add files
This commit is contained in:
904
python-3.7.4-docs-html/_sources/library/itertools.rst.txt
Normal file
904
python-3.7.4-docs-html/_sources/library/itertools.rst.txt
Normal file
@@ -0,0 +1,904 @@
|
||||
:mod:`itertools` --- Functions creating iterators for efficient looping
|
||||
=======================================================================
|
||||
|
||||
.. module:: itertools
|
||||
:synopsis: Functions creating iterators for efficient looping.
|
||||
|
||||
.. moduleauthor:: Raymond Hettinger <python@rcn.com>
|
||||
.. sectionauthor:: Raymond Hettinger <python@rcn.com>
|
||||
|
||||
.. testsetup::
|
||||
|
||||
from itertools import *
|
||||
|
||||
--------------
|
||||
|
||||
This module implements a number of :term:`iterator` building blocks inspired
|
||||
by constructs from APL, Haskell, and SML. Each has been recast in a form
|
||||
suitable for Python.
|
||||
|
||||
The module standardizes a core set of fast, memory efficient tools that are
|
||||
useful by themselves or in combination. Together, they form an "iterator
|
||||
algebra" making it possible to construct specialized tools succinctly and
|
||||
efficiently in pure Python.
|
||||
|
||||
For instance, SML provides a tabulation tool: ``tabulate(f)`` which produces a
|
||||
sequence ``f(0), f(1), ...``. The same effect can be achieved in Python
|
||||
by combining :func:`map` and :func:`count` to form ``map(f, count())``.
|
||||
|
||||
These tools and their built-in counterparts also work well with the high-speed
|
||||
functions in the :mod:`operator` module. For example, the multiplication
|
||||
operator can be mapped across two vectors to form an efficient dot-product:
|
||||
``sum(map(operator.mul, vector1, vector2))``.
|
||||
|
||||
|
||||
**Infinite iterators:**
|
||||
|
||||
================== ================= ================================================= =========================================
|
||||
Iterator Arguments Results Example
|
||||
================== ================= ================================================= =========================================
|
||||
:func:`count` start, [step] start, start+step, start+2*step, ... ``count(10) --> 10 11 12 13 14 ...``
|
||||
:func:`cycle` p p0, p1, ... plast, p0, p1, ... ``cycle('ABCD') --> A B C D A B C D ...``
|
||||
:func:`repeat` elem [,n] elem, elem, elem, ... endlessly or up to n times ``repeat(10, 3) --> 10 10 10``
|
||||
================== ================= ================================================= =========================================
|
||||
|
||||
**Iterators terminating on the shortest input sequence:**
|
||||
|
||||
============================ ============================ ================================================= =============================================================
|
||||
Iterator Arguments Results Example
|
||||
============================ ============================ ================================================= =============================================================
|
||||
:func:`accumulate` p [,func] p0, p0+p1, p0+p1+p2, ... ``accumulate([1,2,3,4,5]) --> 1 3 6 10 15``
|
||||
:func:`chain` p, q, ... p0, p1, ... plast, q0, q1, ... ``chain('ABC', 'DEF') --> A B C D E F``
|
||||
:func:`chain.from_iterable` iterable p0, p1, ... plast, q0, q1, ... ``chain.from_iterable(['ABC', 'DEF']) --> A B C D E F``
|
||||
:func:`compress` data, selectors (d[0] if s[0]), (d[1] if s[1]), ... ``compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F``
|
||||
:func:`dropwhile` pred, seq seq[n], seq[n+1], starting when pred fails ``dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1``
|
||||
:func:`filterfalse` pred, seq elements of seq where pred(elem) is false ``filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8``
|
||||
:func:`groupby` iterable[, key] sub-iterators grouped by value of key(v)
|
||||
:func:`islice` seq, [start,] stop [, step] elements from seq[start:stop:step] ``islice('ABCDEFG', 2, None) --> C D E F G``
|
||||
:func:`starmap` func, seq func(\*seq[0]), func(\*seq[1]), ... ``starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000``
|
||||
:func:`takewhile` pred, seq seq[0], seq[1], until pred fails ``takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4``
|
||||
:func:`tee` it, n it1, it2, ... itn splits one iterator into n
|
||||
:func:`zip_longest` p, q, ... (p[0], q[0]), (p[1], q[1]), ... ``zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-``
|
||||
============================ ============================ ================================================= =============================================================
|
||||
|
||||
**Combinatoric iterators:**
|
||||
|
||||
============================================== ==================== =============================================================
|
||||
Iterator Arguments Results
|
||||
============================================== ==================== =============================================================
|
||||
:func:`product` p, q, ... [repeat=1] cartesian product, equivalent to a nested for-loop
|
||||
:func:`permutations` p[, r] r-length tuples, all possible orderings, no repeated elements
|
||||
:func:`combinations` p, r r-length tuples, in sorted order, no repeated elements
|
||||
:func:`combinations_with_replacement` p, r r-length tuples, in sorted order, with repeated elements
|
||||
``product('ABCD', repeat=2)`` ``AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD``
|
||||
``permutations('ABCD', 2)`` ``AB AC AD BA BC BD CA CB CD DA DB DC``
|
||||
``combinations('ABCD', 2)`` ``AB AC AD BC BD CD``
|
||||
``combinations_with_replacement('ABCD', 2)`` ``AA AB AC AD BB BC BD CC CD DD``
|
||||
============================================== ==================== =============================================================
|
||||
|
||||
|
||||
.. _itertools-functions:
|
||||
|
||||
Itertool functions
|
||||
------------------
|
||||
|
||||
The following module functions all construct and return iterators. Some provide
|
||||
streams of infinite length, so they should only be accessed by functions or
|
||||
loops that truncate the stream.
|
||||
|
||||
.. function:: accumulate(iterable[, func])
|
||||
|
||||
Make an iterator that returns accumulated sums, or accumulated
|
||||
results of other binary functions (specified via the optional
|
||||
*func* argument). If *func* is supplied, it should be a function
|
||||
of two arguments. Elements of the input *iterable* may be any type
|
||||
that can be accepted as arguments to *func*. (For example, with
|
||||
the default operation of addition, elements may be any addable
|
||||
type including :class:`~decimal.Decimal` or
|
||||
:class:`~fractions.Fraction`.) If the input iterable is empty, the
|
||||
output iterable will also be empty.
|
||||
|
||||
Roughly equivalent to::
|
||||
|
||||
def accumulate(iterable, func=operator.add):
|
||||
'Return running totals'
|
||||
# accumulate([1,2,3,4,5]) --> 1 3 6 10 15
|
||||
# accumulate([1,2,3,4,5], operator.mul) --> 1 2 6 24 120
|
||||
it = iter(iterable)
|
||||
try:
|
||||
total = next(it)
|
||||
except StopIteration:
|
||||
return
|
||||
yield total
|
||||
for element in it:
|
||||
total = func(total, element)
|
||||
yield total
|
||||
|
||||
There are a number of uses for the *func* argument. It can be set to
|
||||
:func:`min` for a running minimum, :func:`max` for a running maximum, or
|
||||
:func:`operator.mul` for a running product. Amortization tables can be
|
||||
built by accumulating interest and applying payments. First-order
|
||||
`recurrence relations <https://en.wikipedia.org/wiki/Recurrence_relation>`_
|
||||
can be modeled by supplying the initial value in the iterable and using only
|
||||
the accumulated total in *func* argument::
|
||||
|
||||
>>> data = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]
|
||||
>>> list(accumulate(data, operator.mul)) # running product
|
||||
[3, 12, 72, 144, 144, 1296, 0, 0, 0, 0]
|
||||
>>> list(accumulate(data, max)) # running maximum
|
||||
[3, 4, 6, 6, 6, 9, 9, 9, 9, 9]
|
||||
|
||||
# Amortize a 5% loan of 1000 with 4 annual payments of 90
|
||||
>>> cashflows = [1000, -90, -90, -90, -90]
|
||||
>>> list(accumulate(cashflows, lambda bal, pmt: bal*1.05 + pmt))
|
||||
[1000, 960.0, 918.0, 873.9000000000001, 827.5950000000001]
|
||||
|
||||
# Chaotic recurrence relation https://en.wikipedia.org/wiki/Logistic_map
|
||||
>>> logistic_map = lambda x, _: r * x * (1 - x)
|
||||
>>> r = 3.8
|
||||
>>> x0 = 0.4
|
||||
>>> inputs = repeat(x0, 36) # only the initial value is used
|
||||
>>> [format(x, '.2f') for x in accumulate(inputs, logistic_map)]
|
||||
['0.40', '0.91', '0.30', '0.81', '0.60', '0.92', '0.29', '0.79', '0.63',
|
||||
'0.88', '0.39', '0.90', '0.33', '0.84', '0.52', '0.95', '0.18', '0.57',
|
||||
'0.93', '0.25', '0.71', '0.79', '0.63', '0.88', '0.39', '0.91', '0.32',
|
||||
'0.83', '0.54', '0.95', '0.20', '0.60', '0.91', '0.30', '0.80', '0.60']
|
||||
|
||||
See :func:`functools.reduce` for a similar function that returns only the
|
||||
final accumulated value.
|
||||
|
||||
.. versionadded:: 3.2
|
||||
|
||||
.. versionchanged:: 3.3
|
||||
Added the optional *func* parameter.
|
||||
|
||||
.. function:: chain(*iterables)
|
||||
|
||||
Make an iterator that returns elements from the first iterable until it is
|
||||
exhausted, then proceeds to the next iterable, until all of the iterables are
|
||||
exhausted. Used for treating consecutive sequences as a single sequence.
|
||||
Roughly equivalent to::
|
||||
|
||||
def chain(*iterables):
|
||||
# chain('ABC', 'DEF') --> A B C D E F
|
||||
for it in iterables:
|
||||
for element in it:
|
||||
yield element
|
||||
|
||||
|
||||
.. classmethod:: chain.from_iterable(iterable)
|
||||
|
||||
Alternate constructor for :func:`chain`. Gets chained inputs from a
|
||||
single iterable argument that is evaluated lazily. Roughly equivalent to::
|
||||
|
||||
def from_iterable(iterables):
|
||||
# chain.from_iterable(['ABC', 'DEF']) --> A B C D E F
|
||||
for it in iterables:
|
||||
for element in it:
|
||||
yield element
|
||||
|
||||
|
||||
.. function:: combinations(iterable, r)
|
||||
|
||||
Return *r* length subsequences of elements from the input *iterable*.
|
||||
|
||||
Combinations are emitted in lexicographic sort order. So, if the
|
||||
input *iterable* is sorted, the combination tuples will be produced
|
||||
in sorted order.
|
||||
|
||||
Elements are treated as unique based on their position, not on their
|
||||
value. So if the input elements are unique, there will be no repeat
|
||||
values in each combination.
|
||||
|
||||
Roughly equivalent to::
|
||||
|
||||
def combinations(iterable, r):
|
||||
# combinations('ABCD', 2) --> AB AC AD BC BD CD
|
||||
# combinations(range(4), 3) --> 012 013 023 123
|
||||
pool = tuple(iterable)
|
||||
n = len(pool)
|
||||
if r > n:
|
||||
return
|
||||
indices = list(range(r))
|
||||
yield tuple(pool[i] for i in indices)
|
||||
while True:
|
||||
for i in reversed(range(r)):
|
||||
if indices[i] != i + n - r:
|
||||
break
|
||||
else:
|
||||
return
|
||||
indices[i] += 1
|
||||
for j in range(i+1, r):
|
||||
indices[j] = indices[j-1] + 1
|
||||
yield tuple(pool[i] for i in indices)
|
||||
|
||||
The code for :func:`combinations` can be also expressed as a subsequence
|
||||
of :func:`permutations` after filtering entries where the elements are not
|
||||
in sorted order (according to their position in the input pool)::
|
||||
|
||||
def combinations(iterable, r):
|
||||
pool = tuple(iterable)
|
||||
n = len(pool)
|
||||
for indices in permutations(range(n), r):
|
||||
if sorted(indices) == list(indices):
|
||||
yield tuple(pool[i] for i in indices)
|
||||
|
||||
The number of items returned is ``n! / r! / (n-r)!`` when ``0 <= r <= n``
|
||||
or zero when ``r > n``.
|
||||
|
||||
.. function:: combinations_with_replacement(iterable, r)
|
||||
|
||||
Return *r* length subsequences of elements from the input *iterable*
|
||||
allowing individual elements to be repeated more than once.
|
||||
|
||||
Combinations are emitted in lexicographic sort order. So, if the
|
||||
input *iterable* is sorted, the combination tuples will be produced
|
||||
in sorted order.
|
||||
|
||||
Elements are treated as unique based on their position, not on their
|
||||
value. So if the input elements are unique, the generated combinations
|
||||
will also be unique.
|
||||
|
||||
Roughly equivalent to::
|
||||
|
||||
def combinations_with_replacement(iterable, r):
|
||||
# combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC
|
||||
pool = tuple(iterable)
|
||||
n = len(pool)
|
||||
if not n and r:
|
||||
return
|
||||
indices = [0] * r
|
||||
yield tuple(pool[i] for i in indices)
|
||||
while True:
|
||||
for i in reversed(range(r)):
|
||||
if indices[i] != n - 1:
|
||||
break
|
||||
else:
|
||||
return
|
||||
indices[i:] = [indices[i] + 1] * (r - i)
|
||||
yield tuple(pool[i] for i in indices)
|
||||
|
||||
The code for :func:`combinations_with_replacement` can be also expressed as
|
||||
a subsequence of :func:`product` after filtering entries where the elements
|
||||
are not in sorted order (according to their position in the input pool)::
|
||||
|
||||
def combinations_with_replacement(iterable, r):
|
||||
pool = tuple(iterable)
|
||||
n = len(pool)
|
||||
for indices in product(range(n), repeat=r):
|
||||
if sorted(indices) == list(indices):
|
||||
yield tuple(pool[i] for i in indices)
|
||||
|
||||
The number of items returned is ``(n+r-1)! / r! / (n-1)!`` when ``n > 0``.
|
||||
|
||||
.. versionadded:: 3.1
|
||||
|
||||
|
||||
.. function:: compress(data, selectors)
|
||||
|
||||
Make an iterator that filters elements from *data* returning only those that
|
||||
have a corresponding element in *selectors* that evaluates to ``True``.
|
||||
Stops when either the *data* or *selectors* iterables has been exhausted.
|
||||
Roughly equivalent to::
|
||||
|
||||
def compress(data, selectors):
|
||||
# compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
|
||||
return (d for d, s in zip(data, selectors) if s)
|
||||
|
||||
.. versionadded:: 3.1
|
||||
|
||||
|
||||
.. function:: count(start=0, step=1)
|
||||
|
||||
Make an iterator that returns evenly spaced values starting with number *start*. Often
|
||||
used as an argument to :func:`map` to generate consecutive data points.
|
||||
Also, used with :func:`zip` to add sequence numbers. Roughly equivalent to::
|
||||
|
||||
def count(start=0, step=1):
|
||||
# count(10) --> 10 11 12 13 14 ...
|
||||
# count(2.5, 0.5) -> 2.5 3.0 3.5 ...
|
||||
n = start
|
||||
while True:
|
||||
yield n
|
||||
n += step
|
||||
|
||||
When counting with floating point numbers, better accuracy can sometimes be
|
||||
achieved by substituting multiplicative code such as: ``(start + step * i
|
||||
for i in count())``.
|
||||
|
||||
.. versionchanged:: 3.1
|
||||
Added *step* argument and allowed non-integer arguments.
|
||||
|
||||
.. function:: cycle(iterable)
|
||||
|
||||
Make an iterator returning elements from the iterable and saving a copy of each.
|
||||
When the iterable is exhausted, return elements from the saved copy. Repeats
|
||||
indefinitely. Roughly equivalent to::
|
||||
|
||||
def cycle(iterable):
|
||||
# cycle('ABCD') --> A B C D A B C D A B C D ...
|
||||
saved = []
|
||||
for element in iterable:
|
||||
yield element
|
||||
saved.append(element)
|
||||
while saved:
|
||||
for element in saved:
|
||||
yield element
|
||||
|
||||
Note, this member of the toolkit may require significant auxiliary storage
|
||||
(depending on the length of the iterable).
|
||||
|
||||
|
||||
.. function:: dropwhile(predicate, iterable)
|
||||
|
||||
Make an iterator that drops elements from the iterable as long as the predicate
|
||||
is true; afterwards, returns every element. Note, the iterator does not produce
|
||||
*any* output until the predicate first becomes false, so it may have a lengthy
|
||||
start-up time. Roughly equivalent to::
|
||||
|
||||
def dropwhile(predicate, iterable):
|
||||
# dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
|
||||
iterable = iter(iterable)
|
||||
for x in iterable:
|
||||
if not predicate(x):
|
||||
yield x
|
||||
break
|
||||
for x in iterable:
|
||||
yield x
|
||||
|
||||
.. function:: filterfalse(predicate, iterable)
|
||||
|
||||
Make an iterator that filters elements from iterable returning only those for
|
||||
which the predicate is ``False``. If *predicate* is ``None``, return the items
|
||||
that are false. Roughly equivalent to::
|
||||
|
||||
def filterfalse(predicate, iterable):
|
||||
# filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8
|
||||
if predicate is None:
|
||||
predicate = bool
|
||||
for x in iterable:
|
||||
if not predicate(x):
|
||||
yield x
|
||||
|
||||
|
||||
.. function:: groupby(iterable, key=None)
|
||||
|
||||
Make an iterator that returns consecutive keys and groups from the *iterable*.
|
||||
The *key* is a function computing a key value for each element. If not
|
||||
specified or is ``None``, *key* defaults to an identity function and returns
|
||||
the element unchanged. Generally, the iterable needs to already be sorted on
|
||||
the same key function.
|
||||
|
||||
The operation of :func:`groupby` is similar to the ``uniq`` filter in Unix. It
|
||||
generates a break or new group every time the value of the key function changes
|
||||
(which is why it is usually necessary to have sorted the data using the same key
|
||||
function). That behavior differs from SQL's GROUP BY which aggregates common
|
||||
elements regardless of their input order.
|
||||
|
||||
The returned group is itself an iterator that shares the underlying iterable
|
||||
with :func:`groupby`. Because the source is shared, when the :func:`groupby`
|
||||
object is advanced, the previous group is no longer visible. So, if that data
|
||||
is needed later, it should be stored as a list::
|
||||
|
||||
groups = []
|
||||
uniquekeys = []
|
||||
data = sorted(data, key=keyfunc)
|
||||
for k, g in groupby(data, keyfunc):
|
||||
groups.append(list(g)) # Store group iterator as a list
|
||||
uniquekeys.append(k)
|
||||
|
||||
:func:`groupby` is roughly equivalent to::
|
||||
|
||||
class groupby:
|
||||
# [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
|
||||
# [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
|
||||
def __init__(self, iterable, key=None):
|
||||
if key is None:
|
||||
key = lambda x: x
|
||||
self.keyfunc = key
|
||||
self.it = iter(iterable)
|
||||
self.tgtkey = self.currkey = self.currvalue = object()
|
||||
def __iter__(self):
|
||||
return self
|
||||
def __next__(self):
|
||||
self.id = object()
|
||||
while self.currkey == self.tgtkey:
|
||||
self.currvalue = next(self.it) # Exit on StopIteration
|
||||
self.currkey = self.keyfunc(self.currvalue)
|
||||
self.tgtkey = self.currkey
|
||||
return (self.currkey, self._grouper(self.tgtkey, self.id))
|
||||
def _grouper(self, tgtkey, id):
|
||||
while self.id is id and self.currkey == tgtkey:
|
||||
yield self.currvalue
|
||||
try:
|
||||
self.currvalue = next(self.it)
|
||||
except StopIteration:
|
||||
return
|
||||
self.currkey = self.keyfunc(self.currvalue)
|
||||
|
||||
|
||||
.. function:: islice(iterable, stop)
|
||||
islice(iterable, start, stop[, step])
|
||||
|
||||
Make an iterator that returns selected elements from the iterable. If *start* is
|
||||
non-zero, then elements from the iterable are skipped until start is reached.
|
||||
Afterward, elements are returned consecutively unless *step* is set higher than
|
||||
one which results in items being skipped. If *stop* is ``None``, then iteration
|
||||
continues until the iterator is exhausted, if at all; otherwise, it stops at the
|
||||
specified position. Unlike regular slicing, :func:`islice` does not support
|
||||
negative values for *start*, *stop*, or *step*. Can be used to extract related
|
||||
fields from data where the internal structure has been flattened (for example, a
|
||||
multi-line report may list a name field on every third line). Roughly equivalent to::
|
||||
|
||||
def islice(iterable, *args):
|
||||
# islice('ABCDEFG', 2) --> A B
|
||||
# islice('ABCDEFG', 2, 4) --> C D
|
||||
# islice('ABCDEFG', 2, None) --> C D E F G
|
||||
# islice('ABCDEFG', 0, None, 2) --> A C E G
|
||||
s = slice(*args)
|
||||
start, stop, step = s.start or 0, s.stop or sys.maxsize, s.step or 1
|
||||
it = iter(range(start, stop, step))
|
||||
try:
|
||||
nexti = next(it)
|
||||
except StopIteration:
|
||||
# Consume *iterable* up to the *start* position.
|
||||
for i, element in zip(range(start), iterable):
|
||||
pass
|
||||
return
|
||||
try:
|
||||
for i, element in enumerate(iterable):
|
||||
if i == nexti:
|
||||
yield element
|
||||
nexti = next(it)
|
||||
except StopIteration:
|
||||
# Consume to *stop*.
|
||||
for i, element in zip(range(i + 1, stop), iterable):
|
||||
pass
|
||||
|
||||
If *start* is ``None``, then iteration starts at zero. If *step* is ``None``,
|
||||
then the step defaults to one.
|
||||
|
||||
|
||||
.. function:: permutations(iterable, r=None)
|
||||
|
||||
Return successive *r* length permutations of elements in the *iterable*.
|
||||
|
||||
If *r* is not specified or is ``None``, then *r* defaults to the length
|
||||
of the *iterable* and all possible full-length permutations
|
||||
are generated.
|
||||
|
||||
Permutations are emitted in lexicographic sort order. So, if the
|
||||
input *iterable* is sorted, the permutation tuples will be produced
|
||||
in sorted order.
|
||||
|
||||
Elements are treated as unique based on their position, not on their
|
||||
value. So if the input elements are unique, there will be no repeat
|
||||
values in each permutation.
|
||||
|
||||
Roughly equivalent to::
|
||||
|
||||
def permutations(iterable, r=None):
|
||||
# permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
|
||||
# permutations(range(3)) --> 012 021 102 120 201 210
|
||||
pool = tuple(iterable)
|
||||
n = len(pool)
|
||||
r = n if r is None else r
|
||||
if r > n:
|
||||
return
|
||||
indices = list(range(n))
|
||||
cycles = list(range(n, n-r, -1))
|
||||
yield tuple(pool[i] for i in indices[:r])
|
||||
while n:
|
||||
for i in reversed(range(r)):
|
||||
cycles[i] -= 1
|
||||
if cycles[i] == 0:
|
||||
indices[i:] = indices[i+1:] + indices[i:i+1]
|
||||
cycles[i] = n - i
|
||||
else:
|
||||
j = cycles[i]
|
||||
indices[i], indices[-j] = indices[-j], indices[i]
|
||||
yield tuple(pool[i] for i in indices[:r])
|
||||
break
|
||||
else:
|
||||
return
|
||||
|
||||
The code for :func:`permutations` can be also expressed as a subsequence of
|
||||
:func:`product`, filtered to exclude entries with repeated elements (those
|
||||
from the same position in the input pool)::
|
||||
|
||||
def permutations(iterable, r=None):
|
||||
pool = tuple(iterable)
|
||||
n = len(pool)
|
||||
r = n if r is None else r
|
||||
for indices in product(range(n), repeat=r):
|
||||
if len(set(indices)) == r:
|
||||
yield tuple(pool[i] for i in indices)
|
||||
|
||||
The number of items returned is ``n! / (n-r)!`` when ``0 <= r <= n``
|
||||
or zero when ``r > n``.
|
||||
|
||||
.. function:: product(*iterables, repeat=1)
|
||||
|
||||
Cartesian product of input iterables.
|
||||
|
||||
Roughly equivalent to nested for-loops in a generator expression. For example,
|
||||
``product(A, B)`` returns the same as ``((x,y) for x in A for y in B)``.
|
||||
|
||||
The nested loops cycle like an odometer with the rightmost element advancing
|
||||
on every iteration. This pattern creates a lexicographic ordering so that if
|
||||
the input's iterables are sorted, the product tuples are emitted in sorted
|
||||
order.
|
||||
|
||||
To compute the product of an iterable with itself, specify the number of
|
||||
repetitions with the optional *repeat* keyword argument. For example,
|
||||
``product(A, repeat=4)`` means the same as ``product(A, A, A, A)``.
|
||||
|
||||
This function is roughly equivalent to the following code, except that the
|
||||
actual implementation does not build up intermediate results in memory::
|
||||
|
||||
def product(*args, repeat=1):
|
||||
# product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
|
||||
# product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
|
||||
pools = [tuple(pool) for pool in args] * repeat
|
||||
result = [[]]
|
||||
for pool in pools:
|
||||
result = [x+[y] for x in result for y in pool]
|
||||
for prod in result:
|
||||
yield tuple(prod)
|
||||
|
||||
|
||||
.. function:: repeat(object[, times])
|
||||
|
||||
Make an iterator that returns *object* over and over again. Runs indefinitely
|
||||
unless the *times* argument is specified. Used as argument to :func:`map` for
|
||||
invariant parameters to the called function. Also used with :func:`zip` to
|
||||
create an invariant part of a tuple record.
|
||||
|
||||
Roughly equivalent to::
|
||||
|
||||
def repeat(object, times=None):
|
||||
# repeat(10, 3) --> 10 10 10
|
||||
if times is None:
|
||||
while True:
|
||||
yield object
|
||||
else:
|
||||
for i in range(times):
|
||||
yield object
|
||||
|
||||
A common use for *repeat* is to supply a stream of constant values to *map*
|
||||
or *zip*::
|
||||
|
||||
>>> list(map(pow, range(10), repeat(2)))
|
||||
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
|
||||
|
||||
.. function:: starmap(function, iterable)
|
||||
|
||||
Make an iterator that computes the function using arguments obtained from
|
||||
the iterable. Used instead of :func:`map` when argument parameters are already
|
||||
grouped in tuples from a single iterable (the data has been "pre-zipped"). The
|
||||
difference between :func:`map` and :func:`starmap` parallels the distinction
|
||||
between ``function(a,b)`` and ``function(*c)``. Roughly equivalent to::
|
||||
|
||||
def starmap(function, iterable):
|
||||
# starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
|
||||
for args in iterable:
|
||||
yield function(*args)
|
||||
|
||||
|
||||
.. function:: takewhile(predicate, iterable)
|
||||
|
||||
Make an iterator that returns elements from the iterable as long as the
|
||||
predicate is true. Roughly equivalent to::
|
||||
|
||||
def takewhile(predicate, iterable):
|
||||
# takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
|
||||
for x in iterable:
|
||||
if predicate(x):
|
||||
yield x
|
||||
else:
|
||||
break
|
||||
|
||||
|
||||
.. function:: tee(iterable, n=2)
|
||||
|
||||
Return *n* independent iterators from a single iterable.
|
||||
|
||||
The following Python code helps explain what *tee* does (although the actual
|
||||
implementation is more complex and uses only a single underlying
|
||||
:abbr:`FIFO (first-in, first-out)` queue).
|
||||
|
||||
Roughly equivalent to::
|
||||
|
||||
def tee(iterable, n=2):
|
||||
it = iter(iterable)
|
||||
deques = [collections.deque() for i in range(n)]
|
||||
def gen(mydeque):
|
||||
while True:
|
||||
if not mydeque: # when the local deque is empty
|
||||
try:
|
||||
newval = next(it) # fetch a new value and
|
||||
except StopIteration:
|
||||
return
|
||||
for d in deques: # load it to all the deques
|
||||
d.append(newval)
|
||||
yield mydeque.popleft()
|
||||
return tuple(gen(d) for d in deques)
|
||||
|
||||
Once :func:`tee` has made a split, the original *iterable* should not be
|
||||
used anywhere else; otherwise, the *iterable* could get advanced without
|
||||
the tee objects being informed.
|
||||
|
||||
This itertool may require significant auxiliary storage (depending on how
|
||||
much temporary data needs to be stored). In general, if one iterator uses
|
||||
most or all of the data before another iterator starts, it is faster to use
|
||||
:func:`list` instead of :func:`tee`.
|
||||
|
||||
|
||||
.. function:: zip_longest(*iterables, fillvalue=None)
|
||||
|
||||
Make an iterator that aggregates elements from each of the iterables. If the
|
||||
iterables are of uneven length, missing values are filled-in with *fillvalue*.
|
||||
Iteration continues until the longest iterable is exhausted. Roughly equivalent to::
|
||||
|
||||
def zip_longest(*args, fillvalue=None):
|
||||
# zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
|
||||
iterators = [iter(it) for it in args]
|
||||
num_active = len(iterators)
|
||||
if not num_active:
|
||||
return
|
||||
while True:
|
||||
values = []
|
||||
for i, it in enumerate(iterators):
|
||||
try:
|
||||
value = next(it)
|
||||
except StopIteration:
|
||||
num_active -= 1
|
||||
if not num_active:
|
||||
return
|
||||
iterators[i] = repeat(fillvalue)
|
||||
value = fillvalue
|
||||
values.append(value)
|
||||
yield tuple(values)
|
||||
|
||||
If one of the iterables is potentially infinite, then the :func:`zip_longest`
|
||||
function should be wrapped with something that limits the number of calls
|
||||
(for example :func:`islice` or :func:`takewhile`). If not specified,
|
||||
*fillvalue* defaults to ``None``.
|
||||
|
||||
|
||||
.. _itertools-recipes:
|
||||
|
||||
Itertools Recipes
|
||||
-----------------
|
||||
|
||||
This section shows recipes for creating an extended toolset using the existing
|
||||
itertools as building blocks.
|
||||
|
||||
The extended tools offer the same high performance as the underlying toolset.
|
||||
The superior memory performance is kept by processing elements one at a time
|
||||
rather than bringing the whole iterable into memory all at once. Code volume is
|
||||
kept small by linking the tools together in a functional style which helps
|
||||
eliminate temporary variables. High speed is retained by preferring
|
||||
"vectorized" building blocks over the use of for-loops and :term:`generator`\s
|
||||
which incur interpreter overhead.
|
||||
|
||||
.. testcode::
|
||||
|
||||
def take(n, iterable):
|
||||
"Return first n items of the iterable as a list"
|
||||
return list(islice(iterable, n))
|
||||
|
||||
def prepend(value, iterator):
|
||||
"Prepend a single value in front of an iterator"
|
||||
# prepend(1, [2, 3, 4]) -> 1 2 3 4
|
||||
return chain([value], iterator)
|
||||
|
||||
def tabulate(function, start=0):
|
||||
"Return function(0), function(1), ..."
|
||||
return map(function, count(start))
|
||||
|
||||
def tail(n, iterable):
|
||||
"Return an iterator over the last n items"
|
||||
# tail(3, 'ABCDEFG') --> E F G
|
||||
return iter(collections.deque(iterable, maxlen=n))
|
||||
|
||||
def consume(iterator, n=None):
|
||||
"Advance the iterator n-steps ahead. If n is None, consume entirely."
|
||||
# Use functions that consume iterators at C speed.
|
||||
if n is None:
|
||||
# feed the entire iterator into a zero-length deque
|
||||
collections.deque(iterator, maxlen=0)
|
||||
else:
|
||||
# advance to the empty slice starting at position n
|
||||
next(islice(iterator, n, n), None)
|
||||
|
||||
def nth(iterable, n, default=None):
|
||||
"Returns the nth item or a default value"
|
||||
return next(islice(iterable, n, None), default)
|
||||
|
||||
def all_equal(iterable):
|
||||
"Returns True if all the elements are equal to each other"
|
||||
g = groupby(iterable)
|
||||
return next(g, True) and not next(g, False)
|
||||
|
||||
def quantify(iterable, pred=bool):
|
||||
"Count how many times the predicate is true"
|
||||
return sum(map(pred, iterable))
|
||||
|
||||
def padnone(iterable):
|
||||
"""Returns the sequence elements and then returns None indefinitely.
|
||||
|
||||
Useful for emulating the behavior of the built-in map() function.
|
||||
"""
|
||||
return chain(iterable, repeat(None))
|
||||
|
||||
def ncycles(iterable, n):
|
||||
"Returns the sequence elements n times"
|
||||
return chain.from_iterable(repeat(tuple(iterable), n))
|
||||
|
||||
def dotproduct(vec1, vec2):
|
||||
return sum(map(operator.mul, vec1, vec2))
|
||||
|
||||
def flatten(listOfLists):
|
||||
"Flatten one level of nesting"
|
||||
return chain.from_iterable(listOfLists)
|
||||
|
||||
def repeatfunc(func, times=None, *args):
|
||||
"""Repeat calls to func with specified arguments.
|
||||
|
||||
Example: repeatfunc(random.random)
|
||||
"""
|
||||
if times is None:
|
||||
return starmap(func, repeat(args))
|
||||
return starmap(func, repeat(args, times))
|
||||
|
||||
def pairwise(iterable):
|
||||
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
|
||||
a, b = tee(iterable)
|
||||
next(b, None)
|
||||
return zip(a, b)
|
||||
|
||||
def grouper(iterable, n, fillvalue=None):
|
||||
"Collect data into fixed-length chunks or blocks"
|
||||
# grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx"
|
||||
args = [iter(iterable)] * n
|
||||
return zip_longest(*args, fillvalue=fillvalue)
|
||||
|
||||
def roundrobin(*iterables):
|
||||
"roundrobin('ABC', 'D', 'EF') --> A D E B F C"
|
||||
# Recipe credited to George Sakkis
|
||||
num_active = len(iterables)
|
||||
nexts = cycle(iter(it).__next__ for it in iterables)
|
||||
while num_active:
|
||||
try:
|
||||
for next in nexts:
|
||||
yield next()
|
||||
except StopIteration:
|
||||
# Remove the iterator we just exhausted from the cycle.
|
||||
num_active -= 1
|
||||
nexts = cycle(islice(nexts, num_active))
|
||||
|
||||
def partition(pred, iterable):
|
||||
'Use a predicate to partition entries into false entries and true entries'
|
||||
# partition(is_odd, range(10)) --> 0 2 4 6 8 and 1 3 5 7 9
|
||||
t1, t2 = tee(iterable)
|
||||
return filterfalse(pred, t1), filter(pred, t2)
|
||||
|
||||
def powerset(iterable):
|
||||
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
|
||||
s = list(iterable)
|
||||
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
|
||||
|
||||
def unique_everseen(iterable, key=None):
|
||||
"List unique elements, preserving order. Remember all elements ever seen."
|
||||
# unique_everseen('AAAABBBCCDAABBB') --> A B C D
|
||||
# unique_everseen('ABBCcAD', str.lower) --> A B C D
|
||||
seen = set()
|
||||
seen_add = seen.add
|
||||
if key is None:
|
||||
for element in filterfalse(seen.__contains__, iterable):
|
||||
seen_add(element)
|
||||
yield element
|
||||
else:
|
||||
for element in iterable:
|
||||
k = key(element)
|
||||
if k not in seen:
|
||||
seen_add(k)
|
||||
yield element
|
||||
|
||||
def unique_justseen(iterable, key=None):
|
||||
"List unique elements, preserving order. Remember only the element just seen."
|
||||
# unique_justseen('AAAABBBCCDAABBB') --> A B C D A B
|
||||
# unique_justseen('ABBCcAD', str.lower) --> A B C A D
|
||||
return map(next, map(itemgetter(1), groupby(iterable, key)))
|
||||
|
||||
def iter_except(func, exception, first=None):
|
||||
""" Call a function repeatedly until an exception is raised.
|
||||
|
||||
Converts a call-until-exception interface to an iterator interface.
|
||||
Like builtins.iter(func, sentinel) but uses an exception instead
|
||||
of a sentinel to end the loop.
|
||||
|
||||
Examples:
|
||||
iter_except(functools.partial(heappop, h), IndexError) # priority queue iterator
|
||||
iter_except(d.popitem, KeyError) # non-blocking dict iterator
|
||||
iter_except(d.popleft, IndexError) # non-blocking deque iterator
|
||||
iter_except(q.get_nowait, Queue.Empty) # loop over a producer Queue
|
||||
iter_except(s.pop, KeyError) # non-blocking set iterator
|
||||
|
||||
"""
|
||||
try:
|
||||
if first is not None:
|
||||
yield first() # For database APIs needing an initial cast to db.first()
|
||||
while True:
|
||||
yield func()
|
||||
except exception:
|
||||
pass
|
||||
|
||||
def first_true(iterable, default=False, pred=None):
|
||||
"""Returns the first true value in the iterable.
|
||||
|
||||
If no true value is found, returns *default*
|
||||
|
||||
If *pred* is not None, returns the first item
|
||||
for which pred(item) is true.
|
||||
|
||||
"""
|
||||
# first_true([a,b,c], x) --> a or b or c or x
|
||||
# first_true([a,b], x, f) --> a if f(a) else b if f(b) else x
|
||||
return next(filter(pred, iterable), default)
|
||||
|
||||
def random_product(*args, repeat=1):
|
||||
"Random selection from itertools.product(*args, **kwds)"
|
||||
pools = [tuple(pool) for pool in args] * repeat
|
||||
return tuple(random.choice(pool) for pool in pools)
|
||||
|
||||
def random_permutation(iterable, r=None):
|
||||
"Random selection from itertools.permutations(iterable, r)"
|
||||
pool = tuple(iterable)
|
||||
r = len(pool) if r is None else r
|
||||
return tuple(random.sample(pool, r))
|
||||
|
||||
def random_combination(iterable, r):
|
||||
"Random selection from itertools.combinations(iterable, r)"
|
||||
pool = tuple(iterable)
|
||||
n = len(pool)
|
||||
indices = sorted(random.sample(range(n), r))
|
||||
return tuple(pool[i] for i in indices)
|
||||
|
||||
def random_combination_with_replacement(iterable, r):
|
||||
"Random selection from itertools.combinations_with_replacement(iterable, r)"
|
||||
pool = tuple(iterable)
|
||||
n = len(pool)
|
||||
indices = sorted(random.randrange(n) for i in range(r))
|
||||
return tuple(pool[i] for i in indices)
|
||||
|
||||
def nth_combination(iterable, r, index):
|
||||
'Equivalent to list(combinations(iterable, r))[index]'
|
||||
pool = tuple(iterable)
|
||||
n = len(pool)
|
||||
if r < 0 or r > n:
|
||||
raise ValueError
|
||||
c = 1
|
||||
k = min(r, n-r)
|
||||
for i in range(1, k+1):
|
||||
c = c * (n - k + i) // i
|
||||
if index < 0:
|
||||
index += c
|
||||
if index < 0 or index >= c:
|
||||
raise IndexError
|
||||
result = []
|
||||
while r:
|
||||
c, n, r = c*r//n, n-1, r-1
|
||||
while index >= c:
|
||||
index -= c
|
||||
c, n = c*(n-r)//n, n-1
|
||||
result.append(pool[-1-n])
|
||||
return tuple(result)
|
||||
|
||||
Note, many of the above recipes can be optimized by replacing global lookups
|
||||
with local variables defined as default values. For example, the
|
||||
*dotproduct* recipe can be written as::
|
||||
|
||||
def dotproduct(vec1, vec2, sum=sum, map=map, mul=operator.mul):
|
||||
return sum(map(mul, vec1, vec2))
|
Reference in New Issue
Block a user