2009-06-29 13:12:45 +00:00

298 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
# coding=UTF-8
# Relational
# Copyright (C) 2008 Salvo "LtWorf" Tomaselli
#
# Relation is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# author Salvo "LtWorf" Tomaselli <tiposchi@tiscali.it>
RELATION=0
UNARY=1
BINARY=2
b_operators=('*','-','','','ᐅᐊ','ᐅLEFTᐊ','ᐅRIGHTᐊ','ᐅFULLᐊ')
u_operators=('π','σ','ρ')
op_functions={'*':'product','-':'difference','':'union','':'intersection','ᐅᐊ':'join','ᐅLEFTᐊ':'outer_left','ᐅRIGHTᐊ':'outer_right','ᐅFULLᐊ':'outer','π':'projection','σ':'selection','ρ':'rename'}
class node (object):
'''This class is a node of a relational expression. Leaves are relations and internal nodes are operations.
The kind property says if the node is a binary operator, unary operator or relation.
Since relations are leaves, a relation node will have no attribute for children.
If the node is a binary operator, it will have left and right properties.
If the node is a unary operator, it will have a child, pointing to the child node and a prop containing
the string with the props of the operation.
This class is used to convert an expression into python code.'''
kind=None
def __init__(self,expression=None):
'''Generates the tree from the tokenized expression
If no expression is specified then it will create an empty node'''
if expression==None or len(expression)==0:
return
#If the list contains only a list, it will consider the lower level list.
#This will allow things like ((((((a))))) to work
while len(expression)==1 and isinstance(expression[0],list):
expression=expression[0]
#The list contains only 1 string. Means it is the name of a relation
if len(expression)==1 and isinstance(expression[0],str):
self.kind=RELATION
self.name=expression[0]
return
'''Expression from right to left, searching for binary operators
this means that binary operators have lesser priority than
unary operators.
It find the operator with lesser priority, uses it as root of this
(sub)tree using everything on its left as left parameter (so building
a left subtree with the part of the list located on left) and doing
the same on right.
Since it searches for strings, and expressions into parenthesis are
within sub-lists, they won't be found here, ensuring that they will
have highest priority.'''
for i in range(len(expression)-1,-1,-1):
if expression[i] in b_operators: #Binary operator
self.kind=BINARY
self.name=expression[i]
self.left=node(expression[:i])
self.right=node(expression[i+1:])
return
'''Searches for unary operators, parsing from right to left'''
for i in range(len(expression)-1,-1,-1):
if expression[i] in u_operators: #Unary operator
self.kind=UNARY
self.name=expression[i]
self.prop=expression[1+i].strip()
self.child=node(expression[2+i])
return
pass
def toPython(self):
'''This method converts the expression into python code, which will require the
relation module to be executed.'''
if self.name in b_operators:
return '%s.%s(%s)' % (self.left.toPython(),op_functions[self.name],self.right.toPython())
elif self.name in u_operators:
prop =self.prop
#Converting parameters
if self.name=='π':#Projection
prop='\"%s\"' % prop.replace(' ','').replace(',','\",\"')
elif self.name=="ρ": #Rename
prop='{\"%s\"}' % prop.replace(',','\",\"').replace('','\":\"').replace(' ','')
else: #Selection
prop='\"%s\"' % prop
return '%s.%s(%s)' % (self.child.toPython(),op_functions[self.name],prop)
else:
return self.name
pass
def result_format(self,rels):
'''This function returns a list containing the fields that the resulting relation will have.
Since it needs to know real instances of relations, it requires a dictionary where keys are
the names of the relations and the values are the relation objects.'''
if rels==None:
return
if self.kind==RELATION:
return list(rels[self.name].header.attributes)
elif self.kind==BINARY and self.name in ('-','',''):
return self.left.result_format(rels)
elif self.name=='π':
l=[]
for i in self.prop.split(','):
l.append(i.strip())
return l
elif self.name=='*':
return self.left.result_format(rels)+self.right.result_format(rels)
elif self.name=='σ' :
return self.child.result_format(rels)
elif self.name=='ρ':
_vars={}
for i in self.prop.split(','):
q=i.split('')
_vars[q[0].strip()]=q[1].strip()
_fields=self.child.result_format(rels)
for i in range(len(_fields)):
if _fields[i] in _vars:
_fields[i]=_vars[_fields[i]]
return _fields
elif self.name in ('ᐅᐊ','ᐅLEFTᐊ','ᐅRIGHTᐊ','ᐅFULLᐊ'):
return list(set(self.left.result_format(rels)).union(set(self.right.result_format(rels))))
def __eq__(self,other):
if not (isinstance(other,node) and self.name==other.name and self.kind==other.kind):
return False
if self.kind==UNARY:
if other.prop!=self.prop:
return False
return self.child==other.child
if self.kind==BINARY:
return self.left==other.left and self.right==other.right
return True
def __str__(self):
if (self.kind==RELATION):
return self.name
elif (self.kind==UNARY):
return self.name + " "+ self.prop+ " (" + self.child.__str__() +")"
elif (self.kind==BINARY):
if self.left.kind==RELATION:
le=self.left.__str__()
else:
le="("+self.left.__str__()+")"
if self.right.kind==RELATION:
re=self.right.__str__()
else:
re="("+self.right.__str__()+")"
return (le+ self.name +re)
def find_matching_parenthesis(expression,start=0):
'''This function returns the position of the matching
close parenthesis to the 1st open parenthesis found
starting from start (0 by default)'''
par_count=0 #Count of parenthesis
for i in range(start,len(expression)):
if expression[i]=='(':
par_count+=1
elif expression[i]==')':
par_count-=1
if par_count==0:
return i #Closing parenthesis of the parameter
def tokenize(expression):
'''This function converts an expression into a list where
every token of the expression is an item of a list. Expressions into
parenthesis will be converted into sublists.'''
items=[] #List for the tokens
'''This is a state machine. Initial status is determined by the starting of the
expression. There are the following statuses:
relation: this is the status if the expressions begins with something else than an
operator or a parenthesis.
binary operator: this is the status when parsing a binary operator, nothing much to say
unary operator: this status is more complex, since it will be followed by a parameter AND a
sub-expression.
sub-expression: this status is entered when finding a '(' and will be exited when finding a ')'.
means that the others open must be counted to determine which close is the right one.'''
expression=expression.strip() #Removes initial and endind spaces
state=0
'''
0 initial and useless
1 previous stuff was a relation
2 previous stuff was a sub-expression
3 previous stuff was a unary operator
4 previous stuff was a binary operator
'''
while len(expression)>0:
if expression.startswith('('): #Parenthesis state
state=2
end=find_matching_parenthesis(expression)
#Appends the tokenization of the content of the parenthesis
items.append(tokenize(expression[1:end]))
#Removes the entire parentesis and content from the expression
expression=expression[end+1:].strip()
elif expression.startswith("σ") or expression.startswith("π") or expression.startswith("ρ"): #Unary 2 bytes
items.append(expression[0:2]) #Adding operator in the top of the list
expression=expression[2:].strip() #Removing operator from the expression
if expression.startswith('('): #Expression with parenthesis, so adding what's between open and close without tokenization
par=expression.find('(',find_matching_parenthesis(expression))
else: #Expression without parenthesis, so adding what's between start and parenthesis as whole
par=expression.find('(')
items.append(expression[:par].strip()) #Inserting parameter of the operator
expression=expression[par:].strip() #Removing parameter from the expression
elif expression.startswith("*") or expression.startswith("-"): # Binary 1 byte
items.append(expression[0])
expression=expression[1:].strip() #1 char from the expression
state=4
elif expression.startswith("") or expression.startswith(""): #Binary short 3 bytes
items.append(expression[0:3]) #Adding operator in the top of the list
expression=expression[3:].strip() #Removing operator from the expression
state=4
elif expression.startswith(""): #Binary long
i=expression.find("")
items.append(expression[:i+3])
expression=expression[i+3:].strip()
state=4
else: #Relation (hopefully)
if state==1: #Previous was a relation, appending to the last token
i=items.pop()
items.append(i+expression[0])
expression=expression[1:].strip() #1 char from the expression
else:
state=1
items.append(expression[0])
expression=expression[1:].strip() #1 char from the expression
return items
def tree(expression):
'''This function parses a relational algebra expression into a tree and returns
the root node using the Node class defined in this module.'''
return node(tokenize(expression))
def parse(expr):
'''This function parses a relational algebra expression, converting it into python,
executable by eval function to get the result of the expression.
It has 2 class of operators:
without parameters
*, -, , ᑎ, ᐅᐊ, ᐅLEFTᐊ, ᐅRIGHTᐊ, ᐅFULLᐊ
with parameters:
σ, π, ρ
Syntax for operators without parameters is:
relation operator relation
Syntax for operators with parameters is:
operator parameters (relation)
Since a*b is a relation itself, you can parse π a,b (a*b).
And since π a,b (A) is a relation, you can parse π a,b (A) B.
You can use parenthesis to change priority: a ᐅᐊ (q d).
IMPORTANT: The encoding used by this module is UTF-8
EXAMPLES
σage > 25 and rank == weight(A)
Q ᐅᐊ π a,b(A) ᐅᐊ B
ρid➡i,name➡n(A) - π a,b(π a,b(A)) ᑎ σage > 25 or rank = weight(A)
π a,b(π a,b(A))
ρid➡i,name➡n(π a,b(A))
A ᐅᐊ B
'''
return tree(expr).toPython()
if __name__=="__main__":
while True:
e=raw_input("Expression: ")
print parse(e)