diff --git a/PKGBUILD b/PKGBUILD
index fd59b2e..67c1bb7 100644
--- a/PKGBUILD
+++ b/PKGBUILD
@@ -53,7 +53,7 @@ else
 fi
 pkgname=("${pkgbase}" "${pkgbase}-headers")
 pkgver="${_basekernel}"."${_sub}"
-pkgrel=150
+pkgrel=151
 pkgdesc='Linux-tkg'
 arch=('x86_64') # no i686 in here
 url="http://www.kernel.org/"
@@ -417,9 +417,9 @@ case $_basever in
         0002-clear-patches.patch
         0003-glitched-base.patch
         0003-glitched-cfs.patch
-        #0004-glitched-ondemand-muqss.patch
-        #0004-glitched-muqss.patch
-        #0004-5.12-ck1.patch
+        0004-glitched-ondemand-muqss.patch
+        0004-glitched-muqss.patch
+        0004-5.12-ck1.patch
         #0005-undead-glitched-ondemand-pds.patch
         #0005-undead-glitched-pds.patch
         #0005-v5.12_undead-pds099o.patch
@@ -446,6 +446,9 @@ case $_basever in
             '35a7cde86fb94939c0f25a62b8c47f3de0dbd3c65f876f460b263181b3e92fc0'
             '1ac97da07e72ec7e2b0923d32daacacfaa632a44c714d6942d9f143fe239e1b5'
             '7058e57fd68367b029adc77f2a82928f1433daaf02c8c279cb2d13556c8804d7'
+            'c605f638d74c61861ebdc36ebd4cb8b6475eae2f6273e1ccb2bbb3e10a2ec3fe'
+            'bc69d6e5ee8172b0242c8fa72d13cfe2b8d2b6601468836908a7dfe8b78a3bbb'
+            '742d12d2e2ab5b59245a897af6e7726b8d14ed39d5fd402faba23fa56382b87a'
             'fca63d15ca4502aebd73e76d7499b243d2c03db71ff5ab0bf5cf268b2e576320'
             '19661ec0d39f9663452b34433214c755179894528bf73a42f6ba52ccf572832a'
             'b302ba6c5bbe8ed19b20207505d513208fae1e678cf4d8e7ac0b154e5fe3f456'
diff --git a/linux-tkg-config/prepare b/linux-tkg-config/prepare
index c481199..82ee511 100644
--- a/linux-tkg-config/prepare
+++ b/linux-tkg-config/prepare
@@ -190,8 +190,8 @@ _tkg_initscript() {
     _CPUSCHEDARRAY=("Undead PDS (TkG)" "Project C / PDS" "Project C / BMQ" "MuQSS" "CFS")
     _CPUSCHEDVARARRAY=("upds" "pds" "bmq" "muqss" "MuQSS" "cfs")
   elif [ "$_basever" = "512" ]; then
-    _CPUSCHEDARRAY=("Project C / PDS" "Project C / BMQ" "CFS")
-    _CPUSCHEDVARARRAY=("pds" "bmq" "cfs")
+    _CPUSCHEDARRAY=("Project C / PDS" "Project C / BMQ" "MuQSS" "CFS")
+    _CPUSCHEDVARARRAY=("pds" "bmq" "muqss" "MuQSS" "cfs")
   else
     _CPUSCHEDARRAY=("CFS")
     _CPUSCHEDVARARRAY=("cfs")
@@ -534,6 +534,7 @@ _tkg_srcprep() {
     sed -i -e 's/CONFIG_RCU_BOOST_DELAY=500/CONFIG_RCU_BOOST_DELAY=0/' ./.config
   fi
   echo "# CONFIG_NTP_PPS is not set" >> ./.config
+  echo "# CPU_FREQ_DEFAULT_GOV_PERFORMANCE_NODEF is not set" >> ./.config
   sed -i -e 's/CONFIG_CRYPTO_LZ4=m/CONFIG_CRYPTO_LZ4=y/' ./.config
   sed -i -e 's/CONFIG_CRYPTO_LZ4HC=m/CONFIG_CRYPTO_LZ4HC=y/' ./.config
   sed -i -e 's/CONFIG_LZ4_COMPRESS=m/CONFIG_LZ4_COMPRESS=y/' ./.config
@@ -1033,6 +1034,7 @@ CONFIG_DEBUG_INFO_BTF_MODULES=y\n
   if [ "$_default_cpu_gov" = "performance" ]; then
     sed -i -e 's/CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL=y/# CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL is not set/' ./.config
     sed -i -e 's/# CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE is not set/CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE=y/' ./.config
+    sed -i -e 's/# CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE_NODEF is not set/CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE_NODEF=y/' ./.config
   elif [ "$_default_cpu_gov" = "ondemand" ]; then
     sed -i -e 's/CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL=y/# CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL is not set/' ./.config
     sed -i -e 's/# CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND is not set/CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND=y/' ./.config
diff --git a/linux-tkg-patches/5.12/0004-5.12-ck1.patch b/linux-tkg-patches/5.12/0004-5.12-ck1.patch
new file mode 100644
index 0000000..6ec495c
--- /dev/null
+++ b/linux-tkg-patches/5.12/0004-5.12-ck1.patch
@@ -0,0 +1,13808 @@
+diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
+index 04545725f187..647dcbf61424 100644
+--- a/Documentation/admin-guide/kernel-parameters.txt
++++ b/Documentation/admin-guide/kernel-parameters.txt
+@@ -4709,6 +4709,14 @@
+ 			Memory area to be used by remote processor image,
+ 			managed by CMA.
+ 
++	rqshare=	[X86] Select the MuQSS scheduler runqueue sharing type.
++			Format: <string>
++			smt -- Share SMT (hyperthread) sibling runqueues
++			mc -- Share MC (multicore) sibling runqueues
++			smp -- Share SMP runqueues
++			none -- So not share any runqueues
++			Default value is mc
++
+ 	rw		[KNL] Mount root device read-write on boot
+ 
+ 	S		[KNL] Run init in single mode
+diff --git a/Documentation/admin-guide/sysctl/kernel.rst b/Documentation/admin-guide/sysctl/kernel.rst
+index 1d56a6b73a4e..51d1903f999b 100644
+--- a/Documentation/admin-guide/sysctl/kernel.rst
++++ b/Documentation/admin-guide/sysctl/kernel.rst
+@@ -436,6 +436,16 @@ this allows system administrators to override the
+ ``IA64_THREAD_UAC_NOPRINT`` ``prctl`` and avoid logs being flooded.
+ 
+ 
++iso_cpu: (MuQSS CPU scheduler only)
++===================================
++
++This sets the percentage cpu that the unprivileged SCHED_ISO tasks can
++run effectively at realtime priority, averaged over a rolling five
++seconds over the -whole- system, meaning all cpus.
++
++Set to 70 (percent) by default.
++
++
+ kexec_load_disabled
+ ===================
+ 
+@@ -1077,6 +1087,20 @@ ROM/Flash boot loader. Maybe to tell it what to do after
+ rebooting. ???
+ 
+ 
++rr_interval: (MuQSS CPU scheduler only)
++=======================================
++
++This is the smallest duration that any cpu process scheduling unit
++will run for. Increasing this value can increase throughput of cpu
++bound tasks substantially but at the expense of increased latencies
++overall. Conversely decreasing it will decrease average and maximum
++latencies but at the expense of throughput. This value is in
++milliseconds and the default value chosen depends on the number of
++cpus available at scheduler initialisation with a minimum of 6.
++
++Valid values are from 1-1000.
++
++
+ sched_energy_aware
+ ==================
+ 
+@@ -1515,3 +1539,13 @@ is 10 seconds.
+ 
+ The softlockup threshold is (``2 * watchdog_thresh``). Setting this
+ tunable to zero will disable lockup detection altogether.
++
++
++yield_type: (MuQSS CPU scheduler only)
++======================================
++
++This determines what type of yield calls to sched_yield will perform.
++
++ 0: No yield.
++ 1: Yield only to better priority/deadline tasks. (default)
++ 2: Expire timeslice and recalculate deadline.
+diff --git a/Documentation/scheduler/sched-BFS.txt b/Documentation/scheduler/sched-BFS.txt
+new file mode 100644
+index 000000000000..c0282002a079
+--- /dev/null
++++ b/Documentation/scheduler/sched-BFS.txt
+@@ -0,0 +1,351 @@
++BFS - The Brain Fuck Scheduler by Con Kolivas.
++
++Goals.
++
++The goal of the Brain Fuck Scheduler, referred to as BFS from here on, is to
++completely do away with the complex designs of the past for the cpu process
++scheduler and instead implement one that is very simple in basic design.
++The main focus of BFS is to achieve excellent desktop interactivity and
++responsiveness without heuristics and tuning knobs that are difficult to
++understand, impossible to model and predict the effect of, and when tuned to
++one workload cause massive detriment to another.
++
++
++Design summary.
++
++BFS is best described as a single runqueue, O(n) lookup, earliest effective
++virtual deadline first design, loosely based on EEVDF (earliest eligible virtual
++deadline first) and my previous Staircase Deadline scheduler. Each component
++shall be described in order to understand the significance of, and reasoning for
++it. The codebase when the first stable version was released was approximately
++9000 lines less code than the existing mainline linux kernel scheduler (in
++2.6.31). This does not even take into account the removal of documentation and
++the cgroups code that is not used.
++
++Design reasoning.
++
++The single runqueue refers to the queued but not running processes for the
++entire system, regardless of the number of CPUs. The reason for going back to
++a single runqueue design is that once multiple runqueues are introduced,
++per-CPU or otherwise, there will be complex interactions as each runqueue will
++be responsible for the scheduling latency and fairness of the tasks only on its
++own runqueue, and to achieve fairness and low latency across multiple CPUs, any
++advantage in throughput of having CPU local tasks causes other disadvantages.
++This is due to requiring a very complex balancing system to at best achieve some
++semblance of fairness across CPUs and can only maintain relatively low latency
++for tasks bound to the same CPUs, not across them. To increase said fairness
++and latency across CPUs, the advantage of local runqueue locking, which makes
++for better scalability, is lost due to having to grab multiple locks.
++
++A significant feature of BFS is that all accounting is done purely based on CPU
++used and nowhere is sleep time used in any way to determine entitlement or
++interactivity. Interactivity "estimators" that use some kind of sleep/run
++algorithm are doomed to fail to detect all interactive tasks, and to falsely tag
++tasks that aren't interactive as being so. The reason for this is that it is
++close to impossible to determine that when a task is sleeping, whether it is
++doing it voluntarily, as in a userspace application waiting for input in the
++form of a mouse click or otherwise, or involuntarily, because it is waiting for
++another thread, process, I/O, kernel activity or whatever. Thus, such an
++estimator will introduce corner cases, and more heuristics will be required to
++cope with those corner cases, introducing more corner cases and failed
++interactivity detection and so on. Interactivity in BFS is built into the design
++by virtue of the fact that tasks that are waking up have not used up their quota
++of CPU time, and have earlier effective deadlines, thereby making it very likely
++they will preempt any CPU bound task of equivalent nice level. See below for
++more information on the virtual deadline mechanism. Even if they do not preempt
++a running task, because the rr interval is guaranteed to have a bound upper
++limit on how long a task will wait for, it will be scheduled within a timeframe
++that will not cause visible interface jitter.
++
++
++Design details.
++
++Task insertion.
++
++BFS inserts tasks into each relevant queue as an O(1) insertion into a double
++linked list. On insertion, *every* running queue is checked to see if the newly
++queued task can run on any idle queue, or preempt the lowest running task on the
++system. This is how the cross-CPU scheduling of BFS achieves significantly lower
++latency per extra CPU the system has. In this case the lookup is, in the worst
++case scenario, O(n) where n is the number of CPUs on the system.
++
++Data protection.
++
++BFS has one single lock protecting the process local data of every task in the
++global queue. Thus every insertion, removal and modification of task data in the
++global runqueue needs to grab the global lock. However, once a task is taken by
++a CPU, the CPU has its own local data copy of the running process' accounting
++information which only that CPU accesses and modifies (such as during a
++timer tick) thus allowing the accounting data to be updated lockless. Once a
++CPU has taken a task to run, it removes it from the global queue. Thus the
++global queue only ever has, at most,
++
++	(number of tasks requesting cpu time) - (number of logical CPUs) + 1
++
++tasks in the global queue. This value is relevant for the time taken to look up
++tasks during scheduling. This will increase if many tasks with CPU affinity set
++in their policy to limit which CPUs they're allowed to run on if they outnumber
++the number of CPUs. The +1 is because when rescheduling a task, the CPU's
++currently running task is put back on the queue. Lookup will be described after
++the virtual deadline mechanism is explained.
++
++Virtual deadline.
++
++The key to achieving low latency, scheduling fairness, and "nice level"
++distribution in BFS is entirely in the virtual deadline mechanism. The one
++tunable in BFS is the rr_interval, or "round robin interval". This is the
++maximum time two SCHED_OTHER (or SCHED_NORMAL, the common scheduling policy)
++tasks of the same nice level will be running for, or looking at it the other
++way around, the longest duration two tasks of the same nice level will be
++delayed for. When a task requests cpu time, it is given a quota (time_slice)
++equal to the rr_interval and a virtual deadline. The virtual deadline is
++offset from the current time in jiffies by this equation:
++
++	jiffies + (prio_ratio * rr_interval)
++
++The prio_ratio is determined as a ratio compared to the baseline of nice -20
++and increases by 10% per nice level. The deadline is a virtual one only in that
++no guarantee is placed that a task will actually be scheduled by this time, but
++it is used to compare which task should go next. There are three components to
++how a task is next chosen. First is time_slice expiration. If a task runs out
++of its time_slice, it is descheduled, the time_slice is refilled, and the
++deadline reset to that formula above. Second is sleep, where a task no longer
++is requesting CPU for whatever reason. The time_slice and deadline are _not_
++adjusted in this case and are just carried over for when the task is next
++scheduled. Third is preemption, and that is when a newly waking task is deemed
++higher priority than a currently running task on any cpu by virtue of the fact
++that it has an earlier virtual deadline than the currently running task. The
++earlier deadline is the key to which task is next chosen for the first and
++second cases. Once a task is descheduled, it is put back on the queue, and an
++O(n) lookup of all queued-but-not-running tasks is done to determine which has
++the earliest deadline and that task is chosen to receive CPU next.
++
++The CPU proportion of different nice tasks works out to be approximately the
++
++	(prio_ratio difference)^2
++
++The reason it is squared is that a task's deadline does not change while it is
++running unless it runs out of time_slice. Thus, even if the time actually
++passes the deadline of another task that is queued, it will not get CPU time
++unless the current running task deschedules, and the time "base" (jiffies) is
++constantly moving.
++
++Task lookup.
++
++BFS has 103 priority queues. 100 of these are dedicated to the static priority
++of realtime tasks, and the remaining 3 are, in order of best to worst priority,
++SCHED_ISO (isochronous), SCHED_NORMAL, and SCHED_IDLEPRIO (idle priority
++scheduling). When a task of these priorities is queued, a bitmap of running
++priorities is set showing which of these priorities has tasks waiting for CPU
++time. When a CPU is made to reschedule, the lookup for the next task to get
++CPU time is performed in the following way:
++
++First the bitmap is checked to see what static priority tasks are queued. If
++any realtime priorities are found, the corresponding queue is checked and the
++first task listed there is taken (provided CPU affinity is suitable) and lookup
++is complete. If the priority corresponds to a SCHED_ISO task, they are also
++taken in FIFO order (as they behave like SCHED_RR). If the priority corresponds
++to either SCHED_NORMAL or SCHED_IDLEPRIO, then the lookup becomes O(n). At this
++stage, every task in the runlist that corresponds to that priority is checked
++to see which has the earliest set deadline, and (provided it has suitable CPU
++affinity) it is taken off the runqueue and given the CPU. If a task has an
++expired deadline, it is taken and the rest of the lookup aborted (as they are
++chosen in FIFO order).
++
++Thus, the lookup is O(n) in the worst case only, where n is as described
++earlier, as tasks may be chosen before the whole task list is looked over.
++
++
++Scalability.
++
++The major limitations of BFS will be that of scalability, as the separate
++runqueue designs will have less lock contention as the number of CPUs rises.
++However they do not scale linearly even with separate runqueues as multiple
++runqueues will need to be locked concurrently on such designs to be able to
++achieve fair CPU balancing, to try and achieve some sort of nice-level fairness
++across CPUs, and to achieve low enough latency for tasks on a busy CPU when
++other CPUs would be more suited. BFS has the advantage that it requires no
++balancing algorithm whatsoever, as balancing occurs by proxy simply because
++all CPUs draw off the global runqueue, in priority and deadline order. Despite
++the fact that scalability is _not_ the prime concern of BFS, it both shows very
++good scalability to smaller numbers of CPUs and is likely a more scalable design
++at these numbers of CPUs.
++
++It also has some very low overhead scalability features built into the design
++when it has been deemed their overhead is so marginal that they're worth adding.
++The first is the local copy of the running process' data to the CPU it's running
++on to allow that data to be updated lockless where possible. Then there is
++deference paid to the last CPU a task was running on, by trying that CPU first
++when looking for an idle CPU to use the next time it's scheduled. Finally there
++is the notion of cache locality beyond the last running CPU. The sched_domains
++information is used to determine the relative virtual "cache distance" that
++other CPUs have from the last CPU a task was running on. CPUs with shared
++caches, such as SMT siblings, or multicore CPUs with shared caches, are treated
++as cache local. CPUs without shared caches are treated as not cache local, and
++CPUs on different NUMA nodes are treated as very distant. This "relative cache
++distance" is used by modifying the virtual deadline value when doing lookups.
++Effectively, the deadline is unaltered between "cache local" CPUs, doubled for
++"cache distant" CPUs, and quadrupled for "very distant" CPUs. The reasoning
++behind the doubling of deadlines is as follows. The real cost of migrating a
++task from one CPU to another is entirely dependant on the cache footprint of
++the task, how cache intensive the task is, how long it's been running on that
++CPU to take up the bulk of its cache, how big the CPU cache is, how fast and
++how layered the CPU cache is, how fast a context switch is... and so on. In
++other words, it's close to random in the real world where we do more than just
++one sole workload. The only thing we can be sure of is that it's not free. So
++BFS uses the principle that an idle CPU is a wasted CPU and utilising idle CPUs
++is more important than cache locality, and cache locality only plays a part
++after that. Doubling the effective deadline is based on the premise that the
++"cache local" CPUs will tend to work on the same tasks up to double the number
++of cache local CPUs, and once the workload is beyond that amount, it is likely
++that none of the tasks are cache warm anywhere anyway. The quadrupling for NUMA
++is a value I pulled out of my arse.
++
++When choosing an idle CPU for a waking task, the cache locality is determined
++according to where the task last ran and then idle CPUs are ranked from best
++to worst to choose the most suitable idle CPU based on cache locality, NUMA
++node locality and hyperthread sibling business. They are chosen in the
++following preference (if idle):
++
++* Same core, idle or busy cache, idle threads
++* Other core, same cache, idle or busy cache, idle threads.
++* Same node, other CPU, idle cache, idle threads.
++* Same node, other CPU, busy cache, idle threads.
++* Same core, busy threads.
++* Other core, same cache, busy threads.
++* Same node, other CPU, busy threads.
++* Other node, other CPU, idle cache, idle threads.
++* Other node, other CPU, busy cache, idle threads.
++* Other node, other CPU, busy threads.
++
++This shows the SMT or "hyperthread" awareness in the design as well which will
++choose a real idle core first before a logical SMT sibling which already has
++tasks on the physical CPU.
++
++Early benchmarking of BFS suggested scalability dropped off at the 16 CPU mark.
++However this benchmarking was performed on an earlier design that was far less
++scalable than the current one so it's hard to know how scalable it is in terms
++of both CPUs (due to the global runqueue) and heavily loaded machines (due to
++O(n) lookup) at this stage. Note that in terms of scalability, the number of
++_logical_ CPUs matters, not the number of _physical_ CPUs. Thus, a dual (2x)
++quad core (4X) hyperthreaded (2X) machine is effectively a 16X. Newer benchmark
++results are very promising indeed, without needing to tweak any knobs, features
++or options. Benchmark contributions are most welcome.
++
++
++Features
++
++As the initial prime target audience for BFS was the average desktop user, it
++was designed to not need tweaking, tuning or have features set to obtain benefit
++from it. Thus the number of knobs and features has been kept to an absolute
++minimum and should not require extra user input for the vast majority of cases.
++There are precisely 2 tunables, and 2 extra scheduling policies. The rr_interval
++and iso_cpu tunables, and the SCHED_ISO and SCHED_IDLEPRIO policies. In addition
++to this, BFS also uses sub-tick accounting. What BFS does _not_ now feature is
++support for CGROUPS. The average user should neither need to know what these
++are, nor should they need to be using them to have good desktop behaviour.
++
++rr_interval
++
++There is only one "scheduler" tunable, the round robin interval. This can be
++accessed in
++
++	/proc/sys/kernel/rr_interval
++
++The value is in milliseconds, and the default value is set to 6 on a
++uniprocessor machine, and automatically set to a progressively higher value on
++multiprocessor machines. The reasoning behind increasing the value on more CPUs
++is that the effective latency is decreased by virtue of there being more CPUs on
++BFS (for reasons explained above), and increasing the value allows for less
++cache contention and more throughput. Valid values are from 1 to 1000
++Decreasing the value will decrease latencies at the cost of decreasing
++throughput, while increasing it will improve throughput, but at the cost of
++worsening latencies. The accuracy of the rr interval is limited by HZ resolution
++of the kernel configuration. Thus, the worst case latencies are usually slightly
++higher than this actual value. The default value of 6 is not an arbitrary one.
++It is based on the fact that humans can detect jitter at approximately 7ms, so
++aiming for much lower latencies is pointless under most circumstances. It is
++worth noting this fact when comparing the latency performance of BFS to other
++schedulers. Worst case latencies being higher than 7ms are far worse than
++average latencies not being in the microsecond range.
++
++Isochronous scheduling.
++
++Isochronous scheduling is a unique scheduling policy designed to provide
++near-real-time performance to unprivileged (ie non-root) users without the
++ability to starve the machine indefinitely. Isochronous tasks (which means
++"same time") are set using, for example, the schedtool application like so:
++
++	schedtool -I -e amarok
++
++This will start the audio application "amarok" as SCHED_ISO. How SCHED_ISO works
++is that it has a priority level between true realtime tasks and SCHED_NORMAL
++which would allow them to preempt all normal tasks, in a SCHED_RR fashion (ie,
++if multiple SCHED_ISO tasks are running, they purely round robin at rr_interval
++rate). However if ISO tasks run for more than a tunable finite amount of time,
++they are then demoted back to SCHED_NORMAL scheduling. This finite amount of
++time is the percentage of _total CPU_ available across the machine, configurable
++as a percentage in the following "resource handling" tunable (as opposed to a
++scheduler tunable):
++
++	/proc/sys/kernel/iso_cpu
++
++and is set to 70% by default. It is calculated over a rolling 5 second average
++Because it is the total CPU available, it means that on a multi CPU machine, it
++is possible to have an ISO task running as realtime scheduling indefinitely on
++just one CPU, as the other CPUs will be available. Setting this to 100 is the
++equivalent of giving all users SCHED_RR access and setting it to 0 removes the
++ability to run any pseudo-realtime tasks.
++
++A feature of BFS is that it detects when an application tries to obtain a
++realtime policy (SCHED_RR or SCHED_FIFO) and the caller does not have the
++appropriate privileges to use those policies. When it detects this, it will
++give the task SCHED_ISO policy instead. Thus it is transparent to the user.
++Because some applications constantly set their policy as well as their nice
++level, there is potential for them to undo the override specified by the user
++on the command line of setting the policy to SCHED_ISO. To counter this, once
++a task has been set to SCHED_ISO policy, it needs superuser privileges to set
++it back to SCHED_NORMAL. This will ensure the task remains ISO and all child
++processes and threads will also inherit the ISO policy.
++
++Idleprio scheduling.
++
++Idleprio scheduling is a scheduling policy designed to give out CPU to a task
++_only_ when the CPU would be otherwise idle. The idea behind this is to allow
++ultra low priority tasks to be run in the background that have virtually no
++effect on the foreground tasks. This is ideally suited to distributed computing
++clients (like setiathome, folding, mprime etc) but can also be used to start
++a video encode or so on without any slowdown of other tasks. To avoid this
++policy from grabbing shared resources and holding them indefinitely, if it
++detects a state where the task is waiting on I/O, the machine is about to
++suspend to ram and so on, it will transiently schedule them as SCHED_NORMAL. As
++per the Isochronous task management, once a task has been scheduled as IDLEPRIO,
++it cannot be put back to SCHED_NORMAL without superuser privileges. Tasks can
++be set to start as SCHED_IDLEPRIO with the schedtool command like so:
++
++	schedtool -D -e ./mprime
++
++Subtick accounting.
++
++It is surprisingly difficult to get accurate CPU accounting, and in many cases,
++the accounting is done by simply determining what is happening at the precise
++moment a timer tick fires off. This becomes increasingly inaccurate as the
++timer tick frequency (HZ) is lowered. It is possible to create an application
++which uses almost 100% CPU, yet by being descheduled at the right time, records
++zero CPU usage. While the main problem with this is that there are possible
++security implications, it is also difficult to determine how much CPU a task
++really does use. BFS tries to use the sub-tick accounting from the TSC clock,
++where possible, to determine real CPU usage. This is not entirely reliable, but
++is far more likely to produce accurate CPU usage data than the existing designs
++and will not show tasks as consuming no CPU usage when they actually are. Thus,
++the amount of CPU reported as being used by BFS will more accurately represent
++how much CPU the task itself is using (as is shown for example by the 'time'
++application), so the reported values may be quite different to other schedulers.
++Values reported as the 'load' are more prone to problems with this design, but
++per process values are closer to real usage. When comparing throughput of BFS
++to other designs, it is important to compare the actual completed work in terms
++of total wall clock time taken and total work done, rather than the reported
++"cpu usage".
++
++
++Con Kolivas <kernel@kolivas.org> Fri Aug 27 2010
+diff --git a/Documentation/scheduler/sched-MuQSS.txt b/Documentation/scheduler/sched-MuQSS.txt
+new file mode 100644
+index 000000000000..ae28b85c9995
+--- /dev/null
++++ b/Documentation/scheduler/sched-MuQSS.txt
+@@ -0,0 +1,373 @@
++MuQSS - The Multiple Queue Skiplist Scheduler by Con Kolivas.
++
++MuQSS is a per-cpu runqueue variant of the original BFS scheduler with
++one 8 level skiplist per runqueue, and fine grained locking for much more
++scalability.
++
++
++Goals.
++
++The goal of the Multiple Queue Skiplist Scheduler, referred to as MuQSS from
++here on (pronounced mux) is to completely do away with the complex designs of
++the past for the cpu process scheduler and instead implement one that is very
++simple in basic design. The main focus of MuQSS is to achieve excellent desktop
++interactivity and responsiveness without heuristics and tuning knobs that are
++difficult to understand, impossible to model and predict the effect of, and when
++tuned to one workload cause massive detriment to another, while still being
++scalable to many CPUs and processes.
++
++
++Design summary.
++
++MuQSS is best described as per-cpu multiple runqueue, O(log n) insertion, O(1)
++lookup, earliest effective virtual deadline first tickless design, loosely based
++on EEVDF (earliest eligible virtual deadline first) and my previous Staircase
++Deadline scheduler, and evolved from the single runqueue O(n) BFS scheduler.
++Each component shall be described in order to understand the significance of,
++and reasoning for it.
++
++
++Design reasoning.
++
++In BFS, the use of a single runqueue across all CPUs meant that each CPU would
++need to scan the entire runqueue looking for the process with the earliest
++deadline and schedule that next, regardless of which CPU it originally came
++from. This made BFS deterministic with respect to latency and provided
++guaranteed latencies dependent on number of processes and CPUs. The single
++runqueue, however, meant that all CPUs would compete for the single lock
++protecting it, which would lead to increasing lock contention as the number of
++CPUs rose and appeared to limit scalability of common workloads beyond 16
++logical CPUs. Additionally, the O(n) lookup of the runqueue list obviously
++increased overhead proportionate to the number of queued proecesses and led to
++cache thrashing while iterating over the linked list.
++
++MuQSS is an evolution of BFS, designed to maintain the same scheduling
++decision mechanism and be virtually deterministic without relying on the
++constrained design of the single runqueue by splitting out the single runqueue
++to be per-CPU and use skiplists instead of linked lists.
++
++The original reason for going back to a single runqueue design for BFS was that
++once multiple runqueues are introduced, per-CPU or otherwise, there will be
++complex interactions as each runqueue will be responsible for the scheduling
++latency and fairness of the tasks only on its own runqueue, and to achieve
++fairness and low latency across multiple CPUs, any advantage in throughput of
++having CPU local tasks causes other disadvantages. This is due to requiring a
++very complex balancing system to at best achieve some semblance of fairness
++across CPUs and can only maintain relatively low latency for tasks bound to the
++same CPUs, not across them. To increase said fairness and latency across CPUs,
++the advantage of local runqueue locking, which makes for better scalability, is
++lost due to having to grab multiple locks.
++
++MuQSS works around the problems inherent in multiple runqueue designs by
++making its skip lists priority ordered and through novel use of lockless
++examination of each other runqueue it can decide if it should take the earliest
++deadline task from another runqueue for latency reasons, or for CPU balancing
++reasons. It still does not have a balancing system, choosing to allow the
++next task scheduling decision and task wakeup CPU choice to allow balancing to
++happen by virtue of its choices.
++
++As a further evolution of the design, MuQSS normally configures sharing of
++runqueues in a logical fashion for when CPU resources are shared for improved
++latency and throughput. By default it shares runqueues and locks between
++multicore siblings. Optionally it can be configured to run with sharing of
++SMT siblings only, all SMP packages or no sharing at all. Additionally it can
++be selected at boot time.
++
++
++Design details.
++
++Custom skip list implementation:
++
++To avoid the overhead of building up and tearing down skip list structures,
++the variant used by MuQSS has a number of optimisations making it specific for
++its use case in the scheduler. It uses static arrays of 8 'levels' instead of
++building up and tearing down structures dynamically. This makes each runqueue
++only scale O(log N) up to 64k tasks. However as there is one runqueue per CPU
++it means that it scales O(log N) up to 64k x number of logical CPUs which is
++far beyond the realistic task limits each CPU could handle. By being 8 levels
++it also makes the array exactly one cacheline in size. Additionally, each
++skip list node is bidirectional making insertion and removal amortised O(1),
++being O(k) where k is 1-8. Uniquely, we are only ever interested in the very
++first entry in each list at all times with MuQSS, so there is never a need to
++do a search and thus look up is always O(1). In interactive mode, the queues
++will be searched beyond their first entry if the first task is not suitable
++for affinity or SMT nice reasons.
++
++Task insertion:
++
++MuQSS inserts tasks into a per CPU runqueue as an O(log N) insertion into
++a custom skip list as described above (based on the original design by William
++Pugh). Insertion is ordered in such a way that there is never a need to do a
++search by ordering tasks according to static priority primarily, and then
++virtual deadline at the time of insertion.
++
++Niffies:
++
++Niffies are a monotonic forward moving timer not unlike the "jiffies" but are
++of nanosecond resolution. Niffies are calculated per-runqueue from the high
++resolution TSC timers, and in order to maintain fairness are synchronised
++between CPUs whenever both runqueues are locked concurrently.
++
++Virtual deadline:
++
++The key to achieving low latency, scheduling fairness, and "nice level"
++distribution in MuQSS is entirely in the virtual deadline mechanism. The one
++tunable in MuQSS is the rr_interval, or "round robin interval". This is the
++maximum time two SCHED_OTHER (or SCHED_NORMAL, the common scheduling policy)
++tasks of the same nice level will be running for, or looking at it the other
++way around, the longest duration two tasks of the same nice level will be
++delayed for. When a task requests cpu time, it is given a quota (time_slice)
++equal to the rr_interval and a virtual deadline. The virtual deadline is
++offset from the current time in niffies by this equation:
++
++	niffies + (prio_ratio * rr_interval)
++
++The prio_ratio is determined as a ratio compared to the baseline of nice -20
++and increases by 10% per nice level. The deadline is a virtual one only in that
++no guarantee is placed that a task will actually be scheduled by this time, but
++it is used to compare which task should go next. There are three components to
++how a task is next chosen. First is time_slice expiration. If a task runs out
++of its time_slice, it is descheduled, the time_slice is refilled, and the
++deadline reset to that formula above. Second is sleep, where a task no longer
++is requesting CPU for whatever reason. The time_slice and deadline are _not_
++adjusted in this case and are just carried over for when the task is next
++scheduled. Third is preemption, and that is when a newly waking task is deemed
++higher priority than a currently running task on any cpu by virtue of the fact
++that it has an earlier virtual deadline than the currently running task. The
++earlier deadline is the key to which task is next chosen for the first and
++second cases.
++
++The CPU proportion of different nice tasks works out to be approximately the
++
++	(prio_ratio difference)^2
++
++The reason it is squared is that a task's deadline does not change while it is
++running unless it runs out of time_slice. Thus, even if the time actually
++passes the deadline of another task that is queued, it will not get CPU time
++unless the current running task deschedules, and the time "base" (niffies) is
++constantly moving.
++
++Task lookup:
++
++As tasks are already pre-ordered according to anticipated scheduling order in
++the skip lists, lookup for the next suitable task per-runqueue is always a
++matter of simply selecting the first task in the 0th level skip list entry.
++In order to maintain optimal latency and fairness across CPUs, MuQSS does a
++novel examination of every other runqueue in cache locality order, choosing the
++best task across all runqueues. This provides near-determinism of how long any
++task across the entire system may wait before receiving CPU time. The other
++runqueues are first examine lockless and then trylocked to minimise the
++potential lock contention if they are likely to have a suitable better task.
++Each other runqueue lock is only held for as long as it takes to examine the
++entry for suitability. In "interactive" mode, the default setting, MuQSS will
++look for the best deadline task across all CPUs, while in !interactive mode,
++it will only select a better deadline task from another CPU if it is more
++heavily laden than the current one.
++
++Lookup is therefore O(k) where k is number of CPUs.
++
++
++Latency.
++
++Through the use of virtual deadlines to govern the scheduling order of normal
++tasks, queue-to-activation latency per runqueue is guaranteed to be bound by
++the rr_interval tunable which is set to 6ms by default. This means that the
++longest a CPU bound task will wait for more CPU is proportional to the number
++of running tasks and in the common case of 0-2 running tasks per CPU, will be
++under the 7ms threshold for human perception of jitter. Additionally, as newly
++woken tasks will have an early deadline from their previous runtime, the very
++tasks that are usually latency sensitive will have the shortest interval for
++activation, usually preempting any existing CPU bound tasks.
++
++Tickless expiry:
++
++A feature of MuQSS is that it is not tied to the resolution of the chosen tick
++rate in Hz, instead depending entirely on the high resolution timers where
++possible for sub-millisecond accuracy on timeouts regarless of the underlying
++tick rate. This allows MuQSS to be run with the low overhead of low Hz rates
++such as 100 by default, benefiting from the improved throughput and lower
++power usage it provides. Another advantage of this approach is that in
++combination with the Full No HZ option, which disables ticks on running task
++CPUs instead of just idle CPUs, the tick can be disabled at all times
++regardless of how many tasks are running instead of being limited to just one
++running task. Note that this option is NOT recommended for regular desktop
++users.
++
++
++Scalability and balancing.
++
++Unlike traditional approaches where balancing is a combination of CPU selection
++at task wakeup and intermittent balancing based on a vast array of rules set
++according to architecture, busyness calculations and special case management,
++MuQSS indirectly balances on the fly at task wakeup and next task selection.
++During initialisation, MuQSS creates a cache coherency ordered list of CPUs for
++each logical CPU and uses this to aid task/CPU selection when CPUs are busy.
++Additionally it selects any idle CPUs, if they are available, at any time over
++busy CPUs according to the following preference:
++
++ * Same thread, idle or busy cache, idle or busy threads
++ * Other core, same cache, idle or busy cache, idle threads.
++ * Same node, other CPU, idle cache, idle threads.
++ * Same node, other CPU, busy cache, idle threads.
++ * Other core, same cache, busy threads.
++ * Same node, other CPU, busy threads.
++ * Other node, other CPU, idle cache, idle threads.
++ * Other node, other CPU, busy cache, idle threads.
++ * Other node, other CPU, busy threads.
++
++Mux is therefore SMT, MC and Numa aware without the need for extra
++intermittent balancing to maintain CPUs busy and make the most of cache
++coherency.
++
++
++Features
++
++As the initial prime target audience for MuQSS was the average desktop user, it
++was designed to not need tweaking, tuning or have features set to obtain benefit
++from it. Thus the number of knobs and features has been kept to an absolute
++minimum and should not require extra user input for the vast majority of cases.
++There are 3 optional tunables, and 2 extra scheduling policies. The rr_interval,
++interactive, and iso_cpu tunables, and the SCHED_ISO and SCHED_IDLEPRIO
++policies. In addition to this, MuQSS also uses sub-tick accounting. What MuQSS
++does _not_ now feature is support for CGROUPS. The average user should neither
++need to know what these are, nor should they need to be using them to have good
++desktop behaviour. However since some applications refuse to work without
++cgroups, one can enable them with MuQSS as a stub and the filesystem will be
++created which will allow the applications to work.
++
++rr_interval:
++
++	/proc/sys/kernel/rr_interval
++
++The value is in milliseconds, and the default value is set to 6. Valid values
++are from 1 to 1000 Decreasing the value will decrease latencies at the cost of
++decreasing throughput, while increasing it will improve throughput, but at the
++cost of worsening latencies. It is based on the fact that humans can detect
++jitter at approximately 7ms, so aiming for much lower latencies is pointless
++under most circumstances. It is worth noting this fact when comparing the
++latency performance of MuQSS to other schedulers. Worst case latencies being
++higher than 7ms are far worse than average latencies not being in the
++microsecond range.
++
++interactive:
++
++	/proc/sys/kernel/interactive
++
++The value is a simple boolean of 1 for on and 0 for off and is set to on by
++default. Disabling this will disable the near-determinism of MuQSS when
++selecting the next task by not examining all CPUs for the earliest deadline
++task, or which CPU to wake to, instead prioritising CPU balancing for improved
++throughput. Latency will still be bound by rr_interval, but on a per-CPU basis
++instead of across the whole system.
++
++Runqueue sharing.
++
++By default MuQSS chooses to share runqueue resources (specifically the skip
++list and locking) between multicore siblings. It is configurable at build time
++to select between None, SMT, MC and SMP, corresponding to no sharing, sharing
++only between simultaneous mulithreading siblings, multicore siblings, or
++symmetric multiprocessing physical packages. Additionally it can be se at
++bootime with the use of the rqshare parameter. The reason for configurability
++is that some architectures have CPUs with many multicore siblings (>= 16)
++where it may be detrimental to throughput to share runqueues and another
++sharing option may be desirable. Additionally, more sharing than usual can
++improve latency on a system-wide level at the expense of throughput if desired.
++
++The options are:
++none, smt, mc, smp
++
++eg:
++	rqshare=mc
++
++Isochronous scheduling:
++
++Isochronous scheduling is a unique scheduling policy designed to provide
++near-real-time performance to unprivileged (ie non-root) users without the
++ability to starve the machine indefinitely. Isochronous tasks (which means
++"same time") are set using, for example, the schedtool application like so:
++
++	schedtool -I -e amarok
++
++This will start the audio application "amarok" as SCHED_ISO. How SCHED_ISO works
++is that it has a priority level between true realtime tasks and SCHED_NORMAL
++which would allow them to preempt all normal tasks, in a SCHED_RR fashion (ie,
++if multiple SCHED_ISO tasks are running, they purely round robin at rr_interval
++rate). However if ISO tasks run for more than a tunable finite amount of time,
++they are then demoted back to SCHED_NORMAL scheduling. This finite amount of
++time is the percentage of CPU available per CPU, configurable as a percentage in
++the following "resource handling" tunable (as opposed to a scheduler tunable):
++
++iso_cpu:
++
++	/proc/sys/kernel/iso_cpu
++
++and is set to 70% by default. It is calculated over a rolling 5 second average
++Because it is the total CPU available, it means that on a multi CPU machine, it
++is possible to have an ISO task running as realtime scheduling indefinitely on
++just one CPU, as the other CPUs will be available. Setting this to 100 is the
++equivalent of giving all users SCHED_RR access and setting it to 0 removes the
++ability to run any pseudo-realtime tasks.
++
++A feature of MuQSS is that it detects when an application tries to obtain a
++realtime policy (SCHED_RR or SCHED_FIFO) and the caller does not have the
++appropriate privileges to use those policies. When it detects this, it will
++give the task SCHED_ISO policy instead. Thus it is transparent to the user.
++
++
++Idleprio scheduling:
++
++Idleprio scheduling is a scheduling policy designed to give out CPU to a task
++_only_ when the CPU would be otherwise idle. The idea behind this is to allow
++ultra low priority tasks to be run in the background that have virtually no
++effect on the foreground tasks. This is ideally suited to distributed computing
++clients (like setiathome, folding, mprime etc) but can also be used to start a
++video encode or so on without any slowdown of other tasks. To avoid this policy
++from grabbing shared resources and holding them indefinitely, if it detects a
++state where the task is waiting on I/O, the machine is about to suspend to ram
++and so on, it will transiently schedule them as SCHED_NORMAL. Once a task has
++been scheduled as IDLEPRIO, it cannot be put back to SCHED_NORMAL without
++superuser privileges since it is effectively a lower scheduling policy. Tasks
++can be set to start as SCHED_IDLEPRIO with the schedtool command like so:
++
++schedtool -D -e ./mprime
++
++Subtick accounting:
++
++It is surprisingly difficult to get accurate CPU accounting, and in many cases,
++the accounting is done by simply determining what is happening at the precise
++moment a timer tick fires off. This becomes increasingly inaccurate as the timer
++tick frequency (HZ) is lowered. It is possible to create an application which
++uses almost 100% CPU, yet by being descheduled at the right time, records zero
++CPU usage. While the main problem with this is that there are possible security
++implications, it is also difficult to determine how much CPU a task really does
++use. Mux uses sub-tick accounting from the TSC clock to determine real CPU
++usage. Thus, the amount of CPU reported as being used by MuQSS will more
++accurately represent how much CPU the task itself is using (as is shown for
++example by the 'time' application), so the reported values may be quite
++different to other schedulers. When comparing throughput of MuQSS to other
++designs, it is important to compare the actual completed work in terms of total
++wall clock time taken and total work done, rather than the reported "cpu usage".
++
++Symmetric MultiThreading (SMT) aware nice:
++
++SMT, a.k.a. hyperthreading, is a very common feature on modern CPUs. While the
++logical CPU count rises by adding thread units to each CPU core, allowing more
++than one task to be run simultaneously on the same core, the disadvantage of it
++is that the CPU power is shared between the tasks, not summating to the power
++of two CPUs. The practical upshot of this is that two tasks running on
++separate threads of the same core run significantly slower than if they had one
++core each to run on. While smart CPU selection allows each task to have a core
++to itself whenever available (as is done on MuQSS), it cannot offset the
++slowdown that occurs when the cores are all loaded and only a thread is left.
++Most of the time this is harmless as the CPU is effectively overloaded at this
++point and the extra thread is of benefit. However when running a niced task in
++the presence of an un-niced task (say nice 19 v nice 0), the nice task gets
++precisely the same amount of CPU power as the unniced one. MuQSS has an
++optional configuration feature known as SMT-NICE which selectively idles the
++secondary niced thread for a period proportional to the nice difference,
++allowing CPU distribution according to nice level to be maintained, at the
++expense of a small amount of extra overhead. If this is configured in on a
++machine without SMT threads, the overhead is minimal.
++
++
++Con Kolivas <kernel@kolivas.org> Sat, 29th October 2016
+diff --git a/Makefile b/Makefile
+index 3a10a8e08b6d..66562954af0b 100644
+--- a/Makefile
++++ b/Makefile
+@@ -18,6 +18,10 @@ $(if $(filter __%, $(MAKECMDGOALS)), \
+ PHONY := __all
+ __all:
+ 
++CKVERSION = -ck1
++CKNAME = MuQSS Powered
++EXTRAVERSION := $(EXTRAVERSION)$(CKVERSION)
++
+ # We are using a recursive build, so we need to do a little thinking
+ # to get the ordering right.
+ #
+diff --git a/arch/alpha/Kconfig b/arch/alpha/Kconfig
+index 5998106faa60..e1a963484289 100644
+--- a/arch/alpha/Kconfig
++++ b/arch/alpha/Kconfig
+@@ -674,6 +674,8 @@ config HZ
+ 	default 1200 if HZ_1200
+ 	default 1024
+ 
++source "kernel/Kconfig.MuQSS"
++
+ config SRM_ENV
+ 	tristate "SRM environment through procfs"
+ 	depends on PROC_FS
+diff --git a/arch/arc/configs/tb10x_defconfig b/arch/arc/configs/tb10x_defconfig
+index a12656ec0072..b46b6ddc7636 100644
+--- a/arch/arc/configs/tb10x_defconfig
++++ b/arch/arc/configs/tb10x_defconfig
+@@ -29,7 +29,7 @@ CONFIG_ARC_PLAT_TB10X=y
+ CONFIG_ARC_CACHE_LINE_SHIFT=5
+ CONFIG_HZ=250
+ CONFIG_ARC_BUILTIN_DTB_NAME="abilis_tb100_dvk"
+-CONFIG_PREEMPT_VOLUNTARY=y
++CONFIG_PREEMPT=y
+ # CONFIG_COMPACTION is not set
+ CONFIG_NET=y
+ CONFIG_PACKET=y
+diff --git a/arch/arm/Kconfig b/arch/arm/Kconfig
+index 2fae14857dcf..487f2be7e8b0 100644
+--- a/arch/arm/Kconfig
++++ b/arch/arm/Kconfig
+@@ -1194,6 +1194,8 @@ config SCHED_SMT
+ 	  MultiThreading at a cost of slightly increased overhead in some
+ 	  places. If unsure say N here.
+ 
++source "kernel/Kconfig.MuQSS"
++
+ config HAVE_ARM_SCU
+ 	bool
+ 	help
+diff --git a/arch/arm/configs/bcm2835_defconfig b/arch/arm/configs/bcm2835_defconfig
+index 383c632eba7b..d665d180c3e0 100644
+--- a/arch/arm/configs/bcm2835_defconfig
++++ b/arch/arm/configs/bcm2835_defconfig
+@@ -28,7 +28,7 @@ CONFIG_MODULE_UNLOAD=y
+ CONFIG_ARCH_MULTI_V6=y
+ CONFIG_ARCH_BCM=y
+ CONFIG_ARCH_BCM2835=y
+-CONFIG_PREEMPT_VOLUNTARY=y
++CONFIG_PREEMPT=y
+ CONFIG_AEABI=y
+ CONFIG_KSM=y
+ CONFIG_CLEANCACHE=y
+diff --git a/arch/arm/configs/imx_v6_v7_defconfig b/arch/arm/configs/imx_v6_v7_defconfig
+index 70928cc48939..111d464529fa 100644
+--- a/arch/arm/configs/imx_v6_v7_defconfig
++++ b/arch/arm/configs/imx_v6_v7_defconfig
+@@ -33,6 +33,7 @@ CONFIG_PCI_MSI=y
+ CONFIG_PCI_IMX6=y
+ CONFIG_SMP=y
+ CONFIG_ARM_PSCI=y
++CONFIG_PREEMPT=y
+ CONFIG_HIGHMEM=y
+ CONFIG_FORCE_MAX_ZONEORDER=14
+ CONFIG_CMDLINE="noinitrd console=ttymxc0,115200"
+diff --git a/arch/arm/configs/mps2_defconfig b/arch/arm/configs/mps2_defconfig
+index 1d923dbb9928..9c1931f1fafd 100644
+--- a/arch/arm/configs/mps2_defconfig
++++ b/arch/arm/configs/mps2_defconfig
+@@ -18,7 +18,7 @@ CONFIG_ARCH_MPS2=y
+ CONFIG_SET_MEM_PARAM=y
+ CONFIG_DRAM_BASE=0x21000000
+ CONFIG_DRAM_SIZE=0x1000000
+-CONFIG_PREEMPT_VOLUNTARY=y
++CONFIG_PREEMPT=y
+ # CONFIG_ATAGS is not set
+ CONFIG_ZBOOT_ROM_TEXT=0x0
+ CONFIG_ZBOOT_ROM_BSS=0x0
+diff --git a/arch/arm/configs/mxs_defconfig b/arch/arm/configs/mxs_defconfig
+index ca32446b187f..a208de638877 100644
+--- a/arch/arm/configs/mxs_defconfig
++++ b/arch/arm/configs/mxs_defconfig
+@@ -1,7 +1,7 @@
+ CONFIG_SYSVIPC=y
+ CONFIG_NO_HZ=y
+ CONFIG_HIGH_RES_TIMERS=y
+-CONFIG_PREEMPT_VOLUNTARY=y
++CONFIG_PREEMPT_VOLUNTARY=n
+ CONFIG_TASKSTATS=y
+ CONFIG_TASK_DELAY_ACCT=y
+ CONFIG_TASK_XACCT=y
+@@ -25,6 +25,13 @@ CONFIG_MODULE_UNLOAD=y
+ CONFIG_MODULE_FORCE_UNLOAD=y
+ CONFIG_MODVERSIONS=y
+ CONFIG_BLK_DEV_INTEGRITY=y
++# CONFIG_IOSCHED_DEADLINE is not set
++# CONFIG_IOSCHED_CFQ is not set
++# CONFIG_ARCH_MULTI_V7 is not set
++CONFIG_ARCH_MXS=y
++# CONFIG_ARM_THUMB is not set
++CONFIG_PREEMPT=y
++CONFIG_AEABI=y
+ CONFIG_NET=y
+ CONFIG_PACKET=y
+ CONFIG_UNIX=y
+diff --git a/arch/arm64/Kconfig b/arch/arm64/Kconfig
+index dfdc3e0af5e1..29d05f33c431 100644
+--- a/arch/arm64/Kconfig
++++ b/arch/arm64/Kconfig
+@@ -994,6 +994,8 @@ config SCHED_SMT
+ 	  MultiThreading at a cost of slightly increased overhead in some
+ 	  places. If unsure say N here.
+ 
++source "kernel/Kconfig.MuQSS"
++
+ config NR_CPUS
+ 	int "Maximum number of CPUs (2-4096)"
+ 	range 2 4096
+diff --git a/arch/mips/configs/fuloong2e_defconfig b/arch/mips/configs/fuloong2e_defconfig
+index 5c24ac7fdf56..8de540dbc54a 100644
+--- a/arch/mips/configs/fuloong2e_defconfig
++++ b/arch/mips/configs/fuloong2e_defconfig
+@@ -4,7 +4,7 @@ CONFIG_SYSVIPC=y
+ CONFIG_POSIX_MQUEUE=y
+ CONFIG_NO_HZ=y
+ CONFIG_HIGH_RES_TIMERS=y
+-CONFIG_PREEMPT_VOLUNTARY=y
++CONFIG_PREEMPT=y
+ CONFIG_BSD_PROCESS_ACCT=y
+ CONFIG_IKCONFIG=y
+ CONFIG_IKCONFIG_PROC=y
+diff --git a/arch/mips/configs/gpr_defconfig b/arch/mips/configs/gpr_defconfig
+index 5cb91509bb7c..31497e931a55 100644
+--- a/arch/mips/configs/gpr_defconfig
++++ b/arch/mips/configs/gpr_defconfig
+@@ -1,8 +1,8 @@
++CONFIG_PREEMPT=y
+ # CONFIG_LOCALVERSION_AUTO is not set
+ CONFIG_SYSVIPC=y
+ CONFIG_POSIX_MQUEUE=y
+ CONFIG_HIGH_RES_TIMERS=y
+-CONFIG_PREEMPT_VOLUNTARY=y
+ CONFIG_BSD_PROCESS_ACCT=y
+ CONFIG_BSD_PROCESS_ACCT_V3=y
+ CONFIG_RELAY=y
+diff --git a/arch/mips/configs/ip22_defconfig b/arch/mips/configs/ip22_defconfig
+index 21a1168ae301..529a1b1007cf 100644
+--- a/arch/mips/configs/ip22_defconfig
++++ b/arch/mips/configs/ip22_defconfig
+@@ -1,7 +1,7 @@
+ CONFIG_SYSVIPC=y
+ CONFIG_NO_HZ=y
+ CONFIG_HIGH_RES_TIMERS=y
+-CONFIG_PREEMPT_VOLUNTARY=y
++CONFIG_PREEMPT=y
+ CONFIG_IKCONFIG=y
+ CONFIG_IKCONFIG_PROC=y
+ CONFIG_LOG_BUF_SHIFT=14
+diff --git a/arch/mips/configs/ip28_defconfig b/arch/mips/configs/ip28_defconfig
+index 0921ef38e9fb..6da05cef46f8 100644
+--- a/arch/mips/configs/ip28_defconfig
++++ b/arch/mips/configs/ip28_defconfig
+@@ -1,5 +1,5 @@
+ CONFIG_SYSVIPC=y
+-CONFIG_PREEMPT_VOLUNTARY=y
++CONFIG_PREEMPT=y
+ CONFIG_IKCONFIG=y
+ CONFIG_IKCONFIG_PROC=y
+ CONFIG_LOG_BUF_SHIFT=14
+diff --git a/arch/mips/configs/jazz_defconfig b/arch/mips/configs/jazz_defconfig
+index 8c223035921f..a3bf87450343 100644
+--- a/arch/mips/configs/jazz_defconfig
++++ b/arch/mips/configs/jazz_defconfig
+@@ -1,8 +1,8 @@
++CONFIG_PREEMPT=y
+ CONFIG_SYSVIPC=y
+ CONFIG_POSIX_MQUEUE=y
+ CONFIG_NO_HZ=y
+ CONFIG_HIGH_RES_TIMERS=y
+-CONFIG_PREEMPT_VOLUNTARY=y
+ CONFIG_BSD_PROCESS_ACCT=y
+ CONFIG_LOG_BUF_SHIFT=14
+ CONFIG_RELAY=y
+diff --git a/arch/mips/configs/mtx1_defconfig b/arch/mips/configs/mtx1_defconfig
+index 205d3b34528c..0bf59b3116d3 100644
+--- a/arch/mips/configs/mtx1_defconfig
++++ b/arch/mips/configs/mtx1_defconfig
+@@ -1,8 +1,8 @@
++CONFIG_PREEMPT=y
+ # CONFIG_LOCALVERSION_AUTO is not set
+ CONFIG_SYSVIPC=y
+ CONFIG_POSIX_MQUEUE=y
+ CONFIG_AUDIT=y
+-CONFIG_PREEMPT_VOLUNTARY=y
+ CONFIG_BSD_PROCESS_ACCT=y
+ CONFIG_BSD_PROCESS_ACCT_V3=y
+ CONFIG_RELAY=y
+diff --git a/arch/mips/configs/nlm_xlr_defconfig b/arch/mips/configs/nlm_xlr_defconfig
+index bf9b9244929e..81af5e0e3518 100644
+--- a/arch/mips/configs/nlm_xlr_defconfig
++++ b/arch/mips/configs/nlm_xlr_defconfig
+@@ -1,10 +1,10 @@
++CONFIG_PREEMPT=y
+ # CONFIG_LOCALVERSION_AUTO is not set
+ CONFIG_SYSVIPC=y
+ CONFIG_POSIX_MQUEUE=y
+ CONFIG_AUDIT=y
+ CONFIG_NO_HZ=y
+ CONFIG_HIGH_RES_TIMERS=y
+-CONFIG_PREEMPT_VOLUNTARY=y
+ CONFIG_BSD_PROCESS_ACCT=y
+ CONFIG_BSD_PROCESS_ACCT_V3=y
+ CONFIG_TASKSTATS=y
+diff --git a/arch/mips/configs/pic32mzda_defconfig b/arch/mips/configs/pic32mzda_defconfig
+index 63fe2da1b37f..7f08ee237345 100644
+--- a/arch/mips/configs/pic32mzda_defconfig
++++ b/arch/mips/configs/pic32mzda_defconfig
+@@ -1,7 +1,7 @@
++CONFIG_PREEMPT=y
+ CONFIG_SYSVIPC=y
+ CONFIG_NO_HZ=y
+ CONFIG_HIGH_RES_TIMERS=y
+-CONFIG_PREEMPT_VOLUNTARY=y
+ CONFIG_IKCONFIG=y
+ CONFIG_IKCONFIG_PROC=y
+ CONFIG_LOG_BUF_SHIFT=14
+diff --git a/arch/mips/configs/pistachio_defconfig b/arch/mips/configs/pistachio_defconfig
+index b9adf15ebbec..0025b56dc300 100644
+--- a/arch/mips/configs/pistachio_defconfig
++++ b/arch/mips/configs/pistachio_defconfig
+@@ -1,9 +1,9 @@
++CONFIG_PREEMPT=y
+ # CONFIG_LOCALVERSION_AUTO is not set
+ CONFIG_DEFAULT_HOSTNAME="localhost"
+ CONFIG_SYSVIPC=y
+ CONFIG_NO_HZ=y
+ CONFIG_HIGH_RES_TIMERS=y
+-CONFIG_PREEMPT_VOLUNTARY=y
+ CONFIG_IKCONFIG=m
+ CONFIG_IKCONFIG_PROC=y
+ CONFIG_LOG_BUF_SHIFT=18
+diff --git a/arch/mips/configs/rm200_defconfig b/arch/mips/configs/rm200_defconfig
+index 3dc2da2bee0d..fb6594366531 100644
+--- a/arch/mips/configs/rm200_defconfig
++++ b/arch/mips/configs/rm200_defconfig
+@@ -1,6 +1,6 @@
++CONFIG_PREEMPT=y
+ CONFIG_SYSVIPC=y
+ CONFIG_POSIX_MQUEUE=y
+-CONFIG_PREEMPT_VOLUNTARY=y
+ CONFIG_BSD_PROCESS_ACCT=y
+ CONFIG_IKCONFIG=y
+ CONFIG_IKCONFIG_PROC=y
+diff --git a/arch/parisc/configs/712_defconfig b/arch/parisc/configs/712_defconfig
+new file mode 100644
+index 000000000000..578524f80cc4
+--- /dev/null
++++ b/arch/parisc/configs/712_defconfig
+@@ -0,0 +1,181 @@
++# CONFIG_LOCALVERSION_AUTO is not set
++CONFIG_SYSVIPC=y
++CONFIG_POSIX_MQUEUE=y
++CONFIG_IKCONFIG=y
++CONFIG_IKCONFIG_PROC=y
++CONFIG_LOG_BUF_SHIFT=16
++CONFIG_BLK_DEV_INITRD=y
++CONFIG_KALLSYMS_ALL=y
++CONFIG_SLAB=y
++CONFIG_PROFILING=y
++CONFIG_OPROFILE=m
++CONFIG_MODULES=y
++CONFIG_MODULE_UNLOAD=y
++CONFIG_MODULE_FORCE_UNLOAD=y
++CONFIG_PA7100LC=y
++CONFIG_PREEMPT=y
++CONFIG_GSC_LASI=y
++# CONFIG_PDC_CHASSIS is not set
++CONFIG_BINFMT_MISC=m
++CONFIG_NET=y
++CONFIG_PACKET=y
++CONFIG_UNIX=y
++CONFIG_XFRM_USER=m
++CONFIG_NET_KEY=m
++CONFIG_INET=y
++CONFIG_IP_MULTICAST=y
++CONFIG_IP_PNP=y
++CONFIG_IP_PNP_DHCP=y
++CONFIG_IP_PNP_BOOTP=y
++CONFIG_INET_AH=m
++CONFIG_INET_ESP=m
++CONFIG_INET_DIAG=m
++# CONFIG_IPV6 is not set
++CONFIG_NETFILTER=y
++CONFIG_LLC2=m
++CONFIG_NET_PKTGEN=m
++CONFIG_DEVTMPFS=y
++CONFIG_DEVTMPFS_MOUNT=y
++# CONFIG_STANDALONE is not set
++# CONFIG_PREVENT_FIRMWARE_BUILD is not set
++CONFIG_PARPORT=y
++CONFIG_PARPORT_PC=m
++CONFIG_BLK_DEV_LOOP=y
++CONFIG_BLK_DEV_CRYPTOLOOP=y
++CONFIG_BLK_DEV_RAM=y
++CONFIG_BLK_DEV_RAM_SIZE=6144
++CONFIG_ATA_OVER_ETH=m
++CONFIG_SCSI=y
++CONFIG_BLK_DEV_SD=y
++CONFIG_CHR_DEV_ST=y
++CONFIG_BLK_DEV_SR=y
++CONFIG_CHR_DEV_SG=y
++CONFIG_SCSI_ISCSI_ATTRS=m
++CONFIG_SCSI_LASI700=y
++CONFIG_SCSI_DEBUG=m
++CONFIG_MD=y
++CONFIG_BLK_DEV_MD=m
++CONFIG_MD_LINEAR=m
++CONFIG_MD_RAID0=m
++CONFIG_MD_RAID1=m
++CONFIG_NETDEVICES=y
++CONFIG_BONDING=m
++CONFIG_DUMMY=m
++CONFIG_TUN=m
++CONFIG_LASI_82596=y
++CONFIG_PPP=m
++CONFIG_PPP_BSDCOMP=m
++CONFIG_PPP_DEFLATE=m
++CONFIG_PPP_MPPE=m
++CONFIG_PPPOE=m
++CONFIG_PPP_ASYNC=m
++CONFIG_PPP_SYNC_TTY=m
++# CONFIG_KEYBOARD_HIL_OLD is not set
++CONFIG_MOUSE_SERIAL=m
++CONFIG_LEGACY_PTY_COUNT=64
++CONFIG_SERIAL_8250=y
++CONFIG_SERIAL_8250_CONSOLE=y
++CONFIG_SERIAL_8250_NR_UARTS=17
++CONFIG_SERIAL_8250_EXTENDED=y
++CONFIG_SERIAL_8250_MANY_PORTS=y
++CONFIG_SERIAL_8250_SHARE_IRQ=y
++# CONFIG_SERIAL_MUX is not set
++CONFIG_PDC_CONSOLE=y
++CONFIG_PRINTER=m
++CONFIG_PPDEV=m
++# CONFIG_HW_RANDOM is not set
++CONFIG_RAW_DRIVER=y
++# CONFIG_HWMON is not set
++CONFIG_FB=y
++CONFIG_FB_MODE_HELPERS=y
++CONFIG_FB_TILEBLITTING=y
++CONFIG_DUMMY_CONSOLE_COLUMNS=128
++CONFIG_DUMMY_CONSOLE_ROWS=48
++CONFIG_FRAMEBUFFER_CONSOLE=y
++CONFIG_LOGO=y
++# CONFIG_LOGO_LINUX_MONO is not set
++# CONFIG_LOGO_LINUX_VGA16 is not set
++# CONFIG_LOGO_LINUX_CLUT224 is not set
++CONFIG_SOUND=y
++CONFIG_SND=y
++CONFIG_SND_SEQUENCER=y
++CONFIG_SND_HARMONY=y
++CONFIG_EXT2_FS=y
++CONFIG_EXT3_FS=y
++CONFIG_JFS_FS=m
++CONFIG_XFS_FS=m
++CONFIG_AUTOFS4_FS=y
++CONFIG_ISO9660_FS=y
++CONFIG_JOLIET=y
++CONFIG_UDF_FS=m
++CONFIG_MSDOS_FS=m
++CONFIG_VFAT_FS=m
++CONFIG_PROC_KCORE=y
++CONFIG_TMPFS=y
++CONFIG_UFS_FS=m
++CONFIG_NFS_FS=y
++CONFIG_NFS_V4=y
++CONFIG_ROOT_NFS=y
++CONFIG_NFSD=m
++CONFIG_NFSD_V4=y
++CONFIG_CIFS=m
++CONFIG_NLS_CODEPAGE_437=m
++CONFIG_NLS_CODEPAGE_737=m
++CONFIG_NLS_CODEPAGE_775=m
++CONFIG_NLS_CODEPAGE_850=m
++CONFIG_NLS_CODEPAGE_852=m
++CONFIG_NLS_CODEPAGE_855=m
++CONFIG_NLS_CODEPAGE_857=m
++CONFIG_NLS_CODEPAGE_860=m
++CONFIG_NLS_CODEPAGE_861=m
++CONFIG_NLS_CODEPAGE_862=m
++CONFIG_NLS_CODEPAGE_863=m
++CONFIG_NLS_CODEPAGE_864=m
++CONFIG_NLS_CODEPAGE_865=m
++CONFIG_NLS_CODEPAGE_866=m
++CONFIG_NLS_CODEPAGE_869=m
++CONFIG_NLS_CODEPAGE_936=m
++CONFIG_NLS_CODEPAGE_950=m
++CONFIG_NLS_CODEPAGE_932=m
++CONFIG_NLS_CODEPAGE_949=m
++CONFIG_NLS_CODEPAGE_874=m
++CONFIG_NLS_ISO8859_8=m
++CONFIG_NLS_CODEPAGE_1250=m
++CONFIG_NLS_CODEPAGE_1251=m
++CONFIG_NLS_ASCII=m
++CONFIG_NLS_ISO8859_1=m
++CONFIG_NLS_ISO8859_2=m
++CONFIG_NLS_ISO8859_3=m
++CONFIG_NLS_ISO8859_4=m
++CONFIG_NLS_ISO8859_5=m
++CONFIG_NLS_ISO8859_6=m
++CONFIG_NLS_ISO8859_7=m
++CONFIG_NLS_ISO8859_9=m
++CONFIG_NLS_ISO8859_13=m
++CONFIG_NLS_ISO8859_14=m
++CONFIG_NLS_ISO8859_15=m
++CONFIG_NLS_KOI8_R=m
++CONFIG_NLS_KOI8_U=m
++CONFIG_NLS_UTF8=m
++CONFIG_DEBUG_FS=y
++CONFIG_MAGIC_SYSRQ=y
++CONFIG_DEBUG_KERNEL=y
++CONFIG_DEBUG_MUTEXES=y
++CONFIG_CRYPTO_TEST=m
++CONFIG_CRYPTO_HMAC=y
++CONFIG_CRYPTO_MICHAEL_MIC=m
++CONFIG_CRYPTO_SHA512=m
++CONFIG_CRYPTO_TGR192=m
++CONFIG_CRYPTO_WP512=m
++CONFIG_CRYPTO_ANUBIS=m
++CONFIG_CRYPTO_BLOWFISH=m
++CONFIG_CRYPTO_CAST6=m
++CONFIG_CRYPTO_KHAZAD=m
++CONFIG_CRYPTO_SERPENT=m
++CONFIG_CRYPTO_TEA=m
++CONFIG_CRYPTO_TWOFISH=m
++CONFIG_CRYPTO_DEFLATE=m
++# CONFIG_CRYPTO_HW is not set
++CONFIG_FONTS=y
++CONFIG_FONT_8x8=y
++CONFIG_FONT_8x16=y
+diff --git a/arch/parisc/configs/c3000_defconfig b/arch/parisc/configs/c3000_defconfig
+new file mode 100644
+index 000000000000..d1bdfad94048
+--- /dev/null
++++ b/arch/parisc/configs/c3000_defconfig
+@@ -0,0 +1,151 @@
++# CONFIG_LOCALVERSION_AUTO is not set
++CONFIG_SYSVIPC=y
++CONFIG_IKCONFIG=y
++CONFIG_IKCONFIG_PROC=y
++CONFIG_LOG_BUF_SHIFT=16
++CONFIG_BLK_DEV_INITRD=y
++CONFIG_EXPERT=y
++CONFIG_KALLSYMS_ALL=y
++CONFIG_SLAB=y
++CONFIG_PROFILING=y
++CONFIG_OPROFILE=m
++CONFIG_MODULES=y
++CONFIG_MODULE_UNLOAD=y
++CONFIG_MODULE_FORCE_UNLOAD=y
++CONFIG_PA8X00=y
++CONFIG_PREEMPT=y
++# CONFIG_GSC is not set
++CONFIG_PCI=y
++CONFIG_PCI_LBA=y
++# CONFIG_PDC_CHASSIS is not set
++CONFIG_NET=y
++CONFIG_PACKET=y
++CONFIG_UNIX=y
++CONFIG_XFRM_USER=m
++CONFIG_NET_KEY=m
++CONFIG_INET=y
++CONFIG_IP_MULTICAST=y
++CONFIG_IP_PNP=y
++CONFIG_IP_PNP_BOOTP=y
++# CONFIG_INET_DIAG is not set
++CONFIG_INET6_IPCOMP=m
++CONFIG_IPV6_TUNNEL=m
++CONFIG_NETFILTER=y
++CONFIG_NET_PKTGEN=m
++CONFIG_DEVTMPFS=y
++CONFIG_DEVTMPFS_MOUNT=y
++# CONFIG_STANDALONE is not set
++# CONFIG_PREVENT_FIRMWARE_BUILD is not set
++CONFIG_BLK_DEV_UMEM=m
++CONFIG_BLK_DEV_LOOP=y
++CONFIG_BLK_DEV_CRYPTOLOOP=m
++CONFIG_IDE=y
++CONFIG_BLK_DEV_IDECD=y
++CONFIG_BLK_DEV_NS87415=y
++CONFIG_SCSI=y
++CONFIG_BLK_DEV_SD=y
++CONFIG_CHR_DEV_ST=y
++CONFIG_BLK_DEV_SR=y
++CONFIG_CHR_DEV_SG=y
++CONFIG_SCSI_ISCSI_ATTRS=m
++CONFIG_SCSI_SYM53C8XX_2=y
++CONFIG_SCSI_SYM53C8XX_DMA_ADDRESSING_MODE=0
++CONFIG_SCSI_DEBUG=m
++CONFIG_MD=y
++CONFIG_BLK_DEV_MD=y
++CONFIG_MD_LINEAR=y
++CONFIG_MD_RAID0=y
++CONFIG_MD_RAID1=y
++CONFIG_BLK_DEV_DM=m
++CONFIG_DM_CRYPT=m
++CONFIG_DM_SNAPSHOT=m
++CONFIG_DM_MIRROR=m
++CONFIG_DM_ZERO=m
++CONFIG_DM_MULTIPATH=m
++CONFIG_FUSION=y
++CONFIG_FUSION_SPI=m
++CONFIG_FUSION_CTL=m
++CONFIG_NETDEVICES=y
++CONFIG_BONDING=m
++CONFIG_DUMMY=m
++CONFIG_TUN=m
++CONFIG_ACENIC=m
++CONFIG_TIGON3=m
++CONFIG_NET_TULIP=y
++CONFIG_DE2104X=m
++CONFIG_TULIP=y
++CONFIG_TULIP_MMIO=y
++CONFIG_E100=m
++CONFIG_E1000=m
++CONFIG_PPP=m
++CONFIG_PPP_BSDCOMP=m
++CONFIG_PPP_DEFLATE=m
++CONFIG_PPPOE=m
++CONFIG_PPP_ASYNC=m
++CONFIG_PPP_SYNC_TTY=m
++# CONFIG_KEYBOARD_ATKBD is not set
++# CONFIG_MOUSE_PS2 is not set
++CONFIG_SERIO=m
++CONFIG_SERIO_LIBPS2=m
++CONFIG_SERIAL_8250=y
++CONFIG_SERIAL_8250_CONSOLE=y
++CONFIG_SERIAL_8250_NR_UARTS=13
++CONFIG_SERIAL_8250_EXTENDED=y
++CONFIG_SERIAL_8250_MANY_PORTS=y
++CONFIG_SERIAL_8250_SHARE_IRQ=y
++# CONFIG_HW_RANDOM is not set
++CONFIG_RAW_DRIVER=y
++# CONFIG_HWMON is not set
++CONFIG_FB=y
++CONFIG_FRAMEBUFFER_CONSOLE=y
++CONFIG_LOGO=y
++# CONFIG_LOGO_LINUX_MONO is not set
++# CONFIG_LOGO_LINUX_VGA16 is not set
++# CONFIG_LOGO_LINUX_CLUT224 is not set
++CONFIG_SOUND=y
++CONFIG_SND=y
++CONFIG_SND_SEQUENCER=y
++CONFIG_SND_AD1889=y
++CONFIG_USB_HIDDEV=y
++CONFIG_USB=y
++CONFIG_USB_OHCI_HCD=y
++CONFIG_USB_PRINTER=m
++CONFIG_USB_STORAGE=m
++CONFIG_USB_STORAGE_USBAT=m
++CONFIG_USB_STORAGE_SDDR09=m
++CONFIG_USB_STORAGE_SDDR55=m
++CONFIG_USB_STORAGE_JUMPSHOT=m
++CONFIG_USB_MDC800=m
++CONFIG_USB_MICROTEK=m
++CONFIG_USB_LEGOTOWER=m
++CONFIG_EXT2_FS=y
++CONFIG_EXT3_FS=y
++CONFIG_XFS_FS=m
++CONFIG_AUTOFS4_FS=y
++CONFIG_ISO9660_FS=y
++CONFIG_JOLIET=y
++CONFIG_MSDOS_FS=m
++CONFIG_VFAT_FS=m
++CONFIG_PROC_KCORE=y
++CONFIG_TMPFS=y
++CONFIG_NFS_FS=y
++CONFIG_ROOT_NFS=y
++CONFIG_NFSD=y
++CONFIG_NFSD_V3=y
++CONFIG_NLS_CODEPAGE_437=m
++CONFIG_NLS_CODEPAGE_850=m
++CONFIG_NLS_ASCII=m
++CONFIG_NLS_ISO8859_1=m
++CONFIG_NLS_ISO8859_15=m
++CONFIG_NLS_UTF8=m
++CONFIG_DEBUG_FS=y
++CONFIG_HEADERS_INSTALL=y
++CONFIG_HEADERS_CHECK=y
++CONFIG_MAGIC_SYSRQ=y
++CONFIG_DEBUG_MUTEXES=y
++# CONFIG_DEBUG_BUGVERBOSE is not set
++CONFIG_CRYPTO_TEST=m
++CONFIG_CRYPTO_MD5=m
++CONFIG_CRYPTO_BLOWFISH=m
++CONFIG_CRYPTO_DES=m
++# CONFIG_CRYPTO_HW is not set
+diff --git a/arch/parisc/configs/defconfig b/arch/parisc/configs/defconfig
+new file mode 100644
+index 000000000000..0d976614934c
+--- /dev/null
++++ b/arch/parisc/configs/defconfig
+@@ -0,0 +1,206 @@
++# CONFIG_LOCALVERSION_AUTO is not set
++CONFIG_SYSVIPC=y
++CONFIG_POSIX_MQUEUE=y
++CONFIG_IKCONFIG=y
++CONFIG_IKCONFIG_PROC=y
++CONFIG_LOG_BUF_SHIFT=16
++CONFIG_BLK_DEV_INITRD=y
++CONFIG_KALLSYMS_ALL=y
++CONFIG_SLAB=y
++CONFIG_PROFILING=y
++CONFIG_OPROFILE=m
++CONFIG_MODULES=y
++CONFIG_MODULE_UNLOAD=y
++CONFIG_MODULE_FORCE_UNLOAD=y
++# CONFIG_BLK_DEV_BSG is not set
++CONFIG_PA7100LC=y
++CONFIG_PREEMPT=y
++CONFIG_IOMMU_CCIO=y
++CONFIG_GSC_LASI=y
++CONFIG_GSC_WAX=y
++CONFIG_EISA=y
++CONFIG_PCI=y
++CONFIG_GSC_DINO=y
++CONFIG_PCI_LBA=y
++CONFIG_PCCARD=y
++CONFIG_YENTA=y
++CONFIG_PD6729=y
++CONFIG_I82092=y
++CONFIG_BINFMT_MISC=m
++CONFIG_NET=y
++CONFIG_PACKET=y
++CONFIG_UNIX=y
++CONFIG_XFRM_USER=m
++CONFIG_NET_KEY=m
++CONFIG_INET=y
++CONFIG_IP_MULTICAST=y
++CONFIG_IP_PNP=y
++CONFIG_IP_PNP_DHCP=y
++CONFIG_IP_PNP_BOOTP=y
++CONFIG_INET_AH=m
++CONFIG_INET_ESP=m
++CONFIG_INET_DIAG=m
++CONFIG_INET6_AH=y
++CONFIG_INET6_ESP=y
++CONFIG_INET6_IPCOMP=y
++CONFIG_LLC2=m
++CONFIG_DEVTMPFS=y
++CONFIG_DEVTMPFS_MOUNT=y
++# CONFIG_STANDALONE is not set
++# CONFIG_PREVENT_FIRMWARE_BUILD is not set
++CONFIG_PARPORT=y
++CONFIG_PARPORT_PC=m
++CONFIG_PARPORT_PC_PCMCIA=m
++CONFIG_PARPORT_1284=y
++CONFIG_BLK_DEV_LOOP=y
++CONFIG_BLK_DEV_CRYPTOLOOP=y
++CONFIG_BLK_DEV_RAM=y
++CONFIG_BLK_DEV_RAM_SIZE=6144
++CONFIG_IDE=y
++CONFIG_BLK_DEV_IDECS=y
++CONFIG_BLK_DEV_IDECD=y
++CONFIG_BLK_DEV_GENERIC=y
++CONFIG_BLK_DEV_NS87415=y
++CONFIG_SCSI=y
++CONFIG_BLK_DEV_SD=y
++CONFIG_CHR_DEV_ST=y
++CONFIG_BLK_DEV_SR=y
++CONFIG_CHR_DEV_SG=y
++CONFIG_SCSI_LASI700=y
++CONFIG_SCSI_SYM53C8XX_2=y
++CONFIG_SCSI_ZALON=y
++CONFIG_MD=y
++CONFIG_BLK_DEV_MD=y
++CONFIG_MD_LINEAR=y
++CONFIG_MD_RAID0=y
++CONFIG_MD_RAID1=y
++CONFIG_MD_RAID10=y
++CONFIG_BLK_DEV_DM=y
++CONFIG_NETDEVICES=y
++CONFIG_BONDING=m
++CONFIG_DUMMY=m
++CONFIG_TUN=m
++CONFIG_ACENIC=y
++CONFIG_TIGON3=y
++CONFIG_NET_TULIP=y
++CONFIG_TULIP=y
++CONFIG_LASI_82596=y
++CONFIG_PPP=m
++CONFIG_PPP_BSDCOMP=m
++CONFIG_PPP_DEFLATE=m
++CONFIG_PPPOE=m
++CONFIG_PPP_ASYNC=m
++CONFIG_PPP_SYNC_TTY=m
++# CONFIG_KEYBOARD_HIL_OLD is not set
++CONFIG_MOUSE_SERIAL=y
++CONFIG_LEGACY_PTY_COUNT=64
++CONFIG_SERIAL_8250=y
++CONFIG_SERIAL_8250_CONSOLE=y
++CONFIG_SERIAL_8250_CS=y
++CONFIG_SERIAL_8250_NR_UARTS=17
++CONFIG_SERIAL_8250_EXTENDED=y
++CONFIG_SERIAL_8250_MANY_PORTS=y
++CONFIG_SERIAL_8250_SHARE_IRQ=y
++CONFIG_PRINTER=m
++CONFIG_PPDEV=m
++# CONFIG_HW_RANDOM is not set
++# CONFIG_HWMON is not set
++CONFIG_FB=y
++CONFIG_FB_MODE_HELPERS=y
++CONFIG_FB_TILEBLITTING=y
++CONFIG_DUMMY_CONSOLE_COLUMNS=128
++CONFIG_DUMMY_CONSOLE_ROWS=48
++CONFIG_FRAMEBUFFER_CONSOLE=y
++CONFIG_LOGO=y
++# CONFIG_LOGO_LINUX_MONO is not set
++# CONFIG_LOGO_LINUX_VGA16 is not set
++# CONFIG_LOGO_LINUX_CLUT224 is not set
++CONFIG_SOUND=y
++CONFIG_SND=y
++CONFIG_SND_DYNAMIC_MINORS=y
++CONFIG_SND_SEQUENCER=y
++CONFIG_SND_AD1889=y
++CONFIG_SND_HARMONY=y
++CONFIG_HID_GYRATION=y
++CONFIG_HID_NTRIG=y
++CONFIG_HID_PANTHERLORD=y
++CONFIG_HID_PETALYNX=y
++CONFIG_HID_SAMSUNG=y
++CONFIG_HID_SUNPLUS=y
++CONFIG_HID_TOPSEED=y
++CONFIG_USB=y
++CONFIG_USB_MON=y
++CONFIG_USB_OHCI_HCD=y
++CONFIG_USB_UHCI_HCD=y
++CONFIG_EXT2_FS=y
++CONFIG_EXT3_FS=y
++CONFIG_ISO9660_FS=y
++CONFIG_JOLIET=y
++CONFIG_VFAT_FS=y
++CONFIG_PROC_KCORE=y
++CONFIG_TMPFS=y
++CONFIG_NFS_FS=y
++CONFIG_ROOT_NFS=y
++CONFIG_NFSD=y
++CONFIG_NFSD_V4=y
++CONFIG_CIFS=m
++CONFIG_NLS_CODEPAGE_437=y
++CONFIG_NLS_CODEPAGE_737=m
++CONFIG_NLS_CODEPAGE_775=m
++CONFIG_NLS_CODEPAGE_850=m
++CONFIG_NLS_CODEPAGE_852=m
++CONFIG_NLS_CODEPAGE_855=m
++CONFIG_NLS_CODEPAGE_857=m
++CONFIG_NLS_CODEPAGE_860=m
++CONFIG_NLS_CODEPAGE_861=m
++CONFIG_NLS_CODEPAGE_862=m
++CONFIG_NLS_CODEPAGE_863=m
++CONFIG_NLS_CODEPAGE_864=m
++CONFIG_NLS_CODEPAGE_865=m
++CONFIG_NLS_CODEPAGE_866=m
++CONFIG_NLS_CODEPAGE_869=m
++CONFIG_NLS_CODEPAGE_936=m
++CONFIG_NLS_CODEPAGE_950=m
++CONFIG_NLS_CODEPAGE_932=m
++CONFIG_NLS_CODEPAGE_949=m
++CONFIG_NLS_CODEPAGE_874=m
++CONFIG_NLS_ISO8859_8=m
++CONFIG_NLS_CODEPAGE_1250=y
++CONFIG_NLS_CODEPAGE_1251=m
++CONFIG_NLS_ASCII=m
++CONFIG_NLS_ISO8859_1=y
++CONFIG_NLS_ISO8859_2=m
++CONFIG_NLS_ISO8859_3=m
++CONFIG_NLS_ISO8859_4=m
++CONFIG_NLS_ISO8859_5=m
++CONFIG_NLS_ISO8859_6=m
++CONFIG_NLS_ISO8859_7=m
++CONFIG_NLS_ISO8859_9=m
++CONFIG_NLS_ISO8859_13=m
++CONFIG_NLS_ISO8859_14=m
++CONFIG_NLS_ISO8859_15=m
++CONFIG_NLS_KOI8_R=m
++CONFIG_NLS_KOI8_U=m
++CONFIG_NLS_UTF8=y
++CONFIG_DEBUG_FS=y
++CONFIG_HEADERS_INSTALL=y
++CONFIG_HEADERS_CHECK=y
++CONFIG_MAGIC_SYSRQ=y
++CONFIG_DEBUG_KERNEL=y
++CONFIG_DEBUG_MUTEXES=y
++CONFIG_KEYS=y
++CONFIG_CRYPTO_TEST=m
++CONFIG_CRYPTO_MICHAEL_MIC=m
++CONFIG_CRYPTO_SHA512=m
++CONFIG_CRYPTO_TGR192=m
++CONFIG_CRYPTO_WP512=m
++CONFIG_CRYPTO_ANUBIS=m
++CONFIG_CRYPTO_BLOWFISH=m
++CONFIG_CRYPTO_CAST6=m
++CONFIG_CRYPTO_KHAZAD=m
++CONFIG_CRYPTO_SERPENT=m
++CONFIG_CRYPTO_TEA=m
++CONFIG_CRYPTO_TWOFISH=m
++# CONFIG_CRYPTO_HW is not set
++CONFIG_LIBCRC32C=m
++CONFIG_FONTS=y
+diff --git a/arch/powerpc/Kconfig b/arch/powerpc/Kconfig
+index 386ae12d8523..b8b3cf88c1c9 100644
+--- a/arch/powerpc/Kconfig
++++ b/arch/powerpc/Kconfig
+@@ -878,6 +878,8 @@ config SCHED_SMT
+ 	  when dealing with POWER5 cpus at a cost of slightly increased
+ 	  overhead in some places. If unsure say N here.
+ 
++source "kernel/Kconfig.MuQSS"
++
+ config PPC_DENORMALISATION
+ 	bool "PowerPC denormalisation exception handling"
+ 	depends on PPC_BOOK3S_64
+diff --git a/arch/powerpc/configs/ppc6xx_defconfig b/arch/powerpc/configs/ppc6xx_defconfig
+index 6677ac0da45a..39e9ae02cef2 100644
+--- a/arch/powerpc/configs/ppc6xx_defconfig
++++ b/arch/powerpc/configs/ppc6xx_defconfig
+@@ -72,7 +72,7 @@ CONFIG_QE_GPIO=y
+ CONFIG_MCU_MPC8349EMITX=y
+ CONFIG_HIGHMEM=y
+ CONFIG_HZ_1000=y
+-CONFIG_PREEMPT_VOLUNTARY=y
++CONFIG_PREEMPT=y
+ CONFIG_BINFMT_MISC=y
+ CONFIG_HIBERNATION=y
+ CONFIG_PM_DEBUG=y
+diff --git a/arch/powerpc/platforms/cell/spufs/sched.c b/arch/powerpc/platforms/cell/spufs/sched.c
+index 369206489895..6161cf738f64 100644
+--- a/arch/powerpc/platforms/cell/spufs/sched.c
++++ b/arch/powerpc/platforms/cell/spufs/sched.c
+@@ -51,11 +51,6 @@ static struct task_struct *spusched_task;
+ static struct timer_list spusched_timer;
+ static struct timer_list spuloadavg_timer;
+ 
+-/*
+- * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
+- */
+-#define NORMAL_PRIO		120
+-
+ /*
+  * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
+  * tick for every 10 CPU scheduler ticks.
+diff --git a/arch/sh/configs/se7712_defconfig b/arch/sh/configs/se7712_defconfig
+index ee6d28ae08de..827e4693c5b2 100644
+--- a/arch/sh/configs/se7712_defconfig
++++ b/arch/sh/configs/se7712_defconfig
+@@ -21,7 +21,7 @@ CONFIG_FLATMEM_MANUAL=y
+ CONFIG_SH_SOLUTION_ENGINE=y
+ CONFIG_SH_PCLK_FREQ=66666666
+ CONFIG_HEARTBEAT=y
+-CONFIG_PREEMPT_VOLUNTARY=y
++CONFIG_PREEMPT=y
+ CONFIG_CMDLINE_OVERWRITE=y
+ CONFIG_CMDLINE="console=ttySC0,115200 root=/dev/sda1"
+ CONFIG_NET=y
+diff --git a/arch/sh/configs/se7721_defconfig b/arch/sh/configs/se7721_defconfig
+index bad921bc10f8..e8f42bc0d370 100644
+--- a/arch/sh/configs/se7721_defconfig
++++ b/arch/sh/configs/se7721_defconfig
+@@ -21,7 +21,7 @@ CONFIG_FLATMEM_MANUAL=y
+ CONFIG_SH_7721_SOLUTION_ENGINE=y
+ CONFIG_SH_PCLK_FREQ=33333333
+ CONFIG_HEARTBEAT=y
+-CONFIG_PREEMPT_VOLUNTARY=y
++CONFIG_PREEMPT=y
+ CONFIG_CMDLINE_OVERWRITE=y
+ CONFIG_CMDLINE="console=ttySC0,115200 root=/dev/sda2"
+ CONFIG_NET=y
+diff --git a/arch/sh/configs/titan_defconfig b/arch/sh/configs/titan_defconfig
+index ba887f1351be..4434e93b70bc 100644
+--- a/arch/sh/configs/titan_defconfig
++++ b/arch/sh/configs/titan_defconfig
+@@ -19,7 +19,7 @@ CONFIG_SH_TITAN=y
+ CONFIG_SH_PCLK_FREQ=30000000
+ CONFIG_SH_DMA=y
+ CONFIG_SH_DMA_API=y
+-CONFIG_PREEMPT_VOLUNTARY=y
++CONFIG_PREEMPT=y
+ CONFIG_CMDLINE_OVERWRITE=y
+ CONFIG_CMDLINE="console=ttySC1,38400N81 root=/dev/nfs ip=:::::eth1:autoconf rw"
+ CONFIG_PCI=y
+diff --git a/arch/sparc/configs/sparc64_defconfig b/arch/sparc/configs/sparc64_defconfig
+index 12a4fb0bd52a..a9e782ac3788 100644
+--- a/arch/sparc/configs/sparc64_defconfig
++++ b/arch/sparc/configs/sparc64_defconfig
+@@ -21,7 +21,7 @@ CONFIG_NO_HZ=y
+ CONFIG_HIGH_RES_TIMERS=y
+ CONFIG_NUMA=y
+ CONFIG_DEFAULT_MMAP_MIN_ADDR=8192
+-CONFIG_PREEMPT_VOLUNTARY=y
++CONFIG_PREEMPT=y
+ CONFIG_SUN_LDOMS=y
+ CONFIG_PCI=y
+ CONFIG_PCI_MSI=y
+diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
+index 2792879d398e..704d8bbc0fdd 100644
+--- a/arch/x86/Kconfig
++++ b/arch/x86/Kconfig
+@@ -1005,6 +1005,22 @@ config NR_CPUS
+ config SCHED_SMT
+ 	def_bool y if SMP
+ 
++config SMT_NICE
++	bool "SMT (Hyperthreading) aware nice priority and policy support"
++	depends on SCHED_MUQSS && SCHED_SMT
++	default y
++	help
++	  Enabling Hyperthreading on Intel CPUs decreases the effectiveness
++	  of the use of 'nice' levels and different scheduling policies
++	  (e.g. realtime) due to sharing of CPU power between hyperthreads.
++	  SMT nice support makes each logical CPU aware of what is running on
++	  its hyperthread siblings, maintaining appropriate distribution of
++	  CPU according to nice levels and scheduling policies at the expense
++	  of slightly increased overhead.
++
++	  If unsure say Y here.
++
++
+ config SCHED_MC
+ 	def_bool y
+ 	prompt "Multi-core scheduler support"
+@@ -1035,6 +1051,8 @@ config SCHED_MC_PRIO
+ 
+ 	  If unsure say Y here.
+ 
++source "kernel/Kconfig.MuQSS"
++
+ config UP_LATE_INIT
+ 	def_bool y
+ 	depends on !SMP && X86_LOCAL_APIC
+diff --git a/arch/x86/configs/i386_defconfig b/arch/x86/configs/i386_defconfig
+index 9c9c4a888b1d..89b06d3cbd12 100644
+--- a/arch/x86/configs/i386_defconfig
++++ b/arch/x86/configs/i386_defconfig
+@@ -23,6 +23,8 @@ CONFIG_PROFILING=y
+ CONFIG_SMP=y
+ CONFIG_X86_GENERIC=y
+ CONFIG_HPET_TIMER=y
++CONFIG_SCHED_SMT=y
++CONFIG_PREEMPT=y
+ CONFIG_X86_REROUTE_FOR_BROKEN_BOOT_IRQS=y
+ CONFIG_X86_REBOOTFIXUPS=y
+ CONFIG_MICROCODE_AMD=y
+diff --git a/arch/x86/configs/x86_64_defconfig b/arch/x86/configs/x86_64_defconfig
+index b60bd2d86034..7bd44d1fb977 100644
+--- a/arch/x86/configs/x86_64_defconfig
++++ b/arch/x86/configs/x86_64_defconfig
+@@ -20,6 +20,9 @@ CONFIG_BLK_DEV_INITRD=y
+ # CONFIG_COMPAT_BRK is not set
+ CONFIG_PROFILING=y
+ CONFIG_SMP=y
++CONFIG_NR_CPUS=64
++CONFIG_SCHED_SMT=y
++CONFIG_PREEMPT=y
+ CONFIG_X86_REROUTE_FOR_BROKEN_BOOT_IRQS=y
+ CONFIG_MICROCODE_AMD=y
+ CONFIG_X86_MSR=y
+diff --git a/drivers/accessibility/speakup/speakup_acntpc.c b/drivers/accessibility/speakup/speakup_acntpc.c
+index c1ec087dca13..b2d0d4266f62 100644
+--- a/drivers/accessibility/speakup/speakup_acntpc.c
++++ b/drivers/accessibility/speakup/speakup_acntpc.c
+@@ -198,7 +198,7 @@ static void do_catch_up(struct spk_synth *synth)
+ 		full_time_val = full_time->u.n.value;
+ 		spin_unlock_irqrestore(&speakup_info.spinlock, flags);
+ 		if (synth_full()) {
+-			schedule_timeout(msecs_to_jiffies(full_time_val));
++			schedule_msec_hrtimeout((full_time_val));
+ 			continue;
+ 		}
+ 		set_current_state(TASK_RUNNING);
+@@ -226,7 +226,7 @@ static void do_catch_up(struct spk_synth *synth)
+ 			jiffy_delta_val = jiffy_delta->u.n.value;
+ 			delay_time_val = delay_time->u.n.value;
+ 			spin_unlock_irqrestore(&speakup_info.spinlock, flags);
+-			schedule_timeout(msecs_to_jiffies(delay_time_val));
++			schedule_msec_hrtimeout(delay_time_val);
+ 			jiff_max = jiffies + jiffy_delta_val;
+ 		}
+ 	}
+diff --git a/drivers/accessibility/speakup/speakup_apollo.c b/drivers/accessibility/speakup/speakup_apollo.c
+index cd63581b2e99..d636157a2844 100644
+--- a/drivers/accessibility/speakup/speakup_apollo.c
++++ b/drivers/accessibility/speakup/speakup_apollo.c
+@@ -165,7 +165,7 @@ static void do_catch_up(struct spk_synth *synth)
+ 		if (!synth->io_ops->synth_out(synth, ch)) {
+ 			synth->io_ops->tiocmset(synth, 0, UART_MCR_RTS);
+ 			synth->io_ops->tiocmset(synth, UART_MCR_RTS, 0);
+-			schedule_timeout(msecs_to_jiffies(full_time_val));
++			schedule_msec_hrtimeout(full_time_val);
+ 			continue;
+ 		}
+ 		if (time_after_eq(jiffies, jiff_max) && (ch == SPACE)) {
+diff --git a/drivers/accessibility/speakup/speakup_decext.c b/drivers/accessibility/speakup/speakup_decext.c
+index 092cfd08a9e1..e7fc85f8ce5c 100644
+--- a/drivers/accessibility/speakup/speakup_decext.c
++++ b/drivers/accessibility/speakup/speakup_decext.c
+@@ -180,7 +180,7 @@ static void do_catch_up(struct spk_synth *synth)
+ 		if (ch == '\n')
+ 			ch = 0x0D;
+ 		if (synth_full() || !synth->io_ops->synth_out(synth, ch)) {
+-			schedule_timeout(msecs_to_jiffies(delay_time_val));
++			schedule_msec_hrtimeout(delay_time_val);
+ 			continue;
+ 		}
+ 		set_current_state(TASK_RUNNING);
+diff --git a/drivers/accessibility/speakup/speakup_decpc.c b/drivers/accessibility/speakup/speakup_decpc.c
+index dec314dee214..2a5deb5256b2 100644
+--- a/drivers/accessibility/speakup/speakup_decpc.c
++++ b/drivers/accessibility/speakup/speakup_decpc.c
+@@ -398,7 +398,7 @@ static void do_catch_up(struct spk_synth *synth)
+ 		if (ch == '\n')
+ 			ch = 0x0D;
+ 		if (dt_sendchar(ch)) {
+-			schedule_timeout(msecs_to_jiffies(delay_time_val));
++			schedule_msec_hrtimeout((delay_time_val));
+ 			continue;
+ 		}
+ 		set_current_state(TASK_RUNNING);
+diff --git a/drivers/accessibility/speakup/speakup_dectlk.c b/drivers/accessibility/speakup/speakup_dectlk.c
+index 580ec796816b..67c156b90ddb 100644
+--- a/drivers/accessibility/speakup/speakup_dectlk.c
++++ b/drivers/accessibility/speakup/speakup_dectlk.c
+@@ -256,7 +256,7 @@ static void do_catch_up(struct spk_synth *synth)
+ 		if (ch == '\n')
+ 			ch = 0x0D;
+ 		if (synth_full_val || !synth->io_ops->synth_out(synth, ch)) {
+-			schedule_timeout(msecs_to_jiffies(delay_time_val));
++			schedule_msec_hrtimeout(delay_time_val);
+ 			continue;
+ 		}
+ 		set_current_state(TASK_RUNNING);
+diff --git a/drivers/accessibility/speakup/speakup_dtlk.c b/drivers/accessibility/speakup/speakup_dtlk.c
+index 92838d3ae9eb..b687cb4d3268 100644
+--- a/drivers/accessibility/speakup/speakup_dtlk.c
++++ b/drivers/accessibility/speakup/speakup_dtlk.c
+@@ -211,7 +211,7 @@ static void do_catch_up(struct spk_synth *synth)
+ 		delay_time_val = delay_time->u.n.value;
+ 		spin_unlock_irqrestore(&speakup_info.spinlock, flags);
+ 		if (synth_full()) {
+-			schedule_timeout(msecs_to_jiffies(delay_time_val));
++			schedule_msec_hrtimeout((delay_time_val));
+ 			continue;
+ 		}
+ 		set_current_state(TASK_RUNNING);
+@@ -227,7 +227,7 @@ static void do_catch_up(struct spk_synth *synth)
+ 			delay_time_val = delay_time->u.n.value;
+ 			jiffy_delta_val = jiffy_delta->u.n.value;
+ 			spin_unlock_irqrestore(&speakup_info.spinlock, flags);
+-			schedule_timeout(msecs_to_jiffies(delay_time_val));
++			schedule_msec_hrtimeout((delay_time_val));
+ 			jiff_max = jiffies + jiffy_delta_val;
+ 		}
+ 	}
+diff --git a/drivers/accessibility/speakup/speakup_keypc.c b/drivers/accessibility/speakup/speakup_keypc.c
+index 311f4aa0be22..99c523fdcc98 100644
+--- a/drivers/accessibility/speakup/speakup_keypc.c
++++ b/drivers/accessibility/speakup/speakup_keypc.c
+@@ -199,7 +199,7 @@ static void do_catch_up(struct spk_synth *synth)
+ 		full_time_val = full_time->u.n.value;
+ 		spin_unlock_irqrestore(&speakup_info.spinlock, flags);
+ 		if (synth_full()) {
+-			schedule_timeout(msecs_to_jiffies(full_time_val));
++			schedule_msec_hrtimeout((full_time_val));
+ 			continue;
+ 		}
+ 		set_current_state(TASK_RUNNING);
+@@ -232,7 +232,7 @@ static void do_catch_up(struct spk_synth *synth)
+ 			jiffy_delta_val = jiffy_delta->u.n.value;
+ 			delay_time_val = delay_time->u.n.value;
+ 			spin_unlock_irqrestore(&speakup_info.spinlock, flags);
+-			schedule_timeout(msecs_to_jiffies(delay_time_val));
++			schedule_msec_hrtimeout(delay_time_val);
+ 			jiff_max = jiffies + jiffy_delta_val;
+ 		}
+ 	}
+diff --git a/drivers/accessibility/speakup/synth.c b/drivers/accessibility/speakup/synth.c
+index 2b8699673bac..bf0cbdaf564f 100644
+--- a/drivers/accessibility/speakup/synth.c
++++ b/drivers/accessibility/speakup/synth.c
+@@ -93,12 +93,8 @@ static void _spk_do_catch_up(struct spk_synth *synth, int unicode)
+ 		spin_unlock_irqrestore(&speakup_info.spinlock, flags);
+ 		if (ch == '\n')
+ 			ch = synth->procspeech;
+-		if (unicode)
+-			ret = synth->io_ops->synth_out_unicode(synth, ch);
+-		else
+-			ret = synth->io_ops->synth_out(synth, ch);
+-		if (!ret) {
+-			schedule_timeout(msecs_to_jiffies(full_time_val));
++		if (!synth->io_ops->synth_out(synth, ch)) {
++			schedule_msec_hrtimeout(full_time_val);
+ 			continue;
+ 		}
+ 		if (time_after_eq(jiffies, jiff_max) && (ch == SPACE)) {
+@@ -108,11 +104,9 @@ static void _spk_do_catch_up(struct spk_synth *synth, int unicode)
+ 			full_time_val = full_time->u.n.value;
+ 			spin_unlock_irqrestore(&speakup_info.spinlock, flags);
+ 			if (synth->io_ops->synth_out(synth, synth->procspeech))
+-				schedule_timeout(
+-					msecs_to_jiffies(delay_time_val));
++				schedule_msec_hrtimeout(delay_time_val);
+ 			else
+-				schedule_timeout(
+-					msecs_to_jiffies(full_time_val));
++				schedule_msec_hrtimeout(full_time_val);
+ 			jiff_max = jiffies + jiffy_delta_val;
+ 		}
+ 		set_current_state(TASK_RUNNING);
+diff --git a/drivers/block/swim.c b/drivers/block/swim.c
+index cc6a0bc6c005..ac5c170d76e8 100644
+--- a/drivers/block/swim.c
++++ b/drivers/block/swim.c
+@@ -328,7 +328,7 @@ static inline void swim_motor(struct swim __iomem *base,
+ 			if (swim_readbit(base, MOTOR_ON))
+ 				break;
+ 			set_current_state(TASK_INTERRUPTIBLE);
+-			schedule_timeout(1);
++			schedule_min_hrtimeout();
+ 		}
+ 	} else if (action == OFF) {
+ 		swim_action(base, MOTOR_OFF);
+@@ -347,7 +347,7 @@ static inline void swim_eject(struct swim __iomem *base)
+ 		if (!swim_readbit(base, DISK_IN))
+ 			break;
+ 		set_current_state(TASK_INTERRUPTIBLE);
+-		schedule_timeout(1);
++		schedule_min_hrtimeout();
+ 	}
+ 	swim_select(base, RELAX);
+ }
+@@ -372,6 +372,7 @@ static inline int swim_step(struct swim __iomem *base)
+ 
+ 		set_current_state(TASK_INTERRUPTIBLE);
+ 		schedule_timeout(1);
++		schedule_min_hrtimeout();
+ 
+ 		swim_select(base, RELAX);
+ 		if (!swim_readbit(base, STEP))
+diff --git a/drivers/char/ipmi/ipmi_msghandler.c b/drivers/char/ipmi/ipmi_msghandler.c
+index c44ad18464f1..ca87178200e0 100644
+--- a/drivers/char/ipmi/ipmi_msghandler.c
++++ b/drivers/char/ipmi/ipmi_msghandler.c
+@@ -3563,7 +3563,7 @@ static void cleanup_smi_msgs(struct ipmi_smi *intf)
+ 	/* Current message first, to preserve order */
+ 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
+ 		/* Wait for the message to clear out. */
+-		schedule_timeout(1);
++		schedule_min_hrtimeout();
+ 	}
+ 
+ 	/* No need for locks, the interface is down. */
+diff --git a/drivers/char/ipmi/ipmi_ssif.c b/drivers/char/ipmi/ipmi_ssif.c
+index 0416b9c9d410..9ce5fae0f1cf 100644
+--- a/drivers/char/ipmi/ipmi_ssif.c
++++ b/drivers/char/ipmi/ipmi_ssif.c
+@@ -1288,7 +1288,7 @@ static void shutdown_ssif(void *send_info)
+ 
+ 	/* make sure the driver is not looking for flags any more. */
+ 	while (ssif_info->ssif_state != SSIF_NORMAL)
+-		schedule_timeout(1);
++		schedule_min_hrtimeout();
+ 
+ 	ssif_info->stopping = true;
+ 	del_timer_sync(&ssif_info->watch_timer);
+diff --git a/drivers/cpufreq/Kconfig b/drivers/cpufreq/Kconfig
+index 85de313ddec2..03dd537ac072 100644
+--- a/drivers/cpufreq/Kconfig
++++ b/drivers/cpufreq/Kconfig
+@@ -39,13 +39,15 @@ choice
+ 	default CPU_FREQ_DEFAULT_GOV_USERSPACE if ARM_SA1100_CPUFREQ || ARM_SA1110_CPUFREQ
+ 	default CPU_FREQ_DEFAULT_GOV_SCHEDUTIL if ARM64 || ARM
+ 	default CPU_FREQ_DEFAULT_GOV_SCHEDUTIL if X86_INTEL_PSTATE && SMP
+-	default CPU_FREQ_DEFAULT_GOV_PERFORMANCE
++	default CPU_FREQ_DEFAULT_GOV_ONDEMAND if !X86_INTEL_PSTATE
++	default CPU_FREQ_DEFAULT_GOV_PERFORMANCE_NODEF
+ 	help
+ 	  This option sets which CPUFreq governor shall be loaded at
+ 	  startup. If in doubt, use the default setting.
+ 
+-config CPU_FREQ_DEFAULT_GOV_PERFORMANCE
++config CPU_FREQ_DEFAULT_GOV_PERFORMANCE_NODEF
+ 	bool "performance"
++	select CPU_FREQ_DEFAULT_GOV_PERFORMANCE
+ 	select CPU_FREQ_GOV_PERFORMANCE
+ 	help
+ 	  Use the CPUFreq governor 'performance' as default. This sets
+@@ -189,6 +189,7 @@ config CPU_FREQ_GOV_CONSERVATIVE
+ config CPU_FREQ_GOV_SCHEDUTIL
+ 	bool "'schedutil' cpufreq policy governor"
+ 	depends on CPU_FREQ && SMP
++	default y if (X86_INTEL_PSTATE && SMP)
+ 	select CPU_FREQ_GOV_ATTR_SET
+ 	select IRQ_WORK
+ 	help
+diff --git a/drivers/cpufreq/Kconfig.x86 b/drivers/cpufreq/Kconfig.x86
+index 92701a18bdd9..7f49f2402ffa 100644
+--- a/drivers/cpufreq/Kconfig.x86
++++ b/drivers/cpufreq/Kconfig.x86
+@@ -8,8 +8,6 @@ config X86_INTEL_PSTATE
+ 	depends on X86
+ 	select ACPI_PROCESSOR if ACPI
+ 	select ACPI_CPPC_LIB if X86_64 && ACPI && SCHED_MC_PRIO
+-	select CPU_FREQ_GOV_PERFORMANCE
+-	select CPU_FREQ_GOV_SCHEDUTIL if SMP
+ 	help
+ 	  This driver provides a P state for Intel core processors.
+ 	  The driver implements an internal governor and will become
+diff --git a/drivers/gpu/drm/vmwgfx/vmwgfx_cmd.c b/drivers/gpu/drm/vmwgfx/vmwgfx_cmd.c
+index 7400d617ae3c..b7f829b0ca11 100644
+--- a/drivers/gpu/drm/vmwgfx/vmwgfx_cmd.c
++++ b/drivers/gpu/drm/vmwgfx/vmwgfx_cmd.c
+@@ -227,7 +227,7 @@ static int vmw_fifo_wait_noirq(struct vmw_private *dev_priv,
+ 			DRM_ERROR("SVGA device lockup.\n");
+ 			break;
+ 		}
+-		schedule_timeout(1);
++		schedule_min_hrtimeout();
+ 		if (interruptible && signal_pending(current)) {
+ 			ret = -ERESTARTSYS;
+ 			break;
+diff --git a/drivers/gpu/drm/vmwgfx/vmwgfx_irq.c b/drivers/gpu/drm/vmwgfx/vmwgfx_irq.c
+index 6c2a569f1fcb..8d7feeb0d7ab 100644
+--- a/drivers/gpu/drm/vmwgfx/vmwgfx_irq.c
++++ b/drivers/gpu/drm/vmwgfx/vmwgfx_irq.c
+@@ -201,7 +201,7 @@ int vmw_fallback_wait(struct vmw_private *dev_priv,
+ 			break;
+ 		}
+ 		if (lazy)
+-			schedule_timeout(1);
++			schedule_min_hrtimeout();
+ 		else if ((++count & 0x0F) == 0) {
+ 			/**
+ 			 * FIXME: Use schedule_hr_timeout here for
+diff --git a/drivers/hwmon/fam15h_power.c b/drivers/hwmon/fam15h_power.c
+index 29f5fed28c2a..974cb08c7aa7 100644
+--- a/drivers/hwmon/fam15h_power.c
++++ b/drivers/hwmon/fam15h_power.c
+@@ -221,7 +221,7 @@ static ssize_t power1_average_show(struct device *dev,
+ 		prev_ptsc[cu] = data->cpu_sw_pwr_ptsc[cu];
+ 	}
+ 
+-	leftover = schedule_timeout_interruptible(msecs_to_jiffies(data->power_period));
++	leftover = schedule_msec_hrtimeout_interruptible((data->power_period));
+ 	if (leftover)
+ 		return 0;
+ 
+diff --git a/drivers/iio/light/tsl2563.c b/drivers/iio/light/tsl2563.c
+index 5bf2bfbc5379..6ce37819fb73 100644
+--- a/drivers/iio/light/tsl2563.c
++++ b/drivers/iio/light/tsl2563.c
+@@ -271,11 +271,7 @@ static void tsl2563_wait_adc(struct tsl2563_chip *chip)
+ 	default:
+ 		delay = 402;
+ 	}
+-	/*
+-	 * TODO: Make sure that we wait at least required delay but why we
+-	 * have to extend it one tick more?
+-	 */
+-	schedule_timeout_interruptible(msecs_to_jiffies(delay) + 2);
++	schedule_msec_hrtimeout_interruptible(delay + 1);
+ }
+ 
+ static int tsl2563_adjust_gainlevel(struct tsl2563_chip *chip, u16 adc)
+diff --git a/drivers/media/i2c/msp3400-driver.c b/drivers/media/i2c/msp3400-driver.c
+index 39530d43590e..a7caf2eb5771 100644
+--- a/drivers/media/i2c/msp3400-driver.c
++++ b/drivers/media/i2c/msp3400-driver.c
+@@ -170,7 +170,7 @@ static int msp_read(struct i2c_client *client, int dev, int addr)
+ 			break;
+ 		dev_warn(&client->dev, "I/O error #%d (read 0x%02x/0x%02x)\n", err,
+ 		       dev, addr);
+-		schedule_timeout_interruptible(msecs_to_jiffies(10));
++		schedule_msec_hrtimeout_interruptible((10));
+ 	}
+ 	if (err == 3) {
+ 		dev_warn(&client->dev, "resetting chip, sound will go off.\n");
+@@ -211,7 +211,7 @@ static int msp_write(struct i2c_client *client, int dev, int addr, int val)
+ 			break;
+ 		dev_warn(&client->dev, "I/O error #%d (write 0x%02x/0x%02x)\n", err,
+ 		       dev, addr);
+-		schedule_timeout_interruptible(msecs_to_jiffies(10));
++		schedule_msec_hrtimeout_interruptible((10));
+ 	}
+ 	if (err == 3) {
+ 		dev_warn(&client->dev, "resetting chip, sound will go off.\n");
+diff --git a/drivers/media/pci/cx18/cx18-gpio.c b/drivers/media/pci/cx18/cx18-gpio.c
+index cf7cfda94107..f63e17489547 100644
+--- a/drivers/media/pci/cx18/cx18-gpio.c
++++ b/drivers/media/pci/cx18/cx18-gpio.c
+@@ -81,11 +81,11 @@ static void gpio_reset_seq(struct cx18 *cx, u32 active_lo, u32 active_hi,
+ 
+ 	/* Assert */
+ 	gpio_update(cx, mask, ~active_lo);
+-	schedule_timeout_uninterruptible(msecs_to_jiffies(assert_msecs));
++	schedule_msec_hrtimeout_uninterruptible((assert_msecs));
+ 
+ 	/* Deassert */
+ 	gpio_update(cx, mask, ~active_hi);
+-	schedule_timeout_uninterruptible(msecs_to_jiffies(recovery_msecs));
++	schedule_msec_hrtimeout_uninterruptible((recovery_msecs));
+ }
+ 
+ /*
+diff --git a/drivers/media/pci/ivtv/ivtv-gpio.c b/drivers/media/pci/ivtv/ivtv-gpio.c
+index 856e7ab7f33e..766a26251337 100644
+--- a/drivers/media/pci/ivtv/ivtv-gpio.c
++++ b/drivers/media/pci/ivtv/ivtv-gpio.c
+@@ -105,7 +105,7 @@ void ivtv_reset_ir_gpio(struct ivtv *itv)
+ 	curout = (curout & ~0xF) | 1;
+ 	write_reg(curout, IVTV_REG_GPIO_OUT);
+ 	/* We could use something else for smaller time */
+-	schedule_timeout_interruptible(msecs_to_jiffies(1));
++	schedule_msec_hrtimeout_interruptible((1));
+ 	curout |= 2;
+ 	write_reg(curout, IVTV_REG_GPIO_OUT);
+ 	curdir &= ~0x80;
+@@ -125,11 +125,11 @@ int ivtv_reset_tuner_gpio(void *dev, int component, int cmd, int value)
+ 	curout = read_reg(IVTV_REG_GPIO_OUT);
+ 	curout &= ~(1 << itv->card->xceive_pin);
+ 	write_reg(curout, IVTV_REG_GPIO_OUT);
+-	schedule_timeout_interruptible(msecs_to_jiffies(1));
++	schedule_msec_hrtimeout_interruptible((1));
+ 
+ 	curout |= 1 << itv->card->xceive_pin;
+ 	write_reg(curout, IVTV_REG_GPIO_OUT);
+-	schedule_timeout_interruptible(msecs_to_jiffies(1));
++	schedule_msec_hrtimeout_interruptible((1));
+ 	return 0;
+ }
+ 
+diff --git a/drivers/media/pci/ivtv/ivtv-ioctl.c b/drivers/media/pci/ivtv/ivtv-ioctl.c
+index 35dccb31174c..8181cd65e876 100644
+--- a/drivers/media/pci/ivtv/ivtv-ioctl.c
++++ b/drivers/media/pci/ivtv/ivtv-ioctl.c
+@@ -1139,7 +1139,7 @@ void ivtv_s_std_dec(struct ivtv *itv, v4l2_std_id std)
+ 				TASK_UNINTERRUPTIBLE);
+ 		if ((read_reg(IVTV_REG_DEC_LINE_FIELD) >> 16) < 100)
+ 			break;
+-		schedule_timeout(msecs_to_jiffies(25));
++		schedule_msec_hrtimeout((25));
+ 	}
+ 	finish_wait(&itv->vsync_waitq, &wait);
+ 	mutex_lock(&itv->serialize_lock);
+diff --git a/drivers/media/pci/ivtv/ivtv-streams.c b/drivers/media/pci/ivtv/ivtv-streams.c
+index f04ee84bab5f..c4469b4b8f99 100644
+--- a/drivers/media/pci/ivtv/ivtv-streams.c
++++ b/drivers/media/pci/ivtv/ivtv-streams.c
+@@ -849,7 +849,7 @@ int ivtv_stop_v4l2_encode_stream(struct ivtv_stream *s, int gop_end)
+ 			while (!test_bit(IVTV_F_I_EOS, &itv->i_flags) &&
+ 				time_before(jiffies,
+ 					    then + msecs_to_jiffies(2000))) {
+-				schedule_timeout(msecs_to_jiffies(10));
++				schedule_msec_hrtimeout((10));
+ 			}
+ 
+ 			/* To convert jiffies to ms, we must multiply by 1000
+diff --git a/drivers/media/radio/radio-mr800.c b/drivers/media/radio/radio-mr800.c
+index cb0437b4c331..163fffc0e1d4 100644
+--- a/drivers/media/radio/radio-mr800.c
++++ b/drivers/media/radio/radio-mr800.c
+@@ -366,7 +366,7 @@ static int vidioc_s_hw_freq_seek(struct file *file, void *priv,
+ 			retval = -ENODATA;
+ 			break;
+ 		}
+-		if (schedule_timeout_interruptible(msecs_to_jiffies(10))) {
++		if (schedule_msec_hrtimeout_interruptible((10))) {
+ 			retval = -ERESTARTSYS;
+ 			break;
+ 		}
+diff --git a/drivers/media/radio/radio-tea5777.c b/drivers/media/radio/radio-tea5777.c
+index fb9de7bbcd19..e53cf45e7f3f 100644
+--- a/drivers/media/radio/radio-tea5777.c
++++ b/drivers/media/radio/radio-tea5777.c
+@@ -235,7 +235,7 @@ static int radio_tea5777_update_read_reg(struct radio_tea5777 *tea, int wait)
+ 	}
+ 
+ 	if (wait) {
+-		if (schedule_timeout_interruptible(msecs_to_jiffies(wait)))
++		if (schedule_msec_hrtimeout_interruptible((wait)))
+ 			return -ERESTARTSYS;
+ 	}
+ 
+diff --git a/drivers/media/radio/tea575x.c b/drivers/media/radio/tea575x.c
+index c37315226c42..e73e6393403c 100644
+--- a/drivers/media/radio/tea575x.c
++++ b/drivers/media/radio/tea575x.c
+@@ -401,7 +401,7 @@ int snd_tea575x_s_hw_freq_seek(struct file *file, struct snd_tea575x *tea,
+ 	for (;;) {
+ 		if (time_after(jiffies, timeout))
+ 			break;
+-		if (schedule_timeout_interruptible(msecs_to_jiffies(10))) {
++		if (schedule_msec_hrtimeout_interruptible((10))) {
+ 			/* some signal arrived, stop search */
+ 			tea->val &= ~TEA575X_BIT_SEARCH;
+ 			snd_tea575x_set_freq(tea);
+diff --git a/drivers/mfd/ucb1x00-core.c b/drivers/mfd/ucb1x00-core.c
+index b690796d24d4..448b13da62b4 100644
+--- a/drivers/mfd/ucb1x00-core.c
++++ b/drivers/mfd/ucb1x00-core.c
+@@ -250,7 +250,7 @@ unsigned int ucb1x00_adc_read(struct ucb1x00 *ucb, int adc_channel, int sync)
+ 			break;
+ 		/* yield to other processes */
+ 		set_current_state(TASK_INTERRUPTIBLE);
+-		schedule_timeout(1);
++		schedule_min_hrtimeout();
+ 	}
+ 
+ 	return UCB_ADC_DAT(val);
+diff --git a/drivers/misc/sgi-xp/xpc_channel.c b/drivers/misc/sgi-xp/xpc_channel.c
+index 8e6607fc8a67..b9ab770bbdb5 100644
+--- a/drivers/misc/sgi-xp/xpc_channel.c
++++ b/drivers/misc/sgi-xp/xpc_channel.c
+@@ -834,7 +834,7 @@ xpc_allocate_msg_wait(struct xpc_channel *ch)
+ 
+ 	atomic_inc(&ch->n_on_msg_allocate_wq);
+ 	prepare_to_wait(&ch->msg_allocate_wq, &wait, TASK_INTERRUPTIBLE);
+-	ret = schedule_timeout(1);
++	ret = schedule_min_hrtimeout();
+ 	finish_wait(&ch->msg_allocate_wq, &wait);
+ 	atomic_dec(&ch->n_on_msg_allocate_wq);
+ 
+diff --git a/drivers/net/caif/caif_hsi.c b/drivers/net/caif/caif_hsi.c
+index 3d63b15bbaa1..164071e9d457 100644
+--- a/drivers/net/caif/caif_hsi.c
++++ b/drivers/net/caif/caif_hsi.c
+@@ -924,7 +924,7 @@ static void cfhsi_wake_down(struct work_struct *work)
+ 			break;
+ 
+ 		set_current_state(TASK_INTERRUPTIBLE);
+-		schedule_timeout(1);
++		schedule_min_hrtimeout();
+ 		retry--;
+ 	}
+ 
+diff --git a/drivers/net/can/usb/peak_usb/pcan_usb.c b/drivers/net/can/usb/peak_usb/pcan_usb.c
+index e393e8457d77..4274f78682d9 100644
+--- a/drivers/net/can/usb/peak_usb/pcan_usb.c
++++ b/drivers/net/can/usb/peak_usb/pcan_usb.c
+@@ -288,7 +288,7 @@ static int pcan_usb_write_mode(struct peak_usb_device *dev, u8 onoff)
+ 	} else {
+ 		/* the PCAN-USB needs time to init */
+ 		set_current_state(TASK_INTERRUPTIBLE);
+-		schedule_timeout(msecs_to_jiffies(PCAN_USB_STARTUP_TIMEOUT));
++		schedule_msec_hrtimeout((PCAN_USB_STARTUP_TIMEOUT));
+ 	}
+ 
+ 	return err;
+diff --git a/drivers/net/usb/lan78xx.c b/drivers/net/usb/lan78xx.c
+index e81c5699c952..d2b360cfb402 100644
+--- a/drivers/net/usb/lan78xx.c
++++ b/drivers/net/usb/lan78xx.c
+@@ -2655,7 +2655,7 @@ static void lan78xx_terminate_urbs(struct lan78xx_net *dev)
+ 	while (!skb_queue_empty(&dev->rxq) &&
+ 	       !skb_queue_empty(&dev->txq) &&
+ 	       !skb_queue_empty(&dev->done)) {
+-		schedule_timeout(msecs_to_jiffies(UNLINK_TIMEOUT_MS));
++		schedule_msec_hrtimeout((UNLINK_TIMEOUT_MS));
+ 		set_current_state(TASK_UNINTERRUPTIBLE);
+ 		netif_dbg(dev, ifdown, dev->net,
+ 			  "waited for %d urb completions\n", temp);
+diff --git a/drivers/net/usb/usbnet.c b/drivers/net/usb/usbnet.c
+index f4f37ecfed58..36647378e016 100644
+--- a/drivers/net/usb/usbnet.c
++++ b/drivers/net/usb/usbnet.c
+@@ -764,7 +764,7 @@ static void wait_skb_queue_empty(struct sk_buff_head *q)
+ 	spin_lock_irqsave(&q->lock, flags);
+ 	while (!skb_queue_empty(q)) {
+ 		spin_unlock_irqrestore(&q->lock, flags);
+-		schedule_timeout(msecs_to_jiffies(UNLINK_TIMEOUT_MS));
++		schedule_msec_hrtimeout((UNLINK_TIMEOUT_MS));
+ 		set_current_state(TASK_UNINTERRUPTIBLE);
+ 		spin_lock_irqsave(&q->lock, flags);
+ 	}
+diff --git a/drivers/net/wireless/intel/ipw2x00/ipw2100.c b/drivers/net/wireless/intel/ipw2x00/ipw2100.c
+index 23fbddd0c1f8..534ab3b894e2 100644
+--- a/drivers/net/wireless/intel/ipw2x00/ipw2100.c
++++ b/drivers/net/wireless/intel/ipw2x00/ipw2100.c
+@@ -815,7 +815,7 @@ static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
+ 	 * doesn't seem to have as many firmware restart cycles...
+ 	 *
+ 	 * As a test, we're sticking in a 1/100s delay here */
+-	schedule_timeout_uninterruptible(msecs_to_jiffies(10));
++	schedule_msec_hrtimeout_uninterruptible((10));
+ 
+ 	return 0;
+ 
+@@ -1266,7 +1266,7 @@ static int ipw2100_start_adapter(struct ipw2100_priv *priv)
+ 	IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
+ 	i = 5000;
+ 	do {
+-		schedule_timeout_uninterruptible(msecs_to_jiffies(40));
++		schedule_msec_hrtimeout_uninterruptible((40));
+ 		/* Todo... wait for sync command ... */
+ 
+ 		read_register(priv->net_dev, IPW_REG_INTA, &inta);
+diff --git a/drivers/parport/ieee1284.c b/drivers/parport/ieee1284.c
+index 4547ac44c8d4..8fa1a7fdf12c 100644
+--- a/drivers/parport/ieee1284.c
++++ b/drivers/parport/ieee1284.c
+@@ -202,7 +202,7 @@ int parport_wait_peripheral(struct parport *port,
+ 			/* parport_wait_event didn't time out, but the
+ 			 * peripheral wasn't actually ready either.
+ 			 * Wait for another 10ms. */
+-			schedule_timeout_interruptible(msecs_to_jiffies(10));
++			schedule_msec_hrtimeout_interruptible((10));
+ 		}
+ 	}
+ 
+diff --git a/drivers/parport/ieee1284_ops.c b/drivers/parport/ieee1284_ops.c
+index 2c11bd3fe1fd..8cb6b61c0880 100644
+--- a/drivers/parport/ieee1284_ops.c
++++ b/drivers/parport/ieee1284_ops.c
+@@ -520,7 +520,7 @@ size_t parport_ieee1284_ecp_read_data (struct parport *port,
+ 			/* Yield the port for a while. */
+ 			if (count && dev->port->irq != PARPORT_IRQ_NONE) {
+ 				parport_release (dev);
+-				schedule_timeout_interruptible(msecs_to_jiffies(40));
++				schedule_msec_hrtimeout_interruptible((40));
+ 				parport_claim_or_block (dev);
+ 			}
+ 			else
+diff --git a/drivers/platform/x86/intel_ips.c b/drivers/platform/x86/intel_ips.c
+index bffe548187ee..c2918ee3e100 100644
+--- a/drivers/platform/x86/intel_ips.c
++++ b/drivers/platform/x86/intel_ips.c
+@@ -798,7 +798,7 @@ static int ips_adjust(void *data)
+ 			ips_gpu_lower(ips);
+ 
+ sleep:
+-		schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
++		schedule_msec_hrtimeout_interruptible((IPS_ADJUST_PERIOD));
+ 	} while (!kthread_should_stop());
+ 
+ 	dev_dbg(ips->dev, "ips-adjust thread stopped\n");
+@@ -974,7 +974,7 @@ static int ips_monitor(void *data)
+ 	seqno_timestamp = get_jiffies_64();
+ 
+ 	old_cpu_power = thm_readl(THM_CEC);
+-	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
++	schedule_msec_hrtimeout_interruptible((IPS_SAMPLE_PERIOD));
+ 
+ 	/* Collect an initial average */
+ 	for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
+@@ -1001,7 +1001,7 @@ static int ips_monitor(void *data)
+ 			mchp_samples[i] = mchp;
+ 		}
+ 
+-		schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
++		schedule_msec_hrtimeout_interruptible((IPS_SAMPLE_PERIOD));
+ 		if (kthread_should_stop())
+ 			break;
+ 	}
+@@ -1028,7 +1028,7 @@ static int ips_monitor(void *data)
+ 	 * us to reduce the sample frequency if the CPU and GPU are idle.
+ 	 */
+ 	old_cpu_power = thm_readl(THM_CEC);
+-	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
++	schedule_msec_hrtimeout_interruptible((IPS_SAMPLE_PERIOD));
+ 	last_sample_period = IPS_SAMPLE_PERIOD;
+ 
+ 	timer_setup(&ips->timer, monitor_timeout, TIMER_DEFERRABLE);
+diff --git a/drivers/rtc/rtc-wm8350.c b/drivers/rtc/rtc-wm8350.c
+index 2018614f258f..fc19b312c345 100644
+--- a/drivers/rtc/rtc-wm8350.c
++++ b/drivers/rtc/rtc-wm8350.c
+@@ -114,7 +114,7 @@ static int wm8350_rtc_settime(struct device *dev, struct rtc_time *tm)
+ 	/* Wait until confirmation of stopping */
+ 	do {
+ 		rtc_ctrl = wm8350_reg_read(wm8350, WM8350_RTC_TIME_CONTROL);
+-		schedule_timeout_uninterruptible(msecs_to_jiffies(1));
++		schedule_msec_hrtimeout_uninterruptible((1));
+ 	} while (--retries && !(rtc_ctrl & WM8350_RTC_STS));
+ 
+ 	if (!retries) {
+@@ -197,7 +197,7 @@ static int wm8350_rtc_stop_alarm(struct wm8350 *wm8350)
+ 	/* Wait until confirmation of stopping */
+ 	do {
+ 		rtc_ctrl = wm8350_reg_read(wm8350, WM8350_RTC_TIME_CONTROL);
+-		schedule_timeout_uninterruptible(msecs_to_jiffies(1));
++		schedule_msec_hrtimeout_uninterruptible((1));
+ 	} while (retries-- && !(rtc_ctrl & WM8350_RTC_ALMSTS));
+ 
+ 	if (!(rtc_ctrl & WM8350_RTC_ALMSTS))
+@@ -220,7 +220,7 @@ static int wm8350_rtc_start_alarm(struct wm8350 *wm8350)
+ 	/* Wait until confirmation */
+ 	do {
+ 		rtc_ctrl = wm8350_reg_read(wm8350, WM8350_RTC_TIME_CONTROL);
+-		schedule_timeout_uninterruptible(msecs_to_jiffies(1));
++		schedule_msec_hrtimeout_uninterruptible((1));
+ 	} while (retries-- && rtc_ctrl & WM8350_RTC_ALMSTS);
+ 
+ 	if (rtc_ctrl & WM8350_RTC_ALMSTS)
+diff --git a/drivers/scsi/fnic/fnic_scsi.c b/drivers/scsi/fnic/fnic_scsi.c
+index 36744968378f..09e49e21deb6 100644
+--- a/drivers/scsi/fnic/fnic_scsi.c
++++ b/drivers/scsi/fnic/fnic_scsi.c
+@@ -217,7 +217,7 @@ int fnic_fw_reset_handler(struct fnic *fnic)
+ 
+ 	/* wait for io cmpl */
+ 	while (atomic_read(&fnic->in_flight))
+-		schedule_timeout(msecs_to_jiffies(1));
++		schedule_msec_hrtimeout((1));
+ 
+ 	spin_lock_irqsave(&fnic->wq_copy_lock[0], flags);
+ 
+@@ -2277,7 +2277,7 @@ static int fnic_clean_pending_aborts(struct fnic *fnic,
+ 		}
+ 	}
+ 
+-	schedule_timeout(msecs_to_jiffies(2 * fnic->config.ed_tov));
++	schedule_msec_hrtimeout((2 * fnic->config.ed_tov));
+ 
+ 	/* walk again to check, if IOs are still pending in fw */
+ 	if (fnic_is_abts_pending(fnic, lr_sc))
+diff --git a/drivers/scsi/lpfc/lpfc_scsi.c b/drivers/scsi/lpfc/lpfc_scsi.c
+index a4d697373c71..fab9ea6fe965 100644
+--- a/drivers/scsi/lpfc/lpfc_scsi.c
++++ b/drivers/scsi/lpfc/lpfc_scsi.c
+@@ -5815,7 +5815,7 @@ lpfc_reset_flush_io_context(struct lpfc_vport *vport, uint16_t tgt_id,
+ 					tgt_id, lun_id, context);
+ 	later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies;
+ 	while (time_after(later, jiffies) && cnt) {
+-		schedule_timeout_uninterruptible(msecs_to_jiffies(20));
++		schedule_msec_hrtimeout_uninterruptible((20));
+ 		cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context);
+ 	}
+ 	if (cnt) {
+diff --git a/drivers/scsi/snic/snic_scsi.c b/drivers/scsi/snic/snic_scsi.c
+index 6dd0ff188bb4..aedf0b78f622 100644
+--- a/drivers/scsi/snic/snic_scsi.c
++++ b/drivers/scsi/snic/snic_scsi.c
+@@ -2349,7 +2349,7 @@ snic_reset(struct Scsi_Host *shost, struct scsi_cmnd *sc)
+ 
+ 	/* Wait for all the IOs that are entered in Qcmd */
+ 	while (atomic_read(&snic->ios_inflight))
+-		schedule_timeout(msecs_to_jiffies(1));
++		schedule_msec_hrtimeout((1));
+ 
+ 	ret = snic_issue_hba_reset(snic, sc);
+ 	if (ret) {
+diff --git a/drivers/staging/comedi/drivers/ni_mio_common.c b/drivers/staging/comedi/drivers/ni_mio_common.c
+index 4f80a4991f95..c164c8524909 100644
+--- a/drivers/staging/comedi/drivers/ni_mio_common.c
++++ b/drivers/staging/comedi/drivers/ni_mio_common.c
+@@ -4747,7 +4747,7 @@ static int cs5529_wait_for_idle(struct comedi_device *dev)
+ 		if ((status & NI67XX_CAL_STATUS_BUSY) == 0)
+ 			break;
+ 		set_current_state(TASK_INTERRUPTIBLE);
+-		if (schedule_timeout(1))
++		if (schedule_min_hrtimeout())
+ 			return -EIO;
+ 	}
+ 	if (i == timeout) {
+diff --git a/drivers/staging/rts5208/rtsx.c b/drivers/staging/rts5208/rtsx.c
+index 898add4d1fc8..0aa9dd467349 100644
+--- a/drivers/staging/rts5208/rtsx.c
++++ b/drivers/staging/rts5208/rtsx.c
+@@ -477,7 +477,7 @@ static int rtsx_polling_thread(void *__dev)
+ 
+ 	for (;;) {
+ 		set_current_state(TASK_INTERRUPTIBLE);
+-		schedule_timeout(msecs_to_jiffies(POLLING_INTERVAL));
++		schedule_msec_hrtimeout((POLLING_INTERVAL));
+ 
+ 		/* lock the device pointers */
+ 		mutex_lock(&dev->dev_mutex);
+diff --git a/drivers/staging/unisys/visornic/visornic_main.c b/drivers/staging/unisys/visornic/visornic_main.c
+index 0433536930a9..d8726f28843f 100644
+--- a/drivers/staging/unisys/visornic/visornic_main.c
++++ b/drivers/staging/unisys/visornic/visornic_main.c
+@@ -549,7 +549,7 @@ static int visornic_disable_with_timeout(struct net_device *netdev,
+ 		}
+ 		set_current_state(TASK_INTERRUPTIBLE);
+ 		spin_unlock_irqrestore(&devdata->priv_lock, flags);
+-		wait += schedule_timeout(msecs_to_jiffies(10));
++		wait += schedule_msec_hrtimeout((10));
+ 		spin_lock_irqsave(&devdata->priv_lock, flags);
+ 	}
+ 
+@@ -560,7 +560,7 @@ static int visornic_disable_with_timeout(struct net_device *netdev,
+ 		while (1) {
+ 			set_current_state(TASK_INTERRUPTIBLE);
+ 			spin_unlock_irqrestore(&devdata->priv_lock, flags);
+-			schedule_timeout(msecs_to_jiffies(10));
++			schedule_msec_hrtimeout((10));
+ 			spin_lock_irqsave(&devdata->priv_lock, flags);
+ 			if (atomic_read(&devdata->usage))
+ 				break;
+@@ -714,7 +714,7 @@ static int visornic_enable_with_timeout(struct net_device *netdev,
+ 		}
+ 		set_current_state(TASK_INTERRUPTIBLE);
+ 		spin_unlock_irqrestore(&devdata->priv_lock, flags);
+-		wait += schedule_timeout(msecs_to_jiffies(10));
++		wait += schedule_msec_hrtimeout((10));
+ 		spin_lock_irqsave(&devdata->priv_lock, flags);
+ 	}
+ 
+diff --git a/drivers/video/fbdev/omap/hwa742.c b/drivers/video/fbdev/omap/hwa742.c
+index cfe63932f825..71c00ef772a3 100644
+--- a/drivers/video/fbdev/omap/hwa742.c
++++ b/drivers/video/fbdev/omap/hwa742.c
+@@ -913,7 +913,7 @@ static void hwa742_resume(void)
+ 		if (hwa742_read_reg(HWA742_PLL_DIV_REG) & (1 << 7))
+ 			break;
+ 		set_current_state(TASK_UNINTERRUPTIBLE);
+-		schedule_timeout(msecs_to_jiffies(5));
++		schedule_msec_hrtimeout((5));
+ 	}
+ 	hwa742_set_update_mode(hwa742.update_mode_before_suspend);
+ }
+diff --git a/drivers/video/fbdev/pxafb.c b/drivers/video/fbdev/pxafb.c
+index f1551e00eb12..f0f651e92504 100644
+--- a/drivers/video/fbdev/pxafb.c
++++ b/drivers/video/fbdev/pxafb.c
+@@ -1287,7 +1287,7 @@ static int pxafb_smart_thread(void *arg)
+ 		mutex_unlock(&fbi->ctrlr_lock);
+ 
+ 		set_current_state(TASK_INTERRUPTIBLE);
+-		schedule_timeout(msecs_to_jiffies(30));
++		schedule_msec_hrtimeout((30));
+ 	}
+ 
+ 	pr_debug("%s(): task ending\n", __func__);
+diff --git a/fs/proc/base.c b/fs/proc/base.c
+index 3851bfcdba56..732636ac3fd3 100644
+--- a/fs/proc/base.c
++++ b/fs/proc/base.c
+@@ -476,7 +476,7 @@ static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
+ 		seq_puts(m, "0 0 0\n");
+ 	else
+ 		seq_printf(m, "%llu %llu %lu\n",
+-		   (unsigned long long)task->se.sum_exec_runtime,
++		   (unsigned long long)tsk_seruntime(task),
+ 		   (unsigned long long)task->sched_info.run_delay,
+ 		   task->sched_info.pcount);
+ 
+diff --git a/include/linux/freezer.h b/include/linux/freezer.h
+index 27828145ca09..504cc97bf475 100644
+--- a/include/linux/freezer.h
++++ b/include/linux/freezer.h
+@@ -311,6 +311,7 @@ static inline void set_freezable(void) {}
+ #define wait_event_freezekillable_unsafe(wq, condition)			\
+ 		wait_event_killable(wq, condition)
+ 
++#define pm_freezing (false)
+ #endif /* !CONFIG_FREEZER */
+ 
+ #endif	/* FREEZER_H_INCLUDED */
+diff --git a/include/linux/init_task.h b/include/linux/init_task.h
+index b2412b4d4c20..0db390aeae9f 100644
+--- a/include/linux/init_task.h
++++ b/include/linux/init_task.h
+@@ -36,7 +36,11 @@ extern struct cred init_cred;
+ #define INIT_PREV_CPUTIME(x)
+ #endif
+ 
++#ifdef CONFIG_SCHED_MUQSS
++#define INIT_TASK_COMM "MuQSS"
++#else
+ #define INIT_TASK_COMM "swapper"
++#endif
+ 
+ /* Attach to the init_task data structure for proper alignment */
+ #ifdef CONFIG_ARCH_TASK_STRUCT_ON_STACK
+diff --git a/include/linux/ioprio.h b/include/linux/ioprio.h
+index e9bfe6972aed..16ba1c7e5bde 100644
+--- a/include/linux/ioprio.h
++++ b/include/linux/ioprio.h
+@@ -53,6 +53,8 @@ enum {
+  */
+ static inline int task_nice_ioprio(struct task_struct *task)
+ {
++	if (iso_task(task))
++		return 0;
+ 	return (task_nice(task) + 20) / 5;
+ }
+ 
+diff --git a/include/linux/sched.h b/include/linux/sched.h
+index ef00bb22164c..1f341bfdddba 100644
+--- a/include/linux/sched.h
++++ b/include/linux/sched.h
+@@ -37,6 +37,10 @@
+ #include <linux/kcsan.h>
+ #include <asm/kmap_size.h>
+ 
++#ifdef CONFIG_SCHED_MUQSS
++#include <linux/skip_list.h>
++#endif
++
+ /* task_struct member predeclarations (sorted alphabetically): */
+ struct audit_context;
+ struct backing_dev_info;
+@@ -216,13 +220,40 @@ struct task_group;
+ 
+ extern void scheduler_tick(void);
+ 
+-#define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
+-
++#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
+ extern long schedule_timeout(long timeout);
+ extern long schedule_timeout_interruptible(long timeout);
+ extern long schedule_timeout_killable(long timeout);
+ extern long schedule_timeout_uninterruptible(long timeout);
+ extern long schedule_timeout_idle(long timeout);
++
++#ifdef CONFIG_HIGH_RES_TIMERS
++extern long schedule_msec_hrtimeout(long timeout);
++extern long schedule_min_hrtimeout(void);
++extern long schedule_msec_hrtimeout_interruptible(long timeout);
++extern long schedule_msec_hrtimeout_uninterruptible(long timeout);
++#else
++static inline long schedule_msec_hrtimeout(long timeout)
++{
++	return schedule_timeout(msecs_to_jiffies(timeout));
++}
++
++static inline long schedule_min_hrtimeout(void)
++{
++	return schedule_timeout(1);
++}
++
++static inline long schedule_msec_hrtimeout_interruptible(long timeout)
++{
++	return schedule_timeout_interruptible(msecs_to_jiffies(timeout));
++}
++
++static inline long schedule_msec_hrtimeout_uninterruptible(long timeout)
++{
++	return schedule_timeout_uninterruptible(msecs_to_jiffies(timeout));
++}
++#endif
++
+ asmlinkage void schedule(void);
+ extern void schedule_preempt_disabled(void);
+ asmlinkage void preempt_schedule_irq(void);
+@@ -669,8 +700,10 @@ struct task_struct {
+ 	unsigned int			flags;
+ 	unsigned int			ptrace;
+ 
+-#ifdef CONFIG_SMP
++#if defined(CONFIG_SMP) || defined(CONFIG_SCHED_MUQSS)
+ 	int				on_cpu;
++#endif
++#ifdef CONFIG_SMP
+ 	struct __call_single_node	wake_entry;
+ #ifdef CONFIG_THREAD_INFO_IN_TASK
+ 	/* Current CPU: */
+@@ -696,10 +729,25 @@ struct task_struct {
+ 	int				static_prio;
+ 	int				normal_prio;
+ 	unsigned int			rt_priority;
++#ifdef CONFIG_SCHED_MUQSS
++	int time_slice;
++	u64 deadline;
++	skiplist_node node; /* Skip list node */
++	u64 last_ran;
++	u64 sched_time; /* sched_clock time spent running */
++#ifdef CONFIG_SMT_NICE
++	int smt_bias; /* Policy/nice level bias across smt siblings */
++#endif
++#ifdef CONFIG_HOTPLUG_CPU
++	bool zerobound; /* Bound to CPU0 for hotplug */
++#endif
++	unsigned long rt_timeout;
++#else /* CONFIG_SCHED_MUQSS */
+ 
+ 	const struct sched_class	*sched_class;
+ 	struct sched_entity		se;
+ 	struct sched_rt_entity		rt;
++#endif
+ #ifdef CONFIG_CGROUP_SCHED
+ 	struct task_group		*sched_task_group;
+ #endif
+@@ -903,6 +951,10 @@ struct task_struct {
+ #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
+ 	u64				utimescaled;
+ 	u64				stimescaled;
++#endif
++#ifdef CONFIG_SCHED_MUQSS
++	/* Unbanked cpu time */
++	unsigned long utime_ns, stime_ns;
+ #endif
+ 	u64				gtime;
+ 	struct prev_cputime		prev_cputime;
+@@ -1388,6 +1440,40 @@ struct task_struct {
+ 	 */
+ };
+ 
++#ifdef CONFIG_SCHED_MUQSS
++#define tsk_seruntime(t)		((t)->sched_time)
++#define tsk_rttimeout(t)		((t)->rt_timeout)
++
++static inline void tsk_cpus_current(struct task_struct *p)
++{
++}
++
++void print_scheduler_version(void);
++
++static inline bool iso_task(struct task_struct *p)
++{
++	return (p->policy == SCHED_ISO);
++}
++#else /* CFS */
++#define tsk_seruntime(t)	((t)->se.sum_exec_runtime)
++#define tsk_rttimeout(t)	((t)->rt.timeout)
++
++static inline void tsk_cpus_current(struct task_struct *p)
++{
++	p->nr_cpus_allowed = current->nr_cpus_allowed;
++}
++
++static inline void print_scheduler_version(void)
++{
++	printk(KERN_INFO "CFS CPU scheduler.\n");
++}
++
++static inline bool iso_task(struct task_struct *p)
++{
++	return false;
++}
++#endif /* CONFIG_SCHED_MUQSS */
++
+ static inline struct pid *task_pid(struct task_struct *task)
+ {
+ 	return task->thread_pid;
+diff --git a/include/linux/sched/deadline.h b/include/linux/sched/deadline.h
+index 1aff00b65f3c..73d6319a856a 100644
+--- a/include/linux/sched/deadline.h
++++ b/include/linux/sched/deadline.h
+@@ -28,7 +28,16 @@ static inline bool dl_time_before(u64 a, u64 b)
+ #ifdef CONFIG_SMP
+ 
+ struct root_domain;
++#ifdef CONFIG_SCHED_MUQSS
++static inline void dl_clear_root_domain(struct root_domain *rd)
++{
++}
++static inline void dl_add_task_root_domain(struct task_struct *p)
++{
++}
++#else /* CONFIG_SCHED_MUQSS */
+ extern void dl_add_task_root_domain(struct task_struct *p);
+ extern void dl_clear_root_domain(struct root_domain *rd);
++#endif /* CONFIG_SCHED_MUQSS */
+ 
+ #endif /* CONFIG_SMP */
+diff --git a/include/linux/sched/nohz.h b/include/linux/sched/nohz.h
+index 6d67e9a5af6b..101fe470aa8f 100644
+--- a/include/linux/sched/nohz.h
++++ b/include/linux/sched/nohz.h
+@@ -13,7 +13,7 @@ extern int get_nohz_timer_target(void);
+ static inline void nohz_balance_enter_idle(int cpu) { }
+ #endif
+ 
+-#ifdef CONFIG_NO_HZ_COMMON
++#if defined(CONFIG_NO_HZ_COMMON) && !defined(CONFIG_SCHED_MUQSS)
+ void calc_load_nohz_start(void);
+ void calc_load_nohz_remote(struct rq *rq);
+ void calc_load_nohz_stop(void);
+diff --git a/include/linux/sched/prio.h b/include/linux/sched/prio.h
+index ab83d85e1183..0e1898e247c4 100644
+--- a/include/linux/sched/prio.h
++++ b/include/linux/sched/prio.h
+@@ -14,6 +14,12 @@
+  */
+ 
+ #define MAX_RT_PRIO		100
++#ifdef CONFIG_SCHED_MUQSS
++#define ISO_PRIO		(MAX_RT_PRIO)
++#define NORMAL_PRIO		(MAX_RT_PRIO + 1)
++#define IDLE_PRIO		(MAX_RT_PRIO + 2)
++#define PRIO_LIMIT		((IDLE_PRIO) + 1)
++#endif /* CONFIG_SCHED_MUQSS */
+ 
+ #define MAX_PRIO		(MAX_RT_PRIO + NICE_WIDTH)
+ #define DEFAULT_PRIO		(MAX_RT_PRIO + NICE_WIDTH / 2)
+diff --git a/include/linux/sched/rt.h b/include/linux/sched/rt.h
+index e5af028c08b4..010b2244e0b6 100644
+--- a/include/linux/sched/rt.h
++++ b/include/linux/sched/rt.h
+@@ -24,8 +24,10 @@ static inline bool task_is_realtime(struct task_struct *tsk)
+ 
+ 	if (policy == SCHED_FIFO || policy == SCHED_RR)
+ 		return true;
++#ifndef CONFIG_SCHED_MUQSS
+ 	if (policy == SCHED_DEADLINE)
+ 		return true;
++#endif
+ 	return false;
+ }
+ 
+diff --git a/include/linux/sched/task.h b/include/linux/sched/task.h
+index ef02be869cf2..9e504da356c8 100644
+--- a/include/linux/sched/task.h
++++ b/include/linux/sched/task.h
+@@ -93,7 +93,7 @@ int kernel_wait(pid_t pid, int *stat);
+ extern void free_task(struct task_struct *tsk);
+ 
+ /* sched_exec is called by processes performing an exec */
+-#ifdef CONFIG_SMP
++#if defined(CONFIG_SMP) && !defined(CONFIG_SCHED_MUQSS)
+ extern void sched_exec(void);
+ #else
+ #define sched_exec()   {}
+diff --git a/include/linux/skip_list.h b/include/linux/skip_list.h
+new file mode 100644
+index 000000000000..d4be84ba273b
+--- /dev/null
++++ b/include/linux/skip_list.h
+@@ -0,0 +1,33 @@
++#ifndef _LINUX_SKIP_LISTS_H
++#define _LINUX_SKIP_LISTS_H
++typedef u64 keyType;
++typedef void *valueType;
++
++typedef struct nodeStructure skiplist_node;
++
++struct nodeStructure {
++	int level;	/* Levels in this structure */
++	keyType key;
++	valueType value;
++	skiplist_node *next[8];
++	skiplist_node *prev[8];
++};
++
++typedef struct listStructure {
++	int entries;
++	int level;	/* Maximum level of the list
++			(1 more than the number of levels in the list) */
++	skiplist_node *header; /* pointer to header */
++} skiplist;
++
++void skiplist_init(skiplist_node *slnode);
++skiplist *new_skiplist(skiplist_node *slnode);
++void free_skiplist(skiplist *l);
++void skiplist_node_init(skiplist_node *node);
++void skiplist_insert(skiplist *l, skiplist_node *node, keyType key, valueType value, unsigned int randseed);
++void skiplist_delete(skiplist *l, skiplist_node *node);
++
++static inline bool skiplist_node_empty(skiplist_node *node) {
++	return (!node->next[0]);
++}
++#endif /* _LINUX_SKIP_LISTS_H */
+diff --git a/include/uapi/linux/sched.h b/include/uapi/linux/sched.h
+index 3bac0a8ceab2..f48c5c5da651 100644
+--- a/include/uapi/linux/sched.h
++++ b/include/uapi/linux/sched.h
+@@ -115,9 +115,16 @@ struct clone_args {
+ #define SCHED_FIFO		1
+ #define SCHED_RR		2
+ #define SCHED_BATCH		3
+-/* SCHED_ISO: reserved but not implemented yet */
++/* SCHED_ISO: Implemented on MuQSS only */
+ #define SCHED_IDLE		5
++#ifdef CONFIG_SCHED_MUQSS
++#define SCHED_ISO		4
++#define SCHED_IDLEPRIO		SCHED_IDLE
++#define SCHED_MAX		(SCHED_IDLEPRIO)
++#define SCHED_RANGE(policy)	((policy) <= SCHED_MAX)
++#else /* CONFIG_SCHED_MUQSS */
+ #define SCHED_DEADLINE		6
++#endif /* CONFIG_SCHED_MUQSS */
+ 
+ /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
+ #define SCHED_RESET_ON_FORK     0x40000000
+diff --git a/init/Kconfig b/init/Kconfig
+index 5f5c776ef192..181ec624d61d 100644
+--- a/init/Kconfig
++++ b/init/Kconfig
+@@ -101,6 +101,18 @@ config THREAD_INFO_IN_TASK
+ 
+ menu "General setup"
+ 
++config SCHED_MUQSS
++	bool "MuQSS cpu scheduler"
++	select HIGH_RES_TIMERS
++	help
++	  The Multiple Queue Skiplist Scheduler for excellent interactivity and
++	  responsiveness on the desktop and highly scalable deterministic
++	  low latency on any hardware.
++
++          Say Y here.
++	default y
++
++
+ config BROKEN
+ 	bool
+ 
+@@ -518,6 +530,7 @@ config SCHED_THERMAL_PRESSURE
+ 	default y if ARM64
+ 	depends on SMP
+ 	depends on CPU_FREQ_THERMAL
++	depends on !SCHED_MUQSS
+ 	help
+ 	  Select this option to enable thermal pressure accounting in the
+ 	  scheduler. Thermal pressure is the value conveyed to the scheduler
+@@ -867,6 +880,7 @@ config NUMA_BALANCING
+ 	depends on ARCH_SUPPORTS_NUMA_BALANCING
+ 	depends on !ARCH_WANT_NUMA_VARIABLE_LOCALITY
+ 	depends on SMP && NUMA && MIGRATION
++	depends on !SCHED_MUQSS
+ 	help
+ 	  This option adds support for automatic NUMA aware memory/task placement.
+ 	  The mechanism is quite primitive and is based on migrating memory when
+@@ -951,9 +965,13 @@ menuconfig CGROUP_SCHED
+ 	help
+ 	  This feature lets CPU scheduler recognize task groups and control CPU
+ 	  bandwidth allocation to such task groups. It uses cgroups to group
+-	  tasks.
++	  tasks. In combination with MuQSS this is purely a STUB to create the
++	  files associated with the CPU controller cgroup but most of the
++	  controls do nothing. This is useful for working in environments and
++	  with applications that will only work if this control group is
++	  present.
+ 
+-if CGROUP_SCHED
++if CGROUP_SCHED && !SCHED_MUQSS
+ config FAIR_GROUP_SCHED
+ 	bool "Group scheduling for SCHED_OTHER"
+ 	depends on CGROUP_SCHED
+@@ -1082,6 +1100,7 @@ config CGROUP_DEVICE
+ 
+ config CGROUP_CPUACCT
+ 	bool "Simple CPU accounting controller"
++	depends on !SCHED_MUQSS
+ 	help
+ 	  Provides a simple controller for monitoring the
+ 	  total CPU consumed by the tasks in a cgroup.
+@@ -1210,6 +1229,7 @@ config CHECKPOINT_RESTORE
+ 
+ config SCHED_AUTOGROUP
+ 	bool "Automatic process group scheduling"
++	depends on !SCHED_MUQSS
+ 	select CGROUPS
+ 	select CGROUP_SCHED
+ 	select FAIR_GROUP_SCHED
+diff --git a/init/init_task.c b/init/init_task.c
+index 3711cdaafed2..27826fdd0aa8 100644
+--- a/init/init_task.c
++++ b/init/init_task.c
+@@ -75,9 +75,17 @@ struct task_struct init_task
+ 	.stack		= init_stack,
+ 	.usage		= REFCOUNT_INIT(2),
+ 	.flags		= PF_KTHREAD,
++#ifdef CONFIG_SCHED_MUQSS
++	.prio		= NORMAL_PRIO,
++	.static_prio	= MAX_PRIO - 20,
++	.normal_prio	= NORMAL_PRIO,
++	.deadline	= 0,
++	.time_slice	= 1000000,
++#else
+ 	.prio		= MAX_PRIO - 20,
+ 	.static_prio	= MAX_PRIO - 20,
+ 	.normal_prio	= MAX_PRIO - 20,
++#endif
+ 	.policy		= SCHED_NORMAL,
+ 	.cpus_ptr	= &init_task.cpus_mask,
+ 	.cpus_mask	= CPU_MASK_ALL,
+@@ -87,6 +95,7 @@ struct task_struct init_task
+ 	.restart_block	= {
+ 		.fn = do_no_restart_syscall,
+ 	},
++#ifndef CONFIG_SCHED_MUQSS
+ 	.se		= {
+ 		.group_node 	= LIST_HEAD_INIT(init_task.se.group_node),
+ 	},
+@@ -94,6 +103,7 @@ struct task_struct init_task
+ 		.run_list	= LIST_HEAD_INIT(init_task.rt.run_list),
+ 		.time_slice	= RR_TIMESLICE,
+ 	},
++#endif
+ 	.tasks		= LIST_HEAD_INIT(init_task.tasks),
+ #ifdef CONFIG_SMP
+ 	.pushable_tasks	= PLIST_NODE_INIT(init_task.pushable_tasks, MAX_PRIO),
+diff --git a/init/main.c b/init/main.c
+index 53b278845b88..1bb2a9a90900 100644
+--- a/init/main.c
++++ b/init/main.c
+@@ -1443,6 +1443,8 @@ static int __ref kernel_init(void *unused)
+ 
+ 	do_sysctl_args();
+ 
++	print_scheduler_version();
++
+ 	if (ramdisk_execute_command) {
+ 		ret = run_init_process(ramdisk_execute_command);
+ 		if (!ret)
+diff --git a/kernel/Kconfig.MuQSS b/kernel/Kconfig.MuQSS
+new file mode 100644
+index 000000000000..91688dae437b
+--- /dev/null
++++ b/kernel/Kconfig.MuQSS
+@@ -0,0 +1,106 @@
++choice
++	depends on SMP
++	prompt "CPU scheduler runqueue sharing"
++	default RQ_MC if SCHED_MUQSS
++	default RQ_NONE
++
++config RQ_NONE
++	bool "No sharing"
++	help
++	  This is the default behaviour where the CPU scheduler has one runqueue
++	  per CPU, whether it is a physical or logical CPU (hyperthread).
++
++	  This can still be enabled runtime with the boot parameter
++	  rqshare=none
++
++	  If unsure, say N.
++
++config RQ_SMT
++	bool "SMT (hyperthread) siblings"
++	depends on SCHED_SMT && SCHED_MUQSS
++
++	help
++	  With this option enabled, the CPU scheduler will have one runqueue
++	  shared by SMT (hyperthread) siblings. As these logical cores share
++	  one physical core, sharing the runqueue resource can lead to decreased
++	  overhead, lower latency and higher throughput.
++
++	  This can still be enabled runtime with the boot parameter
++	  rqshare=smt
++
++	  If unsure, say N.
++
++config RQ_MC
++	bool "Multicore siblings"
++	depends on SCHED_MC && SCHED_MUQSS
++	help
++	  With this option enabled, the CPU scheduler will have one runqueue
++	  shared by multicore siblings in addition to any SMT siblings.
++	  As these physical cores share caches, sharing the runqueue resource
++	  will lead to lower latency, but its effects on overhead and throughput
++	  are less predictable. As a general rule, 6 or fewer cores will likely
++	  benefit from this, while larger CPUs will only derive a latency
++	  benefit. If your workloads are primarily single threaded, this will
++	  possibly worsen throughput. If you are only concerned about latency
++	  then enable this regardless of how many cores you have.
++
++	  This can still be enabled runtime with the boot parameter
++	  rqshare=mc
++
++	  If unsure, say Y.
++
++config RQ_MC_LLC
++	bool "Multicore siblings (LLC)"
++	depends on SCHED_MC && SCHED_MUQSS
++	help
++	  With this option enabled, the CPU scheduler will behave similarly as
++	  with "Multicore siblings".
++	  This option takes LLC cache into account when scheduling tasks.
++	  Option may benefit CPUs with multiple LLC caches, such as Ryzen
++	  and Xeon CPUs.
++
++	  This can still be enabled runtime with the boot parameter
++	  rqshare=llc
++
++	  If unsure, say N.
++
++config RQ_SMP
++	bool "Symmetric Multi-Processing"
++	depends on SMP && SCHED_MUQSS
++	help
++	  With this option enabled, the CPU scheduler will have one runqueue
++	  shared by all physical CPUs unless they are on separate NUMA nodes.
++	  As physical CPUs usually do not share resources, sharing the runqueue
++	  will normally worsen throughput but improve latency. If you only
++	  care about latency enable this.
++
++	  This can still be enabled runtime with the boot parameter
++	  rqshare=smp
++
++	  If unsure, say N.
++
++config RQ_ALL
++	bool "NUMA"
++	depends on SMP && SCHED_MUQSS
++	help
++	  With this option enabled, the CPU scheduler will have one runqueue
++	  regardless of the architecture configuration, including across NUMA
++	  nodes. This can substantially decrease throughput in NUMA
++	  configurations, but light NUMA designs will not be dramatically
++	  affected. This option should only be chosen if latency is the prime
++	  concern.
++
++	  This can still be enabled runtime with the boot parameter
++	  rqshare=all
++
++	  If unsure, say N.
++endchoice
++
++config SHARERQ
++	int
++	default 0 if RQ_NONE
++	default 1 if RQ_SMT
++	default 2 if RQ_MC
++	default 3 if RQ_MC_LLC
++	default 4 if RQ_SMP
++	default 5 if RQ_ALL
+diff --git a/kernel/Kconfig.hz b/kernel/Kconfig.hz
+index 38ef6d06888e..89ed751ac4e4 100644
+--- a/kernel/Kconfig.hz
++++ b/kernel/Kconfig.hz
+@@ -5,7 +5,8 @@
+ 
+ choice
+ 	prompt "Timer frequency"
+-	default HZ_250
++	default HZ_100 if SCHED_MUQSS
++	default HZ_250_NODEF if !SCHED_MUQSS
+ 	help
+ 	 Allows the configuration of the timer frequency. It is customary
+ 	 to have the timer interrupt run at 1000 Hz but 100 Hz may be more
+@@ -20,11 +21,18 @@ choice
+ 	config HZ_100
+ 		bool "100 HZ"
+ 	help
++	  100 Hz is a suitable choice in combination with MuQSS which does
++	  not rely on ticks for rescheduling interrupts, and is not Hz limited
++	  for timeouts and sleeps from both the kernel and userspace.
++	  This allows us to benefit from the lower overhead and higher
++	  throughput of fewer timer ticks.
++
++	  Non-MuQSS kernels:
+ 	  100 Hz is a typical choice for servers, SMP and NUMA systems
+ 	  with lots of processors that may show reduced performance if
+ 	  too many timer interrupts are occurring.
+ 
+-	config HZ_250
++	config HZ_250_NODEF
+ 		bool "250 HZ"
+ 	help
+ 	 250 Hz is a good compromise choice allowing server performance
+@@ -32,7 +40,10 @@ choice
+ 	 on SMP and NUMA systems. If you are going to be using NTSC video
+ 	 or multimedia, selected 300Hz instead.
+ 
+-	config HZ_300
++	 250 Hz is the default choice for the mainline scheduler but not
++	 advantageous in combination with MuQSS.
++
++	config HZ_300_NODEF
+ 		bool "300 HZ"
+ 	help
+ 	 300 Hz is a good compromise choice allowing server performance
+@@ -40,7 +51,7 @@ choice
+ 	 on SMP and NUMA systems and exactly dividing by both PAL and
+ 	 NTSC frame rates for video and multimedia work.
+ 
+-	config HZ_1000
++	config HZ_1000_NODEF
+ 		bool "1000 HZ"
+ 	help
+ 	 1000 Hz is the preferred choice for desktop systems and other
+@@ -51,9 +62,9 @@ endchoice
+ config HZ
+ 	int
+ 	default 100 if HZ_100
+-	default 250 if HZ_250
+-	default 300 if HZ_300
+-	default 1000 if HZ_1000
++	default 250 if HZ_250_NODEF
++	default 300 if HZ_300_NODEF
++	default 1000 if HZ_1000_NODEF
+ 
+ config SCHED_HRTICK
+ 	def_bool HIGH_RES_TIMERS
+diff --git a/kernel/Kconfig.preempt b/kernel/Kconfig.preempt
+index 416017301660..2fd8836235f6 100644
+--- a/kernel/Kconfig.preempt
++++ b/kernel/Kconfig.preempt
+@@ -2,7 +2,7 @@
+ 
+ choice
+ 	prompt "Preemption Model"
+-	default PREEMPT_NONE
++	default PREEMPT
+ 
+ config PREEMPT_NONE
+ 	bool "No Forced Preemption (Server)"
+@@ -18,7 +18,7 @@ config PREEMPT_NONE
+ 	  latencies.
+ 
+ config PREEMPT_VOLUNTARY
+-	bool "Voluntary Kernel Preemption (Desktop)"
++	bool "Voluntary Kernel Preemption (Nothing)"
+ 	depends on !ARCH_NO_PREEMPT
+ 	help
+ 	  This option reduces the latency of the kernel by adding more
+@@ -33,7 +33,8 @@ config PREEMPT_VOLUNTARY
+ 	  applications to run more 'smoothly' even when the system is
+ 	  under load.
+ 
+-	  Select this if you are building a kernel for a desktop system.
++	  Select this for no system in particular (choose Preemptible
++	  instead on a desktop if you know what's good for you).
+ 
+ config PREEMPT
+ 	bool "Preemptible Kernel (Low-Latency Desktop)"
+diff --git a/kernel/Makefile b/kernel/Makefile
+index 320f1f3941b7..e48b2bc762ca 100644
+--- a/kernel/Makefile
++++ b/kernel/Makefile
+@@ -10,7 +10,8 @@ obj-y     = fork.o exec_domain.o panic.o \
+ 	    extable.o params.o \
+ 	    kthread.o sys_ni.o nsproxy.o \
+ 	    notifier.o ksysfs.o cred.o reboot.o \
+-	    async.o range.o smpboot.o ucount.o regset.o
++	    async.o range.o smpboot.o ucount.o regset.o \
++	    skip_list.o
+ 
+ obj-$(CONFIG_USERMODE_DRIVER) += usermode_driver.o
+ obj-$(CONFIG_MODULES) += kmod.o
+diff --git a/kernel/delayacct.c b/kernel/delayacct.c
+index 27725754ac99..769d773c7182 100644
+--- a/kernel/delayacct.c
++++ b/kernel/delayacct.c
+@@ -106,7 +106,7 @@ int __delayacct_add_tsk(struct taskstats *d, struct task_struct *tsk)
+ 	 */
+ 	t1 = tsk->sched_info.pcount;
+ 	t2 = tsk->sched_info.run_delay;
+-	t3 = tsk->se.sum_exec_runtime;
++	t3 = tsk_seruntime(tsk);
+ 
+ 	d->cpu_count += t1;
+ 
+diff --git a/kernel/exit.c b/kernel/exit.c
+index 04029e35e69a..5ee0dc0b9175 100644
+--- a/kernel/exit.c
++++ b/kernel/exit.c
+@@ -122,7 +122,7 @@ static void __exit_signal(struct task_struct *tsk)
+ 			sig->curr_target = next_thread(tsk);
+ 	}
+ 
+-	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
++	add_device_randomness((const void*) &tsk_seruntime(tsk),
+ 			      sizeof(unsigned long long));
+ 
+ 	/*
+@@ -143,7 +143,7 @@ static void __exit_signal(struct task_struct *tsk)
+ 	sig->inblock += task_io_get_inblock(tsk);
+ 	sig->oublock += task_io_get_oublock(tsk);
+ 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
+-	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
++	sig->sum_sched_runtime += tsk_seruntime(tsk);
+ 	sig->nr_threads--;
+ 	__unhash_process(tsk, group_dead);
+ 	write_sequnlock(&sig->stats_lock);
+diff --git a/kernel/irq/Kconfig b/kernel/irq/Kconfig
+index d79ef2493a28..8aa20871e7d0 100644
+--- a/kernel/irq/Kconfig
++++ b/kernel/irq/Kconfig
+@@ -108,6 +108,23 @@ config GENERIC_IRQ_RESERVATION_MODE
+ config IRQ_FORCED_THREADING
+        bool
+ 
++config FORCE_IRQ_THREADING
++	bool "Make IRQ threading compulsory"
++	depends on IRQ_FORCED_THREADING
++	default n
++	help
++
++	  Make IRQ threading mandatory for any IRQ handlers that support it
++	  instead of being optional and requiring the threadirqs kernel
++	  parameter. Instead they can be optionally disabled with the
++	  nothreadirqs kernel parameter.
++
++	  Enabling this may make some architectures not boot with runqueue
++	  sharing and MuQSS.
++
++	  Enable if you are building for a desktop or low latency system,
++	  otherwise say N.
++
+ config SPARSE_IRQ
+ 	bool "Support sparse irq numbering" if MAY_HAVE_SPARSE_IRQ
+ 	help
+diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c
+index 21ea370fccda..fc1d9117a4d2 100644
+--- a/kernel/irq/manage.c
++++ b/kernel/irq/manage.c
+@@ -25,9 +25,20 @@
+ #include "internals.h"
+ 
+ #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
++#ifdef CONFIG_FORCE_IRQ_THREADING
++__read_mostly bool force_irqthreads = true;
++#else
+ __read_mostly bool force_irqthreads;
++#endif
+ EXPORT_SYMBOL_GPL(force_irqthreads);
+ 
++static int __init setup_noforced_irqthreads(char *arg)
++{
++	force_irqthreads = false;
++	return 0;
++}
++early_param("nothreadirqs", setup_noforced_irqthreads);
++
+ static int __init setup_forced_irqthreads(char *arg)
+ {
+ 	force_irqthreads = true;
+diff --git a/kernel/kthread.c b/kernel/kthread.c
+index 1578973c5740..24b3b39f4123 100644
+--- a/kernel/kthread.c
++++ b/kernel/kthread.c
+@@ -471,6 +471,34 @@ void kthread_bind(struct task_struct *p, unsigned int cpu)
+ }
+ EXPORT_SYMBOL(kthread_bind);
+ 
++#if defined(CONFIG_SCHED_MUQSS) && defined(CONFIG_SMP)
++extern void __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
++
++/*
++ * new_kthread_bind is a special variant of __kthread_bind_mask.
++ * For new threads to work on muqss we want to call do_set_cpus_allowed
++ * without the task_cpu being set and the task rescheduled until they're
++ * rescheduled on their own so we call __do_set_cpus_allowed directly which
++ * only changes the cpumask. This is particularly important for smpboot threads
++ * to work.
++ */
++static void new_kthread_bind(struct task_struct *p, unsigned int cpu)
++{
++	unsigned long flags;
++
++	if (WARN_ON(!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)))
++		return;
++
++	/* It's safe because the task is inactive. */
++	raw_spin_lock_irqsave(&p->pi_lock, flags);
++	__do_set_cpus_allowed(p, cpumask_of(cpu));
++	p->flags |= PF_NO_SETAFFINITY;
++	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++}
++#else
++#define new_kthread_bind(p, cpu) kthread_bind(p, cpu)
++#endif
++
+ /**
+  * kthread_create_on_cpu - Create a cpu bound kthread
+  * @threadfn: the function to run until signal_pending(current).
+@@ -491,7 +519,7 @@ struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
+ 				   cpu);
+ 	if (IS_ERR(p))
+ 		return p;
+-	kthread_bind(p, cpu);
++	new_kthread_bind(p, cpu);
+ 	/* CPU hotplug need to bind once again when unparking the thread. */
+ 	to_kthread(p)->cpu = cpu;
+ 	return p;
+diff --git a/kernel/livepatch/transition.c b/kernel/livepatch/transition.c
+index f6310f848f34..825f9b8e228f 100644
+--- a/kernel/livepatch/transition.c
++++ b/kernel/livepatch/transition.c
+@@ -282,7 +282,7 @@ static bool klp_try_switch_task(struct task_struct *task)
+ {
+ 	static char err_buf[STACK_ERR_BUF_SIZE];
+ 	struct rq *rq;
+-	struct rq_flags flags;
++	struct rq_flags rf;
+ 	int ret;
+ 	bool success = false;
+ 
+@@ -304,7 +304,7 @@ static bool klp_try_switch_task(struct task_struct *task)
+ 	 * functions.  If all goes well, switch the task to the target patch
+ 	 * state.
+ 	 */
+-	rq = task_rq_lock(task, &flags);
++	rq = task_rq_lock(task, &rf);
+ 
+ 	if (task_running(rq, task) && task != current) {
+ 		snprintf(err_buf, STACK_ERR_BUF_SIZE,
+@@ -323,7 +323,7 @@ static bool klp_try_switch_task(struct task_struct *task)
+ 	task->patch_state = klp_target_state;
+ 
+ done:
+-	task_rq_unlock(rq, task, &flags);
++	task_rq_unlock(rq, task, &rf);
+ 
+ 	/*
+ 	 * Due to console deadlock issues, pr_debug() can't be used while
+diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
+index 5fc9c9b70862..1ff14a21193d 100644
+--- a/kernel/sched/Makefile
++++ b/kernel/sched/Makefile
+@@ -22,15 +22,23 @@ ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y)
+ CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer
+ endif
+ 
++ifdef CONFIG_SCHED_MUQSS
++obj-y += MuQSS.o clock.o cputime.o
++obj-y += idle.o
++obj-y += wait.o wait_bit.o swait.o completion.o
++
++obj-$(CONFIG_SMP) += topology.o
++else
+ obj-y += core.o loadavg.o clock.o cputime.o
+ obj-y += idle.o fair.o rt.o deadline.o
+ obj-y += wait.o wait_bit.o swait.o completion.o
+ 
+ obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o topology.o stop_task.o pelt.o
+ obj-$(CONFIG_SCHED_AUTOGROUP) += autogroup.o
+-obj-$(CONFIG_SCHEDSTATS) += stats.o
+ obj-$(CONFIG_SCHED_DEBUG) += debug.o
+ obj-$(CONFIG_CGROUP_CPUACCT) += cpuacct.o
++endif
++obj-$(CONFIG_SCHEDSTATS) += stats.o
+ obj-$(CONFIG_CPU_FREQ) += cpufreq.o
+ obj-$(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) += cpufreq_schedutil.o
+ obj-$(CONFIG_MEMBARRIER) += membarrier.o
+diff --git a/kernel/sched/MuQSS.c b/kernel/sched/MuQSS.c
+new file mode 100644
+index 000000000000..eaba90172825
+--- /dev/null
++++ b/kernel/sched/MuQSS.c
+@@ -0,0 +1,8307 @@
++// SPDX-License-Identifier: GPL-2.0
++/*
++ *  kernel/sched/MuQSS.c, was kernel/sched.c
++ *
++ *  Kernel scheduler and related syscalls
++ *
++ *  Copyright (C) 1991-2002  Linus Torvalds
++ *
++ *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
++ *		make semaphores SMP safe
++ *  1998-11-19	Implemented schedule_timeout() and related stuff
++ *		by Andrea Arcangeli
++ *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
++ *		hybrid priority-list and round-robin design with
++ *		an array-switch method of distributing timeslices
++ *		and per-CPU runqueues.  Cleanups and useful suggestions
++ *		by Davide Libenzi, preemptible kernel bits by Robert Love.
++ *  2003-09-03	Interactivity tuning by Con Kolivas.
++ *  2004-04-02	Scheduler domains code by Nick Piggin
++ *  2007-04-15  Work begun on replacing all interactivity tuning with a
++ *              fair scheduling design by Con Kolivas.
++ *  2007-05-05  Load balancing (smp-nice) and other improvements
++ *              by Peter Williams
++ *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
++ *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
++ *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
++ *              Thomas Gleixner, Mike Kravetz
++ *  2009-08-13	Brainfuck deadline scheduling policy by Con Kolivas deletes
++ *              a whole lot of those previous things.
++ *  2016-10-01  Multiple Queue Skiplist Scheduler scalable evolution of BFS
++ * 		scheduler by Con Kolivas.
++ *  2019-08-31  LLC bits by Eduards Bezverhijs
++ */
++#define CREATE_TRACE_POINTS
++#include <trace/events/sched.h>
++#undef CREATE_TRACE_POINTS
++
++#include <linux/sched/isolation.h>
++#include <linux/sched/loadavg.h>
++
++#include <linux/binfmts.h>
++#include <linux/blkdev.h>
++#include <linux/compat.h>
++#include <linux/context_tracking.h>
++#include <linux/cpuset.h>
++#include <linux/delayacct.h>
++#include <linux/init_task.h>
++#include <linux/kcov.h>
++#include <linux/kprobes.h>
++#include <linux/mmu_context.h>
++#include <linux/module.h>
++#include <linux/nmi.h>
++#include <linux/prefetch.h>
++#include <linux/profile.h>
++#include <linux/rcupdate_wait.h>
++#include <linux/sched.h>
++#include <linux/scs.h>
++#include <linux/security.h>
++#include <linux/skip_list.h>
++#include <linux/syscalls.h>
++#include <linux/tick.h>
++#include <linux/wait_bit.h>
++
++#include <asm/irq_regs.h>
++#include <asm/switch_to.h>
++#include <asm/tlb.h>
++
++#include "../workqueue_internal.h"
++#include "../../fs/io-wq.h"
++#include "../smpboot.h"
++
++#include "MuQSS.h"
++#include "smp.h"
++
++#define rt_prio(prio)		unlikely((prio) < MAX_RT_PRIO)
++#define rt_task(p)		rt_prio((p)->prio)
++#define batch_task(p)		(unlikely((p)->policy == SCHED_BATCH))
++#define is_rt_policy(policy)	((policy) == SCHED_FIFO || \
++					(policy) == SCHED_RR)
++#define has_rt_policy(p)	unlikely(is_rt_policy((p)->policy))
++
++#define is_idle_policy(policy)	((policy) == SCHED_IDLEPRIO)
++#define idleprio_task(p)	unlikely(is_idle_policy((p)->policy))
++#define task_running_idle(p)	unlikely((p)->prio == IDLE_PRIO)
++
++#define is_iso_policy(policy)	((policy) == SCHED_ISO)
++#define iso_task(p)		unlikely(is_iso_policy((p)->policy))
++#define task_running_iso(p)	unlikely((p)->prio == ISO_PRIO)
++
++#define rq_idle(rq)		((rq)->rq_prio == PRIO_LIMIT)
++
++#define ISO_PERIOD		(5 * HZ)
++
++/*
++ * 'User priority' is the nice value converted to something we
++ * can work with better when scaling various scheduler parameters,
++ * it's a [ 0 ... 39 ] range.
++ */
++#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
++#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
++#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))
++#define STOP_PRIO		(MAX_RT_PRIO - 1)
++
++/*
++ * Some helpers for converting to/from various scales. Use shifts to get
++ * approximate multiples of ten for less overhead.
++ */
++#define APPROX_NS_PS		(1073741824) /* Approximate ns per second */
++#define JIFFIES_TO_NS(TIME)	((TIME) * (APPROX_NS_PS / HZ))
++#define JIFFY_NS		(APPROX_NS_PS / HZ)
++#define JIFFY_US		(1048576 / HZ)
++#define NS_TO_JIFFIES(TIME)	((TIME) / JIFFY_NS)
++#define HALF_JIFFY_NS		(APPROX_NS_PS / HZ / 2)
++#define HALF_JIFFY_US		(1048576 / HZ / 2)
++#define MS_TO_NS(TIME)		((TIME) << 20)
++#define MS_TO_US(TIME)		((TIME) << 10)
++#define NS_TO_MS(TIME)		((TIME) >> 20)
++#define NS_TO_US(TIME)		((TIME) >> 10)
++#define US_TO_NS(TIME)		((TIME) << 10)
++#define TICK_APPROX_NS		((APPROX_NS_PS+HZ/2)/HZ)
++
++#define RESCHED_US	(100) /* Reschedule if less than this many μs left */
++
++void print_scheduler_version(void)
++{
++	printk(KERN_INFO "MuQSS CPU scheduler v0.210 by Con Kolivas.\n");
++}
++
++/*
++ * This is the time all tasks within the same priority round robin.
++ * Value is in ms and set to a minimum of 6ms.
++ * Tunable via /proc interface.
++ */
++int rr_interval __read_mostly = 6;
++
++/*
++ * Tunable to choose whether to prioritise latency or throughput, simple
++ * binary yes or no
++ */
++int sched_interactive __read_mostly = 1;
++
++/*
++ * sched_iso_cpu - sysctl which determines the cpu percentage SCHED_ISO tasks
++ * are allowed to run five seconds as real time tasks. This is the total over
++ * all online cpus.
++ */
++int sched_iso_cpu __read_mostly = 70;
++
++/*
++ * sched_yield_type - Choose what sort of yield sched_yield will perform.
++ * 0: No yield.
++ * 1: Yield only to better priority/deadline tasks. (default)
++ * 2: Expire timeslice and recalculate deadline.
++ */
++int sched_yield_type __read_mostly = 1;
++
++/*
++ * The relative length of deadline for each priority(nice) level.
++ */
++static int prio_ratios[NICE_WIDTH] __read_mostly;
++
++
++/*
++ * The quota handed out to tasks of all priority levels when refilling their
++ * time_slice.
++ */
++static inline int timeslice(void)
++{
++	return MS_TO_US(rr_interval);
++}
++
++DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
++
++#ifdef CONFIG_SMP
++
++/* Define RQ share levels */
++#define RQSHARE_NONE 0
++#define RQSHARE_SMT 1
++#define RQSHARE_MC 2
++#define RQSHARE_MC_LLC 3
++#define RQSHARE_SMP 4
++#define RQSHARE_ALL 5
++
++/* Define locality levels */
++#define LOCALITY_SAME 0
++#define LOCALITY_SMT 1
++#define LOCALITY_MC_LLC 2
++#define LOCALITY_MC 3
++#define LOCALITY_SMP 4
++#define LOCALITY_DISTANT 5
++
++/*
++ * This determines what level of runqueue sharing will be done and is
++ * configurable at boot time with the bootparam rqshare =
++ */
++static int rqshare __read_mostly = CONFIG_SHARERQ; /* Default RQSHARE_MC */
++
++static int __init set_rqshare(char *str)
++{
++	if (!strncmp(str, "none", 4)) {
++		rqshare = RQSHARE_NONE;
++		return 1;
++	}
++	if (!strncmp(str, "smt", 3)) {
++		rqshare = RQSHARE_SMT;
++		return 1;
++	}
++	if (!strncmp(str, "mc", 2)) {
++		rqshare = RQSHARE_MC;
++		return 1;
++	}
++	if (!strncmp(str, "llc", 3)) {
++		rqshare = RQSHARE_MC_LLC;
++		return 1;
++	}
++	if (!strncmp(str, "smp", 3)) {
++		rqshare = RQSHARE_SMP;
++		return 1;
++	}
++	if (!strncmp(str, "all", 3)) {
++		rqshare = RQSHARE_ALL;
++		return 1;
++	}
++	return 0;
++}
++__setup("rqshare=", set_rqshare);
++
++/*
++ * Total number of runqueues. Equals number of CPUs when there is no runqueue
++ * sharing but is usually less with SMT/MC sharing of runqueues.
++ */
++static int total_runqueues __read_mostly = 1;
++
++static cpumask_t cpu_idle_map ____cacheline_aligned_in_smp;
++
++struct rq *cpu_rq(int cpu)
++{
++	return &per_cpu(runqueues, (cpu));
++}
++#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
++
++/*
++ * For asym packing, by default the lower numbered cpu has higher priority.
++ */
++int __weak arch_asym_cpu_priority(int cpu)
++{
++	return -cpu;
++}
++
++int __weak arch_sd_sibling_asym_packing(void)
++{
++       return 0*SD_ASYM_PACKING;
++}
++
++#ifdef CONFIG_SCHED_SMT
++DEFINE_STATIC_KEY_FALSE(sched_smt_present);
++EXPORT_SYMBOL_GPL(sched_smt_present);
++#endif
++
++#else
++struct rq *uprq;
++#endif /* CONFIG_SMP */
++
++#include "stats.h"
++
++/*
++ * All common locking functions performed on rq->lock. rq->clock is local to
++ * the CPU accessing it so it can be modified just with interrupts disabled
++ * when we're not updating niffies.
++ * Looking up task_rq must be done under rq->lock to be safe.
++ */
++
++/*
++ * RQ-clock updating methods:
++ */
++
++#ifdef HAVE_SCHED_AVG_IRQ
++static void update_irq_load_avg(struct rq *rq, long delta);
++#else
++static inline void update_irq_load_avg(struct rq *rq, long delta) {}
++#endif
++
++static void update_rq_clock_task(struct rq *rq, s64 delta)
++{
++/*
++ * In theory, the compile should just see 0 here, and optimize out the call
++ * to sched_rt_avg_update. But I don't trust it...
++ */
++	s64 __maybe_unused steal = 0, irq_delta = 0;
++#ifdef CONFIG_IRQ_TIME_ACCOUNTING
++	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
++
++	/*
++	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
++	 * this case when a previous update_rq_clock() happened inside a
++	 * {soft,}irq region.
++	 *
++	 * When this happens, we stop ->clock_task and only update the
++	 * prev_irq_time stamp to account for the part that fit, so that a next
++	 * update will consume the rest. This ensures ->clock_task is
++	 * monotonic.
++	 *
++	 * It does however cause some slight miss-attribution of {soft,}irq
++	 * time, a more accurate solution would be to update the irq_time using
++	 * the current rq->clock timestamp, except that would require using
++	 * atomic ops.
++	 */
++	if (irq_delta > delta)
++		irq_delta = delta;
++
++	rq->prev_irq_time += irq_delta;
++	delta -= irq_delta;
++#endif
++#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
++	if (static_key_false((&paravirt_steal_rq_enabled))) {
++		steal = paravirt_steal_clock(cpu_of(rq));
++		steal -= rq->prev_steal_time_rq;
++
++		if (unlikely(steal > delta))
++			steal = delta;
++
++		rq->prev_steal_time_rq += steal;
++		delta -= steal;
++	}
++#endif
++	rq->clock_task += delta;
++
++#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
++	if (irq_delta + steal)
++		update_irq_load_avg(rq, irq_delta + steal);
++#endif
++}
++
++static inline void update_rq_clock(struct rq *rq)
++{
++	s64 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
++
++	if (unlikely(delta < 0))
++		return;
++	rq->clock += delta;
++	update_rq_clock_task(rq, delta);
++}
++
++/*
++ * Niffies are a globally increasing nanosecond counter. They're only used by
++ * update_load_avg and time_slice_expired, however deadlines are based on them
++ * across CPUs. Update them whenever we will call one of those functions, and
++ * synchronise them across CPUs whenever we hold both runqueue locks.
++ */
++static inline void update_clocks(struct rq *rq)
++{
++	s64 ndiff, minndiff;
++	long jdiff;
++
++	update_rq_clock(rq);
++	ndiff = rq->clock - rq->old_clock;
++	rq->old_clock = rq->clock;
++	jdiff = jiffies - rq->last_jiffy;
++
++	/* Subtract any niffies added by balancing with other rqs */
++	ndiff -= rq->niffies - rq->last_niffy;
++	minndiff = JIFFIES_TO_NS(jdiff) - rq->niffies + rq->last_jiffy_niffies;
++	if (minndiff < 0)
++		minndiff = 0;
++	ndiff = max(ndiff, minndiff);
++	rq->niffies += ndiff;
++	rq->last_niffy = rq->niffies;
++	if (jdiff) {
++		rq->last_jiffy += jdiff;
++		rq->last_jiffy_niffies = rq->niffies;
++	}
++}
++
++/*
++ * Any time we have two runqueues locked we use that as an opportunity to
++ * synchronise niffies to the highest value as idle ticks may have artificially
++ * kept niffies low on one CPU and the truth can only be later.
++ */
++static inline void synchronise_niffies(struct rq *rq1, struct rq *rq2)
++{
++	if (rq1->niffies > rq2->niffies)
++		rq2->niffies = rq1->niffies;
++	else
++		rq1->niffies = rq2->niffies;
++}
++
++/*
++ * double_rq_lock - safely lock two runqueues
++ *
++ * Note this does not disable interrupts like task_rq_lock,
++ * you need to do so manually before calling.
++ */
++
++/* For when we know rq1 != rq2 */
++static inline void __double_rq_lock(struct rq *rq1, struct rq *rq2)
++	__acquires(rq1->lock)
++	__acquires(rq2->lock)
++{
++	if (rq1 < rq2) {
++		raw_spin_lock(rq1->lock);
++		raw_spin_lock_nested(rq2->lock, SINGLE_DEPTH_NESTING);
++	} else {
++		raw_spin_lock(rq2->lock);
++		raw_spin_lock_nested(rq1->lock, SINGLE_DEPTH_NESTING);
++	}
++}
++
++static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
++	__acquires(rq1->lock)
++	__acquires(rq2->lock)
++{
++	BUG_ON(!irqs_disabled());
++	if (rq1->lock == rq2->lock) {
++		raw_spin_lock(rq1->lock);
++		__acquire(rq2->lock);	/* Fake it out ;) */
++	} else
++		__double_rq_lock(rq1, rq2);
++	synchronise_niffies(rq1, rq2);
++}
++
++/*
++ * double_rq_unlock - safely unlock two runqueues
++ *
++ * Note this does not restore interrupts like task_rq_unlock,
++ * you need to do so manually after calling.
++ */
++static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
++	__releases(rq1->lock)
++	__releases(rq2->lock)
++{
++	raw_spin_unlock(rq1->lock);
++	if (rq1->lock != rq2->lock)
++		raw_spin_unlock(rq2->lock);
++	else
++		__release(rq2->lock);
++}
++
++static inline void lock_all_rqs(void)
++{
++	int cpu;
++
++	preempt_disable();
++	for_each_possible_cpu(cpu) {
++		struct rq *rq = cpu_rq(cpu);
++
++		do_raw_spin_lock(rq->lock);
++	}
++}
++
++static inline void unlock_all_rqs(void)
++{
++	int cpu;
++
++	for_each_possible_cpu(cpu) {
++		struct rq *rq = cpu_rq(cpu);
++
++		do_raw_spin_unlock(rq->lock);
++	}
++	preempt_enable();
++}
++
++/* Specially nest trylock an rq */
++static inline bool trylock_rq(struct rq *this_rq, struct rq *rq)
++{
++	if (unlikely(!do_raw_spin_trylock(rq->lock)))
++		return false;
++	spin_acquire(&rq->lock->dep_map, SINGLE_DEPTH_NESTING, 1, _RET_IP_);
++	synchronise_niffies(this_rq, rq);
++	return true;
++}
++
++/* Unlock a specially nested trylocked rq */
++static inline void unlock_rq(struct rq *rq)
++{
++	spin_release(&rq->lock->dep_map, _RET_IP_);
++	do_raw_spin_unlock(rq->lock);
++}
++
++/*
++ * cmpxchg based fetch_or, macro so it works for different integer types
++ */
++#define fetch_or(ptr, mask)						\
++	({								\
++		typeof(ptr) _ptr = (ptr);				\
++		typeof(mask) _mask = (mask);				\
++		typeof(*_ptr) _old, _val = *_ptr;			\
++									\
++		for (;;) {						\
++			_old = cmpxchg(_ptr, _val, _val | _mask);	\
++			if (_old == _val)				\
++				break;					\
++			_val = _old;					\
++		}							\
++	_old;								\
++})
++
++#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
++/*
++ * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
++ * this avoids any races wrt polling state changes and thereby avoids
++ * spurious IPIs.
++ */
++static bool set_nr_and_not_polling(struct task_struct *p)
++{
++	struct thread_info *ti = task_thread_info(p);
++	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
++}
++
++/*
++ * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
++ *
++ * If this returns true, then the idle task promises to call
++ * sched_ttwu_pending() and reschedule soon.
++ */
++static bool set_nr_if_polling(struct task_struct *p)
++{
++	struct thread_info *ti = task_thread_info(p);
++	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
++
++	for (;;) {
++		if (!(val & _TIF_POLLING_NRFLAG))
++			return false;
++		if (val & _TIF_NEED_RESCHED)
++			return true;
++		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
++		if (old == val)
++			break;
++		val = old;
++	}
++	return true;
++}
++
++#else
++static bool set_nr_and_not_polling(struct task_struct *p)
++{
++	set_tsk_need_resched(p);
++	return true;
++}
++
++#ifdef CONFIG_SMP
++static bool set_nr_if_polling(struct task_struct *p)
++{
++	return false;
++}
++#endif
++#endif
++
++static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
++{
++	struct wake_q_node *node = &task->wake_q;
++
++	/*
++	 * Atomically grab the task, if ->wake_q is !nil already it means
++	 * it's already queued (either by us or someone else) and will get the
++	 * wakeup due to that.
++	 *
++	 * In order to ensure that a pending wakeup will observe our pending
++	 * state, even in the failed case, an explicit smp_mb() must be used.
++	 */
++	smp_mb__before_atomic();
++	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
++		return false;
++
++	/*
++	 * The head is context local, there can be no concurrency.
++	 */
++	*head->lastp = node;
++	head->lastp = &node->next;
++	return true;
++}
++
++/**
++ * wake_q_add() - queue a wakeup for 'later' waking.
++ * @head: the wake_q_head to add @task to
++ * @task: the task to queue for 'later' wakeup
++ *
++ * Queue a task for later wakeup, most likely by the wake_up_q() call in the
++ * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
++ * instantly.
++ *
++ * This function must be used as-if it were wake_up_process(); IOW the task
++ * must be ready to be woken at this location.
++ */
++void wake_q_add(struct wake_q_head *head, struct task_struct *task)
++{
++	if (__wake_q_add(head, task))
++		get_task_struct(task);
++}
++
++/**
++ * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
++ * @head: the wake_q_head to add @task to
++ * @task: the task to queue for 'later' wakeup
++ *
++ * Queue a task for later wakeup, most likely by the wake_up_q() call in the
++ * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
++ * instantly.
++ *
++ * This function must be used as-if it were wake_up_process(); IOW the task
++ * must be ready to be woken at this location.
++ *
++ * This function is essentially a task-safe equivalent to wake_q_add(). Callers
++ * that already hold reference to @task can call the 'safe' version and trust
++ * wake_q to do the right thing depending whether or not the @task is already
++ * queued for wakeup.
++ */
++void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
++{
++	if (!__wake_q_add(head, task))
++		put_task_struct(task);
++}
++
++void wake_up_q(struct wake_q_head *head)
++{
++	struct wake_q_node *node = head->first;
++
++	while (node != WAKE_Q_TAIL) {
++		struct task_struct *task;
++
++		task = container_of(node, struct task_struct, wake_q);
++		BUG_ON(!task);
++		/* Task can safely be re-inserted now */
++		node = node->next;
++		task->wake_q.next = NULL;
++
++		/*
++		 * wake_up_process() executes a full barrier, which pairs with
++		 * the queueing in wake_q_add() so as not to miss wakeups.
++		 */
++		wake_up_process(task);
++		put_task_struct(task);
++	}
++}
++
++static inline void smp_sched_reschedule(int cpu)
++{
++	if (likely(cpu_online(cpu)))
++		smp_send_reschedule(cpu);
++}
++
++/*
++ * resched_task - mark a task 'to be rescheduled now'.
++ *
++ * On UP this means the setting of the need_resched flag, on SMP it
++ * might also involve a cross-CPU call to trigger the scheduler on
++ * the target CPU.
++ */
++void resched_task(struct task_struct *p)
++{
++	int cpu;
++#ifdef CONFIG_LOCKDEP
++	/* Kernel threads call this when creating workqueues while still
++	 * inactive from __kthread_bind_mask, holding only the pi_lock */
++	if (!(p->flags & PF_KTHREAD)) {
++		struct rq *rq = task_rq(p);
++
++		lockdep_assert_held(rq->lock);
++	}
++#endif
++	if (test_tsk_need_resched(p))
++		return;
++
++	cpu = task_cpu(p);
++	if (cpu == smp_processor_id()) {
++		set_tsk_need_resched(p);
++		set_preempt_need_resched();
++		return;
++	}
++
++	if (set_nr_and_not_polling(p))
++		smp_sched_reschedule(cpu);
++	else
++		trace_sched_wake_idle_without_ipi(cpu);
++}
++
++/*
++ * A task that is not running or queued will not have a node set.
++ * A task that is queued but not running will have a node set.
++ * A task that is currently running will have ->on_cpu set but no node set.
++ */
++static inline bool task_queued(struct task_struct *p)
++{
++	return !skiplist_node_empty(&p->node);
++}
++
++static void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
++static inline void resched_if_idle(struct rq *rq);
++
++static inline bool deadline_before(u64 deadline, u64 time)
++{
++	return (deadline < time);
++}
++
++/*
++ * Deadline is "now" in niffies + (offset by priority). Setting the deadline
++ * is the key to everything. It distributes cpu fairly amongst tasks of the
++ * same nice value, it proportions cpu according to nice level, it means the
++ * task that last woke up the longest ago has the earliest deadline, thus
++ * ensuring that interactive tasks get low latency on wake up. The CPU
++ * proportion works out to the square of the virtual deadline difference, so
++ * this equation will give nice 19 3% CPU compared to nice 0.
++ */
++static inline u64 prio_deadline_diff(int user_prio)
++{
++	return (prio_ratios[user_prio] * rr_interval * (MS_TO_NS(1) / 128));
++}
++
++static inline u64 task_deadline_diff(struct task_struct *p)
++{
++	return prio_deadline_diff(TASK_USER_PRIO(p));
++}
++
++static inline u64 static_deadline_diff(int static_prio)
++{
++	return prio_deadline_diff(USER_PRIO(static_prio));
++}
++
++static inline int longest_deadline_diff(void)
++{
++	return prio_deadline_diff(39);
++}
++
++static inline int ms_longest_deadline_diff(void)
++{
++	return NS_TO_MS(longest_deadline_diff());
++}
++
++static inline bool rq_local(struct rq *rq);
++
++#ifndef SCHED_CAPACITY_SCALE
++#define SCHED_CAPACITY_SCALE 1024
++#endif
++
++static inline int rq_load(struct rq *rq)
++{
++	return rq->nr_running;
++}
++
++/*
++ * Update the load average for feeding into cpu frequency governors. Use a
++ * rough estimate of a rolling average with ~ time constant of 32ms.
++ * 80/128 ~ 0.63. * 80 / 32768 / 128 == * 5 / 262144
++ * Make sure a call to update_clocks has been made before calling this to get
++ * an updated rq->niffies.
++ */
++static void update_load_avg(struct rq *rq, unsigned int flags)
++{
++	long us_interval, load;
++
++	us_interval = NS_TO_US(rq->niffies - rq->load_update);
++	if (unlikely(us_interval <= 0))
++		return;
++
++	load = rq->load_avg - (rq->load_avg * us_interval * 5 / 262144);
++	if (unlikely(load < 0))
++		load = 0;
++	load += rq_load(rq) * SCHED_CAPACITY_SCALE * us_interval * 5 / 262144;
++	rq->load_avg = load;
++
++	rq->load_update = rq->niffies;
++	update_irq_load_avg(rq, 0);
++	if (likely(rq_local(rq)))
++		cpufreq_trigger(rq, flags);
++}
++
++#ifdef HAVE_SCHED_AVG_IRQ
++/*
++ * IRQ variant of update_load_avg below. delta is actually time in nanoseconds
++ * here so we scale curload to how long it's been since the last update.
++ */
++static void update_irq_load_avg(struct rq *rq, long delta)
++{
++	long us_interval, load;
++
++	us_interval = NS_TO_US(rq->niffies - rq->irq_load_update);
++	if (unlikely(us_interval <= 0))
++		return;
++
++	load = rq->irq_load_avg - (rq->irq_load_avg * us_interval * 5 / 262144);
++	if (unlikely(load < 0))
++		load = 0;
++	load += NS_TO_US(delta) * SCHED_CAPACITY_SCALE * 5 / 262144;
++	rq->irq_load_avg = load;
++
++	rq->irq_load_update = rq->niffies;
++}
++#endif
++
++/*
++ * Removing from the runqueue. Enter with rq locked. Deleting a task
++ * from the skip list is done via the stored node reference in the task struct
++ * and does not require a full look up. Thus it occurs in O(k) time where k
++ * is the "level" of the list the task was stored at - usually < 4, max 8.
++ */
++static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
++{
++	skiplist_delete(rq->sl, &p->node);
++	rq->best_key = rq->node->next[0]->key;
++	update_clocks(rq);
++
++	if (!(flags & DEQUEUE_SAVE)) {
++		sched_info_dequeued(rq, p);
++		psi_dequeue(p, flags & DEQUEUE_SLEEP);
++	}
++	rq->nr_running--;
++	if (rt_task(p))
++		rq->rt_nr_running--;
++	update_load_avg(rq, flags);
++}
++
++#ifdef CONFIG_PREEMPT_RCU
++static bool rcu_read_critical(struct task_struct *p)
++{
++	return p->rcu_read_unlock_special.b.blocked;
++}
++#else /* CONFIG_PREEMPT_RCU */
++#define rcu_read_critical(p) (false)
++#endif /* CONFIG_PREEMPT_RCU */
++
++/*
++ * To determine if it's safe for a task of SCHED_IDLEPRIO to actually run as
++ * an idle task, we ensure none of the following conditions are met.
++ */
++static bool idleprio_suitable(struct task_struct *p)
++{
++	return (!(p->sched_contributes_to_load) && !(p->flags & (PF_EXITING)) &&
++		!signal_pending(p) && !rcu_read_critical(p) && !freezing(p));
++}
++
++/*
++ * To determine if a task of SCHED_ISO can run in pseudo-realtime, we check
++ * that the iso_refractory flag is not set.
++ */
++static inline bool isoprio_suitable(struct rq *rq)
++{
++	return !rq->iso_refractory;
++}
++
++static inline void inc_nr_running(struct rq *rq)
++{
++	rq->nr_running++;
++	if (trace_sched_update_nr_running_tp_enabled()) {
++		call_trace_sched_update_nr_running(rq, 1);
++	}
++}
++
++static inline void dec_nr_running(struct rq *rq)
++{
++	rq->nr_running--;
++	if (trace_sched_update_nr_running_tp_enabled()) {
++		call_trace_sched_update_nr_running(rq, -1);
++	}
++}
++
++/*
++ * Adding to the runqueue. Enter with rq locked.
++ */
++static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
++{
++	unsigned int randseed, cflags = 0;
++	u64 sl_id;
++
++	if (!rt_task(p)) {
++		/* Check it hasn't gotten rt from PI */
++		if ((idleprio_task(p) && idleprio_suitable(p)) ||
++		   (iso_task(p) && isoprio_suitable(rq)))
++			p->prio = p->normal_prio;
++		else
++			p->prio = NORMAL_PRIO;
++	} else
++		rq->rt_nr_running++;
++	/*
++	 * The sl_id key passed to the skiplist generates a sorted list.
++	 * Realtime and sched iso tasks run FIFO so they only need be sorted
++	 * according to priority. The skiplist will put tasks of the same
++	 * key inserted later in FIFO order. Tasks of sched normal, batch
++	 * and idleprio are sorted according to their deadlines. Idleprio
++	 * tasks are offset by an impossibly large deadline value ensuring
++	 * they get sorted into last positions, but still according to their
++	 * own deadlines. This creates a "landscape" of skiplists running
++	 * from priority 0 realtime in first place to the lowest priority
++	 * idleprio tasks last. Skiplist insertion is an O(log n) process.
++	 */
++	if (p->prio <= ISO_PRIO) {
++		sl_id = p->prio;
++	} else {
++		sl_id = p->deadline;
++		if (idleprio_task(p)) {
++			if (p->prio == IDLE_PRIO)
++				sl_id |= 0xF000000000000000;
++			else
++				sl_id += longest_deadline_diff();
++		}
++	}
++	/*
++	 * Some architectures don't have better than microsecond resolution
++	 * so mask out ~microseconds as the random seed for skiplist insertion.
++	 */
++	update_clocks(rq);
++	if (!(flags & ENQUEUE_RESTORE)) {
++		sched_info_queued(rq, p);
++		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
++	}
++
++	randseed = (rq->niffies >> 10) & 0xFFFFFFFF;
++	skiplist_insert(rq->sl, &p->node, sl_id, p, randseed);
++	rq->best_key = rq->node->next[0]->key;
++	if (p->in_iowait)
++		cflags |= SCHED_CPUFREQ_IOWAIT;
++	inc_nr_running(rq);
++	update_load_avg(rq, cflags);
++}
++
++/*
++ * Returns the relative length of deadline all compared to the shortest
++ * deadline which is that of nice -20.
++ */
++static inline int task_prio_ratio(struct task_struct *p)
++{
++	return prio_ratios[TASK_USER_PRIO(p)];
++}
++
++/*
++ * task_timeslice - all tasks of all priorities get the exact same timeslice
++ * length. CPU distribution is handled by giving different deadlines to
++ * tasks of different priorities. Use 128 as the base value for fast shifts.
++ */
++static inline int task_timeslice(struct task_struct *p)
++{
++	return (rr_interval * task_prio_ratio(p) / 128);
++}
++
++#ifdef CONFIG_SMP
++/* Entered with rq locked */
++static inline void resched_if_idle(struct rq *rq)
++{
++	if (rq_idle(rq))
++		resched_task(rq->curr);
++}
++
++static inline bool rq_local(struct rq *rq)
++{
++	return (rq->cpu == smp_processor_id());
++}
++#ifdef CONFIG_SMT_NICE
++static const cpumask_t *thread_cpumask(int cpu);
++
++/* Find the best real time priority running on any SMT siblings of cpu and if
++ * none are running, the static priority of the best deadline task running.
++ * The lookups to the other runqueues is done lockless as the occasional wrong
++ * value would be harmless. */
++static int best_smt_bias(struct rq *this_rq)
++{
++	int other_cpu, best_bias = 0;
++
++	for_each_cpu(other_cpu, &this_rq->thread_mask) {
++		struct rq *rq = cpu_rq(other_cpu);
++
++		if (rq_idle(rq))
++			continue;
++		if (unlikely(!rq->online))
++			continue;
++		if (!rq->rq_mm)
++			continue;
++		if (likely(rq->rq_smt_bias > best_bias))
++			best_bias = rq->rq_smt_bias;
++	}
++	return best_bias;
++}
++
++static int task_prio_bias(struct task_struct *p)
++{
++	if (rt_task(p))
++		return 1 << 30;
++	else if (task_running_iso(p))
++		return 1 << 29;
++	else if (task_running_idle(p))
++		return 0;
++	return MAX_PRIO - p->static_prio;
++}
++
++static bool smt_always_schedule(struct task_struct __maybe_unused *p, struct rq __maybe_unused *this_rq)
++{
++	return true;
++}
++
++static bool (*smt_schedule)(struct task_struct *p, struct rq *this_rq) = &smt_always_schedule;
++
++/* We've already decided p can run on CPU, now test if it shouldn't for SMT
++ * nice reasons. */
++static bool smt_should_schedule(struct task_struct *p, struct rq *this_rq)
++{
++	int best_bias, task_bias;
++
++	/* Kernel threads always run */
++	if (unlikely(!p->mm))
++		return true;
++	if (rt_task(p))
++		return true;
++	if (!idleprio_suitable(p))
++		return true;
++	best_bias = best_smt_bias(this_rq);
++	/* The smt siblings are all idle or running IDLEPRIO */
++	if (best_bias < 1)
++		return true;
++	task_bias = task_prio_bias(p);
++	if (task_bias < 1)
++		return false;
++	if (task_bias >= best_bias)
++		return true;
++	/* Dither 25% cpu of normal tasks regardless of nice difference */
++	if (best_bias % 4 == 1)
++		return true;
++	/* Sorry, you lose */
++	return false;
++}
++#else /* CONFIG_SMT_NICE */
++#define smt_schedule(p, this_rq) (true)
++#endif /* CONFIG_SMT_NICE */
++
++static inline void atomic_set_cpu(int cpu, cpumask_t *cpumask)
++{
++	set_bit(cpu, (volatile unsigned long *)cpumask);
++}
++
++/*
++ * The cpu_idle_map stores a bitmap of all the CPUs currently idle to
++ * allow easy lookup of whether any suitable idle CPUs are available.
++ * It's cheaper to maintain a binary yes/no if there are any idle CPUs on the
++ * idle_cpus variable than to do a full bitmask check when we are busy. The
++ * bits are set atomically but read locklessly as occasional false positive /
++ * negative is harmless.
++ */
++static inline void set_cpuidle_map(int cpu)
++{
++	if (likely(cpu_online(cpu)))
++		atomic_set_cpu(cpu, &cpu_idle_map);
++}
++
++static inline void atomic_clear_cpu(int cpu, cpumask_t *cpumask)
++{
++	clear_bit(cpu, (volatile unsigned long *)cpumask);
++}
++
++static inline void clear_cpuidle_map(int cpu)
++{
++	atomic_clear_cpu(cpu, &cpu_idle_map);
++}
++
++static bool suitable_idle_cpus(struct task_struct *p)
++{
++	return (cpumask_intersects(p->cpus_ptr, &cpu_idle_map));
++}
++
++/*
++ * Resched current on rq. We don't know if rq is local to this CPU nor if it
++ * is locked so we do not use an intermediate variable for the task to avoid
++ * having it dereferenced.
++ */
++static void resched_curr(struct rq *rq)
++{
++	int cpu;
++
++	if (test_tsk_need_resched(rq->curr))
++		return;
++
++	rq->preempt = rq->curr;
++	cpu = rq->cpu;
++
++	/* We're doing this without holding the rq lock if it's not task_rq */
++
++	if (cpu == smp_processor_id()) {
++		set_tsk_need_resched(rq->curr);
++		set_preempt_need_resched();
++		return;
++	}
++
++	if (set_nr_and_not_polling(rq->curr))
++		smp_sched_reschedule(cpu);
++	else
++		trace_sched_wake_idle_without_ipi(cpu);
++}
++
++#define CPUIDLE_DIFF_THREAD     (1)
++#define CPUIDLE_DIFF_CORE_LLC   (2)
++#define CPUIDLE_DIFF_CORE       (4)
++#define CPUIDLE_CACHE_BUSY      (8)
++#define CPUIDLE_DIFF_CPU        (16)
++#define CPUIDLE_THREAD_BUSY     (32)
++#define CPUIDLE_DIFF_NODE       (64)
++
++/*
++ * The best idle CPU is chosen according to the CPUIDLE ranking above where the
++ * lowest value would give the most suitable CPU to schedule p onto next. The
++ * order works out to be the following:
++ *
++ * Same thread, idle or busy cache, idle or busy threads
++ * Other core, same cache, idle or busy cache, idle threads.
++ * Same node, other CPU, idle cache, idle threads.
++ * Same node, other CPU, busy cache, idle threads.
++ * Other core, same cache, busy threads.
++ * Same node, other CPU, busy threads.
++ * Other node, other CPU, idle cache, idle threads.
++ * Other node, other CPU, busy cache, idle threads.
++ * Other node, other CPU, busy threads.
++ */
++static int best_mask_cpu(int best_cpu, struct rq *rq, cpumask_t *tmpmask)
++{
++	int best_ranking = CPUIDLE_DIFF_NODE | CPUIDLE_THREAD_BUSY |
++		CPUIDLE_DIFF_CPU | CPUIDLE_CACHE_BUSY | CPUIDLE_DIFF_CORE |
++		CPUIDLE_DIFF_CORE_LLC | CPUIDLE_DIFF_THREAD;
++	int cpu_tmp;
++
++	if (cpumask_test_cpu(best_cpu, tmpmask))
++		goto out;
++
++	for_each_cpu(cpu_tmp, tmpmask) {
++		int ranking, locality;
++		struct rq *tmp_rq;
++
++		ranking = 0;
++		tmp_rq = cpu_rq(cpu_tmp);
++
++		locality = rq->cpu_locality[cpu_tmp];
++#ifdef CONFIG_NUMA
++		if (locality > LOCALITY_SMP)
++			ranking |= CPUIDLE_DIFF_NODE;
++		else
++#endif
++			if (locality > LOCALITY_MC)
++				ranking |= CPUIDLE_DIFF_CPU;
++#ifdef CONFIG_SCHED_MC
++			else if (locality == LOCALITY_MC_LLC)
++				ranking |= CPUIDLE_DIFF_CORE_LLC;
++			else if (locality == LOCALITY_MC)
++				ranking |= CPUIDLE_DIFF_CORE;
++		if (!(tmp_rq->cache_idle(tmp_rq)))
++			ranking |= CPUIDLE_CACHE_BUSY;
++#endif
++#ifdef CONFIG_SCHED_SMT
++		if (locality == LOCALITY_SMT)
++			ranking |= CPUIDLE_DIFF_THREAD;
++#endif
++		if (ranking < best_ranking
++#ifdef CONFIG_SCHED_SMT
++			|| (ranking == best_ranking && (tmp_rq->siblings_idle(tmp_rq)))
++#endif
++		) {
++			best_cpu = cpu_tmp;
++			best_ranking = ranking;
++		}
++	}
++out:
++	return best_cpu;
++}
++
++bool cpus_share_cache(int this_cpu, int that_cpu)
++{
++	struct rq *this_rq = cpu_rq(this_cpu);
++
++	return (this_rq->cpu_locality[that_cpu] < LOCALITY_SMP);
++}
++
++/* As per resched_curr but only will resched idle task */
++static inline void resched_idle(struct rq *rq)
++{
++	if (test_tsk_need_resched(rq->idle))
++		return;
++
++	rq->preempt = rq->idle;
++
++	set_tsk_need_resched(rq->idle);
++
++	if (rq_local(rq)) {
++		set_preempt_need_resched();
++		return;
++	}
++
++	smp_sched_reschedule(rq->cpu);
++}
++
++DEFINE_PER_CPU(cpumask_t, idlemask);
++
++static struct rq *resched_best_idle(struct task_struct *p, int cpu)
++{
++	cpumask_t *tmpmask = &(per_cpu(idlemask, cpu));
++	struct rq *rq;
++	int best_cpu;
++
++	cpumask_and(tmpmask, p->cpus_ptr, &cpu_idle_map);
++	best_cpu = best_mask_cpu(cpu, task_rq(p), tmpmask);
++	rq = cpu_rq(best_cpu);
++	if (!smt_schedule(p, rq))
++		return NULL;
++	rq->preempt = p;
++	resched_idle(rq);
++	return rq;
++}
++
++static inline void resched_suitable_idle(struct task_struct *p)
++{
++	if (suitable_idle_cpus(p))
++		resched_best_idle(p, task_cpu(p));
++}
++
++static inline struct rq *rq_order(struct rq *rq, int cpu)
++{
++	return rq->rq_order[cpu];
++}
++#else /* CONFIG_SMP */
++static inline void set_cpuidle_map(int cpu)
++{
++}
++
++static inline void clear_cpuidle_map(int cpu)
++{
++}
++
++static inline bool suitable_idle_cpus(struct task_struct *p)
++{
++	return uprq->curr == uprq->idle;
++}
++
++static inline void resched_suitable_idle(struct task_struct *p)
++{
++}
++
++static inline void resched_curr(struct rq *rq)
++{
++	resched_task(rq->curr);
++}
++
++static inline void resched_if_idle(struct rq *rq)
++{
++}
++
++static inline bool rq_local(struct rq *rq)
++{
++	return true;
++}
++
++static inline struct rq *rq_order(struct rq *rq, int cpu)
++{
++	return rq;
++}
++
++static inline bool smt_schedule(struct task_struct *p, struct rq *rq)
++{
++	return true;
++}
++#endif /* CONFIG_SMP */
++
++static inline int normal_prio(struct task_struct *p)
++{
++	if (has_rt_policy(p))
++		return MAX_RT_PRIO - 1 - p->rt_priority;
++	if (idleprio_task(p))
++		return IDLE_PRIO;
++	if (iso_task(p))
++		return ISO_PRIO;
++	return NORMAL_PRIO;
++}
++
++/*
++ * Calculate the current priority, i.e. the priority
++ * taken into account by the scheduler. This value might
++ * be boosted by RT tasks as it will be RT if the task got
++ * RT-boosted. If not then it returns p->normal_prio.
++ */
++static int effective_prio(struct task_struct *p)
++{
++	p->normal_prio = normal_prio(p);
++	/*
++	 * If we are RT tasks or we were boosted to RT priority,
++	 * keep the priority unchanged. Otherwise, update priority
++	 * to the normal priority:
++	 */
++	if (!rt_prio(p->prio))
++		return p->normal_prio;
++	return p->prio;
++}
++
++/*
++ * activate_task - move a task to the runqueue. Enter with rq locked.
++ */
++static void activate_task(struct rq *rq, struct task_struct *p, int flags)
++{
++	resched_if_idle(rq);
++
++	/*
++	 * Sleep time is in units of nanosecs, so shift by 20 to get a
++	 * milliseconds-range estimation of the amount of time that the task
++	 * spent sleeping:
++	 */
++	if (unlikely(prof_on == SLEEP_PROFILING)) {
++		if (p->state == TASK_UNINTERRUPTIBLE)
++			profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
++				     (rq->niffies - p->last_ran) >> 20);
++	}
++
++	p->prio = effective_prio(p);
++	enqueue_task(rq, p, flags);
++	p->on_rq = TASK_ON_RQ_QUEUED;
++}
++
++/*
++ * deactivate_task - If it's running, it's not on the runqueue and we can just
++ * decrement the nr_running. Enter with rq locked.
++ */
++static inline void deactivate_task(struct task_struct *p, struct rq *rq)
++{
++	p->on_rq = 0;
++	sched_info_dequeued(rq, p);
++	/* deactivate_task is always DEQUEUE_SLEEP in muqss */
++	psi_dequeue(p, DEQUEUE_SLEEP);
++}
++
++#ifdef CONFIG_SMP
++void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
++{
++	struct rq *rq;
++
++	if (task_cpu(p) == new_cpu)
++		return;
++
++	/* Do NOT call set_task_cpu on a currently queued task as we will not
++	 * be reliably holding the rq lock after changing CPU. */
++	BUG_ON(task_queued(p));
++	rq = task_rq(p);
++
++#ifdef CONFIG_LOCKDEP
++	/*
++	 * The caller should hold either p->pi_lock or rq->lock, when changing
++	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
++	 *
++	 * Furthermore, all task_rq users should acquire both locks, see
++	 * task_rq_lock().
++	 */
++	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
++				      lockdep_is_held(rq->lock)));
++#endif
++
++	trace_sched_migrate_task(p, new_cpu);
++	rseq_migrate(p);
++	perf_event_task_migrate(p);
++
++	/*
++	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
++	 * successfully executed on another CPU. We must ensure that updates of
++	 * per-task data have been completed by this moment.
++	 */
++	smp_wmb();
++
++	p->wake_cpu = new_cpu;
++
++	if (task_running(rq, p)) {
++		/*
++		 * We should only be calling this on a running task if we're
++		 * holding rq lock.
++		 */
++		lockdep_assert_held(rq->lock);
++
++		/*
++		 * We can't change the task_thread_info CPU on a running task
++		 * as p will still be protected by the rq lock of the CPU it
++		 * is still running on so we only set the wake_cpu for it to be
++		 * lazily updated once off the CPU.
++		 */
++		return;
++	}
++
++#ifdef CONFIG_THREAD_INFO_IN_TASK
++	WRITE_ONCE(p->cpu, new_cpu);
++#else
++	WRITE_ONCE(task_thread_info(p)->cpu, new_cpu);
++#endif
++	/* We're no longer protecting p after this point since we're holding
++	 * the wrong runqueue lock. */
++}
++#endif /* CONFIG_SMP */
++
++/*
++ * Move a task off the runqueue and take it to a cpu for it will
++ * become the running task.
++ */
++static inline void take_task(struct rq *rq, int cpu, struct task_struct *p)
++{
++	struct rq *p_rq = task_rq(p);
++
++	dequeue_task(p_rq, p, DEQUEUE_SAVE);
++	if (p_rq != rq) {
++		sched_info_dequeued(p_rq, p);
++		sched_info_queued(rq, p);
++	}
++	set_task_cpu(p, cpu);
++}
++
++/*
++ * Returns a descheduling task to the runqueue unless it is being
++ * deactivated.
++ */
++static inline void return_task(struct task_struct *p, struct rq *rq,
++			       int cpu, bool deactivate)
++{
++	if (deactivate)
++		deactivate_task(p, rq);
++	else {
++#ifdef CONFIG_SMP
++		/*
++		 * set_task_cpu was called on the running task that doesn't
++		 * want to deactivate so it has to be enqueued to a different
++		 * CPU and we need its lock. Tag it to be moved with as the
++		 * lock is dropped in finish_lock_switch.
++		 */
++		if (unlikely(p->wake_cpu != cpu))
++			WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
++		else
++#endif
++			enqueue_task(rq, p, ENQUEUE_RESTORE);
++	}
++}
++
++/* Enter with rq lock held. We know p is on the local cpu */
++static inline void __set_tsk_resched(struct task_struct *p)
++{
++	set_tsk_need_resched(p);
++	set_preempt_need_resched();
++}
++
++/**
++ * task_curr - is this task currently executing on a CPU?
++ * @p: the task in question.
++ *
++ * Return: 1 if the task is currently executing. 0 otherwise.
++ */
++inline int task_curr(const struct task_struct *p)
++{
++	return cpu_curr(task_cpu(p)) == p;
++}
++
++#ifdef CONFIG_SMP
++/*
++ * wait_task_inactive - wait for a thread to unschedule.
++ *
++ * If @match_state is nonzero, it's the @p->state value just checked and
++ * not expected to change.  If it changes, i.e. @p might have woken up,
++ * then return zero.  When we succeed in waiting for @p to be off its CPU,
++ * we return a positive number (its total switch count).  If a second call
++ * a short while later returns the same number, the caller can be sure that
++ * @p has remained unscheduled the whole time.
++ *
++ * The caller must ensure that the task *will* unschedule sometime soon,
++ * else this function might spin for a *long* time. This function can't
++ * be called with interrupts off, or it may introduce deadlock with
++ * smp_call_function() if an IPI is sent by the same process we are
++ * waiting to become inactive.
++ */
++unsigned long wait_task_inactive(struct task_struct *p, long match_state)
++{
++	int running, queued;
++	struct rq_flags rf;
++	unsigned long ncsw;
++	struct rq *rq;
++
++	for (;;) {
++		rq = task_rq(p);
++
++		/*
++		 * If the task is actively running on another CPU
++		 * still, just relax and busy-wait without holding
++		 * any locks.
++		 *
++		 * NOTE! Since we don't hold any locks, it's not
++		 * even sure that "rq" stays as the right runqueue!
++		 * But we don't care, since this will return false
++		 * if the runqueue has changed and p is actually now
++		 * running somewhere else!
++		 */
++		while (task_running(rq, p)) {
++			if (match_state && unlikely(p->state != match_state))
++				return 0;
++			cpu_relax();
++		}
++
++		/*
++		 * Ok, time to look more closely! We need the rq
++		 * lock now, to be *sure*. If we're wrong, we'll
++		 * just go back and repeat.
++		 */
++		rq = task_rq_lock(p, &rf);
++		trace_sched_wait_task(p);
++		running = task_running(rq, p);
++		queued = task_on_rq_queued(p);
++		ncsw = 0;
++		if (!match_state || p->state == match_state)
++			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
++		task_rq_unlock(rq, p, &rf);
++
++		/*
++		 * If it changed from the expected state, bail out now.
++		 */
++		if (unlikely(!ncsw))
++			break;
++
++		/*
++		 * Was it really running after all now that we
++		 * checked with the proper locks actually held?
++		 *
++		 * Oops. Go back and try again..
++		 */
++		if (unlikely(running)) {
++			cpu_relax();
++			continue;
++		}
++
++		/*
++		 * It's not enough that it's not actively running,
++		 * it must be off the runqueue _entirely_, and not
++		 * preempted!
++		 *
++		 * So if it was still runnable (but just not actively
++		 * running right now), it's preempted, and we should
++		 * yield - it could be a while.
++		 */
++		if (unlikely(queued)) {
++			ktime_t to = NSEC_PER_SEC / HZ;
++
++			set_current_state(TASK_UNINTERRUPTIBLE);
++			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
++			continue;
++		}
++
++		/*
++		 * Ahh, all good. It wasn't running, and it wasn't
++		 * runnable, which means that it will never become
++		 * running in the future either. We're all done!
++		 */
++		break;
++	}
++
++	return ncsw;
++}
++
++/***
++ * kick_process - kick a running thread to enter/exit the kernel
++ * @p: the to-be-kicked thread
++ *
++ * Cause a process which is running on another CPU to enter
++ * kernel-mode, without any delay. (to get signals handled.)
++ *
++ * NOTE: this function doesn't have to take the runqueue lock,
++ * because all it wants to ensure is that the remote task enters
++ * the kernel. If the IPI races and the task has been migrated
++ * to another CPU then no harm is done and the purpose has been
++ * achieved as well.
++ */
++void kick_process(struct task_struct *p)
++{
++	int cpu;
++
++	preempt_disable();
++	cpu = task_cpu(p);
++	if ((cpu != smp_processor_id()) && task_curr(p))
++		smp_sched_reschedule(cpu);
++	preempt_enable();
++}
++EXPORT_SYMBOL_GPL(kick_process);
++#endif
++
++/*
++ * RT tasks preempt purely on priority. SCHED_NORMAL tasks preempt on the
++ * basis of earlier deadlines. SCHED_IDLEPRIO don't preempt anything else or
++ * between themselves, they cooperatively multitask. An idle rq scores as
++ * prio PRIO_LIMIT so it is always preempted.
++ */
++static inline bool
++can_preempt(struct task_struct *p, int prio, u64 deadline)
++{
++	/* Better static priority RT task or better policy preemption */
++	if (p->prio < prio)
++		return true;
++	if (p->prio > prio)
++		return false;
++	if (p->policy == SCHED_BATCH)
++		return false;
++	/* SCHED_NORMAL and ISO will preempt based on deadline */
++	if (!deadline_before(p->deadline, deadline))
++		return false;
++	return true;
++}
++
++#ifdef CONFIG_SMP
++
++/*
++ * Per-CPU kthreads are allowed to run on !active && online CPUs, see
++ * __set_cpus_allowed_ptr().
++ */
++static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
++{
++	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
++		return false;
++
++	if (!(p->flags & PF_KTHREAD))
++		return cpu_active(cpu);
++
++	/* KTHREAD_IS_PER_CPU is always allowed. */
++	if (kthread_is_per_cpu(p))
++		return cpu_online(cpu);
++
++	/* But are allowed during online. */
++	return cpu_online(cpu);
++}
++
++/*
++ * Check to see if p can run on cpu, and if not, whether there are any online
++ * CPUs it can run on instead. This only happens with the hotplug threads that
++ * bring up the CPUs.
++ */
++static inline bool sched_other_cpu(struct task_struct *p, int cpu)
++{
++	if (likely(cpumask_test_cpu(cpu, p->cpus_ptr)))
++		return false;
++	if (p->nr_cpus_allowed == 1) {
++		cpumask_t valid_mask;
++
++		cpumask_and(&valid_mask, p->cpus_ptr, cpu_online_mask);
++		if (unlikely(cpumask_empty(&valid_mask)))
++			return false;
++	}
++	return true;
++}
++
++static inline bool needs_other_cpu(struct task_struct *p, int cpu)
++{
++	if (cpumask_test_cpu(cpu, p->cpus_ptr))
++		return false;
++	return true;
++}
++
++#define cpu_online_map		(*(cpumask_t *)cpu_online_mask)
++
++static void try_preempt(struct task_struct *p, struct rq *this_rq)
++{
++	int i, this_entries = rq_load(this_rq);
++	cpumask_t tmp;
++
++	if (suitable_idle_cpus(p) && resched_best_idle(p, task_cpu(p)))
++		return;
++
++	/* IDLEPRIO tasks never preempt anything but idle */
++	if (p->policy == SCHED_IDLEPRIO)
++		return;
++
++	cpumask_and(&tmp, &cpu_online_map, p->cpus_ptr);
++
++	for (i = 0; i < num_online_cpus(); i++) {
++		struct rq *rq = this_rq->cpu_order[i];
++
++		if (!cpumask_test_cpu(rq->cpu, &tmp))
++			continue;
++
++		if (!sched_interactive && rq != this_rq && rq_load(rq) <= this_entries)
++			continue;
++		if (smt_schedule(p, rq) && can_preempt(p, rq->rq_prio, rq->rq_deadline)) {
++			/* We set rq->preempting lockless, it's a hint only */
++			rq->preempting = p;
++			resched_curr(rq);
++			return;
++		}
++	}
++}
++
++static int __set_cpus_allowed_ptr(struct task_struct *p,
++				  const struct cpumask *new_mask,
++				 u32 flags);
++#else /* CONFIG_SMP */
++static inline bool needs_other_cpu(struct task_struct *p, int cpu)
++{
++	return false;
++}
++
++static void try_preempt(struct task_struct *p, struct rq *this_rq)
++{
++	if (p->policy == SCHED_IDLEPRIO)
++		return;
++	if (can_preempt(p, uprq->rq_prio, uprq->rq_deadline))
++		resched_curr(uprq);
++}
++
++static inline int __set_cpus_allowed_ptr(struct task_struct *p,
++					 const struct cpumask *new_mask,
++					 u32 __always_unused flags)
++{
++	return set_cpus_allowed_ptr(p, new_mask);
++}
++#endif /* CONFIG_SMP */
++
++static void
++ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
++{
++	struct rq *rq;
++
++	if (!schedstat_enabled())
++		return;
++
++	rq = this_rq();
++
++#ifdef CONFIG_SMP
++	if (cpu == rq->cpu) {
++		__schedstat_inc(rq->ttwu_local);
++	} else {
++		struct sched_domain *sd;
++
++		rcu_read_lock();
++		for_each_domain(rq->cpu, sd) {
++			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
++				__schedstat_inc(sd->ttwu_wake_remote);
++				break;
++			}
++		}
++		rcu_read_unlock();
++	}
++
++#endif /* CONFIG_SMP */
++
++	__schedstat_inc(rq->ttwu_count);
++}
++
++/*
++ * Mark the task runnable and perform wakeup-preemption.
++ */
++static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
++{
++	/*
++	 * Sync wakeups (i.e. those types of wakeups where the waker
++	 * has indicated that it will leave the CPU in short order)
++	 * don't trigger a preemption if there are no idle cpus,
++	 * instead waiting for current to deschedule.
++	 */
++	if (wake_flags & WF_SYNC)
++		resched_suitable_idle(p);
++	else
++		try_preempt(p, rq);
++	p->state = TASK_RUNNING;
++	trace_sched_wakeup(p);
++}
++
++static void
++ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
++{
++	int en_flags = ENQUEUE_WAKEUP;
++
++	lockdep_assert_held(rq->lock);
++
++	if (p->sched_contributes_to_load)
++		rq->nr_uninterruptible--;
++
++#ifdef CONFIG_SMP
++	if (wake_flags & WF_MIGRATED)
++		en_flags |= ENQUEUE_MIGRATED;
++	else
++#endif
++	if (p->in_iowait) {
++		delayacct_blkio_end(p);
++		atomic_dec(&task_rq(p)->nr_iowait);
++	}
++
++	activate_task(rq, p, en_flags);
++	ttwu_do_wakeup(rq, p, wake_flags);
++}
++
++/*
++ * Consider @p being inside a wait loop:
++ *
++ *   for (;;) {
++ *      set_current_state(TASK_UNINTERRUPTIBLE);
++ *
++ *      if (CONDITION)
++ *         break;
++ *
++ *      schedule();
++ *   }
++ *   __set_current_state(TASK_RUNNING);
++ *
++ * between set_current_state() and schedule(). In this case @p is still
++ * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
++ * an atomic manner.
++ *
++ * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
++ * then schedule() must still happen and p->state can be changed to
++ * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
++ * need to do a full wakeup with enqueue.
++ *
++ * Returns: %true when the wakeup is done,
++ *          %false otherwise.
++ */
++static int ttwu_runnable(struct task_struct *p, int wake_flags)
++{
++	struct rq *rq;
++	int ret = 0;
++
++	rq = __task_rq_lock(p, NULL);
++	if (likely(task_on_rq_queued(p))) {
++		ttwu_do_wakeup(rq, p, wake_flags);
++		ret = 1;
++	}
++	__task_rq_unlock(rq, NULL);
++
++	return ret;
++}
++
++#ifdef CONFIG_SMP
++void sched_ttwu_pending(void *arg)
++{
++	struct llist_node *llist = arg;
++	struct rq *rq = this_rq();
++	struct task_struct *p, *t;
++	struct rq_flags rf;
++
++	if (!llist)
++		return;
++
++	/*
++	 * rq::ttwu_pending racy indication of out-standing wakeups.
++	 * Races such that false-negatives are possible, since they
++	 * are shorter lived that false-positives would be.
++	 */
++	WRITE_ONCE(rq->ttwu_pending, 0);
++
++	rq_lock_irqsave(rq, &rf);
++
++	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
++		if (WARN_ON_ONCE(p->on_cpu))
++			smp_cond_load_acquire(&p->on_cpu, !VAL);
++
++		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
++			set_task_cpu(p, cpu_of(rq));
++
++		ttwu_do_activate(rq, p, 0);
++	}
++
++	rq_unlock_irqrestore(rq, &rf);
++}
++
++void send_call_function_single_ipi(int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++
++	if (!set_nr_if_polling(rq->idle))
++		arch_send_call_function_single_ipi(cpu);
++	else
++		trace_sched_wake_idle_without_ipi(cpu);
++}
++
++/*
++ * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
++ * necessary. The wakee CPU on receipt of the IPI will queue the task
++ * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
++ * of the wakeup instead of the waker.
++ */
++static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
++{
++	struct rq *rq = cpu_rq(cpu);
++
++	WRITE_ONCE(rq->ttwu_pending, 1);
++	__smp_call_single_queue(cpu, &p->wake_entry.llist);
++}
++
++void wake_up_if_idle(int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++	struct rq_flags rf;
++
++	rcu_read_lock();
++
++	if (!is_idle_task(rcu_dereference(rq->curr)))
++		goto out;
++
++	if (set_nr_if_polling(rq->idle)) {
++		trace_sched_wake_idle_without_ipi(cpu);
++	} else {
++		rq_lock_irqsave(rq, &rf);
++		if (likely(is_idle_task(rq->curr)))
++			smp_sched_reschedule(cpu);
++		/* Else cpu is not in idle, do nothing here */
++		rq_unlock_irqrestore(rq, &rf);
++	}
++
++out:
++	rcu_read_unlock();
++}
++
++static inline bool ttwu_queue_cond(int cpu, int wake_flags)
++{
++	/*
++	 * Do not complicate things with the async wake_list while the CPU is
++	 * in hotplug state.
++	 */
++	if (!cpu_active(cpu))
++		return false;
++
++	/*
++	 * If the CPU does not share cache, then queue the task on the
++	 * remote rqs wakelist to avoid accessing remote data.
++	 */
++	if (!cpus_share_cache(smp_processor_id(), cpu))
++		return true;
++
++	/*
++	 * If the task is descheduling and the only running task on the
++	 * CPU then use the wakelist to offload the task activation to
++	 * the soon-to-be-idle CPU as the current CPU is likely busy.
++	 * nr_running is checked to avoid unnecessary task stacking.
++	 */
++	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
++		return true;
++
++	return false;
++}
++
++static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
++{
++	/* CFS would require sched_feat(TTWU_QUEUE) here but that is
++	 * fixed enabled */
++	if (ttwu_queue_cond(cpu, wake_flags)) {
++		if (WARN_ON_ONCE(cpu == smp_processor_id()))
++			return false;
++
++		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
++		__ttwu_queue_wakelist(p, cpu, wake_flags);
++		return true;
++	}
++
++	return false;
++}
++
++static int valid_task_cpu(struct task_struct *p)
++{
++	cpumask_t valid_mask;
++
++	if (p->flags & PF_KTHREAD)
++		cpumask_and(&valid_mask, p->cpus_ptr, cpu_all_mask);
++	else
++		cpumask_and(&valid_mask, p->cpus_ptr, cpu_active_mask);
++
++	if (unlikely(!cpumask_weight(&valid_mask))) {
++		/* We shouldn't be hitting this any more */
++		printk(KERN_WARNING "SCHED: No cpumask for %s/%d weight %d\n", p->comm,
++		       p->pid, cpumask_weight(p->cpus_ptr));
++		return cpumask_any(p->cpus_ptr);
++	}
++	return cpumask_any(&valid_mask);
++}
++
++/*
++ * For a task that's just being woken up we have a valuable balancing
++ * opportunity so choose the nearest cache most lightly loaded runqueue.
++ * Entered with rq locked and returns with the chosen runqueue locked.
++ */
++static inline int select_best_cpu(struct task_struct *p)
++{
++	unsigned int idlest = ~0U;
++	struct rq *rq = NULL;
++	int i;
++
++	if (suitable_idle_cpus(p)) {
++		int cpu = task_cpu(p);
++
++		if (unlikely(needs_other_cpu(p, cpu)))
++			cpu = valid_task_cpu(p);
++		rq = resched_best_idle(p, cpu);
++		if (likely(rq))
++			return rq->cpu;
++	}
++
++	for (i = 0; i < num_online_cpus(); i++) {
++		struct rq *other_rq = task_rq(p)->cpu_order[i];
++		int entries;
++
++		if (!other_rq->online)
++			continue;
++		if (needs_other_cpu(p, other_rq->cpu))
++			continue;
++		entries = rq_load(other_rq);
++		if (entries >= idlest)
++			continue;
++		idlest = entries;
++		rq = other_rq;
++	}
++	if (unlikely(!rq))
++		return task_cpu(p);
++	return rq->cpu;
++}
++#else /* CONFIG_SMP */
++
++static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
++{
++	return false;
++}
++
++static int valid_task_cpu(struct task_struct *p)
++{
++	return 0;
++}
++
++static inline int select_best_cpu(struct task_struct *p)
++{
++	return 0;
++}
++
++static struct rq *resched_best_idle(struct task_struct *p, int cpu)
++{
++	return NULL;
++}
++#endif /* CONFIG_SMP */
++
++static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
++{
++	struct rq *rq = cpu_rq(cpu);
++
++	if (ttwu_queue_wakelist(p, cpu, wake_flags))
++		return;
++
++	rq_lock(rq);
++	update_rq_clock(rq);
++	ttwu_do_activate(rq, p, wake_flags);
++	rq_unlock(rq);
++}
++
++/***
++ * try_to_wake_up - wake up a thread
++ * @p: the thread to be awakened
++ * @state: the mask of task states that can be woken
++ * @wake_flags: wake modifier flags (WF_*)
++ *
++ * Put it on the run-queue if it's not already there. The "current"
++ * thread is always on the run-queue (except when the actual
++ * re-schedule is in progress), and as such you're allowed to do
++ * the simpler "current->state = TASK_RUNNING" to mark yourself
++ * runnable without the overhead of this.
++ *
++ * Return: %true if @p was woken up, %false if it was already running.
++ * or @state didn't match @p's state.
++ */
++static int
++try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
++{
++	unsigned long flags;
++	int cpu, success = 0;
++
++	preempt_disable();
++	if (p == current) {
++		/*
++		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
++		 * == smp_processor_id()'. Together this means we can special
++		 * case the whole 'p->on_rq && ttwu_runnable()' case below
++		 * without taking any locks.
++		 *
++		 * In particular:
++		 *  - we rely on Program-Order guarantees for all the ordering,
++		 *  - we're serialized against set_special_state() by virtue of
++		 *    it disabling IRQs (this allows not taking ->pi_lock).
++		 */
++		if (!(p->state & state))
++			goto out;
++
++		success = 1;
++		trace_sched_waking(p);
++		p->state = TASK_RUNNING;
++		trace_sched_wakeup(p);
++		goto out;
++	}
++
++	/*
++	 * If we are going to wake up a thread waiting for CONDITION we
++	 * need to ensure that CONDITION=1 done by the caller can not be
++	 * reordered with p->state check below. This pairs with smp_store_mb()
++	 * in set_current_state() that the waiting thread does.
++	 */
++	raw_spin_lock_irqsave(&p->pi_lock, flags);
++	smp_mb__after_spinlock();
++	if (!(p->state & state))
++		goto unlock;
++
++	trace_sched_waking(p);
++
++	/* We're going to change ->state: */
++	success = 1;
++
++	/*
++	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
++	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
++	 * in smp_cond_load_acquire() below.
++	 *
++	 * sched_ttwu_pending()			try_to_wake_up()
++	 *   STORE p->on_rq = 1			  LOAD p->state
++	 *   UNLOCK rq->lock
++	 *
++	 * __schedule() (switch to task 'p')
++	 *   LOCK rq->lock			  smp_rmb();
++	 *   smp_mb__after_spinlock();
++	 *   UNLOCK rq->lock
++	 *
++	 * [task p]
++	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
++	 *
++	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
++	 * __schedule().  See the comment for smp_mb__after_spinlock().
++	 */
++	smp_rmb();
++	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
++		goto unlock;
++
++#ifdef CONFIG_SMP
++	/*
++	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
++	 * possible to, falsely, observe p->on_cpu == 0.
++	 *
++	 * One must be running (->on_cpu == 1) in order to remove oneself
++	 * from the runqueue.
++	 *
++	 * __schedule() (switch to task 'p')	try_to_wake_up()
++	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
++	 *   UNLOCK rq->lock
++	 *
++	 * __schedule() (put 'p' to sleep)
++	 *   LOCK rq->lock			  smp_rmb();
++	 *   smp_mb__after_spinlock();
++	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
++	 *
++	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
++	 * __schedule().  See the comment for smp_mb__after_spinlock().
++	 *
++	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
++	 * schedule()'s deactivate_task() has 'happened' and p will no longer
++	 * care about it's own p->state. See the comment in __schedule().
++	 */
++	smp_acquire__after_ctrl_dep();
++
++	/*
++	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
++	 * == 0), which means we need to do an enqueue, change p->state to
++	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
++	 * enqueue, such as ttwu_queue_wakelist().
++	 */
++	p->state = TASK_WAKING;
++
++	/*
++	 * If the owning (remote) CPU is still in the middle of schedule() with
++	 * this task as prev, considering queueing p on the remote CPUs wake_list
++	 * which potentially sends an IPI instead of spinning on p->on_cpu to
++	 * let the waker make forward progress. This is safe because IRQs are
++	 * disabled and the IPI will deliver after on_cpu is cleared.
++	 *
++	 * Ensure we load task_cpu(p) after p->on_cpu:
++	 *
++	 * set_task_cpu(p, cpu);
++	 *   STORE p->cpu = @cpu
++	 * __schedule() (switch to task 'p')
++	 *   LOCK rq->lock
++	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
++	 *   STORE p->on_cpu = 1		LOAD p->cpu
++	 *
++	 * to ensure we observe the correct CPU on which the task is currently
++	 * scheduling.
++	 */
++	if (smp_load_acquire(&p->on_cpu) &&
++	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
++		goto unlock;
++
++	/*
++	 * If the owning (remote) CPU is still in the middle of schedule() with
++	 * this task as prev, wait until it's done referencing the task.
++	 *
++	 * Pairs with the smp_store_release() in finish_task().
++	 *
++	 * This ensures that tasks getting woken will be fully ordered against
++	 * their previous state and preserve Program Order.
++	 */
++	smp_cond_load_acquire(&p->on_cpu, !VAL);
++
++	cpu = select_best_cpu(p);
++	if (task_cpu(p) != cpu) {
++		if (p->in_iowait) {
++			delayacct_blkio_end(p);
++			atomic_dec(&task_rq(p)->nr_iowait);
++		}
++
++		wake_flags |= WF_MIGRATED;
++		psi_ttwu_dequeue(p);
++		set_task_cpu(p, cpu);
++	}
++
++#else
++	cpu = task_cpu(p);
++#endif /* CONFIG_SMP */
++
++	ttwu_queue(p, cpu, wake_flags);
++unlock:
++	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++out:
++	if (success)
++		ttwu_stat(p, task_cpu(p), wake_flags);
++	preempt_enable();
++
++	return success;
++}
++
++/**
++ * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
++ * @p: Process for which the function is to be invoked, can be @current.
++ * @func: Function to invoke.
++ * @arg: Argument to function.
++ *
++ * If the specified task can be quickly locked into a definite state
++ * (either sleeping or on a given runqueue), arrange to keep it in that
++ * state while invoking @func(@arg).  This function can use ->on_rq and
++ * task_curr() to work out what the state is, if required.  Given that
++ * @func can be invoked with a runqueue lock held, it had better be quite
++ * lightweight.
++ *
++ * Returns:
++ *	@false if the task slipped out from under the locks.
++ *	@true if the task was locked onto a runqueue or is sleeping.
++ *		However, @func can override this by returning @false.
++ */
++bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
++{
++	struct rq_flags rf;
++	bool ret = false;
++	struct rq *rq;
++
++	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
++	if (p->on_rq) {
++		rq = __task_rq_lock(p, NULL);
++		if (task_rq(p) == rq)
++			ret = func(p, arg);
++		rq_unlock(rq);
++	} else {
++		switch (p->state) {
++		case TASK_RUNNING:
++		case TASK_WAKING:
++			break;
++		default:
++			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
++			if (!p->on_rq)
++				ret = func(p, arg);
++		}
++	}
++	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
++	return ret;
++}
++
++/**
++ * wake_up_process - Wake up a specific process
++ * @p: The process to be woken up.
++ *
++ * Attempt to wake up the nominated process and move it to the set of runnable
++ * processes.
++ *
++ * Return: 1 if the process was woken up, 0 if it was already running.
++ *
++ * This function executes a full memory barrier before accessing the task state.
++ */
++int wake_up_process(struct task_struct *p)
++{
++	return try_to_wake_up(p, TASK_NORMAL, 0);
++}
++EXPORT_SYMBOL(wake_up_process);
++
++int wake_up_state(struct task_struct *p, unsigned int state)
++{
++	return try_to_wake_up(p, state, 0);
++}
++
++static void time_slice_expired(struct task_struct *p, struct rq *rq);
++
++/*
++ * Perform scheduler related setup for a newly forked process p.
++ * p is forked by current.
++ */
++int sched_fork(unsigned long __maybe_unused clone_flags, struct task_struct *p)
++{
++	unsigned long flags;
++
++#ifdef CONFIG_PREEMPT_NOTIFIERS
++	INIT_HLIST_HEAD(&p->preempt_notifiers);
++#endif
++
++#ifdef CONFIG_COMPACTION
++	p->capture_control = NULL;
++#endif
++
++#ifdef CONFIG_SMP
++	p->wake_entry.u_flags = CSD_TYPE_TTWU;
++#endif
++	/*
++	 * We mark the process as NEW here. This guarantees that
++	 * nobody will actually run it, and a signal or other external
++	 * event cannot wake it up and insert it on the runqueue either.
++	 */
++	p->state = TASK_NEW;
++
++	/*
++	 * The process state is set to the same value of the process executing
++	 * do_fork() code. That is running. This guarantees that nobody will
++	 * actually run it, and a signal or other external event cannot wake
++	 * it up and insert it on the runqueue either.
++	 */
++
++	/* Should be reset in fork.c but done here for ease of MuQSS patching */
++	p->on_cpu =
++	p->on_rq =
++	p->utime =
++	p->stime =
++	p->sched_time =
++	p->stime_ns =
++	p->utime_ns = 0;
++	skiplist_node_init(&p->node);
++
++	/*
++	 * Revert to default priority/policy on fork if requested.
++	 */
++	if (unlikely(p->sched_reset_on_fork)) {
++		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR || p-> policy == SCHED_ISO) {
++			p->policy = SCHED_NORMAL;
++			p->normal_prio = normal_prio(p);
++		}
++
++		if (PRIO_TO_NICE(p->static_prio) < 0) {
++			p->static_prio = NICE_TO_PRIO(0);
++			p->normal_prio = p->static_prio;
++		}
++
++		/*
++		 * We don't need the reset flag anymore after the fork. It has
++		 * fulfilled its duty:
++		 */
++		p->sched_reset_on_fork = 0;
++	}
++
++	/*
++	 * Silence PROVE_RCU.
++	 */
++	raw_spin_lock_irqsave(&p->pi_lock, flags);
++	rseq_migrate(p);
++	set_task_cpu(p, smp_processor_id());
++	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++
++#ifdef CONFIG_SCHED_INFO
++	if (unlikely(sched_info_on()))
++		memset(&p->sched_info, 0, sizeof(p->sched_info));
++#endif
++	init_task_preempt_count(p);
++
++	return 0;
++}
++
++void sched_post_fork(struct task_struct *p)
++{
++}
++
++#ifdef CONFIG_SCHEDSTATS
++
++DEFINE_STATIC_KEY_FALSE(sched_schedstats);
++static bool __initdata __sched_schedstats = false;
++
++static void set_schedstats(bool enabled)
++{
++	if (enabled)
++		static_branch_enable(&sched_schedstats);
++	else
++		static_branch_disable(&sched_schedstats);
++}
++
++void force_schedstat_enabled(void)
++{
++	if (!schedstat_enabled()) {
++		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
++		static_branch_enable(&sched_schedstats);
++	}
++}
++
++static int __init setup_schedstats(char *str)
++{
++	int ret = 0;
++	if (!str)
++		goto out;
++
++	/*
++	 * This code is called before jump labels have been set up, so we can't
++	 * change the static branch directly just yet.  Instead set a temporary
++	 * variable so init_schedstats() can do it later.
++	 */
++	if (!strcmp(str, "enable")) {
++		__sched_schedstats = true;
++		ret = 1;
++	} else if (!strcmp(str, "disable")) {
++		__sched_schedstats = false;
++		ret = 1;
++	}
++out:
++	if (!ret)
++		pr_warn("Unable to parse schedstats=\n");
++
++	return ret;
++}
++__setup("schedstats=", setup_schedstats);
++
++static void __init init_schedstats(void)
++{
++	set_schedstats(__sched_schedstats);
++}
++
++#ifdef CONFIG_PROC_SYSCTL
++int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
++		size_t *lenp, loff_t *ppos)
++{
++	struct ctl_table t;
++	int err;
++	int state = static_branch_likely(&sched_schedstats);
++
++	if (write && !capable(CAP_SYS_ADMIN))
++		return -EPERM;
++
++	t = *table;
++	t.data = &state;
++	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
++	if (err < 0)
++		return err;
++	if (write)
++		set_schedstats(state);
++	return err;
++}
++#endif /* CONFIG_PROC_SYSCTL */
++#else  /* !CONFIG_SCHEDSTATS */
++static inline void init_schedstats(void) {}
++#endif /* CONFIG_SCHEDSTATS */
++
++static void update_cpu_clock_switch(struct rq *rq, struct task_struct *p);
++
++static void account_task_cpu(struct rq *rq, struct task_struct *p)
++{
++	update_clocks(rq);
++	/* This isn't really a context switch but accounting is the same */
++	update_cpu_clock_switch(rq, p);
++	p->last_ran = rq->niffies;
++}
++
++bool sched_smp_initialized __read_mostly;
++
++static inline int hrexpiry_enabled(struct rq *rq)
++{
++	if (unlikely(!cpu_active(cpu_of(rq)) || !sched_smp_initialized))
++		return 0;
++	return hrtimer_is_hres_active(&rq->hrexpiry_timer);
++}
++
++/*
++ * Use HR-timers to deliver accurate preemption points.
++ */
++static inline void hrexpiry_clear(struct rq *rq)
++{
++	if (!hrexpiry_enabled(rq))
++		return;
++	if (hrtimer_active(&rq->hrexpiry_timer))
++		hrtimer_cancel(&rq->hrexpiry_timer);
++}
++
++/*
++ * High-resolution time_slice expiry.
++ * Runs from hardirq context with interrupts disabled.
++ */
++static enum hrtimer_restart hrexpiry(struct hrtimer *timer)
++{
++	struct rq *rq = container_of(timer, struct rq, hrexpiry_timer);
++	struct task_struct *p;
++
++	/* This can happen during CPU hotplug / resume */
++	if (unlikely(cpu_of(rq) != smp_processor_id()))
++		goto out;
++
++	/*
++	 * We're doing this without the runqueue lock but this should always
++	 * be run on the local CPU. Time slice should run out in __schedule
++	 * but we set it to zero here in case niffies is slightly less.
++	 */
++	p = rq->curr;
++	p->time_slice = 0;
++	__set_tsk_resched(p);
++out:
++	return HRTIMER_NORESTART;
++}
++
++/*
++ * Called to set the hrexpiry timer state.
++ *
++ * called with irqs disabled from the local CPU only
++ */
++static void hrexpiry_start(struct rq *rq, u64 delay)
++{
++	if (!hrexpiry_enabled(rq))
++		return;
++
++	hrtimer_start(&rq->hrexpiry_timer, ns_to_ktime(delay),
++		      HRTIMER_MODE_REL_PINNED);
++}
++
++static void init_rq_hrexpiry(struct rq *rq)
++{
++	hrtimer_init(&rq->hrexpiry_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
++	rq->hrexpiry_timer.function = hrexpiry;
++}
++
++static inline int rq_dither(struct rq *rq)
++{
++	if (!hrexpiry_enabled(rq))
++		return HALF_JIFFY_US;
++	return 0;
++}
++
++/*
++ * wake_up_new_task - wake up a newly created task for the first time.
++ *
++ * This function will do some initial scheduler statistics housekeeping
++ * that must be done for every newly created context, then puts the task
++ * on the runqueue and wakes it.
++ */
++void wake_up_new_task(struct task_struct *p)
++{
++	struct task_struct *parent, *rq_curr;
++	struct rq *rq, *new_rq;
++	unsigned long flags;
++
++	parent = p->parent;
++
++	raw_spin_lock_irqsave(&p->pi_lock, flags);
++	p->state = TASK_RUNNING;
++	/* Task_rq can't change yet on a new task */
++	new_rq = rq = task_rq(p);
++	if (unlikely(needs_other_cpu(p, task_cpu(p)))) {
++		set_task_cpu(p, valid_task_cpu(p));
++		new_rq = task_rq(p);
++	}
++
++	double_rq_lock(rq, new_rq);
++	rq_curr = rq->curr;
++
++	/*
++	 * Make sure we do not leak PI boosting priority to the child.
++	 */
++	p->prio = rq_curr->normal_prio;
++
++	trace_sched_wakeup_new(p);
++
++	/*
++	 * Share the timeslice between parent and child, thus the
++	 * total amount of pending timeslices in the system doesn't change,
++	 * resulting in more scheduling fairness. If it's negative, it won't
++	 * matter since that's the same as being 0. rq->rq_deadline is only
++	 * modified within schedule() so it is always equal to
++	 * current->deadline.
++	 */
++	account_task_cpu(rq, rq_curr);
++	p->last_ran = rq_curr->last_ran;
++	if (likely(rq_curr->policy != SCHED_FIFO)) {
++		rq_curr->time_slice /= 2;
++		if (rq_curr->time_slice < RESCHED_US) {
++			/*
++			 * Forking task has run out of timeslice. Reschedule it and
++			 * start its child with a new time slice and deadline. The
++			 * child will end up running first because its deadline will
++			 * be slightly earlier.
++			 */
++			__set_tsk_resched(rq_curr);
++			time_slice_expired(p, new_rq);
++			if (suitable_idle_cpus(p))
++				resched_best_idle(p, task_cpu(p));
++			else if (unlikely(rq != new_rq))
++				try_preempt(p, new_rq);
++		} else {
++			p->time_slice = rq_curr->time_slice;
++			if (rq_curr == parent && rq == new_rq && !suitable_idle_cpus(p)) {
++				/*
++				 * The VM isn't cloned, so we're in a good position to
++				 * do child-runs-first in anticipation of an exec. This
++				 * usually avoids a lot of COW overhead.
++				 */
++				__set_tsk_resched(rq_curr);
++			} else {
++				/*
++				 * Adjust the hrexpiry since rq_curr will keep
++				 * running and its timeslice has been shortened.
++				 */
++				hrexpiry_start(rq, US_TO_NS(rq_curr->time_slice));
++				try_preempt(p, new_rq);
++			}
++		}
++	} else {
++		time_slice_expired(p, new_rq);
++		try_preempt(p, new_rq);
++	}
++	activate_task(new_rq, p, 0);
++	double_rq_unlock(rq, new_rq);
++	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++}
++
++#ifdef CONFIG_PREEMPT_NOTIFIERS
++
++static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
++
++void preempt_notifier_inc(void)
++{
++	static_branch_inc(&preempt_notifier_key);
++}
++EXPORT_SYMBOL_GPL(preempt_notifier_inc);
++
++void preempt_notifier_dec(void)
++{
++	static_branch_dec(&preempt_notifier_key);
++}
++EXPORT_SYMBOL_GPL(preempt_notifier_dec);
++
++/**
++ * preempt_notifier_register - tell me when current is being preempted & rescheduled
++ * @notifier: notifier struct to register
++ */
++void preempt_notifier_register(struct preempt_notifier *notifier)
++{
++	if (!static_branch_unlikely(&preempt_notifier_key))
++		WARN(1, "registering preempt_notifier while notifiers disabled\n");
++
++	hlist_add_head(&notifier->link, &current->preempt_notifiers);
++}
++EXPORT_SYMBOL_GPL(preempt_notifier_register);
++
++/**
++ * preempt_notifier_unregister - no longer interested in preemption notifications
++ * @notifier: notifier struct to unregister
++ *
++ * This is *not* safe to call from within a preemption notifier.
++ */
++void preempt_notifier_unregister(struct preempt_notifier *notifier)
++{
++	hlist_del(&notifier->link);
++}
++EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
++
++static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
++{
++	struct preempt_notifier *notifier;
++
++	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
++		notifier->ops->sched_in(notifier, raw_smp_processor_id());
++}
++
++static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
++{
++	if (static_branch_unlikely(&preempt_notifier_key))
++		__fire_sched_in_preempt_notifiers(curr);
++}
++
++static void
++__fire_sched_out_preempt_notifiers(struct task_struct *curr,
++				 struct task_struct *next)
++{
++	struct preempt_notifier *notifier;
++
++	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
++		notifier->ops->sched_out(notifier, next);
++}
++
++static __always_inline void
++fire_sched_out_preempt_notifiers(struct task_struct *curr,
++				 struct task_struct *next)
++{
++	if (static_branch_unlikely(&preempt_notifier_key))
++		__fire_sched_out_preempt_notifiers(curr, next);
++}
++
++#else /* !CONFIG_PREEMPT_NOTIFIERS */
++
++static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
++{
++}
++
++static inline void
++fire_sched_out_preempt_notifiers(struct task_struct *curr,
++				 struct task_struct *next)
++{
++}
++
++#endif /* CONFIG_PREEMPT_NOTIFIERS */
++
++static inline void prepare_task(struct task_struct *next)
++{
++	/*
++	 * Claim the task as running, we do this before switching to it
++	 * such that any running task will have this set.
++	 *
++	 * See the ttwu() WF_ON_CPU case and its ordering comment.
++	 */
++	WRITE_ONCE(next->on_cpu, 1);
++}
++
++static inline void finish_task(struct task_struct *prev)
++{
++#ifdef CONFIG_SMP
++	/*
++	 * This must be the very last reference to @prev from this CPU. After
++	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
++	 * must ensure this doesn't happen until the switch is completely
++	 * finished.
++	 *
++	 * In particular, the load of prev->state in finish_task_switch() must
++	 * happen before this.
++	 *
++	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
++	 */
++	smp_store_release(&prev->on_cpu, 0);
++#endif
++}
++
++static inline void
++prepare_lock_switch(struct rq *rq, struct task_struct *next)
++{
++	/*
++	 * Since the runqueue lock will be released by the next
++	 * task (which is an invalid locking op but in the case
++	 * of the scheduler it's an obvious special-case), so we
++	 * do an early lockdep release here:
++	 */
++	spin_release(&rq->lock->dep_map, _THIS_IP_);
++#ifdef CONFIG_DEBUG_SPINLOCK
++	/* this is a valid case when another task releases the spinlock */
++	rq->lock->owner = next;
++#endif
++}
++
++static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
++{
++	/*
++	 * If we are tracking spinlock dependencies then we have to
++	 * fix up the runqueue lock - which gets 'carried over' from
++	 * prev into current:
++	 */
++	spin_acquire(&rq->lock->dep_map, 0, 0, _THIS_IP_);
++
++#ifdef CONFIG_SMP
++	/*
++	 * If prev was marked as migrating to another CPU in return_task, drop
++	 * the local runqueue lock but leave interrupts disabled and grab the
++	 * remote lock we're migrating it to before enabling them.
++	 */
++	if (unlikely(task_on_rq_migrating(prev))) {
++		sched_info_dequeued(rq, prev);
++		/*
++		 * We move the ownership of prev to the new cpu now. ttwu can't
++		 * activate prev to the wrong cpu since it has to grab this
++		 * runqueue in ttwu_remote.
++		 */
++#ifdef CONFIG_THREAD_INFO_IN_TASK
++		prev->cpu = prev->wake_cpu;
++#else
++		task_thread_info(prev)->cpu = prev->wake_cpu;
++#endif
++		raw_spin_unlock(rq->lock);
++
++		raw_spin_lock(&prev->pi_lock);
++		rq = __task_rq_lock(prev, NULL);
++		/* Check that someone else hasn't already queued prev */
++		if (likely(!task_queued(prev))) {
++			enqueue_task(rq, prev, 0);
++			prev->on_rq = TASK_ON_RQ_QUEUED;
++			/* Wake up the CPU if it's not already running */
++			resched_if_idle(rq);
++		}
++		raw_spin_unlock(&prev->pi_lock);
++	}
++#endif
++	raw_spin_unlock_irq(rq->lock);
++}
++
++#ifndef prepare_arch_switch
++# define prepare_arch_switch(next)	do { } while (0)
++#endif
++#ifndef finish_arch_switch
++# define finish_arch_switch(prev)	do { } while (0)
++#endif
++#ifndef finish_arch_post_lock_switch
++# define finish_arch_post_lock_switch()	do { } while (0)
++#endif
++
++static inline void kmap_local_sched_out(void)
++{
++#ifdef CONFIG_KMAP_LOCAL
++	if (unlikely(current->kmap_ctrl.idx))
++		__kmap_local_sched_out();
++#endif
++}
++
++static inline void kmap_local_sched_in(void)
++{
++#ifdef CONFIG_KMAP_LOCAL
++	if (unlikely(current->kmap_ctrl.idx))
++		__kmap_local_sched_in();
++#endif
++}
++
++/**
++ * prepare_task_switch - prepare to switch tasks
++ * @rq: the runqueue preparing to switch
++ * @next: the task we are going to switch to.
++ *
++ * This is called with the rq lock held and interrupts off. It must
++ * be paired with a subsequent finish_task_switch after the context
++ * switch.
++ *
++ * prepare_task_switch sets up locking and calls architecture specific
++ * hooks.
++ */
++static inline void
++prepare_task_switch(struct rq *rq, struct task_struct *prev,
++		    struct task_struct *next)
++{
++	kcov_prepare_switch(prev);
++	sched_info_switch(rq, prev, next);
++	perf_event_task_sched_out(prev, next);
++	rseq_preempt(prev);
++	fire_sched_out_preempt_notifiers(prev, next);
++	kmap_local_sched_out();
++	prepare_task(next);
++	prepare_arch_switch(next);
++}
++
++/**
++ * finish_task_switch - clean up after a task-switch
++ * @rq: runqueue associated with task-switch
++ * @prev: the thread we just switched away from.
++ *
++ * finish_task_switch must be called after the context switch, paired
++ * with a prepare_task_switch call before the context switch.
++ * finish_task_switch will reconcile locking set up by prepare_task_switch,
++ * and do any other architecture-specific cleanup actions.
++ *
++ * Note that we may have delayed dropping an mm in context_switch(). If
++ * so, we finish that here outside of the runqueue lock.  (Doing it
++ * with the lock held can cause deadlocks; see schedule() for
++ * details.)
++ *
++ * The context switch have flipped the stack from under us and restored the
++ * local variables which were saved when this task called schedule() in the
++ * past. prev == current is still correct but we need to recalculate this_rq
++ * because prev may have moved to another CPU.
++ */
++static void finish_task_switch(struct task_struct *prev)
++	__releases(rq->lock)
++{
++	struct rq *rq = this_rq();
++	struct mm_struct *mm = rq->prev_mm;
++	long prev_state;
++
++	/*
++	 * The previous task will have left us with a preempt_count of 2
++	 * because it left us after:
++	 *
++	 *	schedule()
++	 *	  preempt_disable();			// 1
++	 *	  __schedule()
++	 *	    raw_spin_lock_irq(rq->lock)	// 2
++	 *
++	 * Also, see FORK_PREEMPT_COUNT.
++	 */
++	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
++		      "corrupted preempt_count: %s/%d/0x%x\n",
++		      current->comm, current->pid, preempt_count()))
++		preempt_count_set(FORK_PREEMPT_COUNT);
++
++	rq->prev_mm = NULL;
++
++	/*
++	 * A task struct has one reference for the use as "current".
++	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
++	 * schedule one last time. The schedule call will never return, and
++	 * the scheduled task must drop that reference.
++	 *
++	 * We must observe prev->state before clearing prev->on_cpu (in
++	 * finish_task), otherwise a concurrent wakeup can get prev
++	 * running on another CPU and we could rave with its RUNNING -> DEAD
++	 * transition, resulting in a double drop.
++	 */
++	prev_state = prev->state;
++	vtime_task_switch(prev);
++	perf_event_task_sched_in(prev, current);
++	finish_task(prev);
++	finish_lock_switch(rq, prev);
++	finish_arch_post_lock_switch();
++	kcov_finish_switch(current);
++	/*
++	 * kmap_local_sched_out() is invoked with rq::lock held and
++	 * interrupts disabled. There is no requirement for that, but the
++	 * sched out code does not have an interrupt enabled section.
++	 * Restoring the maps on sched in does not require interrupts being
++	 * disabled either.
++	 */
++	kmap_local_sched_in();
++
++	fire_sched_in_preempt_notifiers(current);
++	/*
++	 * When switching through a kernel thread, the loop in
++	 * membarrier_{private,global}_expedited() may have observed that
++	 * kernel thread and not issued an IPI. It is therefore possible to
++	 * schedule between user->kernel->user threads without passing though
++	 * switch_mm(). Membarrier requires a barrier after storing to
++	 * rq->curr, before returning to userspace, so provide them here:
++	 *
++	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
++	 *   provided by mmdrop(),
++	 * - a sync_core for SYNC_CORE.
++	 */
++	if (mm) {
++		membarrier_mm_sync_core_before_usermode(mm);
++		mmdrop(mm);
++	}
++	if (unlikely(prev_state == TASK_DEAD)) {
++		/*
++		 * Remove function-return probe instances associated with this
++		 * task and put them back on the free list.
++		 */
++		kprobe_flush_task(prev);
++
++		/* Task is done with its stack. */
++		put_task_stack(prev);
++
++		put_task_struct_rcu_user(prev);
++	}
++}
++
++/**
++ * schedule_tail - first thing a freshly forked thread must call.
++ * @prev: the thread we just switched away from.
++ */
++asmlinkage __visible void schedule_tail(struct task_struct *prev)
++{
++	/*
++	 * New tasks start with FORK_PREEMPT_COUNT, see there and
++	 * finish_task_switch() for details.
++	 *
++	 * finish_task_switch() will drop rq->lock() and lower preempt_count
++	 * and the preempt_enable() will end up enabling preemption (on
++	 * PREEMPT_COUNT kernels).
++	 */
++
++	finish_task_switch(prev);
++	preempt_enable();
++
++	if (current->set_child_tid)
++		put_user(task_pid_vnr(current), current->set_child_tid);
++
++	calculate_sigpending();
++}
++
++/*
++ * context_switch - switch to the new MM and the new thread's register state.
++ */
++static __always_inline void
++context_switch(struct rq *rq, struct task_struct *prev,
++	       struct task_struct *next)
++{
++	prepare_task_switch(rq, prev, next);
++
++	/*
++	 * For paravirt, this is coupled with an exit in switch_to to
++	 * combine the page table reload and the switch backend into
++	 * one hypercall.
++	 */
++	arch_start_context_switch(prev);
++
++	/*
++	 * kernel -> kernel   lazy + transfer active
++	 *   user -> kernel   lazy + mmgrab() active
++	 *
++	 * kernel ->   user   switch + mmdrop() active
++	 *   user ->   user   switch
++	 */
++	if (!next->mm) {                                // to kernel
++		enter_lazy_tlb(prev->active_mm, next);
++
++		next->active_mm = prev->active_mm;
++		if (prev->mm)                           // from user
++			mmgrab(prev->active_mm);
++		else
++			prev->active_mm = NULL;
++	} else {                                        // to user
++		membarrier_switch_mm(rq, prev->active_mm, next->mm);
++		/*
++		 * sys_membarrier() requires an smp_mb() between setting
++		 * rq->curr / membarrier_switch_mm() and returning to userspace.
++		 *
++		 * The below provides this either through switch_mm(), or in
++		 * case 'prev->active_mm == next->mm' through
++		 * finish_task_switch()'s mmdrop().
++		 */
++		switch_mm_irqs_off(prev->active_mm, next->mm, next);
++
++		if (!prev->mm) {                        // from kernel
++			/* will mmdrop() in finish_task_switch(). */
++			rq->prev_mm = prev->active_mm;
++			prev->active_mm = NULL;
++		}
++	}
++	prepare_lock_switch(rq, next);
++
++	/* Here we just switch the register state and the stack. */
++	switch_to(prev, next, prev);
++	barrier();
++
++	finish_task_switch(prev);
++}
++
++/*
++ * nr_running, nr_uninterruptible and nr_context_switches:
++ *
++ * externally visible scheduler statistics: current number of runnable
++ * threads, total number of context switches performed since bootup.
++ */
++unsigned long nr_running(void)
++{
++	unsigned long i, sum = 0;
++
++	for_each_online_cpu(i)
++		sum += cpu_rq(i)->nr_running;
++
++	return sum;
++}
++
++static unsigned long nr_uninterruptible(void)
++{
++	unsigned long i, sum = 0;
++
++	for_each_online_cpu(i)
++		sum += cpu_rq(i)->nr_uninterruptible;
++
++	return sum;
++}
++
++/*
++ * Check if only the current task is running on the CPU.
++ *
++ * Caution: this function does not check that the caller has disabled
++ * preemption, thus the result might have a time-of-check-to-time-of-use
++ * race.  The caller is responsible to use it correctly, for example:
++ *
++ * - from a non-preemptible section (of course)
++ *
++ * - from a thread that is bound to a single CPU
++ *
++ * - in a loop with very short iterations (e.g. a polling loop)
++ */
++bool single_task_running(void)
++{
++	if (rq_load(raw_rq()) == 1)
++		return true;
++	else
++		return false;
++}
++EXPORT_SYMBOL(single_task_running);
++
++unsigned long long nr_context_switches(void)
++{
++	int cpu;
++	unsigned long long sum = 0;
++
++	for_each_possible_cpu(cpu)
++		sum += cpu_rq(cpu)->nr_switches;
++
++	return sum;
++}
++
++/*
++ * Consumers of these two interfaces, like for example the cpufreq menu
++ * governor are using nonsensical data. Boosting frequency for a CPU that has
++ * IO-wait which might not even end up running the task when it does become
++ * runnable.
++ */
++
++unsigned long nr_iowait_cpu(int cpu)
++{
++	return atomic_read(&cpu_rq(cpu)->nr_iowait);
++}
++
++/*
++ * IO-wait accounting, and how it's mostly bollocks (on SMP).
++ *
++ * The idea behind IO-wait account is to account the idle time that we could
++ * have spend running if it were not for IO. That is, if we were to improve the
++ * storage performance, we'd have a proportional reduction in IO-wait time.
++ *
++ * This all works nicely on UP, where, when a task blocks on IO, we account
++ * idle time as IO-wait, because if the storage were faster, it could've been
++ * running and we'd not be idle.
++ *
++ * This has been extended to SMP, by doing the same for each CPU. This however
++ * is broken.
++ *
++ * Imagine for instance the case where two tasks block on one CPU, only the one
++ * CPU will have IO-wait accounted, while the other has regular idle. Even
++ * though, if the storage were faster, both could've ran at the same time,
++ * utilising both CPUs.
++ *
++ * This means, that when looking globally, the current IO-wait accounting on
++ * SMP is a lower bound, by reason of under accounting.
++ *
++ * Worse, since the numbers are provided per CPU, they are sometimes
++ * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
++ * associated with any one particular CPU, it can wake to another CPU than it
++ * blocked on. This means the per CPU IO-wait number is meaningless.
++ *
++ * Task CPU affinities can make all that even more 'interesting'.
++ */
++
++unsigned long nr_iowait(void)
++{
++	unsigned long cpu, sum = 0;
++
++	for_each_possible_cpu(cpu)
++		sum += nr_iowait_cpu(cpu);
++
++	return sum;
++}
++
++unsigned long nr_active(void)
++{
++	return nr_running() + nr_uninterruptible();
++}
++
++/* Variables and functions for calc_load */
++static unsigned long calc_load_update;
++unsigned long avenrun[3];
++EXPORT_SYMBOL(avenrun);
++
++/**
++ * get_avenrun - get the load average array
++ * @loads:	pointer to dest load array
++ * @offset:	offset to add
++ * @shift:	shift count to shift the result left
++ *
++ * These values are estimates at best, so no need for locking.
++ */
++void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
++{
++	loads[0] = (avenrun[0] + offset) << shift;
++	loads[1] = (avenrun[1] + offset) << shift;
++	loads[2] = (avenrun[2] + offset) << shift;
++}
++
++/*
++ * calc_load - update the avenrun load estimates every LOAD_FREQ seconds.
++ */
++void calc_global_load(void)
++{
++	long active;
++
++	if (time_before(jiffies, READ_ONCE(calc_load_update)))
++		return;
++	active = nr_active() * FIXED_1;
++
++	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
++	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
++	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
++
++	calc_load_update = jiffies + LOAD_FREQ;
++}
++
++/**
++ * fixed_power_int - compute: x^n, in O(log n) time
++ *
++ * @x:         base of the power
++ * @frac_bits: fractional bits of @x
++ * @n:         power to raise @x to.
++ *
++ * By exploiting the relation between the definition of the natural power
++ * function: x^n := x*x*...*x (x multiplied by itself for n times), and
++ * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
++ * (where: n_i \elem {0, 1}, the binary vector representing n),
++ * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
++ * of course trivially computable in O(log_2 n), the length of our binary
++ * vector.
++ */
++static unsigned long
++fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
++{
++	unsigned long result = 1UL << frac_bits;
++
++	if (n) {
++		for (;;) {
++			if (n & 1) {
++				result *= x;
++				result += 1UL << (frac_bits - 1);
++				result >>= frac_bits;
++			}
++			n >>= 1;
++			if (!n)
++				break;
++			x *= x;
++			x += 1UL << (frac_bits - 1);
++			x >>= frac_bits;
++		}
++	}
++
++	return result;
++}
++
++/*
++ * a1 = a0 * e + a * (1 - e)
++ *
++ * a2 = a1 * e + a * (1 - e)
++ *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
++ *    = a0 * e^2 + a * (1 - e) * (1 + e)
++ *
++ * a3 = a2 * e + a * (1 - e)
++ *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
++ *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
++ *
++ *  ...
++ *
++ * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
++ *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
++ *    = a0 * e^n + a * (1 - e^n)
++ *
++ * [1] application of the geometric series:
++ *
++ *              n         1 - x^(n+1)
++ *     S_n := \Sum x^i = -------------
++ *             i=0          1 - x
++ */
++unsigned long
++calc_load_n(unsigned long load, unsigned long exp,
++	    unsigned long active, unsigned int n)
++{
++	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
++}
++
++DEFINE_PER_CPU(struct kernel_stat, kstat);
++DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
++
++EXPORT_PER_CPU_SYMBOL(kstat);
++EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
++
++#ifdef CONFIG_PARAVIRT
++static inline u64 steal_ticks(u64 steal)
++{
++	if (unlikely(steal > NSEC_PER_SEC))
++		return div_u64(steal, TICK_NSEC);
++
++	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
++}
++#endif
++
++#ifndef nsecs_to_cputime
++# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
++#endif
++
++/*
++ * On each tick, add the number of nanoseconds to the unbanked variables and
++ * once one tick's worth has accumulated, account it allowing for accurate
++ * sub-tick accounting and totals. Use the TICK_APPROX_NS to match the way we
++ * deduct nanoseconds.
++ */
++static void pc_idle_time(struct rq *rq, struct task_struct *idle, unsigned long ns)
++{
++	u64 *cpustat = kcpustat_this_cpu->cpustat;
++	unsigned long ticks;
++
++	if (atomic_read(&rq->nr_iowait) > 0) {
++		rq->iowait_ns += ns;
++		if (rq->iowait_ns >= JIFFY_NS) {
++			ticks = NS_TO_JIFFIES(rq->iowait_ns);
++			cpustat[CPUTIME_IOWAIT] += (__force u64)TICK_APPROX_NS * ticks;
++			rq->iowait_ns %= JIFFY_NS;
++		}
++	} else {
++		rq->idle_ns += ns;
++		if (rq->idle_ns >= JIFFY_NS) {
++			ticks = NS_TO_JIFFIES(rq->idle_ns);
++			cpustat[CPUTIME_IDLE] += (__force u64)TICK_APPROX_NS * ticks;
++			rq->idle_ns %= JIFFY_NS;
++		}
++	}
++	acct_update_integrals(idle);
++}
++
++static void pc_system_time(struct rq *rq, struct task_struct *p,
++			   int hardirq_offset, unsigned long ns)
++{
++	u64 *cpustat = kcpustat_this_cpu->cpustat;
++	unsigned long ticks;
++
++	p->stime_ns += ns;
++	if (p->stime_ns >= JIFFY_NS) {
++		ticks = NS_TO_JIFFIES(p->stime_ns);
++		p->stime_ns %= JIFFY_NS;
++		p->stime += (__force u64)TICK_APPROX_NS * ticks;
++		account_group_system_time(p, TICK_APPROX_NS * ticks);
++	}
++	p->sched_time += ns;
++	account_group_exec_runtime(p, ns);
++
++	if (hardirq_count() - hardirq_offset) {
++		rq->irq_ns += ns;
++		if (rq->irq_ns >= JIFFY_NS) {
++			ticks = NS_TO_JIFFIES(rq->irq_ns);
++			cpustat[CPUTIME_IRQ] += (__force u64)TICK_APPROX_NS * ticks;
++			rq->irq_ns %= JIFFY_NS;
++		}
++	} else if (in_serving_softirq()) {
++		rq->softirq_ns += ns;
++		if (rq->softirq_ns >= JIFFY_NS) {
++			ticks = NS_TO_JIFFIES(rq->softirq_ns);
++			cpustat[CPUTIME_SOFTIRQ] += (__force u64)TICK_APPROX_NS * ticks;
++			rq->softirq_ns %= JIFFY_NS;
++		}
++	} else {
++		rq->system_ns += ns;
++		if (rq->system_ns >= JIFFY_NS) {
++			ticks = NS_TO_JIFFIES(rq->system_ns);
++			cpustat[CPUTIME_SYSTEM] += (__force u64)TICK_APPROX_NS * ticks;
++			rq->system_ns %= JIFFY_NS;
++		}
++	}
++	acct_update_integrals(p);
++}
++
++static void pc_user_time(struct rq *rq, struct task_struct *p, unsigned long ns)
++{
++	u64 *cpustat = kcpustat_this_cpu->cpustat;
++	unsigned long ticks;
++
++	p->utime_ns += ns;
++	if (p->utime_ns >= JIFFY_NS) {
++		ticks = NS_TO_JIFFIES(p->utime_ns);
++		p->utime_ns %= JIFFY_NS;
++		p->utime += (__force u64)TICK_APPROX_NS * ticks;
++		account_group_user_time(p, TICK_APPROX_NS * ticks);
++	}
++	p->sched_time += ns;
++	account_group_exec_runtime(p, ns);
++
++	if (this_cpu_ksoftirqd() == p) {
++		/*
++		 * ksoftirqd time do not get accounted in cpu_softirq_time.
++		 * So, we have to handle it separately here.
++		 */
++		rq->softirq_ns += ns;
++		if (rq->softirq_ns >= JIFFY_NS) {
++			ticks = NS_TO_JIFFIES(rq->softirq_ns);
++			cpustat[CPUTIME_SOFTIRQ] += (__force u64)TICK_APPROX_NS * ticks;
++			rq->softirq_ns %= JIFFY_NS;
++		}
++	}
++
++	if (task_nice(p) > 0 || idleprio_task(p)) {
++		rq->nice_ns += ns;
++		if (rq->nice_ns >= JIFFY_NS) {
++			ticks = NS_TO_JIFFIES(rq->nice_ns);
++			cpustat[CPUTIME_NICE] += (__force u64)TICK_APPROX_NS * ticks;
++			rq->nice_ns %= JIFFY_NS;
++		}
++	} else {
++		rq->user_ns += ns;
++		if (rq->user_ns >= JIFFY_NS) {
++			ticks = NS_TO_JIFFIES(rq->user_ns);
++			cpustat[CPUTIME_USER] += (__force u64)TICK_APPROX_NS * ticks;
++			rq->user_ns %= JIFFY_NS;
++		}
++	}
++	acct_update_integrals(p);
++}
++
++/*
++ * This is called on clock ticks.
++ * Bank in p->sched_time the ns elapsed since the last tick or switch.
++ * CPU scheduler quota accounting is also performed here in microseconds.
++ */
++static void update_cpu_clock_tick(struct rq *rq, struct task_struct *p)
++{
++	s64 account_ns = rq->niffies - p->last_ran;
++	struct task_struct *idle = rq->idle;
++
++	/* Accurate tick timekeeping */
++	if (user_mode(get_irq_regs()))
++		pc_user_time(rq, p, account_ns);
++	else if (p != idle || (irq_count() != HARDIRQ_OFFSET)) {
++		pc_system_time(rq, p, HARDIRQ_OFFSET, account_ns);
++	} else
++		pc_idle_time(rq, idle, account_ns);
++
++	/* time_slice accounting is done in usecs to avoid overflow on 32bit */
++	if (p->policy != SCHED_FIFO && p != idle)
++		p->time_slice -= NS_TO_US(account_ns);
++
++	p->last_ran = rq->niffies;
++}
++
++/*
++ * This is called on context switches.
++ * Bank in p->sched_time the ns elapsed since the last tick or switch.
++ * CPU scheduler quota accounting is also performed here in microseconds.
++ */
++static void update_cpu_clock_switch(struct rq *rq, struct task_struct *p)
++{
++	s64 account_ns = rq->niffies - p->last_ran;
++	struct task_struct *idle = rq->idle;
++
++	/* Accurate subtick timekeeping */
++	if (p != idle)
++		pc_user_time(rq, p, account_ns);
++	else
++		pc_idle_time(rq, idle, account_ns);
++
++	/* time_slice accounting is done in usecs to avoid overflow on 32bit */
++	if (p->policy != SCHED_FIFO && p != idle)
++		p->time_slice -= NS_TO_US(account_ns);
++}
++
++/*
++ * Return any ns on the sched_clock that have not yet been accounted in
++ * @p in case that task is currently running.
++ *
++ * Called with task_rq_lock(p) held.
++ */
++static inline u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
++{
++	u64 ns = 0;
++
++	/*
++	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
++	 * project cycles that may never be accounted to this
++	 * thread, breaking clock_gettime().
++	 */
++	if (p == rq->curr && task_on_rq_queued(p)) {
++		update_clocks(rq);
++		ns = rq->niffies - p->last_ran;
++	}
++
++	return ns;
++}
++
++/*
++ * Return accounted runtime for the task.
++ * Return separately the current's pending runtime that have not been
++ * accounted yet.
++ */
++unsigned long long task_sched_runtime(struct task_struct *p)
++{
++	struct rq_flags rf;
++	struct rq *rq;
++	u64 ns;
++
++#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
++	/*
++	 * 64-bit doesn't need locks to atomically read a 64-bit value.
++	 * So we have a optimisation chance when the task's delta_exec is 0.
++	 * Reading ->on_cpu is racy, but this is ok.
++	 *
++	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
++	 * If we race with it entering CPU, unaccounted time is 0. This is
++	 * indistinguishable from the read occurring a few cycles earlier.
++	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
++	 * been accounted, so we're correct here as well.
++	 */
++	if (!p->on_cpu || !task_on_rq_queued(p))
++		return tsk_seruntime(p);
++#endif
++
++	rq = task_rq_lock(p, &rf);
++	ns = p->sched_time + do_task_delta_exec(p, rq);
++	task_rq_unlock(rq, p, &rf);
++
++	return ns;
++}
++
++/*
++ * Functions to test for when SCHED_ISO tasks have used their allocated
++ * quota as real time scheduling and convert them back to SCHED_NORMAL. All
++ * data is modified only by the local runqueue during scheduler_tick with
++ * interrupts disabled.
++ */
++
++/*
++ * Test if SCHED_ISO tasks have run longer than their alloted period as RT
++ * tasks and set the refractory flag if necessary. There is 10% hysteresis
++ * for unsetting the flag. 115/128 is ~90/100 as a fast shift instead of a
++ * slow division.
++ */
++static inline void iso_tick(struct rq *rq)
++{
++	rq->iso_ticks = rq->iso_ticks * (ISO_PERIOD - 1) / ISO_PERIOD;
++	rq->iso_ticks += 100;
++	if (rq->iso_ticks > ISO_PERIOD * sched_iso_cpu) {
++		rq->iso_refractory = true;
++		if (unlikely(rq->iso_ticks > ISO_PERIOD * 100))
++			rq->iso_ticks = ISO_PERIOD * 100;
++	}
++}
++
++/* No SCHED_ISO task was running so decrease rq->iso_ticks */
++static inline void no_iso_tick(struct rq *rq, int ticks)
++{
++	if (rq->iso_ticks > 0 || rq->iso_refractory) {
++		rq->iso_ticks = rq->iso_ticks * (ISO_PERIOD - ticks) / ISO_PERIOD;
++		if (rq->iso_ticks < ISO_PERIOD * (sched_iso_cpu * 115 / 128)) {
++			rq->iso_refractory = false;
++			if (unlikely(rq->iso_ticks < 0))
++				rq->iso_ticks = 0;
++		}
++	}
++}
++
++/* This manages tasks that have run out of timeslice during a scheduler_tick */
++static void task_running_tick(struct rq *rq)
++{
++	struct task_struct *p = rq->curr;
++
++	/*
++	 * If a SCHED_ISO task is running we increment the iso_ticks. In
++	 * order to prevent SCHED_ISO tasks from causing starvation in the
++	 * presence of true RT tasks we account those as iso_ticks as well.
++	 */
++	if (rt_task(p) || task_running_iso(p))
++		iso_tick(rq);
++	else
++		no_iso_tick(rq, 1);
++
++	/* SCHED_FIFO tasks never run out of timeslice. */
++	if (p->policy == SCHED_FIFO)
++		return;
++
++	if (iso_task(p)) {
++		if (task_running_iso(p)) {
++			if (rq->iso_refractory) {
++				/*
++				 * SCHED_ISO task is running as RT and limit
++				 * has been hit. Force it to reschedule as
++				 * SCHED_NORMAL by zeroing its time_slice
++				 */
++				p->time_slice = 0;
++			}
++		} else if (!rq->iso_refractory) {
++			/* Can now run again ISO. Reschedule to pick up prio */
++			goto out_resched;
++		}
++	}
++
++	/*
++	 * Tasks that were scheduled in the first half of a tick are not
++	 * allowed to run into the 2nd half of the next tick if they will
++	 * run out of time slice in the interim. Otherwise, if they have
++	 * less than RESCHED_US μs of time slice left they will be rescheduled.
++	 * Dither is used as a backup for when hrexpiry is disabled or high res
++	 * timers not configured in.
++	 */
++	if (p->time_slice - rq->dither >= RESCHED_US)
++		return;
++out_resched:
++	rq_lock(rq);
++	__set_tsk_resched(p);
++	rq_unlock(rq);
++}
++
++static inline void task_tick(struct rq *rq)
++{
++	if (!rq_idle(rq))
++		task_running_tick(rq);
++	else if (rq->last_jiffy > rq->last_scheduler_tick)
++		no_iso_tick(rq, rq->last_jiffy - rq->last_scheduler_tick);
++}
++
++#ifdef CONFIG_NO_HZ_FULL
++/*
++ * We can stop the timer tick any time highres timers are active since
++ * we rely entirely on highres timeouts for task expiry rescheduling.
++ */
++static void sched_stop_tick(struct rq *rq, int cpu)
++{
++	if (!hrexpiry_enabled(rq))
++		return;
++	if (!tick_nohz_full_enabled())
++		return;
++	if (!tick_nohz_full_cpu(cpu))
++		return;
++	tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
++}
++
++static inline void sched_start_tick(struct rq *rq, int cpu)
++{
++	tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
++}
++
++struct tick_work {
++	int			cpu;
++	atomic_t		state;
++	struct delayed_work	work;
++};
++/* Values for ->state, see diagram below. */
++#define TICK_SCHED_REMOTE_OFFLINE	0
++#define TICK_SCHED_REMOTE_OFFLINING	1
++#define TICK_SCHED_REMOTE_RUNNING	2
++
++/*
++ * State diagram for ->state:
++ *
++ *
++ *          TICK_SCHED_REMOTE_OFFLINE
++ *                    |   ^
++ *                    |   |
++ *                    |   | sched_tick_remote()
++ *                    |   |
++ *                    |   |
++ *                    +--TICK_SCHED_REMOTE_OFFLINING
++ *                    |   ^
++ *                    |   |
++ * sched_tick_start() |   | sched_tick_stop()
++ *                    |   |
++ *                    V   |
++ *          TICK_SCHED_REMOTE_RUNNING
++ *
++ *
++ * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
++ * and sched_tick_start() are happy to leave the state in RUNNING.
++ */
++
++static struct tick_work __percpu *tick_work_cpu;
++
++static void sched_tick_remote(struct work_struct *work)
++{
++	struct delayed_work *dwork = to_delayed_work(work);
++	struct tick_work *twork = container_of(dwork, struct tick_work, work);
++	int cpu = twork->cpu;
++	struct rq *rq = cpu_rq(cpu);
++	struct task_struct *curr;
++	u64 delta;
++	int os;
++
++	/*
++	 * Handle the tick only if it appears the remote CPU is running in full
++	 * dynticks mode. The check is racy by nature, but missing a tick or
++	 * having one too much is no big deal because the scheduler tick updates
++	 * statistics and checks timeslices in a time-independent way, regardless
++	 * of when exactly it is running.
++	 */
++	if (!tick_nohz_tick_stopped_cpu(cpu))
++		goto out_requeue;
++
++	rq_lock_irq(rq);
++	if (cpu_is_offline(cpu))
++		goto out_unlock;
++
++	curr = rq->curr;
++	update_rq_clock(rq);
++
++	if (!is_idle_task(curr)) {
++		/*
++		 * Make sure the next tick runs within a reasonable
++		 * amount of time.
++		 */
++		delta = rq_clock_task(rq) - curr->last_ran;
++		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
++	}
++	task_tick(rq);
++
++out_unlock:
++	rq_unlock_irq(rq, NULL);
++
++out_requeue:
++
++	/*
++	 * Run the remote tick once per second (1Hz). This arbitrary
++	 * frequency is large enough to avoid overload but short enough
++	 * to keep scheduler internal stats reasonably up to date.  But
++	 * first update state to reflect hotplug activity if required.
++	 */
++	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
++	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
++	if (os == TICK_SCHED_REMOTE_RUNNING)
++		queue_delayed_work(system_unbound_wq, dwork, HZ);
++}
++
++static void sched_tick_start(int cpu)
++{
++	struct tick_work *twork;
++	int os;
++
++	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
++		return;
++
++	WARN_ON_ONCE(!tick_work_cpu);
++
++	twork = per_cpu_ptr(tick_work_cpu, cpu);
++	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
++	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
++	if (os == TICK_SCHED_REMOTE_OFFLINE) {
++		twork->cpu = cpu;
++		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
++		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
++	}
++}
++
++#ifdef CONFIG_HOTPLUG_CPU
++static void sched_tick_stop(int cpu)
++{
++	struct tick_work *twork;
++	int os;
++
++	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
++		return;
++
++	WARN_ON_ONCE(!tick_work_cpu);
++
++	twork = per_cpu_ptr(tick_work_cpu, cpu);
++	/* There cannot be competing actions, but don't rely on stop-machine. */
++	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
++	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
++	/* Don't cancel, as this would mess up the state machine. */
++}
++#endif /* CONFIG_HOTPLUG_CPU */
++
++int __init sched_tick_offload_init(void)
++{
++	tick_work_cpu = alloc_percpu(struct tick_work);
++	BUG_ON(!tick_work_cpu);
++	return 0;
++}
++
++#else /* !CONFIG_NO_HZ_FULL */
++static inline void sched_stop_tick(struct rq *rq, int cpu) {}
++static inline void sched_start_tick(struct rq *rq, int cpu) {}
++static inline void sched_tick_start(int cpu) { }
++static inline void sched_tick_stop(int cpu) { }
++#endif
++
++/*
++ * This function gets called by the timer code, with HZ frequency.
++ * We call it with interrupts disabled.
++ */
++void scheduler_tick(void)
++{
++	int cpu __maybe_unused = smp_processor_id();
++	struct rq *rq = cpu_rq(cpu);
++
++	arch_scale_freq_tick();
++	sched_clock_tick();
++	update_clocks(rq);
++	update_load_avg(rq, 0);
++	update_cpu_clock_tick(rq, rq->curr);
++	task_tick(rq);
++	rq->last_scheduler_tick = rq->last_jiffy;
++	rq->last_tick = rq->clock;
++	psi_task_tick(rq);
++	perf_event_task_tick();
++	sched_stop_tick(rq, cpu);
++}
++
++#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
++				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
++/*
++ * If the value passed in is equal to the current preempt count
++ * then we just disabled preemption. Start timing the latency.
++ */
++static inline void preempt_latency_start(int val)
++{
++	if (preempt_count() == val) {
++		unsigned long ip = get_lock_parent_ip();
++#ifdef CONFIG_DEBUG_PREEMPT
++		current->preempt_disable_ip = ip;
++#endif
++		trace_preempt_off(CALLER_ADDR0, ip);
++	}
++}
++
++void preempt_count_add(int val)
++{
++#ifdef CONFIG_DEBUG_PREEMPT
++	/*
++	 * Underflow?
++	 */
++	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
++		return;
++#endif
++	__preempt_count_add(val);
++#ifdef CONFIG_DEBUG_PREEMPT
++	/*
++	 * Spinlock count overflowing soon?
++	 */
++	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
++				PREEMPT_MASK - 10);
++#endif
++	preempt_latency_start(val);
++}
++EXPORT_SYMBOL(preempt_count_add);
++NOKPROBE_SYMBOL(preempt_count_add);
++
++/*
++ * If the value passed in equals to the current preempt count
++ * then we just enabled preemption. Stop timing the latency.
++ */
++static inline void preempt_latency_stop(int val)
++{
++	if (preempt_count() == val)
++		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
++}
++
++void preempt_count_sub(int val)
++{
++#ifdef CONFIG_DEBUG_PREEMPT
++	/*
++	 * Underflow?
++	 */
++	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
++		return;
++	/*
++	 * Is the spinlock portion underflowing?
++	 */
++	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
++			!(preempt_count() & PREEMPT_MASK)))
++		return;
++#endif
++
++	preempt_latency_stop(val);
++	__preempt_count_sub(val);
++}
++EXPORT_SYMBOL(preempt_count_sub);
++NOKPROBE_SYMBOL(preempt_count_sub);
++
++#else
++static inline void preempt_latency_start(int val) { }
++static inline void preempt_latency_stop(int val) { }
++#endif
++
++static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
++{
++#ifdef CONFIG_DEBUG_PREEMPT
++	return p->preempt_disable_ip;
++#else
++	return 0;
++#endif
++}
++
++/*
++ * The time_slice is only refilled when it is empty and that is when we set a
++ * new deadline. Make sure update_clocks has been called recently to update
++ * rq->niffies.
++ */
++static void time_slice_expired(struct task_struct *p, struct rq *rq)
++{
++	p->time_slice = timeslice();
++	p->deadline = rq->niffies + task_deadline_diff(p);
++#ifdef CONFIG_SMT_NICE
++	if (!p->mm)
++		p->smt_bias = 0;
++	else if (rt_task(p))
++		p->smt_bias = 1 << 30;
++	else if (task_running_iso(p))
++		p->smt_bias = 1 << 29;
++	else if (idleprio_task(p)) {
++		if (task_running_idle(p))
++			p->smt_bias = 0;
++		else
++			p->smt_bias = 1;
++	} else if (--p->smt_bias < 1)
++		p->smt_bias = MAX_PRIO - p->static_prio;
++#endif
++}
++
++/*
++ * Timeslices below RESCHED_US are considered as good as expired as there's no
++ * point rescheduling when there's so little time left. SCHED_BATCH tasks
++ * have been flagged be not latency sensitive and likely to be fully CPU
++ * bound so every time they're rescheduled they have their time_slice
++ * refilled, but get a new later deadline to have little effect on
++ * SCHED_NORMAL tasks.
++
++ */
++static inline void check_deadline(struct task_struct *p, struct rq *rq)
++{
++	if (p->time_slice < RESCHED_US || batch_task(p))
++		time_slice_expired(p, rq);
++}
++
++/*
++ * Task selection with skiplists is a simple matter of picking off the first
++ * task in the sorted list, an O(1) operation. The lookup is amortised O(1)
++ * being bound to the number of processors.
++ *
++ * Runqueues are selectively locked based on their unlocked data and then
++ * unlocked if not needed. At most 3 locks will be held at any time and are
++ * released as soon as they're no longer needed. All balancing between CPUs
++ * is thus done here in an extremely simple first come best fit manner.
++ *
++ * This iterates over runqueues in cache locality order. In interactive mode
++ * it iterates over all CPUs and finds the task with the best key/deadline.
++ * In non-interactive mode it will only take a task if it's from the current
++ * runqueue or a runqueue with more tasks than the current one with a better
++ * key/deadline.
++ */
++#ifdef CONFIG_SMP
++static inline struct task_struct
++*earliest_deadline_task(struct rq *rq, int cpu, struct task_struct *idle)
++{
++	struct rq *locked = NULL, *chosen = NULL;
++	struct task_struct *edt = idle;
++	int i, best_entries = 0;
++	u64 best_key = ~0ULL;
++
++	for (i = 0; i < total_runqueues; i++) {
++		struct rq *other_rq = rq_order(rq, i);
++		skiplist_node *next;
++		int entries;
++
++		entries = other_rq->sl->entries;
++		/*
++		 * Check for queued entres lockless first. The local runqueue
++		 * is locked so entries will always be accurate.
++		 */
++		if (!sched_interactive) {
++			/*
++			 * Don't reschedule balance across nodes unless the CPU
++			 * is idle.
++			 */
++			if (edt != idle && rq->cpu_locality[other_rq->cpu] > LOCALITY_SMP)
++				break;
++			if (entries <= best_entries)
++				continue;
++		} else if (!entries)
++			continue;
++
++		/* if (i) implies other_rq != rq */
++		if (i) {
++			/* Check for best id queued lockless first */
++			if (other_rq->best_key >= best_key)
++				continue;
++
++			if (unlikely(!trylock_rq(rq, other_rq)))
++				continue;
++
++			/* Need to reevaluate entries after locking */
++			entries = other_rq->sl->entries;
++			if (unlikely(!entries)) {
++				unlock_rq(other_rq);
++				continue;
++			}
++		}
++
++		next = other_rq->node;
++		/*
++		 * In interactive mode we check beyond the best entry on other
++		 * runqueues if we can't get the best for smt or affinity
++		 * reasons.
++		 */
++		while ((next = next->next[0]) != other_rq->node) {
++			struct task_struct *p;
++			u64 key = next->key;
++
++			/* Reevaluate key after locking */
++			if (key >= best_key)
++				break;
++
++			p = next->value;
++			if (!smt_schedule(p, rq)) {
++				if (i && !sched_interactive)
++					break;
++				continue;
++			}
++
++			if (sched_other_cpu(p, cpu)) {
++				if (sched_interactive || !i)
++					continue;
++				break;
++			}
++			/* Make sure affinity is ok */
++			if (i) {
++				/* From this point on p is the best so far */
++				if (locked)
++					unlock_rq(locked);
++				chosen = locked = other_rq;
++			}
++			best_entries = entries;
++			best_key = key;
++			edt = p;
++			break;
++		}
++		/* rq->preempting is a hint only as the state may have changed
++		 * since it was set with the resched call but if we have met
++		 * the condition we can break out here. */
++		if (edt == rq->preempting)
++			break;
++		if (i && other_rq != chosen)
++			unlock_rq(other_rq);
++	}
++
++	if (likely(edt != idle))
++		take_task(rq, cpu, edt);
++
++	if (locked)
++		unlock_rq(locked);
++
++	rq->preempting = NULL;
++
++	return edt;
++}
++#else /* CONFIG_SMP */
++static inline struct task_struct
++*earliest_deadline_task(struct rq *rq, int cpu, struct task_struct *idle)
++{
++	struct task_struct *edt;
++
++	if (unlikely(!rq->sl->entries))
++		return idle;
++	edt = rq->node->next[0]->value;
++	take_task(rq, cpu, edt);
++	return edt;
++}
++#endif /* CONFIG_SMP */
++
++/*
++ * Print scheduling while atomic bug:
++ */
++static noinline void __schedule_bug(struct task_struct *prev)
++{
++	/* Save this before calling printk(), since that will clobber it */
++	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
++
++	if (oops_in_progress)
++		return;
++
++	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
++		prev->comm, prev->pid, preempt_count());
++
++	debug_show_held_locks(prev);
++	print_modules();
++	if (irqs_disabled())
++		print_irqtrace_events(prev);
++	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
++	    && in_atomic_preempt_off()) {
++		pr_err("Preemption disabled at:");
++		print_ip_sym(KERN_ERR, preempt_disable_ip);
++	}
++	dump_stack();
++	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
++}
++
++/*
++ * Various schedule()-time debugging checks and statistics:
++ */
++static inline void schedule_debug(struct task_struct *prev, bool preempt)
++{
++#ifdef CONFIG_SCHED_STACK_END_CHECK
++	if (task_stack_end_corrupted(prev))
++		panic("corrupted stack end detected inside scheduler\n");
++
++	if (task_scs_end_corrupted(prev))
++		panic("corrupted shadow stack detected inside scheduler\n");
++#endif
++
++#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
++	if (!preempt && prev->state && prev->non_block_count) {
++		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
++			prev->comm, prev->pid, prev->non_block_count);
++		dump_stack();
++		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
++	}
++#endif
++
++	if (unlikely(in_atomic_preempt_off())) {
++		__schedule_bug(prev);
++		preempt_count_set(PREEMPT_DISABLED);
++	}
++	rcu_sleep_check();
++	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
++
++	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
++
++	schedstat_inc(this_rq()->sched_count);
++}
++
++/*
++ * The currently running task's information is all stored in rq local data
++ * which is only modified by the local CPU.
++ */
++static inline void set_rq_task(struct rq *rq, struct task_struct *p)
++{
++	if (p == rq->idle || p->policy == SCHED_FIFO)
++		hrexpiry_clear(rq);
++	else
++		hrexpiry_start(rq, US_TO_NS(p->time_slice));
++	if (rq->clock - rq->last_tick > HALF_JIFFY_NS)
++		rq->dither = 0;
++	else
++		rq->dither = rq_dither(rq);
++
++	rq->rq_deadline = p->deadline;
++	rq->rq_prio = p->prio;
++#ifdef CONFIG_SMT_NICE
++	rq->rq_mm = p->mm;
++	rq->rq_smt_bias = p->smt_bias;
++#endif
++}
++
++#ifdef CONFIG_SMT_NICE
++static void check_no_siblings(struct rq __maybe_unused *this_rq) {}
++static void wake_no_siblings(struct rq __maybe_unused *this_rq) {}
++static void (*check_siblings)(struct rq *this_rq) = &check_no_siblings;
++static void (*wake_siblings)(struct rq *this_rq) = &wake_no_siblings;
++
++/* Iterate over smt siblings when we've scheduled a process on cpu and decide
++ * whether they should continue running or be descheduled. */
++static void check_smt_siblings(struct rq *this_rq)
++{
++	int other_cpu;
++
++	for_each_cpu(other_cpu, &this_rq->thread_mask) {
++		struct task_struct *p;
++		struct rq *rq;
++
++		rq = cpu_rq(other_cpu);
++		if (rq_idle(rq))
++			continue;
++		p = rq->curr;
++		if (!smt_schedule(p, this_rq))
++			resched_curr(rq);
++	}
++}
++
++static void wake_smt_siblings(struct rq *this_rq)
++{
++	int other_cpu;
++
++	for_each_cpu(other_cpu, &this_rq->thread_mask) {
++		struct rq *rq;
++
++		rq = cpu_rq(other_cpu);
++		if (rq_idle(rq))
++			resched_idle(rq);
++	}
++}
++#else
++static void check_siblings(struct rq __maybe_unused *this_rq) {}
++static void wake_siblings(struct rq __maybe_unused *this_rq) {}
++#endif
++
++/*
++ * schedule() is the main scheduler function.
++ *
++ * The main means of driving the scheduler and thus entering this function are:
++ *
++ *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
++ *
++ *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
++ *      paths. For example, see arch/x86/entry_64.S.
++ *
++ *      To drive preemption between tasks, the scheduler sets the flag in timer
++ *      interrupt handler scheduler_tick().
++ *
++ *   3. Wakeups don't really cause entry into schedule(). They add a
++ *      task to the run-queue and that's it.
++ *
++ *      Now, if the new task added to the run-queue preempts the current
++ *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
++ *      called on the nearest possible occasion:
++ *
++ *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
++ *
++ *         - in syscall or exception context, at the next outmost
++ *           preempt_enable(). (this might be as soon as the wake_up()'s
++ *           spin_unlock()!)
++ *
++ *         - in IRQ context, return from interrupt-handler to
++ *           preemptible context
++ *
++ *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
++ *         then at the next:
++ *
++ *          - cond_resched() call
++ *          - explicit schedule() call
++ *          - return from syscall or exception to user-space
++ *          - return from interrupt-handler to user-space
++ *
++ * WARNING: must be called with preemption disabled!
++ */
++static void __sched notrace __schedule(bool preempt)
++{
++	struct task_struct *prev, *next, *idle;
++	unsigned long *switch_count;
++	unsigned long prev_state;
++	bool deactivate = false;
++	struct rq *rq;
++	u64 niffies;
++	int cpu;
++
++	cpu = smp_processor_id();
++	rq = cpu_rq(cpu);
++	prev = rq->curr;
++	idle = rq->idle;
++
++	schedule_debug(prev, preempt);
++
++	local_irq_disable();
++	rcu_note_context_switch(preempt);
++
++	/*
++	 * Make sure that signal_pending_state()->signal_pending() below
++	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
++	 * done by the caller to avoid the race with signal_wake_up():
++	 *
++	 * __set_current_state(@state)		signal_wake_up()
++	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
++	 *					  wake_up_state(p, state)
++	 *   LOCK rq->lock			    LOCK p->pi_state
++	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
++	 *     if (signal_pending_state())	    if (p->state & @state)
++	 *
++	 * Also, the membarrier system call requires a full memory barrier
++	 * after coming from user-space, before storing to rq->curr.
++	 */
++	rq_lock(rq);
++	smp_mb__after_spinlock();
++#ifdef CONFIG_SMP
++	if (rq->preempt) {
++		/*
++		 * Make sure resched_curr hasn't triggered a preemption
++		 * locklessly on a task that has since scheduled away. Spurious
++		 * wakeup of idle is okay though.
++		 */
++		if (unlikely(preempt && prev != idle && !test_tsk_need_resched(prev))) {
++			rq->preempt = NULL;
++			clear_preempt_need_resched();
++			rq_unlock_irq(rq, NULL);
++			return;
++		}
++		rq->preempt = NULL;
++	}
++#endif
++
++	switch_count = &prev->nivcsw;
++
++	/*
++	 * We must load prev->state once (task_struct::state is volatile), such
++	 * that:
++	 *
++	 *  - we form a control dependency vs deactivate_task() below.
++	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
++	 */
++	prev_state = prev->state;
++	if (!preempt && prev_state) {
++		if (signal_pending_state(prev_state, prev)) {
++			prev->state = TASK_RUNNING;
++		} else {
++			prev->sched_contributes_to_load =
++				(prev_state & TASK_UNINTERRUPTIBLE) &&
++				!(prev_state & TASK_NOLOAD) &&
++				!(prev->flags & PF_FROZEN);
++
++			if (prev->sched_contributes_to_load)
++				rq->nr_uninterruptible++;
++
++			/*
++			 * __schedule()			ttwu()
++			 *   prev_state = prev->state;    if (p->on_rq && ...)
++			 *   if (prev_state)		    goto out;
++			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
++			 *				  p->state = TASK_WAKING
++			 *
++			 * Where __schedule() and ttwu() have matching control dependencies.
++			 *
++			 * After this, schedule() must not care about p->state any more.
++			 */
++			deactivate = true;
++
++			if (prev->in_iowait) {
++				atomic_inc(&rq->nr_iowait);
++				delayacct_blkio_start();
++			}
++		}
++		switch_count = &prev->nvcsw;
++	}
++
++	/*
++	 * Store the niffy value here for use by the next task's last_ran
++	 * below to avoid losing niffies due to update_clocks being called
++	 * again after this point.
++	 */
++	update_clocks(rq);
++	niffies = rq->niffies;
++	update_cpu_clock_switch(rq, prev);
++
++	clear_tsk_need_resched(prev);
++	clear_preempt_need_resched();
++
++	if (idle != prev) {
++		check_deadline(prev, rq);
++		return_task(prev, rq, cpu, deactivate);
++	}
++
++	next = earliest_deadline_task(rq, cpu, idle);
++	if (likely(next->prio != PRIO_LIMIT))
++		clear_cpuidle_map(cpu);
++	else {
++		set_cpuidle_map(cpu);
++		update_load_avg(rq, 0);
++	}
++
++	set_rq_task(rq, next);
++	next->last_ran = niffies;
++
++	if (likely(prev != next)) {
++		/*
++		 * Don't reschedule an idle task or deactivated tasks
++		 */
++		if (prev == idle) {
++			inc_nr_running(rq);
++			if (rt_task(next))
++				rq->rt_nr_running++;
++		} else if (!deactivate)
++			resched_suitable_idle(prev);
++		if (unlikely(next == idle)) {
++			dec_nr_running(rq);
++			if (rt_task(prev))
++				rq->rt_nr_running--;
++			wake_siblings(rq);
++		} else
++			check_siblings(rq);
++		rq->nr_switches++;
++		/*
++		 * RCU users of rcu_dereference(rq->curr) may not see
++		 * changes to task_struct made by pick_next_task().
++		 */
++		RCU_INIT_POINTER(rq->curr, next);
++		/*
++		 * The membarrier system call requires each architecture
++		 * to have a full memory barrier after updating
++		 * rq->curr, before returning to user-space.
++		 *
++		 * Here are the schemes providing that barrier on the
++		 * various architectures:
++		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
++		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
++		 * - finish_lock_switch() for weakly-ordered
++		 *   architectures where spin_unlock is a full barrier,
++		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
++		 *   is a RELEASE barrier),
++		 */
++		++*switch_count;
++
++		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
++
++		trace_sched_switch(preempt, prev, next);
++		context_switch(rq, prev, next); /* unlocks the rq */
++	} else {
++		check_siblings(rq);
++		rq_unlock(rq);
++		local_irq_enable();
++	}
++}
++
++void __noreturn do_task_dead(void)
++{
++	/* Causes final put_task_struct in finish_task_switch(). */
++	set_special_state(TASK_DEAD);
++
++	/* Tell freezer to ignore us: */
++	current->flags |= PF_NOFREEZE;
++	__schedule(false);
++	BUG();
++
++	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
++	for (;;)
++		cpu_relax();
++}
++
++static inline void sched_submit_work(struct task_struct *tsk)
++{
++	unsigned int task_flags;
++
++	if (!tsk->state)
++		return;
++
++	task_flags = tsk->flags;
++	/*
++	 * If a worker went to sleep, notify and ask workqueue whether
++	 * it wants to wake up a task to maintain concurrency.
++	 * As this function is called inside the schedule() context,
++	 * we disable preemption to avoid it calling schedule() again
++	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
++	 * requires it.
++	 */
++	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
++		preempt_disable();
++		if (task_flags & PF_WQ_WORKER)
++			wq_worker_sleeping(tsk);
++		else
++			io_wq_worker_sleeping(tsk);
++		preempt_enable_no_resched();
++	}
++
++	if (tsk_is_pi_blocked(tsk))
++		return;
++
++	/*
++	 * If we are going to sleep and we have plugged IO queued,
++	 * make sure to submit it to avoid deadlocks.
++	 */
++	if (blk_needs_flush_plug(tsk))
++		blk_schedule_flush_plug(tsk);
++}
++
++static inline void sched_update_worker(struct task_struct *tsk)
++{
++	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
++		if (tsk->flags & PF_WQ_WORKER)
++			wq_worker_running(tsk);
++		else
++			io_wq_worker_running(tsk);
++	}
++}
++
++asmlinkage __visible void __sched schedule(void)
++{
++	struct task_struct *tsk = current;
++
++	sched_submit_work(tsk);
++	do {
++		preempt_disable();
++		__schedule(false);
++		sched_preempt_enable_no_resched();
++	} while (need_resched());
++	sched_update_worker(tsk);
++}
++
++EXPORT_SYMBOL(schedule);
++
++/*
++ * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
++ * state (have scheduled out non-voluntarily) by making sure that all
++ * tasks have either left the run queue or have gone into user space.
++ * As idle tasks do not do either, they must not ever be preempted
++ * (schedule out non-voluntarily).
++ *
++ * schedule_idle() is similar to schedule_preempt_disable() except that it
++ * never enables preemption because it does not call sched_submit_work().
++ */
++void __sched schedule_idle(void)
++{
++	/*
++	 * As this skips calling sched_submit_work(), which the idle task does
++	 * regardless because that function is a nop when the task is in a
++	 * TASK_RUNNING state, make sure this isn't used someplace that the
++	 * current task can be in any other state. Note, idle is always in the
++	 * TASK_RUNNING state.
++	 */
++	WARN_ON_ONCE(current->state);
++	do {
++		__schedule(false);
++	} while (need_resched());
++}
++
++#if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
++asmlinkage __visible void __sched schedule_user(void)
++{
++	/*
++	 * If we come here after a random call to set_need_resched(),
++	 * or we have been woken up remotely but the IPI has not yet arrived,
++	 * we haven't yet exited the RCU idle mode. Do it here manually until
++	 * we find a better solution.
++	 *
++	 * NB: There are buggy callers of this function.  Ideally we
++	 * should warn if prev_state != IN_USER, but that will trigger
++	 * too frequently to make sense yet.
++	 */
++	enum ctx_state prev_state = exception_enter();
++	schedule();
++	exception_exit(prev_state);
++}
++#endif
++
++/**
++ * schedule_preempt_disabled - called with preemption disabled
++ *
++ * Returns with preemption disabled. Note: preempt_count must be 1
++ */
++void __sched schedule_preempt_disabled(void)
++{
++	sched_preempt_enable_no_resched();
++	schedule();
++	preempt_disable();
++}
++
++static void __sched notrace preempt_schedule_common(void)
++{
++	do {
++		/*
++		 * Because the function tracer can trace preempt_count_sub()
++		 * and it also uses preempt_enable/disable_notrace(), if
++		 * NEED_RESCHED is set, the preempt_enable_notrace() called
++		 * by the function tracer will call this function again and
++		 * cause infinite recursion.
++		 *
++		 * Preemption must be disabled here before the function
++		 * tracer can trace. Break up preempt_disable() into two
++		 * calls. One to disable preemption without fear of being
++		 * traced. The other to still record the preemption latency,
++		 * which can also be traced by the function tracer.
++		 */
++		preempt_disable_notrace();
++		preempt_latency_start(1);
++		__schedule(true);
++		preempt_latency_stop(1);
++		preempt_enable_no_resched_notrace();
++
++		/*
++		 * Check again in case we missed a preemption opportunity
++		 * between schedule and now.
++		 */
++	} while (need_resched());
++}
++
++#ifdef CONFIG_PREEMPTION
++/*
++ * This is the entry point to schedule() from in-kernel preemption
++ * off of preempt_enable.
++ */
++asmlinkage __visible void __sched notrace preempt_schedule(void)
++{
++	/*
++	 * If there is a non-zero preempt_count or interrupts are disabled,
++	 * we do not want to preempt the current task. Just return..
++	 */
++	if (likely(!preemptible()))
++		return;
++
++	preempt_schedule_common();
++}
++NOKPROBE_SYMBOL(preempt_schedule);
++EXPORT_SYMBOL(preempt_schedule);
++
++#ifdef CONFIG_PREEMPT_DYNAMIC
++DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
++EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
++#endif
++
++
++/**
++ * preempt_schedule_notrace - preempt_schedule called by tracing
++ *
++ * The tracing infrastructure uses preempt_enable_notrace to prevent
++ * recursion and tracing preempt enabling caused by the tracing
++ * infrastructure itself. But as tracing can happen in areas coming
++ * from userspace or just about to enter userspace, a preempt enable
++ * can occur before user_exit() is called. This will cause the scheduler
++ * to be called when the system is still in usermode.
++ *
++ * To prevent this, the preempt_enable_notrace will use this function
++ * instead of preempt_schedule() to exit user context if needed before
++ * calling the scheduler.
++ */
++asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
++{
++	enum ctx_state prev_ctx;
++
++	if (likely(!preemptible()))
++		return;
++
++	do {
++		/*
++		 * Because the function tracer can trace preempt_count_sub()
++		 * and it also uses preempt_enable/disable_notrace(), if
++		 * NEED_RESCHED is set, the preempt_enable_notrace() called
++		 * by the function tracer will call this function again and
++		 * cause infinite recursion.
++		 *
++		 * Preemption must be disabled here before the function
++		 * tracer can trace. Break up preempt_disable() into two
++		 * calls. One to disable preemption without fear of being
++		 * traced. The other to still record the preemption latency,
++		 * which can also be traced by the function tracer.
++		 */
++		preempt_disable_notrace();
++		preempt_latency_start(1);
++		/*
++		 * Needs preempt disabled in case user_exit() is traced
++		 * and the tracer calls preempt_enable_notrace() causing
++		 * an infinite recursion.
++		 */
++		prev_ctx = exception_enter();
++		__schedule(true);
++		exception_exit(prev_ctx);
++
++		preempt_latency_stop(1);
++		preempt_enable_no_resched_notrace();
++	} while (need_resched());
++}
++EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
++
++#ifdef CONFIG_PREEMPT_DYNAMIC
++DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
++EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
++#endif
++
++#endif /* CONFIG_PREEMPTION */
++
++#ifdef CONFIG_PREEMPT_DYNAMIC
++
++#include <linux/entry-common.h>
++
++/*
++ * SC:cond_resched
++ * SC:might_resched
++ * SC:preempt_schedule
++ * SC:preempt_schedule_notrace
++ * SC:irqentry_exit_cond_resched
++ *
++ *
++ * NONE:
++ *   cond_resched               <- __cond_resched
++ *   might_resched              <- RET0
++ *   preempt_schedule           <- NOP
++ *   preempt_schedule_notrace   <- NOP
++ *   irqentry_exit_cond_resched <- NOP
++ *
++ * VOLUNTARY:
++ *   cond_resched               <- __cond_resched
++ *   might_resched              <- __cond_resched
++ *   preempt_schedule           <- NOP
++ *   preempt_schedule_notrace   <- NOP
++ *   irqentry_exit_cond_resched <- NOP
++ *
++ * FULL:
++ *   cond_resched               <- RET0
++ *   might_resched              <- RET0
++ *   preempt_schedule           <- preempt_schedule
++ *   preempt_schedule_notrace   <- preempt_schedule_notrace
++ *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
++ */
++
++enum {
++	preempt_dynamic_none = 0,
++	preempt_dynamic_voluntary,
++	preempt_dynamic_full,
++};
++
++static int preempt_dynamic_mode = preempt_dynamic_full;
++
++static int sched_dynamic_mode(const char *str)
++{
++	if (!strcmp(str, "none"))
++		return 0;
++
++	if (!strcmp(str, "voluntary"))
++		return 1;
++
++	if (!strcmp(str, "full"))
++		return 2;
++
++	return -1;
++}
++
++static void sched_dynamic_update(int mode)
++{
++	/*
++	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
++	 * the ZERO state, which is invalid.
++	 */
++	static_call_update(cond_resched, __cond_resched);
++	static_call_update(might_resched, __cond_resched);
++	static_call_update(preempt_schedule, __preempt_schedule_func);
++	static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
++	static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
++
++	switch (mode) {
++	case preempt_dynamic_none:
++		static_call_update(cond_resched, __cond_resched);
++		static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0);
++		static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL);
++		static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL);
++		static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL);
++		pr_info("Dynamic Preempt: none\n");
++		break;
++
++	case preempt_dynamic_voluntary:
++		static_call_update(cond_resched, __cond_resched);
++		static_call_update(might_resched, __cond_resched);
++		static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL);
++		static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL);
++		static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL);
++		pr_info("Dynamic Preempt: voluntary\n");
++		break;
++
++	case preempt_dynamic_full:
++		static_call_update(cond_resched, (typeof(&__cond_resched)) __static_call_return0);
++		static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0);
++		static_call_update(preempt_schedule, __preempt_schedule_func);
++		static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
++		static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
++		pr_info("Dynamic Preempt: full\n");
++		break;
++	}
++
++	preempt_dynamic_mode = mode;
++}
++
++static int __init setup_preempt_mode(char *str)
++{
++	int mode = sched_dynamic_mode(str);
++	if (mode < 0) {
++		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
++		return 1;
++	}
++
++	sched_dynamic_update(mode);
++	return 0;
++}
++__setup("preempt=", setup_preempt_mode);
++
++#ifdef CONFIG_SCHED_DEBUG
++
++static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
++				   size_t cnt, loff_t *ppos)
++{
++	char buf[16];
++	int mode;
++
++	if (cnt > 15)
++		cnt = 15;
++
++	if (copy_from_user(&buf, ubuf, cnt))
++		return -EFAULT;
++
++	buf[cnt] = 0;
++	mode = sched_dynamic_mode(strstrip(buf));
++	if (mode < 0)
++		return mode;
++
++	sched_dynamic_update(mode);
++
++	*ppos += cnt;
++
++	return cnt;
++}
++
++static int sched_dynamic_show(struct seq_file *m, void *v)
++{
++	static const char * preempt_modes[] = {
++		"none", "voluntary", "full"
++	};
++	int i;
++
++	for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
++		if (preempt_dynamic_mode == i)
++			seq_puts(m, "(");
++		seq_puts(m, preempt_modes[i]);
++		if (preempt_dynamic_mode == i)
++			seq_puts(m, ")");
++
++		seq_puts(m, " ");
++	}
++
++	seq_puts(m, "\n");
++	return 0;
++}
++
++static int sched_dynamic_open(struct inode *inode, struct file *filp)
++{
++	return single_open(filp, sched_dynamic_show, NULL);
++}
++
++static const struct file_operations sched_dynamic_fops = {
++	.open		= sched_dynamic_open,
++	.write		= sched_dynamic_write,
++	.read		= seq_read,
++	.llseek		= seq_lseek,
++	.release	= single_release,
++};
++
++static __init int sched_init_debug_dynamic(void)
++{
++	debugfs_create_file("sched_preempt", 0644, NULL, NULL, &sched_dynamic_fops);
++	return 0;
++}
++late_initcall(sched_init_debug_dynamic);
++
++#endif /* CONFIG_SCHED_DEBUG */
++#endif /* CONFIG_PREEMPT_DYNAMIC */
++/*
++ * This is the entry point to schedule() from kernel preemption
++ * off of irq context.
++ * Note, that this is called and return with irqs disabled. This will
++ * protect us against recursive calling from irq.
++ */
++asmlinkage __visible void __sched preempt_schedule_irq(void)
++{
++	enum ctx_state prev_state;
++
++	/* Catch callers which need to be fixed */
++	BUG_ON(preempt_count() || !irqs_disabled());
++
++	prev_state = exception_enter();
++
++	do {
++		preempt_disable();
++		local_irq_enable();
++		__schedule(true);
++		local_irq_disable();
++		sched_preempt_enable_no_resched();
++	} while (need_resched());
++
++	exception_exit(prev_state);
++}
++
++int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
++			  void *key)
++{
++	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
++	return try_to_wake_up(curr->private, mode, wake_flags);
++}
++EXPORT_SYMBOL(default_wake_function);
++
++#ifdef CONFIG_RT_MUTEXES
++
++static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
++{
++	if (pi_task)
++		prio = min(prio, pi_task->prio);
++
++	return prio;
++}
++
++static inline int rt_effective_prio(struct task_struct *p, int prio)
++{
++	struct task_struct *pi_task = rt_mutex_get_top_task(p);
++
++	return __rt_effective_prio(pi_task, prio);
++}
++
++/*
++ * rt_mutex_setprio - set the current priority of a task
++ * @p: task to boost
++ * @pi_task: donor task
++ *
++ * This function changes the 'effective' priority of a task. It does
++ * not touch ->normal_prio like __setscheduler().
++ *
++ * Used by the rt_mutex code to implement priority inheritance
++ * logic. Call site only calls if the priority of the task changed.
++ */
++void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
++{
++	int prio, oldprio;
++	struct rq *rq;
++
++	/* XXX used to be waiter->prio, not waiter->task->prio */
++	prio = __rt_effective_prio(pi_task, p->normal_prio);
++
++	/*
++	 * If nothing changed; bail early.
++	 */
++	if (p->pi_top_task == pi_task && prio == p->prio)
++		return;
++
++	rq = __task_rq_lock(p, NULL);
++	update_rq_clock(rq);
++	/*
++	 * Set under pi_lock && rq->lock, such that the value can be used under
++	 * either lock.
++	 *
++	 * Note that there is loads of tricky to make this pointer cache work
++	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
++	 * ensure a task is de-boosted (pi_task is set to NULL) before the
++	 * task is allowed to run again (and can exit). This ensures the pointer
++	 * points to a blocked task -- which guarantees the task is present.
++	 */
++	p->pi_top_task = pi_task;
++
++	/*
++	 * For FIFO/RR we only need to set prio, if that matches we're done.
++	 */
++	if (prio == p->prio)
++		goto out_unlock;
++
++	/*
++	 * Idle task boosting is a nono in general. There is one
++	 * exception, when PREEMPT_RT and NOHZ is active:
++	 *
++	 * The idle task calls get_next_timer_interrupt() and holds
++	 * the timer wheel base->lock on the CPU and another CPU wants
++	 * to access the timer (probably to cancel it). We can safely
++	 * ignore the boosting request, as the idle CPU runs this code
++	 * with interrupts disabled and will complete the lock
++	 * protected section without being interrupted. So there is no
++	 * real need to boost.
++	 */
++	if (unlikely(p == rq->idle)) {
++		WARN_ON(p != rq->curr);
++		WARN_ON(p->pi_blocked_on);
++		goto out_unlock;
++	}
++
++	trace_sched_pi_setprio(p, pi_task);
++	oldprio = p->prio;
++	p->prio = prio;
++	if (task_running(rq, p)){
++		if (prio > oldprio)
++			resched_task(p);
++	} else if (task_queued(p)) {
++		dequeue_task(rq, p, DEQUEUE_SAVE);
++		enqueue_task(rq, p, ENQUEUE_RESTORE);
++		if (prio < oldprio)
++			try_preempt(p, rq);
++	}
++out_unlock:
++	/* Avoid rq from going away on us: */
++	preempt_disable();
++	__task_rq_unlock(rq, NULL);
++
++	preempt_enable();
++}
++#else
++static inline int rt_effective_prio(struct task_struct *p, int prio)
++{
++	return prio;
++}
++#endif
++
++/*
++ * Adjust the deadline for when the priority is to change, before it's
++ * changed.
++ */
++static inline void adjust_deadline(struct task_struct *p, int new_prio)
++{
++	p->deadline += static_deadline_diff(new_prio) - task_deadline_diff(p);
++}
++
++void set_user_nice(struct task_struct *p, long nice)
++{
++	int new_static, old_static;
++	struct rq_flags rf;
++	struct rq *rq;
++
++	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
++		return;
++	new_static = NICE_TO_PRIO(nice);
++	/*
++	 * We have to be careful, if called from sys_setpriority(),
++	 * the task might be in the middle of scheduling on another CPU.
++	 */
++	rq = task_rq_lock(p, &rf);
++	update_rq_clock(rq);
++
++	/*
++	 * The RT priorities are set via sched_setscheduler(), but we still
++	 * allow the 'normal' nice value to be set - but as expected
++	 * it won't have any effect on scheduling until the task is
++	 * not SCHED_NORMAL/SCHED_BATCH:
++	 */
++	if (has_rt_policy(p)) {
++		p->static_prio = new_static;
++		goto out_unlock;
++	}
++
++	adjust_deadline(p, new_static);
++	old_static = p->static_prio;
++	p->static_prio = new_static;
++	p->prio = effective_prio(p);
++
++	if (task_queued(p)) {
++		dequeue_task(rq, p, DEQUEUE_SAVE);
++		enqueue_task(rq, p, ENQUEUE_RESTORE);
++		if (new_static < old_static)
++			try_preempt(p, rq);
++	} else if (task_running(rq, p)) {
++		set_rq_task(rq, p);
++		if (old_static < new_static)
++			resched_task(p);
++	}
++out_unlock:
++	task_rq_unlock(rq, p, &rf);
++}
++EXPORT_SYMBOL(set_user_nice);
++
++/*
++ * can_nice - check if a task can reduce its nice value
++ * @p: task
++ * @nice: nice value
++ */
++int can_nice(const struct task_struct *p, const int nice)
++{
++	/* Convert nice value [19,-20] to rlimit style value [1,40] */
++	int nice_rlim = nice_to_rlimit(nice);
++
++	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
++		capable(CAP_SYS_NICE));
++}
++
++#ifdef __ARCH_WANT_SYS_NICE
++
++/*
++ * sys_nice - change the priority of the current process.
++ * @increment: priority increment
++ *
++ * sys_setpriority is a more generic, but much slower function that
++ * does similar things.
++ */
++SYSCALL_DEFINE1(nice, int, increment)
++{
++	long nice, retval;
++
++	/*
++	 * Setpriority might change our priority at the same moment.
++	 * We don't have to worry. Conceptually one call occurs first
++	 * and we have a single winner.
++	 */
++
++	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
++	nice = task_nice(current) + increment;
++
++	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
++	if (increment < 0 && !can_nice(current, nice))
++		return -EPERM;
++
++	retval = security_task_setnice(current, nice);
++	if (retval)
++		return retval;
++
++	set_user_nice(current, nice);
++	return 0;
++}
++
++#endif
++
++/**
++ * task_prio - return the priority value of a given task.
++ * @p: the task in question.
++ *
++ * Return: The priority value as seen by users in /proc.
++ *
++ * sched policy         return value   kernel prio    user prio/nice
++ *
++ * normal, batch,          [1 ... 41]     101                 0/[-20 ... 19]
++ * idle                   [42 ... 81]     102                 0/[-20 ... 19]
++ * iso                     [0 ... 41]     100                 0/[-20 ... 19]
++ * fifo, rr             [-2 ... -100]     [98 ... 0]          [1 ... 99]
++ */
++int task_prio(const struct task_struct *p)
++{
++	int delta, prio = p->prio - MAX_RT_PRIO;
++
++	/* rt tasks and iso tasks */
++	if (prio <= 0)
++		goto out;
++
++	/* Convert to ms to avoid overflows */
++	delta = NS_TO_MS(p->deadline - task_rq(p)->niffies);
++	if (unlikely(delta < 0))
++		delta = 0;
++	delta = delta * 40 / ms_longest_deadline_diff();
++	if (delta <= 80)
++		prio += delta;
++	if (idleprio_task(p))
++		prio += 40;
++out:
++	return prio;
++}
++
++#ifdef CONFIG_SMP
++static inline bool rt_rq_is_runnable(struct rq *rt_rq)
++{
++	return rt_rq->rt_nr_running;
++}
++
++/*
++ * This function computes an effective utilization for the given CPU, to be
++ * used for frequency selection given the linear relation: f = u * f_max.
++ *
++ * The scheduler tracks the following metrics:
++ *
++ *   cpu_util_{cfs,rt,dl,irq}()
++ *   cpu_bw_dl()
++ *
++ * Where the cfs,rt and dl util numbers are tracked with the same metric and
++ * synchronized windows and are thus directly comparable.
++ *
++ * The cfs,rt,dl utilization are the running times measured with rq->clock_task
++ * which excludes things like IRQ and steal-time. These latter are then accrued
++ * in the irq utilization.
++ *
++ * The DL bandwidth number otoh is not a measured metric but a value computed
++ * based on the task model parameters and gives the minimal utilization
++ * required to meet deadlines.
++ */
++unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
++				 unsigned long max, enum cpu_util_type type,
++				 struct task_struct *p)
++{
++	unsigned long dl_util, util, irq;
++	struct rq *rq = cpu_rq(cpu);
++
++	if (!uclamp_is_used() &&
++	    type == FREQUENCY_UTIL && rt_rq_is_runnable(rq)) {
++		return max;
++	}
++
++	/*
++	 * Early check to see if IRQ/steal time saturates the CPU, can be
++	 * because of inaccuracies in how we track these -- see
++	 * update_irq_load_avg().
++	 */
++	irq = cpu_util_irq(rq);
++	if (unlikely(irq >= max))
++		return max;
++
++	/*
++	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
++	 * CFS tasks and we use the same metric to track the effective
++	 * utilization (PELT windows are synchronized) we can directly add them
++	 * to obtain the CPU's actual utilization.
++	 *
++	 * CFS and RT utilization can be boosted or capped, depending on
++	 * utilization clamp constraints requested by currently RUNNABLE
++	 * tasks.
++	 * When there are no CFS RUNNABLE tasks, clamps are released and
++	 * frequency will be gracefully reduced with the utilization decay.
++	 */
++	util = util_cfs + cpu_util_rt(rq);
++	if (type == FREQUENCY_UTIL)
++		util = uclamp_rq_util_with(rq, util, p);
++
++	dl_util = cpu_util_dl(rq);
++
++	/*
++	 * For frequency selection we do not make cpu_util_dl() a permanent part
++	 * of this sum because we want to use cpu_bw_dl() later on, but we need
++	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
++	 * that we select f_max when there is no idle time.
++	 *
++	 * NOTE: numerical errors or stop class might cause us to not quite hit
++	 * saturation when we should -- something for later.
++	 */
++	if (util + dl_util >= max)
++		return max;
++
++	/*
++	 * OTOH, for energy computation we need the estimated running time, so
++	 * include util_dl and ignore dl_bw.
++	 */
++	if (type == ENERGY_UTIL)
++		util += dl_util;
++
++	/*
++	 * There is still idle time; further improve the number by using the
++	 * irq metric. Because IRQ/steal time is hidden from the task clock we
++	 * need to scale the task numbers:
++	 *
++	 *              max - irq
++	 *   U' = irq + --------- * U
++	 *                 max
++	 */
++	util = scale_irq_capacity(util, irq, max);
++	util += irq;
++
++	/*
++	 * Bandwidth required by DEADLINE must always be granted while, for
++	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
++	 * to gracefully reduce the frequency when no tasks show up for longer
++	 * periods of time.
++	 *
++	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
++	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
++	 * an interface. So, we only do the latter for now.
++	 */
++	if (type == FREQUENCY_UTIL)
++		util += cpu_bw_dl(rq);
++
++	return min(max, util);
++}
++
++unsigned long sched_cpu_util(int cpu, unsigned long max)
++{
++	return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
++				  ENERGY_UTIL, NULL);
++}
++#endif /* CONFIG_SMP */
++
++/**
++ * idle_cpu - is a given CPU idle currently?
++ * @cpu: the processor in question.
++ *
++ * Return: 1 if the CPU is currently idle. 0 otherwise.
++ */
++int idle_cpu(int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++
++	if (rq->curr != rq->idle)
++		return 0;
++
++	if (rq->nr_running)
++		return 0;
++
++#ifdef CONFIG_SMP
++	if (rq->ttwu_pending)
++		return 0;
++#endif
++
++	return 1;
++}
++
++/**
++ * available_idle_cpu - is a given CPU idle for enqueuing work.
++ * @cpu: the CPU in question.
++ *
++ * Return: 1 if the CPU is currently idle. 0 otherwise.
++ */
++int available_idle_cpu(int cpu)
++{
++	if (!idle_cpu(cpu))
++		return 0;
++
++	if (vcpu_is_preempted(cpu))
++		return 0;
++
++	return 1;
++}
++
++/**
++ * idle_task - return the idle task for a given CPU.
++ * @cpu: the processor in question.
++ *
++ * Return: The idle task for the CPU @cpu.
++ */
++struct task_struct *idle_task(int cpu)
++{
++	return cpu_rq(cpu)->idle;
++}
++
++/**
++ * find_process_by_pid - find a process with a matching PID value.
++ * @pid: the pid in question.
++ *
++ * The task of @pid, if found. %NULL otherwise.
++ */
++static inline struct task_struct *find_process_by_pid(pid_t pid)
++{
++	return pid ? find_task_by_vpid(pid) : current;
++}
++
++/* Actually do priority change: must hold rq lock. */
++static void __setscheduler(struct task_struct *p, struct rq *rq, int policy,
++			   int prio, const struct sched_attr *attr,
++			   bool keep_boost)
++{
++	int oldrtprio, oldprio;
++
++	/*
++	 * If params can't change scheduling class changes aren't allowed
++	 * either.
++	 */
++	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
++		return;
++
++	p->policy = policy;
++	oldrtprio = p->rt_priority;
++	p->rt_priority = prio;
++	p->normal_prio = normal_prio(p);
++	oldprio = p->prio;
++	/*
++	 * Keep a potential priority boosting if called from
++	 * sched_setscheduler().
++	 */
++	p->prio = normal_prio(p);
++	if (keep_boost)
++		p->prio = rt_effective_prio(p, p->prio);
++
++	if (task_running(rq, p)) {
++		set_rq_task(rq, p);
++		resched_task(p);
++	} else if (task_queued(p)) {
++		dequeue_task(rq, p, DEQUEUE_SAVE);
++		enqueue_task(rq, p, ENQUEUE_RESTORE);
++		if (p->prio < oldprio || p->rt_priority > oldrtprio)
++			try_preempt(p, rq);
++	}
++}
++
++/*
++ * Check the target process has a UID that matches the current process's
++ */
++static bool check_same_owner(struct task_struct *p)
++{
++	const struct cred *cred = current_cred(), *pcred;
++	bool match;
++
++	rcu_read_lock();
++	pcred = __task_cred(p);
++	match = (uid_eq(cred->euid, pcred->euid) ||
++		 uid_eq(cred->euid, pcred->uid));
++	rcu_read_unlock();
++	return match;
++}
++
++static int __sched_setscheduler(struct task_struct *p,
++				const struct sched_attr *attr,
++				bool user, bool pi)
++{
++	int retval, policy = attr->sched_policy, oldpolicy = -1, priority = attr->sched_priority;
++	unsigned long rlim_rtprio = 0;
++	struct rq_flags rf;
++	int reset_on_fork;
++	struct rq *rq;
++
++	/* The pi code expects interrupts enabled */
++	BUG_ON(pi && in_interrupt());
++
++	if (is_rt_policy(policy) && !capable(CAP_SYS_NICE)) {
++		unsigned long lflags;
++
++		if (!lock_task_sighand(p, &lflags))
++			return -ESRCH;
++		rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
++		unlock_task_sighand(p, &lflags);
++		if (rlim_rtprio)
++			goto recheck;
++		/*
++		 * If the caller requested an RT policy without having the
++		 * necessary rights, we downgrade the policy to SCHED_ISO.
++		 * We also set the parameter to zero to pass the checks.
++		 */
++		policy = SCHED_ISO;
++		priority = 0;
++	}
++recheck:
++	/* Double check policy once rq lock held */
++	if (policy < 0) {
++		reset_on_fork = p->sched_reset_on_fork;
++		policy = oldpolicy = p->policy;
++	} else {
++		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
++		policy &= ~SCHED_RESET_ON_FORK;
++
++		if (!SCHED_RANGE(policy))
++			return -EINVAL;
++	}
++
++	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
++		return -EINVAL;
++
++	/*
++	 * Valid priorities for SCHED_FIFO and SCHED_RR are
++	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL and
++	 * SCHED_BATCH is 0.
++	 */
++	if (priority > MAX_RT_PRIO-1)
++		return -EINVAL;
++	if (is_rt_policy(policy) != (priority != 0))
++		return -EINVAL;
++
++	/*
++	 * Allow unprivileged RT tasks to decrease priority:
++	 */
++	if (user && !capable(CAP_SYS_NICE)) {
++		if (is_rt_policy(policy)) {
++			unsigned long rlim_rtprio =
++					task_rlimit(p, RLIMIT_RTPRIO);
++
++			/* Can't set/change the rt policy */
++			if (policy != p->policy && !rlim_rtprio)
++				return -EPERM;
++
++			/* Can't increase priority */
++			if (priority > p->rt_priority &&
++			    priority > rlim_rtprio)
++				return -EPERM;
++		} else {
++			switch (p->policy) {
++				/*
++				 * Can only downgrade policies but not back to
++				 * SCHED_NORMAL
++				 */
++				case SCHED_ISO:
++					if (policy == SCHED_ISO)
++						goto out;
++					if (policy != SCHED_NORMAL)
++						return -EPERM;
++					break;
++				case SCHED_BATCH:
++					if (policy == SCHED_BATCH)
++						goto out;
++					if (policy != SCHED_IDLEPRIO)
++						return -EPERM;
++					break;
++				case SCHED_IDLEPRIO:
++					if (policy == SCHED_IDLEPRIO)
++						goto out;
++					return -EPERM;
++				default:
++					break;
++			}
++		}
++
++		/* Can't change other user's priorities */
++		if (!check_same_owner(p))
++			return -EPERM;
++
++		/* Normal users shall not reset the sched_reset_on_fork flag: */
++		if (p->sched_reset_on_fork && !reset_on_fork)
++			return -EPERM;
++	}
++
++	if (user) {
++		retval = security_task_setscheduler(p);
++		if (retval)
++			return retval;
++	}
++
++	if (pi)
++		cpuset_read_lock();
++
++	/*
++	 * Make sure no PI-waiters arrive (or leave) while we are
++	 * changing the priority of the task:
++	 *
++	 * To be able to change p->policy safely, the runqueue lock must be
++	 * held.
++	 */
++	rq = task_rq_lock(p, &rf);
++	update_rq_clock(rq);
++
++	/*
++	 * Changing the policy of the stop threads its a very bad idea:
++	 */
++	if (p == rq->stop) {
++		retval = -EINVAL;
++		goto unlock;
++	}
++
++	/*
++	 * If not changing anything there's no need to proceed further,
++	 * but store a possible modification of reset_on_fork.
++	 */
++	if (unlikely(policy == p->policy && (!is_rt_policy(policy) ||
++	    priority == p->rt_priority))) {
++		p->sched_reset_on_fork = reset_on_fork;
++		retval = 0;
++		goto unlock;
++	}
++
++	/* Re-check policy now with rq lock held */
++	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
++		policy = oldpolicy = -1;
++		task_rq_unlock(rq, p, &rf);
++		if (pi)
++			cpuset_read_unlock();
++		goto recheck;
++	}
++	p->sched_reset_on_fork = reset_on_fork;
++
++	__setscheduler(p, rq, policy, priority, attr, pi);
++
++	/* Avoid rq from going away on us: */
++	preempt_disable();
++	task_rq_unlock(rq, p, &rf);
++
++	if (pi) {
++		cpuset_read_unlock();
++		rt_mutex_adjust_pi(p);
++	}
++	preempt_enable();
++out:
++	return 0;
++
++unlock:
++	task_rq_unlock(rq, p, &rf);
++	if (pi)
++		cpuset_read_unlock();
++	return retval;
++}
++
++static int _sched_setscheduler(struct task_struct *p, int policy,
++			       const struct sched_param *param, bool check)
++{
++	struct sched_attr attr = {
++		.sched_policy   = policy,
++		.sched_priority = param->sched_priority,
++		.sched_nice	= PRIO_TO_NICE(p->static_prio),
++	};
++
++	return __sched_setscheduler(p, &attr, check, true);
++}
++/**
++ * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
++ * @p: the task in question.
++ * @policy: new policy.
++ * @param: structure containing the new RT priority.
++ *
++ * Use sched_set_fifo(), read its comment.
++ *
++ * Return: 0 on success. An error code otherwise.
++ *
++ * NOTE that the task may be already dead.
++ */
++int sched_setscheduler(struct task_struct *p, int policy,
++		       const struct sched_param *param)
++{
++	return _sched_setscheduler(p, policy, param, true);
++}
++
++
++int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
++{
++	return __sched_setscheduler(p, attr, true, true);
++}
++
++int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
++{
++	return __sched_setscheduler(p, attr, false, true);
++}
++
++/**
++ * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
++ * @p: the task in question.
++ * @policy: new policy.
++ * @param: structure containing the new RT priority.
++ *
++ * Just like sched_setscheduler, only don't bother checking if the
++ * current context has permission.  For example, this is needed in
++ * stop_machine(): we create temporary high priority worker threads,
++ * but our caller might not have that capability.
++ *
++ * Return: 0 on success. An error code otherwise.
++ */
++int sched_setscheduler_nocheck(struct task_struct *p, int policy,
++			       const struct sched_param *param)
++{
++	return _sched_setscheduler(p, policy, param, false);
++}
++
++/*
++ * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
++ * incapable of resource management, which is the one thing an OS really should
++ * be doing.
++ *
++ * This is of course the reason it is limited to privileged users only.
++ *
++ * Worse still; it is fundamentally impossible to compose static priority
++ * workloads. You cannot take two correctly working static prio workloads
++ * and smash them together and still expect them to work.
++ *
++ * For this reason 'all' FIFO tasks the kernel creates are basically at:
++ *
++ *   MAX_RT_PRIO / 2
++ *
++ * The administrator _MUST_ configure the system, the kernel simply doesn't
++ * know enough information to make a sensible choice.
++ */
++void sched_set_fifo(struct task_struct *p)
++{
++	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
++	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
++}
++EXPORT_SYMBOL_GPL(sched_set_fifo);
++
++/*
++ * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
++ */
++void sched_set_fifo_low(struct task_struct *p)
++{
++	struct sched_param sp = { .sched_priority = 1 };
++	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
++}
++EXPORT_SYMBOL_GPL(sched_set_fifo_low);
++
++void sched_set_normal(struct task_struct *p, int nice)
++{
++	struct sched_attr attr = {
++		.sched_policy = SCHED_NORMAL,
++		.sched_nice = nice,
++	};
++	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
++}
++EXPORT_SYMBOL_GPL(sched_set_normal);
++
++static int
++do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
++{
++	struct sched_param lparam;
++	struct task_struct *p;
++	int retval;
++
++	if (!param || pid < 0)
++		return -EINVAL;
++	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
++		return -EFAULT;
++
++	rcu_read_lock();
++	retval = -ESRCH;
++	p = find_process_by_pid(pid);
++	if (likely(p))
++		get_task_struct(p);
++	rcu_read_unlock();
++
++	if (likely(p)) {
++		retval = sched_setscheduler(p, policy, &lparam);
++		put_task_struct(p);
++	}
++
++	return retval;
++}
++
++/*
++ * Mimics kernel/events/core.c perf_copy_attr().
++ */
++static int sched_copy_attr(struct sched_attr __user *uattr,
++			   struct sched_attr *attr)
++{
++	u32 size;
++	int ret;
++
++	/* Zero the full structure, so that a short copy will be nice: */
++	memset(attr, 0, sizeof(*attr));
++
++	ret = get_user(size, &uattr->size);
++	if (ret)
++		return ret;
++
++	/* ABI compatibility quirk: */
++	if (!size)
++		size = SCHED_ATTR_SIZE_VER0;
++
++	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
++		goto err_size;
++
++	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
++	if (ret) {
++		if (ret == -E2BIG)
++			goto err_size;
++		return ret;
++	}
++
++	/*
++	 * XXX: Do we want to be lenient like existing syscalls; or do we want
++	 * to be strict and return an error on out-of-bounds values?
++	 */
++	attr->sched_nice = clamp(attr->sched_nice, -20, 19);
++
++	/* sched/core.c uses zero here but we already know ret is zero */
++	return 0;
++
++err_size:
++	put_user(sizeof(*attr), &uattr->size);
++	return -E2BIG;
++}
++
++/*
++ * sched_setparam() passes in -1 for its policy, to let the functions
++ * it calls know not to change it.
++ */
++#define SETPARAM_POLICY	-1
++
++/**
++ * sys_sched_setscheduler - set/change the scheduler policy and RT priority
++ * @pid: the pid in question.
++ * @policy: new policy.
++ * @param: structure containing the new RT priority.
++ *
++ * Return: 0 on success. An error code otherwise.
++ */
++SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
++{
++	if (policy < 0)
++		return -EINVAL;
++
++	return do_sched_setscheduler(pid, policy, param);
++}
++
++/**
++ * sys_sched_setparam - set/change the RT priority of a thread
++ * @pid: the pid in question.
++ * @param: structure containing the new RT priority.
++ *
++ * Return: 0 on success. An error code otherwise.
++ */
++SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
++{
++	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
++}
++
++/**
++ * sys_sched_setattr - same as above, but with extended sched_attr
++ * @pid: the pid in question.
++ * @uattr: structure containing the extended parameters.
++ */
++SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
++			       unsigned int, flags)
++{
++	struct sched_attr attr;
++	struct task_struct *p;
++	int retval;
++
++	if (!uattr || pid < 0 || flags)
++		return -EINVAL;
++
++	retval = sched_copy_attr(uattr, &attr);
++	if (retval)
++		return retval;
++
++	if ((int)attr.sched_policy < 0)
++		return -EINVAL;
++	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
++		attr.sched_policy = SETPARAM_POLICY;
++
++	rcu_read_lock();
++	retval = -ESRCH;
++	p = find_process_by_pid(pid);
++	if (likely(p))
++		get_task_struct(p);
++	rcu_read_unlock();
++
++	if (likely(p)) {
++		retval = sched_setattr(p, &attr);
++		put_task_struct(p);
++	}
++
++	return retval;
++}
++
++/**
++ * sys_sched_getscheduler - get the policy (scheduling class) of a thread
++ * @pid: the pid in question.
++ *
++ * Return: On success, the policy of the thread. Otherwise, a negative error
++ * code.
++ */
++SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
++{
++	struct task_struct *p;
++	int retval = -EINVAL;
++
++	if (pid < 0)
++		goto out_nounlock;
++
++	retval = -ESRCH;
++	rcu_read_lock();
++	p = find_process_by_pid(pid);
++	if (p) {
++		retval = security_task_getscheduler(p);
++		if (!retval)
++			retval = p->policy;
++	}
++	rcu_read_unlock();
++
++out_nounlock:
++	return retval;
++}
++
++/**
++ * sys_sched_getscheduler - get the RT priority of a thread
++ * @pid: the pid in question.
++ * @param: structure containing the RT priority.
++ *
++ * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
++ * code.
++ */
++SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
++{
++	struct sched_param lp = { .sched_priority = 0 };
++	struct task_struct *p;
++	int retval = -EINVAL;
++
++	if (!param || pid < 0)
++		goto out_nounlock;
++
++	rcu_read_lock();
++	p = find_process_by_pid(pid);
++	retval = -ESRCH;
++	if (!p)
++		goto out_unlock;
++
++	retval = security_task_getscheduler(p);
++	if (retval)
++		goto out_unlock;
++
++	if (has_rt_policy(p))
++		lp.sched_priority = p->rt_priority;
++	rcu_read_unlock();
++
++	/*
++	 * This one might sleep, we cannot do it with a spinlock held ...
++	 */
++	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
++
++out_nounlock:
++	return retval;
++
++out_unlock:
++	rcu_read_unlock();
++	return retval;
++}
++
++/*
++ * Copy the kernel size attribute structure (which might be larger
++ * than what user-space knows about) to user-space.
++ *
++ * Note that all cases are valid: user-space buffer can be larger or
++ * smaller than the kernel-space buffer. The usual case is that both
++ * have the same size.
++ */
++static int
++sched_attr_copy_to_user(struct sched_attr __user *uattr,
++			struct sched_attr *kattr,
++			unsigned int usize)
++{
++	unsigned int ksize = sizeof(*kattr);
++
++	if (!access_ok(uattr, usize))
++		return -EFAULT;
++
++	/*
++	 * sched_getattr() ABI forwards and backwards compatibility:
++	 *
++	 * If usize == ksize then we just copy everything to user-space and all is good.
++	 *
++	 * If usize < ksize then we only copy as much as user-space has space for,
++	 * this keeps ABI compatibility as well. We skip the rest.
++	 *
++	 * If usize > ksize then user-space is using a newer version of the ABI,
++	 * which part the kernel doesn't know about. Just ignore it - tooling can
++	 * detect the kernel's knowledge of attributes from the attr->size value
++	 * which is set to ksize in this case.
++	 */
++	kattr->size = min(usize, ksize);
++
++	if (copy_to_user(uattr, kattr, kattr->size))
++		return -EFAULT;
++
++	return 0;
++}
++
++/**
++ * sys_sched_getattr - similar to sched_getparam, but with sched_attr
++ * @pid: the pid in question.
++ * @uattr: structure containing the extended parameters.
++ * @usize: sizeof(attr) for fwd/bwd comp.
++ * @flags: for future extension.
++ */
++SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
++		unsigned int, usize, unsigned int, flags)
++{
++	struct sched_attr kattr = { };
++	struct task_struct *p;
++	int retval;
++
++	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
++	    usize < SCHED_ATTR_SIZE_VER0 || flags)
++		return -EINVAL;
++
++	rcu_read_lock();
++	p = find_process_by_pid(pid);
++	retval = -ESRCH;
++	if (!p)
++		goto out_unlock;
++
++	retval = security_task_getscheduler(p);
++	if (retval)
++		goto out_unlock;
++
++	kattr.sched_policy = p->policy;
++	if (rt_task(p))
++		kattr.sched_priority = p->rt_priority;
++	else
++		kattr.sched_nice = task_nice(p);
++
++	rcu_read_unlock();
++
++	return sched_attr_copy_to_user(uattr, &kattr, usize);
++
++out_unlock:
++	rcu_read_unlock();
++	return retval;
++}
++
++long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
++{
++	cpumask_var_t cpus_allowed, new_mask;
++	struct task_struct *p;
++	int retval;
++
++	rcu_read_lock();
++
++	p = find_process_by_pid(pid);
++	if (!p) {
++		rcu_read_unlock();
++		return -ESRCH;
++	}
++
++	/* Prevent p going away */
++	get_task_struct(p);
++	rcu_read_unlock();
++
++	if (p->flags & PF_NO_SETAFFINITY) {
++		retval = -EINVAL;
++		goto out_put_task;
++	}
++	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
++		retval = -ENOMEM;
++		goto out_put_task;
++	}
++	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
++		retval = -ENOMEM;
++		goto out_free_cpus_allowed;
++	}
++	retval = -EPERM;
++	if (!check_same_owner(p)) {
++		rcu_read_lock();
++		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
++			rcu_read_unlock();
++			goto out_unlock;
++		}
++		rcu_read_unlock();
++	}
++
++	retval = security_task_setscheduler(p);
++	if (retval)
++		goto out_unlock;
++
++	cpuset_cpus_allowed(p, cpus_allowed);
++	cpumask_and(new_mask, in_mask, cpus_allowed);
++again:
++	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
++
++	if (!retval) {
++		cpuset_cpus_allowed(p, cpus_allowed);
++		if (!cpumask_subset(new_mask, cpus_allowed)) {
++			/*
++			 * We must have raced with a concurrent cpuset
++			 * update. Just reset the cpus_allowed to the
++			 * cpuset's cpus_allowed
++			 */
++			cpumask_copy(new_mask, cpus_allowed);
++			goto again;
++		}
++	}
++out_unlock:
++	free_cpumask_var(new_mask);
++out_free_cpus_allowed:
++	free_cpumask_var(cpus_allowed);
++out_put_task:
++	put_task_struct(p);
++	return retval;
++}
++
++static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
++			     cpumask_t *new_mask)
++{
++	if (len < cpumask_size())
++		cpumask_clear(new_mask);
++	else if (len > cpumask_size())
++		len = cpumask_size();
++
++	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
++}
++
++
++/**
++ * sys_sched_setaffinity - set the CPU affinity of a process
++ * @pid: pid of the process
++ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
++ * @user_mask_ptr: user-space pointer to the new CPU mask
++ *
++ * Return: 0 on success. An error code otherwise.
++ */
++SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
++		unsigned long __user *, user_mask_ptr)
++{
++	cpumask_var_t new_mask;
++	int retval;
++
++	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
++		return -ENOMEM;
++
++	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
++	if (retval == 0)
++		retval = sched_setaffinity(pid, new_mask);
++	free_cpumask_var(new_mask);
++	return retval;
++}
++
++long sched_getaffinity(pid_t pid, cpumask_t *mask)
++{
++	struct task_struct *p;
++	unsigned long flags;
++	int retval;
++
++	get_online_cpus();
++	rcu_read_lock();
++
++	retval = -ESRCH;
++	p = find_process_by_pid(pid);
++	if (!p)
++		goto out_unlock;
++
++	retval = security_task_getscheduler(p);
++	if (retval)
++		goto out_unlock;
++
++	raw_spin_lock_irqsave(&p->pi_lock, flags);
++	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
++	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++
++out_unlock:
++	rcu_read_unlock();
++	put_online_cpus();
++
++	return retval;
++}
++
++/**
++ * sys_sched_getaffinity - get the CPU affinity of a process
++ * @pid: pid of the process
++ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
++ * @user_mask_ptr: user-space pointer to hold the current CPU mask
++ *
++ * Return: 0 on success. An error code otherwise.
++ */
++SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
++		unsigned long __user *, user_mask_ptr)
++{
++	int ret;
++	cpumask_var_t mask;
++
++	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
++		return -EINVAL;
++	if (len & (sizeof(unsigned long)-1))
++		return -EINVAL;
++
++	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
++		return -ENOMEM;
++
++	ret = sched_getaffinity(pid, mask);
++	if (ret == 0) {
++		unsigned int retlen = min(len, cpumask_size());
++
++		if (copy_to_user(user_mask_ptr, mask, retlen))
++			ret = -EFAULT;
++		else
++			ret = retlen;
++	}
++	free_cpumask_var(mask);
++
++	return ret;
++}
++
++static void do_sched_yield(void)
++{
++	struct rq_flags rf;
++	struct rq *rq;
++
++	if (!sched_yield_type)
++		return;
++
++	rq = this_rq_lock_irq(&rf);
++
++	if (sched_yield_type > 1)
++		time_slice_expired(current, rq);
++	schedstat_inc(rq->yld_count);
++
++	preempt_disable();
++	rq_unlock_irq(rq, &rf);
++	sched_preempt_enable_no_resched();
++
++	schedule();
++}
++
++/**
++ * sys_sched_yield - yield the current processor to other threads.
++ *
++ * This function yields the current CPU to other tasks. If there are no
++ * other threads running on this CPU then this function will return.
++ *
++ * Return: 0.
++ */
++SYSCALL_DEFINE0(sched_yield)
++{
++	do_sched_yield();
++	return 0;
++}
++
++#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
++int __sched __cond_resched(void)
++{
++	if (should_resched(0)) {
++		preempt_schedule_common();
++		return 1;
++	}
++#ifndef CONFIG_PREEMPT_RCU
++	rcu_all_qs();
++#endif
++	return 0;
++}
++EXPORT_SYMBOL(__cond_resched);
++#endif
++
++#ifdef CONFIG_PREEMPT_DYNAMIC
++DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
++EXPORT_STATIC_CALL_TRAMP(cond_resched);
++
++DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
++EXPORT_STATIC_CALL_TRAMP(might_resched);
++#endif
++
++/*
++ * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
++ * call schedule, and on return reacquire the lock.
++ *
++ * This works OK both with and without CONFIG_PREEMPTION.  We do strange low-level
++ * operations here to prevent schedule() from being called twice (once via
++ * spin_unlock(), once by hand).
++ */
++int __cond_resched_lock(spinlock_t *lock)
++{
++	int resched = should_resched(PREEMPT_LOCK_OFFSET);
++	int ret = 0;
++
++	lockdep_assert_held(lock);
++
++	if (spin_needbreak(lock) || resched) {
++		spin_unlock(lock);
++		if (resched)
++			preempt_schedule_common();
++		else
++			cpu_relax();
++		ret = 1;
++		spin_lock(lock);
++	}
++	return ret;
++}
++EXPORT_SYMBOL(__cond_resched_lock);
++
++int __cond_resched_rwlock_read(rwlock_t *lock)
++{
++	int resched = should_resched(PREEMPT_LOCK_OFFSET);
++	int ret = 0;
++
++	lockdep_assert_held_read(lock);
++
++	if (rwlock_needbreak(lock) || resched) {
++		read_unlock(lock);
++		if (resched)
++			preempt_schedule_common();
++		else
++			cpu_relax();
++		ret = 1;
++		read_lock(lock);
++	}
++	return ret;
++}
++EXPORT_SYMBOL(__cond_resched_rwlock_read);
++
++int __cond_resched_rwlock_write(rwlock_t *lock)
++{
++	int resched = should_resched(PREEMPT_LOCK_OFFSET);
++	int ret = 0;
++
++	lockdep_assert_held_write(lock);
++
++	if (rwlock_needbreak(lock) || resched) {
++		write_unlock(lock);
++		if (resched)
++			preempt_schedule_common();
++		else
++			cpu_relax();
++		ret = 1;
++		write_lock(lock);
++	}
++	return ret;
++}
++EXPORT_SYMBOL(__cond_resched_rwlock_write);
++
++/**
++ * yield - yield the current processor to other threads.
++ *
++ * Do not ever use this function, there's a 99% chance you're doing it wrong.
++ *
++ * The scheduler is at all times free to pick the calling task as the most
++ * eligible task to run, if removing the yield() call from your code breaks
++ * it, it's already broken.
++ *
++ * Typical broken usage is:
++ *
++ * while (!event)
++ *	yield();
++ *
++ * where one assumes that yield() will let 'the other' process run that will
++ * make event true. If the current task is a SCHED_FIFO task that will never
++ * happen. Never use yield() as a progress guarantee!!
++ *
++ * If you want to use yield() to wait for something, use wait_event().
++ * If you want to use yield() to be 'nice' for others, use cond_resched().
++ * If you still want to use yield(), do not!
++ */
++void __sched yield(void)
++{
++	set_current_state(TASK_RUNNING);
++	do_sched_yield();
++}
++EXPORT_SYMBOL(yield);
++
++/**
++ * yield_to - yield the current processor to another thread in
++ * your thread group, or accelerate that thread toward the
++ * processor it's on.
++ * @p: target task
++ * @preempt: whether task preemption is allowed or not
++ *
++ * It's the caller's job to ensure that the target task struct
++ * can't go away on us before we can do any checks.
++ *
++ * Return:
++ *	true (>0) if we indeed boosted the target task.
++ *	false (0) if we failed to boost the target.
++ *	-ESRCH if there's no task to yield to.
++ */
++int __sched yield_to(struct task_struct *p, bool preempt)
++{
++	struct task_struct *rq_p;
++	struct rq *rq, *p_rq;
++	unsigned long flags;
++	int yielded = 0;
++
++	local_irq_save(flags);
++	rq = this_rq();
++
++again:
++	p_rq = task_rq(p);
++	/*
++	 * If we're the only runnable task on the rq and target rq also
++	 * has only one task, there's absolutely no point in yielding.
++	 */
++	if (task_running(p_rq, p) || p->state) {
++		yielded = -ESRCH;
++		goto out_irq;
++	}
++
++	double_rq_lock(rq, p_rq);
++	if (unlikely(task_rq(p) != p_rq)) {
++		double_rq_unlock(rq, p_rq);
++		goto again;
++	}
++
++	yielded = 1;
++	schedstat_inc(rq->yld_count);
++	rq_p = rq->curr;
++	if (p->deadline > rq_p->deadline)
++		p->deadline = rq_p->deadline;
++	p->time_slice += rq_p->time_slice;
++	if (p->time_slice > timeslice())
++		p->time_slice = timeslice();
++	time_slice_expired(rq_p, rq);
++	if (preempt && rq != p_rq)
++		resched_task(p_rq->curr);
++	double_rq_unlock(rq, p_rq);
++out_irq:
++	local_irq_restore(flags);
++
++	if (yielded > 0)
++		schedule();
++	return yielded;
++}
++EXPORT_SYMBOL_GPL(yield_to);
++
++int io_schedule_prepare(void)
++{
++	int old_iowait = current->in_iowait;
++
++	current->in_iowait = 1;
++	blk_schedule_flush_plug(current);
++
++	return old_iowait;
++}
++
++void io_schedule_finish(int token)
++{
++	current->in_iowait = token;
++}
++
++/*
++ * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
++ * that process accounting knows that this is a task in IO wait state.
++ *
++ * But don't do that if it is a deliberate, throttling IO wait (this task
++ * has set its backing_dev_info: the queue against which it should throttle)
++ */
++
++long __sched io_schedule_timeout(long timeout)
++{
++	int token;
++	long ret;
++
++	token = io_schedule_prepare();
++	ret = schedule_timeout(timeout);
++	io_schedule_finish(token);
++
++	return ret;
++}
++EXPORT_SYMBOL(io_schedule_timeout);
++
++void __sched io_schedule(void)
++{
++	int token;
++
++	token = io_schedule_prepare();
++	schedule();
++	io_schedule_finish(token);
++}
++EXPORT_SYMBOL(io_schedule);
++
++/**
++ * sys_sched_get_priority_max - return maximum RT priority.
++ * @policy: scheduling class.
++ *
++ * Return: On success, this syscall returns the maximum
++ * rt_priority that can be used by a given scheduling class.
++ * On failure, a negative error code is returned.
++ */
++SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
++{
++	int ret = -EINVAL;
++
++	switch (policy) {
++	case SCHED_FIFO:
++	case SCHED_RR:
++		ret = MAX_RT_PRIO-1;
++		break;
++	case SCHED_NORMAL:
++	case SCHED_BATCH:
++	case SCHED_ISO:
++	case SCHED_IDLEPRIO:
++		ret = 0;
++		break;
++	}
++	return ret;
++}
++
++/**
++ * sys_sched_get_priority_min - return minimum RT priority.
++ * @policy: scheduling class.
++ *
++ * Return: On success, this syscall returns the minimum
++ * rt_priority that can be used by a given scheduling class.
++ * On failure, a negative error code is returned.
++ */
++SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
++{
++	int ret = -EINVAL;
++
++	switch (policy) {
++	case SCHED_FIFO:
++	case SCHED_RR:
++		ret = 1;
++		break;
++	case SCHED_NORMAL:
++	case SCHED_BATCH:
++	case SCHED_ISO:
++	case SCHED_IDLEPRIO:
++		ret = 0;
++		break;
++	}
++	return ret;
++}
++
++static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
++{
++	struct task_struct *p;
++	unsigned int time_slice;
++	struct rq_flags rf;
++	struct rq *rq;
++	int retval;
++
++	if (pid < 0)
++		return -EINVAL;
++
++	retval = -ESRCH;
++	rcu_read_lock();
++	p = find_process_by_pid(pid);
++	if (!p)
++		goto out_unlock;
++
++	retval = security_task_getscheduler(p);
++	if (retval)
++		goto out_unlock;
++
++	rq = task_rq_lock(p, &rf);
++	time_slice = p->policy == SCHED_FIFO ? 0 : MS_TO_NS(task_timeslice(p));
++	task_rq_unlock(rq, p, &rf);
++
++	rcu_read_unlock();
++	*t = ns_to_timespec64(time_slice);
++	return 0;
++
++out_unlock:
++	rcu_read_unlock();
++	return retval;
++}
++
++/**
++ * sys_sched_rr_get_interval - return the default timeslice of a process.
++ * @pid: pid of the process.
++ * @interval: userspace pointer to the timeslice value.
++ *
++ * this syscall writes the default timeslice value of a given process
++ * into the user-space timespec buffer. A value of '0' means infinity.
++ *
++ * Return: On success, 0 and the timeslice is in @interval. Otherwise,
++ * an error code.
++ */
++SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
++		struct __kernel_timespec __user *, interval)
++{
++	struct timespec64 t;
++	int retval = sched_rr_get_interval(pid, &t);
++
++	if (retval == 0)
++		retval = put_timespec64(&t, interval);
++
++	return retval;
++}
++
++#ifdef CONFIG_COMPAT_32BIT_TIME
++SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
++		struct old_timespec32 __user *, interval)
++{
++	struct timespec64 t;
++	int retval = sched_rr_get_interval(pid, &t);
++
++	if (retval == 0)
++		retval = put_old_timespec32(&t, interval);
++	return retval;
++}
++#endif
++
++void sched_show_task(struct task_struct *p)
++{
++	unsigned long free = 0;
++	int ppid;
++
++	if (!try_get_task_stack(p))
++		return;
++
++	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
++
++	if (p->state == TASK_RUNNING)
++		printk(KERN_CONT "  running task    ");
++#ifdef CONFIG_DEBUG_STACK_USAGE
++	free = stack_not_used(p);
++#endif
++	ppid = 0;
++	rcu_read_lock();
++	if (pid_alive(p))
++		ppid = task_pid_nr(rcu_dereference(p->real_parent));
++	rcu_read_unlock();
++	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
++		free, task_pid_nr(p), ppid,
++		(unsigned long)task_thread_info(p)->flags);
++
++	print_worker_info(KERN_INFO, p);
++	print_stop_info(KERN_INFO, p);
++	show_stack(p, NULL, KERN_INFO);
++	put_task_stack(p);
++}
++EXPORT_SYMBOL_GPL(sched_show_task);
++
++static inline bool
++state_filter_match(unsigned long state_filter, struct task_struct *p)
++{
++	/* no filter, everything matches */
++	if (!state_filter)
++		return true;
++
++	/* filter, but doesn't match */
++	if (!(p->state & state_filter))
++		return false;
++
++	/*
++	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
++	 * TASK_KILLABLE).
++	 */
++	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
++		return false;
++
++	return true;
++}
++
++void show_state_filter(unsigned long state_filter)
++{
++	struct task_struct *g, *p;
++
++	rcu_read_lock();
++	for_each_process_thread(g, p) {
++		/*
++		 * reset the NMI-timeout, listing all files on a slow
++		 * console might take a lot of time:
++		 * Also, reset softlockup watchdogs on all CPUs, because
++		 * another CPU might be blocked waiting for us to process
++		 * an IPI.
++		 */
++		touch_nmi_watchdog();
++		touch_all_softlockup_watchdogs();
++		if (state_filter_match(state_filter, p))
++			sched_show_task(p);
++	}
++
++	rcu_read_unlock();
++	/*
++	 * Only show locks if all tasks are dumped:
++	 */
++	if (!state_filter)
++		debug_show_all_locks();
++}
++
++void dump_cpu_task(int cpu)
++{
++	pr_info("Task dump for CPU %d:\n", cpu);
++	sched_show_task(cpu_curr(cpu));
++}
++
++#ifdef CONFIG_SMP
++void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 __always_unused flags)
++{
++	cpumask_copy(&p->cpus_mask, new_mask);
++	p->nr_cpus_allowed = cpumask_weight(new_mask);
++}
++
++void
++__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
++{
++	struct rq *rq = task_rq(p);
++
++	lockdep_assert_held(&p->pi_lock);
++
++	cpumask_copy(&p->cpus_mask, new_mask);
++
++	if (task_queued(p)) {
++		/*
++		 * Because __kthread_bind() calls this on blocked tasks without
++		 * holding rq->lock.
++		 */
++		lockdep_assert_held(rq->lock);
++	}
++}
++
++/*
++ * Calling do_set_cpus_allowed from outside the scheduler code should not be
++ * called on a running or queued task. We should be holding pi_lock.
++ */
++void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
++{
++	__do_set_cpus_allowed(p, new_mask);
++	if (needs_other_cpu(p, task_cpu(p))) {
++		struct rq *rq;
++
++		rq = __task_rq_lock(p, NULL);
++		set_task_cpu(p, valid_task_cpu(p));
++		resched_task(p);
++		__task_rq_unlock(rq, NULL);
++	}
++}
++
++void migrate_disable(void)
++{
++}
++EXPORT_SYMBOL_GPL(migrate_disable);
++
++void migrate_enable(void)
++{
++}
++EXPORT_SYMBOL_GPL(migrate_enable);
++#endif
++
++/**
++ * init_idle - set up an idle thread for a given CPU
++ * @idle: task in question
++ * @cpu: cpu the idle task belongs to
++ *
++ * NOTE: this function does not set the idle thread's NEED_RESCHED
++ * flag, to make booting more robust.
++ */
++void init_idle(struct task_struct *idle, int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++	unsigned long flags;
++
++	raw_spin_lock_irqsave(&idle->pi_lock, flags);
++	raw_spin_lock(rq->lock);
++	idle->last_ran = rq->niffies;
++	time_slice_expired(idle, rq);
++	idle->state = TASK_RUNNING;
++	/* Setting prio to illegal value shouldn't matter when never queued */
++	idle->prio = PRIO_LIMIT;
++	idle->flags |= PF_IDLE;
++
++	scs_task_reset(idle);
++	kasan_unpoison_task_stack(idle);
++
++#ifdef CONFIG_SMP
++	/*
++	 * It's possible that init_idle() gets called multiple times on a task,
++	 * in that case do_set_cpus_allowed() will not do the right thing.
++	 *
++	 * And since this is boot we can forgo the serialisation.
++	 */
++	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
++#ifdef CONFIG_SMT_NICE
++	idle->smt_bias = 0;
++#endif
++#endif
++	set_rq_task(rq, idle);
++
++	/* Silence PROVE_RCU */
++	rcu_read_lock();
++	set_task_cpu(idle, cpu);
++	rcu_read_unlock();
++
++	rq->idle = idle;
++	rcu_assign_pointer(rq->curr, idle);
++	idle->on_rq = TASK_ON_RQ_QUEUED;
++	raw_spin_unlock(rq->lock);
++	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
++
++	/* Set the preempt count _outside_ the spinlocks! */
++	init_idle_preempt_count(idle, cpu);
++
++	ftrace_graph_init_idle_task(idle, cpu);
++	vtime_init_idle(idle, cpu);
++#ifdef CONFIG_SMP
++	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
++#endif
++}
++
++int cpuset_cpumask_can_shrink(const struct cpumask __maybe_unused *cur,
++			      const struct cpumask __maybe_unused *trial)
++{
++	return 1;
++}
++
++int task_can_attach(struct task_struct *p,
++		    const struct cpumask *cs_cpus_allowed)
++{
++	int ret = 0;
++
++	/*
++	 * Kthreads which disallow setaffinity shouldn't be moved
++	 * to a new cpuset; we don't want to change their CPU
++	 * affinity and isolating such threads by their set of
++	 * allowed nodes is unnecessary.  Thus, cpusets are not
++	 * applicable for such threads.  This prevents checking for
++	 * success of set_cpus_allowed_ptr() on all attached tasks
++	 * before cpus_mask may be changed.
++	 */
++	if (p->flags & PF_NO_SETAFFINITY)
++		ret = -EINVAL;
++
++	return ret;
++}
++
++void resched_cpu(int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++	struct rq_flags rf;
++
++	rq_lock_irqsave(rq, &rf);
++	if (cpu_online(cpu) || cpu == smp_processor_id())
++		resched_curr(rq);
++	rq_unlock_irqrestore(rq, &rf);
++}
++
++#ifdef CONFIG_SMP
++#ifdef CONFIG_NO_HZ_COMMON
++void select_nohz_load_balancer(int stop_tick)
++{
++}
++
++void set_cpu_sd_state_idle(void) {}
++void nohz_balance_enter_idle(int cpu) {}
++
++/*
++ * In the semi idle case, use the nearest busy CPU for migrating timers
++ * from an idle CPU.  This is good for power-savings.
++ *
++ * We don't do similar optimization for completely idle system, as
++ * selecting an idle CPU will add more delays to the timers than intended
++ * (as that CPU's timer base may not be uptodate wrt jiffies etc).
++ */
++int get_nohz_timer_target(void)
++{
++	int i, cpu = smp_processor_id(), default_cpu = -1;
++	struct sched_domain *sd;
++
++	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
++		if (!idle_cpu(cpu))
++			return cpu;
++		default_cpu = cpu;
++	}
++
++	rcu_read_lock();
++	for_each_domain(cpu, sd) {
++		for_each_cpu_and(i, sched_domain_span(sd),
++			housekeeping_cpumask(HK_FLAG_TIMER)) {
++			if (cpu == i)
++				continue;
++
++			if (!idle_cpu(i)) {
++				cpu = i;
++				goto unlock;
++			}
++		}
++	}
++
++	if (default_cpu == -1)
++		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
++	cpu = default_cpu;
++unlock:
++	rcu_read_unlock();
++	return cpu;
++}
++
++/*
++ * When add_timer_on() enqueues a timer into the timer wheel of an
++ * idle CPU then this timer might expire before the next timer event
++ * which is scheduled to wake up that CPU. In case of a completely
++ * idle system the next event might even be infinite time into the
++ * future. wake_up_idle_cpu() ensures that the CPU is woken up and
++ * leaves the inner idle loop so the newly added timer is taken into
++ * account when the CPU goes back to idle and evaluates the timer
++ * wheel for the next timer event.
++ */
++void wake_up_idle_cpu(int cpu)
++{
++	if (cpu == smp_processor_id())
++		return;
++
++	if (set_nr_and_not_polling(cpu_rq(cpu)->idle))
++		smp_sched_reschedule(cpu);
++	else
++		trace_sched_wake_idle_without_ipi(cpu);
++}
++
++static bool wake_up_full_nohz_cpu(int cpu)
++{
++	/*
++	 * We just need the target to call irq_exit() and re-evaluate
++	 * the next tick. The nohz full kick at least implies that.
++	 * If needed we can still optimize that later with an
++	 * empty IRQ.
++	 */
++	if (cpu_is_offline(cpu))
++		return true;  /* Don't try to wake offline CPUs. */
++	if (tick_nohz_full_cpu(cpu)) {
++		if (cpu != smp_processor_id() ||
++		    tick_nohz_tick_stopped())
++			tick_nohz_full_kick_cpu(cpu);
++		return true;
++	}
++
++	return false;
++}
++
++/*
++ * Wake up the specified CPU.  If the CPU is going offline, it is the
++ * caller's responsibility to deal with the lost wakeup, for example,
++ * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
++ */
++void wake_up_nohz_cpu(int cpu)
++{
++	if (!wake_up_full_nohz_cpu(cpu))
++		wake_up_idle_cpu(cpu);
++}
++#endif /* CONFIG_NO_HZ_COMMON */
++
++/*
++ * Change a given task's CPU affinity. Migrate the thread to a
++ * proper CPU and schedule it away if the CPU it's executing on
++ * is removed from the allowed bitmask.
++ *
++ * NOTE: the caller must have a valid reference to the task, the
++ * task must not exit() & deallocate itself prematurely. The
++ * call is not atomic; no spinlocks may be held.
++ */
++static int __set_cpus_allowed_ptr(struct task_struct *p,
++				  const struct cpumask *new_mask,
++				  u32 flags)
++{
++	const struct cpumask *cpu_valid_mask = cpu_active_mask;
++	bool queued = false, running_wrong = false, kthread;
++	unsigned int dest_cpu;
++	struct rq_flags rf;
++	struct rq *rq;
++	int ret = 0;
++
++	rq = task_rq_lock(p, &rf);
++	update_rq_clock(rq);
++
++	kthread = !!(p->flags & PF_KTHREAD);
++	if (kthread) {
++		/*
++		 * Kernel threads are allowed on online && !active CPUs
++		 */
++		cpu_valid_mask = cpu_online_mask;
++	}
++
++	/*
++	 * Must re-check here, to close a race against __kthread_bind(),
++	 * sched_setaffinity() is not guaranteed to observe the flag.
++	 */
++	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
++		ret = -EINVAL;
++		goto out;
++	}
++
++	if (cpumask_equal(&p->cpus_mask, new_mask))
++		goto out;
++	/*
++	 * Picking a ~random cpu helps in cases where we are changing affinity
++	 * for groups of tasks (ie. cpuset), so that load balancing is not
++	 * immediately required to distribute the tasks within their new mask.
++	 */
++	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
++	if (dest_cpu >= nr_cpu_ids) {
++		ret = -EINVAL;
++		goto out;
++	}
++
++	queued = task_queued(p);
++	__do_set_cpus_allowed(p, new_mask);
++
++	if (kthread) {
++		/*
++		 * For kernel threads that do indeed end up on online &&
++		 * !active we want to ensure they are strict per-CPU threads.
++		 */
++		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
++			!cpumask_intersects(new_mask, cpu_active_mask) &&
++			p->nr_cpus_allowed != 1);
++	}
++
++	/* Can the task run on the task's current CPU? If so, we're done */
++	if (cpumask_test_cpu(task_cpu(p), new_mask))
++		goto out;
++
++	if (task_running(rq, p)) {
++		/* Task is running on the wrong cpu now, reschedule it. */
++		if (rq == this_rq()) {
++			set_task_cpu(p, dest_cpu);
++			set_tsk_need_resched(p);
++			running_wrong = true;
++		} else
++			resched_task(p);
++	} else {
++		if (queued) {
++			/*
++			 * Switch runqueue locks after dequeueing the task
++			 * here while still holding the pi_lock to be holding
++			 * the correct lock for enqueueing.
++			 */
++			dequeue_task(rq, p, 0);
++			rq_unlock(rq);
++
++			rq = cpu_rq(dest_cpu);
++			rq_lock(rq);
++		}
++		set_task_cpu(p, dest_cpu);
++		if (queued)
++			enqueue_task(rq, p, 0);
++	}
++	if (queued)
++		try_preempt(p, rq);
++	if (running_wrong)
++		preempt_disable();
++out:
++	task_rq_unlock(rq, p, &rf);
++
++	if (running_wrong) {
++		__schedule(true);
++		preempt_enable();
++	}
++
++	return ret;
++}
++
++int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
++{
++	return __set_cpus_allowed_ptr(p, new_mask, 0);
++}
++EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
++
++#ifdef CONFIG_HOTPLUG_CPU
++/*
++ * Run through task list and find tasks affined to the dead cpu, then remove
++ * that cpu from the list, enable cpu0 and set the zerobound flag. Must hold
++ * cpu 0 and src_cpu's runqueue locks. We should be holding both rq lock and
++ * pi_lock to change cpus_mask but it's not going to matter here.
++ */
++static void bind_zero(int src_cpu)
++{
++	struct task_struct *p, *t;
++	struct rq *rq0;
++	int bound = 0;
++
++	if (src_cpu == 0)
++		return;
++
++	rq0 = cpu_rq(0);
++
++	do_each_thread(t, p) {
++		if (cpumask_test_cpu(src_cpu, p->cpus_ptr)) {
++			bool local = (task_cpu(p) == src_cpu);
++			struct rq *rq = task_rq(p);
++
++			/* task_running is the cpu stopper thread */
++			if (local && task_running(rq, p))
++				continue;
++			atomic_clear_cpu(src_cpu, &p->cpus_mask);
++			atomic_set_cpu(0, &p->cpus_mask);
++			p->zerobound = true;
++			bound++;
++			if (local) {
++				bool queued = task_queued(p);
++
++				if (queued)
++					dequeue_task(rq, p, 0);
++				set_task_cpu(p, 0);
++				if (queued)
++					enqueue_task(rq0, p, 0);
++			}
++		}
++	} while_each_thread(t, p);
++
++	if (bound) {
++		printk(KERN_INFO "MuQSS removed affinity for %d processes to cpu %d\n",
++		       bound, src_cpu);
++	}
++}
++
++/* Find processes with the zerobound flag and reenable their affinity for the
++ * CPU coming alive. */
++static void unbind_zero(int src_cpu)
++{
++	int unbound = 0, zerobound = 0;
++	struct task_struct *p, *t;
++
++	if (src_cpu == 0)
++		return;
++
++	do_each_thread(t, p) {
++		if (!p->mm)
++			p->zerobound = false;
++		if (p->zerobound) {
++			unbound++;
++			cpumask_set_cpu(src_cpu, &p->cpus_mask);
++			/* Once every CPU affinity has been re-enabled, remove
++			 * the zerobound flag */
++			if (cpumask_subset(cpu_possible_mask, p->cpus_ptr)) {
++				p->zerobound = false;
++				zerobound++;
++			}
++		}
++	} while_each_thread(t, p);
++
++	if (unbound) {
++		printk(KERN_INFO "MuQSS added affinity for %d processes to cpu %d\n",
++		       unbound, src_cpu);
++	}
++	if (zerobound) {
++		printk(KERN_INFO "MuQSS released forced binding to cpu0 for %d processes\n",
++		       zerobound);
++	}
++}
++
++/*
++ * Ensure that the idle task is using init_mm right before its cpu goes
++ * offline.
++ */
++void idle_task_exit(void)
++{
++	struct mm_struct *mm = current->active_mm;
++
++	BUG_ON(cpu_online(smp_processor_id()));
++	BUG_ON(current != this_rq()->idle);
++
++	if (mm != &init_mm) {
++		switch_mm(mm, &init_mm, current);
++		finish_arch_post_lock_switch();
++	}
++
++	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
++}
++#else /* CONFIG_HOTPLUG_CPU */
++static void unbind_zero(int src_cpu) {}
++#endif /* CONFIG_HOTPLUG_CPU */
++
++void sched_set_stop_task(int cpu, struct task_struct *stop)
++{
++	struct sched_param stop_param = { .sched_priority = STOP_PRIO };
++	struct sched_param start_param = { .sched_priority = 0 };
++	struct task_struct *old_stop = cpu_rq(cpu)->stop;
++
++	if (stop) {
++		/*
++		 * Make it appear like a SCHED_FIFO task, its something
++		 * userspace knows about and won't get confused about.
++		 *
++		 * Also, it will make PI more or less work without too
++		 * much confusion -- but then, stop work should not
++		 * rely on PI working anyway.
++		 */
++		sched_setscheduler_nocheck(stop, SCHED_FIFO, &stop_param);
++	}
++
++	cpu_rq(cpu)->stop = stop;
++
++	if (old_stop) {
++		/*
++		 * Reset it back to a normal scheduling policy so that
++		 * it can die in pieces.
++		 */
++		sched_setscheduler_nocheck(old_stop, SCHED_NORMAL, &start_param);
++	}
++}
++
++#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
++
++static struct ctl_table sd_ctl_dir[] = {
++	{
++		.procname	= "sched_domain",
++		.mode		= 0555,
++	},
++	{}
++};
++
++static struct ctl_table sd_ctl_root[] = {
++	{
++		.procname	= "kernel",
++		.mode		= 0555,
++		.child		= sd_ctl_dir,
++	},
++	{}
++};
++
++static struct ctl_table *sd_alloc_ctl_entry(int n)
++{
++	struct ctl_table *entry =
++		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
++
++	return entry;
++}
++
++static void sd_free_ctl_entry(struct ctl_table **tablep)
++{
++	struct ctl_table *entry;
++
++	/*
++	 * In the intermediate directories, both the child directory and
++	 * procname are dynamically allocated and could fail but the mode
++	 * will always be set. In the lowest directory the names are
++	 * static strings and all have proc handlers.
++	 */
++	for (entry = *tablep; entry->mode; entry++) {
++		if (entry->child)
++			sd_free_ctl_entry(&entry->child);
++		if (entry->proc_handler == NULL)
++			kfree(entry->procname);
++	}
++
++	kfree(*tablep);
++	*tablep = NULL;
++}
++
++static void
++set_table_entry(struct ctl_table *entry,
++		const char *procname, void *data, int maxlen,
++		umode_t mode, proc_handler *proc_handler)
++{
++	entry->procname = procname;
++	entry->data = data;
++	entry->maxlen = maxlen;
++	entry->mode = mode;
++	entry->proc_handler = proc_handler;
++}
++
++static struct ctl_table *
++sd_alloc_ctl_domain_table(struct sched_domain *sd)
++{
++	struct ctl_table *table = sd_alloc_ctl_entry(9);
++
++	if (table == NULL)
++		return NULL;
++
++	set_table_entry(&table[0], "min_interval",	  &sd->min_interval,	    sizeof(long), 0644, proc_doulongvec_minmax);
++	set_table_entry(&table[1], "max_interval",	  &sd->max_interval,	    sizeof(long), 0644, proc_doulongvec_minmax);
++	set_table_entry(&table[2], "busy_factor",	  &sd->busy_factor,	    sizeof(int),  0644, proc_dointvec_minmax);
++	set_table_entry(&table[3], "imbalance_pct",	  &sd->imbalance_pct,	    sizeof(int),  0644, proc_dointvec_minmax);
++	set_table_entry(&table[4], "cache_nice_tries",	  &sd->cache_nice_tries,    sizeof(int),  0644, proc_dointvec_minmax);
++	set_table_entry(&table[5], "flags",		  &sd->flags,		    sizeof(int),  0644, proc_dointvec_minmax);
++	set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax);
++	set_table_entry(&table[7], "name",		  sd->name,	       CORENAME_MAX_SIZE, 0444, proc_dostring);
++	/* &table[8] is terminator */
++
++	return table;
++}
++
++static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
++{
++	struct ctl_table *entry, *table;
++	struct sched_domain *sd;
++	int domain_num = 0, i;
++	char buf[32];
++
++	for_each_domain(cpu, sd)
++		domain_num++;
++	entry = table = sd_alloc_ctl_entry(domain_num + 1);
++	if (table == NULL)
++		return NULL;
++
++	i = 0;
++	for_each_domain(cpu, sd) {
++		snprintf(buf, 32, "domain%d", i);
++		entry->procname = kstrdup(buf, GFP_KERNEL);
++		entry->mode = 0555;
++		entry->child = sd_alloc_ctl_domain_table(sd);
++		entry++;
++		i++;
++	}
++	return table;
++}
++
++static cpumask_var_t sd_sysctl_cpus;
++static struct ctl_table_header *sd_sysctl_header;
++
++void register_sched_domain_sysctl(void)
++{
++	static struct ctl_table *cpu_entries;
++	static struct ctl_table **cpu_idx;
++	char buf[32];
++	int i;
++
++	if (!cpu_entries) {
++		cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
++		if (!cpu_entries)
++			return;
++
++		WARN_ON(sd_ctl_dir[0].child);
++		sd_ctl_dir[0].child = cpu_entries;
++	}
++
++	if (!cpu_idx) {
++		struct ctl_table *e = cpu_entries;
++
++		cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
++		if (!cpu_idx)
++			return;
++
++		/* deal with sparse possible map */
++		for_each_possible_cpu(i) {
++			cpu_idx[i] = e;
++			e++;
++		}
++	}
++
++	if (!cpumask_available(sd_sysctl_cpus)) {
++		if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
++			return;
++
++		/* init to possible to not have holes in @cpu_entries */
++		cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
++	}
++
++	for_each_cpu(i, sd_sysctl_cpus) {
++		struct ctl_table *e = cpu_idx[i];
++
++		if (e->child)
++			sd_free_ctl_entry(&e->child);
++
++		if (!e->procname) {
++			snprintf(buf, 32, "cpu%d", i);
++			e->procname = kstrdup(buf, GFP_KERNEL);
++		}
++		e->mode = 0555;
++		e->child = sd_alloc_ctl_cpu_table(i);
++
++		__cpumask_clear_cpu(i, sd_sysctl_cpus);
++	}
++
++	WARN_ON(sd_sysctl_header);
++	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
++}
++
++void dirty_sched_domain_sysctl(int cpu)
++{
++	if (cpumask_available(sd_sysctl_cpus))
++		__cpumask_set_cpu(cpu, sd_sysctl_cpus);
++}
++
++/* may be called multiple times per register */
++void unregister_sched_domain_sysctl(void)
++{
++	unregister_sysctl_table(sd_sysctl_header);
++	sd_sysctl_header = NULL;
++}
++#endif /* CONFIG_SYSCTL */
++
++void set_rq_online(struct rq *rq)
++{
++	if (!rq->online) {
++		cpumask_set_cpu(cpu_of(rq), rq->rd->online);
++		rq->online = true;
++	}
++}
++
++void set_rq_offline(struct rq *rq)
++{
++	if (rq->online) {
++		int cpu = cpu_of(rq);
++
++		cpumask_clear_cpu(cpu, rq->rd->online);
++		rq->online = false;
++		clear_cpuidle_map(cpu);
++	}
++}
++
++/*
++ * used to mark begin/end of suspend/resume:
++ */
++static int num_cpus_frozen;
++
++/*
++ * Update cpusets according to cpu_active mask.  If cpusets are
++ * disabled, cpuset_update_active_cpus() becomes a simple wrapper
++ * around partition_sched_domains().
++ *
++ * If we come here as part of a suspend/resume, don't touch cpusets because we
++ * want to restore it back to its original state upon resume anyway.
++ */
++static void cpuset_cpu_active(void)
++{
++	if (cpuhp_tasks_frozen) {
++		/*
++		 * num_cpus_frozen tracks how many CPUs are involved in suspend
++		 * resume sequence. As long as this is not the last online
++		 * operation in the resume sequence, just build a single sched
++		 * domain, ignoring cpusets.
++		 */
++		partition_sched_domains(1, NULL, NULL);
++		if (--num_cpus_frozen)
++			return;
++		/*
++		 * This is the last CPU online operation. So fall through and
++		 * restore the original sched domains by considering the
++		 * cpuset configurations.
++		 */
++		cpuset_force_rebuild();
++	}
++
++	cpuset_update_active_cpus();
++}
++
++static int cpuset_cpu_inactive(unsigned int cpu)
++{
++	if (!cpuhp_tasks_frozen) {
++		cpuset_update_active_cpus();
++	} else {
++		num_cpus_frozen++;
++		partition_sched_domains(1, NULL, NULL);
++	}
++	return 0;
++}
++
++int sched_cpu_activate(unsigned int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++	struct rq_flags rf;
++
++#ifdef CONFIG_SCHED_SMT
++	/*
++	 * When going up, increment the number of cores with SMT present.
++	 */
++	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
++		static_branch_inc_cpuslocked(&sched_smt_present);
++#endif
++	set_cpu_active(cpu, true);
++
++	if (sched_smp_initialized) {
++		sched_domains_numa_masks_set(cpu);
++		cpuset_cpu_active();
++	}
++
++	/*
++	 * Put the rq online, if not already. This happens:
++	 *
++	 * 1) In the early boot process, because we build the real domains
++	 *    after all CPUs have been brought up.
++	 *
++	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
++	 *    domains.
++	 */
++	rq_lock_irqsave(rq, &rf);
++	if (rq->rd) {
++		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
++		set_rq_online(rq);
++	}
++	unbind_zero(cpu);
++	rq_unlock_irqrestore(rq, &rf);
++
++	return 0;
++}
++
++int sched_cpu_deactivate(unsigned int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++	struct rq_flags rf;
++	int ret;
++
++	set_cpu_active(cpu, false);
++	/*
++	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
++	 * users of this state to go away such that all new such users will
++	 * observe it.
++	 *
++	 * Do sync before park smpboot threads to take care the rcu boost case.
++	 */
++	synchronize_rcu();
++
++	rq_lock_irqsave(rq, &rf);
++	if (rq->rd) {
++		update_rq_clock(rq);
++		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
++		set_rq_offline(rq);
++	}
++	rq_unlock_irqrestore(rq, &rf);
++
++#ifdef CONFIG_SCHED_SMT
++	/*
++	 * When going down, decrement the number of cores with SMT present.
++	 */
++	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
++		static_branch_dec_cpuslocked(&sched_smt_present);
++#endif
++
++	if (!sched_smp_initialized)
++		return 0;
++
++	ret = cpuset_cpu_inactive(cpu);
++	if (ret) {
++		set_cpu_active(cpu, true);
++		return ret;
++	}
++	sched_domains_numa_masks_clear(cpu);
++	return 0;
++}
++
++int sched_cpu_starting(unsigned int cpu)
++{
++	sched_tick_start(cpu);
++	return 0;
++}
++
++#ifdef CONFIG_HOTPLUG_CPU
++int sched_cpu_wait_empty(unsigned int __always_unused cpu)
++{
++	return 0;
++}
++
++int sched_cpu_dying(unsigned int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++	unsigned long flags;
++
++	/* Handle pending wakeups and then migrate everything off */
++	sched_tick_stop(cpu);
++
++	local_irq_save(flags);
++	double_rq_lock(rq, cpu_rq(0));
++	if (rq->rd) {
++		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
++		set_rq_offline(rq);
++	}
++	bind_zero(cpu);
++	double_rq_unlock(rq, cpu_rq(0));
++	sched_start_tick(rq, cpu);
++	hrexpiry_clear(rq);
++	local_irq_restore(flags);
++
++	return 0;
++}
++#endif
++
++#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
++/*
++ * Cheaper version of the below functions in case support for SMT and MC is
++ * compiled in but CPUs have no siblings.
++ */
++static bool sole_cpu_idle(struct rq *rq)
++{
++	return rq_idle(rq);
++}
++#endif
++#ifdef CONFIG_SCHED_SMT
++static const cpumask_t *thread_cpumask(int cpu)
++{
++	return topology_sibling_cpumask(cpu);
++}
++/* All this CPU's SMT siblings are idle */
++static bool siblings_cpu_idle(struct rq *rq)
++{
++	return cpumask_subset(&rq->thread_mask, &cpu_idle_map);
++}
++#endif
++#ifdef CONFIG_SCHED_MC
++static const cpumask_t *core_cpumask(int cpu)
++{
++	return topology_core_cpumask(cpu);
++}
++/* All this CPU's shared cache siblings are idle */
++static bool cache_cpu_idle(struct rq *rq)
++{
++	return cpumask_subset(&rq->core_mask, &cpu_idle_map);
++}
++/* MC siblings CPU mask which share the same LLC */
++static const cpumask_t *llc_core_cpumask(int cpu)
++{
++#ifdef CONFIG_X86
++	return per_cpu(cpu_llc_shared_map, cpu);
++#else
++	return topology_core_cpumask(cpu);
++#endif
++}
++#endif
++
++enum sched_domain_level {
++	SD_LV_NONE = 0,
++	SD_LV_SIBLING,
++	SD_LV_MC,
++	SD_LV_BOOK,
++	SD_LV_CPU,
++	SD_LV_NODE,
++	SD_LV_ALLNODES,
++	SD_LV_MAX
++};
++
++/*
++ * Set up the relative cache distance of each online cpu from each
++ * other in a simple array for quick lookup. Locality is determined
++ * by the closest sched_domain that CPUs are separated by. CPUs with
++ * shared cache in SMT and MC are treated as local. Separate CPUs
++ * (within the same package or physically) within the same node are
++ * treated as not local. CPUs not even in the same domain (different
++ * nodes) are treated as very distant.
++ */
++static void __init select_leaders(void)
++{
++	struct rq *rq, *other_rq, *leader;
++	struct sched_domain *sd;
++	int cpu, other_cpu;
++#ifdef CONFIG_SCHED_SMT
++	bool smt_threads = false;
++#endif
++
++	for (cpu = 0; cpu < num_online_cpus(); cpu++) {
++		rq = cpu_rq(cpu);
++		leader = NULL;
++		/* First check if this cpu is in the same node */
++		for_each_domain(cpu, sd) {
++			if (sd->level > SD_LV_MC)
++				continue;
++			if (rqshare != RQSHARE_ALL)
++				leader = NULL;
++			/* Set locality to local node if not already found lower */
++			for_each_cpu(other_cpu, sched_domain_span(sd)) {
++				if (rqshare >= RQSHARE_SMP) {
++					other_rq = cpu_rq(other_cpu);
++
++					/* Set the smp_leader to the first CPU */
++					if (!leader)
++						leader = rq;
++					if (!other_rq->smp_leader)
++						other_rq->smp_leader = leader;
++				}
++				if (rq->cpu_locality[other_cpu] > LOCALITY_SMP)
++					rq->cpu_locality[other_cpu] = LOCALITY_SMP;
++			}
++		}
++
++		/*
++		 * Each runqueue has its own function in case it doesn't have
++		 * siblings of its own allowing mixed topologies.
++		 */
++#ifdef CONFIG_SCHED_MC
++		leader = NULL;
++		if (cpumask_weight(core_cpumask(cpu)) > 1) {
++			cpumask_copy(&rq->core_mask, llc_core_cpumask(cpu));
++			cpumask_clear_cpu(cpu, &rq->core_mask);
++			for_each_cpu(other_cpu, core_cpumask(cpu)) {
++				if (rqshare == RQSHARE_MC ||
++					(rqshare == RQSHARE_MC_LLC && cpumask_test_cpu(other_cpu, llc_core_cpumask(cpu)))) {
++					other_rq = cpu_rq(other_cpu);
++
++					/* Set the mc_leader to the first CPU */
++					if (!leader)
++						leader = rq;
++					if (!other_rq->mc_leader)
++						other_rq->mc_leader = leader;
++				}
++				if (rq->cpu_locality[other_cpu] > LOCALITY_MC) {
++					/* this is to get LLC into play even in case LLC sharing is not used */
++					if (cpumask_test_cpu(other_cpu, llc_core_cpumask(cpu)))
++						rq->cpu_locality[other_cpu] = LOCALITY_MC_LLC;
++					else
++						rq->cpu_locality[other_cpu] = LOCALITY_MC;
++				}
++			}
++			rq->cache_idle = cache_cpu_idle;
++		}
++#endif
++#ifdef CONFIG_SCHED_SMT
++		leader = NULL;
++		if (cpumask_weight(thread_cpumask(cpu)) > 1) {
++			cpumask_copy(&rq->thread_mask, thread_cpumask(cpu));
++			cpumask_clear_cpu(cpu, &rq->thread_mask);
++			for_each_cpu(other_cpu, thread_cpumask(cpu)) {
++				if (rqshare == RQSHARE_SMT) {
++					other_rq = cpu_rq(other_cpu);
++
++					/* Set the smt_leader to the first CPU */
++					if (!leader)
++						leader = rq;
++					if (!other_rq->smt_leader)
++						other_rq->smt_leader = leader;
++				}
++				if (rq->cpu_locality[other_cpu] > LOCALITY_SMT)
++					rq->cpu_locality[other_cpu] = LOCALITY_SMT;
++			}
++			rq->siblings_idle = siblings_cpu_idle;
++			smt_threads = true;
++		}
++#endif
++	}
++
++#ifdef CONFIG_SMT_NICE
++	if (smt_threads) {
++		check_siblings = &check_smt_siblings;
++		wake_siblings = &wake_smt_siblings;
++		smt_schedule = &smt_should_schedule;
++	}
++#endif
++
++	for_each_online_cpu(cpu) {
++		rq = cpu_rq(cpu);
++		for_each_online_cpu(other_cpu) {
++			printk(KERN_DEBUG "MuQSS locality CPU %d to %d: %d\n", cpu, other_cpu, rq->cpu_locality[other_cpu]);
++		}
++	}
++}
++
++/* FIXME freeing locked spinlock */
++static void __init share_and_free_rq(struct rq *leader, struct rq *rq)
++{
++	WARN_ON(rq->nr_running > 0);
++
++	kfree(rq->node);
++	kfree(rq->sl);
++	kfree(rq->lock);
++	rq->node = leader->node;
++	rq->sl = leader->sl;
++	rq->lock = leader->lock;
++	rq->is_leader = false;
++	barrier();
++	/* To make up for not unlocking the freed runlock */
++	preempt_enable();
++}
++
++static void __init share_rqs(void)
++{
++	struct rq *rq, *leader;
++	int cpu;
++
++	for_each_online_cpu(cpu) {
++		rq = cpu_rq(cpu);
++		leader = rq->smp_leader;
++
++		rq_lock(rq);
++		if (leader && rq != leader) {
++			printk(KERN_INFO "MuQSS sharing SMP runqueue from CPU %d to CPU %d\n",
++			       leader->cpu, rq->cpu);
++			share_and_free_rq(leader, rq);
++		} else
++			rq_unlock(rq);
++	}
++
++#ifdef CONFIG_SCHED_MC
++	for_each_online_cpu(cpu) {
++		rq = cpu_rq(cpu);
++		leader = rq->mc_leader;
++
++		rq_lock(rq);
++		if (leader && rq != leader) {
++			printk(KERN_INFO "MuQSS sharing MC runqueue from CPU %d to CPU %d\n",
++			       leader->cpu, rq->cpu);
++			share_and_free_rq(leader, rq);
++		} else
++			rq_unlock(rq);
++	}
++#endif /* CONFIG_SCHED_MC */
++
++#ifdef CONFIG_SCHED_SMT
++	for_each_online_cpu(cpu) {
++		rq = cpu_rq(cpu);
++		leader = rq->smt_leader;
++
++		rq_lock(rq);
++		if (leader && rq != leader) {
++			printk(KERN_INFO "MuQSS sharing SMT runqueue from CPU %d to CPU %d\n",
++			       leader->cpu, rq->cpu);
++			share_and_free_rq(leader, rq);
++		} else
++			rq_unlock(rq);
++	}
++#endif /* CONFIG_SCHED_SMT */
++}
++
++static void __init setup_rq_orders(void)
++{
++	int *selected_cpus, *ordered_cpus;
++	struct rq *rq, *other_rq;
++	int cpu, other_cpu, i;
++
++	selected_cpus = kmalloc(sizeof(int) * NR_CPUS, GFP_ATOMIC);
++	ordered_cpus = kmalloc(sizeof(int) * NR_CPUS, GFP_ATOMIC);
++
++	total_runqueues = 0;
++	for_each_online_cpu(cpu) {
++		int locality, total_rqs = 0, total_cpus = 0;
++
++		rq = cpu_rq(cpu);
++		if (rq->is_leader)
++			total_runqueues++;
++
++		for (locality = LOCALITY_SAME; locality <= LOCALITY_DISTANT; locality++) {
++			int selected_cpu_cnt, selected_cpu_idx, test_cpu_idx, cpu_idx, best_locality, test_cpu;
++			int ordered_cpus_idx;
++
++			ordered_cpus_idx = -1;
++			selected_cpu_cnt = 0;
++
++			for_each_online_cpu(test_cpu) {
++				if (cpu < num_online_cpus() / 2)
++					other_cpu = cpu + test_cpu;
++				else
++					other_cpu = cpu - test_cpu;
++				if (other_cpu < 0)
++					other_cpu += num_online_cpus();
++				else
++					other_cpu %= num_online_cpus();
++				/* gather CPUs of the same locality */
++				if (rq->cpu_locality[other_cpu] == locality) {
++					selected_cpus[selected_cpu_cnt] = other_cpu;
++					selected_cpu_cnt++;
++				}
++			}
++
++			/* reserve first CPU as starting point */
++			if (selected_cpu_cnt > 0) {
++				ordered_cpus_idx++;
++				ordered_cpus[ordered_cpus_idx] = selected_cpus[ordered_cpus_idx];
++				selected_cpus[ordered_cpus_idx] = -1;
++			}
++
++			/* take each CPU and sort it within the same locality based on each inter-CPU localities */
++			for (test_cpu_idx = 1; test_cpu_idx < selected_cpu_cnt; test_cpu_idx++) {
++				/* starting point with worst locality and current CPU */
++				best_locality = LOCALITY_DISTANT;
++				selected_cpu_idx = test_cpu_idx;
++
++				/* try to find the best locality within group */
++				for (cpu_idx = 1; cpu_idx < selected_cpu_cnt; cpu_idx++) {
++					/* if CPU has not been used and locality is better */
++					if (selected_cpus[cpu_idx] > -1) {
++						other_rq = cpu_rq(ordered_cpus[ordered_cpus_idx]);
++						if (best_locality > other_rq->cpu_locality[selected_cpus[cpu_idx]]) {
++							/* assign best locality and best CPU idx in array */
++							best_locality = other_rq->cpu_locality[selected_cpus[cpu_idx]];
++							selected_cpu_idx = cpu_idx;
++						}
++					}
++				}
++
++				/* add our next best CPU to ordered list */
++				ordered_cpus_idx++;
++				ordered_cpus[ordered_cpus_idx] = selected_cpus[selected_cpu_idx];
++				/* mark this CPU as used */
++				selected_cpus[selected_cpu_idx] =  -1;
++			}
++
++			/* set up RQ and CPU orders */
++			for (test_cpu = 0; test_cpu <= ordered_cpus_idx; test_cpu++) {
++				other_rq = cpu_rq(ordered_cpus[test_cpu]);
++				/* set up cpu orders */
++				rq->cpu_order[total_cpus++] = other_rq;
++				if (other_rq->is_leader) {
++					/* set up RQ orders */
++					rq->rq_order[total_rqs++] = other_rq;
++				}
++			}
++		}
++	}
++
++	kfree(selected_cpus);
++	kfree(ordered_cpus);
++
++#ifdef CONFIG_X86
++	for_each_online_cpu(cpu) {
++		rq = cpu_rq(cpu);
++		for (i = 0; i < total_runqueues; i++) {
++			printk(KERN_DEBUG "MuQSS CPU %d llc %d RQ order %d RQ %d llc %d\n", cpu, per_cpu(cpu_llc_id, cpu), i,
++			       rq->rq_order[i]->cpu, per_cpu(cpu_llc_id, rq->rq_order[i]->cpu));
++		}
++	}
++
++	for_each_online_cpu(cpu) {
++		rq = cpu_rq(cpu);
++		for (i = 0; i < num_online_cpus(); i++) {
++			printk(KERN_DEBUG "MuQSS CPU %d llc %d CPU order %d RQ %d llc %d\n", cpu, per_cpu(cpu_llc_id, cpu), i,
++			       rq->cpu_order[i]->cpu, per_cpu(cpu_llc_id, rq->cpu_order[i]->cpu));
++		}
++	}
++#endif
++}
++
++void __init sched_init_smp(void)
++{
++	sched_init_numa();
++
++	/*
++	 * There's no userspace yet to cause hotplug operations; hence all the
++	 * cpu masks are stable and all blatant races in the below code cannot
++	 * happen.
++	 */
++	mutex_lock(&sched_domains_mutex);
++	sched_init_domains(cpu_active_mask);
++	mutex_unlock(&sched_domains_mutex);
++
++	/* Move init over to a non-isolated CPU */
++	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
++		BUG();
++
++	local_irq_disable();
++	mutex_lock(&sched_domains_mutex);
++	lock_all_rqs();
++
++	printk(KERN_INFO "MuQSS possible/present/online CPUs: %d/%d/%d\n",
++		num_possible_cpus(), num_present_cpus(), num_online_cpus());
++
++	select_leaders();
++
++	unlock_all_rqs();
++	mutex_unlock(&sched_domains_mutex);
++
++	share_rqs();
++
++	local_irq_enable();
++
++	setup_rq_orders();
++
++	switch (rqshare) {
++		case RQSHARE_ALL:
++			/* This should only ever read 1 */
++			printk(KERN_INFO "MuQSS runqueue share type ALL total runqueues: %d\n",
++			       total_runqueues);
++			break;
++		case RQSHARE_SMP:
++			printk(KERN_INFO "MuQSS runqueue share type SMP total runqueues: %d\n",
++			       total_runqueues);
++			break;
++		case RQSHARE_MC:
++			printk(KERN_INFO "MuQSS runqueue share type MC total runqueues: %d\n",
++			       total_runqueues);
++			break;
++		case RQSHARE_MC_LLC:
++			printk(KERN_INFO "MuQSS runqueue share type LLC total runqueues: %d\n",
++			       total_runqueues);
++			break;
++		case RQSHARE_SMT:
++			printk(KERN_INFO "MuQSS runqueue share type SMT total runqueues: %d\n",
++			       total_runqueues);
++			break;
++		case RQSHARE_NONE:
++			printk(KERN_INFO "MuQSS runqueue share type NONE total runqueues: %d\n",
++			       total_runqueues);
++			break;
++	}
++
++	sched_smp_initialized = true;
++}
++#else
++void __init sched_init_smp(void)
++{
++	sched_smp_initialized = true;
++}
++#endif /* CONFIG_SMP */
++
++int in_sched_functions(unsigned long addr)
++{
++	return in_lock_functions(addr) ||
++		(addr >= (unsigned long)__sched_text_start
++		&& addr < (unsigned long)__sched_text_end);
++}
++
++#ifdef CONFIG_CGROUP_SCHED
++/* task group related information */
++struct task_group {
++	struct cgroup_subsys_state css;
++
++	struct rcu_head rcu;
++	struct list_head list;
++
++	struct task_group *parent;
++	struct list_head siblings;
++	struct list_head children;
++};
++
++/*
++ * Default task group.
++ * Every task in system belongs to this group at bootup.
++ */
++struct task_group root_task_group;
++LIST_HEAD(task_groups);
++
++/* Cacheline aligned slab cache for task_group */
++static struct kmem_cache *task_group_cache __read_mostly;
++#endif /* CONFIG_CGROUP_SCHED */
++
++void __init sched_init(void)
++{
++#ifdef CONFIG_SMP
++	int cpu_ids;
++#endif
++	int i;
++	struct rq *rq;
++
++	wait_bit_init();
++
++	prio_ratios[0] = 128;
++	for (i = 1 ; i < NICE_WIDTH ; i++)
++		prio_ratios[i] = prio_ratios[i - 1] * 11 / 10;
++
++	skiplist_node_init(&init_task.node);
++
++#ifdef CONFIG_SMP
++	init_defrootdomain();
++	cpumask_clear(&cpu_idle_map);
++#else
++	uprq = &per_cpu(runqueues, 0);
++#endif
++
++#ifdef CONFIG_CGROUP_SCHED
++	task_group_cache = KMEM_CACHE(task_group, 0);
++
++	list_add(&root_task_group.list, &task_groups);
++	INIT_LIST_HEAD(&root_task_group.children);
++	INIT_LIST_HEAD(&root_task_group.siblings);
++#endif /* CONFIG_CGROUP_SCHED */
++	for_each_possible_cpu(i) {
++		rq = cpu_rq(i);
++		rq->node = kmalloc(sizeof(skiplist_node), GFP_ATOMIC);
++		skiplist_init(rq->node);
++		rq->sl = new_skiplist(rq->node);
++		rq->lock = kmalloc(sizeof(raw_spinlock_t), GFP_ATOMIC);
++		raw_spin_lock_init(rq->lock);
++		rq->nr_running = 0;
++		rq->nr_uninterruptible = 0;
++		rq->nr_switches = 0;
++		rq->clock = rq->old_clock = rq->last_niffy = rq->niffies = 0;
++		rq->last_jiffy = jiffies;
++		rq->user_ns = rq->nice_ns = rq->softirq_ns = rq->system_ns =
++			      rq->iowait_ns = rq->idle_ns = 0;
++		rq->dither = 0;
++		set_rq_task(rq, &init_task);
++		rq->iso_ticks = 0;
++		rq->iso_refractory = false;
++#ifdef CONFIG_SMP
++		rq->is_leader = true;
++		rq->smp_leader = NULL;
++#ifdef CONFIG_SCHED_MC
++		rq->mc_leader = NULL;
++#endif
++#ifdef CONFIG_SCHED_SMT
++		rq->smt_leader = NULL;
++#endif
++		rq->sd = NULL;
++		rq->rd = NULL;
++		rq->online = false;
++		rq->cpu = i;
++		rq_attach_root(rq, &def_root_domain);
++#endif /* CONFIG_SMP */
++		init_rq_hrexpiry(rq);
++		atomic_set(&rq->nr_iowait, 0);
++	}
++
++#ifdef CONFIG_SMP
++	cpu_ids = i;
++	/*
++	 * Set the base locality for cpu cache distance calculation to
++	 * "distant" (3). Make sure the distance from a CPU to itself is 0.
++	 */
++	for_each_possible_cpu(i) {
++		int j;
++
++		rq = cpu_rq(i);
++#ifdef CONFIG_SCHED_SMT
++		rq->siblings_idle = sole_cpu_idle;
++#endif
++#ifdef CONFIG_SCHED_MC
++		rq->cache_idle = sole_cpu_idle;
++#endif
++		rq->cpu_locality = kmalloc(cpu_ids * sizeof(int *), GFP_ATOMIC);
++		for_each_possible_cpu(j) {
++			if (i == j)
++				rq->cpu_locality[j] = LOCALITY_SAME;
++			else
++				rq->cpu_locality[j] = LOCALITY_DISTANT;
++		}
++		rq->rq_order = kmalloc(cpu_ids * sizeof(struct rq *), GFP_ATOMIC);
++		rq->cpu_order = kmalloc(cpu_ids * sizeof(struct rq *), GFP_ATOMIC);
++		rq->rq_order[0] = rq->cpu_order[0] = rq;
++		for (j = 1; j < cpu_ids; j++)
++			rq->rq_order[j] = rq->cpu_order[j] = cpu_rq(j);
++	}
++#endif
++
++	/*
++	 * The boot idle thread does lazy MMU switching as well:
++	 */
++	mmgrab(&init_mm);
++	enter_lazy_tlb(&init_mm, current);
++
++	/*
++	 * Make us the idle thread. Technically, schedule() should not be
++	 * called from this thread, however somewhere below it might be,
++	 * but because we are the idle thread, we just pick up running again
++	 * when this runqueue becomes "idle".
++	 */
++	init_idle(current, smp_processor_id());
++
++#ifdef CONFIG_SMP
++	idle_thread_set_boot_cpu();
++#endif /* SMP */
++
++	init_schedstats();
++
++	psi_init();
++}
++
++#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
++static inline int preempt_count_equals(int preempt_offset)
++{
++	int nested = preempt_count() + rcu_preempt_depth();
++
++	return (nested == preempt_offset);
++}
++
++void __might_sleep(const char *file, int line, int preempt_offset)
++{
++	/*
++	 * Blocking primitives will set (and therefore destroy) current->state,
++	 * since we will exit with TASK_RUNNING make sure we enter with it,
++	 * otherwise we will destroy state.
++	 */
++	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
++			"do not call blocking ops when !TASK_RUNNING; "
++			"state=%lx set at [<%p>] %pS\n",
++			current->state,
++			(void *)current->task_state_change,
++			(void *)current->task_state_change);
++
++	___might_sleep(file, line, preempt_offset);
++}
++EXPORT_SYMBOL(__might_sleep);
++
++void __cant_sleep(const char *file, int line, int preempt_offset)
++{
++	static unsigned long prev_jiffy;
++
++	if (irqs_disabled())
++		return;
++
++	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
++		return;
++
++	if (preempt_count() > preempt_offset)
++		return;
++
++	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
++		return;
++	prev_jiffy = jiffies;
++
++	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
++	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
++			in_atomic(), irqs_disabled(),
++			current->pid, current->comm);
++
++	debug_show_held_locks(current);
++	dump_stack();
++	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
++}
++EXPORT_SYMBOL_GPL(__cant_sleep);
++
++void ___might_sleep(const char *file, int line, int preempt_offset)
++{
++	/* Ratelimiting timestamp: */
++	static unsigned long prev_jiffy;
++
++	unsigned long preempt_disable_ip;
++
++	/* WARN_ON_ONCE() by default, no rate limit required: */
++	rcu_sleep_check();
++
++	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
++	     !is_idle_task(current) && !current->non_block_count) ||
++	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
++	    oops_in_progress)
++		return;
++
++	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
++		return;
++	prev_jiffy = jiffies;
++
++	/* Save this before calling printk(), since that will clobber it: */
++	preempt_disable_ip = get_preempt_disable_ip(current);
++
++	printk(KERN_ERR
++		"BUG: sleeping function called from invalid context at %s:%d\n",
++			file, line);
++	printk(KERN_ERR
++		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
++			in_atomic(), irqs_disabled(), current->non_block_count,
++			current->pid, current->comm);
++
++	if (task_stack_end_corrupted(current))
++		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
++
++	debug_show_held_locks(current);
++	if (irqs_disabled())
++		print_irqtrace_events(current);
++	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
++	    && !preempt_count_equals(preempt_offset)) {
++		pr_err("Preemption disabled at:");
++		print_ip_sym(KERN_ERR, preempt_disable_ip);
++	}
++	dump_stack();
++	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
++}
++EXPORT_SYMBOL(___might_sleep);
++#endif
++
++#ifdef CONFIG_MAGIC_SYSRQ
++static inline void normalise_rt_tasks(void)
++{
++	struct sched_attr attr = {};
++	struct task_struct *g, *p;
++	struct rq_flags rf;
++	struct rq *rq;
++
++	read_lock(&tasklist_lock);
++	for_each_process_thread(g, p) {
++		/*
++		 * Only normalize user tasks:
++		 */
++		if (p->flags & PF_KTHREAD)
++			continue;
++
++		if (!rt_task(p) && !iso_task(p))
++			continue;
++
++		rq = task_rq_lock(p, &rf);
++		__setscheduler(p, rq, SCHED_NORMAL, 0, &attr, false);
++		task_rq_unlock(rq, p, &rf);
++	}
++	read_unlock(&tasklist_lock);
++}
++
++void normalize_rt_tasks(void)
++{
++	normalise_rt_tasks();
++}
++#endif /* CONFIG_MAGIC_SYSRQ */
++
++#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
++/*
++ * These functions are only useful for the IA64 MCA handling, or kdb.
++ *
++ * They can only be called when the whole system has been
++ * stopped - every CPU needs to be quiescent, and no scheduling
++ * activity can take place. Using them for anything else would
++ * be a serious bug, and as a result, they aren't even visible
++ * under any other configuration.
++ */
++
++/**
++ * curr_task - return the current task for a given CPU.
++ * @cpu: the processor in question.
++ *
++ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
++ *
++ * Return: The current task for @cpu.
++ */
++struct task_struct *curr_task(int cpu)
++{
++	return cpu_curr(cpu);
++}
++
++#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
++
++#ifdef CONFIG_IA64
++/**
++ * ia64_set_curr_task - set the current task for a given CPU.
++ * @cpu: the processor in question.
++ * @p: the task pointer to set.
++ *
++ * Description: This function must only be used when non-maskable interrupts
++ * are serviced on a separate stack.  It allows the architecture to switch the
++ * notion of the current task on a CPU in a non-blocking manner.  This function
++ * must be called with all CPU's synchronised, and interrupts disabled, the
++ * and caller must save the original value of the current task (see
++ * curr_task() above) and restore that value before reenabling interrupts and
++ * re-starting the system.
++ *
++ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
++ */
++void ia64_set_curr_task(int cpu, struct task_struct *p)
++{
++	cpu_curr(cpu) = p;
++}
++
++#endif
++
++void init_idle_bootup_task(struct task_struct *idle)
++{}
++
++#ifdef CONFIG_SCHED_DEBUG
++__read_mostly bool sched_debug_enabled;
++
++void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
++			  struct seq_file *m)
++{
++	seq_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
++		   get_nr_threads(p));
++}
++
++void proc_sched_set_task(struct task_struct *p)
++{}
++#endif
++
++#ifdef CONFIG_CGROUP_SCHED
++static void sched_free_group(struct task_group *tg)
++{
++	kmem_cache_free(task_group_cache, tg);
++}
++
++/* allocate runqueue etc for a new task group */
++struct task_group *sched_create_group(struct task_group *parent)
++{
++	struct task_group *tg;
++
++	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
++	if (!tg)
++		return ERR_PTR(-ENOMEM);
++
++	return tg;
++}
++
++void sched_online_group(struct task_group *tg, struct task_group *parent)
++{
++}
++
++/* rcu callback to free various structures associated with a task group */
++static void sched_free_group_rcu(struct rcu_head *rhp)
++{
++	/* Now it should be safe to free those cfs_rqs */
++	sched_free_group(container_of(rhp, struct task_group, rcu));
++}
++
++void sched_destroy_group(struct task_group *tg)
++{
++	/* Wait for possible concurrent references to cfs_rqs complete */
++	call_rcu(&tg->rcu, sched_free_group_rcu);
++}
++
++void sched_offline_group(struct task_group *tg)
++{
++}
++
++static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
++{
++	return css ? container_of(css, struct task_group, css) : NULL;
++}
++
++static struct cgroup_subsys_state *
++cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
++{
++	struct task_group *parent = css_tg(parent_css);
++	struct task_group *tg;
++
++	if (!parent) {
++		/* This is early initialization for the top cgroup */
++		return &root_task_group.css;
++	}
++
++	tg = sched_create_group(parent);
++	if (IS_ERR(tg))
++		return ERR_PTR(-ENOMEM);
++	return &tg->css;
++}
++
++/* Expose task group only after completing cgroup initialization */
++static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
++{
++	struct task_group *tg = css_tg(css);
++	struct task_group *parent = css_tg(css->parent);
++
++	if (parent)
++		sched_online_group(tg, parent);
++	return 0;
++}
++
++static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
++{
++	struct task_group *tg = css_tg(css);
++
++	sched_offline_group(tg);
++}
++
++static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
++{
++	struct task_group *tg = css_tg(css);
++
++	/*
++	 * Relies on the RCU grace period between css_released() and this.
++	 */
++	sched_free_group(tg);
++}
++
++static void cpu_cgroup_fork(struct task_struct *task)
++{
++}
++
++static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
++{
++	return 0;
++}
++
++static void cpu_cgroup_attach(struct cgroup_taskset *tset)
++{
++}
++
++static struct cftype cpu_legacy_files[] = {
++	{ }	/* Terminate */
++};
++
++static struct cftype cpu_files[] = {
++	{ }	/* terminate */
++};
++
++static int cpu_extra_stat_show(struct seq_file *sf,
++			       struct cgroup_subsys_state *css)
++{
++	return 0;
++}
++
++struct cgroup_subsys cpu_cgrp_subsys = {
++	.css_alloc	= cpu_cgroup_css_alloc,
++	.css_online	= cpu_cgroup_css_online,
++	.css_released	= cpu_cgroup_css_released,
++	.css_free	= cpu_cgroup_css_free,
++	.css_extra_stat_show = cpu_extra_stat_show,
++	.fork		= cpu_cgroup_fork,
++	.can_attach	= cpu_cgroup_can_attach,
++	.attach		= cpu_cgroup_attach,
++	.legacy_cftypes	= cpu_files,
++	.legacy_cftypes	= cpu_legacy_files,
++	.dfl_cftypes	= cpu_files,
++	.early_init	= true,
++	.threaded	= true,
++};
++#endif	/* CONFIG_CGROUP_SCHED */
++
++void call_trace_sched_update_nr_running(struct rq *rq, int count)
++{
++        trace_sched_update_nr_running_tp(rq, count);
++}
++
++/* CFS Compat */
++#ifdef CONFIG_RCU_TORTURE_TEST
++int sysctl_sched_rt_runtime;
++#endif
+diff --git a/kernel/sched/MuQSS.h b/kernel/sched/MuQSS.h
+new file mode 100644
+index 000000000000..e8b42add3a7f
+--- /dev/null
++++ b/kernel/sched/MuQSS.h
+@@ -0,0 +1,1076 @@
++/* SPDX-License-Identifier: GPL-2.0 */
++#ifndef MUQSS_SCHED_H
++#define MUQSS_SCHED_H
++
++#include <linux/sched/clock.h>
++#include <linux/sched/cpufreq.h>
++#include <linux/sched/cputime.h>
++#include <linux/sched/deadline.h>
++#include <linux/sched/debug.h>
++#include <linux/sched/hotplug.h>
++#include <linux/sched/init.h>
++#include <linux/sched/isolation.h>
++#include <linux/sched/mm.h>
++#include <linux/sched/nohz.h>
++#include <linux/sched/signal.h>
++#include <linux/sched/smt.h>
++#include <linux/sched/stat.h>
++#include <linux/sched/task.h>
++#include <linux/sched/task_stack.h>
++#include <linux/sched/topology.h>
++#include <linux/sched/wake_q.h>
++
++#include <uapi/linux/sched/types.h>
++
++#include <linux/cgroup.h>
++#include <linux/cpufreq.h>
++#include <linux/cpuidle.h>
++#include <linux/cpuset.h>
++#include <linux/ctype.h>
++#include <linux/debugfs.h>
++#include <linux/energy_model.h>
++#include <linux/freezer.h>
++#include <linux/kernel_stat.h>
++#include <linux/kthread.h>
++#include <linux/membarrier.h>
++#include <linux/livepatch.h>
++#include <linux/proc_fs.h>
++#include <linux/psi.h>
++#include <linux/sched.h>
++#include <linux/slab.h>
++#include <linux/skip_list.h>
++#include <linux/stop_machine.h>
++#include <linux/suspend.h>
++#include <linux/swait.h>
++#include <linux/syscalls.h>
++#include <linux/tick.h>
++#include <linux/tsacct_kern.h>
++#include <linux/u64_stats_sync.h>
++
++#ifdef CONFIG_PARAVIRT
++#include <asm/paravirt.h>
++#endif
++
++#include "cpupri.h"
++
++#include <trace/events/sched.h>
++
++#ifdef CONFIG_SCHED_DEBUG
++# define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
++#else
++# define SCHED_WARN_ON(x)	((void)(x))
++#endif
++
++/* Wake flags. The first three directly map to some SD flag value */
++#define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
++#define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
++#define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
++
++#define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
++#define WF_MIGRATED 0x20 /* Internal use, task got migrated */
++#define WF_ON_CPU   0x40 /* Wakee is on_cpu */
++
++#ifdef CONFIG_SMP
++static_assert(WF_EXEC == SD_BALANCE_EXEC);
++static_assert(WF_FORK == SD_BALANCE_FORK);
++static_assert(WF_TTWU == SD_BALANCE_WAKE);
++#endif
++
++/* task_struct::on_rq states: */
++#define TASK_ON_RQ_QUEUED	1
++#define TASK_ON_RQ_MIGRATING	2
++
++extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
++
++struct rq;
++
++#ifdef CONFIG_SMP
++
++static inline bool sched_asym_prefer(int a, int b)
++{
++	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
++}
++
++struct perf_domain {
++	struct em_perf_domain *em_pd;
++	struct perf_domain *next;
++	struct rcu_head rcu;
++};
++
++/* Scheduling group status flags */
++#define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
++#define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
++
++/*
++ * We add the notion of a root-domain which will be used to define per-domain
++ * variables. Each exclusive cpuset essentially defines an island domain by
++ * fully partitioning the member cpus from any other cpuset. Whenever a new
++ * exclusive cpuset is created, we also create and attach a new root-domain
++ * object.
++ *
++ */
++struct root_domain {
++	atomic_t refcount;
++	atomic_t rto_count;
++	struct rcu_head rcu;
++	cpumask_var_t span;
++	cpumask_var_t online;
++
++	/*
++	 * Indicate pullable load on at least one CPU, e.g:
++	 * - More than one runnable task
++	 * - Running task is misfit
++	 */
++	int			overload;
++
++	/* Indicate one or more cpus over-utilized (tipping point) */
++	int			overutilized;
++
++	/*
++	 * The bit corresponding to a CPU gets set here if such CPU has more
++	 * than one runnable -deadline task (as it is below for RT tasks).
++	 */
++	cpumask_var_t dlo_mask;
++	atomic_t dlo_count;
++
++	/* Replace unused CFS structures with void */
++	//struct dl_bw dl_bw;
++	//struct cpudl cpudl;
++	void *dl_bw;
++	void *cpudl;
++	u64 visit_gen;
++
++	/*
++	 * The "RT overload" flag: it gets set if a CPU has more than
++	 * one runnable RT task.
++	 */
++	cpumask_var_t rto_mask;
++	//struct cpupri cpupri;
++	void *cpupri;
++
++	unsigned long max_cpu_capacity;
++
++	/*
++	 * NULL-terminated list of performance domains intersecting with the
++	 * CPUs of the rd. Protected by RCU.
++	 */
++	struct perf_domain	*pd;
++};
++
++extern void init_defrootdomain(void);
++extern int sched_init_domains(const struct cpumask *cpu_map);
++extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
++
++static inline void cpupri_cleanup(void __maybe_unused *cpupri)
++{
++}
++
++static inline void cpudl_cleanup(void __maybe_unused *cpudl)
++{
++}
++
++static inline void init_dl_bw(void __maybe_unused *dl_bw)
++{
++}
++
++static inline int cpudl_init(void __maybe_unused *dl_bw)
++{
++	return 0;
++}
++
++static inline int cpupri_init(void __maybe_unused *cpupri)
++{
++	return 0;
++}
++#endif /* CONFIG_SMP */
++
++/*
++ * This is the main, per-CPU runqueue data structure.
++ * This data should only be modified by the local cpu.
++ */
++struct rq {
++	raw_spinlock_t *lock;
++	raw_spinlock_t *orig_lock;
++
++	struct task_struct __rcu	*curr;
++	struct task_struct	*idle;
++	struct task_struct	*stop;
++	struct mm_struct *prev_mm;
++
++	unsigned int nr_running;
++	/*
++	 * This is part of a global counter where only the total sum
++	 * over all CPUs matters. A task can increase this counter on
++	 * one CPU and if it got migrated afterwards it may decrease
++	 * it on another CPU. Always updated under the runqueue lock:
++	 */
++	unsigned long nr_uninterruptible;
++#ifdef CONFIG_SMP
++	unsigned int		ttwu_pending;
++#endif
++	u64 nr_switches;
++
++	/* Stored data about rq->curr to work outside rq lock */
++	u64 rq_deadline;
++	int rq_prio;
++
++	/* Best queued id for use outside lock */
++	u64 best_key;
++
++	unsigned long last_scheduler_tick; /* Last jiffy this RQ ticked */
++	unsigned long last_jiffy; /* Last jiffy this RQ updated rq clock */
++	u64 niffies; /* Last time this RQ updated rq clock */
++	u64 last_niffy; /* Last niffies as updated by local clock */
++	u64 last_jiffy_niffies; /* Niffies @ last_jiffy */
++
++	u64 load_update; /* When we last updated load */
++	unsigned long load_avg; /* Rolling load average */
++#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
++	u64 irq_load_update; /* When we last updated IRQ load */
++	unsigned long irq_load_avg; /* Rolling IRQ load average */
++#endif
++#ifdef CONFIG_SMT_NICE
++	struct mm_struct *rq_mm;
++	int rq_smt_bias; /* Policy/nice level bias across smt siblings */
++#endif
++	/* Accurate timekeeping data */
++	unsigned long user_ns, nice_ns, irq_ns, softirq_ns, system_ns,
++		iowait_ns, idle_ns;
++	atomic_t nr_iowait;
++
++#ifdef CONFIG_MEMBARRIER
++	int membarrier_state;
++#endif
++
++	skiplist_node *node;
++	skiplist *sl;
++#ifdef CONFIG_SMP
++	struct task_struct *preempt; /* Preempt triggered on this task */
++	struct task_struct *preempting; /* Hint only, what task is preempting */
++
++	int cpu;		/* cpu of this runqueue */
++	bool online;
++
++	struct root_domain *rd;
++	struct sched_domain *sd;
++
++	unsigned long cpu_capacity_orig;
++
++	int *cpu_locality; /* CPU relative cache distance */
++	struct rq **rq_order; /* Shared RQs ordered by relative cache distance */
++	struct rq **cpu_order; /* RQs of discrete CPUs ordered by distance */
++
++	bool is_leader;
++	struct rq *smp_leader; /* First physical CPU per node */
++#ifdef CONFIG_SCHED_THERMAL_PRESSURE
++	struct sched_avg	avg_thermal;
++#endif /* CONFIG_SCHED_THERMAL_PRESSURE */
++#ifdef CONFIG_SCHED_SMT
++	struct rq *smt_leader; /* First logical CPU in SMT siblings */
++	cpumask_t thread_mask;
++	bool (*siblings_idle)(struct rq *rq);
++	/* See if all smt siblings are idle */
++#endif /* CONFIG_SCHED_SMT */
++#ifdef CONFIG_SCHED_MC
++	struct rq *mc_leader; /* First logical CPU in MC siblings */
++	cpumask_t core_mask;
++	bool (*cache_idle)(struct rq *rq);
++	/* See if all cache siblings are idle */
++#endif /* CONFIG_SCHED_MC */
++#endif /* CONFIG_SMP */
++
++#ifdef CONFIG_IRQ_TIME_ACCOUNTING
++	u64 prev_irq_time;
++#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
++#ifdef CONFIG_PARAVIRT
++	u64 prev_steal_time;
++#endif /* CONFIG_PARAVIRT */
++#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
++	u64 prev_steal_time_rq;
++#endif /* CONFIG_PARAVIRT_TIME_ACCOUNTING */
++
++	u64 clock, old_clock, last_tick;
++	/* Ensure that all clocks are in the same cache line */
++	u64 clock_task ____cacheline_aligned;
++	int dither;
++
++	int iso_ticks;
++	bool iso_refractory;
++
++#ifdef CONFIG_HIGH_RES_TIMERS
++	struct hrtimer hrexpiry_timer;
++#endif
++
++	int rt_nr_running; /* Number real time tasks running */
++#ifdef CONFIG_SCHEDSTATS
++
++	/* latency stats */
++	struct sched_info rq_sched_info;
++	unsigned long long rq_cpu_time;
++	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
++
++	/* sys_sched_yield() stats */
++	unsigned int yld_count;
++
++	/* schedule() stats */
++	unsigned int sched_switch;
++	unsigned int sched_count;
++	unsigned int sched_goidle;
++
++	/* try_to_wake_up() stats */
++	unsigned int ttwu_count;
++	unsigned int ttwu_local;
++#endif /* CONFIG_SCHEDSTATS */
++
++#ifdef CONFIG_CPU_IDLE
++	/* Must be inspected within a rcu lock section */
++	struct cpuidle_state *idle_state;
++#endif
++};
++
++static inline u64 __rq_clock_broken(struct rq *rq)
++{
++	return READ_ONCE(rq->clock);
++}
++
++static inline u64 rq_clock(struct rq *rq)
++{
++	lockdep_assert_held(rq->lock);
++
++	return rq->clock;
++}
++
++static inline u64 rq_clock_task(struct rq *rq)
++{
++	lockdep_assert_held(rq->lock);
++
++	return rq->clock_task;
++}
++
++/**
++ * By default the decay is the default pelt decay period.
++ * The decay shift can change the decay period in
++ * multiples of 32.
++ *  Decay shift		Decay period(ms)
++ *	0			32
++ *	1			64
++ *	2			128
++ *	3			256
++ *	4			512
++ */
++extern int sched_thermal_decay_shift;
++
++static inline u64 rq_clock_thermal(struct rq *rq)
++{
++	return rq_clock_task(rq) >> sched_thermal_decay_shift;
++}
++
++struct rq_flags {
++	unsigned long flags;
++};
++
++#ifdef CONFIG_SMP
++struct rq *cpu_rq(int cpu);
++#endif
++
++#ifndef CONFIG_SMP
++extern struct rq *uprq;
++#define cpu_rq(cpu)	(uprq)
++#define this_rq()	(uprq)
++#define raw_rq()	(uprq)
++#define task_rq(p)	(uprq)
++#define cpu_curr(cpu)	((uprq)->curr)
++#else /* CONFIG_SMP */
++DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
++#define this_rq()		this_cpu_ptr(&runqueues)
++#define raw_rq()		raw_cpu_ptr(&runqueues)
++#define task_rq(p)		cpu_rq(task_cpu(p))
++#endif /* CONFIG_SMP */
++
++static inline int task_current(struct rq *rq, struct task_struct *p)
++{
++	return rq->curr == p;
++}
++
++static inline int task_running(struct rq *rq, struct task_struct *p)
++{
++#ifdef CONFIG_SMP
++	return p->on_cpu;
++#else
++	return task_current(rq, p);
++#endif
++}
++
++static inline int task_on_rq_queued(struct task_struct *p)
++{
++	return p->on_rq == TASK_ON_RQ_QUEUED;
++}
++
++static inline int task_on_rq_migrating(struct task_struct *p)
++{
++	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
++}
++
++static inline void rq_lock(struct rq *rq)
++	__acquires(rq->lock)
++{
++	raw_spin_lock(rq->lock);
++}
++
++static inline void rq_unlock(struct rq *rq)
++	__releases(rq->lock)
++{
++	raw_spin_unlock(rq->lock);
++}
++
++static inline void rq_lock_irq(struct rq *rq)
++	__acquires(rq->lock)
++{
++	raw_spin_lock_irq(rq->lock);
++}
++
++static inline void rq_unlock_irq(struct rq *rq, struct rq_flags __always_unused *rf)
++	__releases(rq->lock)
++{
++	raw_spin_unlock_irq(rq->lock);
++}
++
++static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
++	__acquires(rq->lock)
++{
++	raw_spin_lock_irqsave(rq->lock, rf->flags);
++}
++
++static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
++	__releases(rq->lock)
++{
++	raw_spin_unlock_irqrestore(rq->lock, rf->flags);
++}
++
++static inline struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
++	__acquires(p->pi_lock)
++	__acquires(rq->lock)
++{
++	struct rq *rq;
++
++	while (42) {
++		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
++		rq = task_rq(p);
++		raw_spin_lock(rq->lock);
++		if (likely(rq == task_rq(p)))
++			break;
++		raw_spin_unlock(rq->lock);
++		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
++	}
++	return rq;
++}
++
++static inline void task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
++	__releases(rq->lock)
++	__releases(p->pi_lock)
++{
++	rq_unlock(rq);
++	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
++}
++
++static inline struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags __always_unused *rf)
++	__acquires(rq->lock)
++{
++	struct rq *rq;
++
++	lockdep_assert_held(&p->pi_lock);
++
++	while (42) {
++		rq = task_rq(p);
++		raw_spin_lock(rq->lock);
++		if (likely(rq == task_rq(p)))
++			break;
++		raw_spin_unlock(rq->lock);
++	}
++	return rq;
++}
++
++static inline void __task_rq_unlock(struct rq *rq, struct rq_flags __always_unused *rf)
++{
++	rq_unlock(rq);
++}
++
++static inline struct rq *
++this_rq_lock_irq(struct rq_flags *rf)
++	__acquires(rq->lock)
++{
++	struct rq *rq;
++
++	local_irq_disable();
++	rq = this_rq();
++	rq_lock(rq);
++	return rq;
++}
++
++/*
++ * {de,en}queue flags: Most not used on MuQSS.
++ *
++ * DEQUEUE_SLEEP  - task is no longer runnable
++ * ENQUEUE_WAKEUP - task just became runnable
++ *
++ * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
++ *                are in a known state which allows modification. Such pairs
++ *                should preserve as much state as possible.
++ *
++ * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
++ *        in the runqueue.
++ *
++ * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
++ * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
++ * ENQUEUE_MIGRATED  - the task was migrated during wakeup
++ *
++ */
++
++#define DEQUEUE_SLEEP		0x01
++#define DEQUEUE_SAVE		0x02 /* matches ENQUEUE_RESTORE */
++
++#define ENQUEUE_WAKEUP		0x01
++#define ENQUEUE_RESTORE		0x02
++
++#ifdef CONFIG_SMP
++#define ENQUEUE_MIGRATED	0x40
++#else
++#define ENQUEUE_MIGRATED	0x00
++#endif
++
++#ifdef CONFIG_NUMA
++enum numa_topology_type {
++	NUMA_DIRECT,
++	NUMA_GLUELESS_MESH,
++	NUMA_BACKPLANE,
++};
++extern enum numa_topology_type sched_numa_topology_type;
++extern int sched_max_numa_distance;
++extern bool find_numa_distance(int distance);
++extern void sched_init_numa(void);
++extern void sched_domains_numa_masks_set(unsigned int cpu);
++extern void sched_domains_numa_masks_clear(unsigned int cpu);
++extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
++#else
++static inline void sched_init_numa(void) { }
++static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
++static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
++static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
++{
++	return nr_cpu_ids;
++}
++#endif
++
++extern struct mutex sched_domains_mutex;
++extern struct static_key_false sched_schedstats;
++
++#define rcu_dereference_check_sched_domain(p) \
++	rcu_dereference_check((p), \
++			      lockdep_is_held(&sched_domains_mutex))
++
++#define SCA_CHECK		0x01
++
++#ifdef CONFIG_SMP
++
++/*
++ * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
++ * See destroy_sched_domains: call_rcu for details.
++ *
++ * The domain tree of any CPU may only be accessed from within
++ * preempt-disabled sections.
++ */
++#define for_each_domain(cpu, __sd) \
++	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
++			__sd; __sd = __sd->parent)
++
++/**
++ * highest_flag_domain - Return highest sched_domain containing flag.
++ * @cpu:	The cpu whose highest level of sched domain is to
++ *		be returned.
++ * @flag:	The flag to check for the highest sched_domain
++ *		for the given cpu.
++ *
++ * Returns the highest sched_domain of a cpu which contains the given flag.
++ */
++static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
++{
++	struct sched_domain *sd, *hsd = NULL;
++
++	for_each_domain(cpu, sd) {
++		if (!(sd->flags & flag))
++			break;
++		hsd = sd;
++	}
++
++	return hsd;
++}
++
++static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
++{
++	struct sched_domain *sd;
++
++	for_each_domain(cpu, sd) {
++		if (sd->flags & flag)
++			break;
++	}
++
++	return sd;
++}
++
++DECLARE_PER_CPU(struct sched_domain *, sd_llc);
++DECLARE_PER_CPU(int, sd_llc_size);
++DECLARE_PER_CPU(int, sd_llc_id);
++DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
++DECLARE_PER_CPU(struct sched_domain *, sd_numa);
++DECLARE_PER_CPU(struct sched_domain *, sd_asym_packing);
++DECLARE_PER_CPU(struct sched_domain *, sd_asym_cpucapacity);
++
++struct sched_group_capacity {
++	atomic_t ref;
++	/*
++	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
++	 * for a single CPU.
++	 */
++	unsigned long		capacity;
++	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
++	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
++	unsigned long		next_update;
++	int			imbalance;		/* XXX unrelated to capacity but shared group state */
++
++#ifdef CONFIG_SCHED_DEBUG
++	int id;
++#endif
++
++	unsigned long cpumask[]; /* balance mask */
++};
++
++struct sched_group {
++	struct sched_group *next;	/* Must be a circular list */
++	atomic_t ref;
++
++	unsigned int group_weight;
++	struct sched_group_capacity *sgc;
++	int asym_prefer_cpu;		/* cpu of highest priority in group */
++
++	/*
++	 * The CPUs this group covers.
++	 *
++	 * NOTE: this field is variable length. (Allocated dynamically
++	 * by attaching extra space to the end of the structure,
++	 * depending on how many CPUs the kernel has booted up with)
++	 */
++	unsigned long cpumask[0];
++};
++
++static inline struct cpumask *sched_group_span(struct sched_group *sg)
++{
++	return to_cpumask(sg->cpumask);
++}
++
++/*
++ * See build_balance_mask().
++ */
++static inline struct cpumask *group_balance_mask(struct sched_group *sg)
++{
++	return to_cpumask(sg->sgc->cpumask);
++}
++
++/**
++ * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
++ * @group: The group whose first cpu is to be returned.
++ */
++static inline unsigned int group_first_cpu(struct sched_group *group)
++{
++	return cpumask_first(sched_group_span(group));
++}
++
++
++#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
++void register_sched_domain_sysctl(void);
++void dirty_sched_domain_sysctl(int cpu);
++void unregister_sched_domain_sysctl(void);
++#else
++static inline void register_sched_domain_sysctl(void)
++{
++}
++static inline void dirty_sched_domain_sysctl(int cpu)
++{
++}
++static inline void unregister_sched_domain_sysctl(void)
++{
++}
++#endif
++
++extern void flush_smp_call_function_from_idle(void);
++
++extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
++
++extern void set_rq_online (struct rq *rq);
++extern void set_rq_offline(struct rq *rq);
++extern bool sched_smp_initialized;
++
++static inline void update_group_capacity(struct sched_domain *sd, int cpu)
++{
++}
++
++static inline void trigger_load_balance(struct rq *rq)
++{
++}
++
++#else /* CONFIG_SMP */
++
++static inline void flush_smp_call_function_from_idle(void) { }
++
++#endif /* CONFIG_SMP */
++
++#ifdef CONFIG_CPU_IDLE
++static inline void idle_set_state(struct rq *rq,
++				  struct cpuidle_state *idle_state)
++{
++	rq->idle_state = idle_state;
++}
++
++static inline struct cpuidle_state *idle_get_state(struct rq *rq)
++{
++	SCHED_WARN_ON(!rcu_read_lock_held());
++	return rq->idle_state;
++}
++#else
++static inline void idle_set_state(struct rq *rq,
++				  struct cpuidle_state *idle_state)
++{
++}
++
++static inline struct cpuidle_state *idle_get_state(struct rq *rq)
++{
++	return NULL;
++}
++#endif
++
++#ifdef CONFIG_SCHED_DEBUG
++extern bool sched_debug_enabled;
++#endif
++
++extern void schedule_idle(void);
++
++#ifdef CONFIG_IRQ_TIME_ACCOUNTING
++struct irqtime {
++	u64			total;
++	u64			tick_delta;
++	u64			irq_start_time;
++	struct u64_stats_sync	sync;
++};
++
++DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
++
++/*
++ * Returns the irqtime minus the softirq time computed by ksoftirqd.
++ * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
++ * and never move forward.
++ */
++static inline u64 irq_time_read(int cpu)
++{
++	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
++	unsigned int seq;
++	u64 total;
++
++	do {
++		seq = __u64_stats_fetch_begin(&irqtime->sync);
++		total = irqtime->total;
++	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
++
++	return total;
++}
++#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
++
++static inline bool sched_stop_runnable(struct rq *rq)
++{
++	return rq->stop && task_on_rq_queued(rq->stop);
++}
++
++#ifdef CONFIG_SMP
++static inline int cpu_of(struct rq *rq)
++{
++	return rq->cpu;
++}
++#else /* CONFIG_SMP */
++static inline int cpu_of(struct rq *rq)
++{
++	return 0;
++}
++#endif
++
++#ifdef CONFIG_CPU_FREQ
++DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
++
++static inline void cpufreq_trigger(struct rq *rq, unsigned int flags)
++{
++	struct update_util_data *data;
++
++	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
++						  cpu_of(rq)));
++
++	if (data)
++		data->func(data, rq->niffies, flags);
++}
++#else
++static inline void cpufreq_trigger(struct rq *rq, unsigned int flag)
++{
++}
++#endif /* CONFIG_CPU_FREQ */
++
++static __always_inline
++unsigned int uclamp_rq_util_with(struct rq __maybe_unused *rq, unsigned int util,
++			      struct task_struct __maybe_unused *p)
++{
++	return util;
++}
++
++static inline bool uclamp_is_used(void)
++{
++	return false;
++}
++
++#ifndef arch_scale_freq_tick
++static __always_inline
++void arch_scale_freq_tick(void)
++{
++}
++#endif
++
++#ifdef arch_scale_freq_capacity
++#ifndef arch_scale_freq_invariant
++#define arch_scale_freq_invariant()	(true)
++#endif
++#else /* arch_scale_freq_capacity */
++#define arch_scale_freq_invariant()	(false)
++#endif
++
++#ifdef CONFIG_64BIT
++static inline u64 read_sum_exec_runtime(struct task_struct *t)
++{
++	return tsk_seruntime(t);
++}
++#else
++static inline u64 read_sum_exec_runtime(struct task_struct *t)
++{
++	struct rq_flags rf;
++	u64 ns;
++	struct rq *rq;
++
++	rq = task_rq_lock(t, &rf);
++	ns = tsk_seruntime(t);
++	task_rq_unlock(rq, t, &rf);
++
++	return ns;
++}
++#endif
++
++#ifndef arch_scale_freq_capacity
++/**
++ * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
++ * @cpu: the CPU in question.
++ *
++ * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
++ *
++ *     f_curr
++ *     ------ * SCHED_CAPACITY_SCALE
++ *     f_max
++ */
++static __always_inline
++unsigned long arch_scale_freq_capacity(int cpu)
++{
++	return SCHED_CAPACITY_SCALE;
++}
++#endif
++
++#ifdef CONFIG_NO_HZ_FULL
++extern bool sched_can_stop_tick(struct rq *rq);
++extern int __init sched_tick_offload_init(void);
++
++/*
++ * Tick may be needed by tasks in the runqueue depending on their policy and
++ * requirements. If tick is needed, lets send the target an IPI to kick it out of
++ * nohz mode if necessary.
++ */
++static inline void sched_update_tick_dependency(struct rq *rq)
++{
++	int cpu = cpu_of(rq);
++
++	if (!tick_nohz_full_cpu(cpu))
++		return;
++
++	if (sched_can_stop_tick(rq))
++		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
++	else
++		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
++}
++#else
++static inline int sched_tick_offload_init(void) { return 0; }
++static inline void sched_update_tick_dependency(struct rq *rq) { }
++#endif
++
++#define SCHED_FLAG_SUGOV	0x10000000
++
++#ifdef CONFIG_SMP
++/**
++ * enum cpu_util_type - CPU utilization type
++ * @FREQUENCY_UTIL:	Utilization used to select frequency
++ * @ENERGY_UTIL:	Utilization used during energy calculation
++ *
++ * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
++ * need to be aggregated differently depending on the usage made of them. This
++ * enum is used within schedutil_freq_util() to differentiate the types of
++ * enum is used within effective_cpu_util() to differentiate the types of
++ * utilization expected by the callers, and adjust the aggregation accordingly.
++ */
++enum cpu_util_type {
++	FREQUENCY_UTIL,
++	ENERGY_UTIL,
++};
++
++unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
++				 unsigned long max, enum cpu_util_type type,
++				 struct task_struct *p);
++
++static inline unsigned long cpu_bw_dl(struct rq *rq)
++{
++	return 0;
++}
++
++static inline unsigned long cpu_util_dl(struct rq *rq)
++{
++	return 0;
++}
++
++static inline unsigned long cpu_util_cfs(struct rq *rq)
++{
++	unsigned long ret = READ_ONCE(rq->load_avg);
++
++	if (ret > SCHED_CAPACITY_SCALE)
++		ret = SCHED_CAPACITY_SCALE;
++	return ret;
++}
++
++static inline unsigned long cpu_util_rt(struct rq *rq)
++{
++	unsigned long ret = READ_ONCE(rq->rt_nr_running);
++
++	if (ret > SCHED_CAPACITY_SCALE)
++		ret = SCHED_CAPACITY_SCALE;
++	return ret;
++}
++
++#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
++static inline unsigned long cpu_util_irq(struct rq *rq)
++{
++	unsigned long ret = READ_ONCE(rq->irq_load_avg);
++
++	if (ret > SCHED_CAPACITY_SCALE)
++		ret = SCHED_CAPACITY_SCALE;
++	return ret;
++}
++
++static inline
++unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
++{
++	util *= (max - irq);
++	util /= max;
++
++	return util;
++
++}
++#else /* CONFIG_HAVE_SCHED_AVG_IRQ */
++static inline unsigned long cpu_util_irq(struct rq *rq)
++{
++	return 0;
++}
++
++static inline
++unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
++{
++	return util;
++}
++#endif /* CONFIG_HAVE_SCHED_AVG_IRQ */
++#endif /* CONFIG_SMP */
++
++#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
++#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
++
++DECLARE_STATIC_KEY_FALSE(sched_energy_present);
++
++static inline bool sched_energy_enabled(void)
++{
++	return static_branch_unlikely(&sched_energy_present);
++}
++
++#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
++
++#define perf_domain_span(pd) NULL
++static inline bool sched_energy_enabled(void) { return false; }
++
++#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
++
++#ifdef CONFIG_MEMBARRIER
++/*
++ * The scheduler provides memory barriers required by membarrier between:
++ * - prior user-space memory accesses and store to rq->membarrier_state,
++ * - store to rq->membarrier_state and following user-space memory accesses.
++ * In the same way it provides those guarantees around store to rq->curr.
++ */
++static inline void membarrier_switch_mm(struct rq *rq,
++					struct mm_struct *prev_mm,
++					struct mm_struct *next_mm)
++{
++	int membarrier_state;
++
++	if (prev_mm == next_mm)
++		return;
++
++	membarrier_state = atomic_read(&next_mm->membarrier_state);
++	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
++		return;
++
++	WRITE_ONCE(rq->membarrier_state, membarrier_state);
++}
++#else
++static inline void membarrier_switch_mm(struct rq *rq,
++					struct mm_struct *prev_mm,
++					struct mm_struct *next_mm)
++{
++}
++#endif
++
++#ifdef CONFIG_SMP
++static inline bool is_per_cpu_kthread(struct task_struct *p)
++{
++	if (!(p->flags & PF_KTHREAD))
++		return false;
++
++	if (p->nr_cpus_allowed != 1)
++		return false;
++
++	return true;
++}
++#endif
++
++void swake_up_all_locked(struct swait_queue_head *q);
++void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
++
++/* pelt.h compat CONFIG_SCHED_THERMAL_PRESSURE impossible with MUQSS */
++static inline int
++update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
++{
++	return 0;
++}
++
++static inline u64 thermal_load_avg(struct rq *rq)
++{
++	return 0;
++}
++
++#ifdef CONFIG_RCU_TORTURE_TEST
++extern int sysctl_sched_rt_runtime;
++#endif
++
++#endif /* MUQSS_SCHED_H */
+diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
+index 50cbad89f7fa..bbcb4b481725 100644
+--- a/kernel/sched/cpufreq_schedutil.c
++++ b/kernel/sched/cpufreq_schedutil.c
+@@ -573,7 +573,11 @@ static int sugov_kthread_create(struct sugov_policy *sg_policy)
+ 	struct task_struct *thread;
+ 	struct sched_attr attr = {
+ 		.size		= sizeof(struct sched_attr),
++#ifdef CONFIG_SCHED_MUQSS
++		.sched_policy	= SCHED_RR,
++#else
+ 		.sched_policy	= SCHED_DEADLINE,
++#endif
+ 		.sched_flags	= SCHED_FLAG_SUGOV,
+ 		.sched_nice	= 0,
+ 		.sched_priority	= 0,
+diff --git a/kernel/sched/cpupri.h b/kernel/sched/cpupri.h
+index d6cba0020064..935c7dc48e26 100644
+--- a/kernel/sched/cpupri.h
++++ b/kernel/sched/cpupri.h
+@@ -17,6 +17,7 @@ struct cpupri {
+ 	int			*cpu_to_pri;
+ };
+ 
++#ifndef CONFIG_SCHED_MUQSS
+ #ifdef CONFIG_SMP
+ int  cpupri_find(struct cpupri *cp, struct task_struct *p,
+ 		 struct cpumask *lowest_mask);
+@@ -27,3 +28,4 @@ void cpupri_set(struct cpupri *cp, int cpu, int pri);
+ int  cpupri_init(struct cpupri *cp);
+ void cpupri_cleanup(struct cpupri *cp);
+ #endif
++#endif
+diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
+index 5f611658eeab..743b462b04b9 100644
+--- a/kernel/sched/cputime.c
++++ b/kernel/sched/cputime.c
+@@ -267,26 +267,6 @@ static inline u64 account_other_time(u64 max)
+ 	return accounted;
+ }
+ 
+-#ifdef CONFIG_64BIT
+-static inline u64 read_sum_exec_runtime(struct task_struct *t)
+-{
+-	return t->se.sum_exec_runtime;
+-}
+-#else
+-static u64 read_sum_exec_runtime(struct task_struct *t)
+-{
+-	u64 ns;
+-	struct rq_flags rf;
+-	struct rq *rq;
+-
+-	rq = task_rq_lock(t, &rf);
+-	ns = t->se.sum_exec_runtime;
+-	task_rq_unlock(rq, t, &rf);
+-
+-	return ns;
+-}
+-#endif
+-
+ /*
+  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
+  * tasks (sum on group iteration) belonging to @tsk's group.
+@@ -612,7 +592,7 @@ void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
+ void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
+ {
+ 	struct task_cputime cputime = {
+-		.sum_exec_runtime = p->se.sum_exec_runtime,
++		.sum_exec_runtime = tsk_seruntime(p),
+ 	};
+ 
+ 	task_cputime(p, &cputime.utime, &cputime.stime);
+diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
+index 7199e6f23789..208d86864287 100644
+--- a/kernel/sched/idle.c
++++ b/kernel/sched/idle.c
+@@ -397,6 +397,7 @@ void cpu_startup_entry(enum cpuhp_state state)
+ 		do_idle();
+ }
+ 
++#ifndef CONFIG_SCHED_MUQSS
+ /*
+  * idle-task scheduling class.
+  */
+@@ -510,3 +511,4 @@ DEFINE_SCHED_CLASS(idle) = {
+ 	.switched_to		= switched_to_idle,
+ 	.update_curr		= update_curr_idle,
+ };
++#endif /* CONFIG_SCHED_MUQSS */
+diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
+index 10a1522b1e30..086ff91e180d 100644
+--- a/kernel/sched/sched.h
++++ b/kernel/sched/sched.h
+@@ -2,6 +2,19 @@
+ /*
+  * Scheduler internal types and methods:
+  */
++#ifdef CONFIG_SCHED_MUQSS
++#include "MuQSS.h"
++
++/* Begin compatibility wrappers for MuQSS/CFS differences */
++#define rq_rt_nr_running(rq) ((rq)->rt_nr_running)
++#define rq_h_nr_running(rq) ((rq)->nr_running)
++
++#else /* CONFIG_SCHED_MUQSS */
++
++#define rq_rt_nr_running(rq) ((rq)->rt.rt_nr_running)
++#define rq_h_nr_running(rq) ((rq)->cfs.h_nr_running)
++
++
+ #include <linux/sched.h>
+ 
+ #include <linux/sched/autogroup.h>
+@@ -2720,3 +2733,25 @@ static inline bool is_per_cpu_kthread(struct task_struct *p)
+ 
+ void swake_up_all_locked(struct swait_queue_head *q);
+ void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
++
++/* MuQSS compatibility functions */
++#ifdef CONFIG_64BIT
++static inline u64 read_sum_exec_runtime(struct task_struct *t)
++{
++	return t->se.sum_exec_runtime;
++}
++#else
++static inline u64 read_sum_exec_runtime(struct task_struct *t)
++{
++	u64 ns;
++	struct rq_flags rf;
++	struct rq *rq;
++
++	rq = task_rq_lock(t, &rf);
++	ns = t->se.sum_exec_runtime;
++	task_rq_unlock(rq, t, &rf);
++
++	return ns;
++}
++#endif
++#endif /* CONFIG_SCHED_MUQSS */
+diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
+index 09d35044bd88..ab6668cefede 100644
+--- a/kernel/sched/topology.c
++++ b/kernel/sched/topology.c
+@@ -467,7 +467,11 @@ void rq_attach_root(struct rq *rq, struct root_domain *rd)
+ 	struct root_domain *old_rd = NULL;
+ 	unsigned long flags;
+ 
++#ifdef CONFIG_SCHED_MUQSS
++	raw_spin_lock_irqsave(rq->lock, flags);
++#else
+ 	raw_spin_lock_irqsave(&rq->lock, flags);
++#endif
+ 
+ 	if (rq->rd) {
+ 		old_rd = rq->rd;
+@@ -493,7 +497,11 @@ void rq_attach_root(struct rq *rq, struct root_domain *rd)
+ 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
+ 		set_rq_online(rq);
+ 
++#ifdef CONFIG_SCHED_MUQSS
++	raw_spin_unlock_irqrestore(rq->lock, flags);
++#else
+ 	raw_spin_unlock_irqrestore(&rq->lock, flags);
++#endif
+ 
+ 	if (old_rd)
+ 		call_rcu(&old_rd->rcu, free_rootdomain);
+diff --git a/kernel/skip_list.c b/kernel/skip_list.c
+new file mode 100644
+index 000000000000..bf5c6e97e139
+--- /dev/null
++++ b/kernel/skip_list.c
+@@ -0,0 +1,148 @@
++/*
++  Copyright (C) 2011,2016 Con Kolivas.
++
++  Code based on example originally by William Pugh.
++
++Skip Lists are a probabilistic alternative to balanced trees, as
++described in the June 1990 issue of CACM and were invented by
++William Pugh in 1987.
++
++A couple of comments about this implementation:
++The routine randomLevel has been hard-coded to generate random
++levels using p=0.25. It can be easily changed.
++
++The insertion routine has been implemented so as to use the
++dirty hack described in the CACM paper: if a random level is
++generated that is more than the current maximum level, the
++current maximum level plus one is used instead.
++
++Levels start at zero and go up to MaxLevel (which is equal to
++MaxNumberOfLevels-1).
++
++The routines defined in this file are:
++
++init: defines slnode
++
++new_skiplist: returns a new, empty list
++
++randomLevel: Returns a random level based on a u64 random seed passed to it.
++In MuQSS, the "niffy" time is used for this purpose.
++
++insert(l,key, value): inserts the binding (key, value) into l. This operation
++occurs in O(log n) time.
++
++delnode(slnode, l, node): deletes any binding of key from the l based on the
++actual node value. This operation occurs in O(k) time where k is the
++number of levels of the node in question (max 8). The original delete
++function occurred in O(log n) time and involved a search.
++
++MuQSS Notes: In this implementation of skiplists, there are bidirectional
++next/prev pointers and the insert function returns a pointer to the actual
++node the value is stored. The key here is chosen by the scheduler so as to
++sort tasks according to the priority list requirements and is no longer used
++by the scheduler after insertion. The scheduler lookup, however, occurs in
++O(1) time because it is always the first item in the level 0 linked list.
++Since the task struct stores a copy of the node pointer upon skiplist_insert,
++it can also remove it much faster than the original implementation with the
++aid of prev<->next pointer manipulation and no searching.
++
++*/
++
++#include <linux/slab.h>
++#include <linux/skip_list.h>
++
++#define MaxNumberOfLevels 8
++#define MaxLevel (MaxNumberOfLevels - 1)
++
++void skiplist_init(skiplist_node *slnode)
++{
++	int i;
++
++	slnode->key = 0xFFFFFFFFFFFFFFFF;
++	slnode->level = 0;
++	slnode->value = NULL;
++	for (i = 0; i < MaxNumberOfLevels; i++)
++		slnode->next[i] = slnode->prev[i] = slnode;
++}
++
++skiplist *new_skiplist(skiplist_node *slnode)
++{
++	skiplist *l = kzalloc(sizeof(skiplist), GFP_ATOMIC);
++
++	BUG_ON(!l);
++	l->header = slnode;
++	return l;
++}
++
++void free_skiplist(skiplist *l)
++{
++	skiplist_node *p, *q;
++
++	p = l->header;
++	do {
++		q = p->next[0];
++		p->next[0]->prev[0] = q->prev[0];
++		skiplist_node_init(p);
++		p = q;
++	} while (p != l->header);
++	kfree(l);
++}
++
++void skiplist_node_init(skiplist_node *node)
++{
++	memset(node, 0, sizeof(skiplist_node));
++}
++
++static inline unsigned int randomLevel(const long unsigned int randseed)
++{
++	return find_first_bit(&randseed, MaxLevel) / 2;
++}
++
++void skiplist_insert(skiplist *l, skiplist_node *node, keyType key, valueType value, unsigned int randseed)
++{
++	skiplist_node *update[MaxNumberOfLevels];
++	skiplist_node *p, *q;
++	int k = l->level;
++
++	p = l->header;
++	do {
++		while (q = p->next[k], q->key <= key)
++			p = q;
++		update[k] = p;
++	} while (--k >= 0);
++
++	++l->entries;
++	k = randomLevel(randseed);
++	if (k > l->level) {
++		k = ++l->level;
++		update[k] = l->header;
++	}
++
++	node->level = k;
++	node->key = key;
++	node->value = value;
++	do {
++		p = update[k];
++		node->next[k] = p->next[k];
++		p->next[k] = node;
++		node->prev[k] = p;
++		node->next[k]->prev[k] = node;
++	} while (--k >= 0);
++}
++
++void skiplist_delete(skiplist *l, skiplist_node *node)
++{
++	int k, m = node->level;
++
++	for (k = 0; k <= m; k++) {
++		node->prev[k]->next[k] = node->next[k];
++		node->next[k]->prev[k] = node->prev[k];
++	}
++	skiplist_node_init(node);
++	if (m == l->level) {
++		while (l->header->next[m] == l->header && l->header->prev[m] == l->header && m > 0)
++			m--;
++		l->level = m;
++	}
++	l->entries--;
++}
+diff --git a/kernel/sysctl.c b/kernel/sysctl.c
+index 62fbd09b5dc1..e21250a6b16b 100644
+--- a/kernel/sysctl.c
++++ b/kernel/sysctl.c
+@@ -120,7 +120,17 @@ static unsigned long long_max = LONG_MAX;
+ static int one_hundred = 100;
+ static int two_hundred = 200;
+ static int one_thousand = 1000;
+-#ifdef CONFIG_PRINTK
++static int zero = 0;
++static int one = 1;
++#ifdef CONFIG_SCHED_MUQSS
++extern int rr_interval;
++extern int sched_interactive;
++extern int sched_iso_cpu;
++extern int sched_yield_type;
++#endif
++extern int hrtimer_granularity_us;
++extern int hrtimeout_min_us;
++#if defined(CONFIG_PRINTK) || defined(CONFIG_SCHED_MUQSS)
+ static int ten_thousand = 10000;
+ #endif
+ #ifdef CONFIG_PERF_EVENTS
+@@ -184,7 +194,7 @@ static enum sysctl_writes_mode sysctl_writes_strict = SYSCTL_WRITES_STRICT;
+ int sysctl_legacy_va_layout;
+ #endif
+ 
+-#ifdef CONFIG_SCHED_DEBUG
++#if defined(CONFIG_SCHED_DEBUG) && !defined(CONFIG_SCHED_MUQSS)
+ static int min_sched_granularity_ns = 100000;		/* 100 usecs */
+ static int max_sched_granularity_ns = NSEC_PER_SEC;	/* 1 second */
+ static int min_wakeup_granularity_ns;			/* 0 usecs */
+@@ -193,7 +203,7 @@ static int max_wakeup_granularity_ns = NSEC_PER_SEC;	/* 1 second */
+ static int min_sched_tunable_scaling = SCHED_TUNABLESCALING_NONE;
+ static int max_sched_tunable_scaling = SCHED_TUNABLESCALING_END-1;
+ #endif /* CONFIG_SMP */
+-#endif /* CONFIG_SCHED_DEBUG */
++#endif /* CONFIG_SCHED_DEBUG && !CONFIG_SCHED_MUQSS */
+ 
+ #ifdef CONFIG_COMPACTION
+ static int min_extfrag_threshold;
+@@ -1652,6 +1662,7 @@ int proc_do_static_key(struct ctl_table *table, int write,
+ }
+ 
+ static struct ctl_table kern_table[] = {
++#ifndef CONFIG_SCHED_MUQSS
+ 	{
+ 		.procname	= "sched_child_runs_first",
+ 		.data		= &sysctl_sched_child_runs_first,
+@@ -1843,6 +1854,73 @@ static struct ctl_table kern_table[] = {
+ 		.extra1		= SYSCTL_ONE,
+ 	},
+ #endif
++#elif defined(CONFIG_SCHED_MUQSS)
++	{
++		.procname	= "rr_interval",
++		.data		= &rr_interval,
++		.maxlen		= sizeof (int),
++		.mode		= 0644,
++		.proc_handler	= &proc_dointvec_minmax,
++		.extra1		= &one,
++		.extra2		= &one_thousand,
++	},
++	{
++		.procname	= "interactive",
++		.data		= &sched_interactive,
++		.maxlen		= sizeof(int),
++		.mode		= 0644,
++		.proc_handler	= &proc_dointvec_minmax,
++		.extra1		= &zero,
++		.extra2		= &one,
++	},
++	{
++		.procname	= "iso_cpu",
++		.data		= &sched_iso_cpu,
++		.maxlen		= sizeof (int),
++		.mode		= 0644,
++		.proc_handler	= &proc_dointvec_minmax,
++		.extra1		= &zero,
++		.extra2		= &one_hundred,
++	},
++	{
++		.procname	= "yield_type",
++		.data		= &sched_yield_type,
++		.maxlen		= sizeof (int),
++		.mode		= 0644,
++		.proc_handler	= &proc_dointvec_minmax,
++		.extra1		= &zero,
++		.extra2		= &two,
++	},
++#if defined(CONFIG_SMP) && defined(CONFIG_SCHEDSTATS)
++	{
++		.procname	= "sched_schedstats",
++		.data		= NULL,
++		.maxlen		= sizeof(unsigned int),
++		.mode		= 0644,
++		.proc_handler	= sysctl_schedstats,
++		.extra1		= SYSCTL_ZERO,
++		.extra2		= SYSCTL_ONE,
++	},
++#endif /* CONFIG_SMP && CONFIG_SCHEDSTATS */
++#endif /* CONFIG_SCHED_MUQSS */
++	{
++		.procname	= "hrtimer_granularity_us",
++		.data		= &hrtimer_granularity_us,
++		.maxlen		= sizeof(int),
++		.mode		= 0644,
++		.proc_handler	= &proc_dointvec_minmax,
++		.extra1		= &one,
++		.extra2		= &ten_thousand,
++	},
++	{
++		.procname	= "hrtimeout_min_us",
++		.data		= &hrtimeout_min_us,
++		.maxlen		= sizeof(int),
++		.mode		= 0644,
++		.proc_handler	= &proc_dointvec_minmax,
++		.extra1		= &one,
++		.extra2		= &ten_thousand,
++	},
+ #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
+ 	{
+ 		.procname	= "sched_energy_aware",
+diff --git a/kernel/time/Kconfig b/kernel/time/Kconfig
+index 83e158d016ba..1823a28d10a8 100644
+--- a/kernel/time/Kconfig
++++ b/kernel/time/Kconfig
+@@ -77,6 +77,9 @@ config NO_HZ_COMMON
+ 	bool
+ 	select TICK_ONESHOT
+ 
++config NO_HZ_FULL
++	bool
++
+ choice
+ 	prompt "Timer tick handling"
+ 	default NO_HZ_IDLE if NO_HZ
+@@ -97,8 +100,9 @@ config NO_HZ_IDLE
+ 
+ 	  Most of the time you want to say Y here.
+ 
+-config NO_HZ_FULL
++config NO_HZ_FULL_NODEF
+ 	bool "Full dynticks system (tickless)"
++	select NO_HZ_FULL
+ 	# NO_HZ_COMMON dependency
+ 	# We need at least one periodic CPU for timekeeping
+ 	depends on SMP
+@@ -123,6 +127,8 @@ config NO_HZ_FULL
+ 	 transitions: syscalls, exceptions and interrupts. Even when it's
+ 	 dynamically off.
+ 
++	 Not recommended for desktops,laptops, or mobile devices.
++
+ 	 Say N.
+ 
+ endchoice
+@@ -132,7 +138,7 @@ config CONTEXT_TRACKING
+ 
+ config CONTEXT_TRACKING_FORCE
+ 	bool "Force context tracking"
+-	depends on CONTEXT_TRACKING
++	depends on CONTEXT_TRACKING && !SCHED_MUQSS
+ 	default y if !NO_HZ_FULL
+ 	help
+ 	  The major pre-requirement for full dynticks to work is to
+diff --git a/kernel/time/clockevents.c b/kernel/time/clockevents.c
+index f5490222e134..544c58c29267 100644
+--- a/kernel/time/clockevents.c
++++ b/kernel/time/clockevents.c
+@@ -190,8 +190,9 @@ int clockevents_tick_resume(struct clock_event_device *dev)
+ 
+ #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
+ 
+-/* Limit min_delta to a jiffie */
+-#define MIN_DELTA_LIMIT		(NSEC_PER_SEC / HZ)
++int __read_mostly hrtimer_granularity_us = 100;
++/* Limit min_delta to 100us */
++#define MIN_DELTA_LIMIT		(hrtimer_granularity_us * NSEC_PER_USEC)
+ 
+ /**
+  * clockevents_increase_min_delta - raise minimum delta of a clock event device
+diff --git a/kernel/time/hrtimer.c b/kernel/time/hrtimer.c
+index 5c9d968187ae..7a3d640dc13a 100644
+--- a/kernel/time/hrtimer.c
++++ b/kernel/time/hrtimer.c
+@@ -2236,3 +2236,113 @@ int __sched schedule_hrtimeout(ktime_t *expires,
+ 	return schedule_hrtimeout_range(expires, 0, mode);
+ }
+ EXPORT_SYMBOL_GPL(schedule_hrtimeout);
++
++/*
++ * As per schedule_hrtimeout but taskes a millisecond value and returns how
++ * many milliseconds are left.
++ */
++long __sched schedule_msec_hrtimeout(long timeout)
++{
++	struct hrtimer_sleeper t;
++	int delta, jiffs;
++	ktime_t expires;
++
++	if (!timeout) {
++		__set_current_state(TASK_RUNNING);
++		return 0;
++	}
++
++	jiffs = msecs_to_jiffies(timeout);
++	/*
++	 * If regular timer resolution is adequate or hrtimer resolution is not
++	 * (yet) better than Hz, as would occur during startup, use regular
++	 * timers.
++	 */
++	if (jiffs > 4 || hrtimer_resolution >= NSEC_PER_SEC / HZ || pm_freezing)
++		return schedule_timeout(jiffs);
++
++	delta = (timeout % 1000) * NSEC_PER_MSEC;
++	expires = ktime_set(0, delta);
++
++	hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
++	hrtimer_set_expires_range_ns(&t.timer, expires, delta);
++
++	hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
++
++	if (likely(t.task))
++		schedule();
++
++	hrtimer_cancel(&t.timer);
++	destroy_hrtimer_on_stack(&t.timer);
++
++	__set_current_state(TASK_RUNNING);
++
++	expires = hrtimer_expires_remaining(&t.timer);
++	timeout = ktime_to_ms(expires);
++	return timeout < 0 ? 0 : timeout;
++}
++
++EXPORT_SYMBOL(schedule_msec_hrtimeout);
++
++#define USECS_PER_SEC 1000000
++extern int hrtimer_granularity_us;
++
++static inline long schedule_usec_hrtimeout(long timeout)
++{
++	struct hrtimer_sleeper t;
++	ktime_t expires;
++	int delta;
++
++	if (!timeout) {
++		__set_current_state(TASK_RUNNING);
++		return 0;
++	}
++
++	if (hrtimer_resolution >= NSEC_PER_SEC / HZ)
++		return schedule_timeout(usecs_to_jiffies(timeout));
++
++	if (timeout < hrtimer_granularity_us)
++		timeout = hrtimer_granularity_us;
++	delta = (timeout % USECS_PER_SEC) * NSEC_PER_USEC;
++	expires = ktime_set(0, delta);
++
++	hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
++	hrtimer_set_expires_range_ns(&t.timer, expires, delta);
++
++	hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
++
++	if (likely(t.task))
++		schedule();
++
++	hrtimer_cancel(&t.timer);
++	destroy_hrtimer_on_stack(&t.timer);
++
++	__set_current_state(TASK_RUNNING);
++
++	expires = hrtimer_expires_remaining(&t.timer);
++	timeout = ktime_to_us(expires);
++	return timeout < 0 ? 0 : timeout;
++}
++
++int __read_mostly hrtimeout_min_us = 500;
++
++long __sched schedule_min_hrtimeout(void)
++{
++	return usecs_to_jiffies(schedule_usec_hrtimeout(hrtimeout_min_us));
++}
++
++EXPORT_SYMBOL(schedule_min_hrtimeout);
++
++long __sched schedule_msec_hrtimeout_interruptible(long timeout)
++{
++	__set_current_state(TASK_INTERRUPTIBLE);
++	return schedule_msec_hrtimeout(timeout);
++}
++EXPORT_SYMBOL(schedule_msec_hrtimeout_interruptible);
++
++long __sched schedule_msec_hrtimeout_uninterruptible(long timeout)
++{
++	__set_current_state(TASK_UNINTERRUPTIBLE);
++	return schedule_msec_hrtimeout(timeout);
++}
++EXPORT_SYMBOL(schedule_msec_hrtimeout_uninterruptible);
+diff --git a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c
+index 9abe15255bc4..fb612752ca24 100644
+--- a/kernel/time/posix-cpu-timers.c
++++ b/kernel/time/posix-cpu-timers.c
+@@ -216,7 +216,7 @@ static void task_sample_cputime(struct task_struct *p, u64 *samples)
+ 	u64 stime, utime;
+ 
+ 	task_cputime(p, &utime, &stime);
+-	store_samples(samples, stime, utime, p->se.sum_exec_runtime);
++	store_samples(samples, stime, utime, tsk_seruntime(p));
+ }
+ 
+ static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
+@@ -850,7 +850,7 @@ static void check_thread_timers(struct task_struct *tsk,
+ 	soft = task_rlimit(tsk, RLIMIT_RTTIME);
+ 	if (soft != RLIM_INFINITY) {
+ 		/* Task RT timeout is accounted in jiffies. RTTIME is usec */
+-		unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
++		unsigned long rttime = tsk_rttimeout(tsk) * (USEC_PER_SEC / HZ);
+ 		unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
+ 
+ 		/* At the hard limit, send SIGKILL. No further action. */
+diff --git a/kernel/time/timer.c b/kernel/time/timer.c
+index f475f1a027c8..d790104fc991 100644
+--- a/kernel/time/timer.c
++++ b/kernel/time/timer.c
+@@ -44,6 +44,7 @@
+ #include <linux/slab.h>
+ #include <linux/compat.h>
+ #include <linux/random.h>
++#include <linux/freezer.h>
+ 
+ #include <linux/uaccess.h>
+ #include <asm/unistd.h>
+@@ -1605,7 +1606,7 @@ static unsigned long __next_timer_interrupt(struct timer_base *base)
+  * Check, if the next hrtimer event is before the next timer wheel
+  * event:
+  */
+-static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
++static u64 cmp_next_hrtimer_event(struct timer_base *base, u64 basem, u64 expires)
+ {
+ 	u64 nextevt = hrtimer_get_next_event();
+ 
+@@ -1623,6 +1624,9 @@ static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
+ 	if (nextevt <= basem)
+ 		return basem;
+ 
++	if (nextevt < expires && nextevt - basem <= TICK_NSEC)
++		base->is_idle = false;
++
+ 	/*
+ 	 * Round up to the next jiffie. High resolution timers are
+ 	 * off, so the hrtimers are expired in the tick and we need to
+@@ -1692,7 +1696,7 @@ u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
+ 	}
+ 	raw_spin_unlock(&base->lock);
+ 
+-	return cmp_next_hrtimer_event(basem, expires);
++	return cmp_next_hrtimer_event(base, basem, expires);
+ }
+ 
+ /**
+@@ -1886,6 +1890,18 @@ signed long __sched schedule_timeout(signed long timeout)
+ 
+ 	expire = timeout + jiffies;
+ 
++#ifdef CONFIG_HIGH_RES_TIMERS
++	if (timeout == 1 && hrtimer_resolution < NSEC_PER_SEC / HZ) {
++		/*
++		 * Special case 1 as being a request for the minimum timeout
++		 * and use highres timers to timeout after 1ms to workaround
++		 * the granularity of low Hz tick timers.
++		 */
++		if (!schedule_min_hrtimeout())
++			return 0;
++		goto out_timeout;
++	}
++#endif
+ 	timer.task = current;
+ 	timer_setup_on_stack(&timer.timer, process_timeout, 0);
+ 	__mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
+@@ -1894,10 +1910,10 @@ signed long __sched schedule_timeout(signed long timeout)
+ 
+ 	/* Remove the timer from the object tracker */
+ 	destroy_timer_on_stack(&timer.timer);
+-
++out_timeout:
+ 	timeout = expire - jiffies;
+ 
+- out:
++out:
+ 	return timeout < 0 ? 0 : timeout;
+ }
+ EXPORT_SYMBOL(schedule_timeout);
+@@ -2040,7 +2056,19 @@ void __init init_timers(void)
+  */
+ void msleep(unsigned int msecs)
+ {
+-	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
++	int jiffs = msecs_to_jiffies(msecs);
++	unsigned long timeout;
++
++	/*
++	 * Use high resolution timers where the resolution of tick based
++	 * timers is inadequate.
++	 */
++	if (jiffs < 5 && hrtimer_resolution < NSEC_PER_SEC / HZ && !pm_freezing) {
++		while (msecs)
++			msecs = schedule_msec_hrtimeout_uninterruptible(msecs);
++		return;
++	}
++	timeout = jiffs + 1;
+ 
+ 	while (timeout)
+ 		timeout = schedule_timeout_uninterruptible(timeout);
+@@ -2054,7 +2082,15 @@ EXPORT_SYMBOL(msleep);
+  */
+ unsigned long msleep_interruptible(unsigned int msecs)
+ {
+-	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
++	int jiffs = msecs_to_jiffies(msecs);
++	unsigned long timeout;
++
++	if (jiffs < 5 && hrtimer_resolution < NSEC_PER_SEC / HZ && !pm_freezing) {
++		while (msecs && !signal_pending(current))
++			msecs = schedule_msec_hrtimeout_interruptible(msecs);
++		return msecs;
++	}
++	timeout = jiffs + 1;
+ 
+ 	while (timeout && !signal_pending(current))
+ 		timeout = schedule_timeout_interruptible(timeout);
+diff --git a/kernel/trace/trace_selftest.c b/kernel/trace/trace_selftest.c
+index 73ef12092250..f4d06357e783 100644
+--- a/kernel/trace/trace_selftest.c
++++ b/kernel/trace/trace_selftest.c
+@@ -1052,10 +1052,15 @@ static int trace_wakeup_test_thread(void *data)
+ {
+ 	/* Make this a -deadline thread */
+ 	static const struct sched_attr attr = {
++#ifdef CONFIG_SCHED_MUQSS
++		/* No deadline on MuQSS, use RR */
++		.sched_policy = SCHED_RR,
++#else
+ 		.sched_policy = SCHED_DEADLINE,
+ 		.sched_runtime = 100000ULL,
+ 		.sched_deadline = 10000000ULL,
+ 		.sched_period = 10000000ULL
++#endif
+ 	};
+ 	struct wakeup_test_data *x = data;
+ 
+diff --git a/mm/vmscan.c b/mm/vmscan.c
+index 562e87cbd7a1..f37b06c78209 100644
+--- a/mm/vmscan.c
++++ b/mm/vmscan.c
+@@ -167,7 +167,7 @@ struct scan_control {
+ /*
+  * From 0 .. 200.  Higher means more swappy.
+  */
+-int vm_swappiness = 60;
++int vm_swappiness = 33;
+ 
+ static void set_task_reclaim_state(struct task_struct *task,
+ 				   struct reclaim_state *rs)
+diff --git a/net/core/pktgen.c b/net/core/pktgen.c
+index 3fba429f1f57..9a3a9a6eb837 100644
+--- a/net/core/pktgen.c
++++ b/net/core/pktgen.c
+@@ -1894,7 +1894,7 @@ static void pktgen_mark_device(const struct pktgen_net *pn, const char *ifname)
+ 		mutex_unlock(&pktgen_thread_lock);
+ 		pr_debug("%s: waiting for %s to disappear....\n",
+ 			 __func__, ifname);
+-		schedule_timeout_interruptible(msecs_to_jiffies(msec_per_try));
++		schedule_msec_hrtimeout_interruptible((msec_per_try));
+ 		mutex_lock(&pktgen_thread_lock);
+ 
+ 		if (++i >= max_tries) {
+diff --git a/scripts/headers_install.sh b/scripts/headers_install.sh
+index dd554bd436cc..75030ad939a4 100755
+--- a/scripts/headers_install.sh
++++ b/scripts/headers_install.sh
+@@ -89,6 +89,7 @@ include/uapi/linux/atmdev.h:CONFIG_COMPAT
+ include/uapi/linux/eventpoll.h:CONFIG_PM_SLEEP
+ include/uapi/linux/hw_breakpoint.h:CONFIG_HAVE_MIXED_BREAKPOINTS_REGS
+ include/uapi/linux/pktcdvd.h:CONFIG_CDROM_PKTCDVD_WCACHE
++include/uapi/linux/sched.h:CONFIG_SCHED_MUQSS
+ "
+ 
+ for c in $configs
+diff --git a/sound/pci/maestro3.c b/sound/pci/maestro3.c
+index cdc4b6106252..159c40ec680d 100644
+--- a/sound/pci/maestro3.c
++++ b/sound/pci/maestro3.c
+@@ -1990,7 +1990,7 @@ static void snd_m3_ac97_reset(struct snd_m3 *chip)
+ 		outw(0, io + GPIO_DATA);
+ 		outw(dir | GPO_PRIMARY_AC97, io + GPIO_DIRECTION);
+ 
+-		schedule_timeout_uninterruptible(msecs_to_jiffies(delay1));
++		schedule_msec_hrtimeout_uninterruptible((delay1));
+ 
+ 		outw(GPO_PRIMARY_AC97, io + GPIO_DATA);
+ 		udelay(5);
+@@ -1998,7 +1998,7 @@ static void snd_m3_ac97_reset(struct snd_m3 *chip)
+ 		outw(IO_SRAM_ENABLE | SERIAL_AC_LINK_ENABLE, io + RING_BUS_CTRL_A);
+ 		outw(~0, io + GPIO_MASK);
+ 
+-		schedule_timeout_uninterruptible(msecs_to_jiffies(delay2));
++		schedule_msec_hrtimeout_uninterruptible((delay2));
+ 
+ 		if (! snd_m3_try_read_vendor(chip))
+ 			break;
+diff --git a/sound/soc/codecs/rt5631.c b/sound/soc/codecs/rt5631.c
+index 653da3eaf355..d77d12902594 100644
+--- a/sound/soc/codecs/rt5631.c
++++ b/sound/soc/codecs/rt5631.c
+@@ -417,7 +417,7 @@ static void onebit_depop_mute_stage(struct snd_soc_component *component, int ena
+ 	hp_zc = snd_soc_component_read(component, RT5631_INT_ST_IRQ_CTRL_2);
+ 	snd_soc_component_write(component, RT5631_INT_ST_IRQ_CTRL_2, hp_zc & 0xf7ff);
+ 	if (enable) {
+-		schedule_timeout_uninterruptible(msecs_to_jiffies(10));
++		schedule_msec_hrtimeout_uninterruptible((10));
+ 		/* config one-bit depop parameter */
+ 		rt5631_write_index(component, RT5631_SPK_INTL_CTRL, 0x307f);
+ 		snd_soc_component_update_bits(component, RT5631_HP_OUT_VOL,
+@@ -529,7 +529,7 @@ static void depop_seq_mute_stage(struct snd_soc_component *component, int enable
+ 	hp_zc = snd_soc_component_read(component, RT5631_INT_ST_IRQ_CTRL_2);
+ 	snd_soc_component_write(component, RT5631_INT_ST_IRQ_CTRL_2, hp_zc & 0xf7ff);
+ 	if (enable) {
+-		schedule_timeout_uninterruptible(msecs_to_jiffies(10));
++		schedule_msec_hrtimeout_uninterruptible((10));
+ 
+ 		/* config depop sequence parameter */
+ 		rt5631_write_index(component, RT5631_SPK_INTL_CTRL, 0x302f);
+diff --git a/sound/soc/codecs/wm8350.c b/sound/soc/codecs/wm8350.c
+index 15d42ce3b21d..897fced9589b 100644
+--- a/sound/soc/codecs/wm8350.c
++++ b/sound/soc/codecs/wm8350.c
+@@ -234,10 +234,10 @@ static void wm8350_pga_work(struct work_struct *work)
+ 		    out2->ramp == WM8350_RAMP_UP) {
+ 			/* delay is longer over 0dB as increases are larger */
+ 			if (i >= WM8350_OUTn_0dB)
+-				schedule_timeout_interruptible(msecs_to_jiffies
++				schedule_msec_hrtimeout_interruptible(
+ 							       (2));
+ 			else
+-				schedule_timeout_interruptible(msecs_to_jiffies
++				schedule_msec_hrtimeout_interruptible(
+ 							       (1));
+ 		} else
+ 			udelay(50);	/* doesn't matter if we delay longer */
+@@ -1121,7 +1121,7 @@ static int wm8350_set_bias_level(struct snd_soc_component *component,
+ 					 (platform->dis_out4 << 6));
+ 
+ 			/* wait for discharge */
+-			schedule_timeout_interruptible(msecs_to_jiffies
++			schedule_msec_hrtimeout_interruptible(
+ 						       (platform->
+ 							cap_discharge_msecs));
+ 
+@@ -1137,7 +1137,7 @@ static int wm8350_set_bias_level(struct snd_soc_component *component,
+ 					 WM8350_VBUFEN);
+ 
+ 			/* wait for vmid */
+-			schedule_timeout_interruptible(msecs_to_jiffies
++			schedule_msec_hrtimeout_interruptible(
+ 						       (platform->
+ 							vmid_charge_msecs));
+ 
+@@ -1188,7 +1188,7 @@ static int wm8350_set_bias_level(struct snd_soc_component *component,
+ 		wm8350_reg_write(wm8350, WM8350_POWER_MGMT_1, pm1);
+ 
+ 		/* wait */
+-		schedule_timeout_interruptible(msecs_to_jiffies
++		schedule_msec_hrtimeout_interruptible(
+ 					       (platform->
+ 						vmid_discharge_msecs));
+ 
+@@ -1206,7 +1206,7 @@ static int wm8350_set_bias_level(struct snd_soc_component *component,
+ 				 pm1 | WM8350_OUTPUT_DRAIN_EN);
+ 
+ 		/* wait */
+-		schedule_timeout_interruptible(msecs_to_jiffies
++		schedule_msec_hrtimeout_interruptible(
+ 					       (platform->drain_msecs));
+ 
+ 		pm1 &= ~WM8350_BIASEN;
+diff --git a/sound/soc/codecs/wm8900.c b/sound/soc/codecs/wm8900.c
+index a9a6d766a176..45bf31de6282 100644
+--- a/sound/soc/codecs/wm8900.c
++++ b/sound/soc/codecs/wm8900.c
+@@ -1104,7 +1104,7 @@ static int wm8900_set_bias_level(struct snd_soc_component *component,
+ 		/* Need to let things settle before stopping the clock
+ 		 * to ensure that restart works, see "Stopping the
+ 		 * master clock" in the datasheet. */
+-		schedule_timeout_interruptible(msecs_to_jiffies(1));
++		schedule_msec_hrtimeout_interruptible(1);
+ 		snd_soc_component_write(component, WM8900_REG_POWER2,
+ 			     WM8900_REG_POWER2_SYSCLK_ENA);
+ 		break;
+diff --git a/sound/soc/codecs/wm9713.c b/sound/soc/codecs/wm9713.c
+index e0ce32dd4a81..eb91c0282aad 100644
+--- a/sound/soc/codecs/wm9713.c
++++ b/sound/soc/codecs/wm9713.c
+@@ -199,7 +199,7 @@ static int wm9713_voice_shutdown(struct snd_soc_dapm_widget *w,
+ 
+ 	/* Gracefully shut down the voice interface. */
+ 	snd_soc_component_update_bits(component, AC97_HANDSET_RATE, 0x0f00, 0x0200);
+-	schedule_timeout_interruptible(msecs_to_jiffies(1));
++	schedule_msec_hrtimeout_interruptible(1);
+ 	snd_soc_component_update_bits(component, AC97_HANDSET_RATE, 0x0f00, 0x0f00);
+ 	snd_soc_component_update_bits(component, AC97_EXTENDED_MID, 0x1000, 0x1000);
+ 
+@@ -868,7 +868,7 @@ static int wm9713_set_pll(struct snd_soc_component *component,
+ 	wm9713->pll_in = freq_in;
+ 
+ 	/* wait 10ms AC97 link frames for the link to stabilise */
+-	schedule_timeout_interruptible(msecs_to_jiffies(10));
++	schedule_msec_hrtimeout_interruptible((10));
+ 	return 0;
+ }
+ 
+diff --git a/sound/soc/soc-dapm.c b/sound/soc/soc-dapm.c
+index b005f9eadd71..2f75a449c45c 100644
+--- a/sound/soc/soc-dapm.c
++++ b/sound/soc/soc-dapm.c
+@@ -154,7 +154,7 @@ static void dapm_assert_locked(struct snd_soc_dapm_context *dapm)
+ static void pop_wait(u32 pop_time)
+ {
+ 	if (pop_time)
+-		schedule_timeout_uninterruptible(msecs_to_jiffies(pop_time));
++		schedule_msec_hrtimeout_uninterruptible((pop_time));
+ }
+ 
+ __printf(3, 4)
+diff --git a/sound/usb/line6/pcm.c b/sound/usb/line6/pcm.c
+index fdbdfb7bce92..fa8e8faf3eb3 100644
+--- a/sound/usb/line6/pcm.c
++++ b/sound/usb/line6/pcm.c
+@@ -127,7 +127,7 @@ static void line6_wait_clear_audio_urbs(struct snd_line6_pcm *line6pcm,
+ 		if (!alive)
+ 			break;
+ 		set_current_state(TASK_UNINTERRUPTIBLE);
+-		schedule_timeout(1);
++		schedule_min_hrtimeout();
+ 	} while (--timeout > 0);
+ 	if (alive)
+ 		dev_err(line6pcm->line6->ifcdev,
diff --git a/linux-tkg-patches/5.12/0004-glitched-muqss.patch b/linux-tkg-patches/5.12/0004-glitched-muqss.patch
new file mode 100644
index 0000000..2c4837e
--- /dev/null
+++ b/linux-tkg-patches/5.12/0004-glitched-muqss.patch
@@ -0,0 +1,78 @@
+From f7f49141a5dbe9c99d78196b58c44307fb2e6be3 Mon Sep 17 00:00:00 2001
+From: Tk-Glitch <ti3nou@gmail.com>
+Date: Wed, 4 Jul 2018 04:30:08 +0200
+Subject: glitched - MuQSS
+
+diff --git a/kernel/sched/MuQSS.c b/kernel/sched/MuQSS.c
+index 84a1d08d68551..57c3036a68952 100644
+--- a/kernel/sched/MuQSS.c
++++ b/kernel/sched/MuQSS.c
+@@ -163,7 +167,11 @@ int sched_interactive __read_mostly = 1;
+  * are allowed to run five seconds as real time tasks. This is the total over
+  * all online cpus.
+  */
++#ifdef CONFIG_ZENIFY
++int sched_iso_cpu __read_mostly = 25;
++#else
+ int sched_iso_cpu __read_mostly = 70;
++#endif
+ 
+ /*
+  * sched_yield_type - Choose what sort of yield sched_yield will perform.
+
+diff --git a/kernel/Kconfig.hz b/kernel/Kconfig.hz
+index 2a202a846757..1d9c7ed79b11 100644
+--- a/kernel/Kconfig.hz
++++ b/kernel/Kconfig.hz
+@@ -5,7 +5,7 @@
+ choice
+ 	prompt "Timer frequency"
+ 	default HZ_100 if SCHED_MUQSS
+-	default HZ_250_NODEF if !SCHED_MUQSS
++	default HZ_500_NODEF if !SCHED_MUQSS
+ 	help
+ 	 Allows the configuration of the timer frequency. It is customary
+ 	 to have the timer interrupt run at 1000 Hz but 100 Hz may be more
+@@ -50,6 +50,20 @@ choice
+ 	 on SMP and NUMA systems and exactly dividing by both PAL and
+ 	 NTSC frame rates for video and multimedia work.
+ 
++	config HZ_500_NODEF
++		bool "500 HZ"
++	help
++	 500 Hz is a good timer frequency for desktops. Provides fast
++	 interactivity with great smoothness without sacrificing too
++	 much throughput.
++
++	config HZ_750_NODEF
++		bool "750 HZ"
++	help
++	 750 Hz is a good timer frequency for desktops. Provides fast
++	 interactivity with great smoothness without sacrificing too
++	 much throughput.
++
+ 	config HZ_1000_NODEF
+ 		bool "1000 HZ"
+ 	help
+@@ -63,6 +70,8 @@ config HZ
+ 	default 100 if HZ_100
+ 	default 250 if HZ_250_NODEF
+ 	default 300 if HZ_300_NODEF
++	default 500 if HZ_500_NODEF
++	default 750 if HZ_750_NODEF
+ 	default 1000 if HZ_1000_NODEF
+ 
+ config SCHED_HRTICK
+
+diff --git a/Makefile b/Makefile
+index d4d36c61940b..4a9dfe471f1f 100644
+--- a/Makefile
++++ b/Makefile
+@@ -15,7 +15,6 @@ NAME = Kleptomaniac Octopus
+ 
+ CKVERSION = -ck1
+ CKNAME = MuQSS Powered
+-EXTRAVERSION := $(EXTRAVERSION)$(CKVERSION)
+ 
+ # We are using a recursive build, so we need to do a little thinking
+ # to get the ordering right.
diff --git a/linux-tkg-patches/5.12/0004-glitched-ondemand-muqss.patch b/linux-tkg-patches/5.12/0004-glitched-ondemand-muqss.patch
new file mode 100644
index 0000000..02933e4
--- /dev/null
+++ b/linux-tkg-patches/5.12/0004-glitched-ondemand-muqss.patch
@@ -0,0 +1,18 @@
+diff --git a/drivers/cpufreq/cpufreq_ondemand.c b/drivers/cpufreq/cpufreq_ondemand.c
+index 6b423eebfd5d..61e3271675d6 100644
+--- a/drivers/cpufreq/cpufreq_ondemand.c
++++ b/drivers/cpufreq/cpufreq_ondemand.c
+@@ -21,10 +21,10 @@
+ #include "cpufreq_ondemand.h"
+ 
+ /* On-demand governor macros */
+-#define DEF_FREQUENCY_UP_THRESHOLD		(80)
+-#define DEF_SAMPLING_DOWN_FACTOR		(1)
++#define DEF_FREQUENCY_UP_THRESHOLD		(45)
++#define DEF_SAMPLING_DOWN_FACTOR		(5)
+ #define MAX_SAMPLING_DOWN_FACTOR		(100000)
+-#define MICRO_FREQUENCY_UP_THRESHOLD		(95)
++#define MICRO_FREQUENCY_UP_THRESHOLD		(45)
+ #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
+ #define MIN_FREQUENCY_UP_THRESHOLD		(1)
+ #define MAX_FREQUENCY_UP_THRESHOLD		(100)