# coding=UTF-8
# Relation
# Copyright (C) 2008 Salvo "LtWorf" Tomaselli
#
# Relation is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see .
#
# author Salvo "LtWorf" Tomaselli
def parse(expr):
'''This function parses a relational algebra expression, converting it into python,
executable by eval function to get the result of the expression.
It has 2 class of operators:
without parameters
*, -, ᑌ, ᑎ, ᐅᐊ, ᐅLEFTᐊ, ᐅRIGHTᐊ, ᐅFULLᐊ
with parameters:
σ, π, ρ
Syntax for operators without parameters is:
relation operator relation
Syntax for operators with parameters is:
operator parameters (relation)
Since a*b is a relation itself, you can parse π a,b (a*b).
And since π a,b (A) is a relation, you can parse π a,b (A) ᑌ B.
You can't use parenthesis to change priority: a ᐅᐊ (q ᑌ d)
must be written as q ᑌ d ᐅᐊ a
IMPORTANT: The encoding used by this module is UTF-8
EXAMPLES
σage > 25 and rank == weight(A)
Q ᐅᐊ π a,b(A) ᐅᐊ B
ρid➡i,name➡n(A) - π a,b(π a,b(A)) ᑎ σage > 25 or rank = weight(A)
π a,b(π a,b(A))
ρid➡i,name➡n(π a,b(A))
A ᐅᐊ B
'''
symbols=("σ","π","ρ")
starts=[]#List with starts and ends
parenthesis=0
lexpr=list(expr)
#Parses the string finding all 1st level parenthesis
for i in range(len(lexpr)):
if lexpr[i]=="(":
if parenthesis==0:
starts.append(i+1)
parenthesis+=1
elif lexpr[i]==")":
parenthesis-=1
if parenthesis==0:
starts.append(i)
if len(starts)==0: #No parenthesis: no operators with parameters
return parse_op(expr)
while len(starts)>0:
#Converting the last complex operator into python
end=starts.pop()
start=starts.pop()
internal=parse(expr[start:end])
endp=start-1
symbol=""
for i in range(endp,-1,-1):
if expr[i:i+2] in symbols:
symbol=expr[i:i+2]
start=i+2
break
elif expr[i:i+1] ==")":
break #No symbol before
parameters=expr[start:endp]
res="" #String for result
if symbol=="π":#Projection
params=""
count=0
for i in parameters.split(","):
if count!=0:
params+=","
else:
count=1
params+="\"%s\"" % (i.strip())
res="%s.projection(%s)" % (internal,params)
expr= ("%s%s%s") % (expr[0:start-2],res,expr[end+1:])
elif symbol== "σ": #Selection
res="%s.selection(\"%s\")" % (internal,parameters)
expr= ("%s%s%s") % (expr[0:start-2],res,expr[end+1:])
elif symbol=="ρ": #Rename
params=parameters.replace(",","\",\"").replace("➡","\",\"").replace(" ","")
res="%s.rename(\"%s\")" % (internal,params)
expr= ("%s%s%s") % (expr[0:start-2],res,expr[end+1:])
else:
res="(%s)" % (internal)
expr= ("%s%s%s") % (expr[0:start-1],res,expr[end+1:])
#Last complex operator is replaced with it's python code
#Next cycle will do the same to the new last unparsed complex operator
#At the end, parse_op will convert operators without parameters
return parse_op(expr)
def parse_op(expr):
'''This function parses a relational algebra expression including only operators
without parameters, converting it into python.
Executable by eval function to get the result of the expression.'''
result=""
symbols={}
symbols["*"]=".product(%s)"
symbols["-"]=".difference(%s)"
symbols["ᑌ"]=".union(%s)"
symbols["ᑎ"]=".intersection(%s)"
symbols["ᐅLEFTᐊ"]=".outer_left(%s)"
symbols["ᐅRIGHTᐊ"]=".outer_right(%s)"
symbols["ᐅFULLᐊ"]=".outer(%s)"
symbols["ᐅᐊ"]=".join(%s)"
for i in symbols:
expr=expr.replace(i,"_____%s_____"% (i))
tokens=expr.split("_____")
i=0;
tk_l=len(tokens)
while i