# coding=UTF-8 # Relational # Copyright (C) 2008 Salvo "LtWorf" Tomaselli # # Relation is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # # author Salvo "LtWorf" Tomaselli def parse(expr): '''This function parses a relational algebra expression, converting it into python, executable by eval function to get the result of the expression. It has 2 class of operators: without parameters *, -, ᑌ, ᑎ, ᐅᐊ, ᐅLEFTᐊ, ᐅRIGHTᐊ, ᐅFULLᐊ with parameters: σ, π, ρ Syntax for operators without parameters is: relation operator relation Syntax for operators with parameters is: operator parameters (relation) Since a*b is a relation itself, you can parse π a,b (a*b). And since π a,b (A) is a relation, you can parse π a,b (A) ᑌ B. You can use parenthesis to change priority: a ᐅᐊ (q ᑌ d). IMPORTANT: The encoding used by this module is UTF-8 EXAMPLES σage > 25 and rank == weight(A) Q ᐅᐊ π a,b(A) ᐅᐊ B ρid➡i,name➡n(A) - π a,b(π a,b(A)) ᑎ σage > 25 or rank = weight(A) π a,b(π a,b(A)) ρid➡i,name➡n(π a,b(A)) A ᐅᐊ B ''' symbols=("σ","π","ρ") starts=[]#List with starts and ends parenthesis=0 lexpr=list(expr) #Parses the string finding all 1st level parenthesis for i in range(len(lexpr)): if lexpr[i]=="(": if parenthesis==0: starts.append(i+1) parenthesis+=1 elif lexpr[i]==")": parenthesis-=1 if parenthesis==0: starts.append(i) if len(starts)==0: #No parenthesis: no operators with parameters return parse_op(expr) while len(starts)>0: #Converting the last complex operator into python end=starts.pop() start=starts.pop() internal=parse(expr[start:end]) endp=start-1 symbol="" for i in range(endp,-1,-1): if expr[i:i+2] in symbols: symbol=expr[i:i+2] start=i+2 break elif expr[i:i+1] ==")": break #No symbol before parameters=expr[start:endp] res="" #String for result if symbol=="π":#Projection params="" count=0 for i in parameters.split(","): if count!=0: params+="," else: count=1 params+="\"%s\"" % (i.strip()) res="%s.projection(%s)" % (internal,params) expr= ("%s%s%s") % (expr[0:start-2],res,expr[end+1:]) elif symbol== "σ": #Selection res="%s.selection(\"%s\")" % (internal,parameters) expr= ("%s%s%s") % (expr[0:start-2],res,expr[end+1:]) elif symbol=="ρ": #Rename params=parameters.replace(",","\",\"").replace("➡","\",\"").replace(" ","") res="%s.rename(\"%s\")" % (internal,params) expr= ("%s%s%s") % (expr[0:start-2],res,expr[end+1:]) else: res="(%s)" % (internal) expr= ("%s%s%s") % (expr[0:start-1],res,expr[end+1:]) #Last complex operator is replaced with it's python code #Next cycle will do the same to the new last unparsed complex operator #At the end, parse_op will convert operators without parameters return parse_op(expr) def parse_op(expr): '''This function parses a relational algebra expression including only operators without parameters, converting it into python. Executable by eval function to get the result of the expression.''' result="" symbols={} symbols["*"]=".product(%s)" symbols["-"]=".difference(%s)" symbols["ᑌ"]=".union(%s)" symbols["ᑎ"]=".intersection(%s)" symbols["ᐅLEFTᐊ"]=".outer_left(%s)" symbols["ᐅRIGHTᐊ"]=".outer_right(%s)" symbols["ᐅFULLᐊ"]=".outer(%s)" symbols["ᐅᐊ"]=".join(%s)" for i in symbols: expr=expr.replace(i,"_____%s_____"% (i)) tokens=expr.split("_____") i=0; tk_l=len(tokens) while i