Changed about and README to not point to galileo anymore

This commit is contained in:
Salvo 'LtWorf' Tomaselli
2013-12-27 00:31:43 +01:00
parent f31d0dea28
commit 556eecc118
25 changed files with 2212 additions and 2023 deletions

View File

@@ -1,11 +1,11 @@
__all__ = (
"relation",
"parser",
"optimizer",
"optimizations",
"rtypes",
"parallel",
"relation",
"parser",
"optimizer",
"optimizations",
"rtypes",
"parallel",
)

View File

@@ -23,23 +23,21 @@ import httplib
import urllib
import relation
def send_survey(data):
'''Sends the survey. Data must be a dictionary.
returns the http response'''
post=''
post = ''
for i in data.keys():
post+='%s: %s\n' %(i,data[i])
#sends the string
params = urllib.urlencode({'survey':post})
headers = {"Content-type": "application/x-www-form-urlencoded","Accept": "text/plain"}
#connection = httplib.HTTPConnection('galileo.dmi.unict.it')
#connection.request("POST","/~ltworf/survey.php",params,headers)
post += '%s: %s\n' % (i, data[i])
# sends the string
params = urllib.urlencode({'survey': post})
headers = {"Content-type":
"application/x-www-form-urlencoded", "Accept": "text/plain"}
connection = httplib.HTTPConnection('feedback-ltworf.appspot.com')
connection.request("POST","/feedback/relational",params,headers)
connection.request("POST", "/feedback/relational", params, headers)
return connection.getresponse()
@@ -49,46 +47,47 @@ def check_latest_version():
Heavely dependent on server and server configurations
not granted to work forever.'''
connection = httplib.HTTPConnection('feedback-ltworf.appspot.com')
connection.request("GET","/version/relational")
r=connection.getresponse()
connection.request("GET", "/version/relational")
r = connection.getresponse()
#html
s=r.read()
if len(s)==0:
# html
s = r.read()
if len(s) == 0:
return None
return s.strip()
class interface (object):
'''It is used to provide services to the user interfaces, in order to
reduce the amount of duplicated code present in different user interfaces.
'''
def __init__(self):
self.rels= {}
self.rels = {}
def load(self,filename,name):
def load(self, filename, name):
'''Loads a relation from file, and gives it a name to
be used in subsequent queries.'''
pass
def unload(self,name):
def unload(self, name):
'''Unloads an existing relation.'''
pass
def store(self,filename,name):
def store(self, filename, name):
'''Stores a relation to file.'''
pass
def get_relation(self,name):
def get_relation(self, name):
'''Returns the relation corresponding to name.'''
pass
def set_relation(self,name,rel):
def set_relation(self, name, rel):
'''Sets the relation corresponding to name.'''
pass
def execute(self,query,relname='last_'):
def execute(self, query, relname='last_'):
'''Executes a query, returns the result and if
relname is not None, adds the result to the
dictionary, with the name given in relname.'''

File diff suppressed because it is too large Load Diff

View File

@@ -2,20 +2,20 @@
# coding=UTF-8
# Relational
# Copyright (C) 2008 Salvo "LtWorf" Tomaselli
#
#
# Relational is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
# author Salvo "LtWorf" Tomaselli <tiposchi@tiscali.it>
#
# This module optimizes relational expressions into ones that require less time to be executed.
@@ -29,23 +29,24 @@ import optimizations
import parser
#Stuff that was here before, keeping it for compatibility
RELATION=parser.RELATION
UNARY=parser.UNARY
BINARY=parser.BINARY
# Stuff that was here before, keeping it for compatibility
RELATION = parser.RELATION
UNARY = parser.UNARY
BINARY = parser.BINARY
b_operators=parser.b_operators
u_operators=parser.u_operators
op_functions=parser.op_functions
node=parser.node
tokenize=parser.tokenize
tree=parser.tree
#End of the stuff
b_operators = parser.b_operators
u_operators = parser.u_operators
op_functions = parser.op_functions
node = parser.node
tokenize = parser.tokenize
tree = parser.tree
# End of the stuff
def optimize_all(expression,rels,specific=True,general=True,debug=None):
def optimize_all(expression, rels, specific=True, general=True, debug=None):
'''This function performs all the available optimizations.
expression : see documentation of this module
rels: dic with relation name as key, and relation istance as value
specific: True if it has to perform specific optimizations
@@ -53,65 +54,70 @@ def optimize_all(expression,rels,specific=True,general=True,debug=None):
debug: if a list is provided here, after the end of the function, it
will contain the query repeated many times to show the performed
steps.
Return value: this will return an optimized version of the expression'''
if isinstance(expression,unicode):
n=tree(expression) #Gets the tree
elif isinstance(expression,node):
n=expression
if isinstance(expression, unicode):
n = tree(expression) # Gets the tree
elif isinstance(expression, node):
n = expression
else:
raise (TypeError("expression must be a unicode string or a node"))
if isinstance(debug,list):
dbg=True
if isinstance(debug, list):
dbg = True
else:
dbg=False
total=1
while total!=0:
total=0
dbg = False
total = 1
while total != 0:
total = 0
if specific:
for i in optimizations.specific_optimizations:
res=i(n,rels) #Performs the optimization
if res!=0 and dbg: debug.append(n.__str__())
total+=res
res = i(n, rels) # Performs the optimization
if res != 0 and dbg:
debug.append(n.__str__())
total += res
if general:
for i in optimizations.general_optimizations:
res=i(n) #Performs the optimization
if res!=0 and dbg: debug.append(n.__str__())
total+=res
res = i(n) # Performs the optimization
if res != 0 and dbg:
debug.append(n.__str__())
total += res
return n.__str__()
def specific_optimize(expression,rels):
def specific_optimize(expression, rels):
'''This function performs specific optimizations. Means that it will need to
know the fields used by the relations.
expression : see documentation of this module
rels: dic with relation name as key, and relation istance as value
Return value: this will return an optimized version of the expression'''
return optimize_all(expression,rels,specific=True,general=False)
return optimize_all(expression, rels, specific=True, general=False)
def general_optimize(expression):
'''This function performs general optimizations. Means that it will not need to
know the fields used by the relations
expression : see documentation of this module
Return value: this will return an optimized version of the expression'''
return optimize_all(expression,None,specific=False,general=True)
if __name__=="__main__":
#n=node(u"((a b) - c d) - b")
#n=node(u"π a,b (d-a*b)")
#print n.__str__()
#a= tokenize("(a - (a b) * π a,b (a-b)) - ρ 123 (a)")
#a= tokenize(u"π a,b (a*b)")
#a=tokenize("(a-b*c)*(b-c)")
import relation,optimizations
expression : see documentation of this module
Return value: this will return an optimized version of the expression'''
return optimize_all(expression, None, specific=False, general=True)
if __name__ == "__main__":
# n=node(u"((a b) - c d) - b")
# n=node(u"π a,b (d-a*b)")
# print n.__str__()
# a= tokenize("(a - (a b) * π a,b (a-b)) - ρ 123 (a)")
# a= tokenize(u"π a,b (a*b)")
# a=tokenize("(a-b*c)*(b-c)")
import relation
import optimizations
'''rels={}
rels["P1"]= relation.relation("/home/salvo/dev/relational/trunk/samples/people.csv")
rels["P2"]= relation.relation("/home/salvo/dev/relational/trunk/samples/people.csv")
@@ -120,27 +126,28 @@ if __name__=="__main__":
rels["D1"]= relation.relation("/home/salvo/dev/relational/trunk/samples/dates.csv")
rels["S1"]= relation.relation("/home/salvo/dev/relational/trunk/samples/skillo.csv")
print rels'''
n=tree(u"π indice,qq,name (ρ age➡qq,id➡indice (P1-P2))")
#n=tree("σ id==3 and indice==2 and name==5 or name<2(P1 * S1)")
n = tree(u"π indice,qq,name (ρ age➡qq,id➡indice (P1-P2))")
# n=tree("σ id==3 and indice==2 and name==5 or name<2(P1 * S1)")
print n
print n.toPython()
#print optimizations.selection_and_product(n,rels)
# print optimizations.selection_and_product(n,rels)
'''
σ skill=='C' (π id,name,chief,age (σ chief==i and age>a (ρ id➡i,age➡a(π id,age(people))*people)) ᐅᐊ skills)
(π id,name,chief,age (σ chief == i and age > a ((ρ age➡a,id➡i (π id,age (people)))*people)))ᐅᐊ(σ skill == 'C' (skills))
(π id,name,chief,age (σ chief == i and age > a ((ρ age➡a,id➡i (π id,age (people)))*people)))ᐅᐊ(σ skill == 'C' (skills))
'''
#print specific_optimize("σ name==skill and age>21 and id==indice and skill=='C'(P1ᐅᐊS1)",rels)
#print n
#print n.result_format(rels)
# print specific_optimize("σ name==skill and age>21 and id==indice and
# skill=='C'(P1ᐅᐊS1)",rels)
# print n
# print n.result_format(rels)
'''σ k (r) r with r
σ k (r) ᑎ r with σ k (r)'''
#a=general_optimize('π indice,qq,name (ρ age➡qq,id➡indice (P1-P2))')
#a=general_optimize("σ i==2 (σ b>5 (d))")
#print a
#print node(a)
#print tokenize("(a)")
# a=general_optimize('π indice,qq,name (ρ age➡qq,id➡indice (P1-P2))')
# a=general_optimize("σ i==2 (σ b>5 (d))")
# print a
# print node(a)
# print tokenize("(a)")

View File

@@ -1,111 +1,117 @@
# -*- coding: utf-8 -*-
# Relational
# Copyright (C) 2009 Salvo "LtWorf" Tomaselli
#
#
# Relational is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
# author Salvo "LtWorf" Tomaselli <tiposchi@tiscali.it>
#
#
# This module offers capability of executing relational queries in parallel.
import optimizer
import multiprocessing
import parser
def execute(tree,rels):
def execute(tree, rels):
'''This funcion executes a query in parallel.
Tree is the tree describing the query (usually obtained with
parser.tree(querystring)
rels is a dictionary containing the relations associated with the names'''
q = multiprocessing.Queue()
p = multiprocessing.Process(target=__p_exec__, args=(tree,rels,q,))
p = multiprocessing.Process(target=__p_exec__, args=(tree, rels, q,))
p.start()
result= q.get()
result = q.get()
p.join()
return result
def __p_exec__(tree,rels,q):
def __p_exec__(tree, rels, q):
'''q is the queue used for communication'''
if tree.kind==parser.RELATION:
if tree.kind == parser.RELATION:
q.put(rels[tree.name])
elif tree.kind==parser.UNARY:
#Obtain the relation
elif tree.kind == parser.UNARY:
# Obtain the relation
temp_q = multiprocessing.Queue()
__p_exec__(tree.child,rels,temp_q)
rel=temp_q.get()
#Execute the query
result=__p_exec_unary__(tree,rel)
__p_exec__(tree.child, rels, temp_q)
rel = temp_q.get()
# Execute the query
result = __p_exec_unary__(tree, rel)
q.put(result)
elif tree.kind==parser.BINARY:
elif tree.kind == parser.BINARY:
left_q = multiprocessing.Queue()
left_p = multiprocessing.Process(target=__p_exec__, args=(tree.left,rels,left_q,))
left_p = multiprocessing.Process(
target=__p_exec__, args=(tree.left, rels, left_q,))
right_q = multiprocessing.Queue()
right_p = multiprocessing.Process(target=__p_exec__, args=(tree.right,rels,right_q,))
#Spawn the children
right_p = multiprocessing.Process(
target=__p_exec__, args=(tree.right, rels, right_q,))
# Spawn the children
left_p.start()
right_p.start()
#Get the left and right relations
left= left_q.get()
right= right_q.get()
#Wait for the children to terminate
# Get the left and right relations
left = left_q.get()
right = right_q.get()
# Wait for the children to terminate
left_p.join()
right_p.join()
result = __p_exec_binary__(tree,left,right)
result = __p_exec_binary__(tree, left, right)
q.put(result)
return
def __p_exec_binary__(tree,left,right):
if tree.name=='*':
def __p_exec_binary__(tree, left, right):
if tree.name == '*':
return left.product(right)
elif tree.name=='-':
elif tree.name == '-':
return left.difference(right)
elif tree.name=='':
elif tree.name == '':
return left.union(right)
elif tree.name=='':
elif tree.name == '':
return left.intersection(right)
elif tree.name=='÷':
elif tree.name == '÷':
return left.division(right)
elif tree.name=='ᐅᐊ':
elif tree.name == 'ᐅᐊ':
return left.join(right)
elif tree.name=='ᐅLEFTᐊ':
elif tree.name == 'ᐅLEFTᐊ':
return left.outer_left(right)
elif tree.name=='ᐅRIGHTᐊ':
elif tree.name == 'ᐅRIGHTᐊ':
return left.outer_right(right)
else: # tree.name=='ᐅFULLᐊ':
else: # tree.name=='ᐅFULLᐊ':
return left.outer(right)
def __p_exec_unary__(tree,rel):
if tree.name=='π':#Projection
tree.prop=tree.prop.replace(' ','').split(',')
result= rel.projection(tree.prop)
elif tree.name=="ρ": #Rename
#tree.prop='{\"%s\"}' % tree.prop.replace(',','\",\"').replace('➡','\":\"').replace(' ','')
d={}
tree.prop=tree.prop.replace(' ','')
def __p_exec_unary__(tree, rel):
if tree.name == 'π': # Projection
tree.prop = tree.prop.replace(' ', '').split(',')
result = rel.projection(tree.prop)
elif tree.name == "ρ": # Rename
# tree.prop='{\"%s\"}' %
# tree.prop.replace(',','\",\"').replace('➡','\":\"').replace(' ','')
d = {}
tree.prop = tree.prop.replace(' ', '')
for i in tree.prop.split(','):
rename_=i.split('')
d[rename_[0]]=rename_[1]
result= rel.rename(d)
else: #Selection
result= rel.selection(tree.prop)
rename_ = i.split('')
d[rename_[0]] = rename_[1]
result = rel.rename(d)
else: # Selection
result = rel.selection(tree.prop)
return result

View File

@@ -2,20 +2,20 @@
# coding=UTF-8
# Relational
# Copyright (C) 2008 Salvo "LtWorf" Tomaselli
#
#
# Relational is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
# author Salvo "LtWorf" Tomaselli <tiposchi@tiscali.it>
#
#
@@ -25,15 +25,15 @@
# of the expression.
#
# The input must be provided in UTF-8
#
#
#
# Language definition:
# Query := Ident
# Query := Query BinaryOp Query
# Query := (Query)
# Query := σ PYExprWithoutParenthesis (Query) | σ (PYExpr) (Query)
# Query := π FieldList (Query)
# Query := ρ RenameList (Query)
# Query := (Query)
# Query := σ PYExprWithoutParenthesis (Query) | σ (PYExpr) (Query)
# Query := π FieldList (Query)
# Query := ρ RenameList (Query)
# FieldList := Ident | Ident , FieldList
# RenameList := Ident ➡ Ident | Ident ➡ Ident , RenameList
# BinaryOp := * | - | | ᑎ | ÷ | ᐅᐊ | ᐅLEFTᐊ | ᐅRIGHTᐊ | ᐅFULLᐊ
@@ -43,246 +43,264 @@
import re
import rtypes
RELATION=0
UNARY=1
BINARY=2
RELATION = 0
UNARY = 1
BINARY = 2
PRODUCT=u'*'
DIFFERENCE=u'-'
UNION=u''
INTERSECTION=u''
DIVISION=u'÷'
JOIN=u'ᐅᐊ'
JOIN_LEFT=u'ᐅLEFTᐊ'
JOIN_RIGHT=u'ᐅRIGHTᐊ'
JOIN_FULL=u'ᐅFULLᐊ'
PROJECTION=u'π'
SELECTION=u'σ'
RENAME=u'ρ'
ARROW=u''
PRODUCT = u'*'
DIFFERENCE = u'-'
UNION = u''
INTERSECTION = u''
DIVISION = u'÷'
JOIN = u'ᐅᐊ'
JOIN_LEFT = u'ᐅLEFTᐊ'
JOIN_RIGHT = u'ᐅRIGHTᐊ'
JOIN_FULL = u'ᐅFULLᐊ'
PROJECTION = u'π'
SELECTION = u'σ'
RENAME = u'ρ'
ARROW = u''
b_operators=(PRODUCT,DIFFERENCE,UNION,INTERSECTION,DIVISION,JOIN,JOIN_LEFT,JOIN_RIGHT,JOIN_FULL) # List of binary operators
u_operators=(PROJECTION,SELECTION,RENAME) # List of unary operators
b_operators = (PRODUCT, DIFFERENCE, UNION, INTERSECTION, DIVISION,
JOIN, JOIN_LEFT, JOIN_RIGHT, JOIN_FULL) # List of binary operators
u_operators = (PROJECTION, SELECTION, RENAME) # List of unary operators
# Associates operator with python method
op_functions={PRODUCT:'product',DIFFERENCE:'difference',UNION:'union',INTERSECTION:'intersection',DIVISION:'division',JOIN:'join',JOIN_LEFT:'outer_left',JOIN_RIGHT:'outer_right',JOIN_FULL:'outer',PROJECTION:'projection',SELECTION:'selection',RENAME:'rename'}
op_functions = {
PRODUCT: 'product', DIFFERENCE: 'difference', UNION: 'union', INTERSECTION: 'intersection', DIVISION: 'division', JOIN: 'join',
JOIN_LEFT: 'outer_left', JOIN_RIGHT: 'outer_right', JOIN_FULL: 'outer', PROJECTION: 'projection', SELECTION: 'selection', RENAME: 'rename'}
class TokenizerException (Exception):
pass
class ParserException (Exception):
pass
class node (object):
'''This class is a node of a relational expression. Leaves are relations and internal nodes are operations.
The kind property says if the node is a binary operator, unary operator or relation.
Since relations are leaves, a relation node will have no attribute for children.
If the node is a binary operator, it will have left and right properties.
If the node is a unary operator, it will have a child, pointing to the child node and a prop containing
the string with the props of the operation.
This class is used to convert an expression into python code.'''
kind=None
__hash__=None
def __init__(self,expression=None):
kind = None
__hash__ = None
def __init__(self, expression=None):
'''Generates the tree from the tokenized expression
If no expression is specified then it will create an empty node'''
if expression==None or len(expression)==0:
if expression == None or len(expression) == 0:
return
#If the list contains only a list, it will consider the lower level list.
#This will allow things like ((((((a))))) to work
while len(expression)==1 and isinstance(expression[0],list):
expression=expression[0]
#The list contains only 1 string. Means it is the name of a relation
if len(expression)==1 and isinstance(expression[0],unicode):
self.kind=RELATION
self.name=expression[0]
# If the list contains only a list, it will consider the lower level list.
# This will allow things like ((((((a))))) to work
while len(expression) == 1 and isinstance(expression[0], list):
expression = expression[0]
# The list contains only 1 string. Means it is the name of a relation
if len(expression) == 1 and isinstance(expression[0], unicode):
self.kind = RELATION
self.name = expression[0]
if not rtypes.is_valid_relation_name(self.name):
raise ParserException(u"'%s' is not a valid relation name" % self.name)
raise ParserException(
u"'%s' is not a valid relation name" % self.name)
return
'''Expression from right to left, searching for binary operators
this means that binary operators have lesser priority than
unary operators.
It finds the operator with lesser priority, uses it as root of this
(sub)tree using everything on its left as left parameter (so building
a left subtree with the part of the list located on left) and doing
a left subtree with the part of the list located on left) and doing
the same on right.
Since it searches for strings, and expressions into parenthesis are
within sub-lists, they won't be found here, ensuring that they will
have highest priority.'''
for i in xrange(len(expression)-1,-1,-1):
if expression[i] in b_operators: #Binary operator
self.kind=BINARY
self.name=expression[i]
if len(expression[:i])==0:
raise ParserException(u"Expected left operand for '%s'" % self.name)
if len(expression[i+1:])==0:
raise ParserException(u"Expected right operand for '%s'" % self.name)
self.left=node(expression[:i])
self.right=node(expression[i+1:])
for i in xrange(len(expression) - 1, -1, -1):
if expression[i] in b_operators: # Binary operator
self.kind = BINARY
self.name = expression[i]
if len(expression[:i]) == 0:
raise ParserException(
u"Expected left operand for '%s'" % self.name)
if len(expression[i + 1:]) == 0:
raise ParserException(
u"Expected right operand for '%s'" % self.name)
self.left = node(expression[:i])
self.right = node(expression[i + 1:])
return
'''Searches for unary operators, parsing from right to left'''
for i in xrange(len(expression)-1,-1,-1):
if expression[i] in u_operators: #Unary operator
self.kind=UNARY
self.name=expression[i]
if len(expression)<=i+2:
raise ParserException(u"Expected more tokens in '%s'"%self.name)
self.prop=expression[1+i].strip()
self.child=node(expression[2+i])
for i in xrange(len(expression) - 1, -1, -1):
if expression[i] in u_operators: # Unary operator
self.kind = UNARY
self.name = expression[i]
if len(expression) <= i + 2:
raise ParserException(
u"Expected more tokens in '%s'" % self.name)
self.prop = expression[1 + i].strip()
self.child = node(expression[2 + i])
return
raise ParserException(u"Unable to parse tokens")
pass
def toCode(self):
'''This method converts the tree into a python code object'''
code = self.toPython()
return compile(code,'<relational_expression>','eval')
return compile(code, '<relational_expression>', 'eval')
def toPython(self):
'''This method converts the expression into a python code string, which
'''This method converts the expression into a python code string, which
will require the relation module to be executed.'''
if self.name in b_operators:
return '%s.%s(%s)' % (self.left.toPython(),op_functions[self.name],self.right.toPython())
return '%s.%s(%s)' % (self.left.toPython(), op_functions[self.name], self.right.toPython())
elif self.name in u_operators:
prop =self.prop
#Converting parameters
if self.name==PROJECTION:
prop='\"%s\"' % prop.replace(' ','').replace(',','\",\"')
elif self.name==RENAME:
prop='{\"%s\"}' % prop.replace(',','\",\"').replace(ARROW,'\":\"').replace(' ','')
else: #Selection
prop='\"%s\"' % prop
return '%s.%s(%s)' % (self.child.toPython(),op_functions[self.name],prop)
prop = self.prop
# Converting parameters
if self.name == PROJECTION:
prop = '\"%s\"' % prop.replace(' ', '').replace(',', '\",\"')
elif self.name == RENAME:
prop = '{\"%s\"}' % prop.replace(
',', '\",\"').replace(ARROW, '\":\"').replace(' ', '')
else: # Selection
prop = '\"%s\"' % prop
return '%s.%s(%s)' % (self.child.toPython(), op_functions[self.name], prop)
else:
return self.name
pass
def printtree(self,level=0):
def printtree(self, level=0):
'''returns a representation of the tree using indentation'''
r=''
r = ''
for i in range(level):
r+=' '
r+=self.name
r += ' '
r += self.name
if self.name in b_operators:
r+=self.left.printtree(level+1)
r+=self.right.printtree(level+1)
r += self.left.printtree(level + 1)
r += self.right.printtree(level + 1)
elif self.name in u_operators:
r+='\t%s\n' % self.prop
r+=self.child.printtree(level+1)
return '\n'+r
r += '\t%s\n' % self.prop
r += self.child.printtree(level + 1)
return '\n' + r
def get_left_leaf(self):
'''This function returns the leftmost leaf in the tree. It is needed by some optimizations.'''
if self.kind==RELATION:
if self.kind == RELATION:
return self
elif self.kind==UNARY:
elif self.kind == UNARY:
return self.child.get_left_leaf()
elif self.kind==BINARY:
elif self.kind == BINARY:
return self.left.get_left_leaf()
def result_format(self,rels):
def result_format(self, rels):
'''This function returns a list containing the fields that the resulting relation will have.
It requires a dictionary where keys are the names of the relations and the values are
the relation objects.'''
if rels==None:
if rels == None:
return
if self.kind==RELATION:
if self.kind == RELATION:
return list(rels[self.name].header.attributes)
elif self.kind==BINARY and self.name in (DIFFERENCE,UNION,INTERSECTION):
elif self.kind == BINARY and self.name in (DIFFERENCE, UNION, INTERSECTION):
return self.left.result_format(rels)
elif self.kind==BINARY and self.name==DIVISION:
elif self.kind == BINARY and self.name == DIVISION:
return list(set(self.left.result_format(rels)) - set(self.right.result_format(rels)))
elif self.name==PROJECTION:
l=[]
elif self.name == PROJECTION:
l = []
for i in self.prop.split(','):
l.append(i.strip())
return l
elif self.name==PRODUCT:
return self.left.result_format(rels)+self.right.result_format(rels)
elif self.name==SELECTION:
elif self.name == PRODUCT:
return self.left.result_format(rels) + self.right.result_format(rels)
elif self.name == SELECTION:
return self.child.result_format(rels)
elif self.name==RENAME:
_vars={}
elif self.name == RENAME:
_vars = {}
for i in self.prop.split(','):
q=i.split(ARROW)
_vars[q[0].strip()]=q[1].strip()
_fields=self.child.result_format(rels)
q = i.split(ARROW)
_vars[q[0].strip()] = q[1].strip()
_fields = self.child.result_format(rels)
for i in range(len(_fields)):
if _fields[i] in _vars:
_fields[i]=_vars[_fields[i]]
_fields[i] = _vars[_fields[i]]
return _fields
elif self.name in (JOIN,JOIN_LEFT,JOIN_RIGHT,JOIN_FULL):
elif self.name in (JOIN, JOIN_LEFT, JOIN_RIGHT, JOIN_FULL):
return list(set(self.left.result_format(rels)).union(set(self.right.result_format(rels))))
def __eq__(self,other):
if not (isinstance(other,node) and self.name==other.name and self.kind==other.kind):
return False
if self.kind==UNARY:
if other.prop!=self.prop:
return False
return self.child==other.child
if self.kind==BINARY:
return self.left==other.left and self.right==other.right
return True
def __str__(self):
if (self.kind==RELATION):
return self.name
elif (self.kind==UNARY):
return self.name + " "+ self.prop+ " (" + self.child.__str__() +")"
elif (self.kind==BINARY):
if self.left.kind==RELATION:
le=self.left.__str__()
else:
le="("+self.left.__str__()+")"
if self.right.kind==RELATION:
re=self.right.__str__()
else:
re="("+self.right.__str__()+")"
return (le+ self.name +re)
def _find_matching_parenthesis(expression,start=0,openpar=u'(',closepar=u')'):
def __eq__(self, other):
if not (isinstance(other, node) and self.name == other.name and self.kind == other.kind):
return False
if self.kind == UNARY:
if other.prop != self.prop:
return False
return self.child == other.child
if self.kind == BINARY:
return self.left == other.left and self.right == other.right
return True
def __str__(self):
if (self.kind == RELATION):
return self.name
elif (self.kind == UNARY):
return self.name + " " + self.prop + " (" + self.child.__str__() + ")"
elif (self.kind == BINARY):
if self.left.kind == RELATION:
le = self.left.__str__()
else:
le = "(" + self.left.__str__() + ")"
if self.right.kind == RELATION:
re = self.right.__str__()
else:
re = "(" + self.right.__str__() + ")"
return (le + self.name + re)
def _find_matching_parenthesis(expression, start=0, openpar=u'(', closepar=u')'):
'''This function returns the position of the matching
close parenthesis to the 1st open parenthesis found
starting from start (0 by default)'''
par_count=0 #Count of parenthesis
for i in range(start,len(expression)):
if expression[i]==openpar:
par_count+=1
elif expression[i]==closepar:
par_count-=1
if par_count==0:
return i #Closing parenthesis of the parameter
par_count = 0 # Count of parenthesis
for i in range(start, len(expression)):
if expression[i] == openpar:
par_count += 1
elif expression[i] == closepar:
par_count -= 1
if par_count == 0:
return i # Closing parenthesis of the parameter
def tokenize(expression):
'''This function converts an expression into a list where
every token of the expression is an item of a list. Expressions into
parenthesis will be converted into sublists.'''
if not isinstance(expression,unicode):
if not isinstance(expression, unicode):
raise TokenizerException('expected unicode')
items=[] #List for the tokens
items = [] # List for the tokens
'''This is a state machine. Initial status is determined by the starting of the
expression. There are the following statuses:
relation: this is the status if the expressions begins with something else than an
operator or a parenthesis.
binary operator: this is the status when parsing a binary operator, nothing much to say
@@ -290,9 +308,9 @@ def tokenize(expression):
sub-expression.
sub-expression: this status is entered when finding a '(' and will be exited when finding a ')'.
means that the others open must be counted to determine which close is the right one.'''
expression=expression.strip() #Removes initial and endind spaces
state=0
expression = expression.strip() # Removes initial and endind spaces
state = 0
'''
0 initial and useless
1 previous stuff was a relation
@@ -301,83 +319,92 @@ def tokenize(expression):
4 previous stuff was a binary operator
'''
while len(expression)>0:
if expression.startswith('('): #Parenthesis state
state=2
end=_find_matching_parenthesis(expression)
if end==None:
raise TokenizerException("Missing matching ')' in '%s'" %expression)
#Appends the tokenization of the content of the parenthesis
while len(expression) > 0:
if expression.startswith('('): # Parenthesis state
state = 2
end = _find_matching_parenthesis(expression)
if end == None:
raise TokenizerException(
"Missing matching ')' in '%s'" % expression)
# Appends the tokenization of the content of the parenthesis
items.append(tokenize(expression[1:end]))
#Removes the entire parentesis and content from the expression
expression=expression[end+1:].strip()
elif expression.startswith((u"σ",u"π",u"ρ")): #Unary 2 bytes
items.append(expression[0:1]) #Adding operator in the top of the list
expression=expression[1:].strip() #Removing operator from the expression
if expression.startswith('('): #Expression with parenthesis, so adding what's between open and close without tokenization
par=expression.find('(',_find_matching_parenthesis(expression))
else: #Expression without parenthesis, so adding what's between start and parenthesis as whole
par=expression.find('(')
items.append(expression[:par].strip()) #Inserting parameter of the operator
expression=expression[par:].strip() #Removing parameter from the expression
elif expression.startswith((u"÷",u"",u"",u"*",u"-")):
# Removes the entire parentesis and content from the expression
expression = expression[end + 1:].strip()
elif expression.startswith((u"σ", u"π", u"ρ")): # Unary 2 bytes
items.append(expression[0:1])
#Adding operator in the top of the list
expression = expression[
1:].strip() # Removing operator from the expression
if expression.startswith('('): # Expression with parenthesis, so adding what's between open and close without tokenization
par = expression.find(
'(', _find_matching_parenthesis(expression))
else: # Expression without parenthesis, so adding what's between start and parenthesis as whole
par = expression.find('(')
items.append(expression[:par].strip())
#Inserting parameter of the operator
expression = expression[
par:].strip() # Removing parameter from the expression
elif expression.startswith((u"÷", u"", u"", u"*", u"-")):
items.append(expression[0])
expression=expression[1:].strip() #1 char from the expression
state=4
elif expression.startswith(u""): #Binary long
i=expression.find(u"")
if i==-1:
expression = expression[1:].strip() # 1 char from the expression
state = 4
elif expression.startswith(u""): # Binary long
i = expression.find(u"")
if i == -1:
raise TokenizerException(u"Expected ᐊ in %s" % (expression,))
items.append(expression[:i+1])
expression=expression[i+1:].strip()
state=4
elif re.match(r'[_0-9A-Za-z]',expression[0])==None: #At this point we only have relation names, so we raise errors for anything else
raise TokenizerException("Unexpected '%c' in '%s'" % (expression[0],expression))
else: #Relation (hopefully)
if state==1: #Previous was a relation, appending to the last token
i=items.pop()
items.append(i+expression[0])
expression=expression[1:].strip() #1 char from the expression
items.append(expression[:i + 1])
expression = expression[i + 1:].strip()
state = 4
elif re.match(r'[_0-9A-Za-z]', expression[0]) == None: # At this point we only have relation names, so we raise errors for anything else
raise TokenizerException(
"Unexpected '%c' in '%s'" % (expression[0], expression))
else: # Relation (hopefully)
if state == 1: # Previous was a relation, appending to the last token
i = items.pop()
items.append(i + expression[0])
expression = expression[
1:].strip() # 1 char from the expression
else:
state=1
state = 1
items.append(expression[0])
expression=expression[1:].strip() #1 char from the expression
expression = expression[
1:].strip() # 1 char from the expression
return items
def tree(expression):
'''This function parses a relational algebra expression into a tree and returns
the root node using the Node class defined in this module.'''
return node(tokenize(expression))
def parse(expr):
'''This function parses a relational algebra expression, converting it into python,
'''This function parses a relational algebra expression, converting it into python,
executable by eval function to get the result of the expression.
It has 2 class of operators:
without parameters
*, -, , ᑎ, ᐅᐊ, ᐅLEFTᐊ, ᐅRIGHTᐊ, ᐅFULLᐊ
with parameters:
σ, π, ρ
Syntax for operators without parameters is:
relation operator relation
Syntax for operators with parameters is:
operator parameters (relation)
Since a*b is a relation itself, you can parse π a,b (a*b).
And since π a,b (A) is a relation, you can parse π a,b (A) B.
You can use parenthesis to change priority: a ᐅᐊ (q d).
IMPORTANT: all strings must be unicode
EXAMPLES
σage > 25 and rank == weight(A)
Q ᐅᐊ π a,b(A) ᐅᐊ B
@@ -387,13 +414,13 @@ def parse(expr):
A ᐅᐊ B
'''
return tree(expr).toPython()
if __name__=="__main__":
if __name__ == "__main__":
while True:
e=unicode(raw_input("Expression: "),'utf-8')
e = unicode(raw_input("Expression: "), 'utf-8')
print parse(e)
#b=u"σ age>1 and skill=='C' (peopleᐅᐊskills)"
#print b[0]
#parse(b)
pass
# b=u"σ age>1 and skill=='C' (peopleᐅᐊskills)"
# print b[0]
# parse(b)
pass

View File

@@ -1,39 +1,42 @@
# -*- coding: utf-8 -*-
# Relational
# Copyright (C) 2008 Salvo "LtWorf" Tomaselli
#
#
# Relational is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
# author Salvo "LtWorf" Tomaselli <tiposchi@tiscali.it>
#
# This module provides a classes to represent queries
import parser
class TypeException(Exception):
pass
class Query(object):
def __init__(self,query):
if not isinstance(query,unicode):
def __init__(self, query):
if not isinstance(query, unicode):
raise TypeException('Expected unicode')
self.query = query
self.tree = parser.tree(query)
#TODO self.query_code = parser
# TODO self.query_code = parser
self.optimized = None
self.optimized_query = None
self.optimized_code = None
self.optimized_code = None

View File

@@ -1,20 +1,20 @@
# -*- coding: utf-8 -*-
# Relational
# Copyright (C) 2008 Salvo "LtWorf" Tomaselli
#
#
# Relational is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
# author Salvo "LtWorf" Tomaselli <tiposchi@tiscali.it>
#
# This module provides a classes to represent relations and to perform
@@ -23,410 +23,420 @@
from rtypes import *
import csv
class relation (object):
'''This objects defines a relation (as a group of consistent tuples) and operations
A relation can be represented using a table
Calling an operation and providing a non relation parameter when it is expected will
result in a None value'''
__hash__=None
def __init__(self,filename=""):
result in a None value'''
__hash__ = None
def __init__(self, filename=""):
'''Creates a relation, accepts a filename and then it will load the relation from
that file. If no parameter is supplied an empty relation is created. Empty
relations are used in internal operations.
By default the file will be handled like a comma separated as described in
RFC4180.'''
self._readonly=False
if len(filename)==0:#Empty relation
self.content=set()
self.header=header([])
return
#Opening file
fp=file(filename)
reader=csv.reader(fp) #Creating a csv reader
self.header=header(reader.next()) # read 1st line
self.content=set()
for i in reader.__iter__(): #Iterating rows
self._readonly = False
if len(filename) == 0: # Empty relation
self.content = set()
self.header = header([])
return
# Opening file
fp = file(filename)
reader = csv.reader(fp) # Creating a csv reader
self.header = header(reader.next()) # read 1st line
self.content = set()
for i in reader.__iter__(): # Iterating rows
self.content.add(tuple(i))
#Closing file
# Closing file
fp.close()
def _make_writable(self):
'''If this relation is marked as readonly, this
'''If this relation is marked as readonly, this
method will copy the content to make it writable too'''
if self._readonly:
self.content=set(self.content)
self._readonly=False
def save(self,filename):
self.content = set(self.content)
self._readonly = False
def save(self, filename):
'''Saves the relation in a file. By default will save using the csv
format as defined in RFC4180, but setting comma_separated to False,
it will use the old format with space separated values.
'''
fp=file(filename,'w') #Opening file in write mode
writer=csv.writer(fp) #Creating csv writer
#It wants an iterable containing iterables
head=(self.header.attributes,)
fp = file(filename, 'w') # Opening file in write mode
writer = csv.writer(fp) # Creating csv writer
# It wants an iterable containing iterables
head = (self.header.attributes,)
writer.writerows(head)
#Writing content, already in the correct format
# Writing content, already in the correct format
writer.writerows(self.content)
fp.close() #Closing file
def _rearrange_(self,other):
fp.close() # Closing file
def _rearrange_(self, other):
'''If two relations share the same attributes in a different order, this method
will use projection to make them have the same attributes' order.
It is not exactely related to relational algebra. Just a method used
It is not exactely related to relational algebra. Just a method used
internally.
Will return None if they don't share the same attributes'''
if (self.__class__!=other.__class__):
if (self.__class__ != other.__class__):
return None
if self.header.sharedAttributes(other.header) == len(self.header.attributes) == len(other.header.attributes):
return other.projection(list(self.header.attributes))
return None
def _autocast(self,string):
def _autocast(self, string):
'''Depending on the regexp matched by the string,
it will perform automatic casting'''
tmpstring=rstring(string)
if len(tmpstring)>0 and tmpstring.isInt():
tmpstring = rstring(string)
if len(tmpstring) > 0 and tmpstring.isInt():
return int(tmpstring)
elif len(tmpstring)>0 and tmpstring.isFloat():
elif len(tmpstring) > 0 and tmpstring.isFloat():
return float(tmpstring)
elif len(tmpstring)>0 and tmpstring.isDate():
elif len(tmpstring) > 0 and tmpstring.isDate():
return rdate(tmpstring)
else:
return tmpstring
def selection(self,expr):
def selection(self, expr):
'''Selection, expr must be a valid boolean expression, can contain field names,
constant, math operations and boolean ones.'''
attributes={}
newt=relation()
newt.header=header(list(self.header.attributes))
attributes = {}
newt = relation()
newt.header = header(list(self.header.attributes))
for i in self.content:
#Fills the attributes dictionary with the values of the tuple
# Fills the attributes dictionary with the values of the tuple
for j in range(len(self.header.attributes)):
attributes[self.header.attributes[j]]=self._autocast(i[j])
attributes[self.header.attributes[j]] = self._autocast(i[j])
try:
if eval(expr,attributes):
if eval(expr, attributes):
newt.content.add(i)
except Exception,e:
raise Exception("Failed to evaluate %s\n%s" % (expr,e.__str__()))
except Exception, e:
raise Exception(
"Failed to evaluate %s\n%s" % (expr, e.__str__()))
return newt
def product (self,other):
def product(self, other):
'''Cartesian product, attributes must be different to avoid collisions
Doing this operation on relations with colliding attributes will
Doing this operation on relations with colliding attributes will
cause an exception.
It is possible to use rename on attributes and then use the product'''
if (self.__class__!=other.__class__)or(self.header.sharedAttributes(other.header)!=0):
raise Exception('Unable to perform product on relations with colliding attributes')
newt=relation()
newt.header=header(self.header.attributes+other.header.attributes)
if (self.__class__ != other.__class__)or(self.header.sharedAttributes(other.header) != 0):
raise Exception(
'Unable to perform product on relations with colliding attributes')
newt = relation()
newt.header = header(self.header.attributes + other.header.attributes)
for i in self.content:
for j in other.content:
newt.content.add(i+j)
newt.content.add(i + j)
return newt
def projection(self,* attributes):
def projection(self, * attributes):
'''Projection operator, takes many parameters, for each field to use.
Can also use a single parameter with a list.
Will delete duplicate items
If an empty list or no parameters are provided, returns None'''
#Parameters are supplied in a list, instead with multiple parameters
if isinstance(attributes[0],list):
attributes=attributes[0]
#Avoiding duplicated attributes
attributes1=[]
If an empty list or no parameters are provided, returns None'''
# Parameters are supplied in a list, instead with multiple parameters
if isinstance(attributes[0], list):
attributes = attributes[0]
# Avoiding duplicated attributes
attributes1 = []
for i in attributes:
if i not in attributes1:
attributes1.append(i)
attributes=attributes1
ids=self.header.getAttributesId(attributes)
if len(ids)==0 or len(ids)!=len(attributes):
attributes = attributes1
ids = self.header.getAttributesId(attributes)
if len(ids) == 0 or len(ids) != len(attributes):
raise Exception('Invalid attributes for projection')
newt=relation()
#Create the header
h=[]
newt = relation()
# Create the header
h = []
for i in ids:
h.append(self.header.attributes[i])
newt.header=header(h)
#Create the body
newt.header = header(h)
# Create the body
for i in self.content:
row=[]
row = []
for j in ids:
row.append(i[j])
newt.content.add(tuple(row))
return newt
def rename(self,params):
def rename(self, params):
'''Operation rename. Takes a dictionary
Will replace the itmem with its content.
For example if you want to rename a to b, provide {"a":"b"}
'''
result=[]
newt=relation()
newt.header=header(list(self.header.attributes))
for old,new in params.iteritems():
if (newt.header.rename(old,new)) == False:
result = []
newt = relation()
newt.header = header(list(self.header.attributes))
for old, new in params.iteritems():
if (newt.header.rename(old, new)) == False:
raise Exception('Unable to find attribute: %s' % old)
newt.content=self.content
newt._readonly=True
newt.content = self.content
newt._readonly = True
return newt
def intersection(self,other):
def intersection(self, other):
'''Intersection operation. The result will contain items present in both
operands.
Will return an empty one if there are no common items.
Will return None if headers are different.
It is possible to use projection and rename to make headers match.'''
other=self._rearrange_(other) #Rearranges attributes' order
if (self.__class__!=other.__class__)or(self.header!=other.header):
raise Exception('Unable to perform intersection on relations with different attributes')
newt=relation()
newt.header=header(list(self.header.attributes))
newt.content=self.content.intersection(other.content)
other = self._rearrange_(other) # Rearranges attributes' order
if (self.__class__ != other.__class__)or(self.header != other.header):
raise Exception(
'Unable to perform intersection on relations with different attributes')
newt = relation()
newt.header = header(list(self.header.attributes))
newt.content = self.content.intersection(other.content)
return newt
def difference(self,other):
def difference(self, other):
'''Difference operation. The result will contain items present in first
operand but not in second one.
Will return an empty one if the second is a superset of first.
Will return None if headers are different.
It is possible to use projection and rename to make headers match.'''
other=self._rearrange_(other) #Rearranges attributes' order
if (self.__class__!=other.__class__)or(self.header!=other.header):
raise Exception('Unable to perform difference on relations with different attributes')
newt=relation()
newt.header=header(list(self.header.attributes))
newt.content=self.content.difference(other.content)
other = self._rearrange_(other) # Rearranges attributes' order
if (self.__class__ != other.__class__)or(self.header != other.header):
raise Exception(
'Unable to perform difference on relations with different attributes')
newt = relation()
newt.header = header(list(self.header.attributes))
newt.content = self.content.difference(other.content)
return newt
def division(self,other):
def division(self, other):
'''Division operator
The division is a binary operation that is written as R ÷ S. The
result consists of the restrictions of tuples in R to the
attribute names unique to R, i.e., in the header of R but not in the
header of S, for which it holds that all their combinations with tuples
in S are present in R.
in S are present in R.
'''
#d_headers are the headers from self that aren't also headers in other
d_headers=list(set(self.header.attributes) - set(other.header.attributes))
# d_headers are the headers from self that aren't also headers in other
d_headers = list(
set(self.header.attributes) - set(other.header.attributes))
'''
Wikipedia defines the division as follows:
a1,....,an are the d_headers
T := πa1,...,an(R) × S
U := T - R
V := πa1,...,an(U)
W := πa1,...,an(R) - V
W is the result that we want
'''
t=self.projection(d_headers).product(other)
t = self.projection(d_headers).product(other)
return self.projection(d_headers).difference(t.difference(self).projection(d_headers))
def union(self,other):
def union(self, other):
'''Union operation. The result will contain items present in first
and second operands.
Will return an empty one if both are empty.
Will not insert tuplicated items.
Will return None if headers are different.
It is possible to use projection and rename to make headers match.'''
other=self._rearrange_(other) #Rearranges attributes' order
if (self.__class__!=other.__class__)or(self.header!=other.header):
raise Exception('Unable to perform union on relations with different attributes')
newt=relation()
newt.header=header(list(self.header.attributes))
newt.content=self.content.union(other.content)
other = self._rearrange_(other) # Rearranges attributes' order
if (self.__class__ != other.__class__)or(self.header != other.header):
raise Exception(
'Unable to perform union on relations with different attributes')
newt = relation()
newt.header = header(list(self.header.attributes))
newt.content = self.content.union(other.content)
return newt
def thetajoin(self,other,expr):
def thetajoin(self, other, expr):
'''Defined as product and then selection with the given expression.'''
return self.product(other).selection(expr)
def outer(self,other):
def outer(self, other):
'''Does a left and a right outer join and returns their union.'''
a=self.outer_right(other)
b=self.outer_left(other)
a = self.outer_right(other)
b = self.outer_left(other)
return a.union(b)
def outer_right(self,other):
def outer_right(self, other):
'''Outer right join. Considers self as left and param as right. If the
tuple has no corrispondence, empy attributes are filled with a "---"
string. This is due to the fact that empty string or a space would cause
problems when saving the relation.
Just like natural join, it works considering shared attributes.'''
return other.outer_left(self)
def outer_left(self,other,swap=False):
'''Outer left join. Considers self as left and param as right. If the
tuple has no corrispondence, empty attributes are filled with a "---"
def outer_left(self, other, swap=False):
'''Outer left join. Considers self as left and param as right. If the
tuple has no corrispondence, empty attributes are filled with a "---"
string. This is due to the fact that empty string or a space would cause
problems when saving the relation.
Just like natural join, it works considering shared attributes.'''
shared=[]
shared = []
for i in self.header.attributes:
if i in other.header.attributes:
shared.append(i)
newt=relation() #Creates the new relation
#Adds all the attributes of the 1st relation
newt.header=header(list(self.header.attributes))
#Adds all the attributes of the 2nd, when non shared
newt = relation() # Creates the new relation
# Adds all the attributes of the 1st relation
newt.header = header(list(self.header.attributes))
# Adds all the attributes of the 2nd, when non shared
for i in other.header.attributes:
if i not in shared:
newt.header.attributes.append(i)
#Shared ids of self
sid=self.header.getAttributesId(shared)
#Shared ids of the other relation
oid=other.header.getAttributesId(shared)
#Non shared ids of the other relation
noid=[]
# Shared ids of self
sid = self.header.getAttributesId(shared)
# Shared ids of the other relation
oid = other.header.getAttributesId(shared)
# Non shared ids of the other relation
noid = []
for i in range(len(other.header.attributes)):
if i not in oid:
noid.append(i)
for i in self.content:
#Tuple partecipated to the join?
added=False
# Tuple partecipated to the join?
added = False
for j in other.content:
match=True
match = True
for k in range(len(sid)):
match=match and ( i[sid[k]]== j[oid[k]])
match = match and (i[sid[k]] == j[oid[k]])
if match:
item=list(i)
item = list(i)
for l in noid:
item.append(j[l])
newt.content.add(tuple(item))
added=True
#If it didn't partecipate, adds it
added = True
# If it didn't partecipate, adds it
if not added:
item=list(i)
item = list(i)
for l in range(len(noid)):
item.append("---")
newt.content.add(tuple(item))
return newt
def join(self,other):
def join(self, other):
'''Natural join, joins on shared attributes (one or more). If there are no
shared attributes, it will behave as cartesian product.'''
#List of attributes in common between the relations
shared=list(set(self.header.attributes).intersection(set(other.header.attributes)))
newt=relation() #Creates the new relation
#Adding to the headers all the fields, done like that because order is needed
newt.header=header(list(self.header.attributes))
# List of attributes in common between the relations
shared = list(set(self.header.attributes)
.intersection(set(other.header.attributes)))
newt = relation() # Creates the new relation
# Adding to the headers all the fields, done like that because order is
# needed
newt.header = header(list(self.header.attributes))
for i in other.header.attributes:
if i not in shared:
newt.header.attributes.append(i)
#Shared ids of self
sid=self.header.getAttributesId(shared)
#Shared ids of the other relation
oid=other.header.getAttributesId(shared)
#Non shared ids of the other relation
noid=[]
# Shared ids of self
sid = self.header.getAttributesId(shared)
# Shared ids of the other relation
oid = other.header.getAttributesId(shared)
# Non shared ids of the other relation
noid = []
for i in range(len(other.header.attributes)):
if i not in oid:
noid.append(i)
for i in self.content:
for j in other.content:
match=True
match = True
for k in range(len(sid)):
match=match and ( i[sid[k]]== j[oid[k]])
match = match and (i[sid[k]] == j[oid[k]])
if match:
item=list(i)
item = list(i)
for l in noid:
item.append(j[l])
newt.content.add(tuple(item))
return newt
def __eq__(self,other):
def __eq__(self, other):
'''Returns true if the relations are the same, ignoring order of items.
This operation is rather heavy, since it requires sorting and comparing.'''
other=self._rearrange_(other) #Rearranges attributes' order so can compare tuples directly
if (self.__class__!=other.__class__)or(self.header!=other.header):
return False #Both parameters must be a relation
other = self._rearrange_(
other) # Rearranges attributes' order so can compare tuples directly
if set(self.header.attributes)!=set(other.header.attributes):
if (self.__class__ != other.__class__)or(self.header != other.header):
return False # Both parameters must be a relation
if set(self.header.attributes) != set(other.header.attributes):
return False
#comparing content
return self.content==other.content
# comparing content
return self.content == other.content
def __str__(self):
'''Returns a string representation of the relation, can be printed with
'''Returns a string representation of the relation, can be printed with
monospaced fonts'''
m_len=[] #Maximum lenght string
m_len = [] # Maximum lenght string
for f in self.header.attributes:
m_len.append(len(f))
for f in self.content:
col=0
col = 0
for i in f:
if len(i)>m_len[col]:
m_len[col]=len(i)
col+=1
res=""
if len(i) > m_len[col]:
m_len[col] = len(i)
col += 1
res = ""
for f in range(len(self.header.attributes)):
res+="%s"%(self.header.attributes[f].ljust(2+m_len[f]))
res += "%s" % (self.header.attributes[f].ljust(2 + m_len[f]))
for r in self.content:
col=0
res+="\n"
col = 0
res += "\n"
for i in r:
res+="%s"% (i.ljust(2+m_len[col]))
col+=1
res += "%s" % (i.ljust(2 + m_len[col]))
col += 1
return res
def update(self,expr,dic):
def update(self, expr, dic):
'''Update, expr must be a valid boolean expression, can contain field names,
constant, math operations and boolean ones.
This operation will change the relation itself instead of generating a new one,
@@ -435,122 +445,123 @@ class relation (object):
will be converted into a string.
Returns the number of affected rows.'''
self._make_writable()
affected=0
attributes={}
keys=dic.keys() #List of headers to modify
f_ids=self.header.getAttributesId(keys) #List of indexes corresponding to keys
#new_content=[] #New content of the relation
affected = 0
attributes = {}
keys = dic.keys() # List of headers to modify
f_ids = self.header.getAttributesId(
keys) # List of indexes corresponding to keys
# new_content=[] #New content of the relation
for i in self.content:
for j in range(len(self.header.attributes)):
attributes[self.header.attributes[j]]=self._autocast(i[j])
if eval(expr,attributes): #If expr is true, changing the tuple
affected+=1
new_tuple=list(i)
#Deleting the tuple, instead of changing it, so other
#relations can still point to the same list without
#being affected.
self.content.remove(i)
attributes[self.header.attributes[j]] = self._autocast(i[j])
if eval(expr, attributes): # If expr is true, changing the tuple
affected += 1
new_tuple = list(i)
# Deleting the tuple, instead of changing it, so other
# relations can still point to the same list without
# being affected.
self.content.remove(i)
for k in range(len(keys)):
new_tuple[f_ids[k]]=str(dic[keys[k]])
new_tuple[f_ids[k]] = str(dic[keys[k]])
self.content.add(tuple(new_tuple))
return affected
def insert(self,values):
def insert(self, values):
'''Inserts a tuple in the relation.
This function will not insert duplicate tuples.
All the values will be converted in string.
Will return the number of inserted rows.'''
#Returns if tuple doesn't fit the number of attributes
# Returns if tuple doesn't fit the number of attributes
if len(self.header.attributes) != len(values):
return 0
self._make_writable()
#Creating list containing only strings
t=[]
# Creating list containing only strings
t = []
for i in values:
t.append(str(i))
prevlen=len(self.content)
prevlen = len(self.content)
self.content.add(tuple(t))
return len(self.content)-prevlen
def delete(self,expr):
return len(self.content) - prevlen
def delete(self, expr):
'''Delete, expr must be a valid boolean expression, can contain field names,
constant, math operations and boolean ones.
This operation will change the relation itself instead of generating a new one,
deleting all the tuples that make expr true.
Returns the number of affected rows.'''
self._make_writable()
attributes={}
affected=len(self.content)
new_content=set() #New content of the relation
attributes = {}
affected = len(self.content)
new_content = set() # New content of the relation
for i in self.content:
for j in range(len(self.header.attributes)):
attributes[self.header.attributes[j]]=self._autocast(i[j])
if not eval(expr,attributes):
affected-=1
attributes[self.header.attributes[j]] = self._autocast(i[j])
if not eval(expr, attributes):
affected -= 1
new_content.add(i)
self.content=new_content
self.content = new_content
return affected
class header (object):
'''This class defines the header of a relation.
It is used within relations to know if requested operations are accepted'''
#Since relations are mutalbe we explicitly block hashing them
__hash__=None
def __init__(self,attributes):
# Since relations are mutalbe we explicitly block hashing them
__hash__ = None
def __init__(self, attributes):
'''Accepts a list with attributes' names. Names MUST be unique'''
self.attributes=attributes
self.attributes = attributes
for i in attributes:
if not is_valid_relation_name(i):
raise Exception('"%s" is not a valid attribute name'% i)
raise Exception('"%s" is not a valid attribute name' % i)
def __repr__(self):
return "header(%s)" % (self.attributes.__repr__())
def rename(self,old,new):
def rename(self, old, new):
'''Renames a field. Doesn't check if it is a duplicate.
Returns True if the field was renamed, False otherwise'''
if not is_valid_relation_name(new):
raise Exception('%s is not a valid attribute name'% new)
raise Exception('%s is not a valid attribute name' % new)
try:
id_=self.attributes.index(old)
self.attributes[id_]=new
id_ = self.attributes.index(old)
self.attributes[id_] = new
except:
return False
return True
def sharedAttributes(self,other):
def sharedAttributes(self, other):
'''Returns how many attributes this header has in common with a given one'''
return len(set(self.attributes).intersection(set(other.attributes)))
def __str__(self):
'''Returns String representation of the field's list'''
return self.attributes.__str__()
def __eq__(self,other):
return self.attributes==other.attributes
def __ne__(self,other):
return self.attributes!=other.attributes
def getAttributesId(self,param):
'''Returns a list with numeric index corresponding to field's name'''
res=[]
def __eq__(self, other):
return self.attributes == other.attributes
def __ne__(self, other):
return self.attributes != other.attributes
def getAttributesId(self, param):
'''Returns a list with numeric index corresponding to field's name'''
res = []
for i in param:
for j in range(len(self.attributes)):
if i==self.attributes[j]:
if i == self.attributes[j]:
res.append(j)
return res

View File

@@ -1,20 +1,20 @@
# -*- coding: utf-8 -*-
# Relational
# Copyright (C) 2008 Salvo "LtWorf" Tomaselli
#
#
# Relation is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
# author Salvo "LtWorf" Tomaselli <tiposchi@tiscali.it>
#
# Custom types for relational algebra.
@@ -24,29 +24,33 @@
import datetime
import re
class rstring (str):
'''String subclass with some custom methods'''
def isInt(self):
'''Returns true if the string represents an int number
it only considers as int numbers the strings matching
the following regexp:
r'^[\+\-]{0,1}[0-9]+$'
'''
if re.match(r'^[\+\-]{0,1}[0-9]+$',self)==None:
if re.match(r'^[\+\-]{0,1}[0-9]+$', self) == None:
return False
else:
return True
def isFloat(self):
'''Returns true if the string represents a float number
it only considers as float numbers, the strings matching
the following regexp:
r'^[\+\-]{0,1}[0-9]+(\.([0-9])+)?$'
'''
if re.match(r'^[\+\-]{0,1}[0-9]+(\.([0-9])+)?$',self)==None:
if re.match(r'^[\+\-]{0,1}[0-9]+(\.([0-9])+)?$', self) == None:
return False
else:
return True
def isDate(self):
'''Returns true if the string represents a date,
in the format YYYY-MM-DD. as separators '-' , '\', '/' are allowed.
@@ -57,24 +61,25 @@ class rstring (str):
return self._isdate
except:
pass
r= re.match(r'^([0-9]{1,4})(\\|-|/)([0-9]{1,2})(\\|-|/)([0-9]{1,2})$',self)
if r==None:
self._isdate=False
self._date=None
r = re.match(
r'^([0-9]{1,4})(\\|-|/)([0-9]{1,2})(\\|-|/)([0-9]{1,2})$', self)
if r == None:
self._isdate = False
self._date = None
return False
try: #Any of the following operations can generate an exception, if it happens, we aren't dealing with a date
year=int(r.group(1))
month=int(r.group(3))
day=int(r.group(5))
d=datetime.date(year,month,day)
self._isdate=True
self._date=d
try: # Any of the following operations can generate an exception, if it happens, we aren't dealing with a date
year = int(r.group(1))
month = int(r.group(3))
day = int(r.group(5))
d = datetime.date(year, month, day)
self._isdate = True
self._date = d
return True
except:
self._isdate=False
self._date=None
self._isdate = False
self._date = None
return False
def getDate(self):
@@ -84,46 +89,59 @@ class rstring (str):
except:
self.isDate()
return self._date
class rdate (object):
'''Represents a date'''
def __init__(self,date):
def __init__(self, date):
'''date: A string representing a date'''
if not isinstance(date,rstring):
date=rstring(date)
self.intdate=date.getDate()
self.day= self.intdate.day
self.month=self.intdate.month
self.weekday=self.intdate.weekday()
self.year=self.intdate.year
if not isinstance(date, rstring):
date = rstring(date)
self.intdate = date.getDate()
self.day = self.intdate.day
self.month = self.intdate.month
self.weekday = self.intdate.weekday()
self.year = self.intdate.year
def __hash__(self):
return self.intdate.__hash__()
def __str__(self):
return self.intdate.__str__()
def __add__(self,days):
res=self.intdate+datetime.timedelta(days)
def __add__(self, days):
res = self.intdate + datetime.timedelta(days)
return rdate(res.__str__())
def __eq__(self,other):
return self.intdate==other.intdate
def __ge__(self,other):
return self.intdate>=other.intdate
def __gt__ (self,other):
return self.intdate>other.intdate
def __le__ (self,other):
return self.intdate<=other.intdate
def __lt__ (self,other):
return self.intdate<other.intdate
def __ne__(self,other):
return self.intdate!=other.intdate
def __sub__ (self,other):
return (self.intdate-other.intdate).days
def __eq__(self, other):
return self.intdate == other.intdate
def __ge__(self, other):
return self.intdate >= other.intdate
def __gt__(self, other):
return self.intdate > other.intdate
def __le__(self, other):
return self.intdate <= other.intdate
def __lt__(self, other):
return self.intdate < other.intdate
def __ne__(self, other):
return self.intdate != other.intdate
def __sub__(self, other):
return (self.intdate - other.intdate).days
def is_valid_relation_name(name):
'''Checks if a name is valid for a relation.
Returns boolean'''
if re.match(r'^[_a-zA-Z]+[_a-zA-Z0-9]*$',name)==None:
if re.match(r'^[_a-zA-Z]+[_a-zA-Z0-9]*$', name) == None:
return False
else:
return True
return True