btree_err_on(le64_to_cpu(b->data->magic) != bset_magic(c), ++ BTREE_ERR_MUST_RETRY, c, b, NULL, ++ "bad magic"); ++ ++ btree_err_on(!b->data->keys.seq, ++ BTREE_ERR_MUST_RETRY, c, b, NULL, ++ "bad btree header"); ++ ++ if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { ++ struct bch_btree_ptr_v2 *bp = ++ &bkey_i_to_btree_ptr_v2(&b->key)->v; ++ ++ btree_err_on(b->data->keys.seq != bp->seq, ++ BTREE_ERR_MUST_RETRY, c, b, NULL, ++ "got wrong btree node (seq %llx want %llx)", ++ b->data->keys.seq, bp->seq); ++ } ++ ++ while (b->written < c->opts.btree_node_size) { ++ unsigned sectors, whiteout_u64s = 0; ++ struct nonce nonce; ++ struct bch_csum csum; ++ bool first = !b->written; ++ ++ if (!b->written) { ++ i = &b->data->keys; ++ ++ btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)), ++ BTREE_ERR_WANT_RETRY, c, b, i, ++ "unknown checksum type"); ++ ++ nonce = btree_nonce(i, b->written << 9); ++ csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, b->data); ++ ++ btree_err_on(bch2_crc_cmp(csum, b->data->csum), ++ BTREE_ERR_WANT_RETRY, c, b, i, ++ "invalid checksum"); ++ ++ bset_encrypt(c, i, b->written << 9); ++ ++ if (btree_node_is_extents(b) && ++ !BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data)) { ++ set_btree_node_old_extent_overwrite(b); ++ set_btree_node_need_rewrite(b); ++ } ++ ++ sectors = vstruct_sectors(b->data, c->block_bits); ++ } else { ++ bne = write_block(b); ++ i = &bne->keys; ++ ++ if (i->seq != b->data->keys.seq) ++ break; ++ ++ btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)), ++ BTREE_ERR_WANT_RETRY, c, b, i, ++ "unknown checksum type"); ++ ++ nonce = btree_nonce(i, b->written << 9); ++ csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne); ++ ++ btree_err_on(bch2_crc_cmp(csum, bne->csum), ++ BTREE_ERR_WANT_RETRY, c, b, i, ++ "invalid checksum"); ++ ++ bset_encrypt(c, i, b->written << 9); ++ ++ sectors = vstruct_sectors(bne, c->block_bits); ++ } ++ ++ ret = validate_bset(c, b, i, sectors, ++ READ, have_retry); ++ if (ret) ++ goto fsck_err; ++ ++ if (!b->written) ++ btree_node_set_format(b, b->data->format); ++ ++ ret = validate_bset_keys(c, b, i, &whiteout_u64s, ++ READ, have_retry); ++ if (ret) ++ goto fsck_err; ++ ++ SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); ++ ++ b->written += sectors; ++ ++ blacklisted = bch2_journal_seq_is_blacklisted(c, ++ le64_to_cpu(i->journal_seq), ++ true); ++ ++ btree_err_on(blacklisted && first, ++ BTREE_ERR_FIXABLE, c, b, i, ++ "first btree node bset has blacklisted journal seq"); ++ if (blacklisted && !first) ++ continue; ++ ++ sort_iter_add(iter, i->start, ++ vstruct_idx(i, whiteout_u64s)); ++ ++ sort_iter_add(iter, ++ vstruct_idx(i, whiteout_u64s), ++ vstruct_last(i)); ++ } ++ ++ for (bne = write_block(b); ++ bset_byte_offset(b, bne) < btree_bytes(c); ++ bne = (void *) bne + block_bytes(c)) ++ btree_err_on(bne->keys.seq == b->data->keys.seq, ++ BTREE_ERR_WANT_RETRY, c, b, NULL, ++ "found bset signature after last bset"); ++ ++ sorted = btree_bounce_alloc(c, btree_bytes(c), &used_mempool); ++ sorted->keys.u64s = 0; ++ ++ set_btree_bset(b, b->set, &b->data->keys); ++ ++ b->nr = (btree_node_old_extent_overwrite(b) ++ ? bch2_extent_sort_fix_overlapping ++ : bch2_key_sort_fix_overlapping)(c, &sorted->keys, iter); ++ ++ u64s = le16_to_cpu(sorted->keys.u64s); ++ *sorted = *b->data; ++ sorted->keys.u64s = cpu_to_le16(u64s); ++ swap(sorted, b->data); ++ set_btree_bset(b, b->set, &b->data->keys); ++ b->nsets = 1; ++ ++ BUG_ON(b->nr.live_u64s != u64s); ++ ++ btree_bounce_free(c, btree_bytes(c), used_mempool, sorted); ++ ++ i = &b->data->keys; ++ for (k = i->start; k != vstruct_last(i);) { ++ struct bkey tmp; ++ struct bkey_s u = __bkey_disassemble(b, k, &tmp); ++ const char *invalid = bch2_bkey_val_invalid(c, u.s_c); ++ ++ if (invalid || ++ (inject_invalid_keys(c) && ++ !bversion_cmp(u.k->version, MAX_VERSION))) { ++ char buf[160]; ++ ++ bch2_bkey_val_to_text(&PBUF(buf), c, u.s_c); ++ btree_err(BTREE_ERR_FIXABLE, c, b, i, ++ "invalid bkey %s: %s", buf, invalid); ++ ++ btree_keys_account_key_drop(&b->nr, 0, k); ++ ++ i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s); ++ memmove_u64s_down(k, bkey_next(k), ++ (u64 *) vstruct_end(i) - (u64 *) k); ++ set_btree_bset_end(b, b->set); ++ continue; ++ } ++ ++ if (u.k->type == KEY_TYPE_btree_ptr_v2) { ++ struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(u); ++ ++ bp.v->mem_ptr = 0; ++ } ++ ++ k = bkey_next_skip_noops(k, vstruct_last(i)); ++ } ++ ++ bch2_bset_build_aux_tree(b, b->set, false); ++ ++ set_needs_whiteout(btree_bset_first(b), true); ++ ++ btree_node_reset_sib_u64s(b); ++ ++ bkey_for_each_ptr(bch2_bkey_ptrs(bkey_i_to_s(&b->key)), ptr) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ ++ if (ca->mi.state != BCH_MEMBER_STATE_RW) ++ set_btree_node_need_rewrite(b); ++ } ++out: ++ mempool_free(iter, &c->fill_iter); ++ return retry_read; ++fsck_err: ++ if (ret == BTREE_RETRY_READ) { ++ retry_read = 1; ++ } else { ++ bch2_inconsistent_error(c); ++ set_btree_node_read_error(b); ++ } ++ goto out; ++} ++ ++static void btree_node_read_work(struct work_struct *work) ++{ ++ struct btree_read_bio *rb = ++ container_of(work, struct btree_read_bio, work); ++ struct bch_fs *c = rb->c; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev); ++ struct btree *b = rb->bio.bi_private; ++ struct bio *bio = &rb->bio; ++ struct bch_io_failures failed = { .nr = 0 }; ++ bool can_retry; ++ ++ goto start; ++ while (1) { ++ bch_info(c, "retrying read"); ++ ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev); ++ rb->have_ioref = bch2_dev_get_ioref(ca, READ); ++ bio_reset(bio); ++ bio->bi_opf = REQ_OP_READ|REQ_SYNC|REQ_META; ++ bio->bi_iter.bi_sector = rb->pick.ptr.offset; ++ bio->bi_iter.bi_size = btree_bytes(c); ++ ++ if (rb->have_ioref) { ++ bio_set_dev(bio, ca->disk_sb.bdev); ++ submit_bio_wait(bio); ++ } else { ++ bio->bi_status = BLK_STS_REMOVED; ++ } ++start: ++ bch2_dev_io_err_on(bio->bi_status, ca, "btree read: %s", ++ bch2_blk_status_to_str(bio->bi_status)); ++ if (rb->have_ioref) ++ percpu_ref_put(&ca->io_ref); ++ rb->have_ioref = false; ++ ++ bch2_mark_io_failure(&failed, &rb->pick); ++ ++ can_retry = bch2_bkey_pick_read_device(c, ++ bkey_i_to_s_c(&b->key), ++ &failed, &rb->pick) > 0; ++ ++ if (!bio->bi_status && ++ !bch2_btree_node_read_done(c, b, can_retry)) ++ break; ++ ++ if (!can_retry) { ++ set_btree_node_read_error(b); ++ break; ++ } ++ } ++ ++ bch2_time_stats_update(&c->times[BCH_TIME_btree_node_read], ++ rb->start_time); ++ bio_put(&rb->bio); ++ clear_btree_node_read_in_flight(b); ++ wake_up_bit(&b->flags, BTREE_NODE_read_in_flight); ++} ++ ++static void btree_node_read_endio(struct bio *bio) ++{ ++ struct btree_read_bio *rb = ++ container_of(bio, struct btree_read_bio, bio); ++ struct bch_fs *c = rb->c; ++ ++ if (rb->have_ioref) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev); ++ bch2_latency_acct(ca, rb->start_time, READ); ++ } ++ ++ queue_work(system_unbound_wq, &rb->work); ++} ++ ++void bch2_btree_node_read(struct bch_fs *c, struct btree *b, ++ bool sync) ++{ ++ struct extent_ptr_decoded pick; ++ struct btree_read_bio *rb; ++ struct bch_dev *ca; ++ struct bio *bio; ++ int ret; ++ ++ trace_btree_read(c, b); ++ ++ ret = bch2_bkey_pick_read_device(c, bkey_i_to_s_c(&b->key), ++ NULL, &pick); ++ if (bch2_fs_fatal_err_on(ret <= 0, c, ++ "btree node read error: no device to read from")) { ++ set_btree_node_read_error(b); ++ return; ++ } ++ ++ ca = bch_dev_bkey_exists(c, pick.ptr.dev); ++ ++ bio = bio_alloc_bioset(GFP_NOIO, buf_pages(b->data, ++ btree_bytes(c)), ++ &c->btree_bio); ++ rb = container_of(bio, struct btree_read_bio, bio); ++ rb->c = c; ++ rb->start_time = local_clock(); ++ rb->have_ioref = bch2_dev_get_ioref(ca, READ); ++ rb->pick = pick; ++ INIT_WORK(&rb->work, btree_node_read_work); ++ bio->bi_opf = REQ_OP_READ|REQ_SYNC|REQ_META; ++ bio->bi_iter.bi_sector = pick.ptr.offset; ++ bio->bi_end_io = btree_node_read_endio; ++ bio->bi_private = b; ++ bch2_bio_map(bio, b->data, btree_bytes(c)); ++ ++ set_btree_node_read_in_flight(b); ++ ++ if (rb->have_ioref) { ++ this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_btree], ++ bio_sectors(bio)); ++ bio_set_dev(bio, ca->disk_sb.bdev); ++ ++ if (sync) { ++ submit_bio_wait(bio); ++ ++ bio->bi_private = b; ++ btree_node_read_work(&rb->work); ++ } else { ++ submit_bio(bio); ++ } ++ } else { ++ bio->bi_status = BLK_STS_REMOVED; ++ ++ if (sync) ++ btree_node_read_work(&rb->work); ++ else ++ queue_work(system_unbound_wq, &rb->work); ++ ++ } ++} ++ ++int bch2_btree_root_read(struct bch_fs *c, enum btree_id id, ++ const struct bkey_i *k, unsigned level) ++{ ++ struct closure cl; ++ struct btree *b; ++ int ret; ++ ++ closure_init_stack(&cl); ++ ++ do { ++ ret = bch2_btree_cache_cannibalize_lock(c, &cl); ++ closure_sync(&cl); ++ } while (ret); ++ ++ b = bch2_btree_node_mem_alloc(c); ++ bch2_btree_cache_cannibalize_unlock(c); ++ ++ BUG_ON(IS_ERR(b)); ++ ++ bkey_copy(&b->key, k); ++ BUG_ON(bch2_btree_node_hash_insert(&c->btree_cache, b, level, id)); ++ ++ bch2_btree_node_read(c, b, true); ++ ++ if (btree_node_read_error(b)) { ++ bch2_btree_node_hash_remove(&c->btree_cache, b); ++ ++ mutex_lock(&c->btree_cache.lock); ++ list_move(&b->list, &c->btree_cache.freeable); ++ mutex_unlock(&c->btree_cache.lock); ++ ++ ret = -EIO; ++ goto err; ++ } ++ ++ bch2_btree_set_root_for_read(c, b); ++err: ++ six_unlock_write(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++ ++ return ret; ++} ++ ++void bch2_btree_complete_write(struct bch_fs *c, struct btree *b, ++ struct btree_write *w) ++{ ++ unsigned long old, new, v = READ_ONCE(b->will_make_reachable); ++ ++ do { ++ old = new = v; ++ if (!(old & 1)) ++ break; ++ ++ new &= ~1UL; ++ } while ((v = cmpxchg(&b->will_make_reachable, old, new)) != old); ++ ++ if (old & 1) ++ closure_put(&((struct btree_update *) new)->cl); ++ ++ bch2_journal_pin_drop(&c->journal, &w->journal); ++} ++ ++static void btree_node_write_done(struct bch_fs *c, struct btree *b) ++{ ++ struct btree_write *w = btree_prev_write(b); ++ ++ bch2_btree_complete_write(c, b, w); ++ btree_node_io_unlock(b); ++} ++ ++static void bch2_btree_node_write_error(struct bch_fs *c, ++ struct btree_write_bio *wbio) ++{ ++ struct btree *b = wbio->wbio.bio.bi_private; ++ __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; ++ struct bch_extent_ptr *ptr; ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ int ret; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ iter = bch2_trans_get_node_iter(&trans, b->c.btree_id, b->key.k.p, ++ BTREE_MAX_DEPTH, b->c.level, 0); ++retry: ++ ret = bch2_btree_iter_traverse(iter); ++ if (ret) ++ goto err; ++ ++ /* has node been freed? */ ++ if (iter->l[b->c.level].b != b) { ++ /* node has been freed: */ ++ BUG_ON(!btree_node_dying(b)); ++ goto out; ++ } ++ ++ BUG_ON(!btree_node_hashed(b)); ++ ++ bkey_copy(&tmp.k, &b->key); ++ ++ bch2_bkey_drop_ptrs(bkey_i_to_s(&tmp.k), ptr, ++ bch2_dev_list_has_dev(wbio->wbio.failed, ptr->dev)); ++ ++ if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(&tmp.k))) ++ goto err; ++ ++ ret = bch2_btree_node_update_key(c, iter, b, &tmp.k); ++ if (ret == -EINTR) ++ goto retry; ++ if (ret) ++ goto err; ++out: ++ bch2_trans_exit(&trans); ++ bio_put(&wbio->wbio.bio); ++ btree_node_write_done(c, b); ++ return; ++err: ++ set_btree_node_noevict(b); ++ bch2_fs_fatal_error(c, "fatal error writing btree node"); ++ goto out; ++} ++ ++void bch2_btree_write_error_work(struct work_struct *work) ++{ ++ struct bch_fs *c = container_of(work, struct bch_fs, ++ btree_write_error_work); ++ struct bio *bio; ++ ++ while (1) { ++ spin_lock_irq(&c->btree_write_error_lock); ++ bio = bio_list_pop(&c->btree_write_error_list); ++ spin_unlock_irq(&c->btree_write_error_lock); ++ ++ if (!bio) ++ break; ++ ++ bch2_btree_node_write_error(c, ++ container_of(bio, struct btree_write_bio, wbio.bio)); ++ } ++} ++ ++static void btree_node_write_work(struct work_struct *work) ++{ ++ struct btree_write_bio *wbio = ++ container_of(work, struct btree_write_bio, work); ++ struct bch_fs *c = wbio->wbio.c; ++ struct btree *b = wbio->wbio.bio.bi_private; ++ ++ btree_bounce_free(c, ++ wbio->bytes, ++ wbio->wbio.used_mempool, ++ wbio->data); ++ ++ if (wbio->wbio.failed.nr) { ++ unsigned long flags; ++ ++ spin_lock_irqsave(&c->btree_write_error_lock, flags); ++ bio_list_add(&c->btree_write_error_list, &wbio->wbio.bio); ++ spin_unlock_irqrestore(&c->btree_write_error_lock, flags); ++ ++ queue_work(c->wq, &c->btree_write_error_work); ++ return; ++ } ++ ++ bio_put(&wbio->wbio.bio); ++ btree_node_write_done(c, b); ++} ++ ++static void btree_node_write_endio(struct bio *bio) ++{ ++ struct bch_write_bio *wbio = to_wbio(bio); ++ struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL; ++ struct bch_write_bio *orig = parent ?: wbio; ++ struct bch_fs *c = wbio->c; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev); ++ unsigned long flags; ++ ++ if (wbio->have_ioref) ++ bch2_latency_acct(ca, wbio->submit_time, WRITE); ++ ++ if (bch2_dev_io_err_on(bio->bi_status, ca, "btree write: %s", ++ bch2_blk_status_to_str(bio->bi_status)) || ++ bch2_meta_write_fault("btree")) { ++ spin_lock_irqsave(&c->btree_write_error_lock, flags); ++ bch2_dev_list_add_dev(&orig->failed, wbio->dev); ++ spin_unlock_irqrestore(&c->btree_write_error_lock, flags); ++ } ++ ++ if (wbio->have_ioref) ++ percpu_ref_put(&ca->io_ref); ++ ++ if (parent) { ++ bio_put(bio); ++ bio_endio(&parent->bio); ++ } else { ++ struct btree_write_bio *wb = ++ container_of(orig, struct btree_write_bio, wbio); ++ ++ INIT_WORK(&wb->work, btree_node_write_work); ++ queue_work(system_unbound_wq, &wb->work); ++ } ++} ++ ++static int validate_bset_for_write(struct bch_fs *c, struct btree *b, ++ struct bset *i, unsigned sectors) ++{ ++ unsigned whiteout_u64s = 0; ++ int ret; ++ ++ if (bch2_bkey_invalid(c, bkey_i_to_s_c(&b->key), BKEY_TYPE_BTREE)) ++ return -1; ++ ++ ret = validate_bset(c, b, i, sectors, WRITE, false) ?: ++ validate_bset_keys(c, b, i, &whiteout_u64s, WRITE, false); ++ if (ret) ++ bch2_inconsistent_error(c); ++ ++ return ret; ++} ++ ++void __bch2_btree_node_write(struct bch_fs *c, struct btree *b, ++ enum six_lock_type lock_type_held) ++{ ++ struct btree_write_bio *wbio; ++ struct bset_tree *t; ++ struct bset *i; ++ struct btree_node *bn = NULL; ++ struct btree_node_entry *bne = NULL; ++ BKEY_PADDED(key) k; ++ struct bch_extent_ptr *ptr; ++ struct sort_iter sort_iter; ++ struct nonce nonce; ++ unsigned bytes_to_write, sectors_to_write, bytes, u64s; ++ u64 seq = 0; ++ bool used_mempool; ++ unsigned long old, new; ++ bool validate_before_checksum = false; ++ void *data; ++ ++ if (test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags)) ++ return; ++ ++ /* ++ * We may only have a read lock on the btree node - the dirty bit is our ++ * "lock" against racing with other threads that may be trying to start ++ * a write, we do a write iff we clear the dirty bit. Since setting the ++ * dirty bit requires a write lock, we can't race with other threads ++ * redirtying it: ++ */ ++ do { ++ old = new = READ_ONCE(b->flags); ++ ++ if (!(old & (1 << BTREE_NODE_dirty))) ++ return; ++ ++ if (!btree_node_may_write(b)) ++ return; ++ ++ if (old & (1 << BTREE_NODE_write_in_flight)) { ++ btree_node_wait_on_io(b); ++ continue; ++ } ++ ++ new &= ~(1 << BTREE_NODE_dirty); ++ new &= ~(1 << BTREE_NODE_need_write); ++ new |= (1 << BTREE_NODE_write_in_flight); ++ new |= (1 << BTREE_NODE_just_written); ++ new ^= (1 << BTREE_NODE_write_idx); ++ } while (cmpxchg_acquire(&b->flags, old, new) != old); ++ ++ BUG_ON(btree_node_fake(b)); ++ BUG_ON((b->will_make_reachable != 0) != !b->written); ++ ++ BUG_ON(b->written >= c->opts.btree_node_size); ++ BUG_ON(b->written & (c->opts.block_size - 1)); ++ BUG_ON(bset_written(b, btree_bset_last(b))); ++ BUG_ON(le64_to_cpu(b->data->magic) != bset_magic(c)); ++ BUG_ON(memcmp(&b->data->format, &b->format, sizeof(b->format))); ++ ++ bch2_sort_whiteouts(c, b); ++ ++ sort_iter_init(&sort_iter, b); ++ ++ bytes = !b->written ++ ? sizeof(struct btree_node) ++ : sizeof(struct btree_node_entry); ++ ++ bytes += b->whiteout_u64s * sizeof(u64); ++ ++ for_each_bset(b, t) { ++ i = bset(b, t); ++ ++ if (bset_written(b, i)) ++ continue; ++ ++ bytes += le16_to_cpu(i->u64s) * sizeof(u64); ++ sort_iter_add(&sort_iter, ++ btree_bkey_first(b, t), ++ btree_bkey_last(b, t)); ++ seq = max(seq, le64_to_cpu(i->journal_seq)); ++ } ++ ++ data = btree_bounce_alloc(c, bytes, &used_mempool); ++ ++ if (!b->written) { ++ bn = data; ++ *bn = *b->data; ++ i = &bn->keys; ++ } else { ++ bne = data; ++ bne->keys = b->data->keys; ++ i = &bne->keys; ++ } ++ ++ i->journal_seq = cpu_to_le64(seq); ++ i->u64s = 0; ++ ++ if (!btree_node_old_extent_overwrite(b)) { ++ sort_iter_add(&sort_iter, ++ unwritten_whiteouts_start(c, b), ++ unwritten_whiteouts_end(c, b)); ++ SET_BSET_SEPARATE_WHITEOUTS(i, false); ++ } else { ++ memcpy_u64s(i->start, ++ unwritten_whiteouts_start(c, b), ++ b->whiteout_u64s); ++ i->u64s = cpu_to_le16(b->whiteout_u64s); ++ SET_BSET_SEPARATE_WHITEOUTS(i, true); ++ } ++ ++ b->whiteout_u64s = 0; ++ ++ u64s = btree_node_old_extent_overwrite(b) ++ ? bch2_sort_extents(vstruct_last(i), &sort_iter, false) ++ : bch2_sort_keys(i->start, &sort_iter, false); ++ le16_add_cpu(&i->u64s, u64s); ++ ++ set_needs_whiteout(i, false); ++ ++ /* do we have data to write? */ ++ if (b->written && !i->u64s) ++ goto nowrite; ++ ++ bytes_to_write = vstruct_end(i) - data; ++ sectors_to_write = round_up(bytes_to_write, block_bytes(c)) >> 9; ++ ++ memset(data + bytes_to_write, 0, ++ (sectors_to_write << 9) - bytes_to_write); ++ ++ BUG_ON(b->written + sectors_to_write > c->opts.btree_node_size); ++ BUG_ON(BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN); ++ BUG_ON(i->seq != b->data->keys.seq); ++ ++ i->version = c->sb.version < bcachefs_metadata_version_new_versioning ++ ? cpu_to_le16(BCH_BSET_VERSION_OLD) ++ : cpu_to_le16(c->sb.version); ++ SET_BSET_CSUM_TYPE(i, bch2_meta_checksum_type(c)); ++ ++ if (bch2_csum_type_is_encryption(BSET_CSUM_TYPE(i))) ++ validate_before_checksum = true; ++ ++ /* validate_bset will be modifying: */ ++ if (le16_to_cpu(i->version) < bcachefs_metadata_version_max) ++ validate_before_checksum = true; ++ ++ /* if we're going to be encrypting, check metadata validity first: */ ++ if (validate_before_checksum && ++ validate_bset_for_write(c, b, i, sectors_to_write)) ++ goto err; ++ ++ bset_encrypt(c, i, b->written << 9); ++ ++ nonce = btree_nonce(i, b->written << 9); ++ ++ if (bn) ++ bn->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bn); ++ else ++ bne->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne); ++ ++ /* if we're not encrypting, check metadata after checksumming: */ ++ if (!validate_before_checksum && ++ validate_bset_for_write(c, b, i, sectors_to_write)) ++ goto err; ++ ++ /* ++ * We handle btree write errors by immediately halting the journal - ++ * after we've done that, we can't issue any subsequent btree writes ++ * because they might have pointers to new nodes that failed to write. ++ * ++ * Furthermore, there's no point in doing any more btree writes because ++ * with the journal stopped, we're never going to update the journal to ++ * reflect that those writes were done and the data flushed from the ++ * journal: ++ * ++ * Also on journal error, the pending write may have updates that were ++ * never journalled (interior nodes, see btree_update_nodes_written()) - ++ * it's critical that we don't do the write in that case otherwise we ++ * will have updates visible that weren't in the journal: ++ * ++ * Make sure to update b->written so bch2_btree_init_next() doesn't ++ * break: ++ */ ++ if (bch2_journal_error(&c->journal) || ++ c->opts.nochanges) ++ goto err; ++ ++ trace_btree_write(b, bytes_to_write, sectors_to_write); ++ ++ wbio = container_of(bio_alloc_bioset(GFP_NOIO, ++ buf_pages(data, sectors_to_write << 9), ++ &c->btree_bio), ++ struct btree_write_bio, wbio.bio); ++ wbio_init(&wbio->wbio.bio); ++ wbio->data = data; ++ wbio->bytes = bytes; ++ wbio->wbio.used_mempool = used_mempool; ++ wbio->wbio.bio.bi_opf = REQ_OP_WRITE|REQ_META; ++ wbio->wbio.bio.bi_end_io = btree_node_write_endio; ++ wbio->wbio.bio.bi_private = b; ++ ++ bch2_bio_map(&wbio->wbio.bio, data, sectors_to_write << 9); ++ ++ /* ++ * If we're appending to a leaf node, we don't technically need FUA - ++ * this write just needs to be persisted before the next journal write, ++ * which will be marked FLUSH|FUA. ++ * ++ * Similarly if we're writing a new btree root - the pointer is going to ++ * be in the next journal entry. ++ * ++ * But if we're writing a new btree node (that isn't a root) or ++ * appending to a non leaf btree node, we need either FUA or a flush ++ * when we write the parent with the new pointer. FUA is cheaper than a ++ * flush, and writes appending to leaf nodes aren't blocking anything so ++ * just make all btree node writes FUA to keep things sane. ++ */ ++ ++ bkey_copy(&k.key, &b->key); ++ ++ bkey_for_each_ptr(bch2_bkey_ptrs(bkey_i_to_s(&k.key)), ptr) ++ ptr->offset += b->written; ++ ++ b->written += sectors_to_write; ++ ++ /* XXX: submitting IO with btree locks held: */ ++ bch2_submit_wbio_replicas(&wbio->wbio, c, BCH_DATA_btree, &k.key); ++ return; ++err: ++ set_btree_node_noevict(b); ++ b->written += sectors_to_write; ++nowrite: ++ btree_bounce_free(c, bytes, used_mempool, data); ++ btree_node_write_done(c, b); ++} ++ ++/* ++ * Work that must be done with write lock held: ++ */ ++bool bch2_btree_post_write_cleanup(struct bch_fs *c, struct btree *b) ++{ ++ bool invalidated_iter = false; ++ struct btree_node_entry *bne; ++ struct bset_tree *t; ++ ++ if (!btree_node_just_written(b)) ++ return false; ++ ++ BUG_ON(b->whiteout_u64s); ++ ++ clear_btree_node_just_written(b); ++ ++ /* ++ * Note: immediately after write, bset_written() doesn't work - the ++ * amount of data we had to write after compaction might have been ++ * smaller than the offset of the last bset. ++ * ++ * However, we know that all bsets have been written here, as long as ++ * we're still holding the write lock: ++ */ ++ ++ /* ++ * XXX: decide if we really want to unconditionally sort down to a ++ * single bset: ++ */ ++ if (b->nsets > 1) { ++ btree_node_sort(c, b, NULL, 0, b->nsets, true); ++ invalidated_iter = true; ++ } else { ++ invalidated_iter = bch2_drop_whiteouts(b, COMPACT_ALL); ++ } ++ ++ for_each_bset(b, t) ++ set_needs_whiteout(bset(b, t), true); ++ ++ bch2_btree_verify(c, b); ++ ++ /* ++ * If later we don't unconditionally sort down to a single bset, we have ++ * to ensure this is still true: ++ */ ++ BUG_ON((void *) btree_bkey_last(b, bset_tree_last(b)) > write_block(b)); ++ ++ bne = want_new_bset(c, b); ++ if (bne) ++ bch2_bset_init_next(c, b, bne); ++ ++ bch2_btree_build_aux_trees(b); ++ ++ return invalidated_iter; ++} ++ ++/* ++ * Use this one if the node is intent locked: ++ */ ++void bch2_btree_node_write(struct bch_fs *c, struct btree *b, ++ enum six_lock_type lock_type_held) ++{ ++ BUG_ON(lock_type_held == SIX_LOCK_write); ++ ++ if (lock_type_held == SIX_LOCK_intent || ++ six_lock_tryupgrade(&b->c.lock)) { ++ __bch2_btree_node_write(c, b, SIX_LOCK_intent); ++ ++ /* don't cycle lock unnecessarily: */ ++ if (btree_node_just_written(b) && ++ six_trylock_write(&b->c.lock)) { ++ bch2_btree_post_write_cleanup(c, b); ++ six_unlock_write(&b->c.lock); ++ } ++ ++ if (lock_type_held == SIX_LOCK_read) ++ six_lock_downgrade(&b->c.lock); ++ } else { ++ __bch2_btree_node_write(c, b, SIX_LOCK_read); ++ } ++} ++ ++static void __bch2_btree_flush_all(struct bch_fs *c, unsigned flag) ++{ ++ struct bucket_table *tbl; ++ struct rhash_head *pos; ++ struct btree *b; ++ unsigned i; ++restart: ++ rcu_read_lock(); ++ for_each_cached_btree(b, c, tbl, i, pos) ++ if (test_bit(flag, &b->flags)) { ++ rcu_read_unlock(); ++ wait_on_bit_io(&b->flags, flag, TASK_UNINTERRUPTIBLE); ++ goto restart; ++ ++ } ++ rcu_read_unlock(); ++} ++ ++void bch2_btree_flush_all_reads(struct bch_fs *c) ++{ ++ __bch2_btree_flush_all(c, BTREE_NODE_read_in_flight); ++} ++ ++void bch2_btree_flush_all_writes(struct bch_fs *c) ++{ ++ __bch2_btree_flush_all(c, BTREE_NODE_write_in_flight); ++} ++ ++void bch2_btree_verify_flushed(struct bch_fs *c) ++{ ++ struct bucket_table *tbl; ++ struct rhash_head *pos; ++ struct btree *b; ++ unsigned i; ++ ++ rcu_read_lock(); ++ for_each_cached_btree(b, c, tbl, i, pos) { ++ unsigned long flags = READ_ONCE(b->flags); ++ ++ BUG_ON((flags & (1 << BTREE_NODE_dirty)) || ++ (flags & (1 << BTREE_NODE_write_in_flight))); ++ } ++ rcu_read_unlock(); ++} ++ ++void bch2_dirty_btree_nodes_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ struct bucket_table *tbl; ++ struct rhash_head *pos; ++ struct btree *b; ++ unsigned i; ++ ++ rcu_read_lock(); ++ for_each_cached_btree(b, c, tbl, i, pos) { ++ unsigned long flags = READ_ONCE(b->flags); ++ ++ if (!(flags & (1 << BTREE_NODE_dirty))) ++ continue; ++ ++ pr_buf(out, "%p d %u n %u l %u w %u b %u r %u:%lu\n", ++ b, ++ (flags & (1 << BTREE_NODE_dirty)) != 0, ++ (flags & (1 << BTREE_NODE_need_write)) != 0, ++ b->c.level, ++ b->written, ++ !list_empty_careful(&b->write_blocked), ++ b->will_make_reachable != 0, ++ b->will_make_reachable & 1); ++ } ++ rcu_read_unlock(); ++} +diff --git a/fs/bcachefs/btree_io.h b/fs/bcachefs/btree_io.h +new file mode 100644 +index 000000000000..626d0f071b70 +--- /dev/null ++++ b/fs/bcachefs/btree_io.h +@@ -0,0 +1,220 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_IO_H ++#define _BCACHEFS_BTREE_IO_H ++ ++#include "bkey_methods.h" ++#include "bset.h" ++#include "btree_locking.h" ++#include "checksum.h" ++#include "extents.h" ++#include "io_types.h" ++ ++struct bch_fs; ++struct btree_write; ++struct btree; ++struct btree_iter; ++ ++struct btree_read_bio { ++ struct bch_fs *c; ++ u64 start_time; ++ unsigned have_ioref:1; ++ struct extent_ptr_decoded pick; ++ struct work_struct work; ++ struct bio bio; ++}; ++ ++struct btree_write_bio { ++ struct work_struct work; ++ void *data; ++ unsigned bytes; ++ struct bch_write_bio wbio; ++}; ++ ++static inline void btree_node_io_unlock(struct btree *b) ++{ ++ EBUG_ON(!btree_node_write_in_flight(b)); ++ clear_btree_node_write_in_flight(b); ++ wake_up_bit(&b->flags, BTREE_NODE_write_in_flight); ++} ++ ++static inline void btree_node_io_lock(struct btree *b) ++{ ++ wait_on_bit_lock_io(&b->flags, BTREE_NODE_write_in_flight, ++ TASK_UNINTERRUPTIBLE); ++} ++ ++static inline void btree_node_wait_on_io(struct btree *b) ++{ ++ wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight, ++ TASK_UNINTERRUPTIBLE); ++} ++ ++static inline bool btree_node_may_write(struct btree *b) ++{ ++ return list_empty_careful(&b->write_blocked) && ++ (!b->written || !b->will_make_reachable); ++} ++ ++enum compact_mode { ++ COMPACT_LAZY, ++ COMPACT_ALL, ++}; ++ ++bool bch2_compact_whiteouts(struct bch_fs *, struct btree *, ++ enum compact_mode); ++ ++static inline bool should_compact_bset_lazy(struct btree *b, ++ struct bset_tree *t) ++{ ++ unsigned total_u64s = bset_u64s(t); ++ unsigned dead_u64s = bset_dead_u64s(b, t); ++ ++ return dead_u64s > 64 && dead_u64s * 3 > total_u64s; ++} ++ ++static inline bool bch2_maybe_compact_whiteouts(struct bch_fs *c, struct btree *b) ++{ ++ struct bset_tree *t; ++ ++ for_each_bset(b, t) ++ if (should_compact_bset_lazy(b, t)) ++ return bch2_compact_whiteouts(c, b, COMPACT_LAZY); ++ ++ return false; ++} ++ ++static inline struct nonce btree_nonce(struct bset *i, unsigned offset) ++{ ++ return (struct nonce) {{ ++ [0] = cpu_to_le32(offset), ++ [1] = ((__le32 *) &i->seq)[0], ++ [2] = ((__le32 *) &i->seq)[1], ++ [3] = ((__le32 *) &i->journal_seq)[0]^BCH_NONCE_BTREE, ++ }}; ++} ++ ++static inline void bset_encrypt(struct bch_fs *c, struct bset *i, unsigned offset) ++{ ++ struct nonce nonce = btree_nonce(i, offset); ++ ++ if (!offset) { ++ struct btree_node *bn = container_of(i, struct btree_node, keys); ++ unsigned bytes = (void *) &bn->keys - (void *) &bn->flags; ++ ++ bch2_encrypt(c, BSET_CSUM_TYPE(i), nonce, &bn->flags, ++ bytes); ++ ++ nonce = nonce_add(nonce, round_up(bytes, CHACHA_BLOCK_SIZE)); ++ } ++ ++ bch2_encrypt(c, BSET_CSUM_TYPE(i), nonce, i->_data, ++ vstruct_end(i) - (void *) i->_data); ++} ++ ++void bch2_btree_sort_into(struct bch_fs *, struct btree *, struct btree *); ++ ++void bch2_btree_build_aux_trees(struct btree *); ++void bch2_btree_init_next(struct bch_fs *, struct btree *, ++ struct btree_iter *); ++ ++int bch2_btree_node_read_done(struct bch_fs *, struct btree *, bool); ++void bch2_btree_node_read(struct bch_fs *, struct btree *, bool); ++int bch2_btree_root_read(struct bch_fs *, enum btree_id, ++ const struct bkey_i *, unsigned); ++ ++void bch2_btree_complete_write(struct bch_fs *, struct btree *, ++ struct btree_write *); ++void bch2_btree_write_error_work(struct work_struct *); ++ ++void __bch2_btree_node_write(struct bch_fs *, struct btree *, ++ enum six_lock_type); ++bool bch2_btree_post_write_cleanup(struct bch_fs *, struct btree *); ++ ++void bch2_btree_node_write(struct bch_fs *, struct btree *, ++ enum six_lock_type); ++ ++static inline void btree_node_write_if_need(struct bch_fs *c, struct btree *b, ++ enum six_lock_type lock_held) ++{ ++ while (b->written && ++ btree_node_need_write(b) && ++ btree_node_may_write(b)) { ++ if (!btree_node_write_in_flight(b)) { ++ bch2_btree_node_write(c, b, lock_held); ++ break; ++ } ++ ++ six_unlock_type(&b->c.lock, lock_held); ++ btree_node_wait_on_io(b); ++ btree_node_lock_type(c, b, lock_held); ++ } ++} ++ ++#define bch2_btree_node_write_cond(_c, _b, cond) \ ++do { \ ++ unsigned long old, new, v = READ_ONCE((_b)->flags); \ ++ \ ++ do { \ ++ old = new = v; \ ++ \ ++ if (!(old & (1 << BTREE_NODE_dirty)) || !(cond)) \ ++ break; \ ++ \ ++ new |= (1 << BTREE_NODE_need_write); \ ++ } while ((v = cmpxchg(&(_b)->flags, old, new)) != old); \ ++ \ ++ btree_node_write_if_need(_c, _b, SIX_LOCK_read); \ ++} while (0) ++ ++void bch2_btree_flush_all_reads(struct bch_fs *); ++void bch2_btree_flush_all_writes(struct bch_fs *); ++void bch2_btree_verify_flushed(struct bch_fs *); ++void bch2_dirty_btree_nodes_to_text(struct printbuf *, struct bch_fs *); ++ ++static inline void compat_bformat(unsigned level, enum btree_id btree_id, ++ unsigned version, unsigned big_endian, ++ int write, struct bkey_format *f) ++{ ++ if (version < bcachefs_metadata_version_inode_btree_change && ++ btree_id == BTREE_ID_INODES) { ++ swap(f->bits_per_field[BKEY_FIELD_INODE], ++ f->bits_per_field[BKEY_FIELD_OFFSET]); ++ swap(f->field_offset[BKEY_FIELD_INODE], ++ f->field_offset[BKEY_FIELD_OFFSET]); ++ } ++} ++ ++static inline void compat_bpos(unsigned level, enum btree_id btree_id, ++ unsigned version, unsigned big_endian, ++ int write, struct bpos *p) ++{ ++ if (big_endian != CPU_BIG_ENDIAN) ++ bch2_bpos_swab(p); ++ ++ if (version < bcachefs_metadata_version_inode_btree_change && ++ btree_id == BTREE_ID_INODES) ++ swap(p->inode, p->offset); ++} ++ ++static inline void compat_btree_node(unsigned level, enum btree_id btree_id, ++ unsigned version, unsigned big_endian, ++ int write, ++ struct btree_node *bn) ++{ ++ if (version < bcachefs_metadata_version_inode_btree_change && ++ btree_node_type_is_extents(btree_id) && ++ bkey_cmp(bn->min_key, POS_MIN) && ++ write) ++ bn->min_key = bkey_predecessor(bn->min_key); ++ ++ compat_bpos(level, btree_id, version, big_endian, write, &bn->min_key); ++ compat_bpos(level, btree_id, version, big_endian, write, &bn->max_key); ++ ++ if (version < bcachefs_metadata_version_inode_btree_change && ++ btree_node_type_is_extents(btree_id) && ++ bkey_cmp(bn->min_key, POS_MIN) && ++ !write) ++ bn->min_key = bkey_successor(bn->min_key); ++} ++ ++#endif /* _BCACHEFS_BTREE_IO_H */ +diff --git a/fs/bcachefs/btree_iter.c b/fs/bcachefs/btree_iter.c +new file mode 100644 +index 000000000000..6fab76c3220c +--- /dev/null ++++ b/fs/bcachefs/btree_iter.c +@@ -0,0 +1,2445 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bkey_methods.h" ++#include "btree_cache.h" ++#include "btree_iter.h" ++#include "btree_key_cache.h" ++#include "btree_locking.h" ++#include "btree_update.h" ++#include "debug.h" ++#include "extents.h" ++#include "journal.h" ++ ++#include ++#include ++ ++static inline bool is_btree_node(struct btree_iter *iter, unsigned l) ++{ ++ return l < BTREE_MAX_DEPTH && ++ (unsigned long) iter->l[l].b >= 128; ++} ++ ++static inline struct bpos btree_iter_search_key(struct btree_iter *iter) ++{ ++ struct bpos pos = iter->pos; ++ ++ if ((iter->flags & BTREE_ITER_IS_EXTENTS) && ++ bkey_cmp(pos, POS_MAX)) ++ pos = bkey_successor(pos); ++ return pos; ++} ++ ++static inline bool btree_iter_pos_before_node(struct btree_iter *iter, ++ struct btree *b) ++{ ++ return bkey_cmp(btree_iter_search_key(iter), b->data->min_key) < 0; ++} ++ ++static inline bool btree_iter_pos_after_node(struct btree_iter *iter, ++ struct btree *b) ++{ ++ return bkey_cmp(b->key.k.p, btree_iter_search_key(iter)) < 0; ++} ++ ++static inline bool btree_iter_pos_in_node(struct btree_iter *iter, ++ struct btree *b) ++{ ++ return iter->btree_id == b->c.btree_id && ++ !btree_iter_pos_before_node(iter, b) && ++ !btree_iter_pos_after_node(iter, b); ++} ++ ++/* Btree node locking: */ ++ ++void bch2_btree_node_unlock_write(struct btree *b, struct btree_iter *iter) ++{ ++ bch2_btree_node_unlock_write_inlined(b, iter); ++} ++ ++void __bch2_btree_node_lock_write(struct btree *b, struct btree_iter *iter) ++{ ++ struct btree_iter *linked; ++ unsigned readers = 0; ++ ++ EBUG_ON(!btree_node_intent_locked(iter, b->c.level)); ++ ++ trans_for_each_iter(iter->trans, linked) ++ if (linked->l[b->c.level].b == b && ++ btree_node_read_locked(linked, b->c.level)) ++ readers++; ++ ++ /* ++ * Must drop our read locks before calling six_lock_write() - ++ * six_unlock() won't do wakeups until the reader count ++ * goes to 0, and it's safe because we have the node intent ++ * locked: ++ */ ++ atomic64_sub(__SIX_VAL(read_lock, readers), ++ &b->c.lock.state.counter); ++ btree_node_lock_type(iter->trans->c, b, SIX_LOCK_write); ++ atomic64_add(__SIX_VAL(read_lock, readers), ++ &b->c.lock.state.counter); ++} ++ ++bool __bch2_btree_node_relock(struct btree_iter *iter, unsigned level) ++{ ++ struct btree *b = btree_iter_node(iter, level); ++ int want = __btree_lock_want(iter, level); ++ ++ if (!is_btree_node(iter, level)) ++ return false; ++ ++ if (race_fault()) ++ return false; ++ ++ if (six_relock_type(&b->c.lock, want, iter->l[level].lock_seq) || ++ (btree_node_lock_seq_matches(iter, b, level) && ++ btree_node_lock_increment(iter->trans, b, level, want))) { ++ mark_btree_node_locked(iter, level, want); ++ return true; ++ } else { ++ return false; ++ } ++} ++ ++static bool bch2_btree_node_upgrade(struct btree_iter *iter, unsigned level) ++{ ++ struct btree *b = iter->l[level].b; ++ ++ EBUG_ON(btree_lock_want(iter, level) != BTREE_NODE_INTENT_LOCKED); ++ ++ if (!is_btree_node(iter, level)) ++ return false; ++ ++ if (btree_node_intent_locked(iter, level)) ++ return true; ++ ++ if (race_fault()) ++ return false; ++ ++ if (btree_node_locked(iter, level) ++ ? six_lock_tryupgrade(&b->c.lock) ++ : six_relock_type(&b->c.lock, SIX_LOCK_intent, iter->l[level].lock_seq)) ++ goto success; ++ ++ if (btree_node_lock_seq_matches(iter, b, level) && ++ btree_node_lock_increment(iter->trans, b, level, BTREE_NODE_INTENT_LOCKED)) { ++ btree_node_unlock(iter, level); ++ goto success; ++ } ++ ++ return false; ++success: ++ mark_btree_node_intent_locked(iter, level); ++ return true; ++} ++ ++static inline bool btree_iter_get_locks(struct btree_iter *iter, ++ bool upgrade, bool trace) ++{ ++ unsigned l = iter->level; ++ int fail_idx = -1; ++ ++ do { ++ if (!btree_iter_node(iter, l)) ++ break; ++ ++ if (!(upgrade ++ ? bch2_btree_node_upgrade(iter, l) ++ : bch2_btree_node_relock(iter, l))) { ++ if (trace) ++ (upgrade ++ ? trace_node_upgrade_fail ++ : trace_node_relock_fail)(l, iter->l[l].lock_seq, ++ is_btree_node(iter, l) ++ ? 0 ++ : (unsigned long) iter->l[l].b, ++ is_btree_node(iter, l) ++ ? iter->l[l].b->c.lock.state.seq ++ : 0); ++ ++ fail_idx = l; ++ btree_iter_set_dirty(iter, BTREE_ITER_NEED_TRAVERSE); ++ } ++ ++ l++; ++ } while (l < iter->locks_want); ++ ++ /* ++ * When we fail to get a lock, we have to ensure that any child nodes ++ * can't be relocked so bch2_btree_iter_traverse has to walk back up to ++ * the node that we failed to relock: ++ */ ++ while (fail_idx >= 0) { ++ btree_node_unlock(iter, fail_idx); ++ iter->l[fail_idx].b = BTREE_ITER_NO_NODE_GET_LOCKS; ++ --fail_idx; ++ } ++ ++ if (iter->uptodate == BTREE_ITER_NEED_RELOCK) ++ iter->uptodate = BTREE_ITER_NEED_PEEK; ++ ++ bch2_btree_trans_verify_locks(iter->trans); ++ ++ return iter->uptodate < BTREE_ITER_NEED_RELOCK; ++} ++ ++static struct bpos btree_node_pos(struct btree_bkey_cached_common *_b, ++ enum btree_iter_type type) ++{ ++ return type != BTREE_ITER_CACHED ++ ? container_of(_b, struct btree, c)->key.k.p ++ : container_of(_b, struct bkey_cached, c)->key.pos; ++} ++ ++/* Slowpath: */ ++bool __bch2_btree_node_lock(struct btree *b, struct bpos pos, ++ unsigned level, struct btree_iter *iter, ++ enum six_lock_type type, ++ six_lock_should_sleep_fn should_sleep_fn, ++ void *p) ++{ ++ struct btree_trans *trans = iter->trans; ++ struct btree_iter *linked; ++ u64 start_time = local_clock(); ++ bool ret = true; ++ ++ /* Check if it's safe to block: */ ++ trans_for_each_iter(trans, linked) { ++ if (!linked->nodes_locked) ++ continue; ++ ++ /* ++ * Can't block taking an intent lock if we have _any_ nodes read ++ * locked: ++ * ++ * - Our read lock blocks another thread with an intent lock on ++ * the same node from getting a write lock, and thus from ++ * dropping its intent lock ++ * ++ * - And the other thread may have multiple nodes intent locked: ++ * both the node we want to intent lock, and the node we ++ * already have read locked - deadlock: ++ */ ++ if (type == SIX_LOCK_intent && ++ linked->nodes_locked != linked->nodes_intent_locked) { ++ if (!(trans->nounlock)) { ++ linked->locks_want = max_t(unsigned, ++ linked->locks_want, ++ __fls(linked->nodes_locked) + 1); ++ if (!btree_iter_get_locks(linked, true, false)) ++ ret = false; ++ } else { ++ ret = false; ++ } ++ } ++ ++ /* ++ * Interior nodes must be locked before their descendants: if ++ * another iterator has possible descendants locked of the node ++ * we're about to lock, it must have the ancestors locked too: ++ */ ++ if (linked->btree_id == iter->btree_id && ++ level > __fls(linked->nodes_locked)) { ++ if (!(trans->nounlock)) { ++ linked->locks_want = ++ max(level + 1, max_t(unsigned, ++ linked->locks_want, ++ iter->locks_want)); ++ if (!btree_iter_get_locks(linked, true, false)) ++ ret = false; ++ } else { ++ ret = false; ++ } ++ } ++ ++ /* Must lock btree nodes in key order: */ ++ if ((cmp_int(iter->btree_id, linked->btree_id) ?: ++ -cmp_int(btree_iter_type(iter), btree_iter_type(linked))) < 0) ++ ret = false; ++ ++ if (iter->btree_id == linked->btree_id && ++ btree_node_locked(linked, level) && ++ bkey_cmp(pos, btree_node_pos((void *) linked->l[level].b, ++ btree_iter_type(linked))) <= 0) ++ ret = false; ++ ++ /* ++ * Recheck if this is a node we already have locked - since one ++ * of the get_locks() calls might've successfully ++ * upgraded/relocked it: ++ */ ++ if (linked->l[level].b == b && ++ btree_node_locked_type(linked, level) >= type) { ++ six_lock_increment(&b->c.lock, type); ++ return true; ++ } ++ } ++ ++ if (unlikely(!ret)) { ++ trace_trans_restart_would_deadlock(iter->trans->ip); ++ return false; ++ } ++ ++ if (six_trylock_type(&b->c.lock, type)) ++ return true; ++ ++ if (six_lock_type(&b->c.lock, type, should_sleep_fn, p)) ++ return false; ++ ++ bch2_time_stats_update(&trans->c->times[lock_to_time_stat(type)], ++ start_time); ++ return true; ++} ++ ++/* Btree iterator locking: */ ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++static void bch2_btree_iter_verify_locks(struct btree_iter *iter) ++{ ++ unsigned l; ++ ++ if (!(iter->trans->iters_linked & (1ULL << iter->idx))) { ++ BUG_ON(iter->nodes_locked); ++ return; ++ } ++ ++ for (l = 0; is_btree_node(iter, l); l++) { ++ if (iter->uptodate >= BTREE_ITER_NEED_RELOCK && ++ !btree_node_locked(iter, l)) ++ continue; ++ ++ BUG_ON(btree_lock_want(iter, l) != ++ btree_node_locked_type(iter, l)); ++ } ++} ++ ++void bch2_btree_trans_verify_locks(struct btree_trans *trans) ++{ ++ struct btree_iter *iter; ++ ++ trans_for_each_iter_all(trans, iter) ++ bch2_btree_iter_verify_locks(iter); ++} ++#else ++static inline void bch2_btree_iter_verify_locks(struct btree_iter *iter) {} ++#endif ++ ++__flatten ++bool bch2_btree_iter_relock(struct btree_iter *iter, bool trace) ++{ ++ return btree_iter_get_locks(iter, false, trace); ++} ++ ++bool __bch2_btree_iter_upgrade(struct btree_iter *iter, ++ unsigned new_locks_want) ++{ ++ struct btree_iter *linked; ++ ++ EBUG_ON(iter->locks_want >= new_locks_want); ++ ++ iter->locks_want = new_locks_want; ++ ++ if (btree_iter_get_locks(iter, true, true)) ++ return true; ++ ++ /* ++ * Ancestor nodes must be locked before child nodes, so set locks_want ++ * on iterators that might lock ancestors before us to avoid getting ++ * -EINTR later: ++ */ ++ trans_for_each_iter(iter->trans, linked) ++ if (linked != iter && ++ linked->btree_id == iter->btree_id && ++ linked->locks_want < new_locks_want) { ++ linked->locks_want = new_locks_want; ++ btree_iter_get_locks(linked, true, false); ++ } ++ ++ return false; ++} ++ ++bool __bch2_btree_iter_upgrade_nounlock(struct btree_iter *iter, ++ unsigned new_locks_want) ++{ ++ unsigned l = iter->level; ++ ++ EBUG_ON(iter->locks_want >= new_locks_want); ++ ++ iter->locks_want = new_locks_want; ++ ++ do { ++ if (!btree_iter_node(iter, l)) ++ break; ++ ++ if (!bch2_btree_node_upgrade(iter, l)) { ++ iter->locks_want = l; ++ return false; ++ } ++ ++ l++; ++ } while (l < iter->locks_want); ++ ++ return true; ++} ++ ++void __bch2_btree_iter_downgrade(struct btree_iter *iter, ++ unsigned downgrade_to) ++{ ++ unsigned l, new_locks_want = downgrade_to ?: ++ (iter->flags & BTREE_ITER_INTENT ? 1 : 0); ++ ++ if (iter->locks_want < downgrade_to) { ++ iter->locks_want = new_locks_want; ++ ++ while (iter->nodes_locked && ++ (l = __fls(iter->nodes_locked)) >= iter->locks_want) { ++ if (l > iter->level) { ++ btree_node_unlock(iter, l); ++ } else { ++ if (btree_node_intent_locked(iter, l)) { ++ six_lock_downgrade(&iter->l[l].b->c.lock); ++ iter->nodes_intent_locked ^= 1 << l; ++ } ++ break; ++ } ++ } ++ } ++ ++ bch2_btree_trans_verify_locks(iter->trans); ++} ++ ++void bch2_trans_downgrade(struct btree_trans *trans) ++{ ++ struct btree_iter *iter; ++ ++ trans_for_each_iter(trans, iter) ++ bch2_btree_iter_downgrade(iter); ++} ++ ++/* Btree transaction locking: */ ++ ++bool bch2_trans_relock(struct btree_trans *trans) ++{ ++ struct btree_iter *iter; ++ bool ret = true; ++ ++ trans_for_each_iter(trans, iter) ++ if (iter->uptodate == BTREE_ITER_NEED_RELOCK) ++ ret &= bch2_btree_iter_relock(iter, true); ++ ++ return ret; ++} ++ ++void bch2_trans_unlock(struct btree_trans *trans) ++{ ++ struct btree_iter *iter; ++ ++ trans_for_each_iter(trans, iter) ++ __bch2_btree_iter_unlock(iter); ++} ++ ++/* Btree iterator: */ ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ ++static void bch2_btree_iter_verify_cached(struct btree_iter *iter) ++{ ++ struct bkey_cached *ck; ++ bool locked = btree_node_locked(iter, 0); ++ ++ if (!bch2_btree_node_relock(iter, 0)) ++ return; ++ ++ ck = (void *) iter->l[0].b; ++ BUG_ON(ck->key.btree_id != iter->btree_id || ++ bkey_cmp(ck->key.pos, iter->pos)); ++ ++ if (!locked) ++ btree_node_unlock(iter, 0); ++} ++ ++static void bch2_btree_iter_verify_level(struct btree_iter *iter, ++ unsigned level) ++{ ++ struct bpos pos = btree_iter_search_key(iter); ++ struct btree_iter_level *l = &iter->l[level]; ++ struct btree_node_iter tmp = l->iter; ++ bool locked = btree_node_locked(iter, level); ++ struct bkey_packed *p, *k; ++ char buf1[100], buf2[100]; ++ const char *msg; ++ ++ if (!debug_check_iterators(iter->trans->c)) ++ return; ++ ++ if (btree_iter_type(iter) == BTREE_ITER_CACHED) { ++ if (!level) ++ bch2_btree_iter_verify_cached(iter); ++ return; ++ } ++ ++ BUG_ON(iter->level < iter->min_depth); ++ ++ if (!btree_iter_node(iter, level)) ++ return; ++ ++ if (!bch2_btree_node_relock(iter, level)) ++ return; ++ ++ /* ++ * Ideally this invariant would always be true, and hopefully in the ++ * future it will be, but for now set_pos_same_leaf() breaks it: ++ */ ++ BUG_ON(iter->uptodate < BTREE_ITER_NEED_TRAVERSE && ++ !btree_iter_pos_in_node(iter, l->b)); ++ ++ /* ++ * node iterators don't use leaf node iterator: ++ */ ++ if (btree_iter_type(iter) == BTREE_ITER_NODES && ++ level <= iter->min_depth) ++ goto unlock; ++ ++ bch2_btree_node_iter_verify(&l->iter, l->b); ++ ++ /* ++ * For interior nodes, the iterator will have skipped past ++ * deleted keys: ++ * ++ * For extents, the iterator may have skipped past deleted keys (but not ++ * whiteouts) ++ */ ++ p = level || btree_node_type_is_extents(iter->btree_id) ++ ? bch2_btree_node_iter_prev_filter(&tmp, l->b, KEY_TYPE_discard) ++ : bch2_btree_node_iter_prev_all(&tmp, l->b); ++ k = bch2_btree_node_iter_peek_all(&l->iter, l->b); ++ ++ if (p && bkey_iter_pos_cmp(l->b, p, &pos) >= 0) { ++ msg = "before"; ++ goto err; ++ } ++ ++ if (k && bkey_iter_pos_cmp(l->b, k, &pos) < 0) { ++ msg = "after"; ++ goto err; ++ } ++unlock: ++ if (!locked) ++ btree_node_unlock(iter, level); ++ return; ++err: ++ strcpy(buf1, "(none)"); ++ strcpy(buf2, "(none)"); ++ ++ if (p) { ++ struct bkey uk = bkey_unpack_key(l->b, p); ++ bch2_bkey_to_text(&PBUF(buf1), &uk); ++ } ++ ++ if (k) { ++ struct bkey uk = bkey_unpack_key(l->b, k); ++ bch2_bkey_to_text(&PBUF(buf2), &uk); ++ } ++ ++ panic("iterator should be %s key at level %u:\n" ++ "iter pos %s %llu:%llu\n" ++ "prev key %s\n" ++ "cur key %s\n", ++ msg, level, ++ iter->flags & BTREE_ITER_IS_EXTENTS ? ">" : "=>", ++ iter->pos.inode, iter->pos.offset, ++ buf1, buf2); ++} ++ ++static void bch2_btree_iter_verify(struct btree_iter *iter) ++{ ++ unsigned i; ++ ++ bch2_btree_trans_verify_locks(iter->trans); ++ ++ for (i = 0; i < BTREE_MAX_DEPTH; i++) ++ bch2_btree_iter_verify_level(iter, i); ++} ++ ++void bch2_btree_trans_verify_iters(struct btree_trans *trans, struct btree *b) ++{ ++ struct btree_iter *iter; ++ ++ if (!debug_check_iterators(trans->c)) ++ return; ++ ++ trans_for_each_iter_with_node(trans, b, iter) ++ bch2_btree_iter_verify_level(iter, b->c.level); ++} ++ ++#else ++ ++static inline void bch2_btree_iter_verify_level(struct btree_iter *iter, unsigned l) {} ++static inline void bch2_btree_iter_verify(struct btree_iter *iter) {} ++ ++#endif ++ ++static void btree_node_iter_set_set_pos(struct btree_node_iter *iter, ++ struct btree *b, ++ struct bset_tree *t, ++ struct bkey_packed *k) ++{ ++ struct btree_node_iter_set *set; ++ ++ btree_node_iter_for_each(iter, set) ++ if (set->end == t->end_offset) { ++ set->k = __btree_node_key_to_offset(b, k); ++ bch2_btree_node_iter_sort(iter, b); ++ return; ++ } ++ ++ bch2_btree_node_iter_push(iter, b, k, btree_bkey_last(b, t)); ++} ++ ++static void __bch2_btree_iter_fix_key_modified(struct btree_iter *iter, ++ struct btree *b, ++ struct bkey_packed *where) ++{ ++ struct btree_iter_level *l = &iter->l[b->c.level]; ++ struct bpos pos = btree_iter_search_key(iter); ++ ++ if (where != bch2_btree_node_iter_peek_all(&l->iter, l->b)) ++ return; ++ ++ if (bkey_iter_pos_cmp(l->b, where, &pos) < 0) ++ bch2_btree_node_iter_advance(&l->iter, l->b); ++ ++ btree_iter_set_dirty(iter, BTREE_ITER_NEED_PEEK); ++} ++ ++void bch2_btree_iter_fix_key_modified(struct btree_iter *iter, ++ struct btree *b, ++ struct bkey_packed *where) ++{ ++ struct btree_iter *linked; ++ ++ trans_for_each_iter_with_node(iter->trans, b, linked) { ++ __bch2_btree_iter_fix_key_modified(linked, b, where); ++ bch2_btree_iter_verify_level(linked, b->c.level); ++ } ++} ++ ++static void __bch2_btree_node_iter_fix(struct btree_iter *iter, ++ struct btree *b, ++ struct btree_node_iter *node_iter, ++ struct bset_tree *t, ++ struct bkey_packed *where, ++ unsigned clobber_u64s, ++ unsigned new_u64s) ++{ ++ const struct bkey_packed *end = btree_bkey_last(b, t); ++ struct btree_node_iter_set *set; ++ unsigned offset = __btree_node_key_to_offset(b, where); ++ int shift = new_u64s - clobber_u64s; ++ unsigned old_end = t->end_offset - shift; ++ unsigned orig_iter_pos = node_iter->data[0].k; ++ bool iter_current_key_modified = ++ orig_iter_pos >= offset && ++ orig_iter_pos <= offset + clobber_u64s; ++ struct bpos iter_pos = btree_iter_search_key(iter); ++ ++ btree_node_iter_for_each(node_iter, set) ++ if (set->end == old_end) ++ goto found; ++ ++ /* didn't find the bset in the iterator - might have to readd it: */ ++ if (new_u64s && ++ bkey_iter_pos_cmp(b, where, &iter_pos) >= 0) { ++ bch2_btree_node_iter_push(node_iter, b, where, end); ++ goto fixup_done; ++ } else { ++ /* Iterator is after key that changed */ ++ return; ++ } ++found: ++ set->end = t->end_offset; ++ ++ /* Iterator hasn't gotten to the key that changed yet: */ ++ if (set->k < offset) ++ return; ++ ++ if (new_u64s && ++ bkey_iter_pos_cmp(b, where, &iter_pos) >= 0) { ++ set->k = offset; ++ } else if (set->k < offset + clobber_u64s) { ++ set->k = offset + new_u64s; ++ if (set->k == set->end) ++ bch2_btree_node_iter_set_drop(node_iter, set); ++ } else { ++ /* Iterator is after key that changed */ ++ set->k = (int) set->k + shift; ++ return; ++ } ++ ++ bch2_btree_node_iter_sort(node_iter, b); ++fixup_done: ++ if (node_iter->data[0].k != orig_iter_pos) ++ iter_current_key_modified = true; ++ ++ /* ++ * When a new key is added, and the node iterator now points to that ++ * key, the iterator might have skipped past deleted keys that should ++ * come after the key the iterator now points to. We have to rewind to ++ * before those deleted keys - otherwise ++ * bch2_btree_node_iter_prev_all() breaks: ++ */ ++ if (!bch2_btree_node_iter_end(node_iter) && ++ iter_current_key_modified && ++ (b->c.level || ++ btree_node_type_is_extents(iter->btree_id))) { ++ struct bset_tree *t; ++ struct bkey_packed *k, *k2, *p; ++ ++ k = bch2_btree_node_iter_peek_all(node_iter, b); ++ ++ for_each_bset(b, t) { ++ bool set_pos = false; ++ ++ if (node_iter->data[0].end == t->end_offset) ++ continue; ++ ++ k2 = bch2_btree_node_iter_bset_pos(node_iter, b, t); ++ ++ while ((p = bch2_bkey_prev_all(b, t, k2)) && ++ bkey_iter_cmp(b, k, p) < 0) { ++ k2 = p; ++ set_pos = true; ++ } ++ ++ if (set_pos) ++ btree_node_iter_set_set_pos(node_iter, ++ b, t, k2); ++ } ++ } ++ ++ if (!b->c.level && ++ node_iter == &iter->l[0].iter && ++ iter_current_key_modified) ++ btree_iter_set_dirty(iter, BTREE_ITER_NEED_PEEK); ++} ++ ++void bch2_btree_node_iter_fix(struct btree_iter *iter, ++ struct btree *b, ++ struct btree_node_iter *node_iter, ++ struct bkey_packed *where, ++ unsigned clobber_u64s, ++ unsigned new_u64s) ++{ ++ struct bset_tree *t = bch2_bkey_to_bset(b, where); ++ struct btree_iter *linked; ++ ++ if (node_iter != &iter->l[b->c.level].iter) { ++ __bch2_btree_node_iter_fix(iter, b, node_iter, t, ++ where, clobber_u64s, new_u64s); ++ ++ if (debug_check_iterators(iter->trans->c)) ++ bch2_btree_node_iter_verify(node_iter, b); ++ } ++ ++ trans_for_each_iter_with_node(iter->trans, b, linked) { ++ __bch2_btree_node_iter_fix(linked, b, ++ &linked->l[b->c.level].iter, t, ++ where, clobber_u64s, new_u64s); ++ bch2_btree_iter_verify_level(linked, b->c.level); ++ } ++} ++ ++static inline struct bkey_s_c __btree_iter_unpack(struct btree_iter *iter, ++ struct btree_iter_level *l, ++ struct bkey *u, ++ struct bkey_packed *k) ++{ ++ struct bkey_s_c ret; ++ ++ if (unlikely(!k)) { ++ /* ++ * signal to bch2_btree_iter_peek_slot() that we're currently at ++ * a hole ++ */ ++ u->type = KEY_TYPE_deleted; ++ return bkey_s_c_null; ++ } ++ ++ ret = bkey_disassemble(l->b, k, u); ++ ++ if (debug_check_bkeys(iter->trans->c)) ++ bch2_bkey_debugcheck(iter->trans->c, l->b, ret); ++ ++ return ret; ++} ++ ++/* peek_all() doesn't skip deleted keys */ ++static inline struct bkey_s_c __btree_iter_peek_all(struct btree_iter *iter, ++ struct btree_iter_level *l, ++ struct bkey *u) ++{ ++ return __btree_iter_unpack(iter, l, u, ++ bch2_btree_node_iter_peek_all(&l->iter, l->b)); ++} ++ ++static inline struct bkey_s_c __btree_iter_peek(struct btree_iter *iter, ++ struct btree_iter_level *l) ++{ ++ return __btree_iter_unpack(iter, l, &iter->k, ++ bch2_btree_node_iter_peek(&l->iter, l->b)); ++} ++ ++static inline struct bkey_s_c __btree_iter_prev(struct btree_iter *iter, ++ struct btree_iter_level *l) ++{ ++ return __btree_iter_unpack(iter, l, &iter->k, ++ bch2_btree_node_iter_prev(&l->iter, l->b)); ++} ++ ++static inline bool btree_iter_advance_to_pos(struct btree_iter *iter, ++ struct btree_iter_level *l, ++ int max_advance) ++{ ++ struct bpos pos = btree_iter_search_key(iter); ++ struct bkey_packed *k; ++ int nr_advanced = 0; ++ ++ while ((k = bch2_btree_node_iter_peek_all(&l->iter, l->b)) && ++ bkey_iter_pos_cmp(l->b, k, &pos) < 0) { ++ if (max_advance > 0 && nr_advanced >= max_advance) ++ return false; ++ ++ bch2_btree_node_iter_advance(&l->iter, l->b); ++ nr_advanced++; ++ } ++ ++ return true; ++} ++ ++/* ++ * Verify that iterator for parent node points to child node: ++ */ ++static void btree_iter_verify_new_node(struct btree_iter *iter, struct btree *b) ++{ ++ struct btree_iter_level *l; ++ unsigned plevel; ++ bool parent_locked; ++ struct bkey_packed *k; ++ ++ if (!IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) ++ return; ++ ++ plevel = b->c.level + 1; ++ if (!btree_iter_node(iter, plevel)) ++ return; ++ ++ parent_locked = btree_node_locked(iter, plevel); ++ ++ if (!bch2_btree_node_relock(iter, plevel)) ++ return; ++ ++ l = &iter->l[plevel]; ++ k = bch2_btree_node_iter_peek_all(&l->iter, l->b); ++ if (!k || ++ bkey_deleted(k) || ++ bkey_cmp_left_packed(l->b, k, &b->key.k.p)) { ++ char buf[100]; ++ struct bkey uk = bkey_unpack_key(b, k); ++ ++ bch2_bkey_to_text(&PBUF(buf), &uk); ++ panic("parent iter doesn't point to new node:\n%s\n%llu:%llu\n", ++ buf, b->key.k.p.inode, b->key.k.p.offset); ++ } ++ ++ if (!parent_locked) ++ btree_node_unlock(iter, b->c.level + 1); ++} ++ ++static inline void __btree_iter_init(struct btree_iter *iter, ++ unsigned level) ++{ ++ struct bpos pos = btree_iter_search_key(iter); ++ struct btree_iter_level *l = &iter->l[level]; ++ ++ bch2_btree_node_iter_init(&l->iter, l->b, &pos); ++ ++ btree_iter_set_dirty(iter, BTREE_ITER_NEED_PEEK); ++} ++ ++static inline void btree_iter_node_set(struct btree_iter *iter, ++ struct btree *b) ++{ ++ BUG_ON(btree_iter_type(iter) == BTREE_ITER_CACHED); ++ ++ btree_iter_verify_new_node(iter, b); ++ ++ EBUG_ON(!btree_iter_pos_in_node(iter, b)); ++ EBUG_ON(b->c.lock.state.seq & 1); ++ ++ iter->l[b->c.level].lock_seq = b->c.lock.state.seq; ++ iter->l[b->c.level].b = b; ++ __btree_iter_init(iter, b->c.level); ++} ++ ++/* ++ * A btree node is being replaced - update the iterator to point to the new ++ * node: ++ */ ++void bch2_btree_iter_node_replace(struct btree_iter *iter, struct btree *b) ++{ ++ enum btree_node_locked_type t; ++ struct btree_iter *linked; ++ ++ trans_for_each_iter(iter->trans, linked) ++ if (btree_iter_type(linked) != BTREE_ITER_CACHED && ++ btree_iter_pos_in_node(linked, b)) { ++ /* ++ * bch2_btree_iter_node_drop() has already been called - ++ * the old node we're replacing has already been ++ * unlocked and the pointer invalidated ++ */ ++ BUG_ON(btree_node_locked(linked, b->c.level)); ++ ++ t = btree_lock_want(linked, b->c.level); ++ if (t != BTREE_NODE_UNLOCKED) { ++ six_lock_increment(&b->c.lock, t); ++ mark_btree_node_locked(linked, b->c.level, t); ++ } ++ ++ btree_iter_node_set(linked, b); ++ } ++} ++ ++void bch2_btree_iter_node_drop(struct btree_iter *iter, struct btree *b) ++{ ++ struct btree_iter *linked; ++ unsigned level = b->c.level; ++ ++ trans_for_each_iter(iter->trans, linked) ++ if (linked->l[level].b == b) { ++ __btree_node_unlock(linked, level); ++ linked->l[level].b = BTREE_ITER_NO_NODE_DROP; ++ } ++} ++ ++/* ++ * A btree node has been modified in such a way as to invalidate iterators - fix ++ * them: ++ */ ++void bch2_btree_iter_reinit_node(struct btree_iter *iter, struct btree *b) ++{ ++ struct btree_iter *linked; ++ ++ trans_for_each_iter_with_node(iter->trans, b, linked) ++ __btree_iter_init(linked, b->c.level); ++} ++ ++static int lock_root_check_fn(struct six_lock *lock, void *p) ++{ ++ struct btree *b = container_of(lock, struct btree, c.lock); ++ struct btree **rootp = p; ++ ++ return b == *rootp ? 0 : -1; ++} ++ ++static inline int btree_iter_lock_root(struct btree_iter *iter, ++ unsigned depth_want) ++{ ++ struct bch_fs *c = iter->trans->c; ++ struct btree *b, **rootp = &c->btree_roots[iter->btree_id].b; ++ enum six_lock_type lock_type; ++ unsigned i; ++ ++ EBUG_ON(iter->nodes_locked); ++ ++ while (1) { ++ b = READ_ONCE(*rootp); ++ iter->level = READ_ONCE(b->c.level); ++ ++ if (unlikely(iter->level < depth_want)) { ++ /* ++ * the root is at a lower depth than the depth we want: ++ * got to the end of the btree, or we're walking nodes ++ * greater than some depth and there are no nodes >= ++ * that depth ++ */ ++ iter->level = depth_want; ++ for (i = iter->level; i < BTREE_MAX_DEPTH; i++) ++ iter->l[i].b = NULL; ++ return 1; ++ } ++ ++ lock_type = __btree_lock_want(iter, iter->level); ++ if (unlikely(!btree_node_lock(b, POS_MAX, iter->level, ++ iter, lock_type, ++ lock_root_check_fn, rootp))) ++ return -EINTR; ++ ++ if (likely(b == READ_ONCE(*rootp) && ++ b->c.level == iter->level && ++ !race_fault())) { ++ for (i = 0; i < iter->level; i++) ++ iter->l[i].b = BTREE_ITER_NO_NODE_LOCK_ROOT; ++ iter->l[iter->level].b = b; ++ for (i = iter->level + 1; i < BTREE_MAX_DEPTH; i++) ++ iter->l[i].b = NULL; ++ ++ mark_btree_node_locked(iter, iter->level, lock_type); ++ btree_iter_node_set(iter, b); ++ return 0; ++ } ++ ++ six_unlock_type(&b->c.lock, lock_type); ++ } ++} ++ ++noinline ++static void btree_iter_prefetch(struct btree_iter *iter) ++{ ++ struct bch_fs *c = iter->trans->c; ++ struct btree_iter_level *l = &iter->l[iter->level]; ++ struct btree_node_iter node_iter = l->iter; ++ struct bkey_packed *k; ++ BKEY_PADDED(k) tmp; ++ unsigned nr = test_bit(BCH_FS_STARTED, &c->flags) ++ ? (iter->level > 1 ? 0 : 2) ++ : (iter->level > 1 ? 1 : 16); ++ bool was_locked = btree_node_locked(iter, iter->level); ++ ++ while (nr) { ++ if (!bch2_btree_node_relock(iter, iter->level)) ++ return; ++ ++ bch2_btree_node_iter_advance(&node_iter, l->b); ++ k = bch2_btree_node_iter_peek(&node_iter, l->b); ++ if (!k) ++ break; ++ ++ bch2_bkey_unpack(l->b, &tmp.k, k); ++ bch2_btree_node_prefetch(c, iter, &tmp.k, iter->level - 1); ++ } ++ ++ if (!was_locked) ++ btree_node_unlock(iter, iter->level); ++} ++ ++static noinline void btree_node_mem_ptr_set(struct btree_iter *iter, ++ unsigned plevel, struct btree *b) ++{ ++ struct btree_iter_level *l = &iter->l[plevel]; ++ bool locked = btree_node_locked(iter, plevel); ++ struct bkey_packed *k; ++ struct bch_btree_ptr_v2 *bp; ++ ++ if (!bch2_btree_node_relock(iter, plevel)) ++ return; ++ ++ k = bch2_btree_node_iter_peek_all(&l->iter, l->b); ++ BUG_ON(k->type != KEY_TYPE_btree_ptr_v2); ++ ++ bp = (void *) bkeyp_val(&l->b->format, k); ++ bp->mem_ptr = (unsigned long)b; ++ ++ if (!locked) ++ btree_node_unlock(iter, plevel); ++} ++ ++static __always_inline int btree_iter_down(struct btree_iter *iter) ++{ ++ struct bch_fs *c = iter->trans->c; ++ struct btree_iter_level *l = &iter->l[iter->level]; ++ struct btree *b; ++ unsigned level = iter->level - 1; ++ enum six_lock_type lock_type = __btree_lock_want(iter, level); ++ BKEY_PADDED(k) tmp; ++ ++ EBUG_ON(!btree_node_locked(iter, iter->level)); ++ ++ bch2_bkey_unpack(l->b, &tmp.k, ++ bch2_btree_node_iter_peek(&l->iter, l->b)); ++ ++ b = bch2_btree_node_get(c, iter, &tmp.k, level, lock_type); ++ if (unlikely(IS_ERR(b))) ++ return PTR_ERR(b); ++ ++ mark_btree_node_locked(iter, level, lock_type); ++ btree_iter_node_set(iter, b); ++ ++ if (tmp.k.k.type == KEY_TYPE_btree_ptr_v2 && ++ unlikely(b != btree_node_mem_ptr(&tmp.k))) ++ btree_node_mem_ptr_set(iter, level + 1, b); ++ ++ if (iter->flags & BTREE_ITER_PREFETCH) ++ btree_iter_prefetch(iter); ++ ++ iter->level = level; ++ ++ return 0; ++} ++ ++static void btree_iter_up(struct btree_iter *iter) ++{ ++ btree_node_unlock(iter, iter->level++); ++} ++ ++static int btree_iter_traverse_one(struct btree_iter *); ++ ++static int __btree_iter_traverse_all(struct btree_trans *trans, int ret) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter *iter; ++ u8 sorted[BTREE_ITER_MAX]; ++ unsigned i, nr_sorted = 0; ++ ++ if (trans->in_traverse_all) ++ return -EINTR; ++ ++ trans->in_traverse_all = true; ++retry_all: ++ nr_sorted = 0; ++ ++ trans_for_each_iter(trans, iter) ++ sorted[nr_sorted++] = iter->idx; ++ ++#define btree_iter_cmp_by_idx(_l, _r) \ ++ btree_iter_cmp(&trans->iters[_l], &trans->iters[_r]) ++ ++ bubble_sort(sorted, nr_sorted, btree_iter_cmp_by_idx); ++#undef btree_iter_cmp_by_idx ++ bch2_trans_unlock(trans); ++ ++ if (unlikely(ret == -ENOMEM)) { ++ struct closure cl; ++ ++ closure_init_stack(&cl); ++ ++ do { ++ ret = bch2_btree_cache_cannibalize_lock(c, &cl); ++ closure_sync(&cl); ++ } while (ret); ++ } ++ ++ if (unlikely(ret == -EIO)) { ++ trans->error = true; ++ goto out; ++ } ++ ++ BUG_ON(ret && ret != -EINTR); ++ ++ /* Now, redo traversals in correct order: */ ++ for (i = 0; i < nr_sorted; i++) { ++ unsigned idx = sorted[i]; ++ ++ /* ++ * sucessfully traversing one iterator can cause another to be ++ * unlinked, in btree_key_cache_fill() ++ */ ++ if (!(trans->iters_linked & (1ULL << idx))) ++ continue; ++ ++ ret = btree_iter_traverse_one(&trans->iters[idx]); ++ if (ret) ++ goto retry_all; ++ } ++ ++ if (hweight64(trans->iters_live) > 1) ++ ret = -EINTR; ++ else ++ trans_for_each_iter(trans, iter) ++ if (iter->flags & BTREE_ITER_KEEP_UNTIL_COMMIT) { ++ ret = -EINTR; ++ break; ++ } ++out: ++ bch2_btree_cache_cannibalize_unlock(c); ++ ++ trans->in_traverse_all = false; ++ return ret; ++} ++ ++int bch2_btree_iter_traverse_all(struct btree_trans *trans) ++{ ++ return __btree_iter_traverse_all(trans, 0); ++} ++ ++static inline bool btree_iter_good_node(struct btree_iter *iter, ++ unsigned l, int check_pos) ++{ ++ if (!is_btree_node(iter, l) || ++ !bch2_btree_node_relock(iter, l)) ++ return false; ++ ++ if (check_pos <= 0 && btree_iter_pos_before_node(iter, iter->l[l].b)) ++ return false; ++ if (check_pos >= 0 && btree_iter_pos_after_node(iter, iter->l[l].b)) ++ return false; ++ return true; ++} ++ ++static inline unsigned btree_iter_up_until_good_node(struct btree_iter *iter, ++ int check_pos) ++{ ++ unsigned l = iter->level; ++ ++ while (btree_iter_node(iter, l) && ++ !btree_iter_good_node(iter, l, check_pos)) { ++ btree_node_unlock(iter, l); ++ iter->l[l].b = BTREE_ITER_NO_NODE_UP; ++ l++; ++ } ++ ++ return l; ++} ++ ++/* ++ * This is the main state machine for walking down the btree - walks down to a ++ * specified depth ++ * ++ * Returns 0 on success, -EIO on error (error reading in a btree node). ++ * ++ * On error, caller (peek_node()/peek_key()) must return NULL; the error is ++ * stashed in the iterator and returned from bch2_trans_exit(). ++ */ ++static int btree_iter_traverse_one(struct btree_iter *iter) ++{ ++ unsigned depth_want = iter->level; ++ ++ /* ++ * if we need interior nodes locked, call btree_iter_relock() to make ++ * sure we walk back up enough that we lock them: ++ */ ++ if (iter->uptodate == BTREE_ITER_NEED_RELOCK || ++ iter->locks_want > 1) ++ bch2_btree_iter_relock(iter, false); ++ ++ if (btree_iter_type(iter) == BTREE_ITER_CACHED) ++ return bch2_btree_iter_traverse_cached(iter); ++ ++ if (iter->uptodate < BTREE_ITER_NEED_RELOCK) ++ return 0; ++ ++ if (unlikely(iter->level >= BTREE_MAX_DEPTH)) ++ return 0; ++ ++ /* ++ * XXX: correctly using BTREE_ITER_UPTODATE should make using check_pos ++ * here unnecessary ++ */ ++ iter->level = btree_iter_up_until_good_node(iter, 0); ++ ++ /* ++ * If we've got a btree node locked (i.e. we aren't about to relock the ++ * root) - advance its node iterator if necessary: ++ * ++ * XXX correctly using BTREE_ITER_UPTODATE should make this unnecessary ++ */ ++ if (is_btree_node(iter, iter->level)) { ++ BUG_ON(!btree_iter_pos_in_node(iter, iter->l[iter->level].b)); ++ ++ btree_iter_advance_to_pos(iter, &iter->l[iter->level], -1); ++ } ++ ++ /* ++ * Note: iter->nodes[iter->level] may be temporarily NULL here - that ++ * would indicate to other code that we got to the end of the btree, ++ * here it indicates that relocking the root failed - it's critical that ++ * btree_iter_lock_root() comes next and that it can't fail ++ */ ++ while (iter->level > depth_want) { ++ int ret = btree_iter_node(iter, iter->level) ++ ? btree_iter_down(iter) ++ : btree_iter_lock_root(iter, depth_want); ++ if (unlikely(ret)) { ++ if (ret == 1) ++ return 0; ++ ++ iter->level = depth_want; ++ ++ if (ret == -EIO) { ++ iter->flags |= BTREE_ITER_ERROR; ++ iter->l[iter->level].b = ++ BTREE_ITER_NO_NODE_ERROR; ++ } else { ++ iter->l[iter->level].b = ++ BTREE_ITER_NO_NODE_DOWN; ++ } ++ return ret; ++ } ++ } ++ ++ iter->uptodate = BTREE_ITER_NEED_PEEK; ++ ++ bch2_btree_iter_verify(iter); ++ return 0; ++} ++ ++int __must_check __bch2_btree_iter_traverse(struct btree_iter *iter) ++{ ++ struct btree_trans *trans = iter->trans; ++ int ret; ++ ++ ret = bch2_trans_cond_resched(trans) ?: ++ btree_iter_traverse_one(iter); ++ if (unlikely(ret)) ++ ret = __btree_iter_traverse_all(trans, ret); ++ ++ return ret; ++} ++ ++static inline void bch2_btree_iter_checks(struct btree_iter *iter) ++{ ++ enum btree_iter_type type = btree_iter_type(iter); ++ ++ EBUG_ON(iter->btree_id >= BTREE_ID_NR); ++ ++ BUG_ON((type == BTREE_ITER_KEYS || ++ type == BTREE_ITER_CACHED) && ++ (bkey_cmp(iter->pos, bkey_start_pos(&iter->k)) < 0 || ++ bkey_cmp(iter->pos, iter->k.p) > 0)); ++ ++ bch2_btree_iter_verify_locks(iter); ++ bch2_btree_iter_verify_level(iter, iter->level); ++} ++ ++/* Iterate across nodes (leaf and interior nodes) */ ++ ++struct btree *bch2_btree_iter_peek_node(struct btree_iter *iter) ++{ ++ struct btree *b; ++ int ret; ++ ++ EBUG_ON(btree_iter_type(iter) != BTREE_ITER_NODES); ++ bch2_btree_iter_checks(iter); ++ ++ if (iter->uptodate == BTREE_ITER_UPTODATE) ++ return iter->l[iter->level].b; ++ ++ ret = bch2_btree_iter_traverse(iter); ++ if (ret) ++ return NULL; ++ ++ b = btree_iter_node(iter, iter->level); ++ if (!b) ++ return NULL; ++ ++ BUG_ON(bkey_cmp(b->key.k.p, iter->pos) < 0); ++ ++ iter->pos = b->key.k.p; ++ iter->uptodate = BTREE_ITER_UPTODATE; ++ ++ bch2_btree_iter_verify(iter); ++ ++ return b; ++} ++ ++struct btree *bch2_btree_iter_next_node(struct btree_iter *iter) ++{ ++ struct btree *b; ++ int ret; ++ ++ EBUG_ON(btree_iter_type(iter) != BTREE_ITER_NODES); ++ bch2_btree_iter_checks(iter); ++ ++ /* already got to end? */ ++ if (!btree_iter_node(iter, iter->level)) ++ return NULL; ++ ++ bch2_trans_cond_resched(iter->trans); ++ ++ btree_iter_up(iter); ++ ++ if (!bch2_btree_node_relock(iter, iter->level)) ++ btree_iter_set_dirty(iter, BTREE_ITER_NEED_RELOCK); ++ ++ ret = bch2_btree_iter_traverse(iter); ++ if (ret) ++ return NULL; ++ ++ /* got to end? */ ++ b = btree_iter_node(iter, iter->level); ++ if (!b) ++ return NULL; ++ ++ if (bkey_cmp(iter->pos, b->key.k.p) < 0) { ++ /* ++ * Haven't gotten to the end of the parent node: go back down to ++ * the next child node ++ */ ++ ++ /* ++ * We don't really want to be unlocking here except we can't ++ * directly tell btree_iter_traverse() "traverse to this level" ++ * except by setting iter->level, so we have to unlock so we ++ * don't screw up our lock invariants: ++ */ ++ if (btree_node_read_locked(iter, iter->level)) ++ btree_node_unlock(iter, iter->level); ++ ++ iter->pos = bkey_successor(iter->pos); ++ iter->level = iter->min_depth; ++ ++ btree_iter_set_dirty(iter, BTREE_ITER_NEED_TRAVERSE); ++ ret = bch2_btree_iter_traverse(iter); ++ if (ret) ++ return NULL; ++ ++ b = iter->l[iter->level].b; ++ } ++ ++ iter->pos = b->key.k.p; ++ iter->uptodate = BTREE_ITER_UPTODATE; ++ ++ bch2_btree_iter_verify(iter); ++ ++ return b; ++} ++ ++/* Iterate across keys (in leaf nodes only) */ ++ ++void bch2_btree_iter_set_pos_same_leaf(struct btree_iter *iter, struct bpos new_pos) ++{ ++ struct btree_iter_level *l = &iter->l[0]; ++ ++ EBUG_ON(iter->level != 0); ++ EBUG_ON(bkey_cmp(new_pos, iter->pos) < 0); ++ EBUG_ON(!btree_node_locked(iter, 0)); ++ EBUG_ON(bkey_cmp(new_pos, l->b->key.k.p) > 0); ++ ++ bkey_init(&iter->k); ++ iter->k.p = iter->pos = new_pos; ++ btree_iter_set_dirty(iter, BTREE_ITER_NEED_PEEK); ++ ++ btree_iter_advance_to_pos(iter, l, -1); ++ ++ /* ++ * XXX: ++ * keeping a node locked that's outside (even just outside) iter->pos ++ * breaks __bch2_btree_node_lock(). This seems to only affect ++ * bch2_btree_node_get_sibling so for now it's fixed there, but we ++ * should try to get rid of this corner case. ++ * ++ * (this behaviour is currently needed for BTREE_INSERT_NOUNLOCK) ++ */ ++ ++ if (bch2_btree_node_iter_end(&l->iter) && ++ btree_iter_pos_after_node(iter, l->b)) ++ btree_iter_set_dirty(iter, BTREE_ITER_NEED_TRAVERSE); ++} ++ ++static void btree_iter_pos_changed(struct btree_iter *iter, int cmp) ++{ ++ unsigned l = iter->level; ++ ++ if (!cmp) ++ goto out; ++ ++ if (unlikely(btree_iter_type(iter) == BTREE_ITER_CACHED)) { ++ btree_node_unlock(iter, 0); ++ iter->l[0].b = BTREE_ITER_NO_NODE_UP; ++ btree_iter_set_dirty(iter, BTREE_ITER_NEED_TRAVERSE); ++ return; ++ } ++ ++ l = btree_iter_up_until_good_node(iter, cmp); ++ ++ if (btree_iter_node(iter, l)) { ++ /* ++ * We might have to skip over many keys, or just a few: try ++ * advancing the node iterator, and if we have to skip over too ++ * many keys just reinit it (or if we're rewinding, since that ++ * is expensive). ++ */ ++ if (cmp < 0 || ++ !btree_iter_advance_to_pos(iter, &iter->l[l], 8)) ++ __btree_iter_init(iter, l); ++ ++ /* Don't leave it locked if we're not supposed to: */ ++ if (btree_lock_want(iter, l) == BTREE_NODE_UNLOCKED) ++ btree_node_unlock(iter, l); ++ } ++out: ++ if (l != iter->level) ++ btree_iter_set_dirty(iter, BTREE_ITER_NEED_TRAVERSE); ++ else ++ btree_iter_set_dirty(iter, BTREE_ITER_NEED_PEEK); ++} ++ ++void __bch2_btree_iter_set_pos(struct btree_iter *iter, struct bpos new_pos, ++ bool strictly_greater) ++{ ++ struct bpos old = btree_iter_search_key(iter); ++ int cmp; ++ ++ iter->flags &= ~BTREE_ITER_IS_EXTENTS; ++ iter->flags |= strictly_greater ? BTREE_ITER_IS_EXTENTS : 0; ++ ++ bkey_init(&iter->k); ++ iter->k.p = iter->pos = new_pos; ++ ++ cmp = bkey_cmp(btree_iter_search_key(iter), old); ++ ++ btree_iter_pos_changed(iter, cmp); ++} ++ ++void bch2_btree_iter_set_pos(struct btree_iter *iter, struct bpos new_pos) ++{ ++ int cmp = bkey_cmp(new_pos, iter->pos); ++ ++ bkey_init(&iter->k); ++ iter->k.p = iter->pos = new_pos; ++ ++ btree_iter_pos_changed(iter, cmp); ++} ++ ++static inline bool btree_iter_set_pos_to_next_leaf(struct btree_iter *iter) ++{ ++ struct btree_iter_level *l = &iter->l[0]; ++ bool ret; ++ ++ bkey_init(&iter->k); ++ iter->k.p = iter->pos = l->b->key.k.p; ++ ++ ret = bkey_cmp(iter->pos, POS_MAX) != 0; ++ if (ret && !(iter->flags & BTREE_ITER_IS_EXTENTS)) ++ iter->k.p = iter->pos = bkey_successor(iter->pos); ++ ++ btree_iter_pos_changed(iter, 1); ++ return ret; ++} ++ ++static inline bool btree_iter_set_pos_to_prev_leaf(struct btree_iter *iter) ++{ ++ struct btree_iter_level *l = &iter->l[0]; ++ bool ret; ++ ++ bkey_init(&iter->k); ++ iter->k.p = iter->pos = l->b->data->min_key; ++ iter->uptodate = BTREE_ITER_NEED_TRAVERSE; ++ ++ ret = bkey_cmp(iter->pos, POS_MIN) != 0; ++ if (ret) { ++ iter->k.p = iter->pos = bkey_predecessor(iter->pos); ++ ++ if (iter->flags & BTREE_ITER_IS_EXTENTS) ++ iter->k.p = iter->pos = bkey_predecessor(iter->pos); ++ } ++ ++ btree_iter_pos_changed(iter, -1); ++ return ret; ++} ++ ++/** ++ * btree_iter_peek_uptodate - given an iterator that is uptodate, return the key ++ * it currently points to ++ */ ++static inline struct bkey_s_c btree_iter_peek_uptodate(struct btree_iter *iter) ++{ ++ struct btree_iter_level *l = &iter->l[0]; ++ struct bkey_s_c ret = { .k = &iter->k }; ++ ++ if (!bkey_deleted(&iter->k)) { ++ struct bkey_packed *_k = ++ __bch2_btree_node_iter_peek_all(&l->iter, l->b); ++ ++ ret.v = bkeyp_val(&l->b->format, _k); ++ ++ if (debug_check_iterators(iter->trans->c)) { ++ struct bkey k = bkey_unpack_key(l->b, _k); ++ ++ BUG_ON(memcmp(&k, &iter->k, sizeof(k))); ++ } ++ ++ if (debug_check_bkeys(iter->trans->c)) ++ bch2_bkey_debugcheck(iter->trans->c, l->b, ret); ++ } ++ ++ return ret; ++} ++ ++/** ++ * bch2_btree_iter_peek: returns first key greater than or equal to iterator's ++ * current position ++ */ ++struct bkey_s_c bch2_btree_iter_peek(struct btree_iter *iter) ++{ ++ struct btree_iter_level *l = &iter->l[0]; ++ struct bkey_s_c k; ++ int ret; ++ ++ EBUG_ON(btree_iter_type(iter) != BTREE_ITER_KEYS); ++ bch2_btree_iter_checks(iter); ++ ++ if (iter->uptodate == BTREE_ITER_UPTODATE && ++ !bkey_deleted(&iter->k)) ++ return btree_iter_peek_uptodate(iter); ++ ++ while (1) { ++ ret = bch2_btree_iter_traverse(iter); ++ if (unlikely(ret)) ++ return bkey_s_c_err(ret); ++ ++ k = __btree_iter_peek(iter, l); ++ if (likely(k.k)) ++ break; ++ ++ if (!btree_iter_set_pos_to_next_leaf(iter)) ++ return bkey_s_c_null; ++ } ++ ++ /* ++ * iter->pos should always be equal to the key we just ++ * returned - except extents can straddle iter->pos: ++ */ ++ if (!(iter->flags & BTREE_ITER_IS_EXTENTS) || ++ bkey_cmp(bkey_start_pos(k.k), iter->pos) > 0) ++ iter->pos = bkey_start_pos(k.k); ++ ++ iter->uptodate = BTREE_ITER_UPTODATE; ++ ++ bch2_btree_iter_verify_level(iter, 0); ++ return k; ++} ++ ++/** ++ * bch2_btree_iter_next: returns first key greater than iterator's current ++ * position ++ */ ++struct bkey_s_c bch2_btree_iter_next(struct btree_iter *iter) ++{ ++ if (unlikely(!bkey_cmp(iter->k.p, POS_MAX))) ++ return bkey_s_c_null; ++ ++ bch2_btree_iter_set_pos(iter, ++ (iter->flags & BTREE_ITER_IS_EXTENTS) ++ ? iter->k.p ++ : bkey_successor(iter->k.p)); ++ ++ return bch2_btree_iter_peek(iter); ++} ++ ++static struct bkey_s_c __btree_trans_updates_peek(struct btree_iter *iter) ++{ ++ struct bpos pos = btree_iter_search_key(iter); ++ struct btree_trans *trans = iter->trans; ++ struct btree_insert_entry *i; ++ ++ trans_for_each_update2(trans, i) ++ if ((cmp_int(iter->btree_id, i->iter->btree_id) ?: ++ bkey_cmp(pos, i->k->k.p)) <= 0) ++ break; ++ ++ return i < trans->updates2 + trans->nr_updates2 && ++ iter->btree_id == i->iter->btree_id ++ ? bkey_i_to_s_c(i->k) ++ : bkey_s_c_null; ++} ++ ++static struct bkey_s_c __bch2_btree_iter_peek_with_updates(struct btree_iter *iter) ++{ ++ struct btree_iter_level *l = &iter->l[0]; ++ struct bkey_s_c k = __btree_iter_peek(iter, l); ++ struct bkey_s_c u = __btree_trans_updates_peek(iter); ++ ++ if (k.k && (!u.k || bkey_cmp(k.k->p, u.k->p) < 0)) ++ return k; ++ if (u.k && bkey_cmp(u.k->p, l->b->key.k.p) <= 0) { ++ iter->k = *u.k; ++ return u; ++ } ++ return bkey_s_c_null; ++} ++ ++struct bkey_s_c bch2_btree_iter_peek_with_updates(struct btree_iter *iter) ++{ ++ struct bkey_s_c k; ++ int ret; ++ ++ EBUG_ON(btree_iter_type(iter) != BTREE_ITER_KEYS); ++ bch2_btree_iter_checks(iter); ++ ++ while (1) { ++ ret = bch2_btree_iter_traverse(iter); ++ if (unlikely(ret)) ++ return bkey_s_c_err(ret); ++ ++ k = __bch2_btree_iter_peek_with_updates(iter); ++ ++ if (k.k && bkey_deleted(k.k)) { ++ bch2_btree_iter_set_pos(iter, ++ (iter->flags & BTREE_ITER_IS_EXTENTS) ++ ? iter->k.p ++ : bkey_successor(iter->k.p)); ++ continue; ++ } ++ ++ if (likely(k.k)) ++ break; ++ ++ if (!btree_iter_set_pos_to_next_leaf(iter)) ++ return bkey_s_c_null; ++ } ++ ++ /* ++ * iter->pos should always be equal to the key we just ++ * returned - except extents can straddle iter->pos: ++ */ ++ if (!(iter->flags & BTREE_ITER_IS_EXTENTS) || ++ bkey_cmp(bkey_start_pos(k.k), iter->pos) > 0) ++ iter->pos = bkey_start_pos(k.k); ++ ++ iter->uptodate = BTREE_ITER_UPTODATE; ++ return k; ++} ++ ++struct bkey_s_c bch2_btree_iter_next_with_updates(struct btree_iter *iter) ++{ ++ if (unlikely(!bkey_cmp(iter->k.p, POS_MAX))) ++ return bkey_s_c_null; ++ ++ bch2_btree_iter_set_pos(iter, ++ (iter->flags & BTREE_ITER_IS_EXTENTS) ++ ? iter->k.p ++ : bkey_successor(iter->k.p)); ++ ++ return bch2_btree_iter_peek_with_updates(iter); ++} ++ ++/** ++ * bch2_btree_iter_peek_prev: returns first key less than or equal to ++ * iterator's current position ++ */ ++struct bkey_s_c bch2_btree_iter_peek_prev(struct btree_iter *iter) ++{ ++ struct bpos pos = iter->pos; ++ struct btree_iter_level *l = &iter->l[0]; ++ struct bkey_s_c k; ++ int ret; ++ ++ EBUG_ON(btree_iter_type(iter) != BTREE_ITER_KEYS); ++ bch2_btree_iter_checks(iter); ++ ++ if (iter->uptodate == BTREE_ITER_UPTODATE && ++ !bkey_deleted(&iter->k)) ++ return btree_iter_peek_uptodate(iter); ++ ++ while (1) { ++ ret = bch2_btree_iter_traverse(iter); ++ if (unlikely(ret)) ++ return bkey_s_c_err(ret); ++ ++ k = __btree_iter_peek(iter, l); ++ if (!k.k || bkey_cmp(bkey_start_pos(k.k), pos) > 0) ++ k = __btree_iter_prev(iter, l); ++ ++ if (likely(k.k)) ++ break; ++ ++ if (!btree_iter_set_pos_to_prev_leaf(iter)) ++ return bkey_s_c_null; ++ } ++ ++ EBUG_ON(bkey_cmp(bkey_start_pos(k.k), pos) > 0); ++ iter->pos = bkey_start_pos(k.k); ++ iter->uptodate = BTREE_ITER_UPTODATE; ++ return k; ++} ++ ++/** ++ * bch2_btree_iter_prev: returns first key less than iterator's current ++ * position ++ */ ++struct bkey_s_c bch2_btree_iter_prev(struct btree_iter *iter) ++{ ++ struct bpos pos = bkey_start_pos(&iter->k); ++ ++ EBUG_ON(btree_iter_type(iter) != BTREE_ITER_KEYS); ++ bch2_btree_iter_checks(iter); ++ ++ if (unlikely(!bkey_cmp(pos, POS_MIN))) ++ return bkey_s_c_null; ++ ++ bch2_btree_iter_set_pos(iter, bkey_predecessor(pos)); ++ ++ return bch2_btree_iter_peek_prev(iter); ++} ++ ++static inline struct bkey_s_c ++__bch2_btree_iter_peek_slot_extents(struct btree_iter *iter) ++{ ++ struct btree_iter_level *l = &iter->l[0]; ++ struct btree_node_iter node_iter; ++ struct bkey_s_c k; ++ struct bkey n; ++ int ret; ++ ++ /* keys & holes can't span inode numbers: */ ++ if (iter->pos.offset == KEY_OFFSET_MAX) { ++ if (iter->pos.inode == KEY_INODE_MAX) ++ return bkey_s_c_null; ++ ++ bch2_btree_iter_set_pos(iter, bkey_successor(iter->pos)); ++ ++ ret = bch2_btree_iter_traverse(iter); ++ if (unlikely(ret)) ++ return bkey_s_c_err(ret); ++ } ++ ++ /* ++ * iterator is now at the correct position for inserting at iter->pos, ++ * but we need to keep iterating until we find the first non whiteout so ++ * we know how big a hole we have, if any: ++ */ ++ ++ node_iter = l->iter; ++ k = __btree_iter_unpack(iter, l, &iter->k, ++ bch2_btree_node_iter_peek(&node_iter, l->b)); ++ ++ if (k.k && bkey_cmp(bkey_start_pos(k.k), iter->pos) <= 0) { ++ /* ++ * We're not setting iter->uptodate because the node iterator ++ * doesn't necessarily point at the key we're returning: ++ */ ++ ++ EBUG_ON(bkey_cmp(k.k->p, iter->pos) <= 0); ++ bch2_btree_iter_verify_level(iter, 0); ++ return k; ++ } ++ ++ /* hole */ ++ ++ if (!k.k) ++ k.k = &l->b->key.k; ++ ++ bkey_init(&n); ++ n.p = iter->pos; ++ bch2_key_resize(&n, ++ min_t(u64, KEY_SIZE_MAX, ++ (k.k->p.inode == n.p.inode ++ ? bkey_start_offset(k.k) ++ : KEY_OFFSET_MAX) - ++ n.p.offset)); ++ ++ EBUG_ON(!n.size); ++ ++ iter->k = n; ++ iter->uptodate = BTREE_ITER_UPTODATE; ++ ++ bch2_btree_iter_verify_level(iter, 0); ++ return (struct bkey_s_c) { &iter->k, NULL }; ++} ++ ++struct bkey_s_c bch2_btree_iter_peek_slot(struct btree_iter *iter) ++{ ++ struct btree_iter_level *l = &iter->l[0]; ++ struct bkey_s_c k; ++ int ret; ++ ++ EBUG_ON(btree_iter_type(iter) != BTREE_ITER_KEYS); ++ bch2_btree_iter_checks(iter); ++ ++ if (iter->uptodate == BTREE_ITER_UPTODATE) ++ return btree_iter_peek_uptodate(iter); ++ ++ ret = bch2_btree_iter_traverse(iter); ++ if (unlikely(ret)) ++ return bkey_s_c_err(ret); ++ ++ if (iter->flags & BTREE_ITER_IS_EXTENTS) ++ return __bch2_btree_iter_peek_slot_extents(iter); ++ ++ k = __btree_iter_peek_all(iter, l, &iter->k); ++ ++ EBUG_ON(k.k && bkey_deleted(k.k) && bkey_cmp(k.k->p, iter->pos) == 0); ++ ++ if (!k.k || bkey_cmp(iter->pos, k.k->p)) { ++ /* hole */ ++ bkey_init(&iter->k); ++ iter->k.p = iter->pos; ++ k = (struct bkey_s_c) { &iter->k, NULL }; ++ } ++ ++ iter->uptodate = BTREE_ITER_UPTODATE; ++ bch2_btree_iter_verify_level(iter, 0); ++ return k; ++} ++ ++struct bkey_s_c bch2_btree_iter_next_slot(struct btree_iter *iter) ++{ ++ if (unlikely(!bkey_cmp(iter->k.p, POS_MAX))) ++ return bkey_s_c_null; ++ ++ bch2_btree_iter_set_pos(iter, ++ (iter->flags & BTREE_ITER_IS_EXTENTS) ++ ? iter->k.p ++ : bkey_successor(iter->k.p)); ++ ++ return bch2_btree_iter_peek_slot(iter); ++} ++ ++struct bkey_s_c bch2_btree_iter_peek_cached(struct btree_iter *iter) ++{ ++ struct bkey_cached *ck; ++ int ret; ++ ++ EBUG_ON(btree_iter_type(iter) != BTREE_ITER_CACHED); ++ bch2_btree_iter_checks(iter); ++ ++ ret = bch2_btree_iter_traverse(iter); ++ if (unlikely(ret)) ++ return bkey_s_c_err(ret); ++ ++ ck = (void *) iter->l[0].b; ++ ++ EBUG_ON(iter->btree_id != ck->key.btree_id || ++ bkey_cmp(iter->pos, ck->key.pos)); ++ BUG_ON(!ck->valid); ++ ++ return bkey_i_to_s_c(ck->k); ++} ++ ++static inline void bch2_btree_iter_init(struct btree_trans *trans, ++ struct btree_iter *iter, enum btree_id btree_id, ++ struct bpos pos, unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ unsigned i; ++ ++ if (btree_node_type_is_extents(btree_id) && ++ !(flags & BTREE_ITER_NODES)) ++ flags |= BTREE_ITER_IS_EXTENTS; ++ ++ iter->trans = trans; ++ iter->pos = pos; ++ bkey_init(&iter->k); ++ iter->k.p = pos; ++ iter->flags = flags; ++ iter->uptodate = BTREE_ITER_NEED_TRAVERSE; ++ iter->btree_id = btree_id; ++ iter->level = 0; ++ iter->min_depth = 0; ++ iter->locks_want = flags & BTREE_ITER_INTENT ? 1 : 0; ++ iter->nodes_locked = 0; ++ iter->nodes_intent_locked = 0; ++ for (i = 0; i < ARRAY_SIZE(iter->l); i++) ++ iter->l[i].b = BTREE_ITER_NO_NODE_INIT; ++ ++ prefetch(c->btree_roots[btree_id].b); ++} ++ ++/* new transactional stuff: */ ++ ++static inline void __bch2_trans_iter_free(struct btree_trans *trans, ++ unsigned idx) ++{ ++ __bch2_btree_iter_unlock(&trans->iters[idx]); ++ trans->iters_linked &= ~(1ULL << idx); ++ trans->iters_live &= ~(1ULL << idx); ++ trans->iters_touched &= ~(1ULL << idx); ++} ++ ++int bch2_trans_iter_put(struct btree_trans *trans, ++ struct btree_iter *iter) ++{ ++ int ret; ++ ++ if (IS_ERR_OR_NULL(iter)) ++ return 0; ++ ++ BUG_ON(trans->iters + iter->idx != iter); ++ ++ ret = btree_iter_err(iter); ++ ++ if (!(trans->iters_touched & (1ULL << iter->idx)) && ++ !(iter->flags & BTREE_ITER_KEEP_UNTIL_COMMIT)) ++ __bch2_trans_iter_free(trans, iter->idx); ++ ++ trans->iters_live &= ~(1ULL << iter->idx); ++ return ret; ++} ++ ++int bch2_trans_iter_free(struct btree_trans *trans, ++ struct btree_iter *iter) ++{ ++ if (IS_ERR_OR_NULL(iter)) ++ return 0; ++ ++ trans->iters_touched &= ~(1ULL << iter->idx); ++ ++ return bch2_trans_iter_put(trans, iter); ++} ++ ++static int bch2_trans_realloc_iters(struct btree_trans *trans, ++ unsigned new_size) ++{ ++ void *p, *new_iters, *new_updates, *new_updates2; ++ size_t iters_bytes; ++ size_t updates_bytes; ++ ++ new_size = roundup_pow_of_two(new_size); ++ ++ BUG_ON(new_size > BTREE_ITER_MAX); ++ ++ if (new_size <= trans->size) ++ return 0; ++ ++ BUG_ON(trans->used_mempool); ++ ++ bch2_trans_unlock(trans); ++ ++ iters_bytes = sizeof(struct btree_iter) * new_size; ++ updates_bytes = sizeof(struct btree_insert_entry) * new_size; ++ ++ p = kmalloc(iters_bytes + ++ updates_bytes + ++ updates_bytes, GFP_NOFS); ++ if (p) ++ goto success; ++ ++ p = mempool_alloc(&trans->c->btree_iters_pool, GFP_NOFS); ++ new_size = BTREE_ITER_MAX; ++ ++ trans->used_mempool = true; ++success: ++ new_iters = p; p += iters_bytes; ++ new_updates = p; p += updates_bytes; ++ new_updates2 = p; p += updates_bytes; ++ ++ memcpy(new_iters, trans->iters, ++ sizeof(struct btree_iter) * trans->nr_iters); ++ memcpy(new_updates, trans->updates, ++ sizeof(struct btree_insert_entry) * trans->nr_updates); ++ memcpy(new_updates2, trans->updates2, ++ sizeof(struct btree_insert_entry) * trans->nr_updates2); ++ ++ if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) ++ memset(trans->iters, POISON_FREE, ++ sizeof(struct btree_iter) * trans->nr_iters + ++ sizeof(struct btree_insert_entry) * trans->nr_iters); ++ ++ if (trans->iters != trans->iters_onstack) ++ kfree(trans->iters); ++ ++ trans->iters = new_iters; ++ trans->updates = new_updates; ++ trans->updates2 = new_updates2; ++ trans->size = new_size; ++ ++ if (trans->iters_live) { ++ trace_trans_restart_iters_realloced(trans->ip, trans->size); ++ return -EINTR; ++ } ++ ++ return 0; ++} ++ ++static struct btree_iter *btree_trans_iter_alloc(struct btree_trans *trans) ++{ ++ unsigned idx = __ffs64(~trans->iters_linked); ++ ++ if (idx < trans->nr_iters) ++ goto got_slot; ++ ++ if (trans->nr_iters == trans->size) { ++ int ret; ++ ++ if (trans->nr_iters >= BTREE_ITER_MAX) { ++ struct btree_iter *iter; ++ ++ trans_for_each_iter(trans, iter) { ++ pr_err("iter: btree %s pos %llu:%llu%s%s%s %ps", ++ bch2_btree_ids[iter->btree_id], ++ iter->pos.inode, ++ iter->pos.offset, ++ (trans->iters_live & (1ULL << iter->idx)) ? " live" : "", ++ (trans->iters_touched & (1ULL << iter->idx)) ? " touched" : "", ++ iter->flags & BTREE_ITER_KEEP_UNTIL_COMMIT ? " keep" : "", ++ (void *) iter->ip_allocated); ++ } ++ ++ panic("trans iter oveflow\n"); ++ } ++ ++ ret = bch2_trans_realloc_iters(trans, trans->size * 2); ++ if (ret) ++ return ERR_PTR(ret); ++ } ++ ++ idx = trans->nr_iters++; ++ BUG_ON(trans->nr_iters > trans->size); ++ ++ trans->iters[idx].idx = idx; ++got_slot: ++ BUG_ON(trans->iters_linked & (1ULL << idx)); ++ trans->iters_linked |= 1ULL << idx; ++ trans->iters[idx].flags = 0; ++ return &trans->iters[idx]; ++} ++ ++static inline void btree_iter_copy(struct btree_iter *dst, ++ struct btree_iter *src) ++{ ++ unsigned i, idx = dst->idx; ++ ++ *dst = *src; ++ dst->idx = idx; ++ dst->flags &= ~BTREE_ITER_KEEP_UNTIL_COMMIT; ++ ++ for (i = 0; i < BTREE_MAX_DEPTH; i++) ++ if (btree_node_locked(dst, i)) ++ six_lock_increment(&dst->l[i].b->c.lock, ++ __btree_lock_want(dst, i)); ++ ++ dst->flags &= ~BTREE_ITER_KEEP_UNTIL_COMMIT; ++ dst->flags &= ~BTREE_ITER_SET_POS_AFTER_COMMIT; ++} ++ ++static inline struct bpos bpos_diff(struct bpos l, struct bpos r) ++{ ++ if (bkey_cmp(l, r) > 0) ++ swap(l, r); ++ ++ return POS(r.inode - l.inode, r.offset - l.offset); ++} ++ ++static struct btree_iter *__btree_trans_get_iter(struct btree_trans *trans, ++ unsigned btree_id, struct bpos pos, ++ unsigned flags) ++{ ++ struct btree_iter *iter, *best = NULL; ++ ++ BUG_ON(trans->nr_iters > BTREE_ITER_MAX); ++ ++ trans_for_each_iter(trans, iter) { ++ if (btree_iter_type(iter) != (flags & BTREE_ITER_TYPE)) ++ continue; ++ ++ if (iter->btree_id != btree_id) ++ continue; ++ ++ if (best && ++ bkey_cmp(bpos_diff(best->pos, pos), ++ bpos_diff(iter->pos, pos)) < 0) ++ continue; ++ ++ best = iter; ++ } ++ ++ if (!best) { ++ iter = btree_trans_iter_alloc(trans); ++ if (IS_ERR(iter)) ++ return iter; ++ ++ bch2_btree_iter_init(trans, iter, btree_id, pos, flags); ++ } else if ((trans->iters_live & (1ULL << best->idx)) || ++ (best->flags & BTREE_ITER_KEEP_UNTIL_COMMIT)) { ++ iter = btree_trans_iter_alloc(trans); ++ if (IS_ERR(iter)) ++ return iter; ++ ++ btree_iter_copy(iter, best); ++ } else { ++ iter = best; ++ } ++ ++ iter->flags &= ~BTREE_ITER_KEEP_UNTIL_COMMIT; ++ iter->flags &= ~BTREE_ITER_USER_FLAGS; ++ iter->flags |= flags & BTREE_ITER_USER_FLAGS; ++ ++ if (iter->flags & BTREE_ITER_INTENT) ++ bch2_btree_iter_upgrade(iter, 1); ++ else ++ bch2_btree_iter_downgrade(iter); ++ ++ BUG_ON(iter->btree_id != btree_id); ++ BUG_ON((iter->flags ^ flags) & BTREE_ITER_TYPE); ++ BUG_ON(iter->flags & BTREE_ITER_KEEP_UNTIL_COMMIT); ++ BUG_ON(iter->flags & BTREE_ITER_SET_POS_AFTER_COMMIT); ++ BUG_ON(trans->iters_live & (1ULL << iter->idx)); ++ ++ trans->iters_live |= 1ULL << iter->idx; ++ trans->iters_touched |= 1ULL << iter->idx; ++ ++ return iter; ++} ++ ++struct btree_iter *__bch2_trans_get_iter(struct btree_trans *trans, ++ enum btree_id btree_id, ++ struct bpos pos, unsigned flags) ++{ ++ struct btree_iter *iter = ++ __btree_trans_get_iter(trans, btree_id, pos, flags); ++ ++ if (!IS_ERR(iter)) ++ __bch2_btree_iter_set_pos(iter, pos, ++ btree_node_type_is_extents(btree_id)); ++ return iter; ++} ++ ++struct btree_iter *bch2_trans_get_node_iter(struct btree_trans *trans, ++ enum btree_id btree_id, ++ struct bpos pos, ++ unsigned locks_want, ++ unsigned depth, ++ unsigned flags) ++{ ++ struct btree_iter *iter = ++ __btree_trans_get_iter(trans, btree_id, pos, ++ flags|BTREE_ITER_NODES); ++ unsigned i; ++ ++ BUG_ON(IS_ERR(iter)); ++ BUG_ON(bkey_cmp(iter->pos, pos)); ++ ++ iter->locks_want = locks_want; ++ iter->level = depth; ++ iter->min_depth = depth; ++ ++ for (i = 0; i < ARRAY_SIZE(iter->l); i++) ++ iter->l[i].b = NULL; ++ iter->l[iter->level].b = BTREE_ITER_NO_NODE_INIT; ++ ++ return iter; ++} ++ ++struct btree_iter *__bch2_trans_copy_iter(struct btree_trans *trans, ++ struct btree_iter *src) ++{ ++ struct btree_iter *iter; ++ ++ iter = btree_trans_iter_alloc(trans); ++ if (IS_ERR(iter)) ++ return iter; ++ ++ btree_iter_copy(iter, src); ++ ++ trans->iters_live |= 1ULL << iter->idx; ++ /* ++ * We don't need to preserve this iter since it's cheap to copy it ++ * again - this will cause trans_iter_put() to free it right away: ++ */ ++ trans->iters_touched &= ~(1ULL << iter->idx); ++ ++ return iter; ++} ++ ++static int bch2_trans_preload_mem(struct btree_trans *trans, size_t size) ++{ ++ if (size > trans->mem_bytes) { ++ size_t old_bytes = trans->mem_bytes; ++ size_t new_bytes = roundup_pow_of_two(size); ++ void *new_mem = krealloc(trans->mem, new_bytes, GFP_NOFS); ++ ++ if (!new_mem) ++ return -ENOMEM; ++ ++ trans->mem = new_mem; ++ trans->mem_bytes = new_bytes; ++ ++ if (old_bytes) { ++ trace_trans_restart_mem_realloced(trans->ip, new_bytes); ++ return -EINTR; ++ } ++ } ++ ++ return 0; ++} ++ ++void *bch2_trans_kmalloc(struct btree_trans *trans, size_t size) ++{ ++ void *p; ++ int ret; ++ ++ ret = bch2_trans_preload_mem(trans, trans->mem_top + size); ++ if (ret) ++ return ERR_PTR(ret); ++ ++ p = trans->mem + trans->mem_top; ++ trans->mem_top += size; ++ return p; ++} ++ ++inline void bch2_trans_unlink_iters(struct btree_trans *trans) ++{ ++ u64 iters = trans->iters_linked & ++ ~trans->iters_touched & ++ ~trans->iters_live; ++ ++ while (iters) { ++ unsigned idx = __ffs64(iters); ++ ++ iters &= ~(1ULL << idx); ++ __bch2_trans_iter_free(trans, idx); ++ } ++} ++ ++void bch2_trans_reset(struct btree_trans *trans, unsigned flags) ++{ ++ struct btree_iter *iter; ++ ++ trans_for_each_iter(trans, iter) ++ iter->flags &= ~(BTREE_ITER_KEEP_UNTIL_COMMIT| ++ BTREE_ITER_SET_POS_AFTER_COMMIT); ++ ++ bch2_trans_unlink_iters(trans); ++ ++ trans->iters_touched &= trans->iters_live; ++ ++ trans->need_reset = 0; ++ trans->nr_updates = 0; ++ trans->nr_updates2 = 0; ++ trans->mem_top = 0; ++ ++ trans->extra_journal_entries = NULL; ++ trans->extra_journal_entry_u64s = 0; ++ ++ if (trans->fs_usage_deltas) { ++ trans->fs_usage_deltas->used = 0; ++ memset(&trans->fs_usage_deltas->memset_start, 0, ++ (void *) &trans->fs_usage_deltas->memset_end - ++ (void *) &trans->fs_usage_deltas->memset_start); ++ } ++ ++ if (!(flags & TRANS_RESET_NOTRAVERSE)) ++ bch2_btree_iter_traverse_all(trans); ++} ++ ++void bch2_trans_init(struct btree_trans *trans, struct bch_fs *c, ++ unsigned expected_nr_iters, ++ size_t expected_mem_bytes) ++{ ++ memset(trans, 0, offsetof(struct btree_trans, iters_onstack)); ++ ++ /* ++ * reallocating iterators currently completely breaks ++ * bch2_trans_iter_put(): ++ */ ++ expected_nr_iters = BTREE_ITER_MAX; ++ ++ trans->c = c; ++ trans->ip = _RET_IP_; ++ trans->size = ARRAY_SIZE(trans->iters_onstack); ++ trans->iters = trans->iters_onstack; ++ trans->updates = trans->updates_onstack; ++ trans->updates2 = trans->updates2_onstack; ++ trans->fs_usage_deltas = NULL; ++ ++ if (expected_nr_iters > trans->size) ++ bch2_trans_realloc_iters(trans, expected_nr_iters); ++ ++ if (expected_mem_bytes) ++ bch2_trans_preload_mem(trans, expected_mem_bytes); ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ trans->pid = current->pid; ++ mutex_lock(&c->btree_trans_lock); ++ list_add(&trans->list, &c->btree_trans_list); ++ mutex_unlock(&c->btree_trans_lock); ++#endif ++} ++ ++int bch2_trans_exit(struct btree_trans *trans) ++{ ++ bch2_trans_unlock(trans); ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ mutex_lock(&trans->c->btree_trans_lock); ++ list_del(&trans->list); ++ mutex_unlock(&trans->c->btree_trans_lock); ++#endif ++ ++ bch2_journal_preres_put(&trans->c->journal, &trans->journal_preres); ++ ++ kfree(trans->fs_usage_deltas); ++ kfree(trans->mem); ++ if (trans->used_mempool) ++ mempool_free(trans->iters, &trans->c->btree_iters_pool); ++ else if (trans->iters != trans->iters_onstack) ++ kfree(trans->iters); ++ trans->mem = (void *) 0x1; ++ trans->iters = (void *) 0x1; ++ ++ return trans->error ? -EIO : 0; ++} ++ ++static void bch2_btree_iter_node_to_text(struct printbuf *out, ++ struct btree_bkey_cached_common *_b, ++ enum btree_iter_type type) ++{ ++ pr_buf(out, " %px l=%u %s:", ++ _b, _b->level, bch2_btree_ids[_b->btree_id]); ++ bch2_bpos_to_text(out, btree_node_pos(_b, type)); ++} ++ ++void bch2_btree_trans_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ struct btree_trans *trans; ++ struct btree_iter *iter; ++ struct btree *b; ++ unsigned l; ++ ++ mutex_lock(&c->btree_trans_lock); ++ list_for_each_entry(trans, &c->btree_trans_list, list) { ++ pr_buf(out, "%i %px %ps\n", trans->pid, trans, (void *) trans->ip); ++ ++ trans_for_each_iter(trans, iter) { ++ if (!iter->nodes_locked) ++ continue; ++ ++ pr_buf(out, " iter %u %s:", ++ iter->idx, ++ bch2_btree_ids[iter->btree_id]); ++ bch2_bpos_to_text(out, iter->pos); ++ pr_buf(out, "\n"); ++ ++ for (l = 0; l < BTREE_MAX_DEPTH; l++) { ++ if (btree_node_locked(iter, l)) { ++ pr_buf(out, " %s l=%u ", ++ btree_node_intent_locked(iter, l) ? "i" : "r", l); ++ bch2_btree_iter_node_to_text(out, ++ (void *) iter->l[l].b, ++ btree_iter_type(iter)); ++ pr_buf(out, "\n"); ++ } ++ } ++ } ++ ++ b = READ_ONCE(trans->locking); ++ if (b) { ++ pr_buf(out, " locking iter %u l=%u %s:", ++ trans->locking_iter_idx, ++ trans->locking_level, ++ bch2_btree_ids[trans->locking_btree_id]); ++ bch2_bpos_to_text(out, trans->locking_pos); ++ ++ ++ pr_buf(out, " node "); ++ bch2_btree_iter_node_to_text(out, ++ (void *) b, ++ btree_iter_type(&trans->iters[trans->locking_iter_idx])); ++ pr_buf(out, "\n"); ++ } ++ } ++ mutex_unlock(&c->btree_trans_lock); ++#endif ++} ++ ++void bch2_fs_btree_iter_exit(struct bch_fs *c) ++{ ++ mempool_exit(&c->btree_iters_pool); ++} ++ ++int bch2_fs_btree_iter_init(struct bch_fs *c) ++{ ++ unsigned nr = BTREE_ITER_MAX; ++ ++ INIT_LIST_HEAD(&c->btree_trans_list); ++ mutex_init(&c->btree_trans_lock); ++ ++ return mempool_init_kmalloc_pool(&c->btree_iters_pool, 1, ++ sizeof(struct btree_iter) * nr + ++ sizeof(struct btree_insert_entry) * nr + ++ sizeof(struct btree_insert_entry) * nr); ++} +diff --git a/fs/bcachefs/btree_iter.h b/fs/bcachefs/btree_iter.h +new file mode 100644 +index 000000000000..bd9ec3ec9a92 +--- /dev/null ++++ b/fs/bcachefs/btree_iter.h +@@ -0,0 +1,314 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_ITER_H ++#define _BCACHEFS_BTREE_ITER_H ++ ++#include "bset.h" ++#include "btree_types.h" ++ ++static inline void btree_iter_set_dirty(struct btree_iter *iter, ++ enum btree_iter_uptodate u) ++{ ++ iter->uptodate = max_t(unsigned, iter->uptodate, u); ++} ++ ++static inline struct btree *btree_iter_node(struct btree_iter *iter, ++ unsigned level) ++{ ++ return level < BTREE_MAX_DEPTH ? iter->l[level].b : NULL; ++} ++ ++static inline bool btree_node_lock_seq_matches(const struct btree_iter *iter, ++ const struct btree *b, unsigned level) ++{ ++ /* ++ * We don't compare the low bits of the lock sequence numbers because ++ * @iter might have taken a write lock on @b, and we don't want to skip ++ * the linked iterator if the sequence numbers were equal before taking ++ * that write lock. The lock sequence number is incremented by taking ++ * and releasing write locks and is even when unlocked: ++ */ ++ return iter->l[level].lock_seq >> 1 == b->c.lock.state.seq >> 1; ++} ++ ++static inline struct btree *btree_node_parent(struct btree_iter *iter, ++ struct btree *b) ++{ ++ return btree_iter_node(iter, b->c.level + 1); ++} ++ ++static inline bool btree_trans_has_multiple_iters(const struct btree_trans *trans) ++{ ++ return hweight64(trans->iters_linked) > 1; ++} ++ ++static inline int btree_iter_err(const struct btree_iter *iter) ++{ ++ return iter->flags & BTREE_ITER_ERROR ? -EIO : 0; ++} ++ ++/* Iterate over iters within a transaction: */ ++ ++#define trans_for_each_iter_all(_trans, _iter) \ ++ for (_iter = (_trans)->iters; \ ++ _iter < (_trans)->iters + (_trans)->nr_iters; \ ++ _iter++) ++ ++static inline struct btree_iter * ++__trans_next_iter(struct btree_trans *trans, unsigned idx) ++{ ++ EBUG_ON(idx < trans->nr_iters && trans->iters[idx].idx != idx); ++ ++ for (; idx < trans->nr_iters; idx++) ++ if (trans->iters_linked & (1ULL << idx)) ++ return &trans->iters[idx]; ++ ++ return NULL; ++} ++ ++#define trans_for_each_iter(_trans, _iter) \ ++ for (_iter = __trans_next_iter((_trans), 0); \ ++ (_iter); \ ++ _iter = __trans_next_iter((_trans), (_iter)->idx + 1)) ++ ++static inline bool __iter_has_node(const struct btree_iter *iter, ++ const struct btree *b) ++{ ++ return iter->l[b->c.level].b == b && ++ btree_node_lock_seq_matches(iter, b, b->c.level); ++} ++ ++static inline struct btree_iter * ++__trans_next_iter_with_node(struct btree_trans *trans, struct btree *b, ++ unsigned idx) ++{ ++ struct btree_iter *iter = __trans_next_iter(trans, idx); ++ ++ while (iter && !__iter_has_node(iter, b)) ++ iter = __trans_next_iter(trans, iter->idx + 1); ++ ++ return iter; ++} ++ ++#define trans_for_each_iter_with_node(_trans, _b, _iter) \ ++ for (_iter = __trans_next_iter_with_node((_trans), (_b), 0); \ ++ (_iter); \ ++ _iter = __trans_next_iter_with_node((_trans), (_b), \ ++ (_iter)->idx + 1)) ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++void bch2_btree_trans_verify_iters(struct btree_trans *, struct btree *); ++void bch2_btree_trans_verify_locks(struct btree_trans *); ++#else ++static inline void bch2_btree_trans_verify_iters(struct btree_trans *trans, ++ struct btree *b) {} ++static inline void bch2_btree_trans_verify_locks(struct btree_trans *iter) {} ++#endif ++ ++void bch2_btree_iter_fix_key_modified(struct btree_iter *, struct btree *, ++ struct bkey_packed *); ++void bch2_btree_node_iter_fix(struct btree_iter *, struct btree *, ++ struct btree_node_iter *, struct bkey_packed *, ++ unsigned, unsigned); ++ ++bool bch2_btree_iter_relock(struct btree_iter *, bool); ++bool bch2_trans_relock(struct btree_trans *); ++void bch2_trans_unlock(struct btree_trans *); ++ ++bool __bch2_btree_iter_upgrade(struct btree_iter *, unsigned); ++bool __bch2_btree_iter_upgrade_nounlock(struct btree_iter *, unsigned); ++ ++static inline bool bch2_btree_iter_upgrade(struct btree_iter *iter, ++ unsigned new_locks_want) ++{ ++ new_locks_want = min(new_locks_want, BTREE_MAX_DEPTH); ++ ++ return iter->locks_want < new_locks_want ++ ? (!iter->trans->nounlock ++ ? __bch2_btree_iter_upgrade(iter, new_locks_want) ++ : __bch2_btree_iter_upgrade_nounlock(iter, new_locks_want)) ++ : iter->uptodate <= BTREE_ITER_NEED_PEEK; ++} ++ ++void __bch2_btree_iter_downgrade(struct btree_iter *, unsigned); ++ ++static inline void bch2_btree_iter_downgrade(struct btree_iter *iter) ++{ ++ if (iter->locks_want > (iter->flags & BTREE_ITER_INTENT) ? 1 : 0) ++ __bch2_btree_iter_downgrade(iter, 0); ++} ++ ++void bch2_trans_downgrade(struct btree_trans *); ++ ++void bch2_btree_iter_node_replace(struct btree_iter *, struct btree *); ++void bch2_btree_iter_node_drop(struct btree_iter *, struct btree *); ++ ++void bch2_btree_iter_reinit_node(struct btree_iter *, struct btree *); ++ ++int __must_check __bch2_btree_iter_traverse(struct btree_iter *); ++ ++static inline int __must_check ++bch2_btree_iter_traverse(struct btree_iter *iter) ++{ ++ return iter->uptodate >= BTREE_ITER_NEED_RELOCK ++ ? __bch2_btree_iter_traverse(iter) ++ : 0; ++} ++ ++int bch2_btree_iter_traverse_all(struct btree_trans *); ++ ++struct btree *bch2_btree_iter_peek_node(struct btree_iter *); ++struct btree *bch2_btree_iter_next_node(struct btree_iter *); ++ ++struct bkey_s_c bch2_btree_iter_peek(struct btree_iter *); ++struct bkey_s_c bch2_btree_iter_next(struct btree_iter *); ++ ++struct bkey_s_c bch2_btree_iter_peek_with_updates(struct btree_iter *); ++struct bkey_s_c bch2_btree_iter_next_with_updates(struct btree_iter *); ++ ++struct bkey_s_c bch2_btree_iter_peek_prev(struct btree_iter *); ++struct bkey_s_c bch2_btree_iter_prev(struct btree_iter *); ++ ++struct bkey_s_c bch2_btree_iter_peek_slot(struct btree_iter *); ++struct bkey_s_c bch2_btree_iter_next_slot(struct btree_iter *); ++ ++struct bkey_s_c bch2_btree_iter_peek_cached(struct btree_iter *); ++ ++void bch2_btree_iter_set_pos_same_leaf(struct btree_iter *, struct bpos); ++void __bch2_btree_iter_set_pos(struct btree_iter *, struct bpos, bool); ++void bch2_btree_iter_set_pos(struct btree_iter *, struct bpos); ++ ++static inline int btree_iter_cmp(const struct btree_iter *l, ++ const struct btree_iter *r) ++{ ++ return cmp_int(l->btree_id, r->btree_id) ?: ++ -cmp_int(btree_iter_type(l), btree_iter_type(r)) ?: ++ bkey_cmp(l->pos, r->pos); ++} ++ ++/* ++ * Unlocks before scheduling ++ * Note: does not revalidate iterator ++ */ ++static inline int bch2_trans_cond_resched(struct btree_trans *trans) ++{ ++ if (need_resched() || race_fault()) { ++ bch2_trans_unlock(trans); ++ schedule(); ++ return bch2_trans_relock(trans) ? 0 : -EINTR; ++ } else { ++ return 0; ++ } ++} ++ ++#define __for_each_btree_node(_trans, _iter, _btree_id, _start, \ ++ _locks_want, _depth, _flags, _b) \ ++ for (iter = bch2_trans_get_node_iter((_trans), (_btree_id), \ ++ _start, _locks_want, _depth, _flags), \ ++ _b = bch2_btree_iter_peek_node(_iter); \ ++ (_b); \ ++ (_b) = bch2_btree_iter_next_node(_iter)) ++ ++#define for_each_btree_node(_trans, _iter, _btree_id, _start, \ ++ _flags, _b) \ ++ __for_each_btree_node(_trans, _iter, _btree_id, _start, \ ++ 0, 0, _flags, _b) ++ ++static inline struct bkey_s_c __bch2_btree_iter_peek(struct btree_iter *iter, ++ unsigned flags) ++{ ++ if ((flags & BTREE_ITER_TYPE) == BTREE_ITER_CACHED) ++ return bch2_btree_iter_peek_cached(iter); ++ else ++ return flags & BTREE_ITER_SLOTS ++ ? bch2_btree_iter_peek_slot(iter) ++ : bch2_btree_iter_peek(iter); ++} ++ ++static inline struct bkey_s_c __bch2_btree_iter_next(struct btree_iter *iter, ++ unsigned flags) ++{ ++ return flags & BTREE_ITER_SLOTS ++ ? bch2_btree_iter_next_slot(iter) ++ : bch2_btree_iter_next(iter); ++} ++ ++static inline int bkey_err(struct bkey_s_c k) ++{ ++ return PTR_ERR_OR_ZERO(k.k); ++} ++ ++#define for_each_btree_key(_trans, _iter, _btree_id, \ ++ _start, _flags, _k, _ret) \ ++ for ((_ret) = PTR_ERR_OR_ZERO((_iter) = \ ++ bch2_trans_get_iter((_trans), (_btree_id), \ ++ (_start), (_flags))) ?: \ ++ PTR_ERR_OR_ZERO(((_k) = \ ++ __bch2_btree_iter_peek(_iter, _flags)).k); \ ++ !_ret && (_k).k; \ ++ (_ret) = PTR_ERR_OR_ZERO(((_k) = \ ++ __bch2_btree_iter_next(_iter, _flags)).k)) ++ ++#define for_each_btree_key_continue(_iter, _flags, _k, _ret) \ ++ for ((_k) = __bch2_btree_iter_peek(_iter, _flags); \ ++ !((_ret) = bkey_err(_k)) && (_k).k; \ ++ (_k) = __bch2_btree_iter_next(_iter, _flags)) ++ ++/* new multiple iterator interface: */ ++ ++int bch2_trans_iter_put(struct btree_trans *, struct btree_iter *); ++int bch2_trans_iter_free(struct btree_trans *, struct btree_iter *); ++ ++void bch2_trans_unlink_iters(struct btree_trans *); ++ ++struct btree_iter *__bch2_trans_get_iter(struct btree_trans *, enum btree_id, ++ struct bpos, unsigned); ++ ++static inline struct btree_iter * ++bch2_trans_get_iter(struct btree_trans *trans, enum btree_id btree_id, ++ struct bpos pos, unsigned flags) ++{ ++ struct btree_iter *iter = ++ __bch2_trans_get_iter(trans, btree_id, pos, flags); ++ ++ if (!IS_ERR(iter)) ++ iter->ip_allocated = _THIS_IP_; ++ return iter; ++} ++ ++struct btree_iter *__bch2_trans_copy_iter(struct btree_trans *, ++ struct btree_iter *); ++static inline struct btree_iter * ++bch2_trans_copy_iter(struct btree_trans *trans, struct btree_iter *src) ++{ ++ struct btree_iter *iter = ++ __bch2_trans_copy_iter(trans, src); ++ ++ if (!IS_ERR(iter)) ++ iter->ip_allocated = _THIS_IP_; ++ return iter; ++ ++} ++ ++struct btree_iter *bch2_trans_get_node_iter(struct btree_trans *, ++ enum btree_id, struct bpos, ++ unsigned, unsigned, unsigned); ++ ++#define TRANS_RESET_NOTRAVERSE (1 << 0) ++ ++void bch2_trans_reset(struct btree_trans *, unsigned); ++ ++static inline void bch2_trans_begin(struct btree_trans *trans) ++{ ++ return bch2_trans_reset(trans, 0); ++} ++ ++void *bch2_trans_kmalloc(struct btree_trans *, size_t); ++void bch2_trans_init(struct btree_trans *, struct bch_fs *, unsigned, size_t); ++int bch2_trans_exit(struct btree_trans *); ++ ++void bch2_btree_trans_to_text(struct printbuf *, struct bch_fs *); ++ ++void bch2_fs_btree_iter_exit(struct bch_fs *); ++int bch2_fs_btree_iter_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_BTREE_ITER_H */ +diff --git a/fs/bcachefs/btree_key_cache.c b/fs/bcachefs/btree_key_cache.c +new file mode 100644 +index 000000000000..61662750dfc0 +--- /dev/null ++++ b/fs/bcachefs/btree_key_cache.c +@@ -0,0 +1,519 @@ ++ ++#include "bcachefs.h" ++#include "btree_cache.h" ++#include "btree_iter.h" ++#include "btree_key_cache.h" ++#include "btree_locking.h" ++#include "btree_update.h" ++#include "error.h" ++#include "journal.h" ++#include "journal_reclaim.h" ++ ++#include ++ ++static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg, ++ const void *obj) ++{ ++ const struct bkey_cached *ck = obj; ++ const struct bkey_cached_key *key = arg->key; ++ ++ return cmp_int(ck->key.btree_id, key->btree_id) ?: ++ bkey_cmp(ck->key.pos, key->pos); ++} ++ ++static const struct rhashtable_params bch2_btree_key_cache_params = { ++ .head_offset = offsetof(struct bkey_cached, hash), ++ .key_offset = offsetof(struct bkey_cached, key), ++ .key_len = sizeof(struct bkey_cached_key), ++ .obj_cmpfn = bch2_btree_key_cache_cmp_fn, ++}; ++ ++__flatten ++static inline struct bkey_cached * ++btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos) ++{ ++ struct bkey_cached_key key = { ++ .btree_id = btree_id, ++ .pos = pos, ++ }; ++ ++ return rhashtable_lookup_fast(&c->btree_key_cache.table, &key, ++ bch2_btree_key_cache_params); ++} ++ ++static bool bkey_cached_lock_for_evict(struct bkey_cached *ck) ++{ ++ if (!six_trylock_intent(&ck->c.lock)) ++ return false; ++ ++ if (!six_trylock_write(&ck->c.lock)) { ++ six_unlock_intent(&ck->c.lock); ++ return false; ++ } ++ ++ if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { ++ six_unlock_write(&ck->c.lock); ++ six_unlock_intent(&ck->c.lock); ++ return false; ++ } ++ ++ return true; ++} ++ ++static void bkey_cached_evict(struct btree_key_cache *c, ++ struct bkey_cached *ck) ++{ ++ BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash, ++ bch2_btree_key_cache_params)); ++ memset(&ck->key, ~0, sizeof(ck->key)); ++} ++ ++static void bkey_cached_free(struct btree_key_cache *c, ++ struct bkey_cached *ck) ++{ ++ list_move(&ck->list, &c->freed); ++ ++ kfree(ck->k); ++ ck->k = NULL; ++ ck->u64s = 0; ++ ++ six_unlock_write(&ck->c.lock); ++ six_unlock_intent(&ck->c.lock); ++} ++ ++static struct bkey_cached * ++bkey_cached_alloc(struct btree_key_cache *c) ++{ ++ struct bkey_cached *ck; ++ ++ list_for_each_entry(ck, &c->freed, list) ++ if (bkey_cached_lock_for_evict(ck)) ++ return ck; ++ ++ list_for_each_entry(ck, &c->clean, list) ++ if (bkey_cached_lock_for_evict(ck)) { ++ bkey_cached_evict(c, ck); ++ return ck; ++ } ++ ++ ck = kzalloc(sizeof(*ck), GFP_NOFS); ++ if (!ck) ++ return NULL; ++ ++ INIT_LIST_HEAD(&ck->list); ++ six_lock_init(&ck->c.lock); ++ BUG_ON(!six_trylock_intent(&ck->c.lock)); ++ BUG_ON(!six_trylock_write(&ck->c.lock)); ++ ++ return ck; ++} ++ ++static struct bkey_cached * ++btree_key_cache_create(struct btree_key_cache *c, ++ enum btree_id btree_id, ++ struct bpos pos) ++{ ++ struct bkey_cached *ck; ++ ++ ck = bkey_cached_alloc(c); ++ if (!ck) ++ return ERR_PTR(-ENOMEM); ++ ++ ck->c.level = 0; ++ ck->c.btree_id = btree_id; ++ ck->key.btree_id = btree_id; ++ ck->key.pos = pos; ++ ck->valid = false; ++ ++ BUG_ON(ck->flags); ++ ++ if (rhashtable_lookup_insert_fast(&c->table, ++ &ck->hash, ++ bch2_btree_key_cache_params)) { ++ /* We raced with another fill: */ ++ bkey_cached_free(c, ck); ++ return NULL; ++ } ++ ++ list_move(&ck->list, &c->clean); ++ six_unlock_write(&ck->c.lock); ++ ++ return ck; ++} ++ ++static int btree_key_cache_fill(struct btree_trans *trans, ++ struct btree_iter *ck_iter, ++ struct bkey_cached *ck) ++{ ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ unsigned new_u64s = 0; ++ struct bkey_i *new_k = NULL; ++ int ret; ++ ++ iter = bch2_trans_get_iter(trans, ck->key.btree_id, ++ ck->key.pos, BTREE_ITER_SLOTS); ++ if (IS_ERR(iter)) ++ return PTR_ERR(iter); ++ ++ k = bch2_btree_iter_peek_slot(iter); ++ ret = bkey_err(k); ++ if (ret) { ++ bch2_trans_iter_put(trans, iter); ++ return ret; ++ } ++ ++ if (!bch2_btree_node_relock(ck_iter, 0)) { ++ bch2_trans_iter_put(trans, iter); ++ trace_transaction_restart_ip(trans->ip, _THIS_IP_); ++ return -EINTR; ++ } ++ ++ if (k.k->u64s > ck->u64s) { ++ new_u64s = roundup_pow_of_two(k.k->u64s); ++ new_k = kmalloc(new_u64s * sizeof(u64), GFP_NOFS); ++ if (!new_k) { ++ bch2_trans_iter_put(trans, iter); ++ return -ENOMEM; ++ } ++ } ++ ++ bch2_btree_node_lock_write(ck_iter->l[0].b, ck_iter); ++ if (new_k) { ++ kfree(ck->k); ++ ck->u64s = new_u64s; ++ ck->k = new_k; ++ } ++ ++ bkey_reassemble(ck->k, k); ++ ck->valid = true; ++ bch2_btree_node_unlock_write(ck_iter->l[0].b, ck_iter); ++ ++ /* We're not likely to need this iterator again: */ ++ bch2_trans_iter_free(trans, iter); ++ ++ return 0; ++} ++ ++static int bkey_cached_check_fn(struct six_lock *lock, void *p) ++{ ++ struct bkey_cached *ck = container_of(lock, struct bkey_cached, c.lock); ++ const struct btree_iter *iter = p; ++ ++ return ck->key.btree_id == iter->btree_id && ++ !bkey_cmp(ck->key.pos, iter->pos) ? 0 : -1; ++} ++ ++int bch2_btree_iter_traverse_cached(struct btree_iter *iter) ++{ ++ struct btree_trans *trans = iter->trans; ++ struct bch_fs *c = trans->c; ++ struct bkey_cached *ck; ++ int ret = 0; ++ ++ BUG_ON(iter->level); ++ ++ if (btree_node_locked(iter, 0)) { ++ ck = (void *) iter->l[0].b; ++ goto fill; ++ } ++retry: ++ ck = btree_key_cache_find(c, iter->btree_id, iter->pos); ++ if (!ck) { ++ if (iter->flags & BTREE_ITER_CACHED_NOCREATE) { ++ iter->l[0].b = NULL; ++ return 0; ++ } ++ ++ mutex_lock(&c->btree_key_cache.lock); ++ ck = btree_key_cache_create(&c->btree_key_cache, ++ iter->btree_id, iter->pos); ++ mutex_unlock(&c->btree_key_cache.lock); ++ ++ ret = PTR_ERR_OR_ZERO(ck); ++ if (ret) ++ goto err; ++ if (!ck) ++ goto retry; ++ ++ mark_btree_node_locked(iter, 0, SIX_LOCK_intent); ++ iter->locks_want = 1; ++ } else { ++ enum six_lock_type lock_want = __btree_lock_want(iter, 0); ++ ++ if (!btree_node_lock((void *) ck, iter->pos, 0, iter, lock_want, ++ bkey_cached_check_fn, iter)) { ++ if (ck->key.btree_id != iter->btree_id || ++ bkey_cmp(ck->key.pos, iter->pos)) { ++ goto retry; ++ } ++ ++ trace_transaction_restart_ip(trans->ip, _THIS_IP_); ++ ret = -EINTR; ++ goto err; ++ } ++ ++ if (ck->key.btree_id != iter->btree_id || ++ bkey_cmp(ck->key.pos, iter->pos)) { ++ six_unlock_type(&ck->c.lock, lock_want); ++ goto retry; ++ } ++ ++ mark_btree_node_locked(iter, 0, lock_want); ++ } ++ ++ iter->l[0].lock_seq = ck->c.lock.state.seq; ++ iter->l[0].b = (void *) ck; ++fill: ++ if (!ck->valid && !(iter->flags & BTREE_ITER_CACHED_NOFILL)) { ++ if (!btree_node_intent_locked(iter, 0)) ++ bch2_btree_iter_upgrade(iter, 1); ++ if (!btree_node_intent_locked(iter, 0)) { ++ trace_transaction_restart_ip(trans->ip, _THIS_IP_); ++ ret = -EINTR; ++ goto err; ++ } ++ ++ ret = btree_key_cache_fill(trans, iter, ck); ++ if (ret) ++ goto err; ++ } ++ ++ iter->uptodate = BTREE_ITER_NEED_PEEK; ++ bch2_btree_iter_downgrade(iter); ++ return ret; ++err: ++ if (ret != -EINTR) { ++ btree_node_unlock(iter, 0); ++ iter->flags |= BTREE_ITER_ERROR; ++ iter->l[0].b = BTREE_ITER_NO_NODE_ERROR; ++ } ++ return ret; ++} ++ ++static int btree_key_cache_flush_pos(struct btree_trans *trans, ++ struct bkey_cached_key key, ++ u64 journal_seq, ++ bool evict) ++{ ++ struct bch_fs *c = trans->c; ++ struct journal *j = &c->journal; ++ struct btree_iter *c_iter = NULL, *b_iter = NULL; ++ struct bkey_cached *ck; ++ int ret; ++ ++ b_iter = bch2_trans_get_iter(trans, key.btree_id, key.pos, ++ BTREE_ITER_SLOTS| ++ BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(b_iter); ++ if (ret) ++ goto out; ++ ++ c_iter = bch2_trans_get_iter(trans, key.btree_id, key.pos, ++ BTREE_ITER_CACHED| ++ BTREE_ITER_CACHED_NOFILL| ++ BTREE_ITER_CACHED_NOCREATE| ++ BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(c_iter); ++ if (ret) ++ goto out; ++retry: ++ ret = bch2_btree_iter_traverse(c_iter); ++ if (ret) ++ goto err; ++ ++ ck = (void *) c_iter->l[0].b; ++ if (!ck || ++ (journal_seq && ck->journal.seq != journal_seq)) ++ goto out; ++ ++ if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { ++ if (!evict) ++ goto out; ++ goto evict; ++ } ++ ++ ret = bch2_btree_iter_traverse(b_iter) ?: ++ bch2_trans_update(trans, b_iter, ck->k, BTREE_TRIGGER_NORUN) ?: ++ bch2_trans_commit(trans, NULL, NULL, ++ BTREE_INSERT_NOUNLOCK| ++ BTREE_INSERT_NOCHECK_RW| ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_USE_RESERVE| ++ BTREE_INSERT_USE_ALLOC_RESERVE| ++ BTREE_INSERT_JOURNAL_RESERVED| ++ BTREE_INSERT_JOURNAL_RECLAIM); ++err: ++ if (ret == -EINTR) ++ goto retry; ++ ++ BUG_ON(ret && !bch2_journal_error(j)); ++ ++ if (ret) ++ goto out; ++ ++ bch2_journal_pin_drop(j, &ck->journal); ++ bch2_journal_preres_put(j, &ck->res); ++ clear_bit(BKEY_CACHED_DIRTY, &ck->flags); ++ ++ if (!evict) { ++ mutex_lock(&c->btree_key_cache.lock); ++ list_move_tail(&ck->list, &c->btree_key_cache.clean); ++ mutex_unlock(&c->btree_key_cache.lock); ++ } else { ++evict: ++ BUG_ON(!btree_node_intent_locked(c_iter, 0)); ++ ++ mark_btree_node_unlocked(c_iter, 0); ++ c_iter->l[0].b = NULL; ++ ++ six_lock_write(&ck->c.lock, NULL, NULL); ++ ++ mutex_lock(&c->btree_key_cache.lock); ++ bkey_cached_evict(&c->btree_key_cache, ck); ++ bkey_cached_free(&c->btree_key_cache, ck); ++ mutex_unlock(&c->btree_key_cache.lock); ++ } ++out: ++ bch2_trans_iter_put(trans, b_iter); ++ bch2_trans_iter_put(trans, c_iter); ++ return ret; ++} ++ ++static void btree_key_cache_journal_flush(struct journal *j, ++ struct journal_entry_pin *pin, ++ u64 seq) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct bkey_cached *ck = ++ container_of(pin, struct bkey_cached, journal); ++ struct bkey_cached_key key; ++ struct btree_trans trans; ++ ++ six_lock_read(&ck->c.lock, NULL, NULL); ++ key = ck->key; ++ ++ if (ck->journal.seq != seq || ++ !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { ++ six_unlock_read(&ck->c.lock); ++ return; ++ } ++ six_unlock_read(&ck->c.lock); ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ btree_key_cache_flush_pos(&trans, key, seq, false); ++ bch2_trans_exit(&trans); ++} ++ ++/* ++ * Flush and evict a key from the key cache: ++ */ ++int bch2_btree_key_cache_flush(struct btree_trans *trans, ++ enum btree_id id, struct bpos pos) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_cached_key key = { id, pos }; ++ ++ /* Fastpath - assume it won't be found: */ ++ if (!btree_key_cache_find(c, id, pos)) ++ return 0; ++ ++ return btree_key_cache_flush_pos(trans, key, 0, true); ++} ++ ++bool bch2_btree_insert_key_cached(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_i *insert) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_cached *ck = (void *) iter->l[0].b; ++ ++ BUG_ON(insert->u64s > ck->u64s); ++ ++ if (likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))) { ++ int difference; ++ ++ BUG_ON(jset_u64s(insert->u64s) > trans->journal_preres.u64s); ++ ++ difference = jset_u64s(insert->u64s) - ck->res.u64s; ++ if (difference > 0) { ++ trans->journal_preres.u64s -= difference; ++ ck->res.u64s += difference; ++ } ++ } ++ ++ bkey_copy(ck->k, insert); ++ ck->valid = true; ++ ++ if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { ++ mutex_lock(&c->btree_key_cache.lock); ++ list_del_init(&ck->list); ++ ++ set_bit(BKEY_CACHED_DIRTY, &ck->flags); ++ mutex_unlock(&c->btree_key_cache.lock); ++ } ++ ++ bch2_journal_pin_update(&c->journal, trans->journal_res.seq, ++ &ck->journal, btree_key_cache_journal_flush); ++ return true; ++} ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++void bch2_btree_key_cache_verify_clean(struct btree_trans *trans, ++ enum btree_id id, struct bpos pos) ++{ ++ BUG_ON(btree_key_cache_find(trans->c, id, pos)); ++} ++#endif ++ ++void bch2_fs_btree_key_cache_exit(struct btree_key_cache *c) ++{ ++ struct bkey_cached *ck, *n; ++ ++ mutex_lock(&c->lock); ++ list_for_each_entry_safe(ck, n, &c->clean, list) { ++ kfree(ck->k); ++ kfree(ck); ++ } ++ list_for_each_entry_safe(ck, n, &c->freed, list) ++ kfree(ck); ++ mutex_unlock(&c->lock); ++ ++ rhashtable_destroy(&c->table); ++} ++ ++void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c) ++{ ++ mutex_init(&c->lock); ++ INIT_LIST_HEAD(&c->freed); ++ INIT_LIST_HEAD(&c->clean); ++} ++ ++int bch2_fs_btree_key_cache_init(struct btree_key_cache *c) ++{ ++ return rhashtable_init(&c->table, &bch2_btree_key_cache_params); ++} ++ ++void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *c) ++{ ++ struct bucket_table *tbl; ++ struct bkey_cached *ck; ++ struct rhash_head *pos; ++ size_t i; ++ ++ mutex_lock(&c->lock); ++ tbl = rht_dereference_rcu(c->table.tbl, &c->table); ++ ++ for (i = 0; i < tbl->size; i++) { ++ rht_for_each_entry_rcu(ck, pos, tbl, i, hash) { ++ pr_buf(out, "%s:", ++ bch2_btree_ids[ck->key.btree_id]); ++ bch2_bpos_to_text(out, ck->key.pos); ++ ++ if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) ++ pr_buf(out, " journal seq %llu", ck->journal.seq); ++ pr_buf(out, "\n"); ++ } ++ } ++ mutex_unlock(&c->lock); ++} +diff --git a/fs/bcachefs/btree_key_cache.h b/fs/bcachefs/btree_key_cache.h +new file mode 100644 +index 000000000000..b1756c6c622c +--- /dev/null ++++ b/fs/bcachefs/btree_key_cache.h +@@ -0,0 +1,25 @@ ++#ifndef _BCACHEFS_BTREE_KEY_CACHE_H ++#define _BCACHEFS_BTREE_KEY_CACHE_H ++ ++int bch2_btree_iter_traverse_cached(struct btree_iter *); ++ ++bool bch2_btree_insert_key_cached(struct btree_trans *, ++ struct btree_iter *, struct bkey_i *); ++int bch2_btree_key_cache_flush(struct btree_trans *, ++ enum btree_id, struct bpos); ++#ifdef CONFIG_BCACHEFS_DEBUG ++void bch2_btree_key_cache_verify_clean(struct btree_trans *, ++ enum btree_id, struct bpos); ++#else ++static inline void ++bch2_btree_key_cache_verify_clean(struct btree_trans *trans, ++ enum btree_id id, struct bpos pos) {} ++#endif ++ ++void bch2_fs_btree_key_cache_exit(struct btree_key_cache *); ++void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *); ++int bch2_fs_btree_key_cache_init(struct btree_key_cache *); ++ ++void bch2_btree_key_cache_to_text(struct printbuf *, struct btree_key_cache *); ++ ++#endif /* _BCACHEFS_BTREE_KEY_CACHE_H */ +diff --git a/fs/bcachefs/btree_locking.h b/fs/bcachefs/btree_locking.h +new file mode 100644 +index 000000000000..81fbf3e18647 +--- /dev/null ++++ b/fs/bcachefs/btree_locking.h +@@ -0,0 +1,257 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_LOCKING_H ++#define _BCACHEFS_BTREE_LOCKING_H ++ ++/* ++ * Only for internal btree use: ++ * ++ * The btree iterator tracks what locks it wants to take, and what locks it ++ * currently has - here we have wrappers for locking/unlocking btree nodes and ++ * updating the iterator state ++ */ ++ ++#include ++ ++#include "btree_iter.h" ++ ++/* matches six lock types */ ++enum btree_node_locked_type { ++ BTREE_NODE_UNLOCKED = -1, ++ BTREE_NODE_READ_LOCKED = SIX_LOCK_read, ++ BTREE_NODE_INTENT_LOCKED = SIX_LOCK_intent, ++}; ++ ++static inline int btree_node_locked_type(struct btree_iter *iter, ++ unsigned level) ++{ ++ /* ++ * We're relying on the fact that if nodes_intent_locked is set ++ * nodes_locked must be set as well, so that we can compute without ++ * branches: ++ */ ++ return BTREE_NODE_UNLOCKED + ++ ((iter->nodes_locked >> level) & 1) + ++ ((iter->nodes_intent_locked >> level) & 1); ++} ++ ++static inline bool btree_node_intent_locked(struct btree_iter *iter, ++ unsigned level) ++{ ++ return btree_node_locked_type(iter, level) == BTREE_NODE_INTENT_LOCKED; ++} ++ ++static inline bool btree_node_read_locked(struct btree_iter *iter, ++ unsigned level) ++{ ++ return btree_node_locked_type(iter, level) == BTREE_NODE_READ_LOCKED; ++} ++ ++static inline bool btree_node_locked(struct btree_iter *iter, unsigned level) ++{ ++ return iter->nodes_locked & (1 << level); ++} ++ ++static inline void mark_btree_node_unlocked(struct btree_iter *iter, ++ unsigned level) ++{ ++ iter->nodes_locked &= ~(1 << level); ++ iter->nodes_intent_locked &= ~(1 << level); ++} ++ ++static inline void mark_btree_node_locked(struct btree_iter *iter, ++ unsigned level, ++ enum six_lock_type type) ++{ ++ /* relying on this to avoid a branch */ ++ BUILD_BUG_ON(SIX_LOCK_read != 0); ++ BUILD_BUG_ON(SIX_LOCK_intent != 1); ++ ++ iter->nodes_locked |= 1 << level; ++ iter->nodes_intent_locked |= type << level; ++} ++ ++static inline void mark_btree_node_intent_locked(struct btree_iter *iter, ++ unsigned level) ++{ ++ mark_btree_node_locked(iter, level, SIX_LOCK_intent); ++} ++ ++static inline enum six_lock_type __btree_lock_want(struct btree_iter *iter, int level) ++{ ++ return level < iter->locks_want ++ ? SIX_LOCK_intent ++ : SIX_LOCK_read; ++} ++ ++static inline enum btree_node_locked_type ++btree_lock_want(struct btree_iter *iter, int level) ++{ ++ if (level < iter->level) ++ return BTREE_NODE_UNLOCKED; ++ if (level < iter->locks_want) ++ return BTREE_NODE_INTENT_LOCKED; ++ if (level == iter->level) ++ return BTREE_NODE_READ_LOCKED; ++ return BTREE_NODE_UNLOCKED; ++} ++ ++static inline void __btree_node_unlock(struct btree_iter *iter, unsigned level) ++{ ++ int lock_type = btree_node_locked_type(iter, level); ++ ++ EBUG_ON(level >= BTREE_MAX_DEPTH); ++ ++ if (lock_type != BTREE_NODE_UNLOCKED) ++ six_unlock_type(&iter->l[level].b->c.lock, lock_type); ++ mark_btree_node_unlocked(iter, level); ++} ++ ++static inline void btree_node_unlock(struct btree_iter *iter, unsigned level) ++{ ++ EBUG_ON(!level && iter->trans->nounlock); ++ ++ __btree_node_unlock(iter, level); ++} ++ ++static inline void __bch2_btree_iter_unlock(struct btree_iter *iter) ++{ ++ btree_iter_set_dirty(iter, BTREE_ITER_NEED_RELOCK); ++ ++ while (iter->nodes_locked) ++ btree_node_unlock(iter, __ffs(iter->nodes_locked)); ++} ++ ++static inline enum bch_time_stats lock_to_time_stat(enum six_lock_type type) ++{ ++ switch (type) { ++ case SIX_LOCK_read: ++ return BCH_TIME_btree_lock_contended_read; ++ case SIX_LOCK_intent: ++ return BCH_TIME_btree_lock_contended_intent; ++ case SIX_LOCK_write: ++ return BCH_TIME_btree_lock_contended_write; ++ default: ++ BUG(); ++ } ++} ++ ++/* ++ * wrapper around six locks that just traces lock contended time ++ */ ++static inline void __btree_node_lock_type(struct bch_fs *c, struct btree *b, ++ enum six_lock_type type) ++{ ++ u64 start_time = local_clock(); ++ ++ six_lock_type(&b->c.lock, type, NULL, NULL); ++ bch2_time_stats_update(&c->times[lock_to_time_stat(type)], start_time); ++} ++ ++static inline void btree_node_lock_type(struct bch_fs *c, struct btree *b, ++ enum six_lock_type type) ++{ ++ if (!six_trylock_type(&b->c.lock, type)) ++ __btree_node_lock_type(c, b, type); ++} ++ ++/* ++ * Lock a btree node if we already have it locked on one of our linked ++ * iterators: ++ */ ++static inline bool btree_node_lock_increment(struct btree_trans *trans, ++ struct btree *b, unsigned level, ++ enum btree_node_locked_type want) ++{ ++ struct btree_iter *iter; ++ ++ trans_for_each_iter(trans, iter) ++ if (iter->l[level].b == b && ++ btree_node_locked_type(iter, level) >= want) { ++ six_lock_increment(&b->c.lock, want); ++ return true; ++ } ++ ++ return false; ++} ++ ++bool __bch2_btree_node_lock(struct btree *, struct bpos, unsigned, ++ struct btree_iter *, enum six_lock_type, ++ six_lock_should_sleep_fn, void *); ++ ++static inline bool btree_node_lock(struct btree *b, ++ struct bpos pos, unsigned level, ++ struct btree_iter *iter, ++ enum six_lock_type type, ++ six_lock_should_sleep_fn should_sleep_fn, void *p) ++{ ++ struct btree_trans *trans = iter->trans; ++ bool ret; ++ ++ EBUG_ON(level >= BTREE_MAX_DEPTH); ++ EBUG_ON(!(trans->iters_linked & (1ULL << iter->idx))); ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ trans->locking = b; ++ trans->locking_iter_idx = iter->idx; ++ trans->locking_pos = pos; ++ trans->locking_btree_id = iter->btree_id; ++ trans->locking_level = level; ++#endif ++ ret = likely(six_trylock_type(&b->c.lock, type)) || ++ btree_node_lock_increment(trans, b, level, type) || ++ __bch2_btree_node_lock(b, pos, level, iter, type, ++ should_sleep_fn, p); ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ trans->locking = NULL; ++#endif ++ return ret; ++} ++ ++bool __bch2_btree_node_relock(struct btree_iter *, unsigned); ++ ++static inline bool bch2_btree_node_relock(struct btree_iter *iter, ++ unsigned level) ++{ ++ EBUG_ON(btree_node_locked(iter, level) && ++ btree_node_locked_type(iter, level) != ++ __btree_lock_want(iter, level)); ++ ++ return likely(btree_node_locked(iter, level)) || ++ __bch2_btree_node_relock(iter, level); ++} ++ ++/* ++ * Updates the saved lock sequence number, so that bch2_btree_node_relock() will ++ * succeed: ++ */ ++static inline void ++bch2_btree_node_unlock_write_inlined(struct btree *b, struct btree_iter *iter) ++{ ++ struct btree_iter *linked; ++ ++ EBUG_ON(iter->l[b->c.level].b != b); ++ EBUG_ON(iter->l[b->c.level].lock_seq + 1 != b->c.lock.state.seq); ++ ++ trans_for_each_iter_with_node(iter->trans, b, linked) ++ linked->l[b->c.level].lock_seq += 2; ++ ++ six_unlock_write(&b->c.lock); ++} ++ ++void bch2_btree_node_unlock_write(struct btree *, struct btree_iter *); ++ ++void __bch2_btree_node_lock_write(struct btree *, struct btree_iter *); ++ ++static inline void bch2_btree_node_lock_write(struct btree *b, struct btree_iter *iter) ++{ ++ EBUG_ON(iter->l[b->c.level].b != b); ++ EBUG_ON(iter->l[b->c.level].lock_seq != b->c.lock.state.seq); ++ ++ if (unlikely(!six_trylock_write(&b->c.lock))) ++ __bch2_btree_node_lock_write(b, iter); ++} ++ ++#endif /* _BCACHEFS_BTREE_LOCKING_H */ ++ ++ +diff --git a/fs/bcachefs/btree_types.h b/fs/bcachefs/btree_types.h +new file mode 100644 +index 000000000000..cc01baeec138 +--- /dev/null ++++ b/fs/bcachefs/btree_types.h +@@ -0,0 +1,663 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_TYPES_H ++#define _BCACHEFS_BTREE_TYPES_H ++ ++#include ++#include ++#include ++ ++#include "bkey_methods.h" ++#include "buckets_types.h" ++#include "journal_types.h" ++ ++struct open_bucket; ++struct btree_update; ++struct btree_trans; ++ ++#define MAX_BSETS 3U ++ ++struct btree_nr_keys { ++ ++ /* ++ * Amount of live metadata (i.e. size of node after a compaction) in ++ * units of u64s ++ */ ++ u16 live_u64s; ++ u16 bset_u64s[MAX_BSETS]; ++ ++ /* live keys only: */ ++ u16 packed_keys; ++ u16 unpacked_keys; ++}; ++ ++struct bset_tree { ++ /* ++ * We construct a binary tree in an array as if the array ++ * started at 1, so that things line up on the same cachelines ++ * better: see comments in bset.c at cacheline_to_bkey() for ++ * details ++ */ ++ ++ /* size of the binary tree and prev array */ ++ u16 size; ++ ++ /* function of size - precalculated for to_inorder() */ ++ u16 extra; ++ ++ u16 data_offset; ++ u16 aux_data_offset; ++ u16 end_offset; ++ ++ struct bpos max_key; ++}; ++ ++struct btree_write { ++ struct journal_entry_pin journal; ++}; ++ ++struct btree_alloc { ++ struct open_buckets ob; ++ BKEY_PADDED(k); ++}; ++ ++struct btree_bkey_cached_common { ++ struct six_lock lock; ++ u8 level; ++ u8 btree_id; ++}; ++ ++struct btree { ++ struct btree_bkey_cached_common c; ++ ++ struct rhash_head hash; ++ u64 hash_val; ++ ++ unsigned long flags; ++ u16 written; ++ u8 nsets; ++ u8 nr_key_bits; ++ ++ struct bkey_format format; ++ ++ struct btree_node *data; ++ void *aux_data; ++ ++ /* ++ * Sets of sorted keys - the real btree node - plus a binary search tree ++ * ++ * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point ++ * to the memory we have allocated for this btree node. Additionally, ++ * set[0]->data points to the entire btree node as it exists on disk. ++ */ ++ struct bset_tree set[MAX_BSETS]; ++ ++ struct btree_nr_keys nr; ++ u16 sib_u64s[2]; ++ u16 whiteout_u64s; ++ u8 byte_order; ++ u8 unpack_fn_len; ++ ++ /* ++ * XXX: add a delete sequence number, so when bch2_btree_node_relock() ++ * fails because the lock sequence number has changed - i.e. the ++ * contents were modified - we can still relock the node if it's still ++ * the one we want, without redoing the traversal ++ */ ++ ++ /* ++ * For asynchronous splits/interior node updates: ++ * When we do a split, we allocate new child nodes and update the parent ++ * node to point to them: we update the parent in memory immediately, ++ * but then we must wait until the children have been written out before ++ * the update to the parent can be written - this is a list of the ++ * btree_updates that are blocking this node from being ++ * written: ++ */ ++ struct list_head write_blocked; ++ ++ /* ++ * Also for asynchronous splits/interior node updates: ++ * If a btree node isn't reachable yet, we don't want to kick off ++ * another write - because that write also won't yet be reachable and ++ * marking it as completed before it's reachable would be incorrect: ++ */ ++ unsigned long will_make_reachable; ++ ++ struct open_buckets ob; ++ ++ /* lru list */ ++ struct list_head list; ++ ++ struct btree_write writes[2]; ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ bool *expensive_debug_checks; ++#endif ++ ++ /* Key/pointer for this btree node */ ++ __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX); ++}; ++ ++struct btree_cache { ++ struct rhashtable table; ++ bool table_init_done; ++ /* ++ * We never free a struct btree, except on shutdown - we just put it on ++ * the btree_cache_freed list and reuse it later. This simplifies the ++ * code, and it doesn't cost us much memory as the memory usage is ++ * dominated by buffers that hold the actual btree node data and those ++ * can be freed - and the number of struct btrees allocated is ++ * effectively bounded. ++ * ++ * btree_cache_freeable effectively is a small cache - we use it because ++ * high order page allocations can be rather expensive, and it's quite ++ * common to delete and allocate btree nodes in quick succession. It ++ * should never grow past ~2-3 nodes in practice. ++ */ ++ struct mutex lock; ++ struct list_head live; ++ struct list_head freeable; ++ struct list_head freed; ++ ++ /* Number of elements in live + freeable lists */ ++ unsigned used; ++ unsigned reserve; ++ struct shrinker shrink; ++ ++ /* ++ * If we need to allocate memory for a new btree node and that ++ * allocation fails, we can cannibalize another node in the btree cache ++ * to satisfy the allocation - lock to guarantee only one thread does ++ * this at a time: ++ */ ++ struct task_struct *alloc_lock; ++ struct closure_waitlist alloc_wait; ++}; ++ ++struct btree_node_iter { ++ struct btree_node_iter_set { ++ u16 k, end; ++ } data[MAX_BSETS]; ++}; ++ ++enum btree_iter_type { ++ BTREE_ITER_KEYS, ++ BTREE_ITER_NODES, ++ BTREE_ITER_CACHED, ++}; ++ ++#define BTREE_ITER_TYPE ((1 << 2) - 1) ++ ++/* ++ * Iterate over all possible positions, synthesizing deleted keys for holes: ++ */ ++#define BTREE_ITER_SLOTS (1 << 2) ++/* ++ * Indicates that intent locks should be taken on leaf nodes, because we expect ++ * to be doing updates: ++ */ ++#define BTREE_ITER_INTENT (1 << 3) ++/* ++ * Causes the btree iterator code to prefetch additional btree nodes from disk: ++ */ ++#define BTREE_ITER_PREFETCH (1 << 4) ++/* ++ * Indicates that this iterator should not be reused until transaction commit, ++ * either because a pending update references it or because the update depends ++ * on that particular key being locked (e.g. by the str_hash code, for hash ++ * table consistency) ++ */ ++#define BTREE_ITER_KEEP_UNTIL_COMMIT (1 << 5) ++/* ++ * Used in bch2_btree_iter_traverse(), to indicate whether we're searching for ++ * @pos or the first key strictly greater than @pos ++ */ ++#define BTREE_ITER_IS_EXTENTS (1 << 6) ++#define BTREE_ITER_ERROR (1 << 7) ++#define BTREE_ITER_SET_POS_AFTER_COMMIT (1 << 8) ++#define BTREE_ITER_CACHED_NOFILL (1 << 9) ++#define BTREE_ITER_CACHED_NOCREATE (1 << 10) ++ ++#define BTREE_ITER_USER_FLAGS \ ++ (BTREE_ITER_SLOTS \ ++ |BTREE_ITER_INTENT \ ++ |BTREE_ITER_PREFETCH \ ++ |BTREE_ITER_CACHED_NOFILL \ ++ |BTREE_ITER_CACHED_NOCREATE) ++ ++enum btree_iter_uptodate { ++ BTREE_ITER_UPTODATE = 0, ++ BTREE_ITER_NEED_PEEK = 1, ++ BTREE_ITER_NEED_RELOCK = 2, ++ BTREE_ITER_NEED_TRAVERSE = 3, ++}; ++ ++#define BTREE_ITER_NO_NODE_GET_LOCKS ((struct btree *) 1) ++#define BTREE_ITER_NO_NODE_DROP ((struct btree *) 2) ++#define BTREE_ITER_NO_NODE_LOCK_ROOT ((struct btree *) 3) ++#define BTREE_ITER_NO_NODE_UP ((struct btree *) 4) ++#define BTREE_ITER_NO_NODE_DOWN ((struct btree *) 5) ++#define BTREE_ITER_NO_NODE_INIT ((struct btree *) 6) ++#define BTREE_ITER_NO_NODE_ERROR ((struct btree *) 7) ++ ++/* ++ * @pos - iterator's current position ++ * @level - current btree depth ++ * @locks_want - btree level below which we start taking intent locks ++ * @nodes_locked - bitmask indicating which nodes in @nodes are locked ++ * @nodes_intent_locked - bitmask indicating which locks are intent locks ++ */ ++struct btree_iter { ++ struct btree_trans *trans; ++ struct bpos pos; ++ struct bpos pos_after_commit; ++ ++ u16 flags; ++ u8 idx; ++ ++ enum btree_id btree_id:4; ++ enum btree_iter_uptodate uptodate:4; ++ unsigned level:4, ++ min_depth:4, ++ locks_want:4, ++ nodes_locked:4, ++ nodes_intent_locked:4; ++ ++ struct btree_iter_level { ++ struct btree *b; ++ struct btree_node_iter iter; ++ u32 lock_seq; ++ } l[BTREE_MAX_DEPTH]; ++ ++ /* ++ * Current unpacked key - so that bch2_btree_iter_next()/ ++ * bch2_btree_iter_next_slot() can correctly advance pos. ++ */ ++ struct bkey k; ++ unsigned long ip_allocated; ++}; ++ ++static inline enum btree_iter_type ++btree_iter_type(const struct btree_iter *iter) ++{ ++ return iter->flags & BTREE_ITER_TYPE; ++} ++ ++static inline struct btree_iter_level *iter_l(struct btree_iter *iter) ++{ ++ return iter->l + iter->level; ++} ++ ++struct btree_key_cache { ++ struct mutex lock; ++ struct rhashtable table; ++ struct list_head freed; ++ struct list_head clean; ++}; ++ ++struct bkey_cached_key { ++ u32 btree_id; ++ struct bpos pos; ++} __attribute__((packed, aligned(4))); ++ ++#define BKEY_CACHED_DIRTY 0 ++ ++struct bkey_cached { ++ struct btree_bkey_cached_common c; ++ ++ unsigned long flags; ++ u8 u64s; ++ bool valid; ++ struct bkey_cached_key key; ++ ++ struct rhash_head hash; ++ struct list_head list; ++ ++ struct journal_preres res; ++ struct journal_entry_pin journal; ++ ++ struct bkey_i *k; ++}; ++ ++struct btree_insert_entry { ++ unsigned trigger_flags; ++ unsigned trans_triggers_run:1; ++ struct bkey_i *k; ++ struct btree_iter *iter; ++}; ++ ++#ifndef CONFIG_LOCKDEP ++#define BTREE_ITER_MAX 64 ++#else ++#define BTREE_ITER_MAX 32 ++#endif ++ ++struct btree_trans { ++ struct bch_fs *c; ++#ifdef CONFIG_BCACHEFS_DEBUG ++ struct list_head list; ++ struct btree *locking; ++ unsigned locking_iter_idx; ++ struct bpos locking_pos; ++ u8 locking_btree_id; ++ u8 locking_level; ++ pid_t pid; ++#endif ++ unsigned long ip; ++ ++ u64 iters_linked; ++ u64 iters_live; ++ u64 iters_touched; ++ ++ u8 nr_iters; ++ u8 nr_updates; ++ u8 nr_updates2; ++ u8 size; ++ unsigned used_mempool:1; ++ unsigned error:1; ++ unsigned nounlock:1; ++ unsigned need_reset:1; ++ unsigned in_traverse_all:1; ++ ++ unsigned mem_top; ++ unsigned mem_bytes; ++ void *mem; ++ ++ struct btree_iter *iters; ++ struct btree_insert_entry *updates; ++ struct btree_insert_entry *updates2; ++ ++ /* update path: */ ++ struct jset_entry *extra_journal_entries; ++ unsigned extra_journal_entry_u64s; ++ struct journal_entry_pin *journal_pin; ++ ++ struct journal_res journal_res; ++ struct journal_preres journal_preres; ++ u64 *journal_seq; ++ struct disk_reservation *disk_res; ++ unsigned flags; ++ unsigned journal_u64s; ++ unsigned journal_preres_u64s; ++ struct replicas_delta_list *fs_usage_deltas; ++ ++ struct btree_iter iters_onstack[2]; ++ struct btree_insert_entry updates_onstack[2]; ++ struct btree_insert_entry updates2_onstack[2]; ++}; ++ ++#define BTREE_FLAG(flag) \ ++static inline bool btree_node_ ## flag(struct btree *b) \ ++{ return test_bit(BTREE_NODE_ ## flag, &b->flags); } \ ++ \ ++static inline void set_btree_node_ ## flag(struct btree *b) \ ++{ set_bit(BTREE_NODE_ ## flag, &b->flags); } \ ++ \ ++static inline void clear_btree_node_ ## flag(struct btree *b) \ ++{ clear_bit(BTREE_NODE_ ## flag, &b->flags); } ++ ++enum btree_flags { ++ BTREE_NODE_read_in_flight, ++ BTREE_NODE_read_error, ++ BTREE_NODE_dirty, ++ BTREE_NODE_need_write, ++ BTREE_NODE_noevict, ++ BTREE_NODE_write_idx, ++ BTREE_NODE_accessed, ++ BTREE_NODE_write_in_flight, ++ BTREE_NODE_just_written, ++ BTREE_NODE_dying, ++ BTREE_NODE_fake, ++ BTREE_NODE_old_extent_overwrite, ++ BTREE_NODE_need_rewrite, ++}; ++ ++BTREE_FLAG(read_in_flight); ++BTREE_FLAG(read_error); ++BTREE_FLAG(dirty); ++BTREE_FLAG(need_write); ++BTREE_FLAG(noevict); ++BTREE_FLAG(write_idx); ++BTREE_FLAG(accessed); ++BTREE_FLAG(write_in_flight); ++BTREE_FLAG(just_written); ++BTREE_FLAG(dying); ++BTREE_FLAG(fake); ++BTREE_FLAG(old_extent_overwrite); ++BTREE_FLAG(need_rewrite); ++ ++static inline struct btree_write *btree_current_write(struct btree *b) ++{ ++ return b->writes + btree_node_write_idx(b); ++} ++ ++static inline struct btree_write *btree_prev_write(struct btree *b) ++{ ++ return b->writes + (btree_node_write_idx(b) ^ 1); ++} ++ ++static inline struct bset_tree *bset_tree_last(struct btree *b) ++{ ++ EBUG_ON(!b->nsets); ++ return b->set + b->nsets - 1; ++} ++ ++static inline void * ++__btree_node_offset_to_ptr(const struct btree *b, u16 offset) ++{ ++ return (void *) ((u64 *) b->data + 1 + offset); ++} ++ ++static inline u16 ++__btree_node_ptr_to_offset(const struct btree *b, const void *p) ++{ ++ u16 ret = (u64 *) p - 1 - (u64 *) b->data; ++ ++ EBUG_ON(__btree_node_offset_to_ptr(b, ret) != p); ++ return ret; ++} ++ ++static inline struct bset *bset(const struct btree *b, ++ const struct bset_tree *t) ++{ ++ return __btree_node_offset_to_ptr(b, t->data_offset); ++} ++ ++static inline void set_btree_bset_end(struct btree *b, struct bset_tree *t) ++{ ++ t->end_offset = ++ __btree_node_ptr_to_offset(b, vstruct_last(bset(b, t))); ++} ++ ++static inline void set_btree_bset(struct btree *b, struct bset_tree *t, ++ const struct bset *i) ++{ ++ t->data_offset = __btree_node_ptr_to_offset(b, i); ++ set_btree_bset_end(b, t); ++} ++ ++static inline struct bset *btree_bset_first(struct btree *b) ++{ ++ return bset(b, b->set); ++} ++ ++static inline struct bset *btree_bset_last(struct btree *b) ++{ ++ return bset(b, bset_tree_last(b)); ++} ++ ++static inline u16 ++__btree_node_key_to_offset(const struct btree *b, const struct bkey_packed *k) ++{ ++ return __btree_node_ptr_to_offset(b, k); ++} ++ ++static inline struct bkey_packed * ++__btree_node_offset_to_key(const struct btree *b, u16 k) ++{ ++ return __btree_node_offset_to_ptr(b, k); ++} ++ ++static inline unsigned btree_bkey_first_offset(const struct bset_tree *t) ++{ ++ return t->data_offset + offsetof(struct bset, _data) / sizeof(u64); ++} ++ ++#define btree_bkey_first(_b, _t) \ ++({ \ ++ EBUG_ON(bset(_b, _t)->start != \ ++ __btree_node_offset_to_key(_b, btree_bkey_first_offset(_t)));\ ++ \ ++ bset(_b, _t)->start; \ ++}) ++ ++#define btree_bkey_last(_b, _t) \ ++({ \ ++ EBUG_ON(__btree_node_offset_to_key(_b, (_t)->end_offset) != \ ++ vstruct_last(bset(_b, _t))); \ ++ \ ++ __btree_node_offset_to_key(_b, (_t)->end_offset); \ ++}) ++ ++static inline unsigned bset_u64s(struct bset_tree *t) ++{ ++ return t->end_offset - t->data_offset - ++ sizeof(struct bset) / sizeof(u64); ++} ++ ++static inline unsigned bset_dead_u64s(struct btree *b, struct bset_tree *t) ++{ ++ return bset_u64s(t) - b->nr.bset_u64s[t - b->set]; ++} ++ ++static inline unsigned bset_byte_offset(struct btree *b, void *i) ++{ ++ return i - (void *) b->data; ++} ++ ++enum btree_node_type { ++#define x(kwd, val, name) BKEY_TYPE_##kwd = val, ++ BCH_BTREE_IDS() ++#undef x ++ BKEY_TYPE_BTREE, ++}; ++ ++/* Type of a key in btree @id at level @level: */ ++static inline enum btree_node_type __btree_node_type(unsigned level, enum btree_id id) ++{ ++ return level ? BKEY_TYPE_BTREE : (enum btree_node_type) id; ++} ++ ++/* Type of keys @b contains: */ ++static inline enum btree_node_type btree_node_type(struct btree *b) ++{ ++ return __btree_node_type(b->c.level, b->c.btree_id); ++} ++ ++static inline bool btree_node_type_is_extents(enum btree_node_type type) ++{ ++ switch (type) { ++ case BKEY_TYPE_EXTENTS: ++ case BKEY_TYPE_REFLINK: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++static inline bool btree_node_is_extents(struct btree *b) ++{ ++ return btree_node_type_is_extents(btree_node_type(b)); ++} ++ ++static inline enum btree_node_type btree_iter_key_type(struct btree_iter *iter) ++{ ++ return __btree_node_type(iter->level, iter->btree_id); ++} ++ ++static inline bool btree_iter_is_extents(struct btree_iter *iter) ++{ ++ return btree_node_type_is_extents(btree_iter_key_type(iter)); ++} ++ ++#define BTREE_NODE_TYPE_HAS_TRIGGERS \ ++ ((1U << BKEY_TYPE_EXTENTS)| \ ++ (1U << BKEY_TYPE_ALLOC)| \ ++ (1U << BKEY_TYPE_INODES)| \ ++ (1U << BKEY_TYPE_REFLINK)| \ ++ (1U << BKEY_TYPE_EC)| \ ++ (1U << BKEY_TYPE_BTREE)) ++ ++#define BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS \ ++ ((1U << BKEY_TYPE_EXTENTS)| \ ++ (1U << BKEY_TYPE_INODES)| \ ++ (1U << BKEY_TYPE_EC)| \ ++ (1U << BKEY_TYPE_REFLINK)) ++ ++enum btree_trigger_flags { ++ __BTREE_TRIGGER_NORUN, /* Don't run triggers at all */ ++ ++ __BTREE_TRIGGER_INSERT, ++ __BTREE_TRIGGER_OVERWRITE, ++ __BTREE_TRIGGER_OVERWRITE_SPLIT, ++ ++ __BTREE_TRIGGER_GC, ++ __BTREE_TRIGGER_BUCKET_INVALIDATE, ++ __BTREE_TRIGGER_NOATOMIC, ++}; ++ ++#define BTREE_TRIGGER_NORUN (1U << __BTREE_TRIGGER_NORUN) ++ ++#define BTREE_TRIGGER_INSERT (1U << __BTREE_TRIGGER_INSERT) ++#define BTREE_TRIGGER_OVERWRITE (1U << __BTREE_TRIGGER_OVERWRITE) ++#define BTREE_TRIGGER_OVERWRITE_SPLIT (1U << __BTREE_TRIGGER_OVERWRITE_SPLIT) ++ ++#define BTREE_TRIGGER_GC (1U << __BTREE_TRIGGER_GC) ++#define BTREE_TRIGGER_BUCKET_INVALIDATE (1U << __BTREE_TRIGGER_BUCKET_INVALIDATE) ++#define BTREE_TRIGGER_NOATOMIC (1U << __BTREE_TRIGGER_NOATOMIC) ++ ++static inline bool btree_node_type_needs_gc(enum btree_node_type type) ++{ ++ return BTREE_NODE_TYPE_HAS_TRIGGERS & (1U << type); ++} ++ ++struct btree_root { ++ struct btree *b; ++ ++ /* On disk root - see async splits: */ ++ __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX); ++ u8 level; ++ u8 alive; ++ s8 error; ++}; ++ ++/* ++ * Optional hook that will be called just prior to a btree node update, when ++ * we're holding the write lock and we know what key is about to be overwritten: ++ */ ++ ++enum btree_insert_ret { ++ BTREE_INSERT_OK, ++ /* leaf node needs to be split */ ++ BTREE_INSERT_BTREE_NODE_FULL, ++ BTREE_INSERT_ENOSPC, ++ BTREE_INSERT_NEED_MARK_REPLICAS, ++ BTREE_INSERT_NEED_JOURNAL_RES, ++}; ++ ++enum btree_gc_coalesce_fail_reason { ++ BTREE_GC_COALESCE_FAIL_RESERVE_GET, ++ BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC, ++ BTREE_GC_COALESCE_FAIL_FORMAT_FITS, ++}; ++ ++enum btree_node_sibling { ++ btree_prev_sib, ++ btree_next_sib, ++}; ++ ++typedef struct btree_nr_keys (*sort_fix_overlapping_fn)(struct bset *, ++ struct btree *, ++ struct btree_node_iter *); ++ ++#endif /* _BCACHEFS_BTREE_TYPES_H */ +diff --git a/fs/bcachefs/btree_update.h b/fs/bcachefs/btree_update.h +new file mode 100644 +index 000000000000..e0b1bde37484 +--- /dev/null ++++ b/fs/bcachefs/btree_update.h +@@ -0,0 +1,144 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_UPDATE_H ++#define _BCACHEFS_BTREE_UPDATE_H ++ ++#include "btree_iter.h" ++#include "journal.h" ++ ++struct bch_fs; ++struct btree; ++ ++void bch2_btree_node_lock_for_insert(struct bch_fs *, struct btree *, ++ struct btree_iter *); ++bool bch2_btree_bset_insert_key(struct btree_iter *, struct btree *, ++ struct btree_node_iter *, struct bkey_i *); ++void bch2_btree_add_journal_pin(struct bch_fs *, struct btree *, u64); ++ ++enum btree_insert_flags { ++ __BTREE_INSERT_NOUNLOCK, ++ __BTREE_INSERT_NOFAIL, ++ __BTREE_INSERT_NOCHECK_RW, ++ __BTREE_INSERT_LAZY_RW, ++ __BTREE_INSERT_USE_RESERVE, ++ __BTREE_INSERT_USE_ALLOC_RESERVE, ++ __BTREE_INSERT_JOURNAL_REPLAY, ++ __BTREE_INSERT_JOURNAL_RESERVED, ++ __BTREE_INSERT_JOURNAL_RECLAIM, ++ __BTREE_INSERT_NOWAIT, ++ __BTREE_INSERT_GC_LOCK_HELD, ++ __BCH_HASH_SET_MUST_CREATE, ++ __BCH_HASH_SET_MUST_REPLACE, ++}; ++ ++/* ++ * Don't drop locks _after_ successfully updating btree: ++ */ ++#define BTREE_INSERT_NOUNLOCK (1 << __BTREE_INSERT_NOUNLOCK) ++ ++/* Don't check for -ENOSPC: */ ++#define BTREE_INSERT_NOFAIL (1 << __BTREE_INSERT_NOFAIL) ++ ++#define BTREE_INSERT_NOCHECK_RW (1 << __BTREE_INSERT_NOCHECK_RW) ++#define BTREE_INSERT_LAZY_RW (1 << __BTREE_INSERT_LAZY_RW) ++ ++/* for copygc, or when merging btree nodes */ ++#define BTREE_INSERT_USE_RESERVE (1 << __BTREE_INSERT_USE_RESERVE) ++#define BTREE_INSERT_USE_ALLOC_RESERVE (1 << __BTREE_INSERT_USE_ALLOC_RESERVE) ++ ++/* Insert is for journal replay - don't get journal reservations: */ ++#define BTREE_INSERT_JOURNAL_REPLAY (1 << __BTREE_INSERT_JOURNAL_REPLAY) ++ ++/* Indicates that we have pre-reserved space in the journal: */ ++#define BTREE_INSERT_JOURNAL_RESERVED (1 << __BTREE_INSERT_JOURNAL_RESERVED) ++ ++/* Insert is being called from journal reclaim path: */ ++#define BTREE_INSERT_JOURNAL_RECLAIM (1 << __BTREE_INSERT_JOURNAL_RECLAIM) ++ ++/* Don't block on allocation failure (for new btree nodes: */ ++#define BTREE_INSERT_NOWAIT (1 << __BTREE_INSERT_NOWAIT) ++#define BTREE_INSERT_GC_LOCK_HELD (1 << __BTREE_INSERT_GC_LOCK_HELD) ++ ++#define BCH_HASH_SET_MUST_CREATE (1 << __BCH_HASH_SET_MUST_CREATE) ++#define BCH_HASH_SET_MUST_REPLACE (1 << __BCH_HASH_SET_MUST_REPLACE) ++ ++int bch2_btree_delete_at(struct btree_trans *, struct btree_iter *, unsigned); ++ ++int __bch2_btree_insert(struct btree_trans *, enum btree_id, struct bkey_i *); ++int bch2_btree_insert(struct bch_fs *, enum btree_id, struct bkey_i *, ++ struct disk_reservation *, u64 *, int flags); ++ ++int bch2_btree_delete_at_range(struct btree_trans *, struct btree_iter *, ++ struct bpos, u64 *); ++int bch2_btree_delete_range(struct bch_fs *, enum btree_id, ++ struct bpos, struct bpos, u64 *); ++ ++int bch2_btree_node_rewrite(struct bch_fs *c, struct btree_iter *, ++ __le64, unsigned); ++int bch2_btree_node_update_key(struct bch_fs *, struct btree_iter *, ++ struct btree *, struct bkey_i *); ++ ++int bch2_trans_update(struct btree_trans *, struct btree_iter *, ++ struct bkey_i *, enum btree_trigger_flags); ++int __bch2_trans_commit(struct btree_trans *); ++ ++/** ++ * bch2_trans_commit - insert keys at given iterator positions ++ * ++ * This is main entry point for btree updates. ++ * ++ * Return values: ++ * -EINTR: locking changed, this function should be called again. ++ * -EROFS: filesystem read only ++ * -EIO: journal or btree node IO error ++ */ ++static inline int bch2_trans_commit(struct btree_trans *trans, ++ struct disk_reservation *disk_res, ++ u64 *journal_seq, ++ unsigned flags) ++{ ++ trans->disk_res = disk_res; ++ trans->journal_seq = journal_seq; ++ trans->flags = flags; ++ ++ return __bch2_trans_commit(trans); ++} ++ ++#define __bch2_trans_do(_trans, _disk_res, _journal_seq, _flags, _do) \ ++({ \ ++ int _ret; \ ++ \ ++ while (1) { \ ++ _ret = (_do) ?: bch2_trans_commit(_trans, (_disk_res), \ ++ (_journal_seq), (_flags)); \ ++ if (_ret != -EINTR) \ ++ break; \ ++ bch2_trans_reset(_trans, 0); \ ++ } \ ++ \ ++ _ret; \ ++}) ++ ++#define bch2_trans_do(_c, _disk_res, _journal_seq, _flags, _do) \ ++({ \ ++ struct btree_trans trans; \ ++ int _ret, _ret2; \ ++ \ ++ bch2_trans_init(&trans, (_c), 0, 0); \ ++ _ret = __bch2_trans_do(&trans, _disk_res, _journal_seq, _flags, \ ++ _do); \ ++ _ret2 = bch2_trans_exit(&trans); \ ++ \ ++ _ret ?: _ret2; \ ++}) ++ ++#define trans_for_each_update(_trans, _i) \ ++ for ((_i) = (_trans)->updates; \ ++ (_i) < (_trans)->updates + (_trans)->nr_updates; \ ++ (_i)++) ++ ++#define trans_for_each_update2(_trans, _i) \ ++ for ((_i) = (_trans)->updates2; \ ++ (_i) < (_trans)->updates2 + (_trans)->nr_updates2; \ ++ (_i)++) ++ ++#endif /* _BCACHEFS_BTREE_UPDATE_H */ +diff --git a/fs/bcachefs/btree_update_interior.c b/fs/bcachefs/btree_update_interior.c +new file mode 100644 +index 000000000000..a2604b0ce2d8 +--- /dev/null ++++ b/fs/bcachefs/btree_update_interior.c +@@ -0,0 +1,2075 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "alloc_foreground.h" ++#include "bkey_methods.h" ++#include "btree_cache.h" ++#include "btree_gc.h" ++#include "btree_update.h" ++#include "btree_update_interior.h" ++#include "btree_io.h" ++#include "btree_iter.h" ++#include "btree_locking.h" ++#include "buckets.h" ++#include "extents.h" ++#include "journal.h" ++#include "journal_reclaim.h" ++#include "keylist.h" ++#include "replicas.h" ++#include "super-io.h" ++ ++#include ++#include ++ ++/* Debug code: */ ++ ++/* ++ * Verify that child nodes correctly span parent node's range: ++ */ ++static void btree_node_interior_verify(struct bch_fs *c, struct btree *b) ++{ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ struct bpos next_node = b->data->min_key; ++ struct btree_node_iter iter; ++ struct bkey_s_c k; ++ struct bkey_s_c_btree_ptr_v2 bp; ++ struct bkey unpacked; ++ ++ BUG_ON(!b->c.level); ++ ++ if (!test_bit(BCH_FS_BTREE_INTERIOR_REPLAY_DONE, &c->flags)) ++ return; ++ ++ bch2_btree_node_iter_init_from_start(&iter, b); ++ ++ while (1) { ++ k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked); ++ if (k.k->type != KEY_TYPE_btree_ptr_v2) ++ break; ++ bp = bkey_s_c_to_btree_ptr_v2(k); ++ ++ BUG_ON(bkey_cmp(next_node, bp.v->min_key)); ++ ++ bch2_btree_node_iter_advance(&iter, b); ++ ++ if (bch2_btree_node_iter_end(&iter)) { ++ BUG_ON(bkey_cmp(k.k->p, b->key.k.p)); ++ break; ++ } ++ ++ next_node = bkey_successor(k.k->p); ++ } ++#endif ++} ++ ++/* Calculate ideal packed bkey format for new btree nodes: */ ++ ++void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) ++{ ++ struct bkey_packed *k; ++ struct bset_tree *t; ++ struct bkey uk; ++ ++ bch2_bkey_format_add_pos(s, b->data->min_key); ++ ++ for_each_bset(b, t) ++ bset_tree_for_each_key(b, t, k) ++ if (!bkey_whiteout(k)) { ++ uk = bkey_unpack_key(b, k); ++ bch2_bkey_format_add_key(s, &uk); ++ } ++} ++ ++static struct bkey_format bch2_btree_calc_format(struct btree *b) ++{ ++ struct bkey_format_state s; ++ ++ bch2_bkey_format_init(&s); ++ __bch2_btree_calc_format(&s, b); ++ ++ return bch2_bkey_format_done(&s); ++} ++ ++static size_t btree_node_u64s_with_format(struct btree *b, ++ struct bkey_format *new_f) ++{ ++ struct bkey_format *old_f = &b->format; ++ ++ /* stupid integer promotion rules */ ++ ssize_t delta = ++ (((int) new_f->key_u64s - old_f->key_u64s) * ++ (int) b->nr.packed_keys) + ++ (((int) new_f->key_u64s - BKEY_U64s) * ++ (int) b->nr.unpacked_keys); ++ ++ BUG_ON(delta + b->nr.live_u64s < 0); ++ ++ return b->nr.live_u64s + delta; ++} ++ ++/** ++ * btree_node_format_fits - check if we could rewrite node with a new format ++ * ++ * This assumes all keys can pack with the new format -- it just checks if ++ * the re-packed keys would fit inside the node itself. ++ */ ++bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, ++ struct bkey_format *new_f) ++{ ++ size_t u64s = btree_node_u64s_with_format(b, new_f); ++ ++ return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c); ++} ++ ++/* Btree node freeing/allocation: */ ++ ++static void __btree_node_free(struct bch_fs *c, struct btree *b) ++{ ++ trace_btree_node_free(c, b); ++ ++ BUG_ON(btree_node_dirty(b)); ++ BUG_ON(btree_node_need_write(b)); ++ BUG_ON(b == btree_node_root(c, b)); ++ BUG_ON(b->ob.nr); ++ BUG_ON(!list_empty(&b->write_blocked)); ++ BUG_ON(b->will_make_reachable); ++ ++ clear_btree_node_noevict(b); ++ ++ bch2_btree_node_hash_remove(&c->btree_cache, b); ++ ++ mutex_lock(&c->btree_cache.lock); ++ list_move(&b->list, &c->btree_cache.freeable); ++ mutex_unlock(&c->btree_cache.lock); ++} ++ ++void bch2_btree_node_free_never_inserted(struct bch_fs *c, struct btree *b) ++{ ++ struct open_buckets ob = b->ob; ++ ++ b->ob.nr = 0; ++ ++ clear_btree_node_dirty(b); ++ ++ btree_node_lock_type(c, b, SIX_LOCK_write); ++ __btree_node_free(c, b); ++ six_unlock_write(&b->c.lock); ++ ++ bch2_open_buckets_put(c, &ob); ++} ++ ++void bch2_btree_node_free_inmem(struct bch_fs *c, struct btree *b, ++ struct btree_iter *iter) ++{ ++ struct btree_iter *linked; ++ ++ trans_for_each_iter(iter->trans, linked) ++ BUG_ON(linked->l[b->c.level].b == b); ++ ++ six_lock_write(&b->c.lock, NULL, NULL); ++ __btree_node_free(c, b); ++ six_unlock_write(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++} ++ ++static struct btree *__bch2_btree_node_alloc(struct bch_fs *c, ++ struct disk_reservation *res, ++ struct closure *cl, ++ unsigned flags) ++{ ++ struct write_point *wp; ++ struct btree *b; ++ BKEY_PADDED(k) tmp; ++ struct open_buckets ob = { .nr = 0 }; ++ struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; ++ unsigned nr_reserve; ++ enum alloc_reserve alloc_reserve; ++ ++ if (flags & BTREE_INSERT_USE_ALLOC_RESERVE) { ++ nr_reserve = 0; ++ alloc_reserve = RESERVE_ALLOC; ++ } else if (flags & BTREE_INSERT_USE_RESERVE) { ++ nr_reserve = BTREE_NODE_RESERVE / 2; ++ alloc_reserve = RESERVE_BTREE; ++ } else { ++ nr_reserve = BTREE_NODE_RESERVE; ++ alloc_reserve = RESERVE_NONE; ++ } ++ ++ mutex_lock(&c->btree_reserve_cache_lock); ++ if (c->btree_reserve_cache_nr > nr_reserve) { ++ struct btree_alloc *a = ++ &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; ++ ++ ob = a->ob; ++ bkey_copy(&tmp.k, &a->k); ++ mutex_unlock(&c->btree_reserve_cache_lock); ++ goto mem_alloc; ++ } ++ mutex_unlock(&c->btree_reserve_cache_lock); ++ ++retry: ++ wp = bch2_alloc_sectors_start(c, c->opts.foreground_target, 0, ++ writepoint_ptr(&c->btree_write_point), ++ &devs_have, ++ res->nr_replicas, ++ c->opts.metadata_replicas_required, ++ alloc_reserve, 0, cl); ++ if (IS_ERR(wp)) ++ return ERR_CAST(wp); ++ ++ if (wp->sectors_free < c->opts.btree_node_size) { ++ struct open_bucket *ob; ++ unsigned i; ++ ++ open_bucket_for_each(c, &wp->ptrs, ob, i) ++ if (ob->sectors_free < c->opts.btree_node_size) ++ ob->sectors_free = 0; ++ ++ bch2_alloc_sectors_done(c, wp); ++ goto retry; ++ } ++ ++ if (c->sb.features & (1ULL << BCH_FEATURE_btree_ptr_v2)) ++ bkey_btree_ptr_v2_init(&tmp.k); ++ else ++ bkey_btree_ptr_init(&tmp.k); ++ ++ bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, c->opts.btree_node_size); ++ ++ bch2_open_bucket_get(c, wp, &ob); ++ bch2_alloc_sectors_done(c, wp); ++mem_alloc: ++ b = bch2_btree_node_mem_alloc(c); ++ ++ /* we hold cannibalize_lock: */ ++ BUG_ON(IS_ERR(b)); ++ BUG_ON(b->ob.nr); ++ ++ bkey_copy(&b->key, &tmp.k); ++ b->ob = ob; ++ ++ return b; ++} ++ ++static struct btree *bch2_btree_node_alloc(struct btree_update *as, unsigned level) ++{ ++ struct bch_fs *c = as->c; ++ struct btree *b; ++ int ret; ++ ++ BUG_ON(level >= BTREE_MAX_DEPTH); ++ BUG_ON(!as->nr_prealloc_nodes); ++ ++ b = as->prealloc_nodes[--as->nr_prealloc_nodes]; ++ ++ set_btree_node_accessed(b); ++ set_btree_node_dirty(b); ++ set_btree_node_need_write(b); ++ ++ bch2_bset_init_first(b, &b->data->keys); ++ b->c.level = level; ++ b->c.btree_id = as->btree_id; ++ ++ memset(&b->nr, 0, sizeof(b->nr)); ++ b->data->magic = cpu_to_le64(bset_magic(c)); ++ b->data->flags = 0; ++ SET_BTREE_NODE_ID(b->data, as->btree_id); ++ SET_BTREE_NODE_LEVEL(b->data, level); ++ b->data->ptr = bch2_bkey_ptrs_c(bkey_i_to_s_c(&b->key)).start->ptr; ++ ++ if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { ++ struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); ++ ++ bp->v.mem_ptr = 0; ++ bp->v.seq = b->data->keys.seq; ++ bp->v.sectors_written = 0; ++ bp->v.sectors = cpu_to_le16(c->opts.btree_node_size); ++ } ++ ++ if (c->sb.features & (1ULL << BCH_FEATURE_new_extent_overwrite)) ++ SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); ++ ++ if (btree_node_is_extents(b) && ++ !BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data)) { ++ set_btree_node_old_extent_overwrite(b); ++ set_btree_node_need_rewrite(b); ++ } ++ ++ bch2_btree_build_aux_trees(b); ++ ++ ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); ++ BUG_ON(ret); ++ ++ trace_btree_node_alloc(c, b); ++ return b; ++} ++ ++static void btree_set_min(struct btree *b, struct bpos pos) ++{ ++ if (b->key.k.type == KEY_TYPE_btree_ptr_v2) ++ bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; ++ b->data->min_key = pos; ++} ++ ++static void btree_set_max(struct btree *b, struct bpos pos) ++{ ++ b->key.k.p = pos; ++ b->data->max_key = pos; ++} ++ ++struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *as, ++ struct btree *b, ++ struct bkey_format format) ++{ ++ struct btree *n; ++ ++ n = bch2_btree_node_alloc(as, b->c.level); ++ ++ SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); ++ ++ btree_set_min(n, b->data->min_key); ++ btree_set_max(n, b->data->max_key); ++ ++ n->data->format = format; ++ btree_node_set_format(n, format); ++ ++ bch2_btree_sort_into(as->c, n, b); ++ ++ btree_node_reset_sib_u64s(n); ++ ++ n->key.k.p = b->key.k.p; ++ return n; ++} ++ ++static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, ++ struct btree *b) ++{ ++ struct bkey_format new_f = bch2_btree_calc_format(b); ++ ++ /* ++ * The keys might expand with the new format - if they wouldn't fit in ++ * the btree node anymore, use the old format for now: ++ */ ++ if (!bch2_btree_node_format_fits(as->c, b, &new_f)) ++ new_f = b->format; ++ ++ return __bch2_btree_node_alloc_replacement(as, b, new_f); ++} ++ ++static struct btree *__btree_root_alloc(struct btree_update *as, unsigned level) ++{ ++ struct btree *b = bch2_btree_node_alloc(as, level); ++ ++ btree_set_min(b, POS_MIN); ++ btree_set_max(b, POS_MAX); ++ b->data->format = bch2_btree_calc_format(b); ++ ++ btree_node_set_format(b, b->data->format); ++ bch2_btree_build_aux_trees(b); ++ ++ bch2_btree_update_add_new_node(as, b); ++ six_unlock_write(&b->c.lock); ++ ++ return b; ++} ++ ++static void bch2_btree_reserve_put(struct btree_update *as) ++{ ++ struct bch_fs *c = as->c; ++ ++ mutex_lock(&c->btree_reserve_cache_lock); ++ ++ while (as->nr_prealloc_nodes) { ++ struct btree *b = as->prealloc_nodes[--as->nr_prealloc_nodes]; ++ ++ six_unlock_write(&b->c.lock); ++ ++ if (c->btree_reserve_cache_nr < ++ ARRAY_SIZE(c->btree_reserve_cache)) { ++ struct btree_alloc *a = ++ &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; ++ ++ a->ob = b->ob; ++ b->ob.nr = 0; ++ bkey_copy(&a->k, &b->key); ++ } else { ++ bch2_open_buckets_put(c, &b->ob); ++ } ++ ++ btree_node_lock_type(c, b, SIX_LOCK_write); ++ __btree_node_free(c, b); ++ six_unlock_write(&b->c.lock); ++ ++ six_unlock_intent(&b->c.lock); ++ } ++ ++ mutex_unlock(&c->btree_reserve_cache_lock); ++} ++ ++static int bch2_btree_reserve_get(struct btree_update *as, unsigned nr_nodes, ++ unsigned flags, struct closure *cl) ++{ ++ struct bch_fs *c = as->c; ++ struct btree *b; ++ int ret; ++ ++ BUG_ON(nr_nodes > BTREE_RESERVE_MAX); ++ ++ /* ++ * Protects reaping from the btree node cache and using the btree node ++ * open bucket reserve: ++ */ ++ ret = bch2_btree_cache_cannibalize_lock(c, cl); ++ if (ret) ++ return ret; ++ ++ while (as->nr_prealloc_nodes < nr_nodes) { ++ b = __bch2_btree_node_alloc(c, &as->disk_res, ++ flags & BTREE_INSERT_NOWAIT ++ ? NULL : cl, flags); ++ if (IS_ERR(b)) { ++ ret = PTR_ERR(b); ++ goto err_free; ++ } ++ ++ ret = bch2_mark_bkey_replicas(c, bkey_i_to_s_c(&b->key)); ++ if (ret) ++ goto err_free; ++ ++ as->prealloc_nodes[as->nr_prealloc_nodes++] = b; ++ } ++ ++ bch2_btree_cache_cannibalize_unlock(c); ++ return 0; ++err_free: ++ bch2_btree_cache_cannibalize_unlock(c); ++ trace_btree_reserve_get_fail(c, nr_nodes, cl); ++ return ret; ++} ++ ++/* Asynchronous interior node update machinery */ ++ ++static void bch2_btree_update_free(struct btree_update *as) ++{ ++ struct bch_fs *c = as->c; ++ ++ bch2_journal_preres_put(&c->journal, &as->journal_preres); ++ ++ bch2_journal_pin_drop(&c->journal, &as->journal); ++ bch2_journal_pin_flush(&c->journal, &as->journal); ++ bch2_disk_reservation_put(c, &as->disk_res); ++ bch2_btree_reserve_put(as); ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ list_del(&as->unwritten_list); ++ list_del(&as->list); ++ mutex_unlock(&c->btree_interior_update_lock); ++ ++ closure_debug_destroy(&as->cl); ++ mempool_free(as, &c->btree_interior_update_pool); ++ ++ closure_wake_up(&c->btree_interior_update_wait); ++} ++ ++static void btree_update_will_delete_key(struct btree_update *as, ++ struct bkey_i *k) ++{ ++ BUG_ON(bch2_keylist_u64s(&as->old_keys) + k->k.u64s > ++ ARRAY_SIZE(as->_old_keys)); ++ bch2_keylist_add(&as->old_keys, k); ++} ++ ++static void btree_update_will_add_key(struct btree_update *as, ++ struct bkey_i *k) ++{ ++ BUG_ON(bch2_keylist_u64s(&as->new_keys) + k->k.u64s > ++ ARRAY_SIZE(as->_new_keys)); ++ bch2_keylist_add(&as->new_keys, k); ++} ++ ++/* ++ * The transactional part of an interior btree node update, where we journal the ++ * update we did to the interior node and update alloc info: ++ */ ++static int btree_update_nodes_written_trans(struct btree_trans *trans, ++ struct btree_update *as) ++{ ++ struct bkey_i *k; ++ int ret; ++ ++ trans->extra_journal_entries = (void *) &as->journal_entries[0]; ++ trans->extra_journal_entry_u64s = as->journal_u64s; ++ trans->journal_pin = &as->journal; ++ ++ for_each_keylist_key(&as->new_keys, k) { ++ ret = bch2_trans_mark_key(trans, bkey_i_to_s_c(k), ++ 0, 0, BTREE_TRIGGER_INSERT); ++ if (ret) ++ return ret; ++ } ++ ++ for_each_keylist_key(&as->old_keys, k) { ++ ret = bch2_trans_mark_key(trans, bkey_i_to_s_c(k), ++ 0, 0, BTREE_TRIGGER_OVERWRITE); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++static void btree_update_nodes_written(struct btree_update *as) ++{ ++ struct bch_fs *c = as->c; ++ struct btree *b = as->b; ++ u64 journal_seq = 0; ++ unsigned i; ++ int ret; ++ ++ /* ++ * We did an update to a parent node where the pointers we added pointed ++ * to child nodes that weren't written yet: now, the child nodes have ++ * been written so we can write out the update to the interior node. ++ */ ++ ++ /* ++ * We can't call into journal reclaim here: we'd block on the journal ++ * reclaim lock, but we may need to release the open buckets we have ++ * pinned in order for other btree updates to make forward progress, and ++ * journal reclaim does btree updates when flushing bkey_cached entries, ++ * which may require allocations as well. ++ */ ++ ret = bch2_trans_do(c, &as->disk_res, &journal_seq, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_USE_RESERVE| ++ BTREE_INSERT_USE_ALLOC_RESERVE| ++ BTREE_INSERT_NOCHECK_RW| ++ BTREE_INSERT_JOURNAL_RECLAIM| ++ BTREE_INSERT_JOURNAL_RESERVED, ++ btree_update_nodes_written_trans(&trans, as)); ++ BUG_ON(ret && !bch2_journal_error(&c->journal)); ++ ++ if (b) { ++ /* ++ * @b is the node we did the final insert into: ++ * ++ * On failure to get a journal reservation, we still have to ++ * unblock the write and allow most of the write path to happen ++ * so that shutdown works, but the i->journal_seq mechanism ++ * won't work to prevent the btree write from being visible (we ++ * didn't get a journal sequence number) - instead ++ * __bch2_btree_node_write() doesn't do the actual write if ++ * we're in journal error state: ++ */ ++ ++ btree_node_lock_type(c, b, SIX_LOCK_intent); ++ btree_node_lock_type(c, b, SIX_LOCK_write); ++ mutex_lock(&c->btree_interior_update_lock); ++ ++ list_del(&as->write_blocked_list); ++ ++ if (!ret && as->b == b) { ++ struct bset *i = btree_bset_last(b); ++ ++ BUG_ON(!b->c.level); ++ BUG_ON(!btree_node_dirty(b)); ++ ++ i->journal_seq = cpu_to_le64( ++ max(journal_seq, ++ le64_to_cpu(i->journal_seq))); ++ ++ bch2_btree_add_journal_pin(c, b, journal_seq); ++ } ++ ++ mutex_unlock(&c->btree_interior_update_lock); ++ six_unlock_write(&b->c.lock); ++ ++ btree_node_write_if_need(c, b, SIX_LOCK_intent); ++ six_unlock_intent(&b->c.lock); ++ } ++ ++ bch2_journal_pin_drop(&c->journal, &as->journal); ++ ++ bch2_journal_preres_put(&c->journal, &as->journal_preres); ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ for (i = 0; i < as->nr_new_nodes; i++) { ++ b = as->new_nodes[i]; ++ ++ BUG_ON(b->will_make_reachable != (unsigned long) as); ++ b->will_make_reachable = 0; ++ } ++ mutex_unlock(&c->btree_interior_update_lock); ++ ++ for (i = 0; i < as->nr_new_nodes; i++) { ++ b = as->new_nodes[i]; ++ ++ btree_node_lock_type(c, b, SIX_LOCK_read); ++ btree_node_write_if_need(c, b, SIX_LOCK_read); ++ six_unlock_read(&b->c.lock); ++ } ++ ++ for (i = 0; i < as->nr_open_buckets; i++) ++ bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); ++ ++ bch2_btree_update_free(as); ++} ++ ++static void btree_interior_update_work(struct work_struct *work) ++{ ++ struct bch_fs *c = ++ container_of(work, struct bch_fs, btree_interior_update_work); ++ struct btree_update *as; ++ ++ while (1) { ++ mutex_lock(&c->btree_interior_update_lock); ++ as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, ++ struct btree_update, unwritten_list); ++ if (as && !as->nodes_written) ++ as = NULL; ++ mutex_unlock(&c->btree_interior_update_lock); ++ ++ if (!as) ++ break; ++ ++ btree_update_nodes_written(as); ++ } ++} ++ ++static void btree_update_set_nodes_written(struct closure *cl) ++{ ++ struct btree_update *as = container_of(cl, struct btree_update, cl); ++ struct bch_fs *c = as->c; ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ as->nodes_written = true; ++ mutex_unlock(&c->btree_interior_update_lock); ++ ++ queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); ++} ++ ++/* ++ * We're updating @b with pointers to nodes that haven't finished writing yet: ++ * block @b from being written until @as completes ++ */ ++static void btree_update_updated_node(struct btree_update *as, struct btree *b) ++{ ++ struct bch_fs *c = as->c; ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); ++ ++ BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); ++ BUG_ON(!btree_node_dirty(b)); ++ ++ as->mode = BTREE_INTERIOR_UPDATING_NODE; ++ as->b = b; ++ list_add(&as->write_blocked_list, &b->write_blocked); ++ ++ mutex_unlock(&c->btree_interior_update_lock); ++} ++ ++static void btree_update_reparent(struct btree_update *as, ++ struct btree_update *child) ++{ ++ struct bch_fs *c = as->c; ++ ++ lockdep_assert_held(&c->btree_interior_update_lock); ++ ++ child->b = NULL; ++ child->mode = BTREE_INTERIOR_UPDATING_AS; ++ ++ /* ++ * When we write a new btree root, we have to drop our journal pin ++ * _before_ the new nodes are technically reachable; see ++ * btree_update_nodes_written(). ++ * ++ * This goes for journal pins that are recursively blocked on us - so, ++ * just transfer the journal pin to the new interior update so ++ * btree_update_nodes_written() can drop it. ++ */ ++ bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL); ++ bch2_journal_pin_drop(&c->journal, &child->journal); ++} ++ ++static void btree_update_updated_root(struct btree_update *as, struct btree *b) ++{ ++ struct bkey_i *insert = &b->key; ++ struct bch_fs *c = as->c; ++ ++ BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); ++ ++ BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > ++ ARRAY_SIZE(as->journal_entries)); ++ ++ as->journal_u64s += ++ journal_entry_set((void *) &as->journal_entries[as->journal_u64s], ++ BCH_JSET_ENTRY_btree_root, ++ b->c.btree_id, b->c.level, ++ insert, insert->k.u64s); ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); ++ ++ as->mode = BTREE_INTERIOR_UPDATING_ROOT; ++ mutex_unlock(&c->btree_interior_update_lock); ++} ++ ++/* ++ * bch2_btree_update_add_new_node: ++ * ++ * This causes @as to wait on @b to be written, before it gets to ++ * bch2_btree_update_nodes_written ++ * ++ * Additionally, it sets b->will_make_reachable to prevent any additional writes ++ * to @b from happening besides the first until @b is reachable on disk ++ * ++ * And it adds @b to the list of @as's new nodes, so that we can update sector ++ * counts in bch2_btree_update_nodes_written: ++ */ ++void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) ++{ ++ struct bch_fs *c = as->c; ++ ++ closure_get(&as->cl); ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); ++ BUG_ON(b->will_make_reachable); ++ ++ as->new_nodes[as->nr_new_nodes++] = b; ++ b->will_make_reachable = 1UL|(unsigned long) as; ++ ++ mutex_unlock(&c->btree_interior_update_lock); ++ ++ btree_update_will_add_key(as, &b->key); ++} ++ ++/* ++ * returns true if @b was a new node ++ */ ++static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) ++{ ++ struct btree_update *as; ++ unsigned long v; ++ unsigned i; ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ /* ++ * When b->will_make_reachable != 0, it owns a ref on as->cl that's ++ * dropped when it gets written by bch2_btree_complete_write - the ++ * xchg() is for synchronization with bch2_btree_complete_write: ++ */ ++ v = xchg(&b->will_make_reachable, 0); ++ as = (struct btree_update *) (v & ~1UL); ++ ++ if (!as) { ++ mutex_unlock(&c->btree_interior_update_lock); ++ return; ++ } ++ ++ for (i = 0; i < as->nr_new_nodes; i++) ++ if (as->new_nodes[i] == b) ++ goto found; ++ ++ BUG(); ++found: ++ array_remove_item(as->new_nodes, as->nr_new_nodes, i); ++ mutex_unlock(&c->btree_interior_update_lock); ++ ++ if (v & 1) ++ closure_put(&as->cl); ++} ++ ++void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) ++{ ++ while (b->ob.nr) ++ as->open_buckets[as->nr_open_buckets++] = ++ b->ob.v[--b->ob.nr]; ++} ++ ++/* ++ * @b is being split/rewritten: it may have pointers to not-yet-written btree ++ * nodes and thus outstanding btree_updates - redirect @b's ++ * btree_updates to point to this btree_update: ++ */ ++void bch2_btree_interior_update_will_free_node(struct btree_update *as, ++ struct btree *b) ++{ ++ struct bch_fs *c = as->c; ++ struct btree_update *p, *n; ++ struct btree_write *w; ++ ++ set_btree_node_dying(b); ++ ++ if (btree_node_fake(b)) ++ return; ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ ++ /* ++ * Does this node have any btree_update operations preventing ++ * it from being written? ++ * ++ * If so, redirect them to point to this btree_update: we can ++ * write out our new nodes, but we won't make them visible until those ++ * operations complete ++ */ ++ list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { ++ list_del_init(&p->write_blocked_list); ++ btree_update_reparent(as, p); ++ ++ /* ++ * for flush_held_btree_writes() waiting on updates to flush or ++ * nodes to be writeable: ++ */ ++ closure_wake_up(&c->btree_interior_update_wait); ++ } ++ ++ clear_btree_node_dirty(b); ++ clear_btree_node_need_write(b); ++ ++ /* ++ * Does this node have unwritten data that has a pin on the journal? ++ * ++ * If so, transfer that pin to the btree_update operation - ++ * note that if we're freeing multiple nodes, we only need to keep the ++ * oldest pin of any of the nodes we're freeing. We'll release the pin ++ * when the new nodes are persistent and reachable on disk: ++ */ ++ w = btree_current_write(b); ++ bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL); ++ bch2_journal_pin_drop(&c->journal, &w->journal); ++ ++ w = btree_prev_write(b); ++ bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL); ++ bch2_journal_pin_drop(&c->journal, &w->journal); ++ ++ mutex_unlock(&c->btree_interior_update_lock); ++ ++ /* ++ * Is this a node that isn't reachable on disk yet? ++ * ++ * Nodes that aren't reachable yet have writes blocked until they're ++ * reachable - now that we've cancelled any pending writes and moved ++ * things waiting on that write to wait on this update, we can drop this ++ * node from the list of nodes that the other update is making ++ * reachable, prior to freeing it: ++ */ ++ btree_update_drop_new_node(c, b); ++ ++ btree_update_will_delete_key(as, &b->key); ++} ++ ++void bch2_btree_update_done(struct btree_update *as) ++{ ++ BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE); ++ ++ bch2_btree_reserve_put(as); ++ ++ continue_at(&as->cl, btree_update_set_nodes_written, system_freezable_wq); ++} ++ ++struct btree_update * ++bch2_btree_update_start(struct btree_trans *trans, enum btree_id id, ++ unsigned nr_nodes, unsigned flags, ++ struct closure *cl) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_update *as; ++ int disk_res_flags = (flags & BTREE_INSERT_NOFAIL) ++ ? BCH_DISK_RESERVATION_NOFAIL : 0; ++ int journal_flags = (flags & BTREE_INSERT_JOURNAL_RESERVED) ++ ? JOURNAL_RES_GET_RECLAIM : 0; ++ int ret = 0; ++ ++ /* ++ * This check isn't necessary for correctness - it's just to potentially ++ * prevent us from doing a lot of work that'll end up being wasted: ++ */ ++ ret = bch2_journal_error(&c->journal); ++ if (ret) ++ return ERR_PTR(ret); ++ ++ as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO); ++ memset(as, 0, sizeof(*as)); ++ closure_init(&as->cl, NULL); ++ as->c = c; ++ as->mode = BTREE_INTERIOR_NO_UPDATE; ++ as->btree_id = id; ++ INIT_LIST_HEAD(&as->list); ++ INIT_LIST_HEAD(&as->unwritten_list); ++ INIT_LIST_HEAD(&as->write_blocked_list); ++ bch2_keylist_init(&as->old_keys, as->_old_keys); ++ bch2_keylist_init(&as->new_keys, as->_new_keys); ++ bch2_keylist_init(&as->parent_keys, as->inline_keys); ++ ++ ret = bch2_journal_preres_get(&c->journal, &as->journal_preres, ++ BTREE_UPDATE_JOURNAL_RES, ++ journal_flags|JOURNAL_RES_GET_NONBLOCK); ++ if (ret == -EAGAIN) { ++ if (flags & BTREE_INSERT_NOUNLOCK) ++ return ERR_PTR(-EINTR); ++ ++ bch2_trans_unlock(trans); ++ ++ ret = bch2_journal_preres_get(&c->journal, &as->journal_preres, ++ BTREE_UPDATE_JOURNAL_RES, ++ journal_flags); ++ if (ret) ++ return ERR_PTR(ret); ++ ++ if (!bch2_trans_relock(trans)) { ++ ret = -EINTR; ++ goto err; ++ } ++ } ++ ++ ret = bch2_disk_reservation_get(c, &as->disk_res, ++ nr_nodes * c->opts.btree_node_size, ++ c->opts.metadata_replicas, ++ disk_res_flags); ++ if (ret) ++ goto err; ++ ++ ret = bch2_btree_reserve_get(as, nr_nodes, flags, cl); ++ if (ret) ++ goto err; ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ list_add_tail(&as->list, &c->btree_interior_update_list); ++ mutex_unlock(&c->btree_interior_update_lock); ++ ++ return as; ++err: ++ bch2_btree_update_free(as); ++ return ERR_PTR(ret); ++} ++ ++/* Btree root updates: */ ++ ++static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) ++{ ++ /* Root nodes cannot be reaped */ ++ mutex_lock(&c->btree_cache.lock); ++ list_del_init(&b->list); ++ mutex_unlock(&c->btree_cache.lock); ++ ++ mutex_lock(&c->btree_root_lock); ++ BUG_ON(btree_node_root(c, b) && ++ (b->c.level < btree_node_root(c, b)->c.level || ++ !btree_node_dying(btree_node_root(c, b)))); ++ ++ btree_node_root(c, b) = b; ++ mutex_unlock(&c->btree_root_lock); ++ ++ bch2_recalc_btree_reserve(c); ++} ++ ++/** ++ * bch_btree_set_root - update the root in memory and on disk ++ * ++ * To ensure forward progress, the current task must not be holding any ++ * btree node write locks. However, you must hold an intent lock on the ++ * old root. ++ * ++ * Note: This allocates a journal entry but doesn't add any keys to ++ * it. All the btree roots are part of every journal write, so there ++ * is nothing new to be done. This just guarantees that there is a ++ * journal write. ++ */ ++static void bch2_btree_set_root(struct btree_update *as, struct btree *b, ++ struct btree_iter *iter) ++{ ++ struct bch_fs *c = as->c; ++ struct btree *old; ++ ++ trace_btree_set_root(c, b); ++ BUG_ON(!b->written && ++ !test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags)); ++ ++ old = btree_node_root(c, b); ++ ++ /* ++ * Ensure no one is using the old root while we switch to the ++ * new root: ++ */ ++ bch2_btree_node_lock_write(old, iter); ++ ++ bch2_btree_set_root_inmem(c, b); ++ ++ btree_update_updated_root(as, b); ++ ++ /* ++ * Unlock old root after new root is visible: ++ * ++ * The new root isn't persistent, but that's ok: we still have ++ * an intent lock on the new root, and any updates that would ++ * depend on the new root would have to update the new root. ++ */ ++ bch2_btree_node_unlock_write(old, iter); ++} ++ ++/* Interior node updates: */ ++ ++static void bch2_insert_fixup_btree_ptr(struct btree_update *as, struct btree *b, ++ struct btree_iter *iter, ++ struct bkey_i *insert, ++ struct btree_node_iter *node_iter) ++{ ++ struct bkey_packed *k; ++ ++ BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > ++ ARRAY_SIZE(as->journal_entries)); ++ ++ as->journal_u64s += ++ journal_entry_set((void *) &as->journal_entries[as->journal_u64s], ++ BCH_JSET_ENTRY_btree_keys, ++ b->c.btree_id, b->c.level, ++ insert, insert->k.u64s); ++ ++ while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && ++ bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) ++ bch2_btree_node_iter_advance(node_iter, b); ++ ++ bch2_btree_bset_insert_key(iter, b, node_iter, insert); ++ set_btree_node_dirty(b); ++ set_btree_node_need_write(b); ++} ++ ++/* ++ * Move keys from n1 (original replacement node, now lower node) to n2 (higher ++ * node) ++ */ ++static struct btree *__btree_split_node(struct btree_update *as, ++ struct btree *n1, ++ struct btree_iter *iter) ++{ ++ size_t nr_packed = 0, nr_unpacked = 0; ++ struct btree *n2; ++ struct bset *set1, *set2; ++ struct bkey_packed *k, *prev = NULL; ++ ++ n2 = bch2_btree_node_alloc(as, n1->c.level); ++ bch2_btree_update_add_new_node(as, n2); ++ ++ n2->data->max_key = n1->data->max_key; ++ n2->data->format = n1->format; ++ SET_BTREE_NODE_SEQ(n2->data, BTREE_NODE_SEQ(n1->data)); ++ n2->key.k.p = n1->key.k.p; ++ ++ btree_node_set_format(n2, n2->data->format); ++ ++ set1 = btree_bset_first(n1); ++ set2 = btree_bset_first(n2); ++ ++ /* ++ * Has to be a linear search because we don't have an auxiliary ++ * search tree yet ++ */ ++ k = set1->start; ++ while (1) { ++ struct bkey_packed *n = bkey_next_skip_noops(k, vstruct_last(set1)); ++ ++ if (n == vstruct_last(set1)) ++ break; ++ if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5) ++ break; ++ ++ if (bkey_packed(k)) ++ nr_packed++; ++ else ++ nr_unpacked++; ++ ++ prev = k; ++ k = n; ++ } ++ ++ BUG_ON(!prev); ++ ++ btree_set_max(n1, bkey_unpack_pos(n1, prev)); ++ btree_set_min(n2, bkey_successor(n1->key.k.p)); ++ ++ set2->u64s = cpu_to_le16((u64 *) vstruct_end(set1) - (u64 *) k); ++ set1->u64s = cpu_to_le16(le16_to_cpu(set1->u64s) - le16_to_cpu(set2->u64s)); ++ ++ set_btree_bset_end(n1, n1->set); ++ set_btree_bset_end(n2, n2->set); ++ ++ n2->nr.live_u64s = le16_to_cpu(set2->u64s); ++ n2->nr.bset_u64s[0] = le16_to_cpu(set2->u64s); ++ n2->nr.packed_keys = n1->nr.packed_keys - nr_packed; ++ n2->nr.unpacked_keys = n1->nr.unpacked_keys - nr_unpacked; ++ ++ n1->nr.live_u64s = le16_to_cpu(set1->u64s); ++ n1->nr.bset_u64s[0] = le16_to_cpu(set1->u64s); ++ n1->nr.packed_keys = nr_packed; ++ n1->nr.unpacked_keys = nr_unpacked; ++ ++ BUG_ON(!set1->u64s); ++ BUG_ON(!set2->u64s); ++ ++ memcpy_u64s(set2->start, ++ vstruct_end(set1), ++ le16_to_cpu(set2->u64s)); ++ ++ btree_node_reset_sib_u64s(n1); ++ btree_node_reset_sib_u64s(n2); ++ ++ bch2_verify_btree_nr_keys(n1); ++ bch2_verify_btree_nr_keys(n2); ++ ++ if (n1->c.level) { ++ btree_node_interior_verify(as->c, n1); ++ btree_node_interior_verify(as->c, n2); ++ } ++ ++ return n2; ++} ++ ++/* ++ * For updates to interior nodes, we've got to do the insert before we split ++ * because the stuff we're inserting has to be inserted atomically. Post split, ++ * the keys might have to go in different nodes and the split would no longer be ++ * atomic. ++ * ++ * Worse, if the insert is from btree node coalescing, if we do the insert after ++ * we do the split (and pick the pivot) - the pivot we pick might be between ++ * nodes that were coalesced, and thus in the middle of a child node post ++ * coalescing: ++ */ ++static void btree_split_insert_keys(struct btree_update *as, struct btree *b, ++ struct btree_iter *iter, ++ struct keylist *keys) ++{ ++ struct btree_node_iter node_iter; ++ struct bkey_i *k = bch2_keylist_front(keys); ++ struct bkey_packed *src, *dst, *n; ++ struct bset *i; ++ ++ BUG_ON(btree_node_type(b) != BKEY_TYPE_BTREE); ++ ++ bch2_btree_node_iter_init(&node_iter, b, &k->k.p); ++ ++ while (!bch2_keylist_empty(keys)) { ++ k = bch2_keylist_front(keys); ++ ++ bch2_insert_fixup_btree_ptr(as, b, iter, k, &node_iter); ++ bch2_keylist_pop_front(keys); ++ } ++ ++ /* ++ * We can't tolerate whiteouts here - with whiteouts there can be ++ * duplicate keys, and it would be rather bad if we picked a duplicate ++ * for the pivot: ++ */ ++ i = btree_bset_first(b); ++ src = dst = i->start; ++ while (src != vstruct_last(i)) { ++ n = bkey_next_skip_noops(src, vstruct_last(i)); ++ if (!bkey_deleted(src)) { ++ memmove_u64s_down(dst, src, src->u64s); ++ dst = bkey_next(dst); ++ } ++ src = n; ++ } ++ ++ i->u64s = cpu_to_le16((u64 *) dst - i->_data); ++ set_btree_bset_end(b, b->set); ++ ++ BUG_ON(b->nsets != 1 || ++ b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s)); ++ ++ btree_node_interior_verify(as->c, b); ++} ++ ++static void btree_split(struct btree_update *as, struct btree *b, ++ struct btree_iter *iter, struct keylist *keys, ++ unsigned flags) ++{ ++ struct bch_fs *c = as->c; ++ struct btree *parent = btree_node_parent(iter, b); ++ struct btree *n1, *n2 = NULL, *n3 = NULL; ++ u64 start_time = local_clock(); ++ ++ BUG_ON(!parent && (b != btree_node_root(c, b))); ++ BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->c.level)); ++ ++ bch2_btree_interior_update_will_free_node(as, b); ++ ++ n1 = bch2_btree_node_alloc_replacement(as, b); ++ bch2_btree_update_add_new_node(as, n1); ++ ++ if (keys) ++ btree_split_insert_keys(as, n1, iter, keys); ++ ++ if (bset_u64s(&n1->set[0]) > BTREE_SPLIT_THRESHOLD(c)) { ++ trace_btree_split(c, b); ++ ++ n2 = __btree_split_node(as, n1, iter); ++ ++ bch2_btree_build_aux_trees(n2); ++ bch2_btree_build_aux_trees(n1); ++ six_unlock_write(&n2->c.lock); ++ six_unlock_write(&n1->c.lock); ++ ++ bch2_btree_node_write(c, n2, SIX_LOCK_intent); ++ ++ /* ++ * Note that on recursive parent_keys == keys, so we ++ * can't start adding new keys to parent_keys before emptying it ++ * out (which we did with btree_split_insert_keys() above) ++ */ ++ bch2_keylist_add(&as->parent_keys, &n1->key); ++ bch2_keylist_add(&as->parent_keys, &n2->key); ++ ++ if (!parent) { ++ /* Depth increases, make a new root */ ++ n3 = __btree_root_alloc(as, b->c.level + 1); ++ ++ n3->sib_u64s[0] = U16_MAX; ++ n3->sib_u64s[1] = U16_MAX; ++ ++ btree_split_insert_keys(as, n3, iter, &as->parent_keys); ++ ++ bch2_btree_node_write(c, n3, SIX_LOCK_intent); ++ } ++ } else { ++ trace_btree_compact(c, b); ++ ++ bch2_btree_build_aux_trees(n1); ++ six_unlock_write(&n1->c.lock); ++ ++ if (parent) ++ bch2_keylist_add(&as->parent_keys, &n1->key); ++ } ++ ++ bch2_btree_node_write(c, n1, SIX_LOCK_intent); ++ ++ /* New nodes all written, now make them visible: */ ++ ++ if (parent) { ++ /* Split a non root node */ ++ bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags); ++ } else if (n3) { ++ bch2_btree_set_root(as, n3, iter); ++ } else { ++ /* Root filled up but didn't need to be split */ ++ bch2_btree_set_root(as, n1, iter); ++ } ++ ++ bch2_btree_update_get_open_buckets(as, n1); ++ if (n2) ++ bch2_btree_update_get_open_buckets(as, n2); ++ if (n3) ++ bch2_btree_update_get_open_buckets(as, n3); ++ ++ /* Successful split, update the iterator to point to the new nodes: */ ++ ++ six_lock_increment(&b->c.lock, SIX_LOCK_intent); ++ bch2_btree_iter_node_drop(iter, b); ++ if (n3) ++ bch2_btree_iter_node_replace(iter, n3); ++ if (n2) ++ bch2_btree_iter_node_replace(iter, n2); ++ bch2_btree_iter_node_replace(iter, n1); ++ ++ /* ++ * The old node must be freed (in memory) _before_ unlocking the new ++ * nodes - else another thread could re-acquire a read lock on the old ++ * node after another thread has locked and updated the new node, thus ++ * seeing stale data: ++ */ ++ bch2_btree_node_free_inmem(c, b, iter); ++ ++ if (n3) ++ six_unlock_intent(&n3->c.lock); ++ if (n2) ++ six_unlock_intent(&n2->c.lock); ++ six_unlock_intent(&n1->c.lock); ++ ++ bch2_btree_trans_verify_locks(iter->trans); ++ ++ bch2_time_stats_update(&c->times[BCH_TIME_btree_node_split], ++ start_time); ++} ++ ++static void ++bch2_btree_insert_keys_interior(struct btree_update *as, struct btree *b, ++ struct btree_iter *iter, struct keylist *keys) ++{ ++ struct btree_iter *linked; ++ struct btree_node_iter node_iter; ++ struct bkey_i *insert = bch2_keylist_front(keys); ++ struct bkey_packed *k; ++ ++ /* Don't screw up @iter's position: */ ++ node_iter = iter->l[b->c.level].iter; ++ ++ /* ++ * btree_split(), btree_gc_coalesce() will insert keys before ++ * the iterator's current position - they know the keys go in ++ * the node the iterator points to: ++ */ ++ while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && ++ (bkey_cmp_packed(b, k, &insert->k) >= 0)) ++ ; ++ ++ for_each_keylist_key(keys, insert) ++ bch2_insert_fixup_btree_ptr(as, b, iter, insert, &node_iter); ++ ++ btree_update_updated_node(as, b); ++ ++ trans_for_each_iter_with_node(iter->trans, b, linked) ++ bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); ++ ++ bch2_btree_trans_verify_iters(iter->trans, b); ++} ++ ++/** ++ * bch_btree_insert_node - insert bkeys into a given btree node ++ * ++ * @iter: btree iterator ++ * @keys: list of keys to insert ++ * @hook: insert callback ++ * @persistent: if not null, @persistent will wait on journal write ++ * ++ * Inserts as many keys as it can into a given btree node, splitting it if full. ++ * If a split occurred, this function will return early. This can only happen ++ * for leaf nodes -- inserts into interior nodes have to be atomic. ++ */ ++void bch2_btree_insert_node(struct btree_update *as, struct btree *b, ++ struct btree_iter *iter, struct keylist *keys, ++ unsigned flags) ++{ ++ struct bch_fs *c = as->c; ++ int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); ++ int old_live_u64s = b->nr.live_u64s; ++ int live_u64s_added, u64s_added; ++ ++ BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->c.level)); ++ BUG_ON(!b->c.level); ++ BUG_ON(!as || as->b); ++ bch2_verify_keylist_sorted(keys); ++ ++ if (as->must_rewrite) ++ goto split; ++ ++ bch2_btree_node_lock_for_insert(c, b, iter); ++ ++ if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) { ++ bch2_btree_node_unlock_write(b, iter); ++ goto split; ++ } ++ ++ bch2_btree_insert_keys_interior(as, b, iter, keys); ++ ++ live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; ++ u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; ++ ++ if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) ++ b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); ++ if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) ++ b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); ++ ++ if (u64s_added > live_u64s_added && ++ bch2_maybe_compact_whiteouts(c, b)) ++ bch2_btree_iter_reinit_node(iter, b); ++ ++ bch2_btree_node_unlock_write(b, iter); ++ ++ btree_node_interior_verify(c, b); ++ ++ /* ++ * when called from the btree_split path the new nodes aren't added to ++ * the btree iterator yet, so the merge path's unlock/wait/relock dance ++ * won't work: ++ */ ++ bch2_foreground_maybe_merge(c, iter, b->c.level, ++ flags|BTREE_INSERT_NOUNLOCK); ++ return; ++split: ++ btree_split(as, b, iter, keys, flags); ++} ++ ++int bch2_btree_split_leaf(struct bch_fs *c, struct btree_iter *iter, ++ unsigned flags) ++{ ++ struct btree_trans *trans = iter->trans; ++ struct btree *b = iter_l(iter)->b; ++ struct btree_update *as; ++ struct closure cl; ++ int ret = 0; ++ struct btree_insert_entry *i; ++ ++ /* ++ * We already have a disk reservation and open buckets pinned; this ++ * allocation must not block: ++ */ ++ trans_for_each_update(trans, i) ++ if (btree_node_type_needs_gc(i->iter->btree_id)) ++ flags |= BTREE_INSERT_USE_RESERVE; ++ ++ closure_init_stack(&cl); ++ ++ /* Hack, because gc and splitting nodes doesn't mix yet: */ ++ if (!(flags & BTREE_INSERT_GC_LOCK_HELD) && ++ !down_read_trylock(&c->gc_lock)) { ++ if (flags & BTREE_INSERT_NOUNLOCK) { ++ trace_transaction_restart_ip(trans->ip, _THIS_IP_); ++ return -EINTR; ++ } ++ ++ bch2_trans_unlock(trans); ++ down_read(&c->gc_lock); ++ ++ if (!bch2_trans_relock(trans)) ++ ret = -EINTR; ++ } ++ ++ /* ++ * XXX: figure out how far we might need to split, ++ * instead of locking/reserving all the way to the root: ++ */ ++ if (!bch2_btree_iter_upgrade(iter, U8_MAX)) { ++ trace_trans_restart_iter_upgrade(trans->ip); ++ ret = -EINTR; ++ goto out; ++ } ++ ++ as = bch2_btree_update_start(trans, iter->btree_id, ++ btree_update_reserve_required(c, b), flags, ++ !(flags & BTREE_INSERT_NOUNLOCK) ? &cl : NULL); ++ if (IS_ERR(as)) { ++ ret = PTR_ERR(as); ++ if (ret == -EAGAIN) { ++ BUG_ON(flags & BTREE_INSERT_NOUNLOCK); ++ bch2_trans_unlock(trans); ++ ret = -EINTR; ++ ++ trace_transaction_restart_ip(trans->ip, _THIS_IP_); ++ } ++ goto out; ++ } ++ ++ btree_split(as, b, iter, NULL, flags); ++ bch2_btree_update_done(as); ++ ++ /* ++ * We haven't successfully inserted yet, so don't downgrade all the way ++ * back to read locks; ++ */ ++ __bch2_btree_iter_downgrade(iter, 1); ++out: ++ if (!(flags & BTREE_INSERT_GC_LOCK_HELD)) ++ up_read(&c->gc_lock); ++ closure_sync(&cl); ++ return ret; ++} ++ ++void __bch2_foreground_maybe_merge(struct bch_fs *c, ++ struct btree_iter *iter, ++ unsigned level, ++ unsigned flags, ++ enum btree_node_sibling sib) ++{ ++ struct btree_trans *trans = iter->trans; ++ struct btree_update *as; ++ struct bkey_format_state new_s; ++ struct bkey_format new_f; ++ struct bkey_i delete; ++ struct btree *b, *m, *n, *prev, *next, *parent; ++ struct closure cl; ++ size_t sib_u64s; ++ int ret = 0; ++ ++ BUG_ON(!btree_node_locked(iter, level)); ++ ++ closure_init_stack(&cl); ++retry: ++ BUG_ON(!btree_node_locked(iter, level)); ++ ++ b = iter->l[level].b; ++ ++ parent = btree_node_parent(iter, b); ++ if (!parent) ++ goto out; ++ ++ if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c)) ++ goto out; ++ ++ /* XXX: can't be holding read locks */ ++ m = bch2_btree_node_get_sibling(c, iter, b, sib); ++ if (IS_ERR(m)) { ++ ret = PTR_ERR(m); ++ goto err; ++ } ++ ++ /* NULL means no sibling: */ ++ if (!m) { ++ b->sib_u64s[sib] = U16_MAX; ++ goto out; ++ } ++ ++ if (sib == btree_prev_sib) { ++ prev = m; ++ next = b; ++ } else { ++ prev = b; ++ next = m; ++ } ++ ++ bch2_bkey_format_init(&new_s); ++ __bch2_btree_calc_format(&new_s, b); ++ __bch2_btree_calc_format(&new_s, m); ++ new_f = bch2_bkey_format_done(&new_s); ++ ++ sib_u64s = btree_node_u64s_with_format(b, &new_f) + ++ btree_node_u64s_with_format(m, &new_f); ++ ++ if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { ++ sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); ++ sib_u64s /= 2; ++ sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); ++ } ++ ++ sib_u64s = min(sib_u64s, btree_max_u64s(c)); ++ b->sib_u64s[sib] = sib_u64s; ++ ++ if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c)) { ++ six_unlock_intent(&m->c.lock); ++ goto out; ++ } ++ ++ /* We're changing btree topology, doesn't mix with gc: */ ++ if (!(flags & BTREE_INSERT_GC_LOCK_HELD) && ++ !down_read_trylock(&c->gc_lock)) ++ goto err_cycle_gc_lock; ++ ++ if (!bch2_btree_iter_upgrade(iter, U8_MAX)) { ++ ret = -EINTR; ++ goto err_unlock; ++ } ++ ++ as = bch2_btree_update_start(trans, iter->btree_id, ++ btree_update_reserve_required(c, parent) + 1, ++ flags| ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_USE_RESERVE, ++ !(flags & BTREE_INSERT_NOUNLOCK) ? &cl : NULL); ++ if (IS_ERR(as)) { ++ ret = PTR_ERR(as); ++ goto err_unlock; ++ } ++ ++ trace_btree_merge(c, b); ++ ++ bch2_btree_interior_update_will_free_node(as, b); ++ bch2_btree_interior_update_will_free_node(as, m); ++ ++ n = bch2_btree_node_alloc(as, b->c.level); ++ bch2_btree_update_add_new_node(as, n); ++ ++ btree_set_min(n, prev->data->min_key); ++ btree_set_max(n, next->data->max_key); ++ n->data->format = new_f; ++ ++ btree_node_set_format(n, new_f); ++ ++ bch2_btree_sort_into(c, n, prev); ++ bch2_btree_sort_into(c, n, next); ++ ++ bch2_btree_build_aux_trees(n); ++ six_unlock_write(&n->c.lock); ++ ++ bkey_init(&delete.k); ++ delete.k.p = prev->key.k.p; ++ bch2_keylist_add(&as->parent_keys, &delete); ++ bch2_keylist_add(&as->parent_keys, &n->key); ++ ++ bch2_btree_node_write(c, n, SIX_LOCK_intent); ++ ++ bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags); ++ ++ bch2_btree_update_get_open_buckets(as, n); ++ ++ six_lock_increment(&b->c.lock, SIX_LOCK_intent); ++ bch2_btree_iter_node_drop(iter, b); ++ bch2_btree_iter_node_drop(iter, m); ++ ++ bch2_btree_iter_node_replace(iter, n); ++ ++ bch2_btree_trans_verify_iters(trans, n); ++ ++ bch2_btree_node_free_inmem(c, b, iter); ++ bch2_btree_node_free_inmem(c, m, iter); ++ ++ six_unlock_intent(&n->c.lock); ++ ++ bch2_btree_update_done(as); ++ ++ if (!(flags & BTREE_INSERT_GC_LOCK_HELD)) ++ up_read(&c->gc_lock); ++out: ++ bch2_btree_trans_verify_locks(trans); ++ ++ /* ++ * Don't downgrade locks here: we're called after successful insert, ++ * and the caller will downgrade locks after a successful insert ++ * anyways (in case e.g. a split was required first) ++ * ++ * And we're also called when inserting into interior nodes in the ++ * split path, and downgrading to read locks in there is potentially ++ * confusing: ++ */ ++ closure_sync(&cl); ++ return; ++ ++err_cycle_gc_lock: ++ six_unlock_intent(&m->c.lock); ++ ++ if (flags & BTREE_INSERT_NOUNLOCK) ++ goto out; ++ ++ bch2_trans_unlock(trans); ++ ++ down_read(&c->gc_lock); ++ up_read(&c->gc_lock); ++ ret = -EINTR; ++ goto err; ++ ++err_unlock: ++ six_unlock_intent(&m->c.lock); ++ if (!(flags & BTREE_INSERT_GC_LOCK_HELD)) ++ up_read(&c->gc_lock); ++err: ++ BUG_ON(ret == -EAGAIN && (flags & BTREE_INSERT_NOUNLOCK)); ++ ++ if ((ret == -EAGAIN || ret == -EINTR) && ++ !(flags & BTREE_INSERT_NOUNLOCK)) { ++ bch2_trans_unlock(trans); ++ closure_sync(&cl); ++ ret = bch2_btree_iter_traverse(iter); ++ if (ret) ++ goto out; ++ ++ goto retry; ++ } ++ ++ goto out; ++} ++ ++static int __btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter, ++ struct btree *b, unsigned flags, ++ struct closure *cl) ++{ ++ struct btree *n, *parent = btree_node_parent(iter, b); ++ struct btree_update *as; ++ ++ as = bch2_btree_update_start(iter->trans, iter->btree_id, ++ (parent ++ ? btree_update_reserve_required(c, parent) ++ : 0) + 1, ++ flags, cl); ++ if (IS_ERR(as)) { ++ trace_btree_gc_rewrite_node_fail(c, b); ++ return PTR_ERR(as); ++ } ++ ++ bch2_btree_interior_update_will_free_node(as, b); ++ ++ n = bch2_btree_node_alloc_replacement(as, b); ++ bch2_btree_update_add_new_node(as, n); ++ ++ bch2_btree_build_aux_trees(n); ++ six_unlock_write(&n->c.lock); ++ ++ trace_btree_gc_rewrite_node(c, b); ++ ++ bch2_btree_node_write(c, n, SIX_LOCK_intent); ++ ++ if (parent) { ++ bch2_keylist_add(&as->parent_keys, &n->key); ++ bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags); ++ } else { ++ bch2_btree_set_root(as, n, iter); ++ } ++ ++ bch2_btree_update_get_open_buckets(as, n); ++ ++ six_lock_increment(&b->c.lock, SIX_LOCK_intent); ++ bch2_btree_iter_node_drop(iter, b); ++ bch2_btree_iter_node_replace(iter, n); ++ bch2_btree_node_free_inmem(c, b, iter); ++ six_unlock_intent(&n->c.lock); ++ ++ bch2_btree_update_done(as); ++ return 0; ++} ++ ++/** ++ * bch_btree_node_rewrite - Rewrite/move a btree node ++ * ++ * Returns 0 on success, -EINTR or -EAGAIN on failure (i.e. ++ * btree_check_reserve() has to wait) ++ */ ++int bch2_btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter, ++ __le64 seq, unsigned flags) ++{ ++ struct btree_trans *trans = iter->trans; ++ struct closure cl; ++ struct btree *b; ++ int ret; ++ ++ flags |= BTREE_INSERT_NOFAIL; ++ ++ closure_init_stack(&cl); ++ ++ bch2_btree_iter_upgrade(iter, U8_MAX); ++ ++ if (!(flags & BTREE_INSERT_GC_LOCK_HELD)) { ++ if (!down_read_trylock(&c->gc_lock)) { ++ bch2_trans_unlock(trans); ++ down_read(&c->gc_lock); ++ } ++ } ++ ++ while (1) { ++ ret = bch2_btree_iter_traverse(iter); ++ if (ret) ++ break; ++ ++ b = bch2_btree_iter_peek_node(iter); ++ if (!b || b->data->keys.seq != seq) ++ break; ++ ++ ret = __btree_node_rewrite(c, iter, b, flags, &cl); ++ if (ret != -EAGAIN && ++ ret != -EINTR) ++ break; ++ ++ bch2_trans_unlock(trans); ++ closure_sync(&cl); ++ } ++ ++ bch2_btree_iter_downgrade(iter); ++ ++ if (!(flags & BTREE_INSERT_GC_LOCK_HELD)) ++ up_read(&c->gc_lock); ++ ++ closure_sync(&cl); ++ return ret; ++} ++ ++static void __bch2_btree_node_update_key(struct bch_fs *c, ++ struct btree_update *as, ++ struct btree_iter *iter, ++ struct btree *b, struct btree *new_hash, ++ struct bkey_i *new_key) ++{ ++ struct btree *parent; ++ int ret; ++ ++ btree_update_will_delete_key(as, &b->key); ++ btree_update_will_add_key(as, new_key); ++ ++ parent = btree_node_parent(iter, b); ++ if (parent) { ++ if (new_hash) { ++ bkey_copy(&new_hash->key, new_key); ++ ret = bch2_btree_node_hash_insert(&c->btree_cache, ++ new_hash, b->c.level, b->c.btree_id); ++ BUG_ON(ret); ++ } ++ ++ bch2_keylist_add(&as->parent_keys, new_key); ++ bch2_btree_insert_node(as, parent, iter, &as->parent_keys, 0); ++ ++ if (new_hash) { ++ mutex_lock(&c->btree_cache.lock); ++ bch2_btree_node_hash_remove(&c->btree_cache, new_hash); ++ ++ bch2_btree_node_hash_remove(&c->btree_cache, b); ++ ++ bkey_copy(&b->key, new_key); ++ ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); ++ BUG_ON(ret); ++ mutex_unlock(&c->btree_cache.lock); ++ } else { ++ bkey_copy(&b->key, new_key); ++ } ++ } else { ++ BUG_ON(btree_node_root(c, b) != b); ++ ++ bch2_btree_node_lock_write(b, iter); ++ bkey_copy(&b->key, new_key); ++ ++ if (btree_ptr_hash_val(&b->key) != b->hash_val) { ++ mutex_lock(&c->btree_cache.lock); ++ bch2_btree_node_hash_remove(&c->btree_cache, b); ++ ++ ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); ++ BUG_ON(ret); ++ mutex_unlock(&c->btree_cache.lock); ++ } ++ ++ btree_update_updated_root(as, b); ++ bch2_btree_node_unlock_write(b, iter); ++ } ++ ++ bch2_btree_update_done(as); ++} ++ ++int bch2_btree_node_update_key(struct bch_fs *c, struct btree_iter *iter, ++ struct btree *b, ++ struct bkey_i *new_key) ++{ ++ struct btree *parent = btree_node_parent(iter, b); ++ struct btree_update *as = NULL; ++ struct btree *new_hash = NULL; ++ struct closure cl; ++ int ret; ++ ++ closure_init_stack(&cl); ++ ++ if (!bch2_btree_iter_upgrade(iter, U8_MAX)) ++ return -EINTR; ++ ++ if (!down_read_trylock(&c->gc_lock)) { ++ bch2_trans_unlock(iter->trans); ++ down_read(&c->gc_lock); ++ ++ if (!bch2_trans_relock(iter->trans)) { ++ ret = -EINTR; ++ goto err; ++ } ++ } ++ ++ /* ++ * check btree_ptr_hash_val() after @b is locked by ++ * btree_iter_traverse(): ++ */ ++ if (btree_ptr_hash_val(new_key) != b->hash_val) { ++ /* bch2_btree_reserve_get will unlock */ ++ ret = bch2_btree_cache_cannibalize_lock(c, &cl); ++ if (ret) { ++ bch2_trans_unlock(iter->trans); ++ up_read(&c->gc_lock); ++ closure_sync(&cl); ++ down_read(&c->gc_lock); ++ ++ if (!bch2_trans_relock(iter->trans)) { ++ ret = -EINTR; ++ goto err; ++ } ++ } ++ ++ new_hash = bch2_btree_node_mem_alloc(c); ++ } ++retry: ++ as = bch2_btree_update_start(iter->trans, iter->btree_id, ++ parent ? btree_update_reserve_required(c, parent) : 0, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_USE_RESERVE| ++ BTREE_INSERT_USE_ALLOC_RESERVE, ++ &cl); ++ ++ if (IS_ERR(as)) { ++ ret = PTR_ERR(as); ++ if (ret == -EAGAIN) ++ ret = -EINTR; ++ ++ if (ret == -EINTR) { ++ bch2_trans_unlock(iter->trans); ++ up_read(&c->gc_lock); ++ closure_sync(&cl); ++ down_read(&c->gc_lock); ++ ++ if (bch2_trans_relock(iter->trans)) ++ goto retry; ++ } ++ ++ goto err; ++ } ++ ++ ret = bch2_mark_bkey_replicas(c, bkey_i_to_s_c(new_key)); ++ if (ret) ++ goto err_free_update; ++ ++ __bch2_btree_node_update_key(c, as, iter, b, new_hash, new_key); ++ ++ bch2_btree_iter_downgrade(iter); ++err: ++ if (new_hash) { ++ mutex_lock(&c->btree_cache.lock); ++ list_move(&new_hash->list, &c->btree_cache.freeable); ++ mutex_unlock(&c->btree_cache.lock); ++ ++ six_unlock_write(&new_hash->c.lock); ++ six_unlock_intent(&new_hash->c.lock); ++ } ++ up_read(&c->gc_lock); ++ closure_sync(&cl); ++ return ret; ++err_free_update: ++ bch2_btree_update_free(as); ++ goto err; ++} ++ ++/* Init code: */ ++ ++/* ++ * Only for filesystem bringup, when first reading the btree roots or allocating ++ * btree roots when initializing a new filesystem: ++ */ ++void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) ++{ ++ BUG_ON(btree_node_root(c, b)); ++ ++ bch2_btree_set_root_inmem(c, b); ++} ++ ++void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id) ++{ ++ struct closure cl; ++ struct btree *b; ++ int ret; ++ ++ closure_init_stack(&cl); ++ ++ do { ++ ret = bch2_btree_cache_cannibalize_lock(c, &cl); ++ closure_sync(&cl); ++ } while (ret); ++ ++ b = bch2_btree_node_mem_alloc(c); ++ bch2_btree_cache_cannibalize_unlock(c); ++ ++ set_btree_node_fake(b); ++ set_btree_node_need_rewrite(b); ++ b->c.level = 0; ++ b->c.btree_id = id; ++ ++ bkey_btree_ptr_init(&b->key); ++ b->key.k.p = POS_MAX; ++ *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; ++ ++ bch2_bset_init_first(b, &b->data->keys); ++ bch2_btree_build_aux_trees(b); ++ ++ b->data->flags = 0; ++ btree_set_min(b, POS_MIN); ++ btree_set_max(b, POS_MAX); ++ b->data->format = bch2_btree_calc_format(b); ++ btree_node_set_format(b, b->data->format); ++ ++ ret = bch2_btree_node_hash_insert(&c->btree_cache, b, ++ b->c.level, b->c.btree_id); ++ BUG_ON(ret); ++ ++ bch2_btree_set_root_inmem(c, b); ++ ++ six_unlock_write(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++} ++ ++void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ struct btree_update *as; ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ list_for_each_entry(as, &c->btree_interior_update_list, list) ++ pr_buf(out, "%p m %u w %u r %u j %llu\n", ++ as, ++ as->mode, ++ as->nodes_written, ++ atomic_read(&as->cl.remaining) & CLOSURE_REMAINING_MASK, ++ as->journal.seq); ++ mutex_unlock(&c->btree_interior_update_lock); ++} ++ ++size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *c) ++{ ++ size_t ret = 0; ++ struct list_head *i; ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ list_for_each(i, &c->btree_interior_update_list) ++ ret++; ++ mutex_unlock(&c->btree_interior_update_lock); ++ ++ return ret; ++} ++ ++void bch2_journal_entries_to_btree_roots(struct bch_fs *c, struct jset *jset) ++{ ++ struct btree_root *r; ++ struct jset_entry *entry; ++ ++ mutex_lock(&c->btree_root_lock); ++ ++ vstruct_for_each(jset, entry) ++ if (entry->type == BCH_JSET_ENTRY_btree_root) { ++ r = &c->btree_roots[entry->btree_id]; ++ r->level = entry->level; ++ r->alive = true; ++ bkey_copy(&r->key, &entry->start[0]); ++ } ++ ++ mutex_unlock(&c->btree_root_lock); ++} ++ ++struct jset_entry * ++bch2_btree_roots_to_journal_entries(struct bch_fs *c, ++ struct jset_entry *start, ++ struct jset_entry *end) ++{ ++ struct jset_entry *entry; ++ unsigned long have = 0; ++ unsigned i; ++ ++ for (entry = start; entry < end; entry = vstruct_next(entry)) ++ if (entry->type == BCH_JSET_ENTRY_btree_root) ++ __set_bit(entry->btree_id, &have); ++ ++ mutex_lock(&c->btree_root_lock); ++ ++ for (i = 0; i < BTREE_ID_NR; i++) ++ if (c->btree_roots[i].alive && !test_bit(i, &have)) { ++ journal_entry_set(end, ++ BCH_JSET_ENTRY_btree_root, ++ i, c->btree_roots[i].level, ++ &c->btree_roots[i].key, ++ c->btree_roots[i].key.u64s); ++ end = vstruct_next(end); ++ } ++ ++ mutex_unlock(&c->btree_root_lock); ++ ++ return end; ++} ++ ++void bch2_fs_btree_interior_update_exit(struct bch_fs *c) ++{ ++ if (c->btree_interior_update_worker) ++ destroy_workqueue(c->btree_interior_update_worker); ++ mempool_exit(&c->btree_interior_update_pool); ++} ++ ++int bch2_fs_btree_interior_update_init(struct bch_fs *c) ++{ ++ mutex_init(&c->btree_reserve_cache_lock); ++ INIT_LIST_HEAD(&c->btree_interior_update_list); ++ INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); ++ mutex_init(&c->btree_interior_update_lock); ++ INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); ++ ++ c->btree_interior_update_worker = ++ alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1); ++ if (!c->btree_interior_update_worker) ++ return -ENOMEM; ++ ++ return mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, ++ sizeof(struct btree_update)); ++} +diff --git a/fs/bcachefs/btree_update_interior.h b/fs/bcachefs/btree_update_interior.h +new file mode 100644 +index 000000000000..7668225e72c6 +--- /dev/null ++++ b/fs/bcachefs/btree_update_interior.h +@@ -0,0 +1,331 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H ++#define _BCACHEFS_BTREE_UPDATE_INTERIOR_H ++ ++#include "btree_cache.h" ++#include "btree_locking.h" ++#include "btree_update.h" ++ ++void __bch2_btree_calc_format(struct bkey_format_state *, struct btree *); ++bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *, ++ struct bkey_format *); ++ ++#define BTREE_UPDATE_NODES_MAX ((BTREE_MAX_DEPTH - 2) * 2 + GC_MERGE_NODES) ++ ++#define BTREE_UPDATE_JOURNAL_RES (BTREE_UPDATE_NODES_MAX * (BKEY_BTREE_PTR_U64s_MAX + 1)) ++ ++/* ++ * Tracks an in progress split/rewrite of a btree node and the update to the ++ * parent node: ++ * ++ * When we split/rewrite a node, we do all the updates in memory without ++ * waiting for any writes to complete - we allocate the new node(s) and update ++ * the parent node, possibly recursively up to the root. ++ * ++ * The end result is that we have one or more new nodes being written - ++ * possibly several, if there were multiple splits - and then a write (updating ++ * an interior node) which will make all these new nodes visible. ++ * ++ * Additionally, as we split/rewrite nodes we free the old nodes - but the old ++ * nodes can't be freed (their space on disk can't be reclaimed) until the ++ * update to the interior node that makes the new node visible completes - ++ * until then, the old nodes are still reachable on disk. ++ * ++ */ ++struct btree_update { ++ struct closure cl; ++ struct bch_fs *c; ++ ++ struct list_head list; ++ struct list_head unwritten_list; ++ ++ /* What kind of update are we doing? */ ++ enum { ++ BTREE_INTERIOR_NO_UPDATE, ++ BTREE_INTERIOR_UPDATING_NODE, ++ BTREE_INTERIOR_UPDATING_ROOT, ++ BTREE_INTERIOR_UPDATING_AS, ++ } mode; ++ ++ unsigned must_rewrite:1; ++ unsigned nodes_written:1; ++ ++ enum btree_id btree_id; ++ ++ struct disk_reservation disk_res; ++ struct journal_preres journal_preres; ++ ++ /* ++ * BTREE_INTERIOR_UPDATING_NODE: ++ * The update that made the new nodes visible was a regular update to an ++ * existing interior node - @b. We can't write out the update to @b ++ * until the new nodes we created are finished writing, so we block @b ++ * from writing by putting this btree_interior update on the ++ * @b->write_blocked list with @write_blocked_list: ++ */ ++ struct btree *b; ++ struct list_head write_blocked_list; ++ ++ /* ++ * We may be freeing nodes that were dirty, and thus had journal entries ++ * pinned: we need to transfer the oldest of those pins to the ++ * btree_update operation, and release it when the new node(s) ++ * are all persistent and reachable: ++ */ ++ struct journal_entry_pin journal; ++ ++ /* Preallocated nodes we reserve when we start the update: */ ++ struct btree *prealloc_nodes[BTREE_UPDATE_NODES_MAX]; ++ unsigned nr_prealloc_nodes; ++ ++ /* Nodes being freed: */ ++ struct keylist old_keys; ++ u64 _old_keys[BTREE_UPDATE_NODES_MAX * ++ BKEY_BTREE_PTR_VAL_U64s_MAX]; ++ ++ /* Nodes being added: */ ++ struct keylist new_keys; ++ u64 _new_keys[BTREE_UPDATE_NODES_MAX * ++ BKEY_BTREE_PTR_VAL_U64s_MAX]; ++ ++ /* New nodes, that will be made reachable by this update: */ ++ struct btree *new_nodes[BTREE_UPDATE_NODES_MAX]; ++ unsigned nr_new_nodes; ++ ++ open_bucket_idx_t open_buckets[BTREE_UPDATE_NODES_MAX * ++ BCH_REPLICAS_MAX]; ++ open_bucket_idx_t nr_open_buckets; ++ ++ unsigned journal_u64s; ++ u64 journal_entries[BTREE_UPDATE_JOURNAL_RES]; ++ ++ /* Only here to reduce stack usage on recursive splits: */ ++ struct keylist parent_keys; ++ /* ++ * Enough room for btree_split's keys without realloc - btree node ++ * pointers never have crc/compression info, so we only need to acount ++ * for the pointers for three keys ++ */ ++ u64 inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3]; ++}; ++ ++void bch2_btree_node_free_inmem(struct bch_fs *, struct btree *, ++ struct btree_iter *); ++void bch2_btree_node_free_never_inserted(struct bch_fs *, struct btree *); ++ ++void bch2_btree_update_get_open_buckets(struct btree_update *, struct btree *); ++ ++struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *, ++ struct btree *, ++ struct bkey_format); ++ ++void bch2_btree_update_done(struct btree_update *); ++struct btree_update * ++bch2_btree_update_start(struct btree_trans *, enum btree_id, unsigned, ++ unsigned, struct closure *); ++ ++void bch2_btree_interior_update_will_free_node(struct btree_update *, ++ struct btree *); ++void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); ++ ++void bch2_btree_insert_node(struct btree_update *, struct btree *, ++ struct btree_iter *, struct keylist *, ++ unsigned); ++int bch2_btree_split_leaf(struct bch_fs *, struct btree_iter *, unsigned); ++ ++void __bch2_foreground_maybe_merge(struct bch_fs *, struct btree_iter *, ++ unsigned, unsigned, enum btree_node_sibling); ++ ++static inline void bch2_foreground_maybe_merge_sibling(struct bch_fs *c, ++ struct btree_iter *iter, ++ unsigned level, unsigned flags, ++ enum btree_node_sibling sib) ++{ ++ struct btree *b; ++ ++ if (iter->uptodate >= BTREE_ITER_NEED_TRAVERSE) ++ return; ++ ++ if (!bch2_btree_node_relock(iter, level)) ++ return; ++ ++ b = iter->l[level].b; ++ if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) ++ return; ++ ++ __bch2_foreground_maybe_merge(c, iter, level, flags, sib); ++} ++ ++static inline void bch2_foreground_maybe_merge(struct bch_fs *c, ++ struct btree_iter *iter, ++ unsigned level, ++ unsigned flags) ++{ ++ bch2_foreground_maybe_merge_sibling(c, iter, level, flags, ++ btree_prev_sib); ++ bch2_foreground_maybe_merge_sibling(c, iter, level, flags, ++ btree_next_sib); ++} ++ ++void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *); ++void bch2_btree_root_alloc(struct bch_fs *, enum btree_id); ++ ++static inline unsigned btree_update_reserve_required(struct bch_fs *c, ++ struct btree *b) ++{ ++ unsigned depth = btree_node_root(c, b)->c.level + 1; ++ ++ /* ++ * Number of nodes we might have to allocate in a worst case btree ++ * split operation - we split all the way up to the root, then allocate ++ * a new root, unless we're already at max depth: ++ */ ++ if (depth < BTREE_MAX_DEPTH) ++ return (depth - b->c.level) * 2 + 1; ++ else ++ return (depth - b->c.level) * 2 - 1; ++} ++ ++static inline void btree_node_reset_sib_u64s(struct btree *b) ++{ ++ b->sib_u64s[0] = b->nr.live_u64s; ++ b->sib_u64s[1] = b->nr.live_u64s; ++} ++ ++static inline void *btree_data_end(struct bch_fs *c, struct btree *b) ++{ ++ return (void *) b->data + btree_bytes(c); ++} ++ ++static inline struct bkey_packed *unwritten_whiteouts_start(struct bch_fs *c, ++ struct btree *b) ++{ ++ return (void *) ((u64 *) btree_data_end(c, b) - b->whiteout_u64s); ++} ++ ++static inline struct bkey_packed *unwritten_whiteouts_end(struct bch_fs *c, ++ struct btree *b) ++{ ++ return btree_data_end(c, b); ++} ++ ++static inline void *write_block(struct btree *b) ++{ ++ return (void *) b->data + (b->written << 9); ++} ++ ++static inline bool __btree_addr_written(struct btree *b, void *p) ++{ ++ return p < write_block(b); ++} ++ ++static inline bool bset_written(struct btree *b, struct bset *i) ++{ ++ return __btree_addr_written(b, i); ++} ++ ++static inline bool bkey_written(struct btree *b, struct bkey_packed *k) ++{ ++ return __btree_addr_written(b, k); ++} ++ ++static inline ssize_t __bch_btree_u64s_remaining(struct bch_fs *c, ++ struct btree *b, ++ void *end) ++{ ++ ssize_t used = bset_byte_offset(b, end) / sizeof(u64) + ++ b->whiteout_u64s; ++ ssize_t total = c->opts.btree_node_size << 6; ++ ++ return total - used; ++} ++ ++static inline size_t bch_btree_keys_u64s_remaining(struct bch_fs *c, ++ struct btree *b) ++{ ++ ssize_t remaining = __bch_btree_u64s_remaining(c, b, ++ btree_bkey_last(b, bset_tree_last(b))); ++ ++ BUG_ON(remaining < 0); ++ ++ if (bset_written(b, btree_bset_last(b))) ++ return 0; ++ ++ return remaining; ++} ++ ++static inline unsigned btree_write_set_buffer(struct btree *b) ++{ ++ /* ++ * Could buffer up larger amounts of keys for btrees with larger keys, ++ * pending benchmarking: ++ */ ++ return 4 << 10; ++} ++ ++static inline struct btree_node_entry *want_new_bset(struct bch_fs *c, ++ struct btree *b) ++{ ++ struct bset_tree *t = bset_tree_last(b); ++ struct btree_node_entry *bne = max(write_block(b), ++ (void *) btree_bkey_last(b, bset_tree_last(b))); ++ ssize_t remaining_space = ++ __bch_btree_u64s_remaining(c, b, &bne->keys.start[0]); ++ ++ if (unlikely(bset_written(b, bset(b, t)))) { ++ if (remaining_space > (ssize_t) (block_bytes(c) >> 3)) ++ return bne; ++ } else { ++ if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) && ++ remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3)) ++ return bne; ++ } ++ ++ return NULL; ++} ++ ++static inline void push_whiteout(struct bch_fs *c, struct btree *b, ++ struct bpos pos) ++{ ++ struct bkey_packed k; ++ ++ BUG_ON(bch_btree_keys_u64s_remaining(c, b) < BKEY_U64s); ++ ++ if (!bkey_pack_pos(&k, pos, b)) { ++ struct bkey *u = (void *) &k; ++ ++ bkey_init(u); ++ u->p = pos; ++ } ++ ++ k.needs_whiteout = true; ++ ++ b->whiteout_u64s += k.u64s; ++ bkey_copy(unwritten_whiteouts_start(c, b), &k); ++} ++ ++/* ++ * write lock must be held on @b (else the dirty bset that we were going to ++ * insert into could be written out from under us) ++ */ ++static inline bool bch2_btree_node_insert_fits(struct bch_fs *c, ++ struct btree *b, unsigned u64s) ++{ ++ if (unlikely(btree_node_need_rewrite(b))) ++ return false; ++ ++ return u64s <= bch_btree_keys_u64s_remaining(c, b); ++} ++ ++void bch2_btree_updates_to_text(struct printbuf *, struct bch_fs *); ++ ++size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *); ++ ++void bch2_journal_entries_to_btree_roots(struct bch_fs *, struct jset *); ++struct jset_entry *bch2_btree_roots_to_journal_entries(struct bch_fs *, ++ struct jset_entry *, struct jset_entry *); ++ ++void bch2_fs_btree_interior_update_exit(struct bch_fs *); ++int bch2_fs_btree_interior_update_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */ +diff --git a/fs/bcachefs/btree_update_leaf.c b/fs/bcachefs/btree_update_leaf.c +new file mode 100644 +index 000000000000..49995cd00c16 +--- /dev/null ++++ b/fs/bcachefs/btree_update_leaf.c +@@ -0,0 +1,1172 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "btree_update.h" ++#include "btree_update_interior.h" ++#include "btree_gc.h" ++#include "btree_io.h" ++#include "btree_iter.h" ++#include "btree_key_cache.h" ++#include "btree_locking.h" ++#include "buckets.h" ++#include "debug.h" ++#include "error.h" ++#include "extent_update.h" ++#include "journal.h" ++#include "journal_reclaim.h" ++#include "keylist.h" ++#include "replicas.h" ++ ++#include ++#include ++#include ++ ++static inline bool same_leaf_as_prev(struct btree_trans *trans, ++ struct btree_insert_entry *i) ++{ ++ return i != trans->updates2 && ++ iter_l(i[0].iter)->b == iter_l(i[-1].iter)->b; ++} ++ ++inline void bch2_btree_node_lock_for_insert(struct bch_fs *c, struct btree *b, ++ struct btree_iter *iter) ++{ ++ bch2_btree_node_lock_write(b, iter); ++ ++ if (btree_iter_type(iter) == BTREE_ITER_CACHED) ++ return; ++ ++ if (unlikely(btree_node_just_written(b)) && ++ bch2_btree_post_write_cleanup(c, b)) ++ bch2_btree_iter_reinit_node(iter, b); ++ ++ /* ++ * If the last bset has been written, or if it's gotten too big - start ++ * a new bset to insert into: ++ */ ++ if (want_new_bset(c, b)) ++ bch2_btree_init_next(c, b, iter); ++} ++ ++/* Inserting into a given leaf node (last stage of insert): */ ++ ++/* Handle overwrites and do insert, for non extents: */ ++bool bch2_btree_bset_insert_key(struct btree_iter *iter, ++ struct btree *b, ++ struct btree_node_iter *node_iter, ++ struct bkey_i *insert) ++{ ++ struct bkey_packed *k; ++ unsigned clobber_u64s = 0, new_u64s = 0; ++ ++ EBUG_ON(btree_node_just_written(b)); ++ EBUG_ON(bset_written(b, btree_bset_last(b))); ++ EBUG_ON(bkey_deleted(&insert->k) && bkey_val_u64s(&insert->k)); ++ EBUG_ON(bkey_cmp(b->data->min_key, POS_MIN) && ++ bkey_cmp(bkey_start_pos(&insert->k), ++ bkey_predecessor(b->data->min_key)) < 0); ++ EBUG_ON(bkey_cmp(insert->k.p, b->data->min_key) < 0); ++ EBUG_ON(bkey_cmp(insert->k.p, b->data->max_key) > 0); ++ EBUG_ON(insert->k.u64s > ++ bch_btree_keys_u64s_remaining(iter->trans->c, b)); ++ EBUG_ON(iter->flags & BTREE_ITER_IS_EXTENTS); ++ ++ k = bch2_btree_node_iter_peek_all(node_iter, b); ++ if (k && bkey_cmp_packed(b, k, &insert->k)) ++ k = NULL; ++ ++ /* @k is the key being overwritten/deleted, if any: */ ++ EBUG_ON(k && bkey_whiteout(k)); ++ ++ /* Deleting, but not found? nothing to do: */ ++ if (bkey_whiteout(&insert->k) && !k) ++ return false; ++ ++ if (bkey_whiteout(&insert->k)) { ++ /* Deleting: */ ++ btree_account_key_drop(b, k); ++ k->type = KEY_TYPE_deleted; ++ ++ if (k->needs_whiteout) ++ push_whiteout(iter->trans->c, b, insert->k.p); ++ k->needs_whiteout = false; ++ ++ if (k >= btree_bset_last(b)->start) { ++ clobber_u64s = k->u64s; ++ bch2_bset_delete(b, k, clobber_u64s); ++ goto fix_iter; ++ } else { ++ bch2_btree_iter_fix_key_modified(iter, b, k); ++ } ++ ++ return true; ++ } ++ ++ if (k) { ++ /* Overwriting: */ ++ btree_account_key_drop(b, k); ++ k->type = KEY_TYPE_deleted; ++ ++ insert->k.needs_whiteout = k->needs_whiteout; ++ k->needs_whiteout = false; ++ ++ if (k >= btree_bset_last(b)->start) { ++ clobber_u64s = k->u64s; ++ goto overwrite; ++ } else { ++ bch2_btree_iter_fix_key_modified(iter, b, k); ++ } ++ } ++ ++ k = bch2_btree_node_iter_bset_pos(node_iter, b, bset_tree_last(b)); ++overwrite: ++ bch2_bset_insert(b, node_iter, k, insert, clobber_u64s); ++ new_u64s = k->u64s; ++fix_iter: ++ if (clobber_u64s != new_u64s) ++ bch2_btree_node_iter_fix(iter, b, node_iter, k, ++ clobber_u64s, new_u64s); ++ return true; ++} ++ ++static void __btree_node_flush(struct journal *j, struct journal_entry_pin *pin, ++ unsigned i, u64 seq) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct btree_write *w = container_of(pin, struct btree_write, journal); ++ struct btree *b = container_of(w, struct btree, writes[i]); ++ ++ btree_node_lock_type(c, b, SIX_LOCK_read); ++ bch2_btree_node_write_cond(c, b, ++ (btree_current_write(b) == w && w->journal.seq == seq)); ++ six_unlock_read(&b->c.lock); ++} ++ ++static void btree_node_flush0(struct journal *j, struct journal_entry_pin *pin, u64 seq) ++{ ++ return __btree_node_flush(j, pin, 0, seq); ++} ++ ++static void btree_node_flush1(struct journal *j, struct journal_entry_pin *pin, u64 seq) ++{ ++ return __btree_node_flush(j, pin, 1, seq); ++} ++ ++inline void bch2_btree_add_journal_pin(struct bch_fs *c, ++ struct btree *b, u64 seq) ++{ ++ struct btree_write *w = btree_current_write(b); ++ ++ bch2_journal_pin_add(&c->journal, seq, &w->journal, ++ btree_node_write_idx(b) == 0 ++ ? btree_node_flush0 ++ : btree_node_flush1); ++} ++ ++/** ++ * btree_insert_key - insert a key one key into a leaf node ++ */ ++static bool btree_insert_key_leaf(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_i *insert) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree *b = iter_l(iter)->b; ++ struct bset_tree *t = bset_tree_last(b); ++ struct bset *i = bset(b, t); ++ int old_u64s = bset_u64s(t); ++ int old_live_u64s = b->nr.live_u64s; ++ int live_u64s_added, u64s_added; ++ ++ EBUG_ON(!iter->level && ++ !test_bit(BCH_FS_BTREE_INTERIOR_REPLAY_DONE, &c->flags)); ++ ++ if (unlikely(!bch2_btree_bset_insert_key(iter, b, ++ &iter_l(iter)->iter, insert))) ++ return false; ++ ++ i->journal_seq = cpu_to_le64(max(trans->journal_res.seq, ++ le64_to_cpu(i->journal_seq))); ++ ++ bch2_btree_add_journal_pin(c, b, trans->journal_res.seq); ++ ++ if (unlikely(!btree_node_dirty(b))) ++ set_btree_node_dirty(b); ++ ++ live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; ++ u64s_added = (int) bset_u64s(t) - old_u64s; ++ ++ if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) ++ b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); ++ if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) ++ b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); ++ ++ if (u64s_added > live_u64s_added && ++ bch2_maybe_compact_whiteouts(c, b)) ++ bch2_btree_iter_reinit_node(iter, b); ++ ++ trace_btree_insert_key(c, b, insert); ++ return true; ++} ++ ++/* Cached btree updates: */ ++ ++/* Normal update interface: */ ++ ++static inline void btree_insert_entry_checks(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_i *insert) ++{ ++ struct bch_fs *c = trans->c; ++ ++ BUG_ON(bkey_cmp(insert->k.p, iter->pos)); ++ BUG_ON(debug_check_bkeys(c) && ++ bch2_bkey_invalid(c, bkey_i_to_s_c(insert), ++ __btree_node_type(iter->level, iter->btree_id))); ++} ++ ++static noinline int ++bch2_trans_journal_preres_get_cold(struct btree_trans *trans, unsigned u64s) ++{ ++ struct bch_fs *c = trans->c; ++ int ret; ++ ++ bch2_trans_unlock(trans); ++ ++ ret = bch2_journal_preres_get(&c->journal, ++ &trans->journal_preres, u64s, 0); ++ if (ret) ++ return ret; ++ ++ if (!bch2_trans_relock(trans)) { ++ trace_trans_restart_journal_preres_get(trans->ip); ++ return -EINTR; ++ } ++ ++ return 0; ++} ++ ++static inline int bch2_trans_journal_res_get(struct btree_trans *trans, ++ unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ int ret; ++ ++ if (trans->flags & BTREE_INSERT_JOURNAL_RESERVED) ++ flags |= JOURNAL_RES_GET_RESERVED; ++ ++ ret = bch2_journal_res_get(&c->journal, &trans->journal_res, ++ trans->journal_u64s, flags); ++ ++ return ret == -EAGAIN ? BTREE_INSERT_NEED_JOURNAL_RES : ret; ++} ++ ++static enum btree_insert_ret ++btree_key_can_insert(struct btree_trans *trans, ++ struct btree_iter *iter, ++ unsigned u64s) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree *b = iter_l(iter)->b; ++ ++ if (!bch2_btree_node_insert_fits(c, b, u64s)) ++ return BTREE_INSERT_BTREE_NODE_FULL; ++ ++ return BTREE_INSERT_OK; ++} ++ ++static enum btree_insert_ret ++btree_key_can_insert_cached(struct btree_trans *trans, ++ struct btree_iter *iter, ++ unsigned u64s) ++{ ++ struct bkey_cached *ck = (void *) iter->l[0].b; ++ unsigned new_u64s; ++ struct bkey_i *new_k; ++ ++ BUG_ON(iter->level); ++ ++ if (u64s <= ck->u64s) ++ return BTREE_INSERT_OK; ++ ++ new_u64s = roundup_pow_of_two(u64s); ++ new_k = krealloc(ck->k, new_u64s * sizeof(u64), GFP_NOFS); ++ if (!new_k) ++ return -ENOMEM; ++ ++ ck->u64s = new_u64s; ++ ck->k = new_k; ++ return BTREE_INSERT_OK; ++} ++ ++static inline void do_btree_insert_one(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_i *insert) ++{ ++ struct bch_fs *c = trans->c; ++ struct journal *j = &c->journal; ++ bool did_work; ++ ++ EBUG_ON(trans->journal_res.ref != ++ !(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)); ++ ++ insert->k.needs_whiteout = false; ++ ++ did_work = (btree_iter_type(iter) != BTREE_ITER_CACHED) ++ ? btree_insert_key_leaf(trans, iter, insert) ++ : bch2_btree_insert_key_cached(trans, iter, insert); ++ if (!did_work) ++ return; ++ ++ if (likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))) { ++ bch2_journal_add_keys(j, &trans->journal_res, ++ iter->btree_id, insert); ++ ++ bch2_journal_set_has_inode(j, &trans->journal_res, ++ insert->k.p.inode); ++ ++ if (trans->journal_seq) ++ *trans->journal_seq = trans->journal_res.seq; ++ } ++} ++ ++static inline bool iter_has_trans_triggers(struct btree_iter *iter) ++{ ++ return BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS & (1U << iter->btree_id); ++} ++ ++static inline bool iter_has_nontrans_triggers(struct btree_iter *iter) ++{ ++ return (((BTREE_NODE_TYPE_HAS_TRIGGERS & ++ ~BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS)) | ++ (1U << BTREE_ID_EC)) & ++ (1U << iter->btree_id); ++} ++ ++static noinline void bch2_btree_iter_unlock_noinline(struct btree_iter *iter) ++{ ++ __bch2_btree_iter_unlock(iter); ++} ++ ++static noinline void bch2_trans_mark_gc(struct btree_trans *trans) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_insert_entry *i; ++ ++ trans_for_each_update(trans, i) { ++ /* ++ * XXX: synchronization of cached update triggers with gc ++ */ ++ BUG_ON(btree_iter_type(i->iter) == BTREE_ITER_CACHED); ++ ++ if (gc_visited(c, gc_pos_btree_node(i->iter->l[0].b))) ++ bch2_mark_update(trans, i->iter, i->k, NULL, ++ i->trigger_flags|BTREE_TRIGGER_GC); ++ } ++} ++ ++static inline int ++bch2_trans_commit_write_locked(struct btree_trans *trans, ++ struct btree_insert_entry **stopped_at) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_fs_usage *fs_usage = NULL; ++ struct btree_insert_entry *i; ++ unsigned u64s = 0; ++ bool marking = false; ++ int ret; ++ ++ if (race_fault()) { ++ trace_trans_restart_fault_inject(trans->ip); ++ return -EINTR; ++ } ++ ++ /* ++ * Check if the insert will fit in the leaf node with the write lock ++ * held, otherwise another thread could write the node changing the ++ * amount of space available: ++ */ ++ ++ prefetch(&trans->c->journal.flags); ++ ++ trans_for_each_update2(trans, i) { ++ /* Multiple inserts might go to same leaf: */ ++ if (!same_leaf_as_prev(trans, i)) ++ u64s = 0; ++ ++ u64s += i->k->k.u64s; ++ ret = btree_iter_type(i->iter) != BTREE_ITER_CACHED ++ ? btree_key_can_insert(trans, i->iter, u64s) ++ : btree_key_can_insert_cached(trans, i->iter, u64s); ++ if (ret) { ++ *stopped_at = i; ++ return ret; ++ } ++ ++ if (btree_node_type_needs_gc(i->iter->btree_id)) ++ marking = true; ++ } ++ ++ if (marking) { ++ percpu_down_read(&c->mark_lock); ++ fs_usage = bch2_fs_usage_scratch_get(c); ++ } ++ ++ /* ++ * Don't get journal reservation until after we know insert will ++ * succeed: ++ */ ++ if (likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))) { ++ ret = bch2_trans_journal_res_get(trans, ++ JOURNAL_RES_GET_NONBLOCK); ++ if (ret) ++ goto err; ++ } else { ++ trans->journal_res.seq = c->journal.replay_journal_seq; ++ } ++ ++ if (unlikely(trans->extra_journal_entry_u64s)) { ++ memcpy_u64s_small(journal_res_entry(&c->journal, &trans->journal_res), ++ trans->extra_journal_entries, ++ trans->extra_journal_entry_u64s); ++ ++ trans->journal_res.offset += trans->extra_journal_entry_u64s; ++ trans->journal_res.u64s -= trans->extra_journal_entry_u64s; ++ } ++ ++ /* ++ * Not allowed to fail after we've gotten our journal reservation - we ++ * have to use it: ++ */ ++ ++ if (!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)) { ++ if (journal_seq_verify(c)) ++ trans_for_each_update2(trans, i) ++ i->k->k.version.lo = trans->journal_res.seq; ++ else if (inject_invalid_keys(c)) ++ trans_for_each_update2(trans, i) ++ i->k->k.version = MAX_VERSION; ++ } ++ ++ /* Must be called under mark_lock: */ ++ if (marking && trans->fs_usage_deltas && ++ bch2_replicas_delta_list_apply(c, fs_usage, ++ trans->fs_usage_deltas)) { ++ ret = BTREE_INSERT_NEED_MARK_REPLICAS; ++ goto err; ++ } ++ ++ trans_for_each_update(trans, i) ++ if (iter_has_nontrans_triggers(i->iter)) ++ bch2_mark_update(trans, i->iter, i->k, ++ fs_usage, i->trigger_flags); ++ ++ if (marking) ++ bch2_trans_fs_usage_apply(trans, fs_usage); ++ ++ if (unlikely(c->gc_pos.phase)) ++ bch2_trans_mark_gc(trans); ++ ++ trans_for_each_update2(trans, i) ++ do_btree_insert_one(trans, i->iter, i->k); ++err: ++ if (marking) { ++ bch2_fs_usage_scratch_put(c, fs_usage); ++ percpu_up_read(&c->mark_lock); ++ } ++ ++ return ret; ++} ++ ++/* ++ * Get journal reservation, take write locks, and attempt to do btree update(s): ++ */ ++static inline int do_bch2_trans_commit(struct btree_trans *trans, ++ struct btree_insert_entry **stopped_at) ++{ ++ struct btree_insert_entry *i; ++ struct btree_iter *iter; ++ int ret; ++ ++ trans_for_each_update2(trans, i) ++ BUG_ON(!btree_node_intent_locked(i->iter, i->iter->level)); ++ ++ ret = bch2_journal_preres_get(&trans->c->journal, ++ &trans->journal_preres, trans->journal_preres_u64s, ++ JOURNAL_RES_GET_NONBLOCK| ++ ((trans->flags & BTREE_INSERT_JOURNAL_RECLAIM) ++ ? JOURNAL_RES_GET_RECLAIM : 0)); ++ if (unlikely(ret == -EAGAIN)) ++ ret = bch2_trans_journal_preres_get_cold(trans, ++ trans->journal_preres_u64s); ++ if (unlikely(ret)) ++ return ret; ++ ++ /* ++ * Can't be holding any read locks when we go to take write locks: ++ * ++ * note - this must be done after bch2_trans_journal_preres_get_cold() ++ * or anything else that might call bch2_trans_relock(), since that ++ * would just retake the read locks: ++ */ ++ trans_for_each_iter(trans, iter) { ++ if (iter->nodes_locked != iter->nodes_intent_locked) { ++ EBUG_ON(iter->flags & BTREE_ITER_KEEP_UNTIL_COMMIT); ++ EBUG_ON(trans->iters_live & (1ULL << iter->idx)); ++ bch2_btree_iter_unlock_noinline(iter); ++ } ++ } ++ ++ if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) ++ trans_for_each_update2(trans, i) ++ btree_insert_entry_checks(trans, i->iter, i->k); ++ bch2_btree_trans_verify_locks(trans); ++ ++ trans_for_each_update2(trans, i) ++ if (!same_leaf_as_prev(trans, i)) ++ bch2_btree_node_lock_for_insert(trans->c, ++ iter_l(i->iter)->b, i->iter); ++ ++ ret = bch2_trans_commit_write_locked(trans, stopped_at); ++ ++ trans_for_each_update2(trans, i) ++ if (!same_leaf_as_prev(trans, i)) ++ bch2_btree_node_unlock_write_inlined(iter_l(i->iter)->b, ++ i->iter); ++ ++ if (!ret && trans->journal_pin) ++ bch2_journal_pin_add(&trans->c->journal, trans->journal_res.seq, ++ trans->journal_pin, NULL); ++ ++ /* ++ * Drop journal reservation after dropping write locks, since dropping ++ * the journal reservation may kick off a journal write: ++ */ ++ bch2_journal_res_put(&trans->c->journal, &trans->journal_res); ++ ++ if (unlikely(ret)) ++ return ret; ++ ++ if (trans->flags & BTREE_INSERT_NOUNLOCK) ++ trans->nounlock = true; ++ ++ trans_for_each_update2(trans, i) ++ if (btree_iter_type(i->iter) != BTREE_ITER_CACHED && ++ !same_leaf_as_prev(trans, i)) ++ bch2_foreground_maybe_merge(trans->c, i->iter, ++ 0, trans->flags); ++ ++ trans->nounlock = false; ++ ++ bch2_trans_downgrade(trans); ++ ++ return 0; ++} ++ ++static noinline ++int bch2_trans_commit_error(struct btree_trans *trans, ++ struct btree_insert_entry *i, ++ int ret) ++{ ++ struct bch_fs *c = trans->c; ++ unsigned flags = trans->flags; ++ ++ /* ++ * BTREE_INSERT_NOUNLOCK means don't unlock _after_ successful btree ++ * update; if we haven't done anything yet it doesn't apply ++ */ ++ flags &= ~BTREE_INSERT_NOUNLOCK; ++ ++ switch (ret) { ++ case BTREE_INSERT_BTREE_NODE_FULL: ++ ret = bch2_btree_split_leaf(c, i->iter, flags); ++ ++ /* ++ * if the split succeeded without dropping locks the insert will ++ * still be atomic (what the caller peeked() and is overwriting ++ * won't have changed) ++ */ ++#if 0 ++ /* ++ * XXX: ++ * split -> btree node merging (of parent node) might still drop ++ * locks when we're not passing it BTREE_INSERT_NOUNLOCK ++ * ++ * we don't want to pass BTREE_INSERT_NOUNLOCK to split as that ++ * will inhibit merging - but we don't have a reliable way yet ++ * (do we?) of checking if we dropped locks in this path ++ */ ++ if (!ret) ++ goto retry; ++#endif ++ ++ /* ++ * don't care if we got ENOSPC because we told split it ++ * couldn't block: ++ */ ++ if (!ret || ++ ret == -EINTR || ++ (flags & BTREE_INSERT_NOUNLOCK)) { ++ trace_trans_restart_btree_node_split(trans->ip); ++ ret = -EINTR; ++ } ++ break; ++ case BTREE_INSERT_ENOSPC: ++ ret = -ENOSPC; ++ break; ++ case BTREE_INSERT_NEED_MARK_REPLICAS: ++ bch2_trans_unlock(trans); ++ ++ trans_for_each_update(trans, i) { ++ ret = bch2_mark_bkey_replicas(c, bkey_i_to_s_c(i->k)); ++ if (ret) ++ return ret; ++ } ++ ++ if (bch2_trans_relock(trans)) ++ return 0; ++ ++ trace_trans_restart_mark_replicas(trans->ip); ++ ret = -EINTR; ++ break; ++ case BTREE_INSERT_NEED_JOURNAL_RES: ++ bch2_trans_unlock(trans); ++ ++ ret = bch2_trans_journal_res_get(trans, JOURNAL_RES_GET_CHECK); ++ if (ret) ++ return ret; ++ ++ if (bch2_trans_relock(trans)) ++ return 0; ++ ++ trace_trans_restart_journal_res_get(trans->ip); ++ ret = -EINTR; ++ break; ++ default: ++ BUG_ON(ret >= 0); ++ break; ++ } ++ ++ if (ret == -EINTR) { ++ int ret2 = bch2_btree_iter_traverse_all(trans); ++ ++ if (ret2) { ++ trace_trans_restart_traverse(trans->ip); ++ return ret2; ++ } ++ ++ trace_trans_restart_atomic(trans->ip); ++ } ++ ++ return ret; ++} ++ ++static noinline int ++bch2_trans_commit_get_rw_cold(struct btree_trans *trans) ++{ ++ struct bch_fs *c = trans->c; ++ int ret; ++ ++ if (likely(!(trans->flags & BTREE_INSERT_LAZY_RW))) ++ return -EROFS; ++ ++ bch2_trans_unlock(trans); ++ ++ ret = bch2_fs_read_write_early(c); ++ if (ret) ++ return ret; ++ ++ percpu_ref_get(&c->writes); ++ return 0; ++} ++ ++static void bch2_trans_update2(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_i *insert) ++{ ++ struct btree_insert_entry *i, n = (struct btree_insert_entry) { ++ .iter = iter, .k = insert ++ }; ++ ++ btree_insert_entry_checks(trans, n.iter, n.k); ++ ++ BUG_ON(iter->uptodate > BTREE_ITER_NEED_PEEK); ++ ++ EBUG_ON(trans->nr_updates2 >= trans->nr_iters); ++ ++ iter->flags |= BTREE_ITER_KEEP_UNTIL_COMMIT; ++ ++ trans_for_each_update2(trans, i) { ++ if (btree_iter_cmp(n.iter, i->iter) == 0) { ++ *i = n; ++ return; ++ } ++ ++ if (btree_iter_cmp(n.iter, i->iter) <= 0) ++ break; ++ } ++ ++ array_insert_item(trans->updates2, trans->nr_updates2, ++ i - trans->updates2, n); ++} ++ ++static int extent_update_to_keys(struct btree_trans *trans, ++ struct btree_iter *orig_iter, ++ struct bkey_i *insert) ++{ ++ struct btree_iter *iter; ++ int ret; ++ ++ ret = bch2_extent_can_insert(trans, orig_iter, insert); ++ if (ret) ++ return ret; ++ ++ if (bkey_deleted(&insert->k)) ++ return 0; ++ ++ iter = bch2_trans_copy_iter(trans, orig_iter); ++ if (IS_ERR(iter)) ++ return PTR_ERR(iter); ++ ++ iter->flags |= BTREE_ITER_INTENT; ++ __bch2_btree_iter_set_pos(iter, insert->k.p, false); ++ bch2_trans_update2(trans, iter, insert); ++ bch2_trans_iter_put(trans, iter); ++ return 0; ++} ++ ++static int extent_handle_overwrites(struct btree_trans *trans, ++ enum btree_id btree_id, ++ struct bpos start, struct bpos end) ++{ ++ struct btree_iter *iter = NULL, *update_iter; ++ struct bkey_i *update; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ iter = bch2_trans_get_iter(trans, btree_id, start, BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(iter); ++ if (ret) ++ return ret; ++ ++ k = bch2_btree_iter_peek_with_updates(iter); ++ ++ while (k.k && !(ret = bkey_err(k))) { ++ if (bkey_cmp(end, bkey_start_pos(k.k)) <= 0) ++ break; ++ ++ if (bkey_cmp(bkey_start_pos(k.k), start) < 0) { ++ update_iter = bch2_trans_copy_iter(trans, iter); ++ if ((ret = PTR_ERR_OR_ZERO(update_iter))) ++ goto err; ++ ++ update = bch2_trans_kmalloc(trans, bkey_bytes(k.k)); ++ if ((ret = PTR_ERR_OR_ZERO(update))) ++ goto err; ++ ++ bkey_reassemble(update, k); ++ bch2_cut_back(start, update); ++ ++ __bch2_btree_iter_set_pos(update_iter, update->k.p, false); ++ bch2_trans_update2(trans, update_iter, update); ++ bch2_trans_iter_put(trans, update_iter); ++ } ++ ++ if (bkey_cmp(k.k->p, end) > 0) { ++ update_iter = bch2_trans_copy_iter(trans, iter); ++ if ((ret = PTR_ERR_OR_ZERO(update_iter))) ++ goto err; ++ ++ update = bch2_trans_kmalloc(trans, bkey_bytes(k.k)); ++ if ((ret = PTR_ERR_OR_ZERO(update))) ++ goto err; ++ ++ bkey_reassemble(update, k); ++ bch2_cut_front(end, update); ++ ++ __bch2_btree_iter_set_pos(update_iter, update->k.p, false); ++ bch2_trans_update2(trans, update_iter, update); ++ bch2_trans_iter_put(trans, update_iter); ++ } else { ++ update_iter = bch2_trans_copy_iter(trans, iter); ++ if ((ret = PTR_ERR_OR_ZERO(update_iter))) ++ goto err; ++ ++ update = bch2_trans_kmalloc(trans, sizeof(struct bkey)); ++ if ((ret = PTR_ERR_OR_ZERO(update))) ++ goto err; ++ ++ update->k = *k.k; ++ set_bkey_val_u64s(&update->k, 0); ++ update->k.type = KEY_TYPE_deleted; ++ update->k.size = 0; ++ ++ __bch2_btree_iter_set_pos(update_iter, update->k.p, false); ++ bch2_trans_update2(trans, update_iter, update); ++ bch2_trans_iter_put(trans, update_iter); ++ } ++ ++ k = bch2_btree_iter_next_with_updates(iter); ++ } ++err: ++ if (!IS_ERR_OR_NULL(iter)) ++ bch2_trans_iter_put(trans, iter); ++ return ret; ++} ++ ++int __bch2_trans_commit(struct btree_trans *trans) ++{ ++ struct btree_insert_entry *i = NULL; ++ struct btree_iter *iter; ++ bool trans_trigger_run; ++ unsigned u64s; ++ int ret = 0; ++ ++ BUG_ON(trans->need_reset); ++ ++ if (!trans->nr_updates) ++ goto out_noupdates; ++ ++ if (trans->flags & BTREE_INSERT_GC_LOCK_HELD) ++ lockdep_assert_held(&trans->c->gc_lock); ++ ++ memset(&trans->journal_preres, 0, sizeof(trans->journal_preres)); ++ ++ trans->journal_u64s = trans->extra_journal_entry_u64s; ++ trans->journal_preres_u64s = 0; ++ ++ if (!(trans->flags & BTREE_INSERT_NOCHECK_RW) && ++ unlikely(!percpu_ref_tryget(&trans->c->writes))) { ++ ret = bch2_trans_commit_get_rw_cold(trans); ++ if (ret) ++ return ret; ++ } ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ trans_for_each_update(trans, i) ++ if (btree_iter_type(i->iter) != BTREE_ITER_CACHED && ++ !(i->trigger_flags & BTREE_TRIGGER_NORUN)) ++ bch2_btree_key_cache_verify_clean(trans, ++ i->iter->btree_id, i->iter->pos); ++#endif ++ ++ /* ++ * Running triggers will append more updates to the list of updates as ++ * we're walking it: ++ */ ++ do { ++ trans_trigger_run = false; ++ ++ trans_for_each_update(trans, i) { ++ if (unlikely(i->iter->uptodate > BTREE_ITER_NEED_PEEK && ++ (ret = bch2_btree_iter_traverse(i->iter)))) { ++ trace_trans_restart_traverse(trans->ip); ++ goto out; ++ } ++ ++ /* ++ * We're not using bch2_btree_iter_upgrade here because ++ * we know trans->nounlock can't be set: ++ */ ++ if (unlikely(i->iter->locks_want < 1 && ++ !__bch2_btree_iter_upgrade(i->iter, 1))) { ++ trace_trans_restart_upgrade(trans->ip); ++ ret = -EINTR; ++ goto out; ++ } ++ ++ if (iter_has_trans_triggers(i->iter) && ++ !i->trans_triggers_run) { ++ i->trans_triggers_run = true; ++ trans_trigger_run = true; ++ ++ ret = bch2_trans_mark_update(trans, i->iter, i->k, ++ i->trigger_flags); ++ if (unlikely(ret)) { ++ if (ret == -EINTR) ++ trace_trans_restart_mark(trans->ip); ++ goto out; ++ } ++ } ++ } ++ } while (trans_trigger_run); ++ ++ /* Turn extents updates into keys: */ ++ trans_for_each_update(trans, i) ++ if (i->iter->flags & BTREE_ITER_IS_EXTENTS) { ++ struct bpos start = bkey_start_pos(&i->k->k); ++ ++ while (i + 1 < trans->updates + trans->nr_updates && ++ i[0].iter->btree_id == i[1].iter->btree_id && ++ !bkey_cmp(i[0].k->k.p, bkey_start_pos(&i[1].k->k))) ++ i++; ++ ++ ret = extent_handle_overwrites(trans, i->iter->btree_id, ++ start, i->k->k.p); ++ if (ret) ++ goto out; ++ } ++ ++ trans_for_each_update(trans, i) { ++ if (i->iter->flags & BTREE_ITER_IS_EXTENTS) { ++ ret = extent_update_to_keys(trans, i->iter, i->k); ++ if (ret) ++ goto out; ++ } else { ++ bch2_trans_update2(trans, i->iter, i->k); ++ } ++ } ++ ++ trans_for_each_update2(trans, i) { ++ BUG_ON(i->iter->uptodate > BTREE_ITER_NEED_PEEK); ++ BUG_ON(i->iter->locks_want < 1); ++ ++ u64s = jset_u64s(i->k->k.u64s); ++ if (btree_iter_type(i->iter) == BTREE_ITER_CACHED && ++ likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))) ++ trans->journal_preres_u64s += u64s; ++ trans->journal_u64s += u64s; ++ } ++retry: ++ memset(&trans->journal_res, 0, sizeof(trans->journal_res)); ++ ++ ret = do_bch2_trans_commit(trans, &i); ++ ++ /* make sure we didn't drop or screw up locks: */ ++ bch2_btree_trans_verify_locks(trans); ++ ++ if (ret) ++ goto err; ++ ++ trans_for_each_iter(trans, iter) ++ if ((trans->iters_live & (1ULL << iter->idx)) && ++ (iter->flags & BTREE_ITER_SET_POS_AFTER_COMMIT)) { ++ if (trans->flags & BTREE_INSERT_NOUNLOCK) ++ bch2_btree_iter_set_pos_same_leaf(iter, iter->pos_after_commit); ++ else ++ bch2_btree_iter_set_pos(iter, iter->pos_after_commit); ++ } ++out: ++ bch2_journal_preres_put(&trans->c->journal, &trans->journal_preres); ++ ++ if (likely(!(trans->flags & BTREE_INSERT_NOCHECK_RW))) ++ percpu_ref_put(&trans->c->writes); ++out_noupdates: ++ bch2_trans_reset(trans, !ret ? TRANS_RESET_NOTRAVERSE : 0); ++ ++ return ret; ++err: ++ ret = bch2_trans_commit_error(trans, i, ret); ++ if (ret) ++ goto out; ++ ++ goto retry; ++} ++ ++int bch2_trans_update(struct btree_trans *trans, struct btree_iter *iter, ++ struct bkey_i *k, enum btree_trigger_flags flags) ++{ ++ struct btree_insert_entry *i, n = (struct btree_insert_entry) { ++ .trigger_flags = flags, .iter = iter, .k = k ++ }; ++ ++ EBUG_ON(bkey_cmp(iter->pos, ++ (iter->flags & BTREE_ITER_IS_EXTENTS) ++ ? bkey_start_pos(&k->k) ++ : k->k.p)); ++ ++ iter->flags |= BTREE_ITER_KEEP_UNTIL_COMMIT; ++ ++ if (btree_node_type_is_extents(iter->btree_id)) { ++ iter->pos_after_commit = k->k.p; ++ iter->flags |= BTREE_ITER_SET_POS_AFTER_COMMIT; ++ } ++ ++ /* ++ * Pending updates are kept sorted: first, find position of new update: ++ */ ++ trans_for_each_update(trans, i) ++ if (btree_iter_cmp(iter, i->iter) <= 0) ++ break; ++ ++ /* ++ * Now delete/trim any updates the new update overwrites: ++ */ ++ if (i > trans->updates && ++ i[-1].iter->btree_id == iter->btree_id && ++ bkey_cmp(iter->pos, i[-1].k->k.p) < 0) ++ bch2_cut_back(n.iter->pos, i[-1].k); ++ ++ while (i < trans->updates + trans->nr_updates && ++ iter->btree_id == i->iter->btree_id && ++ bkey_cmp(n.k->k.p, i->k->k.p) >= 0) ++ array_remove_item(trans->updates, trans->nr_updates, ++ i - trans->updates); ++ ++ if (i < trans->updates + trans->nr_updates && ++ iter->btree_id == i->iter->btree_id && ++ bkey_cmp(n.k->k.p, i->iter->pos) > 0) { ++ /* ++ * When we have an extent that overwrites the start of another ++ * update, trimming that extent will mean the iterator's ++ * position has to change since the iterator position has to ++ * match the extent's start pos - but we don't want to change ++ * the iterator pos if some other code is using it, so we may ++ * need to clone it: ++ */ ++ if (trans->iters_live & (1ULL << i->iter->idx)) { ++ i->iter = bch2_trans_copy_iter(trans, i->iter); ++ if (IS_ERR(i->iter)) { ++ trans->need_reset = true; ++ return PTR_ERR(i->iter); ++ } ++ ++ i->iter->flags |= BTREE_ITER_KEEP_UNTIL_COMMIT; ++ bch2_trans_iter_put(trans, i->iter); ++ } ++ ++ bch2_cut_front(n.k->k.p, i->k); ++ bch2_btree_iter_set_pos(i->iter, n.k->k.p); ++ } ++ ++ EBUG_ON(trans->nr_updates >= trans->nr_iters); ++ ++ array_insert_item(trans->updates, trans->nr_updates, ++ i - trans->updates, n); ++ return 0; ++} ++ ++int __bch2_btree_insert(struct btree_trans *trans, ++ enum btree_id id, struct bkey_i *k) ++{ ++ struct btree_iter *iter; ++ int ret; ++ ++ iter = bch2_trans_get_iter(trans, id, bkey_start_pos(&k->k), ++ BTREE_ITER_INTENT); ++ if (IS_ERR(iter)) ++ return PTR_ERR(iter); ++ ++ ret = bch2_btree_iter_traverse(iter) ?: ++ bch2_trans_update(trans, iter, k, 0); ++ bch2_trans_iter_put(trans, iter); ++ return ret; ++} ++ ++/** ++ * bch2_btree_insert - insert keys into the extent btree ++ * @c: pointer to struct bch_fs ++ * @id: btree to insert into ++ * @insert_keys: list of keys to insert ++ * @hook: insert callback ++ */ ++int bch2_btree_insert(struct bch_fs *c, enum btree_id id, ++ struct bkey_i *k, ++ struct disk_reservation *disk_res, ++ u64 *journal_seq, int flags) ++{ ++ return bch2_trans_do(c, disk_res, journal_seq, flags, ++ __bch2_btree_insert(&trans, id, k)); ++} ++ ++int bch2_btree_delete_at_range(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bpos end, ++ u64 *journal_seq) ++{ ++ struct bkey_s_c k; ++ int ret = 0; ++retry: ++ while ((k = bch2_btree_iter_peek(iter)).k && ++ !(ret = bkey_err(k)) && ++ bkey_cmp(iter->pos, end) < 0) { ++ struct bkey_i delete; ++ ++ bch2_trans_begin(trans); ++ ++ bkey_init(&delete.k); ++ ++ /* ++ * For extents, iter.pos won't necessarily be the same as ++ * bkey_start_pos(k.k) (for non extents they always will be the ++ * same). It's important that we delete starting from iter.pos ++ * because the range we want to delete could start in the middle ++ * of k. ++ * ++ * (bch2_btree_iter_peek() does guarantee that iter.pos >= ++ * bkey_start_pos(k.k)). ++ */ ++ delete.k.p = iter->pos; ++ ++ if (btree_node_type_is_extents(iter->btree_id)) { ++ unsigned max_sectors = ++ KEY_SIZE_MAX & (~0 << trans->c->block_bits); ++ ++ /* create the biggest key we can */ ++ bch2_key_resize(&delete.k, max_sectors); ++ bch2_cut_back(end, &delete); ++ ++ ret = bch2_extent_trim_atomic(&delete, iter); ++ if (ret) ++ break; ++ } ++ ++ bch2_trans_update(trans, iter, &delete, 0); ++ ret = bch2_trans_commit(trans, NULL, journal_seq, ++ BTREE_INSERT_NOFAIL); ++ if (ret) ++ break; ++ ++ bch2_trans_cond_resched(trans); ++ } ++ ++ if (ret == -EINTR) { ++ ret = 0; ++ goto retry; ++ } ++ ++ return ret; ++ ++} ++ ++int bch2_btree_delete_at(struct btree_trans *trans, ++ struct btree_iter *iter, unsigned flags) ++{ ++ struct bkey_i k; ++ ++ bkey_init(&k.k); ++ k.k.p = iter->pos; ++ ++ bch2_trans_update(trans, iter, &k, 0); ++ return bch2_trans_commit(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_USE_RESERVE|flags); ++} ++ ++/* ++ * bch_btree_delete_range - delete everything within a given range ++ * ++ * Range is a half open interval - [start, end) ++ */ ++int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id, ++ struct bpos start, struct bpos end, ++ u64 *journal_seq) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ int ret = 0; ++ ++ /* ++ * XXX: whether we need mem/more iters depends on whether this btree id ++ * has triggers ++ */ ++ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 512); ++ ++ iter = bch2_trans_get_iter(&trans, id, start, BTREE_ITER_INTENT); ++ ++ ret = bch2_btree_delete_at_range(&trans, iter, end, journal_seq); ++ ret = bch2_trans_exit(&trans) ?: ret; ++ ++ BUG_ON(ret == -EINTR); ++ return ret; ++} +diff --git a/fs/bcachefs/buckets.c b/fs/bcachefs/buckets.c +new file mode 100644 +index 000000000000..2a3b95968a86 +--- /dev/null ++++ b/fs/bcachefs/buckets.c +@@ -0,0 +1,2230 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Code for manipulating bucket marks for garbage collection. ++ * ++ * Copyright 2014 Datera, Inc. ++ * ++ * Bucket states: ++ * - free bucket: mark == 0 ++ * The bucket contains no data and will not be read ++ * ++ * - allocator bucket: owned_by_allocator == 1 ++ * The bucket is on a free list, or it is an open bucket ++ * ++ * - cached bucket: owned_by_allocator == 0 && ++ * dirty_sectors == 0 && ++ * cached_sectors > 0 ++ * The bucket contains data but may be safely discarded as there are ++ * enough replicas of the data on other cache devices, or it has been ++ * written back to the backing device ++ * ++ * - dirty bucket: owned_by_allocator == 0 && ++ * dirty_sectors > 0 ++ * The bucket contains data that we must not discard (either only copy, ++ * or one of the 'main copies' for data requiring multiple replicas) ++ * ++ * - metadata bucket: owned_by_allocator == 0 && is_metadata == 1 ++ * This is a btree node, journal or gen/prio bucket ++ * ++ * Lifecycle: ++ * ++ * bucket invalidated => bucket on freelist => open bucket => ++ * [dirty bucket =>] cached bucket => bucket invalidated => ... ++ * ++ * Note that cache promotion can skip the dirty bucket step, as data ++ * is copied from a deeper tier to a shallower tier, onto a cached ++ * bucket. ++ * Note also that a cached bucket can spontaneously become dirty -- ++ * see below. ++ * ++ * Only a traversal of the key space can determine whether a bucket is ++ * truly dirty or cached. ++ * ++ * Transitions: ++ * ++ * - free => allocator: bucket was invalidated ++ * - cached => allocator: bucket was invalidated ++ * ++ * - allocator => dirty: open bucket was filled up ++ * - allocator => cached: open bucket was filled up ++ * - allocator => metadata: metadata was allocated ++ * ++ * - dirty => cached: dirty sectors were copied to a deeper tier ++ * - dirty => free: dirty sectors were overwritten or moved (copy gc) ++ * - cached => free: cached sectors were overwritten ++ * ++ * - metadata => free: metadata was freed ++ * ++ * Oddities: ++ * - cached => dirty: a device was removed so formerly replicated data ++ * is no longer sufficiently replicated ++ * - free => cached: cannot happen ++ * - free => dirty: cannot happen ++ * - free => metadata: cannot happen ++ */ ++ ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "bset.h" ++#include "btree_gc.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "ec.h" ++#include "error.h" ++#include "movinggc.h" ++#include "replicas.h" ++ ++#include ++#include ++ ++/* ++ * Clear journal_seq_valid for buckets for which it's not needed, to prevent ++ * wraparound: ++ */ ++void bch2_bucket_seq_cleanup(struct bch_fs *c) ++{ ++ u64 journal_seq = atomic64_read(&c->journal.seq); ++ u16 last_seq_ondisk = c->journal.last_seq_ondisk; ++ struct bch_dev *ca; ++ struct bucket_array *buckets; ++ struct bucket *g; ++ struct bucket_mark m; ++ unsigned i; ++ ++ if (journal_seq - c->last_bucket_seq_cleanup < ++ (1U << (BUCKET_JOURNAL_SEQ_BITS - 2))) ++ return; ++ ++ c->last_bucket_seq_cleanup = journal_seq; ++ ++ for_each_member_device(ca, c, i) { ++ down_read(&ca->bucket_lock); ++ buckets = bucket_array(ca); ++ ++ for_each_bucket(g, buckets) { ++ bucket_cmpxchg(g, m, ({ ++ if (!m.journal_seq_valid || ++ bucket_needs_journal_commit(m, last_seq_ondisk)) ++ break; ++ ++ m.journal_seq_valid = 0; ++ })); ++ } ++ up_read(&ca->bucket_lock); ++ } ++} ++ ++void bch2_fs_usage_initialize(struct bch_fs *c) ++{ ++ struct bch_fs_usage *usage; ++ unsigned i; ++ ++ percpu_down_write(&c->mark_lock); ++ usage = c->usage_base; ++ ++ bch2_fs_usage_acc_to_base(c, 0); ++ bch2_fs_usage_acc_to_base(c, 1); ++ ++ for (i = 0; i < BCH_REPLICAS_MAX; i++) ++ usage->reserved += usage->persistent_reserved[i]; ++ ++ for (i = 0; i < c->replicas.nr; i++) { ++ struct bch_replicas_entry *e = ++ cpu_replicas_entry(&c->replicas, i); ++ ++ switch (e->data_type) { ++ case BCH_DATA_btree: ++ usage->btree += usage->replicas[i]; ++ break; ++ case BCH_DATA_user: ++ usage->data += usage->replicas[i]; ++ break; ++ case BCH_DATA_cached: ++ usage->cached += usage->replicas[i]; ++ break; ++ } ++ } ++ ++ percpu_up_write(&c->mark_lock); ++} ++ ++void bch2_fs_usage_scratch_put(struct bch_fs *c, struct bch_fs_usage *fs_usage) ++{ ++ if (fs_usage == c->usage_scratch) ++ mutex_unlock(&c->usage_scratch_lock); ++ else ++ kfree(fs_usage); ++} ++ ++struct bch_fs_usage *bch2_fs_usage_scratch_get(struct bch_fs *c) ++{ ++ struct bch_fs_usage *ret; ++ unsigned bytes = fs_usage_u64s(c) * sizeof(u64); ++ ++ ret = kzalloc(bytes, GFP_NOWAIT|__GFP_NOWARN); ++ if (ret) ++ return ret; ++ ++ if (mutex_trylock(&c->usage_scratch_lock)) ++ goto out_pool; ++ ++ ret = kzalloc(bytes, GFP_NOFS); ++ if (ret) ++ return ret; ++ ++ mutex_lock(&c->usage_scratch_lock); ++out_pool: ++ ret = c->usage_scratch; ++ memset(ret, 0, bytes); ++ return ret; ++} ++ ++struct bch_dev_usage bch2_dev_usage_read(struct bch_dev *ca) ++{ ++ struct bch_dev_usage ret; ++ ++ memset(&ret, 0, sizeof(ret)); ++ acc_u64s_percpu((u64 *) &ret, ++ (u64 __percpu *) ca->usage[0], ++ sizeof(ret) / sizeof(u64)); ++ ++ return ret; ++} ++ ++static inline struct bch_fs_usage *fs_usage_ptr(struct bch_fs *c, ++ unsigned journal_seq, ++ bool gc) ++{ ++ return this_cpu_ptr(gc ++ ? c->usage_gc ++ : c->usage[journal_seq & 1]); ++} ++ ++u64 bch2_fs_usage_read_one(struct bch_fs *c, u64 *v) ++{ ++ ssize_t offset = v - (u64 *) c->usage_base; ++ unsigned seq; ++ u64 ret; ++ ++ BUG_ON(offset < 0 || offset >= fs_usage_u64s(c)); ++ percpu_rwsem_assert_held(&c->mark_lock); ++ ++ do { ++ seq = read_seqcount_begin(&c->usage_lock); ++ ret = *v + ++ percpu_u64_get((u64 __percpu *) c->usage[0] + offset) + ++ percpu_u64_get((u64 __percpu *) c->usage[1] + offset); ++ } while (read_seqcount_retry(&c->usage_lock, seq)); ++ ++ return ret; ++} ++ ++struct bch_fs_usage *bch2_fs_usage_read(struct bch_fs *c) ++{ ++ struct bch_fs_usage *ret; ++ unsigned seq, v, u64s = fs_usage_u64s(c); ++retry: ++ ret = kmalloc(u64s * sizeof(u64), GFP_NOFS); ++ if (unlikely(!ret)) ++ return NULL; ++ ++ percpu_down_read(&c->mark_lock); ++ ++ v = fs_usage_u64s(c); ++ if (unlikely(u64s != v)) { ++ u64s = v; ++ percpu_up_read(&c->mark_lock); ++ kfree(ret); ++ goto retry; ++ } ++ ++ do { ++ seq = read_seqcount_begin(&c->usage_lock); ++ memcpy(ret, c->usage_base, u64s * sizeof(u64)); ++ acc_u64s_percpu((u64 *) ret, (u64 __percpu *) c->usage[0], u64s); ++ acc_u64s_percpu((u64 *) ret, (u64 __percpu *) c->usage[1], u64s); ++ } while (read_seqcount_retry(&c->usage_lock, seq)); ++ ++ return ret; ++} ++ ++void bch2_fs_usage_acc_to_base(struct bch_fs *c, unsigned idx) ++{ ++ unsigned u64s = fs_usage_u64s(c); ++ ++ BUG_ON(idx >= 2); ++ ++ preempt_disable(); ++ write_seqcount_begin(&c->usage_lock); ++ ++ acc_u64s_percpu((u64 *) c->usage_base, ++ (u64 __percpu *) c->usage[idx], u64s); ++ percpu_memset(c->usage[idx], 0, u64s * sizeof(u64)); ++ ++ write_seqcount_end(&c->usage_lock); ++ preempt_enable(); ++} ++ ++void bch2_fs_usage_to_text(struct printbuf *out, ++ struct bch_fs *c, ++ struct bch_fs_usage *fs_usage) ++{ ++ unsigned i; ++ ++ pr_buf(out, "capacity:\t\t\t%llu\n", c->capacity); ++ ++ pr_buf(out, "hidden:\t\t\t\t%llu\n", ++ fs_usage->hidden); ++ pr_buf(out, "data:\t\t\t\t%llu\n", ++ fs_usage->data); ++ pr_buf(out, "cached:\t\t\t\t%llu\n", ++ fs_usage->cached); ++ pr_buf(out, "reserved:\t\t\t%llu\n", ++ fs_usage->reserved); ++ pr_buf(out, "nr_inodes:\t\t\t%llu\n", ++ fs_usage->nr_inodes); ++ pr_buf(out, "online reserved:\t\t%llu\n", ++ fs_usage->online_reserved); ++ ++ for (i = 0; ++ i < ARRAY_SIZE(fs_usage->persistent_reserved); ++ i++) { ++ pr_buf(out, "%u replicas:\n", i + 1); ++ pr_buf(out, "\treserved:\t\t%llu\n", ++ fs_usage->persistent_reserved[i]); ++ } ++ ++ for (i = 0; i < c->replicas.nr; i++) { ++ struct bch_replicas_entry *e = ++ cpu_replicas_entry(&c->replicas, i); ++ ++ pr_buf(out, "\t"); ++ bch2_replicas_entry_to_text(out, e); ++ pr_buf(out, ":\t%llu\n", fs_usage->replicas[i]); ++ } ++} ++ ++#define RESERVE_FACTOR 6 ++ ++static u64 reserve_factor(u64 r) ++{ ++ return r + (round_up(r, (1 << RESERVE_FACTOR)) >> RESERVE_FACTOR); ++} ++ ++static u64 avail_factor(u64 r) ++{ ++ return (r << RESERVE_FACTOR) / ((1 << RESERVE_FACTOR) + 1); ++} ++ ++u64 bch2_fs_sectors_used(struct bch_fs *c, struct bch_fs_usage *fs_usage) ++{ ++ return min(fs_usage->hidden + ++ fs_usage->btree + ++ fs_usage->data + ++ reserve_factor(fs_usage->reserved + ++ fs_usage->online_reserved), ++ c->capacity); ++} ++ ++static struct bch_fs_usage_short ++__bch2_fs_usage_read_short(struct bch_fs *c) ++{ ++ struct bch_fs_usage_short ret; ++ u64 data, reserved; ++ ++ ret.capacity = c->capacity - ++ bch2_fs_usage_read_one(c, &c->usage_base->hidden); ++ ++ data = bch2_fs_usage_read_one(c, &c->usage_base->data) + ++ bch2_fs_usage_read_one(c, &c->usage_base->btree); ++ reserved = bch2_fs_usage_read_one(c, &c->usage_base->reserved) + ++ bch2_fs_usage_read_one(c, &c->usage_base->online_reserved); ++ ++ ret.used = min(ret.capacity, data + reserve_factor(reserved)); ++ ret.free = ret.capacity - ret.used; ++ ++ ret.nr_inodes = bch2_fs_usage_read_one(c, &c->usage_base->nr_inodes); ++ ++ return ret; ++} ++ ++struct bch_fs_usage_short ++bch2_fs_usage_read_short(struct bch_fs *c) ++{ ++ struct bch_fs_usage_short ret; ++ ++ percpu_down_read(&c->mark_lock); ++ ret = __bch2_fs_usage_read_short(c); ++ percpu_up_read(&c->mark_lock); ++ ++ return ret; ++} ++ ++static inline int is_unavailable_bucket(struct bucket_mark m) ++{ ++ return !is_available_bucket(m); ++} ++ ++static inline int is_fragmented_bucket(struct bucket_mark m, ++ struct bch_dev *ca) ++{ ++ if (!m.owned_by_allocator && ++ m.data_type == BCH_DATA_user && ++ bucket_sectors_used(m)) ++ return max_t(int, 0, (int) ca->mi.bucket_size - ++ bucket_sectors_used(m)); ++ return 0; ++} ++ ++static inline int bucket_stripe_sectors(struct bucket_mark m) ++{ ++ return m.stripe ? m.dirty_sectors : 0; ++} ++ ++static inline enum bch_data_type bucket_type(struct bucket_mark m) ++{ ++ return m.cached_sectors && !m.dirty_sectors ++ ? BCH_DATA_cached ++ : m.data_type; ++} ++ ++static bool bucket_became_unavailable(struct bucket_mark old, ++ struct bucket_mark new) ++{ ++ return is_available_bucket(old) && ++ !is_available_bucket(new); ++} ++ ++int bch2_fs_usage_apply(struct bch_fs *c, ++ struct bch_fs_usage *fs_usage, ++ struct disk_reservation *disk_res, ++ unsigned journal_seq) ++{ ++ s64 added = fs_usage->data + fs_usage->reserved; ++ s64 should_not_have_added; ++ int ret = 0; ++ ++ percpu_rwsem_assert_held(&c->mark_lock); ++ ++ /* ++ * Not allowed to reduce sectors_available except by getting a ++ * reservation: ++ */ ++ should_not_have_added = added - (s64) (disk_res ? disk_res->sectors : 0); ++ if (WARN_ONCE(should_not_have_added > 0, ++ "disk usage increased by %lli without a reservation", ++ should_not_have_added)) { ++ atomic64_sub(should_not_have_added, &c->sectors_available); ++ added -= should_not_have_added; ++ ret = -1; ++ } ++ ++ if (added > 0) { ++ disk_res->sectors -= added; ++ fs_usage->online_reserved -= added; ++ } ++ ++ preempt_disable(); ++ acc_u64s((u64 *) fs_usage_ptr(c, journal_seq, false), ++ (u64 *) fs_usage, fs_usage_u64s(c)); ++ preempt_enable(); ++ ++ return ret; ++} ++ ++static inline void account_bucket(struct bch_fs_usage *fs_usage, ++ struct bch_dev_usage *dev_usage, ++ enum bch_data_type type, ++ int nr, s64 size) ++{ ++ if (type == BCH_DATA_sb || type == BCH_DATA_journal) ++ fs_usage->hidden += size; ++ ++ dev_usage->buckets[type] += nr; ++} ++ ++static void bch2_dev_usage_update(struct bch_fs *c, struct bch_dev *ca, ++ struct bch_fs_usage *fs_usage, ++ struct bucket_mark old, struct bucket_mark new, ++ bool gc) ++{ ++ struct bch_dev_usage *u; ++ ++ percpu_rwsem_assert_held(&c->mark_lock); ++ ++ preempt_disable(); ++ u = this_cpu_ptr(ca->usage[gc]); ++ ++ if (bucket_type(old)) ++ account_bucket(fs_usage, u, bucket_type(old), ++ -1, -ca->mi.bucket_size); ++ ++ if (bucket_type(new)) ++ account_bucket(fs_usage, u, bucket_type(new), ++ 1, ca->mi.bucket_size); ++ ++ u->buckets_alloc += ++ (int) new.owned_by_allocator - (int) old.owned_by_allocator; ++ u->buckets_unavailable += ++ is_unavailable_bucket(new) - is_unavailable_bucket(old); ++ ++ u->buckets_ec += (int) new.stripe - (int) old.stripe; ++ u->sectors_ec += bucket_stripe_sectors(new) - ++ bucket_stripe_sectors(old); ++ ++ u->sectors[old.data_type] -= old.dirty_sectors; ++ u->sectors[new.data_type] += new.dirty_sectors; ++ u->sectors[BCH_DATA_cached] += ++ (int) new.cached_sectors - (int) old.cached_sectors; ++ u->sectors_fragmented += ++ is_fragmented_bucket(new, ca) - is_fragmented_bucket(old, ca); ++ preempt_enable(); ++ ++ if (!is_available_bucket(old) && is_available_bucket(new)) ++ bch2_wake_allocator(ca); ++} ++ ++__flatten ++void bch2_dev_usage_from_buckets(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ struct bucket_mark old = { .v.counter = 0 }; ++ struct bucket_array *buckets; ++ struct bucket *g; ++ unsigned i; ++ int cpu; ++ ++ c->usage_base->hidden = 0; ++ ++ for_each_member_device(ca, c, i) { ++ for_each_possible_cpu(cpu) ++ memset(per_cpu_ptr(ca->usage[0], cpu), 0, ++ sizeof(*ca->usage[0])); ++ ++ buckets = bucket_array(ca); ++ ++ for_each_bucket(g, buckets) ++ bch2_dev_usage_update(c, ca, c->usage_base, ++ old, g->mark, false); ++ } ++} ++ ++static inline int update_replicas(struct bch_fs *c, ++ struct bch_fs_usage *fs_usage, ++ struct bch_replicas_entry *r, ++ s64 sectors) ++{ ++ int idx = bch2_replicas_entry_idx(c, r); ++ ++ if (idx < 0) ++ return -1; ++ ++ if (!fs_usage) ++ return 0; ++ ++ switch (r->data_type) { ++ case BCH_DATA_btree: ++ fs_usage->btree += sectors; ++ break; ++ case BCH_DATA_user: ++ fs_usage->data += sectors; ++ break; ++ case BCH_DATA_cached: ++ fs_usage->cached += sectors; ++ break; ++ } ++ fs_usage->replicas[idx] += sectors; ++ return 0; ++} ++ ++static inline void update_cached_sectors(struct bch_fs *c, ++ struct bch_fs_usage *fs_usage, ++ unsigned dev, s64 sectors) ++{ ++ struct bch_replicas_padded r; ++ ++ bch2_replicas_entry_cached(&r.e, dev); ++ ++ update_replicas(c, fs_usage, &r.e, sectors); ++} ++ ++static struct replicas_delta_list * ++replicas_deltas_realloc(struct btree_trans *trans, unsigned more) ++{ ++ struct replicas_delta_list *d = trans->fs_usage_deltas; ++ unsigned new_size = d ? (d->size + more) * 2 : 128; ++ ++ if (!d || d->used + more > d->size) { ++ d = krealloc(d, sizeof(*d) + new_size, GFP_NOIO|__GFP_ZERO); ++ BUG_ON(!d); ++ ++ d->size = new_size; ++ trans->fs_usage_deltas = d; ++ } ++ return d; ++} ++ ++static inline void update_replicas_list(struct btree_trans *trans, ++ struct bch_replicas_entry *r, ++ s64 sectors) ++{ ++ struct replicas_delta_list *d; ++ struct replicas_delta *n; ++ unsigned b; ++ ++ if (!sectors) ++ return; ++ ++ b = replicas_entry_bytes(r) + 8; ++ d = replicas_deltas_realloc(trans, b); ++ ++ n = (void *) d->d + d->used; ++ n->delta = sectors; ++ memcpy(&n->r, r, replicas_entry_bytes(r)); ++ d->used += b; ++} ++ ++static inline void update_cached_sectors_list(struct btree_trans *trans, ++ unsigned dev, s64 sectors) ++{ ++ struct bch_replicas_padded r; ++ ++ bch2_replicas_entry_cached(&r.e, dev); ++ ++ update_replicas_list(trans, &r.e, sectors); ++} ++ ++static inline struct replicas_delta * ++replicas_delta_next(struct replicas_delta *d) ++{ ++ return (void *) d + replicas_entry_bytes(&d->r) + 8; ++} ++ ++int bch2_replicas_delta_list_apply(struct bch_fs *c, ++ struct bch_fs_usage *fs_usage, ++ struct replicas_delta_list *r) ++{ ++ struct replicas_delta *d = r->d; ++ struct replicas_delta *top = (void *) r->d + r->used; ++ unsigned i; ++ ++ for (d = r->d; d != top; d = replicas_delta_next(d)) ++ if (update_replicas(c, fs_usage, &d->r, d->delta)) { ++ top = d; ++ goto unwind; ++ } ++ ++ if (!fs_usage) ++ return 0; ++ ++ fs_usage->nr_inodes += r->nr_inodes; ++ ++ for (i = 0; i < BCH_REPLICAS_MAX; i++) { ++ fs_usage->reserved += r->persistent_reserved[i]; ++ fs_usage->persistent_reserved[i] += r->persistent_reserved[i]; ++ } ++ ++ return 0; ++unwind: ++ for (d = r->d; d != top; d = replicas_delta_next(d)) ++ update_replicas(c, fs_usage, &d->r, -d->delta); ++ return -1; ++} ++ ++#define do_mark_fn(fn, c, pos, flags, ...) \ ++({ \ ++ int gc, ret = 0; \ ++ \ ++ percpu_rwsem_assert_held(&c->mark_lock); \ ++ \ ++ for (gc = 0; gc < 2 && !ret; gc++) \ ++ if (!gc == !(flags & BTREE_TRIGGER_GC) || \ ++ (gc && gc_visited(c, pos))) \ ++ ret = fn(c, __VA_ARGS__, gc); \ ++ ret; \ ++}) ++ ++static int __bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca, ++ size_t b, struct bucket_mark *ret, ++ bool gc) ++{ ++ struct bch_fs_usage *fs_usage = fs_usage_ptr(c, 0, gc); ++ struct bucket *g = __bucket(ca, b, gc); ++ struct bucket_mark old, new; ++ ++ old = bucket_cmpxchg(g, new, ({ ++ BUG_ON(!is_available_bucket(new)); ++ ++ new.owned_by_allocator = true; ++ new.data_type = 0; ++ new.cached_sectors = 0; ++ new.dirty_sectors = 0; ++ new.gen++; ++ })); ++ ++ bch2_dev_usage_update(c, ca, fs_usage, old, new, gc); ++ ++ if (old.cached_sectors) ++ update_cached_sectors(c, fs_usage, ca->dev_idx, ++ -((s64) old.cached_sectors)); ++ ++ if (!gc) ++ *ret = old; ++ return 0; ++} ++ ++void bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca, ++ size_t b, struct bucket_mark *old) ++{ ++ do_mark_fn(__bch2_invalidate_bucket, c, gc_phase(GC_PHASE_START), 0, ++ ca, b, old); ++ ++ if (!old->owned_by_allocator && old->cached_sectors) ++ trace_invalidate(ca, bucket_to_sector(ca, b), ++ old->cached_sectors); ++} ++ ++static int __bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca, ++ size_t b, bool owned_by_allocator, ++ bool gc) ++{ ++ struct bch_fs_usage *fs_usage = fs_usage_ptr(c, 0, gc); ++ struct bucket *g = __bucket(ca, b, gc); ++ struct bucket_mark old, new; ++ ++ old = bucket_cmpxchg(g, new, ({ ++ new.owned_by_allocator = owned_by_allocator; ++ })); ++ ++ bch2_dev_usage_update(c, ca, fs_usage, old, new, gc); ++ ++ BUG_ON(!gc && ++ !owned_by_allocator && !old.owned_by_allocator); ++ ++ return 0; ++} ++ ++void bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca, ++ size_t b, bool owned_by_allocator, ++ struct gc_pos pos, unsigned flags) ++{ ++ preempt_disable(); ++ ++ do_mark_fn(__bch2_mark_alloc_bucket, c, pos, flags, ++ ca, b, owned_by_allocator); ++ ++ preempt_enable(); ++} ++ ++static int bch2_mark_alloc(struct bch_fs *c, ++ struct bkey_s_c old, struct bkey_s_c new, ++ struct bch_fs_usage *fs_usage, ++ u64 journal_seq, unsigned flags) ++{ ++ bool gc = flags & BTREE_TRIGGER_GC; ++ struct bkey_alloc_unpacked u; ++ struct bch_dev *ca; ++ struct bucket *g; ++ struct bucket_mark old_m, m; ++ ++ /* We don't do anything for deletions - do we?: */ ++ if (new.k->type != KEY_TYPE_alloc) ++ return 0; ++ ++ /* ++ * alloc btree is read in by bch2_alloc_read, not gc: ++ */ ++ if ((flags & BTREE_TRIGGER_GC) && ++ !(flags & BTREE_TRIGGER_BUCKET_INVALIDATE)) ++ return 0; ++ ++ ca = bch_dev_bkey_exists(c, new.k->p.inode); ++ ++ if (new.k->p.offset >= ca->mi.nbuckets) ++ return 0; ++ ++ g = __bucket(ca, new.k->p.offset, gc); ++ u = bch2_alloc_unpack(new); ++ ++ old_m = bucket_cmpxchg(g, m, ({ ++ m.gen = u.gen; ++ m.data_type = u.data_type; ++ m.dirty_sectors = u.dirty_sectors; ++ m.cached_sectors = u.cached_sectors; ++ ++ if (journal_seq) { ++ m.journal_seq_valid = 1; ++ m.journal_seq = journal_seq; ++ } ++ })); ++ ++ bch2_dev_usage_update(c, ca, fs_usage, old_m, m, gc); ++ ++ g->io_time[READ] = u.read_time; ++ g->io_time[WRITE] = u.write_time; ++ g->oldest_gen = u.oldest_gen; ++ g->gen_valid = 1; ++ ++ /* ++ * need to know if we're getting called from the invalidate path or ++ * not: ++ */ ++ ++ if ((flags & BTREE_TRIGGER_BUCKET_INVALIDATE) && ++ old_m.cached_sectors) { ++ update_cached_sectors(c, fs_usage, ca->dev_idx, ++ -old_m.cached_sectors); ++ trace_invalidate(ca, bucket_to_sector(ca, new.k->p.offset), ++ old_m.cached_sectors); ++ } ++ ++ return 0; ++} ++ ++#define checked_add(a, b) \ ++({ \ ++ unsigned _res = (unsigned) (a) + (b); \ ++ bool overflow = _res > U16_MAX; \ ++ if (overflow) \ ++ _res = U16_MAX; \ ++ (a) = _res; \ ++ overflow; \ ++}) ++ ++static int __bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca, ++ size_t b, enum bch_data_type data_type, ++ unsigned sectors, bool gc) ++{ ++ struct bucket *g = __bucket(ca, b, gc); ++ struct bucket_mark old, new; ++ bool overflow; ++ ++ BUG_ON(data_type != BCH_DATA_sb && ++ data_type != BCH_DATA_journal); ++ ++ old = bucket_cmpxchg(g, new, ({ ++ new.data_type = data_type; ++ overflow = checked_add(new.dirty_sectors, sectors); ++ })); ++ ++ bch2_fs_inconsistent_on(old.data_type && ++ old.data_type != data_type, c, ++ "different types of data in same bucket: %s, %s", ++ bch2_data_types[old.data_type], ++ bch2_data_types[data_type]); ++ ++ bch2_fs_inconsistent_on(overflow, c, ++ "bucket %u:%zu gen %u data type %s sector count overflow: %u + %u > U16_MAX", ++ ca->dev_idx, b, new.gen, ++ bch2_data_types[old.data_type ?: data_type], ++ old.dirty_sectors, sectors); ++ ++ if (c) ++ bch2_dev_usage_update(c, ca, fs_usage_ptr(c, 0, gc), ++ old, new, gc); ++ ++ return 0; ++} ++ ++void bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca, ++ size_t b, enum bch_data_type type, ++ unsigned sectors, struct gc_pos pos, ++ unsigned flags) ++{ ++ BUG_ON(type != BCH_DATA_sb && ++ type != BCH_DATA_journal); ++ ++ preempt_disable(); ++ ++ if (likely(c)) { ++ do_mark_fn(__bch2_mark_metadata_bucket, c, pos, flags, ++ ca, b, type, sectors); ++ } else { ++ __bch2_mark_metadata_bucket(c, ca, b, type, sectors, 0); ++ } ++ ++ preempt_enable(); ++} ++ ++static s64 disk_sectors_scaled(unsigned n, unsigned d, unsigned sectors) ++{ ++ return DIV_ROUND_UP(sectors * n, d); ++} ++ ++static s64 __ptr_disk_sectors_delta(unsigned old_size, ++ unsigned offset, s64 delta, ++ unsigned flags, ++ unsigned n, unsigned d) ++{ ++ BUG_ON(!n || !d); ++ ++ if (flags & BTREE_TRIGGER_OVERWRITE_SPLIT) { ++ BUG_ON(offset + -delta > old_size); ++ ++ return -disk_sectors_scaled(n, d, old_size) + ++ disk_sectors_scaled(n, d, offset) + ++ disk_sectors_scaled(n, d, old_size - offset + delta); ++ } else if (flags & BTREE_TRIGGER_OVERWRITE) { ++ BUG_ON(offset + -delta > old_size); ++ ++ return -disk_sectors_scaled(n, d, old_size) + ++ disk_sectors_scaled(n, d, old_size + delta); ++ } else { ++ return disk_sectors_scaled(n, d, delta); ++ } ++} ++ ++static s64 ptr_disk_sectors_delta(struct extent_ptr_decoded p, ++ unsigned offset, s64 delta, ++ unsigned flags) ++{ ++ return __ptr_disk_sectors_delta(p.crc.live_size, ++ offset, delta, flags, ++ p.crc.compressed_size, ++ p.crc.uncompressed_size); ++} ++ ++static int check_bucket_ref(struct bch_fs *c, struct bkey_s_c k, ++ const struct bch_extent_ptr *ptr, ++ s64 sectors, enum bch_data_type ptr_data_type, ++ u8 bucket_gen, u8 bucket_data_type, ++ u16 dirty_sectors, u16 cached_sectors) ++{ ++ size_t bucket_nr = PTR_BUCKET_NR(bch_dev_bkey_exists(c, ptr->dev), ptr); ++ u16 bucket_sectors = !ptr->cached ++ ? dirty_sectors ++ : cached_sectors; ++ char buf[200]; ++ ++ if (gen_after(ptr->gen, bucket_gen)) { ++ bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, ++ "bucket %u:%zu gen %u data type %s: ptr gen %u newer than bucket gen\n" ++ "while marking %s", ++ ptr->dev, bucket_nr, bucket_gen, ++ bch2_data_types[bucket_data_type ?: ptr_data_type], ++ ptr->gen, ++ (bch2_bkey_val_to_text(&PBUF(buf), c, k), buf)); ++ return -EIO; ++ } ++ ++ if (gen_cmp(bucket_gen, ptr->gen) > BUCKET_GC_GEN_MAX) { ++ bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, ++ "bucket %u:%zu gen %u data type %s: ptr gen %u too stale\n" ++ "while marking %s", ++ ptr->dev, bucket_nr, bucket_gen, ++ bch2_data_types[bucket_data_type ?: ptr_data_type], ++ ptr->gen, ++ (bch2_bkey_val_to_text(&PBUF(buf), c, k), buf)); ++ return -EIO; ++ } ++ ++ if (bucket_gen != ptr->gen && !ptr->cached) { ++ bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, ++ "bucket %u:%zu gen %u data type %s: stale dirty ptr (gen %u)\n" ++ "while marking %s", ++ ptr->dev, bucket_nr, bucket_gen, ++ bch2_data_types[bucket_data_type ?: ptr_data_type], ++ ptr->gen, ++ (bch2_bkey_val_to_text(&PBUF(buf), c, k), buf)); ++ return -EIO; ++ } ++ ++ if (bucket_gen != ptr->gen) ++ return 1; ++ ++ if (bucket_data_type && ptr_data_type && ++ bucket_data_type != ptr_data_type) { ++ bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, ++ "bucket %u:%zu gen %u different types of data in same bucket: %s, %s\n" ++ "while marking %s", ++ ptr->dev, bucket_nr, bucket_gen, ++ bch2_data_types[bucket_data_type], ++ bch2_data_types[ptr_data_type], ++ (bch2_bkey_val_to_text(&PBUF(buf), c, k), buf)); ++ return -EIO; ++ } ++ ++ if ((unsigned) (bucket_sectors + sectors) > U16_MAX) { ++ bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, ++ "bucket %u:%zu gen %u data type %s sector count overflow: %u + %lli > U16_MAX\n" ++ "while marking %s", ++ ptr->dev, bucket_nr, bucket_gen, ++ bch2_data_types[bucket_data_type ?: ptr_data_type], ++ bucket_sectors, sectors, ++ (bch2_bkey_val_to_text(&PBUF(buf), c, k), buf)); ++ return -EIO; ++ } ++ ++ return 0; ++} ++ ++static int bucket_set_stripe(struct bch_fs *c, struct bkey_s_c k, ++ const struct bch_extent_ptr *ptr, ++ struct bch_fs_usage *fs_usage, ++ u64 journal_seq, ++ unsigned flags, ++ bool enabled) ++{ ++ bool gc = flags & BTREE_TRIGGER_GC; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ struct bucket *g = PTR_BUCKET(ca, ptr, gc); ++ struct bucket_mark new, old; ++ char buf[200]; ++ int ret; ++ ++ old = bucket_cmpxchg(g, new, ({ ++ ret = check_bucket_ref(c, k, ptr, 0, 0, new.gen, new.data_type, ++ new.dirty_sectors, new.cached_sectors); ++ if (ret) ++ return ret; ++ ++ if (new.stripe && enabled) ++ bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, ++ "bucket %u:%zu gen %u: multiple stripes using same bucket\n%s", ++ ptr->dev, PTR_BUCKET_NR(ca, ptr), new.gen, ++ (bch2_bkey_val_to_text(&PBUF(buf), c, k), buf)); ++ ++ if (!new.stripe && !enabled) ++ bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, ++ "bucket %u:%zu gen %u: deleting stripe but not marked\n%s", ++ ptr->dev, PTR_BUCKET_NR(ca, ptr), new.gen, ++ (bch2_bkey_val_to_text(&PBUF(buf), c, k), buf)); ++ ++ new.stripe = enabled; ++ if (journal_seq) { ++ new.journal_seq_valid = 1; ++ new.journal_seq = journal_seq; ++ } ++ })); ++ ++ bch2_dev_usage_update(c, ca, fs_usage, old, new, gc); ++ return 0; ++} ++ ++static int __mark_pointer(struct bch_fs *c, struct bkey_s_c k, ++ const struct bch_extent_ptr *ptr, ++ s64 sectors, enum bch_data_type ptr_data_type, ++ u8 bucket_gen, u8 *bucket_data_type, ++ u16 *dirty_sectors, u16 *cached_sectors) ++{ ++ u16 *dst_sectors = !ptr->cached ++ ? dirty_sectors ++ : cached_sectors; ++ int ret = check_bucket_ref(c, k, ptr, sectors, ptr_data_type, ++ bucket_gen, *bucket_data_type, ++ *dirty_sectors, *cached_sectors); ++ ++ if (ret) ++ return ret; ++ ++ *dst_sectors += sectors; ++ *bucket_data_type = *dirty_sectors || *cached_sectors ++ ? ptr_data_type : 0; ++ return 0; ++} ++ ++static int bch2_mark_pointer(struct bch_fs *c, struct bkey_s_c k, ++ struct extent_ptr_decoded p, ++ s64 sectors, enum bch_data_type data_type, ++ struct bch_fs_usage *fs_usage, ++ u64 journal_seq, unsigned flags) ++{ ++ bool gc = flags & BTREE_TRIGGER_GC; ++ struct bucket_mark old, new; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev); ++ struct bucket *g = PTR_BUCKET(ca, &p.ptr, gc); ++ u8 bucket_data_type; ++ u64 v; ++ int ret; ++ ++ v = atomic64_read(&g->_mark.v); ++ do { ++ new.v.counter = old.v.counter = v; ++ bucket_data_type = new.data_type; ++ ++ ret = __mark_pointer(c, k, &p.ptr, sectors, data_type, new.gen, ++ &bucket_data_type, ++ &new.dirty_sectors, ++ &new.cached_sectors); ++ if (ret) ++ return ret; ++ ++ new.data_type = bucket_data_type; ++ ++ if (journal_seq) { ++ new.journal_seq_valid = 1; ++ new.journal_seq = journal_seq; ++ } ++ ++ if (flags & BTREE_TRIGGER_NOATOMIC) { ++ g->_mark = new; ++ break; ++ } ++ } while ((v = atomic64_cmpxchg(&g->_mark.v, ++ old.v.counter, ++ new.v.counter)) != old.v.counter); ++ ++ bch2_dev_usage_update(c, ca, fs_usage, old, new, gc); ++ ++ BUG_ON(!gc && bucket_became_unavailable(old, new)); ++ ++ return 0; ++} ++ ++static int bch2_mark_stripe_ptr(struct bch_fs *c, ++ struct bch_extent_stripe_ptr p, ++ enum bch_data_type data_type, ++ struct bch_fs_usage *fs_usage, ++ s64 sectors, unsigned flags, ++ struct bch_replicas_padded *r, ++ unsigned *nr_data, ++ unsigned *nr_parity) ++{ ++ bool gc = flags & BTREE_TRIGGER_GC; ++ struct stripe *m; ++ unsigned i, blocks_nonempty = 0; ++ ++ m = genradix_ptr(&c->stripes[gc], p.idx); ++ ++ spin_lock(&c->ec_stripes_heap_lock); ++ ++ if (!m || !m->alive) { ++ spin_unlock(&c->ec_stripes_heap_lock); ++ bch_err_ratelimited(c, "pointer to nonexistent stripe %llu", ++ (u64) p.idx); ++ return -EIO; ++ } ++ ++ BUG_ON(m->r.e.data_type != data_type); ++ ++ *nr_data = m->nr_blocks - m->nr_redundant; ++ *nr_parity = m->nr_redundant; ++ *r = m->r; ++ ++ m->block_sectors[p.block] += sectors; ++ ++ for (i = 0; i < m->nr_blocks; i++) ++ blocks_nonempty += m->block_sectors[i] != 0; ++ ++ if (m->blocks_nonempty != blocks_nonempty) { ++ m->blocks_nonempty = blocks_nonempty; ++ if (!gc) ++ bch2_stripes_heap_update(c, m, p.idx); ++ } ++ ++ spin_unlock(&c->ec_stripes_heap_lock); ++ ++ return 0; ++} ++ ++static int bch2_mark_extent(struct bch_fs *c, ++ struct bkey_s_c old, struct bkey_s_c new, ++ unsigned offset, s64 sectors, ++ enum bch_data_type data_type, ++ struct bch_fs_usage *fs_usage, ++ unsigned journal_seq, unsigned flags) ++{ ++ struct bkey_s_c k = flags & BTREE_TRIGGER_INSERT ? new : old; ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ struct bch_replicas_padded r; ++ s64 dirty_sectors = 0; ++ bool stale; ++ int ret; ++ ++ r.e.data_type = data_type; ++ r.e.nr_devs = 0; ++ r.e.nr_required = 1; ++ ++ BUG_ON(!sectors); ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ s64 disk_sectors = data_type == BCH_DATA_btree ++ ? sectors ++ : ptr_disk_sectors_delta(p, offset, sectors, flags); ++ ++ ret = bch2_mark_pointer(c, k, p, disk_sectors, data_type, ++ fs_usage, journal_seq, flags); ++ if (ret < 0) ++ return ret; ++ ++ stale = ret > 0; ++ ++ if (p.ptr.cached) { ++ if (!stale) ++ update_cached_sectors(c, fs_usage, p.ptr.dev, ++ disk_sectors); ++ } else if (!p.has_ec) { ++ dirty_sectors += disk_sectors; ++ r.e.devs[r.e.nr_devs++] = p.ptr.dev; ++ } else { ++ struct bch_replicas_padded ec_r; ++ unsigned nr_data, nr_parity; ++ s64 parity_sectors; ++ ++ ret = bch2_mark_stripe_ptr(c, p.ec, data_type, ++ fs_usage, disk_sectors, flags, ++ &ec_r, &nr_data, &nr_parity); ++ if (ret) ++ return ret; ++ ++ parity_sectors = ++ __ptr_disk_sectors_delta(p.crc.live_size, ++ offset, sectors, flags, ++ p.crc.compressed_size * nr_parity, ++ p.crc.uncompressed_size * nr_data); ++ ++ update_replicas(c, fs_usage, &ec_r.e, ++ disk_sectors + parity_sectors); ++ ++ /* ++ * There may be other dirty pointers in this extent, but ++ * if so they're not required for mounting if we have an ++ * erasure coded pointer in this extent: ++ */ ++ r.e.nr_required = 0; ++ } ++ } ++ ++ if (r.e.nr_devs) ++ update_replicas(c, fs_usage, &r.e, dirty_sectors); ++ ++ return 0; ++} ++ ++static int bch2_mark_stripe(struct bch_fs *c, ++ struct bkey_s_c old, struct bkey_s_c new, ++ struct bch_fs_usage *fs_usage, ++ u64 journal_seq, unsigned flags) ++{ ++ bool gc = flags & BTREE_TRIGGER_GC; ++ size_t idx = new.k->p.offset; ++ const struct bch_stripe *old_s = old.k->type == KEY_TYPE_stripe ++ ? bkey_s_c_to_stripe(old).v : NULL; ++ const struct bch_stripe *new_s = new.k->type == KEY_TYPE_stripe ++ ? bkey_s_c_to_stripe(new).v : NULL; ++ struct stripe *m = genradix_ptr(&c->stripes[gc], idx); ++ unsigned i; ++ int ret; ++ ++ if (!m || (old_s && !m->alive)) { ++ bch_err_ratelimited(c, "error marking nonexistent stripe %zu", ++ idx); ++ return -1; ++ } ++ ++ if (!new_s) { ++ /* Deleting: */ ++ for (i = 0; i < old_s->nr_blocks; i++) { ++ ret = bucket_set_stripe(c, old, old_s->ptrs + i, fs_usage, ++ journal_seq, flags, false); ++ if (ret) ++ return ret; ++ } ++ ++ if (!gc && m->on_heap) { ++ spin_lock(&c->ec_stripes_heap_lock); ++ bch2_stripes_heap_del(c, m, idx); ++ spin_unlock(&c->ec_stripes_heap_lock); ++ } ++ ++ memset(m, 0, sizeof(*m)); ++ } else { ++ BUG_ON(old_s && new_s->nr_blocks != old_s->nr_blocks); ++ BUG_ON(old_s && new_s->nr_redundant != old_s->nr_redundant); ++ ++ for (i = 0; i < new_s->nr_blocks; i++) { ++ if (!old_s || ++ memcmp(new_s->ptrs + i, ++ old_s->ptrs + i, ++ sizeof(struct bch_extent_ptr))) { ++ ++ if (old_s) { ++ bucket_set_stripe(c, old, old_s->ptrs + i, fs_usage, ++ journal_seq, flags, false); ++ if (ret) ++ return ret; ++ } ++ ret = bucket_set_stripe(c, new, new_s->ptrs + i, fs_usage, ++ journal_seq, flags, true); ++ if (ret) ++ return ret; ++ } ++ } ++ ++ m->alive = true; ++ m->sectors = le16_to_cpu(new_s->sectors); ++ m->algorithm = new_s->algorithm; ++ m->nr_blocks = new_s->nr_blocks; ++ m->nr_redundant = new_s->nr_redundant; ++ ++ bch2_bkey_to_replicas(&m->r.e, new); ++ ++ /* gc recalculates these fields: */ ++ if (!(flags & BTREE_TRIGGER_GC)) { ++ m->blocks_nonempty = 0; ++ ++ for (i = 0; i < new_s->nr_blocks; i++) { ++ m->block_sectors[i] = ++ stripe_blockcount_get(new_s, i); ++ m->blocks_nonempty += !!m->block_sectors[i]; ++ } ++ } ++ ++ if (!gc) { ++ spin_lock(&c->ec_stripes_heap_lock); ++ bch2_stripes_heap_update(c, m, idx); ++ spin_unlock(&c->ec_stripes_heap_lock); ++ } ++ } ++ ++ return 0; ++} ++ ++static int bch2_mark_key_locked(struct bch_fs *c, ++ struct bkey_s_c old, ++ struct bkey_s_c new, ++ unsigned offset, s64 sectors, ++ struct bch_fs_usage *fs_usage, ++ u64 journal_seq, unsigned flags) ++{ ++ struct bkey_s_c k = flags & BTREE_TRIGGER_INSERT ? new : old; ++ int ret = 0; ++ ++ BUG_ON(!(flags & (BTREE_TRIGGER_INSERT|BTREE_TRIGGER_OVERWRITE))); ++ ++ preempt_disable(); ++ ++ if (!fs_usage || (flags & BTREE_TRIGGER_GC)) ++ fs_usage = fs_usage_ptr(c, journal_seq, ++ flags & BTREE_TRIGGER_GC); ++ ++ switch (k.k->type) { ++ case KEY_TYPE_alloc: ++ ret = bch2_mark_alloc(c, old, new, fs_usage, journal_seq, flags); ++ break; ++ case KEY_TYPE_btree_ptr: ++ case KEY_TYPE_btree_ptr_v2: ++ sectors = !(flags & BTREE_TRIGGER_OVERWRITE) ++ ? c->opts.btree_node_size ++ : -c->opts.btree_node_size; ++ ++ ret = bch2_mark_extent(c, old, new, offset, sectors, ++ BCH_DATA_btree, fs_usage, journal_seq, flags); ++ break; ++ case KEY_TYPE_extent: ++ case KEY_TYPE_reflink_v: ++ ret = bch2_mark_extent(c, old, new, offset, sectors, ++ BCH_DATA_user, fs_usage, journal_seq, flags); ++ break; ++ case KEY_TYPE_stripe: ++ ret = bch2_mark_stripe(c, old, new, fs_usage, journal_seq, flags); ++ break; ++ case KEY_TYPE_inode: ++ if (!(flags & BTREE_TRIGGER_OVERWRITE)) ++ fs_usage->nr_inodes++; ++ else ++ fs_usage->nr_inodes--; ++ break; ++ case KEY_TYPE_reservation: { ++ unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas; ++ ++ sectors *= replicas; ++ replicas = clamp_t(unsigned, replicas, 1, ++ ARRAY_SIZE(fs_usage->persistent_reserved)); ++ ++ fs_usage->reserved += sectors; ++ fs_usage->persistent_reserved[replicas - 1] += sectors; ++ break; ++ } ++ } ++ ++ preempt_enable(); ++ ++ return ret; ++} ++ ++int bch2_mark_key(struct bch_fs *c, struct bkey_s_c new, ++ unsigned offset, s64 sectors, ++ struct bch_fs_usage *fs_usage, ++ u64 journal_seq, unsigned flags) ++{ ++ struct bkey deleted; ++ struct bkey_s_c old = (struct bkey_s_c) { &deleted, NULL }; ++ int ret; ++ ++ bkey_init(&deleted); ++ ++ percpu_down_read(&c->mark_lock); ++ ret = bch2_mark_key_locked(c, old, new, offset, sectors, ++ fs_usage, journal_seq, ++ BTREE_TRIGGER_INSERT|flags); ++ percpu_up_read(&c->mark_lock); ++ ++ return ret; ++} ++ ++int bch2_mark_update(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_i *new, ++ struct bch_fs_usage *fs_usage, ++ unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree *b = iter_l(iter)->b; ++ struct btree_node_iter node_iter = iter_l(iter)->iter; ++ struct bkey_packed *_old; ++ struct bkey_s_c old; ++ struct bkey unpacked; ++ int ret = 0; ++ ++ if (unlikely(flags & BTREE_TRIGGER_NORUN)) ++ return 0; ++ ++ if (!btree_node_type_needs_gc(iter->btree_id)) ++ return 0; ++ ++ bkey_init(&unpacked); ++ old = (struct bkey_s_c) { &unpacked, NULL }; ++ ++ if (!btree_node_type_is_extents(iter->btree_id)) { ++ if (btree_iter_type(iter) != BTREE_ITER_CACHED) { ++ _old = bch2_btree_node_iter_peek(&node_iter, b); ++ if (_old) ++ old = bkey_disassemble(b, _old, &unpacked); ++ } else { ++ struct bkey_cached *ck = (void *) iter->l[0].b; ++ ++ if (ck->valid) ++ old = bkey_i_to_s_c(ck->k); ++ } ++ ++ if (old.k->type == new->k.type) { ++ bch2_mark_key_locked(c, old, bkey_i_to_s_c(new), 0, 0, ++ fs_usage, trans->journal_res.seq, ++ BTREE_TRIGGER_INSERT|BTREE_TRIGGER_OVERWRITE|flags); ++ ++ } else { ++ bch2_mark_key_locked(c, old, bkey_i_to_s_c(new), 0, 0, ++ fs_usage, trans->journal_res.seq, ++ BTREE_TRIGGER_INSERT|flags); ++ bch2_mark_key_locked(c, old, bkey_i_to_s_c(new), 0, 0, ++ fs_usage, trans->journal_res.seq, ++ BTREE_TRIGGER_OVERWRITE|flags); ++ } ++ } else { ++ BUG_ON(btree_iter_type(iter) == BTREE_ITER_CACHED); ++ bch2_mark_key_locked(c, old, bkey_i_to_s_c(new), ++ 0, new->k.size, ++ fs_usage, trans->journal_res.seq, ++ BTREE_TRIGGER_INSERT|flags); ++ ++ while ((_old = bch2_btree_node_iter_peek(&node_iter, b))) { ++ unsigned offset = 0; ++ s64 sectors; ++ ++ old = bkey_disassemble(b, _old, &unpacked); ++ sectors = -((s64) old.k->size); ++ ++ flags |= BTREE_TRIGGER_OVERWRITE; ++ ++ if (bkey_cmp(new->k.p, bkey_start_pos(old.k)) <= 0) ++ return 0; ++ ++ switch (bch2_extent_overlap(&new->k, old.k)) { ++ case BCH_EXTENT_OVERLAP_ALL: ++ offset = 0; ++ sectors = -((s64) old.k->size); ++ break; ++ case BCH_EXTENT_OVERLAP_BACK: ++ offset = bkey_start_offset(&new->k) - ++ bkey_start_offset(old.k); ++ sectors = bkey_start_offset(&new->k) - ++ old.k->p.offset; ++ break; ++ case BCH_EXTENT_OVERLAP_FRONT: ++ offset = 0; ++ sectors = bkey_start_offset(old.k) - ++ new->k.p.offset; ++ break; ++ case BCH_EXTENT_OVERLAP_MIDDLE: ++ offset = bkey_start_offset(&new->k) - ++ bkey_start_offset(old.k); ++ sectors = -((s64) new->k.size); ++ flags |= BTREE_TRIGGER_OVERWRITE_SPLIT; ++ break; ++ } ++ ++ BUG_ON(sectors >= 0); ++ ++ ret = bch2_mark_key_locked(c, old, bkey_i_to_s_c(new), ++ offset, sectors, fs_usage, ++ trans->journal_res.seq, flags) ?: 1; ++ if (ret <= 0) ++ break; ++ ++ bch2_btree_node_iter_advance(&node_iter, b); ++ } ++ } ++ ++ return ret; ++} ++ ++void bch2_trans_fs_usage_apply(struct btree_trans *trans, ++ struct bch_fs_usage *fs_usage) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_insert_entry *i; ++ static int warned_disk_usage = 0; ++ u64 disk_res_sectors = trans->disk_res ? trans->disk_res->sectors : 0; ++ char buf[200]; ++ ++ if (!bch2_fs_usage_apply(c, fs_usage, trans->disk_res, ++ trans->journal_res.seq) || ++ warned_disk_usage || ++ xchg(&warned_disk_usage, 1)) ++ return; ++ ++ bch_err(c, "disk usage increased more than %llu sectors reserved", ++ disk_res_sectors); ++ ++ trans_for_each_update(trans, i) { ++ pr_err("while inserting"); ++ bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(i->k)); ++ pr_err("%s", buf); ++ pr_err("overlapping with"); ++ ++ if (btree_iter_type(i->iter) != BTREE_ITER_CACHED) { ++ struct btree *b = iter_l(i->iter)->b; ++ struct btree_node_iter node_iter = iter_l(i->iter)->iter; ++ struct bkey_packed *_k; ++ ++ while ((_k = bch2_btree_node_iter_peek(&node_iter, b))) { ++ struct bkey unpacked; ++ struct bkey_s_c k; ++ ++ pr_info("_k %px format %u", _k, _k->format); ++ k = bkey_disassemble(b, _k, &unpacked); ++ ++ if (btree_node_is_extents(b) ++ ? bkey_cmp(i->k->k.p, bkey_start_pos(k.k)) <= 0 ++ : bkey_cmp(i->k->k.p, k.k->p)) ++ break; ++ ++ bch2_bkey_val_to_text(&PBUF(buf), c, k); ++ pr_err("%s", buf); ++ ++ bch2_btree_node_iter_advance(&node_iter, b); ++ } ++ } else { ++ struct bkey_cached *ck = (void *) i->iter->l[0].b; ++ ++ if (ck->valid) { ++ bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(ck->k)); ++ pr_err("%s", buf); ++ } ++ } ++ } ++} ++ ++/* trans_mark: */ ++ ++static struct btree_iter *trans_get_update(struct btree_trans *trans, ++ enum btree_id btree_id, struct bpos pos, ++ struct bkey_s_c *k) ++{ ++ struct btree_insert_entry *i; ++ ++ trans_for_each_update(trans, i) ++ if (i->iter->btree_id == btree_id && ++ (btree_node_type_is_extents(btree_id) ++ ? bkey_cmp(pos, bkey_start_pos(&i->k->k)) >= 0 && ++ bkey_cmp(pos, i->k->k.p) < 0 ++ : !bkey_cmp(pos, i->iter->pos))) { ++ *k = bkey_i_to_s_c(i->k); ++ return i->iter; ++ } ++ ++ return NULL; ++} ++ ++static int trans_get_key(struct btree_trans *trans, ++ enum btree_id btree_id, struct bpos pos, ++ struct btree_iter **iter, ++ struct bkey_s_c *k) ++{ ++ unsigned flags = btree_id != BTREE_ID_ALLOC ++ ? BTREE_ITER_SLOTS ++ : BTREE_ITER_CACHED; ++ int ret; ++ ++ *iter = trans_get_update(trans, btree_id, pos, k); ++ if (*iter) ++ return 1; ++ ++ *iter = bch2_trans_get_iter(trans, btree_id, pos, ++ flags|BTREE_ITER_INTENT); ++ if (IS_ERR(*iter)) ++ return PTR_ERR(*iter); ++ ++ *k = __bch2_btree_iter_peek(*iter, flags); ++ ret = bkey_err(*k); ++ if (ret) ++ bch2_trans_iter_put(trans, *iter); ++ return ret; ++} ++ ++static int bch2_trans_start_alloc_update(struct btree_trans *trans, struct btree_iter **_iter, ++ const struct bch_extent_ptr *ptr, ++ struct bkey_alloc_unpacked *u) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ struct bpos pos = POS(ptr->dev, PTR_BUCKET_NR(ca, ptr)); ++ struct bucket *g; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ iter = trans_get_update(trans, BTREE_ID_ALLOC, pos, &k); ++ if (iter) { ++ *u = bch2_alloc_unpack(k); ++ } else { ++ iter = bch2_trans_get_iter(trans, BTREE_ID_ALLOC, pos, ++ BTREE_ITER_CACHED| ++ BTREE_ITER_CACHED_NOFILL| ++ BTREE_ITER_INTENT); ++ if (IS_ERR(iter)) ++ return PTR_ERR(iter); ++ ++ ret = bch2_btree_iter_traverse(iter); ++ if (ret) { ++ bch2_trans_iter_put(trans, iter); ++ return ret; ++ } ++ ++ percpu_down_read(&c->mark_lock); ++ g = bucket(ca, pos.offset); ++ *u = alloc_mem_to_key(g, READ_ONCE(g->mark)); ++ percpu_up_read(&c->mark_lock); ++ } ++ ++ *_iter = iter; ++ return 0; ++} ++ ++static int bch2_trans_mark_pointer(struct btree_trans *trans, ++ struct bkey_s_c k, struct extent_ptr_decoded p, ++ s64 sectors, enum bch_data_type data_type) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter *iter; ++ struct bkey_alloc_unpacked u; ++ struct bkey_i_alloc *a; ++ int ret; ++ ++ ret = bch2_trans_start_alloc_update(trans, &iter, &p.ptr, &u); ++ if (ret) ++ return ret; ++ ++ ret = __mark_pointer(c, k, &p.ptr, sectors, data_type, u.gen, &u.data_type, ++ &u.dirty_sectors, &u.cached_sectors); ++ if (ret) ++ goto out; ++ ++ a = bch2_trans_kmalloc(trans, BKEY_ALLOC_U64s_MAX * 8); ++ ret = PTR_ERR_OR_ZERO(a); ++ if (ret) ++ goto out; ++ ++ bkey_alloc_init(&a->k_i); ++ a->k.p = iter->pos; ++ bch2_alloc_pack(a, u); ++ bch2_trans_update(trans, iter, &a->k_i, 0); ++out: ++ bch2_trans_iter_put(trans, iter); ++ return ret; ++} ++ ++static int bch2_trans_mark_stripe_ptr(struct btree_trans *trans, ++ struct bch_extent_stripe_ptr p, ++ s64 sectors, enum bch_data_type data_type, ++ struct bch_replicas_padded *r, ++ unsigned *nr_data, ++ unsigned *nr_parity) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ struct bkey_i_stripe *s; ++ int ret = 0; ++ ++ ret = trans_get_key(trans, BTREE_ID_EC, POS(0, p.idx), &iter, &k); ++ if (ret < 0) ++ return ret; ++ ++ if (k.k->type != KEY_TYPE_stripe) { ++ bch2_fs_inconsistent(c, ++ "pointer to nonexistent stripe %llu", ++ (u64) p.idx); ++ ret = -EIO; ++ goto out; ++ } ++ ++ s = bch2_trans_kmalloc(trans, bkey_bytes(k.k)); ++ ret = PTR_ERR_OR_ZERO(s); ++ if (ret) ++ goto out; ++ ++ bkey_reassemble(&s->k_i, k); ++ ++ stripe_blockcount_set(&s->v, p.block, ++ stripe_blockcount_get(&s->v, p.block) + ++ sectors); ++ ++ *nr_data = s->v.nr_blocks - s->v.nr_redundant; ++ *nr_parity = s->v.nr_redundant; ++ bch2_bkey_to_replicas(&r->e, bkey_i_to_s_c(&s->k_i)); ++ bch2_trans_update(trans, iter, &s->k_i, 0); ++out: ++ bch2_trans_iter_put(trans, iter); ++ return ret; ++} ++ ++static int bch2_trans_mark_extent(struct btree_trans *trans, ++ struct bkey_s_c k, unsigned offset, ++ s64 sectors, unsigned flags, ++ enum bch_data_type data_type) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ struct bch_replicas_padded r; ++ s64 dirty_sectors = 0; ++ bool stale; ++ int ret; ++ ++ r.e.data_type = data_type; ++ r.e.nr_devs = 0; ++ r.e.nr_required = 1; ++ ++ BUG_ON(!sectors); ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ s64 disk_sectors = data_type == BCH_DATA_btree ++ ? sectors ++ : ptr_disk_sectors_delta(p, offset, sectors, flags); ++ ++ ret = bch2_trans_mark_pointer(trans, k, p, disk_sectors, ++ data_type); ++ if (ret < 0) ++ return ret; ++ ++ stale = ret > 0; ++ ++ if (p.ptr.cached) { ++ if (!stale) ++ update_cached_sectors_list(trans, p.ptr.dev, ++ disk_sectors); ++ } else if (!p.has_ec) { ++ dirty_sectors += disk_sectors; ++ r.e.devs[r.e.nr_devs++] = p.ptr.dev; ++ } else { ++ struct bch_replicas_padded ec_r; ++ unsigned nr_data, nr_parity; ++ s64 parity_sectors; ++ ++ ret = bch2_trans_mark_stripe_ptr(trans, p.ec, ++ disk_sectors, data_type, ++ &ec_r, &nr_data, &nr_parity); ++ if (ret) ++ return ret; ++ ++ parity_sectors = ++ __ptr_disk_sectors_delta(p.crc.live_size, ++ offset, sectors, flags, ++ p.crc.compressed_size * nr_parity, ++ p.crc.uncompressed_size * nr_data); ++ ++ update_replicas_list(trans, &ec_r.e, ++ disk_sectors + parity_sectors); ++ ++ r.e.nr_required = 0; ++ } ++ } ++ ++ if (r.e.nr_devs) ++ update_replicas_list(trans, &r.e, dirty_sectors); ++ ++ return 0; ++} ++ ++static int bch2_trans_mark_stripe(struct btree_trans *trans, ++ struct bkey_s_c k) ++{ ++ const struct bch_stripe *s = bkey_s_c_to_stripe(k).v; ++ struct bkey_alloc_unpacked u; ++ struct bkey_i_alloc *a; ++ struct btree_iter *iter; ++ unsigned i; ++ int ret = 0; ++ ++ /* ++ * The allocator code doesn't necessarily update bucket gens in the ++ * btree when incrementing them, right before handing out new buckets - ++ * we just need to persist those updates here along with the new stripe: ++ */ ++ ++ for (i = 0; i < s->nr_blocks && !ret; i++) { ++ ret = bch2_trans_start_alloc_update(trans, &iter, ++ &s->ptrs[i], &u); ++ if (ret) ++ break; ++ ++ a = bch2_trans_kmalloc(trans, BKEY_ALLOC_U64s_MAX * 8); ++ ret = PTR_ERR_OR_ZERO(a); ++ if (ret) ++ goto put_iter; ++ ++ bkey_alloc_init(&a->k_i); ++ a->k.p = iter->pos; ++ bch2_alloc_pack(a, u); ++ bch2_trans_update(trans, iter, &a->k_i, 0); ++put_iter: ++ bch2_trans_iter_put(trans, iter); ++ } ++ ++ return ret; ++} ++ ++static int __bch2_trans_mark_reflink_p(struct btree_trans *trans, ++ struct bkey_s_c_reflink_p p, ++ u64 idx, unsigned sectors, ++ unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ struct bkey_i_reflink_v *r_v; ++ s64 ret; ++ ++ ret = trans_get_key(trans, BTREE_ID_REFLINK, ++ POS(0, idx), &iter, &k); ++ if (ret < 0) ++ return ret; ++ ++ if (k.k->type != KEY_TYPE_reflink_v) { ++ bch2_fs_inconsistent(c, ++ "%llu:%llu len %u points to nonexistent indirect extent %llu", ++ p.k->p.inode, p.k->p.offset, p.k->size, idx); ++ ret = -EIO; ++ goto err; ++ } ++ ++ if ((flags & BTREE_TRIGGER_OVERWRITE) && ++ (bkey_start_offset(k.k) < idx || ++ k.k->p.offset > idx + sectors)) ++ goto out; ++ ++ sectors = k.k->p.offset - idx; ++ ++ r_v = bch2_trans_kmalloc(trans, bkey_bytes(k.k)); ++ ret = PTR_ERR_OR_ZERO(r_v); ++ if (ret) ++ goto err; ++ ++ bkey_reassemble(&r_v->k_i, k); ++ ++ le64_add_cpu(&r_v->v.refcount, ++ !(flags & BTREE_TRIGGER_OVERWRITE) ? 1 : -1); ++ ++ if (!r_v->v.refcount) { ++ r_v->k.type = KEY_TYPE_deleted; ++ set_bkey_val_u64s(&r_v->k, 0); ++ } ++ ++ bch2_btree_iter_set_pos(iter, bkey_start_pos(k.k)); ++ BUG_ON(iter->uptodate > BTREE_ITER_NEED_PEEK); ++ ++ bch2_trans_update(trans, iter, &r_v->k_i, 0); ++out: ++ ret = sectors; ++err: ++ bch2_trans_iter_put(trans, iter); ++ return ret; ++} ++ ++static int bch2_trans_mark_reflink_p(struct btree_trans *trans, ++ struct bkey_s_c_reflink_p p, unsigned offset, ++ s64 sectors, unsigned flags) ++{ ++ u64 idx = le64_to_cpu(p.v->idx) + offset; ++ s64 ret = 0; ++ ++ sectors = abs(sectors); ++ BUG_ON(offset + sectors > p.k->size); ++ ++ while (sectors) { ++ ret = __bch2_trans_mark_reflink_p(trans, p, idx, sectors, flags); ++ if (ret < 0) ++ break; ++ ++ idx += ret; ++ sectors = max_t(s64, 0LL, sectors - ret); ++ ret = 0; ++ } ++ ++ return ret; ++} ++ ++int bch2_trans_mark_key(struct btree_trans *trans, struct bkey_s_c k, ++ unsigned offset, s64 sectors, unsigned flags) ++{ ++ struct replicas_delta_list *d; ++ struct bch_fs *c = trans->c; ++ ++ switch (k.k->type) { ++ case KEY_TYPE_btree_ptr: ++ case KEY_TYPE_btree_ptr_v2: ++ sectors = !(flags & BTREE_TRIGGER_OVERWRITE) ++ ? c->opts.btree_node_size ++ : -c->opts.btree_node_size; ++ ++ return bch2_trans_mark_extent(trans, k, offset, sectors, ++ flags, BCH_DATA_btree); ++ case KEY_TYPE_extent: ++ case KEY_TYPE_reflink_v: ++ return bch2_trans_mark_extent(trans, k, offset, sectors, ++ flags, BCH_DATA_user); ++ case KEY_TYPE_stripe: ++ return bch2_trans_mark_stripe(trans, k); ++ case KEY_TYPE_inode: ++ d = replicas_deltas_realloc(trans, 0); ++ ++ if (!(flags & BTREE_TRIGGER_OVERWRITE)) ++ d->nr_inodes++; ++ else ++ d->nr_inodes--; ++ return 0; ++ case KEY_TYPE_reservation: { ++ unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas; ++ ++ d = replicas_deltas_realloc(trans, 0); ++ ++ sectors *= replicas; ++ replicas = clamp_t(unsigned, replicas, 1, ++ ARRAY_SIZE(d->persistent_reserved)); ++ ++ d->persistent_reserved[replicas - 1] += sectors; ++ return 0; ++ } ++ case KEY_TYPE_reflink_p: ++ return bch2_trans_mark_reflink_p(trans, ++ bkey_s_c_to_reflink_p(k), ++ offset, sectors, flags); ++ default: ++ return 0; ++ } ++} ++ ++int bch2_trans_mark_update(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_i *insert, ++ unsigned flags) ++{ ++ struct btree *b = iter_l(iter)->b; ++ struct btree_node_iter node_iter = iter_l(iter)->iter; ++ struct bkey_packed *_k; ++ int ret; ++ ++ if (unlikely(flags & BTREE_TRIGGER_NORUN)) ++ return 0; ++ ++ if (!btree_node_type_needs_gc(iter->btree_id)) ++ return 0; ++ ++ ret = bch2_trans_mark_key(trans, bkey_i_to_s_c(insert), ++ 0, insert->k.size, BTREE_TRIGGER_INSERT); ++ if (ret) ++ return ret; ++ ++ if (btree_iter_type(iter) == BTREE_ITER_CACHED) { ++ struct bkey_cached *ck = (void *) iter->l[0].b; ++ ++ return bch2_trans_mark_key(trans, bkey_i_to_s_c(ck->k), ++ 0, 0, BTREE_TRIGGER_OVERWRITE); ++ } ++ ++ while ((_k = bch2_btree_node_iter_peek(&node_iter, b))) { ++ struct bkey unpacked; ++ struct bkey_s_c k; ++ unsigned offset = 0; ++ s64 sectors = 0; ++ unsigned flags = BTREE_TRIGGER_OVERWRITE; ++ ++ k = bkey_disassemble(b, _k, &unpacked); ++ ++ if (btree_node_is_extents(b) ++ ? bkey_cmp(insert->k.p, bkey_start_pos(k.k)) <= 0 ++ : bkey_cmp(insert->k.p, k.k->p)) ++ break; ++ ++ if (btree_node_is_extents(b)) { ++ switch (bch2_extent_overlap(&insert->k, k.k)) { ++ case BCH_EXTENT_OVERLAP_ALL: ++ offset = 0; ++ sectors = -((s64) k.k->size); ++ break; ++ case BCH_EXTENT_OVERLAP_BACK: ++ offset = bkey_start_offset(&insert->k) - ++ bkey_start_offset(k.k); ++ sectors = bkey_start_offset(&insert->k) - ++ k.k->p.offset; ++ break; ++ case BCH_EXTENT_OVERLAP_FRONT: ++ offset = 0; ++ sectors = bkey_start_offset(k.k) - ++ insert->k.p.offset; ++ break; ++ case BCH_EXTENT_OVERLAP_MIDDLE: ++ offset = bkey_start_offset(&insert->k) - ++ bkey_start_offset(k.k); ++ sectors = -((s64) insert->k.size); ++ flags |= BTREE_TRIGGER_OVERWRITE_SPLIT; ++ break; ++ } ++ ++ BUG_ON(sectors >= 0); ++ } ++ ++ ret = bch2_trans_mark_key(trans, k, offset, sectors, flags); ++ if (ret) ++ return ret; ++ ++ bch2_btree_node_iter_advance(&node_iter, b); ++ } ++ ++ return 0; ++} ++ ++/* Disk reservations: */ ++ ++static u64 bch2_recalc_sectors_available(struct bch_fs *c) ++{ ++ percpu_u64_set(&c->pcpu->sectors_available, 0); ++ ++ return avail_factor(__bch2_fs_usage_read_short(c).free); ++} ++ ++void __bch2_disk_reservation_put(struct bch_fs *c, struct disk_reservation *res) ++{ ++ percpu_down_read(&c->mark_lock); ++ this_cpu_sub(c->usage[0]->online_reserved, ++ res->sectors); ++ percpu_up_read(&c->mark_lock); ++ ++ res->sectors = 0; ++} ++ ++#define SECTORS_CACHE 1024 ++ ++int bch2_disk_reservation_add(struct bch_fs *c, struct disk_reservation *res, ++ unsigned sectors, int flags) ++{ ++ struct bch_fs_pcpu *pcpu; ++ u64 old, v, get; ++ s64 sectors_available; ++ int ret; ++ ++ percpu_down_read(&c->mark_lock); ++ preempt_disable(); ++ pcpu = this_cpu_ptr(c->pcpu); ++ ++ if (sectors <= pcpu->sectors_available) ++ goto out; ++ ++ v = atomic64_read(&c->sectors_available); ++ do { ++ old = v; ++ get = min((u64) sectors + SECTORS_CACHE, old); ++ ++ if (get < sectors) { ++ preempt_enable(); ++ percpu_up_read(&c->mark_lock); ++ goto recalculate; ++ } ++ } while ((v = atomic64_cmpxchg(&c->sectors_available, ++ old, old - get)) != old); ++ ++ pcpu->sectors_available += get; ++ ++out: ++ pcpu->sectors_available -= sectors; ++ this_cpu_add(c->usage[0]->online_reserved, sectors); ++ res->sectors += sectors; ++ ++ preempt_enable(); ++ percpu_up_read(&c->mark_lock); ++ return 0; ++ ++recalculate: ++ percpu_down_write(&c->mark_lock); ++ ++ sectors_available = bch2_recalc_sectors_available(c); ++ ++ if (sectors <= sectors_available || ++ (flags & BCH_DISK_RESERVATION_NOFAIL)) { ++ atomic64_set(&c->sectors_available, ++ max_t(s64, 0, sectors_available - sectors)); ++ this_cpu_add(c->usage[0]->online_reserved, sectors); ++ res->sectors += sectors; ++ ret = 0; ++ } else { ++ atomic64_set(&c->sectors_available, sectors_available); ++ ret = -ENOSPC; ++ } ++ ++ percpu_up_write(&c->mark_lock); ++ ++ return ret; ++} ++ ++/* Startup/shutdown: */ ++ ++static void buckets_free_rcu(struct rcu_head *rcu) ++{ ++ struct bucket_array *buckets = ++ container_of(rcu, struct bucket_array, rcu); ++ ++ kvpfree(buckets, ++ sizeof(struct bucket_array) + ++ buckets->nbuckets * sizeof(struct bucket)); ++} ++ ++int bch2_dev_buckets_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) ++{ ++ struct bucket_array *buckets = NULL, *old_buckets = NULL; ++ unsigned long *buckets_nouse = NULL; ++ alloc_fifo free[RESERVE_NR]; ++ alloc_fifo free_inc; ++ alloc_heap alloc_heap; ++ ++ size_t btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, ++ ca->mi.bucket_size / c->opts.btree_node_size); ++ /* XXX: these should be tunable */ ++ size_t reserve_none = max_t(size_t, 1, nbuckets >> 9); ++ size_t copygc_reserve = max_t(size_t, 2, nbuckets >> 7); ++ size_t free_inc_nr = max(max_t(size_t, 1, nbuckets >> 12), ++ btree_reserve * 2); ++ bool resize = ca->buckets[0] != NULL; ++ int ret = -ENOMEM; ++ unsigned i; ++ ++ memset(&free, 0, sizeof(free)); ++ memset(&free_inc, 0, sizeof(free_inc)); ++ memset(&alloc_heap, 0, sizeof(alloc_heap)); ++ ++ if (!(buckets = kvpmalloc(sizeof(struct bucket_array) + ++ nbuckets * sizeof(struct bucket), ++ GFP_KERNEL|__GFP_ZERO)) || ++ !(buckets_nouse = kvpmalloc(BITS_TO_LONGS(nbuckets) * ++ sizeof(unsigned long), ++ GFP_KERNEL|__GFP_ZERO)) || ++ !init_fifo(&free[RESERVE_BTREE], btree_reserve, GFP_KERNEL) || ++ !init_fifo(&free[RESERVE_MOVINGGC], ++ copygc_reserve, GFP_KERNEL) || ++ !init_fifo(&free[RESERVE_NONE], reserve_none, GFP_KERNEL) || ++ !init_fifo(&free_inc, free_inc_nr, GFP_KERNEL) || ++ !init_heap(&alloc_heap, ALLOC_SCAN_BATCH(ca) << 1, GFP_KERNEL)) ++ goto err; ++ ++ buckets->first_bucket = ca->mi.first_bucket; ++ buckets->nbuckets = nbuckets; ++ ++ bch2_copygc_stop(c); ++ ++ if (resize) { ++ down_write(&c->gc_lock); ++ down_write(&ca->bucket_lock); ++ percpu_down_write(&c->mark_lock); ++ } ++ ++ old_buckets = bucket_array(ca); ++ ++ if (resize) { ++ size_t n = min(buckets->nbuckets, old_buckets->nbuckets); ++ ++ memcpy(buckets->b, ++ old_buckets->b, ++ n * sizeof(struct bucket)); ++ memcpy(buckets_nouse, ++ ca->buckets_nouse, ++ BITS_TO_LONGS(n) * sizeof(unsigned long)); ++ } ++ ++ rcu_assign_pointer(ca->buckets[0], buckets); ++ buckets = old_buckets; ++ ++ swap(ca->buckets_nouse, buckets_nouse); ++ ++ if (resize) { ++ percpu_up_write(&c->mark_lock); ++ up_write(&c->gc_lock); ++ } ++ ++ spin_lock(&c->freelist_lock); ++ for (i = 0; i < RESERVE_NR; i++) { ++ fifo_move(&free[i], &ca->free[i]); ++ swap(ca->free[i], free[i]); ++ } ++ fifo_move(&free_inc, &ca->free_inc); ++ swap(ca->free_inc, free_inc); ++ spin_unlock(&c->freelist_lock); ++ ++ /* with gc lock held, alloc_heap can't be in use: */ ++ swap(ca->alloc_heap, alloc_heap); ++ ++ nbuckets = ca->mi.nbuckets; ++ ++ if (resize) ++ up_write(&ca->bucket_lock); ++ ++ ret = 0; ++err: ++ free_heap(&alloc_heap); ++ free_fifo(&free_inc); ++ for (i = 0; i < RESERVE_NR; i++) ++ free_fifo(&free[i]); ++ kvpfree(buckets_nouse, ++ BITS_TO_LONGS(nbuckets) * sizeof(unsigned long)); ++ if (buckets) ++ call_rcu(&old_buckets->rcu, buckets_free_rcu); ++ ++ return ret; ++} ++ ++void bch2_dev_buckets_free(struct bch_dev *ca) ++{ ++ unsigned i; ++ ++ free_heap(&ca->alloc_heap); ++ free_fifo(&ca->free_inc); ++ for (i = 0; i < RESERVE_NR; i++) ++ free_fifo(&ca->free[i]); ++ kvpfree(ca->buckets_nouse, ++ BITS_TO_LONGS(ca->mi.nbuckets) * sizeof(unsigned long)); ++ kvpfree(rcu_dereference_protected(ca->buckets[0], 1), ++ sizeof(struct bucket_array) + ++ ca->mi.nbuckets * sizeof(struct bucket)); ++ ++ free_percpu(ca->usage[0]); ++} ++ ++int bch2_dev_buckets_alloc(struct bch_fs *c, struct bch_dev *ca) ++{ ++ if (!(ca->usage[0] = alloc_percpu(struct bch_dev_usage))) ++ return -ENOMEM; ++ ++ return bch2_dev_buckets_resize(c, ca, ca->mi.nbuckets);; ++} +diff --git a/fs/bcachefs/buckets.h b/fs/bcachefs/buckets.h +new file mode 100644 +index 000000000000..a3873becbb70 +--- /dev/null ++++ b/fs/bcachefs/buckets.h +@@ -0,0 +1,318 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++/* ++ * Code for manipulating bucket marks for garbage collection. ++ * ++ * Copyright 2014 Datera, Inc. ++ */ ++ ++#ifndef _BUCKETS_H ++#define _BUCKETS_H ++ ++#include "buckets_types.h" ++#include "super.h" ++ ++#define for_each_bucket(_b, _buckets) \ ++ for (_b = (_buckets)->b + (_buckets)->first_bucket; \ ++ _b < (_buckets)->b + (_buckets)->nbuckets; _b++) ++ ++#define bucket_cmpxchg(g, new, expr) \ ++({ \ ++ struct bucket *_g = g; \ ++ u64 _v = atomic64_read(&(g)->_mark.v); \ ++ struct bucket_mark _old; \ ++ \ ++ do { \ ++ (new).v.counter = _old.v.counter = _v; \ ++ expr; \ ++ } while ((_v = atomic64_cmpxchg(&(_g)->_mark.v, \ ++ _old.v.counter, \ ++ (new).v.counter)) != _old.v.counter);\ ++ _old; \ ++}) ++ ++static inline struct bucket_array *__bucket_array(struct bch_dev *ca, ++ bool gc) ++{ ++ return rcu_dereference_check(ca->buckets[gc], ++ !ca->fs || ++ percpu_rwsem_is_held(&ca->fs->mark_lock) || ++ lockdep_is_held(&ca->fs->gc_lock) || ++ lockdep_is_held(&ca->bucket_lock)); ++} ++ ++static inline struct bucket_array *bucket_array(struct bch_dev *ca) ++{ ++ return __bucket_array(ca, false); ++} ++ ++static inline struct bucket *__bucket(struct bch_dev *ca, size_t b, bool gc) ++{ ++ struct bucket_array *buckets = __bucket_array(ca, gc); ++ ++ BUG_ON(b < buckets->first_bucket || b >= buckets->nbuckets); ++ return buckets->b + b; ++} ++ ++static inline struct bucket *bucket(struct bch_dev *ca, size_t b) ++{ ++ return __bucket(ca, b, false); ++} ++ ++static inline u16 bucket_last_io(struct bch_fs *c, struct bucket *g, int rw) ++{ ++ return c->bucket_clock[rw].hand - g->io_time[rw]; ++} ++ ++/* ++ * bucket_gc_gen() returns the difference between the bucket's current gen and ++ * the oldest gen of any pointer into that bucket in the btree. ++ */ ++ ++static inline u8 bucket_gc_gen(struct bch_dev *ca, size_t b) ++{ ++ struct bucket *g = bucket(ca, b); ++ ++ return g->mark.gen - g->oldest_gen; ++} ++ ++static inline size_t PTR_BUCKET_NR(const struct bch_dev *ca, ++ const struct bch_extent_ptr *ptr) ++{ ++ return sector_to_bucket(ca, ptr->offset); ++} ++ ++static inline struct bucket *PTR_BUCKET(struct bch_dev *ca, ++ const struct bch_extent_ptr *ptr, ++ bool gc) ++{ ++ return __bucket(ca, PTR_BUCKET_NR(ca, ptr), gc); ++} ++ ++static inline enum bch_data_type ptr_data_type(const struct bkey *k, ++ const struct bch_extent_ptr *ptr) ++{ ++ if (k->type == KEY_TYPE_btree_ptr || ++ k->type == KEY_TYPE_btree_ptr_v2) ++ return BCH_DATA_btree; ++ ++ return ptr->cached ? BCH_DATA_cached : BCH_DATA_user; ++} ++ ++static inline struct bucket_mark ptr_bucket_mark(struct bch_dev *ca, ++ const struct bch_extent_ptr *ptr) ++{ ++ struct bucket_mark m; ++ ++ rcu_read_lock(); ++ m = READ_ONCE(PTR_BUCKET(ca, ptr, 0)->mark); ++ rcu_read_unlock(); ++ ++ return m; ++} ++ ++static inline int gen_cmp(u8 a, u8 b) ++{ ++ return (s8) (a - b); ++} ++ ++static inline int gen_after(u8 a, u8 b) ++{ ++ int r = gen_cmp(a, b); ++ ++ return r > 0 ? r : 0; ++} ++ ++/** ++ * ptr_stale() - check if a pointer points into a bucket that has been ++ * invalidated. ++ */ ++static inline u8 ptr_stale(struct bch_dev *ca, ++ const struct bch_extent_ptr *ptr) ++{ ++ return gen_after(ptr_bucket_mark(ca, ptr).gen, ptr->gen); ++} ++ ++static inline s64 __ptr_disk_sectors(struct extent_ptr_decoded p, ++ unsigned live_size) ++{ ++ return live_size && p.crc.compression_type ++ ? max(1U, DIV_ROUND_UP(live_size * p.crc.compressed_size, ++ p.crc.uncompressed_size)) ++ : live_size; ++} ++ ++static inline s64 ptr_disk_sectors(struct extent_ptr_decoded p) ++{ ++ return __ptr_disk_sectors(p, p.crc.live_size); ++} ++ ++/* bucket gc marks */ ++ ++static inline unsigned bucket_sectors_used(struct bucket_mark mark) ++{ ++ return mark.dirty_sectors + mark.cached_sectors; ++} ++ ++static inline bool bucket_unused(struct bucket_mark mark) ++{ ++ return !mark.owned_by_allocator && ++ !mark.data_type && ++ !bucket_sectors_used(mark); ++} ++ ++static inline bool is_available_bucket(struct bucket_mark mark) ++{ ++ return (!mark.owned_by_allocator && ++ !mark.dirty_sectors && ++ !mark.stripe); ++} ++ ++static inline bool bucket_needs_journal_commit(struct bucket_mark m, ++ u16 last_seq_ondisk) ++{ ++ return m.journal_seq_valid && ++ ((s16) m.journal_seq - (s16) last_seq_ondisk > 0); ++} ++ ++/* Device usage: */ ++ ++struct bch_dev_usage bch2_dev_usage_read(struct bch_dev *); ++ ++void bch2_dev_usage_from_buckets(struct bch_fs *); ++ ++static inline u64 __dev_buckets_available(struct bch_dev *ca, ++ struct bch_dev_usage stats) ++{ ++ u64 total = ca->mi.nbuckets - ca->mi.first_bucket; ++ ++ if (WARN_ONCE(stats.buckets_unavailable > total, ++ "buckets_unavailable overflow (%llu > %llu)\n", ++ stats.buckets_unavailable, total)) ++ return 0; ++ ++ return total - stats.buckets_unavailable; ++} ++ ++/* ++ * Number of reclaimable buckets - only for use by the allocator thread: ++ */ ++static inline u64 dev_buckets_available(struct bch_dev *ca) ++{ ++ return __dev_buckets_available(ca, bch2_dev_usage_read(ca)); ++} ++ ++static inline u64 __dev_buckets_free(struct bch_dev *ca, ++ struct bch_dev_usage stats) ++{ ++ return __dev_buckets_available(ca, stats) + ++ fifo_used(&ca->free[RESERVE_NONE]) + ++ fifo_used(&ca->free_inc); ++} ++ ++static inline u64 dev_buckets_free(struct bch_dev *ca) ++{ ++ return __dev_buckets_free(ca, bch2_dev_usage_read(ca)); ++} ++ ++/* Filesystem usage: */ ++ ++static inline unsigned fs_usage_u64s(struct bch_fs *c) ++{ ++ ++ return sizeof(struct bch_fs_usage) / sizeof(u64) + ++ READ_ONCE(c->replicas.nr); ++} ++ ++void bch2_fs_usage_scratch_put(struct bch_fs *, struct bch_fs_usage *); ++struct bch_fs_usage *bch2_fs_usage_scratch_get(struct bch_fs *); ++ ++u64 bch2_fs_usage_read_one(struct bch_fs *, u64 *); ++ ++struct bch_fs_usage *bch2_fs_usage_read(struct bch_fs *); ++ ++void bch2_fs_usage_acc_to_base(struct bch_fs *, unsigned); ++ ++void bch2_fs_usage_to_text(struct printbuf *, ++ struct bch_fs *, struct bch_fs_usage *); ++ ++u64 bch2_fs_sectors_used(struct bch_fs *, struct bch_fs_usage *); ++ ++struct bch_fs_usage_short ++bch2_fs_usage_read_short(struct bch_fs *); ++ ++/* key/bucket marking: */ ++ ++void bch2_bucket_seq_cleanup(struct bch_fs *); ++void bch2_fs_usage_initialize(struct bch_fs *); ++ ++void bch2_invalidate_bucket(struct bch_fs *, struct bch_dev *, ++ size_t, struct bucket_mark *); ++void bch2_mark_alloc_bucket(struct bch_fs *, struct bch_dev *, ++ size_t, bool, struct gc_pos, unsigned); ++void bch2_mark_metadata_bucket(struct bch_fs *, struct bch_dev *, ++ size_t, enum bch_data_type, unsigned, ++ struct gc_pos, unsigned); ++ ++int bch2_mark_key(struct bch_fs *, struct bkey_s_c, unsigned, ++ s64, struct bch_fs_usage *, u64, unsigned); ++int bch2_fs_usage_apply(struct bch_fs *, struct bch_fs_usage *, ++ struct disk_reservation *, unsigned); ++ ++int bch2_mark_update(struct btree_trans *, struct btree_iter *, ++ struct bkey_i *, struct bch_fs_usage *, unsigned); ++ ++int bch2_replicas_delta_list_apply(struct bch_fs *, ++ struct bch_fs_usage *, ++ struct replicas_delta_list *); ++int bch2_trans_mark_key(struct btree_trans *, struct bkey_s_c, ++ unsigned, s64, unsigned); ++int bch2_trans_mark_update(struct btree_trans *, struct btree_iter *iter, ++ struct bkey_i *insert, unsigned); ++void bch2_trans_fs_usage_apply(struct btree_trans *, struct bch_fs_usage *); ++ ++/* disk reservations: */ ++ ++void __bch2_disk_reservation_put(struct bch_fs *, struct disk_reservation *); ++ ++static inline void bch2_disk_reservation_put(struct bch_fs *c, ++ struct disk_reservation *res) ++{ ++ if (res->sectors) ++ __bch2_disk_reservation_put(c, res); ++} ++ ++#define BCH_DISK_RESERVATION_NOFAIL (1 << 0) ++ ++int bch2_disk_reservation_add(struct bch_fs *, ++ struct disk_reservation *, ++ unsigned, int); ++ ++static inline struct disk_reservation ++bch2_disk_reservation_init(struct bch_fs *c, unsigned nr_replicas) ++{ ++ return (struct disk_reservation) { ++ .sectors = 0, ++#if 0 ++ /* not used yet: */ ++ .gen = c->capacity_gen, ++#endif ++ .nr_replicas = nr_replicas, ++ }; ++} ++ ++static inline int bch2_disk_reservation_get(struct bch_fs *c, ++ struct disk_reservation *res, ++ unsigned sectors, ++ unsigned nr_replicas, ++ int flags) ++{ ++ *res = bch2_disk_reservation_init(c, nr_replicas); ++ ++ return bch2_disk_reservation_add(c, res, sectors * nr_replicas, flags); ++} ++ ++int bch2_dev_buckets_resize(struct bch_fs *, struct bch_dev *, u64); ++void bch2_dev_buckets_free(struct bch_dev *); ++int bch2_dev_buckets_alloc(struct bch_fs *, struct bch_dev *); ++ ++#endif /* _BUCKETS_H */ +diff --git a/fs/bcachefs/buckets_types.h b/fs/bcachefs/buckets_types.h +new file mode 100644 +index 000000000000..d5215b14d7d9 +--- /dev/null ++++ b/fs/bcachefs/buckets_types.h +@@ -0,0 +1,135 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BUCKETS_TYPES_H ++#define _BUCKETS_TYPES_H ++ ++#include "bcachefs_format.h" ++#include "util.h" ++ ++#define BUCKET_JOURNAL_SEQ_BITS 16 ++ ++struct bucket_mark { ++ union { ++ atomic64_t v; ++ ++ struct { ++ u8 gen; ++ u8 data_type:3, ++ owned_by_allocator:1, ++ journal_seq_valid:1, ++ stripe:1; ++ u16 dirty_sectors; ++ u16 cached_sectors; ++ ++ /* ++ * low bits of journal sequence number when this bucket was most ++ * recently modified: if journal_seq_valid is set, this bucket can't be ++ * reused until the journal sequence number written to disk is >= the ++ * bucket's journal sequence number: ++ */ ++ u16 journal_seq; ++ }; ++ }; ++}; ++ ++struct bucket { ++ union { ++ struct bucket_mark _mark; ++ const struct bucket_mark mark; ++ }; ++ ++ u16 io_time[2]; ++ u8 oldest_gen; ++ u8 gc_gen; ++ unsigned gen_valid:1; ++}; ++ ++struct bucket_array { ++ struct rcu_head rcu; ++ u16 first_bucket; ++ size_t nbuckets; ++ struct bucket b[]; ++}; ++ ++struct bch_dev_usage { ++ u64 buckets[BCH_DATA_NR]; ++ u64 buckets_alloc; ++ u64 buckets_unavailable; ++ ++ /* _compressed_ sectors: */ ++ u64 sectors[BCH_DATA_NR]; ++ u64 sectors_fragmented; ++ ++ u64 buckets_ec; ++ u64 sectors_ec; ++}; ++ ++struct bch_fs_usage { ++ /* all fields are in units of 512 byte sectors: */ ++ ++ u64 online_reserved; ++ ++ /* fields after online_reserved are cleared/recalculated by gc: */ ++ u64 gc_start[0]; ++ ++ u64 hidden; ++ u64 btree; ++ u64 data; ++ u64 cached; ++ u64 reserved; ++ u64 nr_inodes; ++ ++ /* XXX: add stats for compression ratio */ ++#if 0 ++ u64 uncompressed; ++ u64 compressed; ++#endif ++ ++ /* broken out: */ ++ ++ u64 persistent_reserved[BCH_REPLICAS_MAX]; ++ u64 replicas[]; ++}; ++ ++struct bch_fs_usage_short { ++ u64 capacity; ++ u64 used; ++ u64 free; ++ u64 nr_inodes; ++}; ++ ++struct replicas_delta { ++ s64 delta; ++ struct bch_replicas_entry r; ++} __packed; ++ ++struct replicas_delta_list { ++ unsigned size; ++ unsigned used; ++ ++ struct {} memset_start; ++ u64 nr_inodes; ++ u64 persistent_reserved[BCH_REPLICAS_MAX]; ++ struct {} memset_end; ++ struct replicas_delta d[0]; ++}; ++ ++/* ++ * A reservation for space on disk: ++ */ ++struct disk_reservation { ++ u64 sectors; ++ u32 gen; ++ unsigned nr_replicas; ++}; ++ ++struct copygc_heap_entry { ++ u8 dev; ++ u8 gen; ++ u16 fragmentation; ++ u32 sectors; ++ u64 offset; ++}; ++ ++typedef HEAP(struct copygc_heap_entry) copygc_heap; ++ ++#endif /* _BUCKETS_TYPES_H */ +diff --git a/fs/bcachefs/chardev.c b/fs/bcachefs/chardev.c +new file mode 100644 +index 000000000000..0377f9018d27 +--- /dev/null ++++ b/fs/bcachefs/chardev.c +@@ -0,0 +1,704 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#ifndef NO_BCACHEFS_CHARDEV ++ ++#include "bcachefs.h" ++#include "bcachefs_ioctl.h" ++#include "buckets.h" ++#include "chardev.h" ++#include "move.h" ++#include "replicas.h" ++#include "super.h" ++#include "super-io.h" ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++/* returns with ref on ca->ref */ ++static struct bch_dev *bch2_device_lookup(struct bch_fs *c, u64 dev, ++ unsigned flags) ++{ ++ struct bch_dev *ca; ++ ++ if (flags & BCH_BY_INDEX) { ++ if (dev >= c->sb.nr_devices) ++ return ERR_PTR(-EINVAL); ++ ++ rcu_read_lock(); ++ ca = rcu_dereference(c->devs[dev]); ++ if (ca) ++ percpu_ref_get(&ca->ref); ++ rcu_read_unlock(); ++ ++ if (!ca) ++ return ERR_PTR(-EINVAL); ++ } else { ++ char *path; ++ ++ path = strndup_user((const char __user *) ++ (unsigned long) dev, PATH_MAX); ++ if (IS_ERR(path)) ++ return ERR_CAST(path); ++ ++ ca = bch2_dev_lookup(c, path); ++ kfree(path); ++ } ++ ++ return ca; ++} ++ ++#if 0 ++static long bch2_ioctl_assemble(struct bch_ioctl_assemble __user *user_arg) ++{ ++ struct bch_ioctl_assemble arg; ++ struct bch_fs *c; ++ u64 *user_devs = NULL; ++ char **devs = NULL; ++ unsigned i; ++ int ret = -EFAULT; ++ ++ if (copy_from_user(&arg, user_arg, sizeof(arg))) ++ return -EFAULT; ++ ++ if (arg.flags || arg.pad) ++ return -EINVAL; ++ ++ user_devs = kmalloc_array(arg.nr_devs, sizeof(u64), GFP_KERNEL); ++ if (!user_devs) ++ return -ENOMEM; ++ ++ devs = kcalloc(arg.nr_devs, sizeof(char *), GFP_KERNEL); ++ ++ if (copy_from_user(user_devs, user_arg->devs, ++ sizeof(u64) * arg.nr_devs)) ++ goto err; ++ ++ for (i = 0; i < arg.nr_devs; i++) { ++ devs[i] = strndup_user((const char __user *)(unsigned long) ++ user_devs[i], ++ PATH_MAX); ++ if (!devs[i]) { ++ ret = -ENOMEM; ++ goto err; ++ } ++ } ++ ++ c = bch2_fs_open(devs, arg.nr_devs, bch2_opts_empty()); ++ ret = PTR_ERR_OR_ZERO(c); ++ if (!ret) ++ closure_put(&c->cl); ++err: ++ if (devs) ++ for (i = 0; i < arg.nr_devs; i++) ++ kfree(devs[i]); ++ kfree(devs); ++ return ret; ++} ++ ++static long bch2_ioctl_incremental(struct bch_ioctl_incremental __user *user_arg) ++{ ++ struct bch_ioctl_incremental arg; ++ const char *err; ++ char *path; ++ ++ if (copy_from_user(&arg, user_arg, sizeof(arg))) ++ return -EFAULT; ++ ++ if (arg.flags || arg.pad) ++ return -EINVAL; ++ ++ path = strndup_user((const char __user *)(unsigned long) arg.dev, PATH_MAX); ++ if (!path) ++ return -ENOMEM; ++ ++ err = bch2_fs_open_incremental(path); ++ kfree(path); ++ ++ if (err) { ++ pr_err("Could not register bcachefs devices: %s", err); ++ return -EINVAL; ++ } ++ ++ return 0; ++} ++#endif ++ ++static long bch2_global_ioctl(unsigned cmd, void __user *arg) ++{ ++ switch (cmd) { ++#if 0 ++ case BCH_IOCTL_ASSEMBLE: ++ return bch2_ioctl_assemble(arg); ++ case BCH_IOCTL_INCREMENTAL: ++ return bch2_ioctl_incremental(arg); ++#endif ++ default: ++ return -ENOTTY; ++ } ++} ++ ++static long bch2_ioctl_query_uuid(struct bch_fs *c, ++ struct bch_ioctl_query_uuid __user *user_arg) ++{ ++ return copy_to_user(&user_arg->uuid, ++ &c->sb.user_uuid, ++ sizeof(c->sb.user_uuid)); ++} ++ ++#if 0 ++static long bch2_ioctl_start(struct bch_fs *c, struct bch_ioctl_start arg) ++{ ++ if (arg.flags || arg.pad) ++ return -EINVAL; ++ ++ return bch2_fs_start(c); ++} ++ ++static long bch2_ioctl_stop(struct bch_fs *c) ++{ ++ bch2_fs_stop(c); ++ return 0; ++} ++#endif ++ ++static long bch2_ioctl_disk_add(struct bch_fs *c, struct bch_ioctl_disk arg) ++{ ++ char *path; ++ int ret; ++ ++ if (arg.flags || arg.pad) ++ return -EINVAL; ++ ++ path = strndup_user((const char __user *)(unsigned long) arg.dev, PATH_MAX); ++ if (!path) ++ return -ENOMEM; ++ ++ ret = bch2_dev_add(c, path); ++ kfree(path); ++ ++ return ret; ++} ++ ++static long bch2_ioctl_disk_remove(struct bch_fs *c, struct bch_ioctl_disk arg) ++{ ++ struct bch_dev *ca; ++ ++ if ((arg.flags & ~(BCH_FORCE_IF_DATA_LOST| ++ BCH_FORCE_IF_METADATA_LOST| ++ BCH_FORCE_IF_DEGRADED| ++ BCH_BY_INDEX)) || ++ arg.pad) ++ return -EINVAL; ++ ++ ca = bch2_device_lookup(c, arg.dev, arg.flags); ++ if (IS_ERR(ca)) ++ return PTR_ERR(ca); ++ ++ return bch2_dev_remove(c, ca, arg.flags); ++} ++ ++static long bch2_ioctl_disk_online(struct bch_fs *c, struct bch_ioctl_disk arg) ++{ ++ char *path; ++ int ret; ++ ++ if (arg.flags || arg.pad) ++ return -EINVAL; ++ ++ path = strndup_user((const char __user *)(unsigned long) arg.dev, PATH_MAX); ++ if (!path) ++ return -ENOMEM; ++ ++ ret = bch2_dev_online(c, path); ++ kfree(path); ++ return ret; ++} ++ ++static long bch2_ioctl_disk_offline(struct bch_fs *c, struct bch_ioctl_disk arg) ++{ ++ struct bch_dev *ca; ++ int ret; ++ ++ if ((arg.flags & ~(BCH_FORCE_IF_DATA_LOST| ++ BCH_FORCE_IF_METADATA_LOST| ++ BCH_FORCE_IF_DEGRADED| ++ BCH_BY_INDEX)) || ++ arg.pad) ++ return -EINVAL; ++ ++ ca = bch2_device_lookup(c, arg.dev, arg.flags); ++ if (IS_ERR(ca)) ++ return PTR_ERR(ca); ++ ++ ret = bch2_dev_offline(c, ca, arg.flags); ++ percpu_ref_put(&ca->ref); ++ return ret; ++} ++ ++static long bch2_ioctl_disk_set_state(struct bch_fs *c, ++ struct bch_ioctl_disk_set_state arg) ++{ ++ struct bch_dev *ca; ++ int ret; ++ ++ if ((arg.flags & ~(BCH_FORCE_IF_DATA_LOST| ++ BCH_FORCE_IF_METADATA_LOST| ++ BCH_FORCE_IF_DEGRADED| ++ BCH_BY_INDEX)) || ++ arg.pad[0] || arg.pad[1] || arg.pad[2]) ++ return -EINVAL; ++ ++ ca = bch2_device_lookup(c, arg.dev, arg.flags); ++ if (IS_ERR(ca)) ++ return PTR_ERR(ca); ++ ++ ret = bch2_dev_set_state(c, ca, arg.new_state, arg.flags); ++ ++ percpu_ref_put(&ca->ref); ++ return ret; ++} ++ ++struct bch_data_ctx { ++ struct bch_fs *c; ++ struct bch_ioctl_data arg; ++ struct bch_move_stats stats; ++ ++ int ret; ++ ++ struct task_struct *thread; ++}; ++ ++static int bch2_data_thread(void *arg) ++{ ++ struct bch_data_ctx *ctx = arg; ++ ++ ctx->ret = bch2_data_job(ctx->c, &ctx->stats, ctx->arg); ++ ++ ctx->stats.data_type = U8_MAX; ++ return 0; ++} ++ ++static int bch2_data_job_release(struct inode *inode, struct file *file) ++{ ++ struct bch_data_ctx *ctx = file->private_data; ++ ++ kthread_stop(ctx->thread); ++ put_task_struct(ctx->thread); ++ kfree(ctx); ++ return 0; ++} ++ ++static ssize_t bch2_data_job_read(struct file *file, char __user *buf, ++ size_t len, loff_t *ppos) ++{ ++ struct bch_data_ctx *ctx = file->private_data; ++ struct bch_fs *c = ctx->c; ++ struct bch_ioctl_data_event e = { ++ .type = BCH_DATA_EVENT_PROGRESS, ++ .p.data_type = ctx->stats.data_type, ++ .p.btree_id = ctx->stats.btree_id, ++ .p.pos = ctx->stats.pos, ++ .p.sectors_done = atomic64_read(&ctx->stats.sectors_seen), ++ .p.sectors_total = bch2_fs_usage_read_short(c).used, ++ }; ++ ++ if (len < sizeof(e)) ++ return -EINVAL; ++ ++ return copy_to_user(buf, &e, sizeof(e)) ?: sizeof(e); ++} ++ ++static const struct file_operations bcachefs_data_ops = { ++ .release = bch2_data_job_release, ++ .read = bch2_data_job_read, ++ .llseek = no_llseek, ++}; ++ ++static long bch2_ioctl_data(struct bch_fs *c, ++ struct bch_ioctl_data arg) ++{ ++ struct bch_data_ctx *ctx = NULL; ++ struct file *file = NULL; ++ unsigned flags = O_RDONLY|O_CLOEXEC|O_NONBLOCK; ++ int ret, fd = -1; ++ ++ if (arg.op >= BCH_DATA_OP_NR || arg.flags) ++ return -EINVAL; ++ ++ ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); ++ if (!ctx) ++ return -ENOMEM; ++ ++ ctx->c = c; ++ ctx->arg = arg; ++ ++ ctx->thread = kthread_create(bch2_data_thread, ctx, "[bcachefs]"); ++ if (IS_ERR(ctx->thread)) { ++ ret = PTR_ERR(ctx->thread); ++ goto err; ++ } ++ ++ ret = get_unused_fd_flags(flags); ++ if (ret < 0) ++ goto err; ++ fd = ret; ++ ++ file = anon_inode_getfile("[bcachefs]", &bcachefs_data_ops, ctx, flags); ++ if (IS_ERR(file)) { ++ ret = PTR_ERR(file); ++ goto err; ++ } ++ ++ fd_install(fd, file); ++ ++ get_task_struct(ctx->thread); ++ wake_up_process(ctx->thread); ++ ++ return fd; ++err: ++ if (fd >= 0) ++ put_unused_fd(fd); ++ if (!IS_ERR_OR_NULL(ctx->thread)) ++ kthread_stop(ctx->thread); ++ kfree(ctx); ++ return ret; ++} ++ ++static long bch2_ioctl_fs_usage(struct bch_fs *c, ++ struct bch_ioctl_fs_usage __user *user_arg) ++{ ++ struct bch_ioctl_fs_usage *arg = NULL; ++ struct bch_replicas_usage *dst_e, *dst_end; ++ struct bch_fs_usage *src; ++ u32 replica_entries_bytes; ++ unsigned i; ++ int ret = 0; ++ ++ if (!test_bit(BCH_FS_STARTED, &c->flags)) ++ return -EINVAL; ++ ++ if (get_user(replica_entries_bytes, &user_arg->replica_entries_bytes)) ++ return -EFAULT; ++ ++ arg = kzalloc(sizeof(*arg) + replica_entries_bytes, GFP_KERNEL); ++ if (!arg) ++ return -ENOMEM; ++ ++ src = bch2_fs_usage_read(c); ++ if (!src) { ++ ret = -ENOMEM; ++ goto err; ++ } ++ ++ arg->capacity = c->capacity; ++ arg->used = bch2_fs_sectors_used(c, src); ++ arg->online_reserved = src->online_reserved; ++ ++ for (i = 0; i < BCH_REPLICAS_MAX; i++) ++ arg->persistent_reserved[i] = src->persistent_reserved[i]; ++ ++ dst_e = arg->replicas; ++ dst_end = (void *) arg->replicas + replica_entries_bytes; ++ ++ for (i = 0; i < c->replicas.nr; i++) { ++ struct bch_replicas_entry *src_e = ++ cpu_replicas_entry(&c->replicas, i); ++ ++ if (replicas_usage_next(dst_e) > dst_end) { ++ ret = -ERANGE; ++ break; ++ } ++ ++ dst_e->sectors = src->replicas[i]; ++ dst_e->r = *src_e; ++ ++ /* recheck after setting nr_devs: */ ++ if (replicas_usage_next(dst_e) > dst_end) { ++ ret = -ERANGE; ++ break; ++ } ++ ++ memcpy(dst_e->r.devs, src_e->devs, src_e->nr_devs); ++ ++ dst_e = replicas_usage_next(dst_e); ++ } ++ ++ arg->replica_entries_bytes = (void *) dst_e - (void *) arg->replicas; ++ ++ percpu_up_read(&c->mark_lock); ++ kfree(src); ++ ++ if (!ret) ++ ret = copy_to_user(user_arg, arg, ++ sizeof(*arg) + arg->replica_entries_bytes); ++err: ++ kfree(arg); ++ return ret; ++} ++ ++static long bch2_ioctl_dev_usage(struct bch_fs *c, ++ struct bch_ioctl_dev_usage __user *user_arg) ++{ ++ struct bch_ioctl_dev_usage arg; ++ struct bch_dev_usage src; ++ struct bch_dev *ca; ++ unsigned i; ++ ++ if (!test_bit(BCH_FS_STARTED, &c->flags)) ++ return -EINVAL; ++ ++ if (copy_from_user(&arg, user_arg, sizeof(arg))) ++ return -EFAULT; ++ ++ if ((arg.flags & ~BCH_BY_INDEX) || ++ arg.pad[0] || ++ arg.pad[1] || ++ arg.pad[2]) ++ return -EINVAL; ++ ++ ca = bch2_device_lookup(c, arg.dev, arg.flags); ++ if (IS_ERR(ca)) ++ return PTR_ERR(ca); ++ ++ src = bch2_dev_usage_read(ca); ++ ++ arg.state = ca->mi.state; ++ arg.bucket_size = ca->mi.bucket_size; ++ arg.nr_buckets = ca->mi.nbuckets - ca->mi.first_bucket; ++ arg.available_buckets = arg.nr_buckets - src.buckets_unavailable; ++ arg.ec_buckets = src.buckets_ec; ++ arg.ec_sectors = src.sectors_ec; ++ ++ for (i = 0; i < BCH_DATA_NR; i++) { ++ arg.buckets[i] = src.buckets[i]; ++ arg.sectors[i] = src.sectors[i]; ++ } ++ ++ percpu_ref_put(&ca->ref); ++ ++ return copy_to_user(user_arg, &arg, sizeof(arg)); ++} ++ ++static long bch2_ioctl_read_super(struct bch_fs *c, ++ struct bch_ioctl_read_super arg) ++{ ++ struct bch_dev *ca = NULL; ++ struct bch_sb *sb; ++ int ret = 0; ++ ++ if ((arg.flags & ~(BCH_BY_INDEX|BCH_READ_DEV)) || ++ arg.pad) ++ return -EINVAL; ++ ++ mutex_lock(&c->sb_lock); ++ ++ if (arg.flags & BCH_READ_DEV) { ++ ca = bch2_device_lookup(c, arg.dev, arg.flags); ++ ++ if (IS_ERR(ca)) { ++ ret = PTR_ERR(ca); ++ goto err; ++ } ++ ++ sb = ca->disk_sb.sb; ++ } else { ++ sb = c->disk_sb.sb; ++ } ++ ++ if (vstruct_bytes(sb) > arg.size) { ++ ret = -ERANGE; ++ goto err; ++ } ++ ++ ret = copy_to_user((void __user *)(unsigned long)arg.sb, ++ sb, vstruct_bytes(sb)); ++err: ++ if (ca) ++ percpu_ref_put(&ca->ref); ++ mutex_unlock(&c->sb_lock); ++ return ret; ++} ++ ++static long bch2_ioctl_disk_get_idx(struct bch_fs *c, ++ struct bch_ioctl_disk_get_idx arg) ++{ ++ dev_t dev = huge_decode_dev(arg.dev); ++ struct bch_dev *ca; ++ unsigned i; ++ ++ for_each_online_member(ca, c, i) ++ if (ca->disk_sb.bdev->bd_dev == dev) { ++ percpu_ref_put(&ca->io_ref); ++ return i; ++ } ++ ++ return -ENOENT; ++} ++ ++static long bch2_ioctl_disk_resize(struct bch_fs *c, ++ struct bch_ioctl_disk_resize arg) ++{ ++ struct bch_dev *ca; ++ int ret; ++ ++ if ((arg.flags & ~BCH_BY_INDEX) || ++ arg.pad) ++ return -EINVAL; ++ ++ ca = bch2_device_lookup(c, arg.dev, arg.flags); ++ if (IS_ERR(ca)) ++ return PTR_ERR(ca); ++ ++ ret = bch2_dev_resize(c, ca, arg.nbuckets); ++ ++ percpu_ref_put(&ca->ref); ++ return ret; ++} ++ ++#define BCH_IOCTL(_name, _argtype) \ ++do { \ ++ _argtype i; \ ++ \ ++ if (copy_from_user(&i, arg, sizeof(i))) \ ++ return -EFAULT; \ ++ return bch2_ioctl_##_name(c, i); \ ++} while (0) ++ ++long bch2_fs_ioctl(struct bch_fs *c, unsigned cmd, void __user *arg) ++{ ++ /* ioctls that don't require admin cap: */ ++ switch (cmd) { ++ case BCH_IOCTL_QUERY_UUID: ++ return bch2_ioctl_query_uuid(c, arg); ++ case BCH_IOCTL_FS_USAGE: ++ return bch2_ioctl_fs_usage(c, arg); ++ case BCH_IOCTL_DEV_USAGE: ++ return bch2_ioctl_dev_usage(c, arg); ++ } ++ ++ if (!capable(CAP_SYS_ADMIN)) ++ return -EPERM; ++ ++ switch (cmd) { ++#if 0 ++ case BCH_IOCTL_START: ++ BCH_IOCTL(start, struct bch_ioctl_start); ++ case BCH_IOCTL_STOP: ++ return bch2_ioctl_stop(c); ++#endif ++ case BCH_IOCTL_READ_SUPER: ++ BCH_IOCTL(read_super, struct bch_ioctl_read_super); ++ case BCH_IOCTL_DISK_GET_IDX: ++ BCH_IOCTL(disk_get_idx, struct bch_ioctl_disk_get_idx); ++ } ++ ++ if (!test_bit(BCH_FS_STARTED, &c->flags)) ++ return -EINVAL; ++ ++ /* ioctls that do require admin cap: */ ++ switch (cmd) { ++ case BCH_IOCTL_DISK_ADD: ++ BCH_IOCTL(disk_add, struct bch_ioctl_disk); ++ case BCH_IOCTL_DISK_REMOVE: ++ BCH_IOCTL(disk_remove, struct bch_ioctl_disk); ++ case BCH_IOCTL_DISK_ONLINE: ++ BCH_IOCTL(disk_online, struct bch_ioctl_disk); ++ case BCH_IOCTL_DISK_OFFLINE: ++ BCH_IOCTL(disk_offline, struct bch_ioctl_disk); ++ case BCH_IOCTL_DISK_SET_STATE: ++ BCH_IOCTL(disk_set_state, struct bch_ioctl_disk_set_state); ++ case BCH_IOCTL_DATA: ++ BCH_IOCTL(data, struct bch_ioctl_data); ++ case BCH_IOCTL_DISK_RESIZE: ++ BCH_IOCTL(disk_resize, struct bch_ioctl_disk_resize); ++ ++ default: ++ return -ENOTTY; ++ } ++} ++ ++static DEFINE_IDR(bch_chardev_minor); ++ ++static long bch2_chardev_ioctl(struct file *filp, unsigned cmd, unsigned long v) ++{ ++ unsigned minor = iminor(file_inode(filp)); ++ struct bch_fs *c = minor < U8_MAX ? idr_find(&bch_chardev_minor, minor) : NULL; ++ void __user *arg = (void __user *) v; ++ ++ return c ++ ? bch2_fs_ioctl(c, cmd, arg) ++ : bch2_global_ioctl(cmd, arg); ++} ++ ++static const struct file_operations bch_chardev_fops = { ++ .owner = THIS_MODULE, ++ .unlocked_ioctl = bch2_chardev_ioctl, ++ .open = nonseekable_open, ++}; ++ ++static int bch_chardev_major; ++static struct class *bch_chardev_class; ++static struct device *bch_chardev; ++ ++void bch2_fs_chardev_exit(struct bch_fs *c) ++{ ++ if (!IS_ERR_OR_NULL(c->chardev)) ++ device_unregister(c->chardev); ++ if (c->minor >= 0) ++ idr_remove(&bch_chardev_minor, c->minor); ++} ++ ++int bch2_fs_chardev_init(struct bch_fs *c) ++{ ++ c->minor = idr_alloc(&bch_chardev_minor, c, 0, 0, GFP_KERNEL); ++ if (c->minor < 0) ++ return c->minor; ++ ++ c->chardev = device_create(bch_chardev_class, NULL, ++ MKDEV(bch_chardev_major, c->minor), c, ++ "bcachefs%u-ctl", c->minor); ++ if (IS_ERR(c->chardev)) ++ return PTR_ERR(c->chardev); ++ ++ return 0; ++} ++ ++void bch2_chardev_exit(void) ++{ ++ if (!IS_ERR_OR_NULL(bch_chardev_class)) ++ device_destroy(bch_chardev_class, ++ MKDEV(bch_chardev_major, U8_MAX)); ++ if (!IS_ERR_OR_NULL(bch_chardev_class)) ++ class_destroy(bch_chardev_class); ++ if (bch_chardev_major > 0) ++ unregister_chrdev(bch_chardev_major, "bcachefs"); ++} ++ ++int __init bch2_chardev_init(void) ++{ ++ bch_chardev_major = register_chrdev(0, "bcachefs-ctl", &bch_chardev_fops); ++ if (bch_chardev_major < 0) ++ return bch_chardev_major; ++ ++ bch_chardev_class = class_create(THIS_MODULE, "bcachefs"); ++ if (IS_ERR(bch_chardev_class)) ++ return PTR_ERR(bch_chardev_class); ++ ++ bch_chardev = device_create(bch_chardev_class, NULL, ++ MKDEV(bch_chardev_major, U8_MAX), ++ NULL, "bcachefs-ctl"); ++ if (IS_ERR(bch_chardev)) ++ return PTR_ERR(bch_chardev); ++ ++ return 0; ++} ++ ++#endif /* NO_BCACHEFS_CHARDEV */ +diff --git a/fs/bcachefs/chardev.h b/fs/bcachefs/chardev.h +new file mode 100644 +index 000000000000..3a4890d39ff9 +--- /dev/null ++++ b/fs/bcachefs/chardev.h +@@ -0,0 +1,31 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_CHARDEV_H ++#define _BCACHEFS_CHARDEV_H ++ ++#ifndef NO_BCACHEFS_FS ++ ++long bch2_fs_ioctl(struct bch_fs *, unsigned, void __user *); ++ ++void bch2_fs_chardev_exit(struct bch_fs *); ++int bch2_fs_chardev_init(struct bch_fs *); ++ ++void bch2_chardev_exit(void); ++int __init bch2_chardev_init(void); ++ ++#else ++ ++static inline long bch2_fs_ioctl(struct bch_fs *c, ++ unsigned cmd, void __user * arg) ++{ ++ return -ENOSYS; ++} ++ ++static inline void bch2_fs_chardev_exit(struct bch_fs *c) {} ++static inline int bch2_fs_chardev_init(struct bch_fs *c) { return 0; } ++ ++static inline void bch2_chardev_exit(void) {} ++static inline int __init bch2_chardev_init(void) { return 0; } ++ ++#endif /* NO_BCACHEFS_FS */ ++ ++#endif /* _BCACHEFS_CHARDEV_H */ +diff --git a/fs/bcachefs/checksum.c b/fs/bcachefs/checksum.c +new file mode 100644 +index 000000000000..3d88719ba86c +--- /dev/null ++++ b/fs/bcachefs/checksum.c +@@ -0,0 +1,618 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "checksum.h" ++#include "super.h" ++#include "super-io.h" ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++static u64 bch2_checksum_init(unsigned type) ++{ ++ switch (type) { ++ case BCH_CSUM_NONE: ++ return 0; ++ case BCH_CSUM_CRC32C_NONZERO: ++ return U32_MAX; ++ case BCH_CSUM_CRC64_NONZERO: ++ return U64_MAX; ++ case BCH_CSUM_CRC32C: ++ return 0; ++ case BCH_CSUM_CRC64: ++ return 0; ++ default: ++ BUG(); ++ } ++} ++ ++static u64 bch2_checksum_final(unsigned type, u64 crc) ++{ ++ switch (type) { ++ case BCH_CSUM_NONE: ++ return 0; ++ case BCH_CSUM_CRC32C_NONZERO: ++ return crc ^ U32_MAX; ++ case BCH_CSUM_CRC64_NONZERO: ++ return crc ^ U64_MAX; ++ case BCH_CSUM_CRC32C: ++ return crc; ++ case BCH_CSUM_CRC64: ++ return crc; ++ default: ++ BUG(); ++ } ++} ++ ++static u64 bch2_checksum_update(unsigned type, u64 crc, const void *data, size_t len) ++{ ++ switch (type) { ++ case BCH_CSUM_NONE: ++ return 0; ++ case BCH_CSUM_CRC32C_NONZERO: ++ case BCH_CSUM_CRC32C: ++ return crc32c(crc, data, len); ++ case BCH_CSUM_CRC64_NONZERO: ++ case BCH_CSUM_CRC64: ++ return crc64_be(crc, data, len); ++ default: ++ BUG(); ++ } ++} ++ ++static inline void do_encrypt_sg(struct crypto_sync_skcipher *tfm, ++ struct nonce nonce, ++ struct scatterlist *sg, size_t len) ++{ ++ SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm); ++ int ret; ++ ++ skcipher_request_set_sync_tfm(req, tfm); ++ skcipher_request_set_crypt(req, sg, sg, len, nonce.d); ++ ++ ret = crypto_skcipher_encrypt(req); ++ BUG_ON(ret); ++} ++ ++static inline void do_encrypt(struct crypto_sync_skcipher *tfm, ++ struct nonce nonce, ++ void *buf, size_t len) ++{ ++ struct scatterlist sg; ++ ++ sg_init_one(&sg, buf, len); ++ do_encrypt_sg(tfm, nonce, &sg, len); ++} ++ ++int bch2_chacha_encrypt_key(struct bch_key *key, struct nonce nonce, ++ void *buf, size_t len) ++{ ++ struct crypto_sync_skcipher *chacha20 = ++ crypto_alloc_sync_skcipher("chacha20", 0, 0); ++ int ret; ++ ++ if (!chacha20) { ++ pr_err("error requesting chacha20 module: %li", PTR_ERR(chacha20)); ++ return PTR_ERR(chacha20); ++ } ++ ++ ret = crypto_skcipher_setkey(&chacha20->base, ++ (void *) key, sizeof(*key)); ++ if (ret) { ++ pr_err("crypto_skcipher_setkey() error: %i", ret); ++ goto err; ++ } ++ ++ do_encrypt(chacha20, nonce, buf, len); ++err: ++ crypto_free_sync_skcipher(chacha20); ++ return ret; ++} ++ ++static void gen_poly_key(struct bch_fs *c, struct shash_desc *desc, ++ struct nonce nonce) ++{ ++ u8 key[POLY1305_KEY_SIZE]; ++ ++ nonce.d[3] ^= BCH_NONCE_POLY; ++ ++ memset(key, 0, sizeof(key)); ++ do_encrypt(c->chacha20, nonce, key, sizeof(key)); ++ ++ desc->tfm = c->poly1305; ++ crypto_shash_init(desc); ++ crypto_shash_update(desc, key, sizeof(key)); ++} ++ ++struct bch_csum bch2_checksum(struct bch_fs *c, unsigned type, ++ struct nonce nonce, const void *data, size_t len) ++{ ++ switch (type) { ++ case BCH_CSUM_NONE: ++ case BCH_CSUM_CRC32C_NONZERO: ++ case BCH_CSUM_CRC64_NONZERO: ++ case BCH_CSUM_CRC32C: ++ case BCH_CSUM_CRC64: { ++ u64 crc = bch2_checksum_init(type); ++ ++ crc = bch2_checksum_update(type, crc, data, len); ++ crc = bch2_checksum_final(type, crc); ++ ++ return (struct bch_csum) { .lo = cpu_to_le64(crc) }; ++ } ++ ++ case BCH_CSUM_CHACHA20_POLY1305_80: ++ case BCH_CSUM_CHACHA20_POLY1305_128: { ++ SHASH_DESC_ON_STACK(desc, c->poly1305); ++ u8 digest[POLY1305_DIGEST_SIZE]; ++ struct bch_csum ret = { 0 }; ++ ++ gen_poly_key(c, desc, nonce); ++ ++ crypto_shash_update(desc, data, len); ++ crypto_shash_final(desc, digest); ++ ++ memcpy(&ret, digest, bch_crc_bytes[type]); ++ return ret; ++ } ++ default: ++ BUG(); ++ } ++} ++ ++void bch2_encrypt(struct bch_fs *c, unsigned type, ++ struct nonce nonce, void *data, size_t len) ++{ ++ if (!bch2_csum_type_is_encryption(type)) ++ return; ++ ++ do_encrypt(c->chacha20, nonce, data, len); ++} ++ ++static struct bch_csum __bch2_checksum_bio(struct bch_fs *c, unsigned type, ++ struct nonce nonce, struct bio *bio, ++ struct bvec_iter *iter) ++{ ++ struct bio_vec bv; ++ ++ switch (type) { ++ case BCH_CSUM_NONE: ++ return (struct bch_csum) { 0 }; ++ case BCH_CSUM_CRC32C_NONZERO: ++ case BCH_CSUM_CRC64_NONZERO: ++ case BCH_CSUM_CRC32C: ++ case BCH_CSUM_CRC64: { ++ u64 crc = bch2_checksum_init(type); ++ ++#ifdef CONFIG_HIGHMEM ++ __bio_for_each_segment(bv, bio, *iter, *iter) { ++ void *p = kmap_atomic(bv.bv_page) + bv.bv_offset; ++ crc = bch2_checksum_update(type, ++ crc, p, bv.bv_len); ++ kunmap_atomic(p); ++ } ++#else ++ __bio_for_each_bvec(bv, bio, *iter, *iter) ++ crc = bch2_checksum_update(type, crc, ++ page_address(bv.bv_page) + bv.bv_offset, ++ bv.bv_len); ++#endif ++ crc = bch2_checksum_final(type, crc); ++ return (struct bch_csum) { .lo = cpu_to_le64(crc) }; ++ } ++ ++ case BCH_CSUM_CHACHA20_POLY1305_80: ++ case BCH_CSUM_CHACHA20_POLY1305_128: { ++ SHASH_DESC_ON_STACK(desc, c->poly1305); ++ u8 digest[POLY1305_DIGEST_SIZE]; ++ struct bch_csum ret = { 0 }; ++ ++ gen_poly_key(c, desc, nonce); ++ ++#ifdef CONFIG_HIGHMEM ++ __bio_for_each_segment(bv, bio, *iter, *iter) { ++ void *p = kmap_atomic(bv.bv_page) + bv.bv_offset; ++ ++ crypto_shash_update(desc, p, bv.bv_len); ++ kunmap_atomic(p); ++ } ++#else ++ __bio_for_each_bvec(bv, bio, *iter, *iter) ++ crypto_shash_update(desc, ++ page_address(bv.bv_page) + bv.bv_offset, ++ bv.bv_len); ++#endif ++ crypto_shash_final(desc, digest); ++ ++ memcpy(&ret, digest, bch_crc_bytes[type]); ++ return ret; ++ } ++ default: ++ BUG(); ++ } ++} ++ ++struct bch_csum bch2_checksum_bio(struct bch_fs *c, unsigned type, ++ struct nonce nonce, struct bio *bio) ++{ ++ struct bvec_iter iter = bio->bi_iter; ++ ++ return __bch2_checksum_bio(c, type, nonce, bio, &iter); ++} ++ ++void bch2_encrypt_bio(struct bch_fs *c, unsigned type, ++ struct nonce nonce, struct bio *bio) ++{ ++ struct bio_vec bv; ++ struct bvec_iter iter; ++ struct scatterlist sgl[16], *sg = sgl; ++ size_t bytes = 0; ++ ++ if (!bch2_csum_type_is_encryption(type)) ++ return; ++ ++ sg_init_table(sgl, ARRAY_SIZE(sgl)); ++ ++ bio_for_each_segment(bv, bio, iter) { ++ if (sg == sgl + ARRAY_SIZE(sgl)) { ++ sg_mark_end(sg - 1); ++ do_encrypt_sg(c->chacha20, nonce, sgl, bytes); ++ ++ nonce = nonce_add(nonce, bytes); ++ bytes = 0; ++ ++ sg_init_table(sgl, ARRAY_SIZE(sgl)); ++ sg = sgl; ++ } ++ ++ sg_set_page(sg++, bv.bv_page, bv.bv_len, bv.bv_offset); ++ bytes += bv.bv_len; ++ } ++ ++ sg_mark_end(sg - 1); ++ do_encrypt_sg(c->chacha20, nonce, sgl, bytes); ++} ++ ++struct bch_csum bch2_checksum_merge(unsigned type, struct bch_csum a, ++ struct bch_csum b, size_t b_len) ++{ ++ BUG_ON(!bch2_checksum_mergeable(type)); ++ ++ while (b_len) { ++ unsigned b = min_t(unsigned, b_len, PAGE_SIZE); ++ ++ a.lo = bch2_checksum_update(type, a.lo, ++ page_address(ZERO_PAGE(0)), b); ++ b_len -= b; ++ } ++ ++ a.lo ^= b.lo; ++ a.hi ^= b.hi; ++ return a; ++} ++ ++int bch2_rechecksum_bio(struct bch_fs *c, struct bio *bio, ++ struct bversion version, ++ struct bch_extent_crc_unpacked crc_old, ++ struct bch_extent_crc_unpacked *crc_a, ++ struct bch_extent_crc_unpacked *crc_b, ++ unsigned len_a, unsigned len_b, ++ unsigned new_csum_type) ++{ ++ struct bvec_iter iter = bio->bi_iter; ++ struct nonce nonce = extent_nonce(version, crc_old); ++ struct bch_csum merged = { 0 }; ++ struct crc_split { ++ struct bch_extent_crc_unpacked *crc; ++ unsigned len; ++ unsigned csum_type; ++ struct bch_csum csum; ++ } splits[3] = { ++ { crc_a, len_a, new_csum_type }, ++ { crc_b, len_b, new_csum_type }, ++ { NULL, bio_sectors(bio) - len_a - len_b, new_csum_type }, ++ }, *i; ++ bool mergeable = crc_old.csum_type == new_csum_type && ++ bch2_checksum_mergeable(new_csum_type); ++ unsigned crc_nonce = crc_old.nonce; ++ ++ BUG_ON(len_a + len_b > bio_sectors(bio)); ++ BUG_ON(crc_old.uncompressed_size != bio_sectors(bio)); ++ BUG_ON(crc_is_compressed(crc_old)); ++ BUG_ON(bch2_csum_type_is_encryption(crc_old.csum_type) != ++ bch2_csum_type_is_encryption(new_csum_type)); ++ ++ for (i = splits; i < splits + ARRAY_SIZE(splits); i++) { ++ iter.bi_size = i->len << 9; ++ if (mergeable || i->crc) ++ i->csum = __bch2_checksum_bio(c, i->csum_type, ++ nonce, bio, &iter); ++ else ++ bio_advance_iter(bio, &iter, i->len << 9); ++ nonce = nonce_add(nonce, i->len << 9); ++ } ++ ++ if (mergeable) ++ for (i = splits; i < splits + ARRAY_SIZE(splits); i++) ++ merged = bch2_checksum_merge(new_csum_type, merged, ++ i->csum, i->len << 9); ++ else ++ merged = bch2_checksum_bio(c, crc_old.csum_type, ++ extent_nonce(version, crc_old), bio); ++ ++ if (bch2_crc_cmp(merged, crc_old.csum)) ++ return -EIO; ++ ++ for (i = splits; i < splits + ARRAY_SIZE(splits); i++) { ++ if (i->crc) ++ *i->crc = (struct bch_extent_crc_unpacked) { ++ .csum_type = i->csum_type, ++ .compression_type = crc_old.compression_type, ++ .compressed_size = i->len, ++ .uncompressed_size = i->len, ++ .offset = 0, ++ .live_size = i->len, ++ .nonce = crc_nonce, ++ .csum = i->csum, ++ }; ++ ++ if (bch2_csum_type_is_encryption(new_csum_type)) ++ crc_nonce += i->len; ++ } ++ ++ return 0; ++} ++ ++#ifdef __KERNEL__ ++int bch2_request_key(struct bch_sb *sb, struct bch_key *key) ++{ ++ char key_description[60]; ++ struct key *keyring_key; ++ const struct user_key_payload *ukp; ++ int ret; ++ ++ snprintf(key_description, sizeof(key_description), ++ "bcachefs:%pUb", &sb->user_uuid); ++ ++ keyring_key = request_key(&key_type_logon, key_description, NULL); ++ if (IS_ERR(keyring_key)) ++ return PTR_ERR(keyring_key); ++ ++ down_read(&keyring_key->sem); ++ ukp = dereference_key_locked(keyring_key); ++ if (ukp->datalen == sizeof(*key)) { ++ memcpy(key, ukp->data, ukp->datalen); ++ ret = 0; ++ } else { ++ ret = -EINVAL; ++ } ++ up_read(&keyring_key->sem); ++ key_put(keyring_key); ++ ++ return ret; ++} ++#else ++#include ++#include ++ ++int bch2_request_key(struct bch_sb *sb, struct bch_key *key) ++{ ++ key_serial_t key_id; ++ char key_description[60]; ++ char uuid[40]; ++ ++ uuid_unparse_lower(sb->user_uuid.b, uuid); ++ sprintf(key_description, "bcachefs:%s", uuid); ++ ++ key_id = request_key("user", key_description, NULL, ++ KEY_SPEC_USER_KEYRING); ++ if (key_id < 0) ++ return -errno; ++ ++ if (keyctl_read(key_id, (void *) key, sizeof(*key)) != sizeof(*key)) ++ return -1; ++ ++ return 0; ++} ++#endif ++ ++int bch2_decrypt_sb_key(struct bch_fs *c, ++ struct bch_sb_field_crypt *crypt, ++ struct bch_key *key) ++{ ++ struct bch_encrypted_key sb_key = crypt->key; ++ struct bch_key user_key; ++ int ret = 0; ++ ++ /* is key encrypted? */ ++ if (!bch2_key_is_encrypted(&sb_key)) ++ goto out; ++ ++ ret = bch2_request_key(c->disk_sb.sb, &user_key); ++ if (ret) { ++ bch_err(c, "error requesting encryption key: %i", ret); ++ goto err; ++ } ++ ++ /* decrypt real key: */ ++ ret = bch2_chacha_encrypt_key(&user_key, bch2_sb_key_nonce(c), ++ &sb_key, sizeof(sb_key)); ++ if (ret) ++ goto err; ++ ++ if (bch2_key_is_encrypted(&sb_key)) { ++ bch_err(c, "incorrect encryption key"); ++ ret = -EINVAL; ++ goto err; ++ } ++out: ++ *key = sb_key.key; ++err: ++ memzero_explicit(&sb_key, sizeof(sb_key)); ++ memzero_explicit(&user_key, sizeof(user_key)); ++ return ret; ++} ++ ++static int bch2_alloc_ciphers(struct bch_fs *c) ++{ ++ if (!c->chacha20) ++ c->chacha20 = crypto_alloc_sync_skcipher("chacha20", 0, 0); ++ if (IS_ERR(c->chacha20)) { ++ bch_err(c, "error requesting chacha20 module: %li", ++ PTR_ERR(c->chacha20)); ++ return PTR_ERR(c->chacha20); ++ } ++ ++ if (!c->poly1305) ++ c->poly1305 = crypto_alloc_shash("poly1305", 0, 0); ++ if (IS_ERR(c->poly1305)) { ++ bch_err(c, "error requesting poly1305 module: %li", ++ PTR_ERR(c->poly1305)); ++ return PTR_ERR(c->poly1305); ++ } ++ ++ return 0; ++} ++ ++int bch2_disable_encryption(struct bch_fs *c) ++{ ++ struct bch_sb_field_crypt *crypt; ++ struct bch_key key; ++ int ret = -EINVAL; ++ ++ mutex_lock(&c->sb_lock); ++ ++ crypt = bch2_sb_get_crypt(c->disk_sb.sb); ++ if (!crypt) ++ goto out; ++ ++ /* is key encrypted? */ ++ ret = 0; ++ if (bch2_key_is_encrypted(&crypt->key)) ++ goto out; ++ ++ ret = bch2_decrypt_sb_key(c, crypt, &key); ++ if (ret) ++ goto out; ++ ++ crypt->key.magic = BCH_KEY_MAGIC; ++ crypt->key.key = key; ++ ++ SET_BCH_SB_ENCRYPTION_TYPE(c->disk_sb.sb, 0); ++ bch2_write_super(c); ++out: ++ mutex_unlock(&c->sb_lock); ++ ++ return ret; ++} ++ ++int bch2_enable_encryption(struct bch_fs *c, bool keyed) ++{ ++ struct bch_encrypted_key key; ++ struct bch_key user_key; ++ struct bch_sb_field_crypt *crypt; ++ int ret = -EINVAL; ++ ++ mutex_lock(&c->sb_lock); ++ ++ /* Do we already have an encryption key? */ ++ if (bch2_sb_get_crypt(c->disk_sb.sb)) ++ goto err; ++ ++ ret = bch2_alloc_ciphers(c); ++ if (ret) ++ goto err; ++ ++ key.magic = BCH_KEY_MAGIC; ++ get_random_bytes(&key.key, sizeof(key.key)); ++ ++ if (keyed) { ++ ret = bch2_request_key(c->disk_sb.sb, &user_key); ++ if (ret) { ++ bch_err(c, "error requesting encryption key: %i", ret); ++ goto err; ++ } ++ ++ ret = bch2_chacha_encrypt_key(&user_key, bch2_sb_key_nonce(c), ++ &key, sizeof(key)); ++ if (ret) ++ goto err; ++ } ++ ++ ret = crypto_skcipher_setkey(&c->chacha20->base, ++ (void *) &key.key, sizeof(key.key)); ++ if (ret) ++ goto err; ++ ++ crypt = bch2_sb_resize_crypt(&c->disk_sb, sizeof(*crypt) / sizeof(u64)); ++ if (!crypt) { ++ ret = -ENOMEM; /* XXX this technically could be -ENOSPC */ ++ goto err; ++ } ++ ++ crypt->key = key; ++ ++ /* write superblock */ ++ SET_BCH_SB_ENCRYPTION_TYPE(c->disk_sb.sb, 1); ++ bch2_write_super(c); ++err: ++ mutex_unlock(&c->sb_lock); ++ memzero_explicit(&user_key, sizeof(user_key)); ++ memzero_explicit(&key, sizeof(key)); ++ return ret; ++} ++ ++void bch2_fs_encryption_exit(struct bch_fs *c) ++{ ++ if (!IS_ERR_OR_NULL(c->poly1305)) ++ crypto_free_shash(c->poly1305); ++ if (!IS_ERR_OR_NULL(c->chacha20)) ++ crypto_free_sync_skcipher(c->chacha20); ++ if (!IS_ERR_OR_NULL(c->sha256)) ++ crypto_free_shash(c->sha256); ++} ++ ++int bch2_fs_encryption_init(struct bch_fs *c) ++{ ++ struct bch_sb_field_crypt *crypt; ++ struct bch_key key; ++ int ret = 0; ++ ++ pr_verbose_init(c->opts, ""); ++ ++ c->sha256 = crypto_alloc_shash("sha256", 0, 0); ++ if (IS_ERR(c->sha256)) { ++ bch_err(c, "error requesting sha256 module"); ++ ret = PTR_ERR(c->sha256); ++ goto out; ++ } ++ ++ crypt = bch2_sb_get_crypt(c->disk_sb.sb); ++ if (!crypt) ++ goto out; ++ ++ ret = bch2_alloc_ciphers(c); ++ if (ret) ++ goto out; ++ ++ ret = bch2_decrypt_sb_key(c, crypt, &key); ++ if (ret) ++ goto out; ++ ++ ret = crypto_skcipher_setkey(&c->chacha20->base, ++ (void *) &key.key, sizeof(key.key)); ++ if (ret) ++ goto out; ++out: ++ memzero_explicit(&key, sizeof(key)); ++ pr_verbose_init(c->opts, "ret %i", ret); ++ return ret; ++} +diff --git a/fs/bcachefs/checksum.h b/fs/bcachefs/checksum.h +new file mode 100644 +index 000000000000..24dee8039d57 +--- /dev/null ++++ b/fs/bcachefs/checksum.h +@@ -0,0 +1,202 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_CHECKSUM_H ++#define _BCACHEFS_CHECKSUM_H ++ ++#include "bcachefs.h" ++#include "extents_types.h" ++#include "super-io.h" ++ ++#include ++#include ++ ++static inline bool bch2_checksum_mergeable(unsigned type) ++{ ++ ++ switch (type) { ++ case BCH_CSUM_NONE: ++ case BCH_CSUM_CRC32C: ++ case BCH_CSUM_CRC64: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++struct bch_csum bch2_checksum_merge(unsigned, struct bch_csum, ++ struct bch_csum, size_t); ++ ++#define BCH_NONCE_EXTENT cpu_to_le32(1 << 28) ++#define BCH_NONCE_BTREE cpu_to_le32(2 << 28) ++#define BCH_NONCE_JOURNAL cpu_to_le32(3 << 28) ++#define BCH_NONCE_PRIO cpu_to_le32(4 << 28) ++#define BCH_NONCE_POLY cpu_to_le32(1 << 31) ++ ++struct bch_csum bch2_checksum(struct bch_fs *, unsigned, struct nonce, ++ const void *, size_t); ++ ++/* ++ * This is used for various on disk data structures - bch_sb, prio_set, bset, ++ * jset: The checksum is _always_ the first field of these structs ++ */ ++#define csum_vstruct(_c, _type, _nonce, _i) \ ++({ \ ++ const void *start = ((const void *) (_i)) + sizeof((_i)->csum); \ ++ const void *end = vstruct_end(_i); \ ++ \ ++ bch2_checksum(_c, _type, _nonce, start, end - start); \ ++}) ++ ++int bch2_chacha_encrypt_key(struct bch_key *, struct nonce, void *, size_t); ++int bch2_request_key(struct bch_sb *, struct bch_key *); ++ ++void bch2_encrypt(struct bch_fs *, unsigned, struct nonce, ++ void *data, size_t); ++ ++struct bch_csum bch2_checksum_bio(struct bch_fs *, unsigned, ++ struct nonce, struct bio *); ++ ++int bch2_rechecksum_bio(struct bch_fs *, struct bio *, struct bversion, ++ struct bch_extent_crc_unpacked, ++ struct bch_extent_crc_unpacked *, ++ struct bch_extent_crc_unpacked *, ++ unsigned, unsigned, unsigned); ++ ++void bch2_encrypt_bio(struct bch_fs *, unsigned, ++ struct nonce, struct bio *); ++ ++int bch2_decrypt_sb_key(struct bch_fs *, struct bch_sb_field_crypt *, ++ struct bch_key *); ++ ++int bch2_disable_encryption(struct bch_fs *); ++int bch2_enable_encryption(struct bch_fs *, bool); ++ ++void bch2_fs_encryption_exit(struct bch_fs *); ++int bch2_fs_encryption_init(struct bch_fs *); ++ ++static inline enum bch_csum_type bch2_csum_opt_to_type(enum bch_csum_opts type, ++ bool data) ++{ ++ switch (type) { ++ case BCH_CSUM_OPT_NONE: ++ return BCH_CSUM_NONE; ++ case BCH_CSUM_OPT_CRC32C: ++ return data ? BCH_CSUM_CRC32C : BCH_CSUM_CRC32C_NONZERO; ++ case BCH_CSUM_OPT_CRC64: ++ return data ? BCH_CSUM_CRC64 : BCH_CSUM_CRC64_NONZERO; ++ default: ++ BUG(); ++ } ++} ++ ++static inline enum bch_csum_type bch2_data_checksum_type(struct bch_fs *c, ++ unsigned opt) ++{ ++ if (c->sb.encryption_type) ++ return c->opts.wide_macs ++ ? BCH_CSUM_CHACHA20_POLY1305_128 ++ : BCH_CSUM_CHACHA20_POLY1305_80; ++ ++ return bch2_csum_opt_to_type(opt, true); ++} ++ ++static inline enum bch_csum_type bch2_meta_checksum_type(struct bch_fs *c) ++{ ++ if (c->sb.encryption_type) ++ return BCH_CSUM_CHACHA20_POLY1305_128; ++ ++ return bch2_csum_opt_to_type(c->opts.metadata_checksum, false); ++} ++ ++static const unsigned bch2_compression_opt_to_type[] = { ++#define x(t, n) [BCH_COMPRESSION_OPT_##t] = BCH_COMPRESSION_TYPE_##t, ++ BCH_COMPRESSION_OPTS() ++#undef x ++}; ++ ++static inline bool bch2_checksum_type_valid(const struct bch_fs *c, ++ unsigned type) ++{ ++ if (type >= BCH_CSUM_NR) ++ return false; ++ ++ if (bch2_csum_type_is_encryption(type) && !c->chacha20) ++ return false; ++ ++ return true; ++} ++ ++/* returns true if not equal */ ++static inline bool bch2_crc_cmp(struct bch_csum l, struct bch_csum r) ++{ ++ /* ++ * XXX: need some way of preventing the compiler from optimizing this ++ * into a form that isn't constant time.. ++ */ ++ return ((l.lo ^ r.lo) | (l.hi ^ r.hi)) != 0; ++} ++ ++/* for skipping ahead and encrypting/decrypting at an offset: */ ++static inline struct nonce nonce_add(struct nonce nonce, unsigned offset) ++{ ++ EBUG_ON(offset & (CHACHA_BLOCK_SIZE - 1)); ++ ++ le32_add_cpu(&nonce.d[0], offset / CHACHA_BLOCK_SIZE); ++ return nonce; ++} ++ ++static inline struct nonce null_nonce(void) ++{ ++ struct nonce ret; ++ ++ memset(&ret, 0, sizeof(ret)); ++ return ret; ++} ++ ++static inline struct nonce extent_nonce(struct bversion version, ++ struct bch_extent_crc_unpacked crc) ++{ ++ unsigned compression_type = crc_is_compressed(crc) ++ ? crc.compression_type ++ : 0; ++ unsigned size = compression_type ? crc.uncompressed_size : 0; ++ struct nonce nonce = (struct nonce) {{ ++ [0] = cpu_to_le32(size << 22), ++ [1] = cpu_to_le32(version.lo), ++ [2] = cpu_to_le32(version.lo >> 32), ++ [3] = cpu_to_le32(version.hi| ++ (compression_type << 24))^BCH_NONCE_EXTENT, ++ }}; ++ ++ return nonce_add(nonce, crc.nonce << 9); ++} ++ ++static inline bool bch2_key_is_encrypted(struct bch_encrypted_key *key) ++{ ++ return le64_to_cpu(key->magic) != BCH_KEY_MAGIC; ++} ++ ++static inline struct nonce __bch2_sb_key_nonce(struct bch_sb *sb) ++{ ++ __le64 magic = __bch2_sb_magic(sb); ++ ++ return (struct nonce) {{ ++ [0] = 0, ++ [1] = 0, ++ [2] = ((__le32 *) &magic)[0], ++ [3] = ((__le32 *) &magic)[1], ++ }}; ++} ++ ++static inline struct nonce bch2_sb_key_nonce(struct bch_fs *c) ++{ ++ __le64 magic = bch2_sb_magic(c); ++ ++ return (struct nonce) {{ ++ [0] = 0, ++ [1] = 0, ++ [2] = ((__le32 *) &magic)[0], ++ [3] = ((__le32 *) &magic)[1], ++ }}; ++} ++ ++#endif /* _BCACHEFS_CHECKSUM_H */ +diff --git a/fs/bcachefs/clock.c b/fs/bcachefs/clock.c +new file mode 100644 +index 000000000000..1d1590de55e8 +--- /dev/null ++++ b/fs/bcachefs/clock.c +@@ -0,0 +1,191 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "clock.h" ++ ++#include ++#include ++#include ++ ++static inline long io_timer_cmp(io_timer_heap *h, ++ struct io_timer *l, ++ struct io_timer *r) ++{ ++ return l->expire - r->expire; ++} ++ ++void bch2_io_timer_add(struct io_clock *clock, struct io_timer *timer) ++{ ++ size_t i; ++ ++ spin_lock(&clock->timer_lock); ++ ++ if (time_after_eq((unsigned long) atomic_long_read(&clock->now), ++ timer->expire)) { ++ spin_unlock(&clock->timer_lock); ++ timer->fn(timer); ++ return; ++ } ++ ++ for (i = 0; i < clock->timers.used; i++) ++ if (clock->timers.data[i] == timer) ++ goto out; ++ ++ BUG_ON(!heap_add(&clock->timers, timer, io_timer_cmp, NULL)); ++out: ++ spin_unlock(&clock->timer_lock); ++} ++ ++void bch2_io_timer_del(struct io_clock *clock, struct io_timer *timer) ++{ ++ size_t i; ++ ++ spin_lock(&clock->timer_lock); ++ ++ for (i = 0; i < clock->timers.used; i++) ++ if (clock->timers.data[i] == timer) { ++ heap_del(&clock->timers, i, io_timer_cmp, NULL); ++ break; ++ } ++ ++ spin_unlock(&clock->timer_lock); ++} ++ ++struct io_clock_wait { ++ struct io_timer io_timer; ++ struct timer_list cpu_timer; ++ struct task_struct *task; ++ int expired; ++}; ++ ++static void io_clock_wait_fn(struct io_timer *timer) ++{ ++ struct io_clock_wait *wait = container_of(timer, ++ struct io_clock_wait, io_timer); ++ ++ wait->expired = 1; ++ wake_up_process(wait->task); ++} ++ ++static void io_clock_cpu_timeout(struct timer_list *timer) ++{ ++ struct io_clock_wait *wait = container_of(timer, ++ struct io_clock_wait, cpu_timer); ++ ++ wait->expired = 1; ++ wake_up_process(wait->task); ++} ++ ++void bch2_io_clock_schedule_timeout(struct io_clock *clock, unsigned long until) ++{ ++ struct io_clock_wait wait; ++ ++ /* XXX: calculate sleep time rigorously */ ++ wait.io_timer.expire = until; ++ wait.io_timer.fn = io_clock_wait_fn; ++ wait.task = current; ++ wait.expired = 0; ++ bch2_io_timer_add(clock, &wait.io_timer); ++ ++ schedule(); ++ ++ bch2_io_timer_del(clock, &wait.io_timer); ++} ++ ++void bch2_kthread_io_clock_wait(struct io_clock *clock, ++ unsigned long io_until, ++ unsigned long cpu_timeout) ++{ ++ bool kthread = (current->flags & PF_KTHREAD) != 0; ++ struct io_clock_wait wait; ++ ++ wait.io_timer.expire = io_until; ++ wait.io_timer.fn = io_clock_wait_fn; ++ wait.task = current; ++ wait.expired = 0; ++ bch2_io_timer_add(clock, &wait.io_timer); ++ ++ timer_setup_on_stack(&wait.cpu_timer, io_clock_cpu_timeout, 0); ++ ++ if (cpu_timeout != MAX_SCHEDULE_TIMEOUT) ++ mod_timer(&wait.cpu_timer, cpu_timeout + jiffies); ++ ++ while (1) { ++ set_current_state(TASK_INTERRUPTIBLE); ++ if (kthread && kthread_should_stop()) ++ break; ++ ++ if (wait.expired) ++ break; ++ ++ schedule(); ++ try_to_freeze(); ++ } ++ ++ __set_current_state(TASK_RUNNING); ++ del_singleshot_timer_sync(&wait.cpu_timer); ++ destroy_timer_on_stack(&wait.cpu_timer); ++ bch2_io_timer_del(clock, &wait.io_timer); ++} ++ ++static struct io_timer *get_expired_timer(struct io_clock *clock, ++ unsigned long now) ++{ ++ struct io_timer *ret = NULL; ++ ++ spin_lock(&clock->timer_lock); ++ ++ if (clock->timers.used && ++ time_after_eq(now, clock->timers.data[0]->expire)) ++ heap_pop(&clock->timers, ret, io_timer_cmp, NULL); ++ ++ spin_unlock(&clock->timer_lock); ++ ++ return ret; ++} ++ ++void __bch2_increment_clock(struct io_clock *clock, unsigned sectors) ++{ ++ struct io_timer *timer; ++ unsigned long now = atomic_long_add_return(sectors, &clock->now); ++ ++ while ((timer = get_expired_timer(clock, now))) ++ timer->fn(timer); ++} ++ ++void bch2_io_timers_to_text(struct printbuf *out, struct io_clock *clock) ++{ ++ unsigned long now; ++ unsigned i; ++ ++ spin_lock(&clock->timer_lock); ++ now = atomic_long_read(&clock->now); ++ ++ for (i = 0; i < clock->timers.used; i++) ++ pr_buf(out, "%ps:\t%li\n", ++ clock->timers.data[i]->fn, ++ clock->timers.data[i]->expire - now); ++ spin_unlock(&clock->timer_lock); ++} ++ ++void bch2_io_clock_exit(struct io_clock *clock) ++{ ++ free_heap(&clock->timers); ++ free_percpu(clock->pcpu_buf); ++} ++ ++int bch2_io_clock_init(struct io_clock *clock) ++{ ++ atomic_long_set(&clock->now, 0); ++ spin_lock_init(&clock->timer_lock); ++ ++ clock->max_slop = IO_CLOCK_PCPU_SECTORS * num_possible_cpus(); ++ ++ clock->pcpu_buf = alloc_percpu(*clock->pcpu_buf); ++ if (!clock->pcpu_buf) ++ return -ENOMEM; ++ ++ if (!init_heap(&clock->timers, NR_IO_TIMERS, GFP_KERNEL)) ++ return -ENOMEM; ++ ++ return 0; ++} +diff --git a/fs/bcachefs/clock.h b/fs/bcachefs/clock.h +new file mode 100644 +index 000000000000..70a0f7436c84 +--- /dev/null ++++ b/fs/bcachefs/clock.h +@@ -0,0 +1,38 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_CLOCK_H ++#define _BCACHEFS_CLOCK_H ++ ++void bch2_io_timer_add(struct io_clock *, struct io_timer *); ++void bch2_io_timer_del(struct io_clock *, struct io_timer *); ++void bch2_kthread_io_clock_wait(struct io_clock *, unsigned long, ++ unsigned long); ++ ++void __bch2_increment_clock(struct io_clock *, unsigned); ++ ++static inline void bch2_increment_clock(struct bch_fs *c, unsigned sectors, ++ int rw) ++{ ++ struct io_clock *clock = &c->io_clock[rw]; ++ ++ if (unlikely(this_cpu_add_return(*clock->pcpu_buf, sectors) >= ++ IO_CLOCK_PCPU_SECTORS)) ++ __bch2_increment_clock(clock, this_cpu_xchg(*clock->pcpu_buf, 0)); ++} ++ ++void bch2_io_clock_schedule_timeout(struct io_clock *, unsigned long); ++ ++#define bch2_kthread_wait_event_ioclock_timeout(condition, clock, timeout)\ ++({ \ ++ long __ret = timeout; \ ++ might_sleep(); \ ++ if (!___wait_cond_timeout(condition)) \ ++ __ret = __wait_event_timeout(wq, condition, timeout); \ ++ __ret; \ ++}) ++ ++void bch2_io_timers_to_text(struct printbuf *, struct io_clock *); ++ ++void bch2_io_clock_exit(struct io_clock *); ++int bch2_io_clock_init(struct io_clock *); ++ ++#endif /* _BCACHEFS_CLOCK_H */ +diff --git a/fs/bcachefs/clock_types.h b/fs/bcachefs/clock_types.h +new file mode 100644 +index 000000000000..92c740a47565 +--- /dev/null ++++ b/fs/bcachefs/clock_types.h +@@ -0,0 +1,37 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_CLOCK_TYPES_H ++#define _BCACHEFS_CLOCK_TYPES_H ++ ++#include "util.h" ++ ++#define NR_IO_TIMERS (BCH_SB_MEMBERS_MAX * 3) ++ ++/* ++ * Clocks/timers in units of sectors of IO: ++ * ++ * Note - they use percpu batching, so they're only approximate. ++ */ ++ ++struct io_timer; ++typedef void (*io_timer_fn)(struct io_timer *); ++ ++struct io_timer { ++ io_timer_fn fn; ++ unsigned long expire; ++}; ++ ++/* Amount to buffer up on a percpu counter */ ++#define IO_CLOCK_PCPU_SECTORS 128 ++ ++typedef HEAP(struct io_timer *) io_timer_heap; ++ ++struct io_clock { ++ atomic_long_t now; ++ u16 __percpu *pcpu_buf; ++ unsigned max_slop; ++ ++ spinlock_t timer_lock; ++ io_timer_heap timers; ++}; ++ ++#endif /* _BCACHEFS_CLOCK_TYPES_H */ +diff --git a/fs/bcachefs/compress.c b/fs/bcachefs/compress.c +new file mode 100644 +index 000000000000..b50d2b0d5fd3 +--- /dev/null ++++ b/fs/bcachefs/compress.c +@@ -0,0 +1,629 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "checksum.h" ++#include "compress.h" ++#include "extents.h" ++#include "io.h" ++#include "super-io.h" ++ ++#include ++#include ++#include ++ ++/* Bounce buffer: */ ++struct bbuf { ++ void *b; ++ enum { ++ BB_NONE, ++ BB_VMAP, ++ BB_KMALLOC, ++ BB_MEMPOOL, ++ } type; ++ int rw; ++}; ++ ++static struct bbuf __bounce_alloc(struct bch_fs *c, unsigned size, int rw) ++{ ++ void *b; ++ ++ BUG_ON(size > c->sb.encoded_extent_max << 9); ++ ++ b = kmalloc(size, GFP_NOIO|__GFP_NOWARN); ++ if (b) ++ return (struct bbuf) { .b = b, .type = BB_KMALLOC, .rw = rw }; ++ ++ b = mempool_alloc(&c->compression_bounce[rw], GFP_NOIO); ++ if (b) ++ return (struct bbuf) { .b = b, .type = BB_MEMPOOL, .rw = rw }; ++ ++ BUG(); ++} ++ ++static bool bio_phys_contig(struct bio *bio, struct bvec_iter start) ++{ ++ struct bio_vec bv; ++ struct bvec_iter iter; ++ void *expected_start = NULL; ++ ++ __bio_for_each_bvec(bv, bio, iter, start) { ++ if (expected_start && ++ expected_start != page_address(bv.bv_page) + bv.bv_offset) ++ return false; ++ ++ expected_start = page_address(bv.bv_page) + ++ bv.bv_offset + bv.bv_len; ++ } ++ ++ return true; ++} ++ ++static struct bbuf __bio_map_or_bounce(struct bch_fs *c, struct bio *bio, ++ struct bvec_iter start, int rw) ++{ ++ struct bbuf ret; ++ struct bio_vec bv; ++ struct bvec_iter iter; ++ unsigned nr_pages = 0; ++ struct page *stack_pages[16]; ++ struct page **pages = NULL; ++ void *data; ++ ++ BUG_ON(bvec_iter_sectors(start) > c->sb.encoded_extent_max); ++ ++ if (!IS_ENABLED(CONFIG_HIGHMEM) && ++ bio_phys_contig(bio, start)) ++ return (struct bbuf) { ++ .b = page_address(bio_iter_page(bio, start)) + ++ bio_iter_offset(bio, start), ++ .type = BB_NONE, .rw = rw ++ }; ++ ++ /* check if we can map the pages contiguously: */ ++ __bio_for_each_segment(bv, bio, iter, start) { ++ if (iter.bi_size != start.bi_size && ++ bv.bv_offset) ++ goto bounce; ++ ++ if (bv.bv_len < iter.bi_size && ++ bv.bv_offset + bv.bv_len < PAGE_SIZE) ++ goto bounce; ++ ++ nr_pages++; ++ } ++ ++ BUG_ON(DIV_ROUND_UP(start.bi_size, PAGE_SIZE) > nr_pages); ++ ++ pages = nr_pages > ARRAY_SIZE(stack_pages) ++ ? kmalloc_array(nr_pages, sizeof(struct page *), GFP_NOIO) ++ : stack_pages; ++ if (!pages) ++ goto bounce; ++ ++ nr_pages = 0; ++ __bio_for_each_segment(bv, bio, iter, start) ++ pages[nr_pages++] = bv.bv_page; ++ ++ data = vmap(pages, nr_pages, VM_MAP, PAGE_KERNEL); ++ if (pages != stack_pages) ++ kfree(pages); ++ ++ if (data) ++ return (struct bbuf) { ++ .b = data + bio_iter_offset(bio, start), ++ .type = BB_VMAP, .rw = rw ++ }; ++bounce: ++ ret = __bounce_alloc(c, start.bi_size, rw); ++ ++ if (rw == READ) ++ memcpy_from_bio(ret.b, bio, start); ++ ++ return ret; ++} ++ ++static struct bbuf bio_map_or_bounce(struct bch_fs *c, struct bio *bio, int rw) ++{ ++ return __bio_map_or_bounce(c, bio, bio->bi_iter, rw); ++} ++ ++static void bio_unmap_or_unbounce(struct bch_fs *c, struct bbuf buf) ++{ ++ switch (buf.type) { ++ case BB_NONE: ++ break; ++ case BB_VMAP: ++ vunmap((void *) ((unsigned long) buf.b & PAGE_MASK)); ++ break; ++ case BB_KMALLOC: ++ kfree(buf.b); ++ break; ++ case BB_MEMPOOL: ++ mempool_free(buf.b, &c->compression_bounce[buf.rw]); ++ break; ++ } ++} ++ ++static inline void zlib_set_workspace(z_stream *strm, void *workspace) ++{ ++#ifdef __KERNEL__ ++ strm->workspace = workspace; ++#endif ++} ++ ++static int __bio_uncompress(struct bch_fs *c, struct bio *src, ++ void *dst_data, struct bch_extent_crc_unpacked crc) ++{ ++ struct bbuf src_data = { NULL }; ++ size_t src_len = src->bi_iter.bi_size; ++ size_t dst_len = crc.uncompressed_size << 9; ++ void *workspace; ++ int ret; ++ ++ src_data = bio_map_or_bounce(c, src, READ); ++ ++ switch (crc.compression_type) { ++ case BCH_COMPRESSION_TYPE_lz4_old: ++ case BCH_COMPRESSION_TYPE_lz4: ++ ret = LZ4_decompress_safe_partial(src_data.b, dst_data, ++ src_len, dst_len, dst_len); ++ if (ret != dst_len) ++ goto err; ++ break; ++ case BCH_COMPRESSION_TYPE_gzip: { ++ z_stream strm = { ++ .next_in = src_data.b, ++ .avail_in = src_len, ++ .next_out = dst_data, ++ .avail_out = dst_len, ++ }; ++ ++ workspace = mempool_alloc(&c->decompress_workspace, GFP_NOIO); ++ ++ zlib_set_workspace(&strm, workspace); ++ zlib_inflateInit2(&strm, -MAX_WBITS); ++ ret = zlib_inflate(&strm, Z_FINISH); ++ ++ mempool_free(workspace, &c->decompress_workspace); ++ ++ if (ret != Z_STREAM_END) ++ goto err; ++ break; ++ } ++ case BCH_COMPRESSION_TYPE_zstd: { ++ ZSTD_DCtx *ctx; ++ size_t real_src_len = le32_to_cpup(src_data.b); ++ ++ if (real_src_len > src_len - 4) ++ goto err; ++ ++ workspace = mempool_alloc(&c->decompress_workspace, GFP_NOIO); ++ ctx = ZSTD_initDCtx(workspace, ZSTD_DCtxWorkspaceBound()); ++ ++ ret = ZSTD_decompressDCtx(ctx, ++ dst_data, dst_len, ++ src_data.b + 4, real_src_len); ++ ++ mempool_free(workspace, &c->decompress_workspace); ++ ++ if (ret != dst_len) ++ goto err; ++ break; ++ } ++ default: ++ BUG(); ++ } ++ ret = 0; ++out: ++ bio_unmap_or_unbounce(c, src_data); ++ return ret; ++err: ++ ret = -EIO; ++ goto out; ++} ++ ++int bch2_bio_uncompress_inplace(struct bch_fs *c, struct bio *bio, ++ struct bch_extent_crc_unpacked *crc) ++{ ++ struct bbuf data = { NULL }; ++ size_t dst_len = crc->uncompressed_size << 9; ++ ++ /* bio must own its pages: */ ++ BUG_ON(!bio->bi_vcnt); ++ BUG_ON(DIV_ROUND_UP(crc->live_size, PAGE_SECTORS) > bio->bi_max_vecs); ++ ++ if (crc->uncompressed_size > c->sb.encoded_extent_max || ++ crc->compressed_size > c->sb.encoded_extent_max) { ++ bch_err(c, "error rewriting existing data: extent too big"); ++ return -EIO; ++ } ++ ++ data = __bounce_alloc(c, dst_len, WRITE); ++ ++ if (__bio_uncompress(c, bio, data.b, *crc)) { ++ bch_err(c, "error rewriting existing data: decompression error"); ++ bio_unmap_or_unbounce(c, data); ++ return -EIO; ++ } ++ ++ /* ++ * XXX: don't have a good way to assert that the bio was allocated with ++ * enough space, we depend on bch2_move_extent doing the right thing ++ */ ++ bio->bi_iter.bi_size = crc->live_size << 9; ++ ++ memcpy_to_bio(bio, bio->bi_iter, data.b + (crc->offset << 9)); ++ ++ crc->csum_type = 0; ++ crc->compression_type = 0; ++ crc->compressed_size = crc->live_size; ++ crc->uncompressed_size = crc->live_size; ++ crc->offset = 0; ++ crc->csum = (struct bch_csum) { 0, 0 }; ++ ++ bio_unmap_or_unbounce(c, data); ++ return 0; ++} ++ ++int bch2_bio_uncompress(struct bch_fs *c, struct bio *src, ++ struct bio *dst, struct bvec_iter dst_iter, ++ struct bch_extent_crc_unpacked crc) ++{ ++ struct bbuf dst_data = { NULL }; ++ size_t dst_len = crc.uncompressed_size << 9; ++ int ret = -ENOMEM; ++ ++ if (crc.uncompressed_size > c->sb.encoded_extent_max || ++ crc.compressed_size > c->sb.encoded_extent_max) ++ return -EIO; ++ ++ dst_data = dst_len == dst_iter.bi_size ++ ? __bio_map_or_bounce(c, dst, dst_iter, WRITE) ++ : __bounce_alloc(c, dst_len, WRITE); ++ ++ ret = __bio_uncompress(c, src, dst_data.b, crc); ++ if (ret) ++ goto err; ++ ++ if (dst_data.type != BB_NONE && ++ dst_data.type != BB_VMAP) ++ memcpy_to_bio(dst, dst_iter, dst_data.b + (crc.offset << 9)); ++err: ++ bio_unmap_or_unbounce(c, dst_data); ++ return ret; ++} ++ ++static int attempt_compress(struct bch_fs *c, ++ void *workspace, ++ void *dst, size_t dst_len, ++ void *src, size_t src_len, ++ enum bch_compression_type compression_type) ++{ ++ switch (compression_type) { ++ case BCH_COMPRESSION_TYPE_lz4: { ++ int len = src_len; ++ int ret = LZ4_compress_destSize( ++ src, dst, ++ &len, dst_len, ++ workspace); ++ ++ if (len < src_len) ++ return -len; ++ ++ return ret; ++ } ++ case BCH_COMPRESSION_TYPE_gzip: { ++ z_stream strm = { ++ .next_in = src, ++ .avail_in = src_len, ++ .next_out = dst, ++ .avail_out = dst_len, ++ }; ++ ++ zlib_set_workspace(&strm, workspace); ++ zlib_deflateInit2(&strm, Z_DEFAULT_COMPRESSION, ++ Z_DEFLATED, -MAX_WBITS, DEF_MEM_LEVEL, ++ Z_DEFAULT_STRATEGY); ++ ++ if (zlib_deflate(&strm, Z_FINISH) != Z_STREAM_END) ++ return 0; ++ ++ if (zlib_deflateEnd(&strm) != Z_OK) ++ return 0; ++ ++ return strm.total_out; ++ } ++ case BCH_COMPRESSION_TYPE_zstd: { ++ ZSTD_CCtx *ctx = ZSTD_initCCtx(workspace, ++ ZSTD_CCtxWorkspaceBound(c->zstd_params.cParams)); ++ ++ size_t len = ZSTD_compressCCtx(ctx, ++ dst + 4, dst_len - 4, ++ src, src_len, ++ c->zstd_params); ++ if (ZSTD_isError(len)) ++ return 0; ++ ++ *((__le32 *) dst) = cpu_to_le32(len); ++ return len + 4; ++ } ++ default: ++ BUG(); ++ } ++} ++ ++static unsigned __bio_compress(struct bch_fs *c, ++ struct bio *dst, size_t *dst_len, ++ struct bio *src, size_t *src_len, ++ enum bch_compression_type compression_type) ++{ ++ struct bbuf src_data = { NULL }, dst_data = { NULL }; ++ void *workspace; ++ unsigned pad; ++ int ret = 0; ++ ++ BUG_ON(compression_type >= BCH_COMPRESSION_TYPE_NR); ++ BUG_ON(!mempool_initialized(&c->compress_workspace[compression_type])); ++ ++ /* If it's only one block, don't bother trying to compress: */ ++ if (bio_sectors(src) <= c->opts.block_size) ++ return 0; ++ ++ dst_data = bio_map_or_bounce(c, dst, WRITE); ++ src_data = bio_map_or_bounce(c, src, READ); ++ ++ workspace = mempool_alloc(&c->compress_workspace[compression_type], GFP_NOIO); ++ ++ *src_len = src->bi_iter.bi_size; ++ *dst_len = dst->bi_iter.bi_size; ++ ++ /* ++ * XXX: this algorithm sucks when the compression code doesn't tell us ++ * how much would fit, like LZ4 does: ++ */ ++ while (1) { ++ if (*src_len <= block_bytes(c)) { ++ ret = -1; ++ break; ++ } ++ ++ ret = attempt_compress(c, workspace, ++ dst_data.b, *dst_len, ++ src_data.b, *src_len, ++ compression_type); ++ if (ret > 0) { ++ *dst_len = ret; ++ ret = 0; ++ break; ++ } ++ ++ /* Didn't fit: should we retry with a smaller amount? */ ++ if (*src_len <= *dst_len) { ++ ret = -1; ++ break; ++ } ++ ++ /* ++ * If ret is negative, it's a hint as to how much data would fit ++ */ ++ BUG_ON(-ret >= *src_len); ++ ++ if (ret < 0) ++ *src_len = -ret; ++ else ++ *src_len -= (*src_len - *dst_len) / 2; ++ *src_len = round_down(*src_len, block_bytes(c)); ++ } ++ ++ mempool_free(workspace, &c->compress_workspace[compression_type]); ++ ++ if (ret) ++ goto err; ++ ++ /* Didn't get smaller: */ ++ if (round_up(*dst_len, block_bytes(c)) >= *src_len) ++ goto err; ++ ++ pad = round_up(*dst_len, block_bytes(c)) - *dst_len; ++ ++ memset(dst_data.b + *dst_len, 0, pad); ++ *dst_len += pad; ++ ++ if (dst_data.type != BB_NONE && ++ dst_data.type != BB_VMAP) ++ memcpy_to_bio(dst, dst->bi_iter, dst_data.b); ++ ++ BUG_ON(!*dst_len || *dst_len > dst->bi_iter.bi_size); ++ BUG_ON(!*src_len || *src_len > src->bi_iter.bi_size); ++ BUG_ON(*dst_len & (block_bytes(c) - 1)); ++ BUG_ON(*src_len & (block_bytes(c) - 1)); ++out: ++ bio_unmap_or_unbounce(c, src_data); ++ bio_unmap_or_unbounce(c, dst_data); ++ return compression_type; ++err: ++ compression_type = BCH_COMPRESSION_TYPE_incompressible; ++ goto out; ++} ++ ++unsigned bch2_bio_compress(struct bch_fs *c, ++ struct bio *dst, size_t *dst_len, ++ struct bio *src, size_t *src_len, ++ unsigned compression_type) ++{ ++ unsigned orig_dst = dst->bi_iter.bi_size; ++ unsigned orig_src = src->bi_iter.bi_size; ++ ++ /* Don't consume more than BCH_ENCODED_EXTENT_MAX from @src: */ ++ src->bi_iter.bi_size = min_t(unsigned, src->bi_iter.bi_size, ++ c->sb.encoded_extent_max << 9); ++ /* Don't generate a bigger output than input: */ ++ dst->bi_iter.bi_size = min(dst->bi_iter.bi_size, src->bi_iter.bi_size); ++ ++ if (compression_type == BCH_COMPRESSION_TYPE_lz4_old) ++ compression_type = BCH_COMPRESSION_TYPE_lz4; ++ ++ compression_type = ++ __bio_compress(c, dst, dst_len, src, src_len, compression_type); ++ ++ dst->bi_iter.bi_size = orig_dst; ++ src->bi_iter.bi_size = orig_src; ++ return compression_type; ++} ++ ++static int __bch2_fs_compress_init(struct bch_fs *, u64); ++ ++#define BCH_FEATURE_none 0 ++ ++static const unsigned bch2_compression_opt_to_feature[] = { ++#define x(t, n) [BCH_COMPRESSION_OPT_##t] = BCH_FEATURE_##t, ++ BCH_COMPRESSION_OPTS() ++#undef x ++}; ++ ++#undef BCH_FEATURE_none ++ ++static int __bch2_check_set_has_compressed_data(struct bch_fs *c, u64 f) ++{ ++ int ret = 0; ++ ++ if ((c->sb.features & f) == f) ++ return 0; ++ ++ mutex_lock(&c->sb_lock); ++ ++ if ((c->sb.features & f) == f) { ++ mutex_unlock(&c->sb_lock); ++ return 0; ++ } ++ ++ ret = __bch2_fs_compress_init(c, c->sb.features|f); ++ if (ret) { ++ mutex_unlock(&c->sb_lock); ++ return ret; ++ } ++ ++ c->disk_sb.sb->features[0] |= cpu_to_le64(f); ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ return 0; ++} ++ ++int bch2_check_set_has_compressed_data(struct bch_fs *c, ++ unsigned compression_type) ++{ ++ BUG_ON(compression_type >= ARRAY_SIZE(bch2_compression_opt_to_feature)); ++ ++ return compression_type ++ ? __bch2_check_set_has_compressed_data(c, ++ 1ULL << bch2_compression_opt_to_feature[compression_type]) ++ : 0; ++} ++ ++void bch2_fs_compress_exit(struct bch_fs *c) ++{ ++ unsigned i; ++ ++ mempool_exit(&c->decompress_workspace); ++ for (i = 0; i < ARRAY_SIZE(c->compress_workspace); i++) ++ mempool_exit(&c->compress_workspace[i]); ++ mempool_exit(&c->compression_bounce[WRITE]); ++ mempool_exit(&c->compression_bounce[READ]); ++} ++ ++static int __bch2_fs_compress_init(struct bch_fs *c, u64 features) ++{ ++ size_t max_extent = c->sb.encoded_extent_max << 9; ++ size_t decompress_workspace_size = 0; ++ bool decompress_workspace_needed; ++ ZSTD_parameters params = ZSTD_getParams(0, max_extent, 0); ++ struct { ++ unsigned feature; ++ unsigned type; ++ size_t compress_workspace; ++ size_t decompress_workspace; ++ } compression_types[] = { ++ { BCH_FEATURE_lz4, BCH_COMPRESSION_TYPE_lz4, LZ4_MEM_COMPRESS, 0 }, ++ { BCH_FEATURE_gzip, BCH_COMPRESSION_TYPE_gzip, ++ zlib_deflate_workspacesize(MAX_WBITS, DEF_MEM_LEVEL), ++ zlib_inflate_workspacesize(), }, ++ { BCH_FEATURE_zstd, BCH_COMPRESSION_TYPE_zstd, ++ ZSTD_CCtxWorkspaceBound(params.cParams), ++ ZSTD_DCtxWorkspaceBound() }, ++ }, *i; ++ int ret = 0; ++ ++ pr_verbose_init(c->opts, ""); ++ ++ c->zstd_params = params; ++ ++ for (i = compression_types; ++ i < compression_types + ARRAY_SIZE(compression_types); ++ i++) ++ if (features & (1 << i->feature)) ++ goto have_compressed; ++ ++ goto out; ++have_compressed: ++ ++ if (!mempool_initialized(&c->compression_bounce[READ])) { ++ ret = mempool_init_kvpmalloc_pool(&c->compression_bounce[READ], ++ 1, max_extent); ++ if (ret) ++ goto out; ++ } ++ ++ if (!mempool_initialized(&c->compression_bounce[WRITE])) { ++ ret = mempool_init_kvpmalloc_pool(&c->compression_bounce[WRITE], ++ 1, max_extent); ++ if (ret) ++ goto out; ++ } ++ ++ for (i = compression_types; ++ i < compression_types + ARRAY_SIZE(compression_types); ++ i++) { ++ decompress_workspace_size = ++ max(decompress_workspace_size, i->decompress_workspace); ++ ++ if (!(features & (1 << i->feature))) ++ continue; ++ ++ if (i->decompress_workspace) ++ decompress_workspace_needed = true; ++ ++ if (mempool_initialized(&c->compress_workspace[i->type])) ++ continue; ++ ++ ret = mempool_init_kvpmalloc_pool( ++ &c->compress_workspace[i->type], ++ 1, i->compress_workspace); ++ if (ret) ++ goto out; ++ } ++ ++ if (!mempool_initialized(&c->decompress_workspace)) { ++ ret = mempool_init_kvpmalloc_pool( ++ &c->decompress_workspace, ++ 1, decompress_workspace_size); ++ if (ret) ++ goto out; ++ } ++out: ++ pr_verbose_init(c->opts, "ret %i", ret); ++ return ret; ++} ++ ++int bch2_fs_compress_init(struct bch_fs *c) ++{ ++ u64 f = c->sb.features; ++ ++ if (c->opts.compression) ++ f |= 1ULL << bch2_compression_opt_to_feature[c->opts.compression]; ++ ++ if (c->opts.background_compression) ++ f |= 1ULL << bch2_compression_opt_to_feature[c->opts.background_compression]; ++ ++ return __bch2_fs_compress_init(c, f); ++ ++} +diff --git a/fs/bcachefs/compress.h b/fs/bcachefs/compress.h +new file mode 100644 +index 000000000000..4bab1f61b3b5 +--- /dev/null ++++ b/fs/bcachefs/compress.h +@@ -0,0 +1,18 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_COMPRESS_H ++#define _BCACHEFS_COMPRESS_H ++ ++#include "extents_types.h" ++ ++int bch2_bio_uncompress_inplace(struct bch_fs *, struct bio *, ++ struct bch_extent_crc_unpacked *); ++int bch2_bio_uncompress(struct bch_fs *, struct bio *, struct bio *, ++ struct bvec_iter, struct bch_extent_crc_unpacked); ++unsigned bch2_bio_compress(struct bch_fs *, struct bio *, size_t *, ++ struct bio *, size_t *, unsigned); ++ ++int bch2_check_set_has_compressed_data(struct bch_fs *, unsigned); ++void bch2_fs_compress_exit(struct bch_fs *); ++int bch2_fs_compress_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_COMPRESS_H */ +diff --git a/fs/bcachefs/debug.c b/fs/bcachefs/debug.c +new file mode 100644 +index 000000000000..aa10591a3b1a +--- /dev/null ++++ b/fs/bcachefs/debug.c +@@ -0,0 +1,432 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Assorted bcachefs debug code ++ * ++ * Copyright 2010, 2011 Kent Overstreet ++ * Copyright 2012 Google, Inc. ++ */ ++ ++#include "bcachefs.h" ++#include "bkey_methods.h" ++#include "btree_cache.h" ++#include "btree_io.h" ++#include "btree_iter.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "debug.h" ++#include "error.h" ++#include "extents.h" ++#include "fsck.h" ++#include "inode.h" ++#include "io.h" ++#include "super.h" ++ ++#include ++#include ++#include ++#include ++#include ++ ++static struct dentry *bch_debug; ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ ++void __bch2_btree_verify(struct bch_fs *c, struct btree *b) ++{ ++ struct btree *v = c->verify_data; ++ struct btree_node *n_ondisk, *n_sorted, *n_inmemory; ++ struct bset *sorted, *inmemory; ++ struct extent_ptr_decoded pick; ++ struct bch_dev *ca; ++ struct bio *bio; ++ ++ if (c->opts.nochanges) ++ return; ++ ++ btree_node_io_lock(b); ++ mutex_lock(&c->verify_lock); ++ ++ n_ondisk = c->verify_ondisk; ++ n_sorted = c->verify_data->data; ++ n_inmemory = b->data; ++ ++ bkey_copy(&v->key, &b->key); ++ v->written = 0; ++ v->c.level = b->c.level; ++ v->c.btree_id = b->c.btree_id; ++ bch2_btree_keys_init(v, &c->expensive_debug_checks); ++ ++ if (bch2_bkey_pick_read_device(c, bkey_i_to_s_c(&b->key), ++ NULL, &pick) <= 0) ++ return; ++ ++ ca = bch_dev_bkey_exists(c, pick.ptr.dev); ++ if (!bch2_dev_get_ioref(ca, READ)) ++ return; ++ ++ bio = bio_alloc_bioset(GFP_NOIO, ++ buf_pages(n_sorted, btree_bytes(c)), ++ &c->btree_bio); ++ bio_set_dev(bio, ca->disk_sb.bdev); ++ bio->bi_opf = REQ_OP_READ|REQ_META; ++ bio->bi_iter.bi_sector = pick.ptr.offset; ++ bch2_bio_map(bio, n_sorted, btree_bytes(c)); ++ ++ submit_bio_wait(bio); ++ ++ bio_put(bio); ++ percpu_ref_put(&ca->io_ref); ++ ++ memcpy(n_ondisk, n_sorted, btree_bytes(c)); ++ ++ if (bch2_btree_node_read_done(c, v, false)) ++ goto out; ++ ++ n_sorted = c->verify_data->data; ++ sorted = &n_sorted->keys; ++ inmemory = &n_inmemory->keys; ++ ++ if (inmemory->u64s != sorted->u64s || ++ memcmp(inmemory->start, ++ sorted->start, ++ vstruct_end(inmemory) - (void *) inmemory->start)) { ++ unsigned offset = 0, sectors; ++ struct bset *i; ++ unsigned j; ++ ++ console_lock(); ++ ++ printk(KERN_ERR "*** in memory:\n"); ++ bch2_dump_bset(c, b, inmemory, 0); ++ ++ printk(KERN_ERR "*** read back in:\n"); ++ bch2_dump_bset(c, v, sorted, 0); ++ ++ while (offset < b->written) { ++ if (!offset ) { ++ i = &n_ondisk->keys; ++ sectors = vstruct_blocks(n_ondisk, c->block_bits) << ++ c->block_bits; ++ } else { ++ struct btree_node_entry *bne = ++ (void *) n_ondisk + (offset << 9); ++ i = &bne->keys; ++ ++ sectors = vstruct_blocks(bne, c->block_bits) << ++ c->block_bits; ++ } ++ ++ printk(KERN_ERR "*** on disk block %u:\n", offset); ++ bch2_dump_bset(c, b, i, offset); ++ ++ offset += sectors; ++ } ++ ++ printk(KERN_ERR "*** block %u/%u not written\n", ++ offset >> c->block_bits, btree_blocks(c)); ++ ++ for (j = 0; j < le16_to_cpu(inmemory->u64s); j++) ++ if (inmemory->_data[j] != sorted->_data[j]) ++ break; ++ ++ printk(KERN_ERR "b->written %u\n", b->written); ++ ++ console_unlock(); ++ panic("verify failed at %u\n", j); ++ } ++out: ++ mutex_unlock(&c->verify_lock); ++ btree_node_io_unlock(b); ++} ++ ++#endif ++ ++#ifdef CONFIG_DEBUG_FS ++ ++/* XXX: bch_fs refcounting */ ++ ++struct dump_iter { ++ struct bpos from; ++ struct bch_fs *c; ++ enum btree_id id; ++ ++ char buf[PAGE_SIZE]; ++ size_t bytes; /* what's currently in buf */ ++ ++ char __user *ubuf; /* destination user buffer */ ++ size_t size; /* size of requested read */ ++ ssize_t ret; /* bytes read so far */ ++}; ++ ++static int flush_buf(struct dump_iter *i) ++{ ++ if (i->bytes) { ++ size_t bytes = min(i->bytes, i->size); ++ int err = copy_to_user(i->ubuf, i->buf, bytes); ++ ++ if (err) ++ return err; ++ ++ i->ret += bytes; ++ i->ubuf += bytes; ++ i->size -= bytes; ++ i->bytes -= bytes; ++ memmove(i->buf, i->buf + bytes, i->bytes); ++ } ++ ++ return 0; ++} ++ ++static int bch2_dump_open(struct inode *inode, struct file *file) ++{ ++ struct btree_debug *bd = inode->i_private; ++ struct dump_iter *i; ++ ++ i = kzalloc(sizeof(struct dump_iter), GFP_KERNEL); ++ if (!i) ++ return -ENOMEM; ++ ++ file->private_data = i; ++ i->from = POS_MIN; ++ i->c = container_of(bd, struct bch_fs, btree_debug[bd->id]); ++ i->id = bd->id; ++ ++ return 0; ++} ++ ++static int bch2_dump_release(struct inode *inode, struct file *file) ++{ ++ kfree(file->private_data); ++ return 0; ++} ++ ++static ssize_t bch2_read_btree(struct file *file, char __user *buf, ++ size_t size, loff_t *ppos) ++{ ++ struct dump_iter *i = file->private_data; ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ int err; ++ ++ i->ubuf = buf; ++ i->size = size; ++ i->ret = 0; ++ ++ err = flush_buf(i); ++ if (err) ++ return err; ++ ++ if (!i->size) ++ return i->ret; ++ ++ bch2_trans_init(&trans, i->c, 0, 0); ++ ++ iter = bch2_trans_get_iter(&trans, i->id, i->from, BTREE_ITER_PREFETCH); ++ k = bch2_btree_iter_peek(iter); ++ ++ while (k.k && !(err = bkey_err(k))) { ++ bch2_bkey_val_to_text(&PBUF(i->buf), i->c, k); ++ i->bytes = strlen(i->buf); ++ BUG_ON(i->bytes >= PAGE_SIZE); ++ i->buf[i->bytes] = '\n'; ++ i->bytes++; ++ ++ k = bch2_btree_iter_next(iter); ++ i->from = iter->pos; ++ ++ err = flush_buf(i); ++ if (err) ++ break; ++ ++ if (!i->size) ++ break; ++ } ++ bch2_trans_exit(&trans); ++ ++ return err < 0 ? err : i->ret; ++} ++ ++static const struct file_operations btree_debug_ops = { ++ .owner = THIS_MODULE, ++ .open = bch2_dump_open, ++ .release = bch2_dump_release, ++ .read = bch2_read_btree, ++}; ++ ++static ssize_t bch2_read_btree_formats(struct file *file, char __user *buf, ++ size_t size, loff_t *ppos) ++{ ++ struct dump_iter *i = file->private_data; ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct btree *b; ++ int err; ++ ++ i->ubuf = buf; ++ i->size = size; ++ i->ret = 0; ++ ++ err = flush_buf(i); ++ if (err) ++ return err; ++ ++ if (!i->size || !bkey_cmp(POS_MAX, i->from)) ++ return i->ret; ++ ++ bch2_trans_init(&trans, i->c, 0, 0); ++ ++ for_each_btree_node(&trans, iter, i->id, i->from, 0, b) { ++ bch2_btree_node_to_text(&PBUF(i->buf), i->c, b); ++ i->bytes = strlen(i->buf); ++ err = flush_buf(i); ++ if (err) ++ break; ++ ++ /* ++ * can't easily correctly restart a btree node traversal across ++ * all nodes, meh ++ */ ++ i->from = bkey_cmp(POS_MAX, b->key.k.p) ++ ? bkey_successor(b->key.k.p) ++ : b->key.k.p; ++ ++ if (!i->size) ++ break; ++ } ++ bch2_trans_exit(&trans); ++ ++ return err < 0 ? err : i->ret; ++} ++ ++static const struct file_operations btree_format_debug_ops = { ++ .owner = THIS_MODULE, ++ .open = bch2_dump_open, ++ .release = bch2_dump_release, ++ .read = bch2_read_btree_formats, ++}; ++ ++static ssize_t bch2_read_bfloat_failed(struct file *file, char __user *buf, ++ size_t size, loff_t *ppos) ++{ ++ struct dump_iter *i = file->private_data; ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ struct btree *prev_node = NULL; ++ int err; ++ ++ i->ubuf = buf; ++ i->size = size; ++ i->ret = 0; ++ ++ err = flush_buf(i); ++ if (err) ++ return err; ++ ++ if (!i->size) ++ return i->ret; ++ ++ bch2_trans_init(&trans, i->c, 0, 0); ++ ++ iter = bch2_trans_get_iter(&trans, i->id, i->from, BTREE_ITER_PREFETCH); ++ ++ while ((k = bch2_btree_iter_peek(iter)).k && ++ !(err = bkey_err(k))) { ++ struct btree_iter_level *l = &iter->l[0]; ++ struct bkey_packed *_k = ++ bch2_btree_node_iter_peek(&l->iter, l->b); ++ ++ if (l->b != prev_node) { ++ bch2_btree_node_to_text(&PBUF(i->buf), i->c, l->b); ++ i->bytes = strlen(i->buf); ++ err = flush_buf(i); ++ if (err) ++ break; ++ } ++ prev_node = l->b; ++ ++ bch2_bfloat_to_text(&PBUF(i->buf), l->b, _k); ++ i->bytes = strlen(i->buf); ++ err = flush_buf(i); ++ if (err) ++ break; ++ ++ bch2_btree_iter_next(iter); ++ i->from = iter->pos; ++ ++ err = flush_buf(i); ++ if (err) ++ break; ++ ++ if (!i->size) ++ break; ++ } ++ bch2_trans_exit(&trans); ++ ++ return err < 0 ? err : i->ret; ++} ++ ++static const struct file_operations bfloat_failed_debug_ops = { ++ .owner = THIS_MODULE, ++ .open = bch2_dump_open, ++ .release = bch2_dump_release, ++ .read = bch2_read_bfloat_failed, ++}; ++ ++void bch2_fs_debug_exit(struct bch_fs *c) ++{ ++ if (!IS_ERR_OR_NULL(c->debug)) ++ debugfs_remove_recursive(c->debug); ++} ++ ++void bch2_fs_debug_init(struct bch_fs *c) ++{ ++ struct btree_debug *bd; ++ char name[100]; ++ ++ if (IS_ERR_OR_NULL(bch_debug)) ++ return; ++ ++ snprintf(name, sizeof(name), "%pU", c->sb.user_uuid.b); ++ c->debug = debugfs_create_dir(name, bch_debug); ++ if (IS_ERR_OR_NULL(c->debug)) ++ return; ++ ++ for (bd = c->btree_debug; ++ bd < c->btree_debug + ARRAY_SIZE(c->btree_debug); ++ bd++) { ++ bd->id = bd - c->btree_debug; ++ bd->btree = debugfs_create_file(bch2_btree_ids[bd->id], ++ 0400, c->debug, bd, ++ &btree_debug_ops); ++ ++ snprintf(name, sizeof(name), "%s-formats", ++ bch2_btree_ids[bd->id]); ++ ++ bd->btree_format = debugfs_create_file(name, 0400, c->debug, bd, ++ &btree_format_debug_ops); ++ ++ snprintf(name, sizeof(name), "%s-bfloat-failed", ++ bch2_btree_ids[bd->id]); ++ ++ bd->failed = debugfs_create_file(name, 0400, c->debug, bd, ++ &bfloat_failed_debug_ops); ++ } ++} ++ ++#endif ++ ++void bch2_debug_exit(void) ++{ ++ if (!IS_ERR_OR_NULL(bch_debug)) ++ debugfs_remove_recursive(bch_debug); ++} ++ ++int __init bch2_debug_init(void) ++{ ++ int ret = 0; ++ ++ bch_debug = debugfs_create_dir("bcachefs", NULL); ++ return ret; ++} +diff --git a/fs/bcachefs/debug.h b/fs/bcachefs/debug.h +new file mode 100644 +index 000000000000..56c2d1ab5f63 +--- /dev/null ++++ b/fs/bcachefs/debug.h +@@ -0,0 +1,63 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_DEBUG_H ++#define _BCACHEFS_DEBUG_H ++ ++#include "bcachefs.h" ++ ++struct bio; ++struct btree; ++struct bch_fs; ++ ++#define BCH_DEBUG_PARAM(name, description) extern bool bch2_##name; ++BCH_DEBUG_PARAMS() ++#undef BCH_DEBUG_PARAM ++ ++#define BCH_DEBUG_PARAM(name, description) \ ++ static inline bool name(struct bch_fs *c) \ ++ { return bch2_##name || c->name; } ++BCH_DEBUG_PARAMS_ALWAYS() ++#undef BCH_DEBUG_PARAM ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ ++#define BCH_DEBUG_PARAM(name, description) \ ++ static inline bool name(struct bch_fs *c) \ ++ { return bch2_##name || c->name; } ++BCH_DEBUG_PARAMS_DEBUG() ++#undef BCH_DEBUG_PARAM ++ ++void __bch2_btree_verify(struct bch_fs *, struct btree *); ++ ++#define bypass_torture_test(d) ((d)->bypass_torture_test) ++ ++#else /* DEBUG */ ++ ++#define BCH_DEBUG_PARAM(name, description) \ ++ static inline bool name(struct bch_fs *c) { return false; } ++BCH_DEBUG_PARAMS_DEBUG() ++#undef BCH_DEBUG_PARAM ++ ++static inline void __bch2_btree_verify(struct bch_fs *c, struct btree *b) {} ++ ++#define bypass_torture_test(d) 0 ++ ++#endif ++ ++static inline void bch2_btree_verify(struct bch_fs *c, struct btree *b) ++{ ++ if (verify_btree_ondisk(c)) ++ __bch2_btree_verify(c, b); ++} ++ ++#ifdef CONFIG_DEBUG_FS ++void bch2_fs_debug_exit(struct bch_fs *); ++void bch2_fs_debug_init(struct bch_fs *); ++#else ++static inline void bch2_fs_debug_exit(struct bch_fs *c) {} ++static inline void bch2_fs_debug_init(struct bch_fs *c) {} ++#endif ++ ++void bch2_debug_exit(void); ++int bch2_debug_init(void); ++ ++#endif /* _BCACHEFS_DEBUG_H */ +diff --git a/fs/bcachefs/dirent.c b/fs/bcachefs/dirent.c +new file mode 100644 +index 000000000000..f34bfda8ab0d +--- /dev/null ++++ b/fs/bcachefs/dirent.c +@@ -0,0 +1,385 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bkey_methods.h" ++#include "btree_update.h" ++#include "extents.h" ++#include "dirent.h" ++#include "fs.h" ++#include "keylist.h" ++#include "str_hash.h" ++ ++#include ++ ++unsigned bch2_dirent_name_bytes(struct bkey_s_c_dirent d) ++{ ++ unsigned len = bkey_val_bytes(d.k) - ++ offsetof(struct bch_dirent, d_name); ++ ++ return strnlen(d.v->d_name, len); ++} ++ ++static u64 bch2_dirent_hash(const struct bch_hash_info *info, ++ const struct qstr *name) ++{ ++ struct bch_str_hash_ctx ctx; ++ ++ bch2_str_hash_init(&ctx, info); ++ bch2_str_hash_update(&ctx, info, name->name, name->len); ++ ++ /* [0,2) reserved for dots */ ++ return max_t(u64, bch2_str_hash_end(&ctx, info), 2); ++} ++ ++static u64 dirent_hash_key(const struct bch_hash_info *info, const void *key) ++{ ++ return bch2_dirent_hash(info, key); ++} ++ ++static u64 dirent_hash_bkey(const struct bch_hash_info *info, struct bkey_s_c k) ++{ ++ struct bkey_s_c_dirent d = bkey_s_c_to_dirent(k); ++ struct qstr name = QSTR_INIT(d.v->d_name, bch2_dirent_name_bytes(d)); ++ ++ return bch2_dirent_hash(info, &name); ++} ++ ++static bool dirent_cmp_key(struct bkey_s_c _l, const void *_r) ++{ ++ struct bkey_s_c_dirent l = bkey_s_c_to_dirent(_l); ++ int len = bch2_dirent_name_bytes(l); ++ const struct qstr *r = _r; ++ ++ return len - r->len ?: memcmp(l.v->d_name, r->name, len); ++} ++ ++static bool dirent_cmp_bkey(struct bkey_s_c _l, struct bkey_s_c _r) ++{ ++ struct bkey_s_c_dirent l = bkey_s_c_to_dirent(_l); ++ struct bkey_s_c_dirent r = bkey_s_c_to_dirent(_r); ++ int l_len = bch2_dirent_name_bytes(l); ++ int r_len = bch2_dirent_name_bytes(r); ++ ++ return l_len - r_len ?: memcmp(l.v->d_name, r.v->d_name, l_len); ++} ++ ++const struct bch_hash_desc bch2_dirent_hash_desc = { ++ .btree_id = BTREE_ID_DIRENTS, ++ .key_type = KEY_TYPE_dirent, ++ .hash_key = dirent_hash_key, ++ .hash_bkey = dirent_hash_bkey, ++ .cmp_key = dirent_cmp_key, ++ .cmp_bkey = dirent_cmp_bkey, ++}; ++ ++const char *bch2_dirent_invalid(const struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_s_c_dirent d = bkey_s_c_to_dirent(k); ++ unsigned len; ++ ++ if (bkey_val_bytes(k.k) < sizeof(struct bch_dirent)) ++ return "value too small"; ++ ++ len = bch2_dirent_name_bytes(d); ++ if (!len) ++ return "empty name"; ++ ++ /* ++ * older versions of bcachefs were buggy and creating dirent ++ * keys that were bigger than necessary: ++ */ ++ if (bkey_val_u64s(k.k) > dirent_val_u64s(len + 7)) ++ return "value too big"; ++ ++ if (len > BCH_NAME_MAX) ++ return "dirent name too big"; ++ ++ return NULL; ++} ++ ++void bch2_dirent_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_dirent d = bkey_s_c_to_dirent(k); ++ ++ bch_scnmemcpy(out, d.v->d_name, ++ bch2_dirent_name_bytes(d)); ++ pr_buf(out, " -> %llu type %u", d.v->d_inum, d.v->d_type); ++} ++ ++static struct bkey_i_dirent *dirent_create_key(struct btree_trans *trans, ++ u8 type, const struct qstr *name, u64 dst) ++{ ++ struct bkey_i_dirent *dirent; ++ unsigned u64s = BKEY_U64s + dirent_val_u64s(name->len); ++ ++ if (name->len > BCH_NAME_MAX) ++ return ERR_PTR(-ENAMETOOLONG); ++ ++ BUG_ON(u64s > U8_MAX); ++ ++ dirent = bch2_trans_kmalloc(trans, u64s * sizeof(u64)); ++ if (IS_ERR(dirent)) ++ return dirent; ++ ++ bkey_dirent_init(&dirent->k_i); ++ dirent->k.u64s = u64s; ++ dirent->v.d_inum = cpu_to_le64(dst); ++ dirent->v.d_type = type; ++ ++ memcpy(dirent->v.d_name, name->name, name->len); ++ memset(dirent->v.d_name + name->len, 0, ++ bkey_val_bytes(&dirent->k) - ++ offsetof(struct bch_dirent, d_name) - ++ name->len); ++ ++ EBUG_ON(bch2_dirent_name_bytes(dirent_i_to_s_c(dirent)) != name->len); ++ ++ return dirent; ++} ++ ++int bch2_dirent_create(struct btree_trans *trans, ++ u64 dir_inum, const struct bch_hash_info *hash_info, ++ u8 type, const struct qstr *name, u64 dst_inum, ++ int flags) ++{ ++ struct bkey_i_dirent *dirent; ++ int ret; ++ ++ dirent = dirent_create_key(trans, type, name, dst_inum); ++ ret = PTR_ERR_OR_ZERO(dirent); ++ if (ret) ++ return ret; ++ ++ return bch2_hash_set(trans, bch2_dirent_hash_desc, hash_info, ++ dir_inum, &dirent->k_i, flags); ++} ++ ++static void dirent_copy_target(struct bkey_i_dirent *dst, ++ struct bkey_s_c_dirent src) ++{ ++ dst->v.d_inum = src.v->d_inum; ++ dst->v.d_type = src.v->d_type; ++} ++ ++int bch2_dirent_rename(struct btree_trans *trans, ++ u64 src_dir, struct bch_hash_info *src_hash, ++ u64 dst_dir, struct bch_hash_info *dst_hash, ++ const struct qstr *src_name, u64 *src_inum, ++ const struct qstr *dst_name, u64 *dst_inum, ++ enum bch_rename_mode mode) ++{ ++ struct btree_iter *src_iter = NULL, *dst_iter = NULL; ++ struct bkey_s_c old_src, old_dst; ++ struct bkey_i_dirent *new_src = NULL, *new_dst = NULL; ++ struct bpos dst_pos = ++ POS(dst_dir, bch2_dirent_hash(dst_hash, dst_name)); ++ int ret = 0; ++ ++ *src_inum = *dst_inum = 0; ++ ++ /* ++ * Lookup dst: ++ * ++ * Note that in BCH_RENAME mode, we're _not_ checking if ++ * the target already exists - we're relying on the VFS ++ * to do that check for us for correctness: ++ */ ++ dst_iter = mode == BCH_RENAME ++ ? bch2_hash_hole(trans, bch2_dirent_hash_desc, ++ dst_hash, dst_dir, dst_name) ++ : bch2_hash_lookup(trans, bch2_dirent_hash_desc, ++ dst_hash, dst_dir, dst_name, ++ BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(dst_iter); ++ if (ret) ++ goto out; ++ ++ old_dst = bch2_btree_iter_peek_slot(dst_iter); ++ ++ if (mode != BCH_RENAME) ++ *dst_inum = le64_to_cpu(bkey_s_c_to_dirent(old_dst).v->d_inum); ++ ++ /* Lookup src: */ ++ src_iter = bch2_hash_lookup(trans, bch2_dirent_hash_desc, ++ src_hash, src_dir, src_name, ++ BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(src_iter); ++ if (ret) ++ goto out; ++ ++ old_src = bch2_btree_iter_peek_slot(src_iter); ++ *src_inum = le64_to_cpu(bkey_s_c_to_dirent(old_src).v->d_inum); ++ ++ /* Create new dst key: */ ++ new_dst = dirent_create_key(trans, 0, dst_name, 0); ++ ret = PTR_ERR_OR_ZERO(new_dst); ++ if (ret) ++ goto out; ++ ++ dirent_copy_target(new_dst, bkey_s_c_to_dirent(old_src)); ++ new_dst->k.p = dst_iter->pos; ++ ++ /* Create new src key: */ ++ if (mode == BCH_RENAME_EXCHANGE) { ++ new_src = dirent_create_key(trans, 0, src_name, 0); ++ ret = PTR_ERR_OR_ZERO(new_src); ++ if (ret) ++ goto out; ++ ++ dirent_copy_target(new_src, bkey_s_c_to_dirent(old_dst)); ++ new_src->k.p = src_iter->pos; ++ } else { ++ new_src = bch2_trans_kmalloc(trans, sizeof(struct bkey_i)); ++ ret = PTR_ERR_OR_ZERO(new_src); ++ if (ret) ++ goto out; ++ ++ bkey_init(&new_src->k); ++ new_src->k.p = src_iter->pos; ++ ++ if (bkey_cmp(dst_pos, src_iter->pos) <= 0 && ++ bkey_cmp(src_iter->pos, dst_iter->pos) < 0) { ++ /* ++ * We have a hash collision for the new dst key, ++ * and new_src - the key we're deleting - is between ++ * new_dst's hashed slot and the slot we're going to be ++ * inserting it into - oops. This will break the hash ++ * table if we don't deal with it: ++ */ ++ if (mode == BCH_RENAME) { ++ /* ++ * If we're not overwriting, we can just insert ++ * new_dst at the src position: ++ */ ++ new_dst->k.p = src_iter->pos; ++ bch2_trans_update(trans, src_iter, ++ &new_dst->k_i, 0); ++ goto out; ++ } else { ++ /* If we're overwriting, we can't insert new_dst ++ * at a different slot because it has to ++ * overwrite old_dst - just make sure to use a ++ * whiteout when deleting src: ++ */ ++ new_src->k.type = KEY_TYPE_whiteout; ++ } ++ } else { ++ /* Check if we need a whiteout to delete src: */ ++ ret = bch2_hash_needs_whiteout(trans, bch2_dirent_hash_desc, ++ src_hash, src_iter); ++ if (ret < 0) ++ goto out; ++ ++ if (ret) ++ new_src->k.type = KEY_TYPE_whiteout; ++ } ++ } ++ ++ bch2_trans_update(trans, src_iter, &new_src->k_i, 0); ++ bch2_trans_update(trans, dst_iter, &new_dst->k_i, 0); ++out: ++ bch2_trans_iter_put(trans, src_iter); ++ bch2_trans_iter_put(trans, dst_iter); ++ return ret; ++} ++ ++int bch2_dirent_delete_at(struct btree_trans *trans, ++ const struct bch_hash_info *hash_info, ++ struct btree_iter *iter) ++{ ++ return bch2_hash_delete_at(trans, bch2_dirent_hash_desc, ++ hash_info, iter); ++} ++ ++struct btree_iter * ++__bch2_dirent_lookup_trans(struct btree_trans *trans, u64 dir_inum, ++ const struct bch_hash_info *hash_info, ++ const struct qstr *name, unsigned flags) ++{ ++ return bch2_hash_lookup(trans, bch2_dirent_hash_desc, ++ hash_info, dir_inum, name, flags); ++} ++ ++u64 bch2_dirent_lookup(struct bch_fs *c, u64 dir_inum, ++ const struct bch_hash_info *hash_info, ++ const struct qstr *name) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ u64 inum = 0; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ iter = __bch2_dirent_lookup_trans(&trans, dir_inum, ++ hash_info, name, 0); ++ if (IS_ERR(iter)) { ++ BUG_ON(PTR_ERR(iter) == -EINTR); ++ goto out; ++ } ++ ++ k = bch2_btree_iter_peek_slot(iter); ++ inum = le64_to_cpu(bkey_s_c_to_dirent(k).v->d_inum); ++out: ++ bch2_trans_exit(&trans); ++ return inum; ++} ++ ++int bch2_empty_dir_trans(struct btree_trans *trans, u64 dir_inum) ++{ ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ for_each_btree_key(trans, iter, BTREE_ID_DIRENTS, ++ POS(dir_inum, 0), 0, k, ret) { ++ if (k.k->p.inode > dir_inum) ++ break; ++ ++ if (k.k->type == KEY_TYPE_dirent) { ++ ret = -ENOTEMPTY; ++ break; ++ } ++ } ++ bch2_trans_iter_put(trans, iter); ++ ++ return ret; ++} ++ ++int bch2_readdir(struct bch_fs *c, u64 inum, struct dir_context *ctx) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ struct bkey_s_c_dirent dirent; ++ int ret; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_DIRENTS, ++ POS(inum, ctx->pos), 0, k, ret) { ++ if (k.k->p.inode > inum) ++ break; ++ ++ if (k.k->type != KEY_TYPE_dirent) ++ continue; ++ ++ dirent = bkey_s_c_to_dirent(k); ++ ++ /* ++ * XXX: dir_emit() can fault and block, while we're holding ++ * locks ++ */ ++ ctx->pos = dirent.k->p.offset; ++ if (!dir_emit(ctx, dirent.v->d_name, ++ bch2_dirent_name_bytes(dirent), ++ le64_to_cpu(dirent.v->d_inum), ++ dirent.v->d_type)) ++ break; ++ ctx->pos = dirent.k->p.offset + 1; ++ } ++ ret = bch2_trans_exit(&trans) ?: ret; ++ ++ return ret; ++} +diff --git a/fs/bcachefs/dirent.h b/fs/bcachefs/dirent.h +new file mode 100644 +index 000000000000..34769371dd13 +--- /dev/null ++++ b/fs/bcachefs/dirent.h +@@ -0,0 +1,63 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_DIRENT_H ++#define _BCACHEFS_DIRENT_H ++ ++#include "str_hash.h" ++ ++extern const struct bch_hash_desc bch2_dirent_hash_desc; ++ ++const char *bch2_dirent_invalid(const struct bch_fs *, struct bkey_s_c); ++void bch2_dirent_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++ ++#define bch2_bkey_ops_dirent (struct bkey_ops) { \ ++ .key_invalid = bch2_dirent_invalid, \ ++ .val_to_text = bch2_dirent_to_text, \ ++} ++ ++struct qstr; ++struct file; ++struct dir_context; ++struct bch_fs; ++struct bch_hash_info; ++struct bch_inode_info; ++ ++unsigned bch2_dirent_name_bytes(struct bkey_s_c_dirent); ++ ++static inline unsigned dirent_val_u64s(unsigned len) ++{ ++ return DIV_ROUND_UP(offsetof(struct bch_dirent, d_name) + len, ++ sizeof(u64)); ++} ++ ++int bch2_dirent_create(struct btree_trans *, u64, ++ const struct bch_hash_info *, u8, ++ const struct qstr *, u64, int); ++ ++int bch2_dirent_delete_at(struct btree_trans *, ++ const struct bch_hash_info *, ++ struct btree_iter *); ++ ++enum bch_rename_mode { ++ BCH_RENAME, ++ BCH_RENAME_OVERWRITE, ++ BCH_RENAME_EXCHANGE, ++}; ++ ++int bch2_dirent_rename(struct btree_trans *, ++ u64, struct bch_hash_info *, ++ u64, struct bch_hash_info *, ++ const struct qstr *, u64 *, ++ const struct qstr *, u64 *, ++ enum bch_rename_mode); ++ ++struct btree_iter * ++__bch2_dirent_lookup_trans(struct btree_trans *, u64, ++ const struct bch_hash_info *, ++ const struct qstr *, unsigned); ++u64 bch2_dirent_lookup(struct bch_fs *, u64, const struct bch_hash_info *, ++ const struct qstr *); ++ ++int bch2_empty_dir_trans(struct btree_trans *, u64); ++int bch2_readdir(struct bch_fs *, u64, struct dir_context *); ++ ++#endif /* _BCACHEFS_DIRENT_H */ +diff --git a/fs/bcachefs/disk_groups.c b/fs/bcachefs/disk_groups.c +new file mode 100644 +index 000000000000..c52b6faac9b4 +--- /dev/null ++++ b/fs/bcachefs/disk_groups.c +@@ -0,0 +1,486 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "disk_groups.h" ++#include "super-io.h" ++ ++#include ++ ++static int group_cmp(const void *_l, const void *_r) ++{ ++ const struct bch_disk_group *l = _l; ++ const struct bch_disk_group *r = _r; ++ ++ return ((BCH_GROUP_DELETED(l) > BCH_GROUP_DELETED(r)) - ++ (BCH_GROUP_DELETED(l) < BCH_GROUP_DELETED(r))) ?: ++ ((BCH_GROUP_PARENT(l) > BCH_GROUP_PARENT(r)) - ++ (BCH_GROUP_PARENT(l) < BCH_GROUP_PARENT(r))) ?: ++ strncmp(l->label, r->label, sizeof(l->label)); ++} ++ ++static const char *bch2_sb_disk_groups_validate(struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_disk_groups *groups = ++ field_to_type(f, disk_groups); ++ struct bch_disk_group *g, *sorted = NULL; ++ struct bch_sb_field_members *mi; ++ struct bch_member *m; ++ unsigned i, nr_groups, len; ++ const char *err = NULL; ++ ++ mi = bch2_sb_get_members(sb); ++ groups = bch2_sb_get_disk_groups(sb); ++ nr_groups = disk_groups_nr(groups); ++ ++ for (m = mi->members; ++ m < mi->members + sb->nr_devices; ++ m++) { ++ unsigned g; ++ ++ if (!BCH_MEMBER_GROUP(m)) ++ continue; ++ ++ g = BCH_MEMBER_GROUP(m) - 1; ++ ++ if (g >= nr_groups || ++ BCH_GROUP_DELETED(&groups->entries[g])) ++ return "disk has invalid group"; ++ } ++ ++ if (!nr_groups) ++ return NULL; ++ ++ for (g = groups->entries; ++ g < groups->entries + nr_groups; ++ g++) { ++ if (BCH_GROUP_DELETED(g)) ++ continue; ++ ++ len = strnlen(g->label, sizeof(g->label)); ++ if (!len) { ++ err = "group with empty label"; ++ goto err; ++ } ++ } ++ ++ sorted = kmalloc_array(nr_groups, sizeof(*sorted), GFP_KERNEL); ++ if (!sorted) ++ return "cannot allocate memory"; ++ ++ memcpy(sorted, groups->entries, nr_groups * sizeof(*sorted)); ++ sort(sorted, nr_groups, sizeof(*sorted), group_cmp, NULL); ++ ++ for (i = 0; i + 1 < nr_groups; i++) ++ if (!BCH_GROUP_DELETED(sorted + i) && ++ !group_cmp(sorted + i, sorted + i + 1)) { ++ err = "duplicate groups"; ++ goto err; ++ } ++ ++ err = NULL; ++err: ++ kfree(sorted); ++ return err; ++} ++ ++static void bch2_sb_disk_groups_to_text(struct printbuf *out, ++ struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_disk_groups *groups = ++ field_to_type(f, disk_groups); ++ struct bch_disk_group *g; ++ unsigned nr_groups = disk_groups_nr(groups); ++ ++ for (g = groups->entries; ++ g < groups->entries + nr_groups; ++ g++) { ++ if (g != groups->entries) ++ pr_buf(out, " "); ++ ++ if (BCH_GROUP_DELETED(g)) ++ pr_buf(out, "[deleted]"); ++ else ++ pr_buf(out, "[parent %llu name %s]", ++ BCH_GROUP_PARENT(g), g->label); ++ } ++} ++ ++const struct bch_sb_field_ops bch_sb_field_ops_disk_groups = { ++ .validate = bch2_sb_disk_groups_validate, ++ .to_text = bch2_sb_disk_groups_to_text ++}; ++ ++int bch2_sb_disk_groups_to_cpu(struct bch_fs *c) ++{ ++ struct bch_sb_field_members *mi; ++ struct bch_sb_field_disk_groups *groups; ++ struct bch_disk_groups_cpu *cpu_g, *old_g; ++ unsigned i, g, nr_groups; ++ ++ lockdep_assert_held(&c->sb_lock); ++ ++ mi = bch2_sb_get_members(c->disk_sb.sb); ++ groups = bch2_sb_get_disk_groups(c->disk_sb.sb); ++ nr_groups = disk_groups_nr(groups); ++ ++ if (!groups) ++ return 0; ++ ++ cpu_g = kzalloc(sizeof(*cpu_g) + ++ sizeof(cpu_g->entries[0]) * nr_groups, GFP_KERNEL); ++ if (!cpu_g) ++ return -ENOMEM; ++ ++ cpu_g->nr = nr_groups; ++ ++ for (i = 0; i < nr_groups; i++) { ++ struct bch_disk_group *src = &groups->entries[i]; ++ struct bch_disk_group_cpu *dst = &cpu_g->entries[i]; ++ ++ dst->deleted = BCH_GROUP_DELETED(src); ++ dst->parent = BCH_GROUP_PARENT(src); ++ } ++ ++ for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { ++ struct bch_member *m = mi->members + i; ++ struct bch_disk_group_cpu *dst = ++ &cpu_g->entries[BCH_MEMBER_GROUP(m)]; ++ ++ if (!bch2_member_exists(m)) ++ continue; ++ ++ g = BCH_MEMBER_GROUP(m); ++ while (g) { ++ dst = &cpu_g->entries[g - 1]; ++ __set_bit(i, dst->devs.d); ++ g = dst->parent; ++ } ++ } ++ ++ old_g = rcu_dereference_protected(c->disk_groups, ++ lockdep_is_held(&c->sb_lock)); ++ rcu_assign_pointer(c->disk_groups, cpu_g); ++ if (old_g) ++ kfree_rcu(old_g, rcu); ++ ++ return 0; ++} ++ ++const struct bch_devs_mask *bch2_target_to_mask(struct bch_fs *c, unsigned target) ++{ ++ struct target t = target_decode(target); ++ ++ switch (t.type) { ++ case TARGET_NULL: ++ return NULL; ++ case TARGET_DEV: { ++ struct bch_dev *ca = t.dev < c->sb.nr_devices ++ ? rcu_dereference(c->devs[t.dev]) ++ : NULL; ++ return ca ? &ca->self : NULL; ++ } ++ case TARGET_GROUP: { ++ struct bch_disk_groups_cpu *g = rcu_dereference(c->disk_groups); ++ ++ return g && t.group < g->nr && !g->entries[t.group].deleted ++ ? &g->entries[t.group].devs ++ : NULL; ++ } ++ default: ++ BUG(); ++ } ++} ++ ++bool bch2_dev_in_target(struct bch_fs *c, unsigned dev, unsigned target) ++{ ++ struct target t = target_decode(target); ++ ++ switch (t.type) { ++ case TARGET_NULL: ++ return false; ++ case TARGET_DEV: ++ return dev == t.dev; ++ case TARGET_GROUP: { ++ struct bch_disk_groups_cpu *g; ++ const struct bch_devs_mask *m; ++ bool ret; ++ ++ rcu_read_lock(); ++ g = rcu_dereference(c->disk_groups); ++ m = g && t.group < g->nr && !g->entries[t.group].deleted ++ ? &g->entries[t.group].devs ++ : NULL; ++ ++ ret = m ? test_bit(dev, m->d) : false; ++ rcu_read_unlock(); ++ ++ return ret; ++ } ++ default: ++ BUG(); ++ } ++} ++ ++static int __bch2_disk_group_find(struct bch_sb_field_disk_groups *groups, ++ unsigned parent, ++ const char *name, unsigned namelen) ++{ ++ unsigned i, nr_groups = disk_groups_nr(groups); ++ ++ if (!namelen || namelen > BCH_SB_LABEL_SIZE) ++ return -EINVAL; ++ ++ for (i = 0; i < nr_groups; i++) { ++ struct bch_disk_group *g = groups->entries + i; ++ ++ if (BCH_GROUP_DELETED(g)) ++ continue; ++ ++ if (!BCH_GROUP_DELETED(g) && ++ BCH_GROUP_PARENT(g) == parent && ++ strnlen(g->label, sizeof(g->label)) == namelen && ++ !memcmp(name, g->label, namelen)) ++ return i; ++ } ++ ++ return -1; ++} ++ ++static int __bch2_disk_group_add(struct bch_sb_handle *sb, unsigned parent, ++ const char *name, unsigned namelen) ++{ ++ struct bch_sb_field_disk_groups *groups = ++ bch2_sb_get_disk_groups(sb->sb); ++ unsigned i, nr_groups = disk_groups_nr(groups); ++ struct bch_disk_group *g; ++ ++ if (!namelen || namelen > BCH_SB_LABEL_SIZE) ++ return -EINVAL; ++ ++ for (i = 0; ++ i < nr_groups && !BCH_GROUP_DELETED(&groups->entries[i]); ++ i++) ++ ; ++ ++ if (i == nr_groups) { ++ unsigned u64s = ++ (sizeof(struct bch_sb_field_disk_groups) + ++ sizeof(struct bch_disk_group) * (nr_groups + 1)) / ++ sizeof(u64); ++ ++ groups = bch2_sb_resize_disk_groups(sb, u64s); ++ if (!groups) ++ return -ENOSPC; ++ ++ nr_groups = disk_groups_nr(groups); ++ } ++ ++ BUG_ON(i >= nr_groups); ++ ++ g = &groups->entries[i]; ++ ++ memcpy(g->label, name, namelen); ++ if (namelen < sizeof(g->label)) ++ g->label[namelen] = '\0'; ++ SET_BCH_GROUP_DELETED(g, 0); ++ SET_BCH_GROUP_PARENT(g, parent); ++ SET_BCH_GROUP_DATA_ALLOWED(g, ~0); ++ ++ return i; ++} ++ ++int bch2_disk_path_find(struct bch_sb_handle *sb, const char *name) ++{ ++ struct bch_sb_field_disk_groups *groups = ++ bch2_sb_get_disk_groups(sb->sb); ++ int v = -1; ++ ++ do { ++ const char *next = strchrnul(name, '.'); ++ unsigned len = next - name; ++ ++ if (*next == '.') ++ next++; ++ ++ v = __bch2_disk_group_find(groups, v + 1, name, len); ++ name = next; ++ } while (*name && v >= 0); ++ ++ return v; ++} ++ ++int bch2_disk_path_find_or_create(struct bch_sb_handle *sb, const char *name) ++{ ++ struct bch_sb_field_disk_groups *groups; ++ unsigned parent = 0; ++ int v = -1; ++ ++ do { ++ const char *next = strchrnul(name, '.'); ++ unsigned len = next - name; ++ ++ if (*next == '.') ++ next++; ++ ++ groups = bch2_sb_get_disk_groups(sb->sb); ++ ++ v = __bch2_disk_group_find(groups, parent, name, len); ++ if (v < 0) ++ v = __bch2_disk_group_add(sb, parent, name, len); ++ if (v < 0) ++ return v; ++ ++ parent = v + 1; ++ name = next; ++ } while (*name && v >= 0); ++ ++ return v; ++} ++ ++void bch2_disk_path_to_text(struct printbuf *out, ++ struct bch_sb_handle *sb, ++ unsigned v) ++{ ++ struct bch_sb_field_disk_groups *groups = ++ bch2_sb_get_disk_groups(sb->sb); ++ struct bch_disk_group *g; ++ unsigned nr = 0; ++ u16 path[32]; ++ ++ while (1) { ++ if (nr == ARRAY_SIZE(path)) ++ goto inval; ++ ++ if (v >= disk_groups_nr(groups)) ++ goto inval; ++ ++ g = groups->entries + v; ++ ++ if (BCH_GROUP_DELETED(g)) ++ goto inval; ++ ++ path[nr++] = v; ++ ++ if (!BCH_GROUP_PARENT(g)) ++ break; ++ ++ v = BCH_GROUP_PARENT(g) - 1; ++ } ++ ++ while (nr) { ++ v = path[--nr]; ++ g = groups->entries + v; ++ ++ bch_scnmemcpy(out, g->label, ++ strnlen(g->label, sizeof(g->label))); ++ ++ if (nr) ++ pr_buf(out, "."); ++ } ++ return; ++inval: ++ pr_buf(out, "invalid group %u", v); ++} ++ ++int bch2_dev_group_set(struct bch_fs *c, struct bch_dev *ca, const char *name) ++{ ++ struct bch_member *mi; ++ int v = -1; ++ int ret = 0; ++ ++ mutex_lock(&c->sb_lock); ++ ++ if (!strlen(name) || !strcmp(name, "none")) ++ goto write_sb; ++ ++ v = bch2_disk_path_find_or_create(&c->disk_sb, name); ++ if (v < 0) { ++ mutex_unlock(&c->sb_lock); ++ return v; ++ } ++ ++ ret = bch2_sb_disk_groups_to_cpu(c); ++ if (ret) ++ goto unlock; ++write_sb: ++ mi = &bch2_sb_get_members(c->disk_sb.sb)->members[ca->dev_idx]; ++ SET_BCH_MEMBER_GROUP(mi, v + 1); ++ ++ bch2_write_super(c); ++unlock: ++ mutex_unlock(&c->sb_lock); ++ ++ return ret; ++} ++ ++int bch2_opt_target_parse(struct bch_fs *c, const char *buf, u64 *v) ++{ ++ struct bch_dev *ca; ++ int g; ++ ++ if (!strlen(buf) || !strcmp(buf, "none")) { ++ *v = 0; ++ return 0; ++ } ++ ++ /* Is it a device? */ ++ ca = bch2_dev_lookup(c, buf); ++ if (!IS_ERR(ca)) { ++ *v = dev_to_target(ca->dev_idx); ++ percpu_ref_put(&ca->ref); ++ return 0; ++ } ++ ++ mutex_lock(&c->sb_lock); ++ g = bch2_disk_path_find(&c->disk_sb, buf); ++ mutex_unlock(&c->sb_lock); ++ ++ if (g >= 0) { ++ *v = group_to_target(g); ++ return 0; ++ } ++ ++ return -EINVAL; ++} ++ ++void bch2_opt_target_to_text(struct printbuf *out, struct bch_fs *c, u64 v) ++{ ++ struct target t = target_decode(v); ++ ++ switch (t.type) { ++ case TARGET_NULL: ++ pr_buf(out, "none"); ++ break; ++ case TARGET_DEV: { ++ struct bch_dev *ca; ++ ++ rcu_read_lock(); ++ ca = t.dev < c->sb.nr_devices ++ ? rcu_dereference(c->devs[t.dev]) ++ : NULL; ++ ++ if (ca && percpu_ref_tryget(&ca->io_ref)) { ++ char b[BDEVNAME_SIZE]; ++ ++ pr_buf(out, "/dev/%s", ++ bdevname(ca->disk_sb.bdev, b)); ++ percpu_ref_put(&ca->io_ref); ++ } else if (ca) { ++ pr_buf(out, "offline device %u", t.dev); ++ } else { ++ pr_buf(out, "invalid device %u", t.dev); ++ } ++ ++ rcu_read_unlock(); ++ break; ++ } ++ case TARGET_GROUP: ++ mutex_lock(&c->sb_lock); ++ bch2_disk_path_to_text(out, &c->disk_sb, t.group); ++ mutex_unlock(&c->sb_lock); ++ break; ++ default: ++ BUG(); ++ } ++} +diff --git a/fs/bcachefs/disk_groups.h b/fs/bcachefs/disk_groups.h +new file mode 100644 +index 000000000000..3d84f23c34ed +--- /dev/null ++++ b/fs/bcachefs/disk_groups.h +@@ -0,0 +1,91 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_DISK_GROUPS_H ++#define _BCACHEFS_DISK_GROUPS_H ++ ++extern const struct bch_sb_field_ops bch_sb_field_ops_disk_groups; ++ ++static inline unsigned disk_groups_nr(struct bch_sb_field_disk_groups *groups) ++{ ++ return groups ++ ? (vstruct_end(&groups->field) - ++ (void *) &groups->entries[0]) / sizeof(struct bch_disk_group) ++ : 0; ++} ++ ++struct target { ++ enum { ++ TARGET_NULL, ++ TARGET_DEV, ++ TARGET_GROUP, ++ } type; ++ union { ++ unsigned dev; ++ unsigned group; ++ }; ++}; ++ ++#define TARGET_DEV_START 1 ++#define TARGET_GROUP_START (256 + TARGET_DEV_START) ++ ++static inline u16 dev_to_target(unsigned dev) ++{ ++ return TARGET_DEV_START + dev; ++} ++ ++static inline u16 group_to_target(unsigned group) ++{ ++ return TARGET_GROUP_START + group; ++} ++ ++static inline struct target target_decode(unsigned target) ++{ ++ if (target >= TARGET_GROUP_START) ++ return (struct target) { ++ .type = TARGET_GROUP, ++ .group = target - TARGET_GROUP_START ++ }; ++ ++ if (target >= TARGET_DEV_START) ++ return (struct target) { ++ .type = TARGET_DEV, ++ .group = target - TARGET_DEV_START ++ }; ++ ++ return (struct target) { .type = TARGET_NULL }; ++} ++ ++const struct bch_devs_mask *bch2_target_to_mask(struct bch_fs *, unsigned); ++ ++static inline struct bch_devs_mask target_rw_devs(struct bch_fs *c, ++ enum bch_data_type data_type, ++ u16 target) ++{ ++ struct bch_devs_mask devs = c->rw_devs[data_type]; ++ const struct bch_devs_mask *t = bch2_target_to_mask(c, target); ++ ++ if (t) ++ bitmap_and(devs.d, devs.d, t->d, BCH_SB_MEMBERS_MAX); ++ return devs; ++} ++ ++bool bch2_dev_in_target(struct bch_fs *, unsigned, unsigned); ++ ++int bch2_disk_path_find(struct bch_sb_handle *, const char *); ++ ++/* Exported for userspace bcachefs-tools: */ ++int bch2_disk_path_find_or_create(struct bch_sb_handle *, const char *); ++ ++void bch2_disk_path_to_text(struct printbuf *, struct bch_sb_handle *, ++ unsigned); ++ ++int bch2_opt_target_parse(struct bch_fs *, const char *, u64 *); ++void bch2_opt_target_to_text(struct printbuf *, struct bch_fs *, u64); ++ ++int bch2_sb_disk_groups_to_cpu(struct bch_fs *); ++ ++int bch2_dev_group_set(struct bch_fs *, struct bch_dev *, const char *); ++ ++const char *bch2_sb_validate_disk_groups(struct bch_sb *, ++ struct bch_sb_field *); ++ ++#endif /* _BCACHEFS_DISK_GROUPS_H */ +diff --git a/fs/bcachefs/ec.c b/fs/bcachefs/ec.c +new file mode 100644 +index 000000000000..eac750ad2240 +--- /dev/null ++++ b/fs/bcachefs/ec.c +@@ -0,0 +1,1636 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++/* erasure coding */ ++ ++#include "bcachefs.h" ++#include "alloc_foreground.h" ++#include "bkey_on_stack.h" ++#include "bset.h" ++#include "btree_gc.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "disk_groups.h" ++#include "ec.h" ++#include "error.h" ++#include "io.h" ++#include "keylist.h" ++#include "recovery.h" ++#include "super-io.h" ++#include "util.h" ++ ++#include ++ ++#ifdef __KERNEL__ ++ ++#include ++#include ++ ++static void raid5_recov(unsigned disks, unsigned failed_idx, ++ size_t size, void **data) ++{ ++ unsigned i = 2, nr; ++ ++ BUG_ON(failed_idx >= disks); ++ ++ swap(data[0], data[failed_idx]); ++ memcpy(data[0], data[1], size); ++ ++ while (i < disks) { ++ nr = min_t(unsigned, disks - i, MAX_XOR_BLOCKS); ++ xor_blocks(nr, size, data[0], data + i); ++ i += nr; ++ } ++ ++ swap(data[0], data[failed_idx]); ++} ++ ++static void raid_gen(int nd, int np, size_t size, void **v) ++{ ++ if (np >= 1) ++ raid5_recov(nd + np, nd, size, v); ++ if (np >= 2) ++ raid6_call.gen_syndrome(nd + np, size, v); ++ BUG_ON(np > 2); ++} ++ ++static void raid_rec(int nr, int *ir, int nd, int np, size_t size, void **v) ++{ ++ switch (nr) { ++ case 0: ++ break; ++ case 1: ++ if (ir[0] < nd + 1) ++ raid5_recov(nd + 1, ir[0], size, v); ++ else ++ raid6_call.gen_syndrome(nd + np, size, v); ++ break; ++ case 2: ++ if (ir[1] < nd) { ++ /* data+data failure. */ ++ raid6_2data_recov(nd + np, size, ir[0], ir[1], v); ++ } else if (ir[0] < nd) { ++ /* data + p/q failure */ ++ ++ if (ir[1] == nd) /* data + p failure */ ++ raid6_datap_recov(nd + np, size, ir[0], v); ++ else { /* data + q failure */ ++ raid5_recov(nd + 1, ir[0], size, v); ++ raid6_call.gen_syndrome(nd + np, size, v); ++ } ++ } else { ++ raid_gen(nd, np, size, v); ++ } ++ break; ++ default: ++ BUG(); ++ } ++} ++ ++#else ++ ++#include ++ ++#endif ++ ++struct ec_bio { ++ struct bch_dev *ca; ++ struct ec_stripe_buf *buf; ++ size_t idx; ++ struct bio bio; ++}; ++ ++/* Stripes btree keys: */ ++ ++const char *bch2_stripe_invalid(const struct bch_fs *c, struct bkey_s_c k) ++{ ++ const struct bch_stripe *s = bkey_s_c_to_stripe(k).v; ++ ++ if (k.k->p.inode) ++ return "invalid stripe key"; ++ ++ if (bkey_val_bytes(k.k) < sizeof(*s)) ++ return "incorrect value size"; ++ ++ if (bkey_val_bytes(k.k) < sizeof(*s) || ++ bkey_val_u64s(k.k) < stripe_val_u64s(s)) ++ return "incorrect value size"; ++ ++ return bch2_bkey_ptrs_invalid(c, k); ++} ++ ++void bch2_stripe_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ const struct bch_stripe *s = bkey_s_c_to_stripe(k).v; ++ unsigned i; ++ ++ pr_buf(out, "algo %u sectors %u blocks %u:%u csum %u gran %u", ++ s->algorithm, ++ le16_to_cpu(s->sectors), ++ s->nr_blocks - s->nr_redundant, ++ s->nr_redundant, ++ s->csum_type, ++ 1U << s->csum_granularity_bits); ++ ++ for (i = 0; i < s->nr_blocks; i++) ++ pr_buf(out, " %u:%llu:%u", s->ptrs[i].dev, ++ (u64) s->ptrs[i].offset, ++ stripe_blockcount_get(s, i)); ++} ++ ++static int ptr_matches_stripe(struct bch_fs *c, ++ struct bch_stripe *v, ++ const struct bch_extent_ptr *ptr) ++{ ++ unsigned i; ++ ++ for (i = 0; i < v->nr_blocks - v->nr_redundant; i++) { ++ const struct bch_extent_ptr *ptr2 = v->ptrs + i; ++ ++ if (ptr->dev == ptr2->dev && ++ ptr->gen == ptr2->gen && ++ ptr->offset >= ptr2->offset && ++ ptr->offset < ptr2->offset + le16_to_cpu(v->sectors)) ++ return i; ++ } ++ ++ return -1; ++} ++ ++static int extent_matches_stripe(struct bch_fs *c, ++ struct bch_stripe *v, ++ struct bkey_s_c k) ++{ ++ ++ switch (k.k->type) { ++ case KEY_TYPE_extent: { ++ struct bkey_s_c_extent e = bkey_s_c_to_extent(k); ++ const struct bch_extent_ptr *ptr; ++ int idx; ++ ++ extent_for_each_ptr(e, ptr) { ++ idx = ptr_matches_stripe(c, v, ptr); ++ if (idx >= 0) ++ return idx; ++ } ++ break; ++ } ++ } ++ ++ return -1; ++} ++ ++static bool extent_has_stripe_ptr(struct bkey_s_c k, u64 idx) ++{ ++ switch (k.k->type) { ++ case KEY_TYPE_extent: { ++ struct bkey_s_c_extent e = bkey_s_c_to_extent(k); ++ const union bch_extent_entry *entry; ++ ++ extent_for_each_entry(e, entry) ++ if (extent_entry_type(entry) == ++ BCH_EXTENT_ENTRY_stripe_ptr && ++ entry->stripe_ptr.idx == idx) ++ return true; ++ ++ break; ++ } ++ } ++ ++ return false; ++} ++ ++/* Checksumming: */ ++ ++static void ec_generate_checksums(struct ec_stripe_buf *buf) ++{ ++ struct bch_stripe *v = &buf->key.v; ++ unsigned csum_granularity = 1 << v->csum_granularity_bits; ++ unsigned csums_per_device = stripe_csums_per_device(v); ++ unsigned csum_bytes = bch_crc_bytes[v->csum_type]; ++ unsigned i, j; ++ ++ if (!csum_bytes) ++ return; ++ ++ BUG_ON(buf->offset); ++ BUG_ON(buf->size != le16_to_cpu(v->sectors)); ++ ++ for (i = 0; i < v->nr_blocks; i++) { ++ for (j = 0; j < csums_per_device; j++) { ++ unsigned offset = j << v->csum_granularity_bits; ++ unsigned len = min(csum_granularity, buf->size - offset); ++ ++ struct bch_csum csum = ++ bch2_checksum(NULL, v->csum_type, ++ null_nonce(), ++ buf->data[i] + (offset << 9), ++ len << 9); ++ ++ memcpy(stripe_csum(v, i, j), &csum, csum_bytes); ++ } ++ } ++} ++ ++static void ec_validate_checksums(struct bch_fs *c, struct ec_stripe_buf *buf) ++{ ++ struct bch_stripe *v = &buf->key.v; ++ unsigned csum_granularity = 1 << v->csum_granularity_bits; ++ unsigned csum_bytes = bch_crc_bytes[v->csum_type]; ++ unsigned i; ++ ++ if (!csum_bytes) ++ return; ++ ++ for (i = 0; i < v->nr_blocks; i++) { ++ unsigned offset = buf->offset; ++ unsigned end = buf->offset + buf->size; ++ ++ if (!test_bit(i, buf->valid)) ++ continue; ++ ++ while (offset < end) { ++ unsigned j = offset >> v->csum_granularity_bits; ++ unsigned len = min(csum_granularity, end - offset); ++ struct bch_csum csum; ++ ++ BUG_ON(offset & (csum_granularity - 1)); ++ BUG_ON(offset + len != le16_to_cpu(v->sectors) && ++ ((offset + len) & (csum_granularity - 1))); ++ ++ csum = bch2_checksum(NULL, v->csum_type, ++ null_nonce(), ++ buf->data[i] + ((offset - buf->offset) << 9), ++ len << 9); ++ ++ if (memcmp(stripe_csum(v, i, j), &csum, csum_bytes)) { ++ __bcache_io_error(c, ++ "checksum error while doing reconstruct read (%u:%u)", ++ i, j); ++ clear_bit(i, buf->valid); ++ break; ++ } ++ ++ offset += len; ++ } ++ } ++} ++ ++/* Erasure coding: */ ++ ++static void ec_generate_ec(struct ec_stripe_buf *buf) ++{ ++ struct bch_stripe *v = &buf->key.v; ++ unsigned nr_data = v->nr_blocks - v->nr_redundant; ++ unsigned bytes = le16_to_cpu(v->sectors) << 9; ++ ++ raid_gen(nr_data, v->nr_redundant, bytes, buf->data); ++} ++ ++static unsigned __ec_nr_failed(struct ec_stripe_buf *buf, unsigned nr) ++{ ++ return nr - bitmap_weight(buf->valid, nr); ++} ++ ++static unsigned ec_nr_failed(struct ec_stripe_buf *buf) ++{ ++ return __ec_nr_failed(buf, buf->key.v.nr_blocks); ++} ++ ++static int ec_do_recov(struct bch_fs *c, struct ec_stripe_buf *buf) ++{ ++ struct bch_stripe *v = &buf->key.v; ++ unsigned i, failed[EC_STRIPE_MAX], nr_failed = 0; ++ unsigned nr_data = v->nr_blocks - v->nr_redundant; ++ unsigned bytes = buf->size << 9; ++ ++ if (ec_nr_failed(buf) > v->nr_redundant) { ++ __bcache_io_error(c, ++ "error doing reconstruct read: unable to read enough blocks"); ++ return -1; ++ } ++ ++ for (i = 0; i < nr_data; i++) ++ if (!test_bit(i, buf->valid)) ++ failed[nr_failed++] = i; ++ ++ raid_rec(nr_failed, failed, nr_data, v->nr_redundant, bytes, buf->data); ++ return 0; ++} ++ ++/* IO: */ ++ ++static void ec_block_endio(struct bio *bio) ++{ ++ struct ec_bio *ec_bio = container_of(bio, struct ec_bio, bio); ++ struct bch_dev *ca = ec_bio->ca; ++ struct closure *cl = bio->bi_private; ++ ++ if (bch2_dev_io_err_on(bio->bi_status, ca, "erasure coding %s: %s", ++ bio_data_dir(bio) ? "write" : "read", ++ bch2_blk_status_to_str(bio->bi_status))) ++ clear_bit(ec_bio->idx, ec_bio->buf->valid); ++ ++ bio_put(&ec_bio->bio); ++ percpu_ref_put(&ca->io_ref); ++ closure_put(cl); ++} ++ ++static void ec_block_io(struct bch_fs *c, struct ec_stripe_buf *buf, ++ unsigned rw, unsigned idx, struct closure *cl) ++{ ++ struct bch_stripe *v = &buf->key.v; ++ unsigned offset = 0, bytes = buf->size << 9; ++ struct bch_extent_ptr *ptr = &v->ptrs[idx]; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ ++ if (!bch2_dev_get_ioref(ca, rw)) { ++ clear_bit(idx, buf->valid); ++ return; ++ } ++ ++ while (offset < bytes) { ++ unsigned nr_iovecs = min_t(size_t, BIO_MAX_PAGES, ++ DIV_ROUND_UP(bytes, PAGE_SIZE)); ++ unsigned b = min_t(size_t, bytes - offset, ++ nr_iovecs << PAGE_SHIFT); ++ struct ec_bio *ec_bio; ++ ++ ec_bio = container_of(bio_alloc_bioset(GFP_KERNEL, nr_iovecs, ++ &c->ec_bioset), ++ struct ec_bio, bio); ++ ++ ec_bio->ca = ca; ++ ec_bio->buf = buf; ++ ec_bio->idx = idx; ++ ++ bio_set_dev(&ec_bio->bio, ca->disk_sb.bdev); ++ bio_set_op_attrs(&ec_bio->bio, rw, 0); ++ ++ ec_bio->bio.bi_iter.bi_sector = ptr->offset + buf->offset + (offset >> 9); ++ ec_bio->bio.bi_end_io = ec_block_endio; ++ ec_bio->bio.bi_private = cl; ++ ++ bch2_bio_map(&ec_bio->bio, buf->data[idx] + offset, b); ++ ++ closure_get(cl); ++ percpu_ref_get(&ca->io_ref); ++ ++ submit_bio(&ec_bio->bio); ++ ++ offset += b; ++ } ++ ++ percpu_ref_put(&ca->io_ref); ++} ++ ++/* recovery read path: */ ++int bch2_ec_read_extent(struct bch_fs *c, struct bch_read_bio *rbio) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct ec_stripe_buf *buf; ++ struct closure cl; ++ struct bkey_s_c k; ++ struct bch_stripe *v; ++ unsigned stripe_idx; ++ unsigned offset, end; ++ unsigned i, nr_data, csum_granularity; ++ int ret = 0, idx; ++ ++ closure_init_stack(&cl); ++ ++ BUG_ON(!rbio->pick.has_ec); ++ ++ stripe_idx = rbio->pick.ec.idx; ++ ++ buf = kzalloc(sizeof(*buf), GFP_NOIO); ++ if (!buf) ++ return -ENOMEM; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_EC, ++ POS(0, stripe_idx), ++ BTREE_ITER_SLOTS); ++ k = bch2_btree_iter_peek_slot(iter); ++ if (bkey_err(k) || k.k->type != KEY_TYPE_stripe) { ++ __bcache_io_error(c, ++ "error doing reconstruct read: stripe not found"); ++ kfree(buf); ++ return bch2_trans_exit(&trans) ?: -EIO; ++ } ++ ++ bkey_reassemble(&buf->key.k_i, k); ++ bch2_trans_exit(&trans); ++ ++ v = &buf->key.v; ++ ++ nr_data = v->nr_blocks - v->nr_redundant; ++ ++ idx = ptr_matches_stripe(c, v, &rbio->pick.ptr); ++ BUG_ON(idx < 0); ++ ++ csum_granularity = 1U << v->csum_granularity_bits; ++ ++ offset = rbio->bio.bi_iter.bi_sector - v->ptrs[idx].offset; ++ end = offset + bio_sectors(&rbio->bio); ++ ++ BUG_ON(end > le16_to_cpu(v->sectors)); ++ ++ buf->offset = round_down(offset, csum_granularity); ++ buf->size = min_t(unsigned, le16_to_cpu(v->sectors), ++ round_up(end, csum_granularity)) - buf->offset; ++ ++ for (i = 0; i < v->nr_blocks; i++) { ++ buf->data[i] = kmalloc(buf->size << 9, GFP_NOIO); ++ if (!buf->data[i]) { ++ ret = -ENOMEM; ++ goto err; ++ } ++ } ++ ++ memset(buf->valid, 0xFF, sizeof(buf->valid)); ++ ++ for (i = 0; i < v->nr_blocks; i++) { ++ struct bch_extent_ptr *ptr = v->ptrs + i; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ ++ if (ptr_stale(ca, ptr)) { ++ __bcache_io_error(c, ++ "error doing reconstruct read: stale pointer"); ++ clear_bit(i, buf->valid); ++ continue; ++ } ++ ++ ec_block_io(c, buf, REQ_OP_READ, i, &cl); ++ } ++ ++ closure_sync(&cl); ++ ++ if (ec_nr_failed(buf) > v->nr_redundant) { ++ __bcache_io_error(c, ++ "error doing reconstruct read: unable to read enough blocks"); ++ ret = -EIO; ++ goto err; ++ } ++ ++ ec_validate_checksums(c, buf); ++ ++ ret = ec_do_recov(c, buf); ++ if (ret) ++ goto err; ++ ++ memcpy_to_bio(&rbio->bio, rbio->bio.bi_iter, ++ buf->data[idx] + ((offset - buf->offset) << 9)); ++err: ++ for (i = 0; i < v->nr_blocks; i++) ++ kfree(buf->data[i]); ++ kfree(buf); ++ return ret; ++} ++ ++/* stripe bucket accounting: */ ++ ++static int __ec_stripe_mem_alloc(struct bch_fs *c, size_t idx, gfp_t gfp) ++{ ++ ec_stripes_heap n, *h = &c->ec_stripes_heap; ++ ++ if (idx >= h->size) { ++ if (!init_heap(&n, max(1024UL, roundup_pow_of_two(idx + 1)), gfp)) ++ return -ENOMEM; ++ ++ spin_lock(&c->ec_stripes_heap_lock); ++ if (n.size > h->size) { ++ memcpy(n.data, h->data, h->used * sizeof(h->data[0])); ++ n.used = h->used; ++ swap(*h, n); ++ } ++ spin_unlock(&c->ec_stripes_heap_lock); ++ ++ free_heap(&n); ++ } ++ ++ if (!genradix_ptr_alloc(&c->stripes[0], idx, gfp)) ++ return -ENOMEM; ++ ++ if (c->gc_pos.phase != GC_PHASE_NOT_RUNNING && ++ !genradix_ptr_alloc(&c->stripes[1], idx, gfp)) ++ return -ENOMEM; ++ ++ return 0; ++} ++ ++static int ec_stripe_mem_alloc(struct bch_fs *c, ++ struct btree_iter *iter) ++{ ++ size_t idx = iter->pos.offset; ++ int ret = 0; ++ ++ if (!__ec_stripe_mem_alloc(c, idx, GFP_NOWAIT|__GFP_NOWARN)) ++ return ret; ++ ++ bch2_trans_unlock(iter->trans); ++ ret = -EINTR; ++ ++ if (!__ec_stripe_mem_alloc(c, idx, GFP_KERNEL)) ++ return ret; ++ ++ return -ENOMEM; ++} ++ ++static ssize_t stripe_idx_to_delete(struct bch_fs *c) ++{ ++ ec_stripes_heap *h = &c->ec_stripes_heap; ++ ++ return h->used && h->data[0].blocks_nonempty == 0 ++ ? h->data[0].idx : -1; ++} ++ ++static inline int ec_stripes_heap_cmp(ec_stripes_heap *h, ++ struct ec_stripe_heap_entry l, ++ struct ec_stripe_heap_entry r) ++{ ++ return ((l.blocks_nonempty > r.blocks_nonempty) - ++ (l.blocks_nonempty < r.blocks_nonempty)); ++} ++ ++static inline void ec_stripes_heap_set_backpointer(ec_stripes_heap *h, ++ size_t i) ++{ ++ struct bch_fs *c = container_of(h, struct bch_fs, ec_stripes_heap); ++ ++ genradix_ptr(&c->stripes[0], h->data[i].idx)->heap_idx = i; ++} ++ ++static void heap_verify_backpointer(struct bch_fs *c, size_t idx) ++{ ++ ec_stripes_heap *h = &c->ec_stripes_heap; ++ struct stripe *m = genradix_ptr(&c->stripes[0], idx); ++ ++ BUG_ON(!m->alive); ++ BUG_ON(m->heap_idx >= h->used); ++ BUG_ON(h->data[m->heap_idx].idx != idx); ++} ++ ++void bch2_stripes_heap_del(struct bch_fs *c, ++ struct stripe *m, size_t idx) ++{ ++ if (!m->on_heap) ++ return; ++ ++ m->on_heap = false; ++ ++ heap_verify_backpointer(c, idx); ++ ++ heap_del(&c->ec_stripes_heap, m->heap_idx, ++ ec_stripes_heap_cmp, ++ ec_stripes_heap_set_backpointer); ++} ++ ++void bch2_stripes_heap_insert(struct bch_fs *c, ++ struct stripe *m, size_t idx) ++{ ++ if (m->on_heap) ++ return; ++ ++ BUG_ON(heap_full(&c->ec_stripes_heap)); ++ ++ m->on_heap = true; ++ ++ heap_add(&c->ec_stripes_heap, ((struct ec_stripe_heap_entry) { ++ .idx = idx, ++ .blocks_nonempty = m->blocks_nonempty, ++ }), ++ ec_stripes_heap_cmp, ++ ec_stripes_heap_set_backpointer); ++ ++ heap_verify_backpointer(c, idx); ++} ++ ++void bch2_stripes_heap_update(struct bch_fs *c, ++ struct stripe *m, size_t idx) ++{ ++ ec_stripes_heap *h = &c->ec_stripes_heap; ++ size_t i; ++ ++ if (!m->on_heap) ++ return; ++ ++ heap_verify_backpointer(c, idx); ++ ++ h->data[m->heap_idx].blocks_nonempty = m->blocks_nonempty; ++ ++ i = m->heap_idx; ++ heap_sift_up(h, i, ec_stripes_heap_cmp, ++ ec_stripes_heap_set_backpointer); ++ heap_sift_down(h, i, ec_stripes_heap_cmp, ++ ec_stripes_heap_set_backpointer); ++ ++ heap_verify_backpointer(c, idx); ++ ++ if (stripe_idx_to_delete(c) >= 0 && ++ !percpu_ref_is_dying(&c->writes)) ++ schedule_work(&c->ec_stripe_delete_work); ++} ++ ++/* stripe deletion */ ++ ++static int ec_stripe_delete(struct bch_fs *c, size_t idx) ++{ ++ //pr_info("deleting stripe %zu", idx); ++ return bch2_btree_delete_range(c, BTREE_ID_EC, ++ POS(0, idx), ++ POS(0, idx + 1), ++ NULL); ++} ++ ++static void ec_stripe_delete_work(struct work_struct *work) ++{ ++ struct bch_fs *c = ++ container_of(work, struct bch_fs, ec_stripe_delete_work); ++ ssize_t idx; ++ ++ while (1) { ++ spin_lock(&c->ec_stripes_heap_lock); ++ idx = stripe_idx_to_delete(c); ++ if (idx < 0) { ++ spin_unlock(&c->ec_stripes_heap_lock); ++ break; ++ } ++ ++ bch2_stripes_heap_del(c, genradix_ptr(&c->stripes[0], idx), idx); ++ spin_unlock(&c->ec_stripes_heap_lock); ++ ++ if (ec_stripe_delete(c, idx)) ++ break; ++ } ++} ++ ++/* stripe creation: */ ++ ++static int ec_stripe_bkey_insert(struct bch_fs *c, ++ struct bkey_i_stripe *stripe) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ struct bpos start_pos = POS(0, c->ec_stripe_hint); ++ int ret; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++retry: ++ bch2_trans_begin(&trans); ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_EC, start_pos, ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT, k, ret) { ++ if (bkey_cmp(k.k->p, POS(0, U32_MAX)) > 0) { ++ if (start_pos.offset) { ++ start_pos = POS_MIN; ++ bch2_btree_iter_set_pos(iter, start_pos); ++ continue; ++ } ++ ++ ret = -ENOSPC; ++ break; ++ } ++ ++ if (bkey_deleted(k.k)) ++ goto found_slot; ++ } ++ ++ goto err; ++found_slot: ++ start_pos = iter->pos; ++ ++ ret = ec_stripe_mem_alloc(c, iter); ++ if (ret) ++ goto err; ++ ++ stripe->k.p = iter->pos; ++ ++ bch2_trans_update(&trans, iter, &stripe->k_i, 0); ++ ++ ret = bch2_trans_commit(&trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL); ++err: ++ bch2_trans_iter_put(&trans, iter); ++ ++ if (ret == -EINTR) ++ goto retry; ++ ++ c->ec_stripe_hint = ret ? start_pos.offset : start_pos.offset + 1; ++ bch2_trans_exit(&trans); ++ ++ return ret; ++} ++ ++static void extent_stripe_ptr_add(struct bkey_s_extent e, ++ struct ec_stripe_buf *s, ++ struct bch_extent_ptr *ptr, ++ unsigned block) ++{ ++ struct bch_extent_stripe_ptr *dst = (void *) ptr; ++ union bch_extent_entry *end = extent_entry_last(e); ++ ++ memmove_u64s_up(dst + 1, dst, (u64 *) end - (u64 *) dst); ++ e.k->u64s += sizeof(*dst) / sizeof(u64); ++ ++ *dst = (struct bch_extent_stripe_ptr) { ++ .type = 1 << BCH_EXTENT_ENTRY_stripe_ptr, ++ .block = block, ++ .idx = s->key.k.p.offset, ++ }; ++} ++ ++static int ec_stripe_update_ptrs(struct bch_fs *c, ++ struct ec_stripe_buf *s, ++ struct bkey *pos) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ struct bkey_s_extent e; ++ struct bkey_on_stack sk; ++ int ret = 0, dev, idx; ++ ++ bkey_on_stack_init(&sk); ++ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0); ++ ++ /* XXX this doesn't support the reflink btree */ ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, ++ bkey_start_pos(pos), ++ BTREE_ITER_INTENT); ++ ++ while ((k = bch2_btree_iter_peek(iter)).k && ++ !(ret = bkey_err(k)) && ++ bkey_cmp(bkey_start_pos(k.k), pos->p) < 0) { ++ struct bch_extent_ptr *ptr, *ec_ptr = NULL; ++ ++ if (extent_has_stripe_ptr(k, s->key.k.p.offset)) { ++ bch2_btree_iter_next(iter); ++ continue; ++ } ++ ++ idx = extent_matches_stripe(c, &s->key.v, k); ++ if (idx < 0) { ++ bch2_btree_iter_next(iter); ++ continue; ++ } ++ ++ dev = s->key.v.ptrs[idx].dev; ++ ++ bkey_on_stack_reassemble(&sk, c, k); ++ e = bkey_i_to_s_extent(sk.k); ++ ++ bch2_bkey_drop_ptrs(e.s, ptr, ptr->dev != dev); ++ ec_ptr = (void *) bch2_bkey_has_device(e.s_c, dev); ++ BUG_ON(!ec_ptr); ++ ++ extent_stripe_ptr_add(e, s, ec_ptr, idx); ++ ++ bch2_btree_iter_set_pos(iter, bkey_start_pos(&sk.k->k)); ++ bch2_trans_update(&trans, iter, sk.k, 0); ++ ++ ret = bch2_trans_commit(&trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_USE_RESERVE); ++ if (ret == -EINTR) ++ ret = 0; ++ if (ret) ++ break; ++ } ++ ++ bch2_trans_exit(&trans); ++ bkey_on_stack_exit(&sk, c); ++ ++ return ret; ++} ++ ++/* ++ * data buckets of new stripe all written: create the stripe ++ */ ++static void ec_stripe_create(struct ec_stripe_new *s) ++{ ++ struct bch_fs *c = s->c; ++ struct open_bucket *ob; ++ struct bkey_i *k; ++ struct stripe *m; ++ struct bch_stripe *v = &s->stripe.key.v; ++ unsigned i, nr_data = v->nr_blocks - v->nr_redundant; ++ struct closure cl; ++ int ret; ++ ++ BUG_ON(s->h->s == s); ++ ++ closure_init_stack(&cl); ++ ++ if (s->err) { ++ if (s->err != -EROFS) ++ bch_err(c, "error creating stripe: error writing data buckets"); ++ goto err; ++ } ++ ++ BUG_ON(!s->allocated); ++ ++ if (!percpu_ref_tryget(&c->writes)) ++ goto err; ++ ++ BUG_ON(bitmap_weight(s->blocks_allocated, ++ s->blocks.nr) != s->blocks.nr); ++ ++ ec_generate_ec(&s->stripe); ++ ++ ec_generate_checksums(&s->stripe); ++ ++ /* write p/q: */ ++ for (i = nr_data; i < v->nr_blocks; i++) ++ ec_block_io(c, &s->stripe, REQ_OP_WRITE, i, &cl); ++ ++ closure_sync(&cl); ++ ++ for (i = nr_data; i < v->nr_blocks; i++) ++ if (!test_bit(i, s->stripe.valid)) { ++ bch_err(c, "error creating stripe: error writing redundancy buckets"); ++ goto err_put_writes; ++ } ++ ++ ret = s->existing_stripe ++ ? bch2_btree_insert(c, BTREE_ID_EC, &s->stripe.key.k_i, ++ NULL, NULL, BTREE_INSERT_NOFAIL) ++ : ec_stripe_bkey_insert(c, &s->stripe.key); ++ if (ret) { ++ bch_err(c, "error creating stripe: error creating stripe key"); ++ goto err_put_writes; ++ } ++ ++ for_each_keylist_key(&s->keys, k) { ++ ret = ec_stripe_update_ptrs(c, &s->stripe, &k->k); ++ if (ret) { ++ bch_err(c, "error creating stripe: error updating pointers"); ++ break; ++ } ++ } ++ ++ spin_lock(&c->ec_stripes_heap_lock); ++ m = genradix_ptr(&c->stripes[0], s->stripe.key.k.p.offset); ++#if 0 ++ pr_info("created a %s stripe %llu", ++ s->existing_stripe ? "existing" : "new", ++ s->stripe.key.k.p.offset); ++#endif ++ BUG_ON(m->on_heap); ++ bch2_stripes_heap_insert(c, m, s->stripe.key.k.p.offset); ++ spin_unlock(&c->ec_stripes_heap_lock); ++err_put_writes: ++ percpu_ref_put(&c->writes); ++err: ++ open_bucket_for_each(c, &s->blocks, ob, i) { ++ ob->ec = NULL; ++ __bch2_open_bucket_put(c, ob); ++ } ++ ++ bch2_open_buckets_put(c, &s->parity); ++ ++ bch2_keylist_free(&s->keys, s->inline_keys); ++ ++ for (i = 0; i < s->stripe.key.v.nr_blocks; i++) ++ kvpfree(s->stripe.data[i], s->stripe.size << 9); ++ kfree(s); ++} ++ ++static void ec_stripe_create_work(struct work_struct *work) ++{ ++ struct bch_fs *c = container_of(work, ++ struct bch_fs, ec_stripe_create_work); ++ struct ec_stripe_new *s, *n; ++restart: ++ mutex_lock(&c->ec_stripe_new_lock); ++ list_for_each_entry_safe(s, n, &c->ec_stripe_new_list, list) ++ if (!atomic_read(&s->pin)) { ++ list_del(&s->list); ++ mutex_unlock(&c->ec_stripe_new_lock); ++ ec_stripe_create(s); ++ goto restart; ++ } ++ mutex_unlock(&c->ec_stripe_new_lock); ++} ++ ++static void ec_stripe_new_put(struct bch_fs *c, struct ec_stripe_new *s) ++{ ++ BUG_ON(atomic_read(&s->pin) <= 0); ++ ++ if (atomic_dec_and_test(&s->pin)) { ++ BUG_ON(!s->pending); ++ queue_work(system_long_wq, &c->ec_stripe_create_work); ++ } ++} ++ ++static void ec_stripe_set_pending(struct bch_fs *c, struct ec_stripe_head *h) ++{ ++ struct ec_stripe_new *s = h->s; ++ ++ BUG_ON(!s->allocated && !s->err); ++ ++ h->s = NULL; ++ s->pending = true; ++ ++ mutex_lock(&c->ec_stripe_new_lock); ++ list_add(&s->list, &c->ec_stripe_new_list); ++ mutex_unlock(&c->ec_stripe_new_lock); ++ ++ ec_stripe_new_put(c, s); ++} ++ ++/* have a full bucket - hand it off to be erasure coded: */ ++void bch2_ec_bucket_written(struct bch_fs *c, struct open_bucket *ob) ++{ ++ struct ec_stripe_new *s = ob->ec; ++ ++ if (ob->sectors_free) ++ s->err = -1; ++ ++ ec_stripe_new_put(c, s); ++} ++ ++void bch2_ec_bucket_cancel(struct bch_fs *c, struct open_bucket *ob) ++{ ++ struct ec_stripe_new *s = ob->ec; ++ ++ s->err = -EIO; ++} ++ ++void *bch2_writepoint_ec_buf(struct bch_fs *c, struct write_point *wp) ++{ ++ struct open_bucket *ob = ec_open_bucket(c, &wp->ptrs); ++ struct bch_dev *ca; ++ unsigned offset; ++ ++ if (!ob) ++ return NULL; ++ ++ ca = bch_dev_bkey_exists(c, ob->ptr.dev); ++ offset = ca->mi.bucket_size - ob->sectors_free; ++ ++ return ob->ec->stripe.data[ob->ec_idx] + (offset << 9); ++} ++ ++void bch2_ec_add_backpointer(struct bch_fs *c, struct write_point *wp, ++ struct bpos pos, unsigned sectors) ++{ ++ struct open_bucket *ob = ec_open_bucket(c, &wp->ptrs); ++ struct ec_stripe_new *ec; ++ ++ if (!ob) ++ return; ++ ++ //pr_info("adding backpointer at %llu:%llu", pos.inode, pos.offset); ++ ++ ec = ob->ec; ++ mutex_lock(&ec->lock); ++ ++ if (bch2_keylist_realloc(&ec->keys, ec->inline_keys, ++ ARRAY_SIZE(ec->inline_keys), ++ BKEY_U64s)) { ++ BUG(); ++ } ++ ++ bkey_init(&ec->keys.top->k); ++ ec->keys.top->k.p = pos; ++ bch2_key_resize(&ec->keys.top->k, sectors); ++ bch2_keylist_push(&ec->keys); ++ ++ mutex_unlock(&ec->lock); ++} ++ ++static int unsigned_cmp(const void *_l, const void *_r) ++{ ++ unsigned l = *((const unsigned *) _l); ++ unsigned r = *((const unsigned *) _r); ++ ++ return cmp_int(l, r); ++} ++ ++/* pick most common bucket size: */ ++static unsigned pick_blocksize(struct bch_fs *c, ++ struct bch_devs_mask *devs) ++{ ++ struct bch_dev *ca; ++ unsigned i, nr = 0, sizes[BCH_SB_MEMBERS_MAX]; ++ struct { ++ unsigned nr, size; ++ } cur = { 0, 0 }, best = { 0, 0 }; ++ ++ for_each_member_device_rcu(ca, c, i, devs) ++ sizes[nr++] = ca->mi.bucket_size; ++ ++ sort(sizes, nr, sizeof(unsigned), unsigned_cmp, NULL); ++ ++ for (i = 0; i < nr; i++) { ++ if (sizes[i] != cur.size) { ++ if (cur.nr > best.nr) ++ best = cur; ++ ++ cur.nr = 0; ++ cur.size = sizes[i]; ++ } ++ ++ cur.nr++; ++ } ++ ++ if (cur.nr > best.nr) ++ best = cur; ++ ++ return best.size; ++} ++ ++static bool may_create_new_stripe(struct bch_fs *c) ++{ ++ return false; ++} ++ ++static void ec_stripe_key_init(struct bch_fs *c, ++ struct bkey_i_stripe *s, ++ unsigned nr_data, ++ unsigned nr_parity, ++ unsigned stripe_size) ++{ ++ unsigned u64s; ++ ++ bkey_stripe_init(&s->k_i); ++ s->v.sectors = cpu_to_le16(stripe_size); ++ s->v.algorithm = 0; ++ s->v.nr_blocks = nr_data + nr_parity; ++ s->v.nr_redundant = nr_parity; ++ s->v.csum_granularity_bits = ilog2(c->sb.encoded_extent_max); ++ s->v.csum_type = BCH_CSUM_CRC32C; ++ s->v.pad = 0; ++ ++ while ((u64s = stripe_val_u64s(&s->v)) > BKEY_VAL_U64s_MAX) { ++ BUG_ON(1 << s->v.csum_granularity_bits >= ++ le16_to_cpu(s->v.sectors) || ++ s->v.csum_granularity_bits == U8_MAX); ++ s->v.csum_granularity_bits++; ++ } ++ ++ set_bkey_val_u64s(&s->k, u64s); ++} ++ ++static int ec_new_stripe_alloc(struct bch_fs *c, struct ec_stripe_head *h) ++{ ++ struct ec_stripe_new *s; ++ unsigned i; ++ ++ lockdep_assert_held(&h->lock); ++ ++ s = kzalloc(sizeof(*s), GFP_KERNEL); ++ if (!s) ++ return -ENOMEM; ++ ++ mutex_init(&s->lock); ++ atomic_set(&s->pin, 1); ++ s->c = c; ++ s->h = h; ++ s->nr_data = min_t(unsigned, h->nr_active_devs, ++ EC_STRIPE_MAX) - h->redundancy; ++ s->nr_parity = h->redundancy; ++ ++ bch2_keylist_init(&s->keys, s->inline_keys); ++ ++ s->stripe.offset = 0; ++ s->stripe.size = h->blocksize; ++ memset(s->stripe.valid, 0xFF, sizeof(s->stripe.valid)); ++ ++ ec_stripe_key_init(c, &s->stripe.key, s->nr_data, ++ s->nr_parity, h->blocksize); ++ ++ for (i = 0; i < s->stripe.key.v.nr_blocks; i++) { ++ s->stripe.data[i] = kvpmalloc(s->stripe.size << 9, GFP_KERNEL); ++ if (!s->stripe.data[i]) ++ goto err; ++ } ++ ++ h->s = s; ++ ++ return 0; ++err: ++ for (i = 0; i < s->stripe.key.v.nr_blocks; i++) ++ kvpfree(s->stripe.data[i], s->stripe.size << 9); ++ kfree(s); ++ return -ENOMEM; ++} ++ ++static struct ec_stripe_head * ++ec_new_stripe_head_alloc(struct bch_fs *c, unsigned target, ++ unsigned algo, unsigned redundancy) ++{ ++ struct ec_stripe_head *h; ++ struct bch_dev *ca; ++ unsigned i; ++ ++ h = kzalloc(sizeof(*h), GFP_KERNEL); ++ if (!h) ++ return NULL; ++ ++ mutex_init(&h->lock); ++ mutex_lock(&h->lock); ++ ++ h->target = target; ++ h->algo = algo; ++ h->redundancy = redundancy; ++ ++ rcu_read_lock(); ++ h->devs = target_rw_devs(c, BCH_DATA_user, target); ++ ++ for_each_member_device_rcu(ca, c, i, &h->devs) ++ if (!ca->mi.durability) ++ __clear_bit(i, h->devs.d); ++ ++ h->blocksize = pick_blocksize(c, &h->devs); ++ ++ for_each_member_device_rcu(ca, c, i, &h->devs) ++ if (ca->mi.bucket_size == h->blocksize) ++ h->nr_active_devs++; ++ ++ rcu_read_unlock(); ++ list_add(&h->list, &c->ec_stripe_head_list); ++ return h; ++} ++ ++void bch2_ec_stripe_head_put(struct bch_fs *c, struct ec_stripe_head *h) ++{ ++ if (h->s && ++ h->s->allocated && ++ bitmap_weight(h->s->blocks_allocated, ++ h->s->blocks.nr) == h->s->blocks.nr) ++ ec_stripe_set_pending(c, h); ++ ++ mutex_unlock(&h->lock); ++} ++ ++struct ec_stripe_head *__bch2_ec_stripe_head_get(struct bch_fs *c, ++ unsigned target, ++ unsigned algo, ++ unsigned redundancy) ++{ ++ struct ec_stripe_head *h; ++ ++ if (!redundancy) ++ return NULL; ++ ++ mutex_lock(&c->ec_stripe_head_lock); ++ list_for_each_entry(h, &c->ec_stripe_head_list, list) ++ if (h->target == target && ++ h->algo == algo && ++ h->redundancy == redundancy) { ++ mutex_lock(&h->lock); ++ goto found; ++ } ++ ++ h = ec_new_stripe_head_alloc(c, target, algo, redundancy); ++found: ++ mutex_unlock(&c->ec_stripe_head_lock); ++ return h; ++} ++ ++/* ++ * XXX: use a higher watermark for allocating open buckets here: ++ */ ++static int new_stripe_alloc_buckets(struct bch_fs *c, struct ec_stripe_head *h) ++{ ++ struct bch_devs_mask devs; ++ struct open_bucket *ob; ++ unsigned i, nr_have, nr_data = ++ min_t(unsigned, h->nr_active_devs, ++ EC_STRIPE_MAX) - h->redundancy; ++ bool have_cache = true; ++ int ret = 0; ++ ++ devs = h->devs; ++ ++ for_each_set_bit(i, h->s->blocks_allocated, EC_STRIPE_MAX) { ++ __clear_bit(h->s->stripe.key.v.ptrs[i].dev, devs.d); ++ --nr_data; ++ } ++ ++ BUG_ON(h->s->blocks.nr > nr_data); ++ BUG_ON(h->s->parity.nr > h->redundancy); ++ ++ open_bucket_for_each(c, &h->s->parity, ob, i) ++ __clear_bit(ob->ptr.dev, devs.d); ++ open_bucket_for_each(c, &h->s->blocks, ob, i) ++ __clear_bit(ob->ptr.dev, devs.d); ++ ++ percpu_down_read(&c->mark_lock); ++ rcu_read_lock(); ++ ++ if (h->s->parity.nr < h->redundancy) { ++ nr_have = h->s->parity.nr; ++ ++ ret = bch2_bucket_alloc_set(c, &h->s->parity, ++ &h->parity_stripe, ++ &devs, ++ h->redundancy, ++ &nr_have, ++ &have_cache, ++ RESERVE_NONE, ++ 0, ++ NULL); ++ if (ret) ++ goto err; ++ } ++ ++ if (h->s->blocks.nr < nr_data) { ++ nr_have = h->s->blocks.nr; ++ ++ ret = bch2_bucket_alloc_set(c, &h->s->blocks, ++ &h->block_stripe, ++ &devs, ++ nr_data, ++ &nr_have, ++ &have_cache, ++ RESERVE_NONE, ++ 0, ++ NULL); ++ if (ret) ++ goto err; ++ } ++err: ++ rcu_read_unlock(); ++ percpu_up_read(&c->mark_lock); ++ return ret; ++} ++ ++/* XXX: doesn't obey target: */ ++static s64 get_existing_stripe(struct bch_fs *c, ++ unsigned target, ++ unsigned algo, ++ unsigned redundancy) ++{ ++ ec_stripes_heap *h = &c->ec_stripes_heap; ++ struct stripe *m; ++ size_t heap_idx; ++ u64 stripe_idx; ++ ++ if (may_create_new_stripe(c)) ++ return -1; ++ ++ spin_lock(&c->ec_stripes_heap_lock); ++ for (heap_idx = 0; heap_idx < h->used; heap_idx++) { ++ if (!h->data[heap_idx].blocks_nonempty) ++ continue; ++ ++ stripe_idx = h->data[heap_idx].idx; ++ m = genradix_ptr(&c->stripes[0], stripe_idx); ++ ++ if (m->algorithm == algo && ++ m->nr_redundant == redundancy && ++ m->blocks_nonempty < m->nr_blocks - m->nr_redundant) { ++ bch2_stripes_heap_del(c, m, stripe_idx); ++ spin_unlock(&c->ec_stripes_heap_lock); ++ return stripe_idx; ++ } ++ } ++ ++ spin_unlock(&c->ec_stripes_heap_lock); ++ return -1; ++} ++ ++static int get_stripe_key(struct bch_fs *c, u64 idx, struct ec_stripe_buf *stripe) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_EC, POS(0, idx), BTREE_ITER_SLOTS); ++ k = bch2_btree_iter_peek_slot(iter); ++ ret = bkey_err(k); ++ if (!ret) ++ bkey_reassemble(&stripe->key.k_i, k); ++ bch2_trans_exit(&trans); ++ ++ return ret; ++} ++ ++struct ec_stripe_head *bch2_ec_stripe_head_get(struct bch_fs *c, ++ unsigned target, ++ unsigned algo, ++ unsigned redundancy) ++{ ++ struct closure cl; ++ struct ec_stripe_head *h; ++ struct open_bucket *ob; ++ unsigned i, data_idx = 0; ++ s64 idx; ++ ++ closure_init_stack(&cl); ++ ++ h = __bch2_ec_stripe_head_get(c, target, algo, redundancy); ++ if (!h) ++ return NULL; ++ ++ if (!h->s && ec_new_stripe_alloc(c, h)) { ++ bch2_ec_stripe_head_put(c, h); ++ return NULL; ++ } ++ ++ if (!h->s->allocated) { ++ if (!h->s->existing_stripe && ++ (idx = get_existing_stripe(c, target, algo, redundancy)) >= 0) { ++ //pr_info("got existing stripe %llu", idx); ++ ++ h->s->existing_stripe = true; ++ h->s->existing_stripe_idx = idx; ++ if (get_stripe_key(c, idx, &h->s->stripe)) { ++ /* btree error */ ++ BUG(); ++ } ++ ++ for (i = 0; i < h->s->stripe.key.v.nr_blocks; i++) ++ if (stripe_blockcount_get(&h->s->stripe.key.v, i)) { ++ __set_bit(i, h->s->blocks_allocated); ++ ec_block_io(c, &h->s->stripe, READ, i, &cl); ++ } ++ } ++ ++ if (new_stripe_alloc_buckets(c, h)) { ++ bch2_ec_stripe_head_put(c, h); ++ h = NULL; ++ goto out; ++ } ++ ++ open_bucket_for_each(c, &h->s->blocks, ob, i) { ++ data_idx = find_next_zero_bit(h->s->blocks_allocated, ++ h->s->nr_data, data_idx); ++ BUG_ON(data_idx >= h->s->nr_data); ++ ++ h->s->stripe.key.v.ptrs[data_idx] = ob->ptr; ++ h->s->data_block_idx[i] = data_idx; ++ data_idx++; ++ } ++ ++ open_bucket_for_each(c, &h->s->parity, ob, i) ++ h->s->stripe.key.v.ptrs[h->s->nr_data + i] = ob->ptr; ++ ++ //pr_info("new stripe, blocks_allocated %lx", h->s->blocks_allocated[0]); ++ h->s->allocated = true; ++ } ++out: ++ closure_sync(&cl); ++ return h; ++} ++ ++void bch2_ec_stop_dev(struct bch_fs *c, struct bch_dev *ca) ++{ ++ struct ec_stripe_head *h; ++ struct open_bucket *ob; ++ unsigned i; ++ ++ mutex_lock(&c->ec_stripe_head_lock); ++ list_for_each_entry(h, &c->ec_stripe_head_list, list) { ++ ++ mutex_lock(&h->lock); ++ if (!h->s) ++ goto unlock; ++ ++ open_bucket_for_each(c, &h->s->blocks, ob, i) ++ if (ob->ptr.dev == ca->dev_idx) ++ goto found; ++ open_bucket_for_each(c, &h->s->parity, ob, i) ++ if (ob->ptr.dev == ca->dev_idx) ++ goto found; ++ goto unlock; ++found: ++ h->s->err = -EROFS; ++ ec_stripe_set_pending(c, h); ++unlock: ++ mutex_unlock(&h->lock); ++ } ++ mutex_unlock(&c->ec_stripe_head_lock); ++} ++ ++static int __bch2_stripe_write_key(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct stripe *m, ++ size_t idx, ++ struct bkey_i_stripe *new_key) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_s_c k; ++ unsigned i; ++ int ret; ++ ++ bch2_btree_iter_set_pos(iter, POS(0, idx)); ++ ++ k = bch2_btree_iter_peek_slot(iter); ++ ret = bkey_err(k); ++ if (ret) ++ return ret; ++ ++ if (k.k->type != KEY_TYPE_stripe) ++ return -EIO; ++ ++ bkey_reassemble(&new_key->k_i, k); ++ ++ spin_lock(&c->ec_stripes_heap_lock); ++ ++ for (i = 0; i < new_key->v.nr_blocks; i++) ++ stripe_blockcount_set(&new_key->v, i, ++ m->block_sectors[i]); ++ m->dirty = false; ++ ++ spin_unlock(&c->ec_stripes_heap_lock); ++ ++ bch2_trans_update(trans, iter, &new_key->k_i, 0); ++ return 0; ++} ++ ++int bch2_stripes_write(struct bch_fs *c, unsigned flags) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct genradix_iter giter; ++ struct bkey_i_stripe *new_key; ++ struct stripe *m; ++ int ret = 0; ++ ++ new_key = kmalloc(255 * sizeof(u64), GFP_KERNEL); ++ BUG_ON(!new_key); ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_EC, POS_MIN, ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT); ++ ++ genradix_for_each(&c->stripes[0], giter, m) { ++ if (!m->dirty) ++ continue; ++ ++ ret = __bch2_trans_do(&trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL|flags, ++ __bch2_stripe_write_key(&trans, iter, m, ++ giter.pos, new_key)); ++ ++ if (ret) ++ break; ++ } ++ ++ bch2_trans_exit(&trans); ++ ++ kfree(new_key); ++ ++ return ret; ++} ++ ++static int bch2_stripes_read_fn(struct bch_fs *c, enum btree_id id, ++ unsigned level, struct bkey_s_c k) ++{ ++ int ret = 0; ++ ++ if (k.k->type == KEY_TYPE_stripe) { ++ struct stripe *m; ++ ++ ret = __ec_stripe_mem_alloc(c, k.k->p.offset, GFP_KERNEL) ?: ++ bch2_mark_key(c, k, 0, 0, NULL, 0, ++ BTREE_TRIGGER_NOATOMIC); ++ if (ret) ++ return ret; ++ ++ spin_lock(&c->ec_stripes_heap_lock); ++ m = genradix_ptr(&c->stripes[0], k.k->p.offset); ++ bch2_stripes_heap_insert(c, m, k.k->p.offset); ++ spin_unlock(&c->ec_stripes_heap_lock); ++ } ++ ++ return ret; ++} ++ ++int bch2_stripes_read(struct bch_fs *c, struct journal_keys *journal_keys) ++{ ++ int ret = bch2_btree_and_journal_walk(c, journal_keys, BTREE_ID_EC, ++ NULL, bch2_stripes_read_fn); ++ if (ret) ++ bch_err(c, "error reading stripes: %i", ret); ++ ++ return ret; ++} ++ ++int bch2_ec_mem_alloc(struct bch_fs *c, bool gc) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ size_t i, idx = 0; ++ int ret = 0; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_EC, POS(0, U64_MAX), 0); ++ ++ k = bch2_btree_iter_prev(iter); ++ if (!IS_ERR_OR_NULL(k.k)) ++ idx = k.k->p.offset + 1; ++ ret = bch2_trans_exit(&trans); ++ if (ret) ++ return ret; ++ ++ if (!idx) ++ return 0; ++ ++ if (!gc && ++ !init_heap(&c->ec_stripes_heap, roundup_pow_of_two(idx), ++ GFP_KERNEL)) ++ return -ENOMEM; ++#if 0 ++ ret = genradix_prealloc(&c->stripes[gc], idx, GFP_KERNEL); ++#else ++ for (i = 0; i < idx; i++) ++ if (!genradix_ptr_alloc(&c->stripes[gc], i, GFP_KERNEL)) ++ return -ENOMEM; ++#endif ++ return 0; ++} ++ ++void bch2_stripes_heap_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ ec_stripes_heap *h = &c->ec_stripes_heap; ++ struct stripe *m; ++ size_t i; ++ ++ spin_lock(&c->ec_stripes_heap_lock); ++ for (i = 0; i < min(h->used, 20UL); i++) { ++ m = genradix_ptr(&c->stripes[0], h->data[i].idx); ++ ++ pr_buf(out, "%zu %u/%u+%u\n", h->data[i].idx, ++ h->data[i].blocks_nonempty, ++ m->nr_blocks - m->nr_redundant, ++ m->nr_redundant); ++ } ++ spin_unlock(&c->ec_stripes_heap_lock); ++} ++ ++void bch2_new_stripes_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ struct ec_stripe_head *h; ++ struct ec_stripe_new *s; ++ ++ mutex_lock(&c->ec_stripe_head_lock); ++ list_for_each_entry(h, &c->ec_stripe_head_list, list) { ++ pr_buf(out, "target %u algo %u redundancy %u:\n", ++ h->target, h->algo, h->redundancy); ++ ++ if (h->s) ++ pr_buf(out, "\tpending: blocks %u allocated %u\n", ++ h->s->blocks.nr, ++ bitmap_weight(h->s->blocks_allocated, ++ h->s->blocks.nr)); ++ } ++ mutex_unlock(&c->ec_stripe_head_lock); ++ ++ mutex_lock(&c->ec_stripe_new_lock); ++ list_for_each_entry(s, &c->ec_stripe_new_list, list) { ++ pr_buf(out, "\tin flight: blocks %u allocated %u pin %u\n", ++ s->blocks.nr, ++ bitmap_weight(s->blocks_allocated, ++ s->blocks.nr), ++ atomic_read(&s->pin)); ++ } ++ mutex_unlock(&c->ec_stripe_new_lock); ++} ++ ++void bch2_fs_ec_exit(struct bch_fs *c) ++{ ++ struct ec_stripe_head *h; ++ ++ while (1) { ++ mutex_lock(&c->ec_stripe_head_lock); ++ h = list_first_entry_or_null(&c->ec_stripe_head_list, ++ struct ec_stripe_head, list); ++ if (h) ++ list_del(&h->list); ++ mutex_unlock(&c->ec_stripe_head_lock); ++ if (!h) ++ break; ++ ++ BUG_ON(h->s); ++ kfree(h); ++ } ++ ++ BUG_ON(!list_empty(&c->ec_stripe_new_list)); ++ ++ free_heap(&c->ec_stripes_heap); ++ genradix_free(&c->stripes[0]); ++ bioset_exit(&c->ec_bioset); ++} ++ ++int bch2_fs_ec_init(struct bch_fs *c) ++{ ++ INIT_WORK(&c->ec_stripe_create_work, ec_stripe_create_work); ++ INIT_WORK(&c->ec_stripe_delete_work, ec_stripe_delete_work); ++ ++ return bioset_init(&c->ec_bioset, 1, offsetof(struct ec_bio, bio), ++ BIOSET_NEED_BVECS); ++} +diff --git a/fs/bcachefs/ec.h b/fs/bcachefs/ec.h +new file mode 100644 +index 000000000000..6db16cf768da +--- /dev/null ++++ b/fs/bcachefs/ec.h +@@ -0,0 +1,169 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_EC_H ++#define _BCACHEFS_EC_H ++ ++#include "ec_types.h" ++#include "keylist_types.h" ++ ++const char *bch2_stripe_invalid(const struct bch_fs *, struct bkey_s_c); ++void bch2_stripe_to_text(struct printbuf *, struct bch_fs *, ++ struct bkey_s_c); ++ ++#define bch2_bkey_ops_stripe (struct bkey_ops) { \ ++ .key_invalid = bch2_stripe_invalid, \ ++ .val_to_text = bch2_stripe_to_text, \ ++ .swab = bch2_ptr_swab, \ ++} ++ ++static inline unsigned stripe_csums_per_device(const struct bch_stripe *s) ++{ ++ return DIV_ROUND_UP(le16_to_cpu(s->sectors), ++ 1 << s->csum_granularity_bits); ++} ++ ++static inline unsigned stripe_csum_offset(const struct bch_stripe *s, ++ unsigned dev, unsigned csum_idx) ++{ ++ unsigned csum_bytes = bch_crc_bytes[s->csum_type]; ++ ++ return sizeof(struct bch_stripe) + ++ sizeof(struct bch_extent_ptr) * s->nr_blocks + ++ (dev * stripe_csums_per_device(s) + csum_idx) * csum_bytes; ++} ++ ++static inline unsigned stripe_blockcount_offset(const struct bch_stripe *s, ++ unsigned idx) ++{ ++ return stripe_csum_offset(s, s->nr_blocks, 0) + ++ sizeof(u16) * idx; ++} ++ ++static inline unsigned stripe_blockcount_get(const struct bch_stripe *s, ++ unsigned idx) ++{ ++ return le16_to_cpup((void *) s + stripe_blockcount_offset(s, idx)); ++} ++ ++static inline void stripe_blockcount_set(struct bch_stripe *s, ++ unsigned idx, unsigned v) ++{ ++ __le16 *p = (void *) s + stripe_blockcount_offset(s, idx); ++ ++ *p = cpu_to_le16(v); ++} ++ ++static inline unsigned stripe_val_u64s(const struct bch_stripe *s) ++{ ++ return DIV_ROUND_UP(stripe_blockcount_offset(s, s->nr_blocks), ++ sizeof(u64)); ++} ++ ++static inline void *stripe_csum(struct bch_stripe *s, ++ unsigned dev, unsigned csum_idx) ++{ ++ return (void *) s + stripe_csum_offset(s, dev, csum_idx); ++} ++ ++struct bch_read_bio; ++ ++struct ec_stripe_buf { ++ /* might not be buffering the entire stripe: */ ++ unsigned offset; ++ unsigned size; ++ unsigned long valid[BITS_TO_LONGS(EC_STRIPE_MAX)]; ++ ++ void *data[EC_STRIPE_MAX]; ++ ++ union { ++ struct bkey_i_stripe key; ++ u64 pad[255]; ++ }; ++}; ++ ++struct ec_stripe_head; ++ ++struct ec_stripe_new { ++ struct bch_fs *c; ++ struct ec_stripe_head *h; ++ struct mutex lock; ++ struct list_head list; ++ ++ /* counts in flight writes, stripe is created when pin == 0 */ ++ atomic_t pin; ++ ++ int err; ++ ++ u8 nr_data; ++ u8 nr_parity; ++ bool allocated; ++ bool pending; ++ bool existing_stripe; ++ u64 existing_stripe_idx; ++ ++ unsigned long blocks_allocated[BITS_TO_LONGS(EC_STRIPE_MAX)]; ++ ++ struct open_buckets blocks; ++ u8 data_block_idx[EC_STRIPE_MAX]; ++ struct open_buckets parity; ++ ++ struct keylist keys; ++ u64 inline_keys[BKEY_U64s * 8]; ++ ++ struct ec_stripe_buf stripe; ++}; ++ ++struct ec_stripe_head { ++ struct list_head list; ++ struct mutex lock; ++ ++ unsigned target; ++ unsigned algo; ++ unsigned redundancy; ++ ++ struct bch_devs_mask devs; ++ unsigned nr_active_devs; ++ ++ unsigned blocksize; ++ ++ struct dev_stripe_state block_stripe; ++ struct dev_stripe_state parity_stripe; ++ ++ struct ec_stripe_new *s; ++}; ++ ++int bch2_ec_read_extent(struct bch_fs *, struct bch_read_bio *); ++ ++void *bch2_writepoint_ec_buf(struct bch_fs *, struct write_point *); ++void bch2_ec_add_backpointer(struct bch_fs *, struct write_point *, ++ struct bpos, unsigned); ++ ++void bch2_ec_bucket_written(struct bch_fs *, struct open_bucket *); ++void bch2_ec_bucket_cancel(struct bch_fs *, struct open_bucket *); ++ ++int bch2_ec_stripe_new_alloc(struct bch_fs *, struct ec_stripe_head *); ++ ++void bch2_ec_stripe_head_put(struct bch_fs *, struct ec_stripe_head *); ++struct ec_stripe_head *bch2_ec_stripe_head_get(struct bch_fs *, unsigned, ++ unsigned, unsigned); ++ ++void bch2_stripes_heap_update(struct bch_fs *, struct stripe *, size_t); ++void bch2_stripes_heap_del(struct bch_fs *, struct stripe *, size_t); ++void bch2_stripes_heap_insert(struct bch_fs *, struct stripe *, size_t); ++ ++void bch2_ec_stop_dev(struct bch_fs *, struct bch_dev *); ++ ++void bch2_ec_flush_new_stripes(struct bch_fs *); ++ ++struct journal_keys; ++int bch2_stripes_read(struct bch_fs *, struct journal_keys *); ++int bch2_stripes_write(struct bch_fs *, unsigned); ++ ++int bch2_ec_mem_alloc(struct bch_fs *, bool); ++ ++void bch2_stripes_heap_to_text(struct printbuf *, struct bch_fs *); ++void bch2_new_stripes_to_text(struct printbuf *, struct bch_fs *); ++ ++void bch2_fs_ec_exit(struct bch_fs *); ++int bch2_fs_ec_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_EC_H */ +diff --git a/fs/bcachefs/ec_types.h b/fs/bcachefs/ec_types.h +new file mode 100644 +index 000000000000..e4d633fca5bf +--- /dev/null ++++ b/fs/bcachefs/ec_types.h +@@ -0,0 +1,39 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_EC_TYPES_H ++#define _BCACHEFS_EC_TYPES_H ++ ++#include ++ ++#define EC_STRIPE_MAX 16 ++ ++struct bch_replicas_padded { ++ struct bch_replicas_entry e; ++ u8 pad[EC_STRIPE_MAX]; ++}; ++ ++struct stripe { ++ size_t heap_idx; ++ ++ u16 sectors; ++ u8 algorithm; ++ ++ u8 nr_blocks; ++ u8 nr_redundant; ++ ++ unsigned alive:1; ++ unsigned dirty:1; ++ unsigned on_heap:1; ++ u8 blocks_nonempty; ++ u16 block_sectors[EC_STRIPE_MAX]; ++ ++ struct bch_replicas_padded r; ++}; ++ ++struct ec_stripe_heap_entry { ++ size_t idx; ++ unsigned blocks_nonempty; ++}; ++ ++typedef HEAP(struct ec_stripe_heap_entry) ec_stripes_heap; ++ ++#endif /* _BCACHEFS_EC_TYPES_H */ +diff --git a/fs/bcachefs/error.c b/fs/bcachefs/error.c +new file mode 100644 +index 000000000000..cd46706fb6f5 +--- /dev/null ++++ b/fs/bcachefs/error.c +@@ -0,0 +1,172 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "error.h" ++#include "io.h" ++#include "super.h" ++ ++#define FSCK_ERR_RATELIMIT_NR 10 ++ ++bool bch2_inconsistent_error(struct bch_fs *c) ++{ ++ set_bit(BCH_FS_ERROR, &c->flags); ++ ++ switch (c->opts.errors) { ++ case BCH_ON_ERROR_CONTINUE: ++ return false; ++ case BCH_ON_ERROR_RO: ++ if (bch2_fs_emergency_read_only(c)) ++ bch_err(c, "emergency read only"); ++ return true; ++ case BCH_ON_ERROR_PANIC: ++ panic(bch2_fmt(c, "panic after error")); ++ return true; ++ default: ++ BUG(); ++ } ++} ++ ++void bch2_fatal_error(struct bch_fs *c) ++{ ++ if (bch2_fs_emergency_read_only(c)) ++ bch_err(c, "emergency read only"); ++} ++ ++void bch2_io_error_work(struct work_struct *work) ++{ ++ struct bch_dev *ca = container_of(work, struct bch_dev, io_error_work); ++ struct bch_fs *c = ca->fs; ++ bool dev; ++ ++ down_write(&c->state_lock); ++ dev = bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_RO, ++ BCH_FORCE_IF_DEGRADED); ++ if (dev ++ ? __bch2_dev_set_state(c, ca, BCH_MEMBER_STATE_RO, ++ BCH_FORCE_IF_DEGRADED) ++ : bch2_fs_emergency_read_only(c)) ++ bch_err(ca, ++ "too many IO errors, setting %s RO", ++ dev ? "device" : "filesystem"); ++ up_write(&c->state_lock); ++} ++ ++void bch2_io_error(struct bch_dev *ca) ++{ ++ //queue_work(system_long_wq, &ca->io_error_work); ++} ++ ++#ifdef __KERNEL__ ++#define ask_yn() false ++#else ++#include "tools-util.h" ++#endif ++ ++enum fsck_err_ret bch2_fsck_err(struct bch_fs *c, unsigned flags, ++ const char *fmt, ...) ++{ ++ struct fsck_err_state *s = NULL; ++ va_list args; ++ bool fix = false, print = true, suppressing = false; ++ char _buf[sizeof(s->buf)], *buf = _buf; ++ ++ if (test_bit(BCH_FS_FSCK_DONE, &c->flags)) { ++ va_start(args, fmt); ++ vprintk(fmt, args); ++ va_end(args); ++ ++ return bch2_inconsistent_error(c) ++ ? FSCK_ERR_EXIT ++ : FSCK_ERR_FIX; ++ } ++ ++ mutex_lock(&c->fsck_error_lock); ++ ++ list_for_each_entry(s, &c->fsck_errors, list) ++ if (s->fmt == fmt) ++ goto found; ++ ++ s = kzalloc(sizeof(*s), GFP_NOFS); ++ if (!s) { ++ if (!c->fsck_alloc_err) ++ bch_err(c, "kmalloc err, cannot ratelimit fsck errs"); ++ c->fsck_alloc_err = true; ++ buf = _buf; ++ goto print; ++ } ++ ++ INIT_LIST_HEAD(&s->list); ++ s->fmt = fmt; ++found: ++ list_move(&s->list, &c->fsck_errors); ++ s->nr++; ++ if (c->opts.ratelimit_errors && ++ s->nr >= FSCK_ERR_RATELIMIT_NR) { ++ if (s->nr == FSCK_ERR_RATELIMIT_NR) ++ suppressing = true; ++ else ++ print = false; ++ } ++ buf = s->buf; ++print: ++ va_start(args, fmt); ++ vscnprintf(buf, sizeof(_buf), fmt, args); ++ va_end(args); ++ ++ if (c->opts.fix_errors == FSCK_OPT_EXIT) { ++ bch_err(c, "%s, exiting", buf); ++ } else if (flags & FSCK_CAN_FIX) { ++ if (c->opts.fix_errors == FSCK_OPT_ASK) { ++ printk(KERN_ERR "%s: fix?", buf); ++ fix = ask_yn(); ++ } else if (c->opts.fix_errors == FSCK_OPT_YES || ++ (c->opts.nochanges && ++ !(flags & FSCK_CAN_IGNORE))) { ++ if (print) ++ bch_err(c, "%s, fixing", buf); ++ fix = true; ++ } else { ++ if (print) ++ bch_err(c, "%s, not fixing", buf); ++ fix = false; ++ } ++ } else if (flags & FSCK_NEED_FSCK) { ++ if (print) ++ bch_err(c, "%s (run fsck to correct)", buf); ++ } else { ++ if (print) ++ bch_err(c, "%s (repair unimplemented)", buf); ++ } ++ ++ if (suppressing) ++ bch_err(c, "Ratelimiting new instances of previous error"); ++ ++ mutex_unlock(&c->fsck_error_lock); ++ ++ if (fix) { ++ set_bit(BCH_FS_ERRORS_FIXED, &c->flags); ++ return FSCK_ERR_FIX; ++ } else { ++ set_bit(BCH_FS_ERROR, &c->flags); ++ return c->opts.fix_errors == FSCK_OPT_EXIT || ++ !(flags & FSCK_CAN_IGNORE) ++ ? FSCK_ERR_EXIT ++ : FSCK_ERR_IGNORE; ++ } ++} ++ ++void bch2_flush_fsck_errs(struct bch_fs *c) ++{ ++ struct fsck_err_state *s, *n; ++ ++ mutex_lock(&c->fsck_error_lock); ++ ++ list_for_each_entry_safe(s, n, &c->fsck_errors, list) { ++ if (s->ratelimited) ++ bch_err(c, "Saw %llu errors like:\n %s", s->nr, s->buf); ++ ++ list_del(&s->list); ++ kfree(s); ++ } ++ ++ mutex_unlock(&c->fsck_error_lock); ++} +diff --git a/fs/bcachefs/error.h b/fs/bcachefs/error.h +new file mode 100644 +index 000000000000..94b53312fbbd +--- /dev/null ++++ b/fs/bcachefs/error.h +@@ -0,0 +1,211 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_ERROR_H ++#define _BCACHEFS_ERROR_H ++ ++#include ++#include ++ ++struct bch_dev; ++struct bch_fs; ++struct work_struct; ++ ++/* ++ * XXX: separate out errors that indicate on disk data is inconsistent, and flag ++ * superblock as such ++ */ ++ ++/* Error messages: */ ++ ++/* ++ * Inconsistency errors: The on disk data is inconsistent. If these occur during ++ * initial recovery, they don't indicate a bug in the running code - we walk all ++ * the metadata before modifying anything. If they occur at runtime, they ++ * indicate either a bug in the running code or (less likely) data is being ++ * silently corrupted under us. ++ * ++ * XXX: audit all inconsistent errors and make sure they're all recoverable, in ++ * BCH_ON_ERROR_CONTINUE mode ++ */ ++ ++bool bch2_inconsistent_error(struct bch_fs *); ++ ++#define bch2_fs_inconsistent(c, ...) \ ++({ \ ++ bch_err(c, __VA_ARGS__); \ ++ bch2_inconsistent_error(c); \ ++}) ++ ++#define bch2_fs_inconsistent_on(cond, c, ...) \ ++({ \ ++ int _ret = !!(cond); \ ++ \ ++ if (_ret) \ ++ bch2_fs_inconsistent(c, __VA_ARGS__); \ ++ _ret; \ ++}) ++ ++/* ++ * Later we might want to mark only the particular device inconsistent, not the ++ * entire filesystem: ++ */ ++ ++#define bch2_dev_inconsistent(ca, ...) \ ++do { \ ++ bch_err(ca, __VA_ARGS__); \ ++ bch2_inconsistent_error((ca)->fs); \ ++} while (0) ++ ++#define bch2_dev_inconsistent_on(cond, ca, ...) \ ++({ \ ++ int _ret = !!(cond); \ ++ \ ++ if (_ret) \ ++ bch2_dev_inconsistent(ca, __VA_ARGS__); \ ++ _ret; \ ++}) ++ ++/* ++ * Fsck errors: inconsistency errors we detect at mount time, and should ideally ++ * be able to repair: ++ */ ++ ++enum { ++ BCH_FSCK_OK = 0, ++ BCH_FSCK_ERRORS_NOT_FIXED = 1, ++ BCH_FSCK_REPAIR_UNIMPLEMENTED = 2, ++ BCH_FSCK_REPAIR_IMPOSSIBLE = 3, ++ BCH_FSCK_UNKNOWN_VERSION = 4, ++}; ++ ++enum fsck_err_opts { ++ FSCK_OPT_EXIT, ++ FSCK_OPT_YES, ++ FSCK_OPT_NO, ++ FSCK_OPT_ASK, ++}; ++ ++enum fsck_err_ret { ++ FSCK_ERR_IGNORE = 0, ++ FSCK_ERR_FIX = 1, ++ FSCK_ERR_EXIT = 2, ++}; ++ ++struct fsck_err_state { ++ struct list_head list; ++ const char *fmt; ++ u64 nr; ++ bool ratelimited; ++ char buf[512]; ++}; ++ ++#define FSCK_CAN_FIX (1 << 0) ++#define FSCK_CAN_IGNORE (1 << 1) ++#define FSCK_NEED_FSCK (1 << 2) ++ ++__printf(3, 4) __cold ++enum fsck_err_ret bch2_fsck_err(struct bch_fs *, ++ unsigned, const char *, ...); ++void bch2_flush_fsck_errs(struct bch_fs *); ++ ++#define __fsck_err(c, _flags, msg, ...) \ ++({ \ ++ int _fix = bch2_fsck_err(c, _flags, msg, ##__VA_ARGS__);\ ++ \ ++ if (_fix == FSCK_ERR_EXIT) { \ ++ bch_err(c, "Unable to continue, halting"); \ ++ ret = BCH_FSCK_ERRORS_NOT_FIXED; \ ++ goto fsck_err; \ ++ } \ ++ \ ++ _fix; \ ++}) ++ ++/* These macros return true if error should be fixed: */ ++ ++/* XXX: mark in superblock that filesystem contains errors, if we ignore: */ ++ ++#define __fsck_err_on(cond, c, _flags, ...) \ ++ ((cond) ? __fsck_err(c, _flags, ##__VA_ARGS__) : false) ++ ++#define need_fsck_err_on(cond, c, ...) \ ++ __fsck_err_on(cond, c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, ##__VA_ARGS__) ++ ++#define need_fsck_err(c, ...) \ ++ __fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, ##__VA_ARGS__) ++ ++#define mustfix_fsck_err(c, ...) \ ++ __fsck_err(c, FSCK_CAN_FIX, ##__VA_ARGS__) ++ ++#define mustfix_fsck_err_on(cond, c, ...) \ ++ __fsck_err_on(cond, c, FSCK_CAN_FIX, ##__VA_ARGS__) ++ ++#define fsck_err(c, ...) \ ++ __fsck_err(c, FSCK_CAN_FIX|FSCK_CAN_IGNORE, ##__VA_ARGS__) ++ ++#define fsck_err_on(cond, c, ...) \ ++ __fsck_err_on(cond, c, FSCK_CAN_FIX|FSCK_CAN_IGNORE, ##__VA_ARGS__) ++ ++/* ++ * Fatal errors: these don't indicate a bug, but we can't continue running in RW ++ * mode - pretty much just due to metadata IO errors: ++ */ ++ ++void bch2_fatal_error(struct bch_fs *); ++ ++#define bch2_fs_fatal_error(c, ...) \ ++do { \ ++ bch_err(c, __VA_ARGS__); \ ++ bch2_fatal_error(c); \ ++} while (0) ++ ++#define bch2_fs_fatal_err_on(cond, c, ...) \ ++({ \ ++ int _ret = !!(cond); \ ++ \ ++ if (_ret) \ ++ bch2_fs_fatal_error(c, __VA_ARGS__); \ ++ _ret; \ ++}) ++ ++/* ++ * IO errors: either recoverable metadata IO (because we have replicas), or data ++ * IO - we need to log it and print out a message, but we don't (necessarily) ++ * want to shut down the fs: ++ */ ++ ++void bch2_io_error_work(struct work_struct *); ++ ++/* Does the error handling without logging a message */ ++void bch2_io_error(struct bch_dev *); ++ ++/* Logs message and handles the error: */ ++#define bch2_dev_io_error(ca, fmt, ...) \ ++do { \ ++ printk_ratelimited(KERN_ERR bch2_fmt((ca)->fs, \ ++ "IO error on %s for " fmt), \ ++ (ca)->name, ##__VA_ARGS__); \ ++ bch2_io_error(ca); \ ++} while (0) ++ ++#define bch2_dev_io_err_on(cond, ca, ...) \ ++({ \ ++ bool _ret = (cond); \ ++ \ ++ if (_ret) \ ++ bch2_dev_io_error(ca, __VA_ARGS__); \ ++ _ret; \ ++}) ++ ++/* kill? */ ++ ++#define __bcache_io_error(c, fmt, ...) \ ++ printk_ratelimited(KERN_ERR bch2_fmt(c, \ ++ "IO error: " fmt), ##__VA_ARGS__) ++ ++#define bcache_io_error(c, bio, fmt, ...) \ ++do { \ ++ __bcache_io_error(c, fmt, ##__VA_ARGS__); \ ++ (bio)->bi_status = BLK_STS_IOERR; \ ++} while (0) ++ ++#endif /* _BCACHEFS_ERROR_H */ +diff --git a/fs/bcachefs/extent_update.c b/fs/bcachefs/extent_update.c +new file mode 100644 +index 000000000000..fd011df3cb99 +--- /dev/null ++++ b/fs/bcachefs/extent_update.c +@@ -0,0 +1,229 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "bkey_on_stack.h" ++#include "btree_update.h" ++#include "btree_update_interior.h" ++#include "buckets.h" ++#include "debug.h" ++#include "extents.h" ++#include "extent_update.h" ++ ++/* ++ * This counts the number of iterators to the alloc & ec btrees we'll need ++ * inserting/removing this extent: ++ */ ++static unsigned bch2_bkey_nr_alloc_ptrs(struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ unsigned ret = 0; ++ ++ bkey_extent_entry_for_each(ptrs, entry) { ++ switch (__extent_entry_type(entry)) { ++ case BCH_EXTENT_ENTRY_ptr: ++ case BCH_EXTENT_ENTRY_stripe_ptr: ++ ret++; ++ } ++ } ++ ++ return ret; ++} ++ ++static int count_iters_for_insert(struct btree_trans *trans, ++ struct bkey_s_c k, ++ unsigned offset, ++ struct bpos *end, ++ unsigned *nr_iters, ++ unsigned max_iters) ++{ ++ int ret = 0, ret2 = 0; ++ ++ if (*nr_iters >= max_iters) { ++ *end = bpos_min(*end, k.k->p); ++ ret = 1; ++ } ++ ++ switch (k.k->type) { ++ case KEY_TYPE_extent: ++ case KEY_TYPE_reflink_v: ++ *nr_iters += bch2_bkey_nr_alloc_ptrs(k); ++ ++ if (*nr_iters >= max_iters) { ++ *end = bpos_min(*end, k.k->p); ++ ret = 1; ++ } ++ ++ break; ++ case KEY_TYPE_reflink_p: { ++ struct bkey_s_c_reflink_p p = bkey_s_c_to_reflink_p(k); ++ u64 idx = le64_to_cpu(p.v->idx); ++ unsigned sectors = bpos_min(*end, p.k->p).offset - ++ bkey_start_offset(p.k); ++ struct btree_iter *iter; ++ struct bkey_s_c r_k; ++ ++ for_each_btree_key(trans, iter, ++ BTREE_ID_REFLINK, POS(0, idx + offset), ++ BTREE_ITER_SLOTS, r_k, ret2) { ++ if (bkey_cmp(bkey_start_pos(r_k.k), ++ POS(0, idx + sectors)) >= 0) ++ break; ++ ++ /* extent_update_to_keys(), for the reflink_v update */ ++ *nr_iters += 1; ++ ++ *nr_iters += 1 + bch2_bkey_nr_alloc_ptrs(r_k); ++ ++ if (*nr_iters >= max_iters) { ++ struct bpos pos = bkey_start_pos(k.k); ++ pos.offset += min_t(u64, k.k->size, ++ r_k.k->p.offset - idx); ++ ++ *end = bpos_min(*end, pos); ++ ret = 1; ++ break; ++ } ++ } ++ ++ bch2_trans_iter_put(trans, iter); ++ break; ++ } ++ } ++ ++ return ret2 ?: ret; ++} ++ ++#define EXTENT_ITERS_MAX (BTREE_ITER_MAX / 3) ++ ++int bch2_extent_atomic_end(struct btree_iter *iter, ++ struct bkey_i *insert, ++ struct bpos *end) ++{ ++ struct btree_trans *trans = iter->trans; ++ struct btree *b; ++ struct btree_node_iter node_iter; ++ struct bkey_packed *_k; ++ unsigned nr_iters = 0; ++ int ret; ++ ++ ret = bch2_btree_iter_traverse(iter); ++ if (ret) ++ return ret; ++ ++ b = iter->l[0].b; ++ node_iter = iter->l[0].iter; ++ ++ BUG_ON(bkey_cmp(b->data->min_key, POS_MIN) && ++ bkey_cmp(bkey_start_pos(&insert->k), ++ bkey_predecessor(b->data->min_key)) < 0); ++ ++ *end = bpos_min(insert->k.p, b->key.k.p); ++ ++ /* extent_update_to_keys(): */ ++ nr_iters += 1; ++ ++ ret = count_iters_for_insert(trans, bkey_i_to_s_c(insert), 0, end, ++ &nr_iters, EXTENT_ITERS_MAX / 2); ++ if (ret < 0) ++ return ret; ++ ++ while ((_k = bch2_btree_node_iter_peek(&node_iter, b))) { ++ struct bkey unpacked; ++ struct bkey_s_c k = bkey_disassemble(b, _k, &unpacked); ++ unsigned offset = 0; ++ ++ if (bkey_cmp(bkey_start_pos(k.k), *end) >= 0) ++ break; ++ ++ if (bkey_cmp(bkey_start_pos(&insert->k), ++ bkey_start_pos(k.k)) > 0) ++ offset = bkey_start_offset(&insert->k) - ++ bkey_start_offset(k.k); ++ ++ /* extent_handle_overwrites(): */ ++ switch (bch2_extent_overlap(&insert->k, k.k)) { ++ case BCH_EXTENT_OVERLAP_ALL: ++ case BCH_EXTENT_OVERLAP_FRONT: ++ nr_iters += 1; ++ break; ++ case BCH_EXTENT_OVERLAP_BACK: ++ case BCH_EXTENT_OVERLAP_MIDDLE: ++ nr_iters += 2; ++ break; ++ } ++ ++ ret = count_iters_for_insert(trans, k, offset, end, ++ &nr_iters, EXTENT_ITERS_MAX); ++ if (ret) ++ break; ++ ++ bch2_btree_node_iter_advance(&node_iter, b); ++ } ++ ++ return ret < 0 ? ret : 0; ++} ++ ++int bch2_extent_trim_atomic(struct bkey_i *k, struct btree_iter *iter) ++{ ++ struct bpos end; ++ int ret; ++ ++ ret = bch2_extent_atomic_end(iter, k, &end); ++ if (ret) ++ return ret; ++ ++ bch2_cut_back(end, k); ++ return 0; ++} ++ ++int bch2_extent_is_atomic(struct bkey_i *k, struct btree_iter *iter) ++{ ++ struct bpos end; ++ int ret; ++ ++ ret = bch2_extent_atomic_end(iter, k, &end); ++ if (ret) ++ return ret; ++ ++ return !bkey_cmp(end, k->k.p); ++} ++ ++enum btree_insert_ret ++bch2_extent_can_insert(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_i *insert) ++{ ++ struct btree_iter_level *l = &iter->l[0]; ++ struct btree_node_iter node_iter = l->iter; ++ struct bkey_packed *_k; ++ struct bkey_s_c k; ++ struct bkey unpacked; ++ int sectors; ++ ++ _k = bch2_btree_node_iter_peek(&node_iter, l->b); ++ if (!_k) ++ return BTREE_INSERT_OK; ++ ++ k = bkey_disassemble(l->b, _k, &unpacked); ++ ++ /* Check if we're splitting a compressed extent: */ ++ ++ if (bkey_cmp(bkey_start_pos(&insert->k), bkey_start_pos(k.k)) > 0 && ++ bkey_cmp(insert->k.p, k.k->p) < 0 && ++ (sectors = bch2_bkey_sectors_compressed(k))) { ++ int flags = trans->flags & BTREE_INSERT_NOFAIL ++ ? BCH_DISK_RESERVATION_NOFAIL : 0; ++ ++ switch (bch2_disk_reservation_add(trans->c, trans->disk_res, ++ sectors, flags)) { ++ case 0: ++ break; ++ case -ENOSPC: ++ return BTREE_INSERT_ENOSPC; ++ default: ++ BUG(); ++ } ++ } ++ ++ return BTREE_INSERT_OK; ++} +diff --git a/fs/bcachefs/extent_update.h b/fs/bcachefs/extent_update.h +new file mode 100644 +index 000000000000..38dc084627d2 +--- /dev/null ++++ b/fs/bcachefs/extent_update.h +@@ -0,0 +1,16 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_EXTENT_UPDATE_H ++#define _BCACHEFS_EXTENT_UPDATE_H ++ ++#include "bcachefs.h" ++ ++int bch2_extent_atomic_end(struct btree_iter *, struct bkey_i *, ++ struct bpos *); ++int bch2_extent_trim_atomic(struct bkey_i *, struct btree_iter *); ++int bch2_extent_is_atomic(struct bkey_i *, struct btree_iter *); ++ ++enum btree_insert_ret ++bch2_extent_can_insert(struct btree_trans *, struct btree_iter *, ++ struct bkey_i *); ++ ++#endif /* _BCACHEFS_EXTENT_UPDATE_H */ +diff --git a/fs/bcachefs/extents.c b/fs/bcachefs/extents.c +new file mode 100644 +index 000000000000..568f039edcff +--- /dev/null ++++ b/fs/bcachefs/extents.c +@@ -0,0 +1,1258 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Copyright (C) 2010 Kent Overstreet ++ * ++ * Code for managing the extent btree and dynamically updating the writeback ++ * dirty sector count. ++ */ ++ ++#include "bcachefs.h" ++#include "bkey_methods.h" ++#include "btree_gc.h" ++#include "btree_io.h" ++#include "btree_iter.h" ++#include "buckets.h" ++#include "checksum.h" ++#include "debug.h" ++#include "disk_groups.h" ++#include "error.h" ++#include "extents.h" ++#include "inode.h" ++#include "journal.h" ++#include "replicas.h" ++#include "super.h" ++#include "super-io.h" ++#include "util.h" ++ ++#include ++ ++static unsigned bch2_crc_field_size_max[] = { ++ [BCH_EXTENT_ENTRY_crc32] = CRC32_SIZE_MAX, ++ [BCH_EXTENT_ENTRY_crc64] = CRC64_SIZE_MAX, ++ [BCH_EXTENT_ENTRY_crc128] = CRC128_SIZE_MAX, ++}; ++ ++static void bch2_extent_crc_pack(union bch_extent_crc *, ++ struct bch_extent_crc_unpacked, ++ enum bch_extent_entry_type); ++ ++static struct bch_dev_io_failures *dev_io_failures(struct bch_io_failures *f, ++ unsigned dev) ++{ ++ struct bch_dev_io_failures *i; ++ ++ for (i = f->devs; i < f->devs + f->nr; i++) ++ if (i->dev == dev) ++ return i; ++ ++ return NULL; ++} ++ ++void bch2_mark_io_failure(struct bch_io_failures *failed, ++ struct extent_ptr_decoded *p) ++{ ++ struct bch_dev_io_failures *f = dev_io_failures(failed, p->ptr.dev); ++ ++ if (!f) { ++ BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs)); ++ ++ f = &failed->devs[failed->nr++]; ++ f->dev = p->ptr.dev; ++ f->idx = p->idx; ++ f->nr_failed = 1; ++ f->nr_retries = 0; ++ } else if (p->idx != f->idx) { ++ f->idx = p->idx; ++ f->nr_failed = 1; ++ f->nr_retries = 0; ++ } else { ++ f->nr_failed++; ++ } ++} ++ ++/* ++ * returns true if p1 is better than p2: ++ */ ++static inline bool ptr_better(struct bch_fs *c, ++ const struct extent_ptr_decoded p1, ++ const struct extent_ptr_decoded p2) ++{ ++ if (likely(!p1.idx && !p2.idx)) { ++ struct bch_dev *dev1 = bch_dev_bkey_exists(c, p1.ptr.dev); ++ struct bch_dev *dev2 = bch_dev_bkey_exists(c, p2.ptr.dev); ++ ++ u64 l1 = atomic64_read(&dev1->cur_latency[READ]); ++ u64 l2 = atomic64_read(&dev2->cur_latency[READ]); ++ ++ /* Pick at random, biased in favor of the faster device: */ ++ ++ return bch2_rand_range(l1 + l2) > l1; ++ } ++ ++ if (force_reconstruct_read(c)) ++ return p1.idx > p2.idx; ++ ++ return p1.idx < p2.idx; ++} ++ ++/* ++ * This picks a non-stale pointer, preferably from a device other than @avoid. ++ * Avoid can be NULL, meaning pick any. If there are no non-stale pointers to ++ * other devices, it will still pick a pointer from avoid. ++ */ ++int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k, ++ struct bch_io_failures *failed, ++ struct extent_ptr_decoded *pick) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ struct bch_dev_io_failures *f; ++ struct bch_dev *ca; ++ int ret = 0; ++ ++ if (k.k->type == KEY_TYPE_error) ++ return -EIO; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ ca = bch_dev_bkey_exists(c, p.ptr.dev); ++ ++ /* ++ * If there are any dirty pointers it's an error if we can't ++ * read: ++ */ ++ if (!ret && !p.ptr.cached) ++ ret = -EIO; ++ ++ if (p.ptr.cached && ptr_stale(ca, &p.ptr)) ++ continue; ++ ++ f = failed ? dev_io_failures(failed, p.ptr.dev) : NULL; ++ if (f) ++ p.idx = f->nr_failed < f->nr_retries ++ ? f->idx ++ : f->idx + 1; ++ ++ if (!p.idx && ++ !bch2_dev_is_readable(ca)) ++ p.idx++; ++ ++ if (force_reconstruct_read(c) && ++ !p.idx && p.has_ec) ++ p.idx++; ++ ++ if (p.idx >= (unsigned) p.has_ec + 1) ++ continue; ++ ++ if (ret > 0 && !ptr_better(c, p, *pick)) ++ continue; ++ ++ *pick = p; ++ ret = 1; ++ } ++ ++ return ret; ++} ++ ++/* KEY_TYPE_btree_ptr: */ ++ ++const char *bch2_btree_ptr_invalid(const struct bch_fs *c, struct bkey_s_c k) ++{ ++ if (bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX) ++ return "value too big"; ++ ++ return bch2_bkey_ptrs_invalid(c, k); ++} ++ ++void bch2_btree_ptr_debugcheck(struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ const char *err; ++ char buf[160]; ++ struct bucket_mark mark; ++ struct bch_dev *ca; ++ ++ if (!test_bit(BCH_FS_INITIAL_GC_DONE, &c->flags)) ++ return; ++ ++ if (!percpu_down_read_trylock(&c->mark_lock)) ++ return; ++ ++ bkey_for_each_ptr(ptrs, ptr) { ++ ca = bch_dev_bkey_exists(c, ptr->dev); ++ ++ mark = ptr_bucket_mark(ca, ptr); ++ ++ err = "stale"; ++ if (gen_after(mark.gen, ptr->gen)) ++ goto err; ++ ++ err = "inconsistent"; ++ if (mark.data_type != BCH_DATA_btree || ++ mark.dirty_sectors < c->opts.btree_node_size) ++ goto err; ++ } ++out: ++ percpu_up_read(&c->mark_lock); ++ return; ++err: ++ bch2_fs_inconsistent(c, "%s btree pointer %s: bucket %zi gen %i mark %08x", ++ err, (bch2_bkey_val_to_text(&PBUF(buf), c, k), buf), ++ PTR_BUCKET_NR(ca, ptr), ++ mark.gen, (unsigned) mark.v.counter); ++ goto out; ++} ++ ++void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ bch2_bkey_ptrs_to_text(out, c, k); ++} ++ ++void bch2_btree_ptr_v2_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); ++ ++ pr_buf(out, "seq %llx sectors %u written %u min_key ", ++ le64_to_cpu(bp.v->seq), ++ le16_to_cpu(bp.v->sectors), ++ le16_to_cpu(bp.v->sectors_written)); ++ ++ bch2_bpos_to_text(out, bp.v->min_key); ++ pr_buf(out, " "); ++ bch2_bkey_ptrs_to_text(out, c, k); ++} ++ ++void bch2_btree_ptr_v2_compat(enum btree_id btree_id, unsigned version, ++ unsigned big_endian, int write, ++ struct bkey_s k) ++{ ++ struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(k); ++ ++ compat_bpos(0, btree_id, version, big_endian, write, &bp.v->min_key); ++ ++ if (version < bcachefs_metadata_version_inode_btree_change && ++ btree_node_type_is_extents(btree_id) && ++ bkey_cmp(bp.v->min_key, POS_MIN)) ++ bp.v->min_key = write ++ ? bkey_predecessor(bp.v->min_key) ++ : bkey_successor(bp.v->min_key); ++} ++ ++/* KEY_TYPE_extent: */ ++ ++const char *bch2_extent_invalid(const struct bch_fs *c, struct bkey_s_c k) ++{ ++ return bch2_bkey_ptrs_invalid(c, k); ++} ++ ++void bch2_extent_debugcheck(struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_s_c_extent e = bkey_s_c_to_extent(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ char buf[160]; ++ ++ if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags) || ++ !test_bit(BCH_FS_INITIAL_GC_DONE, &c->flags)) ++ return; ++ ++ if (!percpu_down_read_trylock(&c->mark_lock)) ++ return; ++ ++ extent_for_each_ptr_decode(e, p, entry) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev); ++ struct bucket_mark mark = ptr_bucket_mark(ca, &p.ptr); ++ unsigned stale = gen_after(mark.gen, p.ptr.gen); ++ unsigned disk_sectors = ptr_disk_sectors(p); ++ unsigned mark_sectors = p.ptr.cached ++ ? mark.cached_sectors ++ : mark.dirty_sectors; ++ ++ bch2_fs_inconsistent_on(stale && !p.ptr.cached, c, ++ "stale dirty pointer (ptr gen %u bucket %u", ++ p.ptr.gen, mark.gen); ++ ++ bch2_fs_inconsistent_on(stale > 96, c, ++ "key too stale: %i", stale); ++ ++ bch2_fs_inconsistent_on(!stale && ++ (mark.data_type != BCH_DATA_user || ++ mark_sectors < disk_sectors), c, ++ "extent pointer not marked: %s:\n" ++ "type %u sectors %u < %u", ++ (bch2_bkey_val_to_text(&PBUF(buf), c, e.s_c), buf), ++ mark.data_type, ++ mark_sectors, disk_sectors); ++ } ++ ++ percpu_up_read(&c->mark_lock); ++} ++ ++void bch2_extent_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ bch2_bkey_ptrs_to_text(out, c, k); ++} ++ ++enum merge_result bch2_extent_merge(struct bch_fs *c, ++ struct bkey_s _l, struct bkey_s _r) ++{ ++ struct bkey_s_extent l = bkey_s_to_extent(_l); ++ struct bkey_s_extent r = bkey_s_to_extent(_r); ++ union bch_extent_entry *en_l = l.v->start; ++ union bch_extent_entry *en_r = r.v->start; ++ struct bch_extent_crc_unpacked crc_l, crc_r; ++ ++ if (bkey_val_u64s(l.k) != bkey_val_u64s(r.k)) ++ return BCH_MERGE_NOMERGE; ++ ++ crc_l = bch2_extent_crc_unpack(l.k, NULL); ++ ++ extent_for_each_entry(l, en_l) { ++ en_r = vstruct_idx(r.v, (u64 *) en_l - l.v->_data); ++ ++ if (extent_entry_type(en_l) != extent_entry_type(en_r)) ++ return BCH_MERGE_NOMERGE; ++ ++ switch (extent_entry_type(en_l)) { ++ case BCH_EXTENT_ENTRY_ptr: { ++ const struct bch_extent_ptr *lp = &en_l->ptr; ++ const struct bch_extent_ptr *rp = &en_r->ptr; ++ struct bch_dev *ca; ++ ++ if (lp->offset + crc_l.compressed_size != rp->offset || ++ lp->dev != rp->dev || ++ lp->gen != rp->gen) ++ return BCH_MERGE_NOMERGE; ++ ++ /* We don't allow extents to straddle buckets: */ ++ ca = bch_dev_bkey_exists(c, lp->dev); ++ ++ if (PTR_BUCKET_NR(ca, lp) != PTR_BUCKET_NR(ca, rp)) ++ return BCH_MERGE_NOMERGE; ++ ++ break; ++ } ++ case BCH_EXTENT_ENTRY_stripe_ptr: ++ if (en_l->stripe_ptr.block != en_r->stripe_ptr.block || ++ en_l->stripe_ptr.idx != en_r->stripe_ptr.idx) ++ return BCH_MERGE_NOMERGE; ++ break; ++ case BCH_EXTENT_ENTRY_crc32: ++ case BCH_EXTENT_ENTRY_crc64: ++ case BCH_EXTENT_ENTRY_crc128: ++ crc_l = bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); ++ crc_r = bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); ++ ++ if (crc_l.csum_type != crc_r.csum_type || ++ crc_l.compression_type != crc_r.compression_type || ++ crc_l.nonce != crc_r.nonce) ++ return BCH_MERGE_NOMERGE; ++ ++ if (crc_l.offset + crc_l.live_size != crc_l.compressed_size || ++ crc_r.offset) ++ return BCH_MERGE_NOMERGE; ++ ++ if (!bch2_checksum_mergeable(crc_l.csum_type)) ++ return BCH_MERGE_NOMERGE; ++ ++ if (crc_is_compressed(crc_l)) ++ return BCH_MERGE_NOMERGE; ++ ++ if (crc_l.csum_type && ++ crc_l.uncompressed_size + ++ crc_r.uncompressed_size > c->sb.encoded_extent_max) ++ return BCH_MERGE_NOMERGE; ++ ++ if (crc_l.uncompressed_size + crc_r.uncompressed_size > ++ bch2_crc_field_size_max[extent_entry_type(en_l)]) ++ return BCH_MERGE_NOMERGE; ++ ++ break; ++ default: ++ return BCH_MERGE_NOMERGE; ++ } ++ } ++ ++ extent_for_each_entry(l, en_l) { ++ struct bch_extent_crc_unpacked crc_l, crc_r; ++ ++ en_r = vstruct_idx(r.v, (u64 *) en_l - l.v->_data); ++ ++ if (!extent_entry_is_crc(en_l)) ++ continue; ++ ++ crc_l = bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); ++ crc_r = bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); ++ ++ crc_l.csum = bch2_checksum_merge(crc_l.csum_type, ++ crc_l.csum, ++ crc_r.csum, ++ crc_r.uncompressed_size << 9); ++ ++ crc_l.uncompressed_size += crc_r.uncompressed_size; ++ crc_l.compressed_size += crc_r.compressed_size; ++ ++ bch2_extent_crc_pack(entry_to_crc(en_l), crc_l, ++ extent_entry_type(en_l)); ++ } ++ ++ bch2_key_resize(l.k, l.k->size + r.k->size); ++ ++ return BCH_MERGE_MERGE; ++} ++ ++/* KEY_TYPE_reservation: */ ++ ++const char *bch2_reservation_invalid(const struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); ++ ++ if (bkey_val_bytes(k.k) != sizeof(struct bch_reservation)) ++ return "incorrect value size"; ++ ++ if (!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX) ++ return "invalid nr_replicas"; ++ ++ return NULL; ++} ++ ++void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); ++ ++ pr_buf(out, "generation %u replicas %u", ++ le32_to_cpu(r.v->generation), ++ r.v->nr_replicas); ++} ++ ++enum merge_result bch2_reservation_merge(struct bch_fs *c, ++ struct bkey_s _l, struct bkey_s _r) ++{ ++ struct bkey_s_reservation l = bkey_s_to_reservation(_l); ++ struct bkey_s_reservation r = bkey_s_to_reservation(_r); ++ ++ if (l.v->generation != r.v->generation || ++ l.v->nr_replicas != r.v->nr_replicas) ++ return BCH_MERGE_NOMERGE; ++ ++ if ((u64) l.k->size + r.k->size > KEY_SIZE_MAX) { ++ bch2_key_resize(l.k, KEY_SIZE_MAX); ++ bch2_cut_front_s(l.k->p, r.s); ++ return BCH_MERGE_PARTIAL; ++ } ++ ++ bch2_key_resize(l.k, l.k->size + r.k->size); ++ ++ return BCH_MERGE_MERGE; ++} ++ ++/* Extent checksum entries: */ ++ ++/* returns true if not equal */ ++static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l, ++ struct bch_extent_crc_unpacked r) ++{ ++ return (l.csum_type != r.csum_type || ++ l.compression_type != r.compression_type || ++ l.compressed_size != r.compressed_size || ++ l.uncompressed_size != r.uncompressed_size || ++ l.offset != r.offset || ++ l.live_size != r.live_size || ++ l.nonce != r.nonce || ++ bch2_crc_cmp(l.csum, r.csum)); ++} ++ ++static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u, ++ struct bch_extent_crc_unpacked n) ++{ ++ return !crc_is_compressed(u) && ++ u.csum_type && ++ u.uncompressed_size > u.live_size && ++ bch2_csum_type_is_encryption(u.csum_type) == ++ bch2_csum_type_is_encryption(n.csum_type); ++} ++ ++bool bch2_can_narrow_extent_crcs(struct bkey_s_c k, ++ struct bch_extent_crc_unpacked n) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ struct bch_extent_crc_unpacked crc; ++ const union bch_extent_entry *i; ++ ++ if (!n.csum_type) ++ return false; ++ ++ bkey_for_each_crc(k.k, ptrs, crc, i) ++ if (can_narrow_crc(crc, n)) ++ return true; ++ ++ return false; ++} ++ ++/* ++ * We're writing another replica for this extent, so while we've got the data in ++ * memory we'll be computing a new checksum for the currently live data. ++ * ++ * If there are other replicas we aren't moving, and they are checksummed but ++ * not compressed, we can modify them to point to only the data that is ++ * currently live (so that readers won't have to bounce) while we've got the ++ * checksum we need: ++ */ ++bool bch2_bkey_narrow_crcs(struct bkey_i *k, struct bch_extent_crc_unpacked n) ++{ ++ struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); ++ struct bch_extent_crc_unpacked u; ++ struct extent_ptr_decoded p; ++ union bch_extent_entry *i; ++ bool ret = false; ++ ++ /* Find a checksum entry that covers only live data: */ ++ if (!n.csum_type) { ++ bkey_for_each_crc(&k->k, ptrs, u, i) ++ if (!crc_is_compressed(u) && ++ u.csum_type && ++ u.live_size == u.uncompressed_size) { ++ n = u; ++ goto found; ++ } ++ return false; ++ } ++found: ++ BUG_ON(crc_is_compressed(n)); ++ BUG_ON(n.offset); ++ BUG_ON(n.live_size != k->k.size); ++ ++restart_narrow_pointers: ++ ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); ++ ++ bkey_for_each_ptr_decode(&k->k, ptrs, p, i) ++ if (can_narrow_crc(p.crc, n)) { ++ bch2_bkey_drop_ptr(bkey_i_to_s(k), &i->ptr); ++ p.ptr.offset += p.crc.offset; ++ p.crc = n; ++ bch2_extent_ptr_decoded_append(k, &p); ++ ret = true; ++ goto restart_narrow_pointers; ++ } ++ ++ return ret; ++} ++ ++static void bch2_extent_crc_pack(union bch_extent_crc *dst, ++ struct bch_extent_crc_unpacked src, ++ enum bch_extent_entry_type type) ++{ ++#define set_common_fields(_dst, _src) \ ++ _dst.type = 1 << type; \ ++ _dst.csum_type = _src.csum_type, \ ++ _dst.compression_type = _src.compression_type, \ ++ _dst._compressed_size = _src.compressed_size - 1, \ ++ _dst._uncompressed_size = _src.uncompressed_size - 1, \ ++ _dst.offset = _src.offset ++ ++ switch (type) { ++ case BCH_EXTENT_ENTRY_crc32: ++ set_common_fields(dst->crc32, src); ++ dst->crc32.csum = *((__le32 *) &src.csum.lo); ++ break; ++ case BCH_EXTENT_ENTRY_crc64: ++ set_common_fields(dst->crc64, src); ++ dst->crc64.nonce = src.nonce; ++ dst->crc64.csum_lo = src.csum.lo; ++ dst->crc64.csum_hi = *((__le16 *) &src.csum.hi); ++ break; ++ case BCH_EXTENT_ENTRY_crc128: ++ set_common_fields(dst->crc128, src); ++ dst->crc128.nonce = src.nonce; ++ dst->crc128.csum = src.csum; ++ break; ++ default: ++ BUG(); ++ } ++#undef set_common_fields ++} ++ ++void bch2_extent_crc_append(struct bkey_i *k, ++ struct bch_extent_crc_unpacked new) ++{ ++ struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); ++ union bch_extent_crc *crc = (void *) ptrs.end; ++ enum bch_extent_entry_type type; ++ ++ if (bch_crc_bytes[new.csum_type] <= 4 && ++ new.uncompressed_size <= CRC32_SIZE_MAX && ++ new.nonce <= CRC32_NONCE_MAX) ++ type = BCH_EXTENT_ENTRY_crc32; ++ else if (bch_crc_bytes[new.csum_type] <= 10 && ++ new.uncompressed_size <= CRC64_SIZE_MAX && ++ new.nonce <= CRC64_NONCE_MAX) ++ type = BCH_EXTENT_ENTRY_crc64; ++ else if (bch_crc_bytes[new.csum_type] <= 16 && ++ new.uncompressed_size <= CRC128_SIZE_MAX && ++ new.nonce <= CRC128_NONCE_MAX) ++ type = BCH_EXTENT_ENTRY_crc128; ++ else ++ BUG(); ++ ++ bch2_extent_crc_pack(crc, new, type); ++ ++ k->k.u64s += extent_entry_u64s(ptrs.end); ++ ++ EBUG_ON(bkey_val_u64s(&k->k) > BKEY_EXTENT_VAL_U64s_MAX); ++} ++ ++/* Generic code for keys with pointers: */ ++ ++unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k) ++{ ++ return bch2_bkey_devs(k).nr; ++} ++ ++unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k) ++{ ++ return k.k->type == KEY_TYPE_reservation ++ ? bkey_s_c_to_reservation(k).v->nr_replicas ++ : bch2_bkey_dirty_devs(k).nr; ++} ++ ++unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k) ++{ ++ unsigned ret = 0; ++ ++ if (k.k->type == KEY_TYPE_reservation) { ++ ret = bkey_s_c_to_reservation(k).v->nr_replicas; ++ } else { ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) ++ ret += !p.ptr.cached && !crc_is_compressed(p.crc); ++ } ++ ++ return ret; ++} ++ ++unsigned bch2_bkey_sectors_compressed(struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ unsigned ret = 0; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) ++ if (!p.ptr.cached && crc_is_compressed(p.crc)) ++ ret += p.crc.compressed_size; ++ ++ return ret; ++} ++ ++bool bch2_bkey_is_incompressible(struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct bch_extent_crc_unpacked crc; ++ ++ bkey_for_each_crc(k.k, ptrs, crc, entry) ++ if (crc.compression_type == BCH_COMPRESSION_TYPE_incompressible) ++ return true; ++ return false; ++} ++ ++bool bch2_check_range_allocated(struct bch_fs *c, struct bpos pos, u64 size, ++ unsigned nr_replicas) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bpos end = pos; ++ struct bkey_s_c k; ++ bool ret = true; ++ int err; ++ ++ end.offset += size; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS, pos, ++ BTREE_ITER_SLOTS, k, err) { ++ if (bkey_cmp(bkey_start_pos(k.k), end) >= 0) ++ break; ++ ++ if (nr_replicas > bch2_bkey_nr_ptrs_fully_allocated(k)) { ++ ret = false; ++ break; ++ } ++ } ++ bch2_trans_exit(&trans); ++ ++ return ret; ++} ++ ++static unsigned bch2_extent_ptr_durability(struct bch_fs *c, ++ struct extent_ptr_decoded p) ++{ ++ unsigned durability = 0; ++ struct bch_dev *ca; ++ ++ if (p.ptr.cached) ++ return 0; ++ ++ ca = bch_dev_bkey_exists(c, p.ptr.dev); ++ ++ if (ca->mi.state != BCH_MEMBER_STATE_FAILED) ++ durability = max_t(unsigned, durability, ca->mi.durability); ++ ++ if (p.has_ec) { ++ struct stripe *s = ++ genradix_ptr(&c->stripes[0], p.ec.idx); ++ ++ if (WARN_ON(!s)) ++ goto out; ++ ++ durability += s->nr_redundant; ++ } ++out: ++ return durability; ++} ++ ++unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ unsigned durability = 0; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) ++ durability += bch2_extent_ptr_durability(c, p); ++ ++ return durability; ++} ++ ++void bch2_bkey_mark_replicas_cached(struct bch_fs *c, struct bkey_s k, ++ unsigned target, ++ unsigned nr_desired_replicas) ++{ ++ struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); ++ union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ int extra = bch2_bkey_durability(c, k.s_c) - nr_desired_replicas; ++ ++ if (target && extra > 0) ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ int n = bch2_extent_ptr_durability(c, p); ++ ++ if (n && n <= extra && ++ !bch2_dev_in_target(c, p.ptr.dev, target)) { ++ entry->ptr.cached = true; ++ extra -= n; ++ } ++ } ++ ++ if (extra > 0) ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ int n = bch2_extent_ptr_durability(c, p); ++ ++ if (n && n <= extra) { ++ entry->ptr.cached = true; ++ extra -= n; ++ } ++ } ++} ++ ++void bch2_bkey_append_ptr(struct bkey_i *k, ++ struct bch_extent_ptr ptr) ++{ ++ EBUG_ON(bch2_bkey_has_device(bkey_i_to_s_c(k), ptr.dev)); ++ ++ switch (k->k.type) { ++ case KEY_TYPE_btree_ptr: ++ case KEY_TYPE_btree_ptr_v2: ++ case KEY_TYPE_extent: ++ EBUG_ON(bkey_val_u64s(&k->k) >= BKEY_EXTENT_VAL_U64s_MAX); ++ ++ ptr.type = 1 << BCH_EXTENT_ENTRY_ptr; ++ ++ memcpy((void *) &k->v + bkey_val_bytes(&k->k), ++ &ptr, ++ sizeof(ptr)); ++ k->u64s++; ++ break; ++ default: ++ BUG(); ++ } ++} ++ ++static inline void __extent_entry_insert(struct bkey_i *k, ++ union bch_extent_entry *dst, ++ union bch_extent_entry *new) ++{ ++ union bch_extent_entry *end = bkey_val_end(bkey_i_to_s(k)); ++ ++ memmove_u64s_up_small((u64 *) dst + extent_entry_u64s(new), ++ dst, (u64 *) end - (u64 *) dst); ++ k->k.u64s += extent_entry_u64s(new); ++ memcpy(dst, new, extent_entry_bytes(new)); ++} ++ ++void bch2_extent_ptr_decoded_append(struct bkey_i *k, ++ struct extent_ptr_decoded *p) ++{ ++ struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); ++ struct bch_extent_crc_unpacked crc = ++ bch2_extent_crc_unpack(&k->k, NULL); ++ union bch_extent_entry *pos; ++ ++ if (!bch2_crc_unpacked_cmp(crc, p->crc)) { ++ pos = ptrs.start; ++ goto found; ++ } ++ ++ bkey_for_each_crc(&k->k, ptrs, crc, pos) ++ if (!bch2_crc_unpacked_cmp(crc, p->crc)) { ++ pos = extent_entry_next(pos); ++ goto found; ++ } ++ ++ bch2_extent_crc_append(k, p->crc); ++ pos = bkey_val_end(bkey_i_to_s(k)); ++found: ++ p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr; ++ __extent_entry_insert(k, pos, to_entry(&p->ptr)); ++ ++ if (p->has_ec) { ++ p->ec.type = 1 << BCH_EXTENT_ENTRY_stripe_ptr; ++ __extent_entry_insert(k, pos, to_entry(&p->ec)); ++ } ++} ++ ++static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs, ++ union bch_extent_entry *entry) ++{ ++ union bch_extent_entry *i = ptrs.start; ++ ++ if (i == entry) ++ return NULL; ++ ++ while (extent_entry_next(i) != entry) ++ i = extent_entry_next(i); ++ return i; ++} ++ ++union bch_extent_entry *bch2_bkey_drop_ptr(struct bkey_s k, ++ struct bch_extent_ptr *ptr) ++{ ++ struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); ++ union bch_extent_entry *dst, *src, *prev; ++ bool drop_crc = true; ++ ++ EBUG_ON(ptr < &ptrs.start->ptr || ++ ptr >= &ptrs.end->ptr); ++ EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr); ++ ++ src = extent_entry_next(to_entry(ptr)); ++ if (src != ptrs.end && ++ !extent_entry_is_crc(src)) ++ drop_crc = false; ++ ++ dst = to_entry(ptr); ++ while ((prev = extent_entry_prev(ptrs, dst))) { ++ if (extent_entry_is_ptr(prev)) ++ break; ++ ++ if (extent_entry_is_crc(prev)) { ++ if (drop_crc) ++ dst = prev; ++ break; ++ } ++ ++ dst = prev; ++ } ++ ++ memmove_u64s_down(dst, src, ++ (u64 *) ptrs.end - (u64 *) src); ++ k.k->u64s -= (u64 *) src - (u64 *) dst; ++ ++ return dst; ++} ++ ++void bch2_bkey_drop_device(struct bkey_s k, unsigned dev) ++{ ++ struct bch_extent_ptr *ptr; ++ ++ bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev); ++} ++ ++const struct bch_extent_ptr * ++bch2_bkey_has_device(struct bkey_s_c k, unsigned dev) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ ++ bkey_for_each_ptr(ptrs, ptr) ++ if (ptr->dev == dev) ++ return ptr; ++ ++ return NULL; ++} ++ ++bool bch2_bkey_has_target(struct bch_fs *c, struct bkey_s_c k, unsigned target) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ ++ bkey_for_each_ptr(ptrs, ptr) ++ if (bch2_dev_in_target(c, ptr->dev, target) && ++ (!ptr->cached || ++ !ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr))) ++ return true; ++ ++ return false; ++} ++ ++bool bch2_bkey_matches_ptr(struct bch_fs *c, struct bkey_s_c k, ++ struct bch_extent_ptr m, u64 offset) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) ++ if (p.ptr.dev == m.dev && ++ p.ptr.gen == m.gen && ++ (s64) p.ptr.offset + p.crc.offset - bkey_start_offset(k.k) == ++ (s64) m.offset - offset) ++ return true; ++ ++ return false; ++} ++ ++/* ++ * bch_extent_normalize - clean up an extent, dropping stale pointers etc. ++ * ++ * Returns true if @k should be dropped entirely ++ * ++ * For existing keys, only called when btree nodes are being rewritten, not when ++ * they're merely being compacted/resorted in memory. ++ */ ++bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k) ++{ ++ struct bch_extent_ptr *ptr; ++ ++ bch2_bkey_drop_ptrs(k, ptr, ++ ptr->cached && ++ ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr)); ++ ++ /* will only happen if all pointers were cached: */ ++ if (!bch2_bkey_nr_ptrs(k.s_c)) ++ k.k->type = KEY_TYPE_discard; ++ ++ return bkey_whiteout(k.k); ++} ++ ++void bch2_bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct bch_extent_crc_unpacked crc; ++ const struct bch_extent_ptr *ptr; ++ const struct bch_extent_stripe_ptr *ec; ++ struct bch_dev *ca; ++ bool first = true; ++ ++ bkey_extent_entry_for_each(ptrs, entry) { ++ if (!first) ++ pr_buf(out, " "); ++ ++ switch (__extent_entry_type(entry)) { ++ case BCH_EXTENT_ENTRY_ptr: ++ ptr = entry_to_ptr(entry); ++ ca = ptr->dev < c->sb.nr_devices && c->devs[ptr->dev] ++ ? bch_dev_bkey_exists(c, ptr->dev) ++ : NULL; ++ ++ pr_buf(out, "ptr: %u:%llu gen %u%s%s", ptr->dev, ++ (u64) ptr->offset, ptr->gen, ++ ptr->cached ? " cached" : "", ++ ca && ptr_stale(ca, ptr) ++ ? " stale" : ""); ++ break; ++ case BCH_EXTENT_ENTRY_crc32: ++ case BCH_EXTENT_ENTRY_crc64: ++ case BCH_EXTENT_ENTRY_crc128: ++ crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); ++ ++ pr_buf(out, "crc: c_size %u size %u offset %u nonce %u csum %u compress %u", ++ crc.compressed_size, ++ crc.uncompressed_size, ++ crc.offset, crc.nonce, ++ crc.csum_type, ++ crc.compression_type); ++ break; ++ case BCH_EXTENT_ENTRY_stripe_ptr: ++ ec = &entry->stripe_ptr; ++ ++ pr_buf(out, "ec: idx %llu block %u", ++ (u64) ec->idx, ec->block); ++ break; ++ default: ++ pr_buf(out, "(invalid extent entry %.16llx)", *((u64 *) entry)); ++ return; ++ } ++ ++ first = false; ++ } ++} ++ ++static const char *extent_ptr_invalid(const struct bch_fs *c, ++ struct bkey_s_c k, ++ const struct bch_extent_ptr *ptr, ++ unsigned size_ondisk, ++ bool metadata) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr2; ++ struct bch_dev *ca; ++ ++ if (!bch2_dev_exists2(c, ptr->dev)) ++ return "pointer to invalid device"; ++ ++ ca = bch_dev_bkey_exists(c, ptr->dev); ++ if (!ca) ++ return "pointer to invalid device"; ++ ++ bkey_for_each_ptr(ptrs, ptr2) ++ if (ptr != ptr2 && ptr->dev == ptr2->dev) ++ return "multiple pointers to same device"; ++ ++ if (ptr->offset + size_ondisk > bucket_to_sector(ca, ca->mi.nbuckets)) ++ return "offset past end of device"; ++ ++ if (ptr->offset < bucket_to_sector(ca, ca->mi.first_bucket)) ++ return "offset before first bucket"; ++ ++ if (bucket_remainder(ca, ptr->offset) + ++ size_ondisk > ca->mi.bucket_size) ++ return "spans multiple buckets"; ++ ++ return NULL; ++} ++ ++const char *bch2_bkey_ptrs_invalid(const struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct bch_extent_crc_unpacked crc; ++ unsigned size_ondisk = k.k->size; ++ const char *reason; ++ unsigned nonce = UINT_MAX; ++ ++ if (k.k->type == KEY_TYPE_btree_ptr) ++ size_ondisk = c->opts.btree_node_size; ++ if (k.k->type == KEY_TYPE_btree_ptr_v2) ++ size_ondisk = le16_to_cpu(bkey_s_c_to_btree_ptr_v2(k).v->sectors); ++ ++ bkey_extent_entry_for_each(ptrs, entry) { ++ if (__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX) ++ return "invalid extent entry type"; ++ ++ if (k.k->type == KEY_TYPE_btree_ptr && ++ !extent_entry_is_ptr(entry)) ++ return "has non ptr field"; ++ ++ switch (extent_entry_type(entry)) { ++ case BCH_EXTENT_ENTRY_ptr: ++ reason = extent_ptr_invalid(c, k, &entry->ptr, ++ size_ondisk, false); ++ if (reason) ++ return reason; ++ break; ++ case BCH_EXTENT_ENTRY_crc32: ++ case BCH_EXTENT_ENTRY_crc64: ++ case BCH_EXTENT_ENTRY_crc128: ++ crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); ++ ++ if (crc.offset + crc.live_size > ++ crc.uncompressed_size) ++ return "checksum offset + key size > uncompressed size"; ++ ++ size_ondisk = crc.compressed_size; ++ ++ if (!bch2_checksum_type_valid(c, crc.csum_type)) ++ return "invalid checksum type"; ++ ++ if (crc.compression_type >= BCH_COMPRESSION_TYPE_NR) ++ return "invalid compression type"; ++ ++ if (bch2_csum_type_is_encryption(crc.csum_type)) { ++ if (nonce == UINT_MAX) ++ nonce = crc.offset + crc.nonce; ++ else if (nonce != crc.offset + crc.nonce) ++ return "incorrect nonce"; ++ } ++ break; ++ case BCH_EXTENT_ENTRY_stripe_ptr: ++ break; ++ } ++ } ++ ++ return NULL; ++} ++ ++void bch2_ptr_swab(struct bkey_s k) ++{ ++ struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); ++ union bch_extent_entry *entry; ++ u64 *d; ++ ++ for (d = (u64 *) ptrs.start; ++ d != (u64 *) ptrs.end; ++ d++) ++ *d = swab64(*d); ++ ++ for (entry = ptrs.start; ++ entry < ptrs.end; ++ entry = extent_entry_next(entry)) { ++ switch (extent_entry_type(entry)) { ++ case BCH_EXTENT_ENTRY_ptr: ++ break; ++ case BCH_EXTENT_ENTRY_crc32: ++ entry->crc32.csum = swab32(entry->crc32.csum); ++ break; ++ case BCH_EXTENT_ENTRY_crc64: ++ entry->crc64.csum_hi = swab16(entry->crc64.csum_hi); ++ entry->crc64.csum_lo = swab64(entry->crc64.csum_lo); ++ break; ++ case BCH_EXTENT_ENTRY_crc128: ++ entry->crc128.csum.hi = (__force __le64) ++ swab64((__force u64) entry->crc128.csum.hi); ++ entry->crc128.csum.lo = (__force __le64) ++ swab64((__force u64) entry->crc128.csum.lo); ++ break; ++ case BCH_EXTENT_ENTRY_stripe_ptr: ++ break; ++ } ++ } ++} ++ ++/* Generic extent code: */ ++ ++int bch2_cut_front_s(struct bpos where, struct bkey_s k) ++{ ++ unsigned new_val_u64s = bkey_val_u64s(k.k); ++ int val_u64s_delta; ++ u64 sub; ++ ++ if (bkey_cmp(where, bkey_start_pos(k.k)) <= 0) ++ return 0; ++ ++ EBUG_ON(bkey_cmp(where, k.k->p) > 0); ++ ++ sub = where.offset - bkey_start_offset(k.k); ++ ++ k.k->size -= sub; ++ ++ if (!k.k->size) { ++ k.k->type = KEY_TYPE_deleted; ++ new_val_u64s = 0; ++ } ++ ++ switch (k.k->type) { ++ case KEY_TYPE_extent: ++ case KEY_TYPE_reflink_v: { ++ struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); ++ union bch_extent_entry *entry; ++ bool seen_crc = false; ++ ++ bkey_extent_entry_for_each(ptrs, entry) { ++ switch (extent_entry_type(entry)) { ++ case BCH_EXTENT_ENTRY_ptr: ++ if (!seen_crc) ++ entry->ptr.offset += sub; ++ break; ++ case BCH_EXTENT_ENTRY_crc32: ++ entry->crc32.offset += sub; ++ break; ++ case BCH_EXTENT_ENTRY_crc64: ++ entry->crc64.offset += sub; ++ break; ++ case BCH_EXTENT_ENTRY_crc128: ++ entry->crc128.offset += sub; ++ break; ++ case BCH_EXTENT_ENTRY_stripe_ptr: ++ break; ++ } ++ ++ if (extent_entry_is_crc(entry)) ++ seen_crc = true; ++ } ++ ++ break; ++ } ++ case KEY_TYPE_reflink_p: { ++ struct bkey_s_reflink_p p = bkey_s_to_reflink_p(k); ++ ++ le64_add_cpu(&p.v->idx, sub); ++ break; ++ } ++ case KEY_TYPE_inline_data: { ++ struct bkey_s_inline_data d = bkey_s_to_inline_data(k); ++ ++ sub = min_t(u64, sub << 9, bkey_val_bytes(d.k)); ++ ++ memmove(d.v->data, ++ d.v->data + sub, ++ bkey_val_bytes(d.k) - sub); ++ ++ new_val_u64s -= sub >> 3; ++ break; ++ } ++ } ++ ++ val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; ++ BUG_ON(val_u64s_delta < 0); ++ ++ set_bkey_val_u64s(k.k, new_val_u64s); ++ memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); ++ return -val_u64s_delta; ++} ++ ++int bch2_cut_back_s(struct bpos where, struct bkey_s k) ++{ ++ unsigned new_val_u64s = bkey_val_u64s(k.k); ++ int val_u64s_delta; ++ u64 len = 0; ++ ++ if (bkey_cmp(where, k.k->p) >= 0) ++ return 0; ++ ++ EBUG_ON(bkey_cmp(where, bkey_start_pos(k.k)) < 0); ++ ++ len = where.offset - bkey_start_offset(k.k); ++ ++ k.k->p = where; ++ k.k->size = len; ++ ++ if (!len) { ++ k.k->type = KEY_TYPE_deleted; ++ new_val_u64s = 0; ++ } ++ ++ switch (k.k->type) { ++ case KEY_TYPE_inline_data: ++ new_val_u64s = min(new_val_u64s, k.k->size << 6); ++ break; ++ } ++ ++ val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; ++ BUG_ON(val_u64s_delta < 0); ++ ++ set_bkey_val_u64s(k.k, new_val_u64s); ++ memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); ++ return -val_u64s_delta; ++} +diff --git a/fs/bcachefs/extents.h b/fs/bcachefs/extents.h +new file mode 100644 +index 000000000000..29b15365d19c +--- /dev/null ++++ b/fs/bcachefs/extents.h +@@ -0,0 +1,603 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_EXTENTS_H ++#define _BCACHEFS_EXTENTS_H ++ ++#include "bcachefs.h" ++#include "bkey.h" ++#include "extents_types.h" ++ ++struct bch_fs; ++struct btree_trans; ++ ++/* extent entries: */ ++ ++#define extent_entry_last(_e) \ ++ ((typeof(&(_e).v->start[0])) bkey_val_end(_e)) ++ ++#define entry_to_ptr(_entry) \ ++({ \ ++ EBUG_ON((_entry) && !extent_entry_is_ptr(_entry)); \ ++ \ ++ __builtin_choose_expr( \ ++ type_is_exact(_entry, const union bch_extent_entry *), \ ++ (const struct bch_extent_ptr *) (_entry), \ ++ (struct bch_extent_ptr *) (_entry)); \ ++}) ++ ++/* downcast, preserves const */ ++#define to_entry(_entry) \ ++({ \ ++ BUILD_BUG_ON(!type_is(_entry, union bch_extent_crc *) && \ ++ !type_is(_entry, struct bch_extent_ptr *) && \ ++ !type_is(_entry, struct bch_extent_stripe_ptr *)); \ ++ \ ++ __builtin_choose_expr( \ ++ (type_is_exact(_entry, const union bch_extent_crc *) || \ ++ type_is_exact(_entry, const struct bch_extent_ptr *) ||\ ++ type_is_exact(_entry, const struct bch_extent_stripe_ptr *)),\ ++ (const union bch_extent_entry *) (_entry), \ ++ (union bch_extent_entry *) (_entry)); \ ++}) ++ ++#define extent_entry_next(_entry) \ ++ ((typeof(_entry)) ((void *) (_entry) + extent_entry_bytes(_entry))) ++ ++static inline unsigned ++__extent_entry_type(const union bch_extent_entry *e) ++{ ++ return e->type ? __ffs(e->type) : BCH_EXTENT_ENTRY_MAX; ++} ++ ++static inline enum bch_extent_entry_type ++extent_entry_type(const union bch_extent_entry *e) ++{ ++ int ret = __ffs(e->type); ++ ++ EBUG_ON(ret < 0 || ret >= BCH_EXTENT_ENTRY_MAX); ++ ++ return ret; ++} ++ ++static inline size_t extent_entry_bytes(const union bch_extent_entry *entry) ++{ ++ switch (extent_entry_type(entry)) { ++#define x(f, n) \ ++ case BCH_EXTENT_ENTRY_##f: \ ++ return sizeof(struct bch_extent_##f); ++ BCH_EXTENT_ENTRY_TYPES() ++#undef x ++ default: ++ BUG(); ++ } ++} ++ ++static inline size_t extent_entry_u64s(const union bch_extent_entry *entry) ++{ ++ return extent_entry_bytes(entry) / sizeof(u64); ++} ++ ++static inline bool extent_entry_is_ptr(const union bch_extent_entry *e) ++{ ++ switch (extent_entry_type(e)) { ++ case BCH_EXTENT_ENTRY_ptr: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++static inline bool extent_entry_is_crc(const union bch_extent_entry *e) ++{ ++ switch (extent_entry_type(e)) { ++ case BCH_EXTENT_ENTRY_crc32: ++ case BCH_EXTENT_ENTRY_crc64: ++ case BCH_EXTENT_ENTRY_crc128: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++union bch_extent_crc { ++ u8 type; ++ struct bch_extent_crc32 crc32; ++ struct bch_extent_crc64 crc64; ++ struct bch_extent_crc128 crc128; ++}; ++ ++#define __entry_to_crc(_entry) \ ++ __builtin_choose_expr( \ ++ type_is_exact(_entry, const union bch_extent_entry *), \ ++ (const union bch_extent_crc *) (_entry), \ ++ (union bch_extent_crc *) (_entry)) ++ ++#define entry_to_crc(_entry) \ ++({ \ ++ EBUG_ON((_entry) && !extent_entry_is_crc(_entry)); \ ++ \ ++ __entry_to_crc(_entry); \ ++}) ++ ++static inline struct bch_extent_crc_unpacked ++bch2_extent_crc_unpack(const struct bkey *k, const union bch_extent_crc *crc) ++{ ++#define common_fields(_crc) \ ++ .csum_type = _crc.csum_type, \ ++ .compression_type = _crc.compression_type, \ ++ .compressed_size = _crc._compressed_size + 1, \ ++ .uncompressed_size = _crc._uncompressed_size + 1, \ ++ .offset = _crc.offset, \ ++ .live_size = k->size ++ ++ if (!crc) ++ return (struct bch_extent_crc_unpacked) { ++ .compressed_size = k->size, ++ .uncompressed_size = k->size, ++ .live_size = k->size, ++ }; ++ ++ switch (extent_entry_type(to_entry(crc))) { ++ case BCH_EXTENT_ENTRY_crc32: { ++ struct bch_extent_crc_unpacked ret = (struct bch_extent_crc_unpacked) { ++ common_fields(crc->crc32), ++ }; ++ ++ *((__le32 *) &ret.csum.lo) = crc->crc32.csum; ++ ++ memcpy(&ret.csum.lo, &crc->crc32.csum, ++ sizeof(crc->crc32.csum)); ++ ++ return ret; ++ } ++ case BCH_EXTENT_ENTRY_crc64: { ++ struct bch_extent_crc_unpacked ret = (struct bch_extent_crc_unpacked) { ++ common_fields(crc->crc64), ++ .nonce = crc->crc64.nonce, ++ .csum.lo = (__force __le64) crc->crc64.csum_lo, ++ }; ++ ++ *((__le16 *) &ret.csum.hi) = crc->crc64.csum_hi; ++ ++ return ret; ++ } ++ case BCH_EXTENT_ENTRY_crc128: { ++ struct bch_extent_crc_unpacked ret = (struct bch_extent_crc_unpacked) { ++ common_fields(crc->crc128), ++ .nonce = crc->crc128.nonce, ++ .csum = crc->crc128.csum, ++ }; ++ ++ return ret; ++ } ++ default: ++ BUG(); ++ } ++#undef common_fields ++} ++ ++static inline bool crc_is_compressed(struct bch_extent_crc_unpacked crc) ++{ ++ return (crc.compression_type != BCH_COMPRESSION_TYPE_none && ++ crc.compression_type != BCH_COMPRESSION_TYPE_incompressible); ++} ++ ++/* bkey_ptrs: generically over any key type that has ptrs */ ++ ++struct bkey_ptrs_c { ++ const union bch_extent_entry *start; ++ const union bch_extent_entry *end; ++}; ++ ++struct bkey_ptrs { ++ union bch_extent_entry *start; ++ union bch_extent_entry *end; ++}; ++ ++static inline struct bkey_ptrs_c bch2_bkey_ptrs_c(struct bkey_s_c k) ++{ ++ switch (k.k->type) { ++ case KEY_TYPE_btree_ptr: { ++ struct bkey_s_c_btree_ptr e = bkey_s_c_to_btree_ptr(k); ++ return (struct bkey_ptrs_c) { ++ to_entry(&e.v->start[0]), ++ to_entry(extent_entry_last(e)) ++ }; ++ } ++ case KEY_TYPE_extent: { ++ struct bkey_s_c_extent e = bkey_s_c_to_extent(k); ++ return (struct bkey_ptrs_c) { ++ e.v->start, ++ extent_entry_last(e) ++ }; ++ } ++ case KEY_TYPE_stripe: { ++ struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k); ++ return (struct bkey_ptrs_c) { ++ to_entry(&s.v->ptrs[0]), ++ to_entry(&s.v->ptrs[s.v->nr_blocks]), ++ }; ++ } ++ case KEY_TYPE_reflink_v: { ++ struct bkey_s_c_reflink_v r = bkey_s_c_to_reflink_v(k); ++ ++ return (struct bkey_ptrs_c) { ++ r.v->start, ++ bkey_val_end(r), ++ }; ++ } ++ case KEY_TYPE_btree_ptr_v2: { ++ struct bkey_s_c_btree_ptr_v2 e = bkey_s_c_to_btree_ptr_v2(k); ++ return (struct bkey_ptrs_c) { ++ to_entry(&e.v->start[0]), ++ to_entry(extent_entry_last(e)) ++ }; ++ } ++ default: ++ return (struct bkey_ptrs_c) { NULL, NULL }; ++ } ++} ++ ++static inline struct bkey_ptrs bch2_bkey_ptrs(struct bkey_s k) ++{ ++ struct bkey_ptrs_c p = bch2_bkey_ptrs_c(k.s_c); ++ ++ return (struct bkey_ptrs) { ++ (void *) p.start, ++ (void *) p.end ++ }; ++} ++ ++#define __bkey_extent_entry_for_each_from(_start, _end, _entry) \ ++ for ((_entry) = (_start); \ ++ (_entry) < (_end); \ ++ (_entry) = extent_entry_next(_entry)) ++ ++#define __bkey_ptr_next(_ptr, _end) \ ++({ \ ++ typeof(_end) _entry; \ ++ \ ++ __bkey_extent_entry_for_each_from(to_entry(_ptr), _end, _entry) \ ++ if (extent_entry_is_ptr(_entry)) \ ++ break; \ ++ \ ++ _entry < (_end) ? entry_to_ptr(_entry) : NULL; \ ++}) ++ ++#define bkey_extent_entry_for_each_from(_p, _entry, _start) \ ++ __bkey_extent_entry_for_each_from(_start, (_p).end, _entry) ++ ++#define bkey_extent_entry_for_each(_p, _entry) \ ++ bkey_extent_entry_for_each_from(_p, _entry, _p.start) ++ ++#define __bkey_for_each_ptr(_start, _end, _ptr) \ ++ for ((_ptr) = (_start); \ ++ ((_ptr) = __bkey_ptr_next(_ptr, _end)); \ ++ (_ptr)++) ++ ++#define bkey_ptr_next(_p, _ptr) \ ++ __bkey_ptr_next(_ptr, (_p).end) ++ ++#define bkey_for_each_ptr(_p, _ptr) \ ++ __bkey_for_each_ptr(&(_p).start->ptr, (_p).end, _ptr) ++ ++#define __bkey_ptr_next_decode(_k, _end, _ptr, _entry) \ ++({ \ ++ __label__ out; \ ++ \ ++ (_ptr).idx = 0; \ ++ (_ptr).has_ec = false; \ ++ \ ++ __bkey_extent_entry_for_each_from(_entry, _end, _entry) \ ++ switch (extent_entry_type(_entry)) { \ ++ case BCH_EXTENT_ENTRY_ptr: \ ++ (_ptr).ptr = _entry->ptr; \ ++ goto out; \ ++ case BCH_EXTENT_ENTRY_crc32: \ ++ case BCH_EXTENT_ENTRY_crc64: \ ++ case BCH_EXTENT_ENTRY_crc128: \ ++ (_ptr).crc = bch2_extent_crc_unpack(_k, \ ++ entry_to_crc(_entry)); \ ++ break; \ ++ case BCH_EXTENT_ENTRY_stripe_ptr: \ ++ (_ptr).ec = _entry->stripe_ptr; \ ++ (_ptr).has_ec = true; \ ++ break; \ ++ } \ ++out: \ ++ _entry < (_end); \ ++}) ++ ++#define __bkey_for_each_ptr_decode(_k, _start, _end, _ptr, _entry) \ ++ for ((_ptr).crc = bch2_extent_crc_unpack(_k, NULL), \ ++ (_entry) = _start; \ ++ __bkey_ptr_next_decode(_k, _end, _ptr, _entry); \ ++ (_entry) = extent_entry_next(_entry)) ++ ++#define bkey_for_each_ptr_decode(_k, _p, _ptr, _entry) \ ++ __bkey_for_each_ptr_decode(_k, (_p).start, (_p).end, \ ++ _ptr, _entry) ++ ++#define bkey_crc_next(_k, _start, _end, _crc, _iter) \ ++({ \ ++ __bkey_extent_entry_for_each_from(_iter, _end, _iter) \ ++ if (extent_entry_is_crc(_iter)) { \ ++ (_crc) = bch2_extent_crc_unpack(_k, \ ++ entry_to_crc(_iter)); \ ++ break; \ ++ } \ ++ \ ++ (_iter) < (_end); \ ++}) ++ ++#define __bkey_for_each_crc(_k, _start, _end, _crc, _iter) \ ++ for ((_crc) = bch2_extent_crc_unpack(_k, NULL), \ ++ (_iter) = (_start); \ ++ bkey_crc_next(_k, _start, _end, _crc, _iter); \ ++ (_iter) = extent_entry_next(_iter)) ++ ++#define bkey_for_each_crc(_k, _p, _crc, _iter) \ ++ __bkey_for_each_crc(_k, (_p).start, (_p).end, _crc, _iter) ++ ++/* Iterate over pointers in KEY_TYPE_extent: */ ++ ++#define extent_for_each_entry_from(_e, _entry, _start) \ ++ __bkey_extent_entry_for_each_from(_start, \ ++ extent_entry_last(_e),_entry) ++ ++#define extent_for_each_entry(_e, _entry) \ ++ extent_for_each_entry_from(_e, _entry, (_e).v->start) ++ ++#define extent_ptr_next(_e, _ptr) \ ++ __bkey_ptr_next(_ptr, extent_entry_last(_e)) ++ ++#define extent_for_each_ptr(_e, _ptr) \ ++ __bkey_for_each_ptr(&(_e).v->start->ptr, extent_entry_last(_e), _ptr) ++ ++#define extent_for_each_ptr_decode(_e, _ptr, _entry) \ ++ __bkey_for_each_ptr_decode((_e).k, (_e).v->start, \ ++ extent_entry_last(_e), _ptr, _entry) ++ ++/* utility code common to all keys with pointers: */ ++ ++void bch2_mark_io_failure(struct bch_io_failures *, ++ struct extent_ptr_decoded *); ++int bch2_bkey_pick_read_device(struct bch_fs *, struct bkey_s_c, ++ struct bch_io_failures *, ++ struct extent_ptr_decoded *); ++ ++/* KEY_TYPE_btree_ptr: */ ++ ++const char *bch2_btree_ptr_invalid(const struct bch_fs *, struct bkey_s_c); ++void bch2_btree_ptr_debugcheck(struct bch_fs *, struct bkey_s_c); ++void bch2_btree_ptr_to_text(struct printbuf *, struct bch_fs *, ++ struct bkey_s_c); ++ ++void bch2_btree_ptr_v2_to_text(struct printbuf *, struct bch_fs *, ++ struct bkey_s_c); ++void bch2_btree_ptr_v2_compat(enum btree_id, unsigned, unsigned, ++ int, struct bkey_s); ++ ++#define bch2_bkey_ops_btree_ptr (struct bkey_ops) { \ ++ .key_invalid = bch2_btree_ptr_invalid, \ ++ .key_debugcheck = bch2_btree_ptr_debugcheck, \ ++ .val_to_text = bch2_btree_ptr_to_text, \ ++ .swab = bch2_ptr_swab, \ ++} ++ ++#define bch2_bkey_ops_btree_ptr_v2 (struct bkey_ops) { \ ++ .key_invalid = bch2_btree_ptr_invalid, \ ++ .key_debugcheck = bch2_btree_ptr_debugcheck, \ ++ .val_to_text = bch2_btree_ptr_v2_to_text, \ ++ .swab = bch2_ptr_swab, \ ++ .compat = bch2_btree_ptr_v2_compat, \ ++} ++ ++/* KEY_TYPE_extent: */ ++ ++const char *bch2_extent_invalid(const struct bch_fs *, struct bkey_s_c); ++void bch2_extent_debugcheck(struct bch_fs *, struct bkey_s_c); ++void bch2_extent_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++enum merge_result bch2_extent_merge(struct bch_fs *, ++ struct bkey_s, struct bkey_s); ++ ++#define bch2_bkey_ops_extent (struct bkey_ops) { \ ++ .key_invalid = bch2_extent_invalid, \ ++ .key_debugcheck = bch2_extent_debugcheck, \ ++ .val_to_text = bch2_extent_to_text, \ ++ .swab = bch2_ptr_swab, \ ++ .key_normalize = bch2_extent_normalize, \ ++ .key_merge = bch2_extent_merge, \ ++} ++ ++/* KEY_TYPE_reservation: */ ++ ++const char *bch2_reservation_invalid(const struct bch_fs *, struct bkey_s_c); ++void bch2_reservation_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++enum merge_result bch2_reservation_merge(struct bch_fs *, ++ struct bkey_s, struct bkey_s); ++ ++#define bch2_bkey_ops_reservation (struct bkey_ops) { \ ++ .key_invalid = bch2_reservation_invalid, \ ++ .val_to_text = bch2_reservation_to_text, \ ++ .key_merge = bch2_reservation_merge, \ ++} ++ ++/* Extent checksum entries: */ ++ ++bool bch2_can_narrow_extent_crcs(struct bkey_s_c, ++ struct bch_extent_crc_unpacked); ++bool bch2_bkey_narrow_crcs(struct bkey_i *, struct bch_extent_crc_unpacked); ++void bch2_extent_crc_append(struct bkey_i *, ++ struct bch_extent_crc_unpacked); ++ ++/* Generic code for keys with pointers: */ ++ ++static inline bool bkey_extent_is_direct_data(const struct bkey *k) ++{ ++ switch (k->type) { ++ case KEY_TYPE_btree_ptr: ++ case KEY_TYPE_btree_ptr_v2: ++ case KEY_TYPE_extent: ++ case KEY_TYPE_reflink_v: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++static inline bool bkey_extent_is_data(const struct bkey *k) ++{ ++ return bkey_extent_is_direct_data(k) || ++ k->type == KEY_TYPE_inline_data || ++ k->type == KEY_TYPE_reflink_p; ++} ++ ++/* ++ * Should extent be counted under inode->i_sectors? ++ */ ++static inline bool bkey_extent_is_allocation(const struct bkey *k) ++{ ++ switch (k->type) { ++ case KEY_TYPE_extent: ++ case KEY_TYPE_reservation: ++ case KEY_TYPE_reflink_p: ++ case KEY_TYPE_reflink_v: ++ case KEY_TYPE_inline_data: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++static inline struct bch_devs_list bch2_bkey_devs(struct bkey_s_c k) ++{ ++ struct bch_devs_list ret = (struct bch_devs_list) { 0 }; ++ struct bkey_ptrs_c p = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ ++ bkey_for_each_ptr(p, ptr) ++ ret.devs[ret.nr++] = ptr->dev; ++ ++ return ret; ++} ++ ++static inline struct bch_devs_list bch2_bkey_dirty_devs(struct bkey_s_c k) ++{ ++ struct bch_devs_list ret = (struct bch_devs_list) { 0 }; ++ struct bkey_ptrs_c p = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ ++ bkey_for_each_ptr(p, ptr) ++ if (!ptr->cached) ++ ret.devs[ret.nr++] = ptr->dev; ++ ++ return ret; ++} ++ ++static inline struct bch_devs_list bch2_bkey_cached_devs(struct bkey_s_c k) ++{ ++ struct bch_devs_list ret = (struct bch_devs_list) { 0 }; ++ struct bkey_ptrs_c p = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ ++ bkey_for_each_ptr(p, ptr) ++ if (ptr->cached) ++ ret.devs[ret.nr++] = ptr->dev; ++ ++ return ret; ++} ++ ++unsigned bch2_bkey_nr_ptrs(struct bkey_s_c); ++unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c); ++unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c); ++bool bch2_bkey_is_incompressible(struct bkey_s_c); ++unsigned bch2_bkey_sectors_compressed(struct bkey_s_c); ++bool bch2_check_range_allocated(struct bch_fs *, struct bpos, u64, unsigned); ++unsigned bch2_bkey_durability(struct bch_fs *, struct bkey_s_c); ++ ++void bch2_bkey_mark_replicas_cached(struct bch_fs *, struct bkey_s, ++ unsigned, unsigned); ++ ++void bch2_bkey_append_ptr(struct bkey_i *, struct bch_extent_ptr); ++void bch2_extent_ptr_decoded_append(struct bkey_i *, ++ struct extent_ptr_decoded *); ++union bch_extent_entry *bch2_bkey_drop_ptr(struct bkey_s, ++ struct bch_extent_ptr *); ++ ++#define bch2_bkey_drop_ptrs(_k, _ptr, _cond) \ ++do { \ ++ struct bkey_ptrs _ptrs = bch2_bkey_ptrs(_k); \ ++ \ ++ _ptr = &_ptrs.start->ptr; \ ++ \ ++ while ((_ptr = bkey_ptr_next(_ptrs, _ptr))) { \ ++ if (_cond) { \ ++ _ptr = (void *) bch2_bkey_drop_ptr(_k, _ptr); \ ++ _ptrs = bch2_bkey_ptrs(_k); \ ++ continue; \ ++ } \ ++ \ ++ (_ptr)++; \ ++ } \ ++} while (0) ++ ++void bch2_bkey_drop_device(struct bkey_s, unsigned); ++const struct bch_extent_ptr *bch2_bkey_has_device(struct bkey_s_c, unsigned); ++bool bch2_bkey_has_target(struct bch_fs *, struct bkey_s_c, unsigned); ++ ++bool bch2_bkey_matches_ptr(struct bch_fs *, struct bkey_s_c, ++ struct bch_extent_ptr, u64); ++ ++bool bch2_extent_normalize(struct bch_fs *, struct bkey_s); ++void bch2_bkey_ptrs_to_text(struct printbuf *, struct bch_fs *, ++ struct bkey_s_c); ++const char *bch2_bkey_ptrs_invalid(const struct bch_fs *, struct bkey_s_c); ++ ++void bch2_ptr_swab(struct bkey_s); ++ ++/* Generic extent code: */ ++ ++int bch2_cut_front_s(struct bpos, struct bkey_s); ++int bch2_cut_back_s(struct bpos, struct bkey_s); ++ ++static inline void bch2_cut_front(struct bpos where, struct bkey_i *k) ++{ ++ bch2_cut_front_s(where, bkey_i_to_s(k)); ++} ++ ++static inline void bch2_cut_back(struct bpos where, struct bkey_i *k) ++{ ++ bch2_cut_back_s(where, bkey_i_to_s(k)); ++} ++ ++/** ++ * bch_key_resize - adjust size of @k ++ * ++ * bkey_start_offset(k) will be preserved, modifies where the extent ends ++ */ ++static inline void bch2_key_resize(struct bkey *k, unsigned new_size) ++{ ++ k->p.offset -= k->size; ++ k->p.offset += new_size; ++ k->size = new_size; ++} ++ ++/* ++ * In extent_sort_fix_overlapping(), insert_fixup_extent(), ++ * extent_merge_inline() - we're modifying keys in place that are packed. To do ++ * that we have to unpack the key, modify the unpacked key - then this ++ * copies/repacks the unpacked to the original as necessary. ++ */ ++static inline void extent_save(struct btree *b, struct bkey_packed *dst, ++ struct bkey *src) ++{ ++ struct bkey_format *f = &b->format; ++ struct bkey_i *dst_unpacked; ++ ++ if ((dst_unpacked = packed_to_bkey(dst))) ++ dst_unpacked->k = *src; ++ else ++ BUG_ON(!bch2_bkey_pack_key(dst, src, f)); ++} ++ ++#endif /* _BCACHEFS_EXTENTS_H */ +diff --git a/fs/bcachefs/extents_types.h b/fs/bcachefs/extents_types.h +new file mode 100644 +index 000000000000..43d6c341ecca +--- /dev/null ++++ b/fs/bcachefs/extents_types.h +@@ -0,0 +1,40 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_EXTENTS_TYPES_H ++#define _BCACHEFS_EXTENTS_TYPES_H ++ ++#include "bcachefs_format.h" ++ ++struct bch_extent_crc_unpacked { ++ u32 compressed_size; ++ u32 uncompressed_size; ++ u32 live_size; ++ ++ u8 csum_type; ++ u8 compression_type; ++ ++ u16 offset; ++ ++ u16 nonce; ++ ++ struct bch_csum csum; ++}; ++ ++struct extent_ptr_decoded { ++ unsigned idx; ++ bool has_ec; ++ struct bch_extent_crc_unpacked crc; ++ struct bch_extent_ptr ptr; ++ struct bch_extent_stripe_ptr ec; ++}; ++ ++struct bch_io_failures { ++ u8 nr; ++ struct bch_dev_io_failures { ++ u8 dev; ++ u8 idx; ++ u8 nr_failed; ++ u8 nr_retries; ++ } devs[BCH_REPLICAS_MAX]; ++}; ++ ++#endif /* _BCACHEFS_EXTENTS_TYPES_H */ +diff --git a/fs/bcachefs/eytzinger.h b/fs/bcachefs/eytzinger.h +new file mode 100644 +index 000000000000..26d5cad7e6a5 +--- /dev/null ++++ b/fs/bcachefs/eytzinger.h +@@ -0,0 +1,285 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _EYTZINGER_H ++#define _EYTZINGER_H ++ ++#include ++#include ++ ++#include "util.h" ++ ++/* ++ * Traversal for trees in eytzinger layout - a full binary tree layed out in an ++ * array ++ */ ++ ++/* ++ * One based indexing version: ++ * ++ * With one based indexing each level of the tree starts at a power of two - ++ * good for cacheline alignment: ++ * ++ * Size parameter is treated as if we were using 0 based indexing, however: ++ * valid nodes, and inorder indices, are in the range [1..size) - that is, there ++ * are actually size - 1 elements ++ */ ++ ++static inline unsigned eytzinger1_child(unsigned i, unsigned child) ++{ ++ EBUG_ON(child > 1); ++ ++ return (i << 1) + child; ++} ++ ++static inline unsigned eytzinger1_left_child(unsigned i) ++{ ++ return eytzinger1_child(i, 0); ++} ++ ++static inline unsigned eytzinger1_right_child(unsigned i) ++{ ++ return eytzinger1_child(i, 1); ++} ++ ++static inline unsigned eytzinger1_first(unsigned size) ++{ ++ return rounddown_pow_of_two(size - 1); ++} ++ ++static inline unsigned eytzinger1_last(unsigned size) ++{ ++ return rounddown_pow_of_two(size) - 1; ++} ++ ++/* ++ * eytzinger1_next() and eytzinger1_prev() have the nice properties that ++ * ++ * eytzinger1_next(0) == eytzinger1_first()) ++ * eytzinger1_prev(0) == eytzinger1_last()) ++ * ++ * eytzinger1_prev(eytzinger1_first()) == 0 ++ * eytzinger1_next(eytzinger1_last()) == 0 ++ */ ++ ++static inline unsigned eytzinger1_next(unsigned i, unsigned size) ++{ ++ EBUG_ON(i >= size); ++ ++ if (eytzinger1_right_child(i) < size) { ++ i = eytzinger1_right_child(i); ++ ++ i <<= __fls(size) - __fls(i); ++ i >>= i >= size; ++ } else { ++ i >>= ffz(i) + 1; ++ } ++ ++ return i; ++} ++ ++static inline unsigned eytzinger1_prev(unsigned i, unsigned size) ++{ ++ EBUG_ON(i >= size); ++ ++ if (eytzinger1_left_child(i) < size) { ++ i = eytzinger1_left_child(i) + 1; ++ ++ i <<= __fls(size) - __fls(i); ++ i -= 1; ++ i >>= i >= size; ++ } else { ++ i >>= __ffs(i) + 1; ++ } ++ ++ return i; ++} ++ ++static inline unsigned eytzinger1_extra(unsigned size) ++{ ++ return (size - rounddown_pow_of_two(size - 1)) << 1; ++} ++ ++static inline unsigned __eytzinger1_to_inorder(unsigned i, unsigned size, ++ unsigned extra) ++{ ++ unsigned b = __fls(i); ++ unsigned shift = __fls(size - 1) - b; ++ int s; ++ ++ EBUG_ON(!i || i >= size); ++ ++ i ^= 1U << b; ++ i <<= 1; ++ i |= 1; ++ i <<= shift; ++ ++ /* ++ * sign bit trick: ++ * ++ * if (i > extra) ++ * i -= (i - extra) >> 1; ++ */ ++ s = extra - i; ++ i += (s >> 1) & (s >> 31); ++ ++ return i; ++} ++ ++static inline unsigned __inorder_to_eytzinger1(unsigned i, unsigned size, ++ unsigned extra) ++{ ++ unsigned shift; ++ int s; ++ ++ EBUG_ON(!i || i >= size); ++ ++ /* ++ * sign bit trick: ++ * ++ * if (i > extra) ++ * i += i - extra; ++ */ ++ s = extra - i; ++ i -= s & (s >> 31); ++ ++ shift = __ffs(i); ++ ++ i >>= shift + 1; ++ i |= 1U << (__fls(size - 1) - shift); ++ ++ return i; ++} ++ ++static inline unsigned eytzinger1_to_inorder(unsigned i, unsigned size) ++{ ++ return __eytzinger1_to_inorder(i, size, eytzinger1_extra(size)); ++} ++ ++static inline unsigned inorder_to_eytzinger1(unsigned i, unsigned size) ++{ ++ return __inorder_to_eytzinger1(i, size, eytzinger1_extra(size)); ++} ++ ++#define eytzinger1_for_each(_i, _size) \ ++ for ((_i) = eytzinger1_first((_size)); \ ++ (_i) != 0; \ ++ (_i) = eytzinger1_next((_i), (_size))) ++ ++/* Zero based indexing version: */ ++ ++static inline unsigned eytzinger0_child(unsigned i, unsigned child) ++{ ++ EBUG_ON(child > 1); ++ ++ return (i << 1) + 1 + child; ++} ++ ++static inline unsigned eytzinger0_left_child(unsigned i) ++{ ++ return eytzinger0_child(i, 0); ++} ++ ++static inline unsigned eytzinger0_right_child(unsigned i) ++{ ++ return eytzinger0_child(i, 1); ++} ++ ++static inline unsigned eytzinger0_first(unsigned size) ++{ ++ return eytzinger1_first(size + 1) - 1; ++} ++ ++static inline unsigned eytzinger0_last(unsigned size) ++{ ++ return eytzinger1_last(size + 1) - 1; ++} ++ ++static inline unsigned eytzinger0_next(unsigned i, unsigned size) ++{ ++ return eytzinger1_next(i + 1, size + 1) - 1; ++} ++ ++static inline unsigned eytzinger0_prev(unsigned i, unsigned size) ++{ ++ return eytzinger1_prev(i + 1, size + 1) - 1; ++} ++ ++static inline unsigned eytzinger0_extra(unsigned size) ++{ ++ return eytzinger1_extra(size + 1); ++} ++ ++static inline unsigned __eytzinger0_to_inorder(unsigned i, unsigned size, ++ unsigned extra) ++{ ++ return __eytzinger1_to_inorder(i + 1, size + 1, extra) - 1; ++} ++ ++static inline unsigned __inorder_to_eytzinger0(unsigned i, unsigned size, ++ unsigned extra) ++{ ++ return __inorder_to_eytzinger1(i + 1, size + 1, extra) - 1; ++} ++ ++static inline unsigned eytzinger0_to_inorder(unsigned i, unsigned size) ++{ ++ return __eytzinger0_to_inorder(i, size, eytzinger0_extra(size)); ++} ++ ++static inline unsigned inorder_to_eytzinger0(unsigned i, unsigned size) ++{ ++ return __inorder_to_eytzinger0(i, size, eytzinger0_extra(size)); ++} ++ ++#define eytzinger0_for_each(_i, _size) \ ++ for ((_i) = eytzinger0_first((_size)); \ ++ (_i) != -1; \ ++ (_i) = eytzinger0_next((_i), (_size))) ++ ++typedef int (*eytzinger_cmp_fn)(const void *l, const void *r, size_t size); ++ ++/* return greatest node <= @search, or -1 if not found */ ++static inline ssize_t eytzinger0_find_le(void *base, size_t nr, size_t size, ++ eytzinger_cmp_fn cmp, const void *search) ++{ ++ unsigned i, n = 0; ++ ++ if (!nr) ++ return -1; ++ ++ do { ++ i = n; ++ n = eytzinger0_child(i, cmp(search, base + i * size, size) >= 0); ++ } while (n < nr); ++ ++ if (n & 1) { ++ /* @i was greater than @search, return previous node: */ ++ ++ if (i == eytzinger0_first(nr)) ++ return -1; ++ ++ return eytzinger0_prev(i, nr); ++ } else { ++ return i; ++ } ++} ++ ++#define eytzinger0_find(base, nr, size, _cmp, search) \ ++({ \ ++ void *_base = (base); \ ++ void *_search = (search); \ ++ size_t _nr = (nr); \ ++ size_t _size = (size); \ ++ size_t _i = 0; \ ++ int _res; \ ++ \ ++ while (_i < _nr && \ ++ (_res = _cmp(_search, _base + _i * _size, _size))) \ ++ _i = eytzinger0_child(_i, _res > 0); \ ++ _i; \ ++}) ++ ++void eytzinger0_sort(void *, size_t, size_t, ++ int (*cmp_func)(const void *, const void *, size_t), ++ void (*swap_func)(void *, void *, size_t)); ++ ++#endif /* _EYTZINGER_H */ +diff --git a/fs/bcachefs/fifo.h b/fs/bcachefs/fifo.h +new file mode 100644 +index 000000000000..cdb272708a4b +--- /dev/null ++++ b/fs/bcachefs/fifo.h +@@ -0,0 +1,127 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_FIFO_H ++#define _BCACHEFS_FIFO_H ++ ++#include "util.h" ++ ++#define FIFO(type) \ ++struct { \ ++ size_t front, back, size, mask; \ ++ type *data; \ ++} ++ ++#define DECLARE_FIFO(type, name) FIFO(type) name ++ ++#define fifo_buf_size(fifo) \ ++ ((fifo)->size \ ++ ? roundup_pow_of_two((fifo)->size) * sizeof((fifo)->data[0]) \ ++ : 0) ++ ++#define init_fifo(fifo, _size, _gfp) \ ++({ \ ++ (fifo)->front = (fifo)->back = 0; \ ++ (fifo)->size = (_size); \ ++ (fifo)->mask = (fifo)->size \ ++ ? roundup_pow_of_two((fifo)->size) - 1 \ ++ : 0; \ ++ (fifo)->data = kvpmalloc(fifo_buf_size(fifo), (_gfp)); \ ++}) ++ ++#define free_fifo(fifo) \ ++do { \ ++ kvpfree((fifo)->data, fifo_buf_size(fifo)); \ ++ (fifo)->data = NULL; \ ++} while (0) ++ ++#define fifo_swap(l, r) \ ++do { \ ++ swap((l)->front, (r)->front); \ ++ swap((l)->back, (r)->back); \ ++ swap((l)->size, (r)->size); \ ++ swap((l)->mask, (r)->mask); \ ++ swap((l)->data, (r)->data); \ ++} while (0) ++ ++#define fifo_move(dest, src) \ ++do { \ ++ typeof(*((dest)->data)) _t; \ ++ while (!fifo_full(dest) && \ ++ fifo_pop(src, _t)) \ ++ fifo_push(dest, _t); \ ++} while (0) ++ ++#define fifo_used(fifo) (((fifo)->back - (fifo)->front)) ++#define fifo_free(fifo) ((fifo)->size - fifo_used(fifo)) ++ ++#define fifo_empty(fifo) ((fifo)->front == (fifo)->back) ++#define fifo_full(fifo) (fifo_used(fifo) == (fifo)->size) ++ ++#define fifo_peek_front(fifo) ((fifo)->data[(fifo)->front & (fifo)->mask]) ++#define fifo_peek_back(fifo) ((fifo)->data[((fifo)->back - 1) & (fifo)->mask]) ++ ++#define fifo_entry_idx_abs(fifo, p) \ ++ ((((p) >= &fifo_peek_front(fifo) \ ++ ? (fifo)->front : (fifo)->back) & ~(fifo)->mask) + \ ++ (((p) - (fifo)->data))) ++ ++#define fifo_entry_idx(fifo, p) (((p) - &fifo_peek_front(fifo)) & (fifo)->mask) ++#define fifo_idx_entry(fifo, i) (fifo)->data[((fifo)->front + (i)) & (fifo)->mask] ++ ++#define fifo_push_back_ref(f) \ ++ (fifo_full((f)) ? NULL : &(f)->data[(f)->back++ & (f)->mask]) ++ ++#define fifo_push_front_ref(f) \ ++ (fifo_full((f)) ? NULL : &(f)->data[--(f)->front & (f)->mask]) ++ ++#define fifo_push_back(fifo, new) \ ++({ \ ++ typeof((fifo)->data) _r = fifo_push_back_ref(fifo); \ ++ if (_r) \ ++ *_r = (new); \ ++ _r != NULL; \ ++}) ++ ++#define fifo_push_front(fifo, new) \ ++({ \ ++ typeof((fifo)->data) _r = fifo_push_front_ref(fifo); \ ++ if (_r) \ ++ *_r = (new); \ ++ _r != NULL; \ ++}) ++ ++#define fifo_pop_front(fifo, i) \ ++({ \ ++ bool _r = !fifo_empty((fifo)); \ ++ if (_r) \ ++ (i) = (fifo)->data[(fifo)->front++ & (fifo)->mask]; \ ++ _r; \ ++}) ++ ++#define fifo_pop_back(fifo, i) \ ++({ \ ++ bool _r = !fifo_empty((fifo)); \ ++ if (_r) \ ++ (i) = (fifo)->data[--(fifo)->back & (fifo)->mask]; \ ++ _r; \ ++}) ++ ++#define fifo_push_ref(fifo) fifo_push_back_ref(fifo) ++#define fifo_push(fifo, i) fifo_push_back(fifo, (i)) ++#define fifo_pop(fifo, i) fifo_pop_front(fifo, (i)) ++#define fifo_peek(fifo) fifo_peek_front(fifo) ++ ++#define fifo_for_each_entry(_entry, _fifo, _iter) \ ++ for (typecheck(typeof((_fifo)->front), _iter), \ ++ (_iter) = (_fifo)->front; \ ++ ((_iter != (_fifo)->back) && \ ++ (_entry = (_fifo)->data[(_iter) & (_fifo)->mask], true)); \ ++ (_iter)++) ++ ++#define fifo_for_each_entry_ptr(_ptr, _fifo, _iter) \ ++ for (typecheck(typeof((_fifo)->front), _iter), \ ++ (_iter) = (_fifo)->front; \ ++ ((_iter != (_fifo)->back) && \ ++ (_ptr = &(_fifo)->data[(_iter) & (_fifo)->mask], true)); \ ++ (_iter)++) ++ ++#endif /* _BCACHEFS_FIFO_H */ +diff --git a/fs/bcachefs/fs-common.c b/fs/bcachefs/fs-common.c +new file mode 100644 +index 000000000000..878419d40992 +--- /dev/null ++++ b/fs/bcachefs/fs-common.c +@@ -0,0 +1,317 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "acl.h" ++#include "btree_update.h" ++#include "dirent.h" ++#include "fs-common.h" ++#include "inode.h" ++#include "xattr.h" ++ ++#include ++ ++int bch2_create_trans(struct btree_trans *trans, u64 dir_inum, ++ struct bch_inode_unpacked *dir_u, ++ struct bch_inode_unpacked *new_inode, ++ const struct qstr *name, ++ uid_t uid, gid_t gid, umode_t mode, dev_t rdev, ++ struct posix_acl *default_acl, ++ struct posix_acl *acl) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter *dir_iter = NULL; ++ struct bch_hash_info hash = bch2_hash_info_init(c, new_inode); ++ u64 now = bch2_current_time(trans->c); ++ int ret; ++ ++ dir_iter = bch2_inode_peek(trans, dir_u, dir_inum, BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(dir_iter); ++ if (ret) ++ goto err; ++ ++ bch2_inode_init_late(new_inode, now, uid, gid, mode, rdev, dir_u); ++ ++ if (!name) ++ new_inode->bi_flags |= BCH_INODE_UNLINKED; ++ ++ ret = bch2_inode_create(trans, new_inode, ++ BLOCKDEV_INODE_MAX, 0, ++ &c->unused_inode_hint); ++ if (ret) ++ goto err; ++ ++ if (default_acl) { ++ ret = bch2_set_acl_trans(trans, new_inode, &hash, ++ default_acl, ACL_TYPE_DEFAULT); ++ if (ret) ++ goto err; ++ } ++ ++ if (acl) { ++ ret = bch2_set_acl_trans(trans, new_inode, &hash, ++ acl, ACL_TYPE_ACCESS); ++ if (ret) ++ goto err; ++ } ++ ++ if (name) { ++ struct bch_hash_info dir_hash = bch2_hash_info_init(c, dir_u); ++ dir_u->bi_mtime = dir_u->bi_ctime = now; ++ ++ if (S_ISDIR(new_inode->bi_mode)) ++ dir_u->bi_nlink++; ++ ++ ret = bch2_inode_write(trans, dir_iter, dir_u); ++ if (ret) ++ goto err; ++ ++ ret = bch2_dirent_create(trans, dir_inum, &dir_hash, ++ mode_to_type(new_inode->bi_mode), ++ name, new_inode->bi_inum, ++ BCH_HASH_SET_MUST_CREATE); ++ if (ret) ++ goto err; ++ } ++err: ++ bch2_trans_iter_put(trans, dir_iter); ++ return ret; ++} ++ ++int bch2_link_trans(struct btree_trans *trans, u64 dir_inum, ++ u64 inum, struct bch_inode_unpacked *dir_u, ++ struct bch_inode_unpacked *inode_u, const struct qstr *name) ++{ ++ struct btree_iter *dir_iter = NULL, *inode_iter = NULL; ++ struct bch_hash_info dir_hash; ++ u64 now = bch2_current_time(trans->c); ++ int ret; ++ ++ inode_iter = bch2_inode_peek(trans, inode_u, inum, BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(inode_iter); ++ if (ret) ++ goto err; ++ ++ inode_u->bi_ctime = now; ++ bch2_inode_nlink_inc(inode_u); ++ ++ dir_iter = bch2_inode_peek(trans, dir_u, dir_inum, 0); ++ ret = PTR_ERR_OR_ZERO(dir_iter); ++ if (ret) ++ goto err; ++ ++ dir_u->bi_mtime = dir_u->bi_ctime = now; ++ ++ dir_hash = bch2_hash_info_init(trans->c, dir_u); ++ ++ ret = bch2_dirent_create(trans, dir_inum, &dir_hash, ++ mode_to_type(inode_u->bi_mode), ++ name, inum, BCH_HASH_SET_MUST_CREATE) ?: ++ bch2_inode_write(trans, dir_iter, dir_u) ?: ++ bch2_inode_write(trans, inode_iter, inode_u); ++err: ++ bch2_trans_iter_put(trans, dir_iter); ++ bch2_trans_iter_put(trans, inode_iter); ++ return ret; ++} ++ ++int bch2_unlink_trans(struct btree_trans *trans, ++ u64 dir_inum, struct bch_inode_unpacked *dir_u, ++ struct bch_inode_unpacked *inode_u, ++ const struct qstr *name) ++{ ++ struct btree_iter *dir_iter = NULL, *dirent_iter = NULL, ++ *inode_iter = NULL; ++ struct bch_hash_info dir_hash; ++ u64 inum, now = bch2_current_time(trans->c); ++ struct bkey_s_c k; ++ int ret; ++ ++ dir_iter = bch2_inode_peek(trans, dir_u, dir_inum, BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(dir_iter); ++ if (ret) ++ goto err; ++ ++ dir_hash = bch2_hash_info_init(trans->c, dir_u); ++ ++ dirent_iter = __bch2_dirent_lookup_trans(trans, dir_inum, &dir_hash, ++ name, BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(dirent_iter); ++ if (ret) ++ goto err; ++ ++ k = bch2_btree_iter_peek_slot(dirent_iter); ++ inum = le64_to_cpu(bkey_s_c_to_dirent(k).v->d_inum); ++ ++ inode_iter = bch2_inode_peek(trans, inode_u, inum, BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(inode_iter); ++ if (ret) ++ goto err; ++ ++ dir_u->bi_mtime = dir_u->bi_ctime = inode_u->bi_ctime = now; ++ dir_u->bi_nlink -= S_ISDIR(inode_u->bi_mode); ++ bch2_inode_nlink_dec(inode_u); ++ ++ ret = (S_ISDIR(inode_u->bi_mode) ++ ? bch2_empty_dir_trans(trans, inum) ++ : 0) ?: ++ bch2_dirent_delete_at(trans, &dir_hash, dirent_iter) ?: ++ bch2_inode_write(trans, dir_iter, dir_u) ?: ++ bch2_inode_write(trans, inode_iter, inode_u); ++err: ++ bch2_trans_iter_put(trans, inode_iter); ++ bch2_trans_iter_put(trans, dirent_iter); ++ bch2_trans_iter_put(trans, dir_iter); ++ return ret; ++} ++ ++bool bch2_reinherit_attrs(struct bch_inode_unpacked *dst_u, ++ struct bch_inode_unpacked *src_u) ++{ ++ u64 src, dst; ++ unsigned id; ++ bool ret = false; ++ ++ for (id = 0; id < Inode_opt_nr; id++) { ++ if (dst_u->bi_fields_set & (1 << id)) ++ continue; ++ ++ src = bch2_inode_opt_get(src_u, id); ++ dst = bch2_inode_opt_get(dst_u, id); ++ ++ if (src == dst) ++ continue; ++ ++ bch2_inode_opt_set(dst_u, id, src); ++ ret = true; ++ } ++ ++ return ret; ++} ++ ++int bch2_rename_trans(struct btree_trans *trans, ++ u64 src_dir, struct bch_inode_unpacked *src_dir_u, ++ u64 dst_dir, struct bch_inode_unpacked *dst_dir_u, ++ struct bch_inode_unpacked *src_inode_u, ++ struct bch_inode_unpacked *dst_inode_u, ++ const struct qstr *src_name, ++ const struct qstr *dst_name, ++ enum bch_rename_mode mode) ++{ ++ struct btree_iter *src_dir_iter = NULL, *dst_dir_iter = NULL; ++ struct btree_iter *src_inode_iter = NULL, *dst_inode_iter = NULL; ++ struct bch_hash_info src_hash, dst_hash; ++ u64 src_inode, dst_inode, now = bch2_current_time(trans->c); ++ int ret; ++ ++ src_dir_iter = bch2_inode_peek(trans, src_dir_u, src_dir, ++ BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(src_dir_iter); ++ if (ret) ++ goto err; ++ ++ src_hash = bch2_hash_info_init(trans->c, src_dir_u); ++ ++ if (dst_dir != src_dir) { ++ dst_dir_iter = bch2_inode_peek(trans, dst_dir_u, dst_dir, ++ BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(dst_dir_iter); ++ if (ret) ++ goto err; ++ ++ dst_hash = bch2_hash_info_init(trans->c, dst_dir_u); ++ } else { ++ dst_dir_u = src_dir_u; ++ dst_hash = src_hash; ++ } ++ ++ ret = bch2_dirent_rename(trans, ++ src_dir, &src_hash, ++ dst_dir, &dst_hash, ++ src_name, &src_inode, ++ dst_name, &dst_inode, ++ mode); ++ if (ret) ++ goto err; ++ ++ src_inode_iter = bch2_inode_peek(trans, src_inode_u, src_inode, ++ BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(src_inode_iter); ++ if (ret) ++ goto err; ++ ++ if (dst_inode) { ++ dst_inode_iter = bch2_inode_peek(trans, dst_inode_u, dst_inode, ++ BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(dst_inode_iter); ++ if (ret) ++ goto err; ++ } ++ ++ if (mode == BCH_RENAME_OVERWRITE) { ++ if (S_ISDIR(src_inode_u->bi_mode) != ++ S_ISDIR(dst_inode_u->bi_mode)) { ++ ret = -ENOTDIR; ++ goto err; ++ } ++ ++ if (S_ISDIR(dst_inode_u->bi_mode) && ++ bch2_empty_dir_trans(trans, dst_inode)) { ++ ret = -ENOTEMPTY; ++ goto err; ++ } ++ } ++ ++ if (bch2_reinherit_attrs(src_inode_u, dst_dir_u) && ++ S_ISDIR(src_inode_u->bi_mode)) { ++ ret = -EXDEV; ++ goto err; ++ } ++ ++ if (mode == BCH_RENAME_EXCHANGE && ++ bch2_reinherit_attrs(dst_inode_u, src_dir_u) && ++ S_ISDIR(dst_inode_u->bi_mode)) { ++ ret = -EXDEV; ++ goto err; ++ } ++ ++ if (S_ISDIR(src_inode_u->bi_mode)) { ++ src_dir_u->bi_nlink--; ++ dst_dir_u->bi_nlink++; ++ } ++ ++ if (dst_inode && S_ISDIR(dst_inode_u->bi_mode)) { ++ dst_dir_u->bi_nlink--; ++ src_dir_u->bi_nlink += mode == BCH_RENAME_EXCHANGE; ++ } ++ ++ if (mode == BCH_RENAME_OVERWRITE) ++ bch2_inode_nlink_dec(dst_inode_u); ++ ++ src_dir_u->bi_mtime = now; ++ src_dir_u->bi_ctime = now; ++ ++ if (src_dir != dst_dir) { ++ dst_dir_u->bi_mtime = now; ++ dst_dir_u->bi_ctime = now; ++ } ++ ++ src_inode_u->bi_ctime = now; ++ ++ if (dst_inode) ++ dst_inode_u->bi_ctime = now; ++ ++ ret = bch2_inode_write(trans, src_dir_iter, src_dir_u) ?: ++ (src_dir != dst_dir ++ ? bch2_inode_write(trans, dst_dir_iter, dst_dir_u) ++ : 0 ) ?: ++ bch2_inode_write(trans, src_inode_iter, src_inode_u) ?: ++ (dst_inode ++ ? bch2_inode_write(trans, dst_inode_iter, dst_inode_u) ++ : 0 ); ++err: ++ bch2_trans_iter_put(trans, dst_inode_iter); ++ bch2_trans_iter_put(trans, src_inode_iter); ++ bch2_trans_iter_put(trans, dst_dir_iter); ++ bch2_trans_iter_put(trans, src_dir_iter); ++ return ret; ++} +diff --git a/fs/bcachefs/fs-common.h b/fs/bcachefs/fs-common.h +new file mode 100644 +index 000000000000..2273b7961c9b +--- /dev/null ++++ b/fs/bcachefs/fs-common.h +@@ -0,0 +1,37 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_FS_COMMON_H ++#define _BCACHEFS_FS_COMMON_H ++ ++struct posix_acl; ++ ++int bch2_create_trans(struct btree_trans *, u64, ++ struct bch_inode_unpacked *, ++ struct bch_inode_unpacked *, ++ const struct qstr *, ++ uid_t, gid_t, umode_t, dev_t, ++ struct posix_acl *, ++ struct posix_acl *); ++ ++int bch2_link_trans(struct btree_trans *, u64, ++ u64, struct bch_inode_unpacked *, ++ struct bch_inode_unpacked *, ++ const struct qstr *); ++ ++int bch2_unlink_trans(struct btree_trans *, ++ u64, struct bch_inode_unpacked *, ++ struct bch_inode_unpacked *, ++ const struct qstr *); ++ ++int bch2_rename_trans(struct btree_trans *, ++ u64, struct bch_inode_unpacked *, ++ u64, struct bch_inode_unpacked *, ++ struct bch_inode_unpacked *, ++ struct bch_inode_unpacked *, ++ const struct qstr *, ++ const struct qstr *, ++ enum bch_rename_mode); ++ ++bool bch2_reinherit_attrs(struct bch_inode_unpacked *, ++ struct bch_inode_unpacked *); ++ ++#endif /* _BCACHEFS_FS_COMMON_H */ +diff --git a/fs/bcachefs/fs-io.c b/fs/bcachefs/fs-io.c +new file mode 100644 +index 000000000000..4ceeafcfa33c +--- /dev/null ++++ b/fs/bcachefs/fs-io.c +@@ -0,0 +1,3140 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#ifndef NO_BCACHEFS_FS ++ ++#include "bcachefs.h" ++#include "alloc_foreground.h" ++#include "bkey_on_stack.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "clock.h" ++#include "error.h" ++#include "extents.h" ++#include "extent_update.h" ++#include "fs.h" ++#include "fs-io.h" ++#include "fsck.h" ++#include "inode.h" ++#include "journal.h" ++#include "io.h" ++#include "keylist.h" ++#include "quota.h" ++#include "reflink.h" ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++#include ++ ++struct quota_res { ++ u64 sectors; ++}; ++ ++struct bch_writepage_io { ++ struct closure cl; ++ struct bch_inode_info *inode; ++ ++ /* must be last: */ ++ struct bch_write_op op; ++}; ++ ++struct dio_write { ++ struct completion done; ++ struct kiocb *req; ++ struct mm_struct *mm; ++ unsigned loop:1, ++ sync:1, ++ free_iov:1; ++ struct quota_res quota_res; ++ u64 written; ++ ++ struct iov_iter iter; ++ struct iovec inline_vecs[2]; ++ ++ /* must be last: */ ++ struct bch_write_op op; ++}; ++ ++struct dio_read { ++ struct closure cl; ++ struct kiocb *req; ++ long ret; ++ struct bch_read_bio rbio; ++}; ++ ++/* pagecache_block must be held */ ++static int write_invalidate_inode_pages_range(struct address_space *mapping, ++ loff_t start, loff_t end) ++{ ++ int ret; ++ ++ /* ++ * XXX: the way this is currently implemented, we can spin if a process ++ * is continually redirtying a specific page ++ */ ++ do { ++ if (!mapping->nrpages && ++ !mapping->nrexceptional) ++ return 0; ++ ++ ret = filemap_write_and_wait_range(mapping, start, end); ++ if (ret) ++ break; ++ ++ if (!mapping->nrpages) ++ return 0; ++ ++ ret = invalidate_inode_pages2_range(mapping, ++ start >> PAGE_SHIFT, ++ end >> PAGE_SHIFT); ++ } while (ret == -EBUSY); ++ ++ return ret; ++} ++ ++/* quotas */ ++ ++#ifdef CONFIG_BCACHEFS_QUOTA ++ ++static void bch2_quota_reservation_put(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct quota_res *res) ++{ ++ if (!res->sectors) ++ return; ++ ++ mutex_lock(&inode->ei_quota_lock); ++ BUG_ON(res->sectors > inode->ei_quota_reserved); ++ ++ bch2_quota_acct(c, inode->ei_qid, Q_SPC, ++ -((s64) res->sectors), KEY_TYPE_QUOTA_PREALLOC); ++ inode->ei_quota_reserved -= res->sectors; ++ mutex_unlock(&inode->ei_quota_lock); ++ ++ res->sectors = 0; ++} ++ ++static int bch2_quota_reservation_add(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct quota_res *res, ++ unsigned sectors, ++ bool check_enospc) ++{ ++ int ret; ++ ++ mutex_lock(&inode->ei_quota_lock); ++ ret = bch2_quota_acct(c, inode->ei_qid, Q_SPC, sectors, ++ check_enospc ? KEY_TYPE_QUOTA_PREALLOC : KEY_TYPE_QUOTA_NOCHECK); ++ if (likely(!ret)) { ++ inode->ei_quota_reserved += sectors; ++ res->sectors += sectors; ++ } ++ mutex_unlock(&inode->ei_quota_lock); ++ ++ return ret; ++} ++ ++#else ++ ++static void bch2_quota_reservation_put(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct quota_res *res) ++{ ++} ++ ++static int bch2_quota_reservation_add(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct quota_res *res, ++ unsigned sectors, ++ bool check_enospc) ++{ ++ return 0; ++} ++ ++#endif ++ ++/* i_size updates: */ ++ ++struct inode_new_size { ++ loff_t new_size; ++ u64 now; ++ unsigned fields; ++}; ++ ++static int inode_set_size(struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, ++ void *p) ++{ ++ struct inode_new_size *s = p; ++ ++ bi->bi_size = s->new_size; ++ if (s->fields & ATTR_ATIME) ++ bi->bi_atime = s->now; ++ if (s->fields & ATTR_MTIME) ++ bi->bi_mtime = s->now; ++ if (s->fields & ATTR_CTIME) ++ bi->bi_ctime = s->now; ++ ++ return 0; ++} ++ ++int __must_check bch2_write_inode_size(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ loff_t new_size, unsigned fields) ++{ ++ struct inode_new_size s = { ++ .new_size = new_size, ++ .now = bch2_current_time(c), ++ .fields = fields, ++ }; ++ ++ return bch2_write_inode(c, inode, inode_set_size, &s, fields); ++} ++ ++static void i_sectors_acct(struct bch_fs *c, struct bch_inode_info *inode, ++ struct quota_res *quota_res, s64 sectors) ++{ ++ if (!sectors) ++ return; ++ ++ mutex_lock(&inode->ei_quota_lock); ++#ifdef CONFIG_BCACHEFS_QUOTA ++ if (quota_res && sectors > 0) { ++ BUG_ON(sectors > quota_res->sectors); ++ BUG_ON(sectors > inode->ei_quota_reserved); ++ ++ quota_res->sectors -= sectors; ++ inode->ei_quota_reserved -= sectors; ++ } else { ++ bch2_quota_acct(c, inode->ei_qid, Q_SPC, sectors, KEY_TYPE_QUOTA_WARN); ++ } ++#endif ++ inode->v.i_blocks += sectors; ++ mutex_unlock(&inode->ei_quota_lock); ++} ++ ++/* page state: */ ++ ++/* stored in page->private: */ ++ ++struct bch_page_sector { ++ /* Uncompressed, fully allocated replicas: */ ++ unsigned nr_replicas:3; ++ ++ /* Owns PAGE_SECTORS * replicas_reserved sized reservation: */ ++ unsigned replicas_reserved:3; ++ ++ /* i_sectors: */ ++ enum { ++ SECTOR_UNALLOCATED, ++ SECTOR_RESERVED, ++ SECTOR_DIRTY, ++ SECTOR_ALLOCATED, ++ } state:2; ++}; ++ ++struct bch_page_state { ++ spinlock_t lock; ++ atomic_t write_count; ++ struct bch_page_sector s[PAGE_SECTORS]; ++}; ++ ++static inline struct bch_page_state *__bch2_page_state(struct page *page) ++{ ++ return page_has_private(page) ++ ? (struct bch_page_state *) page_private(page) ++ : NULL; ++} ++ ++static inline struct bch_page_state *bch2_page_state(struct page *page) ++{ ++ EBUG_ON(!PageLocked(page)); ++ ++ return __bch2_page_state(page); ++} ++ ++/* for newly allocated pages: */ ++static void __bch2_page_state_release(struct page *page) ++{ ++ struct bch_page_state *s = __bch2_page_state(page); ++ ++ if (!s) ++ return; ++ ++ ClearPagePrivate(page); ++ set_page_private(page, 0); ++ put_page(page); ++ kfree(s); ++} ++ ++static void bch2_page_state_release(struct page *page) ++{ ++ struct bch_page_state *s = bch2_page_state(page); ++ ++ if (!s) ++ return; ++ ++ ClearPagePrivate(page); ++ set_page_private(page, 0); ++ put_page(page); ++ kfree(s); ++} ++ ++/* for newly allocated pages: */ ++static struct bch_page_state *__bch2_page_state_create(struct page *page, ++ gfp_t gfp) ++{ ++ struct bch_page_state *s; ++ ++ s = kzalloc(sizeof(*s), GFP_NOFS|gfp); ++ if (!s) ++ return NULL; ++ ++ spin_lock_init(&s->lock); ++ /* ++ * migrate_page_move_mapping() assumes that pages with private data ++ * have their count elevated by 1. ++ */ ++ get_page(page); ++ set_page_private(page, (unsigned long) s); ++ SetPagePrivate(page); ++ return s; ++} ++ ++static struct bch_page_state *bch2_page_state_create(struct page *page, ++ gfp_t gfp) ++{ ++ return bch2_page_state(page) ?: __bch2_page_state_create(page, gfp); ++} ++ ++static inline unsigned inode_nr_replicas(struct bch_fs *c, struct bch_inode_info *inode) ++{ ++ /* XXX: this should not be open coded */ ++ return inode->ei_inode.bi_data_replicas ++ ? inode->ei_inode.bi_data_replicas - 1 ++ : c->opts.data_replicas; ++} ++ ++static inline unsigned sectors_to_reserve(struct bch_page_sector *s, ++ unsigned nr_replicas) ++{ ++ return max(0, (int) nr_replicas - ++ s->nr_replicas - ++ s->replicas_reserved); ++} ++ ++static int bch2_get_page_disk_reservation(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct page *page, bool check_enospc) ++{ ++ struct bch_page_state *s = bch2_page_state_create(page, 0); ++ unsigned nr_replicas = inode_nr_replicas(c, inode); ++ struct disk_reservation disk_res = { 0 }; ++ unsigned i, disk_res_sectors = 0; ++ int ret; ++ ++ if (!s) ++ return -ENOMEM; ++ ++ for (i = 0; i < ARRAY_SIZE(s->s); i++) ++ disk_res_sectors += sectors_to_reserve(&s->s[i], nr_replicas); ++ ++ if (!disk_res_sectors) ++ return 0; ++ ++ ret = bch2_disk_reservation_get(c, &disk_res, ++ disk_res_sectors, 1, ++ !check_enospc ++ ? BCH_DISK_RESERVATION_NOFAIL ++ : 0); ++ if (unlikely(ret)) ++ return ret; ++ ++ for (i = 0; i < ARRAY_SIZE(s->s); i++) ++ s->s[i].replicas_reserved += ++ sectors_to_reserve(&s->s[i], nr_replicas); ++ ++ return 0; ++} ++ ++struct bch2_page_reservation { ++ struct disk_reservation disk; ++ struct quota_res quota; ++}; ++ ++static void bch2_page_reservation_init(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct bch2_page_reservation *res) ++{ ++ memset(res, 0, sizeof(*res)); ++ ++ res->disk.nr_replicas = inode_nr_replicas(c, inode); ++} ++ ++static void bch2_page_reservation_put(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct bch2_page_reservation *res) ++{ ++ bch2_disk_reservation_put(c, &res->disk); ++ bch2_quota_reservation_put(c, inode, &res->quota); ++} ++ ++static int bch2_page_reservation_get(struct bch_fs *c, ++ struct bch_inode_info *inode, struct page *page, ++ struct bch2_page_reservation *res, ++ unsigned offset, unsigned len, bool check_enospc) ++{ ++ struct bch_page_state *s = bch2_page_state_create(page, 0); ++ unsigned i, disk_sectors = 0, quota_sectors = 0; ++ int ret; ++ ++ if (!s) ++ return -ENOMEM; ++ ++ for (i = round_down(offset, block_bytes(c)) >> 9; ++ i < round_up(offset + len, block_bytes(c)) >> 9; ++ i++) { ++ disk_sectors += sectors_to_reserve(&s->s[i], ++ res->disk.nr_replicas); ++ quota_sectors += s->s[i].state == SECTOR_UNALLOCATED; ++ } ++ ++ if (disk_sectors) { ++ ret = bch2_disk_reservation_add(c, &res->disk, ++ disk_sectors, ++ !check_enospc ++ ? BCH_DISK_RESERVATION_NOFAIL ++ : 0); ++ if (unlikely(ret)) ++ return ret; ++ } ++ ++ if (quota_sectors) { ++ ret = bch2_quota_reservation_add(c, inode, &res->quota, ++ quota_sectors, ++ check_enospc); ++ if (unlikely(ret)) { ++ struct disk_reservation tmp = { ++ .sectors = disk_sectors ++ }; ++ ++ bch2_disk_reservation_put(c, &tmp); ++ res->disk.sectors -= disk_sectors; ++ return ret; ++ } ++ } ++ ++ return 0; ++} ++ ++static void bch2_clear_page_bits(struct page *page) ++{ ++ struct bch_inode_info *inode = to_bch_ei(page->mapping->host); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch_page_state *s = bch2_page_state(page); ++ struct disk_reservation disk_res = { 0 }; ++ int i, dirty_sectors = 0; ++ ++ if (!s) ++ return; ++ ++ EBUG_ON(!PageLocked(page)); ++ EBUG_ON(PageWriteback(page)); ++ ++ for (i = 0; i < ARRAY_SIZE(s->s); i++) { ++ disk_res.sectors += s->s[i].replicas_reserved; ++ s->s[i].replicas_reserved = 0; ++ ++ if (s->s[i].state == SECTOR_DIRTY) { ++ dirty_sectors++; ++ s->s[i].state = SECTOR_UNALLOCATED; ++ } ++ } ++ ++ bch2_disk_reservation_put(c, &disk_res); ++ ++ if (dirty_sectors) ++ i_sectors_acct(c, inode, NULL, -dirty_sectors); ++ ++ bch2_page_state_release(page); ++} ++ ++static void bch2_set_page_dirty(struct bch_fs *c, ++ struct bch_inode_info *inode, struct page *page, ++ struct bch2_page_reservation *res, ++ unsigned offset, unsigned len) ++{ ++ struct bch_page_state *s = bch2_page_state(page); ++ unsigned i, dirty_sectors = 0; ++ ++ WARN_ON((u64) page_offset(page) + offset + len > ++ round_up((u64) i_size_read(&inode->v), block_bytes(c))); ++ ++ spin_lock(&s->lock); ++ ++ for (i = round_down(offset, block_bytes(c)) >> 9; ++ i < round_up(offset + len, block_bytes(c)) >> 9; ++ i++) { ++ unsigned sectors = sectors_to_reserve(&s->s[i], ++ res->disk.nr_replicas); ++ ++ /* ++ * This can happen if we race with the error path in ++ * bch2_writepage_io_done(): ++ */ ++ sectors = min_t(unsigned, sectors, res->disk.sectors); ++ ++ s->s[i].replicas_reserved += sectors; ++ res->disk.sectors -= sectors; ++ ++ if (s->s[i].state == SECTOR_UNALLOCATED) ++ dirty_sectors++; ++ ++ s->s[i].state = max_t(unsigned, s->s[i].state, SECTOR_DIRTY); ++ } ++ ++ spin_unlock(&s->lock); ++ ++ if (dirty_sectors) ++ i_sectors_acct(c, inode, &res->quota, dirty_sectors); ++ ++ if (!PageDirty(page)) ++ __set_page_dirty_nobuffers(page); ++} ++ ++vm_fault_t bch2_page_fault(struct vm_fault *vmf) ++{ ++ struct file *file = vmf->vma->vm_file; ++ struct bch_inode_info *inode = file_bch_inode(file); ++ int ret; ++ ++ bch2_pagecache_add_get(&inode->ei_pagecache_lock); ++ ret = filemap_fault(vmf); ++ bch2_pagecache_add_put(&inode->ei_pagecache_lock); ++ ++ return ret; ++} ++ ++vm_fault_t bch2_page_mkwrite(struct vm_fault *vmf) ++{ ++ struct page *page = vmf->page; ++ struct file *file = vmf->vma->vm_file; ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct address_space *mapping = file->f_mapping; ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch2_page_reservation res; ++ unsigned len; ++ loff_t isize; ++ int ret = VM_FAULT_LOCKED; ++ ++ bch2_page_reservation_init(c, inode, &res); ++ ++ sb_start_pagefault(inode->v.i_sb); ++ file_update_time(file); ++ ++ /* ++ * Not strictly necessary, but helps avoid dio writes livelocking in ++ * write_invalidate_inode_pages_range() - can drop this if/when we get ++ * a write_invalidate_inode_pages_range() that works without dropping ++ * page lock before invalidating page ++ */ ++ bch2_pagecache_add_get(&inode->ei_pagecache_lock); ++ ++ lock_page(page); ++ isize = i_size_read(&inode->v); ++ ++ if (page->mapping != mapping || page_offset(page) >= isize) { ++ unlock_page(page); ++ ret = VM_FAULT_NOPAGE; ++ goto out; ++ } ++ ++ len = min_t(loff_t, PAGE_SIZE, isize - page_offset(page)); ++ ++ if (bch2_page_reservation_get(c, inode, page, &res, 0, len, true)) { ++ unlock_page(page); ++ ret = VM_FAULT_SIGBUS; ++ goto out; ++ } ++ ++ bch2_set_page_dirty(c, inode, page, &res, 0, len); ++ bch2_page_reservation_put(c, inode, &res); ++ ++ wait_for_stable_page(page); ++out: ++ bch2_pagecache_add_put(&inode->ei_pagecache_lock); ++ sb_end_pagefault(inode->v.i_sb); ++ ++ return ret; ++} ++ ++void bch2_invalidatepage(struct page *page, unsigned int offset, ++ unsigned int length) ++{ ++ if (offset || length < PAGE_SIZE) ++ return; ++ ++ bch2_clear_page_bits(page); ++} ++ ++int bch2_releasepage(struct page *page, gfp_t gfp_mask) ++{ ++ if (PageDirty(page)) ++ return 0; ++ ++ bch2_clear_page_bits(page); ++ return 1; ++} ++ ++#ifdef CONFIG_MIGRATION ++int bch2_migrate_page(struct address_space *mapping, struct page *newpage, ++ struct page *page, enum migrate_mode mode) ++{ ++ int ret; ++ ++ EBUG_ON(!PageLocked(page)); ++ EBUG_ON(!PageLocked(newpage)); ++ ++ ret = migrate_page_move_mapping(mapping, newpage, page, 0); ++ if (ret != MIGRATEPAGE_SUCCESS) ++ return ret; ++ ++ if (PagePrivate(page)) { ++ ClearPagePrivate(page); ++ get_page(newpage); ++ set_page_private(newpage, page_private(page)); ++ set_page_private(page, 0); ++ put_page(page); ++ SetPagePrivate(newpage); ++ } ++ ++ if (mode != MIGRATE_SYNC_NO_COPY) ++ migrate_page_copy(newpage, page); ++ else ++ migrate_page_states(newpage, page); ++ return MIGRATEPAGE_SUCCESS; ++} ++#endif ++ ++/* readpage(s): */ ++ ++static void bch2_readpages_end_io(struct bio *bio) ++{ ++ struct bvec_iter_all iter; ++ struct bio_vec *bv; ++ ++ bio_for_each_segment_all(bv, bio, iter) { ++ struct page *page = bv->bv_page; ++ ++ if (!bio->bi_status) { ++ SetPageUptodate(page); ++ } else { ++ ClearPageUptodate(page); ++ SetPageError(page); ++ } ++ unlock_page(page); ++ } ++ ++ bio_put(bio); ++} ++ ++static inline void page_state_init_for_read(struct page *page) ++{ ++ SetPagePrivate(page); ++ page->private = 0; ++} ++ ++struct readpages_iter { ++ struct address_space *mapping; ++ struct page **pages; ++ unsigned nr_pages; ++ unsigned nr_added; ++ unsigned idx; ++ pgoff_t offset; ++}; ++ ++static int readpages_iter_init(struct readpages_iter *iter, ++ struct address_space *mapping, ++ struct list_head *pages, unsigned nr_pages) ++{ ++ memset(iter, 0, sizeof(*iter)); ++ ++ iter->mapping = mapping; ++ iter->offset = list_last_entry(pages, struct page, lru)->index; ++ ++ iter->pages = kmalloc_array(nr_pages, sizeof(struct page *), GFP_NOFS); ++ if (!iter->pages) ++ return -ENOMEM; ++ ++ while (!list_empty(pages)) { ++ struct page *page = list_last_entry(pages, struct page, lru); ++ ++ __bch2_page_state_create(page, __GFP_NOFAIL); ++ ++ iter->pages[iter->nr_pages++] = page; ++ list_del(&page->lru); ++ } ++ ++ return 0; ++} ++ ++static inline struct page *readpage_iter_next(struct readpages_iter *iter) ++{ ++ struct page *page; ++ unsigned i; ++ int ret; ++ ++ BUG_ON(iter->idx > iter->nr_added); ++ BUG_ON(iter->nr_added > iter->nr_pages); ++ ++ if (iter->idx < iter->nr_added) ++ goto out; ++ ++ while (1) { ++ if (iter->idx == iter->nr_pages) ++ return NULL; ++ ++ ret = add_to_page_cache_lru_vec(iter->mapping, ++ iter->pages + iter->nr_added, ++ iter->nr_pages - iter->nr_added, ++ iter->offset + iter->nr_added, ++ GFP_NOFS); ++ if (ret > 0) ++ break; ++ ++ page = iter->pages[iter->nr_added]; ++ iter->idx++; ++ iter->nr_added++; ++ ++ __bch2_page_state_release(page); ++ put_page(page); ++ } ++ ++ iter->nr_added += ret; ++ ++ for (i = iter->idx; i < iter->nr_added; i++) ++ put_page(iter->pages[i]); ++out: ++ EBUG_ON(iter->pages[iter->idx]->index != iter->offset + iter->idx); ++ ++ return iter->pages[iter->idx]; ++} ++ ++static void bch2_add_page_sectors(struct bio *bio, struct bkey_s_c k) ++{ ++ struct bvec_iter iter; ++ struct bio_vec bv; ++ unsigned nr_ptrs = k.k->type == KEY_TYPE_reflink_v ++ ? 0 : bch2_bkey_nr_ptrs_fully_allocated(k); ++ unsigned state = k.k->type == KEY_TYPE_reservation ++ ? SECTOR_RESERVED ++ : SECTOR_ALLOCATED; ++ ++ bio_for_each_segment(bv, bio, iter) { ++ struct bch_page_state *s = bch2_page_state(bv.bv_page); ++ unsigned i; ++ ++ for (i = bv.bv_offset >> 9; ++ i < (bv.bv_offset + bv.bv_len) >> 9; ++ i++) { ++ s->s[i].nr_replicas = nr_ptrs; ++ s->s[i].state = state; ++ } ++ } ++} ++ ++static bool extent_partial_reads_expensive(struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ struct bch_extent_crc_unpacked crc; ++ const union bch_extent_entry *i; ++ ++ bkey_for_each_crc(k.k, ptrs, crc, i) ++ if (crc.csum_type || crc.compression_type) ++ return true; ++ return false; ++} ++ ++static void readpage_bio_extend(struct readpages_iter *iter, ++ struct bio *bio, ++ unsigned sectors_this_extent, ++ bool get_more) ++{ ++ while (bio_sectors(bio) < sectors_this_extent && ++ bio->bi_vcnt < bio->bi_max_vecs) { ++ pgoff_t page_offset = bio_end_sector(bio) >> PAGE_SECTOR_SHIFT; ++ struct page *page = readpage_iter_next(iter); ++ int ret; ++ ++ if (page) { ++ if (iter->offset + iter->idx != page_offset) ++ break; ++ ++ iter->idx++; ++ } else { ++ if (!get_more) ++ break; ++ ++ page = xa_load(&iter->mapping->i_pages, page_offset); ++ if (page && !xa_is_value(page)) ++ break; ++ ++ page = __page_cache_alloc(readahead_gfp_mask(iter->mapping)); ++ if (!page) ++ break; ++ ++ if (!__bch2_page_state_create(page, 0)) { ++ put_page(page); ++ break; ++ } ++ ++ ret = add_to_page_cache_lru(page, iter->mapping, ++ page_offset, GFP_NOFS); ++ if (ret) { ++ __bch2_page_state_release(page); ++ put_page(page); ++ break; ++ } ++ ++ put_page(page); ++ } ++ ++ BUG_ON(!bio_add_page(bio, page, PAGE_SIZE, 0)); ++ } ++} ++ ++static void bchfs_read(struct btree_trans *trans, struct btree_iter *iter, ++ struct bch_read_bio *rbio, u64 inum, ++ struct readpages_iter *readpages_iter) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_on_stack sk; ++ int flags = BCH_READ_RETRY_IF_STALE| ++ BCH_READ_MAY_PROMOTE; ++ int ret = 0; ++ ++ rbio->c = c; ++ rbio->start_time = local_clock(); ++ ++ bkey_on_stack_init(&sk); ++retry: ++ while (1) { ++ struct bkey_s_c k; ++ unsigned bytes, sectors, offset_into_extent; ++ ++ bch2_btree_iter_set_pos(iter, ++ POS(inum, rbio->bio.bi_iter.bi_sector)); ++ ++ k = bch2_btree_iter_peek_slot(iter); ++ ret = bkey_err(k); ++ if (ret) ++ break; ++ ++ bkey_on_stack_reassemble(&sk, c, k); ++ k = bkey_i_to_s_c(sk.k); ++ ++ offset_into_extent = iter->pos.offset - ++ bkey_start_offset(k.k); ++ sectors = k.k->size - offset_into_extent; ++ ++ ret = bch2_read_indirect_extent(trans, ++ &offset_into_extent, &sk); ++ if (ret) ++ break; ++ ++ sectors = min(sectors, k.k->size - offset_into_extent); ++ ++ bch2_trans_unlock(trans); ++ ++ if (readpages_iter) ++ readpage_bio_extend(readpages_iter, &rbio->bio, sectors, ++ extent_partial_reads_expensive(k)); ++ ++ bytes = min(sectors, bio_sectors(&rbio->bio)) << 9; ++ swap(rbio->bio.bi_iter.bi_size, bytes); ++ ++ if (rbio->bio.bi_iter.bi_size == bytes) ++ flags |= BCH_READ_LAST_FRAGMENT; ++ ++ if (bkey_extent_is_allocation(k.k)) ++ bch2_add_page_sectors(&rbio->bio, k); ++ ++ bch2_read_extent(trans, rbio, k, offset_into_extent, flags); ++ ++ if (flags & BCH_READ_LAST_FRAGMENT) ++ break; ++ ++ swap(rbio->bio.bi_iter.bi_size, bytes); ++ bio_advance(&rbio->bio, bytes); ++ } ++ ++ if (ret == -EINTR) ++ goto retry; ++ ++ if (ret) { ++ bcache_io_error(c, &rbio->bio, "btree IO error %i", ret); ++ bio_endio(&rbio->bio); ++ } ++ ++ bkey_on_stack_exit(&sk, c); ++} ++ ++int bch2_readpages(struct file *file, struct address_space *mapping, ++ struct list_head *pages, unsigned nr_pages) ++{ ++ struct bch_inode_info *inode = to_bch_ei(mapping->host); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch_io_opts opts = io_opts(c, &inode->ei_inode); ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct page *page; ++ struct readpages_iter readpages_iter; ++ int ret; ++ ++ ret = readpages_iter_init(&readpages_iter, mapping, pages, nr_pages); ++ BUG_ON(ret); ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, POS_MIN, ++ BTREE_ITER_SLOTS); ++ ++ bch2_pagecache_add_get(&inode->ei_pagecache_lock); ++ ++ while ((page = readpage_iter_next(&readpages_iter))) { ++ pgoff_t index = readpages_iter.offset + readpages_iter.idx; ++ unsigned n = min_t(unsigned, ++ readpages_iter.nr_pages - ++ readpages_iter.idx, ++ BIO_MAX_PAGES); ++ struct bch_read_bio *rbio = ++ rbio_init(bio_alloc_bioset(GFP_NOFS, n, &c->bio_read), ++ opts); ++ ++ readpages_iter.idx++; ++ ++ bio_set_op_attrs(&rbio->bio, REQ_OP_READ, 0); ++ rbio->bio.bi_iter.bi_sector = (sector_t) index << PAGE_SECTOR_SHIFT; ++ rbio->bio.bi_end_io = bch2_readpages_end_io; ++ BUG_ON(!bio_add_page(&rbio->bio, page, PAGE_SIZE, 0)); ++ ++ bchfs_read(&trans, iter, rbio, inode->v.i_ino, ++ &readpages_iter); ++ } ++ ++ bch2_pagecache_add_put(&inode->ei_pagecache_lock); ++ ++ bch2_trans_exit(&trans); ++ kfree(readpages_iter.pages); ++ ++ return 0; ++} ++ ++static void __bchfs_readpage(struct bch_fs *c, struct bch_read_bio *rbio, ++ u64 inum, struct page *page) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ ++ bch2_page_state_create(page, __GFP_NOFAIL); ++ ++ bio_set_op_attrs(&rbio->bio, REQ_OP_READ, REQ_SYNC); ++ rbio->bio.bi_iter.bi_sector = ++ (sector_t) page->index << PAGE_SECTOR_SHIFT; ++ BUG_ON(!bio_add_page(&rbio->bio, page, PAGE_SIZE, 0)); ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, POS_MIN, ++ BTREE_ITER_SLOTS); ++ ++ bchfs_read(&trans, iter, rbio, inum, NULL); ++ ++ bch2_trans_exit(&trans); ++} ++ ++int bch2_readpage(struct file *file, struct page *page) ++{ ++ struct bch_inode_info *inode = to_bch_ei(page->mapping->host); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch_io_opts opts = io_opts(c, &inode->ei_inode); ++ struct bch_read_bio *rbio; ++ ++ rbio = rbio_init(bio_alloc_bioset(GFP_NOFS, 1, &c->bio_read), opts); ++ rbio->bio.bi_end_io = bch2_readpages_end_io; ++ ++ __bchfs_readpage(c, rbio, inode->v.i_ino, page); ++ return 0; ++} ++ ++static void bch2_read_single_page_end_io(struct bio *bio) ++{ ++ complete(bio->bi_private); ++} ++ ++static int bch2_read_single_page(struct page *page, ++ struct address_space *mapping) ++{ ++ struct bch_inode_info *inode = to_bch_ei(mapping->host); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch_read_bio *rbio; ++ int ret; ++ DECLARE_COMPLETION_ONSTACK(done); ++ ++ rbio = rbio_init(bio_alloc_bioset(GFP_NOFS, 1, &c->bio_read), ++ io_opts(c, &inode->ei_inode)); ++ rbio->bio.bi_private = &done; ++ rbio->bio.bi_end_io = bch2_read_single_page_end_io; ++ ++ __bchfs_readpage(c, rbio, inode->v.i_ino, page); ++ wait_for_completion(&done); ++ ++ ret = blk_status_to_errno(rbio->bio.bi_status); ++ bio_put(&rbio->bio); ++ ++ if (ret < 0) ++ return ret; ++ ++ SetPageUptodate(page); ++ return 0; ++} ++ ++/* writepages: */ ++ ++struct bch_writepage_state { ++ struct bch_writepage_io *io; ++ struct bch_io_opts opts; ++}; ++ ++static inline struct bch_writepage_state bch_writepage_state_init(struct bch_fs *c, ++ struct bch_inode_info *inode) ++{ ++ return (struct bch_writepage_state) { ++ .opts = io_opts(c, &inode->ei_inode) ++ }; ++} ++ ++static void bch2_writepage_io_free(struct closure *cl) ++{ ++ struct bch_writepage_io *io = container_of(cl, ++ struct bch_writepage_io, cl); ++ ++ bio_put(&io->op.wbio.bio); ++} ++ ++static void bch2_writepage_io_done(struct closure *cl) ++{ ++ struct bch_writepage_io *io = container_of(cl, ++ struct bch_writepage_io, cl); ++ struct bch_fs *c = io->op.c; ++ struct bio *bio = &io->op.wbio.bio; ++ struct bvec_iter_all iter; ++ struct bio_vec *bvec; ++ unsigned i; ++ ++ if (io->op.error) { ++ bio_for_each_segment_all(bvec, bio, iter) { ++ struct bch_page_state *s; ++ ++ SetPageError(bvec->bv_page); ++ mapping_set_error(bvec->bv_page->mapping, -EIO); ++ ++ s = __bch2_page_state(bvec->bv_page); ++ spin_lock(&s->lock); ++ for (i = 0; i < PAGE_SECTORS; i++) ++ s->s[i].nr_replicas = 0; ++ spin_unlock(&s->lock); ++ } ++ } ++ ++ if (io->op.flags & BCH_WRITE_WROTE_DATA_INLINE) { ++ bio_for_each_segment_all(bvec, bio, iter) { ++ struct bch_page_state *s; ++ ++ s = __bch2_page_state(bvec->bv_page); ++ spin_lock(&s->lock); ++ for (i = 0; i < PAGE_SECTORS; i++) ++ s->s[i].nr_replicas = 0; ++ spin_unlock(&s->lock); ++ } ++ } ++ ++ /* ++ * racing with fallocate can cause us to add fewer sectors than ++ * expected - but we shouldn't add more sectors than expected: ++ */ ++ BUG_ON(io->op.i_sectors_delta > 0); ++ ++ /* ++ * (error (due to going RO) halfway through a page can screw that up ++ * slightly) ++ * XXX wtf? ++ BUG_ON(io->op.op.i_sectors_delta >= PAGE_SECTORS); ++ */ ++ ++ /* ++ * PageWriteback is effectively our ref on the inode - fixup i_blocks ++ * before calling end_page_writeback: ++ */ ++ i_sectors_acct(c, io->inode, NULL, io->op.i_sectors_delta); ++ ++ bio_for_each_segment_all(bvec, bio, iter) { ++ struct bch_page_state *s = __bch2_page_state(bvec->bv_page); ++ ++ if (atomic_dec_and_test(&s->write_count)) ++ end_page_writeback(bvec->bv_page); ++ } ++ ++ closure_return_with_destructor(&io->cl, bch2_writepage_io_free); ++} ++ ++static void bch2_writepage_do_io(struct bch_writepage_state *w) ++{ ++ struct bch_writepage_io *io = w->io; ++ ++ w->io = NULL; ++ closure_call(&io->op.cl, bch2_write, NULL, &io->cl); ++ continue_at(&io->cl, bch2_writepage_io_done, NULL); ++} ++ ++/* ++ * Get a bch_writepage_io and add @page to it - appending to an existing one if ++ * possible, else allocating a new one: ++ */ ++static void bch2_writepage_io_alloc(struct bch_fs *c, ++ struct writeback_control *wbc, ++ struct bch_writepage_state *w, ++ struct bch_inode_info *inode, ++ u64 sector, ++ unsigned nr_replicas) ++{ ++ struct bch_write_op *op; ++ ++ w->io = container_of(bio_alloc_bioset(GFP_NOFS, ++ BIO_MAX_PAGES, ++ &c->writepage_bioset), ++ struct bch_writepage_io, op.wbio.bio); ++ ++ closure_init(&w->io->cl, NULL); ++ w->io->inode = inode; ++ ++ op = &w->io->op; ++ bch2_write_op_init(op, c, w->opts); ++ op->target = w->opts.foreground_target; ++ op_journal_seq_set(op, &inode->ei_journal_seq); ++ op->nr_replicas = nr_replicas; ++ op->res.nr_replicas = nr_replicas; ++ op->write_point = writepoint_hashed(inode->ei_last_dirtied); ++ op->pos = POS(inode->v.i_ino, sector); ++ op->wbio.bio.bi_iter.bi_sector = sector; ++ op->wbio.bio.bi_opf = wbc_to_write_flags(wbc); ++} ++ ++static int __bch2_writepage(struct page *page, ++ struct writeback_control *wbc, ++ void *data) ++{ ++ struct bch_inode_info *inode = to_bch_ei(page->mapping->host); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch_writepage_state *w = data; ++ struct bch_page_state *s, orig; ++ unsigned i, offset, nr_replicas_this_write = U32_MAX; ++ loff_t i_size = i_size_read(&inode->v); ++ pgoff_t end_index = i_size >> PAGE_SHIFT; ++ int ret; ++ ++ EBUG_ON(!PageUptodate(page)); ++ ++ /* Is the page fully inside i_size? */ ++ if (page->index < end_index) ++ goto do_io; ++ ++ /* Is the page fully outside i_size? (truncate in progress) */ ++ offset = i_size & (PAGE_SIZE - 1); ++ if (page->index > end_index || !offset) { ++ unlock_page(page); ++ return 0; ++ } ++ ++ /* ++ * The page straddles i_size. It must be zeroed out on each and every ++ * writepage invocation because it may be mmapped. "A file is mapped ++ * in multiples of the page size. For a file that is not a multiple of ++ * the page size, the remaining memory is zeroed when mapped, and ++ * writes to that region are not written out to the file." ++ */ ++ zero_user_segment(page, offset, PAGE_SIZE); ++do_io: ++ s = bch2_page_state_create(page, __GFP_NOFAIL); ++ ++ ret = bch2_get_page_disk_reservation(c, inode, page, true); ++ if (ret) { ++ SetPageError(page); ++ mapping_set_error(page->mapping, ret); ++ unlock_page(page); ++ return 0; ++ } ++ ++ /* Before unlocking the page, get copy of reservations: */ ++ orig = *s; ++ ++ for (i = 0; i < PAGE_SECTORS; i++) { ++ if (s->s[i].state < SECTOR_DIRTY) ++ continue; ++ ++ nr_replicas_this_write = ++ min_t(unsigned, nr_replicas_this_write, ++ s->s[i].nr_replicas + ++ s->s[i].replicas_reserved); ++ } ++ ++ for (i = 0; i < PAGE_SECTORS; i++) { ++ if (s->s[i].state < SECTOR_DIRTY) ++ continue; ++ ++ s->s[i].nr_replicas = w->opts.compression ++ ? 0 : nr_replicas_this_write; ++ ++ s->s[i].replicas_reserved = 0; ++ s->s[i].state = SECTOR_ALLOCATED; ++ } ++ ++ BUG_ON(atomic_read(&s->write_count)); ++ atomic_set(&s->write_count, 1); ++ ++ BUG_ON(PageWriteback(page)); ++ set_page_writeback(page); ++ ++ unlock_page(page); ++ ++ offset = 0; ++ while (1) { ++ unsigned sectors = 1, dirty_sectors = 0, reserved_sectors = 0; ++ u64 sector; ++ ++ while (offset < PAGE_SECTORS && ++ orig.s[offset].state < SECTOR_DIRTY) ++ offset++; ++ ++ if (offset == PAGE_SECTORS) ++ break; ++ ++ sector = ((u64) page->index << PAGE_SECTOR_SHIFT) + offset; ++ ++ while (offset + sectors < PAGE_SECTORS && ++ orig.s[offset + sectors].state >= SECTOR_DIRTY) ++ sectors++; ++ ++ for (i = offset; i < offset + sectors; i++) { ++ reserved_sectors += orig.s[i].replicas_reserved; ++ dirty_sectors += orig.s[i].state == SECTOR_DIRTY; ++ } ++ ++ if (w->io && ++ (w->io->op.res.nr_replicas != nr_replicas_this_write || ++ bio_full(&w->io->op.wbio.bio, PAGE_SIZE) || ++ w->io->op.wbio.bio.bi_iter.bi_size + (sectors << 9) >= ++ (BIO_MAX_PAGES * PAGE_SIZE) || ++ bio_end_sector(&w->io->op.wbio.bio) != sector)) ++ bch2_writepage_do_io(w); ++ ++ if (!w->io) ++ bch2_writepage_io_alloc(c, wbc, w, inode, sector, ++ nr_replicas_this_write); ++ ++ atomic_inc(&s->write_count); ++ ++ BUG_ON(inode != w->io->inode); ++ BUG_ON(!bio_add_page(&w->io->op.wbio.bio, page, ++ sectors << 9, offset << 9)); ++ ++ /* Check for writing past i_size: */ ++ WARN_ON((bio_end_sector(&w->io->op.wbio.bio) << 9) > ++ round_up(i_size, block_bytes(c))); ++ ++ w->io->op.res.sectors += reserved_sectors; ++ w->io->op.i_sectors_delta -= dirty_sectors; ++ w->io->op.new_i_size = i_size; ++ ++ offset += sectors; ++ } ++ ++ if (atomic_dec_and_test(&s->write_count)) ++ end_page_writeback(page); ++ ++ return 0; ++} ++ ++int bch2_writepages(struct address_space *mapping, struct writeback_control *wbc) ++{ ++ struct bch_fs *c = mapping->host->i_sb->s_fs_info; ++ struct bch_writepage_state w = ++ bch_writepage_state_init(c, to_bch_ei(mapping->host)); ++ struct blk_plug plug; ++ int ret; ++ ++ blk_start_plug(&plug); ++ ret = write_cache_pages(mapping, wbc, __bch2_writepage, &w); ++ if (w.io) ++ bch2_writepage_do_io(&w); ++ blk_finish_plug(&plug); ++ return ret; ++} ++ ++int bch2_writepage(struct page *page, struct writeback_control *wbc) ++{ ++ struct bch_fs *c = page->mapping->host->i_sb->s_fs_info; ++ struct bch_writepage_state w = ++ bch_writepage_state_init(c, to_bch_ei(page->mapping->host)); ++ int ret; ++ ++ ret = __bch2_writepage(page, wbc, &w); ++ if (w.io) ++ bch2_writepage_do_io(&w); ++ ++ return ret; ++} ++ ++/* buffered writes: */ ++ ++int bch2_write_begin(struct file *file, struct address_space *mapping, ++ loff_t pos, unsigned len, unsigned flags, ++ struct page **pagep, void **fsdata) ++{ ++ struct bch_inode_info *inode = to_bch_ei(mapping->host); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch2_page_reservation *res; ++ pgoff_t index = pos >> PAGE_SHIFT; ++ unsigned offset = pos & (PAGE_SIZE - 1); ++ struct page *page; ++ int ret = -ENOMEM; ++ ++ res = kmalloc(sizeof(*res), GFP_KERNEL); ++ if (!res) ++ return -ENOMEM; ++ ++ bch2_page_reservation_init(c, inode, res); ++ *fsdata = res; ++ ++ bch2_pagecache_add_get(&inode->ei_pagecache_lock); ++ ++ page = grab_cache_page_write_begin(mapping, index, flags); ++ if (!page) ++ goto err_unlock; ++ ++ if (PageUptodate(page)) ++ goto out; ++ ++ /* If we're writing entire page, don't need to read it in first: */ ++ if (len == PAGE_SIZE) ++ goto out; ++ ++ if (!offset && pos + len >= inode->v.i_size) { ++ zero_user_segment(page, len, PAGE_SIZE); ++ flush_dcache_page(page); ++ goto out; ++ } ++ ++ if (index > inode->v.i_size >> PAGE_SHIFT) { ++ zero_user_segments(page, 0, offset, offset + len, PAGE_SIZE); ++ flush_dcache_page(page); ++ goto out; ++ } ++readpage: ++ ret = bch2_read_single_page(page, mapping); ++ if (ret) ++ goto err; ++out: ++ ret = bch2_page_reservation_get(c, inode, page, res, ++ offset, len, true); ++ if (ret) { ++ if (!PageUptodate(page)) { ++ /* ++ * If the page hasn't been read in, we won't know if we ++ * actually need a reservation - we don't actually need ++ * to read here, we just need to check if the page is ++ * fully backed by uncompressed data: ++ */ ++ goto readpage; ++ } ++ ++ goto err; ++ } ++ ++ *pagep = page; ++ return 0; ++err: ++ unlock_page(page); ++ put_page(page); ++ *pagep = NULL; ++err_unlock: ++ bch2_pagecache_add_put(&inode->ei_pagecache_lock); ++ kfree(res); ++ *fsdata = NULL; ++ return ret; ++} ++ ++int bch2_write_end(struct file *file, struct address_space *mapping, ++ loff_t pos, unsigned len, unsigned copied, ++ struct page *page, void *fsdata) ++{ ++ struct bch_inode_info *inode = to_bch_ei(mapping->host); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch2_page_reservation *res = fsdata; ++ unsigned offset = pos & (PAGE_SIZE - 1); ++ ++ lockdep_assert_held(&inode->v.i_rwsem); ++ ++ if (unlikely(copied < len && !PageUptodate(page))) { ++ /* ++ * The page needs to be read in, but that would destroy ++ * our partial write - simplest thing is to just force ++ * userspace to redo the write: ++ */ ++ zero_user(page, 0, PAGE_SIZE); ++ flush_dcache_page(page); ++ copied = 0; ++ } ++ ++ spin_lock(&inode->v.i_lock); ++ if (pos + copied > inode->v.i_size) ++ i_size_write(&inode->v, pos + copied); ++ spin_unlock(&inode->v.i_lock); ++ ++ if (copied) { ++ if (!PageUptodate(page)) ++ SetPageUptodate(page); ++ ++ bch2_set_page_dirty(c, inode, page, res, offset, copied); ++ ++ inode->ei_last_dirtied = (unsigned long) current; ++ } ++ ++ unlock_page(page); ++ put_page(page); ++ bch2_pagecache_add_put(&inode->ei_pagecache_lock); ++ ++ bch2_page_reservation_put(c, inode, res); ++ kfree(res); ++ ++ return copied; ++} ++ ++#define WRITE_BATCH_PAGES 32 ++ ++static int __bch2_buffered_write(struct bch_inode_info *inode, ++ struct address_space *mapping, ++ struct iov_iter *iter, ++ loff_t pos, unsigned len) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct page *pages[WRITE_BATCH_PAGES]; ++ struct bch2_page_reservation res; ++ unsigned long index = pos >> PAGE_SHIFT; ++ unsigned offset = pos & (PAGE_SIZE - 1); ++ unsigned nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); ++ unsigned i, reserved = 0, set_dirty = 0; ++ unsigned copied = 0, nr_pages_copied = 0; ++ int ret = 0; ++ ++ BUG_ON(!len); ++ BUG_ON(nr_pages > ARRAY_SIZE(pages)); ++ ++ bch2_page_reservation_init(c, inode, &res); ++ ++ for (i = 0; i < nr_pages; i++) { ++ pages[i] = grab_cache_page_write_begin(mapping, index + i, 0); ++ if (!pages[i]) { ++ nr_pages = i; ++ if (!i) { ++ ret = -ENOMEM; ++ goto out; ++ } ++ len = min_t(unsigned, len, ++ nr_pages * PAGE_SIZE - offset); ++ break; ++ } ++ } ++ ++ if (offset && !PageUptodate(pages[0])) { ++ ret = bch2_read_single_page(pages[0], mapping); ++ if (ret) ++ goto out; ++ } ++ ++ if ((pos + len) & (PAGE_SIZE - 1) && ++ !PageUptodate(pages[nr_pages - 1])) { ++ if ((index + nr_pages - 1) << PAGE_SHIFT >= inode->v.i_size) { ++ zero_user(pages[nr_pages - 1], 0, PAGE_SIZE); ++ } else { ++ ret = bch2_read_single_page(pages[nr_pages - 1], mapping); ++ if (ret) ++ goto out; ++ } ++ } ++ ++ while (reserved < len) { ++ struct page *page = pages[(offset + reserved) >> PAGE_SHIFT]; ++ unsigned pg_offset = (offset + reserved) & (PAGE_SIZE - 1); ++ unsigned pg_len = min_t(unsigned, len - reserved, ++ PAGE_SIZE - pg_offset); ++retry_reservation: ++ ret = bch2_page_reservation_get(c, inode, page, &res, ++ pg_offset, pg_len, true); ++ ++ if (ret && !PageUptodate(page)) { ++ ret = bch2_read_single_page(page, mapping); ++ if (!ret) ++ goto retry_reservation; ++ } ++ ++ if (ret) ++ goto out; ++ ++ reserved += pg_len; ++ } ++ ++ if (mapping_writably_mapped(mapping)) ++ for (i = 0; i < nr_pages; i++) ++ flush_dcache_page(pages[i]); ++ ++ while (copied < len) { ++ struct page *page = pages[(offset + copied) >> PAGE_SHIFT]; ++ unsigned pg_offset = (offset + copied) & (PAGE_SIZE - 1); ++ unsigned pg_len = min_t(unsigned, len - copied, ++ PAGE_SIZE - pg_offset); ++ unsigned pg_copied = iov_iter_copy_from_user_atomic(page, ++ iter, pg_offset, pg_len); ++ ++ if (!pg_copied) ++ break; ++ ++ if (!PageUptodate(page) && ++ pg_copied != PAGE_SIZE && ++ pos + copied + pg_copied < inode->v.i_size) { ++ zero_user(page, 0, PAGE_SIZE); ++ break; ++ } ++ ++ flush_dcache_page(page); ++ iov_iter_advance(iter, pg_copied); ++ copied += pg_copied; ++ ++ if (pg_copied != pg_len) ++ break; ++ } ++ ++ if (!copied) ++ goto out; ++ ++ spin_lock(&inode->v.i_lock); ++ if (pos + copied > inode->v.i_size) ++ i_size_write(&inode->v, pos + copied); ++ spin_unlock(&inode->v.i_lock); ++ ++ while (set_dirty < copied) { ++ struct page *page = pages[(offset + set_dirty) >> PAGE_SHIFT]; ++ unsigned pg_offset = (offset + set_dirty) & (PAGE_SIZE - 1); ++ unsigned pg_len = min_t(unsigned, copied - set_dirty, ++ PAGE_SIZE - pg_offset); ++ ++ if (!PageUptodate(page)) ++ SetPageUptodate(page); ++ ++ bch2_set_page_dirty(c, inode, page, &res, pg_offset, pg_len); ++ unlock_page(page); ++ put_page(page); ++ ++ set_dirty += pg_len; ++ } ++ ++ nr_pages_copied = DIV_ROUND_UP(offset + copied, PAGE_SIZE); ++ inode->ei_last_dirtied = (unsigned long) current; ++out: ++ for (i = nr_pages_copied; i < nr_pages; i++) { ++ unlock_page(pages[i]); ++ put_page(pages[i]); ++ } ++ ++ bch2_page_reservation_put(c, inode, &res); ++ ++ return copied ?: ret; ++} ++ ++static ssize_t bch2_buffered_write(struct kiocb *iocb, struct iov_iter *iter) ++{ ++ struct file *file = iocb->ki_filp; ++ struct address_space *mapping = file->f_mapping; ++ struct bch_inode_info *inode = file_bch_inode(file); ++ loff_t pos = iocb->ki_pos; ++ ssize_t written = 0; ++ int ret = 0; ++ ++ bch2_pagecache_add_get(&inode->ei_pagecache_lock); ++ ++ do { ++ unsigned offset = pos & (PAGE_SIZE - 1); ++ unsigned bytes = min_t(unsigned long, iov_iter_count(iter), ++ PAGE_SIZE * WRITE_BATCH_PAGES - offset); ++again: ++ /* ++ * Bring in the user page that we will copy from _first_. ++ * Otherwise there's a nasty deadlock on copying from the ++ * same page as we're writing to, without it being marked ++ * up-to-date. ++ * ++ * Not only is this an optimisation, but it is also required ++ * to check that the address is actually valid, when atomic ++ * usercopies are used, below. ++ */ ++ if (unlikely(iov_iter_fault_in_readable(iter, bytes))) { ++ bytes = min_t(unsigned long, iov_iter_count(iter), ++ PAGE_SIZE - offset); ++ ++ if (unlikely(iov_iter_fault_in_readable(iter, bytes))) { ++ ret = -EFAULT; ++ break; ++ } ++ } ++ ++ if (unlikely(fatal_signal_pending(current))) { ++ ret = -EINTR; ++ break; ++ } ++ ++ ret = __bch2_buffered_write(inode, mapping, iter, pos, bytes); ++ if (unlikely(ret < 0)) ++ break; ++ ++ cond_resched(); ++ ++ if (unlikely(ret == 0)) { ++ /* ++ * If we were unable to copy any data at all, we must ++ * fall back to a single segment length write. ++ * ++ * If we didn't fallback here, we could livelock ++ * because not all segments in the iov can be copied at ++ * once without a pagefault. ++ */ ++ bytes = min_t(unsigned long, PAGE_SIZE - offset, ++ iov_iter_single_seg_count(iter)); ++ goto again; ++ } ++ pos += ret; ++ written += ret; ++ ret = 0; ++ ++ balance_dirty_pages_ratelimited(mapping); ++ } while (iov_iter_count(iter)); ++ ++ bch2_pagecache_add_put(&inode->ei_pagecache_lock); ++ ++ return written ? written : ret; ++} ++ ++/* O_DIRECT reads */ ++ ++static void bch2_dio_read_complete(struct closure *cl) ++{ ++ struct dio_read *dio = container_of(cl, struct dio_read, cl); ++ ++ dio->req->ki_complete(dio->req, dio->ret, 0); ++ bio_check_pages_dirty(&dio->rbio.bio); /* transfers ownership */ ++} ++ ++static void bch2_direct_IO_read_endio(struct bio *bio) ++{ ++ struct dio_read *dio = bio->bi_private; ++ ++ if (bio->bi_status) ++ dio->ret = blk_status_to_errno(bio->bi_status); ++ ++ closure_put(&dio->cl); ++} ++ ++static void bch2_direct_IO_read_split_endio(struct bio *bio) ++{ ++ bch2_direct_IO_read_endio(bio); ++ bio_check_pages_dirty(bio); /* transfers ownership */ ++} ++ ++static int bch2_direct_IO_read(struct kiocb *req, struct iov_iter *iter) ++{ ++ struct file *file = req->ki_filp; ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch_io_opts opts = io_opts(c, &inode->ei_inode); ++ struct dio_read *dio; ++ struct bio *bio; ++ loff_t offset = req->ki_pos; ++ bool sync = is_sync_kiocb(req); ++ size_t shorten; ++ ssize_t ret; ++ ++ if ((offset|iter->count) & (block_bytes(c) - 1)) ++ return -EINVAL; ++ ++ ret = min_t(loff_t, iter->count, ++ max_t(loff_t, 0, i_size_read(&inode->v) - offset)); ++ ++ if (!ret) ++ return ret; ++ ++ shorten = iov_iter_count(iter) - round_up(ret, block_bytes(c)); ++ iter->count -= shorten; ++ ++ bio = bio_alloc_bioset(GFP_KERNEL, ++ iov_iter_npages(iter, BIO_MAX_PAGES), ++ &c->dio_read_bioset); ++ ++ bio->bi_end_io = bch2_direct_IO_read_endio; ++ ++ dio = container_of(bio, struct dio_read, rbio.bio); ++ closure_init(&dio->cl, NULL); ++ ++ /* ++ * this is a _really_ horrible hack just to avoid an atomic sub at the ++ * end: ++ */ ++ if (!sync) { ++ set_closure_fn(&dio->cl, bch2_dio_read_complete, NULL); ++ atomic_set(&dio->cl.remaining, ++ CLOSURE_REMAINING_INITIALIZER - ++ CLOSURE_RUNNING + ++ CLOSURE_DESTRUCTOR); ++ } else { ++ atomic_set(&dio->cl.remaining, ++ CLOSURE_REMAINING_INITIALIZER + 1); ++ } ++ ++ dio->req = req; ++ dio->ret = ret; ++ ++ goto start; ++ while (iter->count) { ++ bio = bio_alloc_bioset(GFP_KERNEL, ++ iov_iter_npages(iter, BIO_MAX_PAGES), ++ &c->bio_read); ++ bio->bi_end_io = bch2_direct_IO_read_split_endio; ++start: ++ bio_set_op_attrs(bio, REQ_OP_READ, REQ_SYNC); ++ bio->bi_iter.bi_sector = offset >> 9; ++ bio->bi_private = dio; ++ ++ ret = bio_iov_iter_get_pages(bio, iter); ++ if (ret < 0) { ++ /* XXX: fault inject this path */ ++ bio->bi_status = BLK_STS_RESOURCE; ++ bio_endio(bio); ++ break; ++ } ++ ++ offset += bio->bi_iter.bi_size; ++ bio_set_pages_dirty(bio); ++ ++ if (iter->count) ++ closure_get(&dio->cl); ++ ++ bch2_read(c, rbio_init(bio, opts), inode->v.i_ino); ++ } ++ ++ iter->count += shorten; ++ ++ if (sync) { ++ closure_sync(&dio->cl); ++ closure_debug_destroy(&dio->cl); ++ ret = dio->ret; ++ bio_check_pages_dirty(&dio->rbio.bio); /* transfers ownership */ ++ return ret; ++ } else { ++ return -EIOCBQUEUED; ++ } ++} ++ ++ssize_t bch2_read_iter(struct kiocb *iocb, struct iov_iter *iter) ++{ ++ struct file *file = iocb->ki_filp; ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct address_space *mapping = file->f_mapping; ++ size_t count = iov_iter_count(iter); ++ ssize_t ret; ++ ++ if (!count) ++ return 0; /* skip atime */ ++ ++ if (iocb->ki_flags & IOCB_DIRECT) { ++ struct blk_plug plug; ++ ++ ret = filemap_write_and_wait_range(mapping, ++ iocb->ki_pos, ++ iocb->ki_pos + count - 1); ++ if (ret < 0) ++ return ret; ++ ++ file_accessed(file); ++ ++ blk_start_plug(&plug); ++ ret = bch2_direct_IO_read(iocb, iter); ++ blk_finish_plug(&plug); ++ ++ if (ret >= 0) ++ iocb->ki_pos += ret; ++ } else { ++ bch2_pagecache_add_get(&inode->ei_pagecache_lock); ++ ret = generic_file_read_iter(iocb, iter); ++ bch2_pagecache_add_put(&inode->ei_pagecache_lock); ++ } ++ ++ return ret; ++} ++ ++/* O_DIRECT writes */ ++ ++static void bch2_dio_write_loop_async(struct bch_write_op *); ++ ++static long bch2_dio_write_loop(struct dio_write *dio) ++{ ++ bool kthread = (current->flags & PF_KTHREAD) != 0; ++ struct kiocb *req = dio->req; ++ struct address_space *mapping = req->ki_filp->f_mapping; ++ struct bch_inode_info *inode = file_bch_inode(req->ki_filp); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bio *bio = &dio->op.wbio.bio; ++ struct bvec_iter_all iter; ++ struct bio_vec *bv; ++ unsigned unaligned; ++ bool sync = dio->sync; ++ long ret; ++ ++ if (dio->loop) ++ goto loop; ++ ++ while (1) { ++ if (kthread) ++ kthread_use_mm(dio->mm); ++ BUG_ON(current->faults_disabled_mapping); ++ current->faults_disabled_mapping = mapping; ++ ++ ret = bio_iov_iter_get_pages(bio, &dio->iter); ++ ++ current->faults_disabled_mapping = NULL; ++ if (kthread) ++ kthread_unuse_mm(dio->mm); ++ ++ if (unlikely(ret < 0)) ++ goto err; ++ ++ unaligned = bio->bi_iter.bi_size & (block_bytes(c) - 1); ++ bio->bi_iter.bi_size -= unaligned; ++ iov_iter_revert(&dio->iter, unaligned); ++ ++ if (!bio->bi_iter.bi_size) { ++ /* ++ * bio_iov_iter_get_pages was only able to get < ++ * blocksize worth of pages: ++ */ ++ bio_for_each_segment_all(bv, bio, iter) ++ put_page(bv->bv_page); ++ ret = -EFAULT; ++ goto err; ++ } ++ ++ bch2_write_op_init(&dio->op, c, io_opts(c, &inode->ei_inode)); ++ dio->op.end_io = bch2_dio_write_loop_async; ++ dio->op.target = dio->op.opts.foreground_target; ++ op_journal_seq_set(&dio->op, &inode->ei_journal_seq); ++ dio->op.write_point = writepoint_hashed((unsigned long) current); ++ dio->op.nr_replicas = dio->op.opts.data_replicas; ++ dio->op.pos = POS(inode->v.i_ino, (u64) req->ki_pos >> 9); ++ ++ if ((req->ki_flags & IOCB_DSYNC) && ++ !c->opts.journal_flush_disabled) ++ dio->op.flags |= BCH_WRITE_FLUSH; ++ ++ ret = bch2_disk_reservation_get(c, &dio->op.res, bio_sectors(bio), ++ dio->op.opts.data_replicas, 0); ++ if (unlikely(ret) && ++ !bch2_check_range_allocated(c, dio->op.pos, ++ bio_sectors(bio), dio->op.opts.data_replicas)) ++ goto err; ++ ++ task_io_account_write(bio->bi_iter.bi_size); ++ ++ if (!dio->sync && !dio->loop && dio->iter.count) { ++ struct iovec *iov = dio->inline_vecs; ++ ++ if (dio->iter.nr_segs > ARRAY_SIZE(dio->inline_vecs)) { ++ iov = kmalloc(dio->iter.nr_segs * sizeof(*iov), ++ GFP_KERNEL); ++ if (unlikely(!iov)) { ++ dio->sync = sync = true; ++ goto do_io; ++ } ++ ++ dio->free_iov = true; ++ } ++ ++ memcpy(iov, dio->iter.iov, dio->iter.nr_segs * sizeof(*iov)); ++ dio->iter.iov = iov; ++ } ++do_io: ++ dio->loop = true; ++ closure_call(&dio->op.cl, bch2_write, NULL, NULL); ++ ++ if (sync) ++ wait_for_completion(&dio->done); ++ else ++ return -EIOCBQUEUED; ++loop: ++ i_sectors_acct(c, inode, &dio->quota_res, ++ dio->op.i_sectors_delta); ++ req->ki_pos += (u64) dio->op.written << 9; ++ dio->written += dio->op.written; ++ ++ spin_lock(&inode->v.i_lock); ++ if (req->ki_pos > inode->v.i_size) ++ i_size_write(&inode->v, req->ki_pos); ++ spin_unlock(&inode->v.i_lock); ++ ++ bio_for_each_segment_all(bv, bio, iter) ++ put_page(bv->bv_page); ++ if (!dio->iter.count || dio->op.error) ++ break; ++ ++ bio_reset(bio); ++ reinit_completion(&dio->done); ++ } ++ ++ ret = dio->op.error ?: ((long) dio->written << 9); ++err: ++ bch2_pagecache_block_put(&inode->ei_pagecache_lock); ++ bch2_quota_reservation_put(c, inode, &dio->quota_res); ++ ++ if (dio->free_iov) ++ kfree(dio->iter.iov); ++ ++ bio_put(bio); ++ ++ /* inode->i_dio_count is our ref on inode and thus bch_fs */ ++ inode_dio_end(&inode->v); ++ ++ if (!sync) { ++ req->ki_complete(req, ret, 0); ++ ret = -EIOCBQUEUED; ++ } ++ return ret; ++} ++ ++static void bch2_dio_write_loop_async(struct bch_write_op *op) ++{ ++ struct dio_write *dio = container_of(op, struct dio_write, op); ++ ++ if (dio->sync) ++ complete(&dio->done); ++ else ++ bch2_dio_write_loop(dio); ++} ++ ++static noinline ++ssize_t bch2_direct_write(struct kiocb *req, struct iov_iter *iter) ++{ ++ struct file *file = req->ki_filp; ++ struct address_space *mapping = file->f_mapping; ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct dio_write *dio; ++ struct bio *bio; ++ bool locked = true, extending; ++ ssize_t ret; ++ ++ prefetch(&c->opts); ++ prefetch((void *) &c->opts + 64); ++ prefetch(&inode->ei_inode); ++ prefetch((void *) &inode->ei_inode + 64); ++ ++ inode_lock(&inode->v); ++ ++ ret = generic_write_checks(req, iter); ++ if (unlikely(ret <= 0)) ++ goto err; ++ ++ ret = file_remove_privs(file); ++ if (unlikely(ret)) ++ goto err; ++ ++ ret = file_update_time(file); ++ if (unlikely(ret)) ++ goto err; ++ ++ if (unlikely((req->ki_pos|iter->count) & (block_bytes(c) - 1))) ++ goto err; ++ ++ inode_dio_begin(&inode->v); ++ bch2_pagecache_block_get(&inode->ei_pagecache_lock); ++ ++ extending = req->ki_pos + iter->count > inode->v.i_size; ++ if (!extending) { ++ inode_unlock(&inode->v); ++ locked = false; ++ } ++ ++ bio = bio_alloc_bioset(GFP_KERNEL, ++ iov_iter_npages(iter, BIO_MAX_PAGES), ++ &c->dio_write_bioset); ++ dio = container_of(bio, struct dio_write, op.wbio.bio); ++ init_completion(&dio->done); ++ dio->req = req; ++ dio->mm = current->mm; ++ dio->loop = false; ++ dio->sync = is_sync_kiocb(req) || extending; ++ dio->free_iov = false; ++ dio->quota_res.sectors = 0; ++ dio->written = 0; ++ dio->iter = *iter; ++ ++ ret = bch2_quota_reservation_add(c, inode, &dio->quota_res, ++ iter->count >> 9, true); ++ if (unlikely(ret)) ++ goto err_put_bio; ++ ++ ret = write_invalidate_inode_pages_range(mapping, ++ req->ki_pos, ++ req->ki_pos + iter->count - 1); ++ if (unlikely(ret)) ++ goto err_put_bio; ++ ++ ret = bch2_dio_write_loop(dio); ++err: ++ if (locked) ++ inode_unlock(&inode->v); ++ return ret; ++err_put_bio: ++ bch2_pagecache_block_put(&inode->ei_pagecache_lock); ++ bch2_quota_reservation_put(c, inode, &dio->quota_res); ++ bio_put(bio); ++ inode_dio_end(&inode->v); ++ goto err; ++} ++ ++ssize_t bch2_write_iter(struct kiocb *iocb, struct iov_iter *from) ++{ ++ struct file *file = iocb->ki_filp; ++ struct bch_inode_info *inode = file_bch_inode(file); ++ ssize_t ret; ++ ++ if (iocb->ki_flags & IOCB_DIRECT) ++ return bch2_direct_write(iocb, from); ++ ++ /* We can write back this queue in page reclaim */ ++ current->backing_dev_info = inode_to_bdi(&inode->v); ++ inode_lock(&inode->v); ++ ++ ret = generic_write_checks(iocb, from); ++ if (ret <= 0) ++ goto unlock; ++ ++ ret = file_remove_privs(file); ++ if (ret) ++ goto unlock; ++ ++ ret = file_update_time(file); ++ if (ret) ++ goto unlock; ++ ++ ret = bch2_buffered_write(iocb, from); ++ if (likely(ret > 0)) ++ iocb->ki_pos += ret; ++unlock: ++ inode_unlock(&inode->v); ++ current->backing_dev_info = NULL; ++ ++ if (ret > 0) ++ ret = generic_write_sync(iocb, ret); ++ ++ return ret; ++} ++ ++/* fsync: */ ++ ++int bch2_fsync(struct file *file, loff_t start, loff_t end, int datasync) ++{ ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ int ret, ret2; ++ ++ ret = file_write_and_wait_range(file, start, end); ++ if (ret) ++ return ret; ++ ++ if (datasync && !(inode->v.i_state & I_DIRTY_DATASYNC)) ++ goto out; ++ ++ ret = sync_inode_metadata(&inode->v, 1); ++ if (ret) ++ return ret; ++out: ++ if (!c->opts.journal_flush_disabled) ++ ret = bch2_journal_flush_seq(&c->journal, ++ inode->ei_journal_seq); ++ ret2 = file_check_and_advance_wb_err(file); ++ ++ return ret ?: ret2; ++} ++ ++/* truncate: */ ++ ++static inline int range_has_data(struct bch_fs *c, ++ struct bpos start, ++ struct bpos end) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS, start, 0, k, ret) { ++ if (bkey_cmp(bkey_start_pos(k.k), end) >= 0) ++ break; ++ ++ if (bkey_extent_is_data(k.k)) { ++ ret = 1; ++ break; ++ } ++ } ++ ++ return bch2_trans_exit(&trans) ?: ret; ++} ++ ++static int __bch2_truncate_page(struct bch_inode_info *inode, ++ pgoff_t index, loff_t start, loff_t end) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct address_space *mapping = inode->v.i_mapping; ++ struct bch_page_state *s; ++ unsigned start_offset = start & (PAGE_SIZE - 1); ++ unsigned end_offset = ((end - 1) & (PAGE_SIZE - 1)) + 1; ++ unsigned i; ++ struct page *page; ++ int ret = 0; ++ ++ /* Page boundary? Nothing to do */ ++ if (!((index == start >> PAGE_SHIFT && start_offset) || ++ (index == end >> PAGE_SHIFT && end_offset != PAGE_SIZE))) ++ return 0; ++ ++ /* Above i_size? */ ++ if (index << PAGE_SHIFT >= inode->v.i_size) ++ return 0; ++ ++ page = find_lock_page(mapping, index); ++ if (!page) { ++ /* ++ * XXX: we're doing two index lookups when we end up reading the ++ * page ++ */ ++ ret = range_has_data(c, ++ POS(inode->v.i_ino, index << PAGE_SECTOR_SHIFT), ++ POS(inode->v.i_ino, (index + 1) << PAGE_SECTOR_SHIFT)); ++ if (ret <= 0) ++ return ret; ++ ++ page = find_or_create_page(mapping, index, GFP_KERNEL); ++ if (unlikely(!page)) { ++ ret = -ENOMEM; ++ goto out; ++ } ++ } ++ ++ s = bch2_page_state_create(page, 0); ++ if (!s) { ++ ret = -ENOMEM; ++ goto unlock; ++ } ++ ++ if (!PageUptodate(page)) { ++ ret = bch2_read_single_page(page, mapping); ++ if (ret) ++ goto unlock; ++ } ++ ++ if (index != start >> PAGE_SHIFT) ++ start_offset = 0; ++ if (index != end >> PAGE_SHIFT) ++ end_offset = PAGE_SIZE; ++ ++ for (i = round_up(start_offset, block_bytes(c)) >> 9; ++ i < round_down(end_offset, block_bytes(c)) >> 9; ++ i++) { ++ s->s[i].nr_replicas = 0; ++ s->s[i].state = SECTOR_UNALLOCATED; ++ } ++ ++ zero_user_segment(page, start_offset, end_offset); ++ ++ /* ++ * Bit of a hack - we don't want truncate to fail due to -ENOSPC. ++ * ++ * XXX: because we aren't currently tracking whether the page has actual ++ * data in it (vs. just 0s, or only partially written) this wrong. ick. ++ */ ++ ret = bch2_get_page_disk_reservation(c, inode, page, false); ++ BUG_ON(ret); ++ ++ /* ++ * This removes any writeable userspace mappings; we need to force ++ * .page_mkwrite to be called again before any mmapped writes, to ++ * redirty the full page: ++ */ ++ page_mkclean(page); ++ __set_page_dirty_nobuffers(page); ++unlock: ++ unlock_page(page); ++ put_page(page); ++out: ++ return ret; ++} ++ ++static int bch2_truncate_page(struct bch_inode_info *inode, loff_t from) ++{ ++ return __bch2_truncate_page(inode, from >> PAGE_SHIFT, ++ from, round_up(from, PAGE_SIZE)); ++} ++ ++static int bch2_extend(struct bch_inode_info *inode, ++ struct bch_inode_unpacked *inode_u, ++ struct iattr *iattr) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct address_space *mapping = inode->v.i_mapping; ++ int ret; ++ ++ /* ++ * sync appends: ++ * ++ * this has to be done _before_ extending i_size: ++ */ ++ ret = filemap_write_and_wait_range(mapping, inode_u->bi_size, S64_MAX); ++ if (ret) ++ return ret; ++ ++ truncate_setsize(&inode->v, iattr->ia_size); ++ setattr_copy(&inode->v, iattr); ++ ++ mutex_lock(&inode->ei_update_lock); ++ ret = bch2_write_inode_size(c, inode, inode->v.i_size, ++ ATTR_MTIME|ATTR_CTIME); ++ mutex_unlock(&inode->ei_update_lock); ++ ++ return ret; ++} ++ ++static int bch2_truncate_finish_fn(struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, ++ void *p) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ ++ bi->bi_flags &= ~BCH_INODE_I_SIZE_DIRTY; ++ bi->bi_mtime = bi->bi_ctime = bch2_current_time(c); ++ return 0; ++} ++ ++static int bch2_truncate_start_fn(struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, void *p) ++{ ++ u64 *new_i_size = p; ++ ++ bi->bi_flags |= BCH_INODE_I_SIZE_DIRTY; ++ bi->bi_size = *new_i_size; ++ return 0; ++} ++ ++int bch2_truncate(struct bch_inode_info *inode, struct iattr *iattr) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct address_space *mapping = inode->v.i_mapping; ++ struct bch_inode_unpacked inode_u; ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ u64 new_i_size = iattr->ia_size; ++ s64 i_sectors_delta = 0; ++ int ret = 0; ++ ++ inode_dio_wait(&inode->v); ++ bch2_pagecache_block_get(&inode->ei_pagecache_lock); ++ ++ /* ++ * fetch current on disk i_size: inode is locked, i_size can only ++ * increase underneath us: ++ */ ++ bch2_trans_init(&trans, c, 0, 0); ++ iter = bch2_inode_peek(&trans, &inode_u, inode->v.i_ino, 0); ++ ret = PTR_ERR_OR_ZERO(iter); ++ bch2_trans_exit(&trans); ++ ++ if (ret) ++ goto err; ++ ++ /* ++ * check this before next assertion; on filesystem error our normal ++ * invariants are a bit broken (truncate has to truncate the page cache ++ * before the inode). ++ */ ++ ret = bch2_journal_error(&c->journal); ++ if (ret) ++ goto err; ++ ++ BUG_ON(inode->v.i_size < inode_u.bi_size); ++ ++ if (iattr->ia_size > inode->v.i_size) { ++ ret = bch2_extend(inode, &inode_u, iattr); ++ goto err; ++ } ++ ++ ret = bch2_truncate_page(inode, iattr->ia_size); ++ if (unlikely(ret)) ++ goto err; ++ ++ /* ++ * When extending, we're going to write the new i_size to disk ++ * immediately so we need to flush anything above the current on disk ++ * i_size first: ++ * ++ * Also, when extending we need to flush the page that i_size currently ++ * straddles - if it's mapped to userspace, we need to ensure that ++ * userspace has to redirty it and call .mkwrite -> set_page_dirty ++ * again to allocate the part of the page that was extended. ++ */ ++ if (iattr->ia_size > inode_u.bi_size) ++ ret = filemap_write_and_wait_range(mapping, ++ inode_u.bi_size, ++ iattr->ia_size - 1); ++ else if (iattr->ia_size & (PAGE_SIZE - 1)) ++ ret = filemap_write_and_wait_range(mapping, ++ round_down(iattr->ia_size, PAGE_SIZE), ++ iattr->ia_size - 1); ++ if (ret) ++ goto err; ++ ++ mutex_lock(&inode->ei_update_lock); ++ ret = bch2_write_inode(c, inode, bch2_truncate_start_fn, ++ &new_i_size, 0); ++ mutex_unlock(&inode->ei_update_lock); ++ ++ if (unlikely(ret)) ++ goto err; ++ ++ truncate_setsize(&inode->v, iattr->ia_size); ++ ++ ret = bch2_fpunch(c, inode->v.i_ino, ++ round_up(iattr->ia_size, block_bytes(c)) >> 9, ++ U64_MAX, &inode->ei_journal_seq, &i_sectors_delta); ++ i_sectors_acct(c, inode, NULL, i_sectors_delta); ++ ++ if (unlikely(ret)) ++ goto err; ++ ++ setattr_copy(&inode->v, iattr); ++ ++ mutex_lock(&inode->ei_update_lock); ++ ret = bch2_write_inode(c, inode, bch2_truncate_finish_fn, NULL, ++ ATTR_MTIME|ATTR_CTIME); ++ mutex_unlock(&inode->ei_update_lock); ++err: ++ bch2_pagecache_block_put(&inode->ei_pagecache_lock); ++ return ret; ++} ++ ++/* fallocate: */ ++ ++static long bchfs_fpunch(struct bch_inode_info *inode, loff_t offset, loff_t len) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ u64 discard_start = round_up(offset, block_bytes(c)) >> 9; ++ u64 discard_end = round_down(offset + len, block_bytes(c)) >> 9; ++ int ret = 0; ++ ++ inode_lock(&inode->v); ++ inode_dio_wait(&inode->v); ++ bch2_pagecache_block_get(&inode->ei_pagecache_lock); ++ ++ ret = __bch2_truncate_page(inode, ++ offset >> PAGE_SHIFT, ++ offset, offset + len); ++ if (unlikely(ret)) ++ goto err; ++ ++ if (offset >> PAGE_SHIFT != ++ (offset + len) >> PAGE_SHIFT) { ++ ret = __bch2_truncate_page(inode, ++ (offset + len) >> PAGE_SHIFT, ++ offset, offset + len); ++ if (unlikely(ret)) ++ goto err; ++ } ++ ++ truncate_pagecache_range(&inode->v, offset, offset + len - 1); ++ ++ if (discard_start < discard_end) { ++ s64 i_sectors_delta = 0; ++ ++ ret = bch2_fpunch(c, inode->v.i_ino, ++ discard_start, discard_end, ++ &inode->ei_journal_seq, ++ &i_sectors_delta); ++ i_sectors_acct(c, inode, NULL, i_sectors_delta); ++ } ++err: ++ bch2_pagecache_block_put(&inode->ei_pagecache_lock); ++ inode_unlock(&inode->v); ++ ++ return ret; ++} ++ ++static long bchfs_fcollapse_finsert(struct bch_inode_info *inode, ++ loff_t offset, loff_t len, ++ bool insert) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct address_space *mapping = inode->v.i_mapping; ++ struct bkey_on_stack copy; ++ struct btree_trans trans; ++ struct btree_iter *src, *dst; ++ loff_t shift, new_size; ++ u64 src_start; ++ int ret; ++ ++ if ((offset | len) & (block_bytes(c) - 1)) ++ return -EINVAL; ++ ++ bkey_on_stack_init(©); ++ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 256); ++ ++ /* ++ * We need i_mutex to keep the page cache consistent with the extents ++ * btree, and the btree consistent with i_size - we don't need outside ++ * locking for the extents btree itself, because we're using linked ++ * iterators ++ */ ++ inode_lock(&inode->v); ++ inode_dio_wait(&inode->v); ++ bch2_pagecache_block_get(&inode->ei_pagecache_lock); ++ ++ if (insert) { ++ ret = -EFBIG; ++ if (inode->v.i_sb->s_maxbytes - inode->v.i_size < len) ++ goto err; ++ ++ ret = -EINVAL; ++ if (offset >= inode->v.i_size) ++ goto err; ++ ++ src_start = U64_MAX; ++ shift = len; ++ } else { ++ ret = -EINVAL; ++ if (offset + len >= inode->v.i_size) ++ goto err; ++ ++ src_start = offset + len; ++ shift = -len; ++ } ++ ++ new_size = inode->v.i_size + shift; ++ ++ ret = write_invalidate_inode_pages_range(mapping, offset, LLONG_MAX); ++ if (ret) ++ goto err; ++ ++ if (insert) { ++ i_size_write(&inode->v, new_size); ++ mutex_lock(&inode->ei_update_lock); ++ ret = bch2_write_inode_size(c, inode, new_size, ++ ATTR_MTIME|ATTR_CTIME); ++ mutex_unlock(&inode->ei_update_lock); ++ } else { ++ s64 i_sectors_delta = 0; ++ ++ ret = bch2_fpunch(c, inode->v.i_ino, ++ offset >> 9, (offset + len) >> 9, ++ &inode->ei_journal_seq, ++ &i_sectors_delta); ++ i_sectors_acct(c, inode, NULL, i_sectors_delta); ++ ++ if (ret) ++ goto err; ++ } ++ ++ src = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, ++ POS(inode->v.i_ino, src_start >> 9), ++ BTREE_ITER_INTENT); ++ BUG_ON(IS_ERR_OR_NULL(src)); ++ ++ dst = bch2_trans_copy_iter(&trans, src); ++ BUG_ON(IS_ERR_OR_NULL(dst)); ++ ++ while (1) { ++ struct disk_reservation disk_res = ++ bch2_disk_reservation_init(c, 0); ++ struct bkey_i delete; ++ struct bkey_s_c k; ++ struct bpos next_pos; ++ struct bpos move_pos = POS(inode->v.i_ino, offset >> 9); ++ struct bpos atomic_end; ++ unsigned trigger_flags = 0; ++ ++ k = insert ++ ? bch2_btree_iter_peek_prev(src) ++ : bch2_btree_iter_peek(src); ++ if ((ret = bkey_err(k))) ++ goto bkey_err; ++ ++ if (!k.k || k.k->p.inode != inode->v.i_ino) ++ break; ++ ++ BUG_ON(bkey_cmp(src->pos, bkey_start_pos(k.k))); ++ ++ if (insert && ++ bkey_cmp(k.k->p, POS(inode->v.i_ino, offset >> 9)) <= 0) ++ break; ++reassemble: ++ bkey_on_stack_reassemble(©, c, k); ++ ++ if (insert && ++ bkey_cmp(bkey_start_pos(k.k), move_pos) < 0) ++ bch2_cut_front(move_pos, copy.k); ++ ++ copy.k->k.p.offset += shift >> 9; ++ bch2_btree_iter_set_pos(dst, bkey_start_pos(©.k->k)); ++ ++ ret = bch2_extent_atomic_end(dst, copy.k, &atomic_end); ++ if (ret) ++ goto bkey_err; ++ ++ if (bkey_cmp(atomic_end, copy.k->k.p)) { ++ if (insert) { ++ move_pos = atomic_end; ++ move_pos.offset -= shift >> 9; ++ goto reassemble; ++ } else { ++ bch2_cut_back(atomic_end, copy.k); ++ } ++ } ++ ++ bkey_init(&delete.k); ++ delete.k.p = copy.k->k.p; ++ delete.k.size = copy.k->k.size; ++ delete.k.p.offset -= shift >> 9; ++ ++ next_pos = insert ? bkey_start_pos(&delete.k) : delete.k.p; ++ ++ if (copy.k->k.size == k.k->size) { ++ /* ++ * If we're moving the entire extent, we can skip ++ * running triggers: ++ */ ++ trigger_flags |= BTREE_TRIGGER_NORUN; ++ } else { ++ /* We might end up splitting compressed extents: */ ++ unsigned nr_ptrs = ++ bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(copy.k)); ++ ++ ret = bch2_disk_reservation_get(c, &disk_res, ++ copy.k->k.size, nr_ptrs, ++ BCH_DISK_RESERVATION_NOFAIL); ++ BUG_ON(ret); ++ } ++ ++ bch2_btree_iter_set_pos(src, bkey_start_pos(&delete.k)); ++ ++ ret = bch2_trans_update(&trans, src, &delete, trigger_flags) ?: ++ bch2_trans_update(&trans, dst, copy.k, trigger_flags) ?: ++ bch2_trans_commit(&trans, &disk_res, ++ &inode->ei_journal_seq, ++ BTREE_INSERT_NOFAIL); ++ bch2_disk_reservation_put(c, &disk_res); ++bkey_err: ++ if (!ret) ++ bch2_btree_iter_set_pos(src, next_pos); ++ ++ if (ret == -EINTR) ++ ret = 0; ++ if (ret) ++ goto err; ++ ++ bch2_trans_cond_resched(&trans); ++ } ++ bch2_trans_unlock(&trans); ++ ++ if (!insert) { ++ i_size_write(&inode->v, new_size); ++ mutex_lock(&inode->ei_update_lock); ++ ret = bch2_write_inode_size(c, inode, new_size, ++ ATTR_MTIME|ATTR_CTIME); ++ mutex_unlock(&inode->ei_update_lock); ++ } ++err: ++ bch2_trans_exit(&trans); ++ bkey_on_stack_exit(©, c); ++ bch2_pagecache_block_put(&inode->ei_pagecache_lock); ++ inode_unlock(&inode->v); ++ return ret; ++} ++ ++static long bchfs_fallocate(struct bch_inode_info *inode, int mode, ++ loff_t offset, loff_t len) ++{ ++ struct address_space *mapping = inode->v.i_mapping; ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bpos end_pos; ++ loff_t end = offset + len; ++ loff_t block_start = round_down(offset, block_bytes(c)); ++ loff_t block_end = round_up(end, block_bytes(c)); ++ unsigned sectors; ++ unsigned replicas = io_opts(c, &inode->ei_inode).data_replicas; ++ int ret; ++ ++ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0); ++ ++ inode_lock(&inode->v); ++ inode_dio_wait(&inode->v); ++ bch2_pagecache_block_get(&inode->ei_pagecache_lock); ++ ++ if (!(mode & FALLOC_FL_KEEP_SIZE) && end > inode->v.i_size) { ++ ret = inode_newsize_ok(&inode->v, end); ++ if (ret) ++ goto err; ++ } ++ ++ if (mode & FALLOC_FL_ZERO_RANGE) { ++ ret = __bch2_truncate_page(inode, ++ offset >> PAGE_SHIFT, ++ offset, end); ++ ++ if (!ret && ++ offset >> PAGE_SHIFT != end >> PAGE_SHIFT) ++ ret = __bch2_truncate_page(inode, ++ end >> PAGE_SHIFT, ++ offset, end); ++ ++ if (unlikely(ret)) ++ goto err; ++ ++ truncate_pagecache_range(&inode->v, offset, end - 1); ++ } ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, ++ POS(inode->v.i_ino, block_start >> 9), ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT); ++ end_pos = POS(inode->v.i_ino, block_end >> 9); ++ ++ while (bkey_cmp(iter->pos, end_pos) < 0) { ++ s64 i_sectors_delta = 0; ++ struct disk_reservation disk_res = { 0 }; ++ struct quota_res quota_res = { 0 }; ++ struct bkey_i_reservation reservation; ++ struct bkey_s_c k; ++ ++ bch2_trans_begin(&trans); ++ ++ k = bch2_btree_iter_peek_slot(iter); ++ if ((ret = bkey_err(k))) ++ goto bkey_err; ++ ++ /* already reserved */ ++ if (k.k->type == KEY_TYPE_reservation && ++ bkey_s_c_to_reservation(k).v->nr_replicas >= replicas) { ++ bch2_btree_iter_next_slot(iter); ++ continue; ++ } ++ ++ if (bkey_extent_is_data(k.k) && ++ !(mode & FALLOC_FL_ZERO_RANGE)) { ++ bch2_btree_iter_next_slot(iter); ++ continue; ++ } ++ ++ bkey_reservation_init(&reservation.k_i); ++ reservation.k.type = KEY_TYPE_reservation; ++ reservation.k.p = k.k->p; ++ reservation.k.size = k.k->size; ++ ++ bch2_cut_front(iter->pos, &reservation.k_i); ++ bch2_cut_back(end_pos, &reservation.k_i); ++ ++ sectors = reservation.k.size; ++ reservation.v.nr_replicas = bch2_bkey_nr_ptrs_allocated(k); ++ ++ if (!bkey_extent_is_allocation(k.k)) { ++ ret = bch2_quota_reservation_add(c, inode, ++ "a_res, ++ sectors, true); ++ if (unlikely(ret)) ++ goto bkey_err; ++ } ++ ++ if (reservation.v.nr_replicas < replicas || ++ bch2_bkey_sectors_compressed(k)) { ++ ret = bch2_disk_reservation_get(c, &disk_res, sectors, ++ replicas, 0); ++ if (unlikely(ret)) ++ goto bkey_err; ++ ++ reservation.v.nr_replicas = disk_res.nr_replicas; ++ } ++ ++ ret = bch2_extent_update(&trans, iter, &reservation.k_i, ++ &disk_res, &inode->ei_journal_seq, ++ 0, &i_sectors_delta); ++ i_sectors_acct(c, inode, "a_res, i_sectors_delta); ++bkey_err: ++ bch2_quota_reservation_put(c, inode, "a_res); ++ bch2_disk_reservation_put(c, &disk_res); ++ if (ret == -EINTR) ++ ret = 0; ++ if (ret) ++ goto err; ++ } ++ ++ /* ++ * Do we need to extend the file? ++ * ++ * If we zeroed up to the end of the file, we dropped whatever writes ++ * were going to write out the current i_size, so we have to extend ++ * manually even if FL_KEEP_SIZE was set: ++ */ ++ if (end >= inode->v.i_size && ++ (!(mode & FALLOC_FL_KEEP_SIZE) || ++ (mode & FALLOC_FL_ZERO_RANGE))) { ++ struct btree_iter *inode_iter; ++ struct bch_inode_unpacked inode_u; ++ ++ do { ++ bch2_trans_begin(&trans); ++ inode_iter = bch2_inode_peek(&trans, &inode_u, ++ inode->v.i_ino, 0); ++ ret = PTR_ERR_OR_ZERO(inode_iter); ++ } while (ret == -EINTR); ++ ++ bch2_trans_unlock(&trans); ++ ++ if (ret) ++ goto err; ++ ++ /* ++ * Sync existing appends before extending i_size, ++ * as in bch2_extend(): ++ */ ++ ret = filemap_write_and_wait_range(mapping, ++ inode_u.bi_size, S64_MAX); ++ if (ret) ++ goto err; ++ ++ if (mode & FALLOC_FL_KEEP_SIZE) ++ end = inode->v.i_size; ++ else ++ i_size_write(&inode->v, end); ++ ++ mutex_lock(&inode->ei_update_lock); ++ ret = bch2_write_inode_size(c, inode, end, 0); ++ mutex_unlock(&inode->ei_update_lock); ++ } ++err: ++ bch2_trans_exit(&trans); ++ bch2_pagecache_block_put(&inode->ei_pagecache_lock); ++ inode_unlock(&inode->v); ++ return ret; ++} ++ ++long bch2_fallocate_dispatch(struct file *file, int mode, ++ loff_t offset, loff_t len) ++{ ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ long ret; ++ ++ if (!percpu_ref_tryget(&c->writes)) ++ return -EROFS; ++ ++ if (!(mode & ~(FALLOC_FL_KEEP_SIZE|FALLOC_FL_ZERO_RANGE))) ++ ret = bchfs_fallocate(inode, mode, offset, len); ++ else if (mode == (FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE)) ++ ret = bchfs_fpunch(inode, offset, len); ++ else if (mode == FALLOC_FL_INSERT_RANGE) ++ ret = bchfs_fcollapse_finsert(inode, offset, len, true); ++ else if (mode == FALLOC_FL_COLLAPSE_RANGE) ++ ret = bchfs_fcollapse_finsert(inode, offset, len, false); ++ else ++ ret = -EOPNOTSUPP; ++ ++ percpu_ref_put(&c->writes); ++ ++ return ret; ++} ++ ++static void mark_range_unallocated(struct bch_inode_info *inode, ++ loff_t start, loff_t end) ++{ ++ pgoff_t index = start >> PAGE_SHIFT; ++ pgoff_t end_index = (end - 1) >> PAGE_SHIFT; ++ struct pagevec pvec; ++ ++ pagevec_init(&pvec); ++ ++ do { ++ unsigned nr_pages, i, j; ++ ++ nr_pages = pagevec_lookup_range(&pvec, inode->v.i_mapping, ++ &index, end_index); ++ if (nr_pages == 0) ++ break; ++ ++ for (i = 0; i < nr_pages; i++) { ++ struct page *page = pvec.pages[i]; ++ struct bch_page_state *s; ++ ++ lock_page(page); ++ s = bch2_page_state(page); ++ ++ if (s) { ++ spin_lock(&s->lock); ++ for (j = 0; j < PAGE_SECTORS; j++) ++ s->s[j].nr_replicas = 0; ++ spin_unlock(&s->lock); ++ } ++ ++ unlock_page(page); ++ } ++ pagevec_release(&pvec); ++ } while (index <= end_index); ++} ++ ++loff_t bch2_remap_file_range(struct file *file_src, loff_t pos_src, ++ struct file *file_dst, loff_t pos_dst, ++ loff_t len, unsigned remap_flags) ++{ ++ struct bch_inode_info *src = file_bch_inode(file_src); ++ struct bch_inode_info *dst = file_bch_inode(file_dst); ++ struct bch_fs *c = src->v.i_sb->s_fs_info; ++ s64 i_sectors_delta = 0; ++ u64 aligned_len; ++ loff_t ret = 0; ++ ++ if (!c->opts.reflink) ++ return -EOPNOTSUPP; ++ ++ if (remap_flags & ~(REMAP_FILE_DEDUP|REMAP_FILE_ADVISORY)) ++ return -EINVAL; ++ ++ if (remap_flags & REMAP_FILE_DEDUP) ++ return -EOPNOTSUPP; ++ ++ if ((pos_src & (block_bytes(c) - 1)) || ++ (pos_dst & (block_bytes(c) - 1))) ++ return -EINVAL; ++ ++ if (src == dst && ++ abs(pos_src - pos_dst) < len) ++ return -EINVAL; ++ ++ bch2_lock_inodes(INODE_LOCK|INODE_PAGECACHE_BLOCK, src, dst); ++ ++ file_update_time(file_dst); ++ ++ inode_dio_wait(&src->v); ++ inode_dio_wait(&dst->v); ++ ++ ret = generic_remap_file_range_prep(file_src, pos_src, ++ file_dst, pos_dst, ++ &len, remap_flags); ++ if (ret < 0 || len == 0) ++ goto err; ++ ++ aligned_len = round_up((u64) len, block_bytes(c)); ++ ++ ret = write_invalidate_inode_pages_range(dst->v.i_mapping, ++ pos_dst, pos_dst + len - 1); ++ if (ret) ++ goto err; ++ ++ mark_range_unallocated(src, pos_src, pos_src + aligned_len); ++ ++ ret = bch2_remap_range(c, ++ POS(dst->v.i_ino, pos_dst >> 9), ++ POS(src->v.i_ino, pos_src >> 9), ++ aligned_len >> 9, ++ &dst->ei_journal_seq, ++ pos_dst + len, &i_sectors_delta); ++ if (ret < 0) ++ goto err; ++ ++ /* ++ * due to alignment, we might have remapped slightly more than requsted ++ */ ++ ret = min((u64) ret << 9, (u64) len); ++ ++ /* XXX get a quota reservation */ ++ i_sectors_acct(c, dst, NULL, i_sectors_delta); ++ ++ spin_lock(&dst->v.i_lock); ++ if (pos_dst + ret > dst->v.i_size) ++ i_size_write(&dst->v, pos_dst + ret); ++ spin_unlock(&dst->v.i_lock); ++err: ++ bch2_unlock_inodes(INODE_LOCK|INODE_PAGECACHE_BLOCK, src, dst); ++ ++ return ret; ++} ++ ++/* fseek: */ ++ ++static int page_data_offset(struct page *page, unsigned offset) ++{ ++ struct bch_page_state *s = bch2_page_state(page); ++ unsigned i; ++ ++ if (s) ++ for (i = offset >> 9; i < PAGE_SECTORS; i++) ++ if (s->s[i].state >= SECTOR_DIRTY) ++ return i << 9; ++ ++ return -1; ++} ++ ++static loff_t bch2_seek_pagecache_data(struct inode *vinode, ++ loff_t start_offset, ++ loff_t end_offset) ++{ ++ struct address_space *mapping = vinode->i_mapping; ++ struct page *page; ++ pgoff_t start_index = start_offset >> PAGE_SHIFT; ++ pgoff_t end_index = end_offset >> PAGE_SHIFT; ++ pgoff_t index = start_index; ++ loff_t ret; ++ int offset; ++ ++ while (index <= end_index) { ++ if (find_get_pages_range(mapping, &index, end_index, 1, &page)) { ++ lock_page(page); ++ ++ offset = page_data_offset(page, ++ page->index == start_index ++ ? start_offset & (PAGE_SIZE - 1) ++ : 0); ++ if (offset >= 0) { ++ ret = clamp(((loff_t) page->index << PAGE_SHIFT) + ++ offset, ++ start_offset, end_offset); ++ unlock_page(page); ++ put_page(page); ++ return ret; ++ } ++ ++ unlock_page(page); ++ put_page(page); ++ } else { ++ break; ++ } ++ } ++ ++ return end_offset; ++} ++ ++static loff_t bch2_seek_data(struct file *file, u64 offset) ++{ ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ u64 isize, next_data = MAX_LFS_FILESIZE; ++ int ret; ++ ++ isize = i_size_read(&inode->v); ++ if (offset >= isize) ++ return -ENXIO; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS, ++ POS(inode->v.i_ino, offset >> 9), 0, k, ret) { ++ if (k.k->p.inode != inode->v.i_ino) { ++ break; ++ } else if (bkey_extent_is_data(k.k)) { ++ next_data = max(offset, bkey_start_offset(k.k) << 9); ++ break; ++ } else if (k.k->p.offset >> 9 > isize) ++ break; ++ } ++ ++ ret = bch2_trans_exit(&trans) ?: ret; ++ if (ret) ++ return ret; ++ ++ if (next_data > offset) ++ next_data = bch2_seek_pagecache_data(&inode->v, ++ offset, next_data); ++ ++ if (next_data >= isize) ++ return -ENXIO; ++ ++ return vfs_setpos(file, next_data, MAX_LFS_FILESIZE); ++} ++ ++static int __page_hole_offset(struct page *page, unsigned offset) ++{ ++ struct bch_page_state *s = bch2_page_state(page); ++ unsigned i; ++ ++ if (!s) ++ return 0; ++ ++ for (i = offset >> 9; i < PAGE_SECTORS; i++) ++ if (s->s[i].state < SECTOR_DIRTY) ++ return i << 9; ++ ++ return -1; ++} ++ ++static loff_t page_hole_offset(struct address_space *mapping, loff_t offset) ++{ ++ pgoff_t index = offset >> PAGE_SHIFT; ++ struct page *page; ++ int pg_offset; ++ loff_t ret = -1; ++ ++ page = find_lock_entry(mapping, index); ++ if (!page || xa_is_value(page)) ++ return offset; ++ ++ pg_offset = __page_hole_offset(page, offset & (PAGE_SIZE - 1)); ++ if (pg_offset >= 0) ++ ret = ((loff_t) index << PAGE_SHIFT) + pg_offset; ++ ++ unlock_page(page); ++ ++ return ret; ++} ++ ++static loff_t bch2_seek_pagecache_hole(struct inode *vinode, ++ loff_t start_offset, ++ loff_t end_offset) ++{ ++ struct address_space *mapping = vinode->i_mapping; ++ loff_t offset = start_offset, hole; ++ ++ while (offset < end_offset) { ++ hole = page_hole_offset(mapping, offset); ++ if (hole >= 0 && hole <= end_offset) ++ return max(start_offset, hole); ++ ++ offset += PAGE_SIZE; ++ offset &= PAGE_MASK; ++ } ++ ++ return end_offset; ++} ++ ++static loff_t bch2_seek_hole(struct file *file, u64 offset) ++{ ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ u64 isize, next_hole = MAX_LFS_FILESIZE; ++ int ret; ++ ++ isize = i_size_read(&inode->v); ++ if (offset >= isize) ++ return -ENXIO; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS, ++ POS(inode->v.i_ino, offset >> 9), ++ BTREE_ITER_SLOTS, k, ret) { ++ if (k.k->p.inode != inode->v.i_ino) { ++ next_hole = bch2_seek_pagecache_hole(&inode->v, ++ offset, MAX_LFS_FILESIZE); ++ break; ++ } else if (!bkey_extent_is_data(k.k)) { ++ next_hole = bch2_seek_pagecache_hole(&inode->v, ++ max(offset, bkey_start_offset(k.k) << 9), ++ k.k->p.offset << 9); ++ ++ if (next_hole < k.k->p.offset << 9) ++ break; ++ } else { ++ offset = max(offset, bkey_start_offset(k.k) << 9); ++ } ++ } ++ ++ ret = bch2_trans_exit(&trans) ?: ret; ++ if (ret) ++ return ret; ++ ++ if (next_hole > isize) ++ next_hole = isize; ++ ++ return vfs_setpos(file, next_hole, MAX_LFS_FILESIZE); ++} ++ ++loff_t bch2_llseek(struct file *file, loff_t offset, int whence) ++{ ++ switch (whence) { ++ case SEEK_SET: ++ case SEEK_CUR: ++ case SEEK_END: ++ return generic_file_llseek(file, offset, whence); ++ case SEEK_DATA: ++ return bch2_seek_data(file, offset); ++ case SEEK_HOLE: ++ return bch2_seek_hole(file, offset); ++ } ++ ++ return -EINVAL; ++} ++ ++void bch2_fs_fsio_exit(struct bch_fs *c) ++{ ++ bioset_exit(&c->dio_write_bioset); ++ bioset_exit(&c->dio_read_bioset); ++ bioset_exit(&c->writepage_bioset); ++} ++ ++int bch2_fs_fsio_init(struct bch_fs *c) ++{ ++ int ret = 0; ++ ++ pr_verbose_init(c->opts, ""); ++ ++ if (bioset_init(&c->writepage_bioset, ++ 4, offsetof(struct bch_writepage_io, op.wbio.bio), ++ BIOSET_NEED_BVECS) || ++ bioset_init(&c->dio_read_bioset, ++ 4, offsetof(struct dio_read, rbio.bio), ++ BIOSET_NEED_BVECS) || ++ bioset_init(&c->dio_write_bioset, ++ 4, offsetof(struct dio_write, op.wbio.bio), ++ BIOSET_NEED_BVECS)) ++ ret = -ENOMEM; ++ ++ pr_verbose_init(c->opts, "ret %i", ret); ++ return ret; ++} ++ ++#endif /* NO_BCACHEFS_FS */ +diff --git a/fs/bcachefs/fs-io.h b/fs/bcachefs/fs-io.h +new file mode 100644 +index 000000000000..7063556d289b +--- /dev/null ++++ b/fs/bcachefs/fs-io.h +@@ -0,0 +1,57 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_FS_IO_H ++#define _BCACHEFS_FS_IO_H ++ ++#ifndef NO_BCACHEFS_FS ++ ++#include "buckets.h" ++#include "io_types.h" ++ ++#include ++ ++struct quota_res; ++ ++int __must_check bch2_write_inode_size(struct bch_fs *, ++ struct bch_inode_info *, ++ loff_t, unsigned); ++ ++int bch2_writepage(struct page *, struct writeback_control *); ++int bch2_readpage(struct file *, struct page *); ++ ++int bch2_writepages(struct address_space *, struct writeback_control *); ++int bch2_readpages(struct file *, struct address_space *, ++ struct list_head *, unsigned); ++ ++int bch2_write_begin(struct file *, struct address_space *, loff_t, ++ unsigned, unsigned, struct page **, void **); ++int bch2_write_end(struct file *, struct address_space *, loff_t, ++ unsigned, unsigned, struct page *, void *); ++ ++ssize_t bch2_read_iter(struct kiocb *, struct iov_iter *); ++ssize_t bch2_write_iter(struct kiocb *, struct iov_iter *); ++ ++int bch2_fsync(struct file *, loff_t, loff_t, int); ++ ++int bch2_truncate(struct bch_inode_info *, struct iattr *); ++long bch2_fallocate_dispatch(struct file *, int, loff_t, loff_t); ++ ++loff_t bch2_remap_file_range(struct file *, loff_t, struct file *, ++ loff_t, loff_t, unsigned); ++ ++loff_t bch2_llseek(struct file *, loff_t, int); ++ ++vm_fault_t bch2_page_fault(struct vm_fault *); ++vm_fault_t bch2_page_mkwrite(struct vm_fault *); ++void bch2_invalidatepage(struct page *, unsigned int, unsigned int); ++int bch2_releasepage(struct page *, gfp_t); ++int bch2_migrate_page(struct address_space *, struct page *, ++ struct page *, enum migrate_mode); ++ ++void bch2_fs_fsio_exit(struct bch_fs *); ++int bch2_fs_fsio_init(struct bch_fs *); ++#else ++static inline void bch2_fs_fsio_exit(struct bch_fs *c) {} ++static inline int bch2_fs_fsio_init(struct bch_fs *c) { return 0; } ++#endif ++ ++#endif /* _BCACHEFS_FS_IO_H */ +diff --git a/fs/bcachefs/fs-ioctl.c b/fs/bcachefs/fs-ioctl.c +new file mode 100644 +index 000000000000..0873d2f0928c +--- /dev/null ++++ b/fs/bcachefs/fs-ioctl.c +@@ -0,0 +1,312 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#ifndef NO_BCACHEFS_FS ++ ++#include "bcachefs.h" ++#include "chardev.h" ++#include "dirent.h" ++#include "fs.h" ++#include "fs-common.h" ++#include "fs-ioctl.h" ++#include "quota.h" ++ ++#include ++#include ++ ++#define FS_IOC_GOINGDOWN _IOR('X', 125, __u32) ++ ++struct flags_set { ++ unsigned mask; ++ unsigned flags; ++ ++ unsigned projid; ++}; ++ ++static int bch2_inode_flags_set(struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, ++ void *p) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ /* ++ * We're relying on btree locking here for exclusion with other ioctl ++ * calls - use the flags in the btree (@bi), not inode->i_flags: ++ */ ++ struct flags_set *s = p; ++ unsigned newflags = s->flags; ++ unsigned oldflags = bi->bi_flags & s->mask; ++ ++ if (((newflags ^ oldflags) & (BCH_INODE_APPEND|BCH_INODE_IMMUTABLE)) && ++ !capable(CAP_LINUX_IMMUTABLE)) ++ return -EPERM; ++ ++ if (!S_ISREG(bi->bi_mode) && ++ !S_ISDIR(bi->bi_mode) && ++ (newflags & (BCH_INODE_NODUMP|BCH_INODE_NOATIME)) != newflags) ++ return -EINVAL; ++ ++ bi->bi_flags &= ~s->mask; ++ bi->bi_flags |= newflags; ++ ++ bi->bi_ctime = timespec_to_bch2_time(c, current_time(&inode->v)); ++ return 0; ++} ++ ++static int bch2_ioc_getflags(struct bch_inode_info *inode, int __user *arg) ++{ ++ unsigned flags = map_flags(bch_flags_to_uflags, inode->ei_inode.bi_flags); ++ ++ return put_user(flags, arg); ++} ++ ++static int bch2_ioc_setflags(struct bch_fs *c, ++ struct file *file, ++ struct bch_inode_info *inode, ++ void __user *arg) ++{ ++ struct flags_set s = { .mask = map_defined(bch_flags_to_uflags) }; ++ unsigned uflags; ++ int ret; ++ ++ if (get_user(uflags, (int __user *) arg)) ++ return -EFAULT; ++ ++ s.flags = map_flags_rev(bch_flags_to_uflags, uflags); ++ if (uflags) ++ return -EOPNOTSUPP; ++ ++ ret = mnt_want_write_file(file); ++ if (ret) ++ return ret; ++ ++ inode_lock(&inode->v); ++ if (!inode_owner_or_capable(&inode->v)) { ++ ret = -EACCES; ++ goto setflags_out; ++ } ++ ++ mutex_lock(&inode->ei_update_lock); ++ ret = bch2_write_inode(c, inode, bch2_inode_flags_set, &s, ++ ATTR_CTIME); ++ mutex_unlock(&inode->ei_update_lock); ++ ++setflags_out: ++ inode_unlock(&inode->v); ++ mnt_drop_write_file(file); ++ return ret; ++} ++ ++static int bch2_ioc_fsgetxattr(struct bch_inode_info *inode, ++ struct fsxattr __user *arg) ++{ ++ struct fsxattr fa = { 0 }; ++ ++ fa.fsx_xflags = map_flags(bch_flags_to_xflags, inode->ei_inode.bi_flags); ++ fa.fsx_projid = inode->ei_qid.q[QTYP_PRJ]; ++ ++ return copy_to_user(arg, &fa, sizeof(fa)); ++} ++ ++static int fssetxattr_inode_update_fn(struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, ++ void *p) ++{ ++ struct flags_set *s = p; ++ ++ if (s->projid != bi->bi_project) { ++ bi->bi_fields_set |= 1U << Inode_opt_project; ++ bi->bi_project = s->projid; ++ } ++ ++ return bch2_inode_flags_set(inode, bi, p); ++} ++ ++static int bch2_ioc_fssetxattr(struct bch_fs *c, ++ struct file *file, ++ struct bch_inode_info *inode, ++ struct fsxattr __user *arg) ++{ ++ struct flags_set s = { .mask = map_defined(bch_flags_to_xflags) }; ++ struct fsxattr fa; ++ int ret; ++ ++ if (copy_from_user(&fa, arg, sizeof(fa))) ++ return -EFAULT; ++ ++ s.flags = map_flags_rev(bch_flags_to_xflags, fa.fsx_xflags); ++ if (fa.fsx_xflags) ++ return -EOPNOTSUPP; ++ ++ if (fa.fsx_projid >= U32_MAX) ++ return -EINVAL; ++ ++ /* ++ * inode fields accessible via the xattr interface are stored with a +1 ++ * bias, so that 0 means unset: ++ */ ++ s.projid = fa.fsx_projid + 1; ++ ++ ret = mnt_want_write_file(file); ++ if (ret) ++ return ret; ++ ++ inode_lock(&inode->v); ++ if (!inode_owner_or_capable(&inode->v)) { ++ ret = -EACCES; ++ goto err; ++ } ++ ++ mutex_lock(&inode->ei_update_lock); ++ ret = bch2_set_projid(c, inode, fa.fsx_projid); ++ if (ret) ++ goto err_unlock; ++ ++ ret = bch2_write_inode(c, inode, fssetxattr_inode_update_fn, &s, ++ ATTR_CTIME); ++err_unlock: ++ mutex_unlock(&inode->ei_update_lock); ++err: ++ inode_unlock(&inode->v); ++ mnt_drop_write_file(file); ++ return ret; ++} ++ ++static int bch2_reinherit_attrs_fn(struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, ++ void *p) ++{ ++ struct bch_inode_info *dir = p; ++ ++ return !bch2_reinherit_attrs(bi, &dir->ei_inode); ++} ++ ++static int bch2_ioc_reinherit_attrs(struct bch_fs *c, ++ struct file *file, ++ struct bch_inode_info *src, ++ const char __user *name) ++{ ++ struct bch_inode_info *dst; ++ struct inode *vinode = NULL; ++ char *kname = NULL; ++ struct qstr qstr; ++ int ret = 0; ++ u64 inum; ++ ++ kname = kmalloc(BCH_NAME_MAX + 1, GFP_KERNEL); ++ if (!kname) ++ return -ENOMEM; ++ ++ ret = strncpy_from_user(kname, name, BCH_NAME_MAX); ++ if (unlikely(ret < 0)) ++ goto err1; ++ ++ qstr.len = ret; ++ qstr.name = kname; ++ ++ ret = -ENOENT; ++ inum = bch2_dirent_lookup(c, src->v.i_ino, ++ &src->ei_str_hash, ++ &qstr); ++ if (!inum) ++ goto err1; ++ ++ vinode = bch2_vfs_inode_get(c, inum); ++ ret = PTR_ERR_OR_ZERO(vinode); ++ if (ret) ++ goto err1; ++ ++ dst = to_bch_ei(vinode); ++ ++ ret = mnt_want_write_file(file); ++ if (ret) ++ goto err2; ++ ++ bch2_lock_inodes(INODE_UPDATE_LOCK, src, dst); ++ ++ if (inode_attr_changing(src, dst, Inode_opt_project)) { ++ ret = bch2_fs_quota_transfer(c, dst, ++ src->ei_qid, ++ 1 << QTYP_PRJ, ++ KEY_TYPE_QUOTA_PREALLOC); ++ if (ret) ++ goto err3; ++ } ++ ++ ret = bch2_write_inode(c, dst, bch2_reinherit_attrs_fn, src, 0); ++err3: ++ bch2_unlock_inodes(INODE_UPDATE_LOCK, src, dst); ++ ++ /* return true if we did work */ ++ if (ret >= 0) ++ ret = !ret; ++ ++ mnt_drop_write_file(file); ++err2: ++ iput(vinode); ++err1: ++ kfree(kname); ++ ++ return ret; ++} ++ ++long bch2_fs_file_ioctl(struct file *file, unsigned cmd, unsigned long arg) ++{ ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct super_block *sb = inode->v.i_sb; ++ struct bch_fs *c = sb->s_fs_info; ++ ++ switch (cmd) { ++ case FS_IOC_GETFLAGS: ++ return bch2_ioc_getflags(inode, (int __user *) arg); ++ ++ case FS_IOC_SETFLAGS: ++ return bch2_ioc_setflags(c, file, inode, (int __user *) arg); ++ ++ case FS_IOC_FSGETXATTR: ++ return bch2_ioc_fsgetxattr(inode, (void __user *) arg); ++ case FS_IOC_FSSETXATTR: ++ return bch2_ioc_fssetxattr(c, file, inode, ++ (void __user *) arg); ++ ++ case BCHFS_IOC_REINHERIT_ATTRS: ++ return bch2_ioc_reinherit_attrs(c, file, inode, ++ (void __user *) arg); ++ ++ case FS_IOC_GETVERSION: ++ return -ENOTTY; ++ case FS_IOC_SETVERSION: ++ return -ENOTTY; ++ ++ case FS_IOC_GOINGDOWN: ++ if (!capable(CAP_SYS_ADMIN)) ++ return -EPERM; ++ ++ down_write(&sb->s_umount); ++ sb->s_flags |= SB_RDONLY; ++ if (bch2_fs_emergency_read_only(c)) ++ bch_err(c, "emergency read only due to ioctl"); ++ up_write(&sb->s_umount); ++ return 0; ++ ++ default: ++ return bch2_fs_ioctl(c, cmd, (void __user *) arg); ++ } ++} ++ ++#ifdef CONFIG_COMPAT ++long bch2_compat_fs_ioctl(struct file *file, unsigned cmd, unsigned long arg) ++{ ++ /* These are just misnamed, they actually get/put from/to user an int */ ++ switch (cmd) { ++ case FS_IOC_GETFLAGS: ++ cmd = FS_IOC_GETFLAGS; ++ break; ++ case FS_IOC32_SETFLAGS: ++ cmd = FS_IOC_SETFLAGS; ++ break; ++ default: ++ return -ENOIOCTLCMD; ++ } ++ return bch2_fs_file_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); ++} ++#endif ++ ++#endif /* NO_BCACHEFS_FS */ +diff --git a/fs/bcachefs/fs-ioctl.h b/fs/bcachefs/fs-ioctl.h +new file mode 100644 +index 000000000000..f201980ef2c3 +--- /dev/null ++++ b/fs/bcachefs/fs-ioctl.h +@@ -0,0 +1,81 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_FS_IOCTL_H ++#define _BCACHEFS_FS_IOCTL_H ++ ++/* Inode flags: */ ++ ++/* bcachefs inode flags -> vfs inode flags: */ ++static const unsigned bch_flags_to_vfs[] = { ++ [__BCH_INODE_SYNC] = S_SYNC, ++ [__BCH_INODE_IMMUTABLE] = S_IMMUTABLE, ++ [__BCH_INODE_APPEND] = S_APPEND, ++ [__BCH_INODE_NOATIME] = S_NOATIME, ++}; ++ ++/* bcachefs inode flags -> FS_IOC_GETFLAGS: */ ++static const unsigned bch_flags_to_uflags[] = { ++ [__BCH_INODE_SYNC] = FS_SYNC_FL, ++ [__BCH_INODE_IMMUTABLE] = FS_IMMUTABLE_FL, ++ [__BCH_INODE_APPEND] = FS_APPEND_FL, ++ [__BCH_INODE_NODUMP] = FS_NODUMP_FL, ++ [__BCH_INODE_NOATIME] = FS_NOATIME_FL, ++}; ++ ++/* bcachefs inode flags -> FS_IOC_FSGETXATTR: */ ++static const unsigned bch_flags_to_xflags[] = { ++ [__BCH_INODE_SYNC] = FS_XFLAG_SYNC, ++ [__BCH_INODE_IMMUTABLE] = FS_XFLAG_IMMUTABLE, ++ [__BCH_INODE_APPEND] = FS_XFLAG_APPEND, ++ [__BCH_INODE_NODUMP] = FS_XFLAG_NODUMP, ++ [__BCH_INODE_NOATIME] = FS_XFLAG_NOATIME, ++ //[__BCH_INODE_PROJINHERIT] = FS_XFLAG_PROJINHERIT; ++}; ++ ++#define set_flags(_map, _in, _out) \ ++do { \ ++ unsigned _i; \ ++ \ ++ for (_i = 0; _i < ARRAY_SIZE(_map); _i++) \ ++ if ((_in) & (1 << _i)) \ ++ (_out) |= _map[_i]; \ ++ else \ ++ (_out) &= ~_map[_i]; \ ++} while (0) ++ ++#define map_flags(_map, _in) \ ++({ \ ++ unsigned _out = 0; \ ++ \ ++ set_flags(_map, _in, _out); \ ++ _out; \ ++}) ++ ++#define map_flags_rev(_map, _in) \ ++({ \ ++ unsigned _i, _out = 0; \ ++ \ ++ for (_i = 0; _i < ARRAY_SIZE(_map); _i++) \ ++ if ((_in) & _map[_i]) { \ ++ (_out) |= 1 << _i; \ ++ (_in) &= ~_map[_i]; \ ++ } \ ++ (_out); \ ++}) ++ ++#define map_defined(_map) \ ++({ \ ++ unsigned _in = ~0; \ ++ \ ++ map_flags_rev(_map, _in); \ ++}) ++ ++/* Set VFS inode flags from bcachefs inode: */ ++static inline void bch2_inode_flags_to_vfs(struct bch_inode_info *inode) ++{ ++ set_flags(bch_flags_to_vfs, inode->ei_inode.bi_flags, inode->v.i_flags); ++} ++ ++long bch2_fs_file_ioctl(struct file *, unsigned, unsigned long); ++long bch2_compat_fs_ioctl(struct file *, unsigned, unsigned long); ++ ++#endif /* _BCACHEFS_FS_IOCTL_H */ +diff --git a/fs/bcachefs/fs.c b/fs/bcachefs/fs.c +new file mode 100644 +index 000000000000..6a9820e83db7 +--- /dev/null ++++ b/fs/bcachefs/fs.c +@@ -0,0 +1,1614 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#ifndef NO_BCACHEFS_FS ++ ++#include "bcachefs.h" ++#include "acl.h" ++#include "bkey_on_stack.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "chardev.h" ++#include "dirent.h" ++#include "extents.h" ++#include "fs.h" ++#include "fs-common.h" ++#include "fs-io.h" ++#include "fs-ioctl.h" ++#include "fsck.h" ++#include "inode.h" ++#include "io.h" ++#include "journal.h" ++#include "keylist.h" ++#include "quota.h" ++#include "super.h" ++#include "xattr.h" ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++static struct kmem_cache *bch2_inode_cache; ++ ++static void bch2_vfs_inode_init(struct bch_fs *, ++ struct bch_inode_info *, ++ struct bch_inode_unpacked *); ++ ++static void journal_seq_copy(struct bch_fs *c, ++ struct bch_inode_info *dst, ++ u64 journal_seq) ++{ ++ u64 old, v = READ_ONCE(dst->ei_journal_seq); ++ ++ do { ++ old = v; ++ ++ if (old >= journal_seq) ++ break; ++ } while ((v = cmpxchg(&dst->ei_journal_seq, old, journal_seq)) != old); ++ ++ bch2_journal_set_has_inum(&c->journal, dst->v.i_ino, journal_seq); ++} ++ ++static void __pagecache_lock_put(struct pagecache_lock *lock, long i) ++{ ++ BUG_ON(atomic_long_read(&lock->v) == 0); ++ ++ if (atomic_long_sub_return_release(i, &lock->v) == 0) ++ wake_up_all(&lock->wait); ++} ++ ++static bool __pagecache_lock_tryget(struct pagecache_lock *lock, long i) ++{ ++ long v = atomic_long_read(&lock->v), old; ++ ++ do { ++ old = v; ++ ++ if (i > 0 ? v < 0 : v > 0) ++ return false; ++ } while ((v = atomic_long_cmpxchg_acquire(&lock->v, ++ old, old + i)) != old); ++ return true; ++} ++ ++static void __pagecache_lock_get(struct pagecache_lock *lock, long i) ++{ ++ wait_event(lock->wait, __pagecache_lock_tryget(lock, i)); ++} ++ ++void bch2_pagecache_add_put(struct pagecache_lock *lock) ++{ ++ __pagecache_lock_put(lock, 1); ++} ++ ++void bch2_pagecache_add_get(struct pagecache_lock *lock) ++{ ++ __pagecache_lock_get(lock, 1); ++} ++ ++void bch2_pagecache_block_put(struct pagecache_lock *lock) ++{ ++ __pagecache_lock_put(lock, -1); ++} ++ ++void bch2_pagecache_block_get(struct pagecache_lock *lock) ++{ ++ __pagecache_lock_get(lock, -1); ++} ++ ++void bch2_inode_update_after_write(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, ++ unsigned fields) ++{ ++ set_nlink(&inode->v, bch2_inode_nlink_get(bi)); ++ i_uid_write(&inode->v, bi->bi_uid); ++ i_gid_write(&inode->v, bi->bi_gid); ++ inode->v.i_mode = bi->bi_mode; ++ ++ if (fields & ATTR_ATIME) ++ inode->v.i_atime = bch2_time_to_timespec(c, bi->bi_atime); ++ if (fields & ATTR_MTIME) ++ inode->v.i_mtime = bch2_time_to_timespec(c, bi->bi_mtime); ++ if (fields & ATTR_CTIME) ++ inode->v.i_ctime = bch2_time_to_timespec(c, bi->bi_ctime); ++ ++ inode->ei_inode = *bi; ++ ++ bch2_inode_flags_to_vfs(inode); ++} ++ ++int __must_check bch2_write_inode(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ inode_set_fn set, ++ void *p, unsigned fields) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bch_inode_unpacked inode_u; ++ int ret; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++retry: ++ bch2_trans_begin(&trans); ++ ++ iter = bch2_inode_peek(&trans, &inode_u, inode->v.i_ino, ++ BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(iter) ?: ++ (set ? set(inode, &inode_u, p) : 0) ?: ++ bch2_inode_write(&trans, iter, &inode_u) ?: ++ bch2_trans_commit(&trans, NULL, ++ &inode->ei_journal_seq, ++ BTREE_INSERT_NOUNLOCK| ++ BTREE_INSERT_NOFAIL); ++ ++ /* ++ * the btree node lock protects inode->ei_inode, not ei_update_lock; ++ * this is important for inode updates via bchfs_write_index_update ++ */ ++ if (!ret) ++ bch2_inode_update_after_write(c, inode, &inode_u, fields); ++ ++ bch2_trans_iter_put(&trans, iter); ++ ++ if (ret == -EINTR) ++ goto retry; ++ ++ bch2_trans_exit(&trans); ++ return ret < 0 ? ret : 0; ++} ++ ++int bch2_fs_quota_transfer(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct bch_qid new_qid, ++ unsigned qtypes, ++ enum quota_acct_mode mode) ++{ ++ unsigned i; ++ int ret; ++ ++ qtypes &= enabled_qtypes(c); ++ ++ for (i = 0; i < QTYP_NR; i++) ++ if (new_qid.q[i] == inode->ei_qid.q[i]) ++ qtypes &= ~(1U << i); ++ ++ if (!qtypes) ++ return 0; ++ ++ mutex_lock(&inode->ei_quota_lock); ++ ++ ret = bch2_quota_transfer(c, qtypes, new_qid, ++ inode->ei_qid, ++ inode->v.i_blocks + ++ inode->ei_quota_reserved, ++ mode); ++ if (!ret) ++ for (i = 0; i < QTYP_NR; i++) ++ if (qtypes & (1 << i)) ++ inode->ei_qid.q[i] = new_qid.q[i]; ++ ++ mutex_unlock(&inode->ei_quota_lock); ++ ++ return ret; ++} ++ ++struct inode *bch2_vfs_inode_get(struct bch_fs *c, u64 inum) ++{ ++ struct bch_inode_unpacked inode_u; ++ struct bch_inode_info *inode; ++ int ret; ++ ++ inode = to_bch_ei(iget_locked(c->vfs_sb, inum)); ++ if (unlikely(!inode)) ++ return ERR_PTR(-ENOMEM); ++ if (!(inode->v.i_state & I_NEW)) ++ return &inode->v; ++ ++ ret = bch2_inode_find_by_inum(c, inum, &inode_u); ++ if (ret) { ++ iget_failed(&inode->v); ++ return ERR_PTR(ret); ++ } ++ ++ bch2_vfs_inode_init(c, inode, &inode_u); ++ ++ inode->ei_journal_seq = bch2_inode_journal_seq(&c->journal, inum); ++ ++ unlock_new_inode(&inode->v); ++ ++ return &inode->v; ++} ++ ++static struct bch_inode_info * ++__bch2_create(struct bch_inode_info *dir, struct dentry *dentry, ++ umode_t mode, dev_t rdev, bool tmpfile) ++{ ++ struct bch_fs *c = dir->v.i_sb->s_fs_info; ++ struct user_namespace *ns = dir->v.i_sb->s_user_ns; ++ struct btree_trans trans; ++ struct bch_inode_unpacked dir_u; ++ struct bch_inode_info *inode, *old; ++ struct bch_inode_unpacked inode_u; ++ struct posix_acl *default_acl = NULL, *acl = NULL; ++ u64 journal_seq = 0; ++ int ret; ++ ++ /* ++ * preallocate acls + vfs inode before btree transaction, so that ++ * nothing can fail after the transaction succeeds: ++ */ ++#ifdef CONFIG_BCACHEFS_POSIX_ACL ++ ret = posix_acl_create(&dir->v, &mode, &default_acl, &acl); ++ if (ret) ++ return ERR_PTR(ret); ++#endif ++ inode = to_bch_ei(new_inode(c->vfs_sb)); ++ if (unlikely(!inode)) { ++ inode = ERR_PTR(-ENOMEM); ++ goto err; ++ } ++ ++ bch2_inode_init_early(c, &inode_u); ++ ++ if (!tmpfile) ++ mutex_lock(&dir->ei_update_lock); ++ ++ bch2_trans_init(&trans, c, 8, 1024); ++retry: ++ bch2_trans_begin(&trans); ++ ++ ret = bch2_create_trans(&trans, dir->v.i_ino, &dir_u, &inode_u, ++ !tmpfile ? &dentry->d_name : NULL, ++ from_kuid(ns, current_fsuid()), ++ from_kgid(ns, current_fsgid()), ++ mode, rdev, ++ default_acl, acl) ?: ++ bch2_quota_acct(c, bch_qid(&inode_u), Q_INO, 1, ++ KEY_TYPE_QUOTA_PREALLOC); ++ if (unlikely(ret)) ++ goto err_before_quota; ++ ++ ret = bch2_trans_commit(&trans, NULL, &journal_seq, ++ BTREE_INSERT_NOUNLOCK); ++ if (unlikely(ret)) { ++ bch2_quota_acct(c, bch_qid(&inode_u), Q_INO, -1, ++ KEY_TYPE_QUOTA_WARN); ++err_before_quota: ++ if (ret == -EINTR) ++ goto retry; ++ goto err_trans; ++ } ++ ++ if (!tmpfile) { ++ bch2_inode_update_after_write(c, dir, &dir_u, ++ ATTR_MTIME|ATTR_CTIME); ++ journal_seq_copy(c, dir, journal_seq); ++ mutex_unlock(&dir->ei_update_lock); ++ } ++ ++ bch2_vfs_inode_init(c, inode, &inode_u); ++ journal_seq_copy(c, inode, journal_seq); ++ ++ set_cached_acl(&inode->v, ACL_TYPE_ACCESS, acl); ++ set_cached_acl(&inode->v, ACL_TYPE_DEFAULT, default_acl); ++ ++ /* ++ * we must insert the new inode into the inode cache before calling ++ * bch2_trans_exit() and dropping locks, else we could race with another ++ * thread pulling the inode in and modifying it: ++ */ ++ ++ old = to_bch_ei(insert_inode_locked2(&inode->v)); ++ if (unlikely(old)) { ++ /* ++ * We raced, another process pulled the new inode into cache ++ * before us: ++ */ ++ journal_seq_copy(c, old, journal_seq); ++ make_bad_inode(&inode->v); ++ iput(&inode->v); ++ ++ inode = old; ++ } else { ++ /* ++ * we really don't want insert_inode_locked2() to be setting ++ * I_NEW... ++ */ ++ unlock_new_inode(&inode->v); ++ } ++ ++ bch2_trans_exit(&trans); ++err: ++ posix_acl_release(default_acl); ++ posix_acl_release(acl); ++ return inode; ++err_trans: ++ if (!tmpfile) ++ mutex_unlock(&dir->ei_update_lock); ++ ++ bch2_trans_exit(&trans); ++ make_bad_inode(&inode->v); ++ iput(&inode->v); ++ inode = ERR_PTR(ret); ++ goto err; ++} ++ ++/* methods */ ++ ++static struct dentry *bch2_lookup(struct inode *vdir, struct dentry *dentry, ++ unsigned int flags) ++{ ++ struct bch_fs *c = vdir->i_sb->s_fs_info; ++ struct bch_inode_info *dir = to_bch_ei(vdir); ++ struct inode *vinode = NULL; ++ u64 inum; ++ ++ inum = bch2_dirent_lookup(c, dir->v.i_ino, ++ &dir->ei_str_hash, ++ &dentry->d_name); ++ ++ if (inum) ++ vinode = bch2_vfs_inode_get(c, inum); ++ ++ return d_splice_alias(vinode, dentry); ++} ++ ++static int bch2_mknod(struct inode *vdir, struct dentry *dentry, ++ umode_t mode, dev_t rdev) ++{ ++ struct bch_inode_info *inode = ++ __bch2_create(to_bch_ei(vdir), dentry, mode, rdev, false); ++ ++ if (IS_ERR(inode)) ++ return PTR_ERR(inode); ++ ++ d_instantiate(dentry, &inode->v); ++ return 0; ++} ++ ++static int bch2_create(struct inode *vdir, struct dentry *dentry, ++ umode_t mode, bool excl) ++{ ++ return bch2_mknod(vdir, dentry, mode|S_IFREG, 0); ++} ++ ++static int __bch2_link(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct bch_inode_info *dir, ++ struct dentry *dentry) ++{ ++ struct btree_trans trans; ++ struct bch_inode_unpacked dir_u, inode_u; ++ int ret; ++ ++ mutex_lock(&inode->ei_update_lock); ++ bch2_trans_init(&trans, c, 4, 1024); ++ ++ do { ++ bch2_trans_begin(&trans); ++ ret = bch2_link_trans(&trans, ++ dir->v.i_ino, ++ inode->v.i_ino, &dir_u, &inode_u, ++ &dentry->d_name) ?: ++ bch2_trans_commit(&trans, NULL, ++ &inode->ei_journal_seq, ++ BTREE_INSERT_NOUNLOCK); ++ } while (ret == -EINTR); ++ ++ if (likely(!ret)) { ++ BUG_ON(inode_u.bi_inum != inode->v.i_ino); ++ ++ journal_seq_copy(c, inode, dir->ei_journal_seq); ++ bch2_inode_update_after_write(c, dir, &dir_u, ++ ATTR_MTIME|ATTR_CTIME); ++ bch2_inode_update_after_write(c, inode, &inode_u, ATTR_CTIME); ++ } ++ ++ bch2_trans_exit(&trans); ++ mutex_unlock(&inode->ei_update_lock); ++ return ret; ++} ++ ++static int bch2_link(struct dentry *old_dentry, struct inode *vdir, ++ struct dentry *dentry) ++{ ++ struct bch_fs *c = vdir->i_sb->s_fs_info; ++ struct bch_inode_info *dir = to_bch_ei(vdir); ++ struct bch_inode_info *inode = to_bch_ei(old_dentry->d_inode); ++ int ret; ++ ++ lockdep_assert_held(&inode->v.i_rwsem); ++ ++ ret = __bch2_link(c, inode, dir, dentry); ++ if (unlikely(ret)) ++ return ret; ++ ++ ihold(&inode->v); ++ d_instantiate(dentry, &inode->v); ++ return 0; ++} ++ ++static int bch2_unlink(struct inode *vdir, struct dentry *dentry) ++{ ++ struct bch_fs *c = vdir->i_sb->s_fs_info; ++ struct bch_inode_info *dir = to_bch_ei(vdir); ++ struct bch_inode_info *inode = to_bch_ei(dentry->d_inode); ++ struct bch_inode_unpacked dir_u, inode_u; ++ struct btree_trans trans; ++ int ret; ++ ++ bch2_lock_inodes(INODE_UPDATE_LOCK, dir, inode); ++ bch2_trans_init(&trans, c, 4, 1024); ++ ++ do { ++ bch2_trans_begin(&trans); ++ ++ ret = bch2_unlink_trans(&trans, ++ dir->v.i_ino, &dir_u, ++ &inode_u, &dentry->d_name) ?: ++ bch2_trans_commit(&trans, NULL, ++ &dir->ei_journal_seq, ++ BTREE_INSERT_NOUNLOCK| ++ BTREE_INSERT_NOFAIL); ++ } while (ret == -EINTR); ++ ++ if (likely(!ret)) { ++ BUG_ON(inode_u.bi_inum != inode->v.i_ino); ++ ++ journal_seq_copy(c, inode, dir->ei_journal_seq); ++ bch2_inode_update_after_write(c, dir, &dir_u, ++ ATTR_MTIME|ATTR_CTIME); ++ bch2_inode_update_after_write(c, inode, &inode_u, ++ ATTR_MTIME); ++ } ++ ++ bch2_trans_exit(&trans); ++ bch2_unlock_inodes(INODE_UPDATE_LOCK, dir, inode); ++ ++ return ret; ++} ++ ++static int bch2_symlink(struct inode *vdir, struct dentry *dentry, ++ const char *symname) ++{ ++ struct bch_fs *c = vdir->i_sb->s_fs_info; ++ struct bch_inode_info *dir = to_bch_ei(vdir), *inode; ++ int ret; ++ ++ inode = __bch2_create(dir, dentry, S_IFLNK|S_IRWXUGO, 0, true); ++ if (unlikely(IS_ERR(inode))) ++ return PTR_ERR(inode); ++ ++ inode_lock(&inode->v); ++ ret = page_symlink(&inode->v, symname, strlen(symname) + 1); ++ inode_unlock(&inode->v); ++ ++ if (unlikely(ret)) ++ goto err; ++ ++ ret = filemap_write_and_wait_range(inode->v.i_mapping, 0, LLONG_MAX); ++ if (unlikely(ret)) ++ goto err; ++ ++ journal_seq_copy(c, dir, inode->ei_journal_seq); ++ ++ ret = __bch2_link(c, inode, dir, dentry); ++ if (unlikely(ret)) ++ goto err; ++ ++ d_instantiate(dentry, &inode->v); ++ return 0; ++err: ++ iput(&inode->v); ++ return ret; ++} ++ ++static int bch2_mkdir(struct inode *vdir, struct dentry *dentry, umode_t mode) ++{ ++ return bch2_mknod(vdir, dentry, mode|S_IFDIR, 0); ++} ++ ++static int bch2_rename2(struct inode *src_vdir, struct dentry *src_dentry, ++ struct inode *dst_vdir, struct dentry *dst_dentry, ++ unsigned flags) ++{ ++ struct bch_fs *c = src_vdir->i_sb->s_fs_info; ++ struct bch_inode_info *src_dir = to_bch_ei(src_vdir); ++ struct bch_inode_info *dst_dir = to_bch_ei(dst_vdir); ++ struct bch_inode_info *src_inode = to_bch_ei(src_dentry->d_inode); ++ struct bch_inode_info *dst_inode = to_bch_ei(dst_dentry->d_inode); ++ struct bch_inode_unpacked dst_dir_u, src_dir_u; ++ struct bch_inode_unpacked src_inode_u, dst_inode_u; ++ struct btree_trans trans; ++ enum bch_rename_mode mode = flags & RENAME_EXCHANGE ++ ? BCH_RENAME_EXCHANGE ++ : dst_dentry->d_inode ++ ? BCH_RENAME_OVERWRITE : BCH_RENAME; ++ u64 journal_seq = 0; ++ int ret; ++ ++ if (flags & ~(RENAME_NOREPLACE|RENAME_EXCHANGE)) ++ return -EINVAL; ++ ++ if (mode == BCH_RENAME_OVERWRITE) { ++ ret = filemap_write_and_wait_range(src_inode->v.i_mapping, ++ 0, LLONG_MAX); ++ if (ret) ++ return ret; ++ } ++ ++ bch2_trans_init(&trans, c, 8, 2048); ++ ++ bch2_lock_inodes(INODE_UPDATE_LOCK, ++ src_dir, ++ dst_dir, ++ src_inode, ++ dst_inode); ++ ++ if (inode_attr_changing(dst_dir, src_inode, Inode_opt_project)) { ++ ret = bch2_fs_quota_transfer(c, src_inode, ++ dst_dir->ei_qid, ++ 1 << QTYP_PRJ, ++ KEY_TYPE_QUOTA_PREALLOC); ++ if (ret) ++ goto err; ++ } ++ ++ if (mode == BCH_RENAME_EXCHANGE && ++ inode_attr_changing(src_dir, dst_inode, Inode_opt_project)) { ++ ret = bch2_fs_quota_transfer(c, dst_inode, ++ src_dir->ei_qid, ++ 1 << QTYP_PRJ, ++ KEY_TYPE_QUOTA_PREALLOC); ++ if (ret) ++ goto err; ++ } ++ ++retry: ++ bch2_trans_begin(&trans); ++ ret = bch2_rename_trans(&trans, ++ src_dir->v.i_ino, &src_dir_u, ++ dst_dir->v.i_ino, &dst_dir_u, ++ &src_inode_u, ++ &dst_inode_u, ++ &src_dentry->d_name, ++ &dst_dentry->d_name, ++ mode) ?: ++ bch2_trans_commit(&trans, NULL, ++ &journal_seq, ++ BTREE_INSERT_NOUNLOCK); ++ if (ret == -EINTR) ++ goto retry; ++ if (unlikely(ret)) ++ goto err; ++ ++ BUG_ON(src_inode->v.i_ino != src_inode_u.bi_inum); ++ BUG_ON(dst_inode && ++ dst_inode->v.i_ino != dst_inode_u.bi_inum); ++ ++ bch2_inode_update_after_write(c, src_dir, &src_dir_u, ++ ATTR_MTIME|ATTR_CTIME); ++ journal_seq_copy(c, src_dir, journal_seq); ++ ++ if (src_dir != dst_dir) { ++ bch2_inode_update_after_write(c, dst_dir, &dst_dir_u, ++ ATTR_MTIME|ATTR_CTIME); ++ journal_seq_copy(c, dst_dir, journal_seq); ++ } ++ ++ bch2_inode_update_after_write(c, src_inode, &src_inode_u, ++ ATTR_CTIME); ++ journal_seq_copy(c, src_inode, journal_seq); ++ ++ if (dst_inode) { ++ bch2_inode_update_after_write(c, dst_inode, &dst_inode_u, ++ ATTR_CTIME); ++ journal_seq_copy(c, dst_inode, journal_seq); ++ } ++err: ++ bch2_trans_exit(&trans); ++ ++ bch2_fs_quota_transfer(c, src_inode, ++ bch_qid(&src_inode->ei_inode), ++ 1 << QTYP_PRJ, ++ KEY_TYPE_QUOTA_NOCHECK); ++ if (dst_inode) ++ bch2_fs_quota_transfer(c, dst_inode, ++ bch_qid(&dst_inode->ei_inode), ++ 1 << QTYP_PRJ, ++ KEY_TYPE_QUOTA_NOCHECK); ++ ++ bch2_unlock_inodes(INODE_UPDATE_LOCK, ++ src_dir, ++ dst_dir, ++ src_inode, ++ dst_inode); ++ ++ return ret; ++} ++ ++void bch2_setattr_copy(struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, ++ struct iattr *attr) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ unsigned int ia_valid = attr->ia_valid; ++ ++ if (ia_valid & ATTR_UID) ++ bi->bi_uid = from_kuid(c->vfs_sb->s_user_ns, attr->ia_uid); ++ if (ia_valid & ATTR_GID) ++ bi->bi_gid = from_kgid(c->vfs_sb->s_user_ns, attr->ia_gid); ++ ++ if (ia_valid & ATTR_ATIME) ++ bi->bi_atime = timespec_to_bch2_time(c, attr->ia_atime); ++ if (ia_valid & ATTR_MTIME) ++ bi->bi_mtime = timespec_to_bch2_time(c, attr->ia_mtime); ++ if (ia_valid & ATTR_CTIME) ++ bi->bi_ctime = timespec_to_bch2_time(c, attr->ia_ctime); ++ ++ if (ia_valid & ATTR_MODE) { ++ umode_t mode = attr->ia_mode; ++ kgid_t gid = ia_valid & ATTR_GID ++ ? attr->ia_gid ++ : inode->v.i_gid; ++ ++ if (!in_group_p(gid) && ++ !capable_wrt_inode_uidgid(&inode->v, CAP_FSETID)) ++ mode &= ~S_ISGID; ++ bi->bi_mode = mode; ++ } ++} ++ ++static int bch2_setattr_nonsize(struct bch_inode_info *inode, ++ struct iattr *attr) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch_qid qid; ++ struct btree_trans trans; ++ struct btree_iter *inode_iter; ++ struct bch_inode_unpacked inode_u; ++ struct posix_acl *acl = NULL; ++ int ret; ++ ++ mutex_lock(&inode->ei_update_lock); ++ ++ qid = inode->ei_qid; ++ ++ if (attr->ia_valid & ATTR_UID) ++ qid.q[QTYP_USR] = from_kuid(&init_user_ns, attr->ia_uid); ++ ++ if (attr->ia_valid & ATTR_GID) ++ qid.q[QTYP_GRP] = from_kgid(&init_user_ns, attr->ia_gid); ++ ++ ret = bch2_fs_quota_transfer(c, inode, qid, ~0, ++ KEY_TYPE_QUOTA_PREALLOC); ++ if (ret) ++ goto err; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++retry: ++ bch2_trans_begin(&trans); ++ kfree(acl); ++ acl = NULL; ++ ++ inode_iter = bch2_inode_peek(&trans, &inode_u, inode->v.i_ino, ++ BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(inode_iter); ++ if (ret) ++ goto btree_err; ++ ++ bch2_setattr_copy(inode, &inode_u, attr); ++ ++ if (attr->ia_valid & ATTR_MODE) { ++ ret = bch2_acl_chmod(&trans, inode, inode_u.bi_mode, &acl); ++ if (ret) ++ goto btree_err; ++ } ++ ++ ret = bch2_inode_write(&trans, inode_iter, &inode_u) ?: ++ bch2_trans_commit(&trans, NULL, ++ &inode->ei_journal_seq, ++ BTREE_INSERT_NOUNLOCK| ++ BTREE_INSERT_NOFAIL); ++btree_err: ++ if (ret == -EINTR) ++ goto retry; ++ if (unlikely(ret)) ++ goto err_trans; ++ ++ bch2_inode_update_after_write(c, inode, &inode_u, attr->ia_valid); ++ ++ if (acl) ++ set_cached_acl(&inode->v, ACL_TYPE_ACCESS, acl); ++err_trans: ++ bch2_trans_exit(&trans); ++err: ++ mutex_unlock(&inode->ei_update_lock); ++ ++ return ret; ++} ++ ++static int bch2_getattr(const struct path *path, struct kstat *stat, ++ u32 request_mask, unsigned query_flags) ++{ ++ struct bch_inode_info *inode = to_bch_ei(d_inode(path->dentry)); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ ++ stat->dev = inode->v.i_sb->s_dev; ++ stat->ino = inode->v.i_ino; ++ stat->mode = inode->v.i_mode; ++ stat->nlink = inode->v.i_nlink; ++ stat->uid = inode->v.i_uid; ++ stat->gid = inode->v.i_gid; ++ stat->rdev = inode->v.i_rdev; ++ stat->size = i_size_read(&inode->v); ++ stat->atime = inode->v.i_atime; ++ stat->mtime = inode->v.i_mtime; ++ stat->ctime = inode->v.i_ctime; ++ stat->blksize = block_bytes(c); ++ stat->blocks = inode->v.i_blocks; ++ ++ if (request_mask & STATX_BTIME) { ++ stat->result_mask |= STATX_BTIME; ++ stat->btime = bch2_time_to_timespec(c, inode->ei_inode.bi_otime); ++ } ++ ++ if (inode->ei_inode.bi_flags & BCH_INODE_IMMUTABLE) ++ stat->attributes |= STATX_ATTR_IMMUTABLE; ++ stat->attributes_mask |= STATX_ATTR_IMMUTABLE; ++ ++ if (inode->ei_inode.bi_flags & BCH_INODE_APPEND) ++ stat->attributes |= STATX_ATTR_APPEND; ++ stat->attributes_mask |= STATX_ATTR_APPEND; ++ ++ if (inode->ei_inode.bi_flags & BCH_INODE_NODUMP) ++ stat->attributes |= STATX_ATTR_NODUMP; ++ stat->attributes_mask |= STATX_ATTR_NODUMP; ++ ++ return 0; ++} ++ ++static int bch2_setattr(struct dentry *dentry, struct iattr *iattr) ++{ ++ struct bch_inode_info *inode = to_bch_ei(dentry->d_inode); ++ int ret; ++ ++ lockdep_assert_held(&inode->v.i_rwsem); ++ ++ ret = setattr_prepare(dentry, iattr); ++ if (ret) ++ return ret; ++ ++ return iattr->ia_valid & ATTR_SIZE ++ ? bch2_truncate(inode, iattr) ++ : bch2_setattr_nonsize(inode, iattr); ++} ++ ++static int bch2_tmpfile(struct inode *vdir, struct dentry *dentry, umode_t mode) ++{ ++ struct bch_inode_info *inode = ++ __bch2_create(to_bch_ei(vdir), dentry, mode, 0, true); ++ ++ if (IS_ERR(inode)) ++ return PTR_ERR(inode); ++ ++ d_mark_tmpfile(dentry, &inode->v); ++ d_instantiate(dentry, &inode->v); ++ return 0; ++} ++ ++static int bch2_fill_extent(struct bch_fs *c, ++ struct fiemap_extent_info *info, ++ struct bkey_s_c k, unsigned flags) ++{ ++ if (bkey_extent_is_data(k.k)) { ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ int ret; ++ ++ if (k.k->type == KEY_TYPE_reflink_v) ++ flags |= FIEMAP_EXTENT_SHARED; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ int flags2 = 0; ++ u64 offset = p.ptr.offset; ++ ++ if (p.crc.compression_type) ++ flags2 |= FIEMAP_EXTENT_ENCODED; ++ else ++ offset += p.crc.offset; ++ ++ if ((offset & (c->opts.block_size - 1)) || ++ (k.k->size & (c->opts.block_size - 1))) ++ flags2 |= FIEMAP_EXTENT_NOT_ALIGNED; ++ ++ ret = fiemap_fill_next_extent(info, ++ bkey_start_offset(k.k) << 9, ++ offset << 9, ++ k.k->size << 9, flags|flags2); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++ } else if (k.k->type == KEY_TYPE_reservation) { ++ return fiemap_fill_next_extent(info, ++ bkey_start_offset(k.k) << 9, ++ 0, k.k->size << 9, ++ flags| ++ FIEMAP_EXTENT_DELALLOC| ++ FIEMAP_EXTENT_UNWRITTEN); ++ } else { ++ BUG(); ++ } ++} ++ ++static int bch2_fiemap(struct inode *vinode, struct fiemap_extent_info *info, ++ u64 start, u64 len) ++{ ++ struct bch_fs *c = vinode->i_sb->s_fs_info; ++ struct bch_inode_info *ei = to_bch_ei(vinode); ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ struct bkey_on_stack cur, prev; ++ struct bpos end = POS(ei->v.i_ino, (start + len) >> 9); ++ unsigned offset_into_extent, sectors; ++ bool have_extent = false; ++ int ret = 0; ++ ++ ret = fiemap_prep(&ei->v, info, start, &len, FIEMAP_FLAG_SYNC); ++ if (ret) ++ return ret; ++ ++ if (start + len < start) ++ return -EINVAL; ++ ++ bkey_on_stack_init(&cur); ++ bkey_on_stack_init(&prev); ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, ++ POS(ei->v.i_ino, start >> 9), 0); ++retry: ++ while ((k = bch2_btree_iter_peek(iter)).k && ++ !(ret = bkey_err(k)) && ++ bkey_cmp(iter->pos, end) < 0) { ++ if (!bkey_extent_is_data(k.k) && ++ k.k->type != KEY_TYPE_reservation) { ++ bch2_btree_iter_next(iter); ++ continue; ++ } ++ ++ bkey_on_stack_realloc(&cur, c, k.k->u64s); ++ bkey_on_stack_realloc(&prev, c, k.k->u64s); ++ bkey_reassemble(cur.k, k); ++ k = bkey_i_to_s_c(cur.k); ++ ++ offset_into_extent = iter->pos.offset - ++ bkey_start_offset(k.k); ++ sectors = k.k->size - offset_into_extent; ++ ++ ret = bch2_read_indirect_extent(&trans, ++ &offset_into_extent, &cur); ++ if (ret) ++ break; ++ ++ sectors = min(sectors, k.k->size - offset_into_extent); ++ ++ if (offset_into_extent) ++ bch2_cut_front(POS(k.k->p.inode, ++ bkey_start_offset(k.k) + ++ offset_into_extent), ++ cur.k); ++ bch2_key_resize(&cur.k->k, sectors); ++ cur.k->k.p = iter->pos; ++ cur.k->k.p.offset += cur.k->k.size; ++ ++ if (have_extent) { ++ ret = bch2_fill_extent(c, info, ++ bkey_i_to_s_c(prev.k), 0); ++ if (ret) ++ break; ++ } ++ ++ bkey_copy(prev.k, cur.k); ++ have_extent = true; ++ ++ if (k.k->type == KEY_TYPE_reflink_v) ++ bch2_btree_iter_set_pos(iter, k.k->p); ++ else ++ bch2_btree_iter_next(iter); ++ } ++ ++ if (ret == -EINTR) ++ goto retry; ++ ++ if (!ret && have_extent) ++ ret = bch2_fill_extent(c, info, bkey_i_to_s_c(prev.k), ++ FIEMAP_EXTENT_LAST); ++ ++ ret = bch2_trans_exit(&trans) ?: ret; ++ bkey_on_stack_exit(&cur, c); ++ bkey_on_stack_exit(&prev, c); ++ return ret < 0 ? ret : 0; ++} ++ ++static const struct vm_operations_struct bch_vm_ops = { ++ .fault = bch2_page_fault, ++ .map_pages = filemap_map_pages, ++ .page_mkwrite = bch2_page_mkwrite, ++}; ++ ++static int bch2_mmap(struct file *file, struct vm_area_struct *vma) ++{ ++ file_accessed(file); ++ ++ vma->vm_ops = &bch_vm_ops; ++ return 0; ++} ++ ++/* Directories: */ ++ ++static loff_t bch2_dir_llseek(struct file *file, loff_t offset, int whence) ++{ ++ return generic_file_llseek_size(file, offset, whence, ++ S64_MAX, S64_MAX); ++} ++ ++static int bch2_vfs_readdir(struct file *file, struct dir_context *ctx) ++{ ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ ++ if (!dir_emit_dots(file, ctx)) ++ return 0; ++ ++ return bch2_readdir(c, inode->v.i_ino, ctx); ++} ++ ++static const struct file_operations bch_file_operations = { ++ .llseek = bch2_llseek, ++ .read_iter = bch2_read_iter, ++ .write_iter = bch2_write_iter, ++ .mmap = bch2_mmap, ++ .open = generic_file_open, ++ .fsync = bch2_fsync, ++ .splice_read = generic_file_splice_read, ++ /* ++ * Broken, on v5.3: ++ .splice_write = iter_file_splice_write, ++ */ ++ .fallocate = bch2_fallocate_dispatch, ++ .unlocked_ioctl = bch2_fs_file_ioctl, ++#ifdef CONFIG_COMPAT ++ .compat_ioctl = bch2_compat_fs_ioctl, ++#endif ++ .remap_file_range = bch2_remap_file_range, ++}; ++ ++static const struct inode_operations bch_file_inode_operations = { ++ .getattr = bch2_getattr, ++ .setattr = bch2_setattr, ++ .fiemap = bch2_fiemap, ++ .listxattr = bch2_xattr_list, ++#ifdef CONFIG_BCACHEFS_POSIX_ACL ++ .get_acl = bch2_get_acl, ++ .set_acl = bch2_set_acl, ++#endif ++}; ++ ++static const struct inode_operations bch_dir_inode_operations = { ++ .lookup = bch2_lookup, ++ .create = bch2_create, ++ .link = bch2_link, ++ .unlink = bch2_unlink, ++ .symlink = bch2_symlink, ++ .mkdir = bch2_mkdir, ++ .rmdir = bch2_unlink, ++ .mknod = bch2_mknod, ++ .rename = bch2_rename2, ++ .getattr = bch2_getattr, ++ .setattr = bch2_setattr, ++ .tmpfile = bch2_tmpfile, ++ .listxattr = bch2_xattr_list, ++#ifdef CONFIG_BCACHEFS_POSIX_ACL ++ .get_acl = bch2_get_acl, ++ .set_acl = bch2_set_acl, ++#endif ++}; ++ ++static const struct file_operations bch_dir_file_operations = { ++ .llseek = bch2_dir_llseek, ++ .read = generic_read_dir, ++ .iterate_shared = bch2_vfs_readdir, ++ .fsync = bch2_fsync, ++ .unlocked_ioctl = bch2_fs_file_ioctl, ++#ifdef CONFIG_COMPAT ++ .compat_ioctl = bch2_compat_fs_ioctl, ++#endif ++}; ++ ++static const struct inode_operations bch_symlink_inode_operations = { ++ .get_link = page_get_link, ++ .getattr = bch2_getattr, ++ .setattr = bch2_setattr, ++ .listxattr = bch2_xattr_list, ++#ifdef CONFIG_BCACHEFS_POSIX_ACL ++ .get_acl = bch2_get_acl, ++ .set_acl = bch2_set_acl, ++#endif ++}; ++ ++static const struct inode_operations bch_special_inode_operations = { ++ .getattr = bch2_getattr, ++ .setattr = bch2_setattr, ++ .listxattr = bch2_xattr_list, ++#ifdef CONFIG_BCACHEFS_POSIX_ACL ++ .get_acl = bch2_get_acl, ++ .set_acl = bch2_set_acl, ++#endif ++}; ++ ++static const struct address_space_operations bch_address_space_operations = { ++ .writepage = bch2_writepage, ++ .readpage = bch2_readpage, ++ .writepages = bch2_writepages, ++ .readpages = bch2_readpages, ++ .set_page_dirty = __set_page_dirty_nobuffers, ++ .write_begin = bch2_write_begin, ++ .write_end = bch2_write_end, ++ .invalidatepage = bch2_invalidatepage, ++ .releasepage = bch2_releasepage, ++ .direct_IO = noop_direct_IO, ++#ifdef CONFIG_MIGRATION ++ .migratepage = bch2_migrate_page, ++#endif ++ .error_remove_page = generic_error_remove_page, ++}; ++ ++static struct inode *bch2_nfs_get_inode(struct super_block *sb, ++ u64 ino, u32 generation) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ struct inode *vinode; ++ ++ if (ino < BCACHEFS_ROOT_INO) ++ return ERR_PTR(-ESTALE); ++ ++ vinode = bch2_vfs_inode_get(c, ino); ++ if (IS_ERR(vinode)) ++ return ERR_CAST(vinode); ++ if (generation && vinode->i_generation != generation) { ++ /* we didn't find the right inode.. */ ++ iput(vinode); ++ return ERR_PTR(-ESTALE); ++ } ++ return vinode; ++} ++ ++static struct dentry *bch2_fh_to_dentry(struct super_block *sb, struct fid *fid, ++ int fh_len, int fh_type) ++{ ++ return generic_fh_to_dentry(sb, fid, fh_len, fh_type, ++ bch2_nfs_get_inode); ++} ++ ++static struct dentry *bch2_fh_to_parent(struct super_block *sb, struct fid *fid, ++ int fh_len, int fh_type) ++{ ++ return generic_fh_to_parent(sb, fid, fh_len, fh_type, ++ bch2_nfs_get_inode); ++} ++ ++static const struct export_operations bch_export_ops = { ++ .fh_to_dentry = bch2_fh_to_dentry, ++ .fh_to_parent = bch2_fh_to_parent, ++ //.get_parent = bch2_get_parent, ++}; ++ ++static void bch2_vfs_inode_init(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi) ++{ ++ bch2_inode_update_after_write(c, inode, bi, ~0); ++ ++ inode->v.i_blocks = bi->bi_sectors; ++ inode->v.i_ino = bi->bi_inum; ++ inode->v.i_rdev = bi->bi_dev; ++ inode->v.i_generation = bi->bi_generation; ++ inode->v.i_size = bi->bi_size; ++ ++ inode->ei_journal_seq = 0; ++ inode->ei_quota_reserved = 0; ++ inode->ei_str_hash = bch2_hash_info_init(c, bi); ++ inode->ei_qid = bch_qid(bi); ++ ++ inode->v.i_mapping->a_ops = &bch_address_space_operations; ++ ++ switch (inode->v.i_mode & S_IFMT) { ++ case S_IFREG: ++ inode->v.i_op = &bch_file_inode_operations; ++ inode->v.i_fop = &bch_file_operations; ++ break; ++ case S_IFDIR: ++ inode->v.i_op = &bch_dir_inode_operations; ++ inode->v.i_fop = &bch_dir_file_operations; ++ break; ++ case S_IFLNK: ++ inode_nohighmem(&inode->v); ++ inode->v.i_op = &bch_symlink_inode_operations; ++ break; ++ default: ++ init_special_inode(&inode->v, inode->v.i_mode, inode->v.i_rdev); ++ inode->v.i_op = &bch_special_inode_operations; ++ break; ++ } ++} ++ ++static struct inode *bch2_alloc_inode(struct super_block *sb) ++{ ++ struct bch_inode_info *inode; ++ ++ inode = kmem_cache_alloc(bch2_inode_cache, GFP_NOFS); ++ if (!inode) ++ return NULL; ++ ++ inode_init_once(&inode->v); ++ mutex_init(&inode->ei_update_lock); ++ pagecache_lock_init(&inode->ei_pagecache_lock); ++ mutex_init(&inode->ei_quota_lock); ++ inode->ei_journal_seq = 0; ++ ++ return &inode->v; ++} ++ ++static void bch2_i_callback(struct rcu_head *head) ++{ ++ struct inode *vinode = container_of(head, struct inode, i_rcu); ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ ++ kmem_cache_free(bch2_inode_cache, inode); ++} ++ ++static void bch2_destroy_inode(struct inode *vinode) ++{ ++ call_rcu(&vinode->i_rcu, bch2_i_callback); ++} ++ ++static int inode_update_times_fn(struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, ++ void *p) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ ++ bi->bi_atime = timespec_to_bch2_time(c, inode->v.i_atime); ++ bi->bi_mtime = timespec_to_bch2_time(c, inode->v.i_mtime); ++ bi->bi_ctime = timespec_to_bch2_time(c, inode->v.i_ctime); ++ ++ return 0; ++} ++ ++static int bch2_vfs_write_inode(struct inode *vinode, ++ struct writeback_control *wbc) ++{ ++ struct bch_fs *c = vinode->i_sb->s_fs_info; ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ int ret; ++ ++ mutex_lock(&inode->ei_update_lock); ++ ret = bch2_write_inode(c, inode, inode_update_times_fn, NULL, ++ ATTR_ATIME|ATTR_MTIME|ATTR_CTIME); ++ mutex_unlock(&inode->ei_update_lock); ++ ++ return ret; ++} ++ ++static void bch2_evict_inode(struct inode *vinode) ++{ ++ struct bch_fs *c = vinode->i_sb->s_fs_info; ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ ++ truncate_inode_pages_final(&inode->v.i_data); ++ ++ clear_inode(&inode->v); ++ ++ BUG_ON(!is_bad_inode(&inode->v) && inode->ei_quota_reserved); ++ ++ if (!inode->v.i_nlink && !is_bad_inode(&inode->v)) { ++ bch2_quota_acct(c, inode->ei_qid, Q_SPC, -((s64) inode->v.i_blocks), ++ KEY_TYPE_QUOTA_WARN); ++ bch2_quota_acct(c, inode->ei_qid, Q_INO, -1, ++ KEY_TYPE_QUOTA_WARN); ++ bch2_inode_rm(c, inode->v.i_ino); ++ } ++} ++ ++static int bch2_statfs(struct dentry *dentry, struct kstatfs *buf) ++{ ++ struct super_block *sb = dentry->d_sb; ++ struct bch_fs *c = sb->s_fs_info; ++ struct bch_fs_usage_short usage = bch2_fs_usage_read_short(c); ++ unsigned shift = sb->s_blocksize_bits - 9; ++ u64 fsid; ++ ++ buf->f_type = BCACHEFS_STATFS_MAGIC; ++ buf->f_bsize = sb->s_blocksize; ++ buf->f_blocks = usage.capacity >> shift; ++ buf->f_bfree = (usage.capacity - usage.used) >> shift; ++ buf->f_bavail = buf->f_bfree; ++ buf->f_files = 0; ++ buf->f_ffree = 0; ++ ++ fsid = le64_to_cpup((void *) c->sb.user_uuid.b) ^ ++ le64_to_cpup((void *) c->sb.user_uuid.b + sizeof(u64)); ++ buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; ++ buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; ++ buf->f_namelen = BCH_NAME_MAX; ++ ++ return 0; ++} ++ ++static int bch2_sync_fs(struct super_block *sb, int wait) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ ++ if (c->opts.journal_flush_disabled) ++ return 0; ++ ++ if (!wait) { ++ bch2_journal_flush_async(&c->journal, NULL); ++ return 0; ++ } ++ ++ return bch2_journal_flush(&c->journal); ++} ++ ++static struct bch_fs *bch2_path_to_fs(const char *dev) ++{ ++ struct bch_fs *c; ++ struct block_device *bdev = lookup_bdev(dev); ++ ++ if (IS_ERR(bdev)) ++ return ERR_CAST(bdev); ++ ++ c = bch2_bdev_to_fs(bdev); ++ bdput(bdev); ++ if (c) ++ closure_put(&c->cl); ++ return c ?: ERR_PTR(-ENOENT); ++} ++ ++static char **split_devs(const char *_dev_name, unsigned *nr) ++{ ++ char *dev_name = NULL, **devs = NULL, *s; ++ size_t i, nr_devs = 0; ++ ++ dev_name = kstrdup(_dev_name, GFP_KERNEL); ++ if (!dev_name) ++ return NULL; ++ ++ for (s = dev_name; s; s = strchr(s + 1, ':')) ++ nr_devs++; ++ ++ devs = kcalloc(nr_devs + 1, sizeof(const char *), GFP_KERNEL); ++ if (!devs) { ++ kfree(dev_name); ++ return NULL; ++ } ++ ++ for (i = 0, s = dev_name; ++ s; ++ (s = strchr(s, ':')) && (*s++ = '\0')) ++ devs[i++] = s; ++ ++ *nr = nr_devs; ++ return devs; ++} ++ ++static int bch2_remount(struct super_block *sb, int *flags, char *data) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ struct bch_opts opts = bch2_opts_empty(); ++ int ret; ++ ++ opt_set(opts, read_only, (*flags & SB_RDONLY) != 0); ++ ++ ret = bch2_parse_mount_opts(&opts, data); ++ if (ret) ++ return ret; ++ ++ if (opts.read_only != c->opts.read_only) { ++ down_write(&c->state_lock); ++ ++ if (opts.read_only) { ++ bch2_fs_read_only(c); ++ ++ sb->s_flags |= SB_RDONLY; ++ } else { ++ ret = bch2_fs_read_write(c); ++ if (ret) { ++ bch_err(c, "error going rw: %i", ret); ++ up_write(&c->state_lock); ++ return -EINVAL; ++ } ++ ++ sb->s_flags &= ~SB_RDONLY; ++ } ++ ++ c->opts.read_only = opts.read_only; ++ ++ up_write(&c->state_lock); ++ } ++ ++ if (opts.errors >= 0) ++ c->opts.errors = opts.errors; ++ ++ return ret; ++} ++ ++static int bch2_show_devname(struct seq_file *seq, struct dentry *root) ++{ ++ struct bch_fs *c = root->d_sb->s_fs_info; ++ struct bch_dev *ca; ++ unsigned i; ++ bool first = true; ++ ++ for_each_online_member(ca, c, i) { ++ if (!first) ++ seq_putc(seq, ':'); ++ first = false; ++ seq_puts(seq, "/dev/"); ++ seq_puts(seq, ca->name); ++ } ++ ++ return 0; ++} ++ ++static int bch2_show_options(struct seq_file *seq, struct dentry *root) ++{ ++ struct bch_fs *c = root->d_sb->s_fs_info; ++ enum bch_opt_id i; ++ char buf[512]; ++ ++ for (i = 0; i < bch2_opts_nr; i++) { ++ const struct bch_option *opt = &bch2_opt_table[i]; ++ u64 v = bch2_opt_get_by_id(&c->opts, i); ++ ++ if (!(opt->mode & OPT_MOUNT)) ++ continue; ++ ++ if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) ++ continue; ++ ++ bch2_opt_to_text(&PBUF(buf), c, opt, v, ++ OPT_SHOW_MOUNT_STYLE); ++ seq_putc(seq, ','); ++ seq_puts(seq, buf); ++ } ++ ++ return 0; ++} ++ ++static void bch2_put_super(struct super_block *sb) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ ++ __bch2_fs_stop(c); ++} ++ ++static const struct super_operations bch_super_operations = { ++ .alloc_inode = bch2_alloc_inode, ++ .destroy_inode = bch2_destroy_inode, ++ .write_inode = bch2_vfs_write_inode, ++ .evict_inode = bch2_evict_inode, ++ .sync_fs = bch2_sync_fs, ++ .statfs = bch2_statfs, ++ .show_devname = bch2_show_devname, ++ .show_options = bch2_show_options, ++ .remount_fs = bch2_remount, ++ .put_super = bch2_put_super, ++#if 0 ++ .freeze_fs = bch2_freeze, ++ .unfreeze_fs = bch2_unfreeze, ++#endif ++}; ++ ++static int bch2_set_super(struct super_block *s, void *data) ++{ ++ s->s_fs_info = data; ++ return 0; ++} ++ ++static int bch2_noset_super(struct super_block *s, void *data) ++{ ++ return -EBUSY; ++} ++ ++static int bch2_test_super(struct super_block *s, void *data) ++{ ++ struct bch_fs *c = s->s_fs_info; ++ struct bch_fs **devs = data; ++ unsigned i; ++ ++ if (!c) ++ return false; ++ ++ for (i = 0; devs[i]; i++) ++ if (c != devs[i]) ++ return false; ++ return true; ++} ++ ++static struct dentry *bch2_mount(struct file_system_type *fs_type, ++ int flags, const char *dev_name, void *data) ++{ ++ struct bch_fs *c; ++ struct bch_dev *ca; ++ struct super_block *sb; ++ struct inode *vinode; ++ struct bch_opts opts = bch2_opts_empty(); ++ char **devs; ++ struct bch_fs **devs_to_fs = NULL; ++ unsigned i, nr_devs; ++ int ret; ++ ++ opt_set(opts, read_only, (flags & SB_RDONLY) != 0); ++ ++ ret = bch2_parse_mount_opts(&opts, data); ++ if (ret) ++ return ERR_PTR(ret); ++ ++ devs = split_devs(dev_name, &nr_devs); ++ if (!devs) ++ return ERR_PTR(-ENOMEM); ++ ++ devs_to_fs = kcalloc(nr_devs + 1, sizeof(void *), GFP_KERNEL); ++ if (!devs_to_fs) { ++ sb = ERR_PTR(-ENOMEM); ++ goto got_sb; ++ } ++ ++ for (i = 0; i < nr_devs; i++) ++ devs_to_fs[i] = bch2_path_to_fs(devs[i]); ++ ++ sb = sget(fs_type, bch2_test_super, bch2_noset_super, ++ flags|SB_NOSEC, devs_to_fs); ++ if (!IS_ERR(sb)) ++ goto got_sb; ++ ++ c = bch2_fs_open(devs, nr_devs, opts); ++ ++ if (!IS_ERR(c)) ++ sb = sget(fs_type, NULL, bch2_set_super, flags|SB_NOSEC, c); ++ else ++ sb = ERR_CAST(c); ++got_sb: ++ kfree(devs_to_fs); ++ kfree(devs[0]); ++ kfree(devs); ++ ++ if (IS_ERR(sb)) ++ return ERR_CAST(sb); ++ ++ c = sb->s_fs_info; ++ ++ if (sb->s_root) { ++ if ((flags ^ sb->s_flags) & SB_RDONLY) { ++ ret = -EBUSY; ++ goto err_put_super; ++ } ++ goto out; ++ } ++ ++ sb->s_blocksize = block_bytes(c); ++ sb->s_blocksize_bits = ilog2(block_bytes(c)); ++ sb->s_maxbytes = MAX_LFS_FILESIZE; ++ sb->s_op = &bch_super_operations; ++ sb->s_export_op = &bch_export_ops; ++#ifdef CONFIG_BCACHEFS_QUOTA ++ sb->s_qcop = &bch2_quotactl_operations; ++ sb->s_quota_types = QTYPE_MASK_USR|QTYPE_MASK_GRP|QTYPE_MASK_PRJ; ++#endif ++ sb->s_xattr = bch2_xattr_handlers; ++ sb->s_magic = BCACHEFS_STATFS_MAGIC; ++ sb->s_time_gran = c->sb.time_precision; ++ c->vfs_sb = sb; ++ strlcpy(sb->s_id, c->name, sizeof(sb->s_id)); ++ ++ ret = super_setup_bdi(sb); ++ if (ret) ++ goto err_put_super; ++ ++ sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; ++ ++ for_each_online_member(ca, c, i) { ++ struct block_device *bdev = ca->disk_sb.bdev; ++ ++ /* XXX: create an anonymous device for multi device filesystems */ ++ sb->s_bdev = bdev; ++ sb->s_dev = bdev->bd_dev; ++ percpu_ref_put(&ca->io_ref); ++ break; ++ } ++ ++#ifdef CONFIG_BCACHEFS_POSIX_ACL ++ if (c->opts.acl) ++ sb->s_flags |= SB_POSIXACL; ++#endif ++ ++ vinode = bch2_vfs_inode_get(c, BCACHEFS_ROOT_INO); ++ if (IS_ERR(vinode)) { ++ bch_err(c, "error mounting: error getting root inode %i", ++ (int) PTR_ERR(vinode)); ++ ret = PTR_ERR(vinode); ++ goto err_put_super; ++ } ++ ++ sb->s_root = d_make_root(vinode); ++ if (!sb->s_root) { ++ bch_err(c, "error mounting: error allocating root dentry"); ++ ret = -ENOMEM; ++ goto err_put_super; ++ } ++ ++ sb->s_flags |= SB_ACTIVE; ++out: ++ return dget(sb->s_root); ++ ++err_put_super: ++ deactivate_locked_super(sb); ++ return ERR_PTR(ret); ++} ++ ++static void bch2_kill_sb(struct super_block *sb) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ ++ generic_shutdown_super(sb); ++ bch2_fs_free(c); ++} ++ ++static struct file_system_type bcache_fs_type = { ++ .owner = THIS_MODULE, ++ .name = "bcachefs", ++ .mount = bch2_mount, ++ .kill_sb = bch2_kill_sb, ++ .fs_flags = FS_REQUIRES_DEV, ++}; ++ ++MODULE_ALIAS_FS("bcachefs"); ++ ++void bch2_vfs_exit(void) ++{ ++ unregister_filesystem(&bcache_fs_type); ++ if (bch2_inode_cache) ++ kmem_cache_destroy(bch2_inode_cache); ++} ++ ++int __init bch2_vfs_init(void) ++{ ++ int ret = -ENOMEM; ++ ++ bch2_inode_cache = KMEM_CACHE(bch_inode_info, 0); ++ if (!bch2_inode_cache) ++ goto err; ++ ++ ret = register_filesystem(&bcache_fs_type); ++ if (ret) ++ goto err; ++ ++ return 0; ++err: ++ bch2_vfs_exit(); ++ return ret; ++} ++ ++#endif /* NO_BCACHEFS_FS */ +diff --git a/fs/bcachefs/fs.h b/fs/bcachefs/fs.h +new file mode 100644 +index 000000000000..eda903a45325 +--- /dev/null ++++ b/fs/bcachefs/fs.h +@@ -0,0 +1,174 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_FS_H ++#define _BCACHEFS_FS_H ++ ++#include "inode.h" ++#include "opts.h" ++#include "str_hash.h" ++#include "quota_types.h" ++ ++#include ++#include ++ ++/* ++ * Two-state lock - can be taken for add or block - both states are shared, ++ * like read side of rwsem, but conflict with other state: ++ */ ++struct pagecache_lock { ++ atomic_long_t v; ++ wait_queue_head_t wait; ++}; ++ ++static inline void pagecache_lock_init(struct pagecache_lock *lock) ++{ ++ atomic_long_set(&lock->v, 0); ++ init_waitqueue_head(&lock->wait); ++} ++ ++void bch2_pagecache_add_put(struct pagecache_lock *); ++void bch2_pagecache_add_get(struct pagecache_lock *); ++void bch2_pagecache_block_put(struct pagecache_lock *); ++void bch2_pagecache_block_get(struct pagecache_lock *); ++ ++struct bch_inode_info { ++ struct inode v; ++ ++ struct mutex ei_update_lock; ++ u64 ei_journal_seq; ++ u64 ei_quota_reserved; ++ unsigned long ei_last_dirtied; ++ ++ struct pagecache_lock ei_pagecache_lock; ++ ++ struct mutex ei_quota_lock; ++ struct bch_qid ei_qid; ++ ++ struct bch_hash_info ei_str_hash; ++ ++ /* copy of inode in btree: */ ++ struct bch_inode_unpacked ei_inode; ++}; ++ ++#define to_bch_ei(_inode) \ ++ container_of_or_null(_inode, struct bch_inode_info, v) ++ ++static inline int ptrcmp(void *l, void *r) ++{ ++ return cmp_int(l, r); ++} ++ ++enum bch_inode_lock_op { ++ INODE_LOCK = (1U << 0), ++ INODE_PAGECACHE_BLOCK = (1U << 1), ++ INODE_UPDATE_LOCK = (1U << 2), ++}; ++ ++#define bch2_lock_inodes(_locks, ...) \ ++do { \ ++ struct bch_inode_info *a[] = { NULL, __VA_ARGS__ }; \ ++ unsigned i; \ ++ \ ++ bubble_sort(&a[1], ARRAY_SIZE(a) - 1, ptrcmp); \ ++ \ ++ for (i = 1; i < ARRAY_SIZE(a); i++) \ ++ if (a[i] != a[i - 1]) { \ ++ if ((_locks) & INODE_LOCK) \ ++ down_write_nested(&a[i]->v.i_rwsem, i); \ ++ if ((_locks) & INODE_PAGECACHE_BLOCK) \ ++ bch2_pagecache_block_get(&a[i]->ei_pagecache_lock);\ ++ if ((_locks) & INODE_UPDATE_LOCK) \ ++ mutex_lock_nested(&a[i]->ei_update_lock, i);\ ++ } \ ++} while (0) ++ ++#define bch2_unlock_inodes(_locks, ...) \ ++do { \ ++ struct bch_inode_info *a[] = { NULL, __VA_ARGS__ }; \ ++ unsigned i; \ ++ \ ++ bubble_sort(&a[1], ARRAY_SIZE(a) - 1, ptrcmp); \ ++ \ ++ for (i = 1; i < ARRAY_SIZE(a); i++) \ ++ if (a[i] != a[i - 1]) { \ ++ if ((_locks) & INODE_LOCK) \ ++ up_write(&a[i]->v.i_rwsem); \ ++ if ((_locks) & INODE_PAGECACHE_BLOCK) \ ++ bch2_pagecache_block_put(&a[i]->ei_pagecache_lock);\ ++ if ((_locks) & INODE_UPDATE_LOCK) \ ++ mutex_unlock(&a[i]->ei_update_lock); \ ++ } \ ++} while (0) ++ ++static inline struct bch_inode_info *file_bch_inode(struct file *file) ++{ ++ return to_bch_ei(file_inode(file)); ++} ++ ++static inline bool inode_attr_changing(struct bch_inode_info *dir, ++ struct bch_inode_info *inode, ++ enum inode_opt_id id) ++{ ++ return !(inode->ei_inode.bi_fields_set & (1 << id)) && ++ bch2_inode_opt_get(&dir->ei_inode, id) != ++ bch2_inode_opt_get(&inode->ei_inode, id); ++} ++ ++static inline bool inode_attrs_changing(struct bch_inode_info *dir, ++ struct bch_inode_info *inode) ++{ ++ unsigned id; ++ ++ for (id = 0; id < Inode_opt_nr; id++) ++ if (inode_attr_changing(dir, inode, id)) ++ return true; ++ ++ return false; ++} ++ ++struct bch_inode_unpacked; ++ ++#ifndef NO_BCACHEFS_FS ++ ++int bch2_fs_quota_transfer(struct bch_fs *, ++ struct bch_inode_info *, ++ struct bch_qid, ++ unsigned, ++ enum quota_acct_mode); ++ ++static inline int bch2_set_projid(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ u32 projid) ++{ ++ struct bch_qid qid = inode->ei_qid; ++ ++ qid.q[QTYP_PRJ] = projid; ++ ++ return bch2_fs_quota_transfer(c, inode, qid, ++ 1 << QTYP_PRJ, ++ KEY_TYPE_QUOTA_PREALLOC); ++} ++ ++struct inode *bch2_vfs_inode_get(struct bch_fs *, u64); ++ ++/* returns 0 if we want to do the update, or error is passed up */ ++typedef int (*inode_set_fn)(struct bch_inode_info *, ++ struct bch_inode_unpacked *, void *); ++ ++void bch2_inode_update_after_write(struct bch_fs *, ++ struct bch_inode_info *, ++ struct bch_inode_unpacked *, ++ unsigned); ++int __must_check bch2_write_inode(struct bch_fs *, struct bch_inode_info *, ++ inode_set_fn, void *, unsigned); ++ ++void bch2_vfs_exit(void); ++int bch2_vfs_init(void); ++ ++#else ++ ++static inline void bch2_vfs_exit(void) {} ++static inline int bch2_vfs_init(void) { return 0; } ++ ++#endif /* NO_BCACHEFS_FS */ ++ ++#endif /* _BCACHEFS_FS_H */ +diff --git a/fs/bcachefs/fsck.c b/fs/bcachefs/fsck.c +new file mode 100644 +index 000000000000..5a6df3d1973a +--- /dev/null ++++ b/fs/bcachefs/fsck.c +@@ -0,0 +1,1502 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bkey_on_stack.h" ++#include "btree_update.h" ++#include "dirent.h" ++#include "error.h" ++#include "fs-common.h" ++#include "fsck.h" ++#include "inode.h" ++#include "keylist.h" ++#include "super.h" ++#include "xattr.h" ++ ++#include /* struct qstr */ ++#include ++ ++#define QSTR(n) { { { .len = strlen(n) } }, .name = n } ++ ++static s64 bch2_count_inode_sectors(struct btree_trans *trans, u64 inum) ++{ ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ u64 sectors = 0; ++ int ret; ++ ++ for_each_btree_key(trans, iter, BTREE_ID_EXTENTS, ++ POS(inum, 0), 0, k, ret) { ++ if (k.k->p.inode != inum) ++ break; ++ ++ if (bkey_extent_is_allocation(k.k)) ++ sectors += k.k->size; ++ } ++ ++ bch2_trans_iter_free(trans, iter); ++ ++ return ret ?: sectors; ++} ++ ++static int __remove_dirent(struct btree_trans *trans, ++ struct bkey_s_c_dirent dirent) ++{ ++ struct bch_fs *c = trans->c; ++ struct qstr name; ++ struct bch_inode_unpacked dir_inode; ++ struct bch_hash_info dir_hash_info; ++ u64 dir_inum = dirent.k->p.inode; ++ int ret; ++ char *buf; ++ ++ name.len = bch2_dirent_name_bytes(dirent); ++ buf = bch2_trans_kmalloc(trans, name.len + 1); ++ if (IS_ERR(buf)) ++ return PTR_ERR(buf); ++ ++ memcpy(buf, dirent.v->d_name, name.len); ++ buf[name.len] = '\0'; ++ name.name = buf; ++ ++ ret = bch2_inode_find_by_inum_trans(trans, dir_inum, &dir_inode); ++ if (ret && ret != -EINTR) ++ bch_err(c, "remove_dirent: err %i looking up directory inode", ret); ++ if (ret) ++ return ret; ++ ++ dir_hash_info = bch2_hash_info_init(c, &dir_inode); ++ ++ ret = bch2_hash_delete(trans, bch2_dirent_hash_desc, ++ &dir_hash_info, dir_inum, &name); ++ if (ret && ret != -EINTR) ++ bch_err(c, "remove_dirent: err %i deleting dirent", ret); ++ if (ret) ++ return ret; ++ ++ return 0; ++} ++ ++static int remove_dirent(struct btree_trans *trans, ++ struct bkey_s_c_dirent dirent) ++{ ++ return __bch2_trans_do(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW, ++ __remove_dirent(trans, dirent)); ++} ++ ++static int reattach_inode(struct bch_fs *c, ++ struct bch_inode_unpacked *lostfound_inode, ++ u64 inum) ++{ ++ struct bch_inode_unpacked dir_u, inode_u; ++ char name_buf[20]; ++ struct qstr name; ++ int ret; ++ ++ snprintf(name_buf, sizeof(name_buf), "%llu", inum); ++ name = (struct qstr) QSTR(name_buf); ++ ++ ret = bch2_trans_do(c, NULL, NULL, ++ BTREE_INSERT_LAZY_RW, ++ bch2_link_trans(&trans, lostfound_inode->bi_inum, ++ inum, &dir_u, &inode_u, &name)); ++ if (ret) ++ bch_err(c, "error %i reattaching inode %llu", ret, inum); ++ ++ return ret; ++} ++ ++struct inode_walker { ++ bool first_this_inode; ++ bool have_inode; ++ u64 cur_inum; ++ struct bch_inode_unpacked inode; ++}; ++ ++static struct inode_walker inode_walker_init(void) ++{ ++ return (struct inode_walker) { ++ .cur_inum = -1, ++ .have_inode = false, ++ }; ++} ++ ++static int walk_inode(struct btree_trans *trans, ++ struct inode_walker *w, u64 inum) ++{ ++ if (inum != w->cur_inum) { ++ int ret = bch2_inode_find_by_inum_trans(trans, inum, ++ &w->inode); ++ ++ if (ret && ret != -ENOENT) ++ return ret; ++ ++ w->have_inode = !ret; ++ w->cur_inum = inum; ++ w->first_this_inode = true; ++ } else { ++ w->first_this_inode = false; ++ } ++ ++ return 0; ++} ++ ++struct hash_check { ++ struct bch_hash_info info; ++ ++ /* start of current chain of hash collisions: */ ++ struct btree_iter *chain; ++ ++ /* next offset in current chain of hash collisions: */ ++ u64 chain_end; ++}; ++ ++static void hash_check_init(struct hash_check *h) ++{ ++ h->chain = NULL; ++ h->chain_end = 0; ++} ++ ++static void hash_stop_chain(struct btree_trans *trans, ++ struct hash_check *h) ++{ ++ if (h->chain) ++ bch2_trans_iter_free(trans, h->chain); ++ h->chain = NULL; ++} ++ ++static void hash_check_set_inode(struct btree_trans *trans, ++ struct hash_check *h, ++ const struct bch_inode_unpacked *bi) ++{ ++ h->info = bch2_hash_info_init(trans->c, bi); ++ hash_stop_chain(trans, h); ++} ++ ++static int hash_redo_key(const struct bch_hash_desc desc, ++ struct btree_trans *trans, struct hash_check *h, ++ struct btree_iter *k_iter, struct bkey_s_c k, ++ u64 hashed) ++{ ++ struct bkey_i delete; ++ struct bkey_i *tmp; ++ ++ tmp = bch2_trans_kmalloc(trans, bkey_bytes(k.k)); ++ if (IS_ERR(tmp)) ++ return PTR_ERR(tmp); ++ ++ bkey_reassemble(tmp, k); ++ ++ bkey_init(&delete.k); ++ delete.k.p = k_iter->pos; ++ bch2_trans_update(trans, k_iter, &delete, 0); ++ ++ return bch2_hash_set(trans, desc, &h->info, k_iter->pos.inode, ++ tmp, BCH_HASH_SET_MUST_CREATE); ++} ++ ++static int fsck_hash_delete_at(struct btree_trans *trans, ++ const struct bch_hash_desc desc, ++ struct bch_hash_info *info, ++ struct btree_iter *iter) ++{ ++ int ret; ++retry: ++ ret = bch2_hash_delete_at(trans, desc, info, iter) ?: ++ bch2_trans_commit(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW); ++ if (ret == -EINTR) { ++ ret = bch2_btree_iter_traverse(iter); ++ if (!ret) ++ goto retry; ++ } ++ ++ return ret; ++} ++ ++static int hash_check_duplicates(struct btree_trans *trans, ++ const struct bch_hash_desc desc, struct hash_check *h, ++ struct btree_iter *k_iter, struct bkey_s_c k) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter *iter; ++ struct bkey_s_c k2; ++ char buf[200]; ++ int ret = 0; ++ ++ if (!bkey_cmp(h->chain->pos, k_iter->pos)) ++ return 0; ++ ++ iter = bch2_trans_copy_iter(trans, h->chain); ++ BUG_ON(IS_ERR(iter)); ++ ++ for_each_btree_key_continue(iter, 0, k2, ret) { ++ if (bkey_cmp(k2.k->p, k.k->p) >= 0) ++ break; ++ ++ if (fsck_err_on(k2.k->type == desc.key_type && ++ !desc.cmp_bkey(k, k2), c, ++ "duplicate hash table keys:\n%s", ++ (bch2_bkey_val_to_text(&PBUF(buf), c, ++ k), buf))) { ++ ret = fsck_hash_delete_at(trans, desc, &h->info, k_iter); ++ if (ret) ++ return ret; ++ ret = 1; ++ break; ++ } ++ } ++fsck_err: ++ bch2_trans_iter_free(trans, iter); ++ return ret; ++} ++ ++static void hash_set_chain_start(struct btree_trans *trans, ++ const struct bch_hash_desc desc, ++ struct hash_check *h, ++ struct btree_iter *k_iter, struct bkey_s_c k) ++{ ++ bool hole = (k.k->type != KEY_TYPE_whiteout && ++ k.k->type != desc.key_type); ++ ++ if (hole || k.k->p.offset > h->chain_end + 1) ++ hash_stop_chain(trans, h); ++ ++ if (!hole) { ++ if (!h->chain) { ++ h->chain = bch2_trans_copy_iter(trans, k_iter); ++ BUG_ON(IS_ERR(h->chain)); ++ } ++ ++ h->chain_end = k.k->p.offset; ++ } ++} ++ ++static bool key_has_correct_hash(struct btree_trans *trans, ++ const struct bch_hash_desc desc, ++ struct hash_check *h, ++ struct btree_iter *k_iter, struct bkey_s_c k) ++{ ++ u64 hash; ++ ++ hash_set_chain_start(trans, desc, h, k_iter, k); ++ ++ if (k.k->type != desc.key_type) ++ return true; ++ ++ hash = desc.hash_bkey(&h->info, k); ++ ++ return hash >= h->chain->pos.offset && ++ hash <= k.k->p.offset; ++} ++ ++static int hash_check_key(struct btree_trans *trans, ++ const struct bch_hash_desc desc, struct hash_check *h, ++ struct btree_iter *k_iter, struct bkey_s_c k) ++{ ++ struct bch_fs *c = trans->c; ++ char buf[200]; ++ u64 hashed; ++ int ret = 0; ++ ++ hash_set_chain_start(trans, desc, h, k_iter, k); ++ ++ if (k.k->type != desc.key_type) ++ return 0; ++ ++ hashed = desc.hash_bkey(&h->info, k); ++ ++ if (fsck_err_on(hashed < h->chain->pos.offset || ++ hashed > k.k->p.offset, c, ++ "hash table key at wrong offset: btree %u, %llu, " ++ "hashed to %llu chain starts at %llu\n%s", ++ desc.btree_id, k.k->p.offset, ++ hashed, h->chain->pos.offset, ++ (bch2_bkey_val_to_text(&PBUF(buf), c, k), buf))) { ++ ret = __bch2_trans_do(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL|BTREE_INSERT_LAZY_RW, ++ hash_redo_key(desc, trans, h, k_iter, k, hashed)); ++ if (ret) { ++ bch_err(c, "hash_redo_key err %i", ret); ++ return ret; ++ } ++ return 1; ++ } ++ ++ ret = hash_check_duplicates(trans, desc, h, k_iter, k); ++fsck_err: ++ return ret; ++} ++ ++static int check_dirent_hash(struct btree_trans *trans, struct hash_check *h, ++ struct btree_iter *iter, struct bkey_s_c *k) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_i_dirent *d = NULL; ++ int ret = -EINVAL; ++ char buf[200]; ++ unsigned len; ++ u64 hash; ++ ++ if (key_has_correct_hash(trans, bch2_dirent_hash_desc, h, iter, *k)) ++ return 0; ++ ++ len = bch2_dirent_name_bytes(bkey_s_c_to_dirent(*k)); ++ BUG_ON(!len); ++ ++ memcpy(buf, bkey_s_c_to_dirent(*k).v->d_name, len); ++ buf[len] = '\0'; ++ ++ d = kmalloc(bkey_bytes(k->k), GFP_KERNEL); ++ if (!d) { ++ bch_err(c, "memory allocation failure"); ++ return -ENOMEM; ++ } ++ ++ bkey_reassemble(&d->k_i, *k); ++ ++ do { ++ --len; ++ if (!len) ++ goto err_redo; ++ ++ d->k.u64s = BKEY_U64s + dirent_val_u64s(len); ++ ++ BUG_ON(bkey_val_bytes(&d->k) < ++ offsetof(struct bch_dirent, d_name) + len); ++ ++ memset(d->v.d_name + len, 0, ++ bkey_val_bytes(&d->k) - ++ offsetof(struct bch_dirent, d_name) - len); ++ ++ hash = bch2_dirent_hash_desc.hash_bkey(&h->info, ++ bkey_i_to_s_c(&d->k_i)); ++ } while (hash < h->chain->pos.offset || ++ hash > k->k->p.offset); ++ ++ if (fsck_err(c, "dirent with junk at end, was %s (%zu) now %s (%u)", ++ buf, strlen(buf), d->v.d_name, len)) { ++ ret = __bch2_trans_do(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW, ++ (bch2_trans_update(trans, iter, &d->k_i, 0), 0)); ++ if (ret) ++ goto err; ++ ++ *k = bch2_btree_iter_peek(iter); ++ ++ BUG_ON(k->k->type != KEY_TYPE_dirent); ++ } ++err: ++fsck_err: ++ kfree(d); ++ return ret; ++err_redo: ++ hash = bch2_dirent_hash_desc.hash_bkey(&h->info, *k); ++ ++ if (fsck_err(c, "cannot fix dirent by removing trailing garbage %s (%zu)\n" ++ "hash table key at wrong offset: btree %u, offset %llu, " ++ "hashed to %llu chain starts at %llu\n%s", ++ buf, strlen(buf), BTREE_ID_DIRENTS, ++ k->k->p.offset, hash, h->chain->pos.offset, ++ (bch2_bkey_val_to_text(&PBUF(buf), c, ++ *k), buf))) { ++ ret = __bch2_trans_do(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL|BTREE_INSERT_LAZY_RW, ++ hash_redo_key(bch2_dirent_hash_desc, trans, ++ h, iter, *k, hash)); ++ if (ret) ++ bch_err(c, "hash_redo_key err %i", ret); ++ else ++ ret = 1; ++ } ++ ++ goto err; ++} ++ ++static int bch2_inode_truncate(struct bch_fs *c, u64 inode_nr, u64 new_size) ++{ ++ return bch2_btree_delete_range(c, BTREE_ID_EXTENTS, ++ POS(inode_nr, round_up(new_size, block_bytes(c)) >> 9), ++ POS(inode_nr + 1, 0), NULL); ++} ++ ++static int bch2_fix_overlapping_extent(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k, struct bpos cut_at) ++{ ++ struct btree_iter *u_iter; ++ struct bkey_i *u; ++ int ret; ++ ++ u = bch2_trans_kmalloc(trans, bkey_bytes(k.k)); ++ ret = PTR_ERR_OR_ZERO(u); ++ if (ret) ++ return ret; ++ ++ bkey_reassemble(u, k); ++ bch2_cut_front(cut_at, u); ++ ++ u_iter = bch2_trans_copy_iter(trans, iter); ++ ret = PTR_ERR_OR_ZERO(u_iter); ++ if (ret) ++ return ret; ++ ++ /* ++ * We don't want to go through the ++ * extent_handle_overwrites path: ++ */ ++ __bch2_btree_iter_set_pos(u_iter, u->k.p, false); ++ ++ /* ++ * XXX: this is going to leave disk space ++ * accounting slightly wrong ++ */ ++ ret = bch2_trans_update(trans, u_iter, u, 0); ++ bch2_trans_iter_put(trans, u_iter); ++ return ret; ++} ++ ++/* ++ * Walk extents: verify that extents have a corresponding S_ISREG inode, and ++ * that i_size an i_sectors are consistent ++ */ ++noinline_for_stack ++static int check_extents(struct bch_fs *c) ++{ ++ struct inode_walker w = inode_walker_init(); ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ struct bkey_on_stack prev; ++ u64 i_sectors; ++ int ret = 0; ++ ++ bkey_on_stack_init(&prev); ++ prev.k->k = KEY(0, 0, 0); ++ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0); ++ ++ bch_verbose(c, "checking extents"); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, ++ POS(BCACHEFS_ROOT_INO, 0), ++ BTREE_ITER_INTENT); ++retry: ++ for_each_btree_key_continue(iter, 0, k, ret) { ++ if (bkey_cmp(prev.k->k.p, bkey_start_pos(k.k)) > 0) { ++ char buf1[200]; ++ char buf2[200]; ++ ++ bch2_bkey_val_to_text(&PBUF(buf1), c, bkey_i_to_s_c(prev.k)); ++ bch2_bkey_val_to_text(&PBUF(buf2), c, k); ++ ++ if (fsck_err(c, "overlapping extents:\n%s\n%s", buf1, buf2)) { ++ ret = __bch2_trans_do(&trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW, ++ bch2_fix_overlapping_extent(&trans, ++ iter, k, prev.k->k.p)); ++ if (ret) ++ goto err; ++ } ++ } ++ bkey_on_stack_reassemble(&prev, c, k); ++ ++ ret = walk_inode(&trans, &w, k.k->p.inode); ++ if (ret) ++ break; ++ ++ if (fsck_err_on(!w.have_inode, c, ++ "extent type %u for missing inode %llu", ++ k.k->type, k.k->p.inode) || ++ fsck_err_on(w.have_inode && ++ !S_ISREG(w.inode.bi_mode) && !S_ISLNK(w.inode.bi_mode), c, ++ "extent type %u for non regular file, inode %llu mode %o", ++ k.k->type, k.k->p.inode, w.inode.bi_mode)) { ++ bch2_trans_unlock(&trans); ++ ++ ret = bch2_inode_truncate(c, k.k->p.inode, 0); ++ if (ret) ++ goto err; ++ continue; ++ } ++ ++ if (fsck_err_on(w.first_this_inode && ++ w.have_inode && ++ !(w.inode.bi_flags & BCH_INODE_I_SECTORS_DIRTY) && ++ w.inode.bi_sectors != ++ (i_sectors = bch2_count_inode_sectors(&trans, w.cur_inum)), ++ c, "inode %llu has incorrect i_sectors: got %llu, should be %llu", ++ w.inode.bi_inum, ++ w.inode.bi_sectors, i_sectors)) { ++ struct bkey_inode_buf p; ++ ++ w.inode.bi_sectors = i_sectors; ++ ++ bch2_trans_unlock(&trans); ++ ++ bch2_inode_pack(&p, &w.inode); ++ ++ ret = bch2_btree_insert(c, BTREE_ID_INODES, ++ &p.inode.k_i, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW); ++ if (ret) { ++ bch_err(c, "error in fsck: error %i updating inode", ret); ++ goto err; ++ } ++ ++ /* revalidate iterator: */ ++ k = bch2_btree_iter_peek(iter); ++ } ++ ++ if (fsck_err_on(w.have_inode && ++ !(w.inode.bi_flags & BCH_INODE_I_SIZE_DIRTY) && ++ k.k->type != KEY_TYPE_reservation && ++ k.k->p.offset > round_up(w.inode.bi_size, block_bytes(c)) >> 9, c, ++ "extent type %u offset %llu past end of inode %llu, i_size %llu", ++ k.k->type, k.k->p.offset, k.k->p.inode, w.inode.bi_size)) { ++ bch2_trans_unlock(&trans); ++ ++ ret = bch2_inode_truncate(c, k.k->p.inode, ++ w.inode.bi_size); ++ if (ret) ++ goto err; ++ continue; ++ } ++ } ++err: ++fsck_err: ++ if (ret == -EINTR) ++ goto retry; ++ bkey_on_stack_exit(&prev, c); ++ return bch2_trans_exit(&trans) ?: ret; ++} ++ ++/* ++ * Walk dirents: verify that they all have a corresponding S_ISDIR inode, ++ * validate d_type ++ */ ++noinline_for_stack ++static int check_dirents(struct bch_fs *c) ++{ ++ struct inode_walker w = inode_walker_init(); ++ struct hash_check h; ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ unsigned name_len; ++ char buf[200]; ++ int ret = 0; ++ ++ bch_verbose(c, "checking dirents"); ++ ++ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0); ++ ++ hash_check_init(&h); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_DIRENTS, ++ POS(BCACHEFS_ROOT_INO, 0), 0); ++retry: ++ for_each_btree_key_continue(iter, 0, k, ret) { ++ struct bkey_s_c_dirent d; ++ struct bch_inode_unpacked target; ++ bool have_target; ++ u64 d_inum; ++ ++ ret = walk_inode(&trans, &w, k.k->p.inode); ++ if (ret) ++ break; ++ ++ if (fsck_err_on(!w.have_inode, c, ++ "dirent in nonexisting directory:\n%s", ++ (bch2_bkey_val_to_text(&PBUF(buf), c, ++ k), buf)) || ++ fsck_err_on(!S_ISDIR(w.inode.bi_mode), c, ++ "dirent in non directory inode type %u:\n%s", ++ mode_to_type(w.inode.bi_mode), ++ (bch2_bkey_val_to_text(&PBUF(buf), c, ++ k), buf))) { ++ ret = bch2_btree_delete_at(&trans, iter, 0); ++ if (ret) ++ goto err; ++ continue; ++ } ++ ++ if (w.first_this_inode && w.have_inode) ++ hash_check_set_inode(&trans, &h, &w.inode); ++ ++ ret = check_dirent_hash(&trans, &h, iter, &k); ++ if (ret > 0) { ++ ret = 0; ++ continue; ++ } ++ if (ret) ++ goto fsck_err; ++ ++ if (ret) ++ goto fsck_err; ++ ++ if (k.k->type != KEY_TYPE_dirent) ++ continue; ++ ++ d = bkey_s_c_to_dirent(k); ++ d_inum = le64_to_cpu(d.v->d_inum); ++ ++ name_len = bch2_dirent_name_bytes(d); ++ ++ if (fsck_err_on(!name_len, c, "empty dirent") || ++ fsck_err_on(name_len == 1 && ++ !memcmp(d.v->d_name, ".", 1), c, ++ ". dirent") || ++ fsck_err_on(name_len == 2 && ++ !memcmp(d.v->d_name, "..", 2), c, ++ ".. dirent") || ++ fsck_err_on(name_len == 2 && ++ !memcmp(d.v->d_name, "..", 2), c, ++ ".. dirent") || ++ fsck_err_on(memchr(d.v->d_name, '/', name_len), c, ++ "dirent name has invalid chars")) { ++ ret = remove_dirent(&trans, d); ++ if (ret) ++ goto err; ++ continue; ++ } ++ ++ if (fsck_err_on(d_inum == d.k->p.inode, c, ++ "dirent points to own directory:\n%s", ++ (bch2_bkey_val_to_text(&PBUF(buf), c, ++ k), buf))) { ++ ret = remove_dirent(&trans, d); ++ if (ret) ++ goto err; ++ continue; ++ } ++ ++ ret = bch2_inode_find_by_inum_trans(&trans, d_inum, &target); ++ if (ret && ret != -ENOENT) ++ break; ++ ++ have_target = !ret; ++ ret = 0; ++ ++ if (fsck_err_on(!have_target, c, ++ "dirent points to missing inode:\n%s", ++ (bch2_bkey_val_to_text(&PBUF(buf), c, ++ k), buf))) { ++ ret = remove_dirent(&trans, d); ++ if (ret) ++ goto err; ++ continue; ++ } ++ ++ if (fsck_err_on(have_target && ++ d.v->d_type != ++ mode_to_type(target.bi_mode), c, ++ "incorrect d_type: should be %u:\n%s", ++ mode_to_type(target.bi_mode), ++ (bch2_bkey_val_to_text(&PBUF(buf), c, ++ k), buf))) { ++ struct bkey_i_dirent *n; ++ ++ n = kmalloc(bkey_bytes(d.k), GFP_KERNEL); ++ if (!n) { ++ ret = -ENOMEM; ++ goto err; ++ } ++ ++ bkey_reassemble(&n->k_i, d.s_c); ++ n->v.d_type = mode_to_type(target.bi_mode); ++ ++ ret = __bch2_trans_do(&trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW, ++ (bch2_trans_update(&trans, iter, &n->k_i, 0), 0)); ++ kfree(n); ++ if (ret) ++ goto err; ++ ++ } ++ } ++ ++ hash_stop_chain(&trans, &h); ++err: ++fsck_err: ++ if (ret == -EINTR) ++ goto retry; ++ ++ return bch2_trans_exit(&trans) ?: ret; ++} ++ ++/* ++ * Walk xattrs: verify that they all have a corresponding inode ++ */ ++noinline_for_stack ++static int check_xattrs(struct bch_fs *c) ++{ ++ struct inode_walker w = inode_walker_init(); ++ struct hash_check h; ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ bch_verbose(c, "checking xattrs"); ++ ++ hash_check_init(&h); ++ ++ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_XATTRS, ++ POS(BCACHEFS_ROOT_INO, 0), 0); ++retry: ++ for_each_btree_key_continue(iter, 0, k, ret) { ++ ret = walk_inode(&trans, &w, k.k->p.inode); ++ if (ret) ++ break; ++ ++ if (fsck_err_on(!w.have_inode, c, ++ "xattr for missing inode %llu", ++ k.k->p.inode)) { ++ ret = bch2_btree_delete_at(&trans, iter, 0); ++ if (ret) ++ goto err; ++ continue; ++ } ++ ++ if (w.first_this_inode && w.have_inode) ++ hash_check_set_inode(&trans, &h, &w.inode); ++ ++ ret = hash_check_key(&trans, bch2_xattr_hash_desc, ++ &h, iter, k); ++ if (ret) ++ goto fsck_err; ++ } ++err: ++fsck_err: ++ if (ret == -EINTR) ++ goto retry; ++ return bch2_trans_exit(&trans) ?: ret; ++} ++ ++/* Get root directory, create if it doesn't exist: */ ++static int check_root(struct bch_fs *c, struct bch_inode_unpacked *root_inode) ++{ ++ struct bkey_inode_buf packed; ++ int ret; ++ ++ bch_verbose(c, "checking root directory"); ++ ++ ret = bch2_inode_find_by_inum(c, BCACHEFS_ROOT_INO, root_inode); ++ if (ret && ret != -ENOENT) ++ return ret; ++ ++ if (fsck_err_on(ret, c, "root directory missing")) ++ goto create_root; ++ ++ if (fsck_err_on(!S_ISDIR(root_inode->bi_mode), c, ++ "root inode not a directory")) ++ goto create_root; ++ ++ return 0; ++fsck_err: ++ return ret; ++create_root: ++ bch2_inode_init(c, root_inode, 0, 0, S_IFDIR|0755, ++ 0, NULL); ++ root_inode->bi_inum = BCACHEFS_ROOT_INO; ++ ++ bch2_inode_pack(&packed, root_inode); ++ ++ return bch2_btree_insert(c, BTREE_ID_INODES, &packed.inode.k_i, ++ NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW); ++} ++ ++/* Get lost+found, create if it doesn't exist: */ ++static int check_lostfound(struct bch_fs *c, ++ struct bch_inode_unpacked *root_inode, ++ struct bch_inode_unpacked *lostfound_inode) ++{ ++ struct qstr lostfound = QSTR("lost+found"); ++ struct bch_hash_info root_hash_info = ++ bch2_hash_info_init(c, root_inode); ++ u64 inum; ++ int ret; ++ ++ bch_verbose(c, "checking lost+found"); ++ ++ inum = bch2_dirent_lookup(c, BCACHEFS_ROOT_INO, &root_hash_info, ++ &lostfound); ++ if (!inum) { ++ bch_notice(c, "creating lost+found"); ++ goto create_lostfound; ++ } ++ ++ ret = bch2_inode_find_by_inum(c, inum, lostfound_inode); ++ if (ret && ret != -ENOENT) ++ return ret; ++ ++ if (fsck_err_on(ret, c, "lost+found missing")) ++ goto create_lostfound; ++ ++ if (fsck_err_on(!S_ISDIR(lostfound_inode->bi_mode), c, ++ "lost+found inode not a directory")) ++ goto create_lostfound; ++ ++ return 0; ++fsck_err: ++ return ret; ++create_lostfound: ++ bch2_inode_init_early(c, lostfound_inode); ++ ++ ret = bch2_trans_do(c, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW, ++ bch2_create_trans(&trans, ++ BCACHEFS_ROOT_INO, root_inode, ++ lostfound_inode, &lostfound, ++ 0, 0, S_IFDIR|0700, 0, NULL, NULL)); ++ if (ret) ++ bch_err(c, "error creating lost+found: %i", ret); ++ ++ return ret; ++} ++ ++struct inode_bitmap { ++ unsigned long *bits; ++ size_t size; ++}; ++ ++static inline bool inode_bitmap_test(struct inode_bitmap *b, size_t nr) ++{ ++ return nr < b->size ? test_bit(nr, b->bits) : false; ++} ++ ++static inline int inode_bitmap_set(struct inode_bitmap *b, size_t nr) ++{ ++ if (nr >= b->size) { ++ size_t new_size = max_t(size_t, max_t(size_t, ++ PAGE_SIZE * 8, ++ b->size * 2), ++ nr + 1); ++ void *n; ++ ++ new_size = roundup_pow_of_two(new_size); ++ n = krealloc(b->bits, new_size / 8, GFP_KERNEL|__GFP_ZERO); ++ if (!n) { ++ return -ENOMEM; ++ } ++ ++ b->bits = n; ++ b->size = new_size; ++ } ++ ++ __set_bit(nr, b->bits); ++ return 0; ++} ++ ++struct pathbuf { ++ size_t nr; ++ size_t size; ++ ++ struct pathbuf_entry { ++ u64 inum; ++ u64 offset; ++ } *entries; ++}; ++ ++static int path_down(struct pathbuf *p, u64 inum) ++{ ++ if (p->nr == p->size) { ++ size_t new_size = max_t(size_t, 256UL, p->size * 2); ++ void *n = krealloc(p->entries, ++ new_size * sizeof(p->entries[0]), ++ GFP_KERNEL); ++ if (!n) ++ return -ENOMEM; ++ ++ p->entries = n; ++ p->size = new_size; ++ }; ++ ++ p->entries[p->nr++] = (struct pathbuf_entry) { ++ .inum = inum, ++ .offset = 0, ++ }; ++ return 0; ++} ++ ++noinline_for_stack ++static int check_directory_structure(struct bch_fs *c, ++ struct bch_inode_unpacked *lostfound_inode) ++{ ++ struct inode_bitmap dirs_done = { NULL, 0 }; ++ struct pathbuf path = { 0, 0, NULL }; ++ struct pathbuf_entry *e; ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ struct bkey_s_c_dirent dirent; ++ bool had_unreachable; ++ u64 d_inum; ++ int ret = 0; ++ ++ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0); ++ ++ bch_verbose(c, "checking directory structure"); ++ ++ /* DFS: */ ++restart_dfs: ++ had_unreachable = false; ++ ++ ret = inode_bitmap_set(&dirs_done, BCACHEFS_ROOT_INO); ++ if (ret) { ++ bch_err(c, "memory allocation failure in inode_bitmap_set()"); ++ goto err; ++ } ++ ++ ret = path_down(&path, BCACHEFS_ROOT_INO); ++ if (ret) ++ goto err; ++ ++ while (path.nr) { ++next: ++ e = &path.entries[path.nr - 1]; ++ ++ if (e->offset == U64_MAX) ++ goto up; ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_DIRENTS, ++ POS(e->inum, e->offset + 1), 0, k, ret) { ++ if (k.k->p.inode != e->inum) ++ break; ++ ++ e->offset = k.k->p.offset; ++ ++ if (k.k->type != KEY_TYPE_dirent) ++ continue; ++ ++ dirent = bkey_s_c_to_dirent(k); ++ ++ if (dirent.v->d_type != DT_DIR) ++ continue; ++ ++ d_inum = le64_to_cpu(dirent.v->d_inum); ++ ++ if (fsck_err_on(inode_bitmap_test(&dirs_done, d_inum), c, ++ "directory %llu has multiple hardlinks", ++ d_inum)) { ++ ret = remove_dirent(&trans, dirent); ++ if (ret) ++ goto err; ++ continue; ++ } ++ ++ ret = inode_bitmap_set(&dirs_done, d_inum); ++ if (ret) { ++ bch_err(c, "memory allocation failure in inode_bitmap_set()"); ++ goto err; ++ } ++ ++ ret = path_down(&path, d_inum); ++ if (ret) { ++ goto err; ++ } ++ ++ ret = bch2_trans_iter_free(&trans, iter); ++ if (ret) { ++ bch_err(c, "btree error %i in fsck", ret); ++ goto err; ++ } ++ goto next; ++ } ++ ret = bch2_trans_iter_free(&trans, iter) ?: ret; ++ if (ret) { ++ bch_err(c, "btree error %i in fsck", ret); ++ goto err; ++ } ++up: ++ path.nr--; ++ } ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_INODES, POS_MIN, 0); ++retry: ++ for_each_btree_key_continue(iter, 0, k, ret) { ++ if (k.k->type != KEY_TYPE_inode) ++ continue; ++ ++ if (!S_ISDIR(le16_to_cpu(bkey_s_c_to_inode(k).v->bi_mode))) ++ continue; ++ ++ ret = bch2_empty_dir_trans(&trans, k.k->p.inode); ++ if (ret == -EINTR) ++ goto retry; ++ if (!ret) ++ continue; ++ ++ if (fsck_err_on(!inode_bitmap_test(&dirs_done, k.k->p.offset), c, ++ "unreachable directory found (inum %llu)", ++ k.k->p.offset)) { ++ bch2_trans_unlock(&trans); ++ ++ ret = reattach_inode(c, lostfound_inode, k.k->p.offset); ++ if (ret) { ++ goto err; ++ } ++ ++ had_unreachable = true; ++ } ++ } ++ bch2_trans_iter_free(&trans, iter); ++ if (ret) ++ goto err; ++ ++ if (had_unreachable) { ++ bch_info(c, "reattached unreachable directories, restarting pass to check for loops"); ++ kfree(dirs_done.bits); ++ kfree(path.entries); ++ memset(&dirs_done, 0, sizeof(dirs_done)); ++ memset(&path, 0, sizeof(path)); ++ goto restart_dfs; ++ } ++err: ++fsck_err: ++ ret = bch2_trans_exit(&trans) ?: ret; ++ kfree(dirs_done.bits); ++ kfree(path.entries); ++ return ret; ++} ++ ++struct nlink { ++ u32 count; ++ u32 dir_count; ++}; ++ ++typedef GENRADIX(struct nlink) nlink_table; ++ ++static void inc_link(struct bch_fs *c, nlink_table *links, ++ u64 range_start, u64 *range_end, ++ u64 inum, bool dir) ++{ ++ struct nlink *link; ++ ++ if (inum < range_start || inum >= *range_end) ++ return; ++ ++ link = genradix_ptr_alloc(links, inum - range_start, GFP_KERNEL); ++ if (!link) { ++ bch_verbose(c, "allocation failed during fsck - will need another pass"); ++ *range_end = inum; ++ return; ++ } ++ ++ if (dir) ++ link->dir_count++; ++ else ++ link->count++; ++} ++ ++noinline_for_stack ++static int bch2_gc_walk_dirents(struct bch_fs *c, nlink_table *links, ++ u64 range_start, u64 *range_end) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ struct bkey_s_c_dirent d; ++ u64 d_inum; ++ int ret; ++ ++ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0); ++ ++ inc_link(c, links, range_start, range_end, BCACHEFS_ROOT_INO, false); ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_DIRENTS, POS_MIN, 0, k, ret) { ++ switch (k.k->type) { ++ case KEY_TYPE_dirent: ++ d = bkey_s_c_to_dirent(k); ++ d_inum = le64_to_cpu(d.v->d_inum); ++ ++ if (d.v->d_type == DT_DIR) ++ inc_link(c, links, range_start, range_end, ++ d.k->p.inode, true); ++ ++ inc_link(c, links, range_start, range_end, ++ d_inum, false); ++ ++ break; ++ } ++ ++ bch2_trans_cond_resched(&trans); ++ } ++ ret = bch2_trans_exit(&trans) ?: ret; ++ if (ret) ++ bch_err(c, "error in fsck: btree error %i while walking dirents", ret); ++ ++ return ret; ++} ++ ++static int check_inode_nlink(struct bch_fs *c, ++ struct bch_inode_unpacked *lostfound_inode, ++ struct bch_inode_unpacked *u, ++ struct nlink *link, ++ bool *do_update) ++{ ++ u32 i_nlink = bch2_inode_nlink_get(u); ++ u32 real_i_nlink = ++ link->count * nlink_bias(u->bi_mode) + ++ link->dir_count; ++ int ret = 0; ++ ++ /* ++ * These should have been caught/fixed by earlier passes, we don't ++ * repair them here: ++ */ ++ if (S_ISDIR(u->bi_mode) && link->count > 1) { ++ need_fsck_err(c, "directory %llu with multiple hardlinks: %u", ++ u->bi_inum, link->count); ++ return 0; ++ } ++ ++ if (S_ISDIR(u->bi_mode) && !link->count) { ++ need_fsck_err(c, "unreachable directory found (inum %llu)", ++ u->bi_inum); ++ return 0; ++ } ++ ++ if (!S_ISDIR(u->bi_mode) && link->dir_count) { ++ need_fsck_err(c, "non directory with subdirectories (inum %llu)", ++ u->bi_inum); ++ return 0; ++ } ++ ++ if (!link->count && ++ !(u->bi_flags & BCH_INODE_UNLINKED) && ++ (c->sb.features & (1 << BCH_FEATURE_atomic_nlink))) { ++ if (fsck_err(c, "unreachable inode %llu not marked as unlinked (type %u)", ++ u->bi_inum, mode_to_type(u->bi_mode)) == ++ FSCK_ERR_IGNORE) ++ return 0; ++ ++ ret = reattach_inode(c, lostfound_inode, u->bi_inum); ++ if (ret) ++ return ret; ++ ++ link->count = 1; ++ real_i_nlink = nlink_bias(u->bi_mode) + link->dir_count; ++ goto set_i_nlink; ++ } ++ ++ if (i_nlink < link->count) { ++ if (fsck_err(c, "inode %llu i_link too small (%u < %u, type %i)", ++ u->bi_inum, i_nlink, link->count, ++ mode_to_type(u->bi_mode)) == FSCK_ERR_IGNORE) ++ return 0; ++ goto set_i_nlink; ++ } ++ ++ if (i_nlink != real_i_nlink && ++ c->sb.clean) { ++ if (fsck_err(c, "filesystem marked clean, " ++ "but inode %llu has wrong i_nlink " ++ "(type %u i_nlink %u, should be %u)", ++ u->bi_inum, mode_to_type(u->bi_mode), ++ i_nlink, real_i_nlink) == FSCK_ERR_IGNORE) ++ return 0; ++ goto set_i_nlink; ++ } ++ ++ if (i_nlink != real_i_nlink && ++ (c->sb.features & (1 << BCH_FEATURE_atomic_nlink))) { ++ if (fsck_err(c, "inode %llu has wrong i_nlink " ++ "(type %u i_nlink %u, should be %u)", ++ u->bi_inum, mode_to_type(u->bi_mode), ++ i_nlink, real_i_nlink) == FSCK_ERR_IGNORE) ++ return 0; ++ goto set_i_nlink; ++ } ++ ++ if (real_i_nlink && i_nlink != real_i_nlink) ++ bch_verbose(c, "setting inode %llu nlink from %u to %u", ++ u->bi_inum, i_nlink, real_i_nlink); ++set_i_nlink: ++ if (i_nlink != real_i_nlink) { ++ bch2_inode_nlink_set(u, real_i_nlink); ++ *do_update = true; ++ } ++fsck_err: ++ return ret; ++} ++ ++static int check_inode(struct btree_trans *trans, ++ struct bch_inode_unpacked *lostfound_inode, ++ struct btree_iter *iter, ++ struct bkey_s_c_inode inode, ++ struct nlink *link) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_inode_unpacked u; ++ bool do_update = false; ++ int ret = 0; ++ ++ ret = bch2_inode_unpack(inode, &u); ++ ++ bch2_trans_unlock(trans); ++ ++ if (bch2_fs_inconsistent_on(ret, c, ++ "error unpacking inode %llu in fsck", ++ inode.k->p.inode)) ++ return ret; ++ ++ if (link) { ++ ret = check_inode_nlink(c, lostfound_inode, &u, link, ++ &do_update); ++ if (ret) ++ return ret; ++ } ++ ++ if (u.bi_flags & BCH_INODE_UNLINKED && ++ (!c->sb.clean || ++ fsck_err(c, "filesystem marked clean, but inode %llu unlinked", ++ u.bi_inum))) { ++ bch_verbose(c, "deleting inode %llu", u.bi_inum); ++ ++ bch2_fs_lazy_rw(c); ++ ++ ret = bch2_inode_rm(c, u.bi_inum); ++ if (ret) ++ bch_err(c, "error in fsck: error %i while deleting inode", ret); ++ return ret; ++ } ++ ++ if (u.bi_flags & BCH_INODE_I_SIZE_DIRTY && ++ (!c->sb.clean || ++ fsck_err(c, "filesystem marked clean, but inode %llu has i_size dirty", ++ u.bi_inum))) { ++ bch_verbose(c, "truncating inode %llu", u.bi_inum); ++ ++ bch2_fs_lazy_rw(c); ++ ++ /* ++ * XXX: need to truncate partial blocks too here - or ideally ++ * just switch units to bytes and that issue goes away ++ */ ++ ++ ret = bch2_inode_truncate(c, u.bi_inum, u.bi_size); ++ if (ret) { ++ bch_err(c, "error in fsck: error %i truncating inode", ret); ++ return ret; ++ } ++ ++ /* ++ * We truncated without our normal sector accounting hook, just ++ * make sure we recalculate it: ++ */ ++ u.bi_flags |= BCH_INODE_I_SECTORS_DIRTY; ++ ++ u.bi_flags &= ~BCH_INODE_I_SIZE_DIRTY; ++ do_update = true; ++ } ++ ++ if (u.bi_flags & BCH_INODE_I_SECTORS_DIRTY && ++ (!c->sb.clean || ++ fsck_err(c, "filesystem marked clean, but inode %llu has i_sectors dirty", ++ u.bi_inum))) { ++ s64 sectors; ++ ++ bch_verbose(c, "recounting sectors for inode %llu", ++ u.bi_inum); ++ ++ sectors = bch2_count_inode_sectors(trans, u.bi_inum); ++ if (sectors < 0) { ++ bch_err(c, "error in fsck: error %i recounting inode sectors", ++ (int) sectors); ++ return sectors; ++ } ++ ++ u.bi_sectors = sectors; ++ u.bi_flags &= ~BCH_INODE_I_SECTORS_DIRTY; ++ do_update = true; ++ } ++ ++ if (do_update) { ++ struct bkey_inode_buf p; ++ ++ bch2_inode_pack(&p, &u); ++ ++ ret = __bch2_trans_do(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW, ++ (bch2_trans_update(trans, iter, &p.inode.k_i, 0), 0)); ++ if (ret) ++ bch_err(c, "error in fsck: error %i " ++ "updating inode", ret); ++ } ++fsck_err: ++ return ret; ++} ++ ++noinline_for_stack ++static int bch2_gc_walk_inodes(struct bch_fs *c, ++ struct bch_inode_unpacked *lostfound_inode, ++ nlink_table *links, ++ u64 range_start, u64 range_end) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ struct nlink *link, zero_links = { 0, 0 }; ++ struct genradix_iter nlinks_iter; ++ int ret = 0, ret2 = 0; ++ u64 nlinks_pos; ++ ++ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_INODES, ++ POS(0, range_start), 0); ++ nlinks_iter = genradix_iter_init(links, 0); ++ ++ while ((k = bch2_btree_iter_peek(iter)).k && ++ !(ret2 = bkey_err(k))) { ++peek_nlinks: link = genradix_iter_peek(&nlinks_iter, links); ++ ++ if (!link && (!k.k || iter->pos.offset >= range_end)) ++ break; ++ ++ nlinks_pos = range_start + nlinks_iter.pos; ++ if (iter->pos.offset > nlinks_pos) { ++ /* Should have been caught by dirents pass: */ ++ need_fsck_err_on(link && link->count, c, ++ "missing inode %llu (nlink %u)", ++ nlinks_pos, link->count); ++ genradix_iter_advance(&nlinks_iter, links); ++ goto peek_nlinks; ++ } ++ ++ if (iter->pos.offset < nlinks_pos || !link) ++ link = &zero_links; ++ ++ if (k.k && k.k->type == KEY_TYPE_inode) { ++ ret = check_inode(&trans, lostfound_inode, iter, ++ bkey_s_c_to_inode(k), link); ++ BUG_ON(ret == -EINTR); ++ if (ret) ++ break; ++ } else { ++ /* Should have been caught by dirents pass: */ ++ need_fsck_err_on(link->count, c, ++ "missing inode %llu (nlink %u)", ++ nlinks_pos, link->count); ++ } ++ ++ if (nlinks_pos == iter->pos.offset) ++ genradix_iter_advance(&nlinks_iter, links); ++ ++ bch2_btree_iter_next(iter); ++ bch2_trans_cond_resched(&trans); ++ } ++fsck_err: ++ bch2_trans_exit(&trans); ++ ++ if (ret2) ++ bch_err(c, "error in fsck: btree error %i while walking inodes", ret2); ++ ++ return ret ?: ret2; ++} ++ ++noinline_for_stack ++static int check_inode_nlinks(struct bch_fs *c, ++ struct bch_inode_unpacked *lostfound_inode) ++{ ++ nlink_table links; ++ u64 this_iter_range_start, next_iter_range_start = 0; ++ int ret = 0; ++ ++ bch_verbose(c, "checking inode nlinks"); ++ ++ genradix_init(&links); ++ ++ do { ++ this_iter_range_start = next_iter_range_start; ++ next_iter_range_start = U64_MAX; ++ ++ ret = bch2_gc_walk_dirents(c, &links, ++ this_iter_range_start, ++ &next_iter_range_start); ++ if (ret) ++ break; ++ ++ ret = bch2_gc_walk_inodes(c, lostfound_inode, &links, ++ this_iter_range_start, ++ next_iter_range_start); ++ if (ret) ++ break; ++ ++ genradix_free(&links); ++ } while (next_iter_range_start != U64_MAX); ++ ++ genradix_free(&links); ++ ++ return ret; ++} ++ ++/* ++ * Checks for inconsistencies that shouldn't happen, unless we have a bug. ++ * Doesn't fix them yet, mainly because they haven't yet been observed: ++ */ ++int bch2_fsck_full(struct bch_fs *c) ++{ ++ struct bch_inode_unpacked root_inode, lostfound_inode; ++ ++ return check_extents(c) ?: ++ check_dirents(c) ?: ++ check_xattrs(c) ?: ++ check_root(c, &root_inode) ?: ++ check_lostfound(c, &root_inode, &lostfound_inode) ?: ++ check_directory_structure(c, &lostfound_inode) ?: ++ check_inode_nlinks(c, &lostfound_inode); ++} ++ ++int bch2_fsck_inode_nlink(struct bch_fs *c) ++{ ++ struct bch_inode_unpacked root_inode, lostfound_inode; ++ ++ return check_root(c, &root_inode) ?: ++ check_lostfound(c, &root_inode, &lostfound_inode) ?: ++ check_inode_nlinks(c, &lostfound_inode); ++} ++ ++int bch2_fsck_walk_inodes_only(struct bch_fs *c) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ struct bkey_s_c_inode inode; ++ int ret; ++ ++ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0); ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_INODES, POS_MIN, 0, k, ret) { ++ if (k.k->type != KEY_TYPE_inode) ++ continue; ++ ++ inode = bkey_s_c_to_inode(k); ++ ++ if (inode.v->bi_flags & ++ (BCH_INODE_I_SIZE_DIRTY| ++ BCH_INODE_I_SECTORS_DIRTY| ++ BCH_INODE_UNLINKED)) { ++ ret = check_inode(&trans, NULL, iter, inode, NULL); ++ BUG_ON(ret == -EINTR); ++ if (ret) ++ break; ++ } ++ } ++ BUG_ON(ret == -EINTR); ++ ++ return bch2_trans_exit(&trans) ?: ret; ++} +diff --git a/fs/bcachefs/fsck.h b/fs/bcachefs/fsck.h +new file mode 100644 +index 000000000000..9e4af02bde1e +--- /dev/null ++++ b/fs/bcachefs/fsck.h +@@ -0,0 +1,9 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_FSCK_H ++#define _BCACHEFS_FSCK_H ++ ++int bch2_fsck_full(struct bch_fs *); ++int bch2_fsck_inode_nlink(struct bch_fs *); ++int bch2_fsck_walk_inodes_only(struct bch_fs *); ++ ++#endif /* _BCACHEFS_FSCK_H */ +diff --git a/fs/bcachefs/inode.c b/fs/bcachefs/inode.c +new file mode 100644 +index 000000000000..7d20f082ad45 +--- /dev/null ++++ b/fs/bcachefs/inode.c +@@ -0,0 +1,554 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bkey_methods.h" ++#include "btree_update.h" ++#include "error.h" ++#include "extents.h" ++#include "inode.h" ++#include "str_hash.h" ++ ++#include ++ ++#include ++ ++const char * const bch2_inode_opts[] = { ++#define x(name, ...) #name, ++ BCH_INODE_OPTS() ++#undef x ++ NULL, ++}; ++ ++static const u8 byte_table[8] = { 1, 2, 3, 4, 6, 8, 10, 13 }; ++static const u8 bits_table[8] = { ++ 1 * 8 - 1, ++ 2 * 8 - 2, ++ 3 * 8 - 3, ++ 4 * 8 - 4, ++ 6 * 8 - 5, ++ 8 * 8 - 6, ++ 10 * 8 - 7, ++ 13 * 8 - 8, ++}; ++ ++static int inode_encode_field(u8 *out, u8 *end, u64 hi, u64 lo) ++{ ++ __be64 in[2] = { cpu_to_be64(hi), cpu_to_be64(lo), }; ++ unsigned shift, bytes, bits = likely(!hi) ++ ? fls64(lo) ++ : fls64(hi) + 64; ++ ++ for (shift = 1; shift <= 8; shift++) ++ if (bits < bits_table[shift - 1]) ++ goto got_shift; ++ ++ BUG(); ++got_shift: ++ bytes = byte_table[shift - 1]; ++ ++ BUG_ON(out + bytes > end); ++ ++ memcpy(out, (u8 *) in + 16 - bytes, bytes); ++ *out |= (1 << 8) >> shift; ++ ++ return bytes; ++} ++ ++static int inode_decode_field(const u8 *in, const u8 *end, ++ u64 out[2], unsigned *out_bits) ++{ ++ __be64 be[2] = { 0, 0 }; ++ unsigned bytes, shift; ++ u8 *p; ++ ++ if (in >= end) ++ return -1; ++ ++ if (!*in) ++ return -1; ++ ++ /* ++ * position of highest set bit indicates number of bytes: ++ * shift = number of bits to remove in high byte: ++ */ ++ shift = 8 - __fls(*in); /* 1 <= shift <= 8 */ ++ bytes = byte_table[shift - 1]; ++ ++ if (in + bytes > end) ++ return -1; ++ ++ p = (u8 *) be + 16 - bytes; ++ memcpy(p, in, bytes); ++ *p ^= (1 << 8) >> shift; ++ ++ out[0] = be64_to_cpu(be[0]); ++ out[1] = be64_to_cpu(be[1]); ++ *out_bits = out[0] ? 64 + fls64(out[0]) : fls64(out[1]); ++ ++ return bytes; ++} ++ ++void bch2_inode_pack(struct bkey_inode_buf *packed, ++ const struct bch_inode_unpacked *inode) ++{ ++ u8 *out = packed->inode.v.fields; ++ u8 *end = (void *) &packed[1]; ++ u8 *last_nonzero_field = out; ++ unsigned nr_fields = 0, last_nonzero_fieldnr = 0; ++ unsigned bytes; ++ ++ bkey_inode_init(&packed->inode.k_i); ++ packed->inode.k.p.offset = inode->bi_inum; ++ packed->inode.v.bi_hash_seed = inode->bi_hash_seed; ++ packed->inode.v.bi_flags = cpu_to_le32(inode->bi_flags); ++ packed->inode.v.bi_mode = cpu_to_le16(inode->bi_mode); ++ ++#define x(_name, _bits) \ ++ out += inode_encode_field(out, end, 0, inode->_name); \ ++ nr_fields++; \ ++ \ ++ if (inode->_name) { \ ++ last_nonzero_field = out; \ ++ last_nonzero_fieldnr = nr_fields; \ ++ } ++ ++ BCH_INODE_FIELDS() ++#undef x ++ ++ out = last_nonzero_field; ++ nr_fields = last_nonzero_fieldnr; ++ ++ bytes = out - (u8 *) &packed->inode.v; ++ set_bkey_val_bytes(&packed->inode.k, bytes); ++ memset_u64s_tail(&packed->inode.v, 0, bytes); ++ ++ SET_INODE_NR_FIELDS(&packed->inode.v, nr_fields); ++ ++ if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) { ++ struct bch_inode_unpacked unpacked; ++ ++ int ret = bch2_inode_unpack(inode_i_to_s_c(&packed->inode), ++ &unpacked); ++ BUG_ON(ret); ++ BUG_ON(unpacked.bi_inum != inode->bi_inum); ++ BUG_ON(unpacked.bi_hash_seed != inode->bi_hash_seed); ++ BUG_ON(unpacked.bi_mode != inode->bi_mode); ++ ++#define x(_name, _bits) BUG_ON(unpacked._name != inode->_name); ++ BCH_INODE_FIELDS() ++#undef x ++ } ++} ++ ++int bch2_inode_unpack(struct bkey_s_c_inode inode, ++ struct bch_inode_unpacked *unpacked) ++{ ++ const u8 *in = inode.v->fields; ++ const u8 *end = (void *) inode.v + bkey_val_bytes(inode.k); ++ u64 field[2]; ++ unsigned fieldnr = 0, field_bits; ++ int ret; ++ ++ unpacked->bi_inum = inode.k->p.offset; ++ unpacked->bi_hash_seed = inode.v->bi_hash_seed; ++ unpacked->bi_flags = le32_to_cpu(inode.v->bi_flags); ++ unpacked->bi_mode = le16_to_cpu(inode.v->bi_mode); ++ ++#define x(_name, _bits) \ ++ if (fieldnr++ == INODE_NR_FIELDS(inode.v)) { \ ++ memset(&unpacked->_name, 0, \ ++ sizeof(*unpacked) - \ ++ offsetof(struct bch_inode_unpacked, _name)); \ ++ return 0; \ ++ } \ ++ \ ++ ret = inode_decode_field(in, end, field, &field_bits); \ ++ if (ret < 0) \ ++ return ret; \ ++ \ ++ if (field_bits > sizeof(unpacked->_name) * 8) \ ++ return -1; \ ++ \ ++ unpacked->_name = field[1]; \ ++ in += ret; ++ ++ BCH_INODE_FIELDS() ++#undef x ++ ++ /* XXX: signal if there were more fields than expected? */ ++ ++ return 0; ++} ++ ++struct btree_iter *bch2_inode_peek(struct btree_trans *trans, ++ struct bch_inode_unpacked *inode, ++ u64 inum, unsigned flags) ++{ ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ iter = bch2_trans_get_iter(trans, BTREE_ID_INODES, POS(0, inum), ++ BTREE_ITER_SLOTS|flags); ++ if (IS_ERR(iter)) ++ return iter; ++ ++ k = bch2_btree_iter_peek_slot(iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ ret = k.k->type == KEY_TYPE_inode ? 0 : -EIO; ++ if (ret) ++ goto err; ++ ++ ret = bch2_inode_unpack(bkey_s_c_to_inode(k), inode); ++ if (ret) ++ goto err; ++ ++ return iter; ++err: ++ bch2_trans_iter_put(trans, iter); ++ return ERR_PTR(ret); ++} ++ ++int bch2_inode_write(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bch_inode_unpacked *inode) ++{ ++ struct bkey_inode_buf *inode_p; ++ ++ inode_p = bch2_trans_kmalloc(trans, sizeof(*inode_p)); ++ if (IS_ERR(inode_p)) ++ return PTR_ERR(inode_p); ++ ++ bch2_inode_pack(inode_p, inode); ++ bch2_trans_update(trans, iter, &inode_p->inode.k_i, 0); ++ return 0; ++} ++ ++const char *bch2_inode_invalid(const struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_s_c_inode inode = bkey_s_c_to_inode(k); ++ struct bch_inode_unpacked unpacked; ++ ++ if (k.k->p.inode) ++ return "nonzero k.p.inode"; ++ ++ if (bkey_val_bytes(k.k) < sizeof(struct bch_inode)) ++ return "incorrect value size"; ++ ++ if (k.k->p.offset < BLOCKDEV_INODE_MAX) ++ return "fs inode in blockdev range"; ++ ++ if (INODE_STR_HASH(inode.v) >= BCH_STR_HASH_NR) ++ return "invalid str hash type"; ++ ++ if (bch2_inode_unpack(inode, &unpacked)) ++ return "invalid variable length fields"; ++ ++ if (unpacked.bi_data_checksum >= BCH_CSUM_OPT_NR + 1) ++ return "invalid data checksum type"; ++ ++ if (unpacked.bi_compression >= BCH_COMPRESSION_OPT_NR + 1) ++ return "invalid data checksum type"; ++ ++ if ((unpacked.bi_flags & BCH_INODE_UNLINKED) && ++ unpacked.bi_nlink != 0) ++ return "flagged as unlinked but bi_nlink != 0"; ++ ++ return NULL; ++} ++ ++void bch2_inode_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_inode inode = bkey_s_c_to_inode(k); ++ struct bch_inode_unpacked unpacked; ++ ++ if (bch2_inode_unpack(inode, &unpacked)) { ++ pr_buf(out, "(unpack error)"); ++ return; ++ } ++ ++#define x(_name, _bits) \ ++ pr_buf(out, #_name ": %llu ", (u64) unpacked._name); ++ BCH_INODE_FIELDS() ++#undef x ++} ++ ++const char *bch2_inode_generation_invalid(const struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ if (k.k->p.inode) ++ return "nonzero k.p.inode"; ++ ++ if (bkey_val_bytes(k.k) != sizeof(struct bch_inode_generation)) ++ return "incorrect value size"; ++ ++ return NULL; ++} ++ ++void bch2_inode_generation_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_inode_generation gen = bkey_s_c_to_inode_generation(k); ++ ++ pr_buf(out, "generation: %u", le32_to_cpu(gen.v->bi_generation)); ++} ++ ++void bch2_inode_init_early(struct bch_fs *c, ++ struct bch_inode_unpacked *inode_u) ++{ ++ enum bch_str_hash_type str_hash = ++ bch2_str_hash_opt_to_type(c, c->opts.str_hash); ++ ++ memset(inode_u, 0, sizeof(*inode_u)); ++ ++ /* ick */ ++ inode_u->bi_flags |= str_hash << INODE_STR_HASH_OFFSET; ++ get_random_bytes(&inode_u->bi_hash_seed, ++ sizeof(inode_u->bi_hash_seed)); ++} ++ ++void bch2_inode_init_late(struct bch_inode_unpacked *inode_u, u64 now, ++ uid_t uid, gid_t gid, umode_t mode, dev_t rdev, ++ struct bch_inode_unpacked *parent) ++{ ++ inode_u->bi_mode = mode; ++ inode_u->bi_uid = uid; ++ inode_u->bi_gid = gid; ++ inode_u->bi_dev = rdev; ++ inode_u->bi_atime = now; ++ inode_u->bi_mtime = now; ++ inode_u->bi_ctime = now; ++ inode_u->bi_otime = now; ++ ++ if (parent && parent->bi_mode & S_ISGID) { ++ inode_u->bi_gid = parent->bi_gid; ++ if (S_ISDIR(mode)) ++ inode_u->bi_mode |= S_ISGID; ++ } ++ ++ if (parent) { ++#define x(_name, ...) inode_u->bi_##_name = parent->bi_##_name; ++ BCH_INODE_OPTS() ++#undef x ++ } ++} ++ ++void bch2_inode_init(struct bch_fs *c, struct bch_inode_unpacked *inode_u, ++ uid_t uid, gid_t gid, umode_t mode, dev_t rdev, ++ struct bch_inode_unpacked *parent) ++{ ++ bch2_inode_init_early(c, inode_u); ++ bch2_inode_init_late(inode_u, bch2_current_time(c), ++ uid, gid, mode, rdev, parent); ++} ++ ++static inline u32 bkey_generation(struct bkey_s_c k) ++{ ++ switch (k.k->type) { ++ case KEY_TYPE_inode: ++ BUG(); ++ case KEY_TYPE_inode_generation: ++ return le32_to_cpu(bkey_s_c_to_inode_generation(k).v->bi_generation); ++ default: ++ return 0; ++ } ++} ++ ++int bch2_inode_create(struct btree_trans *trans, ++ struct bch_inode_unpacked *inode_u, ++ u64 min, u64 max, u64 *hint) ++{ ++ struct bkey_inode_buf *inode_p; ++ struct btree_iter *iter = NULL; ++ struct bkey_s_c k; ++ u64 start; ++ int ret; ++ ++ if (!max) ++ max = ULLONG_MAX; ++ ++ if (trans->c->opts.inodes_32bit) ++ max = min_t(u64, max, U32_MAX); ++ ++ start = READ_ONCE(*hint); ++ ++ if (start >= max || start < min) ++ start = min; ++ ++ inode_p = bch2_trans_kmalloc(trans, sizeof(*inode_p)); ++ if (IS_ERR(inode_p)) ++ return PTR_ERR(inode_p); ++again: ++ for_each_btree_key(trans, iter, BTREE_ID_INODES, POS(0, start), ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT, k, ret) { ++ if (bkey_cmp(iter->pos, POS(0, max)) > 0) ++ break; ++ ++ if (k.k->type != KEY_TYPE_inode) ++ goto found_slot; ++ } ++ ++ bch2_trans_iter_put(trans, iter); ++ ++ if (ret) ++ return ret; ++ ++ if (start != min) { ++ /* Retry from start */ ++ start = min; ++ goto again; ++ } ++ ++ return -ENOSPC; ++found_slot: ++ *hint = k.k->p.offset; ++ inode_u->bi_inum = k.k->p.offset; ++ inode_u->bi_generation = bkey_generation(k); ++ ++ bch2_inode_pack(inode_p, inode_u); ++ bch2_trans_update(trans, iter, &inode_p->inode.k_i, 0); ++ bch2_trans_iter_put(trans, iter); ++ return 0; ++} ++ ++int bch2_inode_rm(struct bch_fs *c, u64 inode_nr) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_i_inode_generation delete; ++ struct bpos start = POS(inode_nr, 0); ++ struct bpos end = POS(inode_nr + 1, 0); ++ int ret; ++ ++ /* ++ * If this was a directory, there shouldn't be any real dirents left - ++ * but there could be whiteouts (from hash collisions) that we should ++ * delete: ++ * ++ * XXX: the dirent could ideally would delete whiteouts when they're no ++ * longer needed ++ */ ++ ret = bch2_btree_delete_range(c, BTREE_ID_EXTENTS, ++ start, end, NULL) ?: ++ bch2_btree_delete_range(c, BTREE_ID_XATTRS, ++ start, end, NULL) ?: ++ bch2_btree_delete_range(c, BTREE_ID_DIRENTS, ++ start, end, NULL); ++ if (ret) ++ return ret; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_INODES, POS(0, inode_nr), ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT); ++ do { ++ struct bkey_s_c k = bch2_btree_iter_peek_slot(iter); ++ u32 bi_generation = 0; ++ ++ ret = bkey_err(k); ++ if (ret) ++ break; ++ ++ bch2_fs_inconsistent_on(k.k->type != KEY_TYPE_inode, c, ++ "inode %llu not found when deleting", ++ inode_nr); ++ ++ switch (k.k->type) { ++ case KEY_TYPE_inode: { ++ struct bch_inode_unpacked inode_u; ++ ++ if (!bch2_inode_unpack(bkey_s_c_to_inode(k), &inode_u)) ++ bi_generation = inode_u.bi_generation + 1; ++ break; ++ } ++ case KEY_TYPE_inode_generation: { ++ struct bkey_s_c_inode_generation g = ++ bkey_s_c_to_inode_generation(k); ++ bi_generation = le32_to_cpu(g.v->bi_generation); ++ break; ++ } ++ } ++ ++ if (!bi_generation) { ++ bkey_init(&delete.k); ++ delete.k.p.offset = inode_nr; ++ } else { ++ bkey_inode_generation_init(&delete.k_i); ++ delete.k.p.offset = inode_nr; ++ delete.v.bi_generation = cpu_to_le32(bi_generation); ++ } ++ ++ bch2_trans_update(&trans, iter, &delete.k_i, 0); ++ ++ ret = bch2_trans_commit(&trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL); ++ } while (ret == -EINTR); ++ ++ bch2_trans_exit(&trans); ++ return ret; ++} ++ ++int bch2_inode_find_by_inum_trans(struct btree_trans *trans, u64 inode_nr, ++ struct bch_inode_unpacked *inode) ++{ ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ iter = bch2_trans_get_iter(trans, BTREE_ID_INODES, ++ POS(0, inode_nr), BTREE_ITER_SLOTS); ++ if (IS_ERR(iter)) ++ return PTR_ERR(iter); ++ ++ k = bch2_btree_iter_peek_slot(iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ ret = k.k->type == KEY_TYPE_inode ++ ? bch2_inode_unpack(bkey_s_c_to_inode(k), inode) ++ : -ENOENT; ++err: ++ bch2_trans_iter_put(trans, iter); ++ return ret; ++} ++ ++int bch2_inode_find_by_inum(struct bch_fs *c, u64 inode_nr, ++ struct bch_inode_unpacked *inode) ++{ ++ return bch2_trans_do(c, NULL, NULL, 0, ++ bch2_inode_find_by_inum_trans(&trans, inode_nr, inode)); ++} ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++void bch2_inode_pack_test(void) ++{ ++ struct bch_inode_unpacked *u, test_inodes[] = { ++ { ++ .bi_atime = U64_MAX, ++ .bi_ctime = U64_MAX, ++ .bi_mtime = U64_MAX, ++ .bi_otime = U64_MAX, ++ .bi_size = U64_MAX, ++ .bi_sectors = U64_MAX, ++ .bi_uid = U32_MAX, ++ .bi_gid = U32_MAX, ++ .bi_nlink = U32_MAX, ++ .bi_generation = U32_MAX, ++ .bi_dev = U32_MAX, ++ }, ++ }; ++ ++ for (u = test_inodes; ++ u < test_inodes + ARRAY_SIZE(test_inodes); ++ u++) { ++ struct bkey_inode_buf p; ++ ++ bch2_inode_pack(&p, u); ++ } ++} ++#endif +diff --git a/fs/bcachefs/inode.h b/fs/bcachefs/inode.h +new file mode 100644 +index 000000000000..bb759a46dc41 +--- /dev/null ++++ b/fs/bcachefs/inode.h +@@ -0,0 +1,177 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_INODE_H ++#define _BCACHEFS_INODE_H ++ ++#include "opts.h" ++ ++extern const char * const bch2_inode_opts[]; ++ ++const char *bch2_inode_invalid(const struct bch_fs *, struct bkey_s_c); ++void bch2_inode_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++ ++#define bch2_bkey_ops_inode (struct bkey_ops) { \ ++ .key_invalid = bch2_inode_invalid, \ ++ .val_to_text = bch2_inode_to_text, \ ++} ++ ++const char *bch2_inode_generation_invalid(const struct bch_fs *, ++ struct bkey_s_c); ++void bch2_inode_generation_to_text(struct printbuf *, struct bch_fs *, ++ struct bkey_s_c); ++ ++#define bch2_bkey_ops_inode_generation (struct bkey_ops) { \ ++ .key_invalid = bch2_inode_generation_invalid, \ ++ .val_to_text = bch2_inode_generation_to_text, \ ++} ++ ++struct bch_inode_unpacked { ++ u64 bi_inum; ++ __le64 bi_hash_seed; ++ u32 bi_flags; ++ u16 bi_mode; ++ ++#define x(_name, _bits) u##_bits _name; ++ BCH_INODE_FIELDS() ++#undef x ++}; ++ ++struct bkey_inode_buf { ++ struct bkey_i_inode inode; ++ ++#define x(_name, _bits) + 8 + _bits / 8 ++ u8 _pad[0 + BCH_INODE_FIELDS()]; ++#undef x ++} __attribute__((packed, aligned(8))); ++ ++void bch2_inode_pack(struct bkey_inode_buf *, const struct bch_inode_unpacked *); ++int bch2_inode_unpack(struct bkey_s_c_inode, struct bch_inode_unpacked *); ++ ++struct btree_iter *bch2_inode_peek(struct btree_trans *, ++ struct bch_inode_unpacked *, u64, unsigned); ++int bch2_inode_write(struct btree_trans *, struct btree_iter *, ++ struct bch_inode_unpacked *); ++ ++void bch2_inode_init_early(struct bch_fs *, ++ struct bch_inode_unpacked *); ++void bch2_inode_init_late(struct bch_inode_unpacked *, u64, ++ uid_t, gid_t, umode_t, dev_t, ++ struct bch_inode_unpacked *); ++void bch2_inode_init(struct bch_fs *, struct bch_inode_unpacked *, ++ uid_t, gid_t, umode_t, dev_t, ++ struct bch_inode_unpacked *); ++ ++int bch2_inode_create(struct btree_trans *, ++ struct bch_inode_unpacked *, ++ u64, u64, u64 *); ++ ++int bch2_inode_rm(struct bch_fs *, u64); ++ ++int bch2_inode_find_by_inum_trans(struct btree_trans *, u64, ++ struct bch_inode_unpacked *); ++int bch2_inode_find_by_inum(struct bch_fs *, u64, struct bch_inode_unpacked *); ++ ++static inline struct bch_io_opts bch2_inode_opts_get(struct bch_inode_unpacked *inode) ++{ ++ struct bch_io_opts ret = { 0 }; ++ ++#define x(_name, _bits) \ ++ if (inode->bi_##_name) \ ++ opt_set(ret, _name, inode->bi_##_name - 1); ++ BCH_INODE_OPTS() ++#undef x ++ return ret; ++} ++ ++static inline void bch2_inode_opt_set(struct bch_inode_unpacked *inode, ++ enum inode_opt_id id, u64 v) ++{ ++ switch (id) { ++#define x(_name, ...) \ ++ case Inode_opt_##_name: \ ++ inode->bi_##_name = v; \ ++ break; ++ BCH_INODE_OPTS() ++#undef x ++ default: ++ BUG(); ++ } ++} ++ ++static inline u64 bch2_inode_opt_get(struct bch_inode_unpacked *inode, ++ enum inode_opt_id id) ++{ ++ switch (id) { ++#define x(_name, ...) \ ++ case Inode_opt_##_name: \ ++ return inode->bi_##_name; ++ BCH_INODE_OPTS() ++#undef x ++ default: ++ BUG(); ++ } ++} ++ ++static inline struct bch_io_opts ++io_opts(struct bch_fs *c, struct bch_inode_unpacked *inode) ++{ ++ struct bch_io_opts opts = bch2_opts_to_inode_opts(c->opts); ++ ++ bch2_io_opts_apply(&opts, bch2_inode_opts_get(inode)); ++ return opts; ++} ++ ++static inline u8 mode_to_type(umode_t mode) ++{ ++ return (mode >> 12) & 15; ++} ++ ++/* i_nlink: */ ++ ++static inline unsigned nlink_bias(umode_t mode) ++{ ++ return S_ISDIR(mode) ? 2 : 1; ++} ++ ++static inline void bch2_inode_nlink_inc(struct bch_inode_unpacked *bi) ++{ ++ if (bi->bi_flags & BCH_INODE_UNLINKED) ++ bi->bi_flags &= ~BCH_INODE_UNLINKED; ++ else ++ bi->bi_nlink++; ++} ++ ++static inline void bch2_inode_nlink_dec(struct bch_inode_unpacked *bi) ++{ ++ BUG_ON(bi->bi_flags & BCH_INODE_UNLINKED); ++ if (bi->bi_nlink) ++ bi->bi_nlink--; ++ else ++ bi->bi_flags |= BCH_INODE_UNLINKED; ++} ++ ++static inline unsigned bch2_inode_nlink_get(struct bch_inode_unpacked *bi) ++{ ++ return bi->bi_flags & BCH_INODE_UNLINKED ++ ? 0 ++ : bi->bi_nlink + nlink_bias(bi->bi_mode); ++} ++ ++static inline void bch2_inode_nlink_set(struct bch_inode_unpacked *bi, ++ unsigned nlink) ++{ ++ if (nlink) { ++ bi->bi_nlink = nlink - nlink_bias(bi->bi_mode); ++ bi->bi_flags &= ~BCH_INODE_UNLINKED; ++ } else { ++ bi->bi_nlink = 0; ++ bi->bi_flags |= BCH_INODE_UNLINKED; ++ } ++} ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++void bch2_inode_pack_test(void); ++#else ++static inline void bch2_inode_pack_test(void) {} ++#endif ++ ++#endif /* _BCACHEFS_INODE_H */ +diff --git a/fs/bcachefs/io.c b/fs/bcachefs/io.c +new file mode 100644 +index 000000000000..0a4b4eed465c +--- /dev/null ++++ b/fs/bcachefs/io.c +@@ -0,0 +1,2389 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Some low level IO code, and hacks for various block layer limitations ++ * ++ * Copyright 2010, 2011 Kent Overstreet ++ * Copyright 2012 Google, Inc. ++ */ ++ ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "alloc_foreground.h" ++#include "bkey_on_stack.h" ++#include "bset.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "checksum.h" ++#include "compress.h" ++#include "clock.h" ++#include "debug.h" ++#include "disk_groups.h" ++#include "ec.h" ++#include "error.h" ++#include "extent_update.h" ++#include "inode.h" ++#include "io.h" ++#include "journal.h" ++#include "keylist.h" ++#include "move.h" ++#include "rebalance.h" ++#include "super.h" ++#include "super-io.h" ++ ++#include ++#include ++#include ++ ++#include ++ ++const char *bch2_blk_status_to_str(blk_status_t status) ++{ ++ if (status == BLK_STS_REMOVED) ++ return "device removed"; ++ return blk_status_to_str(status); ++} ++ ++static bool bch2_target_congested(struct bch_fs *c, u16 target) ++{ ++ const struct bch_devs_mask *devs; ++ unsigned d, nr = 0, total = 0; ++ u64 now = local_clock(), last; ++ s64 congested; ++ struct bch_dev *ca; ++ ++ if (!target) ++ return false; ++ ++ rcu_read_lock(); ++ devs = bch2_target_to_mask(c, target) ?: ++ &c->rw_devs[BCH_DATA_user]; ++ ++ for_each_set_bit(d, devs->d, BCH_SB_MEMBERS_MAX) { ++ ca = rcu_dereference(c->devs[d]); ++ if (!ca) ++ continue; ++ ++ congested = atomic_read(&ca->congested); ++ last = READ_ONCE(ca->congested_last); ++ if (time_after64(now, last)) ++ congested -= (now - last) >> 12; ++ ++ total += max(congested, 0LL); ++ nr++; ++ } ++ rcu_read_unlock(); ++ ++ return bch2_rand_range(nr * CONGESTED_MAX) < total; ++} ++ ++static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency, ++ u64 now, int rw) ++{ ++ u64 latency_capable = ++ ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m; ++ /* ideally we'd be taking into account the device's variance here: */ ++ u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3); ++ s64 latency_over = io_latency - latency_threshold; ++ ++ if (latency_threshold && latency_over > 0) { ++ /* ++ * bump up congested by approximately latency_over * 4 / ++ * latency_threshold - we don't need much accuracy here so don't ++ * bother with the divide: ++ */ ++ if (atomic_read(&ca->congested) < CONGESTED_MAX) ++ atomic_add(latency_over >> ++ max_t(int, ilog2(latency_threshold) - 2, 0), ++ &ca->congested); ++ ++ ca->congested_last = now; ++ } else if (atomic_read(&ca->congested) > 0) { ++ atomic_dec(&ca->congested); ++ } ++} ++ ++void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw) ++{ ++ atomic64_t *latency = &ca->cur_latency[rw]; ++ u64 now = local_clock(); ++ u64 io_latency = time_after64(now, submit_time) ++ ? now - submit_time ++ : 0; ++ u64 old, new, v = atomic64_read(latency); ++ ++ do { ++ old = v; ++ ++ /* ++ * If the io latency was reasonably close to the current ++ * latency, skip doing the update and atomic operation - most of ++ * the time: ++ */ ++ if (abs((int) (old - io_latency)) < (old >> 1) && ++ now & ~(~0 << 5)) ++ break; ++ ++ new = ewma_add(old, io_latency, 5); ++ } while ((v = atomic64_cmpxchg(latency, old, new)) != old); ++ ++ bch2_congested_acct(ca, io_latency, now, rw); ++ ++ __bch2_time_stats_update(&ca->io_latency[rw], submit_time, now); ++} ++ ++/* Allocate, free from mempool: */ ++ ++void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio) ++{ ++ struct bvec_iter_all iter; ++ struct bio_vec *bv; ++ ++ bio_for_each_segment_all(bv, bio, iter) ++ if (bv->bv_page != ZERO_PAGE(0)) ++ mempool_free(bv->bv_page, &c->bio_bounce_pages); ++ bio->bi_vcnt = 0; ++} ++ ++static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool) ++{ ++ struct page *page; ++ ++ if (likely(!*using_mempool)) { ++ page = alloc_page(GFP_NOIO); ++ if (unlikely(!page)) { ++ mutex_lock(&c->bio_bounce_pages_lock); ++ *using_mempool = true; ++ goto pool_alloc; ++ ++ } ++ } else { ++pool_alloc: ++ page = mempool_alloc(&c->bio_bounce_pages, GFP_NOIO); ++ } ++ ++ return page; ++} ++ ++void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio, ++ size_t size) ++{ ++ bool using_mempool = false; ++ ++ while (size) { ++ struct page *page = __bio_alloc_page_pool(c, &using_mempool); ++ unsigned len = min(PAGE_SIZE, size); ++ ++ BUG_ON(!bio_add_page(bio, page, len, 0)); ++ size -= len; ++ } ++ ++ if (using_mempool) ++ mutex_unlock(&c->bio_bounce_pages_lock); ++} ++ ++/* Extent update path: */ ++ ++static int sum_sector_overwrites(struct btree_trans *trans, ++ struct btree_iter *extent_iter, ++ struct bkey_i *new, ++ bool may_allocate, ++ bool *maybe_extending, ++ s64 *delta) ++{ ++ struct btree_iter *iter; ++ struct bkey_s_c old; ++ int ret = 0; ++ ++ *maybe_extending = true; ++ *delta = 0; ++ ++ iter = bch2_trans_copy_iter(trans, extent_iter); ++ if (IS_ERR(iter)) ++ return PTR_ERR(iter); ++ ++ for_each_btree_key_continue(iter, BTREE_ITER_SLOTS, old, ret) { ++ if (!may_allocate && ++ bch2_bkey_nr_ptrs_fully_allocated(old) < ++ bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new))) { ++ ret = -ENOSPC; ++ break; ++ } ++ ++ *delta += (min(new->k.p.offset, ++ old.k->p.offset) - ++ max(bkey_start_offset(&new->k), ++ bkey_start_offset(old.k))) * ++ (bkey_extent_is_allocation(&new->k) - ++ bkey_extent_is_allocation(old.k)); ++ ++ if (bkey_cmp(old.k->p, new->k.p) >= 0) { ++ /* ++ * Check if there's already data above where we're ++ * going to be writing to - this means we're definitely ++ * not extending the file: ++ * ++ * Note that it's not sufficient to check if there's ++ * data up to the sector offset we're going to be ++ * writing to, because i_size could be up to one block ++ * less: ++ */ ++ if (!bkey_cmp(old.k->p, new->k.p)) ++ old = bch2_btree_iter_next(iter); ++ ++ if (old.k && !bkey_err(old) && ++ old.k->p.inode == extent_iter->pos.inode && ++ bkey_extent_is_data(old.k)) ++ *maybe_extending = false; ++ ++ break; ++ } ++ } ++ ++ bch2_trans_iter_put(trans, iter); ++ return ret; ++} ++ ++int bch2_extent_update(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_i *k, ++ struct disk_reservation *disk_res, ++ u64 *journal_seq, ++ u64 new_i_size, ++ s64 *i_sectors_delta) ++{ ++ /* this must live until after bch2_trans_commit(): */ ++ struct bkey_inode_buf inode_p; ++ bool extending = false; ++ s64 delta = 0; ++ int ret; ++ ++ ret = bch2_extent_trim_atomic(k, iter); ++ if (ret) ++ return ret; ++ ++ ret = sum_sector_overwrites(trans, iter, k, ++ disk_res && disk_res->sectors != 0, ++ &extending, &delta); ++ if (ret) ++ return ret; ++ ++ new_i_size = extending ++ ? min(k->k.p.offset << 9, new_i_size) ++ : 0; ++ ++ if (delta || new_i_size) { ++ struct btree_iter *inode_iter; ++ struct bch_inode_unpacked inode_u; ++ ++ inode_iter = bch2_inode_peek(trans, &inode_u, ++ k->k.p.inode, BTREE_ITER_INTENT); ++ if (IS_ERR(inode_iter)) ++ return PTR_ERR(inode_iter); ++ ++ /* ++ * XXX: ++ * writeback can race a bit with truncate, because truncate ++ * first updates the inode then truncates the pagecache. This is ++ * ugly, but lets us preserve the invariant that the in memory ++ * i_size is always >= the on disk i_size. ++ * ++ BUG_ON(new_i_size > inode_u.bi_size && ++ (inode_u.bi_flags & BCH_INODE_I_SIZE_DIRTY)); ++ */ ++ BUG_ON(new_i_size > inode_u.bi_size && !extending); ++ ++ if (!(inode_u.bi_flags & BCH_INODE_I_SIZE_DIRTY) && ++ new_i_size > inode_u.bi_size) ++ inode_u.bi_size = new_i_size; ++ else ++ new_i_size = 0; ++ ++ inode_u.bi_sectors += delta; ++ ++ if (delta || new_i_size) { ++ bch2_inode_pack(&inode_p, &inode_u); ++ bch2_trans_update(trans, inode_iter, ++ &inode_p.inode.k_i, 0); ++ } ++ ++ bch2_trans_iter_put(trans, inode_iter); ++ } ++ ++ bch2_trans_update(trans, iter, k, 0); ++ ++ ret = bch2_trans_commit(trans, disk_res, journal_seq, ++ BTREE_INSERT_NOCHECK_RW| ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_USE_RESERVE); ++ if (!ret && i_sectors_delta) ++ *i_sectors_delta += delta; ++ ++ return ret; ++} ++ ++int bch2_fpunch_at(struct btree_trans *trans, struct btree_iter *iter, ++ struct bpos end, u64 *journal_seq, ++ s64 *i_sectors_delta) ++{ ++ struct bch_fs *c = trans->c; ++ unsigned max_sectors = KEY_SIZE_MAX & (~0 << c->block_bits); ++ struct bkey_s_c k; ++ int ret = 0, ret2 = 0; ++ ++ while ((k = bch2_btree_iter_peek(iter)).k && ++ bkey_cmp(iter->pos, end) < 0) { ++ struct disk_reservation disk_res = ++ bch2_disk_reservation_init(c, 0); ++ struct bkey_i delete; ++ ++ bch2_trans_begin(trans); ++ ++ ret = bkey_err(k); ++ if (ret) ++ goto btree_err; ++ ++ bkey_init(&delete.k); ++ delete.k.p = iter->pos; ++ ++ /* create the biggest key we can */ ++ bch2_key_resize(&delete.k, max_sectors); ++ bch2_cut_back(end, &delete); ++ ++ ret = bch2_extent_update(trans, iter, &delete, ++ &disk_res, journal_seq, ++ 0, i_sectors_delta); ++ bch2_disk_reservation_put(c, &disk_res); ++btree_err: ++ if (ret == -EINTR) { ++ ret2 = ret; ++ ret = 0; ++ } ++ if (ret) ++ break; ++ } ++ ++ if (bkey_cmp(iter->pos, end) > 0) { ++ bch2_btree_iter_set_pos(iter, end); ++ ret = bch2_btree_iter_traverse(iter); ++ } ++ ++ return ret ?: ret2; ++} ++ ++int bch2_fpunch(struct bch_fs *c, u64 inum, u64 start, u64 end, ++ u64 *journal_seq, s64 *i_sectors_delta) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ int ret = 0; ++ ++ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 1024); ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, ++ POS(inum, start), ++ BTREE_ITER_INTENT); ++ ++ ret = bch2_fpunch_at(&trans, iter, POS(inum, end), ++ journal_seq, i_sectors_delta); ++ bch2_trans_exit(&trans); ++ ++ if (ret == -EINTR) ++ ret = 0; ++ ++ return ret; ++} ++ ++int bch2_write_index_default(struct bch_write_op *op) ++{ ++ struct bch_fs *c = op->c; ++ struct bkey_on_stack sk; ++ struct keylist *keys = &op->insert_keys; ++ struct bkey_i *k = bch2_keylist_front(keys); ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ int ret; ++ ++ bkey_on_stack_init(&sk); ++ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 1024); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, ++ bkey_start_pos(&k->k), ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT); ++ ++ do { ++ bch2_trans_begin(&trans); ++ ++ k = bch2_keylist_front(keys); ++ ++ bkey_on_stack_realloc(&sk, c, k->k.u64s); ++ bkey_copy(sk.k, k); ++ bch2_cut_front(iter->pos, sk.k); ++ ++ ret = bch2_extent_update(&trans, iter, sk.k, ++ &op->res, op_journal_seq(op), ++ op->new_i_size, &op->i_sectors_delta); ++ if (ret == -EINTR) ++ continue; ++ if (ret) ++ break; ++ ++ if (bkey_cmp(iter->pos, k->k.p) >= 0) ++ bch2_keylist_pop_front(keys); ++ } while (!bch2_keylist_empty(keys)); ++ ++ bch2_trans_exit(&trans); ++ bkey_on_stack_exit(&sk, c); ++ ++ return ret; ++} ++ ++/* Writes */ ++ ++void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c, ++ enum bch_data_type type, ++ const struct bkey_i *k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k)); ++ const struct bch_extent_ptr *ptr; ++ struct bch_write_bio *n; ++ struct bch_dev *ca; ++ ++ BUG_ON(c->opts.nochanges); ++ ++ bkey_for_each_ptr(ptrs, ptr) { ++ BUG_ON(ptr->dev >= BCH_SB_MEMBERS_MAX || ++ !c->devs[ptr->dev]); ++ ++ ca = bch_dev_bkey_exists(c, ptr->dev); ++ ++ if (to_entry(ptr + 1) < ptrs.end) { ++ n = to_wbio(bio_clone_fast(&wbio->bio, GFP_NOIO, ++ &ca->replica_set)); ++ ++ n->bio.bi_end_io = wbio->bio.bi_end_io; ++ n->bio.bi_private = wbio->bio.bi_private; ++ n->parent = wbio; ++ n->split = true; ++ n->bounce = false; ++ n->put_bio = true; ++ n->bio.bi_opf = wbio->bio.bi_opf; ++ bio_inc_remaining(&wbio->bio); ++ } else { ++ n = wbio; ++ n->split = false; ++ } ++ ++ n->c = c; ++ n->dev = ptr->dev; ++ n->have_ioref = bch2_dev_get_ioref(ca, ++ type == BCH_DATA_btree ? READ : WRITE); ++ n->submit_time = local_clock(); ++ n->bio.bi_iter.bi_sector = ptr->offset; ++ ++ if (!journal_flushes_device(ca)) ++ n->bio.bi_opf |= REQ_FUA; ++ ++ if (likely(n->have_ioref)) { ++ this_cpu_add(ca->io_done->sectors[WRITE][type], ++ bio_sectors(&n->bio)); ++ ++ bio_set_dev(&n->bio, ca->disk_sb.bdev); ++ submit_bio(&n->bio); ++ } else { ++ n->bio.bi_status = BLK_STS_REMOVED; ++ bio_endio(&n->bio); ++ } ++ } ++} ++ ++static void __bch2_write(struct closure *); ++ ++static void bch2_write_done(struct closure *cl) ++{ ++ struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); ++ struct bch_fs *c = op->c; ++ ++ if (!op->error && (op->flags & BCH_WRITE_FLUSH)) ++ op->error = bch2_journal_error(&c->journal); ++ ++ bch2_disk_reservation_put(c, &op->res); ++ percpu_ref_put(&c->writes); ++ bch2_keylist_free(&op->insert_keys, op->inline_keys); ++ ++ bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time); ++ ++ if (!(op->flags & BCH_WRITE_FROM_INTERNAL)) ++ up(&c->io_in_flight); ++ ++ if (op->end_io) { ++ EBUG_ON(cl->parent); ++ closure_debug_destroy(cl); ++ op->end_io(op); ++ } else { ++ closure_return(cl); ++ } ++} ++ ++/** ++ * bch_write_index - after a write, update index to point to new data ++ */ ++static void __bch2_write_index(struct bch_write_op *op) ++{ ++ struct bch_fs *c = op->c; ++ struct keylist *keys = &op->insert_keys; ++ struct bch_extent_ptr *ptr; ++ struct bkey_i *src, *dst = keys->keys, *n, *k; ++ unsigned dev; ++ int ret; ++ ++ for (src = keys->keys; src != keys->top; src = n) { ++ n = bkey_next(src); ++ ++ if (bkey_extent_is_direct_data(&src->k)) { ++ bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr, ++ test_bit(ptr->dev, op->failed.d)); ++ ++ if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src))) { ++ ret = -EIO; ++ goto err; ++ } ++ } ++ ++ if (dst != src) ++ memmove_u64s_down(dst, src, src->u64s); ++ dst = bkey_next(dst); ++ } ++ ++ keys->top = dst; ++ ++ /* ++ * probably not the ideal place to hook this in, but I don't ++ * particularly want to plumb io_opts all the way through the btree ++ * update stack right now ++ */ ++ for_each_keylist_key(keys, k) { ++ bch2_rebalance_add_key(c, bkey_i_to_s_c(k), &op->opts); ++ ++ if (bch2_bkey_is_incompressible(bkey_i_to_s_c(k))) ++ bch2_check_set_feature(op->c, BCH_FEATURE_incompressible); ++ ++ } ++ ++ if (!bch2_keylist_empty(keys)) { ++ u64 sectors_start = keylist_sectors(keys); ++ int ret = op->index_update_fn(op); ++ ++ BUG_ON(ret == -EINTR); ++ BUG_ON(keylist_sectors(keys) && !ret); ++ ++ op->written += sectors_start - keylist_sectors(keys); ++ ++ if (ret) { ++ __bcache_io_error(c, "btree IO error %i", ret); ++ op->error = ret; ++ } ++ } ++out: ++ /* If some a bucket wasn't written, we can't erasure code it: */ ++ for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX) ++ bch2_open_bucket_write_error(c, &op->open_buckets, dev); ++ ++ bch2_open_buckets_put(c, &op->open_buckets); ++ return; ++err: ++ keys->top = keys->keys; ++ op->error = ret; ++ goto out; ++} ++ ++static void bch2_write_index(struct closure *cl) ++{ ++ struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); ++ struct bch_fs *c = op->c; ++ ++ __bch2_write_index(op); ++ ++ if (!(op->flags & BCH_WRITE_DONE)) { ++ continue_at(cl, __bch2_write, index_update_wq(op)); ++ } else if (!op->error && (op->flags & BCH_WRITE_FLUSH)) { ++ bch2_journal_flush_seq_async(&c->journal, ++ *op_journal_seq(op), ++ cl); ++ continue_at(cl, bch2_write_done, index_update_wq(op)); ++ } else { ++ continue_at_nobarrier(cl, bch2_write_done, NULL); ++ } ++} ++ ++static void bch2_write_endio(struct bio *bio) ++{ ++ struct closure *cl = bio->bi_private; ++ struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); ++ struct bch_write_bio *wbio = to_wbio(bio); ++ struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL; ++ struct bch_fs *c = wbio->c; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev); ++ ++ if (bch2_dev_io_err_on(bio->bi_status, ca, "data write: %s", ++ bch2_blk_status_to_str(bio->bi_status))) ++ set_bit(wbio->dev, op->failed.d); ++ ++ if (wbio->have_ioref) { ++ bch2_latency_acct(ca, wbio->submit_time, WRITE); ++ percpu_ref_put(&ca->io_ref); ++ } ++ ++ if (wbio->bounce) ++ bch2_bio_free_pages_pool(c, bio); ++ ++ if (wbio->put_bio) ++ bio_put(bio); ++ ++ if (parent) ++ bio_endio(&parent->bio); ++ else if (!(op->flags & BCH_WRITE_SKIP_CLOSURE_PUT)) ++ closure_put(cl); ++ else ++ continue_at_nobarrier(cl, bch2_write_index, index_update_wq(op)); ++} ++ ++static void init_append_extent(struct bch_write_op *op, ++ struct write_point *wp, ++ struct bversion version, ++ struct bch_extent_crc_unpacked crc) ++{ ++ struct bch_fs *c = op->c; ++ struct bkey_i_extent *e; ++ struct open_bucket *ob; ++ unsigned i; ++ ++ BUG_ON(crc.compressed_size > wp->sectors_free); ++ wp->sectors_free -= crc.compressed_size; ++ op->pos.offset += crc.uncompressed_size; ++ ++ e = bkey_extent_init(op->insert_keys.top); ++ e->k.p = op->pos; ++ e->k.size = crc.uncompressed_size; ++ e->k.version = version; ++ ++ if (crc.csum_type || ++ crc.compression_type || ++ crc.nonce) ++ bch2_extent_crc_append(&e->k_i, crc); ++ ++ open_bucket_for_each(c, &wp->ptrs, ob, i) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev); ++ union bch_extent_entry *end = ++ bkey_val_end(bkey_i_to_s(&e->k_i)); ++ ++ end->ptr = ob->ptr; ++ end->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr; ++ end->ptr.cached = !ca->mi.durability || ++ (op->flags & BCH_WRITE_CACHED) != 0; ++ end->ptr.offset += ca->mi.bucket_size - ob->sectors_free; ++ ++ e->k.u64s++; ++ ++ BUG_ON(crc.compressed_size > ob->sectors_free); ++ ob->sectors_free -= crc.compressed_size; ++ } ++ ++ bch2_keylist_push(&op->insert_keys); ++} ++ ++static struct bio *bch2_write_bio_alloc(struct bch_fs *c, ++ struct write_point *wp, ++ struct bio *src, ++ bool *page_alloc_failed, ++ void *buf) ++{ ++ struct bch_write_bio *wbio; ++ struct bio *bio; ++ unsigned output_available = ++ min(wp->sectors_free << 9, src->bi_iter.bi_size); ++ unsigned pages = DIV_ROUND_UP(output_available + ++ (buf ++ ? ((unsigned long) buf & (PAGE_SIZE - 1)) ++ : 0), PAGE_SIZE); ++ ++ bio = bio_alloc_bioset(GFP_NOIO, pages, &c->bio_write); ++ wbio = wbio_init(bio); ++ wbio->put_bio = true; ++ /* copy WRITE_SYNC flag */ ++ wbio->bio.bi_opf = src->bi_opf; ++ ++ if (buf) { ++ bch2_bio_map(bio, buf, output_available); ++ return bio; ++ } ++ ++ wbio->bounce = true; ++ ++ /* ++ * We can't use mempool for more than c->sb.encoded_extent_max ++ * worth of pages, but we'd like to allocate more if we can: ++ */ ++ bch2_bio_alloc_pages_pool(c, bio, ++ min_t(unsigned, output_available, ++ c->sb.encoded_extent_max << 9)); ++ ++ if (bio->bi_iter.bi_size < output_available) ++ *page_alloc_failed = ++ bch2_bio_alloc_pages(bio, ++ output_available - ++ bio->bi_iter.bi_size, ++ GFP_NOFS) != 0; ++ ++ return bio; ++} ++ ++static int bch2_write_rechecksum(struct bch_fs *c, ++ struct bch_write_op *op, ++ unsigned new_csum_type) ++{ ++ struct bio *bio = &op->wbio.bio; ++ struct bch_extent_crc_unpacked new_crc; ++ int ret; ++ ++ /* bch2_rechecksum_bio() can't encrypt or decrypt data: */ ++ ++ if (bch2_csum_type_is_encryption(op->crc.csum_type) != ++ bch2_csum_type_is_encryption(new_csum_type)) ++ new_csum_type = op->crc.csum_type; ++ ++ ret = bch2_rechecksum_bio(c, bio, op->version, op->crc, ++ NULL, &new_crc, ++ op->crc.offset, op->crc.live_size, ++ new_csum_type); ++ if (ret) ++ return ret; ++ ++ bio_advance(bio, op->crc.offset << 9); ++ bio->bi_iter.bi_size = op->crc.live_size << 9; ++ op->crc = new_crc; ++ return 0; ++} ++ ++static int bch2_write_decrypt(struct bch_write_op *op) ++{ ++ struct bch_fs *c = op->c; ++ struct nonce nonce = extent_nonce(op->version, op->crc); ++ struct bch_csum csum; ++ ++ if (!bch2_csum_type_is_encryption(op->crc.csum_type)) ++ return 0; ++ ++ /* ++ * If we need to decrypt data in the write path, we'll no longer be able ++ * to verify the existing checksum (poly1305 mac, in this case) after ++ * it's decrypted - this is the last point we'll be able to reverify the ++ * checksum: ++ */ ++ csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio); ++ if (bch2_crc_cmp(op->crc.csum, csum)) ++ return -EIO; ++ ++ bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio); ++ op->crc.csum_type = 0; ++ op->crc.csum = (struct bch_csum) { 0, 0 }; ++ return 0; ++} ++ ++static enum prep_encoded_ret { ++ PREP_ENCODED_OK, ++ PREP_ENCODED_ERR, ++ PREP_ENCODED_CHECKSUM_ERR, ++ PREP_ENCODED_DO_WRITE, ++} bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp) ++{ ++ struct bch_fs *c = op->c; ++ struct bio *bio = &op->wbio.bio; ++ ++ if (!(op->flags & BCH_WRITE_DATA_ENCODED)) ++ return PREP_ENCODED_OK; ++ ++ BUG_ON(bio_sectors(bio) != op->crc.compressed_size); ++ ++ /* Can we just write the entire extent as is? */ ++ if (op->crc.uncompressed_size == op->crc.live_size && ++ op->crc.compressed_size <= wp->sectors_free && ++ (op->crc.compression_type == op->compression_type || ++ op->incompressible)) { ++ if (!crc_is_compressed(op->crc) && ++ op->csum_type != op->crc.csum_type && ++ bch2_write_rechecksum(c, op, op->csum_type)) ++ return PREP_ENCODED_CHECKSUM_ERR; ++ ++ return PREP_ENCODED_DO_WRITE; ++ } ++ ++ /* ++ * If the data is compressed and we couldn't write the entire extent as ++ * is, we have to decompress it: ++ */ ++ if (crc_is_compressed(op->crc)) { ++ struct bch_csum csum; ++ ++ if (bch2_write_decrypt(op)) ++ return PREP_ENCODED_CHECKSUM_ERR; ++ ++ /* Last point we can still verify checksum: */ ++ csum = bch2_checksum_bio(c, op->crc.csum_type, ++ extent_nonce(op->version, op->crc), ++ bio); ++ if (bch2_crc_cmp(op->crc.csum, csum)) ++ return PREP_ENCODED_CHECKSUM_ERR; ++ ++ if (bch2_bio_uncompress_inplace(c, bio, &op->crc)) ++ return PREP_ENCODED_ERR; ++ } ++ ++ /* ++ * No longer have compressed data after this point - data might be ++ * encrypted: ++ */ ++ ++ /* ++ * If the data is checksummed and we're only writing a subset, ++ * rechecksum and adjust bio to point to currently live data: ++ */ ++ if ((op->crc.live_size != op->crc.uncompressed_size || ++ op->crc.csum_type != op->csum_type) && ++ bch2_write_rechecksum(c, op, op->csum_type)) ++ return PREP_ENCODED_CHECKSUM_ERR; ++ ++ /* ++ * If we want to compress the data, it has to be decrypted: ++ */ ++ if ((op->compression_type || ++ bch2_csum_type_is_encryption(op->crc.csum_type) != ++ bch2_csum_type_is_encryption(op->csum_type)) && ++ bch2_write_decrypt(op)) ++ return PREP_ENCODED_CHECKSUM_ERR; ++ ++ return PREP_ENCODED_OK; ++} ++ ++static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp, ++ struct bio **_dst) ++{ ++ struct bch_fs *c = op->c; ++ struct bio *src = &op->wbio.bio, *dst = src; ++ struct bvec_iter saved_iter; ++ void *ec_buf; ++ struct bpos ec_pos = op->pos; ++ unsigned total_output = 0, total_input = 0; ++ bool bounce = false; ++ bool page_alloc_failed = false; ++ int ret, more = 0; ++ ++ BUG_ON(!bio_sectors(src)); ++ ++ ec_buf = bch2_writepoint_ec_buf(c, wp); ++ ++ switch (bch2_write_prep_encoded_data(op, wp)) { ++ case PREP_ENCODED_OK: ++ break; ++ case PREP_ENCODED_ERR: ++ ret = -EIO; ++ goto err; ++ case PREP_ENCODED_CHECKSUM_ERR: ++ BUG(); ++ goto csum_err; ++ case PREP_ENCODED_DO_WRITE: ++ /* XXX look for bug here */ ++ if (ec_buf) { ++ dst = bch2_write_bio_alloc(c, wp, src, ++ &page_alloc_failed, ++ ec_buf); ++ bio_copy_data(dst, src); ++ bounce = true; ++ } ++ init_append_extent(op, wp, op->version, op->crc); ++ goto do_write; ++ } ++ ++ if (ec_buf || ++ op->compression_type || ++ (op->csum_type && ++ !(op->flags & BCH_WRITE_PAGES_STABLE)) || ++ (bch2_csum_type_is_encryption(op->csum_type) && ++ !(op->flags & BCH_WRITE_PAGES_OWNED))) { ++ dst = bch2_write_bio_alloc(c, wp, src, ++ &page_alloc_failed, ++ ec_buf); ++ bounce = true; ++ } ++ ++ saved_iter = dst->bi_iter; ++ ++ do { ++ struct bch_extent_crc_unpacked crc = ++ (struct bch_extent_crc_unpacked) { 0 }; ++ struct bversion version = op->version; ++ size_t dst_len, src_len; ++ ++ if (page_alloc_failed && ++ bio_sectors(dst) < wp->sectors_free && ++ bio_sectors(dst) < c->sb.encoded_extent_max) ++ break; ++ ++ BUG_ON(op->compression_type && ++ (op->flags & BCH_WRITE_DATA_ENCODED) && ++ bch2_csum_type_is_encryption(op->crc.csum_type)); ++ BUG_ON(op->compression_type && !bounce); ++ ++ crc.compression_type = op->incompressible ++ ? BCH_COMPRESSION_TYPE_incompressible ++ : op->compression_type ++ ? bch2_bio_compress(c, dst, &dst_len, src, &src_len, ++ op->compression_type) ++ : 0; ++ if (!crc_is_compressed(crc)) { ++ dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size); ++ dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9); ++ ++ if (op->csum_type) ++ dst_len = min_t(unsigned, dst_len, ++ c->sb.encoded_extent_max << 9); ++ ++ if (bounce) { ++ swap(dst->bi_iter.bi_size, dst_len); ++ bio_copy_data(dst, src); ++ swap(dst->bi_iter.bi_size, dst_len); ++ } ++ ++ src_len = dst_len; ++ } ++ ++ BUG_ON(!src_len || !dst_len); ++ ++ if (bch2_csum_type_is_encryption(op->csum_type)) { ++ if (bversion_zero(version)) { ++ version.lo = atomic64_inc_return(&c->key_version); ++ } else { ++ crc.nonce = op->nonce; ++ op->nonce += src_len >> 9; ++ } ++ } ++ ++ if ((op->flags & BCH_WRITE_DATA_ENCODED) && ++ !crc_is_compressed(crc) && ++ bch2_csum_type_is_encryption(op->crc.csum_type) == ++ bch2_csum_type_is_encryption(op->csum_type)) { ++ /* ++ * Note: when we're using rechecksum(), we need to be ++ * checksumming @src because it has all the data our ++ * existing checksum covers - if we bounced (because we ++ * were trying to compress), @dst will only have the ++ * part of the data the new checksum will cover. ++ * ++ * But normally we want to be checksumming post bounce, ++ * because part of the reason for bouncing is so the ++ * data can't be modified (by userspace) while it's in ++ * flight. ++ */ ++ if (bch2_rechecksum_bio(c, src, version, op->crc, ++ &crc, &op->crc, ++ src_len >> 9, ++ bio_sectors(src) - (src_len >> 9), ++ op->csum_type)) ++ goto csum_err; ++ } else { ++ if ((op->flags & BCH_WRITE_DATA_ENCODED) && ++ bch2_rechecksum_bio(c, src, version, op->crc, ++ NULL, &op->crc, ++ src_len >> 9, ++ bio_sectors(src) - (src_len >> 9), ++ op->crc.csum_type)) ++ goto csum_err; ++ ++ crc.compressed_size = dst_len >> 9; ++ crc.uncompressed_size = src_len >> 9; ++ crc.live_size = src_len >> 9; ++ ++ swap(dst->bi_iter.bi_size, dst_len); ++ bch2_encrypt_bio(c, op->csum_type, ++ extent_nonce(version, crc), dst); ++ crc.csum = bch2_checksum_bio(c, op->csum_type, ++ extent_nonce(version, crc), dst); ++ crc.csum_type = op->csum_type; ++ swap(dst->bi_iter.bi_size, dst_len); ++ } ++ ++ init_append_extent(op, wp, version, crc); ++ ++ if (dst != src) ++ bio_advance(dst, dst_len); ++ bio_advance(src, src_len); ++ total_output += dst_len; ++ total_input += src_len; ++ } while (dst->bi_iter.bi_size && ++ src->bi_iter.bi_size && ++ wp->sectors_free && ++ !bch2_keylist_realloc(&op->insert_keys, ++ op->inline_keys, ++ ARRAY_SIZE(op->inline_keys), ++ BKEY_EXTENT_U64s_MAX)); ++ ++ more = src->bi_iter.bi_size != 0; ++ ++ dst->bi_iter = saved_iter; ++ ++ if (dst == src && more) { ++ BUG_ON(total_output != total_input); ++ ++ dst = bio_split(src, total_input >> 9, ++ GFP_NOIO, &c->bio_write); ++ wbio_init(dst)->put_bio = true; ++ /* copy WRITE_SYNC flag */ ++ dst->bi_opf = src->bi_opf; ++ } ++ ++ dst->bi_iter.bi_size = total_output; ++do_write: ++ /* might have done a realloc... */ ++ bch2_ec_add_backpointer(c, wp, ec_pos, total_input >> 9); ++ ++ *_dst = dst; ++ return more; ++csum_err: ++ bch_err(c, "error verifying existing checksum while " ++ "rewriting existing data (memory corruption?)"); ++ ret = -EIO; ++err: ++ if (to_wbio(dst)->bounce) ++ bch2_bio_free_pages_pool(c, dst); ++ if (to_wbio(dst)->put_bio) ++ bio_put(dst); ++ ++ return ret; ++} ++ ++static void __bch2_write(struct closure *cl) ++{ ++ struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); ++ struct bch_fs *c = op->c; ++ struct write_point *wp; ++ struct bio *bio; ++ bool skip_put = true; ++ unsigned nofs_flags; ++ int ret; ++ ++ nofs_flags = memalloc_nofs_save(); ++again: ++ memset(&op->failed, 0, sizeof(op->failed)); ++ ++ do { ++ struct bkey_i *key_to_write; ++ unsigned key_to_write_offset = op->insert_keys.top_p - ++ op->insert_keys.keys_p; ++ ++ /* +1 for possible cache device: */ ++ if (op->open_buckets.nr + op->nr_replicas + 1 > ++ ARRAY_SIZE(op->open_buckets.v)) ++ goto flush_io; ++ ++ if (bch2_keylist_realloc(&op->insert_keys, ++ op->inline_keys, ++ ARRAY_SIZE(op->inline_keys), ++ BKEY_EXTENT_U64s_MAX)) ++ goto flush_io; ++ ++ if ((op->flags & BCH_WRITE_FROM_INTERNAL) && ++ percpu_ref_is_dying(&c->writes)) { ++ ret = -EROFS; ++ goto err; ++ } ++ ++ /* ++ * The copygc thread is now global, which means it's no longer ++ * freeing up space on specific disks, which means that ++ * allocations for specific disks may hang arbitrarily long: ++ */ ++ wp = bch2_alloc_sectors_start(c, ++ op->target, ++ op->opts.erasure_code, ++ op->write_point, ++ &op->devs_have, ++ op->nr_replicas, ++ op->nr_replicas_required, ++ op->alloc_reserve, ++ op->flags, ++ (op->flags & (BCH_WRITE_ALLOC_NOWAIT| ++ BCH_WRITE_ONLY_SPECIFIED_DEVS)) ? NULL : cl); ++ EBUG_ON(!wp); ++ ++ if (unlikely(IS_ERR(wp))) { ++ if (unlikely(PTR_ERR(wp) != -EAGAIN)) { ++ ret = PTR_ERR(wp); ++ goto err; ++ } ++ ++ goto flush_io; ++ } ++ ++ /* ++ * It's possible for the allocator to fail, put us on the ++ * freelist waitlist, and then succeed in one of various retry ++ * paths: if that happens, we need to disable the skip_put ++ * optimization because otherwise there won't necessarily be a ++ * barrier before we free the bch_write_op: ++ */ ++ if (atomic_read(&cl->remaining) & CLOSURE_WAITING) ++ skip_put = false; ++ ++ bch2_open_bucket_get(c, wp, &op->open_buckets); ++ ret = bch2_write_extent(op, wp, &bio); ++ bch2_alloc_sectors_done(c, wp); ++ ++ if (ret < 0) ++ goto err; ++ ++ if (ret) { ++ skip_put = false; ++ } else { ++ /* ++ * for the skip_put optimization this has to be set ++ * before we submit the bio: ++ */ ++ op->flags |= BCH_WRITE_DONE; ++ } ++ ++ bio->bi_end_io = bch2_write_endio; ++ bio->bi_private = &op->cl; ++ bio->bi_opf |= REQ_OP_WRITE; ++ ++ if (!skip_put) ++ closure_get(bio->bi_private); ++ else ++ op->flags |= BCH_WRITE_SKIP_CLOSURE_PUT; ++ ++ key_to_write = (void *) (op->insert_keys.keys_p + ++ key_to_write_offset); ++ ++ bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, ++ key_to_write); ++ } while (ret); ++ ++ if (!skip_put) ++ continue_at(cl, bch2_write_index, index_update_wq(op)); ++out: ++ memalloc_nofs_restore(nofs_flags); ++ return; ++err: ++ op->error = ret; ++ op->flags |= BCH_WRITE_DONE; ++ ++ continue_at(cl, bch2_write_index, index_update_wq(op)); ++ goto out; ++flush_io: ++ /* ++ * If the write can't all be submitted at once, we generally want to ++ * block synchronously as that signals backpressure to the caller. ++ * ++ * However, if we're running out of a workqueue, we can't block here ++ * because we'll be blocking other work items from completing: ++ */ ++ if (current->flags & PF_WQ_WORKER) { ++ continue_at(cl, bch2_write_index, index_update_wq(op)); ++ goto out; ++ } ++ ++ closure_sync(cl); ++ ++ if (!bch2_keylist_empty(&op->insert_keys)) { ++ __bch2_write_index(op); ++ ++ if (op->error) { ++ op->flags |= BCH_WRITE_DONE; ++ continue_at_nobarrier(cl, bch2_write_done, NULL); ++ goto out; ++ } ++ } ++ ++ goto again; ++} ++ ++static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len) ++{ ++ struct closure *cl = &op->cl; ++ struct bio *bio = &op->wbio.bio; ++ struct bvec_iter iter; ++ struct bkey_i_inline_data *id; ++ unsigned sectors; ++ int ret; ++ ++ bch2_check_set_feature(op->c, BCH_FEATURE_inline_data); ++ ++ ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys, ++ ARRAY_SIZE(op->inline_keys), ++ BKEY_U64s + DIV_ROUND_UP(data_len, 8)); ++ if (ret) { ++ op->error = ret; ++ goto err; ++ } ++ ++ sectors = bio_sectors(bio); ++ op->pos.offset += sectors; ++ ++ id = bkey_inline_data_init(op->insert_keys.top); ++ id->k.p = op->pos; ++ id->k.version = op->version; ++ id->k.size = sectors; ++ ++ iter = bio->bi_iter; ++ iter.bi_size = data_len; ++ memcpy_from_bio(id->v.data, bio, iter); ++ ++ while (data_len & 7) ++ id->v.data[data_len++] = '\0'; ++ set_bkey_val_bytes(&id->k, data_len); ++ bch2_keylist_push(&op->insert_keys); ++ ++ op->flags |= BCH_WRITE_WROTE_DATA_INLINE; ++ op->flags |= BCH_WRITE_DONE; ++ ++ continue_at_nobarrier(cl, bch2_write_index, NULL); ++ return; ++err: ++ bch2_write_done(&op->cl); ++} ++ ++/** ++ * bch_write - handle a write to a cache device or flash only volume ++ * ++ * This is the starting point for any data to end up in a cache device; it could ++ * be from a normal write, or a writeback write, or a write to a flash only ++ * volume - it's also used by the moving garbage collector to compact data in ++ * mostly empty buckets. ++ * ++ * It first writes the data to the cache, creating a list of keys to be inserted ++ * (if the data won't fit in a single open bucket, there will be multiple keys); ++ * after the data is written it calls bch_journal, and after the keys have been ++ * added to the next journal write they're inserted into the btree. ++ * ++ * If op->discard is true, instead of inserting the data it invalidates the ++ * region of the cache represented by op->bio and op->inode. ++ */ ++void bch2_write(struct closure *cl) ++{ ++ struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); ++ struct bio *bio = &op->wbio.bio; ++ struct bch_fs *c = op->c; ++ unsigned data_len; ++ ++ BUG_ON(!op->nr_replicas); ++ BUG_ON(!op->write_point.v); ++ BUG_ON(!bkey_cmp(op->pos, POS_MAX)); ++ ++ op->start_time = local_clock(); ++ bch2_keylist_init(&op->insert_keys, op->inline_keys); ++ wbio_init(bio)->put_bio = false; ++ ++ if (bio_sectors(bio) & (c->opts.block_size - 1)) { ++ __bcache_io_error(c, "misaligned write"); ++ op->error = -EIO; ++ goto err; ++ } ++ ++ if (c->opts.nochanges || ++ !percpu_ref_tryget(&c->writes)) { ++ if (!(op->flags & BCH_WRITE_FROM_INTERNAL)) ++ __bcache_io_error(c, "read only"); ++ op->error = -EROFS; ++ goto err; ++ } ++ ++ /* ++ * Can't ratelimit copygc - we'd deadlock: ++ */ ++ if (!(op->flags & BCH_WRITE_FROM_INTERNAL)) ++ down(&c->io_in_flight); ++ ++ bch2_increment_clock(c, bio_sectors(bio), WRITE); ++ ++ data_len = min_t(u64, bio->bi_iter.bi_size, ++ op->new_i_size - (op->pos.offset << 9)); ++ ++ if (c->opts.inline_data && ++ data_len <= min(block_bytes(c) / 2, 1024U)) { ++ bch2_write_data_inline(op, data_len); ++ return; ++ } ++ ++ continue_at_nobarrier(cl, __bch2_write, NULL); ++ return; ++err: ++ bch2_disk_reservation_put(c, &op->res); ++ ++ if (op->end_io) { ++ EBUG_ON(cl->parent); ++ closure_debug_destroy(cl); ++ op->end_io(op); ++ } else { ++ closure_return(cl); ++ } ++} ++ ++/* Cache promotion on read */ ++ ++struct promote_op { ++ struct closure cl; ++ struct rcu_head rcu; ++ u64 start_time; ++ ++ struct rhash_head hash; ++ struct bpos pos; ++ ++ struct migrate_write write; ++ struct bio_vec bi_inline_vecs[0]; /* must be last */ ++}; ++ ++static const struct rhashtable_params bch_promote_params = { ++ .head_offset = offsetof(struct promote_op, hash), ++ .key_offset = offsetof(struct promote_op, pos), ++ .key_len = sizeof(struct bpos), ++}; ++ ++static inline bool should_promote(struct bch_fs *c, struct bkey_s_c k, ++ struct bpos pos, ++ struct bch_io_opts opts, ++ unsigned flags) ++{ ++ if (!(flags & BCH_READ_MAY_PROMOTE)) ++ return false; ++ ++ if (!opts.promote_target) ++ return false; ++ ++ if (bch2_bkey_has_target(c, k, opts.promote_target)) ++ return false; ++ ++ if (bch2_target_congested(c, opts.promote_target)) { ++ /* XXX trace this */ ++ return false; ++ } ++ ++ if (rhashtable_lookup_fast(&c->promote_table, &pos, ++ bch_promote_params)) ++ return false; ++ ++ return true; ++} ++ ++static void promote_free(struct bch_fs *c, struct promote_op *op) ++{ ++ int ret; ++ ++ ret = rhashtable_remove_fast(&c->promote_table, &op->hash, ++ bch_promote_params); ++ BUG_ON(ret); ++ percpu_ref_put(&c->writes); ++ kfree_rcu(op, rcu); ++} ++ ++static void promote_done(struct closure *cl) ++{ ++ struct promote_op *op = ++ container_of(cl, struct promote_op, cl); ++ struct bch_fs *c = op->write.op.c; ++ ++ bch2_time_stats_update(&c->times[BCH_TIME_data_promote], ++ op->start_time); ++ ++ bch2_bio_free_pages_pool(c, &op->write.op.wbio.bio); ++ promote_free(c, op); ++} ++ ++static void promote_start(struct promote_op *op, struct bch_read_bio *rbio) ++{ ++ struct bch_fs *c = rbio->c; ++ struct closure *cl = &op->cl; ++ struct bio *bio = &op->write.op.wbio.bio; ++ ++ trace_promote(&rbio->bio); ++ ++ /* we now own pages: */ ++ BUG_ON(!rbio->bounce); ++ BUG_ON(rbio->bio.bi_vcnt > bio->bi_max_vecs); ++ ++ memcpy(bio->bi_io_vec, rbio->bio.bi_io_vec, ++ sizeof(struct bio_vec) * rbio->bio.bi_vcnt); ++ swap(bio->bi_vcnt, rbio->bio.bi_vcnt); ++ ++ bch2_migrate_read_done(&op->write, rbio); ++ ++ closure_init(cl, NULL); ++ closure_call(&op->write.op.cl, bch2_write, c->wq, cl); ++ closure_return_with_destructor(cl, promote_done); ++} ++ ++static struct promote_op *__promote_alloc(struct bch_fs *c, ++ enum btree_id btree_id, ++ struct bkey_s_c k, ++ struct bpos pos, ++ struct extent_ptr_decoded *pick, ++ struct bch_io_opts opts, ++ unsigned sectors, ++ struct bch_read_bio **rbio) ++{ ++ struct promote_op *op = NULL; ++ struct bio *bio; ++ unsigned pages = DIV_ROUND_UP(sectors, PAGE_SECTORS); ++ int ret; ++ ++ if (!percpu_ref_tryget(&c->writes)) ++ return NULL; ++ ++ op = kzalloc(sizeof(*op) + sizeof(struct bio_vec) * pages, GFP_NOIO); ++ if (!op) ++ goto err; ++ ++ op->start_time = local_clock(); ++ op->pos = pos; ++ ++ /* ++ * We don't use the mempool here because extents that aren't ++ * checksummed or compressed can be too big for the mempool: ++ */ ++ *rbio = kzalloc(sizeof(struct bch_read_bio) + ++ sizeof(struct bio_vec) * pages, ++ GFP_NOIO); ++ if (!*rbio) ++ goto err; ++ ++ rbio_init(&(*rbio)->bio, opts); ++ bio_init(&(*rbio)->bio, (*rbio)->bio.bi_inline_vecs, pages); ++ ++ if (bch2_bio_alloc_pages(&(*rbio)->bio, sectors << 9, ++ GFP_NOIO)) ++ goto err; ++ ++ (*rbio)->bounce = true; ++ (*rbio)->split = true; ++ (*rbio)->kmalloc = true; ++ ++ if (rhashtable_lookup_insert_fast(&c->promote_table, &op->hash, ++ bch_promote_params)) ++ goto err; ++ ++ bio = &op->write.op.wbio.bio; ++ bio_init(bio, bio->bi_inline_vecs, pages); ++ ++ ret = bch2_migrate_write_init(c, &op->write, ++ writepoint_hashed((unsigned long) current), ++ opts, ++ DATA_PROMOTE, ++ (struct data_opts) { ++ .target = opts.promote_target ++ }, ++ btree_id, k); ++ BUG_ON(ret); ++ ++ return op; ++err: ++ if (*rbio) ++ bio_free_pages(&(*rbio)->bio); ++ kfree(*rbio); ++ *rbio = NULL; ++ kfree(op); ++ percpu_ref_put(&c->writes); ++ return NULL; ++} ++ ++noinline ++static struct promote_op *promote_alloc(struct bch_fs *c, ++ struct bvec_iter iter, ++ struct bkey_s_c k, ++ struct extent_ptr_decoded *pick, ++ struct bch_io_opts opts, ++ unsigned flags, ++ struct bch_read_bio **rbio, ++ bool *bounce, ++ bool *read_full) ++{ ++ bool promote_full = *read_full || READ_ONCE(c->promote_whole_extents); ++ /* data might have to be decompressed in the write path: */ ++ unsigned sectors = promote_full ++ ? max(pick->crc.compressed_size, pick->crc.live_size) ++ : bvec_iter_sectors(iter); ++ struct bpos pos = promote_full ++ ? bkey_start_pos(k.k) ++ : POS(k.k->p.inode, iter.bi_sector); ++ struct promote_op *promote; ++ ++ if (!should_promote(c, k, pos, opts, flags)) ++ return NULL; ++ ++ promote = __promote_alloc(c, ++ k.k->type == KEY_TYPE_reflink_v ++ ? BTREE_ID_REFLINK ++ : BTREE_ID_EXTENTS, ++ k, pos, pick, opts, sectors, rbio); ++ if (!promote) ++ return NULL; ++ ++ *bounce = true; ++ *read_full = promote_full; ++ return promote; ++} ++ ++/* Read */ ++ ++#define READ_RETRY_AVOID 1 ++#define READ_RETRY 2 ++#define READ_ERR 3 ++ ++enum rbio_context { ++ RBIO_CONTEXT_NULL, ++ RBIO_CONTEXT_HIGHPRI, ++ RBIO_CONTEXT_UNBOUND, ++}; ++ ++static inline struct bch_read_bio * ++bch2_rbio_parent(struct bch_read_bio *rbio) ++{ ++ return rbio->split ? rbio->parent : rbio; ++} ++ ++__always_inline ++static void bch2_rbio_punt(struct bch_read_bio *rbio, work_func_t fn, ++ enum rbio_context context, ++ struct workqueue_struct *wq) ++{ ++ if (context <= rbio->context) { ++ fn(&rbio->work); ++ } else { ++ rbio->work.func = fn; ++ rbio->context = context; ++ queue_work(wq, &rbio->work); ++ } ++} ++ ++static inline struct bch_read_bio *bch2_rbio_free(struct bch_read_bio *rbio) ++{ ++ BUG_ON(rbio->bounce && !rbio->split); ++ ++ if (rbio->promote) ++ promote_free(rbio->c, rbio->promote); ++ rbio->promote = NULL; ++ ++ if (rbio->bounce) ++ bch2_bio_free_pages_pool(rbio->c, &rbio->bio); ++ ++ if (rbio->split) { ++ struct bch_read_bio *parent = rbio->parent; ++ ++ if (rbio->kmalloc) ++ kfree(rbio); ++ else ++ bio_put(&rbio->bio); ++ ++ rbio = parent; ++ } ++ ++ return rbio; ++} ++ ++/* ++ * Only called on a top level bch_read_bio to complete an entire read request, ++ * not a split: ++ */ ++static void bch2_rbio_done(struct bch_read_bio *rbio) ++{ ++ if (rbio->start_time) ++ bch2_time_stats_update(&rbio->c->times[BCH_TIME_data_read], ++ rbio->start_time); ++ bio_endio(&rbio->bio); ++} ++ ++static void bch2_read_retry_nodecode(struct bch_fs *c, struct bch_read_bio *rbio, ++ struct bvec_iter bvec_iter, u64 inode, ++ struct bch_io_failures *failed, ++ unsigned flags) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_on_stack sk; ++ struct bkey_s_c k; ++ int ret; ++ ++ flags &= ~BCH_READ_LAST_FRAGMENT; ++ flags |= BCH_READ_MUST_CLONE; ++ ++ bkey_on_stack_init(&sk); ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, ++ rbio->pos, BTREE_ITER_SLOTS); ++retry: ++ rbio->bio.bi_status = 0; ++ ++ k = bch2_btree_iter_peek_slot(iter); ++ if (bkey_err(k)) ++ goto err; ++ ++ bkey_on_stack_reassemble(&sk, c, k); ++ k = bkey_i_to_s_c(sk.k); ++ bch2_trans_unlock(&trans); ++ ++ if (!bch2_bkey_matches_ptr(c, k, ++ rbio->pick.ptr, ++ rbio->pos.offset - ++ rbio->pick.crc.offset)) { ++ /* extent we wanted to read no longer exists: */ ++ rbio->hole = true; ++ goto out; ++ } ++ ++ ret = __bch2_read_extent(&trans, rbio, bvec_iter, k, 0, failed, flags); ++ if (ret == READ_RETRY) ++ goto retry; ++ if (ret) ++ goto err; ++out: ++ bch2_rbio_done(rbio); ++ bch2_trans_exit(&trans); ++ bkey_on_stack_exit(&sk, c); ++ return; ++err: ++ rbio->bio.bi_status = BLK_STS_IOERR; ++ goto out; ++} ++ ++static void bch2_read_retry(struct bch_fs *c, struct bch_read_bio *rbio, ++ struct bvec_iter bvec_iter, u64 inode, ++ struct bch_io_failures *failed, unsigned flags) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_on_stack sk; ++ struct bkey_s_c k; ++ int ret; ++ ++ flags &= ~BCH_READ_LAST_FRAGMENT; ++ flags |= BCH_READ_MUST_CLONE; ++ ++ bkey_on_stack_init(&sk); ++ bch2_trans_init(&trans, c, 0, 0); ++retry: ++ bch2_trans_begin(&trans); ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS, ++ POS(inode, bvec_iter.bi_sector), ++ BTREE_ITER_SLOTS, k, ret) { ++ unsigned bytes, sectors, offset_into_extent; ++ ++ bkey_on_stack_reassemble(&sk, c, k); ++ k = bkey_i_to_s_c(sk.k); ++ ++ offset_into_extent = iter->pos.offset - ++ bkey_start_offset(k.k); ++ sectors = k.k->size - offset_into_extent; ++ ++ ret = bch2_read_indirect_extent(&trans, ++ &offset_into_extent, &sk); ++ if (ret) ++ break; ++ ++ sectors = min(sectors, k.k->size - offset_into_extent); ++ ++ bch2_trans_unlock(&trans); ++ ++ bytes = min(sectors, bvec_iter_sectors(bvec_iter)) << 9; ++ swap(bvec_iter.bi_size, bytes); ++ ++ ret = __bch2_read_extent(&trans, rbio, bvec_iter, k, ++ offset_into_extent, failed, flags); ++ switch (ret) { ++ case READ_RETRY: ++ goto retry; ++ case READ_ERR: ++ goto err; ++ }; ++ ++ if (bytes == bvec_iter.bi_size) ++ goto out; ++ ++ swap(bvec_iter.bi_size, bytes); ++ bio_advance_iter(&rbio->bio, &bvec_iter, bytes); ++ } ++ ++ if (ret == -EINTR) ++ goto retry; ++ /* ++ * If we get here, it better have been because there was an error ++ * reading a btree node ++ */ ++ BUG_ON(!ret); ++ __bcache_io_error(c, "btree IO error: %i", ret); ++err: ++ rbio->bio.bi_status = BLK_STS_IOERR; ++out: ++ bch2_trans_exit(&trans); ++ bkey_on_stack_exit(&sk, c); ++ bch2_rbio_done(rbio); ++} ++ ++static void bch2_rbio_retry(struct work_struct *work) ++{ ++ struct bch_read_bio *rbio = ++ container_of(work, struct bch_read_bio, work); ++ struct bch_fs *c = rbio->c; ++ struct bvec_iter iter = rbio->bvec_iter; ++ unsigned flags = rbio->flags; ++ u64 inode = rbio->pos.inode; ++ struct bch_io_failures failed = { .nr = 0 }; ++ ++ trace_read_retry(&rbio->bio); ++ ++ if (rbio->retry == READ_RETRY_AVOID) ++ bch2_mark_io_failure(&failed, &rbio->pick); ++ ++ rbio->bio.bi_status = 0; ++ ++ rbio = bch2_rbio_free(rbio); ++ ++ flags |= BCH_READ_IN_RETRY; ++ flags &= ~BCH_READ_MAY_PROMOTE; ++ ++ if (flags & BCH_READ_NODECODE) ++ bch2_read_retry_nodecode(c, rbio, iter, inode, &failed, flags); ++ else ++ bch2_read_retry(c, rbio, iter, inode, &failed, flags); ++} ++ ++static void bch2_rbio_error(struct bch_read_bio *rbio, int retry, ++ blk_status_t error) ++{ ++ rbio->retry = retry; ++ ++ if (rbio->flags & BCH_READ_IN_RETRY) ++ return; ++ ++ if (retry == READ_ERR) { ++ rbio = bch2_rbio_free(rbio); ++ ++ rbio->bio.bi_status = error; ++ bch2_rbio_done(rbio); ++ } else { ++ bch2_rbio_punt(rbio, bch2_rbio_retry, ++ RBIO_CONTEXT_UNBOUND, system_unbound_wq); ++ } ++} ++ ++static int __bch2_rbio_narrow_crcs(struct btree_trans *trans, ++ struct bch_read_bio *rbio) ++{ ++ struct bch_fs *c = rbio->c; ++ u64 data_offset = rbio->pos.offset - rbio->pick.crc.offset; ++ struct bch_extent_crc_unpacked new_crc; ++ struct btree_iter *iter = NULL; ++ struct bkey_i *new; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ if (crc_is_compressed(rbio->pick.crc)) ++ return 0; ++ ++ iter = bch2_trans_get_iter(trans, BTREE_ID_EXTENTS, rbio->pos, ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT); ++ if ((ret = PTR_ERR_OR_ZERO(iter))) ++ goto out; ++ ++ k = bch2_btree_iter_peek_slot(iter); ++ if ((ret = bkey_err(k))) ++ goto out; ++ ++ /* ++ * going to be temporarily appending another checksum entry: ++ */ ++ new = bch2_trans_kmalloc(trans, bkey_bytes(k.k) + ++ BKEY_EXTENT_U64s_MAX * 8); ++ if ((ret = PTR_ERR_OR_ZERO(new))) ++ goto out; ++ ++ bkey_reassemble(new, k); ++ k = bkey_i_to_s_c(new); ++ ++ if (bversion_cmp(k.k->version, rbio->version) || ++ !bch2_bkey_matches_ptr(c, k, rbio->pick.ptr, data_offset)) ++ goto out; ++ ++ /* Extent was merged? */ ++ if (bkey_start_offset(k.k) < data_offset || ++ k.k->p.offset > data_offset + rbio->pick.crc.uncompressed_size) ++ goto out; ++ ++ if (bch2_rechecksum_bio(c, &rbio->bio, rbio->version, ++ rbio->pick.crc, NULL, &new_crc, ++ bkey_start_offset(k.k) - data_offset, k.k->size, ++ rbio->pick.crc.csum_type)) { ++ bch_err(c, "error verifying existing checksum while narrowing checksum (memory corruption?)"); ++ ret = 0; ++ goto out; ++ } ++ ++ if (!bch2_bkey_narrow_crcs(new, new_crc)) ++ goto out; ++ ++ bch2_trans_update(trans, iter, new, 0); ++out: ++ bch2_trans_iter_put(trans, iter); ++ return ret; ++} ++ ++static noinline void bch2_rbio_narrow_crcs(struct bch_read_bio *rbio) ++{ ++ bch2_trans_do(rbio->c, NULL, NULL, BTREE_INSERT_NOFAIL, ++ __bch2_rbio_narrow_crcs(&trans, rbio)); ++} ++ ++/* Inner part that may run in process context */ ++static void __bch2_read_endio(struct work_struct *work) ++{ ++ struct bch_read_bio *rbio = ++ container_of(work, struct bch_read_bio, work); ++ struct bch_fs *c = rbio->c; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, rbio->pick.ptr.dev); ++ struct bio *src = &rbio->bio; ++ struct bio *dst = &bch2_rbio_parent(rbio)->bio; ++ struct bvec_iter dst_iter = rbio->bvec_iter; ++ struct bch_extent_crc_unpacked crc = rbio->pick.crc; ++ struct nonce nonce = extent_nonce(rbio->version, crc); ++ struct bch_csum csum; ++ ++ /* Reset iterator for checksumming and copying bounced data: */ ++ if (rbio->bounce) { ++ src->bi_iter.bi_size = crc.compressed_size << 9; ++ src->bi_iter.bi_idx = 0; ++ src->bi_iter.bi_bvec_done = 0; ++ } else { ++ src->bi_iter = rbio->bvec_iter; ++ } ++ ++ csum = bch2_checksum_bio(c, crc.csum_type, nonce, src); ++ if (bch2_crc_cmp(csum, rbio->pick.crc.csum)) ++ goto csum_err; ++ ++ if (unlikely(rbio->narrow_crcs)) ++ bch2_rbio_narrow_crcs(rbio); ++ ++ if (rbio->flags & BCH_READ_NODECODE) ++ goto nodecode; ++ ++ /* Adjust crc to point to subset of data we want: */ ++ crc.offset += rbio->offset_into_extent; ++ crc.live_size = bvec_iter_sectors(rbio->bvec_iter); ++ ++ if (crc_is_compressed(crc)) { ++ bch2_encrypt_bio(c, crc.csum_type, nonce, src); ++ if (bch2_bio_uncompress(c, src, dst, dst_iter, crc)) ++ goto decompression_err; ++ } else { ++ /* don't need to decrypt the entire bio: */ ++ nonce = nonce_add(nonce, crc.offset << 9); ++ bio_advance(src, crc.offset << 9); ++ ++ BUG_ON(src->bi_iter.bi_size < dst_iter.bi_size); ++ src->bi_iter.bi_size = dst_iter.bi_size; ++ ++ bch2_encrypt_bio(c, crc.csum_type, nonce, src); ++ ++ if (rbio->bounce) { ++ struct bvec_iter src_iter = src->bi_iter; ++ bio_copy_data_iter(dst, &dst_iter, src, &src_iter); ++ } ++ } ++ ++ if (rbio->promote) { ++ /* ++ * Re encrypt data we decrypted, so it's consistent with ++ * rbio->crc: ++ */ ++ bch2_encrypt_bio(c, crc.csum_type, nonce, src); ++ promote_start(rbio->promote, rbio); ++ rbio->promote = NULL; ++ } ++nodecode: ++ if (likely(!(rbio->flags & BCH_READ_IN_RETRY))) { ++ rbio = bch2_rbio_free(rbio); ++ bch2_rbio_done(rbio); ++ } ++ return; ++csum_err: ++ /* ++ * Checksum error: if the bio wasn't bounced, we may have been ++ * reading into buffers owned by userspace (that userspace can ++ * scribble over) - retry the read, bouncing it this time: ++ */ ++ if (!rbio->bounce && (rbio->flags & BCH_READ_USER_MAPPED)) { ++ rbio->flags |= BCH_READ_MUST_BOUNCE; ++ bch2_rbio_error(rbio, READ_RETRY, BLK_STS_IOERR); ++ return; ++ } ++ ++ bch2_dev_io_error(ca, ++ "data checksum error, inode %llu offset %llu: expected %0llx:%0llx got %0llx:%0llx (type %u)", ++ rbio->pos.inode, (u64) rbio->bvec_iter.bi_sector, ++ rbio->pick.crc.csum.hi, rbio->pick.crc.csum.lo, ++ csum.hi, csum.lo, crc.csum_type); ++ bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR); ++ return; ++decompression_err: ++ __bcache_io_error(c, "decompression error, inode %llu offset %llu", ++ rbio->pos.inode, ++ (u64) rbio->bvec_iter.bi_sector); ++ bch2_rbio_error(rbio, READ_ERR, BLK_STS_IOERR); ++ return; ++} ++ ++static void bch2_read_endio(struct bio *bio) ++{ ++ struct bch_read_bio *rbio = ++ container_of(bio, struct bch_read_bio, bio); ++ struct bch_fs *c = rbio->c; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, rbio->pick.ptr.dev); ++ struct workqueue_struct *wq = NULL; ++ enum rbio_context context = RBIO_CONTEXT_NULL; ++ ++ if (rbio->have_ioref) { ++ bch2_latency_acct(ca, rbio->submit_time, READ); ++ percpu_ref_put(&ca->io_ref); ++ } ++ ++ if (!rbio->split) ++ rbio->bio.bi_end_io = rbio->end_io; ++ ++ if (bch2_dev_io_err_on(bio->bi_status, ca, "data read; %s", ++ bch2_blk_status_to_str(bio->bi_status))) { ++ bch2_rbio_error(rbio, READ_RETRY_AVOID, bio->bi_status); ++ return; ++ } ++ ++ if (rbio->pick.ptr.cached && ++ (((rbio->flags & BCH_READ_RETRY_IF_STALE) && race_fault()) || ++ ptr_stale(ca, &rbio->pick.ptr))) { ++ atomic_long_inc(&c->read_realloc_races); ++ ++ if (rbio->flags & BCH_READ_RETRY_IF_STALE) ++ bch2_rbio_error(rbio, READ_RETRY, BLK_STS_AGAIN); ++ else ++ bch2_rbio_error(rbio, READ_ERR, BLK_STS_AGAIN); ++ return; ++ } ++ ++ if (rbio->narrow_crcs || ++ crc_is_compressed(rbio->pick.crc) || ++ bch2_csum_type_is_encryption(rbio->pick.crc.csum_type)) ++ context = RBIO_CONTEXT_UNBOUND, wq = system_unbound_wq; ++ else if (rbio->pick.crc.csum_type) ++ context = RBIO_CONTEXT_HIGHPRI, wq = system_highpri_wq; ++ ++ bch2_rbio_punt(rbio, __bch2_read_endio, context, wq); ++} ++ ++int __bch2_read_indirect_extent(struct btree_trans *trans, ++ unsigned *offset_into_extent, ++ struct bkey_on_stack *orig_k) ++{ ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ u64 reflink_offset; ++ int ret; ++ ++ reflink_offset = le64_to_cpu(bkey_i_to_reflink_p(orig_k->k)->v.idx) + ++ *offset_into_extent; ++ ++ iter = bch2_trans_get_iter(trans, BTREE_ID_REFLINK, ++ POS(0, reflink_offset), ++ BTREE_ITER_SLOTS); ++ ret = PTR_ERR_OR_ZERO(iter); ++ if (ret) ++ return ret; ++ ++ k = bch2_btree_iter_peek_slot(iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ if (k.k->type != KEY_TYPE_reflink_v) { ++ __bcache_io_error(trans->c, ++ "pointer to nonexistent indirect extent"); ++ ret = -EIO; ++ goto err; ++ } ++ ++ *offset_into_extent = iter->pos.offset - bkey_start_offset(k.k); ++ bkey_on_stack_reassemble(orig_k, trans->c, k); ++err: ++ bch2_trans_iter_put(trans, iter); ++ return ret; ++} ++ ++int __bch2_read_extent(struct btree_trans *trans, struct bch_read_bio *orig, ++ struct bvec_iter iter, struct bkey_s_c k, ++ unsigned offset_into_extent, ++ struct bch_io_failures *failed, unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct extent_ptr_decoded pick; ++ struct bch_read_bio *rbio = NULL; ++ struct bch_dev *ca; ++ struct promote_op *promote = NULL; ++ bool bounce = false, read_full = false, narrow_crcs = false; ++ struct bpos pos = bkey_start_pos(k.k); ++ int pick_ret; ++ ++ if (k.k->type == KEY_TYPE_inline_data) { ++ struct bkey_s_c_inline_data d = bkey_s_c_to_inline_data(k); ++ unsigned bytes = min_t(unsigned, iter.bi_size, ++ bkey_val_bytes(d.k)); ++ ++ swap(iter.bi_size, bytes); ++ memcpy_to_bio(&orig->bio, iter, d.v->data); ++ swap(iter.bi_size, bytes); ++ bio_advance_iter(&orig->bio, &iter, bytes); ++ zero_fill_bio_iter(&orig->bio, iter); ++ goto out_read_done; ++ } ++ ++ pick_ret = bch2_bkey_pick_read_device(c, k, failed, &pick); ++ ++ /* hole or reservation - just zero fill: */ ++ if (!pick_ret) ++ goto hole; ++ ++ if (pick_ret < 0) { ++ __bcache_io_error(c, "no device to read from"); ++ goto err; ++ } ++ ++ if (pick_ret > 0) ++ ca = bch_dev_bkey_exists(c, pick.ptr.dev); ++ ++ if (flags & BCH_READ_NODECODE) { ++ /* ++ * can happen if we retry, and the extent we were going to read ++ * has been merged in the meantime: ++ */ ++ if (pick.crc.compressed_size > orig->bio.bi_vcnt * PAGE_SECTORS) ++ goto hole; ++ ++ iter.bi_size = pick.crc.compressed_size << 9; ++ goto get_bio; ++ } ++ ++ if (!(flags & BCH_READ_LAST_FRAGMENT) || ++ bio_flagged(&orig->bio, BIO_CHAIN)) ++ flags |= BCH_READ_MUST_CLONE; ++ ++ narrow_crcs = !(flags & BCH_READ_IN_RETRY) && ++ bch2_can_narrow_extent_crcs(k, pick.crc); ++ ++ if (narrow_crcs && (flags & BCH_READ_USER_MAPPED)) ++ flags |= BCH_READ_MUST_BOUNCE; ++ ++ EBUG_ON(offset_into_extent + bvec_iter_sectors(iter) > k.k->size); ++ ++ if (crc_is_compressed(pick.crc) || ++ (pick.crc.csum_type != BCH_CSUM_NONE && ++ (bvec_iter_sectors(iter) != pick.crc.uncompressed_size || ++ (bch2_csum_type_is_encryption(pick.crc.csum_type) && ++ (flags & BCH_READ_USER_MAPPED)) || ++ (flags & BCH_READ_MUST_BOUNCE)))) { ++ read_full = true; ++ bounce = true; ++ } ++ ++ if (orig->opts.promote_target) ++ promote = promote_alloc(c, iter, k, &pick, orig->opts, flags, ++ &rbio, &bounce, &read_full); ++ ++ if (!read_full) { ++ EBUG_ON(crc_is_compressed(pick.crc)); ++ EBUG_ON(pick.crc.csum_type && ++ (bvec_iter_sectors(iter) != pick.crc.uncompressed_size || ++ bvec_iter_sectors(iter) != pick.crc.live_size || ++ pick.crc.offset || ++ offset_into_extent)); ++ ++ pos.offset += offset_into_extent; ++ pick.ptr.offset += pick.crc.offset + ++ offset_into_extent; ++ offset_into_extent = 0; ++ pick.crc.compressed_size = bvec_iter_sectors(iter); ++ pick.crc.uncompressed_size = bvec_iter_sectors(iter); ++ pick.crc.offset = 0; ++ pick.crc.live_size = bvec_iter_sectors(iter); ++ offset_into_extent = 0; ++ } ++get_bio: ++ if (rbio) { ++ /* ++ * promote already allocated bounce rbio: ++ * promote needs to allocate a bio big enough for uncompressing ++ * data in the write path, but we're not going to use it all ++ * here: ++ */ ++ EBUG_ON(rbio->bio.bi_iter.bi_size < ++ pick.crc.compressed_size << 9); ++ rbio->bio.bi_iter.bi_size = ++ pick.crc.compressed_size << 9; ++ } else if (bounce) { ++ unsigned sectors = pick.crc.compressed_size; ++ ++ rbio = rbio_init(bio_alloc_bioset(GFP_NOIO, ++ DIV_ROUND_UP(sectors, PAGE_SECTORS), ++ &c->bio_read_split), ++ orig->opts); ++ ++ bch2_bio_alloc_pages_pool(c, &rbio->bio, sectors << 9); ++ rbio->bounce = true; ++ rbio->split = true; ++ } else if (flags & BCH_READ_MUST_CLONE) { ++ /* ++ * Have to clone if there were any splits, due to error ++ * reporting issues (if a split errored, and retrying didn't ++ * work, when it reports the error to its parent (us) we don't ++ * know if the error was from our bio, and we should retry, or ++ * from the whole bio, in which case we don't want to retry and ++ * lose the error) ++ */ ++ rbio = rbio_init(bio_clone_fast(&orig->bio, GFP_NOIO, ++ &c->bio_read_split), ++ orig->opts); ++ rbio->bio.bi_iter = iter; ++ rbio->split = true; ++ } else { ++ rbio = orig; ++ rbio->bio.bi_iter = iter; ++ EBUG_ON(bio_flagged(&rbio->bio, BIO_CHAIN)); ++ } ++ ++ EBUG_ON(bio_sectors(&rbio->bio) != pick.crc.compressed_size); ++ ++ rbio->c = c; ++ rbio->submit_time = local_clock(); ++ if (rbio->split) ++ rbio->parent = orig; ++ else ++ rbio->end_io = orig->bio.bi_end_io; ++ rbio->bvec_iter = iter; ++ rbio->offset_into_extent= offset_into_extent; ++ rbio->flags = flags; ++ rbio->have_ioref = pick_ret > 0 && bch2_dev_get_ioref(ca, READ); ++ rbio->narrow_crcs = narrow_crcs; ++ rbio->hole = 0; ++ rbio->retry = 0; ++ rbio->context = 0; ++ /* XXX: only initialize this if needed */ ++ rbio->devs_have = bch2_bkey_devs(k); ++ rbio->pick = pick; ++ rbio->pos = pos; ++ rbio->version = k.k->version; ++ rbio->promote = promote; ++ INIT_WORK(&rbio->work, NULL); ++ ++ rbio->bio.bi_opf = orig->bio.bi_opf; ++ rbio->bio.bi_iter.bi_sector = pick.ptr.offset; ++ rbio->bio.bi_end_io = bch2_read_endio; ++ ++ if (rbio->bounce) ++ trace_read_bounce(&rbio->bio); ++ ++ bch2_increment_clock(c, bio_sectors(&rbio->bio), READ); ++ ++ if (pick.ptr.cached) ++ bch2_bucket_io_time_reset(trans, pick.ptr.dev, ++ PTR_BUCKET_NR(ca, &pick.ptr), READ); ++ ++ if (!(flags & (BCH_READ_IN_RETRY|BCH_READ_LAST_FRAGMENT))) { ++ bio_inc_remaining(&orig->bio); ++ trace_read_split(&orig->bio); ++ } ++ ++ if (!rbio->pick.idx) { ++ if (!rbio->have_ioref) { ++ __bcache_io_error(c, "no device to read from"); ++ bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR); ++ goto out; ++ } ++ ++ this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_user], ++ bio_sectors(&rbio->bio)); ++ bio_set_dev(&rbio->bio, ca->disk_sb.bdev); ++ ++ if (likely(!(flags & BCH_READ_IN_RETRY))) ++ submit_bio(&rbio->bio); ++ else ++ submit_bio_wait(&rbio->bio); ++ } else { ++ /* Attempting reconstruct read: */ ++ if (bch2_ec_read_extent(c, rbio)) { ++ bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR); ++ goto out; ++ } ++ ++ if (likely(!(flags & BCH_READ_IN_RETRY))) ++ bio_endio(&rbio->bio); ++ } ++out: ++ if (likely(!(flags & BCH_READ_IN_RETRY))) { ++ return 0; ++ } else { ++ int ret; ++ ++ rbio->context = RBIO_CONTEXT_UNBOUND; ++ bch2_read_endio(&rbio->bio); ++ ++ ret = rbio->retry; ++ rbio = bch2_rbio_free(rbio); ++ ++ if (ret == READ_RETRY_AVOID) { ++ bch2_mark_io_failure(failed, &pick); ++ ret = READ_RETRY; ++ } ++ ++ return ret; ++ } ++ ++err: ++ if (flags & BCH_READ_IN_RETRY) ++ return READ_ERR; ++ ++ orig->bio.bi_status = BLK_STS_IOERR; ++ goto out_read_done; ++ ++hole: ++ /* ++ * won't normally happen in the BCH_READ_NODECODE ++ * (bch2_move_extent()) path, but if we retry and the extent we wanted ++ * to read no longer exists we have to signal that: ++ */ ++ if (flags & BCH_READ_NODECODE) ++ orig->hole = true; ++ ++ zero_fill_bio_iter(&orig->bio, iter); ++out_read_done: ++ if (flags & BCH_READ_LAST_FRAGMENT) ++ bch2_rbio_done(orig); ++ return 0; ++} ++ ++void bch2_read(struct bch_fs *c, struct bch_read_bio *rbio, u64 inode) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_on_stack sk; ++ struct bkey_s_c k; ++ unsigned flags = BCH_READ_RETRY_IF_STALE| ++ BCH_READ_MAY_PROMOTE| ++ BCH_READ_USER_MAPPED; ++ int ret; ++ ++ BUG_ON(rbio->_state); ++ BUG_ON(flags & BCH_READ_NODECODE); ++ BUG_ON(flags & BCH_READ_IN_RETRY); ++ ++ rbio->c = c; ++ rbio->start_time = local_clock(); ++ ++ bkey_on_stack_init(&sk); ++ bch2_trans_init(&trans, c, 0, 0); ++retry: ++ bch2_trans_begin(&trans); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, ++ POS(inode, rbio->bio.bi_iter.bi_sector), ++ BTREE_ITER_SLOTS); ++ while (1) { ++ unsigned bytes, sectors, offset_into_extent; ++ ++ bch2_btree_iter_set_pos(iter, ++ POS(inode, rbio->bio.bi_iter.bi_sector)); ++ ++ k = bch2_btree_iter_peek_slot(iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ offset_into_extent = iter->pos.offset - ++ bkey_start_offset(k.k); ++ sectors = k.k->size - offset_into_extent; ++ ++ bkey_on_stack_reassemble(&sk, c, k); ++ k = bkey_i_to_s_c(sk.k); ++ ++ ret = bch2_read_indirect_extent(&trans, ++ &offset_into_extent, &sk); ++ if (ret) ++ goto err; ++ ++ /* ++ * With indirect extents, the amount of data to read is the min ++ * of the original extent and the indirect extent: ++ */ ++ sectors = min(sectors, k.k->size - offset_into_extent); ++ ++ /* ++ * Unlock the iterator while the btree node's lock is still in ++ * cache, before doing the IO: ++ */ ++ bch2_trans_unlock(&trans); ++ ++ bytes = min(sectors, bio_sectors(&rbio->bio)) << 9; ++ swap(rbio->bio.bi_iter.bi_size, bytes); ++ ++ if (rbio->bio.bi_iter.bi_size == bytes) ++ flags |= BCH_READ_LAST_FRAGMENT; ++ ++ bch2_read_extent(&trans, rbio, k, offset_into_extent, flags); ++ ++ if (flags & BCH_READ_LAST_FRAGMENT) ++ break; ++ ++ swap(rbio->bio.bi_iter.bi_size, bytes); ++ bio_advance(&rbio->bio, bytes); ++ } ++out: ++ bch2_trans_exit(&trans); ++ bkey_on_stack_exit(&sk, c); ++ return; ++err: ++ if (ret == -EINTR) ++ goto retry; ++ ++ bcache_io_error(c, &rbio->bio, "btree IO error: %i", ret); ++ bch2_rbio_done(rbio); ++ goto out; ++} ++ ++void bch2_fs_io_exit(struct bch_fs *c) ++{ ++ if (c->promote_table.tbl) ++ rhashtable_destroy(&c->promote_table); ++ mempool_exit(&c->bio_bounce_pages); ++ bioset_exit(&c->bio_write); ++ bioset_exit(&c->bio_read_split); ++ bioset_exit(&c->bio_read); ++} ++ ++int bch2_fs_io_init(struct bch_fs *c) ++{ ++ if (bioset_init(&c->bio_read, 1, offsetof(struct bch_read_bio, bio), ++ BIOSET_NEED_BVECS) || ++ bioset_init(&c->bio_read_split, 1, offsetof(struct bch_read_bio, bio), ++ BIOSET_NEED_BVECS) || ++ bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio), ++ BIOSET_NEED_BVECS) || ++ mempool_init_page_pool(&c->bio_bounce_pages, ++ max_t(unsigned, ++ c->opts.btree_node_size, ++ c->sb.encoded_extent_max) / ++ PAGE_SECTORS, 0) || ++ rhashtable_init(&c->promote_table, &bch_promote_params)) ++ return -ENOMEM; ++ ++ return 0; ++} +diff --git a/fs/bcachefs/io.h b/fs/bcachefs/io.h +new file mode 100644 +index 000000000000..e6aac594f3e6 +--- /dev/null ++++ b/fs/bcachefs/io.h +@@ -0,0 +1,169 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_IO_H ++#define _BCACHEFS_IO_H ++ ++#include "checksum.h" ++#include "bkey_on_stack.h" ++#include "io_types.h" ++ ++#define to_wbio(_bio) \ ++ container_of((_bio), struct bch_write_bio, bio) ++ ++#define to_rbio(_bio) \ ++ container_of((_bio), struct bch_read_bio, bio) ++ ++void bch2_bio_free_pages_pool(struct bch_fs *, struct bio *); ++void bch2_bio_alloc_pages_pool(struct bch_fs *, struct bio *, size_t); ++ ++void bch2_latency_acct(struct bch_dev *, u64, int); ++ ++void bch2_submit_wbio_replicas(struct bch_write_bio *, struct bch_fs *, ++ enum bch_data_type, const struct bkey_i *); ++ ++#define BLK_STS_REMOVED ((__force blk_status_t)128) ++ ++const char *bch2_blk_status_to_str(blk_status_t); ++ ++enum bch_write_flags { ++ BCH_WRITE_ALLOC_NOWAIT = (1 << 0), ++ BCH_WRITE_CACHED = (1 << 1), ++ BCH_WRITE_FLUSH = (1 << 2), ++ BCH_WRITE_DATA_ENCODED = (1 << 3), ++ BCH_WRITE_PAGES_STABLE = (1 << 4), ++ BCH_WRITE_PAGES_OWNED = (1 << 5), ++ BCH_WRITE_ONLY_SPECIFIED_DEVS = (1 << 6), ++ BCH_WRITE_WROTE_DATA_INLINE = (1 << 7), ++ BCH_WRITE_FROM_INTERNAL = (1 << 8), ++ ++ /* Internal: */ ++ BCH_WRITE_JOURNAL_SEQ_PTR = (1 << 9), ++ BCH_WRITE_SKIP_CLOSURE_PUT = (1 << 10), ++ BCH_WRITE_DONE = (1 << 11), ++}; ++ ++static inline u64 *op_journal_seq(struct bch_write_op *op) ++{ ++ return (op->flags & BCH_WRITE_JOURNAL_SEQ_PTR) ++ ? op->journal_seq_p : &op->journal_seq; ++} ++ ++static inline void op_journal_seq_set(struct bch_write_op *op, u64 *journal_seq) ++{ ++ op->journal_seq_p = journal_seq; ++ op->flags |= BCH_WRITE_JOURNAL_SEQ_PTR; ++} ++ ++static inline struct workqueue_struct *index_update_wq(struct bch_write_op *op) ++{ ++ return op->alloc_reserve == RESERVE_MOVINGGC ++ ? op->c->copygc_wq ++ : op->c->wq; ++} ++ ++int bch2_extent_update(struct btree_trans *, struct btree_iter *, ++ struct bkey_i *, struct disk_reservation *, ++ u64 *, u64, s64 *); ++int bch2_fpunch_at(struct btree_trans *, struct btree_iter *, ++ struct bpos, u64 *, s64 *); ++int bch2_fpunch(struct bch_fs *c, u64, u64, u64, u64 *, s64 *); ++ ++int bch2_write_index_default(struct bch_write_op *); ++ ++static inline void bch2_write_op_init(struct bch_write_op *op, struct bch_fs *c, ++ struct bch_io_opts opts) ++{ ++ op->c = c; ++ op->end_io = NULL; ++ op->flags = 0; ++ op->written = 0; ++ op->error = 0; ++ op->csum_type = bch2_data_checksum_type(c, opts.data_checksum); ++ op->compression_type = bch2_compression_opt_to_type[opts.compression]; ++ op->nr_replicas = 0; ++ op->nr_replicas_required = c->opts.data_replicas_required; ++ op->alloc_reserve = RESERVE_NONE; ++ op->incompressible = 0; ++ op->open_buckets.nr = 0; ++ op->devs_have.nr = 0; ++ op->target = 0; ++ op->opts = opts; ++ op->pos = POS_MAX; ++ op->version = ZERO_VERSION; ++ op->write_point = (struct write_point_specifier) { 0 }; ++ op->res = (struct disk_reservation) { 0 }; ++ op->journal_seq = 0; ++ op->new_i_size = U64_MAX; ++ op->i_sectors_delta = 0; ++ op->index_update_fn = bch2_write_index_default; ++} ++ ++void bch2_write(struct closure *); ++ ++static inline struct bch_write_bio *wbio_init(struct bio *bio) ++{ ++ struct bch_write_bio *wbio = to_wbio(bio); ++ ++ memset(wbio, 0, offsetof(struct bch_write_bio, bio)); ++ return wbio; ++} ++ ++struct bch_devs_mask; ++struct cache_promote_op; ++struct extent_ptr_decoded; ++ ++int __bch2_read_indirect_extent(struct btree_trans *, unsigned *, ++ struct bkey_on_stack *); ++ ++static inline int bch2_read_indirect_extent(struct btree_trans *trans, ++ unsigned *offset_into_extent, ++ struct bkey_on_stack *k) ++{ ++ return k->k->k.type == KEY_TYPE_reflink_p ++ ? __bch2_read_indirect_extent(trans, offset_into_extent, k) ++ : 0; ++} ++ ++enum bch_read_flags { ++ BCH_READ_RETRY_IF_STALE = 1 << 0, ++ BCH_READ_MAY_PROMOTE = 1 << 1, ++ BCH_READ_USER_MAPPED = 1 << 2, ++ BCH_READ_NODECODE = 1 << 3, ++ BCH_READ_LAST_FRAGMENT = 1 << 4, ++ ++ /* internal: */ ++ BCH_READ_MUST_BOUNCE = 1 << 5, ++ BCH_READ_MUST_CLONE = 1 << 6, ++ BCH_READ_IN_RETRY = 1 << 7, ++}; ++ ++int __bch2_read_extent(struct btree_trans *, struct bch_read_bio *, ++ struct bvec_iter, struct bkey_s_c, unsigned, ++ struct bch_io_failures *, unsigned); ++ ++static inline void bch2_read_extent(struct btree_trans *trans, ++ struct bch_read_bio *rbio, ++ struct bkey_s_c k, ++ unsigned offset_into_extent, ++ unsigned flags) ++{ ++ __bch2_read_extent(trans, rbio, rbio->bio.bi_iter, k, ++ offset_into_extent, NULL, flags); ++} ++ ++void bch2_read(struct bch_fs *, struct bch_read_bio *, u64); ++ ++static inline struct bch_read_bio *rbio_init(struct bio *bio, ++ struct bch_io_opts opts) ++{ ++ struct bch_read_bio *rbio = to_rbio(bio); ++ ++ rbio->_state = 0; ++ rbio->promote = NULL; ++ rbio->opts = opts; ++ return rbio; ++} ++ ++void bch2_fs_io_exit(struct bch_fs *); ++int bch2_fs_io_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_IO_H */ +diff --git a/fs/bcachefs/io_types.h b/fs/bcachefs/io_types.h +new file mode 100644 +index 000000000000..b23727d212b9 +--- /dev/null ++++ b/fs/bcachefs/io_types.h +@@ -0,0 +1,148 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_IO_TYPES_H ++#define _BCACHEFS_IO_TYPES_H ++ ++#include "alloc_types.h" ++#include "btree_types.h" ++#include "buckets_types.h" ++#include "extents_types.h" ++#include "keylist_types.h" ++#include "opts.h" ++#include "super_types.h" ++ ++#include ++#include ++ ++struct bch_read_bio { ++ struct bch_fs *c; ++ u64 start_time; ++ u64 submit_time; ++ ++ /* ++ * Reads will often have to be split, and if the extent being read from ++ * was checksummed or compressed we'll also have to allocate bounce ++ * buffers and copy the data back into the original bio. ++ * ++ * If we didn't have to split, we have to save and restore the original ++ * bi_end_io - @split below indicates which: ++ */ ++ union { ++ struct bch_read_bio *parent; ++ bio_end_io_t *end_io; ++ }; ++ ++ /* ++ * Saved copy of bio->bi_iter, from submission time - allows us to ++ * resubmit on IO error, and also to copy data back to the original bio ++ * when we're bouncing: ++ */ ++ struct bvec_iter bvec_iter; ++ ++ unsigned offset_into_extent; ++ ++ u16 flags; ++ union { ++ struct { ++ u16 bounce:1, ++ split:1, ++ kmalloc:1, ++ have_ioref:1, ++ narrow_crcs:1, ++ hole:1, ++ retry:2, ++ context:2; ++ }; ++ u16 _state; ++ }; ++ ++ struct bch_devs_list devs_have; ++ ++ struct extent_ptr_decoded pick; ++ /* start pos of data we read (may not be pos of data we want) */ ++ struct bpos pos; ++ struct bversion version; ++ ++ struct promote_op *promote; ++ ++ struct bch_io_opts opts; ++ ++ struct work_struct work; ++ ++ struct bio bio; ++}; ++ ++struct bch_write_bio { ++ struct bch_fs *c; ++ struct bch_write_bio *parent; ++ ++ u64 submit_time; ++ ++ struct bch_devs_list failed; ++ u8 dev; ++ ++ unsigned split:1, ++ bounce:1, ++ put_bio:1, ++ have_ioref:1, ++ used_mempool:1; ++ ++ struct bio bio; ++}; ++ ++struct bch_write_op { ++ struct closure cl; ++ struct bch_fs *c; ++ void (*end_io)(struct bch_write_op *); ++ u64 start_time; ++ ++ unsigned written; /* sectors */ ++ u16 flags; ++ s16 error; /* dio write path expects it to hold -ERESTARTSYS... */ ++ ++ unsigned csum_type:4; ++ unsigned compression_type:4; ++ unsigned nr_replicas:4; ++ unsigned nr_replicas_required:4; ++ unsigned alloc_reserve:3; ++ unsigned incompressible:1; ++ ++ struct bch_devs_list devs_have; ++ u16 target; ++ u16 nonce; ++ struct bch_io_opts opts; ++ ++ struct bpos pos; ++ struct bversion version; ++ ++ /* For BCH_WRITE_DATA_ENCODED: */ ++ struct bch_extent_crc_unpacked crc; ++ ++ struct write_point_specifier write_point; ++ ++ struct disk_reservation res; ++ ++ struct open_buckets open_buckets; ++ ++ /* ++ * If caller wants to flush but hasn't passed us a journal_seq ptr, we ++ * still need to stash the journal_seq somewhere: ++ */ ++ union { ++ u64 *journal_seq_p; ++ u64 journal_seq; ++ }; ++ u64 new_i_size; ++ s64 i_sectors_delta; ++ ++ int (*index_update_fn)(struct bch_write_op *); ++ ++ struct bch_devs_mask failed; ++ ++ struct keylist insert_keys; ++ u64 inline_keys[BKEY_EXTENT_U64s_MAX * 2]; ++ ++ /* Must be last: */ ++ struct bch_write_bio wbio; ++}; ++ ++#endif /* _BCACHEFS_IO_TYPES_H */ +diff --git a/fs/bcachefs/journal.c b/fs/bcachefs/journal.c +new file mode 100644 +index 000000000000..b8b719902c63 +--- /dev/null ++++ b/fs/bcachefs/journal.c +@@ -0,0 +1,1263 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * bcachefs journalling code, for btree insertions ++ * ++ * Copyright 2012 Google, Inc. ++ */ ++ ++#include "bcachefs.h" ++#include "alloc_foreground.h" ++#include "bkey_methods.h" ++#include "btree_gc.h" ++#include "buckets.h" ++#include "journal.h" ++#include "journal_io.h" ++#include "journal_reclaim.h" ++#include "journal_seq_blacklist.h" ++#include "super-io.h" ++ ++#include ++ ++static inline struct journal_buf *journal_seq_to_buf(struct journal *, u64); ++ ++static bool __journal_entry_is_open(union journal_res_state state) ++{ ++ return state.cur_entry_offset < JOURNAL_ENTRY_CLOSED_VAL; ++} ++ ++static bool journal_entry_is_open(struct journal *j) ++{ ++ return __journal_entry_is_open(j->reservations); ++} ++ ++static void journal_pin_new_entry(struct journal *j, int count) ++{ ++ struct journal_entry_pin_list *p; ++ ++ /* ++ * The fifo_push() needs to happen at the same time as j->seq is ++ * incremented for journal_last_seq() to be calculated correctly ++ */ ++ atomic64_inc(&j->seq); ++ p = fifo_push_ref(&j->pin); ++ ++ INIT_LIST_HEAD(&p->list); ++ INIT_LIST_HEAD(&p->flushed); ++ atomic_set(&p->count, count); ++ p->devs.nr = 0; ++} ++ ++static void bch2_journal_buf_init(struct journal *j) ++{ ++ struct journal_buf *buf = journal_cur_buf(j); ++ ++ memset(buf->has_inode, 0, sizeof(buf->has_inode)); ++ ++ memset(buf->data, 0, sizeof(*buf->data)); ++ buf->data->seq = cpu_to_le64(journal_cur_seq(j)); ++ buf->data->u64s = 0; ++} ++ ++void bch2_journal_halt(struct journal *j) ++{ ++ union journal_res_state old, new; ++ u64 v = atomic64_read(&j->reservations.counter); ++ ++ do { ++ old.v = new.v = v; ++ if (old.cur_entry_offset == JOURNAL_ENTRY_ERROR_VAL) ++ return; ++ ++ new.cur_entry_offset = JOURNAL_ENTRY_ERROR_VAL; ++ } while ((v = atomic64_cmpxchg(&j->reservations.counter, ++ old.v, new.v)) != old.v); ++ ++ journal_wake(j); ++ closure_wake_up(&journal_cur_buf(j)->wait); ++} ++ ++/* journal entry close/open: */ ++ ++void __bch2_journal_buf_put(struct journal *j, bool need_write_just_set) ++{ ++ if (!need_write_just_set && ++ test_bit(JOURNAL_NEED_WRITE, &j->flags)) ++ bch2_time_stats_update(j->delay_time, ++ j->need_write_time); ++ ++ clear_bit(JOURNAL_NEED_WRITE, &j->flags); ++ ++ closure_call(&j->io, bch2_journal_write, system_highpri_wq, NULL); ++} ++ ++/* ++ * Returns true if journal entry is now closed: ++ */ ++static bool __journal_entry_close(struct journal *j) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct journal_buf *buf = journal_cur_buf(j); ++ union journal_res_state old, new; ++ u64 v = atomic64_read(&j->reservations.counter); ++ bool set_need_write = false; ++ unsigned sectors; ++ ++ lockdep_assert_held(&j->lock); ++ ++ do { ++ old.v = new.v = v; ++ if (old.cur_entry_offset == JOURNAL_ENTRY_CLOSED_VAL) ++ return true; ++ ++ if (old.cur_entry_offset == JOURNAL_ENTRY_ERROR_VAL) { ++ /* this entry will never be written: */ ++ closure_wake_up(&buf->wait); ++ return true; ++ } ++ ++ if (!test_bit(JOURNAL_NEED_WRITE, &j->flags)) { ++ set_bit(JOURNAL_NEED_WRITE, &j->flags); ++ j->need_write_time = local_clock(); ++ set_need_write = true; ++ } ++ ++ if (new.prev_buf_unwritten) ++ return false; ++ ++ new.cur_entry_offset = JOURNAL_ENTRY_CLOSED_VAL; ++ new.idx++; ++ new.prev_buf_unwritten = 1; ++ ++ BUG_ON(journal_state_count(new, new.idx)); ++ } while ((v = atomic64_cmpxchg(&j->reservations.counter, ++ old.v, new.v)) != old.v); ++ ++ buf->data->u64s = cpu_to_le32(old.cur_entry_offset); ++ ++ sectors = vstruct_blocks_plus(buf->data, c->block_bits, ++ buf->u64s_reserved) << c->block_bits; ++ BUG_ON(sectors > buf->sectors); ++ buf->sectors = sectors; ++ ++ bkey_extent_init(&buf->key); ++ ++ /* ++ * We have to set last_seq here, _before_ opening a new journal entry: ++ * ++ * A threads may replace an old pin with a new pin on their current ++ * journal reservation - the expectation being that the journal will ++ * contain either what the old pin protected or what the new pin ++ * protects. ++ * ++ * After the old pin is dropped journal_last_seq() won't include the old ++ * pin, so we can only write the updated last_seq on the entry that ++ * contains whatever the new pin protects. ++ * ++ * Restated, we can _not_ update last_seq for a given entry if there ++ * could be a newer entry open with reservations/pins that have been ++ * taken against it. ++ * ++ * Hence, we want update/set last_seq on the current journal entry right ++ * before we open a new one: ++ */ ++ buf->data->last_seq = cpu_to_le64(journal_last_seq(j)); ++ ++ if (journal_entry_empty(buf->data)) ++ clear_bit(JOURNAL_NOT_EMPTY, &j->flags); ++ else ++ set_bit(JOURNAL_NOT_EMPTY, &j->flags); ++ ++ journal_pin_new_entry(j, 1); ++ ++ bch2_journal_buf_init(j); ++ ++ cancel_delayed_work(&j->write_work); ++ ++ bch2_journal_space_available(j); ++ ++ bch2_journal_buf_put(j, old.idx, set_need_write); ++ return true; ++} ++ ++static bool journal_entry_close(struct journal *j) ++{ ++ bool ret; ++ ++ spin_lock(&j->lock); ++ ret = __journal_entry_close(j); ++ spin_unlock(&j->lock); ++ ++ return ret; ++} ++ ++/* ++ * should _only_ called from journal_res_get() - when we actually want a ++ * journal reservation - journal entry is open means journal is dirty: ++ * ++ * returns: ++ * 0: success ++ * -ENOSPC: journal currently full, must invoke reclaim ++ * -EAGAIN: journal blocked, must wait ++ * -EROFS: insufficient rw devices or journal error ++ */ ++static int journal_entry_open(struct journal *j) ++{ ++ struct journal_buf *buf = journal_cur_buf(j); ++ union journal_res_state old, new; ++ int u64s; ++ u64 v; ++ ++ lockdep_assert_held(&j->lock); ++ BUG_ON(journal_entry_is_open(j)); ++ ++ if (j->blocked) ++ return -EAGAIN; ++ ++ if (j->cur_entry_error) ++ return j->cur_entry_error; ++ ++ BUG_ON(!j->cur_entry_sectors); ++ ++ buf->u64s_reserved = j->entry_u64s_reserved; ++ buf->disk_sectors = j->cur_entry_sectors; ++ buf->sectors = min(buf->disk_sectors, buf->buf_size >> 9); ++ ++ u64s = (int) (buf->sectors << 9) / sizeof(u64) - ++ journal_entry_overhead(j); ++ u64s = clamp_t(int, u64s, 0, JOURNAL_ENTRY_CLOSED_VAL - 1); ++ ++ if (u64s <= le32_to_cpu(buf->data->u64s)) ++ return -ENOSPC; ++ ++ /* ++ * Must be set before marking the journal entry as open: ++ */ ++ j->cur_entry_u64s = u64s; ++ ++ v = atomic64_read(&j->reservations.counter); ++ do { ++ old.v = new.v = v; ++ ++ if (old.cur_entry_offset == JOURNAL_ENTRY_ERROR_VAL) ++ return -EROFS; ++ ++ /* Handle any already added entries */ ++ new.cur_entry_offset = le32_to_cpu(buf->data->u64s); ++ ++ EBUG_ON(journal_state_count(new, new.idx)); ++ journal_state_inc(&new); ++ } while ((v = atomic64_cmpxchg(&j->reservations.counter, ++ old.v, new.v)) != old.v); ++ ++ if (j->res_get_blocked_start) ++ bch2_time_stats_update(j->blocked_time, ++ j->res_get_blocked_start); ++ j->res_get_blocked_start = 0; ++ ++ mod_delayed_work(system_freezable_wq, ++ &j->write_work, ++ msecs_to_jiffies(j->write_delay_ms)); ++ journal_wake(j); ++ return 0; ++} ++ ++static bool journal_quiesced(struct journal *j) ++{ ++ union journal_res_state state = READ_ONCE(j->reservations); ++ bool ret = !state.prev_buf_unwritten && !__journal_entry_is_open(state); ++ ++ if (!ret) ++ journal_entry_close(j); ++ return ret; ++} ++ ++static void journal_quiesce(struct journal *j) ++{ ++ wait_event(j->wait, journal_quiesced(j)); ++} ++ ++static void journal_write_work(struct work_struct *work) ++{ ++ struct journal *j = container_of(work, struct journal, write_work.work); ++ ++ journal_entry_close(j); ++} ++ ++/* ++ * Given an inode number, if that inode number has data in the journal that ++ * hasn't yet been flushed, return the journal sequence number that needs to be ++ * flushed: ++ */ ++u64 bch2_inode_journal_seq(struct journal *j, u64 inode) ++{ ++ size_t h = hash_64(inode, ilog2(sizeof(j->buf[0].has_inode) * 8)); ++ u64 seq = 0; ++ ++ if (!test_bit(h, j->buf[0].has_inode) && ++ !test_bit(h, j->buf[1].has_inode)) ++ return 0; ++ ++ spin_lock(&j->lock); ++ if (test_bit(h, journal_cur_buf(j)->has_inode)) ++ seq = journal_cur_seq(j); ++ else if (test_bit(h, journal_prev_buf(j)->has_inode)) ++ seq = journal_cur_seq(j) - 1; ++ spin_unlock(&j->lock); ++ ++ return seq; ++} ++ ++void bch2_journal_set_has_inum(struct journal *j, u64 inode, u64 seq) ++{ ++ size_t h = hash_64(inode, ilog2(sizeof(j->buf[0].has_inode) * 8)); ++ struct journal_buf *buf; ++ ++ spin_lock(&j->lock); ++ ++ if ((buf = journal_seq_to_buf(j, seq))) ++ set_bit(h, buf->has_inode); ++ ++ spin_unlock(&j->lock); ++} ++ ++static int __journal_res_get(struct journal *j, struct journal_res *res, ++ unsigned flags) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct journal_buf *buf; ++ bool can_discard; ++ int ret; ++retry: ++ if (journal_res_get_fast(j, res, flags)) ++ return 0; ++ ++ if (bch2_journal_error(j)) ++ return -EROFS; ++ ++ spin_lock(&j->lock); ++ ++ /* ++ * Recheck after taking the lock, so we don't race with another thread ++ * that just did journal_entry_open() and call journal_entry_close() ++ * unnecessarily ++ */ ++ if (journal_res_get_fast(j, res, flags)) { ++ spin_unlock(&j->lock); ++ return 0; ++ } ++ ++ if (!(flags & JOURNAL_RES_GET_RESERVED) && ++ !test_bit(JOURNAL_MAY_GET_UNRESERVED, &j->flags)) { ++ /* ++ * Don't want to close current journal entry, just need to ++ * invoke reclaim: ++ */ ++ ret = -ENOSPC; ++ goto unlock; ++ } ++ ++ /* ++ * If we couldn't get a reservation because the current buf filled up, ++ * and we had room for a bigger entry on disk, signal that we want to ++ * realloc the journal bufs: ++ */ ++ buf = journal_cur_buf(j); ++ if (journal_entry_is_open(j) && ++ buf->buf_size >> 9 < buf->disk_sectors && ++ buf->buf_size < JOURNAL_ENTRY_SIZE_MAX) ++ j->buf_size_want = max(j->buf_size_want, buf->buf_size << 1); ++ ++ if (journal_entry_is_open(j) && ++ !__journal_entry_close(j)) { ++ /* ++ * We failed to get a reservation on the current open journal ++ * entry because it's full, and we can't close it because ++ * there's still a previous one in flight: ++ */ ++ trace_journal_entry_full(c); ++ ret = -EAGAIN; ++ } else { ++ ret = journal_entry_open(j); ++ } ++unlock: ++ if ((ret == -EAGAIN || ret == -ENOSPC) && ++ !j->res_get_blocked_start) ++ j->res_get_blocked_start = local_clock() ?: 1; ++ ++ can_discard = j->can_discard; ++ spin_unlock(&j->lock); ++ ++ if (!ret) ++ goto retry; ++ ++ if (ret == -ENOSPC) { ++ WARN_ONCE(!can_discard && (flags & JOURNAL_RES_GET_RESERVED), ++ "JOURNAL_RES_GET_RESERVED set but journal full"); ++ ++ /* ++ * Journal is full - can't rely on reclaim from work item due to ++ * freezing: ++ */ ++ trace_journal_full(c); ++ ++ if (!(flags & JOURNAL_RES_GET_NONBLOCK)) { ++ if (can_discard) { ++ bch2_journal_do_discards(j); ++ goto retry; ++ } ++ ++ if (mutex_trylock(&j->reclaim_lock)) { ++ bch2_journal_reclaim(j); ++ mutex_unlock(&j->reclaim_lock); ++ } ++ } ++ ++ ret = -EAGAIN; ++ } ++ ++ return ret; ++} ++ ++/* ++ * Essentially the entry function to the journaling code. When bcachefs is doing ++ * a btree insert, it calls this function to get the current journal write. ++ * Journal write is the structure used set up journal writes. The calling ++ * function will then add its keys to the structure, queuing them for the next ++ * write. ++ * ++ * To ensure forward progress, the current task must not be holding any ++ * btree node write locks. ++ */ ++int bch2_journal_res_get_slowpath(struct journal *j, struct journal_res *res, ++ unsigned flags) ++{ ++ int ret; ++ ++ closure_wait_event(&j->async_wait, ++ (ret = __journal_res_get(j, res, flags)) != -EAGAIN || ++ (flags & JOURNAL_RES_GET_NONBLOCK)); ++ return ret; ++} ++ ++/* journal_preres: */ ++ ++static bool journal_preres_available(struct journal *j, ++ struct journal_preres *res, ++ unsigned new_u64s, ++ unsigned flags) ++{ ++ bool ret = bch2_journal_preres_get_fast(j, res, new_u64s, flags); ++ ++ if (!ret) ++ bch2_journal_reclaim_work(&j->reclaim_work.work); ++ ++ return ret; ++} ++ ++int __bch2_journal_preres_get(struct journal *j, ++ struct journal_preres *res, ++ unsigned new_u64s, ++ unsigned flags) ++{ ++ int ret; ++ ++ closure_wait_event(&j->preres_wait, ++ (ret = bch2_journal_error(j)) || ++ journal_preres_available(j, res, new_u64s, flags)); ++ return ret; ++} ++ ++/* journal_entry_res: */ ++ ++void bch2_journal_entry_res_resize(struct journal *j, ++ struct journal_entry_res *res, ++ unsigned new_u64s) ++{ ++ union journal_res_state state; ++ int d = new_u64s - res->u64s; ++ ++ spin_lock(&j->lock); ++ ++ j->entry_u64s_reserved += d; ++ if (d <= 0) ++ goto out; ++ ++ j->cur_entry_u64s = max_t(int, 0, j->cur_entry_u64s - d); ++ smp_mb(); ++ state = READ_ONCE(j->reservations); ++ ++ if (state.cur_entry_offset < JOURNAL_ENTRY_CLOSED_VAL && ++ state.cur_entry_offset > j->cur_entry_u64s) { ++ j->cur_entry_u64s += d; ++ /* ++ * Not enough room in current journal entry, have to flush it: ++ */ ++ __journal_entry_close(j); ++ } else { ++ journal_cur_buf(j)->u64s_reserved += d; ++ } ++out: ++ spin_unlock(&j->lock); ++ res->u64s += d; ++} ++ ++/* journal flushing: */ ++ ++u64 bch2_journal_last_unwritten_seq(struct journal *j) ++{ ++ u64 seq; ++ ++ spin_lock(&j->lock); ++ seq = journal_cur_seq(j); ++ if (j->reservations.prev_buf_unwritten) ++ seq--; ++ spin_unlock(&j->lock); ++ ++ return seq; ++} ++ ++/** ++ * bch2_journal_open_seq_async - try to open a new journal entry if @seq isn't ++ * open yet, or wait if we cannot ++ * ++ * used by the btree interior update machinery, when it needs to write a new ++ * btree root - every journal entry contains the roots of all the btrees, so it ++ * doesn't need to bother with getting a journal reservation ++ */ ++int bch2_journal_open_seq_async(struct journal *j, u64 seq, struct closure *cl) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ int ret; ++ ++ spin_lock(&j->lock); ++ ++ /* ++ * Can't try to open more than one sequence number ahead: ++ */ ++ BUG_ON(journal_cur_seq(j) < seq && !journal_entry_is_open(j)); ++ ++ if (journal_cur_seq(j) > seq || ++ journal_entry_is_open(j)) { ++ spin_unlock(&j->lock); ++ return 0; ++ } ++ ++ if (journal_cur_seq(j) < seq && ++ !__journal_entry_close(j)) { ++ /* haven't finished writing out the previous one: */ ++ trace_journal_entry_full(c); ++ ret = -EAGAIN; ++ } else { ++ BUG_ON(journal_cur_seq(j) != seq); ++ ++ ret = journal_entry_open(j); ++ } ++ ++ if ((ret == -EAGAIN || ret == -ENOSPC) && ++ !j->res_get_blocked_start) ++ j->res_get_blocked_start = local_clock() ?: 1; ++ ++ if (ret == -EAGAIN || ret == -ENOSPC) ++ closure_wait(&j->async_wait, cl); ++ ++ spin_unlock(&j->lock); ++ ++ if (ret == -ENOSPC) { ++ trace_journal_full(c); ++ bch2_journal_reclaim_work(&j->reclaim_work.work); ++ ret = -EAGAIN; ++ } ++ ++ return ret; ++} ++ ++static int journal_seq_error(struct journal *j, u64 seq) ++{ ++ union journal_res_state state = READ_ONCE(j->reservations); ++ ++ if (seq == journal_cur_seq(j)) ++ return bch2_journal_error(j); ++ ++ if (seq + 1 == journal_cur_seq(j) && ++ !state.prev_buf_unwritten && ++ seq > j->seq_ondisk) ++ return -EIO; ++ ++ return 0; ++} ++ ++static inline struct journal_buf * ++journal_seq_to_buf(struct journal *j, u64 seq) ++{ ++ /* seq should be for a journal entry that has been opened: */ ++ BUG_ON(seq > journal_cur_seq(j)); ++ BUG_ON(seq == journal_cur_seq(j) && ++ j->reservations.cur_entry_offset == JOURNAL_ENTRY_CLOSED_VAL); ++ ++ if (seq == journal_cur_seq(j)) ++ return journal_cur_buf(j); ++ if (seq + 1 == journal_cur_seq(j) && ++ j->reservations.prev_buf_unwritten) ++ return journal_prev_buf(j); ++ return NULL; ++} ++ ++/** ++ * bch2_journal_wait_on_seq - wait for a journal entry to be written ++ * ++ * does _not_ cause @seq to be written immediately - if there is no other ++ * activity to cause the relevant journal entry to be filled up or flushed it ++ * can wait for an arbitrary amount of time (up to @j->write_delay_ms, which is ++ * configurable). ++ */ ++void bch2_journal_wait_on_seq(struct journal *j, u64 seq, ++ struct closure *parent) ++{ ++ struct journal_buf *buf; ++ ++ spin_lock(&j->lock); ++ ++ if ((buf = journal_seq_to_buf(j, seq))) { ++ if (!closure_wait(&buf->wait, parent)) ++ BUG(); ++ ++ if (seq == journal_cur_seq(j)) { ++ smp_mb(); ++ if (bch2_journal_error(j)) ++ closure_wake_up(&buf->wait); ++ } ++ } ++ ++ spin_unlock(&j->lock); ++} ++ ++/** ++ * bch2_journal_flush_seq_async - wait for a journal entry to be written ++ * ++ * like bch2_journal_wait_on_seq, except that it triggers a write immediately if ++ * necessary ++ */ ++void bch2_journal_flush_seq_async(struct journal *j, u64 seq, ++ struct closure *parent) ++{ ++ struct journal_buf *buf; ++ ++ spin_lock(&j->lock); ++ ++ if (parent && ++ (buf = journal_seq_to_buf(j, seq))) ++ if (!closure_wait(&buf->wait, parent)) ++ BUG(); ++ ++ if (seq == journal_cur_seq(j)) ++ __journal_entry_close(j); ++ spin_unlock(&j->lock); ++} ++ ++static int journal_seq_flushed(struct journal *j, u64 seq) ++{ ++ int ret; ++ ++ spin_lock(&j->lock); ++ ret = seq <= j->seq_ondisk ? 1 : journal_seq_error(j, seq); ++ ++ if (seq == journal_cur_seq(j)) ++ __journal_entry_close(j); ++ spin_unlock(&j->lock); ++ ++ return ret; ++} ++ ++int bch2_journal_flush_seq(struct journal *j, u64 seq) ++{ ++ u64 start_time = local_clock(); ++ int ret, ret2; ++ ++ ret = wait_event_killable(j->wait, (ret2 = journal_seq_flushed(j, seq))); ++ ++ bch2_time_stats_update(j->flush_seq_time, start_time); ++ ++ return ret ?: ret2 < 0 ? ret2 : 0; ++} ++ ++/** ++ * bch2_journal_meta_async - force a journal entry to be written ++ */ ++void bch2_journal_meta_async(struct journal *j, struct closure *parent) ++{ ++ struct journal_res res; ++ ++ memset(&res, 0, sizeof(res)); ++ ++ bch2_journal_res_get(j, &res, jset_u64s(0), 0); ++ bch2_journal_res_put(j, &res); ++ ++ bch2_journal_flush_seq_async(j, res.seq, parent); ++} ++ ++int bch2_journal_meta(struct journal *j) ++{ ++ struct journal_res res; ++ int ret; ++ ++ memset(&res, 0, sizeof(res)); ++ ++ ret = bch2_journal_res_get(j, &res, jset_u64s(0), 0); ++ if (ret) ++ return ret; ++ ++ bch2_journal_res_put(j, &res); ++ ++ return bch2_journal_flush_seq(j, res.seq); ++} ++ ++/* ++ * bch2_journal_flush_async - if there is an open journal entry, or a journal ++ * still being written, write it and wait for the write to complete ++ */ ++void bch2_journal_flush_async(struct journal *j, struct closure *parent) ++{ ++ u64 seq, journal_seq; ++ ++ spin_lock(&j->lock); ++ journal_seq = journal_cur_seq(j); ++ ++ if (journal_entry_is_open(j)) { ++ seq = journal_seq; ++ } else if (journal_seq) { ++ seq = journal_seq - 1; ++ } else { ++ spin_unlock(&j->lock); ++ return; ++ } ++ spin_unlock(&j->lock); ++ ++ bch2_journal_flush_seq_async(j, seq, parent); ++} ++ ++int bch2_journal_flush(struct journal *j) ++{ ++ u64 seq, journal_seq; ++ ++ spin_lock(&j->lock); ++ journal_seq = journal_cur_seq(j); ++ ++ if (journal_entry_is_open(j)) { ++ seq = journal_seq; ++ } else if (journal_seq) { ++ seq = journal_seq - 1; ++ } else { ++ spin_unlock(&j->lock); ++ return 0; ++ } ++ spin_unlock(&j->lock); ++ ++ return bch2_journal_flush_seq(j, seq); ++} ++ ++/* block/unlock the journal: */ ++ ++void bch2_journal_unblock(struct journal *j) ++{ ++ spin_lock(&j->lock); ++ j->blocked--; ++ spin_unlock(&j->lock); ++ ++ journal_wake(j); ++} ++ ++void bch2_journal_block(struct journal *j) ++{ ++ spin_lock(&j->lock); ++ j->blocked++; ++ spin_unlock(&j->lock); ++ ++ journal_quiesce(j); ++} ++ ++/* allocate journal on a device: */ ++ ++static int __bch2_set_nr_journal_buckets(struct bch_dev *ca, unsigned nr, ++ bool new_fs, struct closure *cl) ++{ ++ struct bch_fs *c = ca->fs; ++ struct journal_device *ja = &ca->journal; ++ struct bch_sb_field_journal *journal_buckets; ++ u64 *new_bucket_seq = NULL, *new_buckets = NULL; ++ int ret = 0; ++ ++ /* don't handle reducing nr of buckets yet: */ ++ if (nr <= ja->nr) ++ return 0; ++ ++ ret = -ENOMEM; ++ new_buckets = kzalloc(nr * sizeof(u64), GFP_KERNEL); ++ new_bucket_seq = kzalloc(nr * sizeof(u64), GFP_KERNEL); ++ if (!new_buckets || !new_bucket_seq) ++ goto err; ++ ++ journal_buckets = bch2_sb_resize_journal(&ca->disk_sb, ++ nr + sizeof(*journal_buckets) / sizeof(u64)); ++ if (!journal_buckets) ++ goto err; ++ ++ /* ++ * We may be called from the device add path, before the new device has ++ * actually been added to the running filesystem: ++ */ ++ if (c) ++ spin_lock(&c->journal.lock); ++ ++ memcpy(new_buckets, ja->buckets, ja->nr * sizeof(u64)); ++ memcpy(new_bucket_seq, ja->bucket_seq, ja->nr * sizeof(u64)); ++ swap(new_buckets, ja->buckets); ++ swap(new_bucket_seq, ja->bucket_seq); ++ ++ if (c) ++ spin_unlock(&c->journal.lock); ++ ++ while (ja->nr < nr) { ++ struct open_bucket *ob = NULL; ++ unsigned pos; ++ long bucket; ++ ++ if (new_fs) { ++ bucket = bch2_bucket_alloc_new_fs(ca); ++ if (bucket < 0) { ++ ret = -ENOSPC; ++ goto err; ++ } ++ } else { ++ ob = bch2_bucket_alloc(c, ca, RESERVE_ALLOC, ++ false, cl); ++ if (IS_ERR(ob)) { ++ ret = cl ? -EAGAIN : -ENOSPC; ++ goto err; ++ } ++ ++ bucket = sector_to_bucket(ca, ob->ptr.offset); ++ } ++ ++ if (c) { ++ percpu_down_read(&c->mark_lock); ++ spin_lock(&c->journal.lock); ++ } ++ ++ pos = ja->nr ? (ja->cur_idx + 1) % ja->nr : 0; ++ __array_insert_item(ja->buckets, ja->nr, pos); ++ __array_insert_item(ja->bucket_seq, ja->nr, pos); ++ __array_insert_item(journal_buckets->buckets, ja->nr, pos); ++ ja->nr++; ++ ++ ja->buckets[pos] = bucket; ++ ja->bucket_seq[pos] = 0; ++ journal_buckets->buckets[pos] = cpu_to_le64(bucket); ++ ++ if (pos <= ja->discard_idx) ++ ja->discard_idx = (ja->discard_idx + 1) % ja->nr; ++ if (pos <= ja->dirty_idx_ondisk) ++ ja->dirty_idx_ondisk = (ja->dirty_idx_ondisk + 1) % ja->nr; ++ if (pos <= ja->dirty_idx) ++ ja->dirty_idx = (ja->dirty_idx + 1) % ja->nr; ++ if (pos <= ja->cur_idx) ++ ja->cur_idx = (ja->cur_idx + 1) % ja->nr; ++ ++ bch2_mark_metadata_bucket(c, ca, bucket, BCH_DATA_journal, ++ ca->mi.bucket_size, ++ gc_phase(GC_PHASE_SB), ++ 0); ++ ++ if (c) { ++ spin_unlock(&c->journal.lock); ++ percpu_up_read(&c->mark_lock); ++ } ++ ++ if (!new_fs) ++ bch2_open_bucket_put(c, ob); ++ } ++ ++ ret = 0; ++err: ++ kfree(new_bucket_seq); ++ kfree(new_buckets); ++ ++ return ret; ++} ++ ++/* ++ * Allocate more journal space at runtime - not currently making use if it, but ++ * the code works: ++ */ ++int bch2_set_nr_journal_buckets(struct bch_fs *c, struct bch_dev *ca, ++ unsigned nr) ++{ ++ struct journal_device *ja = &ca->journal; ++ struct closure cl; ++ unsigned current_nr; ++ int ret; ++ ++ closure_init_stack(&cl); ++ ++ do { ++ struct disk_reservation disk_res = { 0, 0 }; ++ ++ closure_sync(&cl); ++ ++ mutex_lock(&c->sb_lock); ++ current_nr = ja->nr; ++ ++ /* ++ * note: journal buckets aren't really counted as _sectors_ used yet, so ++ * we don't need the disk reservation to avoid the BUG_ON() in buckets.c ++ * when space used goes up without a reservation - but we do need the ++ * reservation to ensure we'll actually be able to allocate: ++ */ ++ ++ if (bch2_disk_reservation_get(c, &disk_res, ++ bucket_to_sector(ca, nr - ja->nr), 1, 0)) { ++ mutex_unlock(&c->sb_lock); ++ return -ENOSPC; ++ } ++ ++ ret = __bch2_set_nr_journal_buckets(ca, nr, false, &cl); ++ ++ bch2_disk_reservation_put(c, &disk_res); ++ ++ if (ja->nr != current_nr) ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ } while (ret == -EAGAIN); ++ ++ return ret; ++} ++ ++int bch2_dev_journal_alloc(struct bch_dev *ca) ++{ ++ unsigned nr; ++ ++ if (dynamic_fault("bcachefs:add:journal_alloc")) ++ return -ENOMEM; ++ ++ /* ++ * clamp journal size to 1024 buckets or 512MB (in sectors), whichever ++ * is smaller: ++ */ ++ nr = clamp_t(unsigned, ca->mi.nbuckets >> 8, ++ BCH_JOURNAL_BUCKETS_MIN, ++ min(1 << 10, ++ (1 << 20) / ca->mi.bucket_size)); ++ ++ return __bch2_set_nr_journal_buckets(ca, nr, true, NULL); ++} ++ ++/* startup/shutdown: */ ++ ++static bool bch2_journal_writing_to_device(struct journal *j, unsigned dev_idx) ++{ ++ union journal_res_state state; ++ struct journal_buf *w; ++ bool ret; ++ ++ spin_lock(&j->lock); ++ state = READ_ONCE(j->reservations); ++ w = j->buf + !state.idx; ++ ++ ret = state.prev_buf_unwritten && ++ bch2_bkey_has_device(bkey_i_to_s_c(&w->key), dev_idx); ++ spin_unlock(&j->lock); ++ ++ return ret; ++} ++ ++void bch2_dev_journal_stop(struct journal *j, struct bch_dev *ca) ++{ ++ wait_event(j->wait, !bch2_journal_writing_to_device(j, ca->dev_idx)); ++} ++ ++void bch2_fs_journal_stop(struct journal *j) ++{ ++ bch2_journal_flush_all_pins(j); ++ ++ wait_event(j->wait, journal_entry_close(j)); ++ ++ /* do we need to write another journal entry? */ ++ if (test_bit(JOURNAL_NOT_EMPTY, &j->flags)) ++ bch2_journal_meta(j); ++ ++ journal_quiesce(j); ++ ++ BUG_ON(!bch2_journal_error(j) && ++ test_bit(JOURNAL_NOT_EMPTY, &j->flags)); ++ ++ cancel_delayed_work_sync(&j->write_work); ++ cancel_delayed_work_sync(&j->reclaim_work); ++} ++ ++int bch2_fs_journal_start(struct journal *j, u64 cur_seq, ++ struct list_head *journal_entries) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct journal_entry_pin_list *p; ++ struct journal_replay *i; ++ u64 last_seq = cur_seq, nr, seq; ++ ++ if (!list_empty(journal_entries)) ++ last_seq = le64_to_cpu(list_last_entry(journal_entries, ++ struct journal_replay, list)->j.last_seq); ++ ++ nr = cur_seq - last_seq; ++ ++ if (nr + 1 > j->pin.size) { ++ free_fifo(&j->pin); ++ init_fifo(&j->pin, roundup_pow_of_two(nr + 1), GFP_KERNEL); ++ if (!j->pin.data) { ++ bch_err(c, "error reallocating journal fifo (%llu open entries)", nr); ++ return -ENOMEM; ++ } ++ } ++ ++ j->replay_journal_seq = last_seq; ++ j->replay_journal_seq_end = cur_seq; ++ j->last_seq_ondisk = last_seq; ++ j->pin.front = last_seq; ++ j->pin.back = cur_seq; ++ atomic64_set(&j->seq, cur_seq - 1); ++ ++ fifo_for_each_entry_ptr(p, &j->pin, seq) { ++ INIT_LIST_HEAD(&p->list); ++ INIT_LIST_HEAD(&p->flushed); ++ atomic_set(&p->count, 1); ++ p->devs.nr = 0; ++ } ++ ++ list_for_each_entry(i, journal_entries, list) { ++ seq = le64_to_cpu(i->j.seq); ++ BUG_ON(seq >= cur_seq); ++ ++ if (seq < last_seq) ++ continue; ++ ++ journal_seq_pin(j, seq)->devs = i->devs; ++ } ++ ++ spin_lock(&j->lock); ++ ++ set_bit(JOURNAL_STARTED, &j->flags); ++ ++ journal_pin_new_entry(j, 1); ++ bch2_journal_buf_init(j); ++ ++ c->last_bucket_seq_cleanup = journal_cur_seq(j); ++ ++ bch2_journal_space_available(j); ++ spin_unlock(&j->lock); ++ ++ return 0; ++} ++ ++/* init/exit: */ ++ ++void bch2_dev_journal_exit(struct bch_dev *ca) ++{ ++ kfree(ca->journal.bio); ++ kfree(ca->journal.buckets); ++ kfree(ca->journal.bucket_seq); ++ ++ ca->journal.bio = NULL; ++ ca->journal.buckets = NULL; ++ ca->journal.bucket_seq = NULL; ++} ++ ++int bch2_dev_journal_init(struct bch_dev *ca, struct bch_sb *sb) ++{ ++ struct journal_device *ja = &ca->journal; ++ struct bch_sb_field_journal *journal_buckets = ++ bch2_sb_get_journal(sb); ++ unsigned i; ++ ++ ja->nr = bch2_nr_journal_buckets(journal_buckets); ++ ++ ja->bucket_seq = kcalloc(ja->nr, sizeof(u64), GFP_KERNEL); ++ if (!ja->bucket_seq) ++ return -ENOMEM; ++ ++ ca->journal.bio = bio_kmalloc(GFP_KERNEL, ++ DIV_ROUND_UP(JOURNAL_ENTRY_SIZE_MAX, PAGE_SIZE)); ++ if (!ca->journal.bio) ++ return -ENOMEM; ++ ++ ja->buckets = kcalloc(ja->nr, sizeof(u64), GFP_KERNEL); ++ if (!ja->buckets) ++ return -ENOMEM; ++ ++ for (i = 0; i < ja->nr; i++) ++ ja->buckets[i] = le64_to_cpu(journal_buckets->buckets[i]); ++ ++ return 0; ++} ++ ++void bch2_fs_journal_exit(struct journal *j) ++{ ++ kvpfree(j->buf[1].data, j->buf[1].buf_size); ++ kvpfree(j->buf[0].data, j->buf[0].buf_size); ++ free_fifo(&j->pin); ++} ++ ++int bch2_fs_journal_init(struct journal *j) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ static struct lock_class_key res_key; ++ int ret = 0; ++ ++ pr_verbose_init(c->opts, ""); ++ ++ spin_lock_init(&j->lock); ++ spin_lock_init(&j->err_lock); ++ init_waitqueue_head(&j->wait); ++ INIT_DELAYED_WORK(&j->write_work, journal_write_work); ++ INIT_DELAYED_WORK(&j->reclaim_work, bch2_journal_reclaim_work); ++ init_waitqueue_head(&j->pin_flush_wait); ++ mutex_init(&j->reclaim_lock); ++ mutex_init(&j->discard_lock); ++ ++ lockdep_init_map(&j->res_map, "journal res", &res_key, 0); ++ ++ j->buf[0].buf_size = JOURNAL_ENTRY_SIZE_MIN; ++ j->buf[1].buf_size = JOURNAL_ENTRY_SIZE_MIN; ++ j->write_delay_ms = 1000; ++ j->reclaim_delay_ms = 100; ++ ++ /* Btree roots: */ ++ j->entry_u64s_reserved += ++ BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_EXTENT_U64s_MAX); ++ ++ atomic64_set(&j->reservations.counter, ++ ((union journal_res_state) ++ { .cur_entry_offset = JOURNAL_ENTRY_CLOSED_VAL }).v); ++ ++ if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || ++ !(j->buf[0].data = kvpmalloc(j->buf[0].buf_size, GFP_KERNEL)) || ++ !(j->buf[1].data = kvpmalloc(j->buf[1].buf_size, GFP_KERNEL))) { ++ ret = -ENOMEM; ++ goto out; ++ } ++ ++ j->pin.front = j->pin.back = 1; ++out: ++ pr_verbose_init(c->opts, "ret %i", ret); ++ return ret; ++} ++ ++/* debug: */ ++ ++void bch2_journal_debug_to_text(struct printbuf *out, struct journal *j) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ union journal_res_state s; ++ struct bch_dev *ca; ++ unsigned iter; ++ ++ rcu_read_lock(); ++ spin_lock(&j->lock); ++ s = READ_ONCE(j->reservations); ++ ++ pr_buf(out, ++ "active journal entries:\t%llu\n" ++ "seq:\t\t\t%llu\n" ++ "last_seq:\t\t%llu\n" ++ "last_seq_ondisk:\t%llu\n" ++ "prereserved:\t\t%u/%u\n" ++ "current entry sectors:\t%u\n" ++ "current entry:\t\t", ++ fifo_used(&j->pin), ++ journal_cur_seq(j), ++ journal_last_seq(j), ++ j->last_seq_ondisk, ++ j->prereserved.reserved, ++ j->prereserved.remaining, ++ j->cur_entry_sectors); ++ ++ switch (s.cur_entry_offset) { ++ case JOURNAL_ENTRY_ERROR_VAL: ++ pr_buf(out, "error\n"); ++ break; ++ case JOURNAL_ENTRY_CLOSED_VAL: ++ pr_buf(out, "closed\n"); ++ break; ++ default: ++ pr_buf(out, "%u/%u\n", ++ s.cur_entry_offset, ++ j->cur_entry_u64s); ++ break; ++ } ++ ++ pr_buf(out, ++ "current entry refs:\t%u\n" ++ "prev entry unwritten:\t", ++ journal_state_count(s, s.idx)); ++ ++ if (s.prev_buf_unwritten) ++ pr_buf(out, "yes, ref %u sectors %u\n", ++ journal_state_count(s, !s.idx), ++ journal_prev_buf(j)->sectors); ++ else ++ pr_buf(out, "no\n"); ++ ++ pr_buf(out, ++ "need write:\t\t%i\n" ++ "replay done:\t\t%i\n", ++ test_bit(JOURNAL_NEED_WRITE, &j->flags), ++ test_bit(JOURNAL_REPLAY_DONE, &j->flags)); ++ ++ for_each_member_device_rcu(ca, c, iter, ++ &c->rw_devs[BCH_DATA_journal]) { ++ struct journal_device *ja = &ca->journal; ++ ++ if (!ja->nr) ++ continue; ++ ++ pr_buf(out, ++ "dev %u:\n" ++ "\tnr\t\t%u\n" ++ "\tavailable\t%u:%u\n" ++ "\tdiscard_idx\t\t%u\n" ++ "\tdirty_idx_ondisk\t%u (seq %llu)\n" ++ "\tdirty_idx\t\t%u (seq %llu)\n" ++ "\tcur_idx\t\t%u (seq %llu)\n", ++ iter, ja->nr, ++ bch2_journal_dev_buckets_available(j, ja, journal_space_discarded), ++ ja->sectors_free, ++ ja->discard_idx, ++ ja->dirty_idx_ondisk, ja->bucket_seq[ja->dirty_idx_ondisk], ++ ja->dirty_idx, ja->bucket_seq[ja->dirty_idx], ++ ja->cur_idx, ja->bucket_seq[ja->cur_idx]); ++ } ++ ++ spin_unlock(&j->lock); ++ rcu_read_unlock(); ++} ++ ++void bch2_journal_pins_to_text(struct printbuf *out, struct journal *j) ++{ ++ struct journal_entry_pin_list *pin_list; ++ struct journal_entry_pin *pin; ++ u64 i; ++ ++ spin_lock(&j->lock); ++ fifo_for_each_entry_ptr(pin_list, &j->pin, i) { ++ pr_buf(out, "%llu: count %u\n", ++ i, atomic_read(&pin_list->count)); ++ ++ list_for_each_entry(pin, &pin_list->list, list) ++ pr_buf(out, "\t%px %ps\n", ++ pin, pin->flush); ++ ++ if (!list_empty(&pin_list->flushed)) ++ pr_buf(out, "flushed:\n"); ++ ++ list_for_each_entry(pin, &pin_list->flushed, list) ++ pr_buf(out, "\t%px %ps\n", ++ pin, pin->flush); ++ } ++ spin_unlock(&j->lock); ++} +diff --git a/fs/bcachefs/journal.h b/fs/bcachefs/journal.h +new file mode 100644 +index 000000000000..f60bc964ee1f +--- /dev/null ++++ b/fs/bcachefs/journal.h +@@ -0,0 +1,520 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_JOURNAL_H ++#define _BCACHEFS_JOURNAL_H ++ ++/* ++ * THE JOURNAL: ++ * ++ * The primary purpose of the journal is to log updates (insertions) to the ++ * b-tree, to avoid having to do synchronous updates to the b-tree on disk. ++ * ++ * Without the journal, the b-tree is always internally consistent on ++ * disk - and in fact, in the earliest incarnations bcache didn't have a journal ++ * but did handle unclean shutdowns by doing all index updates synchronously ++ * (with coalescing). ++ * ++ * Updates to interior nodes still happen synchronously and without the journal ++ * (for simplicity) - this may change eventually but updates to interior nodes ++ * are rare enough it's not a huge priority. ++ * ++ * This means the journal is relatively separate from the b-tree; it consists of ++ * just a list of keys and journal replay consists of just redoing those ++ * insertions in same order that they appear in the journal. ++ * ++ * PERSISTENCE: ++ * ++ * For synchronous updates (where we're waiting on the index update to hit ++ * disk), the journal entry will be written out immediately (or as soon as ++ * possible, if the write for the previous journal entry was still in flight). ++ * ++ * Synchronous updates are specified by passing a closure (@flush_cl) to ++ * bch2_btree_insert() or bch_btree_insert_node(), which then pass that parameter ++ * down to the journalling code. That closure will will wait on the journal ++ * write to complete (via closure_wait()). ++ * ++ * If the index update wasn't synchronous, the journal entry will be ++ * written out after 10 ms have elapsed, by default (the delay_ms field ++ * in struct journal). ++ * ++ * JOURNAL ENTRIES: ++ * ++ * A journal entry is variable size (struct jset), it's got a fixed length ++ * header and then a variable number of struct jset_entry entries. ++ * ++ * Journal entries are identified by monotonically increasing 64 bit sequence ++ * numbers - jset->seq; other places in the code refer to this sequence number. ++ * ++ * A jset_entry entry contains one or more bkeys (which is what gets inserted ++ * into the b-tree). We need a container to indicate which b-tree the key is ++ * for; also, the roots of the various b-trees are stored in jset_entry entries ++ * (one for each b-tree) - this lets us add new b-tree types without changing ++ * the on disk format. ++ * ++ * We also keep some things in the journal header that are logically part of the ++ * superblock - all the things that are frequently updated. This is for future ++ * bcache on raw flash support; the superblock (which will become another ++ * journal) can't be moved or wear leveled, so it contains just enough ++ * information to find the main journal, and the superblock only has to be ++ * rewritten when we want to move/wear level the main journal. ++ * ++ * JOURNAL LAYOUT ON DISK: ++ * ++ * The journal is written to a ringbuffer of buckets (which is kept in the ++ * superblock); the individual buckets are not necessarily contiguous on disk ++ * which means that journal entries are not allowed to span buckets, but also ++ * that we can resize the journal at runtime if desired (unimplemented). ++ * ++ * The journal buckets exist in the same pool as all the other buckets that are ++ * managed by the allocator and garbage collection - garbage collection marks ++ * the journal buckets as metadata buckets. ++ * ++ * OPEN/DIRTY JOURNAL ENTRIES: ++ * ++ * Open/dirty journal entries are journal entries that contain b-tree updates ++ * that have not yet been written out to the b-tree on disk. We have to track ++ * which journal entries are dirty, and we also have to avoid wrapping around ++ * the journal and overwriting old but still dirty journal entries with new ++ * journal entries. ++ * ++ * On disk, this is represented with the "last_seq" field of struct jset; ++ * last_seq is the first sequence number that journal replay has to replay. ++ * ++ * To avoid overwriting dirty journal entries on disk, we keep a mapping (in ++ * journal_device->seq) of for each journal bucket, the highest sequence number ++ * any journal entry it contains. Then, by comparing that against last_seq we ++ * can determine whether that journal bucket contains dirty journal entries or ++ * not. ++ * ++ * To track which journal entries are dirty, we maintain a fifo of refcounts ++ * (where each entry corresponds to a specific sequence number) - when a ref ++ * goes to 0, that journal entry is no longer dirty. ++ * ++ * Journalling of index updates is done at the same time as the b-tree itself is ++ * being modified (see btree_insert_key()); when we add the key to the journal ++ * the pending b-tree write takes a ref on the journal entry the key was added ++ * to. If a pending b-tree write would need to take refs on multiple dirty ++ * journal entries, it only keeps the ref on the oldest one (since a newer ++ * journal entry will still be replayed if an older entry was dirty). ++ * ++ * JOURNAL FILLING UP: ++ * ++ * There are two ways the journal could fill up; either we could run out of ++ * space to write to, or we could have too many open journal entries and run out ++ * of room in the fifo of refcounts. Since those refcounts are decremented ++ * without any locking we can't safely resize that fifo, so we handle it the ++ * same way. ++ * ++ * If the journal fills up, we start flushing dirty btree nodes until we can ++ * allocate space for a journal write again - preferentially flushing btree ++ * nodes that are pinning the oldest journal entries first. ++ */ ++ ++#include ++ ++#include "journal_types.h" ++ ++struct bch_fs; ++ ++static inline void journal_wake(struct journal *j) ++{ ++ wake_up(&j->wait); ++ closure_wake_up(&j->async_wait); ++ closure_wake_up(&j->preres_wait); ++} ++ ++static inline struct journal_buf *journal_cur_buf(struct journal *j) ++{ ++ return j->buf + j->reservations.idx; ++} ++ ++static inline struct journal_buf *journal_prev_buf(struct journal *j) ++{ ++ return j->buf + !j->reservations.idx; ++} ++ ++/* Sequence number of oldest dirty journal entry */ ++ ++static inline u64 journal_last_seq(struct journal *j) ++{ ++ return j->pin.front; ++} ++ ++static inline u64 journal_cur_seq(struct journal *j) ++{ ++ BUG_ON(j->pin.back - 1 != atomic64_read(&j->seq)); ++ ++ return j->pin.back - 1; ++} ++ ++u64 bch2_inode_journal_seq(struct journal *, u64); ++void bch2_journal_set_has_inum(struct journal *, u64, u64); ++ ++static inline int journal_state_count(union journal_res_state s, int idx) ++{ ++ return idx == 0 ? s.buf0_count : s.buf1_count; ++} ++ ++static inline void journal_state_inc(union journal_res_state *s) ++{ ++ s->buf0_count += s->idx == 0; ++ s->buf1_count += s->idx == 1; ++} ++ ++static inline void bch2_journal_set_has_inode(struct journal *j, ++ struct journal_res *res, ++ u64 inum) ++{ ++ struct journal_buf *buf = &j->buf[res->idx]; ++ unsigned long bit = hash_64(inum, ilog2(sizeof(buf->has_inode) * 8)); ++ ++ /* avoid atomic op if possible */ ++ if (unlikely(!test_bit(bit, buf->has_inode))) ++ set_bit(bit, buf->has_inode); ++} ++ ++/* ++ * Amount of space that will be taken up by some keys in the journal (i.e. ++ * including the jset header) ++ */ ++static inline unsigned jset_u64s(unsigned u64s) ++{ ++ return u64s + sizeof(struct jset_entry) / sizeof(u64); ++} ++ ++static inline int journal_entry_overhead(struct journal *j) ++{ ++ return sizeof(struct jset) / sizeof(u64) + j->entry_u64s_reserved; ++} ++ ++static inline struct jset_entry * ++bch2_journal_add_entry_noreservation(struct journal_buf *buf, size_t u64s) ++{ ++ struct jset *jset = buf->data; ++ struct jset_entry *entry = vstruct_idx(jset, le32_to_cpu(jset->u64s)); ++ ++ memset(entry, 0, sizeof(*entry)); ++ entry->u64s = cpu_to_le16(u64s); ++ ++ le32_add_cpu(&jset->u64s, jset_u64s(u64s)); ++ ++ return entry; ++} ++ ++static inline struct jset_entry * ++journal_res_entry(struct journal *j, struct journal_res *res) ++{ ++ return vstruct_idx(j->buf[res->idx].data, res->offset); ++} ++ ++static inline unsigned journal_entry_set(struct jset_entry *entry, unsigned type, ++ enum btree_id id, unsigned level, ++ const void *data, unsigned u64s) ++{ ++ memset(entry, 0, sizeof(*entry)); ++ entry->u64s = cpu_to_le16(u64s); ++ entry->type = type; ++ entry->btree_id = id; ++ entry->level = level; ++ memcpy_u64s_small(entry->_data, data, u64s); ++ ++ return jset_u64s(u64s); ++} ++ ++static inline void bch2_journal_add_entry(struct journal *j, struct journal_res *res, ++ unsigned type, enum btree_id id, ++ unsigned level, ++ const void *data, unsigned u64s) ++{ ++ unsigned actual = journal_entry_set(journal_res_entry(j, res), ++ type, id, level, data, u64s); ++ ++ EBUG_ON(!res->ref); ++ EBUG_ON(actual > res->u64s); ++ ++ res->offset += actual; ++ res->u64s -= actual; ++} ++ ++static inline void bch2_journal_add_keys(struct journal *j, struct journal_res *res, ++ enum btree_id id, const struct bkey_i *k) ++{ ++ bch2_journal_add_entry(j, res, BCH_JSET_ENTRY_btree_keys, ++ id, 0, k, k->k.u64s); ++} ++ ++static inline bool journal_entry_empty(struct jset *j) ++{ ++ struct jset_entry *i; ++ ++ if (j->seq != j->last_seq) ++ return false; ++ ++ vstruct_for_each(j, i) ++ if (i->type == BCH_JSET_ENTRY_btree_keys && i->u64s) ++ return false; ++ return true; ++} ++ ++void __bch2_journal_buf_put(struct journal *, bool); ++ ++static inline void bch2_journal_buf_put(struct journal *j, unsigned idx, ++ bool need_write_just_set) ++{ ++ union journal_res_state s; ++ ++ s.v = atomic64_sub_return(((union journal_res_state) { ++ .buf0_count = idx == 0, ++ .buf1_count = idx == 1, ++ }).v, &j->reservations.counter); ++ if (!journal_state_count(s, idx)) { ++ EBUG_ON(s.idx == idx || !s.prev_buf_unwritten); ++ __bch2_journal_buf_put(j, need_write_just_set); ++ } ++} ++ ++/* ++ * This function releases the journal write structure so other threads can ++ * then proceed to add their keys as well. ++ */ ++static inline void bch2_journal_res_put(struct journal *j, ++ struct journal_res *res) ++{ ++ if (!res->ref) ++ return; ++ ++ lock_release(&j->res_map, _THIS_IP_); ++ ++ while (res->u64s) ++ bch2_journal_add_entry(j, res, ++ BCH_JSET_ENTRY_btree_keys, ++ 0, 0, NULL, 0); ++ ++ bch2_journal_buf_put(j, res->idx, false); ++ ++ res->ref = 0; ++} ++ ++int bch2_journal_res_get_slowpath(struct journal *, struct journal_res *, ++ unsigned); ++ ++#define JOURNAL_RES_GET_NONBLOCK (1 << 0) ++#define JOURNAL_RES_GET_CHECK (1 << 1) ++#define JOURNAL_RES_GET_RESERVED (1 << 2) ++#define JOURNAL_RES_GET_RECLAIM (1 << 3) ++ ++static inline int journal_res_get_fast(struct journal *j, ++ struct journal_res *res, ++ unsigned flags) ++{ ++ union journal_res_state old, new; ++ u64 v = atomic64_read(&j->reservations.counter); ++ ++ do { ++ old.v = new.v = v; ++ ++ /* ++ * Check if there is still room in the current journal ++ * entry: ++ */ ++ if (new.cur_entry_offset + res->u64s > j->cur_entry_u64s) ++ return 0; ++ ++ EBUG_ON(!journal_state_count(new, new.idx)); ++ ++ if (!(flags & JOURNAL_RES_GET_RESERVED) && ++ !test_bit(JOURNAL_MAY_GET_UNRESERVED, &j->flags)) ++ return 0; ++ ++ if (flags & JOURNAL_RES_GET_CHECK) ++ return 1; ++ ++ new.cur_entry_offset += res->u64s; ++ journal_state_inc(&new); ++ } while ((v = atomic64_cmpxchg(&j->reservations.counter, ++ old.v, new.v)) != old.v); ++ ++ res->ref = true; ++ res->idx = old.idx; ++ res->offset = old.cur_entry_offset; ++ res->seq = le64_to_cpu(j->buf[old.idx].data->seq); ++ return 1; ++} ++ ++static inline int bch2_journal_res_get(struct journal *j, struct journal_res *res, ++ unsigned u64s, unsigned flags) ++{ ++ int ret; ++ ++ EBUG_ON(res->ref); ++ EBUG_ON(!test_bit(JOURNAL_STARTED, &j->flags)); ++ ++ res->u64s = u64s; ++ ++ if (journal_res_get_fast(j, res, flags)) ++ goto out; ++ ++ ret = bch2_journal_res_get_slowpath(j, res, flags); ++ if (ret) ++ return ret; ++out: ++ if (!(flags & JOURNAL_RES_GET_CHECK)) { ++ lock_acquire_shared(&j->res_map, 0, ++ (flags & JOURNAL_RES_GET_NONBLOCK) != 0, ++ NULL, _THIS_IP_); ++ EBUG_ON(!res->ref); ++ } ++ return 0; ++} ++ ++/* journal_preres: */ ++ ++static inline bool journal_check_may_get_unreserved(struct journal *j) ++{ ++ union journal_preres_state s = READ_ONCE(j->prereserved); ++ bool ret = s.reserved <= s.remaining && ++ fifo_free(&j->pin) > 8; ++ ++ lockdep_assert_held(&j->lock); ++ ++ if (ret != test_bit(JOURNAL_MAY_GET_UNRESERVED, &j->flags)) { ++ if (ret) { ++ set_bit(JOURNAL_MAY_GET_UNRESERVED, &j->flags); ++ journal_wake(j); ++ } else { ++ clear_bit(JOURNAL_MAY_GET_UNRESERVED, &j->flags); ++ } ++ } ++ return ret; ++} ++ ++static inline void bch2_journal_preres_put(struct journal *j, ++ struct journal_preres *res) ++{ ++ union journal_preres_state s = { .reserved = res->u64s }; ++ ++ if (!res->u64s) ++ return; ++ ++ s.v = atomic64_sub_return(s.v, &j->prereserved.counter); ++ res->u64s = 0; ++ closure_wake_up(&j->preres_wait); ++ ++ if (s.reserved <= s.remaining && ++ !test_bit(JOURNAL_MAY_GET_UNRESERVED, &j->flags)) { ++ spin_lock(&j->lock); ++ journal_check_may_get_unreserved(j); ++ spin_unlock(&j->lock); ++ } ++} ++ ++int __bch2_journal_preres_get(struct journal *, ++ struct journal_preres *, unsigned, unsigned); ++ ++static inline int bch2_journal_preres_get_fast(struct journal *j, ++ struct journal_preres *res, ++ unsigned new_u64s, ++ unsigned flags) ++{ ++ int d = new_u64s - res->u64s; ++ union journal_preres_state old, new; ++ u64 v = atomic64_read(&j->prereserved.counter); ++ ++ do { ++ old.v = new.v = v; ++ ++ new.reserved += d; ++ ++ /* ++ * If we're being called from the journal reclaim path, we have ++ * to unconditionally give out the pre-reservation, there's ++ * nothing else sensible we can do - otherwise we'd recurse back ++ * into the reclaim path and deadlock: ++ */ ++ ++ if (!(flags & JOURNAL_RES_GET_RECLAIM) && ++ new.reserved > new.remaining) ++ return 0; ++ } while ((v = atomic64_cmpxchg(&j->prereserved.counter, ++ old.v, new.v)) != old.v); ++ ++ res->u64s += d; ++ return 1; ++} ++ ++static inline int bch2_journal_preres_get(struct journal *j, ++ struct journal_preres *res, ++ unsigned new_u64s, ++ unsigned flags) ++{ ++ if (new_u64s <= res->u64s) ++ return 0; ++ ++ if (bch2_journal_preres_get_fast(j, res, new_u64s, flags)) ++ return 0; ++ ++ if (flags & JOURNAL_RES_GET_NONBLOCK) ++ return -EAGAIN; ++ ++ return __bch2_journal_preres_get(j, res, new_u64s, flags); ++} ++ ++/* journal_entry_res: */ ++ ++void bch2_journal_entry_res_resize(struct journal *, ++ struct journal_entry_res *, ++ unsigned); ++ ++u64 bch2_journal_last_unwritten_seq(struct journal *); ++int bch2_journal_open_seq_async(struct journal *, u64, struct closure *); ++ ++void bch2_journal_wait_on_seq(struct journal *, u64, struct closure *); ++void bch2_journal_flush_seq_async(struct journal *, u64, struct closure *); ++void bch2_journal_flush_async(struct journal *, struct closure *); ++void bch2_journal_meta_async(struct journal *, struct closure *); ++ ++int bch2_journal_flush_seq(struct journal *, u64); ++int bch2_journal_flush(struct journal *); ++int bch2_journal_meta(struct journal *); ++ ++void bch2_journal_halt(struct journal *); ++ ++static inline int bch2_journal_error(struct journal *j) ++{ ++ return j->reservations.cur_entry_offset == JOURNAL_ENTRY_ERROR_VAL ++ ? -EIO : 0; ++} ++ ++struct bch_dev; ++ ++static inline bool journal_flushes_device(struct bch_dev *ca) ++{ ++ return true; ++} ++ ++static inline void bch2_journal_set_replay_done(struct journal *j) ++{ ++ BUG_ON(!test_bit(JOURNAL_STARTED, &j->flags)); ++ set_bit(JOURNAL_REPLAY_DONE, &j->flags); ++} ++ ++void bch2_journal_unblock(struct journal *); ++void bch2_journal_block(struct journal *); ++ ++void bch2_journal_debug_to_text(struct printbuf *, struct journal *); ++void bch2_journal_pins_to_text(struct printbuf *, struct journal *); ++ ++int bch2_set_nr_journal_buckets(struct bch_fs *, struct bch_dev *, ++ unsigned nr); ++int bch2_dev_journal_alloc(struct bch_dev *); ++ ++void bch2_dev_journal_stop(struct journal *, struct bch_dev *); ++ ++void bch2_fs_journal_stop(struct journal *); ++int bch2_fs_journal_start(struct journal *, u64, struct list_head *); ++ ++void bch2_dev_journal_exit(struct bch_dev *); ++int bch2_dev_journal_init(struct bch_dev *, struct bch_sb *); ++void bch2_fs_journal_exit(struct journal *); ++int bch2_fs_journal_init(struct journal *); ++ ++#endif /* _BCACHEFS_JOURNAL_H */ +diff --git a/fs/bcachefs/journal_io.c b/fs/bcachefs/journal_io.c +new file mode 100644 +index 000000000000..bd0e6b371701 +--- /dev/null ++++ b/fs/bcachefs/journal_io.c +@@ -0,0 +1,1183 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "alloc_foreground.h" ++#include "btree_io.h" ++#include "btree_update_interior.h" ++#include "buckets.h" ++#include "checksum.h" ++#include "error.h" ++#include "io.h" ++#include "journal.h" ++#include "journal_io.h" ++#include "journal_reclaim.h" ++#include "replicas.h" ++ ++#include ++ ++struct journal_list { ++ struct closure cl; ++ struct mutex lock; ++ struct list_head *head; ++ int ret; ++}; ++ ++#define JOURNAL_ENTRY_ADD_OK 0 ++#define JOURNAL_ENTRY_ADD_OUT_OF_RANGE 5 ++ ++/* ++ * Given a journal entry we just read, add it to the list of journal entries to ++ * be replayed: ++ */ ++static int journal_entry_add(struct bch_fs *c, struct bch_dev *ca, ++ struct journal_list *jlist, struct jset *j, ++ bool bad) ++{ ++ struct journal_replay *i, *pos; ++ struct bch_devs_list devs = { .nr = 0 }; ++ struct list_head *where; ++ size_t bytes = vstruct_bytes(j); ++ __le64 last_seq; ++ int ret; ++ ++ last_seq = !list_empty(jlist->head) ++ ? list_last_entry(jlist->head, struct journal_replay, ++ list)->j.last_seq ++ : 0; ++ ++ if (!c->opts.read_entire_journal) { ++ /* Is this entry older than the range we need? */ ++ if (le64_to_cpu(j->seq) < le64_to_cpu(last_seq)) { ++ ret = JOURNAL_ENTRY_ADD_OUT_OF_RANGE; ++ goto out; ++ } ++ ++ /* Drop entries we don't need anymore */ ++ list_for_each_entry_safe(i, pos, jlist->head, list) { ++ if (le64_to_cpu(i->j.seq) >= le64_to_cpu(j->last_seq)) ++ break; ++ list_del(&i->list); ++ kvpfree(i, offsetof(struct journal_replay, j) + ++ vstruct_bytes(&i->j)); ++ } ++ } ++ ++ list_for_each_entry_reverse(i, jlist->head, list) { ++ if (le64_to_cpu(j->seq) > le64_to_cpu(i->j.seq)) { ++ where = &i->list; ++ goto add; ++ } ++ } ++ ++ where = jlist->head; ++add: ++ i = where->next != jlist->head ++ ? container_of(where->next, struct journal_replay, list) ++ : NULL; ++ ++ /* ++ * Duplicate journal entries? If so we want the one that didn't have a ++ * checksum error: ++ */ ++ if (i && le64_to_cpu(j->seq) == le64_to_cpu(i->j.seq)) { ++ if (i->bad) { ++ devs = i->devs; ++ list_del(&i->list); ++ kvpfree(i, offsetof(struct journal_replay, j) + ++ vstruct_bytes(&i->j)); ++ } else if (bad) { ++ goto found; ++ } else { ++ fsck_err_on(bytes != vstruct_bytes(&i->j) || ++ memcmp(j, &i->j, bytes), c, ++ "found duplicate but non identical journal entries (seq %llu)", ++ le64_to_cpu(j->seq)); ++ goto found; ++ } ++ ++ } ++ ++ i = kvpmalloc(offsetof(struct journal_replay, j) + bytes, GFP_KERNEL); ++ if (!i) { ++ ret = -ENOMEM; ++ goto out; ++ } ++ ++ list_add(&i->list, where); ++ i->devs = devs; ++ i->bad = bad; ++ memcpy(&i->j, j, bytes); ++found: ++ if (!bch2_dev_list_has_dev(i->devs, ca->dev_idx)) ++ bch2_dev_list_add_dev(&i->devs, ca->dev_idx); ++ else ++ fsck_err_on(1, c, "duplicate journal entries on same device"); ++ ret = JOURNAL_ENTRY_ADD_OK; ++out: ++fsck_err: ++ return ret; ++} ++ ++static struct nonce journal_nonce(const struct jset *jset) ++{ ++ return (struct nonce) {{ ++ [0] = 0, ++ [1] = ((__le32 *) &jset->seq)[0], ++ [2] = ((__le32 *) &jset->seq)[1], ++ [3] = BCH_NONCE_JOURNAL, ++ }}; ++} ++ ++/* this fills in a range with empty jset_entries: */ ++static void journal_entry_null_range(void *start, void *end) ++{ ++ struct jset_entry *entry; ++ ++ for (entry = start; entry != end; entry = vstruct_next(entry)) ++ memset(entry, 0, sizeof(*entry)); ++} ++ ++#define JOURNAL_ENTRY_REREAD 5 ++#define JOURNAL_ENTRY_NONE 6 ++#define JOURNAL_ENTRY_BAD 7 ++ ++#define journal_entry_err(c, msg, ...) \ ++({ \ ++ switch (write) { \ ++ case READ: \ ++ mustfix_fsck_err(c, msg, ##__VA_ARGS__); \ ++ break; \ ++ case WRITE: \ ++ bch_err(c, "corrupt metadata before write:\n" \ ++ msg, ##__VA_ARGS__); \ ++ if (bch2_fs_inconsistent(c)) { \ ++ ret = BCH_FSCK_ERRORS_NOT_FIXED; \ ++ goto fsck_err; \ ++ } \ ++ break; \ ++ } \ ++ true; \ ++}) ++ ++#define journal_entry_err_on(cond, c, msg, ...) \ ++ ((cond) ? journal_entry_err(c, msg, ##__VA_ARGS__) : false) ++ ++static int journal_validate_key(struct bch_fs *c, struct jset *jset, ++ struct jset_entry *entry, ++ unsigned level, enum btree_id btree_id, ++ struct bkey_i *k, ++ const char *type, int write) ++{ ++ void *next = vstruct_next(entry); ++ const char *invalid; ++ unsigned version = le32_to_cpu(jset->version); ++ int ret = 0; ++ ++ if (journal_entry_err_on(!k->k.u64s, c, ++ "invalid %s in journal: k->u64s 0", type)) { ++ entry->u64s = cpu_to_le16((u64 *) k - entry->_data); ++ journal_entry_null_range(vstruct_next(entry), next); ++ return 0; ++ } ++ ++ if (journal_entry_err_on((void *) bkey_next(k) > ++ (void *) vstruct_next(entry), c, ++ "invalid %s in journal: extends past end of journal entry", ++ type)) { ++ entry->u64s = cpu_to_le16((u64 *) k - entry->_data); ++ journal_entry_null_range(vstruct_next(entry), next); ++ return 0; ++ } ++ ++ if (journal_entry_err_on(k->k.format != KEY_FORMAT_CURRENT, c, ++ "invalid %s in journal: bad format %u", ++ type, k->k.format)) { ++ le16_add_cpu(&entry->u64s, -k->k.u64s); ++ memmove(k, bkey_next(k), next - (void *) bkey_next(k)); ++ journal_entry_null_range(vstruct_next(entry), next); ++ return 0; ++ } ++ ++ if (!write) ++ bch2_bkey_compat(level, btree_id, version, ++ JSET_BIG_ENDIAN(jset), write, ++ NULL, bkey_to_packed(k)); ++ ++ invalid = bch2_bkey_invalid(c, bkey_i_to_s_c(k), ++ __btree_node_type(level, btree_id)); ++ if (invalid) { ++ char buf[160]; ++ ++ bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(k)); ++ mustfix_fsck_err(c, "invalid %s in journal: %s\n%s", ++ type, invalid, buf); ++ ++ le16_add_cpu(&entry->u64s, -k->k.u64s); ++ memmove(k, bkey_next(k), next - (void *) bkey_next(k)); ++ journal_entry_null_range(vstruct_next(entry), next); ++ return 0; ++ } ++ ++ if (write) ++ bch2_bkey_compat(level, btree_id, version, ++ JSET_BIG_ENDIAN(jset), write, ++ NULL, bkey_to_packed(k)); ++fsck_err: ++ return ret; ++} ++ ++static int journal_entry_validate_btree_keys(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ int write) ++{ ++ struct bkey_i *k; ++ ++ vstruct_for_each(entry, k) { ++ int ret = journal_validate_key(c, jset, entry, ++ entry->level, ++ entry->btree_id, ++ k, "key", write); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++static int journal_entry_validate_btree_root(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ int write) ++{ ++ struct bkey_i *k = entry->start; ++ int ret = 0; ++ ++ if (journal_entry_err_on(!entry->u64s || ++ le16_to_cpu(entry->u64s) != k->k.u64s, c, ++ "invalid btree root journal entry: wrong number of keys")) { ++ void *next = vstruct_next(entry); ++ /* ++ * we don't want to null out this jset_entry, ++ * just the contents, so that later we can tell ++ * we were _supposed_ to have a btree root ++ */ ++ entry->u64s = 0; ++ journal_entry_null_range(vstruct_next(entry), next); ++ return 0; ++ } ++ ++ return journal_validate_key(c, jset, entry, 1, entry->btree_id, k, ++ "btree root", write); ++fsck_err: ++ return ret; ++} ++ ++static int journal_entry_validate_prio_ptrs(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ int write) ++{ ++ /* obsolete, don't care: */ ++ return 0; ++} ++ ++static int journal_entry_validate_blacklist(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ int write) ++{ ++ int ret = 0; ++ ++ if (journal_entry_err_on(le16_to_cpu(entry->u64s) != 1, c, ++ "invalid journal seq blacklist entry: bad size")) { ++ journal_entry_null_range(entry, vstruct_next(entry)); ++ } ++fsck_err: ++ return ret; ++} ++ ++static int journal_entry_validate_blacklist_v2(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ int write) ++{ ++ struct jset_entry_blacklist_v2 *bl_entry; ++ int ret = 0; ++ ++ if (journal_entry_err_on(le16_to_cpu(entry->u64s) != 2, c, ++ "invalid journal seq blacklist entry: bad size")) { ++ journal_entry_null_range(entry, vstruct_next(entry)); ++ goto out; ++ } ++ ++ bl_entry = container_of(entry, struct jset_entry_blacklist_v2, entry); ++ ++ if (journal_entry_err_on(le64_to_cpu(bl_entry->start) > ++ le64_to_cpu(bl_entry->end), c, ++ "invalid journal seq blacklist entry: start > end")) { ++ journal_entry_null_range(entry, vstruct_next(entry)); ++ } ++out: ++fsck_err: ++ return ret; ++} ++ ++static int journal_entry_validate_usage(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ int write) ++{ ++ struct jset_entry_usage *u = ++ container_of(entry, struct jset_entry_usage, entry); ++ unsigned bytes = jset_u64s(le16_to_cpu(entry->u64s)) * sizeof(u64); ++ int ret = 0; ++ ++ if (journal_entry_err_on(bytes < sizeof(*u), ++ c, ++ "invalid journal entry usage: bad size")) { ++ journal_entry_null_range(entry, vstruct_next(entry)); ++ return ret; ++ } ++ ++fsck_err: ++ return ret; ++} ++ ++static int journal_entry_validate_data_usage(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ int write) ++{ ++ struct jset_entry_data_usage *u = ++ container_of(entry, struct jset_entry_data_usage, entry); ++ unsigned bytes = jset_u64s(le16_to_cpu(entry->u64s)) * sizeof(u64); ++ int ret = 0; ++ ++ if (journal_entry_err_on(bytes < sizeof(*u) || ++ bytes < sizeof(*u) + u->r.nr_devs, ++ c, ++ "invalid journal entry usage: bad size")) { ++ journal_entry_null_range(entry, vstruct_next(entry)); ++ return ret; ++ } ++ ++fsck_err: ++ return ret; ++} ++ ++struct jset_entry_ops { ++ int (*validate)(struct bch_fs *, struct jset *, ++ struct jset_entry *, int); ++}; ++ ++static const struct jset_entry_ops bch2_jset_entry_ops[] = { ++#define x(f, nr) \ ++ [BCH_JSET_ENTRY_##f] = (struct jset_entry_ops) { \ ++ .validate = journal_entry_validate_##f, \ ++ }, ++ BCH_JSET_ENTRY_TYPES() ++#undef x ++}; ++ ++static int journal_entry_validate(struct bch_fs *c, struct jset *jset, ++ struct jset_entry *entry, int write) ++{ ++ return entry->type < BCH_JSET_ENTRY_NR ++ ? bch2_jset_entry_ops[entry->type].validate(c, jset, ++ entry, write) ++ : 0; ++} ++ ++static int jset_validate_entries(struct bch_fs *c, struct jset *jset, ++ int write) ++{ ++ struct jset_entry *entry; ++ int ret = 0; ++ ++ vstruct_for_each(jset, entry) { ++ if (journal_entry_err_on(vstruct_next(entry) > ++ vstruct_last(jset), c, ++ "journal entry extends past end of jset")) { ++ jset->u64s = cpu_to_le32((u64 *) entry - jset->_data); ++ break; ++ } ++ ++ ret = journal_entry_validate(c, jset, entry, write); ++ if (ret) ++ break; ++ } ++fsck_err: ++ return ret; ++} ++ ++static int jset_validate(struct bch_fs *c, ++ struct bch_dev *ca, ++ struct jset *jset, u64 sector, ++ unsigned bucket_sectors_left, ++ unsigned sectors_read, ++ int write) ++{ ++ size_t bytes = vstruct_bytes(jset); ++ struct bch_csum csum; ++ unsigned version; ++ int ret = 0; ++ ++ if (le64_to_cpu(jset->magic) != jset_magic(c)) ++ return JOURNAL_ENTRY_NONE; ++ ++ version = le32_to_cpu(jset->version); ++ if (journal_entry_err_on((version != BCH_JSET_VERSION_OLD && ++ version < bcachefs_metadata_version_min) || ++ version >= bcachefs_metadata_version_max, c, ++ "%s sector %llu seq %llu: unknown journal entry version %u", ++ ca->name, sector, le64_to_cpu(jset->seq), ++ version)) { ++ /* XXX: note we might have missing journal entries */ ++ return JOURNAL_ENTRY_BAD; ++ } ++ ++ if (journal_entry_err_on(bytes > bucket_sectors_left << 9, c, ++ "%s sector %llu seq %llu: journal entry too big (%zu bytes)", ++ ca->name, sector, le64_to_cpu(jset->seq), bytes)) { ++ /* XXX: note we might have missing journal entries */ ++ return JOURNAL_ENTRY_BAD; ++ } ++ ++ if (bytes > sectors_read << 9) ++ return JOURNAL_ENTRY_REREAD; ++ ++ if (fsck_err_on(!bch2_checksum_type_valid(c, JSET_CSUM_TYPE(jset)), c, ++ "%s sector %llu seq %llu: journal entry with unknown csum type %llu", ++ ca->name, sector, le64_to_cpu(jset->seq), ++ JSET_CSUM_TYPE(jset))) ++ return JOURNAL_ENTRY_BAD; ++ ++ csum = csum_vstruct(c, JSET_CSUM_TYPE(jset), journal_nonce(jset), jset); ++ if (journal_entry_err_on(bch2_crc_cmp(csum, jset->csum), c, ++ "%s sector %llu seq %llu: journal checksum bad", ++ ca->name, sector, le64_to_cpu(jset->seq))) { ++ /* XXX: retry IO, when we start retrying checksum errors */ ++ /* XXX: note we might have missing journal entries */ ++ return JOURNAL_ENTRY_BAD; ++ } ++ ++ bch2_encrypt(c, JSET_CSUM_TYPE(jset), journal_nonce(jset), ++ jset->encrypted_start, ++ vstruct_end(jset) - (void *) jset->encrypted_start); ++ ++ if (journal_entry_err_on(le64_to_cpu(jset->last_seq) > le64_to_cpu(jset->seq), c, ++ "invalid journal entry: last_seq > seq")) { ++ jset->last_seq = jset->seq; ++ return JOURNAL_ENTRY_BAD; ++ } ++ ++ return 0; ++fsck_err: ++ return ret; ++} ++ ++struct journal_read_buf { ++ void *data; ++ size_t size; ++}; ++ ++static int journal_read_buf_realloc(struct journal_read_buf *b, ++ size_t new_size) ++{ ++ void *n; ++ ++ /* the bios are sized for this many pages, max: */ ++ if (new_size > JOURNAL_ENTRY_SIZE_MAX) ++ return -ENOMEM; ++ ++ new_size = roundup_pow_of_two(new_size); ++ n = kvpmalloc(new_size, GFP_KERNEL); ++ if (!n) ++ return -ENOMEM; ++ ++ kvpfree(b->data, b->size); ++ b->data = n; ++ b->size = new_size; ++ return 0; ++} ++ ++static int journal_read_bucket(struct bch_dev *ca, ++ struct journal_read_buf *buf, ++ struct journal_list *jlist, ++ unsigned bucket) ++{ ++ struct bch_fs *c = ca->fs; ++ struct journal_device *ja = &ca->journal; ++ struct jset *j = NULL; ++ unsigned sectors, sectors_read = 0; ++ u64 offset = bucket_to_sector(ca, ja->buckets[bucket]), ++ end = offset + ca->mi.bucket_size; ++ bool saw_bad = false; ++ int ret = 0; ++ ++ pr_debug("reading %u", bucket); ++ ++ while (offset < end) { ++ if (!sectors_read) { ++ struct bio *bio; ++reread: ++ sectors_read = min_t(unsigned, ++ end - offset, buf->size >> 9); ++ ++ bio = bio_kmalloc(GFP_KERNEL, ++ buf_pages(buf->data, ++ sectors_read << 9)); ++ bio_set_dev(bio, ca->disk_sb.bdev); ++ bio->bi_iter.bi_sector = offset; ++ bio_set_op_attrs(bio, REQ_OP_READ, 0); ++ bch2_bio_map(bio, buf->data, sectors_read << 9); ++ ++ ret = submit_bio_wait(bio); ++ bio_put(bio); ++ ++ if (bch2_dev_io_err_on(ret, ca, ++ "journal read from sector %llu", ++ offset) || ++ bch2_meta_read_fault("journal")) ++ return -EIO; ++ ++ j = buf->data; ++ } ++ ++ ret = jset_validate(c, ca, j, offset, ++ end - offset, sectors_read, ++ READ); ++ switch (ret) { ++ case BCH_FSCK_OK: ++ sectors = vstruct_sectors(j, c->block_bits); ++ break; ++ case JOURNAL_ENTRY_REREAD: ++ if (vstruct_bytes(j) > buf->size) { ++ ret = journal_read_buf_realloc(buf, ++ vstruct_bytes(j)); ++ if (ret) ++ return ret; ++ } ++ goto reread; ++ case JOURNAL_ENTRY_NONE: ++ if (!saw_bad) ++ return 0; ++ sectors = c->opts.block_size; ++ goto next_block; ++ case JOURNAL_ENTRY_BAD: ++ saw_bad = true; ++ /* ++ * On checksum error we don't really trust the size ++ * field of the journal entry we read, so try reading ++ * again at next block boundary: ++ */ ++ sectors = c->opts.block_size; ++ break; ++ default: ++ return ret; ++ } ++ ++ /* ++ * This happens sometimes if we don't have discards on - ++ * when we've partially overwritten a bucket with new ++ * journal entries. We don't need the rest of the ++ * bucket: ++ */ ++ if (le64_to_cpu(j->seq) < ja->bucket_seq[bucket]) ++ return 0; ++ ++ ja->bucket_seq[bucket] = le64_to_cpu(j->seq); ++ ++ mutex_lock(&jlist->lock); ++ ret = journal_entry_add(c, ca, jlist, j, ret != 0); ++ mutex_unlock(&jlist->lock); ++ ++ switch (ret) { ++ case JOURNAL_ENTRY_ADD_OK: ++ break; ++ case JOURNAL_ENTRY_ADD_OUT_OF_RANGE: ++ break; ++ default: ++ return ret; ++ } ++next_block: ++ pr_debug("next"); ++ offset += sectors; ++ sectors_read -= sectors; ++ j = ((void *) j) + (sectors << 9); ++ } ++ ++ return 0; ++} ++ ++static void bch2_journal_read_device(struct closure *cl) ++{ ++ struct journal_device *ja = ++ container_of(cl, struct journal_device, read); ++ struct bch_dev *ca = container_of(ja, struct bch_dev, journal); ++ struct journal_list *jlist = ++ container_of(cl->parent, struct journal_list, cl); ++ struct journal_read_buf buf = { NULL, 0 }; ++ u64 min_seq = U64_MAX; ++ unsigned i; ++ int ret; ++ ++ if (!ja->nr) ++ goto out; ++ ++ ret = journal_read_buf_realloc(&buf, PAGE_SIZE); ++ if (ret) ++ goto err; ++ ++ pr_debug("%u journal buckets", ja->nr); ++ ++ for (i = 0; i < ja->nr; i++) { ++ ret = journal_read_bucket(ca, &buf, jlist, i); ++ if (ret) ++ goto err; ++ } ++ ++ /* Find the journal bucket with the highest sequence number: */ ++ for (i = 0; i < ja->nr; i++) { ++ if (ja->bucket_seq[i] > ja->bucket_seq[ja->cur_idx]) ++ ja->cur_idx = i; ++ ++ min_seq = min(ja->bucket_seq[i], min_seq); ++ } ++ ++ /* ++ * If there's duplicate journal entries in multiple buckets (which ++ * definitely isn't supposed to happen, but...) - make sure to start ++ * cur_idx at the last of those buckets, so we don't deadlock trying to ++ * allocate ++ */ ++ while (ja->bucket_seq[ja->cur_idx] > min_seq && ++ ja->bucket_seq[ja->cur_idx] > ++ ja->bucket_seq[(ja->cur_idx + 1) % ja->nr]) ++ ja->cur_idx = (ja->cur_idx + 1) % ja->nr; ++ ++ ja->sectors_free = 0; ++ ++ /* ++ * Set dirty_idx to indicate the entire journal is full and needs to be ++ * reclaimed - journal reclaim will immediately reclaim whatever isn't ++ * pinned when it first runs: ++ */ ++ ja->discard_idx = ja->dirty_idx_ondisk = ++ ja->dirty_idx = (ja->cur_idx + 1) % ja->nr; ++out: ++ kvpfree(buf.data, buf.size); ++ percpu_ref_put(&ca->io_ref); ++ closure_return(cl); ++ return; ++err: ++ mutex_lock(&jlist->lock); ++ jlist->ret = ret; ++ mutex_unlock(&jlist->lock); ++ goto out; ++} ++ ++int bch2_journal_read(struct bch_fs *c, struct list_head *list) ++{ ++ struct journal_list jlist; ++ struct journal_replay *i; ++ struct bch_dev *ca; ++ unsigned iter; ++ size_t keys = 0, entries = 0; ++ bool degraded = false; ++ int ret = 0; ++ ++ closure_init_stack(&jlist.cl); ++ mutex_init(&jlist.lock); ++ jlist.head = list; ++ jlist.ret = 0; ++ ++ for_each_member_device(ca, c, iter) { ++ if (!test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) && ++ !(bch2_dev_has_data(c, ca) & (1 << BCH_DATA_journal))) ++ continue; ++ ++ if ((ca->mi.state == BCH_MEMBER_STATE_RW || ++ ca->mi.state == BCH_MEMBER_STATE_RO) && ++ percpu_ref_tryget(&ca->io_ref)) ++ closure_call(&ca->journal.read, ++ bch2_journal_read_device, ++ system_unbound_wq, ++ &jlist.cl); ++ else ++ degraded = true; ++ } ++ ++ closure_sync(&jlist.cl); ++ ++ if (jlist.ret) ++ return jlist.ret; ++ ++ list_for_each_entry(i, list, list) { ++ struct jset_entry *entry; ++ struct bkey_i *k, *_n; ++ struct bch_replicas_padded replicas; ++ char buf[80]; ++ ++ ret = jset_validate_entries(c, &i->j, READ); ++ if (ret) ++ goto fsck_err; ++ ++ /* ++ * If we're mounting in degraded mode - if we didn't read all ++ * the devices - this is wrong: ++ */ ++ ++ bch2_devlist_to_replicas(&replicas.e, BCH_DATA_journal, i->devs); ++ ++ if (!degraded && ++ (test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) || ++ fsck_err_on(!bch2_replicas_marked(c, &replicas.e), c, ++ "superblock not marked as containing replicas %s", ++ (bch2_replicas_entry_to_text(&PBUF(buf), ++ &replicas.e), buf)))) { ++ ret = bch2_mark_replicas(c, &replicas.e); ++ if (ret) ++ return ret; ++ } ++ ++ for_each_jset_key(k, _n, entry, &i->j) ++ keys++; ++ entries++; ++ } ++ ++ if (!list_empty(list)) { ++ i = list_last_entry(list, struct journal_replay, list); ++ ++ bch_info(c, "journal read done, %zu keys in %zu entries, seq %llu", ++ keys, entries, le64_to_cpu(i->j.seq)); ++ } ++fsck_err: ++ return ret; ++} ++ ++/* journal write: */ ++ ++static void __journal_write_alloc(struct journal *j, ++ struct journal_buf *w, ++ struct dev_alloc_list *devs_sorted, ++ unsigned sectors, ++ unsigned *replicas, ++ unsigned replicas_want) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct journal_device *ja; ++ struct bch_dev *ca; ++ unsigned i; ++ ++ if (*replicas >= replicas_want) ++ return; ++ ++ for (i = 0; i < devs_sorted->nr; i++) { ++ ca = rcu_dereference(c->devs[devs_sorted->devs[i]]); ++ if (!ca) ++ continue; ++ ++ ja = &ca->journal; ++ ++ /* ++ * Check that we can use this device, and aren't already using ++ * it: ++ */ ++ if (!ca->mi.durability || ++ ca->mi.state != BCH_MEMBER_STATE_RW || ++ !ja->nr || ++ bch2_bkey_has_device(bkey_i_to_s_c(&w->key), ++ ca->dev_idx) || ++ sectors > ja->sectors_free) ++ continue; ++ ++ bch2_dev_stripe_increment(ca, &j->wp.stripe); ++ ++ bch2_bkey_append_ptr(&w->key, ++ (struct bch_extent_ptr) { ++ .offset = bucket_to_sector(ca, ++ ja->buckets[ja->cur_idx]) + ++ ca->mi.bucket_size - ++ ja->sectors_free, ++ .dev = ca->dev_idx, ++ }); ++ ++ ja->sectors_free -= sectors; ++ ja->bucket_seq[ja->cur_idx] = le64_to_cpu(w->data->seq); ++ ++ *replicas += ca->mi.durability; ++ ++ if (*replicas >= replicas_want) ++ break; ++ } ++} ++ ++/** ++ * journal_next_bucket - move on to the next journal bucket if possible ++ */ ++static int journal_write_alloc(struct journal *j, struct journal_buf *w, ++ unsigned sectors) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct journal_device *ja; ++ struct bch_dev *ca; ++ struct dev_alloc_list devs_sorted; ++ unsigned i, replicas = 0, replicas_want = ++ READ_ONCE(c->opts.metadata_replicas); ++ ++ rcu_read_lock(); ++ ++ devs_sorted = bch2_dev_alloc_list(c, &j->wp.stripe, ++ &c->rw_devs[BCH_DATA_journal]); ++ ++ __journal_write_alloc(j, w, &devs_sorted, ++ sectors, &replicas, replicas_want); ++ ++ if (replicas >= replicas_want) ++ goto done; ++ ++ for (i = 0; i < devs_sorted.nr; i++) { ++ ca = rcu_dereference(c->devs[devs_sorted.devs[i]]); ++ if (!ca) ++ continue; ++ ++ ja = &ca->journal; ++ ++ if (sectors > ja->sectors_free && ++ sectors <= ca->mi.bucket_size && ++ bch2_journal_dev_buckets_available(j, ja, ++ journal_space_discarded)) { ++ ja->cur_idx = (ja->cur_idx + 1) % ja->nr; ++ ja->sectors_free = ca->mi.bucket_size; ++ ++ /* ++ * ja->bucket_seq[ja->cur_idx] must always have ++ * something sensible: ++ */ ++ ja->bucket_seq[ja->cur_idx] = le64_to_cpu(w->data->seq); ++ } ++ } ++ ++ __journal_write_alloc(j, w, &devs_sorted, ++ sectors, &replicas, replicas_want); ++done: ++ rcu_read_unlock(); ++ ++ return replicas >= c->opts.metadata_replicas_required ? 0 : -EROFS; ++} ++ ++static void journal_write_compact(struct jset *jset) ++{ ++ struct jset_entry *i, *next, *prev = NULL; ++ ++ /* ++ * Simple compaction, dropping empty jset_entries (from journal ++ * reservations that weren't fully used) and merging jset_entries that ++ * can be. ++ * ++ * If we wanted to be really fancy here, we could sort all the keys in ++ * the jset and drop keys that were overwritten - probably not worth it: ++ */ ++ vstruct_for_each_safe(jset, i, next) { ++ unsigned u64s = le16_to_cpu(i->u64s); ++ ++ /* Empty entry: */ ++ if (!u64s) ++ continue; ++ ++ /* Can we merge with previous entry? */ ++ if (prev && ++ i->btree_id == prev->btree_id && ++ i->level == prev->level && ++ i->type == prev->type && ++ i->type == BCH_JSET_ENTRY_btree_keys && ++ le16_to_cpu(prev->u64s) + u64s <= U16_MAX) { ++ memmove_u64s_down(vstruct_next(prev), ++ i->_data, ++ u64s); ++ le16_add_cpu(&prev->u64s, u64s); ++ continue; ++ } ++ ++ /* Couldn't merge, move i into new position (after prev): */ ++ prev = prev ? vstruct_next(prev) : jset->start; ++ if (i != prev) ++ memmove_u64s_down(prev, i, jset_u64s(u64s)); ++ } ++ ++ prev = prev ? vstruct_next(prev) : jset->start; ++ jset->u64s = cpu_to_le32((u64 *) prev - jset->_data); ++} ++ ++static void journal_buf_realloc(struct journal *j, struct journal_buf *buf) ++{ ++ /* we aren't holding j->lock: */ ++ unsigned new_size = READ_ONCE(j->buf_size_want); ++ void *new_buf; ++ ++ if (buf->buf_size >= new_size) ++ return; ++ ++ new_buf = kvpmalloc(new_size, GFP_NOIO|__GFP_NOWARN); ++ if (!new_buf) ++ return; ++ ++ memcpy(new_buf, buf->data, buf->buf_size); ++ kvpfree(buf->data, buf->buf_size); ++ buf->data = new_buf; ++ buf->buf_size = new_size; ++} ++ ++static void journal_write_done(struct closure *cl) ++{ ++ struct journal *j = container_of(cl, struct journal, io); ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct journal_buf *w = journal_prev_buf(j); ++ struct bch_devs_list devs = ++ bch2_bkey_devs(bkey_i_to_s_c(&w->key)); ++ struct bch_replicas_padded replicas; ++ u64 seq = le64_to_cpu(w->data->seq); ++ u64 last_seq = le64_to_cpu(w->data->last_seq); ++ ++ bch2_time_stats_update(j->write_time, j->write_start_time); ++ ++ if (!devs.nr) { ++ bch_err(c, "unable to write journal to sufficient devices"); ++ goto err; ++ } ++ ++ bch2_devlist_to_replicas(&replicas.e, BCH_DATA_journal, devs); ++ ++ if (bch2_mark_replicas(c, &replicas.e)) ++ goto err; ++ ++ spin_lock(&j->lock); ++ if (seq >= j->pin.front) ++ journal_seq_pin(j, seq)->devs = devs; ++ ++ j->seq_ondisk = seq; ++ j->last_seq_ondisk = last_seq; ++ bch2_journal_space_available(j); ++ ++ /* ++ * Updating last_seq_ondisk may let bch2_journal_reclaim_work() discard ++ * more buckets: ++ * ++ * Must come before signaling write completion, for ++ * bch2_fs_journal_stop(): ++ */ ++ mod_delayed_work(c->journal_reclaim_wq, &j->reclaim_work, 0); ++out: ++ /* also must come before signalling write completion: */ ++ closure_debug_destroy(cl); ++ ++ BUG_ON(!j->reservations.prev_buf_unwritten); ++ atomic64_sub(((union journal_res_state) { .prev_buf_unwritten = 1 }).v, ++ &j->reservations.counter); ++ ++ closure_wake_up(&w->wait); ++ journal_wake(j); ++ ++ if (test_bit(JOURNAL_NEED_WRITE, &j->flags)) ++ mod_delayed_work(system_freezable_wq, &j->write_work, 0); ++ spin_unlock(&j->lock); ++ return; ++err: ++ bch2_fatal_error(c); ++ spin_lock(&j->lock); ++ goto out; ++} ++ ++static void journal_write_endio(struct bio *bio) ++{ ++ struct bch_dev *ca = bio->bi_private; ++ struct journal *j = &ca->fs->journal; ++ ++ if (bch2_dev_io_err_on(bio->bi_status, ca, "journal write: %s", ++ bch2_blk_status_to_str(bio->bi_status)) || ++ bch2_meta_write_fault("journal")) { ++ struct journal_buf *w = journal_prev_buf(j); ++ unsigned long flags; ++ ++ spin_lock_irqsave(&j->err_lock, flags); ++ bch2_bkey_drop_device(bkey_i_to_s(&w->key), ca->dev_idx); ++ spin_unlock_irqrestore(&j->err_lock, flags); ++ } ++ ++ closure_put(&j->io); ++ percpu_ref_put(&ca->io_ref); ++} ++ ++void bch2_journal_write(struct closure *cl) ++{ ++ struct journal *j = container_of(cl, struct journal, io); ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct bch_dev *ca; ++ struct journal_buf *w = journal_prev_buf(j); ++ struct jset_entry *start, *end; ++ struct jset *jset; ++ struct bio *bio; ++ struct bch_extent_ptr *ptr; ++ bool validate_before_checksum = false; ++ unsigned i, sectors, bytes, u64s; ++ int ret; ++ ++ bch2_journal_pin_put(j, le64_to_cpu(w->data->seq)); ++ ++ journal_buf_realloc(j, w); ++ jset = w->data; ++ ++ j->write_start_time = local_clock(); ++ ++ /* ++ * New btree roots are set by journalling them; when the journal entry ++ * gets written we have to propagate them to c->btree_roots ++ * ++ * But, every journal entry we write has to contain all the btree roots ++ * (at least for now); so after we copy btree roots to c->btree_roots we ++ * have to get any missing btree roots and add them to this journal ++ * entry: ++ */ ++ ++ bch2_journal_entries_to_btree_roots(c, jset); ++ ++ start = end = vstruct_last(jset); ++ ++ end = bch2_btree_roots_to_journal_entries(c, jset->start, end); ++ ++ end = bch2_journal_super_entries_add_common(c, end, ++ le64_to_cpu(jset->seq)); ++ u64s = (u64 *) end - (u64 *) start; ++ BUG_ON(u64s > j->entry_u64s_reserved); ++ ++ le32_add_cpu(&jset->u64s, u64s); ++ BUG_ON(vstruct_sectors(jset, c->block_bits) > w->sectors); ++ ++ journal_write_compact(jset); ++ ++ jset->read_clock = cpu_to_le16(c->bucket_clock[READ].hand); ++ jset->write_clock = cpu_to_le16(c->bucket_clock[WRITE].hand); ++ jset->magic = cpu_to_le64(jset_magic(c)); ++ ++ jset->version = c->sb.version < bcachefs_metadata_version_new_versioning ++ ? cpu_to_le32(BCH_JSET_VERSION_OLD) ++ : cpu_to_le32(c->sb.version); ++ ++ SET_JSET_BIG_ENDIAN(jset, CPU_BIG_ENDIAN); ++ SET_JSET_CSUM_TYPE(jset, bch2_meta_checksum_type(c)); ++ ++ if (bch2_csum_type_is_encryption(JSET_CSUM_TYPE(jset))) ++ validate_before_checksum = true; ++ ++ if (le32_to_cpu(jset->version) < bcachefs_metadata_version_max) ++ validate_before_checksum = true; ++ ++ if (validate_before_checksum && ++ jset_validate_entries(c, jset, WRITE)) ++ goto err; ++ ++ bch2_encrypt(c, JSET_CSUM_TYPE(jset), journal_nonce(jset), ++ jset->encrypted_start, ++ vstruct_end(jset) - (void *) jset->encrypted_start); ++ ++ jset->csum = csum_vstruct(c, JSET_CSUM_TYPE(jset), ++ journal_nonce(jset), jset); ++ ++ if (!validate_before_checksum && ++ jset_validate_entries(c, jset, WRITE)) ++ goto err; ++ ++ sectors = vstruct_sectors(jset, c->block_bits); ++ BUG_ON(sectors > w->sectors); ++ ++ bytes = vstruct_bytes(jset); ++ memset((void *) jset + bytes, 0, (sectors << 9) - bytes); ++ ++retry_alloc: ++ spin_lock(&j->lock); ++ ret = journal_write_alloc(j, w, sectors); ++ ++ if (ret && j->can_discard) { ++ spin_unlock(&j->lock); ++ bch2_journal_do_discards(j); ++ goto retry_alloc; ++ } ++ ++ /* ++ * write is allocated, no longer need to account for it in ++ * bch2_journal_space_available(): ++ */ ++ w->sectors = 0; ++ ++ /* ++ * journal entry has been compacted and allocated, recalculate space ++ * available: ++ */ ++ bch2_journal_space_available(j); ++ spin_unlock(&j->lock); ++ ++ if (ret) { ++ bch_err(c, "Unable to allocate journal write"); ++ bch2_fatal_error(c); ++ continue_at(cl, journal_write_done, system_highpri_wq); ++ return; ++ } ++ ++ /* ++ * XXX: we really should just disable the entire journal in nochanges ++ * mode ++ */ ++ if (c->opts.nochanges) ++ goto no_io; ++ ++ extent_for_each_ptr(bkey_i_to_s_extent(&w->key), ptr) { ++ ca = bch_dev_bkey_exists(c, ptr->dev); ++ if (!percpu_ref_tryget(&ca->io_ref)) { ++ /* XXX: fix this */ ++ bch_err(c, "missing device for journal write\n"); ++ continue; ++ } ++ ++ this_cpu_add(ca->io_done->sectors[WRITE][BCH_DATA_journal], ++ sectors); ++ ++ bio = ca->journal.bio; ++ bio_reset(bio); ++ bio_set_dev(bio, ca->disk_sb.bdev); ++ bio->bi_iter.bi_sector = ptr->offset; ++ bio->bi_end_io = journal_write_endio; ++ bio->bi_private = ca; ++ bio_set_op_attrs(bio, REQ_OP_WRITE, ++ REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA); ++ bch2_bio_map(bio, jset, sectors << 9); ++ ++ trace_journal_write(bio); ++ closure_bio_submit(bio, cl); ++ ++ ca->journal.bucket_seq[ca->journal.cur_idx] = le64_to_cpu(jset->seq); ++ } ++ ++ for_each_rw_member(ca, c, i) ++ if (journal_flushes_device(ca) && ++ !bch2_bkey_has_device(bkey_i_to_s_c(&w->key), i)) { ++ percpu_ref_get(&ca->io_ref); ++ ++ bio = ca->journal.bio; ++ bio_reset(bio); ++ bio_set_dev(bio, ca->disk_sb.bdev); ++ bio->bi_opf = REQ_OP_FLUSH; ++ bio->bi_end_io = journal_write_endio; ++ bio->bi_private = ca; ++ closure_bio_submit(bio, cl); ++ } ++ ++no_io: ++ bch2_bucket_seq_cleanup(c); ++ ++ continue_at(cl, journal_write_done, system_highpri_wq); ++ return; ++err: ++ bch2_inconsistent_error(c); ++ continue_at(cl, journal_write_done, system_highpri_wq); ++} +diff --git a/fs/bcachefs/journal_io.h b/fs/bcachefs/journal_io.h +new file mode 100644 +index 000000000000..6958ee0f8cf2 +--- /dev/null ++++ b/fs/bcachefs/journal_io.h +@@ -0,0 +1,44 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_JOURNAL_IO_H ++#define _BCACHEFS_JOURNAL_IO_H ++ ++/* ++ * Only used for holding the journal entries we read in btree_journal_read() ++ * during cache_registration ++ */ ++struct journal_replay { ++ struct list_head list; ++ struct bch_devs_list devs; ++ /* checksum error, but we may want to try using it anyways: */ ++ bool bad; ++ /* must be last: */ ++ struct jset j; ++}; ++ ++static inline struct jset_entry *__jset_entry_type_next(struct jset *jset, ++ struct jset_entry *entry, unsigned type) ++{ ++ while (entry < vstruct_last(jset)) { ++ if (entry->type == type) ++ return entry; ++ ++ entry = vstruct_next(entry); ++ } ++ ++ return NULL; ++} ++ ++#define for_each_jset_entry_type(entry, jset, type) \ ++ for (entry = (jset)->start; \ ++ (entry = __jset_entry_type_next(jset, entry, type)); \ ++ entry = vstruct_next(entry)) ++ ++#define for_each_jset_key(k, _n, entry, jset) \ ++ for_each_jset_entry_type(entry, jset, BCH_JSET_ENTRY_btree_keys) \ ++ vstruct_for_each_safe(entry, k, _n) ++ ++int bch2_journal_read(struct bch_fs *, struct list_head *); ++ ++void bch2_journal_write(struct closure *); ++ ++#endif /* _BCACHEFS_JOURNAL_IO_H */ +diff --git a/fs/bcachefs/journal_reclaim.c b/fs/bcachefs/journal_reclaim.c +new file mode 100644 +index 000000000000..57591983eebd +--- /dev/null ++++ b/fs/bcachefs/journal_reclaim.c +@@ -0,0 +1,644 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "journal.h" ++#include "journal_io.h" ++#include "journal_reclaim.h" ++#include "replicas.h" ++#include "super.h" ++ ++/* Free space calculations: */ ++ ++static unsigned journal_space_from(struct journal_device *ja, ++ enum journal_space_from from) ++{ ++ switch (from) { ++ case journal_space_discarded: ++ return ja->discard_idx; ++ case journal_space_clean_ondisk: ++ return ja->dirty_idx_ondisk; ++ case journal_space_clean: ++ return ja->dirty_idx; ++ default: ++ BUG(); ++ } ++} ++ ++unsigned bch2_journal_dev_buckets_available(struct journal *j, ++ struct journal_device *ja, ++ enum journal_space_from from) ++{ ++ unsigned available = (journal_space_from(ja, from) - ++ ja->cur_idx - 1 + ja->nr) % ja->nr; ++ ++ /* ++ * Don't use the last bucket unless writing the new last_seq ++ * will make another bucket available: ++ */ ++ if (available && ja->dirty_idx_ondisk == ja->dirty_idx) ++ --available; ++ ++ return available; ++} ++ ++static void journal_set_remaining(struct journal *j, unsigned u64s_remaining) ++{ ++ union journal_preres_state old, new; ++ u64 v = atomic64_read(&j->prereserved.counter); ++ ++ do { ++ old.v = new.v = v; ++ new.remaining = u64s_remaining; ++ } while ((v = atomic64_cmpxchg(&j->prereserved.counter, ++ old.v, new.v)) != old.v); ++} ++ ++static struct journal_space { ++ unsigned next_entry; ++ unsigned remaining; ++} __journal_space_available(struct journal *j, unsigned nr_devs_want, ++ enum journal_space_from from) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct bch_dev *ca; ++ unsigned sectors_next_entry = UINT_MAX; ++ unsigned sectors_total = UINT_MAX; ++ unsigned i, nr_devs = 0; ++ unsigned unwritten_sectors = j->reservations.prev_buf_unwritten ++ ? journal_prev_buf(j)->sectors ++ : 0; ++ ++ rcu_read_lock(); ++ for_each_member_device_rcu(ca, c, i, ++ &c->rw_devs[BCH_DATA_journal]) { ++ struct journal_device *ja = &ca->journal; ++ unsigned buckets_this_device, sectors_this_device; ++ ++ if (!ja->nr) ++ continue; ++ ++ buckets_this_device = bch2_journal_dev_buckets_available(j, ja, from); ++ sectors_this_device = ja->sectors_free; ++ ++ /* ++ * We that we don't allocate the space for a journal entry ++ * until we write it out - thus, account for it here: ++ */ ++ if (unwritten_sectors >= sectors_this_device) { ++ if (!buckets_this_device) ++ continue; ++ ++ buckets_this_device--; ++ sectors_this_device = ca->mi.bucket_size; ++ } ++ ++ sectors_this_device -= unwritten_sectors; ++ ++ if (sectors_this_device < ca->mi.bucket_size && ++ buckets_this_device) { ++ buckets_this_device--; ++ sectors_this_device = ca->mi.bucket_size; ++ } ++ ++ if (!sectors_this_device) ++ continue; ++ ++ sectors_next_entry = min(sectors_next_entry, ++ sectors_this_device); ++ ++ sectors_total = min(sectors_total, ++ buckets_this_device * ca->mi.bucket_size + ++ sectors_this_device); ++ ++ nr_devs++; ++ } ++ rcu_read_unlock(); ++ ++ if (nr_devs < nr_devs_want) ++ return (struct journal_space) { 0, 0 }; ++ ++ return (struct journal_space) { ++ .next_entry = sectors_next_entry, ++ .remaining = max_t(int, 0, sectors_total - sectors_next_entry), ++ }; ++} ++ ++void bch2_journal_space_available(struct journal *j) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct bch_dev *ca; ++ struct journal_space discarded, clean_ondisk, clean; ++ unsigned overhead, u64s_remaining = 0; ++ unsigned max_entry_size = min(j->buf[0].buf_size >> 9, ++ j->buf[1].buf_size >> 9); ++ unsigned i, nr_online = 0, nr_devs_want; ++ bool can_discard = false; ++ int ret = 0; ++ ++ lockdep_assert_held(&j->lock); ++ ++ rcu_read_lock(); ++ for_each_member_device_rcu(ca, c, i, ++ &c->rw_devs[BCH_DATA_journal]) { ++ struct journal_device *ja = &ca->journal; ++ ++ if (!ja->nr) ++ continue; ++ ++ while (ja->dirty_idx != ja->cur_idx && ++ ja->bucket_seq[ja->dirty_idx] < journal_last_seq(j)) ++ ja->dirty_idx = (ja->dirty_idx + 1) % ja->nr; ++ ++ while (ja->dirty_idx_ondisk != ja->dirty_idx && ++ ja->bucket_seq[ja->dirty_idx_ondisk] < j->last_seq_ondisk) ++ ja->dirty_idx_ondisk = (ja->dirty_idx_ondisk + 1) % ja->nr; ++ ++ if (ja->discard_idx != ja->dirty_idx_ondisk) ++ can_discard = true; ++ ++ max_entry_size = min_t(unsigned, max_entry_size, ca->mi.bucket_size); ++ nr_online++; ++ } ++ rcu_read_unlock(); ++ ++ j->can_discard = can_discard; ++ ++ if (nr_online < c->opts.metadata_replicas_required) { ++ ret = -EROFS; ++ goto out; ++ } ++ ++ if (!fifo_free(&j->pin)) { ++ ret = -ENOSPC; ++ goto out; ++ } ++ ++ nr_devs_want = min_t(unsigned, nr_online, c->opts.metadata_replicas); ++ ++ discarded = __journal_space_available(j, nr_devs_want, journal_space_discarded); ++ clean_ondisk = __journal_space_available(j, nr_devs_want, journal_space_clean_ondisk); ++ clean = __journal_space_available(j, nr_devs_want, journal_space_clean); ++ ++ if (!discarded.next_entry) ++ ret = -ENOSPC; ++ ++ overhead = DIV_ROUND_UP(clean.remaining, max_entry_size) * ++ journal_entry_overhead(j); ++ u64s_remaining = clean.remaining << 6; ++ u64s_remaining = max_t(int, 0, u64s_remaining - overhead); ++ u64s_remaining /= 4; ++out: ++ j->cur_entry_sectors = !ret ? discarded.next_entry : 0; ++ j->cur_entry_error = ret; ++ journal_set_remaining(j, u64s_remaining); ++ journal_check_may_get_unreserved(j); ++ ++ if (!ret) ++ journal_wake(j); ++} ++ ++/* Discards - last part of journal reclaim: */ ++ ++static bool should_discard_bucket(struct journal *j, struct journal_device *ja) ++{ ++ bool ret; ++ ++ spin_lock(&j->lock); ++ ret = ja->discard_idx != ja->dirty_idx_ondisk; ++ spin_unlock(&j->lock); ++ ++ return ret; ++} ++ ++/* ++ * Advance ja->discard_idx as long as it points to buckets that are no longer ++ * dirty, issuing discards if necessary: ++ */ ++void bch2_journal_do_discards(struct journal *j) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct bch_dev *ca; ++ unsigned iter; ++ ++ mutex_lock(&j->discard_lock); ++ ++ for_each_rw_member(ca, c, iter) { ++ struct journal_device *ja = &ca->journal; ++ ++ while (should_discard_bucket(j, ja)) { ++ if (ca->mi.discard && ++ blk_queue_discard(bdev_get_queue(ca->disk_sb.bdev))) ++ blkdev_issue_discard(ca->disk_sb.bdev, ++ bucket_to_sector(ca, ++ ja->buckets[ja->discard_idx]), ++ ca->mi.bucket_size, GFP_NOIO, 0); ++ ++ spin_lock(&j->lock); ++ ja->discard_idx = (ja->discard_idx + 1) % ja->nr; ++ ++ bch2_journal_space_available(j); ++ spin_unlock(&j->lock); ++ } ++ } ++ ++ mutex_unlock(&j->discard_lock); ++} ++ ++/* ++ * Journal entry pinning - machinery for holding a reference on a given journal ++ * entry, holding it open to ensure it gets replayed during recovery: ++ */ ++ ++static void bch2_journal_reclaim_fast(struct journal *j) ++{ ++ struct journal_entry_pin_list temp; ++ bool popped = false; ++ ++ lockdep_assert_held(&j->lock); ++ ++ /* ++ * Unpin journal entries whose reference counts reached zero, meaning ++ * all btree nodes got written out ++ */ ++ while (!fifo_empty(&j->pin) && ++ !atomic_read(&fifo_peek_front(&j->pin).count)) { ++ BUG_ON(!list_empty(&fifo_peek_front(&j->pin).list)); ++ BUG_ON(!fifo_pop(&j->pin, temp)); ++ popped = true; ++ } ++ ++ if (popped) ++ bch2_journal_space_available(j); ++} ++ ++void bch2_journal_pin_put(struct journal *j, u64 seq) ++{ ++ struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); ++ ++ if (atomic_dec_and_test(&pin_list->count)) { ++ spin_lock(&j->lock); ++ bch2_journal_reclaim_fast(j); ++ spin_unlock(&j->lock); ++ } ++} ++ ++static inline void __journal_pin_drop(struct journal *j, ++ struct journal_entry_pin *pin) ++{ ++ struct journal_entry_pin_list *pin_list; ++ ++ if (!journal_pin_active(pin)) ++ return; ++ ++ pin_list = journal_seq_pin(j, pin->seq); ++ pin->seq = 0; ++ list_del_init(&pin->list); ++ ++ /* ++ * Unpinning a journal entry make make journal_next_bucket() succeed, if ++ * writing a new last_seq will now make another bucket available: ++ */ ++ if (atomic_dec_and_test(&pin_list->count) && ++ pin_list == &fifo_peek_front(&j->pin)) ++ bch2_journal_reclaim_fast(j); ++ else if (fifo_used(&j->pin) == 1 && ++ atomic_read(&pin_list->count) == 1) ++ journal_wake(j); ++} ++ ++void bch2_journal_pin_drop(struct journal *j, ++ struct journal_entry_pin *pin) ++{ ++ spin_lock(&j->lock); ++ __journal_pin_drop(j, pin); ++ spin_unlock(&j->lock); ++} ++ ++static void bch2_journal_pin_add_locked(struct journal *j, u64 seq, ++ struct journal_entry_pin *pin, ++ journal_pin_flush_fn flush_fn) ++{ ++ struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); ++ ++ __journal_pin_drop(j, pin); ++ ++ BUG_ON(!atomic_read(&pin_list->count) && seq == journal_last_seq(j)); ++ ++ atomic_inc(&pin_list->count); ++ pin->seq = seq; ++ pin->flush = flush_fn; ++ ++ list_add(&pin->list, flush_fn ? &pin_list->list : &pin_list->flushed); ++} ++ ++void __bch2_journal_pin_add(struct journal *j, u64 seq, ++ struct journal_entry_pin *pin, ++ journal_pin_flush_fn flush_fn) ++{ ++ spin_lock(&j->lock); ++ bch2_journal_pin_add_locked(j, seq, pin, flush_fn); ++ spin_unlock(&j->lock); ++ ++ /* ++ * If the journal is currently full, we might want to call flush_fn ++ * immediately: ++ */ ++ journal_wake(j); ++} ++ ++void bch2_journal_pin_update(struct journal *j, u64 seq, ++ struct journal_entry_pin *pin, ++ journal_pin_flush_fn flush_fn) ++{ ++ if (journal_pin_active(pin) && pin->seq < seq) ++ return; ++ ++ spin_lock(&j->lock); ++ ++ if (pin->seq != seq) { ++ bch2_journal_pin_add_locked(j, seq, pin, flush_fn); ++ } else { ++ struct journal_entry_pin_list *pin_list = ++ journal_seq_pin(j, seq); ++ ++ /* ++ * If the pin is already pinning the right sequence number, it ++ * still might've already been flushed: ++ */ ++ list_move(&pin->list, &pin_list->list); ++ } ++ ++ spin_unlock(&j->lock); ++ ++ /* ++ * If the journal is currently full, we might want to call flush_fn ++ * immediately: ++ */ ++ journal_wake(j); ++} ++ ++void bch2_journal_pin_copy(struct journal *j, ++ struct journal_entry_pin *dst, ++ struct journal_entry_pin *src, ++ journal_pin_flush_fn flush_fn) ++{ ++ spin_lock(&j->lock); ++ ++ if (journal_pin_active(src) && ++ (!journal_pin_active(dst) || src->seq < dst->seq)) ++ bch2_journal_pin_add_locked(j, src->seq, dst, flush_fn); ++ ++ spin_unlock(&j->lock); ++} ++ ++/** ++ * bch2_journal_pin_flush: ensure journal pin callback is no longer running ++ */ ++void bch2_journal_pin_flush(struct journal *j, struct journal_entry_pin *pin) ++{ ++ BUG_ON(journal_pin_active(pin)); ++ ++ wait_event(j->pin_flush_wait, j->flush_in_progress != pin); ++} ++ ++/* ++ * Journal reclaim: flush references to open journal entries to reclaim space in ++ * the journal ++ * ++ * May be done by the journal code in the background as needed to free up space ++ * for more journal entries, or as part of doing a clean shutdown, or to migrate ++ * data off of a specific device: ++ */ ++ ++static struct journal_entry_pin * ++journal_get_next_pin(struct journal *j, u64 max_seq, u64 *seq) ++{ ++ struct journal_entry_pin_list *pin_list; ++ struct journal_entry_pin *ret = NULL; ++ ++ if (!test_bit(JOURNAL_RECLAIM_STARTED, &j->flags)) ++ return NULL; ++ ++ spin_lock(&j->lock); ++ ++ fifo_for_each_entry_ptr(pin_list, &j->pin, *seq) ++ if (*seq > max_seq || ++ (ret = list_first_entry_or_null(&pin_list->list, ++ struct journal_entry_pin, list))) ++ break; ++ ++ if (ret) { ++ list_move(&ret->list, &pin_list->flushed); ++ BUG_ON(j->flush_in_progress); ++ j->flush_in_progress = ret; ++ j->last_flushed = jiffies; ++ } ++ ++ spin_unlock(&j->lock); ++ ++ return ret; ++} ++ ++/* returns true if we did work */ ++static bool journal_flush_pins(struct journal *j, u64 seq_to_flush, ++ unsigned min_nr) ++{ ++ struct journal_entry_pin *pin; ++ bool ret = false; ++ u64 seq; ++ ++ lockdep_assert_held(&j->reclaim_lock); ++ ++ while ((pin = journal_get_next_pin(j, min_nr ++ ? U64_MAX : seq_to_flush, &seq))) { ++ if (min_nr) ++ min_nr--; ++ ++ pin->flush(j, pin, seq); ++ ++ BUG_ON(j->flush_in_progress != pin); ++ j->flush_in_progress = NULL; ++ wake_up(&j->pin_flush_wait); ++ ret = true; ++ } ++ ++ return ret; ++} ++ ++/** ++ * bch2_journal_reclaim - free up journal buckets ++ * ++ * Background journal reclaim writes out btree nodes. It should be run ++ * early enough so that we never completely run out of journal buckets. ++ * ++ * High watermarks for triggering background reclaim: ++ * - FIFO has fewer than 512 entries left ++ * - fewer than 25% journal buckets free ++ * ++ * Background reclaim runs until low watermarks are reached: ++ * - FIFO has more than 1024 entries left ++ * - more than 50% journal buckets free ++ * ++ * As long as a reclaim can complete in the time it takes to fill up ++ * 512 journal entries or 25% of all journal buckets, then ++ * journal_next_bucket() should not stall. ++ */ ++void bch2_journal_reclaim(struct journal *j) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct bch_dev *ca; ++ unsigned iter, min_nr = 0; ++ u64 seq_to_flush = 0; ++ ++ lockdep_assert_held(&j->reclaim_lock); ++ ++ bch2_journal_do_discards(j); ++ ++ spin_lock(&j->lock); ++ ++ for_each_rw_member(ca, c, iter) { ++ struct journal_device *ja = &ca->journal; ++ unsigned nr_buckets, bucket_to_flush; ++ ++ if (!ja->nr) ++ continue; ++ ++ /* Try to keep the journal at most half full: */ ++ nr_buckets = ja->nr / 2; ++ ++ /* And include pre-reservations: */ ++ nr_buckets += DIV_ROUND_UP(j->prereserved.reserved, ++ (ca->mi.bucket_size << 6) - ++ journal_entry_overhead(j)); ++ ++ nr_buckets = min(nr_buckets, ja->nr); ++ ++ bucket_to_flush = (ja->cur_idx + nr_buckets) % ja->nr; ++ seq_to_flush = max(seq_to_flush, ++ ja->bucket_seq[bucket_to_flush]); ++ } ++ ++ /* Also flush if the pin fifo is more than half full */ ++ seq_to_flush = max_t(s64, seq_to_flush, ++ (s64) journal_cur_seq(j) - ++ (j->pin.size >> 1)); ++ spin_unlock(&j->lock); ++ ++ /* ++ * If it's been longer than j->reclaim_delay_ms since we last flushed, ++ * make sure to flush at least one journal pin: ++ */ ++ if (time_after(jiffies, j->last_flushed + ++ msecs_to_jiffies(j->reclaim_delay_ms))) ++ min_nr = 1; ++ ++ if (j->prereserved.reserved * 2 > j->prereserved.remaining) { ++ seq_to_flush = max(seq_to_flush, journal_last_seq(j)); ++ min_nr = 1; ++ } ++ ++ journal_flush_pins(j, seq_to_flush, min_nr); ++ ++ if (!bch2_journal_error(j)) ++ queue_delayed_work(c->journal_reclaim_wq, &j->reclaim_work, ++ msecs_to_jiffies(j->reclaim_delay_ms)); ++} ++ ++void bch2_journal_reclaim_work(struct work_struct *work) ++{ ++ struct journal *j = container_of(to_delayed_work(work), ++ struct journal, reclaim_work); ++ ++ mutex_lock(&j->reclaim_lock); ++ bch2_journal_reclaim(j); ++ mutex_unlock(&j->reclaim_lock); ++} ++ ++static int journal_flush_done(struct journal *j, u64 seq_to_flush, ++ bool *did_work) ++{ ++ int ret; ++ ++ ret = bch2_journal_error(j); ++ if (ret) ++ return ret; ++ ++ mutex_lock(&j->reclaim_lock); ++ ++ *did_work = journal_flush_pins(j, seq_to_flush, 0); ++ ++ spin_lock(&j->lock); ++ /* ++ * If journal replay hasn't completed, the unreplayed journal entries ++ * hold refs on their corresponding sequence numbers ++ */ ++ ret = !test_bit(JOURNAL_REPLAY_DONE, &j->flags) || ++ journal_last_seq(j) > seq_to_flush || ++ (fifo_used(&j->pin) == 1 && ++ atomic_read(&fifo_peek_front(&j->pin).count) == 1); ++ ++ spin_unlock(&j->lock); ++ mutex_unlock(&j->reclaim_lock); ++ ++ return ret; ++} ++ ++bool bch2_journal_flush_pins(struct journal *j, u64 seq_to_flush) ++{ ++ bool did_work = false; ++ ++ if (!test_bit(JOURNAL_STARTED, &j->flags)) ++ return false; ++ ++ closure_wait_event(&j->async_wait, ++ journal_flush_done(j, seq_to_flush, &did_work)); ++ ++ return did_work; ++} ++ ++int bch2_journal_flush_device_pins(struct journal *j, int dev_idx) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct journal_entry_pin_list *p; ++ u64 iter, seq = 0; ++ int ret = 0; ++ ++ spin_lock(&j->lock); ++ fifo_for_each_entry_ptr(p, &j->pin, iter) ++ if (dev_idx >= 0 ++ ? bch2_dev_list_has_dev(p->devs, dev_idx) ++ : p->devs.nr < c->opts.metadata_replicas) ++ seq = iter; ++ spin_unlock(&j->lock); ++ ++ bch2_journal_flush_pins(j, seq); ++ ++ ret = bch2_journal_error(j); ++ if (ret) ++ return ret; ++ ++ mutex_lock(&c->replicas_gc_lock); ++ bch2_replicas_gc_start(c, 1 << BCH_DATA_journal); ++ ++ seq = 0; ++ ++ spin_lock(&j->lock); ++ while (!ret && seq < j->pin.back) { ++ struct bch_replicas_padded replicas; ++ ++ seq = max(seq, journal_last_seq(j)); ++ bch2_devlist_to_replicas(&replicas.e, BCH_DATA_journal, ++ journal_seq_pin(j, seq)->devs); ++ seq++; ++ ++ spin_unlock(&j->lock); ++ ret = bch2_mark_replicas(c, &replicas.e); ++ spin_lock(&j->lock); ++ } ++ spin_unlock(&j->lock); ++ ++ ret = bch2_replicas_gc_end(c, ret); ++ mutex_unlock(&c->replicas_gc_lock); ++ ++ return ret; ++} +diff --git a/fs/bcachefs/journal_reclaim.h b/fs/bcachefs/journal_reclaim.h +new file mode 100644 +index 000000000000..8128907a7623 +--- /dev/null ++++ b/fs/bcachefs/journal_reclaim.h +@@ -0,0 +1,69 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_JOURNAL_RECLAIM_H ++#define _BCACHEFS_JOURNAL_RECLAIM_H ++ ++#define JOURNAL_PIN (32 * 1024) ++ ++enum journal_space_from { ++ journal_space_discarded, ++ journal_space_clean_ondisk, ++ journal_space_clean, ++}; ++ ++unsigned bch2_journal_dev_buckets_available(struct journal *, ++ struct journal_device *, ++ enum journal_space_from); ++void bch2_journal_space_available(struct journal *); ++ ++static inline bool journal_pin_active(struct journal_entry_pin *pin) ++{ ++ return pin->seq != 0; ++} ++ ++static inline struct journal_entry_pin_list * ++journal_seq_pin(struct journal *j, u64 seq) ++{ ++ EBUG_ON(seq < j->pin.front || seq >= j->pin.back); ++ ++ return &j->pin.data[seq & j->pin.mask]; ++} ++ ++void bch2_journal_pin_put(struct journal *, u64); ++void bch2_journal_pin_drop(struct journal *, struct journal_entry_pin *); ++ ++void __bch2_journal_pin_add(struct journal *, u64, struct journal_entry_pin *, ++ journal_pin_flush_fn); ++ ++static inline void bch2_journal_pin_add(struct journal *j, u64 seq, ++ struct journal_entry_pin *pin, ++ journal_pin_flush_fn flush_fn) ++{ ++ if (unlikely(!journal_pin_active(pin) || pin->seq > seq)) ++ __bch2_journal_pin_add(j, seq, pin, flush_fn); ++} ++ ++void bch2_journal_pin_update(struct journal *, u64, ++ struct journal_entry_pin *, ++ journal_pin_flush_fn); ++ ++void bch2_journal_pin_copy(struct journal *, ++ struct journal_entry_pin *, ++ struct journal_entry_pin *, ++ journal_pin_flush_fn); ++ ++void bch2_journal_pin_flush(struct journal *, struct journal_entry_pin *); ++ ++void bch2_journal_do_discards(struct journal *); ++void bch2_journal_reclaim(struct journal *); ++void bch2_journal_reclaim_work(struct work_struct *); ++ ++bool bch2_journal_flush_pins(struct journal *, u64); ++ ++static inline bool bch2_journal_flush_all_pins(struct journal *j) ++{ ++ return bch2_journal_flush_pins(j, U64_MAX); ++} ++ ++int bch2_journal_flush_device_pins(struct journal *, int); ++ ++#endif /* _BCACHEFS_JOURNAL_RECLAIM_H */ +diff --git a/fs/bcachefs/journal_seq_blacklist.c b/fs/bcachefs/journal_seq_blacklist.c +new file mode 100644 +index 000000000000..d0f1bbf8f6a7 +--- /dev/null ++++ b/fs/bcachefs/journal_seq_blacklist.c +@@ -0,0 +1,309 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "btree_iter.h" ++#include "eytzinger.h" ++#include "journal_seq_blacklist.h" ++#include "super-io.h" ++ ++/* ++ * journal_seq_blacklist machinery: ++ * ++ * To guarantee order of btree updates after a crash, we need to detect when a ++ * btree node entry (bset) is newer than the newest journal entry that was ++ * successfully written, and ignore it - effectively ignoring any btree updates ++ * that didn't make it into the journal. ++ * ++ * If we didn't do this, we might have two btree nodes, a and b, both with ++ * updates that weren't written to the journal yet: if b was updated after a, ++ * but b was flushed and not a - oops; on recovery we'll find that the updates ++ * to b happened, but not the updates to a that happened before it. ++ * ++ * Ignoring bsets that are newer than the newest journal entry is always safe, ++ * because everything they contain will also have been journalled - and must ++ * still be present in the journal on disk until a journal entry has been ++ * written _after_ that bset was written. ++ * ++ * To accomplish this, bsets record the newest journal sequence number they ++ * contain updates for; then, on startup, the btree code queries the journal ++ * code to ask "Is this sequence number newer than the newest journal entry? If ++ * so, ignore it." ++ * ++ * When this happens, we must blacklist that journal sequence number: the ++ * journal must not write any entries with that sequence number, and it must ++ * record that it was blacklisted so that a) on recovery we don't think we have ++ * missing journal entries and b) so that the btree code continues to ignore ++ * that bset, until that btree node is rewritten. ++ */ ++ ++static unsigned sb_blacklist_u64s(unsigned nr) ++{ ++ struct bch_sb_field_journal_seq_blacklist *bl; ++ ++ return (sizeof(*bl) + sizeof(bl->start[0]) * nr) / sizeof(u64); ++} ++ ++static struct bch_sb_field_journal_seq_blacklist * ++blacklist_entry_try_merge(struct bch_fs *c, ++ struct bch_sb_field_journal_seq_blacklist *bl, ++ unsigned i) ++{ ++ unsigned nr = blacklist_nr_entries(bl); ++ ++ if (le64_to_cpu(bl->start[i].end) >= ++ le64_to_cpu(bl->start[i + 1].start)) { ++ bl->start[i].end = bl->start[i + 1].end; ++ --nr; ++ memmove(&bl->start[i], ++ &bl->start[i + 1], ++ sizeof(bl->start[0]) * (nr - i)); ++ ++ bl = bch2_sb_resize_journal_seq_blacklist(&c->disk_sb, ++ sb_blacklist_u64s(nr)); ++ BUG_ON(!bl); ++ } ++ ++ return bl; ++} ++ ++int bch2_journal_seq_blacklist_add(struct bch_fs *c, u64 start, u64 end) ++{ ++ struct bch_sb_field_journal_seq_blacklist *bl; ++ unsigned i, nr; ++ int ret = 0; ++ ++ mutex_lock(&c->sb_lock); ++ bl = bch2_sb_get_journal_seq_blacklist(c->disk_sb.sb); ++ nr = blacklist_nr_entries(bl); ++ ++ if (bl) { ++ for (i = 0; i < nr; i++) { ++ struct journal_seq_blacklist_entry *e = ++ bl->start + i; ++ ++ if (start == le64_to_cpu(e->start) && ++ end == le64_to_cpu(e->end)) ++ goto out; ++ ++ if (start <= le64_to_cpu(e->start) && ++ end >= le64_to_cpu(e->end)) { ++ e->start = cpu_to_le64(start); ++ e->end = cpu_to_le64(end); ++ ++ if (i + 1 < nr) ++ bl = blacklist_entry_try_merge(c, ++ bl, i); ++ if (i) ++ bl = blacklist_entry_try_merge(c, ++ bl, i - 1); ++ goto out_write_sb; ++ } ++ } ++ } ++ ++ bl = bch2_sb_resize_journal_seq_blacklist(&c->disk_sb, ++ sb_blacklist_u64s(nr + 1)); ++ if (!bl) { ++ ret = -ENOMEM; ++ goto out; ++ } ++ ++ bl->start[nr].start = cpu_to_le64(start); ++ bl->start[nr].end = cpu_to_le64(end); ++out_write_sb: ++ c->disk_sb.sb->features[0] |= ++ 1ULL << BCH_FEATURE_journal_seq_blacklist_v3; ++ ++ ret = bch2_write_super(c); ++out: ++ mutex_unlock(&c->sb_lock); ++ ++ return ret; ++} ++ ++static int journal_seq_blacklist_table_cmp(const void *_l, ++ const void *_r, size_t size) ++{ ++ const struct journal_seq_blacklist_table_entry *l = _l; ++ const struct journal_seq_blacklist_table_entry *r = _r; ++ ++ return cmp_int(l->start, r->start); ++} ++ ++bool bch2_journal_seq_is_blacklisted(struct bch_fs *c, u64 seq, ++ bool dirty) ++{ ++ struct journal_seq_blacklist_table *t = c->journal_seq_blacklist_table; ++ struct journal_seq_blacklist_table_entry search = { .start = seq }; ++ int idx; ++ ++ if (!t) ++ return false; ++ ++ idx = eytzinger0_find_le(t->entries, t->nr, ++ sizeof(t->entries[0]), ++ journal_seq_blacklist_table_cmp, ++ &search); ++ if (idx < 0) ++ return false; ++ ++ BUG_ON(t->entries[idx].start > seq); ++ ++ if (seq >= t->entries[idx].end) ++ return false; ++ ++ if (dirty) ++ t->entries[idx].dirty = true; ++ return true; ++} ++ ++int bch2_blacklist_table_initialize(struct bch_fs *c) ++{ ++ struct bch_sb_field_journal_seq_blacklist *bl = ++ bch2_sb_get_journal_seq_blacklist(c->disk_sb.sb); ++ struct journal_seq_blacklist_table *t; ++ unsigned i, nr = blacklist_nr_entries(bl); ++ ++ BUG_ON(c->journal_seq_blacklist_table); ++ ++ if (!bl) ++ return 0; ++ ++ t = kzalloc(sizeof(*t) + sizeof(t->entries[0]) * nr, ++ GFP_KERNEL); ++ if (!t) ++ return -ENOMEM; ++ ++ t->nr = nr; ++ ++ for (i = 0; i < nr; i++) { ++ t->entries[i].start = le64_to_cpu(bl->start[i].start); ++ t->entries[i].end = le64_to_cpu(bl->start[i].end); ++ } ++ ++ eytzinger0_sort(t->entries, ++ t->nr, ++ sizeof(t->entries[0]), ++ journal_seq_blacklist_table_cmp, ++ NULL); ++ ++ c->journal_seq_blacklist_table = t; ++ return 0; ++} ++ ++static const char * ++bch2_sb_journal_seq_blacklist_validate(struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_journal_seq_blacklist *bl = ++ field_to_type(f, journal_seq_blacklist); ++ struct journal_seq_blacklist_entry *i; ++ unsigned nr = blacklist_nr_entries(bl); ++ ++ for (i = bl->start; i < bl->start + nr; i++) { ++ if (le64_to_cpu(i->start) >= ++ le64_to_cpu(i->end)) ++ return "entry start >= end"; ++ ++ if (i + 1 < bl->start + nr && ++ le64_to_cpu(i[0].end) > ++ le64_to_cpu(i[1].start)) ++ return "entries out of order"; ++ } ++ ++ return NULL; ++} ++ ++static void bch2_sb_journal_seq_blacklist_to_text(struct printbuf *out, ++ struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_journal_seq_blacklist *bl = ++ field_to_type(f, journal_seq_blacklist); ++ struct journal_seq_blacklist_entry *i; ++ unsigned nr = blacklist_nr_entries(bl); ++ ++ for (i = bl->start; i < bl->start + nr; i++) { ++ if (i != bl->start) ++ pr_buf(out, " "); ++ ++ pr_buf(out, "%llu-%llu", ++ le64_to_cpu(i->start), ++ le64_to_cpu(i->end)); ++ } ++} ++ ++const struct bch_sb_field_ops bch_sb_field_ops_journal_seq_blacklist = { ++ .validate = bch2_sb_journal_seq_blacklist_validate, ++ .to_text = bch2_sb_journal_seq_blacklist_to_text ++}; ++ ++void bch2_blacklist_entries_gc(struct work_struct *work) ++{ ++ struct bch_fs *c = container_of(work, struct bch_fs, ++ journal_seq_blacklist_gc_work); ++ struct journal_seq_blacklist_table *t; ++ struct bch_sb_field_journal_seq_blacklist *bl; ++ struct journal_seq_blacklist_entry *src, *dst; ++ struct btree_trans trans; ++ unsigned i, nr, new_nr; ++ int ret; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ for (i = 0; i < BTREE_ID_NR; i++) { ++ struct btree_iter *iter; ++ struct btree *b; ++ ++ for_each_btree_node(&trans, iter, i, POS_MIN, ++ BTREE_ITER_PREFETCH, b) ++ if (test_bit(BCH_FS_STOPPING, &c->flags)) { ++ bch2_trans_exit(&trans); ++ return; ++ } ++ bch2_trans_iter_free(&trans, iter); ++ } ++ ++ ret = bch2_trans_exit(&trans); ++ if (ret) ++ return; ++ ++ mutex_lock(&c->sb_lock); ++ bl = bch2_sb_get_journal_seq_blacklist(c->disk_sb.sb); ++ if (!bl) ++ goto out; ++ ++ nr = blacklist_nr_entries(bl); ++ dst = bl->start; ++ ++ t = c->journal_seq_blacklist_table; ++ BUG_ON(nr != t->nr); ++ ++ for (src = bl->start, i = eytzinger0_first(t->nr); ++ src < bl->start + nr; ++ src++, i = eytzinger0_next(i, nr)) { ++ BUG_ON(t->entries[i].start != le64_to_cpu(src->start)); ++ BUG_ON(t->entries[i].end != le64_to_cpu(src->end)); ++ ++ if (t->entries[i].dirty) ++ *dst++ = *src; ++ } ++ ++ new_nr = dst - bl->start; ++ ++ bch_info(c, "nr blacklist entries was %u, now %u", nr, new_nr); ++ ++ if (new_nr != nr) { ++ bl = bch2_sb_resize_journal_seq_blacklist(&c->disk_sb, ++ new_nr ? sb_blacklist_u64s(new_nr) : 0); ++ BUG_ON(new_nr && !bl); ++ ++ if (!new_nr) ++ c->disk_sb.sb->features[0] &= ++ ~(1ULL << BCH_FEATURE_journal_seq_blacklist_v3); ++ ++ bch2_write_super(c); ++ } ++out: ++ mutex_unlock(&c->sb_lock); ++} +diff --git a/fs/bcachefs/journal_seq_blacklist.h b/fs/bcachefs/journal_seq_blacklist.h +new file mode 100644 +index 000000000000..afb886ec8e25 +--- /dev/null ++++ b/fs/bcachefs/journal_seq_blacklist.h +@@ -0,0 +1,22 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_JOURNAL_SEQ_BLACKLIST_H ++#define _BCACHEFS_JOURNAL_SEQ_BLACKLIST_H ++ ++static inline unsigned ++blacklist_nr_entries(struct bch_sb_field_journal_seq_blacklist *bl) ++{ ++ return bl ++ ? ((vstruct_end(&bl->field) - (void *) &bl->start[0]) / ++ sizeof(struct journal_seq_blacklist_entry)) ++ : 0; ++} ++ ++bool bch2_journal_seq_is_blacklisted(struct bch_fs *, u64, bool); ++int bch2_journal_seq_blacklist_add(struct bch_fs *c, u64, u64); ++int bch2_blacklist_table_initialize(struct bch_fs *); ++ ++extern const struct bch_sb_field_ops bch_sb_field_ops_journal_seq_blacklist; ++ ++void bch2_blacklist_entries_gc(struct work_struct *); ++ ++#endif /* _BCACHEFS_JOURNAL_SEQ_BLACKLIST_H */ +diff --git a/fs/bcachefs/journal_types.h b/fs/bcachefs/journal_types.h +new file mode 100644 +index 000000000000..154b51b891d3 +--- /dev/null ++++ b/fs/bcachefs/journal_types.h +@@ -0,0 +1,277 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_JOURNAL_TYPES_H ++#define _BCACHEFS_JOURNAL_TYPES_H ++ ++#include ++#include ++ ++#include "alloc_types.h" ++#include "super_types.h" ++#include "fifo.h" ++ ++struct journal_res; ++ ++/* ++ * We put two of these in struct journal; we used them for writes to the ++ * journal that are being staged or in flight. ++ */ ++struct journal_buf { ++ struct jset *data; ++ ++ BKEY_PADDED(key); ++ ++ struct closure_waitlist wait; ++ ++ unsigned buf_size; /* size in bytes of @data */ ++ unsigned sectors; /* maximum size for current entry */ ++ unsigned disk_sectors; /* maximum size entry could have been, if ++ buf_size was bigger */ ++ unsigned u64s_reserved; ++ /* bloom filter: */ ++ unsigned long has_inode[1024 / sizeof(unsigned long)]; ++}; ++ ++/* ++ * Something that makes a journal entry dirty - i.e. a btree node that has to be ++ * flushed: ++ */ ++ ++struct journal_entry_pin_list { ++ struct list_head list; ++ struct list_head flushed; ++ atomic_t count; ++ struct bch_devs_list devs; ++}; ++ ++struct journal; ++struct journal_entry_pin; ++typedef void (*journal_pin_flush_fn)(struct journal *j, ++ struct journal_entry_pin *, u64); ++ ++struct journal_entry_pin { ++ struct list_head list; ++ journal_pin_flush_fn flush; ++ u64 seq; ++}; ++ ++struct journal_res { ++ bool ref; ++ u8 idx; ++ u16 u64s; ++ u32 offset; ++ u64 seq; ++}; ++ ++/* ++ * For reserving space in the journal prior to getting a reservation on a ++ * particular journal entry: ++ */ ++struct journal_preres { ++ unsigned u64s; ++}; ++ ++union journal_res_state { ++ struct { ++ atomic64_t counter; ++ }; ++ ++ struct { ++ u64 v; ++ }; ++ ++ struct { ++ u64 cur_entry_offset:20, ++ idx:1, ++ prev_buf_unwritten:1, ++ buf0_count:21, ++ buf1_count:21; ++ }; ++}; ++ ++union journal_preres_state { ++ struct { ++ atomic64_t counter; ++ }; ++ ++ struct { ++ u64 v; ++ }; ++ ++ struct { ++ u32 reserved; ++ u32 remaining; ++ }; ++}; ++ ++/* bytes: */ ++#define JOURNAL_ENTRY_SIZE_MIN (64U << 10) /* 64k */ ++#define JOURNAL_ENTRY_SIZE_MAX (4U << 20) /* 4M */ ++ ++/* ++ * We stash some journal state as sentinal values in cur_entry_offset: ++ * note - cur_entry_offset is in units of u64s ++ */ ++#define JOURNAL_ENTRY_OFFSET_MAX ((1U << 20) - 1) ++ ++#define JOURNAL_ENTRY_CLOSED_VAL (JOURNAL_ENTRY_OFFSET_MAX - 1) ++#define JOURNAL_ENTRY_ERROR_VAL (JOURNAL_ENTRY_OFFSET_MAX) ++ ++/* ++ * JOURNAL_NEED_WRITE - current (pending) journal entry should be written ASAP, ++ * either because something's waiting on the write to complete or because it's ++ * been dirty too long and the timer's expired. ++ */ ++ ++enum { ++ JOURNAL_REPLAY_DONE, ++ JOURNAL_STARTED, ++ JOURNAL_RECLAIM_STARTED, ++ JOURNAL_NEED_WRITE, ++ JOURNAL_NOT_EMPTY, ++ JOURNAL_MAY_GET_UNRESERVED, ++}; ++ ++/* Embedded in struct bch_fs */ ++struct journal { ++ /* Fastpath stuff up front: */ ++ ++ unsigned long flags; ++ ++ union journal_res_state reservations; ++ ++ /* Max size of current journal entry */ ++ unsigned cur_entry_u64s; ++ unsigned cur_entry_sectors; ++ ++ /* ++ * 0, or -ENOSPC if waiting on journal reclaim, or -EROFS if ++ * insufficient devices: ++ */ ++ int cur_entry_error; ++ ++ union journal_preres_state prereserved; ++ ++ /* Reserved space in journal entry to be used just prior to write */ ++ unsigned entry_u64s_reserved; ++ ++ unsigned buf_size_want; ++ ++ /* ++ * Two journal entries -- one is currently open for new entries, the ++ * other is possibly being written out. ++ */ ++ struct journal_buf buf[2]; ++ ++ spinlock_t lock; ++ ++ /* if nonzero, we may not open a new journal entry: */ ++ unsigned blocked; ++ ++ /* Used when waiting because the journal was full */ ++ wait_queue_head_t wait; ++ struct closure_waitlist async_wait; ++ struct closure_waitlist preres_wait; ++ ++ struct closure io; ++ struct delayed_work write_work; ++ ++ /* Sequence number of most recent journal entry (last entry in @pin) */ ++ atomic64_t seq; ++ ++ /* seq, last_seq from the most recent journal entry successfully written */ ++ u64 seq_ondisk; ++ u64 last_seq_ondisk; ++ ++ /* ++ * FIFO of journal entries whose btree updates have not yet been ++ * written out. ++ * ++ * Each entry is a reference count. The position in the FIFO is the ++ * entry's sequence number relative to @seq. ++ * ++ * The journal entry itself holds a reference count, put when the ++ * journal entry is written out. Each btree node modified by the journal ++ * entry also holds a reference count, put when the btree node is ++ * written. ++ * ++ * When a reference count reaches zero, the journal entry is no longer ++ * needed. When all journal entries in the oldest journal bucket are no ++ * longer needed, the bucket can be discarded and reused. ++ */ ++ struct { ++ u64 front, back, size, mask; ++ struct journal_entry_pin_list *data; ++ } pin; ++ ++ u64 replay_journal_seq; ++ u64 replay_journal_seq_end; ++ ++ struct write_point wp; ++ spinlock_t err_lock; ++ ++ struct delayed_work reclaim_work; ++ struct mutex reclaim_lock; ++ unsigned long last_flushed; ++ struct journal_entry_pin *flush_in_progress; ++ wait_queue_head_t pin_flush_wait; ++ ++ /* protects advancing ja->discard_idx: */ ++ struct mutex discard_lock; ++ bool can_discard; ++ ++ unsigned write_delay_ms; ++ unsigned reclaim_delay_ms; ++ ++ u64 res_get_blocked_start; ++ u64 need_write_time; ++ u64 write_start_time; ++ ++ struct time_stats *write_time; ++ struct time_stats *delay_time; ++ struct time_stats *blocked_time; ++ struct time_stats *flush_seq_time; ++ ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++ struct lockdep_map res_map; ++#endif ++}; ++ ++/* ++ * Embedded in struct bch_dev. First three fields refer to the array of journal ++ * buckets, in bch_sb. ++ */ ++struct journal_device { ++ /* ++ * For each journal bucket, contains the max sequence number of the ++ * journal writes it contains - so we know when a bucket can be reused. ++ */ ++ u64 *bucket_seq; ++ ++ unsigned sectors_free; ++ ++ /* ++ * discard_idx <= dirty_idx_ondisk <= dirty_idx <= cur_idx: ++ */ ++ unsigned discard_idx; /* Next bucket to discard */ ++ unsigned dirty_idx_ondisk; ++ unsigned dirty_idx; ++ unsigned cur_idx; /* Journal bucket we're currently writing to */ ++ unsigned nr; ++ ++ u64 *buckets; ++ ++ /* Bio for journal reads/writes to this device */ ++ struct bio *bio; ++ ++ /* for bch_journal_read_device */ ++ struct closure read; ++}; ++ ++/* ++ * journal_entry_res - reserve space in every journal entry: ++ */ ++struct journal_entry_res { ++ unsigned u64s; ++}; ++ ++#endif /* _BCACHEFS_JOURNAL_TYPES_H */ +diff --git a/fs/bcachefs/keylist.c b/fs/bcachefs/keylist.c +new file mode 100644 +index 000000000000..864dfaa67b7a +--- /dev/null ++++ b/fs/bcachefs/keylist.c +@@ -0,0 +1,67 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "keylist.h" ++ ++int bch2_keylist_realloc(struct keylist *l, u64 *inline_u64s, ++ size_t nr_inline_u64s, size_t new_u64s) ++{ ++ size_t oldsize = bch2_keylist_u64s(l); ++ size_t newsize = oldsize + new_u64s; ++ u64 *old_buf = l->keys_p == inline_u64s ? NULL : l->keys_p; ++ u64 *new_keys; ++ ++ newsize = roundup_pow_of_two(newsize); ++ ++ if (newsize <= nr_inline_u64s || ++ (old_buf && roundup_pow_of_two(oldsize) == newsize)) ++ return 0; ++ ++ new_keys = krealloc(old_buf, sizeof(u64) * newsize, GFP_NOIO); ++ if (!new_keys) ++ return -ENOMEM; ++ ++ if (!old_buf) ++ memcpy_u64s(new_keys, inline_u64s, oldsize); ++ ++ l->keys_p = new_keys; ++ l->top_p = new_keys + oldsize; ++ ++ return 0; ++} ++ ++void bch2_keylist_add_in_order(struct keylist *l, struct bkey_i *insert) ++{ ++ struct bkey_i *where; ++ ++ for_each_keylist_key(l, where) ++ if (bkey_cmp(insert->k.p, where->k.p) < 0) ++ break; ++ ++ memmove_u64s_up((u64 *) where + insert->k.u64s, ++ where, ++ ((u64 *) l->top) - ((u64 *) where)); ++ ++ l->top_p += insert->k.u64s; ++ bkey_copy(where, insert); ++} ++ ++void bch2_keylist_pop_front(struct keylist *l) ++{ ++ l->top_p -= bch2_keylist_front(l)->k.u64s; ++ ++ memmove_u64s_down(l->keys, ++ bkey_next(l->keys), ++ bch2_keylist_u64s(l)); ++} ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++void bch2_verify_keylist_sorted(struct keylist *l) ++{ ++ struct bkey_i *k; ++ ++ for_each_keylist_key(l, k) ++ BUG_ON(bkey_next(k) != l->top && ++ bkey_cmp(k->k.p, bkey_next(k)->k.p) >= 0); ++} ++#endif +diff --git a/fs/bcachefs/keylist.h b/fs/bcachefs/keylist.h +new file mode 100644 +index 000000000000..195799bb20bc +--- /dev/null ++++ b/fs/bcachefs/keylist.h +@@ -0,0 +1,76 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_KEYLIST_H ++#define _BCACHEFS_KEYLIST_H ++ ++#include "keylist_types.h" ++ ++int bch2_keylist_realloc(struct keylist *, u64 *, size_t, size_t); ++void bch2_keylist_add_in_order(struct keylist *, struct bkey_i *); ++void bch2_keylist_pop_front(struct keylist *); ++ ++static inline void bch2_keylist_init(struct keylist *l, u64 *inline_keys) ++{ ++ l->top_p = l->keys_p = inline_keys; ++} ++ ++static inline void bch2_keylist_free(struct keylist *l, u64 *inline_keys) ++{ ++ if (l->keys_p != inline_keys) ++ kfree(l->keys_p); ++ bch2_keylist_init(l, inline_keys); ++} ++ ++static inline void bch2_keylist_push(struct keylist *l) ++{ ++ l->top = bkey_next(l->top); ++} ++ ++static inline void bch2_keylist_add(struct keylist *l, const struct bkey_i *k) ++{ ++ bkey_copy(l->top, k); ++ bch2_keylist_push(l); ++} ++ ++static inline bool bch2_keylist_empty(struct keylist *l) ++{ ++ return l->top == l->keys; ++} ++ ++static inline size_t bch2_keylist_u64s(struct keylist *l) ++{ ++ return l->top_p - l->keys_p; ++} ++ ++static inline size_t bch2_keylist_bytes(struct keylist *l) ++{ ++ return bch2_keylist_u64s(l) * sizeof(u64); ++} ++ ++static inline struct bkey_i *bch2_keylist_front(struct keylist *l) ++{ ++ return l->keys; ++} ++ ++#define for_each_keylist_key(_keylist, _k) \ ++ for (_k = (_keylist)->keys; \ ++ _k != (_keylist)->top; \ ++ _k = bkey_next(_k)) ++ ++static inline u64 keylist_sectors(struct keylist *keys) ++{ ++ struct bkey_i *k; ++ u64 ret = 0; ++ ++ for_each_keylist_key(keys, k) ++ ret += k->k.size; ++ ++ return ret; ++} ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++void bch2_verify_keylist_sorted(struct keylist *); ++#else ++static inline void bch2_verify_keylist_sorted(struct keylist *l) {} ++#endif ++ ++#endif /* _BCACHEFS_KEYLIST_H */ +diff --git a/fs/bcachefs/keylist_types.h b/fs/bcachefs/keylist_types.h +new file mode 100644 +index 000000000000..4b3ff7d8a875 +--- /dev/null ++++ b/fs/bcachefs/keylist_types.h +@@ -0,0 +1,16 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_KEYLIST_TYPES_H ++#define _BCACHEFS_KEYLIST_TYPES_H ++ ++struct keylist { ++ union { ++ struct bkey_i *keys; ++ u64 *keys_p; ++ }; ++ union { ++ struct bkey_i *top; ++ u64 *top_p; ++ }; ++}; ++ ++#endif /* _BCACHEFS_KEYLIST_TYPES_H */ +diff --git a/fs/bcachefs/migrate.c b/fs/bcachefs/migrate.c +new file mode 100644 +index 000000000000..96c8690adc5b +--- /dev/null ++++ b/fs/bcachefs/migrate.c +@@ -0,0 +1,170 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Code for moving data off a device. ++ */ ++ ++#include "bcachefs.h" ++#include "bkey_on_stack.h" ++#include "btree_update.h" ++#include "btree_update_interior.h" ++#include "buckets.h" ++#include "extents.h" ++#include "io.h" ++#include "journal.h" ++#include "keylist.h" ++#include "migrate.h" ++#include "move.h" ++#include "replicas.h" ++#include "super-io.h" ++ ++static int drop_dev_ptrs(struct bch_fs *c, struct bkey_s k, ++ unsigned dev_idx, int flags, bool metadata) ++{ ++ unsigned replicas = metadata ? c->opts.metadata_replicas : c->opts.data_replicas; ++ unsigned lost = metadata ? BCH_FORCE_IF_METADATA_LOST : BCH_FORCE_IF_DATA_LOST; ++ unsigned degraded = metadata ? BCH_FORCE_IF_METADATA_DEGRADED : BCH_FORCE_IF_DATA_DEGRADED; ++ unsigned nr_good; ++ ++ bch2_bkey_drop_device(k, dev_idx); ++ ++ nr_good = bch2_bkey_durability(c, k.s_c); ++ if ((!nr_good && !(flags & lost)) || ++ (nr_good < replicas && !(flags & degraded))) ++ return -EINVAL; ++ ++ return 0; ++} ++ ++static int __bch2_dev_usrdata_drop(struct bch_fs *c, unsigned dev_idx, int flags, ++ enum btree_id btree_id) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ struct bkey_on_stack sk; ++ int ret = 0; ++ ++ bkey_on_stack_init(&sk); ++ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0); ++ ++ iter = bch2_trans_get_iter(&trans, btree_id, POS_MIN, ++ BTREE_ITER_PREFETCH); ++ ++ while ((k = bch2_btree_iter_peek(iter)).k && ++ !(ret = bkey_err(k))) { ++ if (!bch2_bkey_has_device(k, dev_idx)) { ++ bch2_btree_iter_next(iter); ++ continue; ++ } ++ ++ bkey_on_stack_reassemble(&sk, c, k); ++ ++ ret = drop_dev_ptrs(c, bkey_i_to_s(sk.k), ++ dev_idx, flags, false); ++ if (ret) ++ break; ++ ++ /* ++ * If the new extent no longer has any pointers, bch2_extent_normalize() ++ * will do the appropriate thing with it (turning it into a ++ * KEY_TYPE_error key, or just a discard if it was a cached extent) ++ */ ++ bch2_extent_normalize(c, bkey_i_to_s(sk.k)); ++ ++ bch2_btree_iter_set_pos(iter, bkey_start_pos(&sk.k->k)); ++ ++ bch2_trans_update(&trans, iter, sk.k, 0); ++ ++ ret = bch2_trans_commit(&trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL); ++ ++ /* ++ * don't want to leave ret == -EINTR, since if we raced and ++ * something else overwrote the key we could spuriously return ++ * -EINTR below: ++ */ ++ if (ret == -EINTR) ++ ret = 0; ++ if (ret) ++ break; ++ } ++ ++ ret = bch2_trans_exit(&trans) ?: ret; ++ bkey_on_stack_exit(&sk, c); ++ ++ BUG_ON(ret == -EINTR); ++ ++ return ret; ++} ++ ++static int bch2_dev_usrdata_drop(struct bch_fs *c, unsigned dev_idx, int flags) ++{ ++ return __bch2_dev_usrdata_drop(c, dev_idx, flags, BTREE_ID_EXTENTS) ?: ++ __bch2_dev_usrdata_drop(c, dev_idx, flags, BTREE_ID_REFLINK); ++} ++ ++static int bch2_dev_metadata_drop(struct bch_fs *c, unsigned dev_idx, int flags) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct closure cl; ++ struct btree *b; ++ unsigned id; ++ int ret; ++ ++ /* don't handle this yet: */ ++ if (flags & BCH_FORCE_IF_METADATA_LOST) ++ return -EINVAL; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ closure_init_stack(&cl); ++ ++ for (id = 0; id < BTREE_ID_NR; id++) { ++ for_each_btree_node(&trans, iter, id, POS_MIN, ++ BTREE_ITER_PREFETCH, b) { ++ __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; ++retry: ++ if (!bch2_bkey_has_device(bkey_i_to_s_c(&b->key), ++ dev_idx)) ++ continue; ++ ++ bkey_copy(&tmp.k, &b->key); ++ ++ ret = drop_dev_ptrs(c, bkey_i_to_s(&tmp.k), ++ dev_idx, flags, true); ++ if (ret) { ++ bch_err(c, "Cannot drop device without losing data"); ++ goto err; ++ } ++ ++ ret = bch2_btree_node_update_key(c, iter, b, &tmp.k); ++ if (ret == -EINTR) { ++ b = bch2_btree_iter_peek_node(iter); ++ goto retry; ++ } ++ if (ret) { ++ bch_err(c, "Error updating btree node key: %i", ret); ++ goto err; ++ } ++ } ++ bch2_trans_iter_free(&trans, iter); ++ } ++ ++ /* flush relevant btree updates */ ++ closure_wait_event(&c->btree_interior_update_wait, ++ !bch2_btree_interior_updates_nr_pending(c)); ++ ++ ret = 0; ++err: ++ ret = bch2_trans_exit(&trans) ?: ret; ++ ++ BUG_ON(ret == -EINTR); ++ ++ return ret; ++} ++ ++int bch2_dev_data_drop(struct bch_fs *c, unsigned dev_idx, int flags) ++{ ++ return bch2_dev_usrdata_drop(c, dev_idx, flags) ?: ++ bch2_dev_metadata_drop(c, dev_idx, flags); ++} +diff --git a/fs/bcachefs/migrate.h b/fs/bcachefs/migrate.h +new file mode 100644 +index 000000000000..027efaa0d575 +--- /dev/null ++++ b/fs/bcachefs/migrate.h +@@ -0,0 +1,7 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_MIGRATE_H ++#define _BCACHEFS_MIGRATE_H ++ ++int bch2_dev_data_drop(struct bch_fs *, unsigned, int); ++ ++#endif /* _BCACHEFS_MIGRATE_H */ +diff --git a/fs/bcachefs/move.c b/fs/bcachefs/move.c +new file mode 100644 +index 000000000000..62dcac79ed06 +--- /dev/null ++++ b/fs/bcachefs/move.c +@@ -0,0 +1,826 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "alloc_foreground.h" ++#include "bkey_on_stack.h" ++#include "btree_gc.h" ++#include "btree_update.h" ++#include "btree_update_interior.h" ++#include "buckets.h" ++#include "disk_groups.h" ++#include "inode.h" ++#include "io.h" ++#include "journal_reclaim.h" ++#include "move.h" ++#include "replicas.h" ++#include "super-io.h" ++#include "keylist.h" ++ ++#include ++#include ++ ++#include ++ ++#define SECTORS_IN_FLIGHT_PER_DEVICE 2048 ++ ++struct moving_io { ++ struct list_head list; ++ struct closure cl; ++ bool read_completed; ++ ++ unsigned read_sectors; ++ unsigned write_sectors; ++ ++ struct bch_read_bio rbio; ++ ++ struct migrate_write write; ++ /* Must be last since it is variable size */ ++ struct bio_vec bi_inline_vecs[0]; ++}; ++ ++struct moving_context { ++ /* Closure for waiting on all reads and writes to complete */ ++ struct closure cl; ++ ++ struct bch_move_stats *stats; ++ ++ struct list_head reads; ++ ++ /* in flight sectors: */ ++ atomic_t read_sectors; ++ atomic_t write_sectors; ++ ++ wait_queue_head_t wait; ++}; ++ ++static int bch2_migrate_index_update(struct bch_write_op *op) ++{ ++ struct bch_fs *c = op->c; ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct migrate_write *m = ++ container_of(op, struct migrate_write, op); ++ struct keylist *keys = &op->insert_keys; ++ int ret = 0; ++ ++ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0); ++ ++ iter = bch2_trans_get_iter(&trans, m->btree_id, ++ bkey_start_pos(&bch2_keylist_front(keys)->k), ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT); ++ ++ while (1) { ++ struct bkey_s_c k; ++ struct bkey_i *insert; ++ struct bkey_i_extent *new; ++ BKEY_PADDED(k) _new, _insert; ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ bool did_work = false; ++ int nr; ++ ++ bch2_trans_reset(&trans, 0); ++ ++ k = bch2_btree_iter_peek_slot(iter); ++ ret = bkey_err(k); ++ if (ret) { ++ if (ret == -EINTR) ++ continue; ++ break; ++ } ++ ++ new = bkey_i_to_extent(bch2_keylist_front(keys)); ++ ++ if (bversion_cmp(k.k->version, new->k.version) || ++ !bch2_bkey_matches_ptr(c, k, m->ptr, m->offset)) ++ goto nomatch; ++ ++ bkey_reassemble(&_insert.k, k); ++ insert = &_insert.k; ++ ++ bkey_copy(&_new.k, bch2_keylist_front(keys)); ++ new = bkey_i_to_extent(&_new.k); ++ bch2_cut_front(iter->pos, &new->k_i); ++ ++ bch2_cut_front(iter->pos, insert); ++ bch2_cut_back(new->k.p, insert); ++ bch2_cut_back(insert->k.p, &new->k_i); ++ ++ if (m->data_cmd == DATA_REWRITE) { ++ struct bch_extent_ptr *new_ptr, *old_ptr = (void *) ++ bch2_bkey_has_device(bkey_i_to_s_c(insert), ++ m->data_opts.rewrite_dev); ++ if (!old_ptr) ++ goto nomatch; ++ ++ if (old_ptr->cached) ++ extent_for_each_ptr(extent_i_to_s(new), new_ptr) ++ new_ptr->cached = true; ++ ++ bch2_bkey_drop_ptr(bkey_i_to_s(insert), old_ptr); ++ } ++ ++ extent_for_each_ptr_decode(extent_i_to_s(new), p, entry) { ++ if (bch2_bkey_has_device(bkey_i_to_s_c(insert), p.ptr.dev)) { ++ /* ++ * raced with another move op? extent already ++ * has a pointer to the device we just wrote ++ * data to ++ */ ++ continue; ++ } ++ ++ bch2_extent_ptr_decoded_append(insert, &p); ++ did_work = true; ++ } ++ ++ if (!did_work) ++ goto nomatch; ++ ++ bch2_bkey_narrow_crcs(insert, ++ (struct bch_extent_crc_unpacked) { 0 }); ++ bch2_extent_normalize(c, bkey_i_to_s(insert)); ++ bch2_bkey_mark_replicas_cached(c, bkey_i_to_s(insert), ++ op->opts.background_target, ++ op->opts.data_replicas); ++ ++ /* ++ * If we're not fully overwriting @k, and it's compressed, we ++ * need a reservation for all the pointers in @insert ++ */ ++ nr = bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(insert)) - ++ m->nr_ptrs_reserved; ++ ++ if (insert->k.size < k.k->size && ++ bch2_bkey_sectors_compressed(k) && ++ nr > 0) { ++ ret = bch2_disk_reservation_add(c, &op->res, ++ keylist_sectors(keys) * nr, 0); ++ if (ret) ++ goto out; ++ ++ m->nr_ptrs_reserved += nr; ++ goto next; ++ } ++ ++ bch2_trans_update(&trans, iter, insert, 0); ++ ++ ret = bch2_trans_commit(&trans, &op->res, ++ op_journal_seq(op), ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_USE_RESERVE| ++ m->data_opts.btree_insert_flags); ++ if (!ret) ++ atomic_long_inc(&c->extent_migrate_done); ++ if (ret == -EINTR) ++ ret = 0; ++ if (ret) ++ break; ++next: ++ while (bkey_cmp(iter->pos, bch2_keylist_front(keys)->k.p) >= 0) { ++ bch2_keylist_pop_front(keys); ++ if (bch2_keylist_empty(keys)) ++ goto out; ++ } ++ continue; ++nomatch: ++ if (m->ctxt) { ++ BUG_ON(k.k->p.offset <= iter->pos.offset); ++ atomic64_inc(&m->ctxt->stats->keys_raced); ++ atomic64_add(k.k->p.offset - iter->pos.offset, ++ &m->ctxt->stats->sectors_raced); ++ } ++ atomic_long_inc(&c->extent_migrate_raced); ++ trace_move_race(&new->k); ++ bch2_btree_iter_next_slot(iter); ++ goto next; ++ } ++out: ++ bch2_trans_exit(&trans); ++ BUG_ON(ret == -EINTR); ++ return ret; ++} ++ ++void bch2_migrate_read_done(struct migrate_write *m, struct bch_read_bio *rbio) ++{ ++ /* write bio must own pages: */ ++ BUG_ON(!m->op.wbio.bio.bi_vcnt); ++ ++ m->ptr = rbio->pick.ptr; ++ m->offset = rbio->pos.offset - rbio->pick.crc.offset; ++ m->op.devs_have = rbio->devs_have; ++ m->op.pos = rbio->pos; ++ m->op.version = rbio->version; ++ m->op.crc = rbio->pick.crc; ++ m->op.wbio.bio.bi_iter.bi_size = m->op.crc.compressed_size << 9; ++ ++ if (bch2_csum_type_is_encryption(m->op.crc.csum_type)) { ++ m->op.nonce = m->op.crc.nonce + m->op.crc.offset; ++ m->op.csum_type = m->op.crc.csum_type; ++ } ++ ++ if (m->data_cmd == DATA_REWRITE) ++ bch2_dev_list_drop_dev(&m->op.devs_have, m->data_opts.rewrite_dev); ++} ++ ++int bch2_migrate_write_init(struct bch_fs *c, struct migrate_write *m, ++ struct write_point_specifier wp, ++ struct bch_io_opts io_opts, ++ enum data_cmd data_cmd, ++ struct data_opts data_opts, ++ enum btree_id btree_id, ++ struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ int ret; ++ ++ m->btree_id = btree_id; ++ m->data_cmd = data_cmd; ++ m->data_opts = data_opts; ++ m->nr_ptrs_reserved = 0; ++ ++ bch2_write_op_init(&m->op, c, io_opts); ++ ++ if (!bch2_bkey_is_incompressible(k)) ++ m->op.compression_type = ++ bch2_compression_opt_to_type[io_opts.background_compression ?: ++ io_opts.compression]; ++ else ++ m->op.incompressible = true; ++ ++ m->op.target = data_opts.target, ++ m->op.write_point = wp; ++ ++ if (m->data_opts.btree_insert_flags & BTREE_INSERT_USE_RESERVE) { ++ m->op.alloc_reserve = RESERVE_MOVINGGC; ++ m->op.flags |= BCH_WRITE_ALLOC_NOWAIT; ++ } else { ++ /* XXX: this should probably be passed in */ ++ m->op.flags |= BCH_WRITE_ONLY_SPECIFIED_DEVS; ++ } ++ ++ m->op.flags |= BCH_WRITE_PAGES_STABLE| ++ BCH_WRITE_PAGES_OWNED| ++ BCH_WRITE_DATA_ENCODED| ++ BCH_WRITE_FROM_INTERNAL; ++ ++ m->op.nr_replicas = 1; ++ m->op.nr_replicas_required = 1; ++ m->op.index_update_fn = bch2_migrate_index_update; ++ ++ switch (data_cmd) { ++ case DATA_ADD_REPLICAS: { ++ /* ++ * DATA_ADD_REPLICAS is used for moving data to a different ++ * device in the background, and due to compression the new copy ++ * might take up more space than the old copy: ++ */ ++#if 0 ++ int nr = (int) io_opts.data_replicas - ++ bch2_bkey_nr_ptrs_allocated(k); ++#endif ++ int nr = (int) io_opts.data_replicas; ++ ++ if (nr > 0) { ++ m->op.nr_replicas = m->nr_ptrs_reserved = nr; ++ ++ ret = bch2_disk_reservation_get(c, &m->op.res, ++ k.k->size, m->op.nr_replicas, 0); ++ if (ret) ++ return ret; ++ } ++ break; ++ } ++ case DATA_REWRITE: { ++ unsigned compressed_sectors = 0; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) ++ if (p.ptr.dev == data_opts.rewrite_dev && ++ !p.ptr.cached && ++ crc_is_compressed(p.crc)) ++ compressed_sectors += p.crc.compressed_size; ++ ++ if (compressed_sectors) { ++ ret = bch2_disk_reservation_add(c, &m->op.res, ++ k.k->size * m->op.nr_replicas, ++ BCH_DISK_RESERVATION_NOFAIL); ++ if (ret) ++ return ret; ++ } ++ break; ++ } ++ case DATA_PROMOTE: ++ m->op.flags |= BCH_WRITE_ALLOC_NOWAIT; ++ m->op.flags |= BCH_WRITE_CACHED; ++ break; ++ default: ++ BUG(); ++ } ++ ++ return 0; ++} ++ ++static void move_free(struct closure *cl) ++{ ++ struct moving_io *io = container_of(cl, struct moving_io, cl); ++ struct moving_context *ctxt = io->write.ctxt; ++ struct bvec_iter_all iter; ++ struct bio_vec *bv; ++ ++ bch2_disk_reservation_put(io->write.op.c, &io->write.op.res); ++ ++ bio_for_each_segment_all(bv, &io->write.op.wbio.bio, iter) ++ if (bv->bv_page) ++ __free_page(bv->bv_page); ++ ++ wake_up(&ctxt->wait); ++ ++ kfree(io); ++} ++ ++static void move_write_done(struct closure *cl) ++{ ++ struct moving_io *io = container_of(cl, struct moving_io, cl); ++ ++ atomic_sub(io->write_sectors, &io->write.ctxt->write_sectors); ++ closure_return_with_destructor(cl, move_free); ++} ++ ++static void move_write(struct closure *cl) ++{ ++ struct moving_io *io = container_of(cl, struct moving_io, cl); ++ ++ if (unlikely(io->rbio.bio.bi_status || io->rbio.hole)) { ++ closure_return_with_destructor(cl, move_free); ++ return; ++ } ++ ++ bch2_migrate_read_done(&io->write, &io->rbio); ++ ++ atomic_add(io->write_sectors, &io->write.ctxt->write_sectors); ++ closure_call(&io->write.op.cl, bch2_write, NULL, cl); ++ continue_at(cl, move_write_done, NULL); ++} ++ ++static inline struct moving_io *next_pending_write(struct moving_context *ctxt) ++{ ++ struct moving_io *io = ++ list_first_entry_or_null(&ctxt->reads, struct moving_io, list); ++ ++ return io && io->read_completed ? io : NULL; ++} ++ ++static void move_read_endio(struct bio *bio) ++{ ++ struct moving_io *io = container_of(bio, struct moving_io, rbio.bio); ++ struct moving_context *ctxt = io->write.ctxt; ++ ++ atomic_sub(io->read_sectors, &ctxt->read_sectors); ++ io->read_completed = true; ++ ++ if (next_pending_write(ctxt)) ++ wake_up(&ctxt->wait); ++ ++ closure_put(&ctxt->cl); ++} ++ ++static void do_pending_writes(struct moving_context *ctxt) ++{ ++ struct moving_io *io; ++ ++ while ((io = next_pending_write(ctxt))) { ++ list_del(&io->list); ++ closure_call(&io->cl, move_write, NULL, &ctxt->cl); ++ } ++} ++ ++#define move_ctxt_wait_event(_ctxt, _cond) \ ++do { \ ++ do_pending_writes(_ctxt); \ ++ \ ++ if (_cond) \ ++ break; \ ++ __wait_event((_ctxt)->wait, \ ++ next_pending_write(_ctxt) || (_cond)); \ ++} while (1) ++ ++static void bch2_move_ctxt_wait_for_io(struct moving_context *ctxt) ++{ ++ unsigned sectors_pending = atomic_read(&ctxt->write_sectors); ++ ++ move_ctxt_wait_event(ctxt, ++ !atomic_read(&ctxt->write_sectors) || ++ atomic_read(&ctxt->write_sectors) != sectors_pending); ++} ++ ++static int bch2_move_extent(struct btree_trans *trans, ++ struct moving_context *ctxt, ++ struct write_point_specifier wp, ++ struct bch_io_opts io_opts, ++ enum btree_id btree_id, ++ struct bkey_s_c k, ++ enum data_cmd data_cmd, ++ struct data_opts data_opts) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ struct moving_io *io; ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ unsigned sectors = k.k->size, pages; ++ int ret = -ENOMEM; ++ ++ move_ctxt_wait_event(ctxt, ++ atomic_read(&ctxt->write_sectors) < ++ SECTORS_IN_FLIGHT_PER_DEVICE); ++ ++ move_ctxt_wait_event(ctxt, ++ atomic_read(&ctxt->read_sectors) < ++ SECTORS_IN_FLIGHT_PER_DEVICE); ++ ++ /* write path might have to decompress data: */ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) ++ sectors = max_t(unsigned, sectors, p.crc.uncompressed_size); ++ ++ pages = DIV_ROUND_UP(sectors, PAGE_SECTORS); ++ io = kzalloc(sizeof(struct moving_io) + ++ sizeof(struct bio_vec) * pages, GFP_KERNEL); ++ if (!io) ++ goto err; ++ ++ io->write.ctxt = ctxt; ++ io->read_sectors = k.k->size; ++ io->write_sectors = k.k->size; ++ ++ bio_init(&io->write.op.wbio.bio, io->bi_inline_vecs, pages); ++ bio_set_prio(&io->write.op.wbio.bio, ++ IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); ++ ++ if (bch2_bio_alloc_pages(&io->write.op.wbio.bio, sectors << 9, ++ GFP_KERNEL)) ++ goto err_free; ++ ++ io->rbio.c = c; ++ io->rbio.opts = io_opts; ++ bio_init(&io->rbio.bio, io->bi_inline_vecs, pages); ++ io->rbio.bio.bi_vcnt = pages; ++ bio_set_prio(&io->rbio.bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); ++ io->rbio.bio.bi_iter.bi_size = sectors << 9; ++ ++ bio_set_op_attrs(&io->rbio.bio, REQ_OP_READ, 0); ++ io->rbio.bio.bi_iter.bi_sector = bkey_start_offset(k.k); ++ io->rbio.bio.bi_end_io = move_read_endio; ++ ++ ret = bch2_migrate_write_init(c, &io->write, wp, io_opts, ++ data_cmd, data_opts, btree_id, k); ++ if (ret) ++ goto err_free_pages; ++ ++ atomic64_inc(&ctxt->stats->keys_moved); ++ atomic64_add(k.k->size, &ctxt->stats->sectors_moved); ++ ++ trace_move_extent(k.k); ++ ++ atomic_add(io->read_sectors, &ctxt->read_sectors); ++ list_add_tail(&io->list, &ctxt->reads); ++ ++ /* ++ * dropped by move_read_endio() - guards against use after free of ++ * ctxt when doing wakeup ++ */ ++ closure_get(&ctxt->cl); ++ bch2_read_extent(trans, &io->rbio, k, 0, ++ BCH_READ_NODECODE| ++ BCH_READ_LAST_FRAGMENT); ++ return 0; ++err_free_pages: ++ bio_free_pages(&io->write.op.wbio.bio); ++err_free: ++ kfree(io); ++err: ++ trace_move_alloc_fail(k.k); ++ return ret; ++} ++ ++static int __bch2_move_data(struct bch_fs *c, ++ struct moving_context *ctxt, ++ struct bch_ratelimit *rate, ++ struct write_point_specifier wp, ++ struct bpos start, ++ struct bpos end, ++ move_pred_fn pred, void *arg, ++ struct bch_move_stats *stats, ++ enum btree_id btree_id) ++{ ++ bool kthread = (current->flags & PF_KTHREAD) != 0; ++ struct bch_io_opts io_opts = bch2_opts_to_inode_opts(c->opts); ++ struct bkey_on_stack sk; ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ struct data_opts data_opts; ++ enum data_cmd data_cmd; ++ u64 delay, cur_inum = U64_MAX; ++ int ret = 0, ret2; ++ ++ bkey_on_stack_init(&sk); ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ stats->data_type = BCH_DATA_user; ++ stats->btree_id = btree_id; ++ stats->pos = POS_MIN; ++ ++ iter = bch2_trans_get_iter(&trans, btree_id, start, ++ BTREE_ITER_PREFETCH); ++ ++ if (rate) ++ bch2_ratelimit_reset(rate); ++ ++ while (1) { ++ do { ++ delay = rate ? bch2_ratelimit_delay(rate) : 0; ++ ++ if (delay) { ++ bch2_trans_unlock(&trans); ++ set_current_state(TASK_INTERRUPTIBLE); ++ } ++ ++ if (kthread && (ret = kthread_should_stop())) { ++ __set_current_state(TASK_RUNNING); ++ goto out; ++ } ++ ++ if (delay) ++ schedule_timeout(delay); ++ ++ if (unlikely(freezing(current))) { ++ bch2_trans_unlock(&trans); ++ move_ctxt_wait_event(ctxt, list_empty(&ctxt->reads)); ++ try_to_freeze(); ++ } ++ } while (delay); ++peek: ++ k = bch2_btree_iter_peek(iter); ++ ++ stats->pos = iter->pos; ++ ++ if (!k.k) ++ break; ++ ret = bkey_err(k); ++ if (ret) ++ break; ++ if (bkey_cmp(bkey_start_pos(k.k), end) >= 0) ++ break; ++ ++ if (!bkey_extent_is_direct_data(k.k)) ++ goto next_nondata; ++ ++ if (btree_id == BTREE_ID_EXTENTS && ++ cur_inum != k.k->p.inode) { ++ struct bch_inode_unpacked inode; ++ ++ /* don't hold btree locks while looking up inode: */ ++ bch2_trans_unlock(&trans); ++ ++ io_opts = bch2_opts_to_inode_opts(c->opts); ++ if (!bch2_inode_find_by_inum(c, k.k->p.inode, &inode)) ++ bch2_io_opts_apply(&io_opts, bch2_inode_opts_get(&inode)); ++ cur_inum = k.k->p.inode; ++ goto peek; ++ } ++ ++ switch ((data_cmd = pred(c, arg, k, &io_opts, &data_opts))) { ++ case DATA_SKIP: ++ goto next; ++ case DATA_SCRUB: ++ BUG(); ++ case DATA_ADD_REPLICAS: ++ case DATA_REWRITE: ++ case DATA_PROMOTE: ++ break; ++ default: ++ BUG(); ++ } ++ ++ /* unlock before doing IO: */ ++ bkey_on_stack_reassemble(&sk, c, k); ++ k = bkey_i_to_s_c(sk.k); ++ bch2_trans_unlock(&trans); ++ ++ ret2 = bch2_move_extent(&trans, ctxt, wp, io_opts, btree_id, k, ++ data_cmd, data_opts); ++ if (ret2) { ++ if (ret2 == -ENOMEM) { ++ /* memory allocation failure, wait for some IO to finish */ ++ bch2_move_ctxt_wait_for_io(ctxt); ++ continue; ++ } ++ ++ /* XXX signal failure */ ++ goto next; ++ } ++ ++ if (rate) ++ bch2_ratelimit_increment(rate, k.k->size); ++next: ++ atomic64_add(k.k->size * bch2_bkey_nr_ptrs_allocated(k), ++ &stats->sectors_seen); ++next_nondata: ++ bch2_btree_iter_next(iter); ++ bch2_trans_cond_resched(&trans); ++ } ++out: ++ ret = bch2_trans_exit(&trans) ?: ret; ++ bkey_on_stack_exit(&sk, c); ++ ++ return ret; ++} ++ ++int bch2_move_data(struct bch_fs *c, ++ struct bch_ratelimit *rate, ++ struct write_point_specifier wp, ++ struct bpos start, ++ struct bpos end, ++ move_pred_fn pred, void *arg, ++ struct bch_move_stats *stats) ++{ ++ struct moving_context ctxt = { .stats = stats }; ++ int ret; ++ ++ closure_init_stack(&ctxt.cl); ++ INIT_LIST_HEAD(&ctxt.reads); ++ init_waitqueue_head(&ctxt.wait); ++ ++ stats->data_type = BCH_DATA_user; ++ ++ ret = __bch2_move_data(c, &ctxt, rate, wp, start, end, ++ pred, arg, stats, BTREE_ID_EXTENTS) ?: ++ __bch2_move_data(c, &ctxt, rate, wp, start, end, ++ pred, arg, stats, BTREE_ID_REFLINK); ++ ++ move_ctxt_wait_event(&ctxt, list_empty(&ctxt.reads)); ++ closure_sync(&ctxt.cl); ++ ++ EBUG_ON(atomic_read(&ctxt.write_sectors)); ++ ++ trace_move_data(c, ++ atomic64_read(&stats->sectors_moved), ++ atomic64_read(&stats->keys_moved)); ++ ++ return ret; ++} ++ ++static int bch2_move_btree(struct bch_fs *c, ++ move_pred_fn pred, ++ void *arg, ++ struct bch_move_stats *stats) ++{ ++ struct bch_io_opts io_opts = bch2_opts_to_inode_opts(c->opts); ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct btree *b; ++ unsigned id; ++ struct data_opts data_opts; ++ enum data_cmd cmd; ++ int ret = 0; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ stats->data_type = BCH_DATA_btree; ++ ++ for (id = 0; id < BTREE_ID_NR; id++) { ++ stats->btree_id = id; ++ ++ for_each_btree_node(&trans, iter, id, POS_MIN, ++ BTREE_ITER_PREFETCH, b) { ++ stats->pos = iter->pos; ++ ++ switch ((cmd = pred(c, arg, ++ bkey_i_to_s_c(&b->key), ++ &io_opts, &data_opts))) { ++ case DATA_SKIP: ++ goto next; ++ case DATA_SCRUB: ++ BUG(); ++ case DATA_ADD_REPLICAS: ++ case DATA_REWRITE: ++ break; ++ default: ++ BUG(); ++ } ++ ++ ret = bch2_btree_node_rewrite(c, iter, ++ b->data->keys.seq, 0) ?: ret; ++next: ++ bch2_trans_cond_resched(&trans); ++ } ++ ++ ret = bch2_trans_iter_free(&trans, iter) ?: ret; ++ } ++ ++ bch2_trans_exit(&trans); ++ ++ return ret; ++} ++ ++#if 0 ++static enum data_cmd scrub_pred(struct bch_fs *c, void *arg, ++ struct bkey_s_c k, ++ struct bch_io_opts *io_opts, ++ struct data_opts *data_opts) ++{ ++ return DATA_SCRUB; ++} ++#endif ++ ++static enum data_cmd rereplicate_pred(struct bch_fs *c, void *arg, ++ struct bkey_s_c k, ++ struct bch_io_opts *io_opts, ++ struct data_opts *data_opts) ++{ ++ unsigned nr_good = bch2_bkey_durability(c, k); ++ unsigned replicas = 0; ++ ++ switch (k.k->type) { ++ case KEY_TYPE_btree_ptr: ++ replicas = c->opts.metadata_replicas; ++ break; ++ case KEY_TYPE_extent: ++ replicas = io_opts->data_replicas; ++ break; ++ } ++ ++ if (!nr_good || nr_good >= replicas) ++ return DATA_SKIP; ++ ++ data_opts->target = 0; ++ data_opts->btree_insert_flags = 0; ++ return DATA_ADD_REPLICAS; ++} ++ ++static enum data_cmd migrate_pred(struct bch_fs *c, void *arg, ++ struct bkey_s_c k, ++ struct bch_io_opts *io_opts, ++ struct data_opts *data_opts) ++{ ++ struct bch_ioctl_data *op = arg; ++ ++ if (!bch2_bkey_has_device(k, op->migrate.dev)) ++ return DATA_SKIP; ++ ++ data_opts->target = 0; ++ data_opts->btree_insert_flags = 0; ++ data_opts->rewrite_dev = op->migrate.dev; ++ return DATA_REWRITE; ++} ++ ++int bch2_data_job(struct bch_fs *c, ++ struct bch_move_stats *stats, ++ struct bch_ioctl_data op) ++{ ++ int ret = 0; ++ ++ switch (op.op) { ++ case BCH_DATA_OP_REREPLICATE: ++ stats->data_type = BCH_DATA_journal; ++ ret = bch2_journal_flush_device_pins(&c->journal, -1); ++ ++ ret = bch2_move_btree(c, rereplicate_pred, c, stats) ?: ret; ++ ++ closure_wait_event(&c->btree_interior_update_wait, ++ !bch2_btree_interior_updates_nr_pending(c)); ++ ++ ret = bch2_replicas_gc2(c) ?: ret; ++ ++ ret = bch2_move_data(c, NULL, ++ writepoint_hashed((unsigned long) current), ++ op.start, ++ op.end, ++ rereplicate_pred, c, stats) ?: ret; ++ ret = bch2_replicas_gc2(c) ?: ret; ++ break; ++ case BCH_DATA_OP_MIGRATE: ++ if (op.migrate.dev >= c->sb.nr_devices) ++ return -EINVAL; ++ ++ stats->data_type = BCH_DATA_journal; ++ ret = bch2_journal_flush_device_pins(&c->journal, op.migrate.dev); ++ ++ ret = bch2_move_btree(c, migrate_pred, &op, stats) ?: ret; ++ ret = bch2_replicas_gc2(c) ?: ret; ++ ++ ret = bch2_move_data(c, NULL, ++ writepoint_hashed((unsigned long) current), ++ op.start, ++ op.end, ++ migrate_pred, &op, stats) ?: ret; ++ ret = bch2_replicas_gc2(c) ?: ret; ++ break; ++ default: ++ ret = -EINVAL; ++ } ++ ++ return ret; ++} +diff --git a/fs/bcachefs/move.h b/fs/bcachefs/move.h +new file mode 100644 +index 000000000000..0acd1720d4f8 +--- /dev/null ++++ b/fs/bcachefs/move.h +@@ -0,0 +1,64 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_MOVE_H ++#define _BCACHEFS_MOVE_H ++ ++#include "btree_iter.h" ++#include "buckets.h" ++#include "io_types.h" ++#include "move_types.h" ++ ++struct bch_read_bio; ++struct moving_context; ++ ++enum data_cmd { ++ DATA_SKIP, ++ DATA_SCRUB, ++ DATA_ADD_REPLICAS, ++ DATA_REWRITE, ++ DATA_PROMOTE, ++}; ++ ++struct data_opts { ++ u16 target; ++ unsigned rewrite_dev; ++ int btree_insert_flags; ++}; ++ ++struct migrate_write { ++ enum btree_id btree_id; ++ enum data_cmd data_cmd; ++ struct data_opts data_opts; ++ ++ unsigned nr_ptrs_reserved; ++ ++ struct moving_context *ctxt; ++ ++ /* what we read: */ ++ struct bch_extent_ptr ptr; ++ u64 offset; ++ ++ struct bch_write_op op; ++}; ++ ++void bch2_migrate_read_done(struct migrate_write *, struct bch_read_bio *); ++int bch2_migrate_write_init(struct bch_fs *, struct migrate_write *, ++ struct write_point_specifier, ++ struct bch_io_opts, ++ enum data_cmd, struct data_opts, ++ enum btree_id, struct bkey_s_c); ++ ++typedef enum data_cmd (*move_pred_fn)(struct bch_fs *, void *, ++ struct bkey_s_c, ++ struct bch_io_opts *, struct data_opts *); ++ ++int bch2_move_data(struct bch_fs *, struct bch_ratelimit *, ++ struct write_point_specifier, ++ struct bpos, struct bpos, ++ move_pred_fn, void *, ++ struct bch_move_stats *); ++ ++int bch2_data_job(struct bch_fs *, ++ struct bch_move_stats *, ++ struct bch_ioctl_data); ++ ++#endif /* _BCACHEFS_MOVE_H */ +diff --git a/fs/bcachefs/move_types.h b/fs/bcachefs/move_types.h +new file mode 100644 +index 000000000000..fc0de165af9f +--- /dev/null ++++ b/fs/bcachefs/move_types.h +@@ -0,0 +1,17 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_MOVE_TYPES_H ++#define _BCACHEFS_MOVE_TYPES_H ++ ++struct bch_move_stats { ++ enum bch_data_type data_type; ++ enum btree_id btree_id; ++ struct bpos pos; ++ ++ atomic64_t keys_moved; ++ atomic64_t keys_raced; ++ atomic64_t sectors_moved; ++ atomic64_t sectors_seen; ++ atomic64_t sectors_raced; ++}; ++ ++#endif /* _BCACHEFS_MOVE_TYPES_H */ +diff --git a/fs/bcachefs/movinggc.c b/fs/bcachefs/movinggc.c +new file mode 100644 +index 000000000000..de0a7974ec9f +--- /dev/null ++++ b/fs/bcachefs/movinggc.c +@@ -0,0 +1,359 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Moving/copying garbage collector ++ * ++ * Copyright 2012 Google, Inc. ++ */ ++ ++#include "bcachefs.h" ++#include "alloc_foreground.h" ++#include "btree_iter.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "clock.h" ++#include "disk_groups.h" ++#include "error.h" ++#include "extents.h" ++#include "eytzinger.h" ++#include "io.h" ++#include "keylist.h" ++#include "move.h" ++#include "movinggc.h" ++#include "super-io.h" ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++/* ++ * We can't use the entire copygc reserve in one iteration of copygc: we may ++ * need the buckets we're freeing up to go back into the copygc reserve to make ++ * forward progress, but if the copygc reserve is full they'll be available for ++ * any allocation - and it's possible that in a given iteration, we free up most ++ * of the buckets we're going to free before we allocate most of the buckets ++ * we're going to allocate. ++ * ++ * If we only use half of the reserve per iteration, then in steady state we'll ++ * always have room in the reserve for the buckets we're going to need in the ++ * next iteration: ++ */ ++#define COPYGC_BUCKETS_PER_ITER(ca) \ ++ ((ca)->free[RESERVE_MOVINGGC].size / 2) ++ ++static int bucket_offset_cmp(const void *_l, const void *_r, size_t size) ++{ ++ const struct copygc_heap_entry *l = _l; ++ const struct copygc_heap_entry *r = _r; ++ ++ return cmp_int(l->dev, r->dev) ?: ++ cmp_int(l->offset, r->offset); ++} ++ ++static int __copygc_pred(struct bch_fs *c, struct bkey_s_c k) ++{ ++ copygc_heap *h = &c->copygc_heap; ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ ++ bkey_for_each_ptr(ptrs, ptr) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ struct copygc_heap_entry search = { ++ .dev = ptr->dev, ++ .offset = ptr->offset ++ }; ++ ++ ssize_t i = eytzinger0_find_le(h->data, h->used, ++ sizeof(h->data[0]), ++ bucket_offset_cmp, &search); ++#if 0 ++ /* eytzinger search verify code: */ ++ ssize_t j = -1, k; ++ ++ for (k = 0; k < h->used; k++) ++ if (h->data[k].offset <= ptr->offset && ++ (j < 0 || h->data[k].offset > h->data[j].offset)) ++ j = k; ++ ++ BUG_ON(i != j); ++#endif ++ if (i >= 0 && ++ ptr->offset < h->data[i].offset + ca->mi.bucket_size && ++ ptr->gen == h->data[i].gen) ++ return ptr->dev; ++ } ++ ++ return -1; ++} ++ ++static enum data_cmd copygc_pred(struct bch_fs *c, void *arg, ++ struct bkey_s_c k, ++ struct bch_io_opts *io_opts, ++ struct data_opts *data_opts) ++{ ++ int dev_idx = __copygc_pred(c, k); ++ if (dev_idx < 0) ++ return DATA_SKIP; ++ ++ data_opts->target = io_opts->background_target; ++ data_opts->btree_insert_flags = BTREE_INSERT_USE_RESERVE; ++ data_opts->rewrite_dev = dev_idx; ++ return DATA_REWRITE; ++} ++ ++static bool have_copygc_reserve(struct bch_dev *ca) ++{ ++ bool ret; ++ ++ spin_lock(&ca->fs->freelist_lock); ++ ret = fifo_full(&ca->free[RESERVE_MOVINGGC]) || ++ ca->allocator_state != ALLOCATOR_RUNNING; ++ spin_unlock(&ca->fs->freelist_lock); ++ ++ return ret; ++} ++ ++static inline int fragmentation_cmp(copygc_heap *heap, ++ struct copygc_heap_entry l, ++ struct copygc_heap_entry r) ++{ ++ return cmp_int(l.fragmentation, r.fragmentation); ++} ++ ++static int bch2_copygc(struct bch_fs *c) ++{ ++ copygc_heap *h = &c->copygc_heap; ++ struct copygc_heap_entry e, *i; ++ struct bucket_array *buckets; ++ struct bch_move_stats move_stats; ++ u64 sectors_to_move = 0, sectors_not_moved = 0; ++ u64 sectors_reserved = 0; ++ u64 buckets_to_move, buckets_not_moved = 0; ++ struct bch_dev *ca; ++ unsigned dev_idx; ++ size_t b, heap_size = 0; ++ int ret; ++ ++ memset(&move_stats, 0, sizeof(move_stats)); ++ /* ++ * Find buckets with lowest sector counts, skipping completely ++ * empty buckets, by building a maxheap sorted by sector count, ++ * and repeatedly replacing the maximum element until all ++ * buckets have been visited. ++ */ ++ h->used = 0; ++ ++ for_each_rw_member(ca, c, dev_idx) ++ heap_size += ca->mi.nbuckets >> 7; ++ ++ if (h->size < heap_size) { ++ free_heap(&c->copygc_heap); ++ if (!init_heap(&c->copygc_heap, heap_size, GFP_KERNEL)) { ++ bch_err(c, "error allocating copygc heap"); ++ return 0; ++ } ++ } ++ ++ for_each_rw_member(ca, c, dev_idx) { ++ closure_wait_event(&c->freelist_wait, have_copygc_reserve(ca)); ++ ++ spin_lock(&ca->fs->freelist_lock); ++ sectors_reserved += fifo_used(&ca->free[RESERVE_MOVINGGC]) * ca->mi.bucket_size; ++ spin_unlock(&ca->fs->freelist_lock); ++ ++ down_read(&ca->bucket_lock); ++ buckets = bucket_array(ca); ++ ++ for (b = buckets->first_bucket; b < buckets->nbuckets; b++) { ++ struct bucket_mark m = READ_ONCE(buckets->b[b].mark); ++ struct copygc_heap_entry e; ++ ++ if (m.owned_by_allocator || ++ m.data_type != BCH_DATA_user || ++ !bucket_sectors_used(m) || ++ bucket_sectors_used(m) >= ca->mi.bucket_size) ++ continue; ++ ++ e = (struct copygc_heap_entry) { ++ .dev = dev_idx, ++ .gen = m.gen, ++ .fragmentation = bucket_sectors_used(m) * (1U << 15) ++ / ca->mi.bucket_size, ++ .sectors = bucket_sectors_used(m), ++ .offset = bucket_to_sector(ca, b), ++ }; ++ heap_add_or_replace(h, e, -fragmentation_cmp, NULL); ++ } ++ up_read(&ca->bucket_lock); ++ } ++ ++ if (!sectors_reserved) { ++ bch2_fs_fatal_error(c, "stuck, ran out of copygc reserve!"); ++ return -1; ++ } ++ ++ for (i = h->data; i < h->data + h->used; i++) ++ sectors_to_move += i->sectors; ++ ++ while (sectors_to_move > sectors_reserved) { ++ BUG_ON(!heap_pop(h, e, -fragmentation_cmp, NULL)); ++ sectors_to_move -= e.sectors; ++ } ++ ++ buckets_to_move = h->used; ++ ++ if (!buckets_to_move) ++ return 0; ++ ++ eytzinger0_sort(h->data, h->used, ++ sizeof(h->data[0]), ++ bucket_offset_cmp, NULL); ++ ++ ret = bch2_move_data(c, &c->copygc_pd.rate, ++ writepoint_ptr(&c->copygc_write_point), ++ POS_MIN, POS_MAX, ++ copygc_pred, NULL, ++ &move_stats); ++ ++ for_each_rw_member(ca, c, dev_idx) { ++ down_read(&ca->bucket_lock); ++ buckets = bucket_array(ca); ++ for (i = h->data; i < h->data + h->used; i++) { ++ struct bucket_mark m; ++ size_t b; ++ ++ if (i->dev != dev_idx) ++ continue; ++ ++ b = sector_to_bucket(ca, i->offset); ++ m = READ_ONCE(buckets->b[b].mark); ++ ++ if (i->gen == m.gen && ++ bucket_sectors_used(m)) { ++ sectors_not_moved += bucket_sectors_used(m); ++ buckets_not_moved++; ++ } ++ } ++ up_read(&ca->bucket_lock); ++ } ++ ++ if (sectors_not_moved && !ret) ++ bch_warn_ratelimited(c, ++ "copygc finished but %llu/%llu sectors, %llu/%llu buckets not moved (move stats: moved %llu sectors, raced %llu keys, %llu sectors)", ++ sectors_not_moved, sectors_to_move, ++ buckets_not_moved, buckets_to_move, ++ atomic64_read(&move_stats.sectors_moved), ++ atomic64_read(&move_stats.keys_raced), ++ atomic64_read(&move_stats.sectors_raced)); ++ ++ trace_copygc(c, ++ atomic64_read(&move_stats.sectors_moved), sectors_not_moved, ++ buckets_to_move, buckets_not_moved); ++ return 0; ++} ++ ++/* ++ * Copygc runs when the amount of fragmented data is above some arbitrary ++ * threshold: ++ * ++ * The threshold at the limit - when the device is full - is the amount of space ++ * we reserved in bch2_recalc_capacity; we can't have more than that amount of ++ * disk space stranded due to fragmentation and store everything we have ++ * promised to store. ++ * ++ * But we don't want to be running copygc unnecessarily when the device still ++ * has plenty of free space - rather, we want copygc to smoothly run every so ++ * often and continually reduce the amount of fragmented space as the device ++ * fills up. So, we increase the threshold by half the current free space. ++ */ ++unsigned long bch2_copygc_wait_amount(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ unsigned dev_idx; ++ u64 fragmented_allowed = c->copygc_threshold; ++ u64 fragmented = 0; ++ ++ for_each_rw_member(ca, c, dev_idx) { ++ struct bch_dev_usage usage = bch2_dev_usage_read(ca); ++ ++ fragmented_allowed += ((__dev_buckets_available(ca, usage) * ++ ca->mi.bucket_size) >> 1); ++ fragmented += usage.sectors_fragmented; ++ } ++ ++ return max_t(s64, 0, fragmented_allowed - fragmented); ++} ++ ++static int bch2_copygc_thread(void *arg) ++{ ++ struct bch_fs *c = arg; ++ struct io_clock *clock = &c->io_clock[WRITE]; ++ unsigned long last, wait; ++ ++ set_freezable(); ++ ++ while (!kthread_should_stop()) { ++ if (kthread_wait_freezable(c->copy_gc_enabled)) ++ break; ++ ++ last = atomic_long_read(&clock->now); ++ wait = bch2_copygc_wait_amount(c); ++ ++ if (wait > clock->max_slop) { ++ bch2_kthread_io_clock_wait(clock, last + wait, ++ MAX_SCHEDULE_TIMEOUT); ++ continue; ++ } ++ ++ if (bch2_copygc(c)) ++ break; ++ } ++ ++ return 0; ++} ++ ++void bch2_copygc_stop(struct bch_fs *c) ++{ ++ c->copygc_pd.rate.rate = UINT_MAX; ++ bch2_ratelimit_reset(&c->copygc_pd.rate); ++ ++ if (c->copygc_thread) { ++ kthread_stop(c->copygc_thread); ++ put_task_struct(c->copygc_thread); ++ } ++ c->copygc_thread = NULL; ++} ++ ++int bch2_copygc_start(struct bch_fs *c) ++{ ++ struct task_struct *t; ++ ++ if (c->copygc_thread) ++ return 0; ++ ++ if (c->opts.nochanges) ++ return 0; ++ ++ if (bch2_fs_init_fault("copygc_start")) ++ return -ENOMEM; ++ ++ t = kthread_create(bch2_copygc_thread, c, "bch_copygc"); ++ if (IS_ERR(t)) ++ return PTR_ERR(t); ++ ++ get_task_struct(t); ++ ++ c->copygc_thread = t; ++ wake_up_process(c->copygc_thread); ++ ++ return 0; ++} ++ ++void bch2_fs_copygc_init(struct bch_fs *c) ++{ ++ bch2_pd_controller_init(&c->copygc_pd); ++ c->copygc_pd.d_term = 0; ++} +diff --git a/fs/bcachefs/movinggc.h b/fs/bcachefs/movinggc.h +new file mode 100644 +index 000000000000..922738247d03 +--- /dev/null ++++ b/fs/bcachefs/movinggc.h +@@ -0,0 +1,9 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_MOVINGGC_H ++#define _BCACHEFS_MOVINGGC_H ++ ++void bch2_copygc_stop(struct bch_fs *); ++int bch2_copygc_start(struct bch_fs *); ++void bch2_fs_copygc_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_MOVINGGC_H */ +diff --git a/fs/bcachefs/opts.c b/fs/bcachefs/opts.c +new file mode 100644 +index 000000000000..afe25cd26c06 +--- /dev/null ++++ b/fs/bcachefs/opts.c +@@ -0,0 +1,437 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include ++ ++#include "bcachefs.h" ++#include "compress.h" ++#include "disk_groups.h" ++#include "opts.h" ++#include "super-io.h" ++#include "util.h" ++ ++const char * const bch2_error_actions[] = { ++ "continue", ++ "remount-ro", ++ "panic", ++ NULL ++}; ++ ++const char * const bch2_sb_features[] = { ++#define x(f, n) #f, ++ BCH_SB_FEATURES() ++#undef x ++ NULL ++}; ++ ++const char * const bch2_csum_opts[] = { ++ "none", ++ "crc32c", ++ "crc64", ++ NULL ++}; ++ ++const char * const bch2_compression_opts[] = { ++#define x(t, n) #t, ++ BCH_COMPRESSION_OPTS() ++#undef x ++ NULL ++}; ++ ++const char * const bch2_str_hash_types[] = { ++ "crc32c", ++ "crc64", ++ "siphash", ++ NULL ++}; ++ ++const char * const bch2_data_types[] = { ++#define x(t, n) #t, ++ BCH_DATA_TYPES() ++#undef x ++ NULL ++}; ++ ++const char * const bch2_cache_replacement_policies[] = { ++ "lru", ++ "fifo", ++ "random", ++ NULL ++}; ++ ++/* Default is -1; we skip past it for struct cached_dev's cache mode */ ++const char * const bch2_cache_modes[] = { ++ "default", ++ "writethrough", ++ "writeback", ++ "writearound", ++ "none", ++ NULL ++}; ++ ++const char * const bch2_dev_state[] = { ++ "readwrite", ++ "readonly", ++ "failed", ++ "spare", ++ NULL ++}; ++ ++void bch2_opts_apply(struct bch_opts *dst, struct bch_opts src) ++{ ++#define x(_name, ...) \ ++ if (opt_defined(src, _name)) \ ++ opt_set(*dst, _name, src._name); ++ ++ BCH_OPTS() ++#undef x ++} ++ ++bool bch2_opt_defined_by_id(const struct bch_opts *opts, enum bch_opt_id id) ++{ ++ switch (id) { ++#define x(_name, ...) \ ++ case Opt_##_name: \ ++ return opt_defined(*opts, _name); ++ BCH_OPTS() ++#undef x ++ default: ++ BUG(); ++ } ++} ++ ++u64 bch2_opt_get_by_id(const struct bch_opts *opts, enum bch_opt_id id) ++{ ++ switch (id) { ++#define x(_name, ...) \ ++ case Opt_##_name: \ ++ return opts->_name; ++ BCH_OPTS() ++#undef x ++ default: ++ BUG(); ++ } ++} ++ ++void bch2_opt_set_by_id(struct bch_opts *opts, enum bch_opt_id id, u64 v) ++{ ++ switch (id) { ++#define x(_name, ...) \ ++ case Opt_##_name: \ ++ opt_set(*opts, _name, v); \ ++ break; ++ BCH_OPTS() ++#undef x ++ default: ++ BUG(); ++ } ++} ++ ++/* ++ * Initial options from superblock - here we don't want any options undefined, ++ * any options the superblock doesn't specify are set to 0: ++ */ ++struct bch_opts bch2_opts_from_sb(struct bch_sb *sb) ++{ ++ struct bch_opts opts = bch2_opts_empty(); ++ ++#define x(_name, _bits, _mode, _type, _sb_opt, ...) \ ++ if (_sb_opt != NO_SB_OPT) \ ++ opt_set(opts, _name, _sb_opt(sb)); ++ BCH_OPTS() ++#undef x ++ ++ return opts; ++} ++ ++const struct bch_option bch2_opt_table[] = { ++#define OPT_BOOL() .type = BCH_OPT_BOOL ++#define OPT_UINT(_min, _max) .type = BCH_OPT_UINT, .min = _min, .max = _max ++#define OPT_SECTORS(_min, _max) .type = BCH_OPT_SECTORS, .min = _min, .max = _max ++#define OPT_STR(_choices) .type = BCH_OPT_STR, .choices = _choices ++#define OPT_FN(_fn) .type = BCH_OPT_FN, \ ++ .parse = _fn##_parse, \ ++ .to_text = _fn##_to_text ++ ++#define x(_name, _bits, _mode, _type, _sb_opt, _default, _hint, _help) \ ++ [Opt_##_name] = { \ ++ .attr = { \ ++ .name = #_name, \ ++ .mode = (_mode) & OPT_RUNTIME ? 0644 : 0444, \ ++ }, \ ++ .mode = _mode, \ ++ .hint = _hint, \ ++ .help = _help, \ ++ .set_sb = SET_##_sb_opt, \ ++ _type \ ++ }, ++ ++ BCH_OPTS() ++#undef x ++}; ++ ++int bch2_opt_lookup(const char *name) ++{ ++ const struct bch_option *i; ++ ++ for (i = bch2_opt_table; ++ i < bch2_opt_table + ARRAY_SIZE(bch2_opt_table); ++ i++) ++ if (!strcmp(name, i->attr.name)) ++ return i - bch2_opt_table; ++ ++ return -1; ++} ++ ++struct synonym { ++ const char *s1, *s2; ++}; ++ ++static const struct synonym bch_opt_synonyms[] = { ++ { "quota", "usrquota" }, ++}; ++ ++static int bch2_mount_opt_lookup(const char *name) ++{ ++ const struct synonym *i; ++ ++ for (i = bch_opt_synonyms; ++ i < bch_opt_synonyms + ARRAY_SIZE(bch_opt_synonyms); ++ i++) ++ if (!strcmp(name, i->s1)) ++ name = i->s2; ++ ++ return bch2_opt_lookup(name); ++} ++ ++int bch2_opt_parse(struct bch_fs *c, const struct bch_option *opt, ++ const char *val, u64 *res) ++{ ++ ssize_t ret; ++ ++ switch (opt->type) { ++ case BCH_OPT_BOOL: ++ ret = kstrtou64(val, 10, res); ++ if (ret < 0) ++ return ret; ++ ++ if (*res > 1) ++ return -ERANGE; ++ break; ++ case BCH_OPT_UINT: ++ ret = kstrtou64(val, 10, res); ++ if (ret < 0) ++ return ret; ++ ++ if (*res < opt->min || *res >= opt->max) ++ return -ERANGE; ++ break; ++ case BCH_OPT_SECTORS: ++ ret = bch2_strtou64_h(val, res); ++ if (ret < 0) ++ return ret; ++ ++ if (*res & 511) ++ return -EINVAL; ++ ++ *res >>= 9; ++ ++ if (*res < opt->min || *res >= opt->max) ++ return -ERANGE; ++ break; ++ case BCH_OPT_STR: ++ ret = match_string(opt->choices, -1, val); ++ if (ret < 0) ++ return ret; ++ ++ *res = ret; ++ break; ++ case BCH_OPT_FN: ++ if (!c) ++ return -EINVAL; ++ ++ return opt->parse(c, val, res); ++ } ++ ++ return 0; ++} ++ ++void bch2_opt_to_text(struct printbuf *out, struct bch_fs *c, ++ const struct bch_option *opt, u64 v, ++ unsigned flags) ++{ ++ if (flags & OPT_SHOW_MOUNT_STYLE) { ++ if (opt->type == BCH_OPT_BOOL) { ++ pr_buf(out, "%s%s", ++ v ? "" : "no", ++ opt->attr.name); ++ return; ++ } ++ ++ pr_buf(out, "%s=", opt->attr.name); ++ } ++ ++ switch (opt->type) { ++ case BCH_OPT_BOOL: ++ case BCH_OPT_UINT: ++ pr_buf(out, "%lli", v); ++ break; ++ case BCH_OPT_SECTORS: ++ bch2_hprint(out, v); ++ break; ++ case BCH_OPT_STR: ++ if (flags & OPT_SHOW_FULL_LIST) ++ bch2_string_opt_to_text(out, opt->choices, v); ++ else ++ pr_buf(out, opt->choices[v]); ++ break; ++ case BCH_OPT_FN: ++ opt->to_text(out, c, v); ++ break; ++ default: ++ BUG(); ++ } ++} ++ ++int bch2_opt_check_may_set(struct bch_fs *c, int id, u64 v) ++{ ++ int ret = 0; ++ ++ switch (id) { ++ case Opt_compression: ++ case Opt_background_compression: ++ ret = bch2_check_set_has_compressed_data(c, v); ++ break; ++ case Opt_erasure_code: ++ if (v) ++ bch2_check_set_feature(c, BCH_FEATURE_ec); ++ break; ++ } ++ ++ return ret; ++} ++ ++int bch2_opts_check_may_set(struct bch_fs *c) ++{ ++ unsigned i; ++ int ret; ++ ++ for (i = 0; i < bch2_opts_nr; i++) { ++ ret = bch2_opt_check_may_set(c, i, ++ bch2_opt_get_by_id(&c->opts, i)); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++int bch2_parse_mount_opts(struct bch_opts *opts, char *options) ++{ ++ char *opt, *name, *val; ++ int ret, id; ++ u64 v; ++ ++ while ((opt = strsep(&options, ",")) != NULL) { ++ name = strsep(&opt, "="); ++ val = opt; ++ ++ if (val) { ++ id = bch2_mount_opt_lookup(name); ++ if (id < 0) ++ goto bad_opt; ++ ++ ret = bch2_opt_parse(NULL, &bch2_opt_table[id], val, &v); ++ if (ret < 0) ++ goto bad_val; ++ } else { ++ id = bch2_mount_opt_lookup(name); ++ v = 1; ++ ++ if (id < 0 && ++ !strncmp("no", name, 2)) { ++ id = bch2_mount_opt_lookup(name + 2); ++ v = 0; ++ } ++ ++ if (id < 0) ++ goto bad_opt; ++ ++ if (bch2_opt_table[id].type != BCH_OPT_BOOL) ++ goto no_val; ++ } ++ ++ if (!(bch2_opt_table[id].mode & OPT_MOUNT)) ++ goto bad_opt; ++ ++ if (id == Opt_acl && ++ !IS_ENABLED(CONFIG_BCACHEFS_POSIX_ACL)) ++ goto bad_opt; ++ ++ if ((id == Opt_usrquota || ++ id == Opt_grpquota) && ++ !IS_ENABLED(CONFIG_BCACHEFS_QUOTA)) ++ goto bad_opt; ++ ++ bch2_opt_set_by_id(opts, id, v); ++ } ++ ++ return 0; ++bad_opt: ++ pr_err("Bad mount option %s", name); ++ return -1; ++bad_val: ++ pr_err("Invalid value %s for mount option %s", val, name); ++ return -1; ++no_val: ++ pr_err("Mount option %s requires a value", name); ++ return -1; ++} ++ ++/* io opts: */ ++ ++struct bch_io_opts bch2_opts_to_inode_opts(struct bch_opts src) ++{ ++ struct bch_io_opts ret = { 0 }; ++#define x(_name, _bits) \ ++ if (opt_defined(src, _name)) \ ++ opt_set(ret, _name, src._name); ++ BCH_INODE_OPTS() ++#undef x ++ return ret; ++} ++ ++struct bch_opts bch2_inode_opts_to_opts(struct bch_io_opts src) ++{ ++ struct bch_opts ret = { 0 }; ++#define x(_name, _bits) \ ++ if (opt_defined(src, _name)) \ ++ opt_set(ret, _name, src._name); ++ BCH_INODE_OPTS() ++#undef x ++ return ret; ++} ++ ++void bch2_io_opts_apply(struct bch_io_opts *dst, struct bch_io_opts src) ++{ ++#define x(_name, _bits) \ ++ if (opt_defined(src, _name)) \ ++ opt_set(*dst, _name, src._name); ++ BCH_INODE_OPTS() ++#undef x ++} ++ ++bool bch2_opt_is_inode_opt(enum bch_opt_id id) ++{ ++ static const enum bch_opt_id inode_opt_list[] = { ++#define x(_name, _bits) Opt_##_name, ++ BCH_INODE_OPTS() ++#undef x ++ }; ++ unsigned i; ++ ++ for (i = 0; i < ARRAY_SIZE(inode_opt_list); i++) ++ if (inode_opt_list[i] == id) ++ return true; ++ ++ return false; ++} +diff --git a/fs/bcachefs/opts.h b/fs/bcachefs/opts.h +new file mode 100644 +index 000000000000..014c608ca0c6 +--- /dev/null ++++ b/fs/bcachefs/opts.h +@@ -0,0 +1,440 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_OPTS_H ++#define _BCACHEFS_OPTS_H ++ ++#include ++#include ++#include ++#include ++#include "bcachefs_format.h" ++ ++extern const char * const bch2_error_actions[]; ++extern const char * const bch2_sb_features[]; ++extern const char * const bch2_csum_opts[]; ++extern const char * const bch2_compression_opts[]; ++extern const char * const bch2_str_hash_types[]; ++extern const char * const bch2_data_types[]; ++extern const char * const bch2_cache_replacement_policies[]; ++extern const char * const bch2_cache_modes[]; ++extern const char * const bch2_dev_state[]; ++ ++/* ++ * Mount options; we also store defaults in the superblock. ++ * ++ * Also exposed via sysfs: if an option is writeable, and it's also stored in ++ * the superblock, changing it via sysfs (currently? might change this) also ++ * updates the superblock. ++ * ++ * We store options as signed integers, where -1 means undefined. This means we ++ * can pass the mount options to bch2_fs_alloc() as a whole struct, and then only ++ * apply the options from that struct that are defined. ++ */ ++ ++/* dummy option, for options that aren't stored in the superblock */ ++LE64_BITMASK(NO_SB_OPT, struct bch_sb, flags[0], 0, 0); ++ ++/* When can be set: */ ++enum opt_mode { ++ OPT_FORMAT = (1 << 0), ++ OPT_MOUNT = (1 << 1), ++ OPT_RUNTIME = (1 << 2), ++ OPT_INODE = (1 << 3), ++ OPT_DEVICE = (1 << 4), ++}; ++ ++enum opt_type { ++ BCH_OPT_BOOL, ++ BCH_OPT_UINT, ++ BCH_OPT_SECTORS, ++ BCH_OPT_STR, ++ BCH_OPT_FN, ++}; ++ ++/** ++ * x(name, shortopt, type, in mem type, mode, sb_opt) ++ * ++ * @name - name of mount option, sysfs attribute, and struct bch_opts ++ * member ++ * ++ * @mode - when opt may be set ++ * ++ * @sb_option - name of corresponding superblock option ++ * ++ * @type - one of OPT_BOOL, OPT_UINT, OPT_STR ++ */ ++ ++/* ++ * XXX: add fields for ++ * - default value ++ * - helptext ++ */ ++ ++#ifdef __KERNEL__ ++#define RATELIMIT_ERRORS true ++#else ++#define RATELIMIT_ERRORS false ++#endif ++ ++#define BCH_OPTS() \ ++ x(block_size, u16, \ ++ OPT_FORMAT, \ ++ OPT_SECTORS(1, 128), \ ++ BCH_SB_BLOCK_SIZE, 8, \ ++ "size", NULL) \ ++ x(btree_node_size, u16, \ ++ OPT_FORMAT, \ ++ OPT_SECTORS(1, 512), \ ++ BCH_SB_BTREE_NODE_SIZE, 512, \ ++ "size", "Btree node size, default 256k") \ ++ x(errors, u8, \ ++ OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_STR(bch2_error_actions), \ ++ BCH_SB_ERROR_ACTION, BCH_ON_ERROR_RO, \ ++ NULL, "Action to take on filesystem error") \ ++ x(metadata_replicas, u8, \ ++ OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_UINT(1, BCH_REPLICAS_MAX), \ ++ BCH_SB_META_REPLICAS_WANT, 1, \ ++ "#", "Number of metadata replicas") \ ++ x(data_replicas, u8, \ ++ OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME|OPT_INODE, \ ++ OPT_UINT(1, BCH_REPLICAS_MAX), \ ++ BCH_SB_DATA_REPLICAS_WANT, 1, \ ++ "#", "Number of data replicas") \ ++ x(metadata_replicas_required, u8, \ ++ OPT_FORMAT|OPT_MOUNT, \ ++ OPT_UINT(1, BCH_REPLICAS_MAX), \ ++ BCH_SB_META_REPLICAS_REQ, 1, \ ++ "#", NULL) \ ++ x(data_replicas_required, u8, \ ++ OPT_FORMAT|OPT_MOUNT, \ ++ OPT_UINT(1, BCH_REPLICAS_MAX), \ ++ BCH_SB_DATA_REPLICAS_REQ, 1, \ ++ "#", NULL) \ ++ x(metadata_checksum, u8, \ ++ OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_STR(bch2_csum_opts), \ ++ BCH_SB_META_CSUM_TYPE, BCH_CSUM_OPT_CRC32C, \ ++ NULL, NULL) \ ++ x(data_checksum, u8, \ ++ OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME|OPT_INODE, \ ++ OPT_STR(bch2_csum_opts), \ ++ BCH_SB_DATA_CSUM_TYPE, BCH_CSUM_OPT_CRC32C, \ ++ NULL, NULL) \ ++ x(compression, u8, \ ++ OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME|OPT_INODE, \ ++ OPT_STR(bch2_compression_opts), \ ++ BCH_SB_COMPRESSION_TYPE, BCH_COMPRESSION_OPT_none, \ ++ NULL, NULL) \ ++ x(background_compression, u8, \ ++ OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME|OPT_INODE, \ ++ OPT_STR(bch2_compression_opts), \ ++ BCH_SB_BACKGROUND_COMPRESSION_TYPE,BCH_COMPRESSION_OPT_none, \ ++ NULL, NULL) \ ++ x(str_hash, u8, \ ++ OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_STR(bch2_str_hash_types), \ ++ BCH_SB_STR_HASH_TYPE, BCH_STR_HASH_OPT_SIPHASH, \ ++ NULL, "Hash function for directory entries and xattrs")\ ++ x(foreground_target, u16, \ ++ OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME|OPT_INODE, \ ++ OPT_FN(bch2_opt_target), \ ++ BCH_SB_FOREGROUND_TARGET, 0, \ ++ "(target)", "Device or disk group for foreground writes") \ ++ x(background_target, u16, \ ++ OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME|OPT_INODE, \ ++ OPT_FN(bch2_opt_target), \ ++ BCH_SB_BACKGROUND_TARGET, 0, \ ++ "(target)", "Device or disk group to move data to in the background")\ ++ x(promote_target, u16, \ ++ OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME|OPT_INODE, \ ++ OPT_FN(bch2_opt_target), \ ++ BCH_SB_PROMOTE_TARGET, 0, \ ++ "(target)", "Device or disk group to promote data to on read")\ ++ x(erasure_code, u16, \ ++ OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME|OPT_INODE, \ ++ OPT_BOOL(), \ ++ BCH_SB_ERASURE_CODE, false, \ ++ NULL, "Enable erasure coding (DO NOT USE YET)") \ ++ x(inodes_32bit, u8, \ ++ OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_BOOL(), \ ++ BCH_SB_INODE_32BIT, false, \ ++ NULL, "Constrain inode numbers to 32 bits") \ ++ x(gc_reserve_percent, u8, \ ++ OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_UINT(5, 21), \ ++ BCH_SB_GC_RESERVE, 8, \ ++ "%", "Percentage of disk space to reserve for copygc")\ ++ x(gc_reserve_bytes, u64, \ ++ OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_SECTORS(0, U64_MAX), \ ++ BCH_SB_GC_RESERVE_BYTES, 0, \ ++ "%", "Amount of disk space to reserve for copygc\n" \ ++ "Takes precedence over gc_reserve_percent if set")\ ++ x(root_reserve_percent, u8, \ ++ OPT_FORMAT|OPT_MOUNT, \ ++ OPT_UINT(0, 100), \ ++ BCH_SB_ROOT_RESERVE, 0, \ ++ "%", "Percentage of disk space to reserve for superuser")\ ++ x(wide_macs, u8, \ ++ OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_BOOL(), \ ++ BCH_SB_128_BIT_MACS, false, \ ++ NULL, "Store full 128 bits of cryptographic MACs, instead of 80")\ ++ x(inline_data, u8, \ ++ OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, false, \ ++ NULL, "Enable inline data extents") \ ++ x(acl, u8, \ ++ OPT_FORMAT|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH_SB_POSIX_ACL, true, \ ++ NULL, "Enable POSIX acls") \ ++ x(usrquota, u8, \ ++ OPT_FORMAT|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH_SB_USRQUOTA, false, \ ++ NULL, "Enable user quotas") \ ++ x(grpquota, u8, \ ++ OPT_FORMAT|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH_SB_GRPQUOTA, false, \ ++ NULL, "Enable group quotas") \ ++ x(prjquota, u8, \ ++ OPT_FORMAT|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH_SB_PRJQUOTA, false, \ ++ NULL, "Enable project quotas") \ ++ x(reflink, u8, \ ++ OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_BOOL(), \ ++ BCH_SB_REFLINK, true, \ ++ NULL, "Enable reflink support") \ ++ x(degraded, u8, \ ++ OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, false, \ ++ NULL, "Allow mounting in degraded mode") \ ++ x(discard, u8, \ ++ OPT_MOUNT|OPT_DEVICE, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, false, \ ++ NULL, "Enable discard/TRIM support") \ ++ x(verbose, u8, \ ++ OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, false, \ ++ NULL, "Extra debugging information during mount/recovery")\ ++ x(journal_flush_disabled, u8, \ ++ OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, false, \ ++ NULL, "Disable journal flush on sync/fsync\n" \ ++ "If enabled, writes can be lost, but only since the\n"\ ++ "last journal write (default 1 second)") \ ++ x(fsck, u8, \ ++ OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, false, \ ++ NULL, "Run fsck on mount") \ ++ x(fix_errors, u8, \ ++ OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, false, \ ++ NULL, "Fix errors during fsck without asking") \ ++ x(ratelimit_errors, u8, \ ++ OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, RATELIMIT_ERRORS, \ ++ NULL, "Ratelimit error messages during fsck") \ ++ x(nochanges, u8, \ ++ OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, false, \ ++ NULL, "Super read only mode - no writes at all will be issued,\n"\ ++ "even if we have to replay the journal") \ ++ x(norecovery, u8, \ ++ OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, false, \ ++ NULL, "Don't replay the journal") \ ++ x(rebuild_replicas, u8, \ ++ OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, false, \ ++ NULL, "Rebuild the superblock replicas section") \ ++ x(keep_journal, u8, \ ++ OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, false, \ ++ NULL, "Don't free journal entries/keys after startup")\ ++ x(read_entire_journal, u8, \ ++ 0, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, false, \ ++ NULL, "Read all journal entries, not just dirty ones")\ ++ x(noexcl, u8, \ ++ OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, false, \ ++ NULL, "Don't open device in exclusive mode") \ ++ x(sb, u64, \ ++ OPT_MOUNT, \ ++ OPT_UINT(0, S64_MAX), \ ++ NO_SB_OPT, BCH_SB_SECTOR, \ ++ "offset", "Sector offset of superblock") \ ++ x(read_only, u8, \ ++ 0, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, false, \ ++ NULL, NULL) \ ++ x(nostart, u8, \ ++ 0, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, false, \ ++ NULL, "Don\'t start filesystem, only open devices") \ ++ x(reconstruct_alloc, u8, \ ++ OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, false, \ ++ NULL, "Reconstruct alloc btree") \ ++ x(version_upgrade, u8, \ ++ OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, false, \ ++ NULL, "Set superblock to latest version,\n" \ ++ "allowing any new features to be used") \ ++ x(project, u8, \ ++ OPT_INODE, \ ++ OPT_BOOL(), \ ++ NO_SB_OPT, false, \ ++ NULL, NULL) \ ++ x(fs_size, u64, \ ++ OPT_DEVICE, \ ++ OPT_SECTORS(0, S64_MAX), \ ++ NO_SB_OPT, 0, \ ++ "size", "Size of filesystem on device") \ ++ x(bucket, u32, \ ++ OPT_DEVICE, \ ++ OPT_SECTORS(0, S64_MAX), \ ++ NO_SB_OPT, 0, \ ++ "size", "Size of filesystem on device") \ ++ x(durability, u8, \ ++ OPT_DEVICE, \ ++ OPT_UINT(0, BCH_REPLICAS_MAX), \ ++ NO_SB_OPT, 1, \ ++ "n", "Data written to this device will be considered\n"\ ++ "to have already been replicated n times") ++ ++struct bch_opts { ++#define x(_name, _bits, ...) unsigned _name##_defined:1; ++ BCH_OPTS() ++#undef x ++ ++#define x(_name, _bits, ...) _bits _name; ++ BCH_OPTS() ++#undef x ++}; ++ ++static const struct bch_opts bch2_opts_default = { ++#define x(_name, _bits, _mode, _type, _sb_opt, _default, ...) \ ++ ._name##_defined = true, \ ++ ._name = _default, \ ++ ++ BCH_OPTS() ++#undef x ++}; ++ ++#define opt_defined(_opts, _name) ((_opts)._name##_defined) ++ ++#define opt_get(_opts, _name) \ ++ (opt_defined(_opts, _name) ? (_opts)._name : bch2_opts_default._name) ++ ++#define opt_set(_opts, _name, _v) \ ++do { \ ++ (_opts)._name##_defined = true; \ ++ (_opts)._name = _v; \ ++} while (0) ++ ++static inline struct bch_opts bch2_opts_empty(void) ++{ ++ return (struct bch_opts) { 0 }; ++} ++ ++void bch2_opts_apply(struct bch_opts *, struct bch_opts); ++ ++enum bch_opt_id { ++#define x(_name, ...) Opt_##_name, ++ BCH_OPTS() ++#undef x ++ bch2_opts_nr ++}; ++ ++struct bch_fs; ++struct printbuf; ++ ++struct bch_option { ++ struct attribute attr; ++ void (*set_sb)(struct bch_sb *, u64); ++ enum opt_mode mode; ++ enum opt_type type; ++ ++ union { ++ struct { ++ u64 min, max; ++ }; ++ struct { ++ const char * const *choices; ++ }; ++ struct { ++ int (*parse)(struct bch_fs *, const char *, u64 *); ++ void (*to_text)(struct printbuf *, struct bch_fs *, u64); ++ }; ++ }; ++ ++ const char *hint; ++ const char *help; ++ ++}; ++ ++extern const struct bch_option bch2_opt_table[]; ++ ++bool bch2_opt_defined_by_id(const struct bch_opts *, enum bch_opt_id); ++u64 bch2_opt_get_by_id(const struct bch_opts *, enum bch_opt_id); ++void bch2_opt_set_by_id(struct bch_opts *, enum bch_opt_id, u64); ++ ++struct bch_opts bch2_opts_from_sb(struct bch_sb *); ++ ++int bch2_opt_lookup(const char *); ++int bch2_opt_parse(struct bch_fs *, const struct bch_option *, const char *, u64 *); ++ ++#define OPT_SHOW_FULL_LIST (1 << 0) ++#define OPT_SHOW_MOUNT_STYLE (1 << 1) ++ ++void bch2_opt_to_text(struct printbuf *, struct bch_fs *, ++ const struct bch_option *, u64, unsigned); ++ ++int bch2_opt_check_may_set(struct bch_fs *, int, u64); ++int bch2_opts_check_may_set(struct bch_fs *); ++int bch2_parse_mount_opts(struct bch_opts *, char *); ++ ++/* inode opts: */ ++ ++struct bch_io_opts { ++#define x(_name, _bits) unsigned _name##_defined:1; ++ BCH_INODE_OPTS() ++#undef x ++ ++#define x(_name, _bits) u##_bits _name; ++ BCH_INODE_OPTS() ++#undef x ++}; ++ ++struct bch_io_opts bch2_opts_to_inode_opts(struct bch_opts); ++struct bch_opts bch2_inode_opts_to_opts(struct bch_io_opts); ++void bch2_io_opts_apply(struct bch_io_opts *, struct bch_io_opts); ++bool bch2_opt_is_inode_opt(enum bch_opt_id); ++ ++#endif /* _BCACHEFS_OPTS_H */ +diff --git a/fs/bcachefs/quota.c b/fs/bcachefs/quota.c +new file mode 100644 +index 000000000000..d3032a46e7f3 +--- /dev/null ++++ b/fs/bcachefs/quota.c +@@ -0,0 +1,783 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "btree_update.h" ++#include "inode.h" ++#include "quota.h" ++#include "super-io.h" ++ ++static const char *bch2_sb_validate_quota(struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_quota *q = field_to_type(f, quota); ++ ++ if (vstruct_bytes(&q->field) != sizeof(*q)) ++ return "invalid field quota: wrong size"; ++ ++ return NULL; ++} ++ ++const struct bch_sb_field_ops bch_sb_field_ops_quota = { ++ .validate = bch2_sb_validate_quota, ++}; ++ ++const char *bch2_quota_invalid(const struct bch_fs *c, struct bkey_s_c k) ++{ ++ if (k.k->p.inode >= QTYP_NR) ++ return "invalid quota type"; ++ ++ if (bkey_val_bytes(k.k) != sizeof(struct bch_quota)) ++ return "incorrect value size"; ++ ++ return NULL; ++} ++ ++static const char * const bch2_quota_counters[] = { ++ "space", ++ "inodes", ++}; ++ ++void bch2_quota_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_quota dq = bkey_s_c_to_quota(k); ++ unsigned i; ++ ++ for (i = 0; i < Q_COUNTERS; i++) ++ pr_buf(out, "%s hardlimit %llu softlimit %llu", ++ bch2_quota_counters[i], ++ le64_to_cpu(dq.v->c[i].hardlimit), ++ le64_to_cpu(dq.v->c[i].softlimit)); ++} ++ ++#ifdef CONFIG_BCACHEFS_QUOTA ++ ++#include ++#include ++#include ++ ++static inline unsigned __next_qtype(unsigned i, unsigned qtypes) ++{ ++ qtypes >>= i; ++ return qtypes ? i + __ffs(qtypes) : QTYP_NR; ++} ++ ++#define for_each_set_qtype(_c, _i, _q, _qtypes) \ ++ for (_i = 0; \ ++ (_i = __next_qtype(_i, _qtypes), \ ++ _q = &(_c)->quotas[_i], \ ++ _i < QTYP_NR); \ ++ _i++) ++ ++static bool ignore_hardlimit(struct bch_memquota_type *q) ++{ ++ if (capable(CAP_SYS_RESOURCE)) ++ return true; ++#if 0 ++ struct mem_dqinfo *info = &sb_dqopt(dquot->dq_sb)->info[dquot->dq_id.type]; ++ ++ return capable(CAP_SYS_RESOURCE) && ++ (info->dqi_format->qf_fmt_id != QFMT_VFS_OLD || ++ !(info->dqi_flags & DQF_ROOT_SQUASH)); ++#endif ++ return false; ++} ++ ++enum quota_msg { ++ SOFTWARN, /* Softlimit reached */ ++ SOFTLONGWARN, /* Grace time expired */ ++ HARDWARN, /* Hardlimit reached */ ++ ++ HARDBELOW, /* Usage got below inode hardlimit */ ++ SOFTBELOW, /* Usage got below inode softlimit */ ++}; ++ ++static int quota_nl[][Q_COUNTERS] = { ++ [HARDWARN][Q_SPC] = QUOTA_NL_BHARDWARN, ++ [SOFTLONGWARN][Q_SPC] = QUOTA_NL_BSOFTLONGWARN, ++ [SOFTWARN][Q_SPC] = QUOTA_NL_BSOFTWARN, ++ [HARDBELOW][Q_SPC] = QUOTA_NL_BHARDBELOW, ++ [SOFTBELOW][Q_SPC] = QUOTA_NL_BSOFTBELOW, ++ ++ [HARDWARN][Q_INO] = QUOTA_NL_IHARDWARN, ++ [SOFTLONGWARN][Q_INO] = QUOTA_NL_ISOFTLONGWARN, ++ [SOFTWARN][Q_INO] = QUOTA_NL_ISOFTWARN, ++ [HARDBELOW][Q_INO] = QUOTA_NL_IHARDBELOW, ++ [SOFTBELOW][Q_INO] = QUOTA_NL_ISOFTBELOW, ++}; ++ ++struct quota_msgs { ++ u8 nr; ++ struct { ++ u8 qtype; ++ u8 msg; ++ } m[QTYP_NR * Q_COUNTERS]; ++}; ++ ++static void prepare_msg(unsigned qtype, ++ enum quota_counters counter, ++ struct quota_msgs *msgs, ++ enum quota_msg msg_type) ++{ ++ BUG_ON(msgs->nr >= ARRAY_SIZE(msgs->m)); ++ ++ msgs->m[msgs->nr].qtype = qtype; ++ msgs->m[msgs->nr].msg = quota_nl[msg_type][counter]; ++ msgs->nr++; ++} ++ ++static void prepare_warning(struct memquota_counter *qc, ++ unsigned qtype, ++ enum quota_counters counter, ++ struct quota_msgs *msgs, ++ enum quota_msg msg_type) ++{ ++ if (qc->warning_issued & (1 << msg_type)) ++ return; ++ ++ prepare_msg(qtype, counter, msgs, msg_type); ++} ++ ++static void flush_warnings(struct bch_qid qid, ++ struct super_block *sb, ++ struct quota_msgs *msgs) ++{ ++ unsigned i; ++ ++ for (i = 0; i < msgs->nr; i++) ++ quota_send_warning(make_kqid(&init_user_ns, msgs->m[i].qtype, qid.q[i]), ++ sb->s_dev, msgs->m[i].msg); ++} ++ ++static int bch2_quota_check_limit(struct bch_fs *c, ++ unsigned qtype, ++ struct bch_memquota *mq, ++ struct quota_msgs *msgs, ++ enum quota_counters counter, ++ s64 v, ++ enum quota_acct_mode mode) ++{ ++ struct bch_memquota_type *q = &c->quotas[qtype]; ++ struct memquota_counter *qc = &mq->c[counter]; ++ u64 n = qc->v + v; ++ ++ BUG_ON((s64) n < 0); ++ ++ if (mode == KEY_TYPE_QUOTA_NOCHECK) ++ return 0; ++ ++ if (v <= 0) { ++ if (n < qc->hardlimit && ++ (qc->warning_issued & (1 << HARDWARN))) { ++ qc->warning_issued &= ~(1 << HARDWARN); ++ prepare_msg(qtype, counter, msgs, HARDBELOW); ++ } ++ ++ if (n < qc->softlimit && ++ (qc->warning_issued & (1 << SOFTWARN))) { ++ qc->warning_issued &= ~(1 << SOFTWARN); ++ prepare_msg(qtype, counter, msgs, SOFTBELOW); ++ } ++ ++ qc->warning_issued = 0; ++ return 0; ++ } ++ ++ if (qc->hardlimit && ++ qc->hardlimit < n && ++ !ignore_hardlimit(q)) { ++ if (mode == KEY_TYPE_QUOTA_PREALLOC) ++ return -EDQUOT; ++ ++ prepare_warning(qc, qtype, counter, msgs, HARDWARN); ++ } ++ ++ if (qc->softlimit && ++ qc->softlimit < n && ++ qc->timer && ++ ktime_get_real_seconds() >= qc->timer && ++ !ignore_hardlimit(q)) { ++ if (mode == KEY_TYPE_QUOTA_PREALLOC) ++ return -EDQUOT; ++ ++ prepare_warning(qc, qtype, counter, msgs, SOFTLONGWARN); ++ } ++ ++ if (qc->softlimit && ++ qc->softlimit < n && ++ qc->timer == 0) { ++ if (mode == KEY_TYPE_QUOTA_PREALLOC) ++ return -EDQUOT; ++ ++ prepare_warning(qc, qtype, counter, msgs, SOFTWARN); ++ ++ /* XXX is this the right one? */ ++ qc->timer = ktime_get_real_seconds() + ++ q->limits[counter].warnlimit; ++ } ++ ++ return 0; ++} ++ ++int bch2_quota_acct(struct bch_fs *c, struct bch_qid qid, ++ enum quota_counters counter, s64 v, ++ enum quota_acct_mode mode) ++{ ++ unsigned qtypes = enabled_qtypes(c); ++ struct bch_memquota_type *q; ++ struct bch_memquota *mq[QTYP_NR]; ++ struct quota_msgs msgs; ++ unsigned i; ++ int ret = 0; ++ ++ memset(&msgs, 0, sizeof(msgs)); ++ ++ for_each_set_qtype(c, i, q, qtypes) ++ mutex_lock_nested(&q->lock, i); ++ ++ for_each_set_qtype(c, i, q, qtypes) { ++ mq[i] = genradix_ptr_alloc(&q->table, qid.q[i], GFP_NOFS); ++ if (!mq[i]) { ++ ret = -ENOMEM; ++ goto err; ++ } ++ ++ ret = bch2_quota_check_limit(c, i, mq[i], &msgs, counter, v, mode); ++ if (ret) ++ goto err; ++ } ++ ++ for_each_set_qtype(c, i, q, qtypes) ++ mq[i]->c[counter].v += v; ++err: ++ for_each_set_qtype(c, i, q, qtypes) ++ mutex_unlock(&q->lock); ++ ++ flush_warnings(qid, c->vfs_sb, &msgs); ++ ++ return ret; ++} ++ ++static void __bch2_quota_transfer(struct bch_memquota *src_q, ++ struct bch_memquota *dst_q, ++ enum quota_counters counter, s64 v) ++{ ++ BUG_ON(v > src_q->c[counter].v); ++ BUG_ON(v + dst_q->c[counter].v < v); ++ ++ src_q->c[counter].v -= v; ++ dst_q->c[counter].v += v; ++} ++ ++int bch2_quota_transfer(struct bch_fs *c, unsigned qtypes, ++ struct bch_qid dst, ++ struct bch_qid src, u64 space, ++ enum quota_acct_mode mode) ++{ ++ struct bch_memquota_type *q; ++ struct bch_memquota *src_q[3], *dst_q[3]; ++ struct quota_msgs msgs; ++ unsigned i; ++ int ret = 0; ++ ++ qtypes &= enabled_qtypes(c); ++ ++ memset(&msgs, 0, sizeof(msgs)); ++ ++ for_each_set_qtype(c, i, q, qtypes) ++ mutex_lock_nested(&q->lock, i); ++ ++ for_each_set_qtype(c, i, q, qtypes) { ++ src_q[i] = genradix_ptr_alloc(&q->table, src.q[i], GFP_NOFS); ++ dst_q[i] = genradix_ptr_alloc(&q->table, dst.q[i], GFP_NOFS); ++ ++ if (!src_q[i] || !dst_q[i]) { ++ ret = -ENOMEM; ++ goto err; ++ } ++ ++ ret = bch2_quota_check_limit(c, i, dst_q[i], &msgs, Q_SPC, ++ dst_q[i]->c[Q_SPC].v + space, ++ mode); ++ if (ret) ++ goto err; ++ ++ ret = bch2_quota_check_limit(c, i, dst_q[i], &msgs, Q_INO, ++ dst_q[i]->c[Q_INO].v + 1, ++ mode); ++ if (ret) ++ goto err; ++ } ++ ++ for_each_set_qtype(c, i, q, qtypes) { ++ __bch2_quota_transfer(src_q[i], dst_q[i], Q_SPC, space); ++ __bch2_quota_transfer(src_q[i], dst_q[i], Q_INO, 1); ++ } ++ ++err: ++ for_each_set_qtype(c, i, q, qtypes) ++ mutex_unlock(&q->lock); ++ ++ flush_warnings(dst, c->vfs_sb, &msgs); ++ ++ return ret; ++} ++ ++static int __bch2_quota_set(struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_s_c_quota dq; ++ struct bch_memquota_type *q; ++ struct bch_memquota *mq; ++ unsigned i; ++ ++ BUG_ON(k.k->p.inode >= QTYP_NR); ++ ++ switch (k.k->type) { ++ case KEY_TYPE_quota: ++ dq = bkey_s_c_to_quota(k); ++ q = &c->quotas[k.k->p.inode]; ++ ++ mutex_lock(&q->lock); ++ mq = genradix_ptr_alloc(&q->table, k.k->p.offset, GFP_KERNEL); ++ if (!mq) { ++ mutex_unlock(&q->lock); ++ return -ENOMEM; ++ } ++ ++ for (i = 0; i < Q_COUNTERS; i++) { ++ mq->c[i].hardlimit = le64_to_cpu(dq.v->c[i].hardlimit); ++ mq->c[i].softlimit = le64_to_cpu(dq.v->c[i].softlimit); ++ } ++ ++ mutex_unlock(&q->lock); ++ } ++ ++ return 0; ++} ++ ++static int bch2_quota_init_type(struct bch_fs *c, enum quota_types type) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_QUOTAS, POS(type, 0), ++ BTREE_ITER_PREFETCH, k, ret) { ++ if (k.k->p.inode != type) ++ break; ++ ++ ret = __bch2_quota_set(c, k); ++ if (ret) ++ break; ++ } ++ ++ return bch2_trans_exit(&trans) ?: ret; ++} ++ ++void bch2_fs_quota_exit(struct bch_fs *c) ++{ ++ unsigned i; ++ ++ for (i = 0; i < ARRAY_SIZE(c->quotas); i++) ++ genradix_free(&c->quotas[i].table); ++} ++ ++void bch2_fs_quota_init(struct bch_fs *c) ++{ ++ unsigned i; ++ ++ for (i = 0; i < ARRAY_SIZE(c->quotas); i++) ++ mutex_init(&c->quotas[i].lock); ++} ++ ++static void bch2_sb_quota_read(struct bch_fs *c) ++{ ++ struct bch_sb_field_quota *sb_quota; ++ unsigned i, j; ++ ++ sb_quota = bch2_sb_get_quota(c->disk_sb.sb); ++ if (!sb_quota) ++ return; ++ ++ for (i = 0; i < QTYP_NR; i++) { ++ struct bch_memquota_type *q = &c->quotas[i]; ++ ++ for (j = 0; j < Q_COUNTERS; j++) { ++ q->limits[j].timelimit = ++ le32_to_cpu(sb_quota->q[i].c[j].timelimit); ++ q->limits[j].warnlimit = ++ le32_to_cpu(sb_quota->q[i].c[j].warnlimit); ++ } ++ } ++} ++ ++int bch2_fs_quota_read(struct bch_fs *c) ++{ ++ unsigned i, qtypes = enabled_qtypes(c); ++ struct bch_memquota_type *q; ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bch_inode_unpacked u; ++ struct bkey_s_c k; ++ int ret; ++ ++ mutex_lock(&c->sb_lock); ++ bch2_sb_quota_read(c); ++ mutex_unlock(&c->sb_lock); ++ ++ for_each_set_qtype(c, i, q, qtypes) { ++ ret = bch2_quota_init_type(c, i); ++ if (ret) ++ return ret; ++ } ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_INODES, POS_MIN, ++ BTREE_ITER_PREFETCH, k, ret) { ++ switch (k.k->type) { ++ case KEY_TYPE_inode: ++ ret = bch2_inode_unpack(bkey_s_c_to_inode(k), &u); ++ if (ret) ++ return ret; ++ ++ bch2_quota_acct(c, bch_qid(&u), Q_SPC, u.bi_sectors, ++ KEY_TYPE_QUOTA_NOCHECK); ++ bch2_quota_acct(c, bch_qid(&u), Q_INO, 1, ++ KEY_TYPE_QUOTA_NOCHECK); ++ } ++ } ++ return bch2_trans_exit(&trans) ?: ret; ++} ++ ++/* Enable/disable/delete quotas for an entire filesystem: */ ++ ++static int bch2_quota_enable(struct super_block *sb, unsigned uflags) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ ++ if (sb->s_flags & SB_RDONLY) ++ return -EROFS; ++ ++ /* Accounting must be enabled at mount time: */ ++ if (uflags & (FS_QUOTA_UDQ_ACCT|FS_QUOTA_GDQ_ACCT|FS_QUOTA_PDQ_ACCT)) ++ return -EINVAL; ++ ++ /* Can't enable enforcement without accounting: */ ++ if ((uflags & FS_QUOTA_UDQ_ENFD) && !c->opts.usrquota) ++ return -EINVAL; ++ ++ if ((uflags & FS_QUOTA_GDQ_ENFD) && !c->opts.grpquota) ++ return -EINVAL; ++ ++ if (uflags & FS_QUOTA_PDQ_ENFD && !c->opts.prjquota) ++ return -EINVAL; ++ ++ mutex_lock(&c->sb_lock); ++ if (uflags & FS_QUOTA_UDQ_ENFD) ++ SET_BCH_SB_USRQUOTA(c->disk_sb.sb, true); ++ ++ if (uflags & FS_QUOTA_GDQ_ENFD) ++ SET_BCH_SB_GRPQUOTA(c->disk_sb.sb, true); ++ ++ if (uflags & FS_QUOTA_PDQ_ENFD) ++ SET_BCH_SB_PRJQUOTA(c->disk_sb.sb, true); ++ ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ return 0; ++} ++ ++static int bch2_quota_disable(struct super_block *sb, unsigned uflags) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ ++ if (sb->s_flags & SB_RDONLY) ++ return -EROFS; ++ ++ mutex_lock(&c->sb_lock); ++ if (uflags & FS_QUOTA_UDQ_ENFD) ++ SET_BCH_SB_USRQUOTA(c->disk_sb.sb, false); ++ ++ if (uflags & FS_QUOTA_GDQ_ENFD) ++ SET_BCH_SB_GRPQUOTA(c->disk_sb.sb, false); ++ ++ if (uflags & FS_QUOTA_PDQ_ENFD) ++ SET_BCH_SB_PRJQUOTA(c->disk_sb.sb, false); ++ ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ return 0; ++} ++ ++static int bch2_quota_remove(struct super_block *sb, unsigned uflags) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ int ret; ++ ++ if (sb->s_flags & SB_RDONLY) ++ return -EROFS; ++ ++ if (uflags & FS_USER_QUOTA) { ++ if (c->opts.usrquota) ++ return -EINVAL; ++ ++ ret = bch2_btree_delete_range(c, BTREE_ID_QUOTAS, ++ POS(QTYP_USR, 0), ++ POS(QTYP_USR + 1, 0), ++ NULL); ++ if (ret) ++ return ret; ++ } ++ ++ if (uflags & FS_GROUP_QUOTA) { ++ if (c->opts.grpquota) ++ return -EINVAL; ++ ++ ret = bch2_btree_delete_range(c, BTREE_ID_QUOTAS, ++ POS(QTYP_GRP, 0), ++ POS(QTYP_GRP + 1, 0), ++ NULL); ++ if (ret) ++ return ret; ++ } ++ ++ if (uflags & FS_PROJ_QUOTA) { ++ if (c->opts.prjquota) ++ return -EINVAL; ++ ++ ret = bch2_btree_delete_range(c, BTREE_ID_QUOTAS, ++ POS(QTYP_PRJ, 0), ++ POS(QTYP_PRJ + 1, 0), ++ NULL); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++/* ++ * Return quota status information, such as enforcements, quota file inode ++ * numbers etc. ++ */ ++static int bch2_quota_get_state(struct super_block *sb, struct qc_state *state) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ unsigned qtypes = enabled_qtypes(c); ++ unsigned i; ++ ++ memset(state, 0, sizeof(*state)); ++ ++ for (i = 0; i < QTYP_NR; i++) { ++ state->s_state[i].flags |= QCI_SYSFILE; ++ ++ if (!(qtypes & (1 << i))) ++ continue; ++ ++ state->s_state[i].flags |= QCI_ACCT_ENABLED; ++ ++ state->s_state[i].spc_timelimit = c->quotas[i].limits[Q_SPC].timelimit; ++ state->s_state[i].spc_warnlimit = c->quotas[i].limits[Q_SPC].warnlimit; ++ ++ state->s_state[i].ino_timelimit = c->quotas[i].limits[Q_INO].timelimit; ++ state->s_state[i].ino_warnlimit = c->quotas[i].limits[Q_INO].warnlimit; ++ } ++ ++ return 0; ++} ++ ++/* ++ * Adjust quota timers & warnings ++ */ ++static int bch2_quota_set_info(struct super_block *sb, int type, ++ struct qc_info *info) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ struct bch_sb_field_quota *sb_quota; ++ struct bch_memquota_type *q; ++ ++ if (sb->s_flags & SB_RDONLY) ++ return -EROFS; ++ ++ if (type >= QTYP_NR) ++ return -EINVAL; ++ ++ if (!((1 << type) & enabled_qtypes(c))) ++ return -ESRCH; ++ ++ if (info->i_fieldmask & ++ ~(QC_SPC_TIMER|QC_INO_TIMER|QC_SPC_WARNS|QC_INO_WARNS)) ++ return -EINVAL; ++ ++ q = &c->quotas[type]; ++ ++ mutex_lock(&c->sb_lock); ++ sb_quota = bch2_sb_get_quota(c->disk_sb.sb); ++ if (!sb_quota) { ++ sb_quota = bch2_sb_resize_quota(&c->disk_sb, ++ sizeof(*sb_quota) / sizeof(u64)); ++ if (!sb_quota) ++ return -ENOSPC; ++ } ++ ++ if (info->i_fieldmask & QC_SPC_TIMER) ++ sb_quota->q[type].c[Q_SPC].timelimit = ++ cpu_to_le32(info->i_spc_timelimit); ++ ++ if (info->i_fieldmask & QC_SPC_WARNS) ++ sb_quota->q[type].c[Q_SPC].warnlimit = ++ cpu_to_le32(info->i_spc_warnlimit); ++ ++ if (info->i_fieldmask & QC_INO_TIMER) ++ sb_quota->q[type].c[Q_INO].timelimit = ++ cpu_to_le32(info->i_ino_timelimit); ++ ++ if (info->i_fieldmask & QC_INO_WARNS) ++ sb_quota->q[type].c[Q_INO].warnlimit = ++ cpu_to_le32(info->i_ino_warnlimit); ++ ++ bch2_sb_quota_read(c); ++ ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ return 0; ++} ++ ++/* Get/set individual quotas: */ ++ ++static void __bch2_quota_get(struct qc_dqblk *dst, struct bch_memquota *src) ++{ ++ dst->d_space = src->c[Q_SPC].v << 9; ++ dst->d_spc_hardlimit = src->c[Q_SPC].hardlimit << 9; ++ dst->d_spc_softlimit = src->c[Q_SPC].softlimit << 9; ++ dst->d_spc_timer = src->c[Q_SPC].timer; ++ dst->d_spc_warns = src->c[Q_SPC].warns; ++ ++ dst->d_ino_count = src->c[Q_INO].v; ++ dst->d_ino_hardlimit = src->c[Q_INO].hardlimit; ++ dst->d_ino_softlimit = src->c[Q_INO].softlimit; ++ dst->d_ino_timer = src->c[Q_INO].timer; ++ dst->d_ino_warns = src->c[Q_INO].warns; ++} ++ ++static int bch2_get_quota(struct super_block *sb, struct kqid kqid, ++ struct qc_dqblk *qdq) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ struct bch_memquota_type *q = &c->quotas[kqid.type]; ++ qid_t qid = from_kqid(&init_user_ns, kqid); ++ struct bch_memquota *mq; ++ ++ memset(qdq, 0, sizeof(*qdq)); ++ ++ mutex_lock(&q->lock); ++ mq = genradix_ptr(&q->table, qid); ++ if (mq) ++ __bch2_quota_get(qdq, mq); ++ mutex_unlock(&q->lock); ++ ++ return 0; ++} ++ ++static int bch2_get_next_quota(struct super_block *sb, struct kqid *kqid, ++ struct qc_dqblk *qdq) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ struct bch_memquota_type *q = &c->quotas[kqid->type]; ++ qid_t qid = from_kqid(&init_user_ns, *kqid); ++ struct genradix_iter iter; ++ struct bch_memquota *mq; ++ int ret = 0; ++ ++ mutex_lock(&q->lock); ++ ++ genradix_for_each_from(&q->table, iter, mq, qid) ++ if (memcmp(mq, page_address(ZERO_PAGE(0)), sizeof(*mq))) { ++ __bch2_quota_get(qdq, mq); ++ *kqid = make_kqid(current_user_ns(), kqid->type, iter.pos); ++ goto found; ++ } ++ ++ ret = -ENOENT; ++found: ++ mutex_unlock(&q->lock); ++ return ret; ++} ++ ++static int bch2_set_quota_trans(struct btree_trans *trans, ++ struct bkey_i_quota *new_quota, ++ struct qc_dqblk *qdq) ++{ ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ iter = bch2_trans_get_iter(trans, BTREE_ID_QUOTAS, new_quota->k.p, ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT); ++ k = bch2_btree_iter_peek_slot(iter); ++ ++ ret = bkey_err(k); ++ if (unlikely(ret)) ++ return ret; ++ ++ if (k.k->type == KEY_TYPE_quota) ++ new_quota->v = *bkey_s_c_to_quota(k).v; ++ ++ if (qdq->d_fieldmask & QC_SPC_SOFT) ++ new_quota->v.c[Q_SPC].softlimit = cpu_to_le64(qdq->d_spc_softlimit >> 9); ++ if (qdq->d_fieldmask & QC_SPC_HARD) ++ new_quota->v.c[Q_SPC].hardlimit = cpu_to_le64(qdq->d_spc_hardlimit >> 9); ++ ++ if (qdq->d_fieldmask & QC_INO_SOFT) ++ new_quota->v.c[Q_INO].softlimit = cpu_to_le64(qdq->d_ino_softlimit); ++ if (qdq->d_fieldmask & QC_INO_HARD) ++ new_quota->v.c[Q_INO].hardlimit = cpu_to_le64(qdq->d_ino_hardlimit); ++ ++ return bch2_trans_update(trans, iter, &new_quota->k_i, 0); ++} ++ ++static int bch2_set_quota(struct super_block *sb, struct kqid qid, ++ struct qc_dqblk *qdq) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ struct btree_trans trans; ++ struct bkey_i_quota new_quota; ++ int ret; ++ ++ if (sb->s_flags & SB_RDONLY) ++ return -EROFS; ++ ++ bkey_quota_init(&new_quota.k_i); ++ new_quota.k.p = POS(qid.type, from_kqid(&init_user_ns, qid)); ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ ret = bch2_trans_do(c, NULL, NULL, BTREE_INSERT_NOUNLOCK, ++ bch2_set_quota_trans(&trans, &new_quota, qdq)) ?: ++ __bch2_quota_set(c, bkey_i_to_s_c(&new_quota.k_i)); ++ ++ bch2_trans_exit(&trans); ++ ++ return ret; ++} ++ ++const struct quotactl_ops bch2_quotactl_operations = { ++ .quota_enable = bch2_quota_enable, ++ .quota_disable = bch2_quota_disable, ++ .rm_xquota = bch2_quota_remove, ++ ++ .get_state = bch2_quota_get_state, ++ .set_info = bch2_quota_set_info, ++ ++ .get_dqblk = bch2_get_quota, ++ .get_nextdqblk = bch2_get_next_quota, ++ .set_dqblk = bch2_set_quota, ++}; ++ ++#endif /* CONFIG_BCACHEFS_QUOTA */ +diff --git a/fs/bcachefs/quota.h b/fs/bcachefs/quota.h +new file mode 100644 +index 000000000000..51e4f9713ef0 +--- /dev/null ++++ b/fs/bcachefs/quota.h +@@ -0,0 +1,71 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_QUOTA_H ++#define _BCACHEFS_QUOTA_H ++ ++#include "inode.h" ++#include "quota_types.h" ++ ++extern const struct bch_sb_field_ops bch_sb_field_ops_quota; ++ ++const char *bch2_quota_invalid(const struct bch_fs *, struct bkey_s_c); ++void bch2_quota_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++ ++#define bch2_bkey_ops_quota (struct bkey_ops) { \ ++ .key_invalid = bch2_quota_invalid, \ ++ .val_to_text = bch2_quota_to_text, \ ++} ++ ++static inline struct bch_qid bch_qid(struct bch_inode_unpacked *u) ++{ ++ return (struct bch_qid) { ++ .q[QTYP_USR] = u->bi_uid, ++ .q[QTYP_GRP] = u->bi_gid, ++ .q[QTYP_PRJ] = u->bi_project ? u->bi_project - 1 : 0, ++ }; ++} ++ ++static inline unsigned enabled_qtypes(struct bch_fs *c) ++{ ++ return ((c->opts.usrquota << QTYP_USR)| ++ (c->opts.grpquota << QTYP_GRP)| ++ (c->opts.prjquota << QTYP_PRJ)); ++} ++ ++#ifdef CONFIG_BCACHEFS_QUOTA ++ ++int bch2_quota_acct(struct bch_fs *, struct bch_qid, enum quota_counters, ++ s64, enum quota_acct_mode); ++ ++int bch2_quota_transfer(struct bch_fs *, unsigned, struct bch_qid, ++ struct bch_qid, u64, enum quota_acct_mode); ++ ++void bch2_fs_quota_exit(struct bch_fs *); ++void bch2_fs_quota_init(struct bch_fs *); ++int bch2_fs_quota_read(struct bch_fs *); ++ ++extern const struct quotactl_ops bch2_quotactl_operations; ++ ++#else ++ ++static inline int bch2_quota_acct(struct bch_fs *c, struct bch_qid qid, ++ enum quota_counters counter, s64 v, ++ enum quota_acct_mode mode) ++{ ++ return 0; ++} ++ ++static inline int bch2_quota_transfer(struct bch_fs *c, unsigned qtypes, ++ struct bch_qid dst, ++ struct bch_qid src, u64 space, ++ enum quota_acct_mode mode) ++{ ++ return 0; ++} ++ ++static inline void bch2_fs_quota_exit(struct bch_fs *c) {} ++static inline void bch2_fs_quota_init(struct bch_fs *c) {} ++static inline int bch2_fs_quota_read(struct bch_fs *c) { return 0; } ++ ++#endif ++ ++#endif /* _BCACHEFS_QUOTA_H */ +diff --git a/fs/bcachefs/quota_types.h b/fs/bcachefs/quota_types.h +new file mode 100644 +index 000000000000..6a136083d389 +--- /dev/null ++++ b/fs/bcachefs/quota_types.h +@@ -0,0 +1,43 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_QUOTA_TYPES_H ++#define _BCACHEFS_QUOTA_TYPES_H ++ ++#include ++ ++struct bch_qid { ++ u32 q[QTYP_NR]; ++}; ++ ++enum quota_acct_mode { ++ KEY_TYPE_QUOTA_PREALLOC, ++ KEY_TYPE_QUOTA_WARN, ++ KEY_TYPE_QUOTA_NOCHECK, ++}; ++ ++struct memquota_counter { ++ u64 v; ++ u64 hardlimit; ++ u64 softlimit; ++ s64 timer; ++ int warns; ++ int warning_issued; ++}; ++ ++struct bch_memquota { ++ struct memquota_counter c[Q_COUNTERS]; ++}; ++ ++typedef GENRADIX(struct bch_memquota) bch_memquota_table; ++ ++struct quota_limit { ++ u32 timelimit; ++ u32 warnlimit; ++}; ++ ++struct bch_memquota_type { ++ struct quota_limit limits[Q_COUNTERS]; ++ bch_memquota_table table; ++ struct mutex lock; ++}; ++ ++#endif /* _BCACHEFS_QUOTA_TYPES_H */ +diff --git a/fs/bcachefs/rebalance.c b/fs/bcachefs/rebalance.c +new file mode 100644 +index 000000000000..56a1f761271f +--- /dev/null ++++ b/fs/bcachefs/rebalance.c +@@ -0,0 +1,331 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "alloc_foreground.h" ++#include "btree_iter.h" ++#include "buckets.h" ++#include "clock.h" ++#include "disk_groups.h" ++#include "extents.h" ++#include "io.h" ++#include "move.h" ++#include "rebalance.h" ++#include "super-io.h" ++ ++#include ++#include ++#include ++#include ++ ++/* ++ * Check if an extent should be moved: ++ * returns -1 if it should not be moved, or ++ * device of pointer that should be moved, if known, or INT_MAX if unknown ++ */ ++static int __bch2_rebalance_pred(struct bch_fs *c, ++ struct bkey_s_c k, ++ struct bch_io_opts *io_opts) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ ++ if (io_opts->background_compression && ++ !bch2_bkey_is_incompressible(k)) ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) ++ if (!p.ptr.cached && ++ p.crc.compression_type != ++ bch2_compression_opt_to_type[io_opts->background_compression]) ++ return p.ptr.dev; ++ ++ if (io_opts->background_target) ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) ++ if (!p.ptr.cached && ++ !bch2_dev_in_target(c, p.ptr.dev, io_opts->background_target)) ++ return p.ptr.dev; ++ ++ return -1; ++} ++ ++void bch2_rebalance_add_key(struct bch_fs *c, ++ struct bkey_s_c k, ++ struct bch_io_opts *io_opts) ++{ ++ atomic64_t *counter; ++ int dev; ++ ++ dev = __bch2_rebalance_pred(c, k, io_opts); ++ if (dev < 0) ++ return; ++ ++ counter = dev < INT_MAX ++ ? &bch_dev_bkey_exists(c, dev)->rebalance_work ++ : &c->rebalance.work_unknown_dev; ++ ++ if (atomic64_add_return(k.k->size, counter) == k.k->size) ++ rebalance_wakeup(c); ++} ++ ++static enum data_cmd rebalance_pred(struct bch_fs *c, void *arg, ++ struct bkey_s_c k, ++ struct bch_io_opts *io_opts, ++ struct data_opts *data_opts) ++{ ++ if (__bch2_rebalance_pred(c, k, io_opts) >= 0) { ++ data_opts->target = io_opts->background_target; ++ data_opts->btree_insert_flags = 0; ++ return DATA_ADD_REPLICAS; ++ } else { ++ return DATA_SKIP; ++ } ++} ++ ++void bch2_rebalance_add_work(struct bch_fs *c, u64 sectors) ++{ ++ if (atomic64_add_return(sectors, &c->rebalance.work_unknown_dev) == ++ sectors) ++ rebalance_wakeup(c); ++} ++ ++struct rebalance_work { ++ int dev_most_full_idx; ++ unsigned dev_most_full_percent; ++ u64 dev_most_full_work; ++ u64 dev_most_full_capacity; ++ u64 total_work; ++}; ++ ++static void rebalance_work_accumulate(struct rebalance_work *w, ++ u64 dev_work, u64 unknown_dev, u64 capacity, int idx) ++{ ++ unsigned percent_full; ++ u64 work = dev_work + unknown_dev; ++ ++ if (work < dev_work || work < unknown_dev) ++ work = U64_MAX; ++ work = min(work, capacity); ++ ++ percent_full = div64_u64(work * 100, capacity); ++ ++ if (percent_full >= w->dev_most_full_percent) { ++ w->dev_most_full_idx = idx; ++ w->dev_most_full_percent = percent_full; ++ w->dev_most_full_work = work; ++ w->dev_most_full_capacity = capacity; ++ } ++ ++ if (w->total_work + dev_work >= w->total_work && ++ w->total_work + dev_work >= dev_work) ++ w->total_work += dev_work; ++} ++ ++static struct rebalance_work rebalance_work(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ struct rebalance_work ret = { .dev_most_full_idx = -1 }; ++ u64 unknown_dev = atomic64_read(&c->rebalance.work_unknown_dev); ++ unsigned i; ++ ++ for_each_online_member(ca, c, i) ++ rebalance_work_accumulate(&ret, ++ atomic64_read(&ca->rebalance_work), ++ unknown_dev, ++ bucket_to_sector(ca, ca->mi.nbuckets - ++ ca->mi.first_bucket), ++ i); ++ ++ rebalance_work_accumulate(&ret, ++ unknown_dev, 0, c->capacity, -1); ++ ++ return ret; ++} ++ ++static void rebalance_work_reset(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ ++ for_each_online_member(ca, c, i) ++ atomic64_set(&ca->rebalance_work, 0); ++ ++ atomic64_set(&c->rebalance.work_unknown_dev, 0); ++} ++ ++static unsigned long curr_cputime(void) ++{ ++ u64 utime, stime; ++ ++ task_cputime_adjusted(current, &utime, &stime); ++ return nsecs_to_jiffies(utime + stime); ++} ++ ++static int bch2_rebalance_thread(void *arg) ++{ ++ struct bch_fs *c = arg; ++ struct bch_fs_rebalance *r = &c->rebalance; ++ struct io_clock *clock = &c->io_clock[WRITE]; ++ struct rebalance_work w, p; ++ unsigned long start, prev_start; ++ unsigned long prev_run_time, prev_run_cputime; ++ unsigned long cputime, prev_cputime; ++ unsigned long io_start; ++ long throttle; ++ ++ set_freezable(); ++ ++ io_start = atomic_long_read(&clock->now); ++ p = rebalance_work(c); ++ prev_start = jiffies; ++ prev_cputime = curr_cputime(); ++ ++ while (!kthread_wait_freezable(r->enabled)) { ++ cond_resched(); ++ ++ start = jiffies; ++ cputime = curr_cputime(); ++ ++ prev_run_time = start - prev_start; ++ prev_run_cputime = cputime - prev_cputime; ++ ++ w = rebalance_work(c); ++ BUG_ON(!w.dev_most_full_capacity); ++ ++ if (!w.total_work) { ++ r->state = REBALANCE_WAITING; ++ kthread_wait_freezable(rebalance_work(c).total_work); ++ continue; ++ } ++ ++ /* ++ * If there isn't much work to do, throttle cpu usage: ++ */ ++ throttle = prev_run_cputime * 100 / ++ max(1U, w.dev_most_full_percent) - ++ prev_run_time; ++ ++ if (w.dev_most_full_percent < 20 && throttle > 0) { ++ r->throttled_until_iotime = io_start + ++ div_u64(w.dev_most_full_capacity * ++ (20 - w.dev_most_full_percent), ++ 50); ++ ++ if (atomic_long_read(&clock->now) + clock->max_slop < ++ r->throttled_until_iotime) { ++ r->throttled_until_cputime = start + throttle; ++ r->state = REBALANCE_THROTTLED; ++ ++ bch2_kthread_io_clock_wait(clock, ++ r->throttled_until_iotime, ++ throttle); ++ continue; ++ } ++ } ++ ++ /* minimum 1 mb/sec: */ ++ r->pd.rate.rate = ++ max_t(u64, 1 << 11, ++ r->pd.rate.rate * ++ max(p.dev_most_full_percent, 1U) / ++ max(w.dev_most_full_percent, 1U)); ++ ++ io_start = atomic_long_read(&clock->now); ++ p = w; ++ prev_start = start; ++ prev_cputime = cputime; ++ ++ r->state = REBALANCE_RUNNING; ++ memset(&r->move_stats, 0, sizeof(r->move_stats)); ++ rebalance_work_reset(c); ++ ++ bch2_move_data(c, ++ /* ratelimiting disabled for now */ ++ NULL, /* &r->pd.rate, */ ++ writepoint_ptr(&c->rebalance_write_point), ++ POS_MIN, POS_MAX, ++ rebalance_pred, NULL, ++ &r->move_stats); ++ } ++ ++ return 0; ++} ++ ++void bch2_rebalance_work_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ struct bch_fs_rebalance *r = &c->rebalance; ++ struct rebalance_work w = rebalance_work(c); ++ char h1[21], h2[21]; ++ ++ bch2_hprint(&PBUF(h1), w.dev_most_full_work << 9); ++ bch2_hprint(&PBUF(h2), w.dev_most_full_capacity << 9); ++ pr_buf(out, "fullest_dev (%i):\t%s/%s\n", ++ w.dev_most_full_idx, h1, h2); ++ ++ bch2_hprint(&PBUF(h1), w.total_work << 9); ++ bch2_hprint(&PBUF(h2), c->capacity << 9); ++ pr_buf(out, "total work:\t\t%s/%s\n", h1, h2); ++ ++ pr_buf(out, "rate:\t\t\t%u\n", r->pd.rate.rate); ++ ++ switch (r->state) { ++ case REBALANCE_WAITING: ++ pr_buf(out, "waiting\n"); ++ break; ++ case REBALANCE_THROTTLED: ++ bch2_hprint(&PBUF(h1), ++ (r->throttled_until_iotime - ++ atomic_long_read(&c->io_clock[WRITE].now)) << 9); ++ pr_buf(out, "throttled for %lu sec or %s io\n", ++ (r->throttled_until_cputime - jiffies) / HZ, ++ h1); ++ break; ++ case REBALANCE_RUNNING: ++ pr_buf(out, "running\n"); ++ pr_buf(out, "pos %llu:%llu\n", ++ r->move_stats.pos.inode, ++ r->move_stats.pos.offset); ++ break; ++ } ++} ++ ++void bch2_rebalance_stop(struct bch_fs *c) ++{ ++ struct task_struct *p; ++ ++ c->rebalance.pd.rate.rate = UINT_MAX; ++ bch2_ratelimit_reset(&c->rebalance.pd.rate); ++ ++ p = rcu_dereference_protected(c->rebalance.thread, 1); ++ c->rebalance.thread = NULL; ++ ++ if (p) { ++ /* for sychronizing with rebalance_wakeup() */ ++ synchronize_rcu(); ++ ++ kthread_stop(p); ++ put_task_struct(p); ++ } ++} ++ ++int bch2_rebalance_start(struct bch_fs *c) ++{ ++ struct task_struct *p; ++ ++ if (c->opts.nochanges) ++ return 0; ++ ++ p = kthread_create(bch2_rebalance_thread, c, "bch_rebalance"); ++ if (IS_ERR(p)) ++ return PTR_ERR(p); ++ ++ get_task_struct(p); ++ rcu_assign_pointer(c->rebalance.thread, p); ++ wake_up_process(p); ++ return 0; ++} ++ ++void bch2_fs_rebalance_init(struct bch_fs *c) ++{ ++ bch2_pd_controller_init(&c->rebalance.pd); ++ ++ atomic64_set(&c->rebalance.work_unknown_dev, S64_MAX); ++} +diff --git a/fs/bcachefs/rebalance.h b/fs/bcachefs/rebalance.h +new file mode 100644 +index 000000000000..7ade0bb81cce +--- /dev/null ++++ b/fs/bcachefs/rebalance.h +@@ -0,0 +1,28 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_REBALANCE_H ++#define _BCACHEFS_REBALANCE_H ++ ++#include "rebalance_types.h" ++ ++static inline void rebalance_wakeup(struct bch_fs *c) ++{ ++ struct task_struct *p; ++ ++ rcu_read_lock(); ++ p = rcu_dereference(c->rebalance.thread); ++ if (p) ++ wake_up_process(p); ++ rcu_read_unlock(); ++} ++ ++void bch2_rebalance_add_key(struct bch_fs *, struct bkey_s_c, ++ struct bch_io_opts *); ++void bch2_rebalance_add_work(struct bch_fs *, u64); ++ ++void bch2_rebalance_work_to_text(struct printbuf *, struct bch_fs *); ++ ++void bch2_rebalance_stop(struct bch_fs *); ++int bch2_rebalance_start(struct bch_fs *); ++void bch2_fs_rebalance_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_REBALANCE_H */ +diff --git a/fs/bcachefs/rebalance_types.h b/fs/bcachefs/rebalance_types.h +new file mode 100644 +index 000000000000..192c6be20ced +--- /dev/null ++++ b/fs/bcachefs/rebalance_types.h +@@ -0,0 +1,27 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_REBALANCE_TYPES_H ++#define _BCACHEFS_REBALANCE_TYPES_H ++ ++#include "move_types.h" ++ ++enum rebalance_state { ++ REBALANCE_WAITING, ++ REBALANCE_THROTTLED, ++ REBALANCE_RUNNING, ++}; ++ ++struct bch_fs_rebalance { ++ struct task_struct __rcu *thread; ++ struct bch_pd_controller pd; ++ ++ atomic64_t work_unknown_dev; ++ ++ enum rebalance_state state; ++ unsigned long throttled_until_iotime; ++ unsigned long throttled_until_cputime; ++ struct bch_move_stats move_stats; ++ ++ unsigned enabled:1; ++}; ++ ++#endif /* _BCACHEFS_REBALANCE_TYPES_H */ +diff --git a/fs/bcachefs/recovery.c b/fs/bcachefs/recovery.c +new file mode 100644 +index 000000000000..d70fa968db50 +--- /dev/null ++++ b/fs/bcachefs/recovery.c +@@ -0,0 +1,1350 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "btree_gc.h" ++#include "btree_update.h" ++#include "btree_update_interior.h" ++#include "btree_io.h" ++#include "buckets.h" ++#include "dirent.h" ++#include "ec.h" ++#include "error.h" ++#include "fs-common.h" ++#include "fsck.h" ++#include "journal_io.h" ++#include "journal_reclaim.h" ++#include "journal_seq_blacklist.h" ++#include "quota.h" ++#include "recovery.h" ++#include "replicas.h" ++#include "super-io.h" ++ ++#include ++#include ++ ++#define QSTR(n) { { { .len = strlen(n) } }, .name = n } ++ ++/* iterate over keys read from the journal: */ ++ ++static struct journal_key *journal_key_search(struct journal_keys *journal_keys, ++ enum btree_id id, unsigned level, ++ struct bpos pos) ++{ ++ size_t l = 0, r = journal_keys->nr, m; ++ ++ while (l < r) { ++ m = l + ((r - l) >> 1); ++ if ((cmp_int(id, journal_keys->d[m].btree_id) ?: ++ cmp_int(level, journal_keys->d[m].level) ?: ++ bkey_cmp(pos, journal_keys->d[m].k->k.p)) > 0) ++ l = m + 1; ++ else ++ r = m; ++ } ++ ++ BUG_ON(l < journal_keys->nr && ++ (cmp_int(id, journal_keys->d[l].btree_id) ?: ++ cmp_int(level, journal_keys->d[l].level) ?: ++ bkey_cmp(pos, journal_keys->d[l].k->k.p)) > 0); ++ ++ BUG_ON(l && ++ (cmp_int(id, journal_keys->d[l - 1].btree_id) ?: ++ cmp_int(level, journal_keys->d[l - 1].level) ?: ++ bkey_cmp(pos, journal_keys->d[l - 1].k->k.p)) <= 0); ++ ++ return l < journal_keys->nr ? journal_keys->d + l : NULL; ++} ++ ++static struct bkey_i *bch2_journal_iter_peek(struct journal_iter *iter) ++{ ++ if (iter->k && ++ iter->k < iter->keys->d + iter->keys->nr && ++ iter->k->btree_id == iter->btree_id && ++ iter->k->level == iter->level) ++ return iter->k->k; ++ ++ iter->k = NULL; ++ return NULL; ++} ++ ++static void bch2_journal_iter_advance(struct journal_iter *iter) ++{ ++ if (iter->k) ++ iter->k++; ++} ++ ++static void bch2_journal_iter_init(struct journal_iter *iter, ++ struct journal_keys *journal_keys, ++ enum btree_id id, unsigned level, ++ struct bpos pos) ++{ ++ iter->btree_id = id; ++ iter->level = level; ++ iter->keys = journal_keys; ++ iter->k = journal_key_search(journal_keys, id, level, pos); ++} ++ ++static struct bkey_s_c bch2_journal_iter_peek_btree(struct btree_and_journal_iter *iter) ++{ ++ return iter->btree ++ ? bch2_btree_iter_peek(iter->btree) ++ : bch2_btree_node_iter_peek_unpack(&iter->node_iter, ++ iter->b, &iter->unpacked); ++} ++ ++static void bch2_journal_iter_advance_btree(struct btree_and_journal_iter *iter) ++{ ++ if (iter->btree) ++ bch2_btree_iter_next(iter->btree); ++ else ++ bch2_btree_node_iter_advance(&iter->node_iter, iter->b); ++} ++ ++void bch2_btree_and_journal_iter_advance(struct btree_and_journal_iter *iter) ++{ ++ switch (iter->last) { ++ case none: ++ break; ++ case btree: ++ bch2_journal_iter_advance_btree(iter); ++ break; ++ case journal: ++ bch2_journal_iter_advance(&iter->journal); ++ break; ++ } ++ ++ iter->last = none; ++} ++ ++struct bkey_s_c bch2_btree_and_journal_iter_peek(struct btree_and_journal_iter *iter) ++{ ++ struct bkey_s_c ret; ++ ++ while (1) { ++ struct bkey_s_c btree_k = ++ bch2_journal_iter_peek_btree(iter); ++ struct bkey_s_c journal_k = ++ bkey_i_to_s_c(bch2_journal_iter_peek(&iter->journal)); ++ ++ if (btree_k.k && journal_k.k) { ++ int cmp = bkey_cmp(btree_k.k->p, journal_k.k->p); ++ ++ if (!cmp) ++ bch2_journal_iter_advance_btree(iter); ++ ++ iter->last = cmp < 0 ? btree : journal; ++ } else if (btree_k.k) { ++ iter->last = btree; ++ } else if (journal_k.k) { ++ iter->last = journal; ++ } else { ++ iter->last = none; ++ return bkey_s_c_null; ++ } ++ ++ ret = iter->last == journal ? journal_k : btree_k; ++ ++ if (iter->b && ++ bkey_cmp(ret.k->p, iter->b->data->max_key) > 0) { ++ iter->journal.k = NULL; ++ iter->last = none; ++ return bkey_s_c_null; ++ } ++ ++ if (!bkey_deleted(ret.k)) ++ break; ++ ++ bch2_btree_and_journal_iter_advance(iter); ++ } ++ ++ return ret; ++} ++ ++struct bkey_s_c bch2_btree_and_journal_iter_next(struct btree_and_journal_iter *iter) ++{ ++ bch2_btree_and_journal_iter_advance(iter); ++ ++ return bch2_btree_and_journal_iter_peek(iter); ++} ++ ++void bch2_btree_and_journal_iter_init(struct btree_and_journal_iter *iter, ++ struct btree_trans *trans, ++ struct journal_keys *journal_keys, ++ enum btree_id id, struct bpos pos) ++{ ++ memset(iter, 0, sizeof(*iter)); ++ ++ iter->btree = bch2_trans_get_iter(trans, id, pos, 0); ++ bch2_journal_iter_init(&iter->journal, journal_keys, id, 0, pos); ++} ++ ++void bch2_btree_and_journal_iter_init_node_iter(struct btree_and_journal_iter *iter, ++ struct journal_keys *journal_keys, ++ struct btree *b) ++{ ++ memset(iter, 0, sizeof(*iter)); ++ ++ iter->b = b; ++ bch2_btree_node_iter_init_from_start(&iter->node_iter, iter->b); ++ bch2_journal_iter_init(&iter->journal, journal_keys, ++ b->c.btree_id, b->c.level, b->data->min_key); ++} ++ ++/* Walk btree, overlaying keys from the journal: */ ++ ++static int bch2_btree_and_journal_walk_recurse(struct bch_fs *c, struct btree *b, ++ struct journal_keys *journal_keys, ++ enum btree_id btree_id, ++ btree_walk_node_fn node_fn, ++ btree_walk_key_fn key_fn) ++{ ++ struct btree_and_journal_iter iter; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ bch2_btree_and_journal_iter_init_node_iter(&iter, journal_keys, b); ++ ++ while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { ++ ret = key_fn(c, btree_id, b->c.level, k); ++ if (ret) ++ break; ++ ++ if (b->c.level) { ++ struct btree *child; ++ BKEY_PADDED(k) tmp; ++ ++ bkey_reassemble(&tmp.k, k); ++ k = bkey_i_to_s_c(&tmp.k); ++ ++ bch2_btree_and_journal_iter_advance(&iter); ++ ++ if (b->c.level > 0) { ++ child = bch2_btree_node_get_noiter(c, &tmp.k, ++ b->c.btree_id, b->c.level - 1); ++ ret = PTR_ERR_OR_ZERO(child); ++ if (ret) ++ break; ++ ++ ret = (node_fn ? node_fn(c, b) : 0) ?: ++ bch2_btree_and_journal_walk_recurse(c, child, ++ journal_keys, btree_id, node_fn, key_fn); ++ six_unlock_read(&child->c.lock); ++ ++ if (ret) ++ break; ++ } ++ } else { ++ bch2_btree_and_journal_iter_advance(&iter); ++ } ++ } ++ ++ return ret; ++} ++ ++int bch2_btree_and_journal_walk(struct bch_fs *c, struct journal_keys *journal_keys, ++ enum btree_id btree_id, ++ btree_walk_node_fn node_fn, ++ btree_walk_key_fn key_fn) ++{ ++ struct btree *b = c->btree_roots[btree_id].b; ++ int ret = 0; ++ ++ if (btree_node_fake(b)) ++ return 0; ++ ++ six_lock_read(&b->c.lock, NULL, NULL); ++ ret = (node_fn ? node_fn(c, b) : 0) ?: ++ bch2_btree_and_journal_walk_recurse(c, b, journal_keys, btree_id, ++ node_fn, key_fn) ?: ++ key_fn(c, btree_id, b->c.level + 1, bkey_i_to_s_c(&b->key)); ++ six_unlock_read(&b->c.lock); ++ ++ return ret; ++} ++ ++/* sort and dedup all keys in the journal: */ ++ ++void bch2_journal_entries_free(struct list_head *list) ++{ ++ ++ while (!list_empty(list)) { ++ struct journal_replay *i = ++ list_first_entry(list, struct journal_replay, list); ++ list_del(&i->list); ++ kvpfree(i, offsetof(struct journal_replay, j) + ++ vstruct_bytes(&i->j)); ++ } ++} ++ ++/* ++ * When keys compare equal, oldest compares first: ++ */ ++static int journal_sort_key_cmp(const void *_l, const void *_r) ++{ ++ const struct journal_key *l = _l; ++ const struct journal_key *r = _r; ++ ++ return cmp_int(l->btree_id, r->btree_id) ?: ++ cmp_int(l->level, r->level) ?: ++ bkey_cmp(l->k->k.p, r->k->k.p) ?: ++ cmp_int(l->journal_seq, r->journal_seq) ?: ++ cmp_int(l->journal_offset, r->journal_offset); ++} ++ ++void bch2_journal_keys_free(struct journal_keys *keys) ++{ ++ kvfree(keys->d); ++ keys->d = NULL; ++ keys->nr = 0; ++} ++ ++static struct journal_keys journal_keys_sort(struct list_head *journal_entries) ++{ ++ struct journal_replay *p; ++ struct jset_entry *entry; ++ struct bkey_i *k, *_n; ++ struct journal_keys keys = { NULL }; ++ struct journal_key *src, *dst; ++ size_t nr_keys = 0; ++ ++ if (list_empty(journal_entries)) ++ return keys; ++ ++ keys.journal_seq_base = ++ le64_to_cpu(list_last_entry(journal_entries, ++ struct journal_replay, list)->j.last_seq); ++ ++ list_for_each_entry(p, journal_entries, list) { ++ if (le64_to_cpu(p->j.seq) < keys.journal_seq_base) ++ continue; ++ ++ for_each_jset_key(k, _n, entry, &p->j) ++ nr_keys++; ++ } ++ ++ ++ keys.d = kvmalloc(sizeof(keys.d[0]) * nr_keys, GFP_KERNEL); ++ if (!keys.d) ++ goto err; ++ ++ list_for_each_entry(p, journal_entries, list) { ++ if (le64_to_cpu(p->j.seq) < keys.journal_seq_base) ++ continue; ++ ++ for_each_jset_key(k, _n, entry, &p->j) ++ keys.d[keys.nr++] = (struct journal_key) { ++ .btree_id = entry->btree_id, ++ .level = entry->level, ++ .k = k, ++ .journal_seq = le64_to_cpu(p->j.seq) - ++ keys.journal_seq_base, ++ .journal_offset = k->_data - p->j._data, ++ }; ++ } ++ ++ sort(keys.d, keys.nr, sizeof(keys.d[0]), journal_sort_key_cmp, NULL); ++ ++ src = dst = keys.d; ++ while (src < keys.d + keys.nr) { ++ while (src + 1 < keys.d + keys.nr && ++ src[0].btree_id == src[1].btree_id && ++ src[0].level == src[1].level && ++ !bkey_cmp(src[0].k->k.p, src[1].k->k.p)) ++ src++; ++ ++ *dst++ = *src++; ++ } ++ ++ keys.nr = dst - keys.d; ++err: ++ return keys; ++} ++ ++/* journal replay: */ ++ ++static void replay_now_at(struct journal *j, u64 seq) ++{ ++ BUG_ON(seq < j->replay_journal_seq); ++ BUG_ON(seq > j->replay_journal_seq_end); ++ ++ while (j->replay_journal_seq < seq) ++ bch2_journal_pin_put(j, j->replay_journal_seq++); ++} ++ ++static int bch2_extent_replay_key(struct bch_fs *c, enum btree_id btree_id, ++ struct bkey_i *k) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter, *split_iter; ++ /* ++ * We might cause compressed extents to be split, so we need to pass in ++ * a disk_reservation: ++ */ ++ struct disk_reservation disk_res = ++ bch2_disk_reservation_init(c, 0); ++ struct bkey_i *split; ++ struct bpos atomic_end; ++ /* ++ * Some extents aren't equivalent - w.r.t. what the triggers do ++ * - if they're split: ++ */ ++ bool remark_if_split = bch2_bkey_sectors_compressed(bkey_i_to_s_c(k)) || ++ k->k.type == KEY_TYPE_reflink_p; ++ bool remark = false; ++ int ret; ++ ++ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0); ++retry: ++ bch2_trans_begin(&trans); ++ ++ iter = bch2_trans_get_iter(&trans, btree_id, ++ bkey_start_pos(&k->k), ++ BTREE_ITER_INTENT); ++ ++ do { ++ ret = bch2_btree_iter_traverse(iter); ++ if (ret) ++ goto err; ++ ++ atomic_end = bpos_min(k->k.p, iter->l[0].b->key.k.p); ++ ++ split = bch2_trans_kmalloc(&trans, bkey_bytes(&k->k)); ++ ret = PTR_ERR_OR_ZERO(split); ++ if (ret) ++ goto err; ++ ++ if (!remark && ++ remark_if_split && ++ bkey_cmp(atomic_end, k->k.p) < 0) { ++ ret = bch2_disk_reservation_add(c, &disk_res, ++ k->k.size * ++ bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(k)), ++ BCH_DISK_RESERVATION_NOFAIL); ++ BUG_ON(ret); ++ ++ remark = true; ++ } ++ ++ bkey_copy(split, k); ++ bch2_cut_front(iter->pos, split); ++ bch2_cut_back(atomic_end, split); ++ ++ split_iter = bch2_trans_copy_iter(&trans, iter); ++ ret = PTR_ERR_OR_ZERO(split_iter); ++ if (ret) ++ goto err; ++ ++ /* ++ * It's important that we don't go through the ++ * extent_handle_overwrites() and extent_update_to_keys() path ++ * here: journal replay is supposed to treat extents like ++ * regular keys ++ */ ++ __bch2_btree_iter_set_pos(split_iter, split->k.p, false); ++ bch2_trans_update(&trans, split_iter, split, ++ BTREE_TRIGGER_NORUN); ++ ++ bch2_btree_iter_set_pos(iter, split->k.p); ++ ++ if (remark) { ++ ret = bch2_trans_mark_key(&trans, bkey_i_to_s_c(split), ++ 0, split->k.size, ++ BTREE_TRIGGER_INSERT); ++ if (ret) ++ goto err; ++ } ++ } while (bkey_cmp(iter->pos, k->k.p) < 0); ++ ++ if (remark) { ++ ret = bch2_trans_mark_key(&trans, bkey_i_to_s_c(k), ++ 0, -((s64) k->k.size), ++ BTREE_TRIGGER_OVERWRITE); ++ if (ret) ++ goto err; ++ } ++ ++ ret = bch2_trans_commit(&trans, &disk_res, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW| ++ BTREE_INSERT_JOURNAL_REPLAY); ++err: ++ if (ret == -EINTR) ++ goto retry; ++ ++ bch2_disk_reservation_put(c, &disk_res); ++ ++ return bch2_trans_exit(&trans) ?: ret; ++} ++ ++static int __bch2_journal_replay_key(struct btree_trans *trans, ++ enum btree_id id, unsigned level, ++ struct bkey_i *k) ++{ ++ struct btree_iter *iter; ++ int ret; ++ ++ iter = bch2_trans_get_node_iter(trans, id, k->k.p, ++ BTREE_MAX_DEPTH, level, ++ BTREE_ITER_INTENT); ++ if (IS_ERR(iter)) ++ return PTR_ERR(iter); ++ ++ /* ++ * iter->flags & BTREE_ITER_IS_EXTENTS triggers the update path to run ++ * extent_handle_overwrites() and extent_update_to_keys() - but we don't ++ * want that here, journal replay is supposed to treat extents like ++ * regular keys: ++ */ ++ __bch2_btree_iter_set_pos(iter, k->k.p, false); ++ ++ ret = bch2_btree_iter_traverse(iter) ?: ++ bch2_trans_update(trans, iter, k, BTREE_TRIGGER_NORUN); ++ bch2_trans_iter_put(trans, iter); ++ return ret; ++} ++ ++static int bch2_journal_replay_key(struct bch_fs *c, enum btree_id id, ++ unsigned level, struct bkey_i *k) ++{ ++ return bch2_trans_do(c, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW| ++ BTREE_INSERT_JOURNAL_REPLAY, ++ __bch2_journal_replay_key(&trans, id, level, k)); ++} ++ ++static int __bch2_alloc_replay_key(struct btree_trans *trans, struct bkey_i *k) ++{ ++ struct btree_iter *iter; ++ int ret; ++ ++ iter = bch2_trans_get_iter(trans, BTREE_ID_ALLOC, k->k.p, ++ BTREE_ITER_CACHED| ++ BTREE_ITER_CACHED_NOFILL| ++ BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(iter) ?: ++ bch2_trans_update(trans, iter, k, BTREE_TRIGGER_NORUN); ++ bch2_trans_iter_put(trans, iter); ++ return ret; ++} ++ ++static int bch2_alloc_replay_key(struct bch_fs *c, struct bkey_i *k) ++{ ++ return bch2_trans_do(c, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_USE_RESERVE| ++ BTREE_INSERT_LAZY_RW| ++ BTREE_INSERT_JOURNAL_REPLAY, ++ __bch2_alloc_replay_key(&trans, k)); ++} ++ ++static int journal_sort_seq_cmp(const void *_l, const void *_r) ++{ ++ const struct journal_key *l = _l; ++ const struct journal_key *r = _r; ++ ++ return cmp_int(r->level, l->level) ?: ++ cmp_int(l->journal_seq, r->journal_seq) ?: ++ cmp_int(l->btree_id, r->btree_id) ?: ++ bkey_cmp(l->k->k.p, r->k->k.p); ++} ++ ++static int bch2_journal_replay(struct bch_fs *c, ++ struct journal_keys keys) ++{ ++ struct journal *j = &c->journal; ++ struct journal_key *i; ++ u64 seq; ++ int ret; ++ ++ sort(keys.d, keys.nr, sizeof(keys.d[0]), journal_sort_seq_cmp, NULL); ++ ++ if (keys.nr) ++ replay_now_at(j, keys.journal_seq_base); ++ ++ seq = j->replay_journal_seq; ++ ++ /* ++ * First replay updates to the alloc btree - these will only update the ++ * btree key cache: ++ */ ++ for_each_journal_key(keys, i) { ++ cond_resched(); ++ ++ if (!i->level && i->btree_id == BTREE_ID_ALLOC) { ++ j->replay_journal_seq = keys.journal_seq_base + i->journal_seq; ++ ret = bch2_alloc_replay_key(c, i->k); ++ if (ret) ++ goto err; ++ } ++ } ++ ++ /* ++ * Next replay updates to interior btree nodes: ++ */ ++ for_each_journal_key(keys, i) { ++ cond_resched(); ++ ++ if (i->level) { ++ j->replay_journal_seq = keys.journal_seq_base + i->journal_seq; ++ ret = bch2_journal_replay_key(c, i->btree_id, i->level, i->k); ++ if (ret) ++ goto err; ++ } ++ } ++ ++ /* ++ * Now that the btree is in a consistent state, we can start journal ++ * reclaim (which will be flushing entries from the btree key cache back ++ * to the btree: ++ */ ++ set_bit(BCH_FS_BTREE_INTERIOR_REPLAY_DONE, &c->flags); ++ set_bit(JOURNAL_RECLAIM_STARTED, &j->flags); ++ ++ j->replay_journal_seq = seq; ++ ++ /* ++ * Now replay leaf node updates: ++ */ ++ for_each_journal_key(keys, i) { ++ cond_resched(); ++ ++ if (i->level || i->btree_id == BTREE_ID_ALLOC) ++ continue; ++ ++ replay_now_at(j, keys.journal_seq_base + i->journal_seq); ++ ++ ret = i->k->k.size ++ ? bch2_extent_replay_key(c, i->btree_id, i->k) ++ : bch2_journal_replay_key(c, i->btree_id, i->level, i->k); ++ if (ret) ++ goto err; ++ } ++ ++ replay_now_at(j, j->replay_journal_seq_end); ++ j->replay_journal_seq = 0; ++ ++ bch2_journal_set_replay_done(j); ++ bch2_journal_flush_all_pins(j); ++ return bch2_journal_error(j); ++err: ++ bch_err(c, "journal replay: error %d while replaying key", ret); ++ return ret; ++} ++ ++static bool journal_empty(struct list_head *journal) ++{ ++ return list_empty(journal) || ++ journal_entry_empty(&list_last_entry(journal, ++ struct journal_replay, list)->j); ++} ++ ++static int ++verify_journal_entries_not_blacklisted_or_missing(struct bch_fs *c, ++ struct list_head *journal) ++{ ++ struct journal_replay *i = ++ list_last_entry(journal, struct journal_replay, list); ++ u64 start_seq = le64_to_cpu(i->j.last_seq); ++ u64 end_seq = le64_to_cpu(i->j.seq); ++ u64 seq = start_seq; ++ int ret = 0; ++ ++ list_for_each_entry(i, journal, list) { ++ if (le64_to_cpu(i->j.seq) < start_seq) ++ continue; ++ ++ fsck_err_on(seq != le64_to_cpu(i->j.seq), c, ++ "journal entries %llu-%llu missing! (replaying %llu-%llu)", ++ seq, le64_to_cpu(i->j.seq) - 1, ++ start_seq, end_seq); ++ ++ seq = le64_to_cpu(i->j.seq); ++ ++ fsck_err_on(bch2_journal_seq_is_blacklisted(c, seq, false), c, ++ "found blacklisted journal entry %llu", seq); ++ ++ do { ++ seq++; ++ } while (bch2_journal_seq_is_blacklisted(c, seq, false)); ++ } ++fsck_err: ++ return ret; ++} ++ ++/* journal replay early: */ ++ ++static int journal_replay_entry_early(struct bch_fs *c, ++ struct jset_entry *entry) ++{ ++ int ret = 0; ++ ++ switch (entry->type) { ++ case BCH_JSET_ENTRY_btree_root: { ++ struct btree_root *r; ++ ++ if (entry->btree_id >= BTREE_ID_NR) { ++ bch_err(c, "filesystem has unknown btree type %u", ++ entry->btree_id); ++ return -EINVAL; ++ } ++ ++ r = &c->btree_roots[entry->btree_id]; ++ ++ if (entry->u64s) { ++ r->level = entry->level; ++ bkey_copy(&r->key, &entry->start[0]); ++ r->error = 0; ++ } else { ++ r->error = -EIO; ++ } ++ r->alive = true; ++ break; ++ } ++ case BCH_JSET_ENTRY_usage: { ++ struct jset_entry_usage *u = ++ container_of(entry, struct jset_entry_usage, entry); ++ ++ switch (entry->btree_id) { ++ case FS_USAGE_RESERVED: ++ if (entry->level < BCH_REPLICAS_MAX) ++ c->usage_base->persistent_reserved[entry->level] = ++ le64_to_cpu(u->v); ++ break; ++ case FS_USAGE_INODES: ++ c->usage_base->nr_inodes = le64_to_cpu(u->v); ++ break; ++ case FS_USAGE_KEY_VERSION: ++ atomic64_set(&c->key_version, ++ le64_to_cpu(u->v)); ++ break; ++ } ++ ++ break; ++ } ++ case BCH_JSET_ENTRY_data_usage: { ++ struct jset_entry_data_usage *u = ++ container_of(entry, struct jset_entry_data_usage, entry); ++ ret = bch2_replicas_set_usage(c, &u->r, ++ le64_to_cpu(u->v)); ++ break; ++ } ++ case BCH_JSET_ENTRY_blacklist: { ++ struct jset_entry_blacklist *bl_entry = ++ container_of(entry, struct jset_entry_blacklist, entry); ++ ++ ret = bch2_journal_seq_blacklist_add(c, ++ le64_to_cpu(bl_entry->seq), ++ le64_to_cpu(bl_entry->seq) + 1); ++ break; ++ } ++ case BCH_JSET_ENTRY_blacklist_v2: { ++ struct jset_entry_blacklist_v2 *bl_entry = ++ container_of(entry, struct jset_entry_blacklist_v2, entry); ++ ++ ret = bch2_journal_seq_blacklist_add(c, ++ le64_to_cpu(bl_entry->start), ++ le64_to_cpu(bl_entry->end) + 1); ++ break; ++ } ++ } ++ ++ return ret; ++} ++ ++static int journal_replay_early(struct bch_fs *c, ++ struct bch_sb_field_clean *clean, ++ struct list_head *journal) ++{ ++ struct jset_entry *entry; ++ int ret; ++ ++ if (clean) { ++ c->bucket_clock[READ].hand = le16_to_cpu(clean->read_clock); ++ c->bucket_clock[WRITE].hand = le16_to_cpu(clean->write_clock); ++ ++ for (entry = clean->start; ++ entry != vstruct_end(&clean->field); ++ entry = vstruct_next(entry)) { ++ ret = journal_replay_entry_early(c, entry); ++ if (ret) ++ return ret; ++ } ++ } else { ++ struct journal_replay *i = ++ list_last_entry(journal, struct journal_replay, list); ++ ++ c->bucket_clock[READ].hand = le16_to_cpu(i->j.read_clock); ++ c->bucket_clock[WRITE].hand = le16_to_cpu(i->j.write_clock); ++ ++ list_for_each_entry(i, journal, list) ++ vstruct_for_each(&i->j, entry) { ++ ret = journal_replay_entry_early(c, entry); ++ if (ret) ++ return ret; ++ } ++ } ++ ++ bch2_fs_usage_initialize(c); ++ ++ return 0; ++} ++ ++/* sb clean section: */ ++ ++static struct bkey_i *btree_root_find(struct bch_fs *c, ++ struct bch_sb_field_clean *clean, ++ struct jset *j, ++ enum btree_id id, unsigned *level) ++{ ++ struct bkey_i *k; ++ struct jset_entry *entry, *start, *end; ++ ++ if (clean) { ++ start = clean->start; ++ end = vstruct_end(&clean->field); ++ } else { ++ start = j->start; ++ end = vstruct_last(j); ++ } ++ ++ for (entry = start; entry < end; entry = vstruct_next(entry)) ++ if (entry->type == BCH_JSET_ENTRY_btree_root && ++ entry->btree_id == id) ++ goto found; ++ ++ return NULL; ++found: ++ if (!entry->u64s) ++ return ERR_PTR(-EINVAL); ++ ++ k = entry->start; ++ *level = entry->level; ++ return k; ++} ++ ++static int verify_superblock_clean(struct bch_fs *c, ++ struct bch_sb_field_clean **cleanp, ++ struct jset *j) ++{ ++ unsigned i; ++ struct bch_sb_field_clean *clean = *cleanp; ++ int ret = 0; ++ ++ if (!c->sb.clean || !j) ++ return 0; ++ ++ if (mustfix_fsck_err_on(j->seq != clean->journal_seq, c, ++ "superblock journal seq (%llu) doesn't match journal (%llu) after clean shutdown", ++ le64_to_cpu(clean->journal_seq), ++ le64_to_cpu(j->seq))) { ++ kfree(clean); ++ *cleanp = NULL; ++ return 0; ++ } ++ ++ mustfix_fsck_err_on(j->read_clock != clean->read_clock, c, ++ "superblock read clock %u doesn't match journal %u after clean shutdown", ++ clean->read_clock, j->read_clock); ++ mustfix_fsck_err_on(j->write_clock != clean->write_clock, c, ++ "superblock write clock %u doesn't match journal %u after clean shutdown", ++ clean->write_clock, j->write_clock); ++ ++ for (i = 0; i < BTREE_ID_NR; i++) { ++ char buf1[200], buf2[200]; ++ struct bkey_i *k1, *k2; ++ unsigned l1 = 0, l2 = 0; ++ ++ k1 = btree_root_find(c, clean, NULL, i, &l1); ++ k2 = btree_root_find(c, NULL, j, i, &l2); ++ ++ if (!k1 && !k2) ++ continue; ++ ++ mustfix_fsck_err_on(!k1 || !k2 || ++ IS_ERR(k1) || ++ IS_ERR(k2) || ++ k1->k.u64s != k2->k.u64s || ++ memcmp(k1, k2, bkey_bytes(k1)) || ++ l1 != l2, c, ++ "superblock btree root %u doesn't match journal after clean shutdown\n" ++ "sb: l=%u %s\n" ++ "journal: l=%u %s\n", i, ++ l1, (bch2_bkey_val_to_text(&PBUF(buf1), c, bkey_i_to_s_c(k1)), buf1), ++ l2, (bch2_bkey_val_to_text(&PBUF(buf2), c, bkey_i_to_s_c(k2)), buf2)); ++ } ++fsck_err: ++ return ret; ++} ++ ++static struct bch_sb_field_clean *read_superblock_clean(struct bch_fs *c) ++{ ++ struct bch_sb_field_clean *clean, *sb_clean; ++ int ret; ++ ++ mutex_lock(&c->sb_lock); ++ sb_clean = bch2_sb_get_clean(c->disk_sb.sb); ++ ++ if (fsck_err_on(!sb_clean, c, ++ "superblock marked clean but clean section not present")) { ++ SET_BCH_SB_CLEAN(c->disk_sb.sb, false); ++ c->sb.clean = false; ++ mutex_unlock(&c->sb_lock); ++ return NULL; ++ } ++ ++ clean = kmemdup(sb_clean, vstruct_bytes(&sb_clean->field), ++ GFP_KERNEL); ++ if (!clean) { ++ mutex_unlock(&c->sb_lock); ++ return ERR_PTR(-ENOMEM); ++ } ++ ++ if (le16_to_cpu(c->disk_sb.sb->version) < ++ bcachefs_metadata_version_bkey_renumber) ++ bch2_sb_clean_renumber(clean, READ); ++ ++ mutex_unlock(&c->sb_lock); ++ ++ return clean; ++fsck_err: ++ mutex_unlock(&c->sb_lock); ++ return ERR_PTR(ret); ++} ++ ++static int read_btree_roots(struct bch_fs *c) ++{ ++ unsigned i; ++ int ret = 0; ++ ++ for (i = 0; i < BTREE_ID_NR; i++) { ++ struct btree_root *r = &c->btree_roots[i]; ++ ++ if (!r->alive) ++ continue; ++ ++ if (i == BTREE_ID_ALLOC && ++ c->opts.reconstruct_alloc) { ++ c->sb.compat &= ~(1ULL << BCH_COMPAT_FEAT_ALLOC_INFO); ++ continue; ++ } ++ ++ ++ if (r->error) { ++ __fsck_err(c, i == BTREE_ID_ALLOC ++ ? FSCK_CAN_IGNORE : 0, ++ "invalid btree root %s", ++ bch2_btree_ids[i]); ++ if (i == BTREE_ID_ALLOC) ++ c->sb.compat &= ~(1ULL << BCH_COMPAT_FEAT_ALLOC_INFO); ++ } ++ ++ ret = bch2_btree_root_read(c, i, &r->key, r->level); ++ if (ret) { ++ __fsck_err(c, i == BTREE_ID_ALLOC ++ ? FSCK_CAN_IGNORE : 0, ++ "error reading btree root %s", ++ bch2_btree_ids[i]); ++ if (i == BTREE_ID_ALLOC) ++ c->sb.compat &= ~(1ULL << BCH_COMPAT_FEAT_ALLOC_INFO); ++ } ++ } ++ ++ for (i = 0; i < BTREE_ID_NR; i++) ++ if (!c->btree_roots[i].b) ++ bch2_btree_root_alloc(c, i); ++fsck_err: ++ return ret; ++} ++ ++int bch2_fs_recovery(struct bch_fs *c) ++{ ++ const char *err = "cannot allocate memory"; ++ struct bch_sb_field_clean *clean = NULL; ++ u64 journal_seq; ++ bool write_sb = false, need_write_alloc = false; ++ int ret; ++ ++ if (c->sb.clean) ++ clean = read_superblock_clean(c); ++ ret = PTR_ERR_OR_ZERO(clean); ++ if (ret) ++ goto err; ++ ++ if (c->sb.clean) ++ bch_info(c, "recovering from clean shutdown, journal seq %llu", ++ le64_to_cpu(clean->journal_seq)); ++ ++ if (!c->replicas.entries || ++ c->opts.rebuild_replicas) { ++ bch_info(c, "building replicas info"); ++ set_bit(BCH_FS_REBUILD_REPLICAS, &c->flags); ++ } ++ ++ if (!c->sb.clean || c->opts.fsck || c->opts.keep_journal) { ++ struct jset *j; ++ ++ ret = bch2_journal_read(c, &c->journal_entries); ++ if (ret) ++ goto err; ++ ++ if (mustfix_fsck_err_on(c->sb.clean && !journal_empty(&c->journal_entries), c, ++ "filesystem marked clean but journal not empty")) { ++ c->sb.compat &= ~(1ULL << BCH_COMPAT_FEAT_ALLOC_INFO); ++ SET_BCH_SB_CLEAN(c->disk_sb.sb, false); ++ c->sb.clean = false; ++ } ++ ++ if (!c->sb.clean && list_empty(&c->journal_entries)) { ++ bch_err(c, "no journal entries found"); ++ ret = BCH_FSCK_REPAIR_IMPOSSIBLE; ++ goto err; ++ } ++ ++ c->journal_keys = journal_keys_sort(&c->journal_entries); ++ if (!c->journal_keys.d) { ++ ret = -ENOMEM; ++ goto err; ++ } ++ ++ j = &list_last_entry(&c->journal_entries, ++ struct journal_replay, list)->j; ++ ++ ret = verify_superblock_clean(c, &clean, j); ++ if (ret) ++ goto err; ++ ++ journal_seq = le64_to_cpu(j->seq) + 1; ++ } else { ++ journal_seq = le64_to_cpu(clean->journal_seq) + 1; ++ } ++ ++ if (!c->sb.clean && ++ !(c->sb.features & (1ULL << BCH_FEATURE_extents_above_btree_updates))) { ++ bch_err(c, "filesystem needs recovery from older version; run fsck from older bcachefs-tools to fix"); ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ ret = journal_replay_early(c, clean, &c->journal_entries); ++ if (ret) ++ goto err; ++ ++ if (!c->sb.clean) { ++ ret = bch2_journal_seq_blacklist_add(c, ++ journal_seq, ++ journal_seq + 4); ++ if (ret) { ++ bch_err(c, "error creating new journal seq blacklist entry"); ++ goto err; ++ } ++ ++ journal_seq += 4; ++ ++ /* ++ * The superblock needs to be written before we do any btree ++ * node writes: it will be in the read_write() path ++ */ ++ } ++ ++ ret = bch2_blacklist_table_initialize(c); ++ ++ if (!list_empty(&c->journal_entries)) { ++ ret = verify_journal_entries_not_blacklisted_or_missing(c, ++ &c->journal_entries); ++ if (ret) ++ goto err; ++ } ++ ++ ret = bch2_fs_journal_start(&c->journal, journal_seq, ++ &c->journal_entries); ++ if (ret) ++ goto err; ++ ++ ret = read_btree_roots(c); ++ if (ret) ++ goto err; ++ ++ bch_verbose(c, "starting alloc read"); ++ err = "error reading allocation information"; ++ ret = bch2_alloc_read(c, &c->journal_keys); ++ if (ret) ++ goto err; ++ bch_verbose(c, "alloc read done"); ++ ++ bch_verbose(c, "starting stripes_read"); ++ err = "error reading stripes"; ++ ret = bch2_stripes_read(c, &c->journal_keys); ++ if (ret) ++ goto err; ++ bch_verbose(c, "stripes_read done"); ++ ++ set_bit(BCH_FS_ALLOC_READ_DONE, &c->flags); ++ ++ if ((c->sb.compat & (1ULL << BCH_COMPAT_FEAT_ALLOC_INFO)) && ++ !(c->sb.compat & (1ULL << BCH_COMPAT_FEAT_ALLOC_METADATA))) { ++ /* ++ * interior btree node updates aren't consistent with the ++ * journal; after an unclean shutdown we have to walk all ++ * pointers to metadata: ++ */ ++ bch_info(c, "starting metadata mark and sweep"); ++ err = "error in mark and sweep"; ++ ret = bch2_gc(c, &c->journal_keys, true, true); ++ if (ret < 0) ++ goto err; ++ if (ret) ++ need_write_alloc = true; ++ bch_verbose(c, "mark and sweep done"); ++ } ++ ++ if (c->opts.fsck || ++ !(c->sb.compat & (1ULL << BCH_COMPAT_FEAT_ALLOC_INFO)) || ++ test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags)) { ++ bch_info(c, "starting mark and sweep"); ++ err = "error in mark and sweep"; ++ ret = bch2_gc(c, &c->journal_keys, true, false); ++ if (ret < 0) ++ goto err; ++ if (ret) ++ need_write_alloc = true; ++ bch_verbose(c, "mark and sweep done"); ++ } ++ ++ clear_bit(BCH_FS_REBUILD_REPLICAS, &c->flags); ++ set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags); ++ ++ /* ++ * Skip past versions that might have possibly been used (as nonces), ++ * but hadn't had their pointers written: ++ */ ++ if (c->sb.encryption_type && !c->sb.clean) ++ atomic64_add(1 << 16, &c->key_version); ++ ++ if (c->opts.norecovery) ++ goto out; ++ ++ bch_verbose(c, "starting journal replay"); ++ err = "journal replay failed"; ++ ret = bch2_journal_replay(c, c->journal_keys); ++ if (ret) ++ goto err; ++ bch_verbose(c, "journal replay done"); ++ ++ if (need_write_alloc && !c->opts.nochanges) { ++ /* ++ * note that even when filesystem was clean there might be work ++ * to do here, if we ran gc (because of fsck) which recalculated ++ * oldest_gen: ++ */ ++ bch_verbose(c, "writing allocation info"); ++ err = "error writing out alloc info"; ++ ret = bch2_stripes_write(c, BTREE_INSERT_LAZY_RW) ?: ++ bch2_alloc_write(c, BTREE_INSERT_LAZY_RW); ++ if (ret) { ++ bch_err(c, "error writing alloc info"); ++ goto err; ++ } ++ bch_verbose(c, "alloc write done"); ++ ++ set_bit(BCH_FS_ALLOC_WRITTEN, &c->flags); ++ } ++ ++ if (!c->sb.clean) { ++ if (!(c->sb.features & (1 << BCH_FEATURE_atomic_nlink))) { ++ bch_info(c, "checking inode link counts"); ++ err = "error in recovery"; ++ ret = bch2_fsck_inode_nlink(c); ++ if (ret) ++ goto err; ++ bch_verbose(c, "check inodes done"); ++ ++ } else { ++ bch_verbose(c, "checking for deleted inodes"); ++ err = "error in recovery"; ++ ret = bch2_fsck_walk_inodes_only(c); ++ if (ret) ++ goto err; ++ bch_verbose(c, "check inodes done"); ++ } ++ } ++ ++ if (c->opts.fsck) { ++ bch_info(c, "starting fsck"); ++ err = "error in fsck"; ++ ret = bch2_fsck_full(c); ++ if (ret) ++ goto err; ++ bch_verbose(c, "fsck done"); ++ } ++ ++ if (enabled_qtypes(c)) { ++ bch_verbose(c, "reading quotas"); ++ ret = bch2_fs_quota_read(c); ++ if (ret) ++ goto err; ++ bch_verbose(c, "quotas done"); ++ } ++ ++ mutex_lock(&c->sb_lock); ++ if (c->opts.version_upgrade) { ++ if (c->sb.version < bcachefs_metadata_version_new_versioning) ++ c->disk_sb.sb->version_min = ++ le16_to_cpu(bcachefs_metadata_version_min); ++ c->disk_sb.sb->version = le16_to_cpu(bcachefs_metadata_version_current); ++ c->disk_sb.sb->features[0] |= BCH_SB_FEATURES_ALL; ++ write_sb = true; ++ } ++ ++ if (!test_bit(BCH_FS_ERROR, &c->flags)) { ++ c->disk_sb.sb->compat[0] |= 1ULL << BCH_COMPAT_FEAT_ALLOC_INFO; ++ write_sb = true; ++ } ++ ++ if (c->opts.fsck && ++ !test_bit(BCH_FS_ERROR, &c->flags)) { ++ c->disk_sb.sb->features[0] |= 1ULL << BCH_FEATURE_atomic_nlink; ++ SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 0); ++ write_sb = true; ++ } ++ ++ if (write_sb) ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ if (c->journal_seq_blacklist_table && ++ c->journal_seq_blacklist_table->nr > 128) ++ queue_work(system_long_wq, &c->journal_seq_blacklist_gc_work); ++out: ++ ret = 0; ++err: ++fsck_err: ++ set_bit(BCH_FS_FSCK_DONE, &c->flags); ++ bch2_flush_fsck_errs(c); ++ ++ if (!c->opts.keep_journal) { ++ bch2_journal_keys_free(&c->journal_keys); ++ bch2_journal_entries_free(&c->journal_entries); ++ } ++ kfree(clean); ++ if (ret) ++ bch_err(c, "Error in recovery: %s (%i)", err, ret); ++ else ++ bch_verbose(c, "ret %i", ret); ++ return ret; ++} ++ ++int bch2_fs_initialize(struct bch_fs *c) ++{ ++ struct bch_inode_unpacked root_inode, lostfound_inode; ++ struct bkey_inode_buf packed_inode; ++ struct qstr lostfound = QSTR("lost+found"); ++ const char *err = "cannot allocate memory"; ++ struct bch_dev *ca; ++ LIST_HEAD(journal); ++ unsigned i; ++ int ret; ++ ++ bch_notice(c, "initializing new filesystem"); ++ ++ mutex_lock(&c->sb_lock); ++ for_each_online_member(ca, c, i) ++ bch2_mark_dev_superblock(c, ca, 0); ++ mutex_unlock(&c->sb_lock); ++ ++ mutex_lock(&c->sb_lock); ++ c->disk_sb.sb->version = c->disk_sb.sb->version_min = ++ le16_to_cpu(bcachefs_metadata_version_current); ++ c->disk_sb.sb->features[0] |= 1ULL << BCH_FEATURE_atomic_nlink; ++ c->disk_sb.sb->features[0] |= BCH_SB_FEATURES_ALL; ++ ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ set_bit(BCH_FS_ALLOC_READ_DONE, &c->flags); ++ set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags); ++ ++ for (i = 0; i < BTREE_ID_NR; i++) ++ bch2_btree_root_alloc(c, i); ++ ++ set_bit(BCH_FS_BTREE_INTERIOR_REPLAY_DONE, &c->flags); ++ set_bit(JOURNAL_RECLAIM_STARTED, &c->journal.flags); ++ ++ err = "unable to allocate journal buckets"; ++ for_each_online_member(ca, c, i) { ++ ret = bch2_dev_journal_alloc(ca); ++ if (ret) { ++ percpu_ref_put(&ca->io_ref); ++ goto err; ++ } ++ } ++ ++ /* ++ * journal_res_get() will crash if called before this has ++ * set up the journal.pin FIFO and journal.cur pointer: ++ */ ++ bch2_fs_journal_start(&c->journal, 1, &journal); ++ bch2_journal_set_replay_done(&c->journal); ++ ++ err = "error going read-write"; ++ ret = bch2_fs_read_write_early(c); ++ if (ret) ++ goto err; ++ ++ /* ++ * Write out the superblock and journal buckets, now that we can do ++ * btree updates ++ */ ++ err = "error writing alloc info"; ++ ret = bch2_alloc_write(c, 0); ++ if (ret) ++ goto err; ++ ++ bch2_inode_init(c, &root_inode, 0, 0, ++ S_IFDIR|S_IRWXU|S_IRUGO|S_IXUGO, 0, NULL); ++ root_inode.bi_inum = BCACHEFS_ROOT_INO; ++ bch2_inode_pack(&packed_inode, &root_inode); ++ ++ err = "error creating root directory"; ++ ret = bch2_btree_insert(c, BTREE_ID_INODES, ++ &packed_inode.inode.k_i, ++ NULL, NULL, 0); ++ if (ret) ++ goto err; ++ ++ bch2_inode_init_early(c, &lostfound_inode); ++ ++ err = "error creating lost+found"; ++ ret = bch2_trans_do(c, NULL, NULL, 0, ++ bch2_create_trans(&trans, BCACHEFS_ROOT_INO, ++ &root_inode, &lostfound_inode, ++ &lostfound, ++ 0, 0, S_IFDIR|0700, 0, ++ NULL, NULL)); ++ if (ret) ++ goto err; ++ ++ if (enabled_qtypes(c)) { ++ ret = bch2_fs_quota_read(c); ++ if (ret) ++ goto err; ++ } ++ ++ err = "error writing first journal entry"; ++ ret = bch2_journal_meta(&c->journal); ++ if (ret) ++ goto err; ++ ++ mutex_lock(&c->sb_lock); ++ SET_BCH_SB_INITIALIZED(c->disk_sb.sb, true); ++ SET_BCH_SB_CLEAN(c->disk_sb.sb, false); ++ ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ return 0; ++err: ++ pr_err("Error initializing new filesystem: %s (%i)", err, ret); ++ return ret; ++} +diff --git a/fs/bcachefs/recovery.h b/fs/bcachefs/recovery.h +new file mode 100644 +index 000000000000..a66827c9addf +--- /dev/null ++++ b/fs/bcachefs/recovery.h +@@ -0,0 +1,60 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_RECOVERY_H ++#define _BCACHEFS_RECOVERY_H ++ ++#define for_each_journal_key(keys, i) \ ++ for (i = (keys).d; i < (keys).d + (keys).nr; (i)++) ++ ++struct journal_iter { ++ enum btree_id btree_id; ++ unsigned level; ++ struct journal_keys *keys; ++ struct journal_key *k; ++}; ++ ++/* ++ * Iterate over keys in the btree, with keys from the journal overlaid on top: ++ */ ++ ++struct btree_and_journal_iter { ++ struct btree_iter *btree; ++ ++ struct btree *b; ++ struct btree_node_iter node_iter; ++ struct bkey unpacked; ++ ++ struct journal_iter journal; ++ ++ enum last_key_returned { ++ none, ++ btree, ++ journal, ++ } last; ++}; ++ ++void bch2_btree_and_journal_iter_advance(struct btree_and_journal_iter *); ++struct bkey_s_c bch2_btree_and_journal_iter_peek(struct btree_and_journal_iter *); ++struct bkey_s_c bch2_btree_and_journal_iter_next(struct btree_and_journal_iter *); ++ ++void bch2_btree_and_journal_iter_init(struct btree_and_journal_iter *, ++ struct btree_trans *, ++ struct journal_keys *, ++ enum btree_id, struct bpos); ++void bch2_btree_and_journal_iter_init_node_iter(struct btree_and_journal_iter *, ++ struct journal_keys *, ++ struct btree *); ++ ++typedef int (*btree_walk_node_fn)(struct bch_fs *c, struct btree *b); ++typedef int (*btree_walk_key_fn)(struct bch_fs *c, enum btree_id id, ++ unsigned level, struct bkey_s_c k); ++ ++int bch2_btree_and_journal_walk(struct bch_fs *, struct journal_keys *, enum btree_id, ++ btree_walk_node_fn, btree_walk_key_fn); ++ ++void bch2_journal_keys_free(struct journal_keys *); ++void bch2_journal_entries_free(struct list_head *); ++ ++int bch2_fs_recovery(struct bch_fs *); ++int bch2_fs_initialize(struct bch_fs *); ++ ++#endif /* _BCACHEFS_RECOVERY_H */ +diff --git a/fs/bcachefs/reflink.c b/fs/bcachefs/reflink.c +new file mode 100644 +index 000000000000..3c473f1380a6 +--- /dev/null ++++ b/fs/bcachefs/reflink.c +@@ -0,0 +1,303 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "bkey_on_stack.h" ++#include "btree_update.h" ++#include "extents.h" ++#include "inode.h" ++#include "io.h" ++#include "reflink.h" ++ ++#include ++ ++/* reflink pointers */ ++ ++const char *bch2_reflink_p_invalid(const struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_s_c_reflink_p p = bkey_s_c_to_reflink_p(k); ++ ++ if (bkey_val_bytes(p.k) != sizeof(*p.v)) ++ return "incorrect value size"; ++ ++ return NULL; ++} ++ ++void bch2_reflink_p_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_reflink_p p = bkey_s_c_to_reflink_p(k); ++ ++ pr_buf(out, "idx %llu", le64_to_cpu(p.v->idx)); ++} ++ ++enum merge_result bch2_reflink_p_merge(struct bch_fs *c, ++ struct bkey_s _l, struct bkey_s _r) ++{ ++ struct bkey_s_reflink_p l = bkey_s_to_reflink_p(_l); ++ struct bkey_s_reflink_p r = bkey_s_to_reflink_p(_r); ++ ++ if (le64_to_cpu(l.v->idx) + l.k->size != le64_to_cpu(r.v->idx)) ++ return BCH_MERGE_NOMERGE; ++ ++ if ((u64) l.k->size + r.k->size > KEY_SIZE_MAX) { ++ bch2_key_resize(l.k, KEY_SIZE_MAX); ++ bch2_cut_front_s(l.k->p, _r); ++ return BCH_MERGE_PARTIAL; ++ } ++ ++ bch2_key_resize(l.k, l.k->size + r.k->size); ++ ++ return BCH_MERGE_MERGE; ++} ++ ++/* indirect extents */ ++ ++const char *bch2_reflink_v_invalid(const struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_s_c_reflink_v r = bkey_s_c_to_reflink_v(k); ++ ++ if (bkey_val_bytes(r.k) < sizeof(*r.v)) ++ return "incorrect value size"; ++ ++ return bch2_bkey_ptrs_invalid(c, k); ++} ++ ++void bch2_reflink_v_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_reflink_v r = bkey_s_c_to_reflink_v(k); ++ ++ pr_buf(out, "refcount: %llu ", le64_to_cpu(r.v->refcount)); ++ ++ bch2_bkey_ptrs_to_text(out, c, k); ++} ++ ++static int bch2_make_extent_indirect(struct btree_trans *trans, ++ struct btree_iter *extent_iter, ++ struct bkey_i_extent *e) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter *reflink_iter; ++ struct bkey_s_c k; ++ struct bkey_i_reflink_v *r_v; ++ struct bkey_i_reflink_p *r_p; ++ int ret; ++ ++ for_each_btree_key(trans, reflink_iter, BTREE_ID_REFLINK, ++ POS(0, c->reflink_hint), ++ BTREE_ITER_INTENT|BTREE_ITER_SLOTS, k, ret) { ++ if (reflink_iter->pos.inode) { ++ bch2_btree_iter_set_pos(reflink_iter, POS_MIN); ++ continue; ++ } ++ ++ if (bkey_deleted(k.k) && e->k.size <= k.k->size) ++ break; ++ } ++ ++ if (ret) ++ goto err; ++ ++ /* rewind iter to start of hole, if necessary: */ ++ bch2_btree_iter_set_pos(reflink_iter, bkey_start_pos(k.k)); ++ ++ r_v = bch2_trans_kmalloc(trans, sizeof(*r_v) + bkey_val_bytes(&e->k)); ++ ret = PTR_ERR_OR_ZERO(r_v); ++ if (ret) ++ goto err; ++ ++ bkey_reflink_v_init(&r_v->k_i); ++ r_v->k.p = reflink_iter->pos; ++ bch2_key_resize(&r_v->k, e->k.size); ++ r_v->k.version = e->k.version; ++ ++ set_bkey_val_u64s(&r_v->k, bkey_val_u64s(&r_v->k) + ++ bkey_val_u64s(&e->k)); ++ r_v->v.refcount = 0; ++ memcpy(r_v->v.start, e->v.start, bkey_val_bytes(&e->k)); ++ ++ bch2_trans_update(trans, reflink_iter, &r_v->k_i, 0); ++ ++ r_p = bch2_trans_kmalloc(trans, sizeof(*r_p)); ++ if (IS_ERR(r_p)) ++ return PTR_ERR(r_p); ++ ++ e->k.type = KEY_TYPE_reflink_p; ++ r_p = bkey_i_to_reflink_p(&e->k_i); ++ set_bkey_val_bytes(&r_p->k, sizeof(r_p->v)); ++ r_p->v.idx = cpu_to_le64(bkey_start_offset(&r_v->k)); ++ ++ bch2_trans_update(trans, extent_iter, &r_p->k_i, 0); ++err: ++ if (!IS_ERR(reflink_iter)) ++ c->reflink_hint = reflink_iter->pos.offset; ++ bch2_trans_iter_put(trans, reflink_iter); ++ ++ return ret; ++} ++ ++static struct bkey_s_c get_next_src(struct btree_iter *iter, struct bpos end) ++{ ++ struct bkey_s_c k = bch2_btree_iter_peek(iter); ++ int ret; ++ ++ for_each_btree_key_continue(iter, 0, k, ret) { ++ if (bkey_cmp(iter->pos, end) >= 0) ++ return bkey_s_c_null; ++ ++ if (k.k->type == KEY_TYPE_extent || ++ k.k->type == KEY_TYPE_reflink_p) ++ break; ++ } ++ ++ return k; ++} ++ ++s64 bch2_remap_range(struct bch_fs *c, ++ struct bpos dst_start, struct bpos src_start, ++ u64 remap_sectors, u64 *journal_seq, ++ u64 new_i_size, s64 *i_sectors_delta) ++{ ++ struct btree_trans trans; ++ struct btree_iter *dst_iter, *src_iter; ++ struct bkey_s_c src_k; ++ BKEY_PADDED(k) new_dst; ++ struct bkey_on_stack new_src; ++ struct bpos dst_end = dst_start, src_end = src_start; ++ struct bpos dst_want, src_want; ++ u64 src_done, dst_done; ++ int ret = 0, ret2 = 0; ++ ++ if (!c->opts.reflink) ++ return -EOPNOTSUPP; ++ ++ if (!percpu_ref_tryget(&c->writes)) ++ return -EROFS; ++ ++ bch2_check_set_feature(c, BCH_FEATURE_reflink); ++ ++ dst_end.offset += remap_sectors; ++ src_end.offset += remap_sectors; ++ ++ bkey_on_stack_init(&new_src); ++ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 4096); ++ ++ src_iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, src_start, ++ BTREE_ITER_INTENT); ++ dst_iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, dst_start, ++ BTREE_ITER_INTENT); ++ ++ while (1) { ++ bch2_trans_begin(&trans); ++ ++ trans.mem_top = 0; ++ ++ if (fatal_signal_pending(current)) { ++ ret = -EINTR; ++ goto err; ++ } ++ ++ src_k = get_next_src(src_iter, src_end); ++ ret = bkey_err(src_k); ++ if (ret) ++ goto btree_err; ++ ++ src_done = bpos_min(src_iter->pos, src_end).offset - ++ src_start.offset; ++ dst_want = POS(dst_start.inode, dst_start.offset + src_done); ++ ++ if (bkey_cmp(dst_iter->pos, dst_want) < 0) { ++ ret = bch2_fpunch_at(&trans, dst_iter, dst_want, ++ journal_seq, i_sectors_delta); ++ if (ret) ++ goto btree_err; ++ continue; ++ } ++ ++ BUG_ON(bkey_cmp(dst_iter->pos, dst_want)); ++ ++ if (!bkey_cmp(dst_iter->pos, dst_end)) ++ break; ++ ++ if (src_k.k->type == KEY_TYPE_extent) { ++ bkey_on_stack_reassemble(&new_src, c, src_k); ++ src_k = bkey_i_to_s_c(new_src.k); ++ ++ bch2_cut_front(src_iter->pos, new_src.k); ++ bch2_cut_back(src_end, new_src.k); ++ ++ ret = bch2_make_extent_indirect(&trans, src_iter, ++ bkey_i_to_extent(new_src.k)); ++ if (ret) ++ goto btree_err; ++ ++ BUG_ON(src_k.k->type != KEY_TYPE_reflink_p); ++ } ++ ++ if (src_k.k->type == KEY_TYPE_reflink_p) { ++ struct bkey_s_c_reflink_p src_p = ++ bkey_s_c_to_reflink_p(src_k); ++ struct bkey_i_reflink_p *dst_p = ++ bkey_reflink_p_init(&new_dst.k); ++ ++ u64 offset = le64_to_cpu(src_p.v->idx) + ++ (src_iter->pos.offset - ++ bkey_start_offset(src_k.k)); ++ ++ dst_p->v.idx = cpu_to_le64(offset); ++ } else { ++ BUG(); ++ } ++ ++ new_dst.k.k.p = dst_iter->pos; ++ bch2_key_resize(&new_dst.k.k, ++ min(src_k.k->p.offset - src_iter->pos.offset, ++ dst_end.offset - dst_iter->pos.offset)); ++ ++ ret = bch2_extent_update(&trans, dst_iter, &new_dst.k, ++ NULL, journal_seq, ++ new_i_size, i_sectors_delta); ++ if (ret) ++ goto btree_err; ++ ++ dst_done = dst_iter->pos.offset - dst_start.offset; ++ src_want = POS(src_start.inode, src_start.offset + dst_done); ++ bch2_btree_iter_set_pos(src_iter, src_want); ++btree_err: ++ if (ret == -EINTR) ++ ret = 0; ++ if (ret) ++ goto err; ++ } ++ ++ BUG_ON(bkey_cmp(dst_iter->pos, dst_end)); ++err: ++ BUG_ON(bkey_cmp(dst_iter->pos, dst_end) > 0); ++ ++ dst_done = dst_iter->pos.offset - dst_start.offset; ++ new_i_size = min(dst_iter->pos.offset << 9, new_i_size); ++ ++ bch2_trans_begin(&trans); ++ ++ do { ++ struct bch_inode_unpacked inode_u; ++ struct btree_iter *inode_iter; ++ ++ inode_iter = bch2_inode_peek(&trans, &inode_u, ++ dst_start.inode, BTREE_ITER_INTENT); ++ ret2 = PTR_ERR_OR_ZERO(inode_iter); ++ ++ if (!ret2 && ++ inode_u.bi_size < new_i_size) { ++ inode_u.bi_size = new_i_size; ++ ret2 = bch2_inode_write(&trans, inode_iter, &inode_u) ?: ++ bch2_trans_commit(&trans, NULL, journal_seq, 0); ++ } ++ } while (ret2 == -EINTR); ++ ++ ret = bch2_trans_exit(&trans) ?: ret; ++ bkey_on_stack_exit(&new_src, c); ++ ++ percpu_ref_put(&c->writes); ++ ++ return dst_done ?: ret ?: ret2; ++} +diff --git a/fs/bcachefs/reflink.h b/fs/bcachefs/reflink.h +new file mode 100644 +index 000000000000..5445c1cf0797 +--- /dev/null ++++ b/fs/bcachefs/reflink.h +@@ -0,0 +1,31 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_REFLINK_H ++#define _BCACHEFS_REFLINK_H ++ ++const char *bch2_reflink_p_invalid(const struct bch_fs *, struct bkey_s_c); ++void bch2_reflink_p_to_text(struct printbuf *, struct bch_fs *, ++ struct bkey_s_c); ++enum merge_result bch2_reflink_p_merge(struct bch_fs *, ++ struct bkey_s, struct bkey_s); ++ ++#define bch2_bkey_ops_reflink_p (struct bkey_ops) { \ ++ .key_invalid = bch2_reflink_p_invalid, \ ++ .val_to_text = bch2_reflink_p_to_text, \ ++ .key_merge = bch2_reflink_p_merge, \ ++} ++ ++const char *bch2_reflink_v_invalid(const struct bch_fs *, struct bkey_s_c); ++void bch2_reflink_v_to_text(struct printbuf *, struct bch_fs *, ++ struct bkey_s_c); ++ ++ ++#define bch2_bkey_ops_reflink_v (struct bkey_ops) { \ ++ .key_invalid = bch2_reflink_v_invalid, \ ++ .val_to_text = bch2_reflink_v_to_text, \ ++ .swab = bch2_ptr_swab, \ ++} ++ ++s64 bch2_remap_range(struct bch_fs *, struct bpos, struct bpos, ++ u64, u64 *, u64, s64 *); ++ ++#endif /* _BCACHEFS_REFLINK_H */ +diff --git a/fs/bcachefs/replicas.c b/fs/bcachefs/replicas.c +new file mode 100644 +index 000000000000..6b6506c68609 +--- /dev/null ++++ b/fs/bcachefs/replicas.c +@@ -0,0 +1,1059 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "buckets.h" ++#include "journal.h" ++#include "replicas.h" ++#include "super-io.h" ++ ++static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *, ++ struct bch_replicas_cpu *); ++ ++/* Replicas tracking - in memory: */ ++ ++static inline int u8_cmp(u8 l, u8 r) ++{ ++ return cmp_int(l, r); ++} ++ ++static void verify_replicas_entry(struct bch_replicas_entry *e) ++{ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ unsigned i; ++ ++ BUG_ON(e->data_type >= BCH_DATA_NR); ++ BUG_ON(!e->nr_devs); ++ BUG_ON(e->nr_required > 1 && ++ e->nr_required >= e->nr_devs); ++ ++ for (i = 0; i + 1 < e->nr_devs; i++) ++ BUG_ON(e->devs[i] >= e->devs[i + 1]); ++#endif ++} ++ ++static void replicas_entry_sort(struct bch_replicas_entry *e) ++{ ++ bubble_sort(e->devs, e->nr_devs, u8_cmp); ++} ++ ++static void bch2_cpu_replicas_sort(struct bch_replicas_cpu *r) ++{ ++ eytzinger0_sort(r->entries, r->nr, r->entry_size, memcmp, NULL); ++} ++ ++void bch2_replicas_entry_to_text(struct printbuf *out, ++ struct bch_replicas_entry *e) ++{ ++ unsigned i; ++ ++ pr_buf(out, "%s: %u/%u [", ++ bch2_data_types[e->data_type], ++ e->nr_required, ++ e->nr_devs); ++ ++ for (i = 0; i < e->nr_devs; i++) ++ pr_buf(out, i ? " %u" : "%u", e->devs[i]); ++ pr_buf(out, "]"); ++} ++ ++void bch2_cpu_replicas_to_text(struct printbuf *out, ++ struct bch_replicas_cpu *r) ++{ ++ struct bch_replicas_entry *e; ++ bool first = true; ++ ++ for_each_cpu_replicas_entry(r, e) { ++ if (!first) ++ pr_buf(out, " "); ++ first = false; ++ ++ bch2_replicas_entry_to_text(out, e); ++ } ++} ++ ++static void extent_to_replicas(struct bkey_s_c k, ++ struct bch_replicas_entry *r) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ ++ r->nr_required = 1; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ if (p.ptr.cached) ++ continue; ++ ++ if (!p.has_ec) ++ r->devs[r->nr_devs++] = p.ptr.dev; ++ else ++ r->nr_required = 0; ++ } ++} ++ ++static void stripe_to_replicas(struct bkey_s_c k, ++ struct bch_replicas_entry *r) ++{ ++ struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k); ++ const struct bch_extent_ptr *ptr; ++ ++ r->nr_required = s.v->nr_blocks - s.v->nr_redundant; ++ ++ for (ptr = s.v->ptrs; ++ ptr < s.v->ptrs + s.v->nr_blocks; ++ ptr++) ++ r->devs[r->nr_devs++] = ptr->dev; ++} ++ ++void bch2_bkey_to_replicas(struct bch_replicas_entry *e, ++ struct bkey_s_c k) ++{ ++ e->nr_devs = 0; ++ ++ switch (k.k->type) { ++ case KEY_TYPE_btree_ptr: ++ case KEY_TYPE_btree_ptr_v2: ++ e->data_type = BCH_DATA_btree; ++ extent_to_replicas(k, e); ++ break; ++ case KEY_TYPE_extent: ++ case KEY_TYPE_reflink_v: ++ e->data_type = BCH_DATA_user; ++ extent_to_replicas(k, e); ++ break; ++ case KEY_TYPE_stripe: ++ e->data_type = BCH_DATA_user; ++ stripe_to_replicas(k, e); ++ break; ++ } ++ ++ replicas_entry_sort(e); ++} ++ ++void bch2_devlist_to_replicas(struct bch_replicas_entry *e, ++ enum bch_data_type data_type, ++ struct bch_devs_list devs) ++{ ++ unsigned i; ++ ++ BUG_ON(!data_type || ++ data_type == BCH_DATA_sb || ++ data_type >= BCH_DATA_NR); ++ ++ e->data_type = data_type; ++ e->nr_devs = 0; ++ e->nr_required = 1; ++ ++ for (i = 0; i < devs.nr; i++) ++ e->devs[e->nr_devs++] = devs.devs[i]; ++ ++ replicas_entry_sort(e); ++} ++ ++static struct bch_replicas_cpu ++cpu_replicas_add_entry(struct bch_replicas_cpu *old, ++ struct bch_replicas_entry *new_entry) ++{ ++ unsigned i; ++ struct bch_replicas_cpu new = { ++ .nr = old->nr + 1, ++ .entry_size = max_t(unsigned, old->entry_size, ++ replicas_entry_bytes(new_entry)), ++ }; ++ ++ BUG_ON(!new_entry->data_type); ++ verify_replicas_entry(new_entry); ++ ++ new.entries = kcalloc(new.nr, new.entry_size, GFP_NOIO); ++ if (!new.entries) ++ return new; ++ ++ for (i = 0; i < old->nr; i++) ++ memcpy(cpu_replicas_entry(&new, i), ++ cpu_replicas_entry(old, i), ++ old->entry_size); ++ ++ memcpy(cpu_replicas_entry(&new, old->nr), ++ new_entry, ++ replicas_entry_bytes(new_entry)); ++ ++ bch2_cpu_replicas_sort(&new); ++ return new; ++} ++ ++static inline int __replicas_entry_idx(struct bch_replicas_cpu *r, ++ struct bch_replicas_entry *search) ++{ ++ int idx, entry_size = replicas_entry_bytes(search); ++ ++ if (unlikely(entry_size > r->entry_size)) ++ return -1; ++ ++ verify_replicas_entry(search); ++ ++#define entry_cmp(_l, _r, size) memcmp(_l, _r, entry_size) ++ idx = eytzinger0_find(r->entries, r->nr, r->entry_size, ++ entry_cmp, search); ++#undef entry_cmp ++ ++ return idx < r->nr ? idx : -1; ++} ++ ++int bch2_replicas_entry_idx(struct bch_fs *c, ++ struct bch_replicas_entry *search) ++{ ++ replicas_entry_sort(search); ++ ++ return __replicas_entry_idx(&c->replicas, search); ++} ++ ++static bool __replicas_has_entry(struct bch_replicas_cpu *r, ++ struct bch_replicas_entry *search) ++{ ++ return __replicas_entry_idx(r, search) >= 0; ++} ++ ++bool bch2_replicas_marked(struct bch_fs *c, ++ struct bch_replicas_entry *search) ++{ ++ bool marked; ++ ++ if (!search->nr_devs) ++ return true; ++ ++ verify_replicas_entry(search); ++ ++ percpu_down_read(&c->mark_lock); ++ marked = __replicas_has_entry(&c->replicas, search) && ++ (likely((!c->replicas_gc.entries)) || ++ __replicas_has_entry(&c->replicas_gc, search)); ++ percpu_up_read(&c->mark_lock); ++ ++ return marked; ++} ++ ++static void __replicas_table_update(struct bch_fs_usage *dst, ++ struct bch_replicas_cpu *dst_r, ++ struct bch_fs_usage *src, ++ struct bch_replicas_cpu *src_r) ++{ ++ int src_idx, dst_idx; ++ ++ *dst = *src; ++ ++ for (src_idx = 0; src_idx < src_r->nr; src_idx++) { ++ if (!src->replicas[src_idx]) ++ continue; ++ ++ dst_idx = __replicas_entry_idx(dst_r, ++ cpu_replicas_entry(src_r, src_idx)); ++ BUG_ON(dst_idx < 0); ++ ++ dst->replicas[dst_idx] = src->replicas[src_idx]; ++ } ++} ++ ++static void __replicas_table_update_pcpu(struct bch_fs_usage __percpu *dst_p, ++ struct bch_replicas_cpu *dst_r, ++ struct bch_fs_usage __percpu *src_p, ++ struct bch_replicas_cpu *src_r) ++{ ++ unsigned src_nr = sizeof(struct bch_fs_usage) / sizeof(u64) + src_r->nr; ++ struct bch_fs_usage *dst, *src = (void *) ++ bch2_acc_percpu_u64s((void *) src_p, src_nr); ++ ++ preempt_disable(); ++ dst = this_cpu_ptr(dst_p); ++ preempt_enable(); ++ ++ __replicas_table_update(dst, dst_r, src, src_r); ++} ++ ++/* ++ * Resize filesystem accounting: ++ */ ++static int replicas_table_update(struct bch_fs *c, ++ struct bch_replicas_cpu *new_r) ++{ ++ struct bch_fs_usage __percpu *new_usage[2] = { NULL, NULL }; ++ struct bch_fs_usage *new_scratch = NULL; ++ struct bch_fs_usage __percpu *new_gc = NULL; ++ struct bch_fs_usage *new_base = NULL; ++ unsigned bytes = sizeof(struct bch_fs_usage) + ++ sizeof(u64) * new_r->nr; ++ int ret = -ENOMEM; ++ ++ if (!(new_base = kzalloc(bytes, GFP_NOIO)) || ++ !(new_usage[0] = __alloc_percpu_gfp(bytes, sizeof(u64), ++ GFP_NOIO)) || ++ !(new_usage[1] = __alloc_percpu_gfp(bytes, sizeof(u64), ++ GFP_NOIO)) || ++ !(new_scratch = kmalloc(bytes, GFP_NOIO)) || ++ (c->usage_gc && ++ !(new_gc = __alloc_percpu_gfp(bytes, sizeof(u64), GFP_NOIO)))) { ++ bch_err(c, "error updating replicas table: memory allocation failure"); ++ goto err; ++ } ++ ++ if (c->usage_base) ++ __replicas_table_update(new_base, new_r, ++ c->usage_base, &c->replicas); ++ if (c->usage[0]) ++ __replicas_table_update_pcpu(new_usage[0], new_r, ++ c->usage[0], &c->replicas); ++ if (c->usage[1]) ++ __replicas_table_update_pcpu(new_usage[1], new_r, ++ c->usage[1], &c->replicas); ++ if (c->usage_gc) ++ __replicas_table_update_pcpu(new_gc, new_r, ++ c->usage_gc, &c->replicas); ++ ++ swap(c->usage_base, new_base); ++ swap(c->usage[0], new_usage[0]); ++ swap(c->usage[1], new_usage[1]); ++ swap(c->usage_scratch, new_scratch); ++ swap(c->usage_gc, new_gc); ++ swap(c->replicas, *new_r); ++ ret = 0; ++err: ++ free_percpu(new_gc); ++ kfree(new_scratch); ++ free_percpu(new_usage[1]); ++ free_percpu(new_usage[0]); ++ kfree(new_base); ++ return ret; ++} ++ ++static unsigned reserve_journal_replicas(struct bch_fs *c, ++ struct bch_replicas_cpu *r) ++{ ++ struct bch_replicas_entry *e; ++ unsigned journal_res_u64s = 0; ++ ++ /* nr_inodes: */ ++ journal_res_u64s += ++ DIV_ROUND_UP(sizeof(struct jset_entry_usage), sizeof(u64)); ++ ++ /* key_version: */ ++ journal_res_u64s += ++ DIV_ROUND_UP(sizeof(struct jset_entry_usage), sizeof(u64)); ++ ++ /* persistent_reserved: */ ++ journal_res_u64s += ++ DIV_ROUND_UP(sizeof(struct jset_entry_usage), sizeof(u64)) * ++ BCH_REPLICAS_MAX; ++ ++ for_each_cpu_replicas_entry(r, e) ++ journal_res_u64s += ++ DIV_ROUND_UP(sizeof(struct jset_entry_data_usage) + ++ e->nr_devs, sizeof(u64)); ++ return journal_res_u64s; ++} ++ ++noinline ++static int bch2_mark_replicas_slowpath(struct bch_fs *c, ++ struct bch_replicas_entry *new_entry) ++{ ++ struct bch_replicas_cpu new_r, new_gc; ++ int ret = 0; ++ ++ verify_replicas_entry(new_entry); ++ ++ memset(&new_r, 0, sizeof(new_r)); ++ memset(&new_gc, 0, sizeof(new_gc)); ++ ++ mutex_lock(&c->sb_lock); ++ ++ if (c->replicas_gc.entries && ++ !__replicas_has_entry(&c->replicas_gc, new_entry)) { ++ new_gc = cpu_replicas_add_entry(&c->replicas_gc, new_entry); ++ if (!new_gc.entries) ++ goto err; ++ } ++ ++ if (!__replicas_has_entry(&c->replicas, new_entry)) { ++ new_r = cpu_replicas_add_entry(&c->replicas, new_entry); ++ if (!new_r.entries) ++ goto err; ++ ++ ret = bch2_cpu_replicas_to_sb_replicas(c, &new_r); ++ if (ret) ++ goto err; ++ ++ bch2_journal_entry_res_resize(&c->journal, ++ &c->replicas_journal_res, ++ reserve_journal_replicas(c, &new_r)); ++ } ++ ++ if (!new_r.entries && ++ !new_gc.entries) ++ goto out; ++ ++ /* allocations done, now commit: */ ++ ++ if (new_r.entries) ++ bch2_write_super(c); ++ ++ /* don't update in memory replicas until changes are persistent */ ++ percpu_down_write(&c->mark_lock); ++ if (new_r.entries) ++ ret = replicas_table_update(c, &new_r); ++ if (new_gc.entries) ++ swap(new_gc, c->replicas_gc); ++ percpu_up_write(&c->mark_lock); ++out: ++ mutex_unlock(&c->sb_lock); ++ ++ kfree(new_r.entries); ++ kfree(new_gc.entries); ++ ++ return ret; ++err: ++ bch_err(c, "error adding replicas entry: memory allocation failure"); ++ ret = -ENOMEM; ++ goto out; ++} ++ ++static int __bch2_mark_replicas(struct bch_fs *c, ++ struct bch_replicas_entry *r, ++ bool check) ++{ ++ return likely(bch2_replicas_marked(c, r)) ? 0 ++ : check ? -1 ++ : bch2_mark_replicas_slowpath(c, r); ++} ++ ++int bch2_mark_replicas(struct bch_fs *c, struct bch_replicas_entry *r) ++{ ++ return __bch2_mark_replicas(c, r, false); ++} ++ ++static int __bch2_mark_bkey_replicas(struct bch_fs *c, struct bkey_s_c k, ++ bool check) ++{ ++ struct bch_replicas_padded search; ++ struct bch_devs_list cached = bch2_bkey_cached_devs(k); ++ unsigned i; ++ int ret; ++ ++ for (i = 0; i < cached.nr; i++) { ++ bch2_replicas_entry_cached(&search.e, cached.devs[i]); ++ ++ ret = __bch2_mark_replicas(c, &search.e, check); ++ if (ret) ++ return ret; ++ } ++ ++ bch2_bkey_to_replicas(&search.e, k); ++ ++ return __bch2_mark_replicas(c, &search.e, check); ++} ++ ++bool bch2_bkey_replicas_marked(struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ return __bch2_mark_bkey_replicas(c, k, true) == 0; ++} ++ ++int bch2_mark_bkey_replicas(struct bch_fs *c, struct bkey_s_c k) ++{ ++ return __bch2_mark_bkey_replicas(c, k, false); ++} ++ ++int bch2_replicas_gc_end(struct bch_fs *c, int ret) ++{ ++ unsigned i; ++ ++ lockdep_assert_held(&c->replicas_gc_lock); ++ ++ mutex_lock(&c->sb_lock); ++ percpu_down_write(&c->mark_lock); ++ ++ /* ++ * this is kind of crappy; the replicas gc mechanism needs to be ripped ++ * out ++ */ ++ ++ for (i = 0; i < c->replicas.nr; i++) { ++ struct bch_replicas_entry *e = ++ cpu_replicas_entry(&c->replicas, i); ++ struct bch_replicas_cpu n; ++ ++ if (!__replicas_has_entry(&c->replicas_gc, e) && ++ (c->usage_base->replicas[i] || ++ percpu_u64_get(&c->usage[0]->replicas[i]) || ++ percpu_u64_get(&c->usage[1]->replicas[i]))) { ++ n = cpu_replicas_add_entry(&c->replicas_gc, e); ++ if (!n.entries) { ++ ret = -ENOSPC; ++ goto err; ++ } ++ ++ swap(n, c->replicas_gc); ++ kfree(n.entries); ++ } ++ } ++ ++ if (bch2_cpu_replicas_to_sb_replicas(c, &c->replicas_gc)) { ++ ret = -ENOSPC; ++ goto err; ++ } ++ ++ ret = replicas_table_update(c, &c->replicas_gc); ++err: ++ kfree(c->replicas_gc.entries); ++ c->replicas_gc.entries = NULL; ++ ++ percpu_up_write(&c->mark_lock); ++ ++ if (!ret) ++ bch2_write_super(c); ++ ++ mutex_unlock(&c->sb_lock); ++ ++ return ret; ++} ++ ++int bch2_replicas_gc_start(struct bch_fs *c, unsigned typemask) ++{ ++ struct bch_replicas_entry *e; ++ unsigned i = 0; ++ ++ lockdep_assert_held(&c->replicas_gc_lock); ++ ++ mutex_lock(&c->sb_lock); ++ BUG_ON(c->replicas_gc.entries); ++ ++ c->replicas_gc.nr = 0; ++ c->replicas_gc.entry_size = 0; ++ ++ for_each_cpu_replicas_entry(&c->replicas, e) ++ if (!((1 << e->data_type) & typemask)) { ++ c->replicas_gc.nr++; ++ c->replicas_gc.entry_size = ++ max_t(unsigned, c->replicas_gc.entry_size, ++ replicas_entry_bytes(e)); ++ } ++ ++ c->replicas_gc.entries = kcalloc(c->replicas_gc.nr, ++ c->replicas_gc.entry_size, ++ GFP_NOIO); ++ if (!c->replicas_gc.entries) { ++ mutex_unlock(&c->sb_lock); ++ bch_err(c, "error allocating c->replicas_gc"); ++ return -ENOMEM; ++ } ++ ++ for_each_cpu_replicas_entry(&c->replicas, e) ++ if (!((1 << e->data_type) & typemask)) ++ memcpy(cpu_replicas_entry(&c->replicas_gc, i++), ++ e, c->replicas_gc.entry_size); ++ ++ bch2_cpu_replicas_sort(&c->replicas_gc); ++ mutex_unlock(&c->sb_lock); ++ ++ return 0; ++} ++ ++int bch2_replicas_gc2(struct bch_fs *c) ++{ ++ struct bch_replicas_cpu new = { 0 }; ++ unsigned i, nr; ++ int ret = 0; ++ ++ bch2_journal_meta(&c->journal); ++retry: ++ nr = READ_ONCE(c->replicas.nr); ++ new.entry_size = READ_ONCE(c->replicas.entry_size); ++ new.entries = kcalloc(nr, new.entry_size, GFP_KERNEL); ++ if (!new.entries) { ++ bch_err(c, "error allocating c->replicas_gc"); ++ return -ENOMEM; ++ } ++ ++ mutex_lock(&c->sb_lock); ++ percpu_down_write(&c->mark_lock); ++ ++ if (nr != c->replicas.nr || ++ new.entry_size != c->replicas.entry_size) { ++ percpu_up_write(&c->mark_lock); ++ mutex_unlock(&c->sb_lock); ++ kfree(new.entries); ++ goto retry; ++ } ++ ++ for (i = 0; i < c->replicas.nr; i++) { ++ struct bch_replicas_entry *e = ++ cpu_replicas_entry(&c->replicas, i); ++ ++ if (e->data_type == BCH_DATA_journal || ++ c->usage_base->replicas[i] || ++ percpu_u64_get(&c->usage[0]->replicas[i]) || ++ percpu_u64_get(&c->usage[1]->replicas[i])) ++ memcpy(cpu_replicas_entry(&new, new.nr++), ++ e, new.entry_size); ++ } ++ ++ bch2_cpu_replicas_sort(&new); ++ ++ if (bch2_cpu_replicas_to_sb_replicas(c, &new)) { ++ ret = -ENOSPC; ++ goto err; ++ } ++ ++ ret = replicas_table_update(c, &new); ++err: ++ kfree(new.entries); ++ ++ percpu_up_write(&c->mark_lock); ++ ++ if (!ret) ++ bch2_write_super(c); ++ ++ mutex_unlock(&c->sb_lock); ++ ++ return ret; ++} ++ ++int bch2_replicas_set_usage(struct bch_fs *c, ++ struct bch_replicas_entry *r, ++ u64 sectors) ++{ ++ int ret, idx = bch2_replicas_entry_idx(c, r); ++ ++ if (idx < 0) { ++ struct bch_replicas_cpu n; ++ ++ n = cpu_replicas_add_entry(&c->replicas, r); ++ if (!n.entries) ++ return -ENOMEM; ++ ++ ret = replicas_table_update(c, &n); ++ if (ret) ++ return ret; ++ ++ kfree(n.entries); ++ ++ idx = bch2_replicas_entry_idx(c, r); ++ BUG_ON(ret < 0); ++ } ++ ++ c->usage_base->replicas[idx] = sectors; ++ ++ return 0; ++} ++ ++/* Replicas tracking - superblock: */ ++ ++static int ++__bch2_sb_replicas_to_cpu_replicas(struct bch_sb_field_replicas *sb_r, ++ struct bch_replicas_cpu *cpu_r) ++{ ++ struct bch_replicas_entry *e, *dst; ++ unsigned nr = 0, entry_size = 0, idx = 0; ++ ++ for_each_replicas_entry(sb_r, e) { ++ entry_size = max_t(unsigned, entry_size, ++ replicas_entry_bytes(e)); ++ nr++; ++ } ++ ++ cpu_r->entries = kcalloc(nr, entry_size, GFP_NOIO); ++ if (!cpu_r->entries) ++ return -ENOMEM; ++ ++ cpu_r->nr = nr; ++ cpu_r->entry_size = entry_size; ++ ++ for_each_replicas_entry(sb_r, e) { ++ dst = cpu_replicas_entry(cpu_r, idx++); ++ memcpy(dst, e, replicas_entry_bytes(e)); ++ replicas_entry_sort(dst); ++ } ++ ++ return 0; ++} ++ ++static int ++__bch2_sb_replicas_v0_to_cpu_replicas(struct bch_sb_field_replicas_v0 *sb_r, ++ struct bch_replicas_cpu *cpu_r) ++{ ++ struct bch_replicas_entry_v0 *e; ++ unsigned nr = 0, entry_size = 0, idx = 0; ++ ++ for_each_replicas_entry(sb_r, e) { ++ entry_size = max_t(unsigned, entry_size, ++ replicas_entry_bytes(e)); ++ nr++; ++ } ++ ++ entry_size += sizeof(struct bch_replicas_entry) - ++ sizeof(struct bch_replicas_entry_v0); ++ ++ cpu_r->entries = kcalloc(nr, entry_size, GFP_NOIO); ++ if (!cpu_r->entries) ++ return -ENOMEM; ++ ++ cpu_r->nr = nr; ++ cpu_r->entry_size = entry_size; ++ ++ for_each_replicas_entry(sb_r, e) { ++ struct bch_replicas_entry *dst = ++ cpu_replicas_entry(cpu_r, idx++); ++ ++ dst->data_type = e->data_type; ++ dst->nr_devs = e->nr_devs; ++ dst->nr_required = 1; ++ memcpy(dst->devs, e->devs, e->nr_devs); ++ replicas_entry_sort(dst); ++ } ++ ++ return 0; ++} ++ ++int bch2_sb_replicas_to_cpu_replicas(struct bch_fs *c) ++{ ++ struct bch_sb_field_replicas *sb_v1; ++ struct bch_sb_field_replicas_v0 *sb_v0; ++ struct bch_replicas_cpu new_r = { 0, 0, NULL }; ++ int ret = 0; ++ ++ if ((sb_v1 = bch2_sb_get_replicas(c->disk_sb.sb))) ++ ret = __bch2_sb_replicas_to_cpu_replicas(sb_v1, &new_r); ++ else if ((sb_v0 = bch2_sb_get_replicas_v0(c->disk_sb.sb))) ++ ret = __bch2_sb_replicas_v0_to_cpu_replicas(sb_v0, &new_r); ++ ++ if (ret) ++ return -ENOMEM; ++ ++ bch2_cpu_replicas_sort(&new_r); ++ ++ percpu_down_write(&c->mark_lock); ++ ++ ret = replicas_table_update(c, &new_r); ++ percpu_up_write(&c->mark_lock); ++ ++ kfree(new_r.entries); ++ ++ return 0; ++} ++ ++static int bch2_cpu_replicas_to_sb_replicas_v0(struct bch_fs *c, ++ struct bch_replicas_cpu *r) ++{ ++ struct bch_sb_field_replicas_v0 *sb_r; ++ struct bch_replicas_entry_v0 *dst; ++ struct bch_replicas_entry *src; ++ size_t bytes; ++ ++ bytes = sizeof(struct bch_sb_field_replicas); ++ ++ for_each_cpu_replicas_entry(r, src) ++ bytes += replicas_entry_bytes(src) - 1; ++ ++ sb_r = bch2_sb_resize_replicas_v0(&c->disk_sb, ++ DIV_ROUND_UP(bytes, sizeof(u64))); ++ if (!sb_r) ++ return -ENOSPC; ++ ++ bch2_sb_field_delete(&c->disk_sb, BCH_SB_FIELD_replicas); ++ sb_r = bch2_sb_get_replicas_v0(c->disk_sb.sb); ++ ++ memset(&sb_r->entries, 0, ++ vstruct_end(&sb_r->field) - ++ (void *) &sb_r->entries); ++ ++ dst = sb_r->entries; ++ for_each_cpu_replicas_entry(r, src) { ++ dst->data_type = src->data_type; ++ dst->nr_devs = src->nr_devs; ++ memcpy(dst->devs, src->devs, src->nr_devs); ++ ++ dst = replicas_entry_next(dst); ++ ++ BUG_ON((void *) dst > vstruct_end(&sb_r->field)); ++ } ++ ++ return 0; ++} ++ ++static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *c, ++ struct bch_replicas_cpu *r) ++{ ++ struct bch_sb_field_replicas *sb_r; ++ struct bch_replicas_entry *dst, *src; ++ bool need_v1 = false; ++ size_t bytes; ++ ++ bytes = sizeof(struct bch_sb_field_replicas); ++ ++ for_each_cpu_replicas_entry(r, src) { ++ bytes += replicas_entry_bytes(src); ++ if (src->nr_required != 1) ++ need_v1 = true; ++ } ++ ++ if (!need_v1) ++ return bch2_cpu_replicas_to_sb_replicas_v0(c, r); ++ ++ sb_r = bch2_sb_resize_replicas(&c->disk_sb, ++ DIV_ROUND_UP(bytes, sizeof(u64))); ++ if (!sb_r) ++ return -ENOSPC; ++ ++ bch2_sb_field_delete(&c->disk_sb, BCH_SB_FIELD_replicas_v0); ++ sb_r = bch2_sb_get_replicas(c->disk_sb.sb); ++ ++ memset(&sb_r->entries, 0, ++ vstruct_end(&sb_r->field) - ++ (void *) &sb_r->entries); ++ ++ dst = sb_r->entries; ++ for_each_cpu_replicas_entry(r, src) { ++ memcpy(dst, src, replicas_entry_bytes(src)); ++ ++ dst = replicas_entry_next(dst); ++ ++ BUG_ON((void *) dst > vstruct_end(&sb_r->field)); ++ } ++ ++ return 0; ++} ++ ++static const char *check_dup_replicas_entries(struct bch_replicas_cpu *cpu_r) ++{ ++ unsigned i; ++ ++ sort_cmp_size(cpu_r->entries, ++ cpu_r->nr, ++ cpu_r->entry_size, ++ memcmp, NULL); ++ ++ for (i = 0; i + 1 < cpu_r->nr; i++) { ++ struct bch_replicas_entry *l = ++ cpu_replicas_entry(cpu_r, i); ++ struct bch_replicas_entry *r = ++ cpu_replicas_entry(cpu_r, i + 1); ++ ++ BUG_ON(memcmp(l, r, cpu_r->entry_size) > 0); ++ ++ if (!memcmp(l, r, cpu_r->entry_size)) ++ return "duplicate replicas entry"; ++ } ++ ++ return NULL; ++} ++ ++static const char *bch2_sb_validate_replicas(struct bch_sb *sb, struct bch_sb_field *f) ++{ ++ struct bch_sb_field_replicas *sb_r = field_to_type(f, replicas); ++ struct bch_sb_field_members *mi = bch2_sb_get_members(sb); ++ struct bch_replicas_cpu cpu_r = { .entries = NULL }; ++ struct bch_replicas_entry *e; ++ const char *err; ++ unsigned i; ++ ++ for_each_replicas_entry(sb_r, e) { ++ err = "invalid replicas entry: invalid data type"; ++ if (e->data_type >= BCH_DATA_NR) ++ goto err; ++ ++ err = "invalid replicas entry: no devices"; ++ if (!e->nr_devs) ++ goto err; ++ ++ err = "invalid replicas entry: bad nr_required"; ++ if (e->nr_required > 1 && ++ e->nr_required >= e->nr_devs) ++ goto err; ++ ++ err = "invalid replicas entry: invalid device"; ++ for (i = 0; i < e->nr_devs; i++) ++ if (!bch2_dev_exists(sb, mi, e->devs[i])) ++ goto err; ++ } ++ ++ err = "cannot allocate memory"; ++ if (__bch2_sb_replicas_to_cpu_replicas(sb_r, &cpu_r)) ++ goto err; ++ ++ err = check_dup_replicas_entries(&cpu_r); ++err: ++ kfree(cpu_r.entries); ++ return err; ++} ++ ++static void bch2_sb_replicas_to_text(struct printbuf *out, ++ struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_replicas *r = field_to_type(f, replicas); ++ struct bch_replicas_entry *e; ++ bool first = true; ++ ++ for_each_replicas_entry(r, e) { ++ if (!first) ++ pr_buf(out, " "); ++ first = false; ++ ++ bch2_replicas_entry_to_text(out, e); ++ } ++} ++ ++const struct bch_sb_field_ops bch_sb_field_ops_replicas = { ++ .validate = bch2_sb_validate_replicas, ++ .to_text = bch2_sb_replicas_to_text, ++}; ++ ++static const char *bch2_sb_validate_replicas_v0(struct bch_sb *sb, struct bch_sb_field *f) ++{ ++ struct bch_sb_field_replicas_v0 *sb_r = field_to_type(f, replicas_v0); ++ struct bch_sb_field_members *mi = bch2_sb_get_members(sb); ++ struct bch_replicas_cpu cpu_r = { .entries = NULL }; ++ struct bch_replicas_entry_v0 *e; ++ const char *err; ++ unsigned i; ++ ++ for_each_replicas_entry_v0(sb_r, e) { ++ err = "invalid replicas entry: invalid data type"; ++ if (e->data_type >= BCH_DATA_NR) ++ goto err; ++ ++ err = "invalid replicas entry: no devices"; ++ if (!e->nr_devs) ++ goto err; ++ ++ err = "invalid replicas entry: invalid device"; ++ for (i = 0; i < e->nr_devs; i++) ++ if (!bch2_dev_exists(sb, mi, e->devs[i])) ++ goto err; ++ } ++ ++ err = "cannot allocate memory"; ++ if (__bch2_sb_replicas_v0_to_cpu_replicas(sb_r, &cpu_r)) ++ goto err; ++ ++ err = check_dup_replicas_entries(&cpu_r); ++err: ++ kfree(cpu_r.entries); ++ return err; ++} ++ ++const struct bch_sb_field_ops bch_sb_field_ops_replicas_v0 = { ++ .validate = bch2_sb_validate_replicas_v0, ++}; ++ ++/* Query replicas: */ ++ ++struct replicas_status __bch2_replicas_status(struct bch_fs *c, ++ struct bch_devs_mask online_devs) ++{ ++ struct bch_sb_field_members *mi; ++ struct bch_replicas_entry *e; ++ unsigned i, nr_online, nr_offline; ++ struct replicas_status ret; ++ ++ memset(&ret, 0, sizeof(ret)); ++ ++ for (i = 0; i < ARRAY_SIZE(ret.replicas); i++) ++ ret.replicas[i].redundancy = INT_MAX; ++ ++ mi = bch2_sb_get_members(c->disk_sb.sb); ++ ++ percpu_down_read(&c->mark_lock); ++ ++ for_each_cpu_replicas_entry(&c->replicas, e) { ++ if (e->data_type >= ARRAY_SIZE(ret.replicas)) ++ panic("e %p data_type %u\n", e, e->data_type); ++ ++ nr_online = nr_offline = 0; ++ ++ for (i = 0; i < e->nr_devs; i++) { ++ BUG_ON(!bch2_dev_exists(c->disk_sb.sb, mi, ++ e->devs[i])); ++ ++ if (test_bit(e->devs[i], online_devs.d)) ++ nr_online++; ++ else ++ nr_offline++; ++ } ++ ++ ret.replicas[e->data_type].redundancy = ++ min(ret.replicas[e->data_type].redundancy, ++ (int) nr_online - (int) e->nr_required); ++ ++ ret.replicas[e->data_type].nr_offline = ++ max(ret.replicas[e->data_type].nr_offline, ++ nr_offline); ++ } ++ ++ percpu_up_read(&c->mark_lock); ++ ++ for (i = 0; i < ARRAY_SIZE(ret.replicas); i++) ++ if (ret.replicas[i].redundancy == INT_MAX) ++ ret.replicas[i].redundancy = 0; ++ ++ return ret; ++} ++ ++struct replicas_status bch2_replicas_status(struct bch_fs *c) ++{ ++ return __bch2_replicas_status(c, bch2_online_devs(c)); ++} ++ ++static bool have_enough_devs(struct replicas_status s, ++ enum bch_data_type type, ++ bool force_if_degraded, ++ bool force_if_lost) ++{ ++ return (!s.replicas[type].nr_offline || force_if_degraded) && ++ (s.replicas[type].redundancy >= 0 || force_if_lost); ++} ++ ++bool bch2_have_enough_devs(struct replicas_status s, unsigned flags) ++{ ++ return (have_enough_devs(s, BCH_DATA_journal, ++ flags & BCH_FORCE_IF_METADATA_DEGRADED, ++ flags & BCH_FORCE_IF_METADATA_LOST) && ++ have_enough_devs(s, BCH_DATA_btree, ++ flags & BCH_FORCE_IF_METADATA_DEGRADED, ++ flags & BCH_FORCE_IF_METADATA_LOST) && ++ have_enough_devs(s, BCH_DATA_user, ++ flags & BCH_FORCE_IF_DATA_DEGRADED, ++ flags & BCH_FORCE_IF_DATA_LOST)); ++} ++ ++int bch2_replicas_online(struct bch_fs *c, bool meta) ++{ ++ struct replicas_status s = bch2_replicas_status(c); ++ ++ return (meta ++ ? min(s.replicas[BCH_DATA_journal].redundancy, ++ s.replicas[BCH_DATA_btree].redundancy) ++ : s.replicas[BCH_DATA_user].redundancy) + 1; ++} ++ ++unsigned bch2_dev_has_data(struct bch_fs *c, struct bch_dev *ca) ++{ ++ struct bch_replicas_entry *e; ++ unsigned i, ret = 0; ++ ++ percpu_down_read(&c->mark_lock); ++ ++ for_each_cpu_replicas_entry(&c->replicas, e) ++ for (i = 0; i < e->nr_devs; i++) ++ if (e->devs[i] == ca->dev_idx) ++ ret |= 1 << e->data_type; ++ ++ percpu_up_read(&c->mark_lock); ++ ++ return ret; ++} ++ ++int bch2_fs_replicas_init(struct bch_fs *c) ++{ ++ c->journal.entry_u64s_reserved += ++ reserve_journal_replicas(c, &c->replicas); ++ ++ return replicas_table_update(c, &c->replicas); ++} +diff --git a/fs/bcachefs/replicas.h b/fs/bcachefs/replicas.h +new file mode 100644 +index 000000000000..8b95164fbb56 +--- /dev/null ++++ b/fs/bcachefs/replicas.h +@@ -0,0 +1,91 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_REPLICAS_H ++#define _BCACHEFS_REPLICAS_H ++ ++#include "eytzinger.h" ++#include "replicas_types.h" ++ ++void bch2_replicas_entry_to_text(struct printbuf *, ++ struct bch_replicas_entry *); ++void bch2_cpu_replicas_to_text(struct printbuf *, struct bch_replicas_cpu *); ++ ++static inline struct bch_replicas_entry * ++cpu_replicas_entry(struct bch_replicas_cpu *r, unsigned i) ++{ ++ return (void *) r->entries + r->entry_size * i; ++} ++ ++int bch2_replicas_entry_idx(struct bch_fs *, ++ struct bch_replicas_entry *); ++ ++void bch2_devlist_to_replicas(struct bch_replicas_entry *, ++ enum bch_data_type, ++ struct bch_devs_list); ++bool bch2_replicas_marked(struct bch_fs *, struct bch_replicas_entry *); ++int bch2_mark_replicas(struct bch_fs *, ++ struct bch_replicas_entry *); ++ ++void bch2_bkey_to_replicas(struct bch_replicas_entry *, struct bkey_s_c); ++bool bch2_bkey_replicas_marked(struct bch_fs *, struct bkey_s_c); ++int bch2_mark_bkey_replicas(struct bch_fs *, struct bkey_s_c); ++ ++static inline void bch2_replicas_entry_cached(struct bch_replicas_entry *e, ++ unsigned dev) ++{ ++ e->data_type = BCH_DATA_cached; ++ e->nr_devs = 1; ++ e->nr_required = 1; ++ e->devs[0] = dev; ++} ++ ++struct replicas_status { ++ struct { ++ int redundancy; ++ unsigned nr_offline; ++ } replicas[BCH_DATA_NR]; ++}; ++ ++struct replicas_status __bch2_replicas_status(struct bch_fs *, ++ struct bch_devs_mask); ++struct replicas_status bch2_replicas_status(struct bch_fs *); ++bool bch2_have_enough_devs(struct replicas_status, unsigned); ++ ++int bch2_replicas_online(struct bch_fs *, bool); ++unsigned bch2_dev_has_data(struct bch_fs *, struct bch_dev *); ++ ++int bch2_replicas_gc_end(struct bch_fs *, int); ++int bch2_replicas_gc_start(struct bch_fs *, unsigned); ++int bch2_replicas_gc2(struct bch_fs *); ++ ++int bch2_replicas_set_usage(struct bch_fs *, ++ struct bch_replicas_entry *, ++ u64); ++ ++#define for_each_cpu_replicas_entry(_r, _i) \ ++ for (_i = (_r)->entries; \ ++ (void *) (_i) < (void *) (_r)->entries + (_r)->nr * (_r)->entry_size;\ ++ _i = (void *) (_i) + (_r)->entry_size) ++ ++/* iterate over superblock replicas - used by userspace tools: */ ++ ++#define replicas_entry_next(_i) \ ++ ((typeof(_i)) ((void *) (_i) + replicas_entry_bytes(_i))) ++ ++#define for_each_replicas_entry(_r, _i) \ ++ for (_i = (_r)->entries; \ ++ (void *) (_i) < vstruct_end(&(_r)->field) && (_i)->data_type;\ ++ (_i) = replicas_entry_next(_i)) ++ ++#define for_each_replicas_entry_v0(_r, _i) \ ++ for (_i = (_r)->entries; \ ++ (void *) (_i) < vstruct_end(&(_r)->field) && (_i)->data_type;\ ++ (_i) = replicas_entry_next(_i)) ++ ++int bch2_sb_replicas_to_cpu_replicas(struct bch_fs *); ++ ++extern const struct bch_sb_field_ops bch_sb_field_ops_replicas; ++extern const struct bch_sb_field_ops bch_sb_field_ops_replicas_v0; ++ ++int bch2_fs_replicas_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_REPLICAS_H */ +diff --git a/fs/bcachefs/replicas_types.h b/fs/bcachefs/replicas_types.h +new file mode 100644 +index 000000000000..0535b1d3760e +--- /dev/null ++++ b/fs/bcachefs/replicas_types.h +@@ -0,0 +1,10 @@ ++#ifndef _BCACHEFS_REPLICAS_TYPES_H ++#define _BCACHEFS_REPLICAS_TYPES_H ++ ++struct bch_replicas_cpu { ++ unsigned nr; ++ unsigned entry_size; ++ struct bch_replicas_entry *entries; ++}; ++ ++#endif /* _BCACHEFS_REPLICAS_TYPES_H */ +diff --git a/fs/bcachefs/siphash.c b/fs/bcachefs/siphash.c +new file mode 100644 +index 000000000000..c062edb3fbc2 +--- /dev/null ++++ b/fs/bcachefs/siphash.c +@@ -0,0 +1,173 @@ ++// SPDX-License-Identifier: BSD-3-Clause ++/* $OpenBSD: siphash.c,v 1.3 2015/02/20 11:51:03 tedu Exp $ */ ++ ++/*- ++ * Copyright (c) 2013 Andre Oppermann ++ * All rights reserved. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. The name of the author may not be used to endorse or promote ++ * products derived from this software without specific prior written ++ * permission. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE ++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS ++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF ++ * SUCH DAMAGE. ++ */ ++ ++/* ++ * SipHash is a family of PRFs SipHash-c-d where the integer parameters c and d ++ * are the number of compression rounds and the number of finalization rounds. ++ * A compression round is identical to a finalization round and this round ++ * function is called SipRound. Given a 128-bit key k and a (possibly empty) ++ * byte string m, SipHash-c-d returns a 64-bit value SipHash-c-d(k; m). ++ * ++ * Implemented from the paper "SipHash: a fast short-input PRF", 2012.09.18, ++ * by Jean-Philippe Aumasson and Daniel J. Bernstein, ++ * Permanent Document ID b9a943a805fbfc6fde808af9fc0ecdfa ++ * https://131002.net/siphash/siphash.pdf ++ * https://131002.net/siphash/ ++ */ ++ ++#include ++#include ++#include ++#include ++ ++#include "siphash.h" ++ ++static void SipHash_Rounds(SIPHASH_CTX *ctx, int rounds) ++{ ++ while (rounds--) { ++ ctx->v[0] += ctx->v[1]; ++ ctx->v[2] += ctx->v[3]; ++ ctx->v[1] = rol64(ctx->v[1], 13); ++ ctx->v[3] = rol64(ctx->v[3], 16); ++ ++ ctx->v[1] ^= ctx->v[0]; ++ ctx->v[3] ^= ctx->v[2]; ++ ctx->v[0] = rol64(ctx->v[0], 32); ++ ++ ctx->v[2] += ctx->v[1]; ++ ctx->v[0] += ctx->v[3]; ++ ctx->v[1] = rol64(ctx->v[1], 17); ++ ctx->v[3] = rol64(ctx->v[3], 21); ++ ++ ctx->v[1] ^= ctx->v[2]; ++ ctx->v[3] ^= ctx->v[0]; ++ ctx->v[2] = rol64(ctx->v[2], 32); ++ } ++} ++ ++static void SipHash_CRounds(SIPHASH_CTX *ctx, const void *ptr, int rounds) ++{ ++ u64 m = get_unaligned_le64(ptr); ++ ++ ctx->v[3] ^= m; ++ SipHash_Rounds(ctx, rounds); ++ ctx->v[0] ^= m; ++} ++ ++void SipHash_Init(SIPHASH_CTX *ctx, const SIPHASH_KEY *key) ++{ ++ u64 k0, k1; ++ ++ k0 = le64_to_cpu(key->k0); ++ k1 = le64_to_cpu(key->k1); ++ ++ ctx->v[0] = 0x736f6d6570736575ULL ^ k0; ++ ctx->v[1] = 0x646f72616e646f6dULL ^ k1; ++ ctx->v[2] = 0x6c7967656e657261ULL ^ k0; ++ ctx->v[3] = 0x7465646279746573ULL ^ k1; ++ ++ memset(ctx->buf, 0, sizeof(ctx->buf)); ++ ctx->bytes = 0; ++} ++ ++void SipHash_Update(SIPHASH_CTX *ctx, int rc, int rf, ++ const void *src, size_t len) ++{ ++ const u8 *ptr = src; ++ size_t left, used; ++ ++ if (len == 0) ++ return; ++ ++ used = ctx->bytes % sizeof(ctx->buf); ++ ctx->bytes += len; ++ ++ if (used > 0) { ++ left = sizeof(ctx->buf) - used; ++ ++ if (len >= left) { ++ memcpy(&ctx->buf[used], ptr, left); ++ SipHash_CRounds(ctx, ctx->buf, rc); ++ len -= left; ++ ptr += left; ++ } else { ++ memcpy(&ctx->buf[used], ptr, len); ++ return; ++ } ++ } ++ ++ while (len >= sizeof(ctx->buf)) { ++ SipHash_CRounds(ctx, ptr, rc); ++ len -= sizeof(ctx->buf); ++ ptr += sizeof(ctx->buf); ++ } ++ ++ if (len > 0) ++ memcpy(&ctx->buf[used], ptr, len); ++} ++ ++void SipHash_Final(void *dst, SIPHASH_CTX *ctx, int rc, int rf) ++{ ++ u64 r; ++ ++ r = SipHash_End(ctx, rc, rf); ++ ++ *((__le64 *) dst) = cpu_to_le64(r); ++} ++ ++u64 SipHash_End(SIPHASH_CTX *ctx, int rc, int rf) ++{ ++ u64 r; ++ size_t left, used; ++ ++ used = ctx->bytes % sizeof(ctx->buf); ++ left = sizeof(ctx->buf) - used; ++ memset(&ctx->buf[used], 0, left - 1); ++ ctx->buf[7] = ctx->bytes; ++ ++ SipHash_CRounds(ctx, ctx->buf, rc); ++ ctx->v[2] ^= 0xff; ++ SipHash_Rounds(ctx, rf); ++ ++ r = (ctx->v[0] ^ ctx->v[1]) ^ (ctx->v[2] ^ ctx->v[3]); ++ memset(ctx, 0, sizeof(*ctx)); ++ return (r); ++} ++ ++u64 SipHash(const SIPHASH_KEY *key, int rc, int rf, const void *src, size_t len) ++{ ++ SIPHASH_CTX ctx; ++ ++ SipHash_Init(&ctx, key); ++ SipHash_Update(&ctx, rc, rf, src, len); ++ return SipHash_End(&ctx, rc, rf); ++} +diff --git a/fs/bcachefs/siphash.h b/fs/bcachefs/siphash.h +new file mode 100644 +index 000000000000..3dfaf34a43b2 +--- /dev/null ++++ b/fs/bcachefs/siphash.h +@@ -0,0 +1,87 @@ ++/* SPDX-License-Identifier: BSD-3-Clause */ ++/* $OpenBSD: siphash.h,v 1.5 2015/02/20 11:51:03 tedu Exp $ */ ++/*- ++ * Copyright (c) 2013 Andre Oppermann ++ * All rights reserved. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. The name of the author may not be used to endorse or promote ++ * products derived from this software without specific prior written ++ * permission. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE ++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS ++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF ++ * SUCH DAMAGE. ++ * ++ * $FreeBSD$ ++ */ ++ ++/* ++ * SipHash is a family of pseudorandom functions (a.k.a. keyed hash functions) ++ * optimized for speed on short messages returning a 64bit hash/digest value. ++ * ++ * The number of rounds is defined during the initialization: ++ * SipHash24_Init() for the fast and resonable strong version ++ * SipHash48_Init() for the strong version (half as fast) ++ * ++ * struct SIPHASH_CTX ctx; ++ * SipHash24_Init(&ctx); ++ * SipHash_SetKey(&ctx, "16bytes long key"); ++ * SipHash_Update(&ctx, pointer_to_string, length_of_string); ++ * SipHash_Final(output, &ctx); ++ */ ++ ++#ifndef _SIPHASH_H_ ++#define _SIPHASH_H_ ++ ++#include ++ ++#define SIPHASH_BLOCK_LENGTH 8 ++#define SIPHASH_KEY_LENGTH 16 ++#define SIPHASH_DIGEST_LENGTH 8 ++ ++typedef struct _SIPHASH_CTX { ++ u64 v[4]; ++ u8 buf[SIPHASH_BLOCK_LENGTH]; ++ u32 bytes; ++} SIPHASH_CTX; ++ ++typedef struct { ++ __le64 k0; ++ __le64 k1; ++} SIPHASH_KEY; ++ ++void SipHash_Init(SIPHASH_CTX *, const SIPHASH_KEY *); ++void SipHash_Update(SIPHASH_CTX *, int, int, const void *, size_t); ++u64 SipHash_End(SIPHASH_CTX *, int, int); ++void SipHash_Final(void *, SIPHASH_CTX *, int, int); ++u64 SipHash(const SIPHASH_KEY *, int, int, const void *, size_t); ++ ++#define SipHash24_Init(_c, _k) SipHash_Init((_c), (_k)) ++#define SipHash24_Update(_c, _p, _l) SipHash_Update((_c), 2, 4, (_p), (_l)) ++#define SipHash24_End(_d) SipHash_End((_d), 2, 4) ++#define SipHash24_Final(_d, _c) SipHash_Final((_d), (_c), 2, 4) ++#define SipHash24(_k, _p, _l) SipHash((_k), 2, 4, (_p), (_l)) ++ ++#define SipHash48_Init(_c, _k) SipHash_Init((_c), (_k)) ++#define SipHash48_Update(_c, _p, _l) SipHash_Update((_c), 4, 8, (_p), (_l)) ++#define SipHash48_End(_d) SipHash_End((_d), 4, 8) ++#define SipHash48_Final(_d, _c) SipHash_Final((_d), (_c), 4, 8) ++#define SipHash48(_k, _p, _l) SipHash((_k), 4, 8, (_p), (_l)) ++ ++#endif /* _SIPHASH_H_ */ +diff --git a/fs/bcachefs/str_hash.h b/fs/bcachefs/str_hash.h +new file mode 100644 +index 000000000000..dea9b7252b88 +--- /dev/null ++++ b/fs/bcachefs/str_hash.h +@@ -0,0 +1,336 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_STR_HASH_H ++#define _BCACHEFS_STR_HASH_H ++ ++#include "btree_iter.h" ++#include "btree_update.h" ++#include "checksum.h" ++#include "error.h" ++#include "inode.h" ++#include "siphash.h" ++#include "super.h" ++ ++#include ++#include ++#include ++ ++static inline enum bch_str_hash_type ++bch2_str_hash_opt_to_type(struct bch_fs *c, enum bch_str_hash_opts opt) ++{ ++ switch (opt) { ++ case BCH_STR_HASH_OPT_CRC32C: ++ return BCH_STR_HASH_CRC32C; ++ case BCH_STR_HASH_OPT_CRC64: ++ return BCH_STR_HASH_CRC64; ++ case BCH_STR_HASH_OPT_SIPHASH: ++ return c->sb.features & (1ULL << BCH_FEATURE_new_siphash) ++ ? BCH_STR_HASH_SIPHASH ++ : BCH_STR_HASH_SIPHASH_OLD; ++ default: ++ BUG(); ++ } ++} ++ ++struct bch_hash_info { ++ u8 type; ++ union { ++ __le64 crc_key; ++ SIPHASH_KEY siphash_key; ++ }; ++}; ++ ++static inline struct bch_hash_info ++bch2_hash_info_init(struct bch_fs *c, const struct bch_inode_unpacked *bi) ++{ ++ /* XXX ick */ ++ struct bch_hash_info info = { ++ .type = (bi->bi_flags >> INODE_STR_HASH_OFFSET) & ++ ~(~0U << INODE_STR_HASH_BITS), ++ .crc_key = bi->bi_hash_seed, ++ }; ++ ++ if (unlikely(info.type == BCH_STR_HASH_SIPHASH_OLD)) { ++ SHASH_DESC_ON_STACK(desc, c->sha256); ++ u8 digest[SHA256_DIGEST_SIZE]; ++ ++ desc->tfm = c->sha256; ++ ++ crypto_shash_digest(desc, (void *) &bi->bi_hash_seed, ++ sizeof(bi->bi_hash_seed), digest); ++ memcpy(&info.siphash_key, digest, sizeof(info.siphash_key)); ++ } ++ ++ return info; ++} ++ ++struct bch_str_hash_ctx { ++ union { ++ u32 crc32c; ++ u64 crc64; ++ SIPHASH_CTX siphash; ++ }; ++}; ++ ++static inline void bch2_str_hash_init(struct bch_str_hash_ctx *ctx, ++ const struct bch_hash_info *info) ++{ ++ switch (info->type) { ++ case BCH_STR_HASH_CRC32C: ++ ctx->crc32c = crc32c(~0, &info->crc_key, sizeof(info->crc_key)); ++ break; ++ case BCH_STR_HASH_CRC64: ++ ctx->crc64 = crc64_be(~0, &info->crc_key, sizeof(info->crc_key)); ++ break; ++ case BCH_STR_HASH_SIPHASH_OLD: ++ case BCH_STR_HASH_SIPHASH: ++ SipHash24_Init(&ctx->siphash, &info->siphash_key); ++ break; ++ default: ++ BUG(); ++ } ++} ++ ++static inline void bch2_str_hash_update(struct bch_str_hash_ctx *ctx, ++ const struct bch_hash_info *info, ++ const void *data, size_t len) ++{ ++ switch (info->type) { ++ case BCH_STR_HASH_CRC32C: ++ ctx->crc32c = crc32c(ctx->crc32c, data, len); ++ break; ++ case BCH_STR_HASH_CRC64: ++ ctx->crc64 = crc64_be(ctx->crc64, data, len); ++ break; ++ case BCH_STR_HASH_SIPHASH_OLD: ++ case BCH_STR_HASH_SIPHASH: ++ SipHash24_Update(&ctx->siphash, data, len); ++ break; ++ default: ++ BUG(); ++ } ++} ++ ++static inline u64 bch2_str_hash_end(struct bch_str_hash_ctx *ctx, ++ const struct bch_hash_info *info) ++{ ++ switch (info->type) { ++ case BCH_STR_HASH_CRC32C: ++ return ctx->crc32c; ++ case BCH_STR_HASH_CRC64: ++ return ctx->crc64 >> 1; ++ case BCH_STR_HASH_SIPHASH_OLD: ++ case BCH_STR_HASH_SIPHASH: ++ return SipHash24_End(&ctx->siphash) >> 1; ++ default: ++ BUG(); ++ } ++} ++ ++struct bch_hash_desc { ++ enum btree_id btree_id; ++ u8 key_type; ++ ++ u64 (*hash_key)(const struct bch_hash_info *, const void *); ++ u64 (*hash_bkey)(const struct bch_hash_info *, struct bkey_s_c); ++ bool (*cmp_key)(struct bkey_s_c, const void *); ++ bool (*cmp_bkey)(struct bkey_s_c, struct bkey_s_c); ++}; ++ ++static __always_inline struct btree_iter * ++bch2_hash_lookup(struct btree_trans *trans, ++ const struct bch_hash_desc desc, ++ const struct bch_hash_info *info, ++ u64 inode, const void *key, ++ unsigned flags) ++{ ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ for_each_btree_key(trans, iter, desc.btree_id, ++ POS(inode, desc.hash_key(info, key)), ++ BTREE_ITER_SLOTS|flags, k, ret) { ++ if (iter->pos.inode != inode) ++ break; ++ ++ if (k.k->type == desc.key_type) { ++ if (!desc.cmp_key(k, key)) ++ return iter; ++ } else if (k.k->type == KEY_TYPE_whiteout) { ++ ; ++ } else { ++ /* hole, not found */ ++ break; ++ } ++ } ++ bch2_trans_iter_put(trans, iter); ++ ++ return ERR_PTR(ret ?: -ENOENT); ++} ++ ++static __always_inline struct btree_iter * ++bch2_hash_hole(struct btree_trans *trans, ++ const struct bch_hash_desc desc, ++ const struct bch_hash_info *info, ++ u64 inode, const void *key) ++{ ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ for_each_btree_key(trans, iter, desc.btree_id, ++ POS(inode, desc.hash_key(info, key)), ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT, k, ret) { ++ if (iter->pos.inode != inode) ++ break; ++ ++ if (k.k->type != desc.key_type) ++ return iter; ++ } ++ ++ iter->flags |= BTREE_ITER_KEEP_UNTIL_COMMIT; ++ bch2_trans_iter_put(trans, iter); ++ ++ return ERR_PTR(ret ?: -ENOSPC); ++} ++ ++static __always_inline ++int bch2_hash_needs_whiteout(struct btree_trans *trans, ++ const struct bch_hash_desc desc, ++ const struct bch_hash_info *info, ++ struct btree_iter *start) ++{ ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ iter = bch2_trans_copy_iter(trans, start); ++ if (IS_ERR(iter)) ++ return PTR_ERR(iter); ++ ++ bch2_btree_iter_next_slot(iter); ++ ++ for_each_btree_key_continue(iter, BTREE_ITER_SLOTS, k, ret) { ++ if (k.k->type != desc.key_type && ++ k.k->type != KEY_TYPE_whiteout) ++ break; ++ ++ if (k.k->type == desc.key_type && ++ desc.hash_bkey(info, k) <= start->pos.offset) { ++ iter->flags |= BTREE_ITER_KEEP_UNTIL_COMMIT; ++ ret = 1; ++ break; ++ } ++ } ++ ++ bch2_trans_iter_put(trans, iter); ++ return ret; ++} ++ ++static __always_inline ++int bch2_hash_set(struct btree_trans *trans, ++ const struct bch_hash_desc desc, ++ const struct bch_hash_info *info, ++ u64 inode, struct bkey_i *insert, int flags) ++{ ++ struct btree_iter *iter, *slot = NULL; ++ struct bkey_s_c k; ++ bool found = false; ++ int ret; ++ ++ for_each_btree_key(trans, iter, desc.btree_id, ++ POS(inode, desc.hash_bkey(info, bkey_i_to_s_c(insert))), ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT, k, ret) { ++ if (iter->pos.inode != inode) ++ break; ++ ++ if (k.k->type == desc.key_type) { ++ if (!desc.cmp_bkey(k, bkey_i_to_s_c(insert))) ++ goto found; ++ ++ /* hash collision: */ ++ continue; ++ } ++ ++ if (!slot && ++ !(flags & BCH_HASH_SET_MUST_REPLACE)) { ++ slot = bch2_trans_copy_iter(trans, iter); ++ if (IS_ERR(slot)) ++ return PTR_ERR(slot); ++ } ++ ++ if (k.k->type != KEY_TYPE_whiteout) ++ goto not_found; ++ } ++ ++ if (!ret) ++ ret = -ENOSPC; ++out: ++ bch2_trans_iter_put(trans, slot); ++ bch2_trans_iter_put(trans, iter); ++ ++ return ret; ++found: ++ found = true; ++not_found: ++ ++ if (!found && (flags & BCH_HASH_SET_MUST_REPLACE)) { ++ ret = -ENOENT; ++ } else if (found && (flags & BCH_HASH_SET_MUST_CREATE)) { ++ ret = -EEXIST; ++ } else { ++ if (!found && slot) ++ swap(iter, slot); ++ ++ insert->k.p = iter->pos; ++ bch2_trans_update(trans, iter, insert, 0); ++ } ++ ++ goto out; ++} ++ ++static __always_inline ++int bch2_hash_delete_at(struct btree_trans *trans, ++ const struct bch_hash_desc desc, ++ const struct bch_hash_info *info, ++ struct btree_iter *iter) ++{ ++ struct bkey_i *delete; ++ int ret; ++ ++ ret = bch2_hash_needs_whiteout(trans, desc, info, iter); ++ if (ret < 0) ++ return ret; ++ ++ delete = bch2_trans_kmalloc(trans, sizeof(*delete)); ++ if (IS_ERR(delete)) ++ return PTR_ERR(delete); ++ ++ bkey_init(&delete->k); ++ delete->k.p = iter->pos; ++ delete->k.type = ret ? KEY_TYPE_whiteout : KEY_TYPE_deleted; ++ ++ bch2_trans_update(trans, iter, delete, 0); ++ return 0; ++} ++ ++static __always_inline ++int bch2_hash_delete(struct btree_trans *trans, ++ const struct bch_hash_desc desc, ++ const struct bch_hash_info *info, ++ u64 inode, const void *key) ++{ ++ struct btree_iter *iter; ++ int ret; ++ ++ iter = bch2_hash_lookup(trans, desc, info, inode, key, ++ BTREE_ITER_INTENT); ++ if (IS_ERR(iter)) ++ return PTR_ERR(iter); ++ ++ ret = bch2_hash_delete_at(trans, desc, info, iter); ++ bch2_trans_iter_put(trans, iter); ++ return ret; ++} ++ ++#endif /* _BCACHEFS_STR_HASH_H */ +diff --git a/fs/bcachefs/super-io.c b/fs/bcachefs/super-io.c +new file mode 100644 +index 000000000000..cee6cc938734 +--- /dev/null ++++ b/fs/bcachefs/super-io.c +@@ -0,0 +1,1158 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "btree_update_interior.h" ++#include "buckets.h" ++#include "checksum.h" ++#include "disk_groups.h" ++#include "ec.h" ++#include "error.h" ++#include "io.h" ++#include "journal.h" ++#include "journal_seq_blacklist.h" ++#include "replicas.h" ++#include "quota.h" ++#include "super-io.h" ++#include "super.h" ++#include "vstructs.h" ++ ++#include ++#include ++ ++const char * const bch2_sb_fields[] = { ++#define x(name, nr) #name, ++ BCH_SB_FIELDS() ++#undef x ++ NULL ++}; ++ ++static const char *bch2_sb_field_validate(struct bch_sb *, ++ struct bch_sb_field *); ++ ++struct bch_sb_field *bch2_sb_field_get(struct bch_sb *sb, ++ enum bch_sb_field_type type) ++{ ++ struct bch_sb_field *f; ++ ++ /* XXX: need locking around superblock to access optional fields */ ++ ++ vstruct_for_each(sb, f) ++ if (le32_to_cpu(f->type) == type) ++ return f; ++ return NULL; ++} ++ ++static struct bch_sb_field *__bch2_sb_field_resize(struct bch_sb_handle *sb, ++ struct bch_sb_field *f, ++ unsigned u64s) ++{ ++ unsigned old_u64s = f ? le32_to_cpu(f->u64s) : 0; ++ unsigned sb_u64s = le32_to_cpu(sb->sb->u64s) + u64s - old_u64s; ++ ++ BUG_ON(get_order(__vstruct_bytes(struct bch_sb, sb_u64s)) > ++ sb->page_order); ++ ++ if (!f && !u64s) { ++ /* nothing to do: */ ++ } else if (!f) { ++ f = vstruct_last(sb->sb); ++ memset(f, 0, sizeof(u64) * u64s); ++ f->u64s = cpu_to_le32(u64s); ++ f->type = 0; ++ } else { ++ void *src, *dst; ++ ++ src = vstruct_end(f); ++ ++ if (u64s) { ++ f->u64s = cpu_to_le32(u64s); ++ dst = vstruct_end(f); ++ } else { ++ dst = f; ++ } ++ ++ memmove(dst, src, vstruct_end(sb->sb) - src); ++ ++ if (dst > src) ++ memset(src, 0, dst - src); ++ } ++ ++ sb->sb->u64s = cpu_to_le32(sb_u64s); ++ ++ return u64s ? f : NULL; ++} ++ ++void bch2_sb_field_delete(struct bch_sb_handle *sb, ++ enum bch_sb_field_type type) ++{ ++ struct bch_sb_field *f = bch2_sb_field_get(sb->sb, type); ++ ++ if (f) ++ __bch2_sb_field_resize(sb, f, 0); ++} ++ ++/* Superblock realloc/free: */ ++ ++void bch2_free_super(struct bch_sb_handle *sb) ++{ ++ if (sb->bio) ++ bio_put(sb->bio); ++ if (!IS_ERR_OR_NULL(sb->bdev)) ++ blkdev_put(sb->bdev, sb->mode); ++ ++ free_pages((unsigned long) sb->sb, sb->page_order); ++ memset(sb, 0, sizeof(*sb)); ++} ++ ++int bch2_sb_realloc(struct bch_sb_handle *sb, unsigned u64s) ++{ ++ size_t new_bytes = __vstruct_bytes(struct bch_sb, u64s); ++ unsigned order = get_order(new_bytes); ++ struct bch_sb *new_sb; ++ struct bio *bio; ++ ++ if (sb->sb && sb->page_order >= order) ++ return 0; ++ ++ if (sb->have_layout) { ++ u64 max_bytes = 512 << sb->sb->layout.sb_max_size_bits; ++ ++ if (new_bytes > max_bytes) { ++ char buf[BDEVNAME_SIZE]; ++ ++ pr_err("%s: superblock too big: want %zu but have %llu", ++ bdevname(sb->bdev, buf), new_bytes, max_bytes); ++ return -ENOSPC; ++ } ++ } ++ ++ if (sb->page_order >= order && sb->sb) ++ return 0; ++ ++ if (dynamic_fault("bcachefs:add:super_realloc")) ++ return -ENOMEM; ++ ++ if (sb->have_bio) { ++ bio = bio_kmalloc(GFP_KERNEL, 1 << order); ++ if (!bio) ++ return -ENOMEM; ++ ++ if (sb->bio) ++ bio_put(sb->bio); ++ sb->bio = bio; ++ } ++ ++ new_sb = (void *) __get_free_pages(GFP_NOFS|__GFP_ZERO, order); ++ if (!new_sb) ++ return -ENOMEM; ++ ++ if (sb->sb) ++ memcpy(new_sb, sb->sb, PAGE_SIZE << sb->page_order); ++ ++ free_pages((unsigned long) sb->sb, sb->page_order); ++ sb->sb = new_sb; ++ ++ sb->page_order = order; ++ ++ return 0; ++} ++ ++struct bch_sb_field *bch2_sb_field_resize(struct bch_sb_handle *sb, ++ enum bch_sb_field_type type, ++ unsigned u64s) ++{ ++ struct bch_sb_field *f = bch2_sb_field_get(sb->sb, type); ++ ssize_t old_u64s = f ? le32_to_cpu(f->u64s) : 0; ++ ssize_t d = -old_u64s + u64s; ++ ++ if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s) + d)) ++ return NULL; ++ ++ if (sb->fs_sb) { ++ struct bch_fs *c = container_of(sb, struct bch_fs, disk_sb); ++ struct bch_dev *ca; ++ unsigned i; ++ ++ lockdep_assert_held(&c->sb_lock); ++ ++ /* XXX: we're not checking that offline device have enough space */ ++ ++ for_each_online_member(ca, c, i) { ++ struct bch_sb_handle *sb = &ca->disk_sb; ++ ++ if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s) + d)) { ++ percpu_ref_put(&ca->ref); ++ return NULL; ++ } ++ } ++ } ++ ++ f = bch2_sb_field_get(sb->sb, type); ++ f = __bch2_sb_field_resize(sb, f, u64s); ++ if (f) ++ f->type = cpu_to_le32(type); ++ return f; ++} ++ ++/* Superblock validate: */ ++ ++static inline void __bch2_sb_layout_size_assert(void) ++{ ++ BUILD_BUG_ON(sizeof(struct bch_sb_layout) != 512); ++} ++ ++static const char *validate_sb_layout(struct bch_sb_layout *layout) ++{ ++ u64 offset, prev_offset, max_sectors; ++ unsigned i; ++ ++ if (uuid_le_cmp(layout->magic, BCACHE_MAGIC)) ++ return "Not a bcachefs superblock layout"; ++ ++ if (layout->layout_type != 0) ++ return "Invalid superblock layout type"; ++ ++ if (!layout->nr_superblocks) ++ return "Invalid superblock layout: no superblocks"; ++ ++ if (layout->nr_superblocks > ARRAY_SIZE(layout->sb_offset)) ++ return "Invalid superblock layout: too many superblocks"; ++ ++ max_sectors = 1 << layout->sb_max_size_bits; ++ ++ prev_offset = le64_to_cpu(layout->sb_offset[0]); ++ ++ for (i = 1; i < layout->nr_superblocks; i++) { ++ offset = le64_to_cpu(layout->sb_offset[i]); ++ ++ if (offset < prev_offset + max_sectors) ++ return "Invalid superblock layout: superblocks overlap"; ++ prev_offset = offset; ++ } ++ ++ return NULL; ++} ++ ++const char *bch2_sb_validate(struct bch_sb_handle *disk_sb) ++{ ++ struct bch_sb *sb = disk_sb->sb; ++ struct bch_sb_field *f; ++ struct bch_sb_field_members *mi; ++ const char *err; ++ u32 version, version_min; ++ u16 block_size; ++ ++ version = le16_to_cpu(sb->version); ++ version_min = version >= bcachefs_metadata_version_new_versioning ++ ? le16_to_cpu(sb->version_min) ++ : version; ++ ++ if (version >= bcachefs_metadata_version_max || ++ version_min < bcachefs_metadata_version_min) ++ return "Unsupported superblock version"; ++ ++ if (version_min > version) ++ return "Bad minimum version"; ++ ++ if (sb->features[1] || ++ (le64_to_cpu(sb->features[0]) & (~0ULL << BCH_FEATURE_NR))) ++ return "Filesystem has incompatible features"; ++ ++ block_size = le16_to_cpu(sb->block_size); ++ ++ if (!is_power_of_2(block_size) || ++ block_size > PAGE_SECTORS) ++ return "Bad block size"; ++ ++ if (bch2_is_zero(sb->user_uuid.b, sizeof(uuid_le))) ++ return "Bad user UUID"; ++ ++ if (bch2_is_zero(sb->uuid.b, sizeof(uuid_le))) ++ return "Bad internal UUID"; ++ ++ if (!sb->nr_devices || ++ sb->nr_devices <= sb->dev_idx || ++ sb->nr_devices > BCH_SB_MEMBERS_MAX) ++ return "Bad number of member devices"; ++ ++ if (!BCH_SB_META_REPLICAS_WANT(sb) || ++ BCH_SB_META_REPLICAS_WANT(sb) >= BCH_REPLICAS_MAX) ++ return "Invalid number of metadata replicas"; ++ ++ if (!BCH_SB_META_REPLICAS_REQ(sb) || ++ BCH_SB_META_REPLICAS_REQ(sb) >= BCH_REPLICAS_MAX) ++ return "Invalid number of metadata replicas"; ++ ++ if (!BCH_SB_DATA_REPLICAS_WANT(sb) || ++ BCH_SB_DATA_REPLICAS_WANT(sb) >= BCH_REPLICAS_MAX) ++ return "Invalid number of data replicas"; ++ ++ if (!BCH_SB_DATA_REPLICAS_REQ(sb) || ++ BCH_SB_DATA_REPLICAS_REQ(sb) >= BCH_REPLICAS_MAX) ++ return "Invalid number of data replicas"; ++ ++ if (BCH_SB_META_CSUM_TYPE(sb) >= BCH_CSUM_OPT_NR) ++ return "Invalid metadata checksum type"; ++ ++ if (BCH_SB_DATA_CSUM_TYPE(sb) >= BCH_CSUM_OPT_NR) ++ return "Invalid metadata checksum type"; ++ ++ if (BCH_SB_COMPRESSION_TYPE(sb) >= BCH_COMPRESSION_OPT_NR) ++ return "Invalid compression type"; ++ ++ if (!BCH_SB_BTREE_NODE_SIZE(sb)) ++ return "Btree node size not set"; ++ ++ if (!is_power_of_2(BCH_SB_BTREE_NODE_SIZE(sb))) ++ return "Btree node size not a power of two"; ++ ++ if (BCH_SB_GC_RESERVE(sb) < 5) ++ return "gc reserve percentage too small"; ++ ++ if (!sb->time_precision || ++ le32_to_cpu(sb->time_precision) > NSEC_PER_SEC) ++ return "invalid time precision"; ++ ++ /* validate layout */ ++ err = validate_sb_layout(&sb->layout); ++ if (err) ++ return err; ++ ++ vstruct_for_each(sb, f) { ++ if (!f->u64s) ++ return "Invalid superblock: invalid optional field"; ++ ++ if (vstruct_next(f) > vstruct_last(sb)) ++ return "Invalid superblock: invalid optional field"; ++ } ++ ++ /* members must be validated first: */ ++ mi = bch2_sb_get_members(sb); ++ if (!mi) ++ return "Invalid superblock: member info area missing"; ++ ++ err = bch2_sb_field_validate(sb, &mi->field); ++ if (err) ++ return err; ++ ++ vstruct_for_each(sb, f) { ++ if (le32_to_cpu(f->type) == BCH_SB_FIELD_members) ++ continue; ++ ++ err = bch2_sb_field_validate(sb, f); ++ if (err) ++ return err; ++ } ++ ++ return NULL; ++} ++ ++/* device open: */ ++ ++static void bch2_sb_update(struct bch_fs *c) ++{ ++ struct bch_sb *src = c->disk_sb.sb; ++ struct bch_sb_field_members *mi = bch2_sb_get_members(src); ++ struct bch_dev *ca; ++ unsigned i; ++ ++ lockdep_assert_held(&c->sb_lock); ++ ++ c->sb.uuid = src->uuid; ++ c->sb.user_uuid = src->user_uuid; ++ c->sb.version = le16_to_cpu(src->version); ++ c->sb.nr_devices = src->nr_devices; ++ c->sb.clean = BCH_SB_CLEAN(src); ++ c->sb.encryption_type = BCH_SB_ENCRYPTION_TYPE(src); ++ c->sb.encoded_extent_max= 1 << BCH_SB_ENCODED_EXTENT_MAX_BITS(src); ++ c->sb.time_base_lo = le64_to_cpu(src->time_base_lo); ++ c->sb.time_base_hi = le32_to_cpu(src->time_base_hi); ++ c->sb.time_precision = le32_to_cpu(src->time_precision); ++ c->sb.features = le64_to_cpu(src->features[0]); ++ c->sb.compat = le64_to_cpu(src->compat[0]); ++ ++ for_each_member_device(ca, c, i) ++ ca->mi = bch2_mi_to_cpu(mi->members + i); ++} ++ ++/* doesn't copy member info */ ++static void __copy_super(struct bch_sb_handle *dst_handle, struct bch_sb *src) ++{ ++ struct bch_sb_field *src_f, *dst_f; ++ struct bch_sb *dst = dst_handle->sb; ++ unsigned i; ++ ++ dst->version = src->version; ++ dst->version_min = src->version_min; ++ dst->seq = src->seq; ++ dst->uuid = src->uuid; ++ dst->user_uuid = src->user_uuid; ++ memcpy(dst->label, src->label, sizeof(dst->label)); ++ ++ dst->block_size = src->block_size; ++ dst->nr_devices = src->nr_devices; ++ ++ dst->time_base_lo = src->time_base_lo; ++ dst->time_base_hi = src->time_base_hi; ++ dst->time_precision = src->time_precision; ++ ++ memcpy(dst->flags, src->flags, sizeof(dst->flags)); ++ memcpy(dst->features, src->features, sizeof(dst->features)); ++ memcpy(dst->compat, src->compat, sizeof(dst->compat)); ++ ++ for (i = 0; i < BCH_SB_FIELD_NR; i++) { ++ if (i == BCH_SB_FIELD_journal) ++ continue; ++ ++ src_f = bch2_sb_field_get(src, i); ++ dst_f = bch2_sb_field_get(dst, i); ++ dst_f = __bch2_sb_field_resize(dst_handle, dst_f, ++ src_f ? le32_to_cpu(src_f->u64s) : 0); ++ ++ if (src_f) ++ memcpy(dst_f, src_f, vstruct_bytes(src_f)); ++ } ++} ++ ++int bch2_sb_to_fs(struct bch_fs *c, struct bch_sb *src) ++{ ++ struct bch_sb_field_journal *journal_buckets = ++ bch2_sb_get_journal(src); ++ unsigned journal_u64s = journal_buckets ++ ? le32_to_cpu(journal_buckets->field.u64s) ++ : 0; ++ int ret; ++ ++ lockdep_assert_held(&c->sb_lock); ++ ++ ret = bch2_sb_realloc(&c->disk_sb, ++ le32_to_cpu(src->u64s) - journal_u64s); ++ if (ret) ++ return ret; ++ ++ __copy_super(&c->disk_sb, src); ++ ++ ret = bch2_sb_replicas_to_cpu_replicas(c); ++ if (ret) ++ return ret; ++ ++ ret = bch2_sb_disk_groups_to_cpu(c); ++ if (ret) ++ return ret; ++ ++ bch2_sb_update(c); ++ return 0; ++} ++ ++int bch2_sb_from_fs(struct bch_fs *c, struct bch_dev *ca) ++{ ++ struct bch_sb *src = c->disk_sb.sb, *dst = ca->disk_sb.sb; ++ struct bch_sb_field_journal *journal_buckets = ++ bch2_sb_get_journal(dst); ++ unsigned journal_u64s = journal_buckets ++ ? le32_to_cpu(journal_buckets->field.u64s) ++ : 0; ++ unsigned u64s = le32_to_cpu(src->u64s) + journal_u64s; ++ int ret; ++ ++ ret = bch2_sb_realloc(&ca->disk_sb, u64s); ++ if (ret) ++ return ret; ++ ++ __copy_super(&ca->disk_sb, src); ++ return 0; ++} ++ ++/* read superblock: */ ++ ++static const char *read_one_super(struct bch_sb_handle *sb, u64 offset) ++{ ++ struct bch_csum csum; ++ size_t bytes; ++reread: ++ bio_reset(sb->bio); ++ bio_set_dev(sb->bio, sb->bdev); ++ sb->bio->bi_iter.bi_sector = offset; ++ bio_set_op_attrs(sb->bio, REQ_OP_READ, REQ_SYNC|REQ_META); ++ bch2_bio_map(sb->bio, sb->sb, PAGE_SIZE << sb->page_order); ++ ++ if (submit_bio_wait(sb->bio)) ++ return "IO error"; ++ ++ if (uuid_le_cmp(sb->sb->magic, BCACHE_MAGIC)) ++ return "Not a bcachefs superblock"; ++ ++ if (le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_min || ++ le16_to_cpu(sb->sb->version) >= bcachefs_metadata_version_max) ++ return "Unsupported superblock version"; ++ ++ bytes = vstruct_bytes(sb->sb); ++ ++ if (bytes > 512 << sb->sb->layout.sb_max_size_bits) ++ return "Bad superblock: too big"; ++ ++ if (get_order(bytes) > sb->page_order) { ++ if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s))) ++ return "cannot allocate memory"; ++ goto reread; ++ } ++ ++ if (BCH_SB_CSUM_TYPE(sb->sb) >= BCH_CSUM_NR) ++ return "unknown csum type"; ++ ++ /* XXX: verify MACs */ ++ csum = csum_vstruct(NULL, BCH_SB_CSUM_TYPE(sb->sb), ++ null_nonce(), sb->sb); ++ ++ if (bch2_crc_cmp(csum, sb->sb->csum)) ++ return "bad checksum reading superblock"; ++ ++ sb->seq = le64_to_cpu(sb->sb->seq); ++ ++ return NULL; ++} ++ ++int bch2_read_super(const char *path, struct bch_opts *opts, ++ struct bch_sb_handle *sb) ++{ ++ u64 offset = opt_get(*opts, sb); ++ struct bch_sb_layout layout; ++ const char *err; ++ __le64 *i; ++ int ret; ++ ++ pr_verbose_init(*opts, ""); ++ ++ memset(sb, 0, sizeof(*sb)); ++ sb->mode = FMODE_READ; ++ sb->have_bio = true; ++ ++ if (!opt_get(*opts, noexcl)) ++ sb->mode |= FMODE_EXCL; ++ ++ if (!opt_get(*opts, nochanges)) ++ sb->mode |= FMODE_WRITE; ++ ++ sb->bdev = blkdev_get_by_path(path, sb->mode, sb); ++ if (IS_ERR(sb->bdev) && ++ PTR_ERR(sb->bdev) == -EACCES && ++ opt_get(*opts, read_only)) { ++ sb->mode &= ~FMODE_WRITE; ++ ++ sb->bdev = blkdev_get_by_path(path, sb->mode, sb); ++ if (!IS_ERR(sb->bdev)) ++ opt_set(*opts, nochanges, true); ++ } ++ ++ if (IS_ERR(sb->bdev)) { ++ ret = PTR_ERR(sb->bdev); ++ goto out; ++ } ++ ++ err = "cannot allocate memory"; ++ ret = bch2_sb_realloc(sb, 0); ++ if (ret) ++ goto err; ++ ++ ret = -EFAULT; ++ err = "dynamic fault"; ++ if (bch2_fs_init_fault("read_super")) ++ goto err; ++ ++ ret = -EINVAL; ++ err = read_one_super(sb, offset); ++ if (!err) ++ goto got_super; ++ ++ if (opt_defined(*opts, sb)) ++ goto err; ++ ++ pr_err("error reading default superblock: %s", err); ++ ++ /* ++ * Error reading primary superblock - read location of backup ++ * superblocks: ++ */ ++ bio_reset(sb->bio); ++ bio_set_dev(sb->bio, sb->bdev); ++ sb->bio->bi_iter.bi_sector = BCH_SB_LAYOUT_SECTOR; ++ bio_set_op_attrs(sb->bio, REQ_OP_READ, REQ_SYNC|REQ_META); ++ /* ++ * use sb buffer to read layout, since sb buffer is page aligned but ++ * layout won't be: ++ */ ++ bch2_bio_map(sb->bio, sb->sb, sizeof(struct bch_sb_layout)); ++ ++ err = "IO error"; ++ if (submit_bio_wait(sb->bio)) ++ goto err; ++ ++ memcpy(&layout, sb->sb, sizeof(layout)); ++ err = validate_sb_layout(&layout); ++ if (err) ++ goto err; ++ ++ for (i = layout.sb_offset; ++ i < layout.sb_offset + layout.nr_superblocks; i++) { ++ offset = le64_to_cpu(*i); ++ ++ if (offset == opt_get(*opts, sb)) ++ continue; ++ ++ err = read_one_super(sb, offset); ++ if (!err) ++ goto got_super; ++ } ++ ++ ret = -EINVAL; ++ goto err; ++ ++got_super: ++ err = "Superblock block size smaller than device block size"; ++ ret = -EINVAL; ++ if (le16_to_cpu(sb->sb->block_size) << 9 < ++ bdev_logical_block_size(sb->bdev)) ++ goto err; ++ ++ if (sb->mode & FMODE_WRITE) ++ bdev_get_queue(sb->bdev)->backing_dev_info->capabilities ++ |= BDI_CAP_STABLE_WRITES; ++ ret = 0; ++ sb->have_layout = true; ++out: ++ pr_verbose_init(*opts, "ret %i", ret); ++ return ret; ++err: ++ bch2_free_super(sb); ++ pr_err("error reading superblock: %s", err); ++ goto out; ++} ++ ++/* write superblock: */ ++ ++static void write_super_endio(struct bio *bio) ++{ ++ struct bch_dev *ca = bio->bi_private; ++ ++ /* XXX: return errors directly */ ++ ++ if (bch2_dev_io_err_on(bio->bi_status, ca, "superblock write: %s", ++ bch2_blk_status_to_str(bio->bi_status))) ++ ca->sb_write_error = 1; ++ ++ closure_put(&ca->fs->sb_write); ++ percpu_ref_put(&ca->io_ref); ++} ++ ++static void read_back_super(struct bch_fs *c, struct bch_dev *ca) ++{ ++ struct bch_sb *sb = ca->disk_sb.sb; ++ struct bio *bio = ca->disk_sb.bio; ++ ++ bio_reset(bio); ++ bio_set_dev(bio, ca->disk_sb.bdev); ++ bio->bi_iter.bi_sector = le64_to_cpu(sb->layout.sb_offset[0]); ++ bio->bi_end_io = write_super_endio; ++ bio->bi_private = ca; ++ bio_set_op_attrs(bio, REQ_OP_READ, REQ_SYNC|REQ_META); ++ bch2_bio_map(bio, ca->sb_read_scratch, PAGE_SIZE); ++ ++ this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_sb], ++ bio_sectors(bio)); ++ ++ percpu_ref_get(&ca->io_ref); ++ closure_bio_submit(bio, &c->sb_write); ++} ++ ++static void write_one_super(struct bch_fs *c, struct bch_dev *ca, unsigned idx) ++{ ++ struct bch_sb *sb = ca->disk_sb.sb; ++ struct bio *bio = ca->disk_sb.bio; ++ ++ sb->offset = sb->layout.sb_offset[idx]; ++ ++ SET_BCH_SB_CSUM_TYPE(sb, c->opts.metadata_checksum); ++ sb->csum = csum_vstruct(c, BCH_SB_CSUM_TYPE(sb), ++ null_nonce(), sb); ++ ++ bio_reset(bio); ++ bio_set_dev(bio, ca->disk_sb.bdev); ++ bio->bi_iter.bi_sector = le64_to_cpu(sb->offset); ++ bio->bi_end_io = write_super_endio; ++ bio->bi_private = ca; ++ bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META); ++ bch2_bio_map(bio, sb, ++ roundup((size_t) vstruct_bytes(sb), ++ bdev_logical_block_size(ca->disk_sb.bdev))); ++ ++ this_cpu_add(ca->io_done->sectors[WRITE][BCH_DATA_sb], ++ bio_sectors(bio)); ++ ++ percpu_ref_get(&ca->io_ref); ++ closure_bio_submit(bio, &c->sb_write); ++} ++ ++int bch2_write_super(struct bch_fs *c) ++{ ++ struct closure *cl = &c->sb_write; ++ struct bch_dev *ca; ++ unsigned i, sb = 0, nr_wrote; ++ const char *err; ++ struct bch_devs_mask sb_written; ++ bool wrote, can_mount_without_written, can_mount_with_written; ++ int ret = 0; ++ ++ lockdep_assert_held(&c->sb_lock); ++ ++ closure_init_stack(cl); ++ memset(&sb_written, 0, sizeof(sb_written)); ++ ++ le64_add_cpu(&c->disk_sb.sb->seq, 1); ++ ++ if (test_bit(BCH_FS_ERROR, &c->flags)) ++ SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 1); ++ ++ for_each_online_member(ca, c, i) ++ bch2_sb_from_fs(c, ca); ++ ++ for_each_online_member(ca, c, i) { ++ err = bch2_sb_validate(&ca->disk_sb); ++ if (err) { ++ bch2_fs_inconsistent(c, "sb invalid before write: %s", err); ++ ret = -1; ++ goto out; ++ } ++ } ++ ++ if (c->opts.nochanges) ++ goto out; ++ ++ for_each_online_member(ca, c, i) { ++ __set_bit(ca->dev_idx, sb_written.d); ++ ca->sb_write_error = 0; ++ } ++ ++ for_each_online_member(ca, c, i) ++ read_back_super(c, ca); ++ closure_sync(cl); ++ ++ for_each_online_member(ca, c, i) { ++ if (!ca->sb_write_error && ++ ca->disk_sb.seq != ++ le64_to_cpu(ca->sb_read_scratch->seq)) { ++ bch2_fs_fatal_error(c, ++ "Superblock modified by another process"); ++ percpu_ref_put(&ca->io_ref); ++ ret = -EROFS; ++ goto out; ++ } ++ } ++ ++ do { ++ wrote = false; ++ for_each_online_member(ca, c, i) ++ if (!ca->sb_write_error && ++ sb < ca->disk_sb.sb->layout.nr_superblocks) { ++ write_one_super(c, ca, sb); ++ wrote = true; ++ } ++ closure_sync(cl); ++ sb++; ++ } while (wrote); ++ ++ for_each_online_member(ca, c, i) { ++ if (ca->sb_write_error) ++ __clear_bit(ca->dev_idx, sb_written.d); ++ else ++ ca->disk_sb.seq = le64_to_cpu(ca->disk_sb.sb->seq); ++ } ++ ++ nr_wrote = dev_mask_nr(&sb_written); ++ ++ can_mount_with_written = ++ bch2_have_enough_devs(__bch2_replicas_status(c, sb_written), ++ BCH_FORCE_IF_DEGRADED); ++ ++ for (i = 0; i < ARRAY_SIZE(sb_written.d); i++) ++ sb_written.d[i] = ~sb_written.d[i]; ++ ++ can_mount_without_written = ++ bch2_have_enough_devs(__bch2_replicas_status(c, sb_written), ++ BCH_FORCE_IF_DEGRADED); ++ ++ /* ++ * If we would be able to mount _without_ the devices we successfully ++ * wrote superblocks to, we weren't able to write to enough devices: ++ * ++ * Exception: if we can mount without the successes because we haven't ++ * written anything (new filesystem), we continue if we'd be able to ++ * mount with the devices we did successfully write to: ++ */ ++ if (bch2_fs_fatal_err_on(!nr_wrote || ++ (can_mount_without_written && ++ !can_mount_with_written), c, ++ "Unable to write superblock to sufficient devices")) ++ ret = -1; ++out: ++ /* Make new options visible after they're persistent: */ ++ bch2_sb_update(c); ++ return ret; ++} ++ ++void __bch2_check_set_feature(struct bch_fs *c, unsigned feat) ++{ ++ mutex_lock(&c->sb_lock); ++ if (!(c->sb.features & (1ULL << feat))) { ++ c->disk_sb.sb->features[0] |= cpu_to_le64(1ULL << feat); ++ ++ bch2_write_super(c); ++ } ++ mutex_unlock(&c->sb_lock); ++} ++ ++/* BCH_SB_FIELD_journal: */ ++ ++static int u64_cmp(const void *_l, const void *_r) ++{ ++ u64 l = *((const u64 *) _l), r = *((const u64 *) _r); ++ ++ return l < r ? -1 : l > r ? 1 : 0; ++} ++ ++static const char *bch2_sb_validate_journal(struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_journal *journal = field_to_type(f, journal); ++ struct bch_member *m = bch2_sb_get_members(sb)->members + sb->dev_idx; ++ const char *err; ++ unsigned nr; ++ unsigned i; ++ u64 *b; ++ ++ journal = bch2_sb_get_journal(sb); ++ if (!journal) ++ return NULL; ++ ++ nr = bch2_nr_journal_buckets(journal); ++ if (!nr) ++ return NULL; ++ ++ b = kmalloc_array(sizeof(u64), nr, GFP_KERNEL); ++ if (!b) ++ return "cannot allocate memory"; ++ ++ for (i = 0; i < nr; i++) ++ b[i] = le64_to_cpu(journal->buckets[i]); ++ ++ sort(b, nr, sizeof(u64), u64_cmp, NULL); ++ ++ err = "journal bucket at sector 0"; ++ if (!b[0]) ++ goto err; ++ ++ err = "journal bucket before first bucket"; ++ if (m && b[0] < le16_to_cpu(m->first_bucket)) ++ goto err; ++ ++ err = "journal bucket past end of device"; ++ if (m && b[nr - 1] >= le64_to_cpu(m->nbuckets)) ++ goto err; ++ ++ err = "duplicate journal buckets"; ++ for (i = 0; i + 1 < nr; i++) ++ if (b[i] == b[i + 1]) ++ goto err; ++ ++ err = NULL; ++err: ++ kfree(b); ++ return err; ++} ++ ++static const struct bch_sb_field_ops bch_sb_field_ops_journal = { ++ .validate = bch2_sb_validate_journal, ++}; ++ ++/* BCH_SB_FIELD_members: */ ++ ++static const char *bch2_sb_validate_members(struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_members *mi = field_to_type(f, members); ++ struct bch_member *m; ++ ++ if ((void *) (mi->members + sb->nr_devices) > ++ vstruct_end(&mi->field)) ++ return "Invalid superblock: bad member info"; ++ ++ for (m = mi->members; ++ m < mi->members + sb->nr_devices; ++ m++) { ++ if (!bch2_member_exists(m)) ++ continue; ++ ++ if (le64_to_cpu(m->nbuckets) > LONG_MAX) ++ return "Too many buckets"; ++ ++ if (le64_to_cpu(m->nbuckets) - ++ le16_to_cpu(m->first_bucket) < BCH_MIN_NR_NBUCKETS) ++ return "Not enough buckets"; ++ ++ if (le16_to_cpu(m->bucket_size) < ++ le16_to_cpu(sb->block_size)) ++ return "bucket size smaller than block size"; ++ ++ if (le16_to_cpu(m->bucket_size) < ++ BCH_SB_BTREE_NODE_SIZE(sb)) ++ return "bucket size smaller than btree node size"; ++ } ++ ++ return NULL; ++} ++ ++static const struct bch_sb_field_ops bch_sb_field_ops_members = { ++ .validate = bch2_sb_validate_members, ++}; ++ ++/* BCH_SB_FIELD_crypt: */ ++ ++static const char *bch2_sb_validate_crypt(struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_crypt *crypt = field_to_type(f, crypt); ++ ++ if (vstruct_bytes(&crypt->field) != sizeof(*crypt)) ++ return "invalid field crypt: wrong size"; ++ ++ if (BCH_CRYPT_KDF_TYPE(crypt)) ++ return "invalid field crypt: bad kdf type"; ++ ++ return NULL; ++} ++ ++static const struct bch_sb_field_ops bch_sb_field_ops_crypt = { ++ .validate = bch2_sb_validate_crypt, ++}; ++ ++/* BCH_SB_FIELD_clean: */ ++ ++void bch2_sb_clean_renumber(struct bch_sb_field_clean *clean, int write) ++{ ++ struct jset_entry *entry; ++ ++ for (entry = clean->start; ++ entry < (struct jset_entry *) vstruct_end(&clean->field); ++ entry = vstruct_next(entry)) ++ bch2_bkey_renumber(BKEY_TYPE_BTREE, bkey_to_packed(entry->start), write); ++} ++ ++int bch2_fs_mark_dirty(struct bch_fs *c) ++{ ++ int ret; ++ ++ /* ++ * Unconditionally write superblock, to verify it hasn't changed before ++ * we go rw: ++ */ ++ ++ mutex_lock(&c->sb_lock); ++ SET_BCH_SB_CLEAN(c->disk_sb.sb, false); ++ c->disk_sb.sb->features[0] |= 1ULL << BCH_FEATURE_new_extent_overwrite; ++ c->disk_sb.sb->features[0] |= 1ULL << BCH_FEATURE_extents_above_btree_updates; ++ c->disk_sb.sb->features[0] |= 1ULL << BCH_FEATURE_btree_updates_journalled; ++ ret = bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ return ret; ++} ++ ++static void ++entry_init_u64s(struct jset_entry *entry, unsigned u64s) ++{ ++ memset(entry, 0, u64s * sizeof(u64)); ++ ++ /* ++ * The u64s field counts from the start of data, ignoring the shared ++ * fields. ++ */ ++ entry->u64s = u64s - 1; ++} ++ ++static void ++entry_init_size(struct jset_entry *entry, size_t size) ++{ ++ unsigned u64s = DIV_ROUND_UP(size, sizeof(u64)); ++ entry_init_u64s(entry, u64s); ++} ++ ++struct jset_entry * ++bch2_journal_super_entries_add_common(struct bch_fs *c, ++ struct jset_entry *entry, ++ u64 journal_seq) ++{ ++ unsigned i; ++ ++ percpu_down_write(&c->mark_lock); ++ ++ if (!journal_seq) { ++ bch2_fs_usage_acc_to_base(c, 0); ++ bch2_fs_usage_acc_to_base(c, 1); ++ } else { ++ bch2_fs_usage_acc_to_base(c, journal_seq & 1); ++ } ++ ++ { ++ struct jset_entry_usage *u = ++ container_of(entry, struct jset_entry_usage, entry); ++ ++ entry_init_size(entry, sizeof(*u)); ++ u->entry.type = BCH_JSET_ENTRY_usage; ++ u->entry.btree_id = FS_USAGE_INODES; ++ u->v = cpu_to_le64(c->usage_base->nr_inodes); ++ ++ entry = vstruct_next(entry); ++ } ++ ++ { ++ struct jset_entry_usage *u = ++ container_of(entry, struct jset_entry_usage, entry); ++ ++ entry_init_size(entry, sizeof(*u)); ++ u->entry.type = BCH_JSET_ENTRY_usage; ++ u->entry.btree_id = FS_USAGE_KEY_VERSION; ++ u->v = cpu_to_le64(atomic64_read(&c->key_version)); ++ ++ entry = vstruct_next(entry); ++ } ++ ++ for (i = 0; i < BCH_REPLICAS_MAX; i++) { ++ struct jset_entry_usage *u = ++ container_of(entry, struct jset_entry_usage, entry); ++ ++ entry_init_size(entry, sizeof(*u)); ++ u->entry.type = BCH_JSET_ENTRY_usage; ++ u->entry.btree_id = FS_USAGE_RESERVED; ++ u->entry.level = i; ++ u->v = cpu_to_le64(c->usage_base->persistent_reserved[i]); ++ ++ entry = vstruct_next(entry); ++ } ++ ++ for (i = 0; i < c->replicas.nr; i++) { ++ struct bch_replicas_entry *e = ++ cpu_replicas_entry(&c->replicas, i); ++ struct jset_entry_data_usage *u = ++ container_of(entry, struct jset_entry_data_usage, entry); ++ ++ entry_init_size(entry, sizeof(*u) + e->nr_devs); ++ u->entry.type = BCH_JSET_ENTRY_data_usage; ++ u->v = cpu_to_le64(c->usage_base->replicas[i]); ++ memcpy(&u->r, e, replicas_entry_bytes(e)); ++ ++ entry = vstruct_next(entry); ++ } ++ ++ percpu_up_write(&c->mark_lock); ++ ++ return entry; ++} ++ ++void bch2_fs_mark_clean(struct bch_fs *c) ++{ ++ struct bch_sb_field_clean *sb_clean; ++ struct jset_entry *entry; ++ unsigned u64s; ++ ++ mutex_lock(&c->sb_lock); ++ if (BCH_SB_CLEAN(c->disk_sb.sb)) ++ goto out; ++ ++ SET_BCH_SB_CLEAN(c->disk_sb.sb, true); ++ ++ c->disk_sb.sb->compat[0] |= 1ULL << BCH_COMPAT_FEAT_ALLOC_INFO; ++ c->disk_sb.sb->compat[0] |= 1ULL << BCH_COMPAT_FEAT_ALLOC_METADATA; ++ c->disk_sb.sb->features[0] &= ~(1ULL << BCH_FEATURE_extents_above_btree_updates); ++ c->disk_sb.sb->features[0] &= ~(1ULL << BCH_FEATURE_btree_updates_journalled); ++ ++ u64s = sizeof(*sb_clean) / sizeof(u64) + c->journal.entry_u64s_reserved; ++ ++ sb_clean = bch2_sb_resize_clean(&c->disk_sb, u64s); ++ if (!sb_clean) { ++ bch_err(c, "error resizing superblock while setting filesystem clean"); ++ goto out; ++ } ++ ++ sb_clean->flags = 0; ++ sb_clean->read_clock = cpu_to_le16(c->bucket_clock[READ].hand); ++ sb_clean->write_clock = cpu_to_le16(c->bucket_clock[WRITE].hand); ++ sb_clean->journal_seq = cpu_to_le64(journal_cur_seq(&c->journal) - 1); ++ ++ /* Trying to catch outstanding bug: */ ++ BUG_ON(le64_to_cpu(sb_clean->journal_seq) > S64_MAX); ++ ++ entry = sb_clean->start; ++ entry = bch2_journal_super_entries_add_common(c, entry, 0); ++ entry = bch2_btree_roots_to_journal_entries(c, entry, entry); ++ BUG_ON((void *) entry > vstruct_end(&sb_clean->field)); ++ ++ memset(entry, 0, ++ vstruct_end(&sb_clean->field) - (void *) entry); ++ ++ if (le16_to_cpu(c->disk_sb.sb->version) < ++ bcachefs_metadata_version_bkey_renumber) ++ bch2_sb_clean_renumber(sb_clean, WRITE); ++ ++ bch2_write_super(c); ++out: ++ mutex_unlock(&c->sb_lock); ++} ++ ++static const char *bch2_sb_validate_clean(struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_clean *clean = field_to_type(f, clean); ++ ++ if (vstruct_bytes(&clean->field) < sizeof(*clean)) ++ return "invalid field crypt: wrong size"; ++ ++ return NULL; ++} ++ ++static const struct bch_sb_field_ops bch_sb_field_ops_clean = { ++ .validate = bch2_sb_validate_clean, ++}; ++ ++static const struct bch_sb_field_ops *bch2_sb_field_ops[] = { ++#define x(f, nr) \ ++ [BCH_SB_FIELD_##f] = &bch_sb_field_ops_##f, ++ BCH_SB_FIELDS() ++#undef x ++}; ++ ++static const char *bch2_sb_field_validate(struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ unsigned type = le32_to_cpu(f->type); ++ ++ return type < BCH_SB_FIELD_NR ++ ? bch2_sb_field_ops[type]->validate(sb, f) ++ : NULL; ++} ++ ++void bch2_sb_field_to_text(struct printbuf *out, struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ unsigned type = le32_to_cpu(f->type); ++ const struct bch_sb_field_ops *ops = type < BCH_SB_FIELD_NR ++ ? bch2_sb_field_ops[type] : NULL; ++ ++ if (ops) ++ pr_buf(out, "%s", bch2_sb_fields[type]); ++ else ++ pr_buf(out, "(unknown field %u)", type); ++ ++ pr_buf(out, " (size %llu):", vstruct_bytes(f)); ++ ++ if (ops && ops->to_text) ++ bch2_sb_field_ops[type]->to_text(out, sb, f); ++} +diff --git a/fs/bcachefs/super-io.h b/fs/bcachefs/super-io.h +new file mode 100644 +index 000000000000..7a068158efca +--- /dev/null ++++ b/fs/bcachefs/super-io.h +@@ -0,0 +1,137 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_SUPER_IO_H ++#define _BCACHEFS_SUPER_IO_H ++ ++#include "extents.h" ++#include "eytzinger.h" ++#include "super_types.h" ++#include "super.h" ++ ++#include ++ ++struct bch_sb_field *bch2_sb_field_get(struct bch_sb *, enum bch_sb_field_type); ++struct bch_sb_field *bch2_sb_field_resize(struct bch_sb_handle *, ++ enum bch_sb_field_type, unsigned); ++void bch2_sb_field_delete(struct bch_sb_handle *, enum bch_sb_field_type); ++ ++#define field_to_type(_f, _name) \ ++ container_of_or_null(_f, struct bch_sb_field_##_name, field) ++ ++#define x(_name, _nr) \ ++static inline struct bch_sb_field_##_name * \ ++bch2_sb_get_##_name(struct bch_sb *sb) \ ++{ \ ++ return field_to_type(bch2_sb_field_get(sb, \ ++ BCH_SB_FIELD_##_name), _name); \ ++} \ ++ \ ++static inline struct bch_sb_field_##_name * \ ++bch2_sb_resize_##_name(struct bch_sb_handle *sb, unsigned u64s) \ ++{ \ ++ return field_to_type(bch2_sb_field_resize(sb, \ ++ BCH_SB_FIELD_##_name, u64s), _name); \ ++} ++ ++BCH_SB_FIELDS() ++#undef x ++ ++extern const char * const bch2_sb_fields[]; ++ ++struct bch_sb_field_ops { ++ const char * (*validate)(struct bch_sb *, struct bch_sb_field *); ++ void (*to_text)(struct printbuf *, struct bch_sb *, ++ struct bch_sb_field *); ++}; ++ ++static inline __le64 bch2_sb_magic(struct bch_fs *c) ++{ ++ __le64 ret; ++ memcpy(&ret, &c->sb.uuid, sizeof(ret)); ++ return ret; ++} ++ ++static inline __u64 jset_magic(struct bch_fs *c) ++{ ++ return __le64_to_cpu(bch2_sb_magic(c) ^ JSET_MAGIC); ++} ++ ++static inline __u64 bset_magic(struct bch_fs *c) ++{ ++ return __le64_to_cpu(bch2_sb_magic(c) ^ BSET_MAGIC); ++} ++ ++int bch2_sb_to_fs(struct bch_fs *, struct bch_sb *); ++int bch2_sb_from_fs(struct bch_fs *, struct bch_dev *); ++ ++void bch2_free_super(struct bch_sb_handle *); ++int bch2_sb_realloc(struct bch_sb_handle *, unsigned); ++ ++const char *bch2_sb_validate(struct bch_sb_handle *); ++ ++int bch2_read_super(const char *, struct bch_opts *, struct bch_sb_handle *); ++int bch2_write_super(struct bch_fs *); ++void __bch2_check_set_feature(struct bch_fs *, unsigned); ++ ++static inline void bch2_check_set_feature(struct bch_fs *c, unsigned feat) ++{ ++ if (!(c->sb.features & (1ULL << feat))) ++ __bch2_check_set_feature(c, feat); ++} ++ ++/* BCH_SB_FIELD_journal: */ ++ ++static inline unsigned bch2_nr_journal_buckets(struct bch_sb_field_journal *j) ++{ ++ return j ++ ? (__le64 *) vstruct_end(&j->field) - j->buckets ++ : 0; ++} ++ ++/* BCH_SB_FIELD_members: */ ++ ++static inline bool bch2_member_exists(struct bch_member *m) ++{ ++ return !bch2_is_zero(m->uuid.b, sizeof(uuid_le)); ++} ++ ++static inline bool bch2_dev_exists(struct bch_sb *sb, ++ struct bch_sb_field_members *mi, ++ unsigned dev) ++{ ++ return dev < sb->nr_devices && ++ bch2_member_exists(&mi->members[dev]); ++} ++ ++static inline struct bch_member_cpu bch2_mi_to_cpu(struct bch_member *mi) ++{ ++ return (struct bch_member_cpu) { ++ .nbuckets = le64_to_cpu(mi->nbuckets), ++ .first_bucket = le16_to_cpu(mi->first_bucket), ++ .bucket_size = le16_to_cpu(mi->bucket_size), ++ .group = BCH_MEMBER_GROUP(mi), ++ .state = BCH_MEMBER_STATE(mi), ++ .replacement = BCH_MEMBER_REPLACEMENT(mi), ++ .discard = BCH_MEMBER_DISCARD(mi), ++ .data_allowed = BCH_MEMBER_DATA_ALLOWED(mi), ++ .durability = BCH_MEMBER_DURABILITY(mi) ++ ? BCH_MEMBER_DURABILITY(mi) - 1 ++ : 1, ++ .valid = !bch2_is_zero(mi->uuid.b, sizeof(uuid_le)), ++ }; ++} ++ ++/* BCH_SB_FIELD_clean: */ ++ ++struct jset_entry * ++bch2_journal_super_entries_add_common(struct bch_fs *, ++ struct jset_entry *, u64); ++ ++void bch2_sb_clean_renumber(struct bch_sb_field_clean *, int); ++ ++int bch2_fs_mark_dirty(struct bch_fs *); ++void bch2_fs_mark_clean(struct bch_fs *); ++ ++void bch2_sb_field_to_text(struct printbuf *, struct bch_sb *, ++ struct bch_sb_field *); ++ ++#endif /* _BCACHEFS_SUPER_IO_H */ +diff --git a/fs/bcachefs/super.c b/fs/bcachefs/super.c +new file mode 100644 +index 000000000000..015bbd9f21fd +--- /dev/null ++++ b/fs/bcachefs/super.c +@@ -0,0 +1,2037 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * bcachefs setup/teardown code, and some metadata io - read a superblock and ++ * figure out what to do with it. ++ * ++ * Copyright 2010, 2011 Kent Overstreet ++ * Copyright 2012 Google, Inc. ++ */ ++ ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "alloc_foreground.h" ++#include "bkey_sort.h" ++#include "btree_cache.h" ++#include "btree_gc.h" ++#include "btree_key_cache.h" ++#include "btree_update_interior.h" ++#include "btree_io.h" ++#include "chardev.h" ++#include "checksum.h" ++#include "clock.h" ++#include "compress.h" ++#include "debug.h" ++#include "disk_groups.h" ++#include "ec.h" ++#include "error.h" ++#include "fs.h" ++#include "fs-io.h" ++#include "fsck.h" ++#include "inode.h" ++#include "io.h" ++#include "journal.h" ++#include "journal_reclaim.h" ++#include "journal_seq_blacklist.h" ++#include "move.h" ++#include "migrate.h" ++#include "movinggc.h" ++#include "quota.h" ++#include "rebalance.h" ++#include "recovery.h" ++#include "replicas.h" ++#include "super.h" ++#include "super-io.h" ++#include "sysfs.h" ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++ ++MODULE_LICENSE("GPL"); ++MODULE_AUTHOR("Kent Overstreet "); ++ ++#define KTYPE(type) \ ++struct kobj_type type ## _ktype = { \ ++ .release = type ## _release, \ ++ .sysfs_ops = &type ## _sysfs_ops, \ ++ .default_attrs = type ## _files \ ++} ++ ++static void bch2_fs_release(struct kobject *); ++static void bch2_dev_release(struct kobject *); ++ ++static void bch2_fs_internal_release(struct kobject *k) ++{ ++} ++ ++static void bch2_fs_opts_dir_release(struct kobject *k) ++{ ++} ++ ++static void bch2_fs_time_stats_release(struct kobject *k) ++{ ++} ++ ++static KTYPE(bch2_fs); ++static KTYPE(bch2_fs_internal); ++static KTYPE(bch2_fs_opts_dir); ++static KTYPE(bch2_fs_time_stats); ++static KTYPE(bch2_dev); ++ ++static struct kset *bcachefs_kset; ++static LIST_HEAD(bch_fs_list); ++static DEFINE_MUTEX(bch_fs_list_lock); ++ ++static DECLARE_WAIT_QUEUE_HEAD(bch_read_only_wait); ++ ++static void bch2_dev_free(struct bch_dev *); ++static int bch2_dev_alloc(struct bch_fs *, unsigned); ++static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *); ++static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *); ++ ++struct bch_fs *bch2_bdev_to_fs(struct block_device *bdev) ++{ ++ struct bch_fs *c; ++ struct bch_dev *ca; ++ unsigned i; ++ ++ mutex_lock(&bch_fs_list_lock); ++ rcu_read_lock(); ++ ++ list_for_each_entry(c, &bch_fs_list, list) ++ for_each_member_device_rcu(ca, c, i, NULL) ++ if (ca->disk_sb.bdev == bdev) { ++ closure_get(&c->cl); ++ goto found; ++ } ++ c = NULL; ++found: ++ rcu_read_unlock(); ++ mutex_unlock(&bch_fs_list_lock); ++ ++ return c; ++} ++ ++static struct bch_fs *__bch2_uuid_to_fs(uuid_le uuid) ++{ ++ struct bch_fs *c; ++ ++ lockdep_assert_held(&bch_fs_list_lock); ++ ++ list_for_each_entry(c, &bch_fs_list, list) ++ if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid_le))) ++ return c; ++ ++ return NULL; ++} ++ ++struct bch_fs *bch2_uuid_to_fs(uuid_le uuid) ++{ ++ struct bch_fs *c; ++ ++ mutex_lock(&bch_fs_list_lock); ++ c = __bch2_uuid_to_fs(uuid); ++ if (c) ++ closure_get(&c->cl); ++ mutex_unlock(&bch_fs_list_lock); ++ ++ return c; ++} ++ ++/* Filesystem RO/RW: */ ++ ++/* ++ * For startup/shutdown of RW stuff, the dependencies are: ++ * ++ * - foreground writes depend on copygc and rebalance (to free up space) ++ * ++ * - copygc and rebalance depend on mark and sweep gc (they actually probably ++ * don't because they either reserve ahead of time or don't block if ++ * allocations fail, but allocations can require mark and sweep gc to run ++ * because of generation number wraparound) ++ * ++ * - all of the above depends on the allocator threads ++ * ++ * - allocator depends on the journal (when it rewrites prios and gens) ++ */ ++ ++static void __bch2_fs_read_only(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ unsigned i, clean_passes = 0; ++ ++ bch2_rebalance_stop(c); ++ bch2_copygc_stop(c); ++ bch2_gc_thread_stop(c); ++ ++ bch2_io_timer_del(&c->io_clock[READ], &c->bucket_clock[READ].rescale); ++ bch2_io_timer_del(&c->io_clock[WRITE], &c->bucket_clock[WRITE].rescale); ++ ++ /* ++ * Flush journal before stopping allocators, because flushing journal ++ * blacklist entries involves allocating new btree nodes: ++ */ ++ bch2_journal_flush_all_pins(&c->journal); ++ ++ /* ++ * If the allocator threads didn't all start up, the btree updates to ++ * write out alloc info aren't going to work: ++ */ ++ if (!test_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags)) ++ goto nowrote_alloc; ++ ++ bch_verbose(c, "flushing journal and stopping allocators"); ++ ++ bch2_journal_flush_all_pins(&c->journal); ++ set_bit(BCH_FS_ALLOCATOR_STOPPING, &c->flags); ++ ++ do { ++ clean_passes++; ++ ++ if (bch2_journal_flush_all_pins(&c->journal)) ++ clean_passes = 0; ++ ++ /* ++ * In flight interior btree updates will generate more journal ++ * updates and btree updates (alloc btree): ++ */ ++ if (bch2_btree_interior_updates_nr_pending(c)) { ++ closure_wait_event(&c->btree_interior_update_wait, ++ !bch2_btree_interior_updates_nr_pending(c)); ++ clean_passes = 0; ++ } ++ flush_work(&c->btree_interior_update_work); ++ ++ if (bch2_journal_flush_all_pins(&c->journal)) ++ clean_passes = 0; ++ } while (clean_passes < 2); ++ bch_verbose(c, "flushing journal and stopping allocators complete"); ++ ++ set_bit(BCH_FS_ALLOC_CLEAN, &c->flags); ++nowrote_alloc: ++ closure_wait_event(&c->btree_interior_update_wait, ++ !bch2_btree_interior_updates_nr_pending(c)); ++ flush_work(&c->btree_interior_update_work); ++ ++ for_each_member_device(ca, c, i) ++ bch2_dev_allocator_stop(ca); ++ ++ clear_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags); ++ clear_bit(BCH_FS_ALLOCATOR_STOPPING, &c->flags); ++ ++ bch2_fs_journal_stop(&c->journal); ++ ++ /* ++ * the journal kicks off btree writes via reclaim - wait for in flight ++ * writes after stopping journal: ++ */ ++ if (test_bit(BCH_FS_EMERGENCY_RO, &c->flags)) ++ bch2_btree_flush_all_writes(c); ++ else ++ bch2_btree_verify_flushed(c); ++ ++ /* ++ * After stopping journal: ++ */ ++ for_each_member_device(ca, c, i) ++ bch2_dev_allocator_remove(c, ca); ++} ++ ++static void bch2_writes_disabled(struct percpu_ref *writes) ++{ ++ struct bch_fs *c = container_of(writes, struct bch_fs, writes); ++ ++ set_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags); ++ wake_up(&bch_read_only_wait); ++} ++ ++void bch2_fs_read_only(struct bch_fs *c) ++{ ++ if (!test_bit(BCH_FS_RW, &c->flags)) { ++ cancel_delayed_work_sync(&c->journal.reclaim_work); ++ return; ++ } ++ ++ BUG_ON(test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags)); ++ ++ /* ++ * Block new foreground-end write operations from starting - any new ++ * writes will return -EROFS: ++ * ++ * (This is really blocking new _allocations_, writes to previously ++ * allocated space can still happen until stopping the allocator in ++ * bch2_dev_allocator_stop()). ++ */ ++ percpu_ref_kill(&c->writes); ++ ++ cancel_work_sync(&c->ec_stripe_delete_work); ++ cancel_delayed_work(&c->pd_controllers_update); ++ ++ /* ++ * If we're not doing an emergency shutdown, we want to wait on ++ * outstanding writes to complete so they don't see spurious errors due ++ * to shutting down the allocator: ++ * ++ * If we are doing an emergency shutdown outstanding writes may ++ * hang until we shutdown the allocator so we don't want to wait ++ * on outstanding writes before shutting everything down - but ++ * we do need to wait on them before returning and signalling ++ * that going RO is complete: ++ */ ++ wait_event(bch_read_only_wait, ++ test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags) || ++ test_bit(BCH_FS_EMERGENCY_RO, &c->flags)); ++ ++ __bch2_fs_read_only(c); ++ ++ wait_event(bch_read_only_wait, ++ test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags)); ++ ++ clear_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags); ++ ++ if (!bch2_journal_error(&c->journal) && ++ !test_bit(BCH_FS_ERROR, &c->flags) && ++ !test_bit(BCH_FS_EMERGENCY_RO, &c->flags) && ++ test_bit(BCH_FS_STARTED, &c->flags) && ++ test_bit(BCH_FS_ALLOC_CLEAN, &c->flags) && ++ !c->opts.norecovery) { ++ bch_verbose(c, "marking filesystem clean"); ++ bch2_fs_mark_clean(c); ++ } ++ ++ clear_bit(BCH_FS_RW, &c->flags); ++} ++ ++static void bch2_fs_read_only_work(struct work_struct *work) ++{ ++ struct bch_fs *c = ++ container_of(work, struct bch_fs, read_only_work); ++ ++ down_write(&c->state_lock); ++ bch2_fs_read_only(c); ++ up_write(&c->state_lock); ++} ++ ++static void bch2_fs_read_only_async(struct bch_fs *c) ++{ ++ queue_work(system_long_wq, &c->read_only_work); ++} ++ ++bool bch2_fs_emergency_read_only(struct bch_fs *c) ++{ ++ bool ret = !test_and_set_bit(BCH_FS_EMERGENCY_RO, &c->flags); ++ ++ bch2_journal_halt(&c->journal); ++ bch2_fs_read_only_async(c); ++ ++ wake_up(&bch_read_only_wait); ++ return ret; ++} ++ ++static int bch2_fs_read_write_late(struct bch_fs *c) ++{ ++ int ret; ++ ++ ret = bch2_gc_thread_start(c); ++ if (ret) { ++ bch_err(c, "error starting gc thread"); ++ return ret; ++ } ++ ++ ret = bch2_copygc_start(c); ++ if (ret) { ++ bch_err(c, "error starting copygc thread"); ++ return ret; ++ } ++ ++ ret = bch2_rebalance_start(c); ++ if (ret) { ++ bch_err(c, "error starting rebalance thread"); ++ return ret; ++ } ++ ++ schedule_delayed_work(&c->pd_controllers_update, 5 * HZ); ++ ++ schedule_work(&c->ec_stripe_delete_work); ++ ++ return 0; ++} ++ ++static int __bch2_fs_read_write(struct bch_fs *c, bool early) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ int ret; ++ ++ if (test_bit(BCH_FS_RW, &c->flags)) ++ return 0; ++ ++ /* ++ * nochanges is used for fsck -n mode - we have to allow going rw ++ * during recovery for that to work: ++ */ ++ if (c->opts.norecovery || ++ (c->opts.nochanges && ++ (!early || c->opts.read_only))) ++ return -EROFS; ++ ++ ret = bch2_fs_mark_dirty(c); ++ if (ret) ++ goto err; ++ ++ /* ++ * We need to write out a journal entry before we start doing btree ++ * updates, to ensure that on unclean shutdown new journal blacklist ++ * entries are created: ++ */ ++ bch2_journal_meta(&c->journal); ++ ++ clear_bit(BCH_FS_ALLOC_CLEAN, &c->flags); ++ ++ for_each_rw_member(ca, c, i) ++ bch2_dev_allocator_add(c, ca); ++ bch2_recalc_capacity(c); ++ ++ bch2_io_timer_add(&c->io_clock[READ], &c->bucket_clock[READ].rescale); ++ bch2_io_timer_add(&c->io_clock[WRITE], &c->bucket_clock[WRITE].rescale); ++ ++ for_each_rw_member(ca, c, i) { ++ ret = bch2_dev_allocator_start(ca); ++ if (ret) { ++ bch_err(c, "error starting allocator threads"); ++ percpu_ref_put(&ca->io_ref); ++ goto err; ++ } ++ } ++ ++ set_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags); ++ ++ if (!early) { ++ ret = bch2_fs_read_write_late(c); ++ if (ret) ++ goto err; ++ } ++ ++ percpu_ref_reinit(&c->writes); ++ set_bit(BCH_FS_RW, &c->flags); ++ ++ queue_delayed_work(c->journal_reclaim_wq, ++ &c->journal.reclaim_work, 0); ++ return 0; ++err: ++ __bch2_fs_read_only(c); ++ return ret; ++} ++ ++int bch2_fs_read_write(struct bch_fs *c) ++{ ++ return __bch2_fs_read_write(c, false); ++} ++ ++int bch2_fs_read_write_early(struct bch_fs *c) ++{ ++ lockdep_assert_held(&c->state_lock); ++ ++ return __bch2_fs_read_write(c, true); ++} ++ ++/* Filesystem startup/shutdown: */ ++ ++static void __bch2_fs_free(struct bch_fs *c) ++{ ++ unsigned i; ++ ++ for (i = 0; i < BCH_TIME_STAT_NR; i++) ++ bch2_time_stats_exit(&c->times[i]); ++ ++ bch2_fs_quota_exit(c); ++ bch2_fs_fsio_exit(c); ++ bch2_fs_ec_exit(c); ++ bch2_fs_encryption_exit(c); ++ bch2_fs_io_exit(c); ++ bch2_fs_btree_interior_update_exit(c); ++ bch2_fs_btree_iter_exit(c); ++ bch2_fs_btree_key_cache_exit(&c->btree_key_cache); ++ bch2_fs_btree_cache_exit(c); ++ bch2_fs_journal_exit(&c->journal); ++ bch2_io_clock_exit(&c->io_clock[WRITE]); ++ bch2_io_clock_exit(&c->io_clock[READ]); ++ bch2_fs_compress_exit(c); ++ bch2_journal_keys_free(&c->journal_keys); ++ bch2_journal_entries_free(&c->journal_entries); ++ percpu_free_rwsem(&c->mark_lock); ++ kfree(c->usage_scratch); ++ free_percpu(c->usage[1]); ++ free_percpu(c->usage[0]); ++ kfree(c->usage_base); ++ free_percpu(c->pcpu); ++ mempool_exit(&c->large_bkey_pool); ++ mempool_exit(&c->btree_bounce_pool); ++ bioset_exit(&c->btree_bio); ++ mempool_exit(&c->fill_iter); ++ percpu_ref_exit(&c->writes); ++ kfree(c->replicas.entries); ++ kfree(c->replicas_gc.entries); ++ kfree(rcu_dereference_protected(c->disk_groups, 1)); ++ kfree(c->journal_seq_blacklist_table); ++ free_heap(&c->copygc_heap); ++ ++ if (c->journal_reclaim_wq) ++ destroy_workqueue(c->journal_reclaim_wq); ++ if (c->copygc_wq) ++ destroy_workqueue(c->copygc_wq); ++ if (c->wq) ++ destroy_workqueue(c->wq); ++ ++ free_pages((unsigned long) c->disk_sb.sb, ++ c->disk_sb.page_order); ++ kvpfree(c, sizeof(*c)); ++ module_put(THIS_MODULE); ++} ++ ++static void bch2_fs_release(struct kobject *kobj) ++{ ++ struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); ++ ++ __bch2_fs_free(c); ++} ++ ++void __bch2_fs_stop(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ ++ bch_verbose(c, "shutting down"); ++ ++ set_bit(BCH_FS_STOPPING, &c->flags); ++ ++ cancel_work_sync(&c->journal_seq_blacklist_gc_work); ++ ++ down_write(&c->state_lock); ++ bch2_fs_read_only(c); ++ up_write(&c->state_lock); ++ ++ for_each_member_device(ca, c, i) ++ if (ca->kobj.state_in_sysfs && ++ ca->disk_sb.bdev) ++ sysfs_remove_link(&part_to_dev(ca->disk_sb.bdev->bd_part)->kobj, ++ "bcachefs"); ++ ++ if (c->kobj.state_in_sysfs) ++ kobject_del(&c->kobj); ++ ++ bch2_fs_debug_exit(c); ++ bch2_fs_chardev_exit(c); ++ ++ kobject_put(&c->time_stats); ++ kobject_put(&c->opts_dir); ++ kobject_put(&c->internal); ++ ++ /* btree prefetch might have kicked off reads in the background: */ ++ bch2_btree_flush_all_reads(c); ++ ++ for_each_member_device(ca, c, i) ++ cancel_work_sync(&ca->io_error_work); ++ ++ cancel_work_sync(&c->btree_write_error_work); ++ cancel_delayed_work_sync(&c->pd_controllers_update); ++ cancel_work_sync(&c->read_only_work); ++ ++ for (i = 0; i < c->sb.nr_devices; i++) ++ if (c->devs[i]) ++ bch2_free_super(&c->devs[i]->disk_sb); ++} ++ ++void bch2_fs_free(struct bch_fs *c) ++{ ++ unsigned i; ++ ++ mutex_lock(&bch_fs_list_lock); ++ list_del(&c->list); ++ mutex_unlock(&bch_fs_list_lock); ++ ++ closure_sync(&c->cl); ++ closure_debug_destroy(&c->cl); ++ ++ for (i = 0; i < c->sb.nr_devices; i++) ++ if (c->devs[i]) ++ bch2_dev_free(rcu_dereference_protected(c->devs[i], 1)); ++ ++ bch_verbose(c, "shutdown complete"); ++ ++ kobject_put(&c->kobj); ++} ++ ++void bch2_fs_stop(struct bch_fs *c) ++{ ++ __bch2_fs_stop(c); ++ bch2_fs_free(c); ++} ++ ++static const char *bch2_fs_online(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ const char *err = NULL; ++ unsigned i; ++ int ret; ++ ++ lockdep_assert_held(&bch_fs_list_lock); ++ ++ if (!list_empty(&c->list)) ++ return NULL; ++ ++ if (__bch2_uuid_to_fs(c->sb.uuid)) ++ return "filesystem UUID already open"; ++ ++ ret = bch2_fs_chardev_init(c); ++ if (ret) ++ return "error creating character device"; ++ ++ bch2_fs_debug_init(c); ++ ++ if (kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) || ++ kobject_add(&c->internal, &c->kobj, "internal") || ++ kobject_add(&c->opts_dir, &c->kobj, "options") || ++ kobject_add(&c->time_stats, &c->kobj, "time_stats") || ++ bch2_opts_create_sysfs_files(&c->opts_dir)) ++ return "error creating sysfs objects"; ++ ++ down_write(&c->state_lock); ++ ++ err = "error creating sysfs objects"; ++ __for_each_member_device(ca, c, i, NULL) ++ if (bch2_dev_sysfs_online(c, ca)) ++ goto err; ++ ++ list_add(&c->list, &bch_fs_list); ++ err = NULL; ++err: ++ up_write(&c->state_lock); ++ return err; ++} ++ ++static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts) ++{ ++ struct bch_sb_field_members *mi; ++ struct bch_fs *c; ++ unsigned i, iter_size; ++ const char *err; ++ ++ pr_verbose_init(opts, ""); ++ ++ c = kvpmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO); ++ if (!c) ++ goto out; ++ ++ __module_get(THIS_MODULE); ++ ++ closure_init(&c->cl, NULL); ++ ++ c->kobj.kset = bcachefs_kset; ++ kobject_init(&c->kobj, &bch2_fs_ktype); ++ kobject_init(&c->internal, &bch2_fs_internal_ktype); ++ kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype); ++ kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype); ++ ++ c->minor = -1; ++ c->disk_sb.fs_sb = true; ++ ++ init_rwsem(&c->state_lock); ++ mutex_init(&c->sb_lock); ++ mutex_init(&c->replicas_gc_lock); ++ mutex_init(&c->btree_root_lock); ++ INIT_WORK(&c->read_only_work, bch2_fs_read_only_work); ++ ++ init_rwsem(&c->gc_lock); ++ ++ for (i = 0; i < BCH_TIME_STAT_NR; i++) ++ bch2_time_stats_init(&c->times[i]); ++ ++ bch2_fs_copygc_init(c); ++ bch2_fs_btree_key_cache_init_early(&c->btree_key_cache); ++ bch2_fs_allocator_background_init(c); ++ bch2_fs_allocator_foreground_init(c); ++ bch2_fs_rebalance_init(c); ++ bch2_fs_quota_init(c); ++ ++ INIT_LIST_HEAD(&c->list); ++ ++ mutex_init(&c->usage_scratch_lock); ++ ++ mutex_init(&c->bio_bounce_pages_lock); ++ ++ bio_list_init(&c->btree_write_error_list); ++ spin_lock_init(&c->btree_write_error_lock); ++ INIT_WORK(&c->btree_write_error_work, bch2_btree_write_error_work); ++ ++ INIT_WORK(&c->journal_seq_blacklist_gc_work, ++ bch2_blacklist_entries_gc); ++ ++ INIT_LIST_HEAD(&c->journal_entries); ++ ++ INIT_LIST_HEAD(&c->fsck_errors); ++ mutex_init(&c->fsck_error_lock); ++ ++ INIT_LIST_HEAD(&c->ec_stripe_head_list); ++ mutex_init(&c->ec_stripe_head_lock); ++ ++ INIT_LIST_HEAD(&c->ec_stripe_new_list); ++ mutex_init(&c->ec_stripe_new_lock); ++ ++ spin_lock_init(&c->ec_stripes_heap_lock); ++ ++ seqcount_init(&c->gc_pos_lock); ++ ++ seqcount_init(&c->usage_lock); ++ ++ sema_init(&c->io_in_flight, 64); ++ ++ c->copy_gc_enabled = 1; ++ c->rebalance.enabled = 1; ++ c->promote_whole_extents = true; ++ ++ c->journal.write_time = &c->times[BCH_TIME_journal_write]; ++ c->journal.delay_time = &c->times[BCH_TIME_journal_delay]; ++ c->journal.blocked_time = &c->times[BCH_TIME_blocked_journal]; ++ c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq]; ++ ++ bch2_fs_btree_cache_init_early(&c->btree_cache); ++ ++ if (percpu_init_rwsem(&c->mark_lock)) ++ goto err; ++ ++ mutex_lock(&c->sb_lock); ++ ++ if (bch2_sb_to_fs(c, sb)) { ++ mutex_unlock(&c->sb_lock); ++ goto err; ++ } ++ ++ mutex_unlock(&c->sb_lock); ++ ++ scnprintf(c->name, sizeof(c->name), "%pU", &c->sb.user_uuid); ++ ++ c->opts = bch2_opts_default; ++ bch2_opts_apply(&c->opts, bch2_opts_from_sb(sb)); ++ bch2_opts_apply(&c->opts, opts); ++ ++ c->block_bits = ilog2(c->opts.block_size); ++ c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c); ++ ++ if (bch2_fs_init_fault("fs_alloc")) ++ goto err; ++ ++ iter_size = sizeof(struct sort_iter) + ++ (btree_blocks(c) + 1) * 2 * ++ sizeof(struct sort_iter_set); ++ ++ if (!(c->wq = alloc_workqueue("bcachefs", ++ WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) || ++ !(c->copygc_wq = alloc_workqueue("bcache_copygc", ++ WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) || ++ !(c->journal_reclaim_wq = alloc_workqueue("bcache_journal", ++ WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_HIGHPRI, 1)) || ++ percpu_ref_init(&c->writes, bch2_writes_disabled, ++ PERCPU_REF_INIT_DEAD, GFP_KERNEL) || ++ mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || ++ bioset_init(&c->btree_bio, 1, ++ max(offsetof(struct btree_read_bio, bio), ++ offsetof(struct btree_write_bio, wbio.bio)), ++ BIOSET_NEED_BVECS) || ++ !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) || ++ mempool_init_kvpmalloc_pool(&c->btree_bounce_pool, 1, ++ btree_bytes(c)) || ++ mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) || ++ bch2_io_clock_init(&c->io_clock[READ]) || ++ bch2_io_clock_init(&c->io_clock[WRITE]) || ++ bch2_fs_journal_init(&c->journal) || ++ bch2_fs_replicas_init(c) || ++ bch2_fs_btree_cache_init(c) || ++ bch2_fs_btree_key_cache_init(&c->btree_key_cache) || ++ bch2_fs_btree_iter_init(c) || ++ bch2_fs_btree_interior_update_init(c) || ++ bch2_fs_io_init(c) || ++ bch2_fs_encryption_init(c) || ++ bch2_fs_compress_init(c) || ++ bch2_fs_ec_init(c) || ++ bch2_fs_fsio_init(c)) ++ goto err; ++ ++ mi = bch2_sb_get_members(c->disk_sb.sb); ++ for (i = 0; i < c->sb.nr_devices; i++) ++ if (bch2_dev_exists(c->disk_sb.sb, mi, i) && ++ bch2_dev_alloc(c, i)) ++ goto err; ++ ++ mutex_lock(&bch_fs_list_lock); ++ err = bch2_fs_online(c); ++ mutex_unlock(&bch_fs_list_lock); ++ if (err) { ++ bch_err(c, "bch2_fs_online() error: %s", err); ++ goto err; ++ } ++out: ++ pr_verbose_init(opts, "ret %i", c ? 0 : -ENOMEM); ++ return c; ++err: ++ bch2_fs_free(c); ++ c = NULL; ++ goto out; ++} ++ ++noinline_for_stack ++static void print_mount_opts(struct bch_fs *c) ++{ ++ enum bch_opt_id i; ++ char buf[512]; ++ struct printbuf p = PBUF(buf); ++ bool first = true; ++ ++ strcpy(buf, "(null)"); ++ ++ if (c->opts.read_only) { ++ pr_buf(&p, "ro"); ++ first = false; ++ } ++ ++ for (i = 0; i < bch2_opts_nr; i++) { ++ const struct bch_option *opt = &bch2_opt_table[i]; ++ u64 v = bch2_opt_get_by_id(&c->opts, i); ++ ++ if (!(opt->mode & OPT_MOUNT)) ++ continue; ++ ++ if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) ++ continue; ++ ++ if (!first) ++ pr_buf(&p, ","); ++ first = false; ++ bch2_opt_to_text(&p, c, opt, v, OPT_SHOW_MOUNT_STYLE); ++ } ++ ++ bch_info(c, "mounted with opts: %s", buf); ++} ++ ++int bch2_fs_start(struct bch_fs *c) ++{ ++ const char *err = "cannot allocate memory"; ++ struct bch_sb_field_members *mi; ++ struct bch_dev *ca; ++ time64_t now = ktime_get_real_seconds(); ++ unsigned i; ++ int ret = -EINVAL; ++ ++ down_write(&c->state_lock); ++ ++ BUG_ON(test_bit(BCH_FS_STARTED, &c->flags)); ++ ++ mutex_lock(&c->sb_lock); ++ ++ for_each_online_member(ca, c, i) ++ bch2_sb_from_fs(c, ca); ++ ++ mi = bch2_sb_get_members(c->disk_sb.sb); ++ for_each_online_member(ca, c, i) ++ mi->members[ca->dev_idx].last_mount = cpu_to_le64(now); ++ ++ mutex_unlock(&c->sb_lock); ++ ++ for_each_rw_member(ca, c, i) ++ bch2_dev_allocator_add(c, ca); ++ bch2_recalc_capacity(c); ++ ++ ret = BCH_SB_INITIALIZED(c->disk_sb.sb) ++ ? bch2_fs_recovery(c) ++ : bch2_fs_initialize(c); ++ if (ret) ++ goto err; ++ ++ ret = bch2_opts_check_may_set(c); ++ if (ret) ++ goto err; ++ ++ err = "dynamic fault"; ++ ret = -EINVAL; ++ if (bch2_fs_init_fault("fs_start")) ++ goto err; ++ ++ set_bit(BCH_FS_STARTED, &c->flags); ++ ++ /* ++ * Allocator threads don't start filling copygc reserve until after we ++ * set BCH_FS_STARTED - wake them now: ++ */ ++ for_each_online_member(ca, c, i) ++ bch2_wake_allocator(ca); ++ ++ if (c->opts.read_only || c->opts.nochanges) { ++ bch2_fs_read_only(c); ++ } else { ++ err = "error going read write"; ++ ret = !test_bit(BCH_FS_RW, &c->flags) ++ ? bch2_fs_read_write(c) ++ : bch2_fs_read_write_late(c); ++ if (ret) ++ goto err; ++ } ++ ++ print_mount_opts(c); ++ ret = 0; ++out: ++ up_write(&c->state_lock); ++ return ret; ++err: ++ switch (ret) { ++ case BCH_FSCK_ERRORS_NOT_FIXED: ++ bch_err(c, "filesystem contains errors: please report this to the developers"); ++ pr_cont("mount with -o fix_errors to repair\n"); ++ err = "fsck error"; ++ break; ++ case BCH_FSCK_REPAIR_UNIMPLEMENTED: ++ bch_err(c, "filesystem contains errors: please report this to the developers"); ++ pr_cont("repair unimplemented: inform the developers so that it can be added\n"); ++ err = "fsck error"; ++ break; ++ case BCH_FSCK_REPAIR_IMPOSSIBLE: ++ bch_err(c, "filesystem contains errors, but repair impossible"); ++ err = "fsck error"; ++ break; ++ case BCH_FSCK_UNKNOWN_VERSION: ++ err = "unknown metadata version";; ++ break; ++ case -ENOMEM: ++ err = "cannot allocate memory"; ++ break; ++ case -EIO: ++ err = "IO error"; ++ break; ++ } ++ ++ if (ret >= 0) ++ ret = -EIO; ++ goto out; ++} ++ ++static const char *bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c) ++{ ++ struct bch_sb_field_members *sb_mi; ++ ++ sb_mi = bch2_sb_get_members(sb); ++ if (!sb_mi) ++ return "Invalid superblock: member info area missing"; ++ ++ if (le16_to_cpu(sb->block_size) != c->opts.block_size) ++ return "mismatched block size"; ++ ++ if (le16_to_cpu(sb_mi->members[sb->dev_idx].bucket_size) < ++ BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb)) ++ return "new cache bucket size is too small"; ++ ++ return NULL; ++} ++ ++static const char *bch2_dev_in_fs(struct bch_sb *fs, struct bch_sb *sb) ++{ ++ struct bch_sb *newest = ++ le64_to_cpu(fs->seq) > le64_to_cpu(sb->seq) ? fs : sb; ++ struct bch_sb_field_members *mi = bch2_sb_get_members(newest); ++ ++ if (uuid_le_cmp(fs->uuid, sb->uuid)) ++ return "device not a member of filesystem"; ++ ++ if (!bch2_dev_exists(newest, mi, sb->dev_idx)) ++ return "device has been removed"; ++ ++ if (fs->block_size != sb->block_size) ++ return "mismatched block size"; ++ ++ return NULL; ++} ++ ++/* Device startup/shutdown: */ ++ ++static void bch2_dev_release(struct kobject *kobj) ++{ ++ struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); ++ ++ kfree(ca); ++} ++ ++static void bch2_dev_free(struct bch_dev *ca) ++{ ++ cancel_work_sync(&ca->io_error_work); ++ ++ if (ca->kobj.state_in_sysfs && ++ ca->disk_sb.bdev) ++ sysfs_remove_link(&part_to_dev(ca->disk_sb.bdev->bd_part)->kobj, ++ "bcachefs"); ++ ++ if (ca->kobj.state_in_sysfs) ++ kobject_del(&ca->kobj); ++ ++ bch2_free_super(&ca->disk_sb); ++ bch2_dev_journal_exit(ca); ++ ++ free_percpu(ca->io_done); ++ bioset_exit(&ca->replica_set); ++ bch2_dev_buckets_free(ca); ++ free_page((unsigned long) ca->sb_read_scratch); ++ ++ bch2_time_stats_exit(&ca->io_latency[WRITE]); ++ bch2_time_stats_exit(&ca->io_latency[READ]); ++ ++ percpu_ref_exit(&ca->io_ref); ++ percpu_ref_exit(&ca->ref); ++ kobject_put(&ca->kobj); ++} ++ ++static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca) ++{ ++ ++ lockdep_assert_held(&c->state_lock); ++ ++ if (percpu_ref_is_zero(&ca->io_ref)) ++ return; ++ ++ __bch2_dev_read_only(c, ca); ++ ++ reinit_completion(&ca->io_ref_completion); ++ percpu_ref_kill(&ca->io_ref); ++ wait_for_completion(&ca->io_ref_completion); ++ ++ if (ca->kobj.state_in_sysfs) { ++ struct kobject *block = ++ &part_to_dev(ca->disk_sb.bdev->bd_part)->kobj; ++ ++ sysfs_remove_link(block, "bcachefs"); ++ sysfs_remove_link(&ca->kobj, "block"); ++ } ++ ++ bch2_free_super(&ca->disk_sb); ++ bch2_dev_journal_exit(ca); ++} ++ ++static void bch2_dev_ref_complete(struct percpu_ref *ref) ++{ ++ struct bch_dev *ca = container_of(ref, struct bch_dev, ref); ++ ++ complete(&ca->ref_completion); ++} ++ ++static void bch2_dev_io_ref_complete(struct percpu_ref *ref) ++{ ++ struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref); ++ ++ complete(&ca->io_ref_completion); ++} ++ ++static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca) ++{ ++ int ret; ++ ++ if (!c->kobj.state_in_sysfs) ++ return 0; ++ ++ if (!ca->kobj.state_in_sysfs) { ++ ret = kobject_add(&ca->kobj, &c->kobj, ++ "dev-%u", ca->dev_idx); ++ if (ret) ++ return ret; ++ } ++ ++ if (ca->disk_sb.bdev) { ++ struct kobject *block = ++ &part_to_dev(ca->disk_sb.bdev->bd_part)->kobj; ++ ++ ret = sysfs_create_link(block, &ca->kobj, "bcachefs"); ++ if (ret) ++ return ret; ++ ret = sysfs_create_link(&ca->kobj, block, "block"); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c, ++ struct bch_member *member) ++{ ++ struct bch_dev *ca; ++ ++ ca = kzalloc(sizeof(*ca), GFP_KERNEL); ++ if (!ca) ++ return NULL; ++ ++ kobject_init(&ca->kobj, &bch2_dev_ktype); ++ init_completion(&ca->ref_completion); ++ init_completion(&ca->io_ref_completion); ++ ++ init_rwsem(&ca->bucket_lock); ++ ++ INIT_WORK(&ca->io_error_work, bch2_io_error_work); ++ ++ bch2_time_stats_init(&ca->io_latency[READ]); ++ bch2_time_stats_init(&ca->io_latency[WRITE]); ++ ++ ca->mi = bch2_mi_to_cpu(member); ++ ca->uuid = member->uuid; ++ ++ if (opt_defined(c->opts, discard)) ++ ca->mi.discard = opt_get(c->opts, discard); ++ ++ if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, ++ 0, GFP_KERNEL) || ++ percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete, ++ PERCPU_REF_INIT_DEAD, GFP_KERNEL) || ++ !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) || ++ bch2_dev_buckets_alloc(c, ca) || ++ bioset_init(&ca->replica_set, 4, ++ offsetof(struct bch_write_bio, bio), 0) || ++ !(ca->io_done = alloc_percpu(*ca->io_done))) ++ goto err; ++ ++ return ca; ++err: ++ bch2_dev_free(ca); ++ return NULL; ++} ++ ++static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca, ++ unsigned dev_idx) ++{ ++ ca->dev_idx = dev_idx; ++ __set_bit(ca->dev_idx, ca->self.d); ++ scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx); ++ ++ ca->fs = c; ++ rcu_assign_pointer(c->devs[ca->dev_idx], ca); ++ ++ if (bch2_dev_sysfs_online(c, ca)) ++ pr_warn("error creating sysfs objects"); ++} ++ ++static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx) ++{ ++ struct bch_member *member = ++ bch2_sb_get_members(c->disk_sb.sb)->members + dev_idx; ++ struct bch_dev *ca = NULL; ++ int ret = 0; ++ ++ pr_verbose_init(c->opts, ""); ++ ++ if (bch2_fs_init_fault("dev_alloc")) ++ goto err; ++ ++ ca = __bch2_dev_alloc(c, member); ++ if (!ca) ++ goto err; ++ ++ bch2_dev_attach(c, ca, dev_idx); ++out: ++ pr_verbose_init(c->opts, "ret %i", ret); ++ return ret; ++err: ++ if (ca) ++ bch2_dev_free(ca); ++ ret = -ENOMEM; ++ goto out; ++} ++ ++static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb) ++{ ++ unsigned ret; ++ ++ if (bch2_dev_is_online(ca)) { ++ bch_err(ca, "already have device online in slot %u", ++ sb->sb->dev_idx); ++ return -EINVAL; ++ } ++ ++ if (get_capacity(sb->bdev->bd_disk) < ++ ca->mi.bucket_size * ca->mi.nbuckets) { ++ bch_err(ca, "cannot online: device too small"); ++ return -EINVAL; ++ } ++ ++ BUG_ON(!percpu_ref_is_zero(&ca->io_ref)); ++ ++ if (get_capacity(sb->bdev->bd_disk) < ++ ca->mi.bucket_size * ca->mi.nbuckets) { ++ bch_err(ca, "device too small"); ++ return -EINVAL; ++ } ++ ++ ret = bch2_dev_journal_init(ca, sb->sb); ++ if (ret) ++ return ret; ++ ++ /* Commit: */ ++ ca->disk_sb = *sb; ++ if (sb->mode & FMODE_EXCL) ++ ca->disk_sb.bdev->bd_holder = ca; ++ memset(sb, 0, sizeof(*sb)); ++ ++ percpu_ref_reinit(&ca->io_ref); ++ ++ return 0; ++} ++ ++static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb) ++{ ++ struct bch_dev *ca; ++ int ret; ++ ++ lockdep_assert_held(&c->state_lock); ++ ++ if (le64_to_cpu(sb->sb->seq) > ++ le64_to_cpu(c->disk_sb.sb->seq)) ++ bch2_sb_to_fs(c, sb->sb); ++ ++ BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices || ++ !c->devs[sb->sb->dev_idx]); ++ ++ ca = bch_dev_locked(c, sb->sb->dev_idx); ++ ++ ret = __bch2_dev_attach_bdev(ca, sb); ++ if (ret) ++ return ret; ++ ++ if (test_bit(BCH_FS_ALLOC_READ_DONE, &c->flags) && ++ !percpu_u64_get(&ca->usage[0]->buckets[BCH_DATA_sb])) { ++ mutex_lock(&c->sb_lock); ++ bch2_mark_dev_superblock(ca->fs, ca, 0); ++ mutex_unlock(&c->sb_lock); ++ } ++ ++ bch2_dev_sysfs_online(c, ca); ++ ++ if (c->sb.nr_devices == 1) ++ bdevname(ca->disk_sb.bdev, c->name); ++ bdevname(ca->disk_sb.bdev, ca->name); ++ ++ rebalance_wakeup(c); ++ return 0; ++} ++ ++/* Device management: */ ++ ++/* ++ * Note: this function is also used by the error paths - when a particular ++ * device sees an error, we call it to determine whether we can just set the ++ * device RO, or - if this function returns false - we'll set the whole ++ * filesystem RO: ++ * ++ * XXX: maybe we should be more explicit about whether we're changing state ++ * because we got an error or what have you? ++ */ ++bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca, ++ enum bch_member_state new_state, int flags) ++{ ++ struct bch_devs_mask new_online_devs; ++ struct replicas_status s; ++ struct bch_dev *ca2; ++ int i, nr_rw = 0, required; ++ ++ lockdep_assert_held(&c->state_lock); ++ ++ switch (new_state) { ++ case BCH_MEMBER_STATE_RW: ++ return true; ++ case BCH_MEMBER_STATE_RO: ++ if (ca->mi.state != BCH_MEMBER_STATE_RW) ++ return true; ++ ++ /* do we have enough devices to write to? */ ++ for_each_member_device(ca2, c, i) ++ if (ca2 != ca) ++ nr_rw += ca2->mi.state == BCH_MEMBER_STATE_RW; ++ ++ required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED) ++ ? c->opts.metadata_replicas ++ : c->opts.metadata_replicas_required, ++ !(flags & BCH_FORCE_IF_DATA_DEGRADED) ++ ? c->opts.data_replicas ++ : c->opts.data_replicas_required); ++ ++ return nr_rw >= required; ++ case BCH_MEMBER_STATE_FAILED: ++ case BCH_MEMBER_STATE_SPARE: ++ if (ca->mi.state != BCH_MEMBER_STATE_RW && ++ ca->mi.state != BCH_MEMBER_STATE_RO) ++ return true; ++ ++ /* do we have enough devices to read from? */ ++ new_online_devs = bch2_online_devs(c); ++ __clear_bit(ca->dev_idx, new_online_devs.d); ++ ++ s = __bch2_replicas_status(c, new_online_devs); ++ ++ return bch2_have_enough_devs(s, flags); ++ default: ++ BUG(); ++ } ++} ++ ++static bool bch2_fs_may_start(struct bch_fs *c) ++{ ++ struct replicas_status s; ++ struct bch_sb_field_members *mi; ++ struct bch_dev *ca; ++ unsigned i, flags = c->opts.degraded ++ ? BCH_FORCE_IF_DEGRADED ++ : 0; ++ ++ if (!c->opts.degraded) { ++ mutex_lock(&c->sb_lock); ++ mi = bch2_sb_get_members(c->disk_sb.sb); ++ ++ for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { ++ if (!bch2_dev_exists(c->disk_sb.sb, mi, i)) ++ continue; ++ ++ ca = bch_dev_locked(c, i); ++ ++ if (!bch2_dev_is_online(ca) && ++ (ca->mi.state == BCH_MEMBER_STATE_RW || ++ ca->mi.state == BCH_MEMBER_STATE_RO)) { ++ mutex_unlock(&c->sb_lock); ++ return false; ++ } ++ } ++ mutex_unlock(&c->sb_lock); ++ } ++ ++ s = bch2_replicas_status(c); ++ ++ return bch2_have_enough_devs(s, flags); ++} ++ ++static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca) ++{ ++ /* ++ * Device going read only means the copygc reserve get smaller, so we ++ * don't want that happening while copygc is in progress: ++ */ ++ bch2_copygc_stop(c); ++ ++ /* ++ * The allocator thread itself allocates btree nodes, so stop it first: ++ */ ++ bch2_dev_allocator_stop(ca); ++ bch2_dev_allocator_remove(c, ca); ++ bch2_dev_journal_stop(&c->journal, ca); ++ ++ bch2_copygc_start(c); ++} ++ ++static const char *__bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca) ++{ ++ lockdep_assert_held(&c->state_lock); ++ ++ BUG_ON(ca->mi.state != BCH_MEMBER_STATE_RW); ++ ++ bch2_dev_allocator_add(c, ca); ++ bch2_recalc_capacity(c); ++ ++ if (bch2_dev_allocator_start(ca)) ++ return "error starting allocator thread"; ++ ++ return NULL; ++} ++ ++int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, ++ enum bch_member_state new_state, int flags) ++{ ++ struct bch_sb_field_members *mi; ++ int ret = 0; ++ ++ if (ca->mi.state == new_state) ++ return 0; ++ ++ if (!bch2_dev_state_allowed(c, ca, new_state, flags)) ++ return -EINVAL; ++ ++ if (new_state != BCH_MEMBER_STATE_RW) ++ __bch2_dev_read_only(c, ca); ++ ++ bch_notice(ca, "%s", bch2_dev_state[new_state]); ++ ++ mutex_lock(&c->sb_lock); ++ mi = bch2_sb_get_members(c->disk_sb.sb); ++ SET_BCH_MEMBER_STATE(&mi->members[ca->dev_idx], new_state); ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ if (new_state == BCH_MEMBER_STATE_RW && ++ __bch2_dev_read_write(c, ca)) ++ ret = -ENOMEM; ++ ++ rebalance_wakeup(c); ++ ++ return ret; ++} ++ ++int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, ++ enum bch_member_state new_state, int flags) ++{ ++ int ret; ++ ++ down_write(&c->state_lock); ++ ret = __bch2_dev_set_state(c, ca, new_state, flags); ++ up_write(&c->state_lock); ++ ++ return ret; ++} ++ ++/* Device add/removal: */ ++ ++int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca) ++{ ++ struct btree_trans trans; ++ size_t i; ++ int ret; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ for (i = 0; i < ca->mi.nbuckets; i++) { ++ ret = bch2_btree_key_cache_flush(&trans, ++ BTREE_ID_ALLOC, POS(ca->dev_idx, i)); ++ if (ret) ++ break; ++ } ++ bch2_trans_exit(&trans); ++ ++ if (ret) ++ return ret; ++ ++ return bch2_btree_delete_range(c, BTREE_ID_ALLOC, ++ POS(ca->dev_idx, 0), ++ POS(ca->dev_idx + 1, 0), ++ NULL); ++} ++ ++int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags) ++{ ++ struct bch_sb_field_members *mi; ++ unsigned dev_idx = ca->dev_idx, data; ++ int ret = -EINVAL; ++ ++ down_write(&c->state_lock); ++ ++ /* ++ * We consume a reference to ca->ref, regardless of whether we succeed ++ * or fail: ++ */ ++ percpu_ref_put(&ca->ref); ++ ++ if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_FAILED, flags)) { ++ bch_err(ca, "Cannot remove without losing data"); ++ goto err; ++ } ++ ++ __bch2_dev_read_only(c, ca); ++ ++ ret = bch2_dev_data_drop(c, ca->dev_idx, flags); ++ if (ret) { ++ bch_err(ca, "Remove failed: error %i dropping data", ret); ++ goto err; ++ } ++ ++ ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx); ++ if (ret) { ++ bch_err(ca, "Remove failed: error %i flushing journal", ret); ++ goto err; ++ } ++ ++ ret = bch2_dev_remove_alloc(c, ca); ++ if (ret) { ++ bch_err(ca, "Remove failed, error deleting alloc info"); ++ goto err; ++ } ++ ++ /* ++ * must flush all existing journal entries, they might have ++ * (overwritten) keys that point to the device we're removing: ++ */ ++ bch2_journal_flush_all_pins(&c->journal); ++ /* ++ * hack to ensure bch2_replicas_gc2() clears out entries to this device ++ */ ++ bch2_journal_meta(&c->journal); ++ ret = bch2_journal_error(&c->journal); ++ if (ret) { ++ bch_err(ca, "Remove failed, journal error"); ++ goto err; ++ } ++ ++ ret = bch2_replicas_gc2(c); ++ if (ret) { ++ bch_err(ca, "Remove failed: error %i from replicas gc", ret); ++ goto err; ++ } ++ ++ data = bch2_dev_has_data(c, ca); ++ if (data) { ++ char data_has_str[100]; ++ ++ bch2_flags_to_text(&PBUF(data_has_str), ++ bch2_data_types, data); ++ bch_err(ca, "Remove failed, still has data (%s)", data_has_str); ++ ret = -EBUSY; ++ goto err; ++ } ++ ++ __bch2_dev_offline(c, ca); ++ ++ mutex_lock(&c->sb_lock); ++ rcu_assign_pointer(c->devs[ca->dev_idx], NULL); ++ mutex_unlock(&c->sb_lock); ++ ++ percpu_ref_kill(&ca->ref); ++ wait_for_completion(&ca->ref_completion); ++ ++ bch2_dev_free(ca); ++ ++ /* ++ * Free this device's slot in the bch_member array - all pointers to ++ * this device must be gone: ++ */ ++ mutex_lock(&c->sb_lock); ++ mi = bch2_sb_get_members(c->disk_sb.sb); ++ memset(&mi->members[dev_idx].uuid, 0, sizeof(mi->members[dev_idx].uuid)); ++ ++ bch2_write_super(c); ++ ++ mutex_unlock(&c->sb_lock); ++ up_write(&c->state_lock); ++ return 0; ++err: ++ if (ca->mi.state == BCH_MEMBER_STATE_RW && ++ !percpu_ref_is_zero(&ca->io_ref)) ++ __bch2_dev_read_write(c, ca); ++ up_write(&c->state_lock); ++ return ret; ++} ++ ++static void dev_usage_clear(struct bch_dev *ca) ++{ ++ struct bucket_array *buckets; ++ ++ percpu_memset(ca->usage[0], 0, sizeof(*ca->usage[0])); ++ ++ down_read(&ca->bucket_lock); ++ buckets = bucket_array(ca); ++ ++ memset(buckets->b, 0, sizeof(buckets->b[0]) * buckets->nbuckets); ++ up_read(&ca->bucket_lock); ++} ++ ++/* Add new device to running filesystem: */ ++int bch2_dev_add(struct bch_fs *c, const char *path) ++{ ++ struct bch_opts opts = bch2_opts_empty(); ++ struct bch_sb_handle sb; ++ const char *err; ++ struct bch_dev *ca = NULL; ++ struct bch_sb_field_members *mi; ++ struct bch_member dev_mi; ++ unsigned dev_idx, nr_devices, u64s; ++ int ret; ++ ++ ret = bch2_read_super(path, &opts, &sb); ++ if (ret) ++ return ret; ++ ++ err = bch2_sb_validate(&sb); ++ if (err) ++ return -EINVAL; ++ ++ dev_mi = bch2_sb_get_members(sb.sb)->members[sb.sb->dev_idx]; ++ ++ err = bch2_dev_may_add(sb.sb, c); ++ if (err) ++ return -EINVAL; ++ ++ ca = __bch2_dev_alloc(c, &dev_mi); ++ if (!ca) { ++ bch2_free_super(&sb); ++ return -ENOMEM; ++ } ++ ++ ret = __bch2_dev_attach_bdev(ca, &sb); ++ if (ret) { ++ bch2_dev_free(ca); ++ return ret; ++ } ++ ++ /* ++ * We want to allocate journal on the new device before adding the new ++ * device to the filesystem because allocating after we attach requires ++ * spinning up the allocator thread, and the allocator thread requires ++ * doing btree writes, which if the existing devices are RO isn't going ++ * to work ++ * ++ * So we have to mark where the superblocks are, but marking allocated ++ * data normally updates the filesystem usage too, so we have to mark, ++ * allocate the journal, reset all the marks, then remark after we ++ * attach... ++ */ ++ bch2_mark_dev_superblock(ca->fs, ca, 0); ++ ++ err = "journal alloc failed"; ++ ret = bch2_dev_journal_alloc(ca); ++ if (ret) ++ goto err; ++ ++ dev_usage_clear(ca); ++ ++ down_write(&c->state_lock); ++ mutex_lock(&c->sb_lock); ++ ++ err = "insufficient space in new superblock"; ++ ret = bch2_sb_from_fs(c, ca); ++ if (ret) ++ goto err_unlock; ++ ++ mi = bch2_sb_get_members(ca->disk_sb.sb); ++ ++ if (!bch2_sb_resize_members(&ca->disk_sb, ++ le32_to_cpu(mi->field.u64s) + ++ sizeof(dev_mi) / sizeof(u64))) { ++ ret = -ENOSPC; ++ goto err_unlock; ++ } ++ ++ if (dynamic_fault("bcachefs:add:no_slot")) ++ goto no_slot; ++ ++ mi = bch2_sb_get_members(c->disk_sb.sb); ++ for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++) ++ if (!bch2_dev_exists(c->disk_sb.sb, mi, dev_idx)) ++ goto have_slot; ++no_slot: ++ err = "no slots available in superblock"; ++ ret = -ENOSPC; ++ goto err_unlock; ++ ++have_slot: ++ nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices); ++ u64s = (sizeof(struct bch_sb_field_members) + ++ sizeof(struct bch_member) * nr_devices) / sizeof(u64); ++ ++ err = "no space in superblock for member info"; ++ ret = -ENOSPC; ++ ++ mi = bch2_sb_resize_members(&c->disk_sb, u64s); ++ if (!mi) ++ goto err_unlock; ++ ++ /* success: */ ++ ++ mi->members[dev_idx] = dev_mi; ++ mi->members[dev_idx].last_mount = cpu_to_le64(ktime_get_real_seconds()); ++ c->disk_sb.sb->nr_devices = nr_devices; ++ ++ ca->disk_sb.sb->dev_idx = dev_idx; ++ bch2_dev_attach(c, ca, dev_idx); ++ ++ bch2_mark_dev_superblock(c, ca, 0); ++ ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ err = "alloc write failed"; ++ ret = bch2_dev_alloc_write(c, ca, 0); ++ if (ret) ++ goto err; ++ ++ if (ca->mi.state == BCH_MEMBER_STATE_RW) { ++ err = __bch2_dev_read_write(c, ca); ++ if (err) ++ goto err_late; ++ } ++ ++ up_write(&c->state_lock); ++ return 0; ++ ++err_unlock: ++ mutex_unlock(&c->sb_lock); ++ up_write(&c->state_lock); ++err: ++ if (ca) ++ bch2_dev_free(ca); ++ bch2_free_super(&sb); ++ bch_err(c, "Unable to add device: %s", err); ++ return ret; ++err_late: ++ bch_err(c, "Error going rw after adding device: %s", err); ++ return -EINVAL; ++} ++ ++/* Hot add existing device to running filesystem: */ ++int bch2_dev_online(struct bch_fs *c, const char *path) ++{ ++ struct bch_opts opts = bch2_opts_empty(); ++ struct bch_sb_handle sb = { NULL }; ++ struct bch_sb_field_members *mi; ++ struct bch_dev *ca; ++ unsigned dev_idx; ++ const char *err; ++ int ret; ++ ++ down_write(&c->state_lock); ++ ++ ret = bch2_read_super(path, &opts, &sb); ++ if (ret) { ++ up_write(&c->state_lock); ++ return ret; ++ } ++ ++ dev_idx = sb.sb->dev_idx; ++ ++ err = bch2_dev_in_fs(c->disk_sb.sb, sb.sb); ++ if (err) ++ goto err; ++ ++ if (bch2_dev_attach_bdev(c, &sb)) { ++ err = "bch2_dev_attach_bdev() error"; ++ goto err; ++ } ++ ++ ca = bch_dev_locked(c, dev_idx); ++ if (ca->mi.state == BCH_MEMBER_STATE_RW) { ++ err = __bch2_dev_read_write(c, ca); ++ if (err) ++ goto err; ++ } ++ ++ mutex_lock(&c->sb_lock); ++ mi = bch2_sb_get_members(c->disk_sb.sb); ++ ++ mi->members[ca->dev_idx].last_mount = ++ cpu_to_le64(ktime_get_real_seconds()); ++ ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ up_write(&c->state_lock); ++ return 0; ++err: ++ up_write(&c->state_lock); ++ bch2_free_super(&sb); ++ bch_err(c, "error bringing %s online: %s", path, err); ++ return -EINVAL; ++} ++ ++int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags) ++{ ++ down_write(&c->state_lock); ++ ++ if (!bch2_dev_is_online(ca)) { ++ bch_err(ca, "Already offline"); ++ up_write(&c->state_lock); ++ return 0; ++ } ++ ++ if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_FAILED, flags)) { ++ bch_err(ca, "Cannot offline required disk"); ++ up_write(&c->state_lock); ++ return -EINVAL; ++ } ++ ++ __bch2_dev_offline(c, ca); ++ ++ up_write(&c->state_lock); ++ return 0; ++} ++ ++int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) ++{ ++ struct bch_member *mi; ++ int ret = 0; ++ ++ down_write(&c->state_lock); ++ ++ if (nbuckets < ca->mi.nbuckets) { ++ bch_err(ca, "Cannot shrink yet"); ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ if (bch2_dev_is_online(ca) && ++ get_capacity(ca->disk_sb.bdev->bd_disk) < ++ ca->mi.bucket_size * nbuckets) { ++ bch_err(ca, "New size larger than device"); ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ ret = bch2_dev_buckets_resize(c, ca, nbuckets); ++ if (ret) { ++ bch_err(ca, "Resize error: %i", ret); ++ goto err; ++ } ++ ++ mutex_lock(&c->sb_lock); ++ mi = &bch2_sb_get_members(c->disk_sb.sb)->members[ca->dev_idx]; ++ mi->nbuckets = cpu_to_le64(nbuckets); ++ ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ bch2_recalc_capacity(c); ++err: ++ up_write(&c->state_lock); ++ return ret; ++} ++ ++/* return with ref on ca->ref: */ ++struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *path) ++{ ++ struct block_device *bdev = lookup_bdev(path); ++ struct bch_dev *ca; ++ unsigned i; ++ ++ if (IS_ERR(bdev)) ++ return ERR_CAST(bdev); ++ ++ for_each_member_device(ca, c, i) ++ if (ca->disk_sb.bdev == bdev) ++ goto found; ++ ++ ca = ERR_PTR(-ENOENT); ++found: ++ bdput(bdev); ++ return ca; ++} ++ ++/* Filesystem open: */ ++ ++struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices, ++ struct bch_opts opts) ++{ ++ struct bch_sb_handle *sb = NULL; ++ struct bch_fs *c = NULL; ++ struct bch_sb_field_members *mi; ++ unsigned i, best_sb = 0; ++ const char *err; ++ int ret = -ENOMEM; ++ ++ pr_verbose_init(opts, ""); ++ ++ if (!nr_devices) { ++ c = ERR_PTR(-EINVAL); ++ goto out2; ++ } ++ ++ if (!try_module_get(THIS_MODULE)) { ++ c = ERR_PTR(-ENODEV); ++ goto out2; ++ } ++ ++ sb = kcalloc(nr_devices, sizeof(*sb), GFP_KERNEL); ++ if (!sb) ++ goto err; ++ ++ for (i = 0; i < nr_devices; i++) { ++ ret = bch2_read_super(devices[i], &opts, &sb[i]); ++ if (ret) ++ goto err; ++ ++ err = bch2_sb_validate(&sb[i]); ++ if (err) ++ goto err_print; ++ } ++ ++ for (i = 1; i < nr_devices; i++) ++ if (le64_to_cpu(sb[i].sb->seq) > ++ le64_to_cpu(sb[best_sb].sb->seq)) ++ best_sb = i; ++ ++ mi = bch2_sb_get_members(sb[best_sb].sb); ++ ++ i = 0; ++ while (i < nr_devices) { ++ if (i != best_sb && ++ !bch2_dev_exists(sb[best_sb].sb, mi, sb[i].sb->dev_idx)) { ++ char buf[BDEVNAME_SIZE]; ++ pr_info("%s has been removed, skipping", ++ bdevname(sb[i].bdev, buf)); ++ bch2_free_super(&sb[i]); ++ array_remove_item(sb, nr_devices, i); ++ continue; ++ } ++ ++ err = bch2_dev_in_fs(sb[best_sb].sb, sb[i].sb); ++ if (err) ++ goto err_print; ++ i++; ++ } ++ ++ ret = -ENOMEM; ++ c = bch2_fs_alloc(sb[best_sb].sb, opts); ++ if (!c) ++ goto err; ++ ++ err = "bch2_dev_online() error"; ++ down_write(&c->state_lock); ++ for (i = 0; i < nr_devices; i++) ++ if (bch2_dev_attach_bdev(c, &sb[i])) { ++ up_write(&c->state_lock); ++ goto err_print; ++ } ++ up_write(&c->state_lock); ++ ++ err = "insufficient devices"; ++ if (!bch2_fs_may_start(c)) ++ goto err_print; ++ ++ if (!c->opts.nostart) { ++ ret = bch2_fs_start(c); ++ if (ret) ++ goto err; ++ } ++out: ++ kfree(sb); ++ module_put(THIS_MODULE); ++out2: ++ pr_verbose_init(opts, "ret %i", PTR_ERR_OR_ZERO(c)); ++ return c; ++err_print: ++ pr_err("bch_fs_open err opening %s: %s", ++ devices[0], err); ++ ret = -EINVAL; ++err: ++ if (c) ++ bch2_fs_stop(c); ++ for (i = 0; i < nr_devices; i++) ++ bch2_free_super(&sb[i]); ++ c = ERR_PTR(ret); ++ goto out; ++} ++ ++static const char *__bch2_fs_open_incremental(struct bch_sb_handle *sb, ++ struct bch_opts opts) ++{ ++ const char *err; ++ struct bch_fs *c; ++ bool allocated_fs = false; ++ int ret; ++ ++ err = bch2_sb_validate(sb); ++ if (err) ++ return err; ++ ++ mutex_lock(&bch_fs_list_lock); ++ c = __bch2_uuid_to_fs(sb->sb->uuid); ++ if (c) { ++ closure_get(&c->cl); ++ ++ err = bch2_dev_in_fs(c->disk_sb.sb, sb->sb); ++ if (err) ++ goto err; ++ } else { ++ c = bch2_fs_alloc(sb->sb, opts); ++ err = "cannot allocate memory"; ++ if (!c) ++ goto err; ++ ++ allocated_fs = true; ++ } ++ ++ err = "bch2_dev_online() error"; ++ ++ mutex_lock(&c->sb_lock); ++ if (bch2_dev_attach_bdev(c, sb)) { ++ mutex_unlock(&c->sb_lock); ++ goto err; ++ } ++ mutex_unlock(&c->sb_lock); ++ ++ if (!c->opts.nostart && bch2_fs_may_start(c)) { ++ err = "error starting filesystem"; ++ ret = bch2_fs_start(c); ++ if (ret) ++ goto err; ++ } ++ ++ closure_put(&c->cl); ++ mutex_unlock(&bch_fs_list_lock); ++ ++ return NULL; ++err: ++ mutex_unlock(&bch_fs_list_lock); ++ ++ if (allocated_fs) ++ bch2_fs_stop(c); ++ else if (c) ++ closure_put(&c->cl); ++ ++ return err; ++} ++ ++const char *bch2_fs_open_incremental(const char *path) ++{ ++ struct bch_sb_handle sb; ++ struct bch_opts opts = bch2_opts_empty(); ++ const char *err; ++ ++ if (bch2_read_super(path, &opts, &sb)) ++ return "error reading superblock"; ++ ++ err = __bch2_fs_open_incremental(&sb, opts); ++ bch2_free_super(&sb); ++ ++ return err; ++} ++ ++/* Global interfaces/init */ ++ ++static void bcachefs_exit(void) ++{ ++ bch2_debug_exit(); ++ bch2_vfs_exit(); ++ bch2_chardev_exit(); ++ if (bcachefs_kset) ++ kset_unregister(bcachefs_kset); ++} ++ ++static int __init bcachefs_init(void) ++{ ++ bch2_bkey_pack_test(); ++ bch2_inode_pack_test(); ++ ++ if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) || ++ bch2_chardev_init() || ++ bch2_vfs_init() || ++ bch2_debug_init()) ++ goto err; ++ ++ return 0; ++err: ++ bcachefs_exit(); ++ return -ENOMEM; ++} ++ ++#define BCH_DEBUG_PARAM(name, description) \ ++ bool bch2_##name; \ ++ module_param_named(name, bch2_##name, bool, 0644); \ ++ MODULE_PARM_DESC(name, description); ++BCH_DEBUG_PARAMS() ++#undef BCH_DEBUG_PARAM ++ ++module_exit(bcachefs_exit); ++module_init(bcachefs_init); +diff --git a/fs/bcachefs/super.h b/fs/bcachefs/super.h +new file mode 100644 +index 000000000000..02c81f3555c3 +--- /dev/null ++++ b/fs/bcachefs/super.h +@@ -0,0 +1,241 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_SUPER_H ++#define _BCACHEFS_SUPER_H ++ ++#include "extents.h" ++ ++#include "bcachefs_ioctl.h" ++ ++#include ++ ++static inline size_t sector_to_bucket(const struct bch_dev *ca, sector_t s) ++{ ++ return div_u64(s, ca->mi.bucket_size); ++} ++ ++static inline sector_t bucket_to_sector(const struct bch_dev *ca, size_t b) ++{ ++ return ((sector_t) b) * ca->mi.bucket_size; ++} ++ ++static inline sector_t bucket_remainder(const struct bch_dev *ca, sector_t s) ++{ ++ u32 remainder; ++ ++ div_u64_rem(s, ca->mi.bucket_size, &remainder); ++ return remainder; ++} ++ ++static inline bool bch2_dev_is_online(struct bch_dev *ca) ++{ ++ return !percpu_ref_is_zero(&ca->io_ref); ++} ++ ++static inline bool bch2_dev_is_readable(struct bch_dev *ca) ++{ ++ return bch2_dev_is_online(ca) && ++ ca->mi.state != BCH_MEMBER_STATE_FAILED; ++} ++ ++static inline bool bch2_dev_get_ioref(struct bch_dev *ca, int rw) ++{ ++ if (!percpu_ref_tryget(&ca->io_ref)) ++ return false; ++ ++ if (ca->mi.state == BCH_MEMBER_STATE_RW || ++ (ca->mi.state == BCH_MEMBER_STATE_RO && rw == READ)) ++ return true; ++ ++ percpu_ref_put(&ca->io_ref); ++ return false; ++} ++ ++static inline unsigned dev_mask_nr(const struct bch_devs_mask *devs) ++{ ++ return bitmap_weight(devs->d, BCH_SB_MEMBERS_MAX); ++} ++ ++static inline bool bch2_dev_list_has_dev(struct bch_devs_list devs, ++ unsigned dev) ++{ ++ unsigned i; ++ ++ for (i = 0; i < devs.nr; i++) ++ if (devs.devs[i] == dev) ++ return true; ++ ++ return false; ++} ++ ++static inline void bch2_dev_list_drop_dev(struct bch_devs_list *devs, ++ unsigned dev) ++{ ++ unsigned i; ++ ++ for (i = 0; i < devs->nr; i++) ++ if (devs->devs[i] == dev) { ++ array_remove_item(devs->devs, devs->nr, i); ++ return; ++ } ++} ++ ++static inline void bch2_dev_list_add_dev(struct bch_devs_list *devs, ++ unsigned dev) ++{ ++ BUG_ON(bch2_dev_list_has_dev(*devs, dev)); ++ BUG_ON(devs->nr >= BCH_REPLICAS_MAX); ++ devs->devs[devs->nr++] = dev; ++} ++ ++static inline struct bch_devs_list bch2_dev_list_single(unsigned dev) ++{ ++ return (struct bch_devs_list) { .nr = 1, .devs[0] = dev }; ++} ++ ++static inline struct bch_dev *__bch2_next_dev(struct bch_fs *c, unsigned *iter, ++ const struct bch_devs_mask *mask) ++{ ++ struct bch_dev *ca = NULL; ++ ++ while ((*iter = mask ++ ? find_next_bit(mask->d, c->sb.nr_devices, *iter) ++ : *iter) < c->sb.nr_devices && ++ !(ca = rcu_dereference_check(c->devs[*iter], ++ lockdep_is_held(&c->state_lock)))) ++ (*iter)++; ++ ++ return ca; ++} ++ ++#define __for_each_member_device(ca, c, iter, mask) \ ++ for ((iter) = 0; ((ca) = __bch2_next_dev((c), &(iter), mask)); (iter)++) ++ ++#define for_each_member_device_rcu(ca, c, iter, mask) \ ++ __for_each_member_device(ca, c, iter, mask) ++ ++static inline struct bch_dev *bch2_get_next_dev(struct bch_fs *c, unsigned *iter) ++{ ++ struct bch_dev *ca; ++ ++ rcu_read_lock(); ++ if ((ca = __bch2_next_dev(c, iter, NULL))) ++ percpu_ref_get(&ca->ref); ++ rcu_read_unlock(); ++ ++ return ca; ++} ++ ++/* ++ * If you break early, you must drop your ref on the current device ++ */ ++#define for_each_member_device(ca, c, iter) \ ++ for ((iter) = 0; \ ++ (ca = bch2_get_next_dev(c, &(iter))); \ ++ percpu_ref_put(&ca->ref), (iter)++) ++ ++static inline struct bch_dev *bch2_get_next_online_dev(struct bch_fs *c, ++ unsigned *iter, ++ int state_mask) ++{ ++ struct bch_dev *ca; ++ ++ rcu_read_lock(); ++ while ((ca = __bch2_next_dev(c, iter, NULL)) && ++ (!((1 << ca->mi.state) & state_mask) || ++ !percpu_ref_tryget(&ca->io_ref))) ++ (*iter)++; ++ rcu_read_unlock(); ++ ++ return ca; ++} ++ ++#define __for_each_online_member(ca, c, iter, state_mask) \ ++ for ((iter) = 0; \ ++ (ca = bch2_get_next_online_dev(c, &(iter), state_mask)); \ ++ percpu_ref_put(&ca->io_ref), (iter)++) ++ ++#define for_each_online_member(ca, c, iter) \ ++ __for_each_online_member(ca, c, iter, ~0) ++ ++#define for_each_rw_member(ca, c, iter) \ ++ __for_each_online_member(ca, c, iter, 1 << BCH_MEMBER_STATE_RW) ++ ++#define for_each_readable_member(ca, c, iter) \ ++ __for_each_online_member(ca, c, iter, \ ++ (1 << BCH_MEMBER_STATE_RW)|(1 << BCH_MEMBER_STATE_RO)) ++ ++/* ++ * If a key exists that references a device, the device won't be going away and ++ * we can omit rcu_read_lock(): ++ */ ++static inline struct bch_dev *bch_dev_bkey_exists(const struct bch_fs *c, unsigned idx) ++{ ++ EBUG_ON(idx >= c->sb.nr_devices || !c->devs[idx]); ++ ++ return rcu_dereference_check(c->devs[idx], 1); ++} ++ ++static inline struct bch_dev *bch_dev_locked(struct bch_fs *c, unsigned idx) ++{ ++ EBUG_ON(idx >= c->sb.nr_devices || !c->devs[idx]); ++ ++ return rcu_dereference_protected(c->devs[idx], ++ lockdep_is_held(&c->sb_lock) || ++ lockdep_is_held(&c->state_lock)); ++} ++ ++/* XXX kill, move to struct bch_fs */ ++static inline struct bch_devs_mask bch2_online_devs(struct bch_fs *c) ++{ ++ struct bch_devs_mask devs; ++ struct bch_dev *ca; ++ unsigned i; ++ ++ memset(&devs, 0, sizeof(devs)); ++ for_each_online_member(ca, c, i) ++ __set_bit(ca->dev_idx, devs.d); ++ return devs; ++} ++ ++struct bch_fs *bch2_bdev_to_fs(struct block_device *); ++struct bch_fs *bch2_uuid_to_fs(uuid_le); ++ ++bool bch2_dev_state_allowed(struct bch_fs *, struct bch_dev *, ++ enum bch_member_state, int); ++int __bch2_dev_set_state(struct bch_fs *, struct bch_dev *, ++ enum bch_member_state, int); ++int bch2_dev_set_state(struct bch_fs *, struct bch_dev *, ++ enum bch_member_state, int); ++ ++int bch2_dev_fail(struct bch_dev *, int); ++int bch2_dev_remove(struct bch_fs *, struct bch_dev *, int); ++int bch2_dev_add(struct bch_fs *, const char *); ++int bch2_dev_online(struct bch_fs *, const char *); ++int bch2_dev_offline(struct bch_fs *, struct bch_dev *, int); ++int bch2_dev_resize(struct bch_fs *, struct bch_dev *, u64); ++struct bch_dev *bch2_dev_lookup(struct bch_fs *, const char *); ++ ++bool bch2_fs_emergency_read_only(struct bch_fs *); ++void bch2_fs_read_only(struct bch_fs *); ++ ++int bch2_fs_read_write(struct bch_fs *); ++int bch2_fs_read_write_early(struct bch_fs *); ++ ++/* ++ * Only for use in the recovery/fsck path: ++ */ ++static inline void bch2_fs_lazy_rw(struct bch_fs *c) ++{ ++ if (percpu_ref_is_zero(&c->writes)) ++ bch2_fs_read_write_early(c); ++} ++ ++void __bch2_fs_stop(struct bch_fs *); ++void bch2_fs_free(struct bch_fs *); ++void bch2_fs_stop(struct bch_fs *); ++ ++int bch2_fs_start(struct bch_fs *); ++struct bch_fs *bch2_fs_open(char * const *, unsigned, struct bch_opts); ++const char *bch2_fs_open_incremental(const char *path); ++ ++#endif /* _BCACHEFS_SUPER_H */ +diff --git a/fs/bcachefs/super_types.h b/fs/bcachefs/super_types.h +new file mode 100644 +index 000000000000..20406ebd6f5b +--- /dev/null ++++ b/fs/bcachefs/super_types.h +@@ -0,0 +1,51 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_SUPER_TYPES_H ++#define _BCACHEFS_SUPER_TYPES_H ++ ++struct bch_sb_handle { ++ struct bch_sb *sb; ++ struct block_device *bdev; ++ struct bio *bio; ++ unsigned page_order; ++ fmode_t mode; ++ unsigned have_layout:1; ++ unsigned have_bio:1; ++ unsigned fs_sb:1; ++ u64 seq; ++}; ++ ++struct bch_devs_mask { ++ unsigned long d[BITS_TO_LONGS(BCH_SB_MEMBERS_MAX)]; ++}; ++ ++struct bch_devs_list { ++ u8 nr; ++ u8 devs[BCH_REPLICAS_MAX + 1]; ++}; ++ ++struct bch_member_cpu { ++ u64 nbuckets; /* device size */ ++ u16 first_bucket; /* index of first bucket used */ ++ u16 bucket_size; /* sectors */ ++ u16 group; ++ u8 state; ++ u8 replacement; ++ u8 discard; ++ u8 data_allowed; ++ u8 durability; ++ u8 valid; ++}; ++ ++struct bch_disk_group_cpu { ++ bool deleted; ++ u16 parent; ++ struct bch_devs_mask devs; ++}; ++ ++struct bch_disk_groups_cpu { ++ struct rcu_head rcu; ++ unsigned nr; ++ struct bch_disk_group_cpu entries[]; ++}; ++ ++#endif /* _BCACHEFS_SUPER_TYPES_H */ +diff --git a/fs/bcachefs/sysfs.c b/fs/bcachefs/sysfs.c +new file mode 100644 +index 000000000000..0cb29f43d99d +--- /dev/null ++++ b/fs/bcachefs/sysfs.c +@@ -0,0 +1,1074 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * bcache sysfs interfaces ++ * ++ * Copyright 2010, 2011 Kent Overstreet ++ * Copyright 2012 Google, Inc. ++ */ ++ ++#ifndef NO_BCACHEFS_SYSFS ++ ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "sysfs.h" ++#include "btree_cache.h" ++#include "btree_io.h" ++#include "btree_iter.h" ++#include "btree_key_cache.h" ++#include "btree_update.h" ++#include "btree_update_interior.h" ++#include "btree_gc.h" ++#include "buckets.h" ++#include "clock.h" ++#include "disk_groups.h" ++#include "ec.h" ++#include "inode.h" ++#include "journal.h" ++#include "keylist.h" ++#include "move.h" ++#include "opts.h" ++#include "rebalance.h" ++#include "replicas.h" ++#include "super-io.h" ++#include "tests.h" ++ ++#include ++#include ++#include ++ ++#include "util.h" ++ ++#define SYSFS_OPS(type) \ ++struct sysfs_ops type ## _sysfs_ops = { \ ++ .show = type ## _show, \ ++ .store = type ## _store \ ++} ++ ++#define SHOW(fn) \ ++static ssize_t fn ## _show(struct kobject *kobj, struct attribute *attr,\ ++ char *buf) \ ++ ++#define STORE(fn) \ ++static ssize_t fn ## _store(struct kobject *kobj, struct attribute *attr,\ ++ const char *buf, size_t size) \ ++ ++#define __sysfs_attribute(_name, _mode) \ ++ static struct attribute sysfs_##_name = \ ++ { .name = #_name, .mode = _mode } ++ ++#define write_attribute(n) __sysfs_attribute(n, S_IWUSR) ++#define read_attribute(n) __sysfs_attribute(n, S_IRUGO) ++#define rw_attribute(n) __sysfs_attribute(n, S_IRUGO|S_IWUSR) ++ ++#define sysfs_printf(file, fmt, ...) \ ++do { \ ++ if (attr == &sysfs_ ## file) \ ++ return scnprintf(buf, PAGE_SIZE, fmt "\n", __VA_ARGS__);\ ++} while (0) ++ ++#define sysfs_print(file, var) \ ++do { \ ++ if (attr == &sysfs_ ## file) \ ++ return snprint(buf, PAGE_SIZE, var); \ ++} while (0) ++ ++#define sysfs_hprint(file, val) \ ++do { \ ++ if (attr == &sysfs_ ## file) { \ ++ bch2_hprint(&out, val); \ ++ pr_buf(&out, "\n"); \ ++ return out.pos - buf; \ ++ } \ ++} while (0) ++ ++#define var_printf(_var, fmt) sysfs_printf(_var, fmt, var(_var)) ++#define var_print(_var) sysfs_print(_var, var(_var)) ++#define var_hprint(_var) sysfs_hprint(_var, var(_var)) ++ ++#define sysfs_strtoul(file, var) \ ++do { \ ++ if (attr == &sysfs_ ## file) \ ++ return strtoul_safe(buf, var) ?: (ssize_t) size; \ ++} while (0) ++ ++#define sysfs_strtoul_clamp(file, var, min, max) \ ++do { \ ++ if (attr == &sysfs_ ## file) \ ++ return strtoul_safe_clamp(buf, var, min, max) \ ++ ?: (ssize_t) size; \ ++} while (0) ++ ++#define strtoul_or_return(cp) \ ++({ \ ++ unsigned long _v; \ ++ int _r = kstrtoul(cp, 10, &_v); \ ++ if (_r) \ ++ return _r; \ ++ _v; \ ++}) ++ ++#define strtoul_restrict_or_return(cp, min, max) \ ++({ \ ++ unsigned long __v = 0; \ ++ int _r = strtoul_safe_restrict(cp, __v, min, max); \ ++ if (_r) \ ++ return _r; \ ++ __v; \ ++}) ++ ++#define strtoi_h_or_return(cp) \ ++({ \ ++ u64 _v; \ ++ int _r = strtoi_h(cp, &_v); \ ++ if (_r) \ ++ return _r; \ ++ _v; \ ++}) ++ ++#define sysfs_hatoi(file, var) \ ++do { \ ++ if (attr == &sysfs_ ## file) \ ++ return strtoi_h(buf, &var) ?: (ssize_t) size; \ ++} while (0) ++ ++write_attribute(trigger_journal_flush); ++write_attribute(trigger_btree_coalesce); ++write_attribute(trigger_gc); ++write_attribute(prune_cache); ++rw_attribute(btree_gc_periodic); ++ ++read_attribute(uuid); ++read_attribute(minor); ++read_attribute(bucket_size); ++read_attribute(block_size); ++read_attribute(btree_node_size); ++read_attribute(first_bucket); ++read_attribute(nbuckets); ++read_attribute(durability); ++read_attribute(iodone); ++ ++read_attribute(io_latency_read); ++read_attribute(io_latency_write); ++read_attribute(io_latency_stats_read); ++read_attribute(io_latency_stats_write); ++read_attribute(congested); ++ ++read_attribute(bucket_quantiles_last_read); ++read_attribute(bucket_quantiles_last_write); ++read_attribute(bucket_quantiles_fragmentation); ++read_attribute(bucket_quantiles_oldest_gen); ++ ++read_attribute(reserve_stats); ++read_attribute(btree_cache_size); ++read_attribute(compression_stats); ++read_attribute(journal_debug); ++read_attribute(journal_pins); ++read_attribute(btree_updates); ++read_attribute(dirty_btree_nodes); ++read_attribute(btree_key_cache); ++read_attribute(btree_transactions); ++read_attribute(stripes_heap); ++ ++read_attribute(internal_uuid); ++ ++read_attribute(has_data); ++read_attribute(alloc_debug); ++write_attribute(wake_allocator); ++ ++read_attribute(read_realloc_races); ++read_attribute(extent_migrate_done); ++read_attribute(extent_migrate_raced); ++ ++rw_attribute(journal_write_delay_ms); ++rw_attribute(journal_reclaim_delay_ms); ++ ++rw_attribute(discard); ++rw_attribute(cache_replacement_policy); ++rw_attribute(label); ++ ++rw_attribute(copy_gc_enabled); ++sysfs_pd_controller_attribute(copy_gc); ++ ++rw_attribute(rebalance_enabled); ++sysfs_pd_controller_attribute(rebalance); ++read_attribute(rebalance_work); ++rw_attribute(promote_whole_extents); ++ ++read_attribute(new_stripes); ++ ++rw_attribute(pd_controllers_update_seconds); ++ ++read_attribute(meta_replicas_have); ++read_attribute(data_replicas_have); ++ ++read_attribute(io_timers_read); ++read_attribute(io_timers_write); ++ ++#ifdef CONFIG_BCACHEFS_TESTS ++write_attribute(perf_test); ++#endif /* CONFIG_BCACHEFS_TESTS */ ++ ++#define BCH_DEBUG_PARAM(name, description) \ ++ rw_attribute(name); ++ ++ BCH_DEBUG_PARAMS() ++#undef BCH_DEBUG_PARAM ++ ++#define x(_name) \ ++ static struct attribute sysfs_time_stat_##_name = \ ++ { .name = #_name, .mode = S_IRUGO }; ++ BCH_TIME_STATS() ++#undef x ++ ++static struct attribute sysfs_state_rw = { ++ .name = "state", ++ .mode = S_IRUGO ++}; ++ ++static size_t bch2_btree_cache_size(struct bch_fs *c) ++{ ++ size_t ret = 0; ++ struct btree *b; ++ ++ mutex_lock(&c->btree_cache.lock); ++ list_for_each_entry(b, &c->btree_cache.live, list) ++ ret += btree_bytes(c); ++ ++ mutex_unlock(&c->btree_cache.lock); ++ return ret; ++} ++ ++static int fs_alloc_debug_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ struct bch_fs_usage *fs_usage = bch2_fs_usage_read(c); ++ ++ if (!fs_usage) ++ return -ENOMEM; ++ ++ bch2_fs_usage_to_text(out, c, fs_usage); ++ ++ percpu_up_read(&c->mark_lock); ++ ++ kfree(fs_usage); ++ return 0; ++} ++ ++static int bch2_compression_stats_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ u64 nr_uncompressed_extents = 0, uncompressed_sectors = 0, ++ nr_compressed_extents = 0, ++ compressed_sectors_compressed = 0, ++ compressed_sectors_uncompressed = 0; ++ int ret; ++ ++ if (!test_bit(BCH_FS_STARTED, &c->flags)) ++ return -EPERM; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS, POS_MIN, 0, k, ret) ++ if (k.k->type == KEY_TYPE_extent) { ++ struct bkey_s_c_extent e = bkey_s_c_to_extent(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ ++ extent_for_each_ptr_decode(e, p, entry) { ++ if (!crc_is_compressed(p.crc)) { ++ nr_uncompressed_extents++; ++ uncompressed_sectors += e.k->size; ++ } else { ++ nr_compressed_extents++; ++ compressed_sectors_compressed += ++ p.crc.compressed_size; ++ compressed_sectors_uncompressed += ++ p.crc.uncompressed_size; ++ } ++ ++ /* only looking at the first ptr */ ++ break; ++ } ++ } ++ ++ ret = bch2_trans_exit(&trans) ?: ret; ++ if (ret) ++ return ret; ++ ++ pr_buf(out, ++ "uncompressed data:\n" ++ " nr extents: %llu\n" ++ " size (bytes): %llu\n" ++ "compressed data:\n" ++ " nr extents: %llu\n" ++ " compressed size (bytes): %llu\n" ++ " uncompressed size (bytes): %llu\n", ++ nr_uncompressed_extents, ++ uncompressed_sectors << 9, ++ nr_compressed_extents, ++ compressed_sectors_compressed << 9, ++ compressed_sectors_uncompressed << 9); ++ return 0; ++} ++ ++SHOW(bch2_fs) ++{ ++ struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); ++ struct printbuf out = _PBUF(buf, PAGE_SIZE); ++ ++ sysfs_print(minor, c->minor); ++ sysfs_printf(internal_uuid, "%pU", c->sb.uuid.b); ++ ++ sysfs_print(journal_write_delay_ms, c->journal.write_delay_ms); ++ sysfs_print(journal_reclaim_delay_ms, c->journal.reclaim_delay_ms); ++ ++ sysfs_print(block_size, block_bytes(c)); ++ sysfs_print(btree_node_size, btree_bytes(c)); ++ sysfs_hprint(btree_cache_size, bch2_btree_cache_size(c)); ++ ++ sysfs_print(read_realloc_races, ++ atomic_long_read(&c->read_realloc_races)); ++ sysfs_print(extent_migrate_done, ++ atomic_long_read(&c->extent_migrate_done)); ++ sysfs_print(extent_migrate_raced, ++ atomic_long_read(&c->extent_migrate_raced)); ++ ++ sysfs_printf(btree_gc_periodic, "%u", (int) c->btree_gc_periodic); ++ ++ sysfs_printf(copy_gc_enabled, "%i", c->copy_gc_enabled); ++ ++ sysfs_print(pd_controllers_update_seconds, ++ c->pd_controllers_update_seconds); ++ ++ sysfs_printf(rebalance_enabled, "%i", c->rebalance.enabled); ++ sysfs_pd_controller_show(rebalance, &c->rebalance.pd); /* XXX */ ++ sysfs_pd_controller_show(copy_gc, &c->copygc_pd); ++ ++ if (attr == &sysfs_rebalance_work) { ++ bch2_rebalance_work_to_text(&out, c); ++ return out.pos - buf; ++ } ++ ++ sysfs_print(promote_whole_extents, c->promote_whole_extents); ++ ++ sysfs_printf(meta_replicas_have, "%i", bch2_replicas_online(c, true)); ++ sysfs_printf(data_replicas_have, "%i", bch2_replicas_online(c, false)); ++ ++ /* Debugging: */ ++ ++ if (attr == &sysfs_alloc_debug) ++ return fs_alloc_debug_to_text(&out, c) ?: out.pos - buf; ++ ++ if (attr == &sysfs_journal_debug) { ++ bch2_journal_debug_to_text(&out, &c->journal); ++ return out.pos - buf; ++ } ++ ++ if (attr == &sysfs_journal_pins) { ++ bch2_journal_pins_to_text(&out, &c->journal); ++ return out.pos - buf; ++ } ++ ++ if (attr == &sysfs_btree_updates) { ++ bch2_btree_updates_to_text(&out, c); ++ return out.pos - buf; ++ } ++ ++ if (attr == &sysfs_dirty_btree_nodes) { ++ bch2_dirty_btree_nodes_to_text(&out, c); ++ return out.pos - buf; ++ } ++ ++ if (attr == &sysfs_btree_key_cache) { ++ bch2_btree_key_cache_to_text(&out, &c->btree_key_cache); ++ return out.pos - buf; ++ } ++ ++ if (attr == &sysfs_btree_transactions) { ++ bch2_btree_trans_to_text(&out, c); ++ return out.pos - buf; ++ } ++ ++ if (attr == &sysfs_stripes_heap) { ++ bch2_stripes_heap_to_text(&out, c); ++ return out.pos - buf; ++ } ++ ++ if (attr == &sysfs_compression_stats) { ++ bch2_compression_stats_to_text(&out, c); ++ return out.pos - buf; ++ } ++ ++ if (attr == &sysfs_new_stripes) { ++ bch2_new_stripes_to_text(&out, c); ++ return out.pos - buf; ++ } ++ ++ if (attr == &sysfs_io_timers_read) { ++ bch2_io_timers_to_text(&out, &c->io_clock[READ]); ++ return out.pos - buf; ++ } ++ if (attr == &sysfs_io_timers_write) { ++ bch2_io_timers_to_text(&out, &c->io_clock[WRITE]); ++ return out.pos - buf; ++ } ++ ++#define BCH_DEBUG_PARAM(name, description) sysfs_print(name, c->name); ++ BCH_DEBUG_PARAMS() ++#undef BCH_DEBUG_PARAM ++ ++ return 0; ++} ++ ++STORE(bch2_fs) ++{ ++ struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); ++ ++ sysfs_strtoul(journal_write_delay_ms, c->journal.write_delay_ms); ++ sysfs_strtoul(journal_reclaim_delay_ms, c->journal.reclaim_delay_ms); ++ ++ if (attr == &sysfs_btree_gc_periodic) { ++ ssize_t ret = strtoul_safe(buf, c->btree_gc_periodic) ++ ?: (ssize_t) size; ++ ++ wake_up_process(c->gc_thread); ++ return ret; ++ } ++ ++ if (attr == &sysfs_copy_gc_enabled) { ++ ssize_t ret = strtoul_safe(buf, c->copy_gc_enabled) ++ ?: (ssize_t) size; ++ ++ if (c->copygc_thread) ++ wake_up_process(c->copygc_thread); ++ return ret; ++ } ++ ++ if (attr == &sysfs_rebalance_enabled) { ++ ssize_t ret = strtoul_safe(buf, c->rebalance.enabled) ++ ?: (ssize_t) size; ++ ++ rebalance_wakeup(c); ++ return ret; ++ } ++ ++ sysfs_strtoul(pd_controllers_update_seconds, ++ c->pd_controllers_update_seconds); ++ sysfs_pd_controller_store(rebalance, &c->rebalance.pd); ++ sysfs_pd_controller_store(copy_gc, &c->copygc_pd); ++ ++ sysfs_strtoul(promote_whole_extents, c->promote_whole_extents); ++ ++ /* Debugging: */ ++ ++#define BCH_DEBUG_PARAM(name, description) sysfs_strtoul(name, c->name); ++ BCH_DEBUG_PARAMS() ++#undef BCH_DEBUG_PARAM ++ ++ if (!test_bit(BCH_FS_STARTED, &c->flags)) ++ return -EPERM; ++ ++ /* Debugging: */ ++ ++ if (attr == &sysfs_trigger_journal_flush) ++ bch2_journal_meta_async(&c->journal, NULL); ++ ++ if (attr == &sysfs_trigger_btree_coalesce) ++ bch2_coalesce(c); ++ ++ if (attr == &sysfs_trigger_gc) { ++ /* ++ * Full gc is currently incompatible with btree key cache: ++ */ ++#if 0 ++ down_read(&c->state_lock); ++ bch2_gc(c, NULL, false, false); ++ up_read(&c->state_lock); ++#else ++ bch2_gc_gens(c); ++#endif ++ } ++ ++ if (attr == &sysfs_prune_cache) { ++ struct shrink_control sc; ++ ++ sc.gfp_mask = GFP_KERNEL; ++ sc.nr_to_scan = strtoul_or_return(buf); ++ c->btree_cache.shrink.scan_objects(&c->btree_cache.shrink, &sc); ++ } ++ ++#ifdef CONFIG_BCACHEFS_TESTS ++ if (attr == &sysfs_perf_test) { ++ char *tmp = kstrdup(buf, GFP_KERNEL), *p = tmp; ++ char *test = strsep(&p, " \t\n"); ++ char *nr_str = strsep(&p, " \t\n"); ++ char *threads_str = strsep(&p, " \t\n"); ++ unsigned threads; ++ u64 nr; ++ int ret = -EINVAL; ++ ++ if (threads_str && ++ !(ret = kstrtouint(threads_str, 10, &threads)) && ++ !(ret = bch2_strtoull_h(nr_str, &nr))) ++ bch2_btree_perf_test(c, test, nr, threads); ++ else ++ size = ret; ++ kfree(tmp); ++ } ++#endif ++ return size; ++} ++SYSFS_OPS(bch2_fs); ++ ++struct attribute *bch2_fs_files[] = { ++ &sysfs_minor, ++ &sysfs_block_size, ++ &sysfs_btree_node_size, ++ &sysfs_btree_cache_size, ++ ++ &sysfs_meta_replicas_have, ++ &sysfs_data_replicas_have, ++ ++ &sysfs_journal_write_delay_ms, ++ &sysfs_journal_reclaim_delay_ms, ++ ++ &sysfs_promote_whole_extents, ++ ++ &sysfs_compression_stats, ++ ++#ifdef CONFIG_BCACHEFS_TESTS ++ &sysfs_perf_test, ++#endif ++ NULL ++}; ++ ++/* internal dir - just a wrapper */ ++ ++SHOW(bch2_fs_internal) ++{ ++ struct bch_fs *c = container_of(kobj, struct bch_fs, internal); ++ return bch2_fs_show(&c->kobj, attr, buf); ++} ++ ++STORE(bch2_fs_internal) ++{ ++ struct bch_fs *c = container_of(kobj, struct bch_fs, internal); ++ return bch2_fs_store(&c->kobj, attr, buf, size); ++} ++SYSFS_OPS(bch2_fs_internal); ++ ++struct attribute *bch2_fs_internal_files[] = { ++ &sysfs_alloc_debug, ++ &sysfs_journal_debug, ++ &sysfs_journal_pins, ++ &sysfs_btree_updates, ++ &sysfs_dirty_btree_nodes, ++ &sysfs_btree_key_cache, ++ &sysfs_btree_transactions, ++ &sysfs_stripes_heap, ++ ++ &sysfs_read_realloc_races, ++ &sysfs_extent_migrate_done, ++ &sysfs_extent_migrate_raced, ++ ++ &sysfs_trigger_journal_flush, ++ &sysfs_trigger_btree_coalesce, ++ &sysfs_trigger_gc, ++ &sysfs_prune_cache, ++ ++ &sysfs_copy_gc_enabled, ++ ++ &sysfs_rebalance_enabled, ++ &sysfs_rebalance_work, ++ sysfs_pd_controller_files(rebalance), ++ sysfs_pd_controller_files(copy_gc), ++ ++ &sysfs_new_stripes, ++ ++ &sysfs_io_timers_read, ++ &sysfs_io_timers_write, ++ ++ &sysfs_internal_uuid, ++ ++#define BCH_DEBUG_PARAM(name, description) &sysfs_##name, ++ BCH_DEBUG_PARAMS() ++#undef BCH_DEBUG_PARAM ++ ++ NULL ++}; ++ ++/* options */ ++ ++SHOW(bch2_fs_opts_dir) ++{ ++ struct printbuf out = _PBUF(buf, PAGE_SIZE); ++ struct bch_fs *c = container_of(kobj, struct bch_fs, opts_dir); ++ const struct bch_option *opt = container_of(attr, struct bch_option, attr); ++ int id = opt - bch2_opt_table; ++ u64 v = bch2_opt_get_by_id(&c->opts, id); ++ ++ bch2_opt_to_text(&out, c, opt, v, OPT_SHOW_FULL_LIST); ++ pr_buf(&out, "\n"); ++ ++ return out.pos - buf; ++} ++ ++STORE(bch2_fs_opts_dir) ++{ ++ struct bch_fs *c = container_of(kobj, struct bch_fs, opts_dir); ++ const struct bch_option *opt = container_of(attr, struct bch_option, attr); ++ int ret, id = opt - bch2_opt_table; ++ char *tmp; ++ u64 v; ++ ++ tmp = kstrdup(buf, GFP_KERNEL); ++ if (!tmp) ++ return -ENOMEM; ++ ++ ret = bch2_opt_parse(c, opt, strim(tmp), &v); ++ kfree(tmp); ++ ++ if (ret < 0) ++ return ret; ++ ++ ret = bch2_opt_check_may_set(c, id, v); ++ if (ret < 0) ++ return ret; ++ ++ if (opt->set_sb != SET_NO_SB_OPT) { ++ mutex_lock(&c->sb_lock); ++ opt->set_sb(c->disk_sb.sb, v); ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ } ++ ++ bch2_opt_set_by_id(&c->opts, id, v); ++ ++ if ((id == Opt_background_target || ++ id == Opt_background_compression) && v) { ++ bch2_rebalance_add_work(c, S64_MAX); ++ rebalance_wakeup(c); ++ } ++ ++ return size; ++} ++SYSFS_OPS(bch2_fs_opts_dir); ++ ++struct attribute *bch2_fs_opts_dir_files[] = { NULL }; ++ ++int bch2_opts_create_sysfs_files(struct kobject *kobj) ++{ ++ const struct bch_option *i; ++ int ret; ++ ++ for (i = bch2_opt_table; ++ i < bch2_opt_table + bch2_opts_nr; ++ i++) { ++ if (!(i->mode & (OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME))) ++ continue; ++ ++ ret = sysfs_create_file(kobj, &i->attr); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++/* time stats */ ++ ++SHOW(bch2_fs_time_stats) ++{ ++ struct bch_fs *c = container_of(kobj, struct bch_fs, time_stats); ++ struct printbuf out = _PBUF(buf, PAGE_SIZE); ++ ++#define x(name) \ ++ if (attr == &sysfs_time_stat_##name) { \ ++ bch2_time_stats_to_text(&out, &c->times[BCH_TIME_##name]);\ ++ return out.pos - buf; \ ++ } ++ BCH_TIME_STATS() ++#undef x ++ ++ return 0; ++} ++ ++STORE(bch2_fs_time_stats) ++{ ++ return size; ++} ++SYSFS_OPS(bch2_fs_time_stats); ++ ++struct attribute *bch2_fs_time_stats_files[] = { ++#define x(name) \ ++ &sysfs_time_stat_##name, ++ BCH_TIME_STATS() ++#undef x ++ NULL ++}; ++ ++typedef unsigned (bucket_map_fn)(struct bch_fs *, struct bch_dev *, ++ size_t, void *); ++ ++static unsigned bucket_last_io_fn(struct bch_fs *c, struct bch_dev *ca, ++ size_t b, void *private) ++{ ++ int rw = (private ? 1 : 0); ++ ++ return bucket_last_io(c, bucket(ca, b), rw); ++} ++ ++static unsigned bucket_sectors_used_fn(struct bch_fs *c, struct bch_dev *ca, ++ size_t b, void *private) ++{ ++ struct bucket *g = bucket(ca, b); ++ return bucket_sectors_used(g->mark); ++} ++ ++static unsigned bucket_oldest_gen_fn(struct bch_fs *c, struct bch_dev *ca, ++ size_t b, void *private) ++{ ++ return bucket_gc_gen(ca, b); ++} ++ ++static int unsigned_cmp(const void *_l, const void *_r) ++{ ++ const unsigned *l = _l; ++ const unsigned *r = _r; ++ ++ return cmp_int(*l, *r); ++} ++ ++static int quantiles_to_text(struct printbuf *out, ++ struct bch_fs *c, struct bch_dev *ca, ++ bucket_map_fn *fn, void *private) ++{ ++ size_t i, n; ++ /* Compute 31 quantiles */ ++ unsigned q[31], *p; ++ ++ down_read(&ca->bucket_lock); ++ n = ca->mi.nbuckets; ++ ++ p = vzalloc(n * sizeof(unsigned)); ++ if (!p) { ++ up_read(&ca->bucket_lock); ++ return -ENOMEM; ++ } ++ ++ for (i = ca->mi.first_bucket; i < n; i++) ++ p[i] = fn(c, ca, i, private); ++ ++ sort(p, n, sizeof(unsigned), unsigned_cmp, NULL); ++ up_read(&ca->bucket_lock); ++ ++ while (n && ++ !p[n - 1]) ++ --n; ++ ++ for (i = 0; i < ARRAY_SIZE(q); i++) ++ q[i] = p[n * (i + 1) / (ARRAY_SIZE(q) + 1)]; ++ ++ vfree(p); ++ ++ for (i = 0; i < ARRAY_SIZE(q); i++) ++ pr_buf(out, "%u ", q[i]); ++ pr_buf(out, "\n"); ++ return 0; ++} ++ ++static void reserve_stats_to_text(struct printbuf *out, struct bch_dev *ca) ++{ ++ enum alloc_reserve i; ++ ++ spin_lock(&ca->fs->freelist_lock); ++ ++ pr_buf(out, "free_inc:\t%zu\t%zu\n", ++ fifo_used(&ca->free_inc), ++ ca->free_inc.size); ++ ++ for (i = 0; i < RESERVE_NR; i++) ++ pr_buf(out, "free[%u]:\t%zu\t%zu\n", i, ++ fifo_used(&ca->free[i]), ++ ca->free[i].size); ++ ++ spin_unlock(&ca->fs->freelist_lock); ++} ++ ++static void dev_alloc_debug_to_text(struct printbuf *out, struct bch_dev *ca) ++{ ++ struct bch_fs *c = ca->fs; ++ struct bch_dev_usage stats = bch2_dev_usage_read(ca); ++ unsigned i, nr[BCH_DATA_NR]; ++ ++ memset(nr, 0, sizeof(nr)); ++ ++ for (i = 0; i < ARRAY_SIZE(c->open_buckets); i++) ++ nr[c->open_buckets[i].type]++; ++ ++ pr_buf(out, ++ "free_inc: %zu/%zu\n" ++ "free[RESERVE_BTREE]: %zu/%zu\n" ++ "free[RESERVE_MOVINGGC]: %zu/%zu\n" ++ "free[RESERVE_NONE]: %zu/%zu\n" ++ "buckets:\n" ++ " capacity: %llu\n" ++ " alloc: %llu\n" ++ " sb: %llu\n" ++ " journal: %llu\n" ++ " meta: %llu\n" ++ " user: %llu\n" ++ " cached: %llu\n" ++ " erasure coded: %llu\n" ++ " available: %lli\n" ++ "sectors:\n" ++ " sb: %llu\n" ++ " journal: %llu\n" ++ " meta: %llu\n" ++ " user: %llu\n" ++ " cached: %llu\n" ++ " erasure coded: %llu\n" ++ " fragmented: %llu\n" ++ " copygc threshold: %llu\n" ++ "freelist_wait: %s\n" ++ "open buckets: %u/%u (reserved %u)\n" ++ "open_buckets_wait: %s\n" ++ "open_buckets_btree: %u\n" ++ "open_buckets_user: %u\n" ++ "btree reserve cache: %u\n", ++ fifo_used(&ca->free_inc), ca->free_inc.size, ++ fifo_used(&ca->free[RESERVE_BTREE]), ca->free[RESERVE_BTREE].size, ++ fifo_used(&ca->free[RESERVE_MOVINGGC]), ca->free[RESERVE_MOVINGGC].size, ++ fifo_used(&ca->free[RESERVE_NONE]), ca->free[RESERVE_NONE].size, ++ ca->mi.nbuckets - ca->mi.first_bucket, ++ stats.buckets_alloc, ++ stats.buckets[BCH_DATA_sb], ++ stats.buckets[BCH_DATA_journal], ++ stats.buckets[BCH_DATA_btree], ++ stats.buckets[BCH_DATA_user], ++ stats.buckets[BCH_DATA_cached], ++ stats.buckets_ec, ++ __dev_buckets_available(ca, stats), ++ stats.sectors[BCH_DATA_sb], ++ stats.sectors[BCH_DATA_journal], ++ stats.sectors[BCH_DATA_btree], ++ stats.sectors[BCH_DATA_user], ++ stats.sectors[BCH_DATA_cached], ++ stats.sectors_ec, ++ stats.sectors_fragmented, ++ c->copygc_threshold, ++ c->freelist_wait.list.first ? "waiting" : "empty", ++ c->open_buckets_nr_free, OPEN_BUCKETS_COUNT, ++ BTREE_NODE_OPEN_BUCKET_RESERVE, ++ c->open_buckets_wait.list.first ? "waiting" : "empty", ++ nr[BCH_DATA_btree], ++ nr[BCH_DATA_user], ++ c->btree_reserve_cache_nr); ++} ++ ++static const char * const bch2_rw[] = { ++ "read", ++ "write", ++ NULL ++}; ++ ++static void dev_iodone_to_text(struct printbuf *out, struct bch_dev *ca) ++{ ++ int rw, i; ++ ++ for (rw = 0; rw < 2; rw++) { ++ pr_buf(out, "%s:\n", bch2_rw[rw]); ++ ++ for (i = 1; i < BCH_DATA_NR; i++) ++ pr_buf(out, "%-12s:%12llu\n", ++ bch2_data_types[i], ++ percpu_u64_get(&ca->io_done->sectors[rw][i]) << 9); ++ } ++} ++ ++SHOW(bch2_dev) ++{ ++ struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); ++ struct bch_fs *c = ca->fs; ++ struct printbuf out = _PBUF(buf, PAGE_SIZE); ++ ++ sysfs_printf(uuid, "%pU\n", ca->uuid.b); ++ ++ sysfs_print(bucket_size, bucket_bytes(ca)); ++ sysfs_print(block_size, block_bytes(c)); ++ sysfs_print(first_bucket, ca->mi.first_bucket); ++ sysfs_print(nbuckets, ca->mi.nbuckets); ++ sysfs_print(durability, ca->mi.durability); ++ sysfs_print(discard, ca->mi.discard); ++ ++ if (attr == &sysfs_label) { ++ if (ca->mi.group) { ++ mutex_lock(&c->sb_lock); ++ bch2_disk_path_to_text(&out, &c->disk_sb, ++ ca->mi.group - 1); ++ mutex_unlock(&c->sb_lock); ++ } ++ ++ pr_buf(&out, "\n"); ++ return out.pos - buf; ++ } ++ ++ if (attr == &sysfs_has_data) { ++ bch2_flags_to_text(&out, bch2_data_types, ++ bch2_dev_has_data(c, ca)); ++ pr_buf(&out, "\n"); ++ return out.pos - buf; ++ } ++ ++ if (attr == &sysfs_cache_replacement_policy) { ++ bch2_string_opt_to_text(&out, ++ bch2_cache_replacement_policies, ++ ca->mi.replacement); ++ pr_buf(&out, "\n"); ++ return out.pos - buf; ++ } ++ ++ if (attr == &sysfs_state_rw) { ++ bch2_string_opt_to_text(&out, bch2_dev_state, ++ ca->mi.state); ++ pr_buf(&out, "\n"); ++ return out.pos - buf; ++ } ++ ++ if (attr == &sysfs_iodone) { ++ dev_iodone_to_text(&out, ca); ++ return out.pos - buf; ++ } ++ ++ sysfs_print(io_latency_read, atomic64_read(&ca->cur_latency[READ])); ++ sysfs_print(io_latency_write, atomic64_read(&ca->cur_latency[WRITE])); ++ ++ if (attr == &sysfs_io_latency_stats_read) { ++ bch2_time_stats_to_text(&out, &ca->io_latency[READ]); ++ return out.pos - buf; ++ } ++ if (attr == &sysfs_io_latency_stats_write) { ++ bch2_time_stats_to_text(&out, &ca->io_latency[WRITE]); ++ return out.pos - buf; ++ } ++ ++ sysfs_printf(congested, "%u%%", ++ clamp(atomic_read(&ca->congested), 0, CONGESTED_MAX) ++ * 100 / CONGESTED_MAX); ++ ++ if (attr == &sysfs_bucket_quantiles_last_read) ++ return quantiles_to_text(&out, c, ca, bucket_last_io_fn, (void *) 0) ?: out.pos - buf; ++ if (attr == &sysfs_bucket_quantiles_last_write) ++ return quantiles_to_text(&out, c, ca, bucket_last_io_fn, (void *) 1) ?: out.pos - buf; ++ if (attr == &sysfs_bucket_quantiles_fragmentation) ++ return quantiles_to_text(&out, c, ca, bucket_sectors_used_fn, NULL) ?: out.pos - buf; ++ if (attr == &sysfs_bucket_quantiles_oldest_gen) ++ return quantiles_to_text(&out, c, ca, bucket_oldest_gen_fn, NULL) ?: out.pos - buf; ++ ++ if (attr == &sysfs_reserve_stats) { ++ reserve_stats_to_text(&out, ca); ++ return out.pos - buf; ++ } ++ if (attr == &sysfs_alloc_debug) { ++ dev_alloc_debug_to_text(&out, ca); ++ return out.pos - buf; ++ } ++ ++ return 0; ++} ++ ++STORE(bch2_dev) ++{ ++ struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); ++ struct bch_fs *c = ca->fs; ++ struct bch_member *mi; ++ ++ if (attr == &sysfs_discard) { ++ bool v = strtoul_or_return(buf); ++ ++ mutex_lock(&c->sb_lock); ++ mi = &bch2_sb_get_members(c->disk_sb.sb)->members[ca->dev_idx]; ++ ++ if (v != BCH_MEMBER_DISCARD(mi)) { ++ SET_BCH_MEMBER_DISCARD(mi, v); ++ bch2_write_super(c); ++ } ++ mutex_unlock(&c->sb_lock); ++ } ++ ++ if (attr == &sysfs_cache_replacement_policy) { ++ ssize_t v = __sysfs_match_string(bch2_cache_replacement_policies, -1, buf); ++ ++ if (v < 0) ++ return v; ++ ++ mutex_lock(&c->sb_lock); ++ mi = &bch2_sb_get_members(c->disk_sb.sb)->members[ca->dev_idx]; ++ ++ if ((unsigned) v != BCH_MEMBER_REPLACEMENT(mi)) { ++ SET_BCH_MEMBER_REPLACEMENT(mi, v); ++ bch2_write_super(c); ++ } ++ mutex_unlock(&c->sb_lock); ++ } ++ ++ if (attr == &sysfs_label) { ++ char *tmp; ++ int ret; ++ ++ tmp = kstrdup(buf, GFP_KERNEL); ++ if (!tmp) ++ return -ENOMEM; ++ ++ ret = bch2_dev_group_set(c, ca, strim(tmp)); ++ kfree(tmp); ++ if (ret) ++ return ret; ++ } ++ ++ if (attr == &sysfs_wake_allocator) ++ bch2_wake_allocator(ca); ++ ++ return size; ++} ++SYSFS_OPS(bch2_dev); ++ ++struct attribute *bch2_dev_files[] = { ++ &sysfs_uuid, ++ &sysfs_bucket_size, ++ &sysfs_block_size, ++ &sysfs_first_bucket, ++ &sysfs_nbuckets, ++ &sysfs_durability, ++ ++ /* settings: */ ++ &sysfs_discard, ++ &sysfs_cache_replacement_policy, ++ &sysfs_state_rw, ++ &sysfs_label, ++ ++ &sysfs_has_data, ++ &sysfs_iodone, ++ ++ &sysfs_io_latency_read, ++ &sysfs_io_latency_write, ++ &sysfs_io_latency_stats_read, ++ &sysfs_io_latency_stats_write, ++ &sysfs_congested, ++ ++ /* alloc info - other stats: */ ++ &sysfs_bucket_quantiles_last_read, ++ &sysfs_bucket_quantiles_last_write, ++ &sysfs_bucket_quantiles_fragmentation, ++ &sysfs_bucket_quantiles_oldest_gen, ++ ++ &sysfs_reserve_stats, ++ ++ /* debug: */ ++ &sysfs_alloc_debug, ++ &sysfs_wake_allocator, ++ NULL ++}; ++ ++#endif /* _BCACHEFS_SYSFS_H_ */ +diff --git a/fs/bcachefs/sysfs.h b/fs/bcachefs/sysfs.h +new file mode 100644 +index 000000000000..525fd05d91f7 +--- /dev/null ++++ b/fs/bcachefs/sysfs.h +@@ -0,0 +1,44 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_SYSFS_H_ ++#define _BCACHEFS_SYSFS_H_ ++ ++#include ++ ++#ifndef NO_BCACHEFS_SYSFS ++ ++struct attribute; ++struct sysfs_ops; ++ ++extern struct attribute *bch2_fs_files[]; ++extern struct attribute *bch2_fs_internal_files[]; ++extern struct attribute *bch2_fs_opts_dir_files[]; ++extern struct attribute *bch2_fs_time_stats_files[]; ++extern struct attribute *bch2_dev_files[]; ++ ++extern struct sysfs_ops bch2_fs_sysfs_ops; ++extern struct sysfs_ops bch2_fs_internal_sysfs_ops; ++extern struct sysfs_ops bch2_fs_opts_dir_sysfs_ops; ++extern struct sysfs_ops bch2_fs_time_stats_sysfs_ops; ++extern struct sysfs_ops bch2_dev_sysfs_ops; ++ ++int bch2_opts_create_sysfs_files(struct kobject *); ++ ++#else ++ ++static struct attribute *bch2_fs_files[] = {}; ++static struct attribute *bch2_fs_internal_files[] = {}; ++static struct attribute *bch2_fs_opts_dir_files[] = {}; ++static struct attribute *bch2_fs_time_stats_files[] = {}; ++static struct attribute *bch2_dev_files[] = {}; ++ ++static const struct sysfs_ops bch2_fs_sysfs_ops; ++static const struct sysfs_ops bch2_fs_internal_sysfs_ops; ++static const struct sysfs_ops bch2_fs_opts_dir_sysfs_ops; ++static const struct sysfs_ops bch2_fs_time_stats_sysfs_ops; ++static const struct sysfs_ops bch2_dev_sysfs_ops; ++ ++static inline int bch2_opts_create_sysfs_files(struct kobject *kobj) { return 0; } ++ ++#endif /* NO_BCACHEFS_SYSFS */ ++ ++#endif /* _BCACHEFS_SYSFS_H_ */ +diff --git a/fs/bcachefs/tests.c b/fs/bcachefs/tests.c +new file mode 100644 +index 000000000000..4dcace650416 +--- /dev/null ++++ b/fs/bcachefs/tests.c +@@ -0,0 +1,725 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#ifdef CONFIG_BCACHEFS_TESTS ++ ++#include "bcachefs.h" ++#include "btree_update.h" ++#include "journal_reclaim.h" ++#include "tests.h" ++ ++#include "linux/kthread.h" ++#include "linux/random.h" ++ ++static void delete_test_keys(struct bch_fs *c) ++{ ++ int ret; ++ ++ ret = bch2_btree_delete_range(c, BTREE_ID_EXTENTS, ++ POS(0, 0), POS(0, U64_MAX), ++ NULL); ++ BUG_ON(ret); ++ ++ ret = bch2_btree_delete_range(c, BTREE_ID_XATTRS, ++ POS(0, 0), POS(0, U64_MAX), ++ NULL); ++ BUG_ON(ret); ++} ++ ++/* unit tests */ ++ ++static void test_delete(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_i_cookie k; ++ int ret; ++ ++ bkey_cookie_init(&k.k_i); ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_XATTRS, k.k.p, ++ BTREE_ITER_INTENT); ++ ++ ret = bch2_btree_iter_traverse(iter); ++ BUG_ON(ret); ++ ++ ret = __bch2_trans_do(&trans, NULL, NULL, 0, ++ bch2_trans_update(&trans, iter, &k.k_i, 0)); ++ BUG_ON(ret); ++ ++ pr_info("deleting once"); ++ ret = bch2_btree_delete_at(&trans, iter, 0); ++ BUG_ON(ret); ++ ++ pr_info("deleting twice"); ++ ret = bch2_btree_delete_at(&trans, iter, 0); ++ BUG_ON(ret); ++ ++ bch2_trans_exit(&trans); ++} ++ ++static void test_delete_written(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_i_cookie k; ++ int ret; ++ ++ bkey_cookie_init(&k.k_i); ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_XATTRS, k.k.p, ++ BTREE_ITER_INTENT); ++ ++ ret = bch2_btree_iter_traverse(iter); ++ BUG_ON(ret); ++ ++ ret = __bch2_trans_do(&trans, NULL, NULL, 0, ++ bch2_trans_update(&trans, iter, &k.k_i, 0)); ++ BUG_ON(ret); ++ ++ bch2_journal_flush_all_pins(&c->journal); ++ ++ ret = bch2_btree_delete_at(&trans, iter, 0); ++ BUG_ON(ret); ++ ++ bch2_trans_exit(&trans); ++} ++ ++static void test_iterate(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ u64 i; ++ int ret; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ delete_test_keys(c); ++ ++ pr_info("inserting test keys"); ++ ++ for (i = 0; i < nr; i++) { ++ struct bkey_i_cookie k; ++ ++ bkey_cookie_init(&k.k_i); ++ k.k.p.offset = i; ++ ++ ret = bch2_btree_insert(c, BTREE_ID_XATTRS, &k.k_i, ++ NULL, NULL, 0); ++ BUG_ON(ret); ++ } ++ ++ pr_info("iterating forwards"); ++ ++ i = 0; ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_XATTRS, ++ POS_MIN, 0, k, ret) { ++ if (k.k->p.inode) ++ break; ++ ++ BUG_ON(k.k->p.offset != i++); ++ } ++ ++ BUG_ON(i != nr); ++ ++ pr_info("iterating backwards"); ++ ++ while (!IS_ERR_OR_NULL((k = bch2_btree_iter_prev(iter)).k)) ++ BUG_ON(k.k->p.offset != --i); ++ ++ BUG_ON(i); ++ ++ bch2_trans_exit(&trans); ++} ++ ++static void test_iterate_extents(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ u64 i; ++ int ret; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ delete_test_keys(c); ++ ++ pr_info("inserting test extents"); ++ ++ for (i = 0; i < nr; i += 8) { ++ struct bkey_i_cookie k; ++ ++ bkey_cookie_init(&k.k_i); ++ k.k.p.offset = i + 8; ++ k.k.size = 8; ++ ++ ret = bch2_btree_insert(c, BTREE_ID_EXTENTS, &k.k_i, ++ NULL, NULL, 0); ++ BUG_ON(ret); ++ } ++ ++ pr_info("iterating forwards"); ++ ++ i = 0; ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS, ++ POS_MIN, 0, k, ret) { ++ BUG_ON(bkey_start_offset(k.k) != i); ++ i = k.k->p.offset; ++ } ++ ++ BUG_ON(i != nr); ++ ++ pr_info("iterating backwards"); ++ ++ while (!IS_ERR_OR_NULL((k = bch2_btree_iter_prev(iter)).k)) { ++ BUG_ON(k.k->p.offset != i); ++ i = bkey_start_offset(k.k); ++ } ++ ++ BUG_ON(i); ++ ++ bch2_trans_exit(&trans); ++} ++ ++static void test_iterate_slots(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ u64 i; ++ int ret; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ delete_test_keys(c); ++ ++ pr_info("inserting test keys"); ++ ++ for (i = 0; i < nr; i++) { ++ struct bkey_i_cookie k; ++ ++ bkey_cookie_init(&k.k_i); ++ k.k.p.offset = i * 2; ++ ++ ret = bch2_btree_insert(c, BTREE_ID_XATTRS, &k.k_i, ++ NULL, NULL, 0); ++ BUG_ON(ret); ++ } ++ ++ pr_info("iterating forwards"); ++ ++ i = 0; ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_XATTRS, POS_MIN, ++ 0, k, ret) { ++ if (k.k->p.inode) ++ break; ++ ++ BUG_ON(k.k->p.offset != i); ++ i += 2; ++ } ++ bch2_trans_iter_free(&trans, iter); ++ ++ BUG_ON(i != nr * 2); ++ ++ pr_info("iterating forwards by slots"); ++ ++ i = 0; ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_XATTRS, POS_MIN, ++ BTREE_ITER_SLOTS, k, ret) { ++ BUG_ON(k.k->p.offset != i); ++ BUG_ON(bkey_deleted(k.k) != (i & 1)); ++ ++ i++; ++ if (i == nr * 2) ++ break; ++ } ++ ++ bch2_trans_exit(&trans); ++} ++ ++static void test_iterate_slots_extents(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ u64 i; ++ int ret; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ delete_test_keys(c); ++ ++ pr_info("inserting test keys"); ++ ++ for (i = 0; i < nr; i += 16) { ++ struct bkey_i_cookie k; ++ ++ bkey_cookie_init(&k.k_i); ++ k.k.p.offset = i + 16; ++ k.k.size = 8; ++ ++ ret = bch2_btree_insert(c, BTREE_ID_EXTENTS, &k.k_i, ++ NULL, NULL, 0); ++ BUG_ON(ret); ++ } ++ ++ pr_info("iterating forwards"); ++ ++ i = 0; ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS, POS_MIN, ++ 0, k, ret) { ++ BUG_ON(bkey_start_offset(k.k) != i + 8); ++ BUG_ON(k.k->size != 8); ++ i += 16; ++ } ++ bch2_trans_iter_free(&trans, iter); ++ ++ BUG_ON(i != nr); ++ ++ pr_info("iterating forwards by slots"); ++ ++ i = 0; ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS, POS_MIN, ++ BTREE_ITER_SLOTS, k, ret) { ++ BUG_ON(bkey_deleted(k.k) != !(i % 16)); ++ ++ BUG_ON(bkey_start_offset(k.k) != i); ++ BUG_ON(k.k->size != 8); ++ i = k.k->p.offset; ++ ++ if (i == nr) ++ break; ++ } ++ ++ bch2_trans_exit(&trans); ++} ++ ++/* ++ * XXX: we really want to make sure we've got a btree with depth > 0 for these ++ * tests ++ */ ++static void test_peek_end(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_XATTRS, POS_MIN, 0); ++ ++ k = bch2_btree_iter_peek(iter); ++ BUG_ON(k.k); ++ ++ k = bch2_btree_iter_peek(iter); ++ BUG_ON(k.k); ++ ++ bch2_trans_exit(&trans); ++} ++ ++static void test_peek_end_extents(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, POS_MIN, 0); ++ ++ k = bch2_btree_iter_peek(iter); ++ BUG_ON(k.k); ++ ++ k = bch2_btree_iter_peek(iter); ++ BUG_ON(k.k); ++ ++ bch2_trans_exit(&trans); ++} ++ ++/* extent unit tests */ ++ ++u64 test_version; ++ ++static void insert_test_extent(struct bch_fs *c, ++ u64 start, u64 end) ++{ ++ struct bkey_i_cookie k; ++ int ret; ++ ++ //pr_info("inserting %llu-%llu v %llu", start, end, test_version); ++ ++ bkey_cookie_init(&k.k_i); ++ k.k_i.k.p.offset = end; ++ k.k_i.k.size = end - start; ++ k.k_i.k.version.lo = test_version++; ++ ++ ret = bch2_btree_insert(c, BTREE_ID_EXTENTS, &k.k_i, ++ NULL, NULL, 0); ++ BUG_ON(ret); ++} ++ ++static void __test_extent_overwrite(struct bch_fs *c, ++ u64 e1_start, u64 e1_end, ++ u64 e2_start, u64 e2_end) ++{ ++ insert_test_extent(c, e1_start, e1_end); ++ insert_test_extent(c, e2_start, e2_end); ++ ++ delete_test_keys(c); ++} ++ ++static void test_extent_overwrite_front(struct bch_fs *c, u64 nr) ++{ ++ __test_extent_overwrite(c, 0, 64, 0, 32); ++ __test_extent_overwrite(c, 8, 64, 0, 32); ++} ++ ++static void test_extent_overwrite_back(struct bch_fs *c, u64 nr) ++{ ++ __test_extent_overwrite(c, 0, 64, 32, 64); ++ __test_extent_overwrite(c, 0, 64, 32, 72); ++} ++ ++static void test_extent_overwrite_middle(struct bch_fs *c, u64 nr) ++{ ++ __test_extent_overwrite(c, 0, 64, 32, 40); ++} ++ ++static void test_extent_overwrite_all(struct bch_fs *c, u64 nr) ++{ ++ __test_extent_overwrite(c, 32, 64, 0, 64); ++ __test_extent_overwrite(c, 32, 64, 0, 128); ++ __test_extent_overwrite(c, 32, 64, 32, 64); ++ __test_extent_overwrite(c, 32, 64, 32, 128); ++} ++ ++/* perf tests */ ++ ++static u64 test_rand(void) ++{ ++ u64 v; ++#if 0 ++ v = prandom_u32(); ++#else ++ prandom_bytes(&v, sizeof(v)); ++#endif ++ return v; ++} ++ ++static void rand_insert(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans trans; ++ struct bkey_i_cookie k; ++ int ret; ++ u64 i; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ for (i = 0; i < nr; i++) { ++ bkey_cookie_init(&k.k_i); ++ k.k.p.offset = test_rand(); ++ ++ ret = __bch2_trans_do(&trans, NULL, NULL, 0, ++ __bch2_btree_insert(&trans, BTREE_ID_XATTRS, &k.k_i)); ++ ++ BUG_ON(ret); ++ } ++ ++ bch2_trans_exit(&trans); ++} ++ ++static void rand_lookup(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ u64 i; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ for (i = 0; i < nr; i++) { ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_XATTRS, ++ POS(0, test_rand()), 0); ++ ++ k = bch2_btree_iter_peek(iter); ++ bch2_trans_iter_free(&trans, iter); ++ } ++ ++ bch2_trans_exit(&trans); ++} ++ ++static void rand_mixed(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ int ret; ++ u64 i; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ for (i = 0; i < nr; i++) { ++ iter = bch2_trans_get_iter(&trans, BTREE_ID_XATTRS, ++ POS(0, test_rand()), 0); ++ ++ k = bch2_btree_iter_peek(iter); ++ ++ if (!(i & 3) && k.k) { ++ struct bkey_i_cookie k; ++ ++ bkey_cookie_init(&k.k_i); ++ k.k.p = iter->pos; ++ ++ ret = __bch2_trans_do(&trans, NULL, NULL, 0, ++ bch2_trans_update(&trans, iter, &k.k_i, 0)); ++ ++ BUG_ON(ret); ++ } ++ ++ bch2_trans_iter_free(&trans, iter); ++ } ++ ++ bch2_trans_exit(&trans); ++} ++ ++static int __do_delete(struct btree_trans *trans, struct bpos pos) ++{ ++ struct btree_iter *iter; ++ struct bkey_i delete; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ iter = bch2_trans_get_iter(trans, BTREE_ID_XATTRS, pos, ++ BTREE_ITER_INTENT); ++ ret = PTR_ERR_OR_ZERO(iter); ++ if (ret) ++ goto err; ++ ++ k = bch2_btree_iter_peek(iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ bkey_init(&delete.k); ++ delete.k.p = k.k->p; ++ ++ bch2_trans_update(trans, iter, &delete, 0); ++err: ++ bch2_trans_iter_put(trans, iter); ++ return ret; ++} ++ ++static void rand_delete(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans trans; ++ int ret; ++ u64 i; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ for (i = 0; i < nr; i++) { ++ struct bpos pos = POS(0, test_rand()); ++ ++ ret = __bch2_trans_do(&trans, NULL, NULL, 0, ++ __do_delete(&trans, pos)); ++ BUG_ON(ret); ++ } ++ ++ bch2_trans_exit(&trans); ++} ++ ++static void seq_insert(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ struct bkey_i_cookie insert; ++ int ret; ++ u64 i = 0; ++ ++ bkey_cookie_init(&insert.k_i); ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_XATTRS, POS_MIN, ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT, k, ret) { ++ insert.k.p = iter->pos; ++ ++ ret = __bch2_trans_do(&trans, NULL, NULL, 0, ++ bch2_trans_update(&trans, iter, &insert.k_i, 0)); ++ ++ BUG_ON(ret); ++ ++ if (++i == nr) ++ break; ++ } ++ bch2_trans_exit(&trans); ++} ++ ++static void seq_lookup(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_XATTRS, POS_MIN, 0, k, ret) ++ ; ++ bch2_trans_exit(&trans); ++} ++ ++static void seq_overwrite(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_XATTRS, POS_MIN, ++ BTREE_ITER_INTENT, k, ret) { ++ struct bkey_i_cookie u; ++ ++ bkey_reassemble(&u.k_i, k); ++ ++ ret = __bch2_trans_do(&trans, NULL, NULL, 0, ++ bch2_trans_update(&trans, iter, &u.k_i, 0)); ++ ++ BUG_ON(ret); ++ } ++ bch2_trans_exit(&trans); ++} ++ ++static void seq_delete(struct bch_fs *c, u64 nr) ++{ ++ int ret; ++ ++ ret = bch2_btree_delete_range(c, BTREE_ID_XATTRS, ++ POS(0, 0), POS(0, U64_MAX), ++ NULL); ++ BUG_ON(ret); ++} ++ ++typedef void (*perf_test_fn)(struct bch_fs *, u64); ++ ++struct test_job { ++ struct bch_fs *c; ++ u64 nr; ++ unsigned nr_threads; ++ perf_test_fn fn; ++ ++ atomic_t ready; ++ wait_queue_head_t ready_wait; ++ ++ atomic_t done; ++ struct completion done_completion; ++ ++ u64 start; ++ u64 finish; ++}; ++ ++static int btree_perf_test_thread(void *data) ++{ ++ struct test_job *j = data; ++ ++ if (atomic_dec_and_test(&j->ready)) { ++ wake_up(&j->ready_wait); ++ j->start = sched_clock(); ++ } else { ++ wait_event(j->ready_wait, !atomic_read(&j->ready)); ++ } ++ ++ j->fn(j->c, j->nr / j->nr_threads); ++ ++ if (atomic_dec_and_test(&j->done)) { ++ j->finish = sched_clock(); ++ complete(&j->done_completion); ++ } ++ ++ return 0; ++} ++ ++void bch2_btree_perf_test(struct bch_fs *c, const char *testname, ++ u64 nr, unsigned nr_threads) ++{ ++ struct test_job j = { .c = c, .nr = nr, .nr_threads = nr_threads }; ++ char name_buf[20], nr_buf[20], per_sec_buf[20]; ++ unsigned i; ++ u64 time; ++ ++ atomic_set(&j.ready, nr_threads); ++ init_waitqueue_head(&j.ready_wait); ++ ++ atomic_set(&j.done, nr_threads); ++ init_completion(&j.done_completion); ++ ++#define perf_test(_test) \ ++ if (!strcmp(testname, #_test)) j.fn = _test ++ ++ perf_test(rand_insert); ++ perf_test(rand_lookup); ++ perf_test(rand_mixed); ++ perf_test(rand_delete); ++ ++ perf_test(seq_insert); ++ perf_test(seq_lookup); ++ perf_test(seq_overwrite); ++ perf_test(seq_delete); ++ ++ /* a unit test, not a perf test: */ ++ perf_test(test_delete); ++ perf_test(test_delete_written); ++ perf_test(test_iterate); ++ perf_test(test_iterate_extents); ++ perf_test(test_iterate_slots); ++ perf_test(test_iterate_slots_extents); ++ perf_test(test_peek_end); ++ perf_test(test_peek_end_extents); ++ ++ perf_test(test_extent_overwrite_front); ++ perf_test(test_extent_overwrite_back); ++ perf_test(test_extent_overwrite_middle); ++ perf_test(test_extent_overwrite_all); ++ ++ if (!j.fn) { ++ pr_err("unknown test %s", testname); ++ return; ++ } ++ ++ //pr_info("running test %s:", testname); ++ ++ if (nr_threads == 1) ++ btree_perf_test_thread(&j); ++ else ++ for (i = 0; i < nr_threads; i++) ++ kthread_run(btree_perf_test_thread, &j, ++ "bcachefs perf test[%u]", i); ++ ++ while (wait_for_completion_interruptible(&j.done_completion)) ++ ; ++ ++ time = j.finish - j.start; ++ ++ scnprintf(name_buf, sizeof(name_buf), "%s:", testname); ++ bch2_hprint(&PBUF(nr_buf), nr); ++ bch2_hprint(&PBUF(per_sec_buf), nr * NSEC_PER_SEC / time); ++ printk(KERN_INFO "%-12s %s with %u threads in %5llu sec, %5llu nsec per iter, %5s per sec\n", ++ name_buf, nr_buf, nr_threads, ++ time / NSEC_PER_SEC, ++ time * nr_threads / nr, ++ per_sec_buf); ++} ++ ++#endif /* CONFIG_BCACHEFS_TESTS */ +diff --git a/fs/bcachefs/tests.h b/fs/bcachefs/tests.h +new file mode 100644 +index 000000000000..551d0764225e +--- /dev/null ++++ b/fs/bcachefs/tests.h +@@ -0,0 +1,15 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_TEST_H ++#define _BCACHEFS_TEST_H ++ ++struct bch_fs; ++ ++#ifdef CONFIG_BCACHEFS_TESTS ++ ++void bch2_btree_perf_test(struct bch_fs *, const char *, u64, unsigned); ++ ++#else ++ ++#endif /* CONFIG_BCACHEFS_TESTS */ ++ ++#endif /* _BCACHEFS_TEST_H */ +diff --git a/fs/bcachefs/trace.c b/fs/bcachefs/trace.c +new file mode 100644 +index 000000000000..59e8dfa3d245 +--- /dev/null ++++ b/fs/bcachefs/trace.c +@@ -0,0 +1,12 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "alloc_types.h" ++#include "buckets.h" ++#include "btree_types.h" ++#include "keylist.h" ++ ++#include ++#include "keylist.h" ++ ++#define CREATE_TRACE_POINTS ++#include +diff --git a/fs/bcachefs/util.c b/fs/bcachefs/util.c +new file mode 100644 +index 000000000000..fd4044a6a08f +--- /dev/null ++++ b/fs/bcachefs/util.c +@@ -0,0 +1,907 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * random utiility code, for bcache but in theory not specific to bcache ++ * ++ * Copyright 2010, 2011 Kent Overstreet ++ * Copyright 2012 Google, Inc. ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include "eytzinger.h" ++#include "util.h" ++ ++static const char si_units[] = "?kMGTPEZY"; ++ ++static int __bch2_strtoh(const char *cp, u64 *res, ++ u64 t_max, bool t_signed) ++{ ++ bool positive = *cp != '-'; ++ unsigned u; ++ u64 v = 0; ++ ++ if (*cp == '+' || *cp == '-') ++ cp++; ++ ++ if (!isdigit(*cp)) ++ return -EINVAL; ++ ++ do { ++ if (v > U64_MAX / 10) ++ return -ERANGE; ++ v *= 10; ++ if (v > U64_MAX - (*cp - '0')) ++ return -ERANGE; ++ v += *cp - '0'; ++ cp++; ++ } while (isdigit(*cp)); ++ ++ for (u = 1; u < strlen(si_units); u++) ++ if (*cp == si_units[u]) { ++ cp++; ++ goto got_unit; ++ } ++ u = 0; ++got_unit: ++ if (*cp == '\n') ++ cp++; ++ if (*cp) ++ return -EINVAL; ++ ++ if (fls64(v) + u * 10 > 64) ++ return -ERANGE; ++ ++ v <<= u * 10; ++ ++ if (positive) { ++ if (v > t_max) ++ return -ERANGE; ++ } else { ++ if (v && !t_signed) ++ return -ERANGE; ++ ++ if (v > t_max + 1) ++ return -ERANGE; ++ v = -v; ++ } ++ ++ *res = v; ++ return 0; ++} ++ ++#define STRTO_H(name, type) \ ++int bch2_ ## name ## _h(const char *cp, type *res) \ ++{ \ ++ u64 v; \ ++ int ret = __bch2_strtoh(cp, &v, ANYSINT_MAX(type), \ ++ ANYSINT_MAX(type) != ((type) ~0ULL)); \ ++ *res = v; \ ++ return ret; \ ++} ++ ++STRTO_H(strtoint, int) ++STRTO_H(strtouint, unsigned int) ++STRTO_H(strtoll, long long) ++STRTO_H(strtoull, unsigned long long) ++STRTO_H(strtou64, u64) ++ ++void bch2_hprint(struct printbuf *buf, s64 v) ++{ ++ int u, t = 0; ++ ++ for (u = 0; v >= 1024 || v <= -1024; u++) { ++ t = v & ~(~0U << 10); ++ v >>= 10; ++ } ++ ++ pr_buf(buf, "%lli", v); ++ ++ /* ++ * 103 is magic: t is in the range [-1023, 1023] and we want ++ * to turn it into [-9, 9] ++ */ ++ if (u && v < 100 && v > -100) ++ pr_buf(buf, ".%i", t / 103); ++ if (u) ++ pr_buf(buf, "%c", si_units[u]); ++} ++ ++void bch2_string_opt_to_text(struct printbuf *out, ++ const char * const list[], ++ size_t selected) ++{ ++ size_t i; ++ ++ for (i = 0; list[i]; i++) ++ pr_buf(out, i == selected ? "[%s] " : "%s ", list[i]); ++} ++ ++void bch2_flags_to_text(struct printbuf *out, ++ const char * const list[], u64 flags) ++{ ++ unsigned bit, nr = 0; ++ bool first = true; ++ ++ if (out->pos != out->end) ++ *out->pos = '\0'; ++ ++ while (list[nr]) ++ nr++; ++ ++ while (flags && (bit = __ffs(flags)) < nr) { ++ if (!first) ++ pr_buf(out, ","); ++ first = false; ++ pr_buf(out, "%s", list[bit]); ++ flags ^= 1 << bit; ++ } ++} ++ ++u64 bch2_read_flag_list(char *opt, const char * const list[]) ++{ ++ u64 ret = 0; ++ char *p, *s, *d = kstrndup(opt, PAGE_SIZE - 1, GFP_KERNEL); ++ ++ if (!d) ++ return -ENOMEM; ++ ++ s = strim(d); ++ ++ while ((p = strsep(&s, ","))) { ++ int flag = match_string(list, -1, p); ++ if (flag < 0) { ++ ret = -1; ++ break; ++ } ++ ++ ret |= 1 << flag; ++ } ++ ++ kfree(d); ++ ++ return ret; ++} ++ ++bool bch2_is_zero(const void *_p, size_t n) ++{ ++ const char *p = _p; ++ size_t i; ++ ++ for (i = 0; i < n; i++) ++ if (p[i]) ++ return false; ++ return true; ++} ++ ++static void bch2_quantiles_update(struct quantiles *q, u64 v) ++{ ++ unsigned i = 0; ++ ++ while (i < ARRAY_SIZE(q->entries)) { ++ struct quantile_entry *e = q->entries + i; ++ ++ if (unlikely(!e->step)) { ++ e->m = v; ++ e->step = max_t(unsigned, v / 2, 1024); ++ } else if (e->m > v) { ++ e->m = e->m >= e->step ++ ? e->m - e->step ++ : 0; ++ } else if (e->m < v) { ++ e->m = e->m + e->step > e->m ++ ? e->m + e->step ++ : U32_MAX; ++ } ++ ++ if ((e->m > v ? e->m - v : v - e->m) < e->step) ++ e->step = max_t(unsigned, e->step / 2, 1); ++ ++ if (v >= e->m) ++ break; ++ ++ i = eytzinger0_child(i, v > e->m); ++ } ++} ++ ++/* time stats: */ ++ ++static void bch2_time_stats_update_one(struct time_stats *stats, ++ u64 start, u64 end) ++{ ++ u64 duration, freq; ++ ++ duration = time_after64(end, start) ++ ? end - start : 0; ++ freq = time_after64(end, stats->last_event) ++ ? end - stats->last_event : 0; ++ ++ stats->count++; ++ ++ stats->average_duration = stats->average_duration ++ ? ewma_add(stats->average_duration, duration, 6) ++ : duration; ++ ++ stats->average_frequency = stats->average_frequency ++ ? ewma_add(stats->average_frequency, freq, 6) ++ : freq; ++ ++ stats->max_duration = max(stats->max_duration, duration); ++ ++ stats->last_event = end; ++ ++ bch2_quantiles_update(&stats->quantiles, duration); ++} ++ ++void __bch2_time_stats_update(struct time_stats *stats, u64 start, u64 end) ++{ ++ unsigned long flags; ++ ++ if (!stats->buffer) { ++ spin_lock_irqsave(&stats->lock, flags); ++ bch2_time_stats_update_one(stats, start, end); ++ ++ if (stats->average_frequency < 32 && ++ stats->count > 1024) ++ stats->buffer = ++ alloc_percpu_gfp(struct time_stat_buffer, ++ GFP_ATOMIC); ++ spin_unlock_irqrestore(&stats->lock, flags); ++ } else { ++ struct time_stat_buffer_entry *i; ++ struct time_stat_buffer *b; ++ ++ preempt_disable(); ++ b = this_cpu_ptr(stats->buffer); ++ ++ BUG_ON(b->nr >= ARRAY_SIZE(b->entries)); ++ b->entries[b->nr++] = (struct time_stat_buffer_entry) { ++ .start = start, ++ .end = end ++ }; ++ ++ if (b->nr == ARRAY_SIZE(b->entries)) { ++ spin_lock_irqsave(&stats->lock, flags); ++ for (i = b->entries; ++ i < b->entries + ARRAY_SIZE(b->entries); ++ i++) ++ bch2_time_stats_update_one(stats, i->start, i->end); ++ spin_unlock_irqrestore(&stats->lock, flags); ++ ++ b->nr = 0; ++ } ++ ++ preempt_enable(); ++ } ++} ++ ++static const struct time_unit { ++ const char *name; ++ u32 nsecs; ++} time_units[] = { ++ { "ns", 1 }, ++ { "us", NSEC_PER_USEC }, ++ { "ms", NSEC_PER_MSEC }, ++ { "sec", NSEC_PER_SEC }, ++}; ++ ++static const struct time_unit *pick_time_units(u64 ns) ++{ ++ const struct time_unit *u; ++ ++ for (u = time_units; ++ u + 1 < time_units + ARRAY_SIZE(time_units) && ++ ns >= u[1].nsecs << 1; ++ u++) ++ ; ++ ++ return u; ++} ++ ++static void pr_time_units(struct printbuf *out, u64 ns) ++{ ++ const struct time_unit *u = pick_time_units(ns); ++ ++ pr_buf(out, "%llu %s", div_u64(ns, u->nsecs), u->name); ++} ++ ++void bch2_time_stats_to_text(struct printbuf *out, struct time_stats *stats) ++{ ++ const struct time_unit *u; ++ u64 freq = READ_ONCE(stats->average_frequency); ++ u64 q, last_q = 0; ++ int i; ++ ++ pr_buf(out, "count:\t\t%llu\n", ++ stats->count); ++ pr_buf(out, "rate:\t\t%llu/sec\n", ++ freq ? div64_u64(NSEC_PER_SEC, freq) : 0); ++ ++ pr_buf(out, "frequency:\t"); ++ pr_time_units(out, freq); ++ ++ pr_buf(out, "\navg duration:\t"); ++ pr_time_units(out, stats->average_duration); ++ ++ pr_buf(out, "\nmax duration:\t"); ++ pr_time_units(out, stats->max_duration); ++ ++ i = eytzinger0_first(NR_QUANTILES); ++ u = pick_time_units(stats->quantiles.entries[i].m); ++ ++ pr_buf(out, "\nquantiles (%s):\t", u->name); ++ eytzinger0_for_each(i, NR_QUANTILES) { ++ bool is_last = eytzinger0_next(i, NR_QUANTILES) == -1; ++ ++ q = max(stats->quantiles.entries[i].m, last_q); ++ pr_buf(out, "%llu%s", ++ div_u64(q, u->nsecs), ++ is_last ? "\n" : " "); ++ last_q = q; ++ } ++} ++ ++void bch2_time_stats_exit(struct time_stats *stats) ++{ ++ free_percpu(stats->buffer); ++} ++ ++void bch2_time_stats_init(struct time_stats *stats) ++{ ++ memset(stats, 0, sizeof(*stats)); ++ spin_lock_init(&stats->lock); ++} ++ ++/* ratelimit: */ ++ ++/** ++ * bch2_ratelimit_delay() - return how long to delay until the next time to do ++ * some work ++ * ++ * @d - the struct bch_ratelimit to update ++ * ++ * Returns the amount of time to delay by, in jiffies ++ */ ++u64 bch2_ratelimit_delay(struct bch_ratelimit *d) ++{ ++ u64 now = local_clock(); ++ ++ return time_after64(d->next, now) ++ ? nsecs_to_jiffies(d->next - now) ++ : 0; ++} ++ ++/** ++ * bch2_ratelimit_increment() - increment @d by the amount of work done ++ * ++ * @d - the struct bch_ratelimit to update ++ * @done - the amount of work done, in arbitrary units ++ */ ++void bch2_ratelimit_increment(struct bch_ratelimit *d, u64 done) ++{ ++ u64 now = local_clock(); ++ ++ d->next += div_u64(done * NSEC_PER_SEC, d->rate); ++ ++ if (time_before64(now + NSEC_PER_SEC, d->next)) ++ d->next = now + NSEC_PER_SEC; ++ ++ if (time_after64(now - NSEC_PER_SEC * 2, d->next)) ++ d->next = now - NSEC_PER_SEC * 2; ++} ++ ++/* pd controller: */ ++ ++/* ++ * Updates pd_controller. Attempts to scale inputed values to units per second. ++ * @target: desired value ++ * @actual: current value ++ * ++ * @sign: 1 or -1; 1 if increasing the rate makes actual go up, -1 if increasing ++ * it makes actual go down. ++ */ ++void bch2_pd_controller_update(struct bch_pd_controller *pd, ++ s64 target, s64 actual, int sign) ++{ ++ s64 proportional, derivative, change; ++ ++ unsigned long seconds_since_update = (jiffies - pd->last_update) / HZ; ++ ++ if (seconds_since_update == 0) ++ return; ++ ++ pd->last_update = jiffies; ++ ++ proportional = actual - target; ++ proportional *= seconds_since_update; ++ proportional = div_s64(proportional, pd->p_term_inverse); ++ ++ derivative = actual - pd->last_actual; ++ derivative = div_s64(derivative, seconds_since_update); ++ derivative = ewma_add(pd->smoothed_derivative, derivative, ++ (pd->d_term / seconds_since_update) ?: 1); ++ derivative = derivative * pd->d_term; ++ derivative = div_s64(derivative, pd->p_term_inverse); ++ ++ change = proportional + derivative; ++ ++ /* Don't increase rate if not keeping up */ ++ if (change > 0 && ++ pd->backpressure && ++ time_after64(local_clock(), ++ pd->rate.next + NSEC_PER_MSEC)) ++ change = 0; ++ ++ change *= (sign * -1); ++ ++ pd->rate.rate = clamp_t(s64, (s64) pd->rate.rate + change, ++ 1, UINT_MAX); ++ ++ pd->last_actual = actual; ++ pd->last_derivative = derivative; ++ pd->last_proportional = proportional; ++ pd->last_change = change; ++ pd->last_target = target; ++} ++ ++void bch2_pd_controller_init(struct bch_pd_controller *pd) ++{ ++ pd->rate.rate = 1024; ++ pd->last_update = jiffies; ++ pd->p_term_inverse = 6000; ++ pd->d_term = 30; ++ pd->d_smooth = pd->d_term; ++ pd->backpressure = 1; ++} ++ ++size_t bch2_pd_controller_print_debug(struct bch_pd_controller *pd, char *buf) ++{ ++ /* 2^64 - 1 is 20 digits, plus null byte */ ++ char rate[21]; ++ char actual[21]; ++ char target[21]; ++ char proportional[21]; ++ char derivative[21]; ++ char change[21]; ++ s64 next_io; ++ ++ bch2_hprint(&PBUF(rate), pd->rate.rate); ++ bch2_hprint(&PBUF(actual), pd->last_actual); ++ bch2_hprint(&PBUF(target), pd->last_target); ++ bch2_hprint(&PBUF(proportional), pd->last_proportional); ++ bch2_hprint(&PBUF(derivative), pd->last_derivative); ++ bch2_hprint(&PBUF(change), pd->last_change); ++ ++ next_io = div64_s64(pd->rate.next - local_clock(), NSEC_PER_MSEC); ++ ++ return sprintf(buf, ++ "rate:\t\t%s/sec\n" ++ "target:\t\t%s\n" ++ "actual:\t\t%s\n" ++ "proportional:\t%s\n" ++ "derivative:\t%s\n" ++ "change:\t\t%s/sec\n" ++ "next io:\t%llims\n", ++ rate, target, actual, proportional, ++ derivative, change, next_io); ++} ++ ++/* misc: */ ++ ++void bch2_bio_map(struct bio *bio, void *base, size_t size) ++{ ++ while (size) { ++ struct page *page = is_vmalloc_addr(base) ++ ? vmalloc_to_page(base) ++ : virt_to_page(base); ++ unsigned offset = offset_in_page(base); ++ unsigned len = min_t(size_t, PAGE_SIZE - offset, size); ++ ++ BUG_ON(!bio_add_page(bio, page, len, offset)); ++ size -= len; ++ base += len; ++ } ++} ++ ++int bch2_bio_alloc_pages(struct bio *bio, size_t size, gfp_t gfp_mask) ++{ ++ while (size) { ++ struct page *page = alloc_page(gfp_mask); ++ unsigned len = min(PAGE_SIZE, size); ++ ++ if (!page) ++ return -ENOMEM; ++ ++ BUG_ON(!bio_add_page(bio, page, len, 0)); ++ size -= len; ++ } ++ ++ return 0; ++} ++ ++size_t bch2_rand_range(size_t max) ++{ ++ size_t rand; ++ ++ if (!max) ++ return 0; ++ ++ do { ++ rand = get_random_long(); ++ rand &= roundup_pow_of_two(max) - 1; ++ } while (rand >= max); ++ ++ return rand; ++} ++ ++void memcpy_to_bio(struct bio *dst, struct bvec_iter dst_iter, const void *src) ++{ ++ struct bio_vec bv; ++ struct bvec_iter iter; ++ ++ __bio_for_each_segment(bv, dst, iter, dst_iter) { ++ void *dstp = kmap_atomic(bv.bv_page); ++ memcpy(dstp + bv.bv_offset, src, bv.bv_len); ++ kunmap_atomic(dstp); ++ ++ src += bv.bv_len; ++ } ++} ++ ++void memcpy_from_bio(void *dst, struct bio *src, struct bvec_iter src_iter) ++{ ++ struct bio_vec bv; ++ struct bvec_iter iter; ++ ++ __bio_for_each_segment(bv, src, iter, src_iter) { ++ void *srcp = kmap_atomic(bv.bv_page); ++ memcpy(dst, srcp + bv.bv_offset, bv.bv_len); ++ kunmap_atomic(srcp); ++ ++ dst += bv.bv_len; ++ } ++} ++ ++void bch_scnmemcpy(struct printbuf *out, ++ const char *src, size_t len) ++{ ++ size_t n = printbuf_remaining(out); ++ ++ if (n) { ++ n = min(n - 1, len); ++ memcpy(out->pos, src, n); ++ out->pos += n; ++ *out->pos = '\0'; ++ } ++} ++ ++#include "eytzinger.h" ++ ++static int alignment_ok(const void *base, size_t align) ++{ ++ return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || ++ ((unsigned long)base & (align - 1)) == 0; ++} ++ ++static void u32_swap(void *a, void *b, size_t size) ++{ ++ u32 t = *(u32 *)a; ++ *(u32 *)a = *(u32 *)b; ++ *(u32 *)b = t; ++} ++ ++static void u64_swap(void *a, void *b, size_t size) ++{ ++ u64 t = *(u64 *)a; ++ *(u64 *)a = *(u64 *)b; ++ *(u64 *)b = t; ++} ++ ++static void generic_swap(void *a, void *b, size_t size) ++{ ++ char t; ++ ++ do { ++ t = *(char *)a; ++ *(char *)a++ = *(char *)b; ++ *(char *)b++ = t; ++ } while (--size > 0); ++} ++ ++static inline int do_cmp(void *base, size_t n, size_t size, ++ int (*cmp_func)(const void *, const void *, size_t), ++ size_t l, size_t r) ++{ ++ return cmp_func(base + inorder_to_eytzinger0(l, n) * size, ++ base + inorder_to_eytzinger0(r, n) * size, ++ size); ++} ++ ++static inline void do_swap(void *base, size_t n, size_t size, ++ void (*swap_func)(void *, void *, size_t), ++ size_t l, size_t r) ++{ ++ swap_func(base + inorder_to_eytzinger0(l, n) * size, ++ base + inorder_to_eytzinger0(r, n) * size, ++ size); ++} ++ ++void eytzinger0_sort(void *base, size_t n, size_t size, ++ int (*cmp_func)(const void *, const void *, size_t), ++ void (*swap_func)(void *, void *, size_t)) ++{ ++ int i, c, r; ++ ++ if (!swap_func) { ++ if (size == 4 && alignment_ok(base, 4)) ++ swap_func = u32_swap; ++ else if (size == 8 && alignment_ok(base, 8)) ++ swap_func = u64_swap; ++ else ++ swap_func = generic_swap; ++ } ++ ++ /* heapify */ ++ for (i = n / 2 - 1; i >= 0; --i) { ++ for (r = i; r * 2 + 1 < n; r = c) { ++ c = r * 2 + 1; ++ ++ if (c + 1 < n && ++ do_cmp(base, n, size, cmp_func, c, c + 1) < 0) ++ c++; ++ ++ if (do_cmp(base, n, size, cmp_func, r, c) >= 0) ++ break; ++ ++ do_swap(base, n, size, swap_func, r, c); ++ } ++ } ++ ++ /* sort */ ++ for (i = n - 1; i > 0; --i) { ++ do_swap(base, n, size, swap_func, 0, i); ++ ++ for (r = 0; r * 2 + 1 < i; r = c) { ++ c = r * 2 + 1; ++ ++ if (c + 1 < i && ++ do_cmp(base, n, size, cmp_func, c, c + 1) < 0) ++ c++; ++ ++ if (do_cmp(base, n, size, cmp_func, r, c) >= 0) ++ break; ++ ++ do_swap(base, n, size, swap_func, r, c); ++ } ++ } ++} ++ ++void sort_cmp_size(void *base, size_t num, size_t size, ++ int (*cmp_func)(const void *, const void *, size_t), ++ void (*swap_func)(void *, void *, size_t size)) ++{ ++ /* pre-scale counters for performance */ ++ int i = (num/2 - 1) * size, n = num * size, c, r; ++ ++ if (!swap_func) { ++ if (size == 4 && alignment_ok(base, 4)) ++ swap_func = u32_swap; ++ else if (size == 8 && alignment_ok(base, 8)) ++ swap_func = u64_swap; ++ else ++ swap_func = generic_swap; ++ } ++ ++ /* heapify */ ++ for ( ; i >= 0; i -= size) { ++ for (r = i; r * 2 + size < n; r = c) { ++ c = r * 2 + size; ++ if (c < n - size && ++ cmp_func(base + c, base + c + size, size) < 0) ++ c += size; ++ if (cmp_func(base + r, base + c, size) >= 0) ++ break; ++ swap_func(base + r, base + c, size); ++ } ++ } ++ ++ /* sort */ ++ for (i = n - size; i > 0; i -= size) { ++ swap_func(base, base + i, size); ++ for (r = 0; r * 2 + size < i; r = c) { ++ c = r * 2 + size; ++ if (c < i - size && ++ cmp_func(base + c, base + c + size, size) < 0) ++ c += size; ++ if (cmp_func(base + r, base + c, size) >= 0) ++ break; ++ swap_func(base + r, base + c, size); ++ } ++ } ++} ++ ++static void mempool_free_vp(void *element, void *pool_data) ++{ ++ size_t size = (size_t) pool_data; ++ ++ vpfree(element, size); ++} ++ ++static void *mempool_alloc_vp(gfp_t gfp_mask, void *pool_data) ++{ ++ size_t size = (size_t) pool_data; ++ ++ return vpmalloc(size, gfp_mask); ++} ++ ++int mempool_init_kvpmalloc_pool(mempool_t *pool, int min_nr, size_t size) ++{ ++ return size < PAGE_SIZE ++ ? mempool_init_kmalloc_pool(pool, min_nr, size) ++ : mempool_init(pool, min_nr, mempool_alloc_vp, ++ mempool_free_vp, (void *) size); ++} ++ ++#if 0 ++void eytzinger1_test(void) ++{ ++ unsigned inorder, eytz, size; ++ ++ pr_info("1 based eytzinger test:"); ++ ++ for (size = 2; ++ size < 65536; ++ size++) { ++ unsigned extra = eytzinger1_extra(size); ++ ++ if (!(size % 4096)) ++ pr_info("tree size %u", size); ++ ++ BUG_ON(eytzinger1_prev(0, size) != eytzinger1_last(size)); ++ BUG_ON(eytzinger1_next(0, size) != eytzinger1_first(size)); ++ ++ BUG_ON(eytzinger1_prev(eytzinger1_first(size), size) != 0); ++ BUG_ON(eytzinger1_next(eytzinger1_last(size), size) != 0); ++ ++ inorder = 1; ++ eytzinger1_for_each(eytz, size) { ++ BUG_ON(__inorder_to_eytzinger1(inorder, size, extra) != eytz); ++ BUG_ON(__eytzinger1_to_inorder(eytz, size, extra) != inorder); ++ BUG_ON(eytz != eytzinger1_last(size) && ++ eytzinger1_prev(eytzinger1_next(eytz, size), size) != eytz); ++ ++ inorder++; ++ } ++ } ++} ++ ++void eytzinger0_test(void) ++{ ++ ++ unsigned inorder, eytz, size; ++ ++ pr_info("0 based eytzinger test:"); ++ ++ for (size = 1; ++ size < 65536; ++ size++) { ++ unsigned extra = eytzinger0_extra(size); ++ ++ if (!(size % 4096)) ++ pr_info("tree size %u", size); ++ ++ BUG_ON(eytzinger0_prev(-1, size) != eytzinger0_last(size)); ++ BUG_ON(eytzinger0_next(-1, size) != eytzinger0_first(size)); ++ ++ BUG_ON(eytzinger0_prev(eytzinger0_first(size), size) != -1); ++ BUG_ON(eytzinger0_next(eytzinger0_last(size), size) != -1); ++ ++ inorder = 0; ++ eytzinger0_for_each(eytz, size) { ++ BUG_ON(__inorder_to_eytzinger0(inorder, size, extra) != eytz); ++ BUG_ON(__eytzinger0_to_inorder(eytz, size, extra) != inorder); ++ BUG_ON(eytz != eytzinger0_last(size) && ++ eytzinger0_prev(eytzinger0_next(eytz, size), size) != eytz); ++ ++ inorder++; ++ } ++ } ++} ++ ++static inline int cmp_u16(const void *_l, const void *_r, size_t size) ++{ ++ const u16 *l = _l, *r = _r; ++ ++ return (*l > *r) - (*r - *l); ++} ++ ++static void eytzinger0_find_test_val(u16 *test_array, unsigned nr, u16 search) ++{ ++ int i, c1 = -1, c2 = -1; ++ ssize_t r; ++ ++ r = eytzinger0_find_le(test_array, nr, ++ sizeof(test_array[0]), ++ cmp_u16, &search); ++ if (r >= 0) ++ c1 = test_array[r]; ++ ++ for (i = 0; i < nr; i++) ++ if (test_array[i] <= search && test_array[i] > c2) ++ c2 = test_array[i]; ++ ++ if (c1 != c2) { ++ eytzinger0_for_each(i, nr) ++ pr_info("[%3u] = %12u", i, test_array[i]); ++ pr_info("find_le(%2u) -> [%2zi] = %2i should be %2i", ++ i, r, c1, c2); ++ } ++} ++ ++void eytzinger0_find_test(void) ++{ ++ unsigned i, nr, allocated = 1 << 12; ++ u16 *test_array = kmalloc_array(allocated, sizeof(test_array[0]), GFP_KERNEL); ++ ++ for (nr = 1; nr < allocated; nr++) { ++ pr_info("testing %u elems", nr); ++ ++ get_random_bytes(test_array, nr * sizeof(test_array[0])); ++ eytzinger0_sort(test_array, nr, sizeof(test_array[0]), cmp_u16, NULL); ++ ++ /* verify array is sorted correctly: */ ++ eytzinger0_for_each(i, nr) ++ BUG_ON(i != eytzinger0_last(nr) && ++ test_array[i] > test_array[eytzinger0_next(i, nr)]); ++ ++ for (i = 0; i < U16_MAX; i += 1 << 12) ++ eytzinger0_find_test_val(test_array, nr, i); ++ ++ for (i = 0; i < nr; i++) { ++ eytzinger0_find_test_val(test_array, nr, test_array[i] - 1); ++ eytzinger0_find_test_val(test_array, nr, test_array[i]); ++ eytzinger0_find_test_val(test_array, nr, test_array[i] + 1); ++ } ++ } ++ ++ kfree(test_array); ++} ++#endif ++ ++/* ++ * Accumulate percpu counters onto one cpu's copy - only valid when access ++ * against any percpu counter is guarded against ++ */ ++u64 *bch2_acc_percpu_u64s(u64 __percpu *p, unsigned nr) ++{ ++ u64 *ret; ++ int cpu; ++ ++ preempt_disable(); ++ ret = this_cpu_ptr(p); ++ preempt_enable(); ++ ++ for_each_possible_cpu(cpu) { ++ u64 *i = per_cpu_ptr(p, cpu); ++ ++ if (i != ret) { ++ acc_u64s(ret, i, nr); ++ memset(i, 0, nr * sizeof(u64)); ++ } ++ } ++ ++ return ret; ++} +diff --git a/fs/bcachefs/util.h b/fs/bcachefs/util.h +new file mode 100644 +index 000000000000..f48c6380684f +--- /dev/null ++++ b/fs/bcachefs/util.h +@@ -0,0 +1,761 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_UTIL_H ++#define _BCACHEFS_UTIL_H ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#define PAGE_SECTOR_SHIFT (PAGE_SHIFT - 9) ++#define PAGE_SECTORS (1UL << PAGE_SECTOR_SHIFT) ++ ++struct closure; ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ ++#define EBUG_ON(cond) BUG_ON(cond) ++#define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0) ++#define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i) ++#define atomic_sub_bug(i, v) BUG_ON(atomic_sub_return(i, v) < 0) ++#define atomic_add_bug(i, v) BUG_ON(atomic_add_return(i, v) < 0) ++#define atomic_long_dec_bug(v) BUG_ON(atomic_long_dec_return(v) < 0) ++#define atomic_long_sub_bug(i, v) BUG_ON(atomic_long_sub_return(i, v) < 0) ++#define atomic64_dec_bug(v) BUG_ON(atomic64_dec_return(v) < 0) ++#define atomic64_inc_bug(v, i) BUG_ON(atomic64_inc_return(v) <= i) ++#define atomic64_sub_bug(i, v) BUG_ON(atomic64_sub_return(i, v) < 0) ++#define atomic64_add_bug(i, v) BUG_ON(atomic64_add_return(i, v) < 0) ++ ++#define memcpy(dst, src, len) \ ++({ \ ++ void *_dst = (dst); \ ++ const void *_src = (src); \ ++ size_t _len = (len); \ ++ \ ++ BUG_ON(!((void *) (_dst) >= (void *) (_src) + (_len) || \ ++ (void *) (_dst) + (_len) <= (void *) (_src))); \ ++ memcpy(_dst, _src, _len); \ ++}) ++ ++#else /* DEBUG */ ++ ++#define EBUG_ON(cond) ++#define atomic_dec_bug(v) atomic_dec(v) ++#define atomic_inc_bug(v, i) atomic_inc(v) ++#define atomic_sub_bug(i, v) atomic_sub(i, v) ++#define atomic_add_bug(i, v) atomic_add(i, v) ++#define atomic_long_dec_bug(v) atomic_long_dec(v) ++#define atomic_long_sub_bug(i, v) atomic_long_sub(i, v) ++#define atomic64_dec_bug(v) atomic64_dec(v) ++#define atomic64_inc_bug(v, i) atomic64_inc(v) ++#define atomic64_sub_bug(i, v) atomic64_sub(i, v) ++#define atomic64_add_bug(i, v) atomic64_add(i, v) ++ ++#endif ++ ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ++#define CPU_BIG_ENDIAN 0 ++#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ++#define CPU_BIG_ENDIAN 1 ++#endif ++ ++/* type hackery */ ++ ++#define type_is_exact(_val, _type) \ ++ __builtin_types_compatible_p(typeof(_val), _type) ++ ++#define type_is(_val, _type) \ ++ (__builtin_types_compatible_p(typeof(_val), _type) || \ ++ __builtin_types_compatible_p(typeof(_val), const _type)) ++ ++/* Userspace doesn't align allocations as nicely as the kernel allocators: */ ++static inline size_t buf_pages(void *p, size_t len) ++{ ++ return DIV_ROUND_UP(len + ++ ((unsigned long) p & (PAGE_SIZE - 1)), ++ PAGE_SIZE); ++} ++ ++static inline void vpfree(void *p, size_t size) ++{ ++ if (is_vmalloc_addr(p)) ++ vfree(p); ++ else ++ free_pages((unsigned long) p, get_order(size)); ++} ++ ++static inline void *vpmalloc(size_t size, gfp_t gfp_mask) ++{ ++ return (void *) __get_free_pages(gfp_mask|__GFP_NOWARN, ++ get_order(size)) ?: ++ __vmalloc(size, gfp_mask); ++} ++ ++static inline void kvpfree(void *p, size_t size) ++{ ++ if (size < PAGE_SIZE) ++ kfree(p); ++ else ++ vpfree(p, size); ++} ++ ++static inline void *kvpmalloc(size_t size, gfp_t gfp_mask) ++{ ++ return size < PAGE_SIZE ++ ? kmalloc(size, gfp_mask) ++ : vpmalloc(size, gfp_mask); ++} ++ ++int mempool_init_kvpmalloc_pool(mempool_t *, int, size_t); ++ ++#define HEAP(type) \ ++struct { \ ++ size_t size, used; \ ++ type *data; \ ++} ++ ++#define DECLARE_HEAP(type, name) HEAP(type) name ++ ++#define init_heap(heap, _size, gfp) \ ++({ \ ++ (heap)->used = 0; \ ++ (heap)->size = (_size); \ ++ (heap)->data = kvpmalloc((heap)->size * sizeof((heap)->data[0]),\ ++ (gfp)); \ ++}) ++ ++#define free_heap(heap) \ ++do { \ ++ kvpfree((heap)->data, (heap)->size * sizeof((heap)->data[0])); \ ++ (heap)->data = NULL; \ ++} while (0) ++ ++#define heap_set_backpointer(h, i, _fn) \ ++do { \ ++ void (*fn)(typeof(h), size_t) = _fn; \ ++ if (fn) \ ++ fn(h, i); \ ++} while (0) ++ ++#define heap_swap(h, i, j, set_backpointer) \ ++do { \ ++ swap((h)->data[i], (h)->data[j]); \ ++ heap_set_backpointer(h, i, set_backpointer); \ ++ heap_set_backpointer(h, j, set_backpointer); \ ++} while (0) ++ ++#define heap_peek(h) \ ++({ \ ++ EBUG_ON(!(h)->used); \ ++ (h)->data[0]; \ ++}) ++ ++#define heap_full(h) ((h)->used == (h)->size) ++ ++#define heap_sift_down(h, i, cmp, set_backpointer) \ ++do { \ ++ size_t _c, _j = i; \ ++ \ ++ for (; _j * 2 + 1 < (h)->used; _j = _c) { \ ++ _c = _j * 2 + 1; \ ++ if (_c + 1 < (h)->used && \ ++ cmp(h, (h)->data[_c], (h)->data[_c + 1]) >= 0) \ ++ _c++; \ ++ \ ++ if (cmp(h, (h)->data[_c], (h)->data[_j]) >= 0) \ ++ break; \ ++ heap_swap(h, _c, _j, set_backpointer); \ ++ } \ ++} while (0) ++ ++#define heap_sift_up(h, i, cmp, set_backpointer) \ ++do { \ ++ while (i) { \ ++ size_t p = (i - 1) / 2; \ ++ if (cmp(h, (h)->data[i], (h)->data[p]) >= 0) \ ++ break; \ ++ heap_swap(h, i, p, set_backpointer); \ ++ i = p; \ ++ } \ ++} while (0) ++ ++#define __heap_add(h, d, cmp, set_backpointer) \ ++({ \ ++ size_t _i = (h)->used++; \ ++ (h)->data[_i] = d; \ ++ heap_set_backpointer(h, _i, set_backpointer); \ ++ \ ++ heap_sift_up(h, _i, cmp, set_backpointer); \ ++ _i; \ ++}) ++ ++#define heap_add(h, d, cmp, set_backpointer) \ ++({ \ ++ bool _r = !heap_full(h); \ ++ if (_r) \ ++ __heap_add(h, d, cmp, set_backpointer); \ ++ _r; \ ++}) ++ ++#define heap_add_or_replace(h, new, cmp, set_backpointer) \ ++do { \ ++ if (!heap_add(h, new, cmp, set_backpointer) && \ ++ cmp(h, new, heap_peek(h)) >= 0) { \ ++ (h)->data[0] = new; \ ++ heap_set_backpointer(h, 0, set_backpointer); \ ++ heap_sift_down(h, 0, cmp, set_backpointer); \ ++ } \ ++} while (0) ++ ++#define heap_del(h, i, cmp, set_backpointer) \ ++do { \ ++ size_t _i = (i); \ ++ \ ++ BUG_ON(_i >= (h)->used); \ ++ (h)->used--; \ ++ heap_swap(h, _i, (h)->used, set_backpointer); \ ++ heap_sift_up(h, _i, cmp, set_backpointer); \ ++ heap_sift_down(h, _i, cmp, set_backpointer); \ ++} while (0) ++ ++#define heap_pop(h, d, cmp, set_backpointer) \ ++({ \ ++ bool _r = (h)->used; \ ++ if (_r) { \ ++ (d) = (h)->data[0]; \ ++ heap_del(h, 0, cmp, set_backpointer); \ ++ } \ ++ _r; \ ++}) ++ ++#define heap_resort(heap, cmp, set_backpointer) \ ++do { \ ++ ssize_t _i; \ ++ for (_i = (ssize_t) (heap)->used / 2 - 1; _i >= 0; --_i) \ ++ heap_sift_down(heap, _i, cmp, set_backpointer); \ ++} while (0) ++ ++#define ANYSINT_MAX(t) \ ++ ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) ++ ++struct printbuf { ++ char *pos; ++ char *end; ++}; ++ ++static inline size_t printbuf_remaining(struct printbuf *buf) ++{ ++ return buf->end - buf->pos; ++} ++ ++#define _PBUF(_buf, _len) \ ++ ((struct printbuf) { \ ++ .pos = _buf, \ ++ .end = _buf + _len, \ ++ }) ++ ++#define PBUF(_buf) _PBUF(_buf, sizeof(_buf)) ++ ++#define pr_buf(_out, ...) \ ++do { \ ++ (_out)->pos += scnprintf((_out)->pos, printbuf_remaining(_out), \ ++ __VA_ARGS__); \ ++} while (0) ++ ++void bch_scnmemcpy(struct printbuf *, const char *, size_t); ++ ++int bch2_strtoint_h(const char *, int *); ++int bch2_strtouint_h(const char *, unsigned int *); ++int bch2_strtoll_h(const char *, long long *); ++int bch2_strtoull_h(const char *, unsigned long long *); ++int bch2_strtou64_h(const char *, u64 *); ++ ++static inline int bch2_strtol_h(const char *cp, long *res) ++{ ++#if BITS_PER_LONG == 32 ++ return bch2_strtoint_h(cp, (int *) res); ++#else ++ return bch2_strtoll_h(cp, (long long *) res); ++#endif ++} ++ ++static inline int bch2_strtoul_h(const char *cp, long *res) ++{ ++#if BITS_PER_LONG == 32 ++ return bch2_strtouint_h(cp, (unsigned int *) res); ++#else ++ return bch2_strtoull_h(cp, (unsigned long long *) res); ++#endif ++} ++ ++#define strtoi_h(cp, res) \ ++ ( type_is(*res, int) ? bch2_strtoint_h(cp, (void *) res)\ ++ : type_is(*res, long) ? bch2_strtol_h(cp, (void *) res)\ ++ : type_is(*res, long long) ? bch2_strtoll_h(cp, (void *) res)\ ++ : type_is(*res, unsigned) ? bch2_strtouint_h(cp, (void *) res)\ ++ : type_is(*res, unsigned long) ? bch2_strtoul_h(cp, (void *) res)\ ++ : type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\ ++ : -EINVAL) ++ ++#define strtoul_safe(cp, var) \ ++({ \ ++ unsigned long _v; \ ++ int _r = kstrtoul(cp, 10, &_v); \ ++ if (!_r) \ ++ var = _v; \ ++ _r; \ ++}) ++ ++#define strtoul_safe_clamp(cp, var, min, max) \ ++({ \ ++ unsigned long _v; \ ++ int _r = kstrtoul(cp, 10, &_v); \ ++ if (!_r) \ ++ var = clamp_t(typeof(var), _v, min, max); \ ++ _r; \ ++}) ++ ++#define strtoul_safe_restrict(cp, var, min, max) \ ++({ \ ++ unsigned long _v; \ ++ int _r = kstrtoul(cp, 10, &_v); \ ++ if (!_r && _v >= min && _v <= max) \ ++ var = _v; \ ++ else \ ++ _r = -EINVAL; \ ++ _r; \ ++}) ++ ++#define snprint(buf, size, var) \ ++ snprintf(buf, size, \ ++ type_is(var, int) ? "%i\n" \ ++ : type_is(var, unsigned) ? "%u\n" \ ++ : type_is(var, long) ? "%li\n" \ ++ : type_is(var, unsigned long) ? "%lu\n" \ ++ : type_is(var, s64) ? "%lli\n" \ ++ : type_is(var, u64) ? "%llu\n" \ ++ : type_is(var, char *) ? "%s\n" \ ++ : "%i\n", var) ++ ++void bch2_hprint(struct printbuf *, s64); ++ ++bool bch2_is_zero(const void *, size_t); ++ ++void bch2_string_opt_to_text(struct printbuf *, ++ const char * const [], size_t); ++ ++void bch2_flags_to_text(struct printbuf *, const char * const[], u64); ++u64 bch2_read_flag_list(char *, const char * const[]); ++ ++#define NR_QUANTILES 15 ++#define QUANTILE_IDX(i) inorder_to_eytzinger0(i, NR_QUANTILES) ++#define QUANTILE_FIRST eytzinger0_first(NR_QUANTILES) ++#define QUANTILE_LAST eytzinger0_last(NR_QUANTILES) ++ ++struct quantiles { ++ struct quantile_entry { ++ u64 m; ++ u64 step; ++ } entries[NR_QUANTILES]; ++}; ++ ++struct time_stat_buffer { ++ unsigned nr; ++ struct time_stat_buffer_entry { ++ u64 start; ++ u64 end; ++ } entries[32]; ++}; ++ ++struct time_stats { ++ spinlock_t lock; ++ u64 count; ++ /* all fields are in nanoseconds */ ++ u64 average_duration; ++ u64 average_frequency; ++ u64 max_duration; ++ u64 last_event; ++ struct quantiles quantiles; ++ ++ struct time_stat_buffer __percpu *buffer; ++}; ++ ++void __bch2_time_stats_update(struct time_stats *stats, u64, u64); ++ ++static inline void bch2_time_stats_update(struct time_stats *stats, u64 start) ++{ ++ __bch2_time_stats_update(stats, start, local_clock()); ++} ++ ++void bch2_time_stats_to_text(struct printbuf *, struct time_stats *); ++ ++void bch2_time_stats_exit(struct time_stats *); ++void bch2_time_stats_init(struct time_stats *); ++ ++#define ewma_add(ewma, val, weight) \ ++({ \ ++ typeof(ewma) _ewma = (ewma); \ ++ typeof(weight) _weight = (weight); \ ++ \ ++ (((_ewma << _weight) - _ewma) + (val)) >> _weight; \ ++}) ++ ++struct bch_ratelimit { ++ /* Next time we want to do some work, in nanoseconds */ ++ u64 next; ++ ++ /* ++ * Rate at which we want to do work, in units per nanosecond ++ * The units here correspond to the units passed to ++ * bch2_ratelimit_increment() ++ */ ++ unsigned rate; ++}; ++ ++static inline void bch2_ratelimit_reset(struct bch_ratelimit *d) ++{ ++ d->next = local_clock(); ++} ++ ++u64 bch2_ratelimit_delay(struct bch_ratelimit *); ++void bch2_ratelimit_increment(struct bch_ratelimit *, u64); ++ ++struct bch_pd_controller { ++ struct bch_ratelimit rate; ++ unsigned long last_update; ++ ++ s64 last_actual; ++ s64 smoothed_derivative; ++ ++ unsigned p_term_inverse; ++ unsigned d_smooth; ++ unsigned d_term; ++ ++ /* for exporting to sysfs (no effect on behavior) */ ++ s64 last_derivative; ++ s64 last_proportional; ++ s64 last_change; ++ s64 last_target; ++ ++ /* If true, the rate will not increase if bch2_ratelimit_delay() ++ * is not being called often enough. */ ++ bool backpressure; ++}; ++ ++void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int); ++void bch2_pd_controller_init(struct bch_pd_controller *); ++size_t bch2_pd_controller_print_debug(struct bch_pd_controller *, char *); ++ ++#define sysfs_pd_controller_attribute(name) \ ++ rw_attribute(name##_rate); \ ++ rw_attribute(name##_rate_bytes); \ ++ rw_attribute(name##_rate_d_term); \ ++ rw_attribute(name##_rate_p_term_inverse); \ ++ read_attribute(name##_rate_debug) ++ ++#define sysfs_pd_controller_files(name) \ ++ &sysfs_##name##_rate, \ ++ &sysfs_##name##_rate_bytes, \ ++ &sysfs_##name##_rate_d_term, \ ++ &sysfs_##name##_rate_p_term_inverse, \ ++ &sysfs_##name##_rate_debug ++ ++#define sysfs_pd_controller_show(name, var) \ ++do { \ ++ sysfs_hprint(name##_rate, (var)->rate.rate); \ ++ sysfs_print(name##_rate_bytes, (var)->rate.rate); \ ++ sysfs_print(name##_rate_d_term, (var)->d_term); \ ++ sysfs_print(name##_rate_p_term_inverse, (var)->p_term_inverse); \ ++ \ ++ if (attr == &sysfs_##name##_rate_debug) \ ++ return bch2_pd_controller_print_debug(var, buf); \ ++} while (0) ++ ++#define sysfs_pd_controller_store(name, var) \ ++do { \ ++ sysfs_strtoul_clamp(name##_rate, \ ++ (var)->rate.rate, 1, UINT_MAX); \ ++ sysfs_strtoul_clamp(name##_rate_bytes, \ ++ (var)->rate.rate, 1, UINT_MAX); \ ++ sysfs_strtoul(name##_rate_d_term, (var)->d_term); \ ++ sysfs_strtoul_clamp(name##_rate_p_term_inverse, \ ++ (var)->p_term_inverse, 1, INT_MAX); \ ++} while (0) ++ ++#define container_of_or_null(ptr, type, member) \ ++({ \ ++ typeof(ptr) _ptr = ptr; \ ++ _ptr ? container_of(_ptr, type, member) : NULL; \ ++}) ++ ++/* Does linear interpolation between powers of two */ ++static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits) ++{ ++ unsigned fract = x & ~(~0 << fract_bits); ++ ++ x >>= fract_bits; ++ x = 1 << x; ++ x += (x * fract) >> fract_bits; ++ ++ return x; ++} ++ ++void bch2_bio_map(struct bio *bio, void *base, size_t); ++int bch2_bio_alloc_pages(struct bio *, size_t, gfp_t); ++ ++static inline sector_t bdev_sectors(struct block_device *bdev) ++{ ++ return bdev->bd_inode->i_size >> 9; ++} ++ ++#define closure_bio_submit(bio, cl) \ ++do { \ ++ closure_get(cl); \ ++ submit_bio(bio); \ ++} while (0) ++ ++#define kthread_wait_freezable(cond) \ ++({ \ ++ int _ret = 0; \ ++ while (1) { \ ++ set_current_state(TASK_INTERRUPTIBLE); \ ++ if (kthread_should_stop()) { \ ++ _ret = -1; \ ++ break; \ ++ } \ ++ \ ++ if (cond) \ ++ break; \ ++ \ ++ schedule(); \ ++ try_to_freeze(); \ ++ } \ ++ set_current_state(TASK_RUNNING); \ ++ _ret; \ ++}) ++ ++size_t bch2_rand_range(size_t); ++ ++void memcpy_to_bio(struct bio *, struct bvec_iter, const void *); ++void memcpy_from_bio(void *, struct bio *, struct bvec_iter); ++ ++static inline void memcpy_u64s_small(void *dst, const void *src, ++ unsigned u64s) ++{ ++ u64 *d = dst; ++ const u64 *s = src; ++ ++ while (u64s--) ++ *d++ = *s++; ++} ++ ++static inline void __memcpy_u64s(void *dst, const void *src, ++ unsigned u64s) ++{ ++#ifdef CONFIG_X86_64 ++ long d0, d1, d2; ++ asm volatile("rep ; movsq" ++ : "=&c" (d0), "=&D" (d1), "=&S" (d2) ++ : "0" (u64s), "1" (dst), "2" (src) ++ : "memory"); ++#else ++ u64 *d = dst; ++ const u64 *s = src; ++ ++ while (u64s--) ++ *d++ = *s++; ++#endif ++} ++ ++static inline void memcpy_u64s(void *dst, const void *src, ++ unsigned u64s) ++{ ++ EBUG_ON(!(dst >= src + u64s * sizeof(u64) || ++ dst + u64s * sizeof(u64) <= src)); ++ ++ __memcpy_u64s(dst, src, u64s); ++} ++ ++static inline void __memmove_u64s_down(void *dst, const void *src, ++ unsigned u64s) ++{ ++ __memcpy_u64s(dst, src, u64s); ++} ++ ++static inline void memmove_u64s_down(void *dst, const void *src, ++ unsigned u64s) ++{ ++ EBUG_ON(dst > src); ++ ++ __memmove_u64s_down(dst, src, u64s); ++} ++ ++static inline void __memmove_u64s_up_small(void *_dst, const void *_src, ++ unsigned u64s) ++{ ++ u64 *dst = (u64 *) _dst + u64s; ++ u64 *src = (u64 *) _src + u64s; ++ ++ while (u64s--) ++ *--dst = *--src; ++} ++ ++static inline void memmove_u64s_up_small(void *dst, const void *src, ++ unsigned u64s) ++{ ++ EBUG_ON(dst < src); ++ ++ __memmove_u64s_up_small(dst, src, u64s); ++} ++ ++static inline void __memmove_u64s_up(void *_dst, const void *_src, ++ unsigned u64s) ++{ ++ u64 *dst = (u64 *) _dst + u64s - 1; ++ u64 *src = (u64 *) _src + u64s - 1; ++ ++#ifdef CONFIG_X86_64 ++ long d0, d1, d2; ++ asm volatile("std ;\n" ++ "rep ; movsq\n" ++ "cld ;\n" ++ : "=&c" (d0), "=&D" (d1), "=&S" (d2) ++ : "0" (u64s), "1" (dst), "2" (src) ++ : "memory"); ++#else ++ while (u64s--) ++ *dst-- = *src--; ++#endif ++} ++ ++static inline void memmove_u64s_up(void *dst, const void *src, ++ unsigned u64s) ++{ ++ EBUG_ON(dst < src); ++ ++ __memmove_u64s_up(dst, src, u64s); ++} ++ ++static inline void memmove_u64s(void *dst, const void *src, ++ unsigned u64s) ++{ ++ if (dst < src) ++ __memmove_u64s_down(dst, src, u64s); ++ else ++ __memmove_u64s_up(dst, src, u64s); ++} ++ ++/* Set the last few bytes up to a u64 boundary given an offset into a buffer. */ ++static inline void memset_u64s_tail(void *s, int c, unsigned bytes) ++{ ++ unsigned rem = round_up(bytes, sizeof(u64)) - bytes; ++ ++ memset(s + bytes, c, rem); ++} ++ ++void sort_cmp_size(void *base, size_t num, size_t size, ++ int (*cmp_func)(const void *, const void *, size_t), ++ void (*swap_func)(void *, void *, size_t)); ++ ++/* just the memmove, doesn't update @_nr */ ++#define __array_insert_item(_array, _nr, _pos) \ ++ memmove(&(_array)[(_pos) + 1], \ ++ &(_array)[(_pos)], \ ++ sizeof((_array)[0]) * ((_nr) - (_pos))) ++ ++#define array_insert_item(_array, _nr, _pos, _new_item) \ ++do { \ ++ __array_insert_item(_array, _nr, _pos); \ ++ (_nr)++; \ ++ (_array)[(_pos)] = (_new_item); \ ++} while (0) ++ ++#define array_remove_items(_array, _nr, _pos, _nr_to_remove) \ ++do { \ ++ (_nr) -= (_nr_to_remove); \ ++ memmove(&(_array)[(_pos)], \ ++ &(_array)[(_pos) + (_nr_to_remove)], \ ++ sizeof((_array)[0]) * ((_nr) - (_pos))); \ ++} while (0) ++ ++#define array_remove_item(_array, _nr, _pos) \ ++ array_remove_items(_array, _nr, _pos, 1) ++ ++#define bubble_sort(_base, _nr, _cmp) \ ++do { \ ++ ssize_t _i, _end; \ ++ bool _swapped = true; \ ++ \ ++ for (_end = (ssize_t) (_nr) - 1; _end > 0 && _swapped; --_end) {\ ++ _swapped = false; \ ++ for (_i = 0; _i < _end; _i++) \ ++ if (_cmp((_base)[_i], (_base)[_i + 1]) > 0) { \ ++ swap((_base)[_i], (_base)[_i + 1]); \ ++ _swapped = true; \ ++ } \ ++ } \ ++} while (0) ++ ++static inline u64 percpu_u64_get(u64 __percpu *src) ++{ ++ u64 ret = 0; ++ int cpu; ++ ++ for_each_possible_cpu(cpu) ++ ret += *per_cpu_ptr(src, cpu); ++ return ret; ++} ++ ++static inline void percpu_u64_set(u64 __percpu *dst, u64 src) ++{ ++ int cpu; ++ ++ for_each_possible_cpu(cpu) ++ *per_cpu_ptr(dst, cpu) = 0; ++ ++ preempt_disable(); ++ *this_cpu_ptr(dst) = src; ++ preempt_enable(); ++} ++ ++static inline void acc_u64s(u64 *acc, const u64 *src, unsigned nr) ++{ ++ unsigned i; ++ ++ for (i = 0; i < nr; i++) ++ acc[i] += src[i]; ++} ++ ++static inline void acc_u64s_percpu(u64 *acc, const u64 __percpu *src, ++ unsigned nr) ++{ ++ int cpu; ++ ++ for_each_possible_cpu(cpu) ++ acc_u64s(acc, per_cpu_ptr(src, cpu), nr); ++} ++ ++static inline void percpu_memset(void __percpu *p, int c, size_t bytes) ++{ ++ int cpu; ++ ++ for_each_possible_cpu(cpu) ++ memset(per_cpu_ptr(p, cpu), c, bytes); ++} ++ ++u64 *bch2_acc_percpu_u64s(u64 __percpu *, unsigned); ++ ++#define cmp_int(l, r) ((l > r) - (l < r)) ++ ++#endif /* _BCACHEFS_UTIL_H */ +diff --git a/fs/bcachefs/vstructs.h b/fs/bcachefs/vstructs.h +new file mode 100644 +index 000000000000..c099cdc0605f +--- /dev/null ++++ b/fs/bcachefs/vstructs.h +@@ -0,0 +1,63 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _VSTRUCTS_H ++#define _VSTRUCTS_H ++ ++#include "util.h" ++ ++/* ++ * NOTE: we can't differentiate between __le64 and u64 with type_is - this ++ * assumes u64 is little endian: ++ */ ++#define __vstruct_u64s(_s) \ ++({ \ ++ ( type_is((_s)->u64s, u64) ? le64_to_cpu((__force __le64) (_s)->u64s) \ ++ : type_is((_s)->u64s, u32) ? le32_to_cpu((__force __le32) (_s)->u64s) \ ++ : type_is((_s)->u64s, u16) ? le16_to_cpu((__force __le16) (_s)->u64s) \ ++ : ((__force u8) ((_s)->u64s))); \ ++}) ++ ++#define __vstruct_bytes(_type, _u64s) \ ++({ \ ++ BUILD_BUG_ON(offsetof(_type, _data) % sizeof(u64)); \ ++ \ ++ (offsetof(_type, _data) + (_u64s) * sizeof(u64)); \ ++}) ++ ++#define vstruct_bytes(_s) \ ++ __vstruct_bytes(typeof(*(_s)), __vstruct_u64s(_s)) ++ ++#define __vstruct_blocks(_type, _sector_block_bits, _u64s) \ ++ (round_up(__vstruct_bytes(_type, _u64s), \ ++ 512 << (_sector_block_bits)) >> (9 + (_sector_block_bits))) ++ ++#define vstruct_blocks(_s, _sector_block_bits) \ ++ __vstruct_blocks(typeof(*(_s)), _sector_block_bits, __vstruct_u64s(_s)) ++ ++#define vstruct_blocks_plus(_s, _sector_block_bits, _u64s) \ ++ __vstruct_blocks(typeof(*(_s)), _sector_block_bits, \ ++ __vstruct_u64s(_s) + (_u64s)) ++ ++#define vstruct_sectors(_s, _sector_block_bits) \ ++ (round_up(vstruct_bytes(_s), 512 << (_sector_block_bits)) >> 9) ++ ++#define vstruct_next(_s) \ ++ ((typeof(_s)) ((_s)->_data + __vstruct_u64s(_s))) ++#define vstruct_last(_s) \ ++ ((typeof(&(_s)->start[0])) ((_s)->_data + __vstruct_u64s(_s))) ++#define vstruct_end(_s) \ ++ ((void *) ((_s)->_data + __vstruct_u64s(_s))) ++ ++#define vstruct_for_each(_s, _i) \ ++ for (_i = (_s)->start; \ ++ _i < vstruct_last(_s); \ ++ _i = vstruct_next(_i)) ++ ++#define vstruct_for_each_safe(_s, _i, _t) \ ++ for (_i = (_s)->start; \ ++ _i < vstruct_last(_s) && (_t = vstruct_next(_i), true); \ ++ _i = _t) ++ ++#define vstruct_idx(_s, _idx) \ ++ ((typeof(&(_s)->start[0])) ((_s)->_data + (_idx))) ++ ++#endif /* _VSTRUCTS_H */ +diff --git a/fs/bcachefs/xattr.c b/fs/bcachefs/xattr.c +new file mode 100644 +index 000000000000..21f64cb7e402 +--- /dev/null ++++ b/fs/bcachefs/xattr.c +@@ -0,0 +1,586 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bkey_methods.h" ++#include "btree_update.h" ++#include "extents.h" ++#include "fs.h" ++#include "rebalance.h" ++#include "str_hash.h" ++#include "xattr.h" ++ ++#include ++#include ++#include ++ ++static const struct xattr_handler *bch2_xattr_type_to_handler(unsigned); ++ ++static u64 bch2_xattr_hash(const struct bch_hash_info *info, ++ const struct xattr_search_key *key) ++{ ++ struct bch_str_hash_ctx ctx; ++ ++ bch2_str_hash_init(&ctx, info); ++ bch2_str_hash_update(&ctx, info, &key->type, sizeof(key->type)); ++ bch2_str_hash_update(&ctx, info, key->name.name, key->name.len); ++ ++ return bch2_str_hash_end(&ctx, info); ++} ++ ++static u64 xattr_hash_key(const struct bch_hash_info *info, const void *key) ++{ ++ return bch2_xattr_hash(info, key); ++} ++ ++static u64 xattr_hash_bkey(const struct bch_hash_info *info, struct bkey_s_c k) ++{ ++ struct bkey_s_c_xattr x = bkey_s_c_to_xattr(k); ++ ++ return bch2_xattr_hash(info, ++ &X_SEARCH(x.v->x_type, x.v->x_name, x.v->x_name_len)); ++} ++ ++static bool xattr_cmp_key(struct bkey_s_c _l, const void *_r) ++{ ++ struct bkey_s_c_xattr l = bkey_s_c_to_xattr(_l); ++ const struct xattr_search_key *r = _r; ++ ++ return l.v->x_type != r->type || ++ l.v->x_name_len != r->name.len || ++ memcmp(l.v->x_name, r->name.name, r->name.len); ++} ++ ++static bool xattr_cmp_bkey(struct bkey_s_c _l, struct bkey_s_c _r) ++{ ++ struct bkey_s_c_xattr l = bkey_s_c_to_xattr(_l); ++ struct bkey_s_c_xattr r = bkey_s_c_to_xattr(_r); ++ ++ return l.v->x_type != r.v->x_type || ++ l.v->x_name_len != r.v->x_name_len || ++ memcmp(l.v->x_name, r.v->x_name, r.v->x_name_len); ++} ++ ++const struct bch_hash_desc bch2_xattr_hash_desc = { ++ .btree_id = BTREE_ID_XATTRS, ++ .key_type = KEY_TYPE_xattr, ++ .hash_key = xattr_hash_key, ++ .hash_bkey = xattr_hash_bkey, ++ .cmp_key = xattr_cmp_key, ++ .cmp_bkey = xattr_cmp_bkey, ++}; ++ ++const char *bch2_xattr_invalid(const struct bch_fs *c, struct bkey_s_c k) ++{ ++ const struct xattr_handler *handler; ++ struct bkey_s_c_xattr xattr = bkey_s_c_to_xattr(k); ++ ++ if (bkey_val_bytes(k.k) < sizeof(struct bch_xattr)) ++ return "value too small"; ++ ++ if (bkey_val_u64s(k.k) < ++ xattr_val_u64s(xattr.v->x_name_len, ++ le16_to_cpu(xattr.v->x_val_len))) ++ return "value too small"; ++ ++ if (bkey_val_u64s(k.k) > ++ xattr_val_u64s(xattr.v->x_name_len, ++ le16_to_cpu(xattr.v->x_val_len) + 4)) ++ return "value too big"; ++ ++ handler = bch2_xattr_type_to_handler(xattr.v->x_type); ++ if (!handler) ++ return "invalid type"; ++ ++ if (memchr(xattr.v->x_name, '\0', xattr.v->x_name_len)) ++ return "xattr name has invalid characters"; ++ ++ return NULL; ++} ++ ++void bch2_xattr_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ const struct xattr_handler *handler; ++ struct bkey_s_c_xattr xattr = bkey_s_c_to_xattr(k); ++ ++ handler = bch2_xattr_type_to_handler(xattr.v->x_type); ++ if (handler && handler->prefix) ++ pr_buf(out, "%s", handler->prefix); ++ else if (handler) ++ pr_buf(out, "(type %u)", xattr.v->x_type); ++ else ++ pr_buf(out, "(unknown type %u)", xattr.v->x_type); ++ ++ bch_scnmemcpy(out, xattr.v->x_name, ++ xattr.v->x_name_len); ++ pr_buf(out, ":"); ++ bch_scnmemcpy(out, xattr_val(xattr.v), ++ le16_to_cpu(xattr.v->x_val_len)); ++} ++ ++int bch2_xattr_get(struct bch_fs *c, struct bch_inode_info *inode, ++ const char *name, void *buffer, size_t size, int type) ++{ ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c_xattr xattr; ++ int ret; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ iter = bch2_hash_lookup(&trans, bch2_xattr_hash_desc, ++ &inode->ei_str_hash, inode->v.i_ino, ++ &X_SEARCH(type, name, strlen(name)), ++ 0); ++ if (IS_ERR(iter)) { ++ bch2_trans_exit(&trans); ++ BUG_ON(PTR_ERR(iter) == -EINTR); ++ ++ return PTR_ERR(iter) == -ENOENT ? -ENODATA : PTR_ERR(iter); ++ } ++ ++ xattr = bkey_s_c_to_xattr(bch2_btree_iter_peek_slot(iter)); ++ ret = le16_to_cpu(xattr.v->x_val_len); ++ if (buffer) { ++ if (ret > size) ++ ret = -ERANGE; ++ else ++ memcpy(buffer, xattr_val(xattr.v), ret); ++ } ++ ++ bch2_trans_exit(&trans); ++ return ret; ++} ++ ++int bch2_xattr_set(struct btree_trans *trans, u64 inum, ++ const struct bch_hash_info *hash_info, ++ const char *name, const void *value, size_t size, ++ int type, int flags) ++{ ++ int ret; ++ ++ if (value) { ++ struct bkey_i_xattr *xattr; ++ unsigned namelen = strlen(name); ++ unsigned u64s = BKEY_U64s + ++ xattr_val_u64s(namelen, size); ++ ++ if (u64s > U8_MAX) ++ return -ERANGE; ++ ++ xattr = bch2_trans_kmalloc(trans, u64s * sizeof(u64)); ++ if (IS_ERR(xattr)) ++ return PTR_ERR(xattr); ++ ++ bkey_xattr_init(&xattr->k_i); ++ xattr->k.u64s = u64s; ++ xattr->v.x_type = type; ++ xattr->v.x_name_len = namelen; ++ xattr->v.x_val_len = cpu_to_le16(size); ++ memcpy(xattr->v.x_name, name, namelen); ++ memcpy(xattr_val(&xattr->v), value, size); ++ ++ ret = bch2_hash_set(trans, bch2_xattr_hash_desc, hash_info, ++ inum, &xattr->k_i, ++ (flags & XATTR_CREATE ? BCH_HASH_SET_MUST_CREATE : 0)| ++ (flags & XATTR_REPLACE ? BCH_HASH_SET_MUST_REPLACE : 0)); ++ } else { ++ struct xattr_search_key search = ++ X_SEARCH(type, name, strlen(name)); ++ ++ ret = bch2_hash_delete(trans, bch2_xattr_hash_desc, ++ hash_info, inum, &search); ++ } ++ ++ if (ret == -ENOENT) ++ ret = flags & XATTR_REPLACE ? -ENODATA : 0; ++ ++ return ret; ++} ++ ++struct xattr_buf { ++ char *buf; ++ size_t len; ++ size_t used; ++}; ++ ++static int __bch2_xattr_emit(const char *prefix, ++ const char *name, size_t name_len, ++ struct xattr_buf *buf) ++{ ++ const size_t prefix_len = strlen(prefix); ++ const size_t total_len = prefix_len + name_len + 1; ++ ++ if (buf->buf) { ++ if (buf->used + total_len > buf->len) ++ return -ERANGE; ++ ++ memcpy(buf->buf + buf->used, prefix, prefix_len); ++ memcpy(buf->buf + buf->used + prefix_len, ++ name, name_len); ++ buf->buf[buf->used + prefix_len + name_len] = '\0'; ++ } ++ ++ buf->used += total_len; ++ return 0; ++} ++ ++static int bch2_xattr_emit(struct dentry *dentry, ++ const struct bch_xattr *xattr, ++ struct xattr_buf *buf) ++{ ++ const struct xattr_handler *handler = ++ bch2_xattr_type_to_handler(xattr->x_type); ++ ++ return handler && (!handler->list || handler->list(dentry)) ++ ? __bch2_xattr_emit(handler->prefix ?: handler->name, ++ xattr->x_name, xattr->x_name_len, buf) ++ : 0; ++} ++ ++static int bch2_xattr_list_bcachefs(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct xattr_buf *buf, ++ bool all) ++{ ++ const char *prefix = all ? "bcachefs_effective." : "bcachefs."; ++ unsigned id; ++ int ret = 0; ++ u64 v; ++ ++ for (id = 0; id < Inode_opt_nr; id++) { ++ v = bch2_inode_opt_get(&inode->ei_inode, id); ++ if (!v) ++ continue; ++ ++ if (!all && ++ !(inode->ei_inode.bi_fields_set & (1 << id))) ++ continue; ++ ++ ret = __bch2_xattr_emit(prefix, bch2_inode_opts[id], ++ strlen(bch2_inode_opts[id]), buf); ++ if (ret) ++ break; ++ } ++ ++ return ret; ++} ++ ++ssize_t bch2_xattr_list(struct dentry *dentry, char *buffer, size_t buffer_size) ++{ ++ struct bch_fs *c = dentry->d_sb->s_fs_info; ++ struct bch_inode_info *inode = to_bch_ei(dentry->d_inode); ++ struct btree_trans trans; ++ struct btree_iter *iter; ++ struct bkey_s_c k; ++ struct xattr_buf buf = { .buf = buffer, .len = buffer_size }; ++ u64 inum = dentry->d_inode->i_ino; ++ int ret; ++ ++ bch2_trans_init(&trans, c, 0, 0); ++ ++ for_each_btree_key(&trans, iter, BTREE_ID_XATTRS, ++ POS(inum, 0), 0, k, ret) { ++ BUG_ON(k.k->p.inode < inum); ++ ++ if (k.k->p.inode > inum) ++ break; ++ ++ if (k.k->type != KEY_TYPE_xattr) ++ continue; ++ ++ ret = bch2_xattr_emit(dentry, bkey_s_c_to_xattr(k).v, &buf); ++ if (ret) ++ break; ++ } ++ ret = bch2_trans_exit(&trans) ?: ret; ++ ++ if (ret) ++ return ret; ++ ++ ret = bch2_xattr_list_bcachefs(c, inode, &buf, false); ++ if (ret) ++ return ret; ++ ++ ret = bch2_xattr_list_bcachefs(c, inode, &buf, true); ++ if (ret) ++ return ret; ++ ++ return buf.used; ++} ++ ++static int bch2_xattr_get_handler(const struct xattr_handler *handler, ++ struct dentry *dentry, struct inode *vinode, ++ const char *name, void *buffer, size_t size) ++{ ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ ++ return bch2_xattr_get(c, inode, name, buffer, size, handler->flags); ++} ++ ++static int bch2_xattr_set_handler(const struct xattr_handler *handler, ++ struct dentry *dentry, struct inode *vinode, ++ const char *name, const void *value, ++ size_t size, int flags) ++{ ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ ++ return bch2_trans_do(c, NULL, &inode->ei_journal_seq, 0, ++ bch2_xattr_set(&trans, inode->v.i_ino, ++ &inode->ei_str_hash, ++ name, value, size, ++ handler->flags, flags)); ++} ++ ++static const struct xattr_handler bch_xattr_user_handler = { ++ .prefix = XATTR_USER_PREFIX, ++ .get = bch2_xattr_get_handler, ++ .set = bch2_xattr_set_handler, ++ .flags = KEY_TYPE_XATTR_INDEX_USER, ++}; ++ ++static bool bch2_xattr_trusted_list(struct dentry *dentry) ++{ ++ return capable(CAP_SYS_ADMIN); ++} ++ ++static const struct xattr_handler bch_xattr_trusted_handler = { ++ .prefix = XATTR_TRUSTED_PREFIX, ++ .list = bch2_xattr_trusted_list, ++ .get = bch2_xattr_get_handler, ++ .set = bch2_xattr_set_handler, ++ .flags = KEY_TYPE_XATTR_INDEX_TRUSTED, ++}; ++ ++static const struct xattr_handler bch_xattr_security_handler = { ++ .prefix = XATTR_SECURITY_PREFIX, ++ .get = bch2_xattr_get_handler, ++ .set = bch2_xattr_set_handler, ++ .flags = KEY_TYPE_XATTR_INDEX_SECURITY, ++}; ++ ++#ifndef NO_BCACHEFS_FS ++ ++static int opt_to_inode_opt(int id) ++{ ++ switch (id) { ++#define x(name, ...) \ ++ case Opt_##name: return Inode_opt_##name; ++ BCH_INODE_OPTS() ++#undef x ++ default: ++ return -1; ++ } ++} ++ ++static int __bch2_xattr_bcachefs_get(const struct xattr_handler *handler, ++ struct dentry *dentry, struct inode *vinode, ++ const char *name, void *buffer, size_t size, ++ bool all) ++{ ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch_opts opts = ++ bch2_inode_opts_to_opts(bch2_inode_opts_get(&inode->ei_inode)); ++ const struct bch_option *opt; ++ int id, inode_opt_id; ++ char buf[512]; ++ struct printbuf out = PBUF(buf); ++ unsigned val_len; ++ u64 v; ++ ++ id = bch2_opt_lookup(name); ++ if (id < 0 || !bch2_opt_is_inode_opt(id)) ++ return -EINVAL; ++ ++ inode_opt_id = opt_to_inode_opt(id); ++ if (inode_opt_id < 0) ++ return -EINVAL; ++ ++ opt = bch2_opt_table + id; ++ ++ if (!bch2_opt_defined_by_id(&opts, id)) ++ return -ENODATA; ++ ++ if (!all && ++ !(inode->ei_inode.bi_fields_set & (1 << inode_opt_id))) ++ return -ENODATA; ++ ++ v = bch2_opt_get_by_id(&opts, id); ++ bch2_opt_to_text(&out, c, opt, v, 0); ++ ++ val_len = out.pos - buf; ++ ++ if (buffer && val_len > size) ++ return -ERANGE; ++ ++ if (buffer) ++ memcpy(buffer, buf, val_len); ++ return val_len; ++} ++ ++static int bch2_xattr_bcachefs_get(const struct xattr_handler *handler, ++ struct dentry *dentry, struct inode *vinode, ++ const char *name, void *buffer, size_t size) ++{ ++ return __bch2_xattr_bcachefs_get(handler, dentry, vinode, ++ name, buffer, size, false); ++} ++ ++struct inode_opt_set { ++ int id; ++ u64 v; ++ bool defined; ++}; ++ ++static int inode_opt_set_fn(struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, ++ void *p) ++{ ++ struct inode_opt_set *s = p; ++ ++ if (s->defined) ++ bi->bi_fields_set |= 1U << s->id; ++ else ++ bi->bi_fields_set &= ~(1U << s->id); ++ ++ bch2_inode_opt_set(bi, s->id, s->v); ++ ++ return 0; ++} ++ ++static int bch2_xattr_bcachefs_set(const struct xattr_handler *handler, ++ struct dentry *dentry, struct inode *vinode, ++ const char *name, const void *value, ++ size_t size, int flags) ++{ ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ const struct bch_option *opt; ++ char *buf; ++ struct inode_opt_set s; ++ int opt_id, inode_opt_id, ret; ++ ++ opt_id = bch2_opt_lookup(name); ++ if (opt_id < 0) ++ return -EINVAL; ++ ++ opt = bch2_opt_table + opt_id; ++ ++ inode_opt_id = opt_to_inode_opt(opt_id); ++ if (inode_opt_id < 0) ++ return -EINVAL; ++ ++ s.id = inode_opt_id; ++ ++ if (value) { ++ u64 v = 0; ++ ++ buf = kmalloc(size + 1, GFP_KERNEL); ++ if (!buf) ++ return -ENOMEM; ++ memcpy(buf, value, size); ++ buf[size] = '\0'; ++ ++ ret = bch2_opt_parse(c, opt, buf, &v); ++ kfree(buf); ++ ++ if (ret < 0) ++ return ret; ++ ++ ret = bch2_opt_check_may_set(c, opt_id, v); ++ if (ret < 0) ++ return ret; ++ ++ s.v = v + 1; ++ s.defined = true; ++ } else { ++ if (!IS_ROOT(dentry)) { ++ struct bch_inode_info *dir = ++ to_bch_ei(d_inode(dentry->d_parent)); ++ ++ s.v = bch2_inode_opt_get(&dir->ei_inode, inode_opt_id); ++ } else { ++ s.v = 0; ++ } ++ ++ s.defined = false; ++ } ++ ++ mutex_lock(&inode->ei_update_lock); ++ if (inode_opt_id == Inode_opt_project) { ++ /* ++ * inode fields accessible via the xattr interface are stored ++ * with a +1 bias, so that 0 means unset: ++ */ ++ ret = bch2_set_projid(c, inode, s.v ? s.v - 1 : 0); ++ if (ret) ++ goto err; ++ } ++ ++ ret = bch2_write_inode(c, inode, inode_opt_set_fn, &s, 0); ++err: ++ mutex_unlock(&inode->ei_update_lock); ++ ++ if (value && ++ (opt_id == Opt_background_compression || ++ opt_id == Opt_background_target)) ++ bch2_rebalance_add_work(c, inode->v.i_blocks); ++ ++ return ret; ++} ++ ++static const struct xattr_handler bch_xattr_bcachefs_handler = { ++ .prefix = "bcachefs.", ++ .get = bch2_xattr_bcachefs_get, ++ .set = bch2_xattr_bcachefs_set, ++}; ++ ++static int bch2_xattr_bcachefs_get_effective( ++ const struct xattr_handler *handler, ++ struct dentry *dentry, struct inode *vinode, ++ const char *name, void *buffer, size_t size) ++{ ++ return __bch2_xattr_bcachefs_get(handler, dentry, vinode, ++ name, buffer, size, true); ++} ++ ++static const struct xattr_handler bch_xattr_bcachefs_effective_handler = { ++ .prefix = "bcachefs_effective.", ++ .get = bch2_xattr_bcachefs_get_effective, ++ .set = bch2_xattr_bcachefs_set, ++}; ++ ++#endif /* NO_BCACHEFS_FS */ ++ ++const struct xattr_handler *bch2_xattr_handlers[] = { ++ &bch_xattr_user_handler, ++ &posix_acl_access_xattr_handler, ++ &posix_acl_default_xattr_handler, ++ &bch_xattr_trusted_handler, ++ &bch_xattr_security_handler, ++#ifndef NO_BCACHEFS_FS ++ &bch_xattr_bcachefs_handler, ++ &bch_xattr_bcachefs_effective_handler, ++#endif ++ NULL ++}; ++ ++static const struct xattr_handler *bch_xattr_handler_map[] = { ++ [KEY_TYPE_XATTR_INDEX_USER] = &bch_xattr_user_handler, ++ [KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS] = ++ &posix_acl_access_xattr_handler, ++ [KEY_TYPE_XATTR_INDEX_POSIX_ACL_DEFAULT] = ++ &posix_acl_default_xattr_handler, ++ [KEY_TYPE_XATTR_INDEX_TRUSTED] = &bch_xattr_trusted_handler, ++ [KEY_TYPE_XATTR_INDEX_SECURITY] = &bch_xattr_security_handler, ++}; ++ ++static const struct xattr_handler *bch2_xattr_type_to_handler(unsigned type) ++{ ++ return type < ARRAY_SIZE(bch_xattr_handler_map) ++ ? bch_xattr_handler_map[type] ++ : NULL; ++} +diff --git a/fs/bcachefs/xattr.h b/fs/bcachefs/xattr.h +new file mode 100644 +index 000000000000..4151065ab853 +--- /dev/null ++++ b/fs/bcachefs/xattr.h +@@ -0,0 +1,49 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_XATTR_H ++#define _BCACHEFS_XATTR_H ++ ++#include "str_hash.h" ++ ++extern const struct bch_hash_desc bch2_xattr_hash_desc; ++ ++const char *bch2_xattr_invalid(const struct bch_fs *, struct bkey_s_c); ++void bch2_xattr_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++ ++#define bch2_bkey_ops_xattr (struct bkey_ops) { \ ++ .key_invalid = bch2_xattr_invalid, \ ++ .val_to_text = bch2_xattr_to_text, \ ++} ++ ++static inline unsigned xattr_val_u64s(unsigned name_len, unsigned val_len) ++{ ++ return DIV_ROUND_UP(offsetof(struct bch_xattr, x_name) + ++ name_len + val_len, sizeof(u64)); ++} ++ ++#define xattr_val(_xattr) \ ++ ((void *) (_xattr)->x_name + (_xattr)->x_name_len) ++ ++struct xattr_search_key { ++ u8 type; ++ struct qstr name; ++}; ++ ++#define X_SEARCH(_type, _name, _len) ((struct xattr_search_key) \ ++ { .type = _type, .name = QSTR_INIT(_name, _len) }) ++ ++struct dentry; ++struct xattr_handler; ++struct bch_hash_info; ++struct bch_inode_info; ++ ++int bch2_xattr_get(struct bch_fs *, struct bch_inode_info *, ++ const char *, void *, size_t, int); ++ ++int bch2_xattr_set(struct btree_trans *, u64, const struct bch_hash_info *, ++ const char *, const void *, size_t, int, int); ++ ++ssize_t bch2_xattr_list(struct dentry *, char *, size_t); ++ ++extern const struct xattr_handler *bch2_xattr_handlers[]; ++ ++#endif /* _BCACHEFS_XATTR_H */ +diff --git a/fs/cifs/file.c b/fs/cifs/file.c +index be46fab4c96d..a17a21181e18 100644 +--- a/fs/cifs/file.c ++++ b/fs/cifs/file.c +@@ -4296,20 +4296,12 @@ readpages_get_pages(struct address_space *mapping, struct list_head *page_list, + + page = lru_to_page(page_list); + +- /* +- * Lock the page and put it in the cache. Since no one else +- * should have access to this page, we're safe to simply set +- * PG_locked without checking it first. +- */ +- __SetPageLocked(page); +- rc = add_to_page_cache_locked(page, mapping, +- page->index, gfp); ++ rc = add_to_page_cache(page, mapping, ++ page->index, gfp); + + /* give up if we can't stick it in the cache */ +- if (rc) { +- __ClearPageLocked(page); ++ if (rc) + return rc; +- } + + /* move first page to the tmplist */ + *offset = (loff_t)page->index << PAGE_SHIFT; +@@ -4328,12 +4320,9 @@ readpages_get_pages(struct address_space *mapping, struct list_head *page_list, + if (*bytes + PAGE_SIZE > rsize) + break; + +- __SetPageLocked(page); +- rc = add_to_page_cache_locked(page, mapping, page->index, gfp); +- if (rc) { +- __ClearPageLocked(page); ++ rc = add_to_page_cache(page, mapping, page->index, gfp); ++ if (rc) + break; +- } + list_move_tail(&page->lru, tmplist); + (*bytes) += PAGE_SIZE; + expected_index++; +diff --git a/fs/dcache.c b/fs/dcache.c +index ea0485861d93..b4d6e3e86285 100644 +--- a/fs/dcache.c ++++ b/fs/dcache.c +@@ -3132,9 +3132,8 @@ void d_genocide(struct dentry *parent) + + EXPORT_SYMBOL(d_genocide); + +-void d_tmpfile(struct dentry *dentry, struct inode *inode) ++void d_mark_tmpfile(struct dentry *dentry, struct inode *inode) + { +- inode_dec_link_count(inode); + BUG_ON(dentry->d_name.name != dentry->d_iname || + !hlist_unhashed(&dentry->d_u.d_alias) || + !d_unlinked(dentry)); +@@ -3144,6 +3143,13 @@ void d_tmpfile(struct dentry *dentry, struct inode *inode) + (unsigned long long)inode->i_ino); + spin_unlock(&dentry->d_lock); + spin_unlock(&dentry->d_parent->d_lock); ++} ++EXPORT_SYMBOL(d_mark_tmpfile); ++ ++void d_tmpfile(struct dentry *dentry, struct inode *inode) ++{ ++ inode_dec_link_count(inode); ++ d_mark_tmpfile(dentry, inode); + d_instantiate(dentry, inode); + } + EXPORT_SYMBOL(d_tmpfile); +diff --git a/fs/inode.c b/fs/inode.c +index 72c4c347afb7..e70ad3d2d01c 100644 +--- a/fs/inode.c ++++ b/fs/inode.c +@@ -1578,6 +1578,46 @@ int insert_inode_locked(struct inode *inode) + } + EXPORT_SYMBOL(insert_inode_locked); + ++struct inode *insert_inode_locked2(struct inode *inode) ++{ ++ struct super_block *sb = inode->i_sb; ++ ino_t ino = inode->i_ino; ++ struct hlist_head *head = inode_hashtable + hash(sb, ino); ++ ++ while (1) { ++ struct inode *old = NULL; ++ spin_lock(&inode_hash_lock); ++ hlist_for_each_entry(old, head, i_hash) { ++ if (old->i_ino != ino) ++ continue; ++ if (old->i_sb != sb) ++ continue; ++ spin_lock(&old->i_lock); ++ if (old->i_state & (I_FREEING|I_WILL_FREE)) { ++ spin_unlock(&old->i_lock); ++ continue; ++ } ++ break; ++ } ++ if (likely(!old)) { ++ spin_lock(&inode->i_lock); ++ inode->i_state |= I_NEW | I_CREATING; ++ hlist_add_head(&inode->i_hash, head); ++ spin_unlock(&inode->i_lock); ++ spin_unlock(&inode_hash_lock); ++ return NULL; ++ } ++ __iget(old); ++ spin_unlock(&old->i_lock); ++ spin_unlock(&inode_hash_lock); ++ wait_on_inode(old); ++ if (unlikely(!inode_unhashed(old))) ++ return old; ++ iput(old); ++ } ++} ++EXPORT_SYMBOL(insert_inode_locked2); ++ + int insert_inode_locked4(struct inode *inode, unsigned long hashval, + int (*test)(struct inode *, void *), void *data) + { +diff --git a/include/linux/blkdev.h b/include/linux/blkdev.h +index 868e11face00..d9e3b7b0175e 100644 +--- a/include/linux/blkdev.h ++++ b/include/linux/blkdev.h +@@ -936,6 +936,7 @@ extern const char *blk_op_str(unsigned int op); + + int blk_status_to_errno(blk_status_t status); + blk_status_t errno_to_blk_status(int errno); ++const char *blk_status_to_str(blk_status_t status); + + int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); + +diff --git a/include/linux/closure.h b/include/linux/closure.h +new file mode 100644 +index 000000000000..36b4a83f9b77 +--- /dev/null ++++ b/include/linux/closure.h +@@ -0,0 +1,399 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _LINUX_CLOSURE_H ++#define _LINUX_CLOSURE_H ++ ++#include ++#include ++#include ++#include ++ ++/* ++ * Closure is perhaps the most overused and abused term in computer science, but ++ * since I've been unable to come up with anything better you're stuck with it ++ * again. ++ * ++ * What are closures? ++ * ++ * They embed a refcount. The basic idea is they count "things that are in ++ * progress" - in flight bios, some other thread that's doing something else - ++ * anything you might want to wait on. ++ * ++ * The refcount may be manipulated with closure_get() and closure_put(). ++ * closure_put() is where many of the interesting things happen, when it causes ++ * the refcount to go to 0. ++ * ++ * Closures can be used to wait on things both synchronously and asynchronously, ++ * and synchronous and asynchronous use can be mixed without restriction. To ++ * wait synchronously, use closure_sync() - you will sleep until your closure's ++ * refcount hits 1. ++ * ++ * To wait asynchronously, use ++ * continue_at(cl, next_function, workqueue); ++ * ++ * passing it, as you might expect, the function to run when nothing is pending ++ * and the workqueue to run that function out of. ++ * ++ * continue_at() also, critically, requires a 'return' immediately following the ++ * location where this macro is referenced, to return to the calling function. ++ * There's good reason for this. ++ * ++ * To use safely closures asynchronously, they must always have a refcount while ++ * they are running owned by the thread that is running them. Otherwise, suppose ++ * you submit some bios and wish to have a function run when they all complete: ++ * ++ * foo_endio(struct bio *bio) ++ * { ++ * closure_put(cl); ++ * } ++ * ++ * closure_init(cl); ++ * ++ * do_stuff(); ++ * closure_get(cl); ++ * bio1->bi_endio = foo_endio; ++ * bio_submit(bio1); ++ * ++ * do_more_stuff(); ++ * closure_get(cl); ++ * bio2->bi_endio = foo_endio; ++ * bio_submit(bio2); ++ * ++ * continue_at(cl, complete_some_read, system_wq); ++ * ++ * If closure's refcount started at 0, complete_some_read() could run before the ++ * second bio was submitted - which is almost always not what you want! More ++ * importantly, it wouldn't be possible to say whether the original thread or ++ * complete_some_read()'s thread owned the closure - and whatever state it was ++ * associated with! ++ * ++ * So, closure_init() initializes a closure's refcount to 1 - and when a ++ * closure_fn is run, the refcount will be reset to 1 first. ++ * ++ * Then, the rule is - if you got the refcount with closure_get(), release it ++ * with closure_put() (i.e, in a bio->bi_endio function). If you have a refcount ++ * on a closure because you called closure_init() or you were run out of a ++ * closure - _always_ use continue_at(). Doing so consistently will help ++ * eliminate an entire class of particularly pernicious races. ++ * ++ * Lastly, you might have a wait list dedicated to a specific event, and have no ++ * need for specifying the condition - you just want to wait until someone runs ++ * closure_wake_up() on the appropriate wait list. In that case, just use ++ * closure_wait(). It will return either true or false, depending on whether the ++ * closure was already on a wait list or not - a closure can only be on one wait ++ * list at a time. ++ * ++ * Parents: ++ * ++ * closure_init() takes two arguments - it takes the closure to initialize, and ++ * a (possibly null) parent. ++ * ++ * If parent is non null, the new closure will have a refcount for its lifetime; ++ * a closure is considered to be "finished" when its refcount hits 0 and the ++ * function to run is null. Hence ++ * ++ * continue_at(cl, NULL, NULL); ++ * ++ * returns up the (spaghetti) stack of closures, precisely like normal return ++ * returns up the C stack. continue_at() with non null fn is better thought of ++ * as doing a tail call. ++ * ++ * All this implies that a closure should typically be embedded in a particular ++ * struct (which its refcount will normally control the lifetime of), and that ++ * struct can very much be thought of as a stack frame. ++ */ ++ ++struct closure; ++struct closure_syncer; ++typedef void (closure_fn) (struct closure *); ++extern struct dentry *bcache_debug; ++ ++struct closure_waitlist { ++ struct llist_head list; ++}; ++ ++enum closure_state { ++ /* ++ * CLOSURE_WAITING: Set iff the closure is on a waitlist. Must be set by ++ * the thread that owns the closure, and cleared by the thread that's ++ * waking up the closure. ++ * ++ * The rest are for debugging and don't affect behaviour: ++ * ++ * CLOSURE_RUNNING: Set when a closure is running (i.e. by ++ * closure_init() and when closure_put() runs then next function), and ++ * must be cleared before remaining hits 0. Primarily to help guard ++ * against incorrect usage and accidentally transferring references. ++ * continue_at() and closure_return() clear it for you, if you're doing ++ * something unusual you can use closure_set_dead() which also helps ++ * annotate where references are being transferred. ++ */ ++ ++ CLOSURE_BITS_START = (1U << 26), ++ CLOSURE_DESTRUCTOR = (1U << 26), ++ CLOSURE_WAITING = (1U << 28), ++ CLOSURE_RUNNING = (1U << 30), ++}; ++ ++#define CLOSURE_GUARD_MASK \ ++ ((CLOSURE_DESTRUCTOR|CLOSURE_WAITING|CLOSURE_RUNNING) << 1) ++ ++#define CLOSURE_REMAINING_MASK (CLOSURE_BITS_START - 1) ++#define CLOSURE_REMAINING_INITIALIZER (1|CLOSURE_RUNNING) ++ ++struct closure { ++ union { ++ struct { ++ struct workqueue_struct *wq; ++ struct closure_syncer *s; ++ struct llist_node list; ++ closure_fn *fn; ++ }; ++ struct work_struct work; ++ }; ++ ++ struct closure *parent; ++ ++ atomic_t remaining; ++ ++#ifdef CONFIG_DEBUG_CLOSURES ++#define CLOSURE_MAGIC_DEAD 0xc054dead ++#define CLOSURE_MAGIC_ALIVE 0xc054a11e ++ ++ unsigned int magic; ++ struct list_head all; ++ unsigned long ip; ++ unsigned long waiting_on; ++#endif ++}; ++ ++void closure_sub(struct closure *cl, int v); ++void closure_put(struct closure *cl); ++void __closure_wake_up(struct closure_waitlist *list); ++bool closure_wait(struct closure_waitlist *list, struct closure *cl); ++void __closure_sync(struct closure *cl); ++ ++/** ++ * closure_sync - sleep until a closure a closure has nothing left to wait on ++ * ++ * Sleeps until the refcount hits 1 - the thread that's running the closure owns ++ * the last refcount. ++ */ ++static inline void closure_sync(struct closure *cl) ++{ ++ if ((atomic_read(&cl->remaining) & CLOSURE_REMAINING_MASK) != 1) ++ __closure_sync(cl); ++} ++ ++#ifdef CONFIG_DEBUG_CLOSURES ++ ++void closure_debug_create(struct closure *cl); ++void closure_debug_destroy(struct closure *cl); ++ ++#else ++ ++static inline void closure_debug_create(struct closure *cl) {} ++static inline void closure_debug_destroy(struct closure *cl) {} ++ ++#endif ++ ++static inline void closure_set_ip(struct closure *cl) ++{ ++#ifdef CONFIG_DEBUG_CLOSURES ++ cl->ip = _THIS_IP_; ++#endif ++} ++ ++static inline void closure_set_ret_ip(struct closure *cl) ++{ ++#ifdef CONFIG_DEBUG_CLOSURES ++ cl->ip = _RET_IP_; ++#endif ++} ++ ++static inline void closure_set_waiting(struct closure *cl, unsigned long f) ++{ ++#ifdef CONFIG_DEBUG_CLOSURES ++ cl->waiting_on = f; ++#endif ++} ++ ++static inline void closure_set_stopped(struct closure *cl) ++{ ++ atomic_sub(CLOSURE_RUNNING, &cl->remaining); ++} ++ ++static inline void set_closure_fn(struct closure *cl, closure_fn *fn, ++ struct workqueue_struct *wq) ++{ ++ closure_set_ip(cl); ++ cl->fn = fn; ++ cl->wq = wq; ++ /* between atomic_dec() in closure_put() */ ++ smp_mb__before_atomic(); ++} ++ ++static inline void closure_queue(struct closure *cl) ++{ ++ struct workqueue_struct *wq = cl->wq; ++ /** ++ * Changes made to closure, work_struct, or a couple of other structs ++ * may cause work.func not pointing to the right location. ++ */ ++ BUILD_BUG_ON(offsetof(struct closure, fn) ++ != offsetof(struct work_struct, func)); ++ ++ if (wq) { ++ INIT_WORK(&cl->work, cl->work.func); ++ BUG_ON(!queue_work(wq, &cl->work)); ++ } else ++ cl->fn(cl); ++} ++ ++/** ++ * closure_get - increment a closure's refcount ++ */ ++static inline void closure_get(struct closure *cl) ++{ ++#ifdef CONFIG_DEBUG_CLOSURES ++ BUG_ON((atomic_inc_return(&cl->remaining) & ++ CLOSURE_REMAINING_MASK) <= 1); ++#else ++ atomic_inc(&cl->remaining); ++#endif ++} ++ ++/** ++ * closure_init - Initialize a closure, setting the refcount to 1 ++ * @cl: closure to initialize ++ * @parent: parent of the new closure. cl will take a refcount on it for its ++ * lifetime; may be NULL. ++ */ ++static inline void closure_init(struct closure *cl, struct closure *parent) ++{ ++ cl->fn = NULL; ++ cl->parent = parent; ++ if (parent) ++ closure_get(parent); ++ ++ atomic_set(&cl->remaining, CLOSURE_REMAINING_INITIALIZER); ++ ++ closure_debug_create(cl); ++ closure_set_ip(cl); ++} ++ ++static inline void closure_init_stack(struct closure *cl) ++{ ++ memset(cl, 0, sizeof(struct closure)); ++ atomic_set(&cl->remaining, CLOSURE_REMAINING_INITIALIZER); ++} ++ ++/** ++ * closure_wake_up - wake up all closures on a wait list, ++ * with memory barrier ++ */ ++static inline void closure_wake_up(struct closure_waitlist *list) ++{ ++ /* Memory barrier for the wait list */ ++ smp_mb(); ++ __closure_wake_up(list); ++} ++ ++/** ++ * continue_at - jump to another function with barrier ++ * ++ * After @cl is no longer waiting on anything (i.e. all outstanding refs have ++ * been dropped with closure_put()), it will resume execution at @fn running out ++ * of @wq (or, if @wq is NULL, @fn will be called by closure_put() directly). ++ * ++ * This is because after calling continue_at() you no longer have a ref on @cl, ++ * and whatever @cl owns may be freed out from under you - a running closure fn ++ * has a ref on its own closure which continue_at() drops. ++ * ++ * Note you are expected to immediately return after using this macro. ++ */ ++#define continue_at(_cl, _fn, _wq) \ ++do { \ ++ set_closure_fn(_cl, _fn, _wq); \ ++ closure_sub(_cl, CLOSURE_RUNNING + 1); \ ++} while (0) ++ ++/** ++ * closure_return - finish execution of a closure ++ * ++ * This is used to indicate that @cl is finished: when all outstanding refs on ++ * @cl have been dropped @cl's ref on its parent closure (as passed to ++ * closure_init()) will be dropped, if one was specified - thus this can be ++ * thought of as returning to the parent closure. ++ */ ++#define closure_return(_cl) continue_at((_cl), NULL, NULL) ++ ++/** ++ * continue_at_nobarrier - jump to another function without barrier ++ * ++ * Causes @fn to be executed out of @cl, in @wq context (or called directly if ++ * @wq is NULL). ++ * ++ * The ref the caller of continue_at_nobarrier() had on @cl is now owned by @fn, ++ * thus it's not safe to touch anything protected by @cl after a ++ * continue_at_nobarrier(). ++ */ ++#define continue_at_nobarrier(_cl, _fn, _wq) \ ++do { \ ++ set_closure_fn(_cl, _fn, _wq); \ ++ closure_queue(_cl); \ ++} while (0) ++ ++/** ++ * closure_return_with_destructor - finish execution of a closure, ++ * with destructor ++ * ++ * Works like closure_return(), except @destructor will be called when all ++ * outstanding refs on @cl have been dropped; @destructor may be used to safely ++ * free the memory occupied by @cl, and it is called with the ref on the parent ++ * closure still held - so @destructor could safely return an item to a ++ * freelist protected by @cl's parent. ++ */ ++#define closure_return_with_destructor(_cl, _destructor) \ ++do { \ ++ set_closure_fn(_cl, _destructor, NULL); \ ++ closure_sub(_cl, CLOSURE_RUNNING - CLOSURE_DESTRUCTOR + 1); \ ++} while (0) ++ ++/** ++ * closure_call - execute @fn out of a new, uninitialized closure ++ * ++ * Typically used when running out of one closure, and we want to run @fn ++ * asynchronously out of a new closure - @parent will then wait for @cl to ++ * finish. ++ */ ++static inline void closure_call(struct closure *cl, closure_fn fn, ++ struct workqueue_struct *wq, ++ struct closure *parent) ++{ ++ closure_init(cl, parent); ++ continue_at_nobarrier(cl, fn, wq); ++} ++ ++#define __closure_wait_event(waitlist, _cond) \ ++do { \ ++ struct closure cl; \ ++ \ ++ closure_init_stack(&cl); \ ++ \ ++ while (1) { \ ++ closure_wait(waitlist, &cl); \ ++ if (_cond) \ ++ break; \ ++ closure_sync(&cl); \ ++ } \ ++ closure_wake_up(waitlist); \ ++ closure_sync(&cl); \ ++} while (0) ++ ++#define closure_wait_event(waitlist, _cond) \ ++do { \ ++ if (!(_cond)) \ ++ __closure_wait_event(waitlist, _cond); \ ++} while (0) ++ ++#endif /* _LINUX_CLOSURE_H */ +diff --git a/include/linux/compiler_attributes.h b/include/linux/compiler_attributes.h +index ea7b756b1c8f..51658b72de72 100644 +--- a/include/linux/compiler_attributes.h ++++ b/include/linux/compiler_attributes.h +@@ -278,4 +278,9 @@ + */ + #define __weak __attribute__((__weak__)) + ++/* ++ * gcc: https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-flatten-function-attribute ++ */ ++#define __flatten __attribute__((flatten)) ++ + #endif /* __LINUX_COMPILER_ATTRIBUTES_H */ +diff --git a/include/linux/dcache.h b/include/linux/dcache.h +index 65d975bf9390..008573618071 100644 +--- a/include/linux/dcache.h ++++ b/include/linux/dcache.h +@@ -256,6 +256,7 @@ extern struct dentry * d_make_root(struct inode *); + /* - the ramfs-type tree */ + extern void d_genocide(struct dentry *); + ++extern void d_mark_tmpfile(struct dentry *, struct inode *); + extern void d_tmpfile(struct dentry *, struct inode *); + + extern struct dentry *d_find_alias(struct inode *); +diff --git a/include/linux/fs.h b/include/linux/fs.h +index 7519ae003a08..305d316f01f3 100644 +--- a/include/linux/fs.h ++++ b/include/linux/fs.h +@@ -2953,6 +2953,7 @@ extern struct inode *find_inode_rcu(struct super_block *, unsigned long, + extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); + extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); + extern int insert_inode_locked(struct inode *); ++extern struct inode *insert_inode_locked2(struct inode *); + #ifdef CONFIG_DEBUG_LOCK_ALLOC + extern void lockdep_annotate_inode_mutex_key(struct inode *inode); + #else +diff --git a/include/linux/pagemap.h b/include/linux/pagemap.h +index 434c9c34aeb6..620535006624 100644 +--- a/include/linux/pagemap.h ++++ b/include/linux/pagemap.h +@@ -689,10 +689,15 @@ static inline int fault_in_pages_readable(const char __user *uaddr, int size) + return 0; + } + +-int add_to_page_cache_locked(struct page *page, struct address_space *mapping, +- pgoff_t index, gfp_t gfp_mask); ++int add_to_page_cache(struct page *page, struct address_space *mapping, ++ pgoff_t index, gfp_t gfp_mask); + int add_to_page_cache_lru(struct page *page, struct address_space *mapping, + pgoff_t index, gfp_t gfp_mask); ++int add_to_page_cache_lru_vec(struct address_space *mapping, ++ struct page **pages, ++ unsigned nr_pages, ++ pgoff_t offset, gfp_t gfp_mask); ++ + extern void delete_from_page_cache(struct page *page); + extern void __delete_from_page_cache(struct page *page, void *shadow); + int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); +@@ -710,22 +715,6 @@ void page_cache_readahead_unbounded(struct address_space *, struct file *, + pgoff_t index, unsigned long nr_to_read, + unsigned long lookahead_count); + +-/* +- * Like add_to_page_cache_locked, but used to add newly allocated pages: +- * the page is new, so we can just run __SetPageLocked() against it. +- */ +-static inline int add_to_page_cache(struct page *page, +- struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) +-{ +- int error; +- +- __SetPageLocked(page); +- error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); +- if (unlikely(error)) +- __ClearPageLocked(page); +- return error; +-} +- + /** + * struct readahead_control - Describes a readahead request. + * +diff --git a/include/linux/sched.h b/include/linux/sched.h +index afe01e232935..793b07788062 100644 +--- a/include/linux/sched.h ++++ b/include/linux/sched.h +@@ -747,6 +747,7 @@ struct task_struct { + + struct mm_struct *mm; + struct mm_struct *active_mm; ++ struct address_space *faults_disabled_mapping; + + /* Per-thread vma caching: */ + struct vmacache vmacache; +diff --git a/include/linux/six.h b/include/linux/six.h +new file mode 100644 +index 000000000000..a16e94f482e9 +--- /dev/null ++++ b/include/linux/six.h +@@ -0,0 +1,197 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++ ++#ifndef _LINUX_SIX_H ++#define _LINUX_SIX_H ++ ++/* ++ * Shared/intent/exclusive locks: sleepable read/write locks, much like rw ++ * semaphores, except with a third intermediate state, intent. Basic operations ++ * are: ++ * ++ * six_lock_read(&foo->lock); ++ * six_unlock_read(&foo->lock); ++ * ++ * six_lock_intent(&foo->lock); ++ * six_unlock_intent(&foo->lock); ++ * ++ * six_lock_write(&foo->lock); ++ * six_unlock_write(&foo->lock); ++ * ++ * Intent locks block other intent locks, but do not block read locks, and you ++ * must have an intent lock held before taking a write lock, like so: ++ * ++ * six_lock_intent(&foo->lock); ++ * six_lock_write(&foo->lock); ++ * six_unlock_write(&foo->lock); ++ * six_unlock_intent(&foo->lock); ++ * ++ * Other operations: ++ * ++ * six_trylock_read() ++ * six_trylock_intent() ++ * six_trylock_write() ++ * ++ * six_lock_downgrade(): convert from intent to read ++ * six_lock_tryupgrade(): attempt to convert from read to intent ++ * ++ * Locks also embed a sequence number, which is incremented when the lock is ++ * locked or unlocked for write. The current sequence number can be grabbed ++ * while a lock is held from lock->state.seq; then, if you drop the lock you can ++ * use six_relock_(read|intent_write)(lock, seq) to attempt to retake the lock ++ * iff it hasn't been locked for write in the meantime. ++ * ++ * There are also operations that take the lock type as a parameter, where the ++ * type is one of SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write: ++ * ++ * six_lock_type(lock, type) ++ * six_unlock_type(lock, type) ++ * six_relock(lock, type, seq) ++ * six_trylock_type(lock, type) ++ * six_trylock_convert(lock, from, to) ++ * ++ * A lock may be held multiple types by the same thread (for read or intent, ++ * not write). However, the six locks code does _not_ implement the actual ++ * recursive checks itself though - rather, if your code (e.g. btree iterator ++ * code) knows that the current thread already has a lock held, and for the ++ * correct type, six_lock_increment() may be used to bump up the counter for ++ * that type - the only effect is that one more call to unlock will be required ++ * before the lock is unlocked. ++ */ ++ ++#include ++#include ++#include ++#include ++ ++#define SIX_LOCK_SEPARATE_LOCKFNS ++ ++union six_lock_state { ++ struct { ++ atomic64_t counter; ++ }; ++ ++ struct { ++ u64 v; ++ }; ++ ++ struct { ++ /* for waitlist_bitnr() */ ++ unsigned long l; ++ }; ++ ++ struct { ++ unsigned read_lock:28; ++ unsigned intent_lock:1; ++ unsigned waiters:3; ++ /* ++ * seq works much like in seqlocks: it's incremented every time ++ * we lock and unlock for write. ++ * ++ * If it's odd write lock is held, even unlocked. ++ * ++ * Thus readers can unlock, and then lock again later iff it ++ * hasn't been modified in the meantime. ++ */ ++ u32 seq; ++ }; ++}; ++ ++enum six_lock_type { ++ SIX_LOCK_read, ++ SIX_LOCK_intent, ++ SIX_LOCK_write, ++}; ++ ++struct six_lock { ++ union six_lock_state state; ++ unsigned intent_lock_recurse; ++ struct task_struct *owner; ++ struct optimistic_spin_queue osq; ++ ++ raw_spinlock_t wait_lock; ++ struct list_head wait_list[2]; ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++ struct lockdep_map dep_map; ++#endif ++}; ++ ++typedef int (*six_lock_should_sleep_fn)(struct six_lock *lock, void *); ++ ++static __always_inline void __six_lock_init(struct six_lock *lock, ++ const char *name, ++ struct lock_class_key *key) ++{ ++ atomic64_set(&lock->state.counter, 0); ++ raw_spin_lock_init(&lock->wait_lock); ++ INIT_LIST_HEAD(&lock->wait_list[SIX_LOCK_read]); ++ INIT_LIST_HEAD(&lock->wait_list[SIX_LOCK_intent]); ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++ debug_check_no_locks_freed((void *) lock, sizeof(*lock)); ++ lockdep_init_map(&lock->dep_map, name, key, 0); ++#endif ++} ++ ++#define six_lock_init(lock) \ ++do { \ ++ static struct lock_class_key __key; \ ++ \ ++ __six_lock_init((lock), #lock, &__key); \ ++} while (0) ++ ++#define __SIX_VAL(field, _v) (((union six_lock_state) { .field = _v }).v) ++ ++#define __SIX_LOCK(type) \ ++bool six_trylock_##type(struct six_lock *); \ ++bool six_relock_##type(struct six_lock *, u32); \ ++int six_lock_##type(struct six_lock *, six_lock_should_sleep_fn, void *);\ ++void six_unlock_##type(struct six_lock *); ++ ++__SIX_LOCK(read) ++__SIX_LOCK(intent) ++__SIX_LOCK(write) ++#undef __SIX_LOCK ++ ++#define SIX_LOCK_DISPATCH(type, fn, ...) \ ++ switch (type) { \ ++ case SIX_LOCK_read: \ ++ return fn##_read(__VA_ARGS__); \ ++ case SIX_LOCK_intent: \ ++ return fn##_intent(__VA_ARGS__); \ ++ case SIX_LOCK_write: \ ++ return fn##_write(__VA_ARGS__); \ ++ default: \ ++ BUG(); \ ++ } ++ ++static inline bool six_trylock_type(struct six_lock *lock, enum six_lock_type type) ++{ ++ SIX_LOCK_DISPATCH(type, six_trylock, lock); ++} ++ ++static inline bool six_relock_type(struct six_lock *lock, enum six_lock_type type, ++ unsigned seq) ++{ ++ SIX_LOCK_DISPATCH(type, six_relock, lock, seq); ++} ++ ++static inline int six_lock_type(struct six_lock *lock, enum six_lock_type type, ++ six_lock_should_sleep_fn should_sleep_fn, void *p) ++{ ++ SIX_LOCK_DISPATCH(type, six_lock, lock, should_sleep_fn, p); ++} ++ ++static inline void six_unlock_type(struct six_lock *lock, enum six_lock_type type) ++{ ++ SIX_LOCK_DISPATCH(type, six_unlock, lock); ++} ++ ++void six_lock_downgrade(struct six_lock *); ++bool six_lock_tryupgrade(struct six_lock *); ++bool six_trylock_convert(struct six_lock *, enum six_lock_type, ++ enum six_lock_type); ++ ++void six_lock_increment(struct six_lock *, enum six_lock_type); ++ ++void six_lock_wakeup_all(struct six_lock *); ++ ++#endif /* _LINUX_SIX_H */ +diff --git a/include/linux/vmalloc.h b/include/linux/vmalloc.h +index 0221f852a7e1..f81f60d891ac 100644 +--- a/include/linux/vmalloc.h ++++ b/include/linux/vmalloc.h +@@ -106,6 +106,7 @@ extern void *vzalloc(unsigned long size); + extern void *vmalloc_user(unsigned long size); + extern void *vmalloc_node(unsigned long size, int node); + extern void *vzalloc_node(unsigned long size, int node); ++extern void *vmalloc_exec(unsigned long size, gfp_t gfp_mask); + extern void *vmalloc_32(unsigned long size); + extern void *vmalloc_32_user(unsigned long size); + extern void *__vmalloc(unsigned long size, gfp_t gfp_mask); +diff --git a/include/trace/events/bcachefs.h b/include/trace/events/bcachefs.h +new file mode 100644 +index 000000000000..9b4e8295ed75 +--- /dev/null ++++ b/include/trace/events/bcachefs.h +@@ -0,0 +1,664 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#undef TRACE_SYSTEM ++#define TRACE_SYSTEM bcachefs ++ ++#if !defined(_TRACE_BCACHE_H) || defined(TRACE_HEADER_MULTI_READ) ++#define _TRACE_BCACHE_H ++ ++#include ++ ++DECLARE_EVENT_CLASS(bpos, ++ TP_PROTO(struct bpos *p), ++ TP_ARGS(p), ++ ++ TP_STRUCT__entry( ++ __field(u64, inode ) ++ __field(u64, offset ) ++ ), ++ ++ TP_fast_assign( ++ __entry->inode = p->inode; ++ __entry->offset = p->offset; ++ ), ++ ++ TP_printk("%llu:%llu", __entry->inode, __entry->offset) ++); ++ ++DECLARE_EVENT_CLASS(bkey, ++ TP_PROTO(const struct bkey *k), ++ TP_ARGS(k), ++ ++ TP_STRUCT__entry( ++ __field(u64, inode ) ++ __field(u64, offset ) ++ __field(u32, size ) ++ ), ++ ++ TP_fast_assign( ++ __entry->inode = k->p.inode; ++ __entry->offset = k->p.offset; ++ __entry->size = k->size; ++ ), ++ ++ TP_printk("%llu:%llu len %u", __entry->inode, ++ __entry->offset, __entry->size) ++); ++ ++DECLARE_EVENT_CLASS(bch_fs, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c), ++ ++ TP_STRUCT__entry( ++ __array(char, uuid, 16 ) ++ ), ++ ++ TP_fast_assign( ++ memcpy(__entry->uuid, c->sb.user_uuid.b, 16); ++ ), ++ ++ TP_printk("%pU", __entry->uuid) ++); ++ ++DECLARE_EVENT_CLASS(bio, ++ TP_PROTO(struct bio *bio), ++ TP_ARGS(bio), ++ ++ TP_STRUCT__entry( ++ __field(dev_t, dev ) ++ __field(sector_t, sector ) ++ __field(unsigned int, nr_sector ) ++ __array(char, rwbs, 6 ) ++ ), ++ ++ TP_fast_assign( ++ __entry->dev = bio->bi_disk ? bio_dev(bio) : 0; ++ __entry->sector = bio->bi_iter.bi_sector; ++ __entry->nr_sector = bio->bi_iter.bi_size >> 9; ++ blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); ++ ), ++ ++ TP_printk("%d,%d %s %llu + %u", ++ MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, ++ (unsigned long long)__entry->sector, __entry->nr_sector) ++); ++ ++/* io.c: */ ++ ++DEFINE_EVENT(bio, read_split, ++ TP_PROTO(struct bio *bio), ++ TP_ARGS(bio) ++); ++ ++DEFINE_EVENT(bio, read_bounce, ++ TP_PROTO(struct bio *bio), ++ TP_ARGS(bio) ++); ++ ++DEFINE_EVENT(bio, read_retry, ++ TP_PROTO(struct bio *bio), ++ TP_ARGS(bio) ++); ++ ++DEFINE_EVENT(bio, promote, ++ TP_PROTO(struct bio *bio), ++ TP_ARGS(bio) ++); ++ ++/* Journal */ ++ ++DEFINE_EVENT(bch_fs, journal_full, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++DEFINE_EVENT(bch_fs, journal_entry_full, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++DEFINE_EVENT(bio, journal_write, ++ TP_PROTO(struct bio *bio), ++ TP_ARGS(bio) ++); ++ ++/* bset.c: */ ++ ++DEFINE_EVENT(bpos, bkey_pack_pos_fail, ++ TP_PROTO(struct bpos *p), ++ TP_ARGS(p) ++); ++ ++/* Btree */ ++ ++DECLARE_EVENT_CLASS(btree_node, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b), ++ ++ TP_STRUCT__entry( ++ __array(char, uuid, 16 ) ++ __field(u8, level ) ++ __field(u8, id ) ++ __field(u64, inode ) ++ __field(u64, offset ) ++ ), ++ ++ TP_fast_assign( ++ memcpy(__entry->uuid, c->sb.user_uuid.b, 16); ++ __entry->level = b->c.level; ++ __entry->id = b->c.btree_id; ++ __entry->inode = b->key.k.p.inode; ++ __entry->offset = b->key.k.p.offset; ++ ), ++ ++ TP_printk("%pU %u id %u %llu:%llu", ++ __entry->uuid, __entry->level, __entry->id, ++ __entry->inode, __entry->offset) ++); ++ ++DEFINE_EVENT(btree_node, btree_read, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++TRACE_EVENT(btree_write, ++ TP_PROTO(struct btree *b, unsigned bytes, unsigned sectors), ++ TP_ARGS(b, bytes, sectors), ++ ++ TP_STRUCT__entry( ++ __field(enum btree_node_type, type) ++ __field(unsigned, bytes ) ++ __field(unsigned, sectors ) ++ ), ++ ++ TP_fast_assign( ++ __entry->type = btree_node_type(b); ++ __entry->bytes = bytes; ++ __entry->sectors = sectors; ++ ), ++ ++ TP_printk("bkey type %u bytes %u sectors %u", ++ __entry->type , __entry->bytes, __entry->sectors) ++); ++ ++DEFINE_EVENT(btree_node, btree_node_alloc, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++DEFINE_EVENT(btree_node, btree_node_free, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++DEFINE_EVENT(btree_node, btree_node_reap, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++DECLARE_EVENT_CLASS(btree_node_cannibalize_lock, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c), ++ ++ TP_STRUCT__entry( ++ __array(char, uuid, 16 ) ++ ), ++ ++ TP_fast_assign( ++ memcpy(__entry->uuid, c->sb.user_uuid.b, 16); ++ ), ++ ++ TP_printk("%pU", __entry->uuid) ++); ++ ++DEFINE_EVENT(btree_node_cannibalize_lock, btree_node_cannibalize_lock_fail, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++DEFINE_EVENT(btree_node_cannibalize_lock, btree_node_cannibalize_lock, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++DEFINE_EVENT(btree_node_cannibalize_lock, btree_node_cannibalize, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++DEFINE_EVENT(bch_fs, btree_node_cannibalize_unlock, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++TRACE_EVENT(btree_reserve_get_fail, ++ TP_PROTO(struct bch_fs *c, size_t required, struct closure *cl), ++ TP_ARGS(c, required, cl), ++ ++ TP_STRUCT__entry( ++ __array(char, uuid, 16 ) ++ __field(size_t, required ) ++ __field(struct closure *, cl ) ++ ), ++ ++ TP_fast_assign( ++ memcpy(__entry->uuid, c->sb.user_uuid.b, 16); ++ __entry->required = required; ++ __entry->cl = cl; ++ ), ++ ++ TP_printk("%pU required %zu by %p", __entry->uuid, ++ __entry->required, __entry->cl) ++); ++ ++TRACE_EVENT(btree_insert_key, ++ TP_PROTO(struct bch_fs *c, struct btree *b, struct bkey_i *k), ++ TP_ARGS(c, b, k), ++ ++ TP_STRUCT__entry( ++ __field(u8, id ) ++ __field(u64, inode ) ++ __field(u64, offset ) ++ __field(u32, size ) ++ ), ++ ++ TP_fast_assign( ++ __entry->id = b->c.btree_id; ++ __entry->inode = k->k.p.inode; ++ __entry->offset = k->k.p.offset; ++ __entry->size = k->k.size; ++ ), ++ ++ TP_printk("btree %u: %llu:%llu len %u", __entry->id, ++ __entry->inode, __entry->offset, __entry->size) ++); ++ ++DEFINE_EVENT(btree_node, btree_split, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++DEFINE_EVENT(btree_node, btree_compact, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++DEFINE_EVENT(btree_node, btree_merge, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++DEFINE_EVENT(btree_node, btree_set_root, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++/* Garbage collection */ ++ ++DEFINE_EVENT(btree_node, btree_gc_coalesce, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++TRACE_EVENT(btree_gc_coalesce_fail, ++ TP_PROTO(struct bch_fs *c, int reason), ++ TP_ARGS(c, reason), ++ ++ TP_STRUCT__entry( ++ __field(u8, reason ) ++ __array(char, uuid, 16 ) ++ ), ++ ++ TP_fast_assign( ++ __entry->reason = reason; ++ memcpy(__entry->uuid, c->disk_sb.sb->user_uuid.b, 16); ++ ), ++ ++ TP_printk("%pU: %u", __entry->uuid, __entry->reason) ++); ++ ++DEFINE_EVENT(btree_node, btree_gc_rewrite_node, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++DEFINE_EVENT(btree_node, btree_gc_rewrite_node_fail, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++DEFINE_EVENT(bch_fs, gc_start, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++DEFINE_EVENT(bch_fs, gc_end, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++DEFINE_EVENT(bch_fs, gc_coalesce_start, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++DEFINE_EVENT(bch_fs, gc_coalesce_end, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++DEFINE_EVENT(bch_fs, gc_cannot_inc_gens, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++/* Allocator */ ++ ++TRACE_EVENT(alloc_batch, ++ TP_PROTO(struct bch_dev *ca, size_t free, size_t total), ++ TP_ARGS(ca, free, total), ++ ++ TP_STRUCT__entry( ++ __array(char, uuid, 16 ) ++ __field(size_t, free ) ++ __field(size_t, total ) ++ ), ++ ++ TP_fast_assign( ++ memcpy(__entry->uuid, ca->uuid.b, 16); ++ __entry->free = free; ++ __entry->total = total; ++ ), ++ ++ TP_printk("%pU free %zu total %zu", ++ __entry->uuid, __entry->free, __entry->total) ++); ++ ++TRACE_EVENT(invalidate, ++ TP_PROTO(struct bch_dev *ca, u64 offset, unsigned sectors), ++ TP_ARGS(ca, offset, sectors), ++ ++ TP_STRUCT__entry( ++ __field(unsigned, sectors ) ++ __field(dev_t, dev ) ++ __field(__u64, offset ) ++ ), ++ ++ TP_fast_assign( ++ __entry->dev = ca->disk_sb.bdev->bd_dev; ++ __entry->offset = offset, ++ __entry->sectors = sectors; ++ ), ++ ++ TP_printk("invalidated %u sectors at %d,%d sector=%llu", ++ __entry->sectors, MAJOR(__entry->dev), ++ MINOR(__entry->dev), __entry->offset) ++); ++ ++DEFINE_EVENT(bch_fs, rescale_prios, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++DECLARE_EVENT_CLASS(bucket_alloc, ++ TP_PROTO(struct bch_dev *ca, enum alloc_reserve reserve), ++ TP_ARGS(ca, reserve), ++ ++ TP_STRUCT__entry( ++ __array(char, uuid, 16) ++ __field(enum alloc_reserve, reserve ) ++ ), ++ ++ TP_fast_assign( ++ memcpy(__entry->uuid, ca->uuid.b, 16); ++ __entry->reserve = reserve; ++ ), ++ ++ TP_printk("%pU reserve %d", __entry->uuid, __entry->reserve) ++); ++ ++DEFINE_EVENT(bucket_alloc, bucket_alloc, ++ TP_PROTO(struct bch_dev *ca, enum alloc_reserve reserve), ++ TP_ARGS(ca, reserve) ++); ++ ++DEFINE_EVENT(bucket_alloc, bucket_alloc_fail, ++ TP_PROTO(struct bch_dev *ca, enum alloc_reserve reserve), ++ TP_ARGS(ca, reserve) ++); ++ ++DEFINE_EVENT(bucket_alloc, open_bucket_alloc_fail, ++ TP_PROTO(struct bch_dev *ca, enum alloc_reserve reserve), ++ TP_ARGS(ca, reserve) ++); ++ ++/* Moving IO */ ++ ++DEFINE_EVENT(bkey, move_extent, ++ TP_PROTO(const struct bkey *k), ++ TP_ARGS(k) ++); ++ ++DEFINE_EVENT(bkey, move_alloc_fail, ++ TP_PROTO(const struct bkey *k), ++ TP_ARGS(k) ++); ++ ++DEFINE_EVENT(bkey, move_race, ++ TP_PROTO(const struct bkey *k), ++ TP_ARGS(k) ++); ++ ++TRACE_EVENT(move_data, ++ TP_PROTO(struct bch_fs *c, u64 sectors_moved, ++ u64 keys_moved), ++ TP_ARGS(c, sectors_moved, keys_moved), ++ ++ TP_STRUCT__entry( ++ __array(char, uuid, 16 ) ++ __field(u64, sectors_moved ) ++ __field(u64, keys_moved ) ++ ), ++ ++ TP_fast_assign( ++ memcpy(__entry->uuid, c->sb.user_uuid.b, 16); ++ __entry->sectors_moved = sectors_moved; ++ __entry->keys_moved = keys_moved; ++ ), ++ ++ TP_printk("%pU sectors_moved %llu keys_moved %llu", ++ __entry->uuid, __entry->sectors_moved, __entry->keys_moved) ++); ++ ++TRACE_EVENT(copygc, ++ TP_PROTO(struct bch_fs *c, ++ u64 sectors_moved, u64 sectors_not_moved, ++ u64 buckets_moved, u64 buckets_not_moved), ++ TP_ARGS(c, ++ sectors_moved, sectors_not_moved, ++ buckets_moved, buckets_not_moved), ++ ++ TP_STRUCT__entry( ++ __array(char, uuid, 16 ) ++ __field(u64, sectors_moved ) ++ __field(u64, sectors_not_moved ) ++ __field(u64, buckets_moved ) ++ __field(u64, buckets_not_moved ) ++ ), ++ ++ TP_fast_assign( ++ memcpy(__entry->uuid, c->sb.user_uuid.b, 16); ++ __entry->sectors_moved = sectors_moved; ++ __entry->sectors_not_moved = sectors_not_moved; ++ __entry->buckets_moved = buckets_moved; ++ __entry->buckets_not_moved = buckets_moved; ++ ), ++ ++ TP_printk("%pU sectors moved %llu remain %llu buckets moved %llu remain %llu", ++ __entry->uuid, ++ __entry->sectors_moved, __entry->sectors_not_moved, ++ __entry->buckets_moved, __entry->buckets_not_moved) ++); ++ ++TRACE_EVENT(transaction_restart_ip, ++ TP_PROTO(unsigned long caller, unsigned long ip), ++ TP_ARGS(caller, ip), ++ ++ TP_STRUCT__entry( ++ __field(unsigned long, caller ) ++ __field(unsigned long, ip ) ++ ), ++ ++ TP_fast_assign( ++ __entry->caller = caller; ++ __entry->ip = ip; ++ ), ++ ++ TP_printk("%pF %pF", (void *) __entry->caller, (void *) __entry->ip) ++); ++ ++DECLARE_EVENT_CLASS(transaction_restart, ++ TP_PROTO(unsigned long ip), ++ TP_ARGS(ip), ++ ++ TP_STRUCT__entry( ++ __field(unsigned long, ip ) ++ ), ++ ++ TP_fast_assign( ++ __entry->ip = ip; ++ ), ++ ++ TP_printk("%pf", (void *) __entry->ip) ++); ++ ++DEFINE_EVENT(transaction_restart, trans_restart_btree_node_reused, ++ TP_PROTO(unsigned long ip), ++ TP_ARGS(ip) ++); ++ ++DEFINE_EVENT(transaction_restart, trans_restart_would_deadlock, ++ TP_PROTO(unsigned long ip), ++ TP_ARGS(ip) ++); ++ ++TRACE_EVENT(trans_restart_iters_realloced, ++ TP_PROTO(unsigned long ip, unsigned nr), ++ TP_ARGS(ip, nr), ++ ++ TP_STRUCT__entry( ++ __field(unsigned long, ip ) ++ __field(unsigned, nr ) ++ ), ++ ++ TP_fast_assign( ++ __entry->ip = ip; ++ __entry->nr = nr; ++ ), ++ ++ TP_printk("%pf nr %u", (void *) __entry->ip, __entry->nr) ++); ++ ++TRACE_EVENT(trans_restart_mem_realloced, ++ TP_PROTO(unsigned long ip, unsigned long bytes), ++ TP_ARGS(ip, bytes), ++ ++ TP_STRUCT__entry( ++ __field(unsigned long, ip ) ++ __field(unsigned long, bytes ) ++ ), ++ ++ TP_fast_assign( ++ __entry->ip = ip; ++ __entry->bytes = bytes; ++ ), ++ ++ TP_printk("%pf bytes %lu", (void *) __entry->ip, __entry->bytes) ++); ++ ++DEFINE_EVENT(transaction_restart, trans_restart_journal_res_get, ++ TP_PROTO(unsigned long ip), ++ TP_ARGS(ip) ++); ++ ++DEFINE_EVENT(transaction_restart, trans_restart_journal_preres_get, ++ TP_PROTO(unsigned long ip), ++ TP_ARGS(ip) ++); ++ ++DEFINE_EVENT(transaction_restart, trans_restart_mark_replicas, ++ TP_PROTO(unsigned long ip), ++ TP_ARGS(ip) ++); ++ ++DEFINE_EVENT(transaction_restart, trans_restart_fault_inject, ++ TP_PROTO(unsigned long ip), ++ TP_ARGS(ip) ++); ++ ++DEFINE_EVENT(transaction_restart, trans_restart_btree_node_split, ++ TP_PROTO(unsigned long ip), ++ TP_ARGS(ip) ++); ++ ++DEFINE_EVENT(transaction_restart, trans_restart_mark, ++ TP_PROTO(unsigned long ip), ++ TP_ARGS(ip) ++); ++ ++DEFINE_EVENT(transaction_restart, trans_restart_upgrade, ++ TP_PROTO(unsigned long ip), ++ TP_ARGS(ip) ++); ++ ++DEFINE_EVENT(transaction_restart, trans_restart_iter_upgrade, ++ TP_PROTO(unsigned long ip), ++ TP_ARGS(ip) ++); ++ ++DEFINE_EVENT(transaction_restart, trans_restart_traverse, ++ TP_PROTO(unsigned long ip), ++ TP_ARGS(ip) ++); ++ ++DEFINE_EVENT(transaction_restart, trans_restart_atomic, ++ TP_PROTO(unsigned long ip), ++ TP_ARGS(ip) ++); ++ ++DECLARE_EVENT_CLASS(node_lock_fail, ++ TP_PROTO(unsigned level, u32 iter_seq, unsigned node, u32 node_seq), ++ TP_ARGS(level, iter_seq, node, node_seq), ++ ++ TP_STRUCT__entry( ++ __field(u32, level) ++ __field(u32, iter_seq) ++ __field(u32, node) ++ __field(u32, node_seq) ++ ), ++ ++ TP_fast_assign( ++ __entry->level = level; ++ __entry->iter_seq = iter_seq; ++ __entry->node = node; ++ __entry->node_seq = node_seq; ++ ), ++ ++ TP_printk("level %u iter seq %u node %u node seq %u", ++ __entry->level, __entry->iter_seq, ++ __entry->node, __entry->node_seq) ++); ++ ++DEFINE_EVENT(node_lock_fail, node_upgrade_fail, ++ TP_PROTO(unsigned level, u32 iter_seq, unsigned node, u32 node_seq), ++ TP_ARGS(level, iter_seq, node, node_seq) ++); ++ ++DEFINE_EVENT(node_lock_fail, node_relock_fail, ++ TP_PROTO(unsigned level, u32 iter_seq, unsigned node, u32 node_seq), ++ TP_ARGS(level, iter_seq, node, node_seq) ++); ++ ++#endif /* _TRACE_BCACHE_H */ ++ ++/* This part must be outside protection */ ++#include +diff --git a/init/init_task.c b/init/init_task.c +index f6889fce64af..94706c45bb6a 100644 +--- a/init/init_task.c ++++ b/init/init_task.c +@@ -84,6 +84,7 @@ struct task_struct init_task + .nr_cpus_allowed= NR_CPUS, + .mm = NULL, + .active_mm = &init_mm, ++ .faults_disabled_mapping = NULL, + .restart_block = { + .fn = do_no_restart_syscall, + }, +diff --git a/kernel/Kconfig.locks b/kernel/Kconfig.locks +index 3de8fd11873b..ab8aa082ce56 100644 +--- a/kernel/Kconfig.locks ++++ b/kernel/Kconfig.locks +@@ -259,3 +259,6 @@ config ARCH_HAS_MMIOWB + config MMIOWB + def_bool y if ARCH_HAS_MMIOWB + depends on SMP ++ ++config SIXLOCKS ++ bool +diff --git a/kernel/locking/Makefile b/kernel/locking/Makefile +index 6d11cfb9b41f..4c13937e8f37 100644 +--- a/kernel/locking/Makefile ++++ b/kernel/locking/Makefile +@@ -32,3 +32,4 @@ obj-$(CONFIG_QUEUED_RWLOCKS) += qrwlock.o + obj-$(CONFIG_LOCK_TORTURE_TEST) += locktorture.o + obj-$(CONFIG_WW_MUTEX_SELFTEST) += test-ww_mutex.o + obj-$(CONFIG_LOCK_EVENT_COUNTS) += lock_events.o ++obj-$(CONFIG_SIXLOCKS) += six.o +diff --git a/kernel/locking/lockdep_internals.h b/kernel/locking/lockdep_internals.h +index b0be1560ed17..6388e42cfd68 100644 +--- a/kernel/locking/lockdep_internals.h ++++ b/kernel/locking/lockdep_internals.h +@@ -98,7 +98,7 @@ static const unsigned long LOCKF_USED_IN_IRQ_READ = + #else + #define MAX_LOCKDEP_ENTRIES 32768UL + +-#define MAX_LOCKDEP_CHAINS_BITS 16 ++#define MAX_LOCKDEP_CHAINS_BITS 18 + + /* + * Stack-trace: tightly packed array of stack backtrace +@@ -116,7 +116,7 @@ static const unsigned long LOCKF_USED_IN_IRQ_READ = + + #define MAX_LOCKDEP_CHAINS (1UL << MAX_LOCKDEP_CHAINS_BITS) + +-#define MAX_LOCKDEP_CHAIN_HLOCKS (MAX_LOCKDEP_CHAINS*5) ++#define MAX_LOCKDEP_CHAIN_HLOCKS (MAX_LOCKDEP_CHAINS*10) + + extern struct list_head all_lock_classes; + extern struct lock_chain lock_chains[]; +diff --git a/kernel/locking/six.c b/kernel/locking/six.c +new file mode 100644 +index 000000000000..49d46ed2e18e +--- /dev/null ++++ b/kernel/locking/six.c +@@ -0,0 +1,553 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#ifdef DEBUG ++#define EBUG_ON(cond) BUG_ON(cond) ++#else ++#define EBUG_ON(cond) do {} while (0) ++#endif ++ ++#define six_acquire(l, t) lock_acquire(l, 0, t, 0, 0, NULL, _RET_IP_) ++#define six_release(l) lock_release(l, _RET_IP_) ++ ++struct six_lock_vals { ++ /* Value we add to the lock in order to take the lock: */ ++ u64 lock_val; ++ ++ /* If the lock has this value (used as a mask), taking the lock fails: */ ++ u64 lock_fail; ++ ++ /* Value we add to the lock in order to release the lock: */ ++ u64 unlock_val; ++ ++ /* Mask that indicates lock is held for this type: */ ++ u64 held_mask; ++ ++ /* Waitlist we wakeup when releasing the lock: */ ++ enum six_lock_type unlock_wakeup; ++}; ++ ++#define __SIX_LOCK_HELD_read __SIX_VAL(read_lock, ~0) ++#define __SIX_LOCK_HELD_intent __SIX_VAL(intent_lock, ~0) ++#define __SIX_LOCK_HELD_write __SIX_VAL(seq, 1) ++ ++#define LOCK_VALS { \ ++ [SIX_LOCK_read] = { \ ++ .lock_val = __SIX_VAL(read_lock, 1), \ ++ .lock_fail = __SIX_LOCK_HELD_write, \ ++ .unlock_val = -__SIX_VAL(read_lock, 1), \ ++ .held_mask = __SIX_LOCK_HELD_read, \ ++ .unlock_wakeup = SIX_LOCK_write, \ ++ }, \ ++ [SIX_LOCK_intent] = { \ ++ .lock_val = __SIX_VAL(intent_lock, 1), \ ++ .lock_fail = __SIX_LOCK_HELD_intent, \ ++ .unlock_val = -__SIX_VAL(intent_lock, 1), \ ++ .held_mask = __SIX_LOCK_HELD_intent, \ ++ .unlock_wakeup = SIX_LOCK_intent, \ ++ }, \ ++ [SIX_LOCK_write] = { \ ++ .lock_val = __SIX_VAL(seq, 1), \ ++ .lock_fail = __SIX_LOCK_HELD_read, \ ++ .unlock_val = __SIX_VAL(seq, 1), \ ++ .held_mask = __SIX_LOCK_HELD_write, \ ++ .unlock_wakeup = SIX_LOCK_read, \ ++ }, \ ++} ++ ++static inline void six_set_owner(struct six_lock *lock, enum six_lock_type type, ++ union six_lock_state old) ++{ ++ if (type != SIX_LOCK_intent) ++ return; ++ ++ if (!old.intent_lock) { ++ EBUG_ON(lock->owner); ++ lock->owner = current; ++ } else { ++ EBUG_ON(lock->owner != current); ++ } ++} ++ ++static __always_inline bool do_six_trylock_type(struct six_lock *lock, ++ enum six_lock_type type) ++{ ++ const struct six_lock_vals l[] = LOCK_VALS; ++ union six_lock_state old; ++ u64 v = READ_ONCE(lock->state.v); ++ ++ EBUG_ON(type == SIX_LOCK_write && lock->owner != current); ++ ++ do { ++ old.v = v; ++ ++ EBUG_ON(type == SIX_LOCK_write && ++ ((old.v & __SIX_LOCK_HELD_write) || ++ !(old.v & __SIX_LOCK_HELD_intent))); ++ ++ if (old.v & l[type].lock_fail) ++ return false; ++ } while ((v = atomic64_cmpxchg_acquire(&lock->state.counter, ++ old.v, ++ old.v + l[type].lock_val)) != old.v); ++ ++ six_set_owner(lock, type, old); ++ return true; ++} ++ ++__always_inline __flatten ++static bool __six_trylock_type(struct six_lock *lock, enum six_lock_type type) ++{ ++ if (!do_six_trylock_type(lock, type)) ++ return false; ++ ++ if (type != SIX_LOCK_write) ++ six_acquire(&lock->dep_map, 1); ++ return true; ++} ++ ++__always_inline __flatten ++static bool __six_relock_type(struct six_lock *lock, enum six_lock_type type, ++ unsigned seq) ++{ ++ const struct six_lock_vals l[] = LOCK_VALS; ++ union six_lock_state old; ++ u64 v = READ_ONCE(lock->state.v); ++ ++ do { ++ old.v = v; ++ ++ if (old.seq != seq || old.v & l[type].lock_fail) ++ return false; ++ } while ((v = atomic64_cmpxchg_acquire(&lock->state.counter, ++ old.v, ++ old.v + l[type].lock_val)) != old.v); ++ ++ six_set_owner(lock, type, old); ++ if (type != SIX_LOCK_write) ++ six_acquire(&lock->dep_map, 1); ++ return true; ++} ++ ++struct six_lock_waiter { ++ struct list_head list; ++ struct task_struct *task; ++}; ++ ++/* This is probably up there with the more evil things I've done */ ++#define waitlist_bitnr(id) ilog2((((union six_lock_state) { .waiters = 1 << (id) }).l)) ++ ++#ifdef CONFIG_LOCK_SPIN_ON_OWNER ++ ++static inline int six_can_spin_on_owner(struct six_lock *lock) ++{ ++ struct task_struct *owner; ++ int retval = 1; ++ ++ if (need_resched()) ++ return 0; ++ ++ rcu_read_lock(); ++ owner = READ_ONCE(lock->owner); ++ if (owner) ++ retval = owner->on_cpu; ++ rcu_read_unlock(); ++ /* ++ * if lock->owner is not set, the mutex owner may have just acquired ++ * it and not set the owner yet or the mutex has been released. ++ */ ++ return retval; ++} ++ ++static inline bool six_spin_on_owner(struct six_lock *lock, ++ struct task_struct *owner) ++{ ++ bool ret = true; ++ ++ rcu_read_lock(); ++ while (lock->owner == owner) { ++ /* ++ * Ensure we emit the owner->on_cpu, dereference _after_ ++ * checking lock->owner still matches owner. If that fails, ++ * owner might point to freed memory. If it still matches, ++ * the rcu_read_lock() ensures the memory stays valid. ++ */ ++ barrier(); ++ ++ if (!owner->on_cpu || need_resched()) { ++ ret = false; ++ break; ++ } ++ ++ cpu_relax(); ++ } ++ rcu_read_unlock(); ++ ++ return ret; ++} ++ ++static inline bool six_optimistic_spin(struct six_lock *lock, enum six_lock_type type) ++{ ++ struct task_struct *task = current; ++ ++ if (type == SIX_LOCK_write) ++ return false; ++ ++ preempt_disable(); ++ if (!six_can_spin_on_owner(lock)) ++ goto fail; ++ ++ if (!osq_lock(&lock->osq)) ++ goto fail; ++ ++ while (1) { ++ struct task_struct *owner; ++ ++ /* ++ * If there's an owner, wait for it to either ++ * release the lock or go to sleep. ++ */ ++ owner = READ_ONCE(lock->owner); ++ if (owner && !six_spin_on_owner(lock, owner)) ++ break; ++ ++ if (do_six_trylock_type(lock, type)) { ++ osq_unlock(&lock->osq); ++ preempt_enable(); ++ return true; ++ } ++ ++ /* ++ * When there's no owner, we might have preempted between the ++ * owner acquiring the lock and setting the owner field. If ++ * we're an RT task that will live-lock because we won't let ++ * the owner complete. ++ */ ++ if (!owner && (need_resched() || rt_task(task))) ++ break; ++ ++ /* ++ * The cpu_relax() call is a compiler barrier which forces ++ * everything in this loop to be re-loaded. We don't need ++ * memory barriers as we'll eventually observe the right ++ * values at the cost of a few extra spins. ++ */ ++ cpu_relax(); ++ } ++ ++ osq_unlock(&lock->osq); ++fail: ++ preempt_enable(); ++ ++ /* ++ * If we fell out of the spin path because of need_resched(), ++ * reschedule now, before we try-lock again. This avoids getting ++ * scheduled out right after we obtained the lock. ++ */ ++ if (need_resched()) ++ schedule(); ++ ++ return false; ++} ++ ++#else /* CONFIG_LOCK_SPIN_ON_OWNER */ ++ ++static inline bool six_optimistic_spin(struct six_lock *lock, enum six_lock_type type) ++{ ++ return false; ++} ++ ++#endif ++ ++noinline ++static int __six_lock_type_slowpath(struct six_lock *lock, enum six_lock_type type, ++ six_lock_should_sleep_fn should_sleep_fn, void *p) ++{ ++ const struct six_lock_vals l[] = LOCK_VALS; ++ union six_lock_state old, new; ++ struct six_lock_waiter wait; ++ int ret = 0; ++ u64 v; ++ ++ ret = should_sleep_fn ? should_sleep_fn(lock, p) : 0; ++ if (ret) ++ return ret; ++ ++ if (six_optimistic_spin(lock, type)) ++ return 0; ++ ++ lock_contended(&lock->dep_map, _RET_IP_); ++ ++ INIT_LIST_HEAD(&wait.list); ++ wait.task = current; ++ ++ while (1) { ++ set_current_state(TASK_UNINTERRUPTIBLE); ++ if (type == SIX_LOCK_write) ++ EBUG_ON(lock->owner != current); ++ else if (list_empty_careful(&wait.list)) { ++ raw_spin_lock(&lock->wait_lock); ++ list_add_tail(&wait.list, &lock->wait_list[type]); ++ raw_spin_unlock(&lock->wait_lock); ++ } ++ ++ ret = should_sleep_fn ? should_sleep_fn(lock, p) : 0; ++ if (ret) ++ break; ++ ++ v = READ_ONCE(lock->state.v); ++ do { ++ new.v = old.v = v; ++ ++ if (!(old.v & l[type].lock_fail)) ++ new.v += l[type].lock_val; ++ else if (!(new.waiters & (1 << type))) ++ new.waiters |= 1 << type; ++ else ++ break; /* waiting bit already set */ ++ } while ((v = atomic64_cmpxchg_acquire(&lock->state.counter, ++ old.v, new.v)) != old.v); ++ ++ if (!(old.v & l[type].lock_fail)) ++ break; ++ ++ schedule(); ++ } ++ ++ if (!ret) ++ six_set_owner(lock, type, old); ++ ++ __set_current_state(TASK_RUNNING); ++ ++ if (!list_empty_careful(&wait.list)) { ++ raw_spin_lock(&lock->wait_lock); ++ list_del_init(&wait.list); ++ raw_spin_unlock(&lock->wait_lock); ++ } ++ ++ return ret; ++} ++ ++__always_inline ++static int __six_lock_type(struct six_lock *lock, enum six_lock_type type, ++ six_lock_should_sleep_fn should_sleep_fn, void *p) ++{ ++ int ret; ++ ++ if (type != SIX_LOCK_write) ++ six_acquire(&lock->dep_map, 0); ++ ++ ret = do_six_trylock_type(lock, type) ? 0 ++ : __six_lock_type_slowpath(lock, type, should_sleep_fn, p); ++ ++ if (ret && type != SIX_LOCK_write) ++ six_release(&lock->dep_map); ++ if (!ret) ++ lock_acquired(&lock->dep_map, _RET_IP_); ++ ++ return ret; ++} ++ ++static inline void six_lock_wakeup(struct six_lock *lock, ++ union six_lock_state state, ++ unsigned waitlist_id) ++{ ++ struct list_head *wait_list = &lock->wait_list[waitlist_id]; ++ struct six_lock_waiter *w, *next; ++ ++ if (waitlist_id == SIX_LOCK_write && state.read_lock) ++ return; ++ ++ if (!(state.waiters & (1 << waitlist_id))) ++ return; ++ ++ clear_bit(waitlist_bitnr(waitlist_id), ++ (unsigned long *) &lock->state.v); ++ ++ if (waitlist_id == SIX_LOCK_write) { ++ struct task_struct *p = READ_ONCE(lock->owner); ++ ++ if (p) ++ wake_up_process(p); ++ return; ++ } ++ ++ raw_spin_lock(&lock->wait_lock); ++ ++ list_for_each_entry_safe(w, next, wait_list, list) { ++ list_del_init(&w->list); ++ ++ if (wake_up_process(w->task) && ++ waitlist_id != SIX_LOCK_read) { ++ if (!list_empty(wait_list)) ++ set_bit(waitlist_bitnr(waitlist_id), ++ (unsigned long *) &lock->state.v); ++ break; ++ } ++ } ++ ++ raw_spin_unlock(&lock->wait_lock); ++} ++ ++__always_inline __flatten ++static void __six_unlock_type(struct six_lock *lock, enum six_lock_type type) ++{ ++ const struct six_lock_vals l[] = LOCK_VALS; ++ union six_lock_state state; ++ ++ EBUG_ON(!(lock->state.v & l[type].held_mask)); ++ EBUG_ON(type == SIX_LOCK_write && ++ !(lock->state.v & __SIX_LOCK_HELD_intent)); ++ ++ if (type != SIX_LOCK_write) ++ six_release(&lock->dep_map); ++ ++ if (type == SIX_LOCK_intent) { ++ EBUG_ON(lock->owner != current); ++ ++ if (lock->intent_lock_recurse) { ++ --lock->intent_lock_recurse; ++ return; ++ } ++ ++ lock->owner = NULL; ++ } ++ ++ state.v = atomic64_add_return_release(l[type].unlock_val, ++ &lock->state.counter); ++ six_lock_wakeup(lock, state, l[type].unlock_wakeup); ++} ++ ++#define __SIX_LOCK(type) \ ++bool six_trylock_##type(struct six_lock *lock) \ ++{ \ ++ return __six_trylock_type(lock, SIX_LOCK_##type); \ ++} \ ++EXPORT_SYMBOL_GPL(six_trylock_##type); \ ++ \ ++bool six_relock_##type(struct six_lock *lock, u32 seq) \ ++{ \ ++ return __six_relock_type(lock, SIX_LOCK_##type, seq); \ ++} \ ++EXPORT_SYMBOL_GPL(six_relock_##type); \ ++ \ ++int six_lock_##type(struct six_lock *lock, \ ++ six_lock_should_sleep_fn should_sleep_fn, void *p) \ ++{ \ ++ return __six_lock_type(lock, SIX_LOCK_##type, should_sleep_fn, p);\ ++} \ ++EXPORT_SYMBOL_GPL(six_lock_##type); \ ++ \ ++void six_unlock_##type(struct six_lock *lock) \ ++{ \ ++ __six_unlock_type(lock, SIX_LOCK_##type); \ ++} \ ++EXPORT_SYMBOL_GPL(six_unlock_##type); ++ ++__SIX_LOCK(read) ++__SIX_LOCK(intent) ++__SIX_LOCK(write) ++ ++#undef __SIX_LOCK ++ ++/* Convert from intent to read: */ ++void six_lock_downgrade(struct six_lock *lock) ++{ ++ six_lock_increment(lock, SIX_LOCK_read); ++ six_unlock_intent(lock); ++} ++EXPORT_SYMBOL_GPL(six_lock_downgrade); ++ ++bool six_lock_tryupgrade(struct six_lock *lock) ++{ ++ const struct six_lock_vals l[] = LOCK_VALS; ++ union six_lock_state old, new; ++ u64 v = READ_ONCE(lock->state.v); ++ ++ do { ++ new.v = old.v = v; ++ ++ EBUG_ON(!(old.v & l[SIX_LOCK_read].held_mask)); ++ ++ new.v += l[SIX_LOCK_read].unlock_val; ++ ++ if (new.v & l[SIX_LOCK_intent].lock_fail) ++ return false; ++ ++ new.v += l[SIX_LOCK_intent].lock_val; ++ } while ((v = atomic64_cmpxchg_acquire(&lock->state.counter, ++ old.v, new.v)) != old.v); ++ ++ six_set_owner(lock, SIX_LOCK_intent, old); ++ six_lock_wakeup(lock, new, l[SIX_LOCK_read].unlock_wakeup); ++ ++ return true; ++} ++EXPORT_SYMBOL_GPL(six_lock_tryupgrade); ++ ++bool six_trylock_convert(struct six_lock *lock, ++ enum six_lock_type from, ++ enum six_lock_type to) ++{ ++ EBUG_ON(to == SIX_LOCK_write || from == SIX_LOCK_write); ++ ++ if (to == from) ++ return true; ++ ++ if (to == SIX_LOCK_read) { ++ six_lock_downgrade(lock); ++ return true; ++ } else { ++ return six_lock_tryupgrade(lock); ++ } ++} ++EXPORT_SYMBOL_GPL(six_trylock_convert); ++ ++/* ++ * Increment read/intent lock count, assuming we already have it read or intent ++ * locked: ++ */ ++void six_lock_increment(struct six_lock *lock, enum six_lock_type type) ++{ ++ const struct six_lock_vals l[] = LOCK_VALS; ++ ++ EBUG_ON(type == SIX_LOCK_write); ++ six_acquire(&lock->dep_map, 0); ++ ++ /* XXX: assert already locked, and that we don't overflow: */ ++ ++ switch (type) { ++ case SIX_LOCK_read: ++ atomic64_add(l[type].lock_val, &lock->state.counter); ++ break; ++ case SIX_LOCK_intent: ++ lock->intent_lock_recurse++; ++ break; ++ case SIX_LOCK_write: ++ BUG(); ++ break; ++ } ++} ++EXPORT_SYMBOL_GPL(six_lock_increment); ++ ++void six_lock_wakeup_all(struct six_lock *lock) ++{ ++ struct six_lock_waiter *w; ++ ++ raw_spin_lock(&lock->wait_lock); ++ ++ list_for_each_entry(w, &lock->wait_list[0], list) ++ wake_up_process(w->task); ++ list_for_each_entry(w, &lock->wait_list[1], list) ++ wake_up_process(w->task); ++ ++ raw_spin_unlock(&lock->wait_lock); ++} ++EXPORT_SYMBOL_GPL(six_lock_wakeup_all); +diff --git a/kernel/module.c b/kernel/module.c +index 1c5cff34d9f2..8f9f37b0bfaa 100644 +--- a/kernel/module.c ++++ b/kernel/module.c +@@ -2830,9 +2830,7 @@ static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug) + + void * __weak module_alloc(unsigned long size) + { +- return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, +- GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, +- NUMA_NO_NODE, __builtin_return_address(0)); ++ return vmalloc_exec(size, GFP_KERNEL); + } + + bool __weak module_init_section(const char *name) +diff --git a/lib/Kconfig b/lib/Kconfig +index b4b98a03ff98..7ec0b400c545 100644 +--- a/lib/Kconfig ++++ b/lib/Kconfig +@@ -461,6 +461,9 @@ config ASSOCIATIVE_ARRAY + + for more information. + ++config CLOSURES ++ bool ++ + config HAS_IOMEM + bool + depends on !NO_IOMEM +diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug +index 0c781f912f9f..efe645766784 100644 +--- a/lib/Kconfig.debug ++++ b/lib/Kconfig.debug +@@ -1517,6 +1517,15 @@ config DEBUG_CREDENTIALS + + source "kernel/rcu/Kconfig.debug" + ++config DEBUG_CLOSURES ++ bool "Debug closures (bcache async widgits)" ++ depends on CLOSURES ++ select DEBUG_FS ++ help ++ Keeps all active closures in a linked list and provides a debugfs ++ interface to list them, which makes it possible to see asynchronous ++ operations that get stuck. ++ + config DEBUG_WQ_FORCE_RR_CPU + bool "Force round-robin CPU selection for unbound work items" + depends on DEBUG_KERNEL +diff --git a/lib/Makefile b/lib/Makefile +index a4a4c6864f51..dfefe98c29ec 100644 +--- a/lib/Makefile ++++ b/lib/Makefile +@@ -234,6 +234,8 @@ obj-$(CONFIG_ATOMIC64_SELFTEST) += atomic64_test.o + + obj-$(CONFIG_CPU_RMAP) += cpu_rmap.o + ++obj-$(CONFIG_CLOSURES) += closure.o ++ + obj-$(CONFIG_DQL) += dynamic_queue_limits.o + + obj-$(CONFIG_GLOB) += glob.o +diff --git a/lib/closure.c b/lib/closure.c +new file mode 100644 +index 000000000000..3e6366c26209 +--- /dev/null ++++ b/lib/closure.c +@@ -0,0 +1,214 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Asynchronous refcounty things ++ * ++ * Copyright 2010, 2011 Kent Overstreet ++ * Copyright 2012 Google, Inc. ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++ ++static inline void closure_put_after_sub(struct closure *cl, int flags) ++{ ++ int r = flags & CLOSURE_REMAINING_MASK; ++ ++ BUG_ON(flags & CLOSURE_GUARD_MASK); ++ BUG_ON(!r && (flags & ~CLOSURE_DESTRUCTOR)); ++ ++ if (!r) { ++ if (cl->fn && !(flags & CLOSURE_DESTRUCTOR)) { ++ atomic_set(&cl->remaining, ++ CLOSURE_REMAINING_INITIALIZER); ++ closure_queue(cl); ++ } else { ++ struct closure *parent = cl->parent; ++ closure_fn *destructor = cl->fn; ++ ++ closure_debug_destroy(cl); ++ ++ if (destructor) ++ destructor(cl); ++ ++ if (parent) ++ closure_put(parent); ++ } ++ } ++} ++ ++/* For clearing flags with the same atomic op as a put */ ++void closure_sub(struct closure *cl, int v) ++{ ++ closure_put_after_sub(cl, atomic_sub_return(v, &cl->remaining)); ++} ++EXPORT_SYMBOL(closure_sub); ++ ++/* ++ * closure_put - decrement a closure's refcount ++ */ ++void closure_put(struct closure *cl) ++{ ++ closure_put_after_sub(cl, atomic_dec_return(&cl->remaining)); ++} ++EXPORT_SYMBOL(closure_put); ++ ++/* ++ * closure_wake_up - wake up all closures on a wait list, without memory barrier ++ */ ++void __closure_wake_up(struct closure_waitlist *wait_list) ++{ ++ struct llist_node *list; ++ struct closure *cl, *t; ++ struct llist_node *reverse = NULL; ++ ++ list = llist_del_all(&wait_list->list); ++ ++ /* We first reverse the list to preserve FIFO ordering and fairness */ ++ reverse = llist_reverse_order(list); ++ ++ /* Then do the wakeups */ ++ llist_for_each_entry_safe(cl, t, reverse, list) { ++ closure_set_waiting(cl, 0); ++ closure_sub(cl, CLOSURE_WAITING + 1); ++ } ++} ++EXPORT_SYMBOL(__closure_wake_up); ++ ++/** ++ * closure_wait - add a closure to a waitlist ++ * @waitlist: will own a ref on @cl, which will be released when ++ * closure_wake_up() is called on @waitlist. ++ * @cl: closure pointer. ++ * ++ */ ++bool closure_wait(struct closure_waitlist *waitlist, struct closure *cl) ++{ ++ if (atomic_read(&cl->remaining) & CLOSURE_WAITING) ++ return false; ++ ++ closure_set_waiting(cl, _RET_IP_); ++ atomic_add(CLOSURE_WAITING + 1, &cl->remaining); ++ llist_add(&cl->list, &waitlist->list); ++ ++ return true; ++} ++EXPORT_SYMBOL(closure_wait); ++ ++struct closure_syncer { ++ struct task_struct *task; ++ int done; ++}; ++ ++static void closure_sync_fn(struct closure *cl) ++{ ++ struct closure_syncer *s = cl->s; ++ struct task_struct *p; ++ ++ rcu_read_lock(); ++ p = READ_ONCE(s->task); ++ s->done = 1; ++ wake_up_process(p); ++ rcu_read_unlock(); ++} ++ ++void __sched __closure_sync(struct closure *cl) ++{ ++ struct closure_syncer s = { .task = current }; ++ ++ cl->s = &s; ++ continue_at(cl, closure_sync_fn, NULL); ++ ++ while (1) { ++ set_current_state(TASK_UNINTERRUPTIBLE); ++ if (s.done) ++ break; ++ schedule(); ++ } ++ ++ __set_current_state(TASK_RUNNING); ++} ++EXPORT_SYMBOL(__closure_sync); ++ ++#ifdef CONFIG_DEBUG_CLOSURES ++ ++static LIST_HEAD(closure_list); ++static DEFINE_SPINLOCK(closure_list_lock); ++ ++void closure_debug_create(struct closure *cl) ++{ ++ unsigned long flags; ++ ++ BUG_ON(cl->magic == CLOSURE_MAGIC_ALIVE); ++ cl->magic = CLOSURE_MAGIC_ALIVE; ++ ++ spin_lock_irqsave(&closure_list_lock, flags); ++ list_add(&cl->all, &closure_list); ++ spin_unlock_irqrestore(&closure_list_lock, flags); ++} ++EXPORT_SYMBOL(closure_debug_create); ++ ++void closure_debug_destroy(struct closure *cl) ++{ ++ unsigned long flags; ++ ++ BUG_ON(cl->magic != CLOSURE_MAGIC_ALIVE); ++ cl->magic = CLOSURE_MAGIC_DEAD; ++ ++ spin_lock_irqsave(&closure_list_lock, flags); ++ list_del(&cl->all); ++ spin_unlock_irqrestore(&closure_list_lock, flags); ++} ++EXPORT_SYMBOL(closure_debug_destroy); ++ ++static int debug_seq_show(struct seq_file *f, void *data) ++{ ++ struct closure *cl; ++ ++ spin_lock_irq(&closure_list_lock); ++ ++ list_for_each_entry(cl, &closure_list, all) { ++ int r = atomic_read(&cl->remaining); ++ ++ seq_printf(f, "%p: %pS -> %pS p %p r %i ", ++ cl, (void *) cl->ip, cl->fn, cl->parent, ++ r & CLOSURE_REMAINING_MASK); ++ ++ seq_printf(f, "%s%s\n", ++ test_bit(WORK_STRUCT_PENDING_BIT, ++ work_data_bits(&cl->work)) ? "Q" : "", ++ r & CLOSURE_RUNNING ? "R" : ""); ++ ++ if (r & CLOSURE_WAITING) ++ seq_printf(f, " W %pS\n", ++ (void *) cl->waiting_on); ++ ++ seq_puts(f, "\n"); ++ } ++ ++ spin_unlock_irq(&closure_list_lock); ++ return 0; ++} ++ ++static int debug_seq_open(struct inode *inode, struct file *file) ++{ ++ return single_open(file, debug_seq_show, NULL); ++} ++ ++static const struct file_operations debug_ops = { ++ .owner = THIS_MODULE, ++ .open = debug_seq_open, ++ .read = seq_read, ++ .release = single_release ++}; ++ ++static int __init closure_debug_init(void) ++{ ++ debugfs_create_file("closures", 0400, NULL, NULL, &debug_ops); ++ return 0; ++} ++late_initcall(closure_debug_init) ++ ++#endif +diff --git a/mm/filemap.c b/mm/filemap.c +index 99c49eeae71b..a5a07767a2eb 100644 +--- a/mm/filemap.c ++++ b/mm/filemap.c +@@ -117,6 +117,69 @@ + * ->tasklist_lock (memory_failure, collect_procs_ao) + */ + ++static int page_cache_tree_insert_vec(struct page *pages[], ++ unsigned nr_pages, ++ struct address_space *mapping, ++ pgoff_t index, ++ gfp_t gfp_mask, ++ void *shadow[]) ++{ ++ XA_STATE(xas, &mapping->i_pages, index); ++ void *old; ++ int i = 0, error = 0; ++ ++ mapping_set_update(&xas, mapping); ++ ++ if (!nr_pages) ++ return 0; ++ ++ xa_lock_irq(&mapping->i_pages); ++ ++ while (1) { ++ old = xas_load(&xas); ++ if (old && !xa_is_value(old)) { ++ error = -EEXIST; ++ break; ++ } ++ ++ xas_store(&xas, pages[i]); ++ error = xas_error(&xas); ++ ++ if (error == -ENOMEM) { ++ xa_unlock_irq(&mapping->i_pages); ++ if (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)) ++ error = 0; ++ xa_lock_irq(&mapping->i_pages); ++ ++ if (!error) ++ continue; ++ break; ++ } ++ ++ if (error) ++ break; ++ ++ if (shadow) ++ shadow[i] = old; ++ if (xa_is_value(old)) ++ mapping->nrexceptional--; ++ mapping->nrpages++; ++ ++ /* hugetlb pages do not participate in page cache accounting. */ ++ if (!PageHuge(pages[i])) ++ __inc_lruvec_page_state(pages[i], NR_FILE_PAGES); ++ ++ if (++i == nr_pages) ++ break; ++ ++ xas_next(&xas); ++ } ++ ++ xa_unlock_irq(&mapping->i_pages); ++ ++ return i ?: error; ++} ++ + static void page_cache_delete(struct address_space *mapping, + struct page *page, void *shadow) + { +@@ -827,114 +890,148 @@ int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) + } + EXPORT_SYMBOL_GPL(replace_page_cache_page); + +-static int __add_to_page_cache_locked(struct page *page, +- struct address_space *mapping, +- pgoff_t offset, gfp_t gfp_mask, +- void **shadowp) ++static int add_to_page_cache_vec(struct page **pages, unsigned nr_pages, ++ struct address_space *mapping, ++ pgoff_t index, gfp_t gfp_mask, ++ void *shadow[]) + { +- XA_STATE(xas, &mapping->i_pages, offset); +- int huge = PageHuge(page); +- int error; +- void *old; ++ int i, nr_added = 0, error = 0; + +- VM_BUG_ON_PAGE(!PageLocked(page), page); +- VM_BUG_ON_PAGE(PageSwapBacked(page), page); +- mapping_set_update(&xas, mapping); ++ for (i = 0; i < nr_pages; i++) { ++ struct page *page = pages[i]; + +- get_page(page); +- page->mapping = mapping; +- page->index = offset; ++ VM_BUG_ON_PAGE(PageSwapBacked(page), page); ++ VM_BUG_ON_PAGE(PageSwapCache(page), page); + +- if (!huge) { +- error = mem_cgroup_charge(page, current->mm, gfp_mask); +- if (error) +- goto error; ++ __SetPageLocked(page); ++ get_page(page); ++ page->mapping = mapping; ++ page->index = index + i; ++ ++ if (!PageHuge(page)) { ++ error = mem_cgroup_charge(page, current->mm, gfp_mask); ++ if (error) { ++ page->mapping = NULL; ++ /* Leave page->index set: truncation relies upon it */ ++ put_page(page); ++ __ClearPageLocked(page); ++ if (!i) ++ return error; ++ nr_pages = i; ++ break; ++ } ++ } + } + +- do { +- xas_lock_irq(&xas); +- old = xas_load(&xas); +- if (old && !xa_is_value(old)) +- xas_set_err(&xas, -EEXIST); +- xas_store(&xas, page); +- if (xas_error(&xas)) +- goto unlock; ++ error = page_cache_tree_insert_vec(pages, nr_pages, mapping, ++ index, gfp_mask, shadow); ++ if (error > 0) { ++ nr_added = error; ++ error = 0; ++ } + +- if (xa_is_value(old)) { +- mapping->nrexceptional--; +- if (shadowp) +- *shadowp = old; +- } +- mapping->nrpages++; ++ for (i = 0; i < nr_added; i++) ++ trace_mm_filemap_add_to_page_cache(pages[i]); + +- /* hugetlb pages do not participate in page cache accounting */ +- if (!huge) +- __inc_lruvec_page_state(page, NR_FILE_PAGES); +-unlock: +- xas_unlock_irq(&xas); +- } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)); ++ for (i = nr_added; i < nr_pages; i++) { ++ struct page *page = pages[i]; + +- if (xas_error(&xas)) { +- error = xas_error(&xas); +- goto error; ++ /* Leave page->index set: truncation relies upon it */ ++ page->mapping = NULL; ++ put_page(page); ++ __ClearPageLocked(page); + } + +- trace_mm_filemap_add_to_page_cache(page); +- return 0; +-error: +- page->mapping = NULL; +- /* Leave page->index set: truncation relies upon it */ +- put_page(page); +- return error; ++ return nr_added ?: error; + } +-ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); ++ALLOW_ERROR_INJECTION(__add_to_page_cache, ERRNO); + + /** +- * add_to_page_cache_locked - add a locked page to the pagecache ++ * add_to_page_cache - add a newly allocated page to the pagecache + * @page: page to add + * @mapping: the page's address_space + * @offset: page index + * @gfp_mask: page allocation mode + * +- * This function is used to add a page to the pagecache. It must be locked. +- * This function does not add the page to the LRU. The caller must do that. ++ * This function is used to add a page to the pagecache. It must be newly ++ * allocated. This function does not add the page to the LRU. The caller must ++ * do that. + * + * Return: %0 on success, negative error code otherwise. + */ +-int add_to_page_cache_locked(struct page *page, struct address_space *mapping, +- pgoff_t offset, gfp_t gfp_mask) ++int add_to_page_cache(struct page *page, struct address_space *mapping, ++ pgoff_t offset, gfp_t gfp_mask) + { +- return __add_to_page_cache_locked(page, mapping, offset, +- gfp_mask, NULL); ++ int ret = add_to_page_cache_vec(&page, 1, mapping, offset, ++ gfp_mask, NULL); ++ if (ret < 0) ++ return ret; ++ return 0; + } +-EXPORT_SYMBOL(add_to_page_cache_locked); ++EXPORT_SYMBOL(add_to_page_cache); ++ALLOW_ERROR_INJECTION(add_to_page_cache, ERRNO); + +-int add_to_page_cache_lru(struct page *page, struct address_space *mapping, +- pgoff_t offset, gfp_t gfp_mask) ++int add_to_page_cache_lru_vec(struct address_space *mapping, ++ struct page **pages, ++ unsigned nr_pages, ++ pgoff_t offset, gfp_t gfp_mask) + { +- void *shadow = NULL; +- int ret; ++ void *shadow_stack[8], **shadow = shadow_stack; ++ int i, ret = 0, err = 0, nr_added; ++ ++ if (nr_pages > ARRAY_SIZE(shadow_stack)) { ++ shadow = kmalloc_array(nr_pages, sizeof(void *), gfp_mask); ++ if (!shadow) ++ goto slowpath; ++ } ++ ++ for (i = 0; i < nr_pages; i++) ++ VM_BUG_ON_PAGE(PageActive(pages[i]), pages[i]); ++ ++ ret = add_to_page_cache_vec(pages, nr_pages, mapping, ++ offset, gfp_mask, shadow); ++ nr_added = ret > 0 ? ret : 0; ++ ++ /* ++ * The page might have been evicted from cache only recently, in which ++ * case it should be activated like any other repeatedly accessed page. ++ * The exception is pages getting rewritten; evicting other data from ++ * the working set, only to cache data that will get overwritten with ++ * something else, is a waste of memory. ++ */ ++ for (i = 0; i < nr_added; i++) { ++ struct page *page = pages[i]; ++ void *s = shadow[i]; + +- __SetPageLocked(page); +- ret = __add_to_page_cache_locked(page, mapping, offset, +- gfp_mask, &shadow); +- if (unlikely(ret)) +- __ClearPageLocked(page); +- else { +- /* +- * The page might have been evicted from cache only +- * recently, in which case it should be activated like +- * any other repeatedly accessed page. +- * The exception is pages getting rewritten; evicting other +- * data from the working set, only to cache data that will +- * get overwritten with something else, is a waste of memory. +- */ + WARN_ON_ONCE(PageActive(page)); +- if (!(gfp_mask & __GFP_WRITE) && shadow) +- workingset_refault(page, shadow); ++ if (!(gfp_mask & __GFP_WRITE) && s) ++ workingset_refault(page, s); + lru_cache_add(page); + } ++ ++ if (shadow != shadow_stack) ++ kfree(shadow); ++ + return ret; ++slowpath: ++ for (i = 0; i < nr_pages; i++) { ++ err = add_to_page_cache_lru(pages[i], mapping, ++ offset + i, gfp_mask); ++ if (err) ++ break; ++ } ++ ++ return i ?: err; ++} ++EXPORT_SYMBOL_GPL(add_to_page_cache_lru_vec); ++ ++int add_to_page_cache_lru(struct page *page, struct address_space *mapping, ++ pgoff_t offset, gfp_t gfp_mask) ++{ ++ int ret = add_to_page_cache_lru_vec(mapping, &page, 1, offset, gfp_mask); ++ if (ret < 0) ++ return ret; ++ return 0; + } + EXPORT_SYMBOL_GPL(add_to_page_cache_lru); + +@@ -1990,6 +2087,7 @@ unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, + + return ret; + } ++EXPORT_SYMBOL(find_get_pages_range); + + /** + * find_get_pages_contig - gang contiguous pagecache lookup +@@ -2138,6 +2236,259 @@ static void shrink_readahead_size_eio(struct file_ra_state *ra) + ra->ra_pages /= 4; + } + ++static int lock_page_for_iocb(struct kiocb *iocb, struct page *page) ++{ ++ if (iocb->ki_flags & IOCB_WAITQ) ++ return lock_page_async(page, iocb->ki_waitq); ++ else if (iocb->ki_flags & IOCB_NOWAIT) ++ return trylock_page(page) ? 0 : -EAGAIN; ++ else ++ return lock_page_killable(page); ++} ++ ++static struct page * ++generic_file_buffered_read_readpage(struct kiocb *iocb, ++ struct file *filp, ++ struct address_space *mapping, ++ struct page *page) ++{ ++ struct file_ra_state *ra = &filp->f_ra; ++ int error; ++ ++ if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) { ++ unlock_page(page); ++ put_page(page); ++ return ERR_PTR(-EAGAIN); ++ } ++ ++ /* ++ * A previous I/O error may have been due to temporary ++ * failures, eg. multipath errors. ++ * PG_error will be set again if readpage fails. ++ */ ++ ClearPageError(page); ++ /* Start the actual read. The read will unlock the page. */ ++ error = mapping->a_ops->readpage(filp, page); ++ ++ if (unlikely(error)) { ++ put_page(page); ++ return error != AOP_TRUNCATED_PAGE ? ERR_PTR(error) : NULL; ++ } ++ ++ if (!PageUptodate(page)) { ++ error = lock_page_for_iocb(iocb, page); ++ if (unlikely(error)) { ++ put_page(page); ++ return ERR_PTR(error); ++ } ++ if (!PageUptodate(page)) { ++ if (page->mapping == NULL) { ++ /* ++ * invalidate_mapping_pages got it ++ */ ++ unlock_page(page); ++ put_page(page); ++ return NULL; ++ } ++ unlock_page(page); ++ shrink_readahead_size_eio(ra); ++ put_page(page); ++ return ERR_PTR(-EIO); ++ } ++ unlock_page(page); ++ } ++ ++ return page; ++} ++ ++static struct page * ++generic_file_buffered_read_pagenotuptodate(struct kiocb *iocb, ++ struct file *filp, ++ struct iov_iter *iter, ++ struct page *page, ++ loff_t pos, loff_t count) ++{ ++ struct address_space *mapping = filp->f_mapping; ++ struct inode *inode = mapping->host; ++ int error; ++ ++ /* ++ * See comment in do_read_cache_page on why ++ * wait_on_page_locked is used to avoid unnecessarily ++ * serialisations and why it's safe. ++ */ ++ if (iocb->ki_flags & IOCB_WAITQ) { ++ error = wait_on_page_locked_async(page, ++ iocb->ki_waitq); ++ } else { ++ error = wait_on_page_locked_killable(page); ++ } ++ if (unlikely(error)) { ++ put_page(page); ++ return ERR_PTR(error); ++ } ++ if (PageUptodate(page)) ++ return page; ++ ++ if (inode->i_blkbits == PAGE_SHIFT || ++ !mapping->a_ops->is_partially_uptodate) ++ goto page_not_up_to_date; ++ /* pipes can't handle partially uptodate pages */ ++ if (unlikely(iov_iter_is_pipe(iter))) ++ goto page_not_up_to_date; ++ if (!trylock_page(page)) ++ goto page_not_up_to_date; ++ /* Did it get truncated before we got the lock? */ ++ if (!page->mapping) ++ goto page_not_up_to_date_locked; ++ if (!mapping->a_ops->is_partially_uptodate(page, ++ pos & ~PAGE_MASK, count)) ++ goto page_not_up_to_date_locked; ++ unlock_page(page); ++ return page; ++ ++page_not_up_to_date: ++ /* Get exclusive access to the page ... */ ++ error = lock_page_for_iocb(iocb, page); ++ if (unlikely(error)) { ++ put_page(page); ++ return ERR_PTR(error); ++ } ++ ++page_not_up_to_date_locked: ++ /* Did it get truncated before we got the lock? */ ++ if (!page->mapping) { ++ unlock_page(page); ++ put_page(page); ++ return NULL; ++ } ++ ++ /* Did somebody else fill it already? */ ++ if (PageUptodate(page)) { ++ unlock_page(page); ++ return page; ++ } ++ ++ return generic_file_buffered_read_readpage(iocb, filp, mapping, page); ++} ++ ++static struct page * ++generic_file_buffered_read_no_cached_page(struct kiocb *iocb, ++ struct iov_iter *iter) ++{ ++ struct file *filp = iocb->ki_filp; ++ struct address_space *mapping = filp->f_mapping; ++ pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; ++ struct page *page; ++ int error; ++ ++ if (iocb->ki_flags & IOCB_NOIO) ++ return ERR_PTR(-EAGAIN); ++ ++ /* ++ * Ok, it wasn't cached, so we need to create a new ++ * page.. ++ */ ++ page = page_cache_alloc(mapping); ++ if (!page) ++ return ERR_PTR(-ENOMEM); ++ ++ error = add_to_page_cache_lru(page, mapping, index, ++ mapping_gfp_constraint(mapping, GFP_KERNEL)); ++ if (error) { ++ put_page(page); ++ return error != -EEXIST ? ERR_PTR(error) : NULL; ++ } ++ ++ return generic_file_buffered_read_readpage(iocb, filp, mapping, page); ++} ++ ++static int generic_file_buffered_read_get_pages(struct kiocb *iocb, ++ struct iov_iter *iter, ++ struct page **pages, ++ unsigned int nr) ++{ ++ struct file *filp = iocb->ki_filp; ++ struct address_space *mapping = filp->f_mapping; ++ struct file_ra_state *ra = &filp->f_ra; ++ pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; ++ pgoff_t last_index = (iocb->ki_pos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; ++ int i, j, nr_got, err = 0; ++ ++ nr = min_t(unsigned long, last_index - index, nr); ++find_page: ++ if (fatal_signal_pending(current)) ++ return -EINTR; ++ ++ nr_got = find_get_pages_contig(mapping, index, nr, pages); ++ if (nr_got) ++ goto got_pages; ++ ++ if (iocb->ki_flags & IOCB_NOIO) ++ return -EAGAIN; ++ ++ page_cache_sync_readahead(mapping, ra, filp, index, last_index - index); ++ ++ nr_got = find_get_pages_contig(mapping, index, nr, pages); ++ if (nr_got) ++ goto got_pages; ++ ++ pages[0] = generic_file_buffered_read_no_cached_page(iocb, iter); ++ err = PTR_ERR_OR_ZERO(pages[0]); ++ if (!IS_ERR_OR_NULL(pages[0])) ++ nr_got = 1; ++got_pages: ++ for (i = 0; i < nr_got; i++) { ++ struct page *page = pages[i]; ++ pgoff_t pg_index = index + i; ++ loff_t pg_pos = max(iocb->ki_pos, ++ (loff_t) pg_index << PAGE_SHIFT); ++ loff_t pg_count = iocb->ki_pos + iter->count - pg_pos; ++ ++ if (PageReadahead(page)) { ++ if (iocb->ki_flags & IOCB_NOIO) { ++ for (j = i; j < nr_got; j++) ++ put_page(pages[j]); ++ nr_got = i; ++ err = -EAGAIN; ++ break; ++ } ++ page_cache_async_readahead(mapping, ra, filp, page, ++ pg_index, last_index - pg_index); ++ } ++ ++ if (!PageUptodate(page)) { ++ if ((iocb->ki_flags & IOCB_NOWAIT) || ++ ((iocb->ki_flags & IOCB_WAITQ) && i)) { ++ for (j = i; j < nr_got; j++) ++ put_page(pages[j]); ++ nr_got = i; ++ err = -EAGAIN; ++ break; ++ } ++ ++ page = generic_file_buffered_read_pagenotuptodate(iocb, ++ filp, iter, page, pg_pos, pg_count); ++ if (IS_ERR_OR_NULL(page)) { ++ for (j = i + 1; j < nr_got; j++) ++ put_page(pages[j]); ++ nr_got = i; ++ err = PTR_ERR_OR_ZERO(page); ++ break; ++ } ++ } ++ } ++ ++ if (likely(nr_got)) ++ return nr_got; ++ if (err) ++ return err; ++ /* ++ * No pages and no error means we raced and should retry: ++ */ ++ goto find_page; ++} ++ + /** + * generic_file_buffered_read - generic file read routine + * @iocb: the iocb to read +@@ -2158,276 +2509,116 @@ ssize_t generic_file_buffered_read(struct kiocb *iocb, + struct iov_iter *iter, ssize_t written) + { + struct file *filp = iocb->ki_filp; ++ struct file_ra_state *ra = &filp->f_ra; + struct address_space *mapping = filp->f_mapping; + struct inode *inode = mapping->host; +- struct file_ra_state *ra = &filp->f_ra; +- loff_t *ppos = &iocb->ki_pos; +- pgoff_t index; +- pgoff_t last_index; +- pgoff_t prev_index; +- unsigned long offset; /* offset into pagecache page */ +- unsigned int prev_offset; +- int error = 0; +- +- if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) ++ struct page *pages_onstack[PAGEVEC_SIZE], **pages = NULL; ++ unsigned int nr_pages = min_t(unsigned int, 512, ++ ((iocb->ki_pos + iter->count + PAGE_SIZE - 1) >> PAGE_SHIFT) - ++ (iocb->ki_pos >> PAGE_SHIFT)); ++ int i, pg_nr, error = 0; ++ bool writably_mapped; ++ loff_t isize, end_offset; ++ ++ if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) + return 0; + iov_iter_truncate(iter, inode->i_sb->s_maxbytes); + +- index = *ppos >> PAGE_SHIFT; +- prev_index = ra->prev_pos >> PAGE_SHIFT; +- prev_offset = ra->prev_pos & (PAGE_SIZE-1); +- last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; +- offset = *ppos & ~PAGE_MASK; ++ if (nr_pages > ARRAY_SIZE(pages_onstack)) ++ pages = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL); + +- for (;;) { +- struct page *page; +- pgoff_t end_index; +- loff_t isize; +- unsigned long nr, ret; ++ if (!pages) { ++ pages = pages_onstack; ++ nr_pages = min_t(unsigned int, nr_pages, ARRAY_SIZE(pages_onstack)); ++ } + ++ do { + cond_resched(); +-find_page: +- if (fatal_signal_pending(current)) { +- error = -EINTR; +- goto out; +- } + +- page = find_get_page(mapping, index); +- if (!page) { +- if (iocb->ki_flags & IOCB_NOIO) +- goto would_block; +- page_cache_sync_readahead(mapping, +- ra, filp, +- index, last_index - index); +- page = find_get_page(mapping, index); +- if (unlikely(page == NULL)) +- goto no_cached_page; +- } +- if (PageReadahead(page)) { +- if (iocb->ki_flags & IOCB_NOIO) { +- put_page(page); +- goto out; +- } +- page_cache_async_readahead(mapping, +- ra, filp, page, +- index, last_index - index); +- } +- if (!PageUptodate(page)) { +- /* +- * See comment in do_read_cache_page on why +- * wait_on_page_locked is used to avoid unnecessarily +- * serialisations and why it's safe. +- */ +- if (iocb->ki_flags & IOCB_WAITQ) { +- if (written) { +- put_page(page); +- goto out; +- } +- error = wait_on_page_locked_async(page, +- iocb->ki_waitq); +- } else { +- if (iocb->ki_flags & IOCB_NOWAIT) { +- put_page(page); +- goto would_block; +- } +- error = wait_on_page_locked_killable(page); +- } +- if (unlikely(error)) +- goto readpage_error; +- if (PageUptodate(page)) +- goto page_ok; +- +- if (inode->i_blkbits == PAGE_SHIFT || +- !mapping->a_ops->is_partially_uptodate) +- goto page_not_up_to_date; +- /* pipes can't handle partially uptodate pages */ +- if (unlikely(iov_iter_is_pipe(iter))) +- goto page_not_up_to_date; +- if (!trylock_page(page)) +- goto page_not_up_to_date; +- /* Did it get truncated before we got the lock? */ +- if (!page->mapping) +- goto page_not_up_to_date_locked; +- if (!mapping->a_ops->is_partially_uptodate(page, +- offset, iter->count)) +- goto page_not_up_to_date_locked; +- unlock_page(page); ++ /* ++ * We can't return -EIOCBQUEUED once we've done some work, so ++ * ensure we don't block: ++ */ ++ if ((iocb->ki_flags & IOCB_WAITQ) && written) ++ iocb->ki_flags |= IOCB_NOWAIT; ++ ++ i = 0; ++ pg_nr = generic_file_buffered_read_get_pages(iocb, iter, ++ pages, nr_pages); ++ if (pg_nr < 0) { ++ error = pg_nr; ++ break; + } +-page_ok: ++ + /* +- * i_size must be checked after we know the page is Uptodate. ++ * i_size must be checked after we know the pages are Uptodate. + * + * Checking i_size after the check allows us to calculate + * the correct value for "nr", which means the zero-filled + * part of the page is not copied back to userspace (unless + * another truncate extends the file - this is desired though). + */ +- + isize = i_size_read(inode); +- end_index = (isize - 1) >> PAGE_SHIFT; +- if (unlikely(!isize || index > end_index)) { +- put_page(page); +- goto out; +- } ++ if (unlikely(iocb->ki_pos >= isize)) ++ goto put_pages; + +- /* nr is the maximum number of bytes to copy from this page */ +- nr = PAGE_SIZE; +- if (index == end_index) { +- nr = ((isize - 1) & ~PAGE_MASK) + 1; +- if (nr <= offset) { +- put_page(page); +- goto out; +- } +- } +- nr = nr - offset; ++ end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); + +- /* If users can be writing to this page using arbitrary +- * virtual addresses, take care about potential aliasing +- * before reading the page on the kernel side. +- */ +- if (mapping_writably_mapped(mapping)) +- flush_dcache_page(page); ++ while ((iocb->ki_pos >> PAGE_SHIFT) + pg_nr > ++ (end_offset + PAGE_SIZE - 1) >> PAGE_SHIFT) ++ put_page(pages[--pg_nr]); + + /* +- * When a sequential read accesses a page several times, +- * only mark it as accessed the first time. ++ * Once we start copying data, we don't want to be touching any ++ * cachelines that might be contended: + */ +- if (prev_index != index || offset != prev_offset) +- mark_page_accessed(page); +- prev_index = index; ++ writably_mapped = mapping_writably_mapped(mapping); + + /* +- * Ok, we have the page, and it's up-to-date, so +- * now we can copy it to user space... ++ * When a sequential read accesses a page several times, only ++ * mark it as accessed the first time. + */ ++ if (iocb->ki_pos >> PAGE_SHIFT != ++ ra->prev_pos >> PAGE_SHIFT) ++ mark_page_accessed(pages[0]); ++ for (i = 1; i < pg_nr; i++) ++ mark_page_accessed(pages[i]); ++ ++ for (i = 0; i < pg_nr; i++) { ++ unsigned int offset = iocb->ki_pos & ~PAGE_MASK; ++ unsigned int bytes = min_t(loff_t, end_offset - iocb->ki_pos, ++ PAGE_SIZE - offset); ++ unsigned int copied; + +- ret = copy_page_to_iter(page, offset, nr, iter); +- offset += ret; +- index += offset >> PAGE_SHIFT; +- offset &= ~PAGE_MASK; +- prev_offset = offset; +- +- put_page(page); +- written += ret; +- if (!iov_iter_count(iter)) +- goto out; +- if (ret < nr) { +- error = -EFAULT; +- goto out; +- } +- continue; +- +-page_not_up_to_date: +- /* Get exclusive access to the page ... */ +- if (iocb->ki_flags & IOCB_WAITQ) +- error = lock_page_async(page, iocb->ki_waitq); +- else +- error = lock_page_killable(page); +- if (unlikely(error)) +- goto readpage_error; +- +-page_not_up_to_date_locked: +- /* Did it get truncated before we got the lock? */ +- if (!page->mapping) { +- unlock_page(page); +- put_page(page); +- continue; +- } +- +- /* Did somebody else fill it already? */ +- if (PageUptodate(page)) { +- unlock_page(page); +- goto page_ok; +- } ++ /* ++ * If users can be writing to this page using arbitrary ++ * virtual addresses, take care about potential aliasing ++ * before reading the page on the kernel side. ++ */ ++ if (writably_mapped) ++ flush_dcache_page(pages[i]); + +-readpage: +- if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) { +- unlock_page(page); +- put_page(page); +- goto would_block; +- } +- /* +- * A previous I/O error may have been due to temporary +- * failures, eg. multipath errors. +- * PG_error will be set again if readpage fails. +- */ +- ClearPageError(page); +- /* Start the actual read. The read will unlock the page. */ +- error = mapping->a_ops->readpage(filp, page); ++ copied = copy_page_to_iter(pages[i], offset, bytes, iter); + +- if (unlikely(error)) { +- if (error == AOP_TRUNCATED_PAGE) { +- put_page(page); +- error = 0; +- goto find_page; +- } +- goto readpage_error; +- } ++ written += copied; ++ iocb->ki_pos += copied; ++ ra->prev_pos = iocb->ki_pos; + +- if (!PageUptodate(page)) { +- if (iocb->ki_flags & IOCB_WAITQ) +- error = lock_page_async(page, iocb->ki_waitq); +- else +- error = lock_page_killable(page); +- +- if (unlikely(error)) +- goto readpage_error; +- if (!PageUptodate(page)) { +- if (page->mapping == NULL) { +- /* +- * invalidate_mapping_pages got it +- */ +- unlock_page(page); +- put_page(page); +- goto find_page; +- } +- unlock_page(page); +- shrink_readahead_size_eio(ra); +- error = -EIO; +- goto readpage_error; ++ if (copied < bytes) { ++ error = -EFAULT; ++ break; + } +- unlock_page(page); + } ++put_pages: ++ for (i = 0; i < pg_nr; i++) ++ put_page(pages[i]); ++ } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); + +- goto page_ok; +- +-readpage_error: +- /* UHHUH! A synchronous read error occurred. Report it */ +- put_page(page); +- goto out; +- +-no_cached_page: +- /* +- * Ok, it wasn't cached, so we need to create a new +- * page.. +- */ +- page = page_cache_alloc(mapping); +- if (!page) { +- error = -ENOMEM; +- goto out; +- } +- error = add_to_page_cache_lru(page, mapping, index, +- mapping_gfp_constraint(mapping, GFP_KERNEL)); +- if (error) { +- put_page(page); +- if (error == -EEXIST) { +- error = 0; +- goto find_page; +- } +- goto out; +- } +- goto readpage; +- } ++ file_accessed(filp); + +-would_block: +- error = -EAGAIN; +-out: +- ra->prev_pos = prev_index; +- ra->prev_pos <<= PAGE_SHIFT; +- ra->prev_pos |= prev_offset; ++ if (pages != pages_onstack) ++ kfree(pages); + +- *ppos = ((loff_t)index << PAGE_SHIFT) + offset; +- file_accessed(filp); + return written ? written : error; + } + EXPORT_SYMBOL_GPL(generic_file_buffered_read); +diff --git a/mm/gup.c b/mm/gup.c +index e869c634cc9a..9bfb3e933deb 100644 +--- a/mm/gup.c ++++ b/mm/gup.c +@@ -1085,6 +1085,13 @@ static long __get_user_pages(struct mm_struct *mm, + } + cond_resched(); + ++ if (current->faults_disabled_mapping && ++ vma->vm_file && ++ vma->vm_file->f_mapping == current->faults_disabled_mapping) { ++ ret = -EFAULT; ++ goto out; ++ } ++ + page = follow_page_mask(vma, start, foll_flags, &ctx); + if (!page) { + ret = faultin_page(vma, start, &foll_flags, locked); +diff --git a/mm/nommu.c b/mm/nommu.c +index 75a327149af1..fe0a77d01656 100644 +--- a/mm/nommu.c ++++ b/mm/nommu.c +@@ -290,6 +290,24 @@ void *vzalloc_node(unsigned long size, int node) + } + EXPORT_SYMBOL(vzalloc_node); + ++/** ++ * vmalloc_exec - allocate virtually contiguous, executable memory ++ * @size: allocation size ++ * ++ * Kernel-internal function to allocate enough pages to cover @size ++ * the page level allocator and map them into contiguous and ++ * executable kernel virtual space. ++ * ++ * For tight control over page level allocator and protection flags ++ * use __vmalloc() instead. ++ */ ++ ++void *vmalloc_exec(unsigned long size, gfp_t gfp_mask) ++{ ++ return __vmalloc(size, gfp_mask); ++} ++EXPORT_SYMBOL_GPL(vmalloc_exec); ++ + /** + * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) + * @size: allocation size +diff --git a/mm/page-writeback.c b/mm/page-writeback.c +index 4e4ddd67b71e..563cc766f511 100644 +--- a/mm/page-writeback.c ++++ b/mm/page-writeback.c +@@ -2475,20 +2475,19 @@ int __set_page_dirty_nobuffers(struct page *page) + lock_page_memcg(page); + if (!TestSetPageDirty(page)) { + struct address_space *mapping = page_mapping(page); +- unsigned long flags; + + if (!mapping) { + unlock_page_memcg(page); + return 1; + } + +- xa_lock_irqsave(&mapping->i_pages, flags); ++ xa_lock_irq(&mapping->i_pages); + BUG_ON(page_mapping(page) != mapping); + WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); + account_page_dirtied(page, mapping); + __xa_set_mark(&mapping->i_pages, page_index(page), + PAGECACHE_TAG_DIRTY); +- xa_unlock_irqrestore(&mapping->i_pages, flags); ++ xa_unlock_irq(&mapping->i_pages); + unlock_page_memcg(page); + + if (mapping->host) { +diff --git a/mm/vmalloc.c b/mm/vmalloc.c +index be4724b916b3..efd7f9dd1eb8 100644 +--- a/mm/vmalloc.c ++++ b/mm/vmalloc.c +@@ -2665,6 +2665,27 @@ void *vzalloc_node(unsigned long size, int node) + } + EXPORT_SYMBOL(vzalloc_node); + ++/** ++ * vmalloc_exec - allocate virtually contiguous, executable memory ++ * @size: allocation size ++ * ++ * Kernel-internal function to allocate enough pages to cover @size ++ * the page level allocator and map them into contiguous and ++ * executable kernel virtual space. ++ * ++ * For tight control over page level allocator and protection flags ++ * use __vmalloc() instead. ++ * ++ * Return: pointer to the allocated memory or %NULL on error ++ */ ++void *vmalloc_exec(unsigned long size, gfp_t gfp_mask) ++{ ++ return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, ++ gfp_mask, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, ++ NUMA_NO_NODE, __builtin_return_address(0)); ++} ++EXPORT_SYMBOL_GPL(vmalloc_exec); ++ + #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) + #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) + #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)