506 lines
19 KiB
Plaintext
506 lines
19 KiB
Plaintext
|
:mod:`functools` --- Higher-order functions and operations on callable objects
|
||
|
==============================================================================
|
||
|
|
||
|
.. module:: functools
|
||
|
:synopsis: Higher-order functions and operations on callable objects.
|
||
|
|
||
|
.. moduleauthor:: Peter Harris <scav@blueyonder.co.uk>
|
||
|
.. moduleauthor:: Raymond Hettinger <python@rcn.com>
|
||
|
.. moduleauthor:: Nick Coghlan <ncoghlan@gmail.com>
|
||
|
.. moduleauthor:: Łukasz Langa <lukasz@langa.pl>
|
||
|
.. sectionauthor:: Peter Harris <scav@blueyonder.co.uk>
|
||
|
|
||
|
**Source code:** :source:`Lib/functools.py`
|
||
|
|
||
|
--------------
|
||
|
|
||
|
The :mod:`functools` module is for higher-order functions: functions that act on
|
||
|
or return other functions. In general, any callable object can be treated as a
|
||
|
function for the purposes of this module.
|
||
|
|
||
|
The :mod:`functools` module defines the following functions:
|
||
|
|
||
|
.. function:: cmp_to_key(func)
|
||
|
|
||
|
Transform an old-style comparison function to a :term:`key function`. Used
|
||
|
with tools that accept key functions (such as :func:`sorted`, :func:`min`,
|
||
|
:func:`max`, :func:`heapq.nlargest`, :func:`heapq.nsmallest`,
|
||
|
:func:`itertools.groupby`). This function is primarily used as a transition
|
||
|
tool for programs being converted from Python 2 which supported the use of
|
||
|
comparison functions.
|
||
|
|
||
|
A comparison function is any callable that accept two arguments, compares them,
|
||
|
and returns a negative number for less-than, zero for equality, or a positive
|
||
|
number for greater-than. A key function is a callable that accepts one
|
||
|
argument and returns another value to be used as the sort key.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
sorted(iterable, key=cmp_to_key(locale.strcoll)) # locale-aware sort order
|
||
|
|
||
|
For sorting examples and a brief sorting tutorial, see :ref:`sortinghowto`.
|
||
|
|
||
|
.. versionadded:: 3.2
|
||
|
|
||
|
|
||
|
.. decorator:: lru_cache(maxsize=128, typed=False)
|
||
|
|
||
|
Decorator to wrap a function with a memoizing callable that saves up to the
|
||
|
*maxsize* most recent calls. It can save time when an expensive or I/O bound
|
||
|
function is periodically called with the same arguments.
|
||
|
|
||
|
Since a dictionary is used to cache results, the positional and keyword
|
||
|
arguments to the function must be hashable.
|
||
|
|
||
|
Distinct argument patterns may be considered to be distinct calls with
|
||
|
separate cache entries. For example, `f(a=1, b=2)` and `f(b=2, a=1)`
|
||
|
differ in their keyword argument order and may have two separate cache
|
||
|
entries.
|
||
|
|
||
|
If *maxsize* is set to ``None``, the LRU feature is disabled and the cache can
|
||
|
grow without bound. The LRU feature performs best when *maxsize* is a
|
||
|
power-of-two.
|
||
|
|
||
|
If *typed* is set to true, function arguments of different types will be
|
||
|
cached separately. For example, ``f(3)`` and ``f(3.0)`` will be treated
|
||
|
as distinct calls with distinct results.
|
||
|
|
||
|
To help measure the effectiveness of the cache and tune the *maxsize*
|
||
|
parameter, the wrapped function is instrumented with a :func:`cache_info`
|
||
|
function that returns a :term:`named tuple` showing *hits*, *misses*,
|
||
|
*maxsize* and *currsize*. In a multi-threaded environment, the hits
|
||
|
and misses are approximate.
|
||
|
|
||
|
The decorator also provides a :func:`cache_clear` function for clearing or
|
||
|
invalidating the cache.
|
||
|
|
||
|
The original underlying function is accessible through the
|
||
|
:attr:`__wrapped__` attribute. This is useful for introspection, for
|
||
|
bypassing the cache, or for rewrapping the function with a different cache.
|
||
|
|
||
|
An `LRU (least recently used) cache
|
||
|
<https://en.wikipedia.org/wiki/Cache_algorithms#Examples>`_ works
|
||
|
best when the most recent calls are the best predictors of upcoming calls (for
|
||
|
example, the most popular articles on a news server tend to change each day).
|
||
|
The cache's size limit assures that the cache does not grow without bound on
|
||
|
long-running processes such as web servers.
|
||
|
|
||
|
In general, the LRU cache should only be used when you want to reuse
|
||
|
previously computed values. Accordingly, it doesn't make sense to cache
|
||
|
functions with side-effects, functions that need to create distinct mutable
|
||
|
objects on each call, or impure functions such as time() or random().
|
||
|
|
||
|
Example of an LRU cache for static web content::
|
||
|
|
||
|
@lru_cache(maxsize=32)
|
||
|
def get_pep(num):
|
||
|
'Retrieve text of a Python Enhancement Proposal'
|
||
|
resource = 'http://www.python.org/dev/peps/pep-%04d/' % num
|
||
|
try:
|
||
|
with urllib.request.urlopen(resource) as s:
|
||
|
return s.read()
|
||
|
except urllib.error.HTTPError:
|
||
|
return 'Not Found'
|
||
|
|
||
|
>>> for n in 8, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991:
|
||
|
... pep = get_pep(n)
|
||
|
... print(n, len(pep))
|
||
|
|
||
|
>>> get_pep.cache_info()
|
||
|
CacheInfo(hits=3, misses=8, maxsize=32, currsize=8)
|
||
|
|
||
|
Example of efficiently computing
|
||
|
`Fibonacci numbers <https://en.wikipedia.org/wiki/Fibonacci_number>`_
|
||
|
using a cache to implement a
|
||
|
`dynamic programming <https://en.wikipedia.org/wiki/Dynamic_programming>`_
|
||
|
technique::
|
||
|
|
||
|
@lru_cache(maxsize=None)
|
||
|
def fib(n):
|
||
|
if n < 2:
|
||
|
return n
|
||
|
return fib(n-1) + fib(n-2)
|
||
|
|
||
|
>>> [fib(n) for n in range(16)]
|
||
|
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
|
||
|
|
||
|
>>> fib.cache_info()
|
||
|
CacheInfo(hits=28, misses=16, maxsize=None, currsize=16)
|
||
|
|
||
|
.. versionadded:: 3.2
|
||
|
|
||
|
.. versionchanged:: 3.3
|
||
|
Added the *typed* option.
|
||
|
|
||
|
.. decorator:: total_ordering
|
||
|
|
||
|
Given a class defining one or more rich comparison ordering methods, this
|
||
|
class decorator supplies the rest. This simplifies the effort involved
|
||
|
in specifying all of the possible rich comparison operations:
|
||
|
|
||
|
The class must define one of :meth:`__lt__`, :meth:`__le__`,
|
||
|
:meth:`__gt__`, or :meth:`__ge__`.
|
||
|
In addition, the class should supply an :meth:`__eq__` method.
|
||
|
|
||
|
For example::
|
||
|
|
||
|
@total_ordering
|
||
|
class Student:
|
||
|
def _is_valid_operand(self, other):
|
||
|
return (hasattr(other, "lastname") and
|
||
|
hasattr(other, "firstname"))
|
||
|
def __eq__(self, other):
|
||
|
if not self._is_valid_operand(other):
|
||
|
return NotImplemented
|
||
|
return ((self.lastname.lower(), self.firstname.lower()) ==
|
||
|
(other.lastname.lower(), other.firstname.lower()))
|
||
|
def __lt__(self, other):
|
||
|
if not self._is_valid_operand(other):
|
||
|
return NotImplemented
|
||
|
return ((self.lastname.lower(), self.firstname.lower()) <
|
||
|
(other.lastname.lower(), other.firstname.lower()))
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
While this decorator makes it easy to create well behaved totally
|
||
|
ordered types, it *does* come at the cost of slower execution and
|
||
|
more complex stack traces for the derived comparison methods. If
|
||
|
performance benchmarking indicates this is a bottleneck for a given
|
||
|
application, implementing all six rich comparison methods instead is
|
||
|
likely to provide an easy speed boost.
|
||
|
|
||
|
.. versionadded:: 3.2
|
||
|
|
||
|
.. versionchanged:: 3.4
|
||
|
Returning NotImplemented from the underlying comparison function for
|
||
|
unrecognised types is now supported.
|
||
|
|
||
|
.. function:: partial(func, *args, **keywords)
|
||
|
|
||
|
Return a new :ref:`partial object<partial-objects>` which when called
|
||
|
will behave like *func* called with the positional arguments *args*
|
||
|
and keyword arguments *keywords*. If more arguments are supplied to the
|
||
|
call, they are appended to *args*. If additional keyword arguments are
|
||
|
supplied, they extend and override *keywords*.
|
||
|
Roughly equivalent to::
|
||
|
|
||
|
def partial(func, *args, **keywords):
|
||
|
def newfunc(*fargs, **fkeywords):
|
||
|
newkeywords = keywords.copy()
|
||
|
newkeywords.update(fkeywords)
|
||
|
return func(*args, *fargs, **newkeywords)
|
||
|
newfunc.func = func
|
||
|
newfunc.args = args
|
||
|
newfunc.keywords = keywords
|
||
|
return newfunc
|
||
|
|
||
|
The :func:`partial` is used for partial function application which "freezes"
|
||
|
some portion of a function's arguments and/or keywords resulting in a new object
|
||
|
with a simplified signature. For example, :func:`partial` can be used to create
|
||
|
a callable that behaves like the :func:`int` function where the *base* argument
|
||
|
defaults to two:
|
||
|
|
||
|
>>> from functools import partial
|
||
|
>>> basetwo = partial(int, base=2)
|
||
|
>>> basetwo.__doc__ = 'Convert base 2 string to an int.'
|
||
|
>>> basetwo('10010')
|
||
|
18
|
||
|
|
||
|
|
||
|
.. class:: partialmethod(func, *args, **keywords)
|
||
|
|
||
|
Return a new :class:`partialmethod` descriptor which behaves
|
||
|
like :class:`partial` except that it is designed to be used as a method
|
||
|
definition rather than being directly callable.
|
||
|
|
||
|
*func* must be a :term:`descriptor` or a callable (objects which are both,
|
||
|
like normal functions, are handled as descriptors).
|
||
|
|
||
|
When *func* is a descriptor (such as a normal Python function,
|
||
|
:func:`classmethod`, :func:`staticmethod`, :func:`abstractmethod` or
|
||
|
another instance of :class:`partialmethod`), calls to ``__get__`` are
|
||
|
delegated to the underlying descriptor, and an appropriate
|
||
|
:ref:`partial object<partial-objects>` returned as the result.
|
||
|
|
||
|
When *func* is a non-descriptor callable, an appropriate bound method is
|
||
|
created dynamically. This behaves like a normal Python function when
|
||
|
used as a method: the *self* argument will be inserted as the first
|
||
|
positional argument, even before the *args* and *keywords* supplied to
|
||
|
the :class:`partialmethod` constructor.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> class Cell(object):
|
||
|
... def __init__(self):
|
||
|
... self._alive = False
|
||
|
... @property
|
||
|
... def alive(self):
|
||
|
... return self._alive
|
||
|
... def set_state(self, state):
|
||
|
... self._alive = bool(state)
|
||
|
... set_alive = partialmethod(set_state, True)
|
||
|
... set_dead = partialmethod(set_state, False)
|
||
|
...
|
||
|
>>> c = Cell()
|
||
|
>>> c.alive
|
||
|
False
|
||
|
>>> c.set_alive()
|
||
|
>>> c.alive
|
||
|
True
|
||
|
|
||
|
.. versionadded:: 3.4
|
||
|
|
||
|
|
||
|
.. function:: reduce(function, iterable[, initializer])
|
||
|
|
||
|
Apply *function* of two arguments cumulatively to the items of *sequence*, from
|
||
|
left to right, so as to reduce the sequence to a single value. For example,
|
||
|
``reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])`` calculates ``((((1+2)+3)+4)+5)``.
|
||
|
The left argument, *x*, is the accumulated value and the right argument, *y*, is
|
||
|
the update value from the *sequence*. If the optional *initializer* is present,
|
||
|
it is placed before the items of the sequence in the calculation, and serves as
|
||
|
a default when the sequence is empty. If *initializer* is not given and
|
||
|
*sequence* contains only one item, the first item is returned.
|
||
|
|
||
|
Roughly equivalent to::
|
||
|
|
||
|
def reduce(function, iterable, initializer=None):
|
||
|
it = iter(iterable)
|
||
|
if initializer is None:
|
||
|
value = next(it)
|
||
|
else:
|
||
|
value = initializer
|
||
|
for element in it:
|
||
|
value = function(value, element)
|
||
|
return value
|
||
|
|
||
|
|
||
|
.. decorator:: singledispatch
|
||
|
|
||
|
Transform a function into a :term:`single-dispatch <single
|
||
|
dispatch>` :term:`generic function`.
|
||
|
|
||
|
To define a generic function, decorate it with the ``@singledispatch``
|
||
|
decorator. Note that the dispatch happens on the type of the first argument,
|
||
|
create your function accordingly::
|
||
|
|
||
|
>>> from functools import singledispatch
|
||
|
>>> @singledispatch
|
||
|
... def fun(arg, verbose=False):
|
||
|
... if verbose:
|
||
|
... print("Let me just say,", end=" ")
|
||
|
... print(arg)
|
||
|
|
||
|
To add overloaded implementations to the function, use the :func:`register`
|
||
|
attribute of the generic function. It is a decorator. For functions
|
||
|
annotated with types, the decorator will infer the type of the first
|
||
|
argument automatically::
|
||
|
|
||
|
>>> @fun.register
|
||
|
... def _(arg: int, verbose=False):
|
||
|
... if verbose:
|
||
|
... print("Strength in numbers, eh?", end=" ")
|
||
|
... print(arg)
|
||
|
...
|
||
|
>>> @fun.register
|
||
|
... def _(arg: list, verbose=False):
|
||
|
... if verbose:
|
||
|
... print("Enumerate this:")
|
||
|
... for i, elem in enumerate(arg):
|
||
|
... print(i, elem)
|
||
|
|
||
|
For code which doesn't use type annotations, the appropriate type
|
||
|
argument can be passed explicitly to the decorator itself::
|
||
|
|
||
|
>>> @fun.register(complex)
|
||
|
... def _(arg, verbose=False):
|
||
|
... if verbose:
|
||
|
... print("Better than complicated.", end=" ")
|
||
|
... print(arg.real, arg.imag)
|
||
|
...
|
||
|
|
||
|
|
||
|
To enable registering lambdas and pre-existing functions, the
|
||
|
:func:`register` attribute can be used in a functional form::
|
||
|
|
||
|
>>> def nothing(arg, verbose=False):
|
||
|
... print("Nothing.")
|
||
|
...
|
||
|
>>> fun.register(type(None), nothing)
|
||
|
|
||
|
The :func:`register` attribute returns the undecorated function which
|
||
|
enables decorator stacking, pickling, as well as creating unit tests for
|
||
|
each variant independently::
|
||
|
|
||
|
>>> @fun.register(float)
|
||
|
... @fun.register(Decimal)
|
||
|
... def fun_num(arg, verbose=False):
|
||
|
... if verbose:
|
||
|
... print("Half of your number:", end=" ")
|
||
|
... print(arg / 2)
|
||
|
...
|
||
|
>>> fun_num is fun
|
||
|
False
|
||
|
|
||
|
When called, the generic function dispatches on the type of the first
|
||
|
argument::
|
||
|
|
||
|
>>> fun("Hello, world.")
|
||
|
Hello, world.
|
||
|
>>> fun("test.", verbose=True)
|
||
|
Let me just say, test.
|
||
|
>>> fun(42, verbose=True)
|
||
|
Strength in numbers, eh? 42
|
||
|
>>> fun(['spam', 'spam', 'eggs', 'spam'], verbose=True)
|
||
|
Enumerate this:
|
||
|
0 spam
|
||
|
1 spam
|
||
|
2 eggs
|
||
|
3 spam
|
||
|
>>> fun(None)
|
||
|
Nothing.
|
||
|
>>> fun(1.23)
|
||
|
0.615
|
||
|
|
||
|
Where there is no registered implementation for a specific type, its
|
||
|
method resolution order is used to find a more generic implementation.
|
||
|
The original function decorated with ``@singledispatch`` is registered
|
||
|
for the base ``object`` type, which means it is used if no better
|
||
|
implementation is found.
|
||
|
|
||
|
To check which implementation will the generic function choose for
|
||
|
a given type, use the ``dispatch()`` attribute::
|
||
|
|
||
|
>>> fun.dispatch(float)
|
||
|
<function fun_num at 0x1035a2840>
|
||
|
>>> fun.dispatch(dict) # note: default implementation
|
||
|
<function fun at 0x103fe0000>
|
||
|
|
||
|
To access all registered implementations, use the read-only ``registry``
|
||
|
attribute::
|
||
|
|
||
|
>>> fun.registry.keys()
|
||
|
dict_keys([<class 'NoneType'>, <class 'int'>, <class 'object'>,
|
||
|
<class 'decimal.Decimal'>, <class 'list'>,
|
||
|
<class 'float'>])
|
||
|
>>> fun.registry[float]
|
||
|
<function fun_num at 0x1035a2840>
|
||
|
>>> fun.registry[object]
|
||
|
<function fun at 0x103fe0000>
|
||
|
|
||
|
.. versionadded:: 3.4
|
||
|
|
||
|
.. versionchanged:: 3.7
|
||
|
The :func:`register` attribute supports using type annotations.
|
||
|
|
||
|
|
||
|
.. function:: update_wrapper(wrapper, wrapped, assigned=WRAPPER_ASSIGNMENTS, updated=WRAPPER_UPDATES)
|
||
|
|
||
|
Update a *wrapper* function to look like the *wrapped* function. The optional
|
||
|
arguments are tuples to specify which attributes of the original function are
|
||
|
assigned directly to the matching attributes on the wrapper function and which
|
||
|
attributes of the wrapper function are updated with the corresponding attributes
|
||
|
from the original function. The default values for these arguments are the
|
||
|
module level constants ``WRAPPER_ASSIGNMENTS`` (which assigns to the wrapper
|
||
|
function's ``__module__``, ``__name__``, ``__qualname__``, ``__annotations__``
|
||
|
and ``__doc__``, the documentation string) and ``WRAPPER_UPDATES`` (which
|
||
|
updates the wrapper function's ``__dict__``, i.e. the instance dictionary).
|
||
|
|
||
|
To allow access to the original function for introspection and other purposes
|
||
|
(e.g. bypassing a caching decorator such as :func:`lru_cache`), this function
|
||
|
automatically adds a ``__wrapped__`` attribute to the wrapper that refers to
|
||
|
the function being wrapped.
|
||
|
|
||
|
The main intended use for this function is in :term:`decorator` functions which
|
||
|
wrap the decorated function and return the wrapper. If the wrapper function is
|
||
|
not updated, the metadata of the returned function will reflect the wrapper
|
||
|
definition rather than the original function definition, which is typically less
|
||
|
than helpful.
|
||
|
|
||
|
:func:`update_wrapper` may be used with callables other than functions. Any
|
||
|
attributes named in *assigned* or *updated* that are missing from the object
|
||
|
being wrapped are ignored (i.e. this function will not attempt to set them
|
||
|
on the wrapper function). :exc:`AttributeError` is still raised if the
|
||
|
wrapper function itself is missing any attributes named in *updated*.
|
||
|
|
||
|
.. versionadded:: 3.2
|
||
|
Automatic addition of the ``__wrapped__`` attribute.
|
||
|
|
||
|
.. versionadded:: 3.2
|
||
|
Copying of the ``__annotations__`` attribute by default.
|
||
|
|
||
|
.. versionchanged:: 3.2
|
||
|
Missing attributes no longer trigger an :exc:`AttributeError`.
|
||
|
|
||
|
.. versionchanged:: 3.4
|
||
|
The ``__wrapped__`` attribute now always refers to the wrapped
|
||
|
function, even if that function defined a ``__wrapped__`` attribute.
|
||
|
(see :issue:`17482`)
|
||
|
|
||
|
|
||
|
.. decorator:: wraps(wrapped, assigned=WRAPPER_ASSIGNMENTS, updated=WRAPPER_UPDATES)
|
||
|
|
||
|
This is a convenience function for invoking :func:`update_wrapper` as a
|
||
|
function decorator when defining a wrapper function. It is equivalent to
|
||
|
``partial(update_wrapper, wrapped=wrapped, assigned=assigned, updated=updated)``.
|
||
|
For example::
|
||
|
|
||
|
>>> from functools import wraps
|
||
|
>>> def my_decorator(f):
|
||
|
... @wraps(f)
|
||
|
... def wrapper(*args, **kwds):
|
||
|
... print('Calling decorated function')
|
||
|
... return f(*args, **kwds)
|
||
|
... return wrapper
|
||
|
...
|
||
|
>>> @my_decorator
|
||
|
... def example():
|
||
|
... """Docstring"""
|
||
|
... print('Called example function')
|
||
|
...
|
||
|
>>> example()
|
||
|
Calling decorated function
|
||
|
Called example function
|
||
|
>>> example.__name__
|
||
|
'example'
|
||
|
>>> example.__doc__
|
||
|
'Docstring'
|
||
|
|
||
|
Without the use of this decorator factory, the name of the example function
|
||
|
would have been ``'wrapper'``, and the docstring of the original :func:`example`
|
||
|
would have been lost.
|
||
|
|
||
|
|
||
|
.. _partial-objects:
|
||
|
|
||
|
:class:`partial` Objects
|
||
|
------------------------
|
||
|
|
||
|
:class:`partial` objects are callable objects created by :func:`partial`. They
|
||
|
have three read-only attributes:
|
||
|
|
||
|
|
||
|
.. attribute:: partial.func
|
||
|
|
||
|
A callable object or function. Calls to the :class:`partial` object will be
|
||
|
forwarded to :attr:`func` with new arguments and keywords.
|
||
|
|
||
|
|
||
|
.. attribute:: partial.args
|
||
|
|
||
|
The leftmost positional arguments that will be prepended to the positional
|
||
|
arguments provided to a :class:`partial` object call.
|
||
|
|
||
|
|
||
|
.. attribute:: partial.keywords
|
||
|
|
||
|
The keyword arguments that will be supplied when the :class:`partial` object is
|
||
|
called.
|
||
|
|
||
|
:class:`partial` objects are like :class:`function` objects in that they are
|
||
|
callable, weak referencable, and can have attributes. There are some important
|
||
|
differences. For instance, the :attr:`~definition.__name__` and :attr:`__doc__` attributes
|
||
|
are not created automatically. Also, :class:`partial` objects defined in
|
||
|
classes behave like static methods and do not transform into bound methods
|
||
|
during instance attribute look-up.
|