relational/relational/optimizations.py
LtWorf 2c4757dafb - When a query fails, shows the message of the exception
- Improved tokenizer for select in optimizations, now can accept operators in identifiers


git-svn-id: http://galileo.dmi.unict.it/svn/relational/trunk@220 014f5005-505e-4b48-8d0a-63407b615a7c
2010-03-19 16:06:02 +00:00

548 lines
18 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
# Relational
# Copyright (C) 2009 Salvo "LtWorf" Tomaselli
#
# Relational is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# author Salvo "LtWorf" Tomaselli <tiposchi@tiscali.it>
'''This module contains functions to perform various optimizations on the expression trees.
The list general_optimizations contains pointers to general functions, so they can be called
within a cycle.
It is possible to add new general optimizations by adding the function in the list
general_optimizations present in this module. And the optimization will be executed with the
other ones when optimizing.
A function will have one parameter, which is the root node of the tree describing the expression.
The class used is defined in optimizer module.
A function will have to return the number of changes performed on the tree.
'''
import optimizer
import parser
sel_op=('//=','**=','and','not','in','//','**','<<','>>','==','!=','>=','<=','+=','-=','*=','/=','%=','or','+','-','*','/','&','|','^','~','<','>','%','=','(',')',',','[',']')
def replace_node(replace,replacement):
'''This function replaces "replace" node with the node "with",
the father of the node will now point to the with node'''
replace.name=replacement.name
replace.kind=replacement.kind
if replace.kind==optimizer.UNARY:
replace.child=replacement.child
replace.prop=replacement.prop
elif replace.kind==optimizer.BINARY:
replace.right=replacement.right
replace.left=replacement.left
def recoursive_scan(function,node,rels=None):
'''Does a recoursive optimization on the tree'''
changes=0
#recoursive scan
if node.kind==optimizer.UNARY:
if rels!=None:
changes+=function(node.child,rels)
else:
changes+=function(node.child)
elif node.kind==optimizer.BINARY:
if rels!=None:
changes+=function(node.right,rels)
changes+=function(node.left,rels)
else:
changes+=function(node.right)
changes+=function(node.left)
return changes
def duplicated_select(n):
'''This function locates and deletes things like
σ a ( σ a(C)) and the ones like σ a ( σ b(C))'''
changes=0
if n.name=='σ' and n.child.name=='σ':
if n.prop != n.child.prop: #Nested but different, joining them
n.prop = n.prop + " and " + n.child.prop
n.child=n.child.child
changes=1
changes+=duplicated_select(n)
return changes+recoursive_scan(duplicated_select,n)
def futile_union_intersection_subtraction(n):
'''This function locates things like r r, and replaces them with r.
R R --> R
R ᑎ R --> R
R - R --> σ False (R)
σ k (R) - R --> σ False (R)
R - σ k (R) --> σ not k (R)
σ k (R) R --> R
σ k (R) ᑎ R --> σ k (R)
'''
changes=0
if n.name in ('','') and n.left==n.right:
changes=1
replace_node(n,n.left)
elif (n.name == '' and ((n.left.name=='σ' and n.left.child==n.right) or (n.right.name=='σ' and n.right.child==n.left))): #Union of two equal things, but one has a selection
changes=1
if n.left=='σ':#Selection on left. replacing self with right.
replace_node(n,n.right)
else:#Selection on left. replacing self with right.
replace_node(n,n.left)
elif (n.name == '' and ((n.left.name=='σ' and n.left.child==n.right) or (n.right.name=='σ' and n.right.child==n.left))): #Intersection of two equal things, but one has a selection
changes=1
if n.left=='σ':#Swapping with the selection
replace_node(n,n.left)
else:
replace_node(n,n.right)
#TODO make work the following line...
elif (n.name == '-' and (n.right.name=='σ' and n.right.child==n.left)): #Subtraction of two equal things, but one has a selection
n.name=n.right.name
n.kind=n.right.kind
n.child=n.right.child
n.prop='(not (%s))' % n.right.prop
n.left=n.right=None
elif (n.name=='-' and ((n.left==n.right) or (n.left.name=='σ' and n.left.child==n.right)) ):#Empty relation
changes=1
n.kind=optimizer.UNARY
n.name='σ'
n.prop='False'
n.child=n.left.get_left_leaf()
#n.left=n.right=None
return changes+recoursive_scan(futile_union_intersection_subtraction,n)
def down_to_unions_subtractions_intersections(n):
'''This funcion locates things like σ i==2 (c d), where the union
can be a subtraction and an intersection and replaces them with
σ i==2 (c) σ i==2(d).
'''
changes=0
_o=('','-','')
if n.name=='σ' and n.child.name in _o:
left=optimizer.node()
left.prop=n.prop
left.name=n.name
left.child=n.child.left
left.kind=optimizer.UNARY
right=optimizer.node()
right.prop=n.prop
right.name=n.name
right.child=n.child.right
right.kind=optimizer.UNARY
n.name=n.child.name
n.left=left
n.right=right
n.child=None
n.prop=None
n.kind=optimizer.BINARY
changes+=1
return changes+recoursive_scan(down_to_unions_subtractions_intersections,n)
def duplicated_projection(n):
'''This function locates thing like π i ( π j (R)) and replaces
them with π i (R)'''
changes=0
if n.name=='π' and n.child.name=='π':
n.child=n.child.child
changes+=1
return changes+recoursive_scan(duplicated_projection,n)
def selection_inside_projection(n):
'''This function locates things like σ j (π k(R)) and
converts them into π k(σ j (R))'''
changes=0
if n.name=='σ' and n.child.name=='π':
changes=1
temp=n.prop
n.prop=n.child.prop
n.child.prop=temp
n.name='π'
n.child.name='σ'
return changes+recoursive_scan(selection_inside_projection,n)
def swap_union_renames(n):
'''This function locates things like
ρ a➡b(R) ρ a➡b(Q)
and replaces them with
ρ a➡b(R Q).
Does the same with subtraction and intersection'''
changes=0
if n.name in ('-','','') and n.left.name==n.right.name and n.left.name=='ρ':
l_vars={}
for i in n.left.prop.split(','):
q=i.split('')
l_vars[q[0].strip()]=q[1].strip()
r_vars={}
for i in n.right.prop.split(','):
q=i.split('')
r_vars[q[0].strip()]=q[1].strip()
if r_vars==l_vars:
changes=1
#Copying self, but child will be child of renames
q=optimizer.node()
q.name=n.name
q.kind=optimizer.BINARY
q.left=n.left.child
q.right=n.right.child
n.name='ρ'
n.kind=optimizer.UNARY
n.child=q
n.prop=n.left.prop
n.left=n.right=None
return changes+recoursive_scan(swap_union_renames,n)
def futile_renames(n):
'''This function purges renames like id->id'''
changes=0
if n.name=='ρ':
#Located two nested renames.
changes=1
#Creating a dictionary with the attributes
_vars={}
for i in n.prop.split(','):
q=i.split('')
_vars[q[0].strip()]=q[1].strip()
#Scans dictionary to locate things like "a->b,b->c" and replace them with "a->c"
for key in list(_vars.keys()):
try:
value=_vars[key]
except:
value=None
if key==value:
_vars.pop(value) #Removes the unused one
#Reset prop var
n.prop=""
#Generates new prop var
for i in _vars.items():
n.prop+="%s%s," % (i[0],i[1])
n.prop=n.prop[:-1] #Removing ending comma
if len(n.prop)==0: #Nothing to rename, removing the rename op
replace_node(n,n.child)
return changes+recoursive_scan(futile_renames,n)
def subsequent_renames(n):
'''This function removes redoundant subsequent renames joining them into one'''
'''Purges renames like id->id Since it's needed to be performed BEFORE this one
so it is not in the list with the other optimizations'''
futile_renames(n)
changes=0
if n.name=='ρ' and n.child.name==n.name:
#Located two nested renames.
changes=1
#Joining the attribute into one
n.prop+=','+n.child.prop
n.child=n.child.child
#Creating a dictionary with the attributes
_vars={}
for i in n.prop.split(','):
q=i.split('')
_vars[q[0].strip()]=q[1].strip()
#Scans dictionary to locate things like "a->b,b->c" and replace them with "a->c"
for key in list(_vars.keys()):
try:
value=_vars[key]
except:
value=None
if value in _vars.keys():
if _vars[value]!=key:
#Double rename on attribute
_vars[key] = _vars[_vars[key]] #Sets value
_vars.pop(value) #Removes the unused one
else: #Cycle rename a->b,b->a
_vars.pop(value) #Removes the unused one
_vars.pop(key) #Removes the unused one
#Reset prop var
n.prop=""
#Generates new prop var
for i in _vars.items():
n.prop+="%s%s," % (i[0],i[1])
n.prop=n.prop[:-1] #Removing ending comma
if len(n.prop)==0: #Nothing to rename, removing the rename op
replace_node(n,n.child)
return changes+recoursive_scan(subsequent_renames,n)
class level_string(str):
level=0
def tokenize_select(expression):
'''This function returns the list of tokens present in a
selection. The expression can contain parenthesis.
It will use a subclass of str with the attribute level, which
will specify the nesting level of the token into parenthesis.'''
sel_op=('//=','**=','and ','not ','in ','//','**','<<','>>','==','!=','>=','<=','+=','-=','*=','/=','%=','or ','+','-','*','/','&','|','^','~','<','>','%','=','(',')',',','[',']')
l=0
while l!=len(expression):
l=len(expression)
if expression.startswith('(') and parser.find_matching_parenthesis(expression)+1==len(expression):
expression= expression[1:-1]
tokens=[]
temp=''
level=0
while len(expression)!=0:
expression=expression.strip()
if expression[0:1]=='(': #Expression into parenthesis
level+=1
elif expression[0:1]==')':
level-=1
for i in range(4,0,-1):#operators
if expression[0:i] in sel_op:
t=level_string(temp)
t.level=level
tokens.append(t)
temp=''
t=level_string(expression[0:i].strip())
t.level=level
tokens.append(t)
expression=expression[i:]
if expression[0:1]=="'":#String
end=expression.index("'",1)
while expression[end-1]=='\\':
end=expression.index("'",end+1)
#Add string to list
t=level_string(expression[0:end+1])
t.level=level
tokens.append(t)
expression=expression[end+1:]
else:
temp+=expression[0:1]
expression=expression[1:]
pass
if len(temp)!=0:
t=level_string(temp)
t.level=level
tokens.append(t)
while True:
try:
tokens.remove('')
except:
break
return tokens
def swap_rename_projection(n):
'''This function locates things like π k(ρ j(R))
and replaces them with ρ j(π k(R)).
This will let rename work on a hopefully smaller set
and more important, will hopefully allow further optimizations.
Will also eliminate fields in the rename that are cutted in the projection.
'''
changes=0
if n.name=='π' and n.child.name=='ρ':
changes=1
#π index,name(ρ id➡index(R))
_vars={}
for i in n.child.prop.split(','):
q=i.split('')
_vars[q[1].strip()]=q[0].strip()
_pr=n.prop.split(',')
for i in range(len(_pr)):
try:
_pr[i]=_vars[_pr[i].strip()]
except:
pass
_pr_reborn=n.prop.split(',')
for i in list(_vars.keys()):
if i not in _pr_reborn:
_vars.pop(i)
n.name=n.child.name
n.prop=''
for i in _vars.keys():
n.prop+='%s%s,' % (_vars[i],i)
n.prop=n.prop[:-1]
n.child.name='π'
n.child.prop=''
for i in _pr:
n.child.prop+=i+','
n.child.prop=n.child.prop[:-1]
return changes+recoursive_scan(swap_rename_projection,n)
def swap_rename_select(n):
'''This function locates things like σ k(ρ j(R)) and replaces
them with ρ j(σ k(R)). Renaming the attributes used in the
selection, so the operation is still valid.'''
changes=0
if n.name=='σ' and n.child.name=='ρ':
changes=1
#Dictionary containing attributes of rename
_vars={}
for i in n.child.prop.split(','):
q=i.split('')
_vars[q[1].strip()]=q[0].strip()
#tokenizes expression in select
_tokens=tokenize_select(n.prop)
#Renaming stuff
for i in range(len(_tokens)):
splitted=_tokens[i].split('.',1)
if splitted[0] in _vars:
if len(splitted)==1:
_tokens[i]=_vars[_tokens[i].split('.')[0]]
else:
_tokens[i]=_vars[_tokens[i].split('.')[0]]+'.'+splitted[1]
#Swapping operators
n.name='ρ'
n.child.name='σ'
n.prop=n.child.prop
n.child.prop=''
for i in _tokens:
n.child.prop+=i+ ' '
return changes+recoursive_scan(swap_rename_select,n)
def selection_and_product(n,rels):
'''This function locates things like σ k (R*Q) and converts them into
σ l (σ j (R) * σ i (Q)). Where j contains only attributes belonging to R,
i contains attributes belonging to Q and l contains attributes belonging to both'''
changes=0
if n.name=='σ' and n.child.name in ('*','ᐅᐊ','ᐅLEFTᐊ','ᐅRIGHTᐊ','ᐅFULLᐊ'):
l_attr=n.child.left.result_format(rels)
r_attr=n.child.right.result_format(rels)
tokens=tokenize_select(n.prop)
groups=[]
temp=[]
for i in tokens:
if i=='and' and i.level==0:
groups.append(temp)
temp=[]
else:
temp.append(i)
if len(temp)!=0:
groups.append(temp)
temp=[]
left=[]
right=[]
both=[]
for i in groups:
l_fields=False #has fields in left?
r_fields=False #has fields in left?
for j in set(i).difference(sel_op):
j=j.split('.')[0]
if j in l_attr:#Field in left
l_fields=True
if j in r_attr:#Field in right
r_fields=True
if l_fields and r_fields:#Fields in both
both.append(i)
elif l_fields:
left.append(i)
elif r_fields:
right.append(i)
else:#Unknown.. adding in both
both.append(i)
#Preparing left selection
if len(left)>0:
changes=1
l_node=optimizer.node()
l_node.name='σ'
l_node.kind=optimizer.UNARY
l_node.child=n.child.left
l_node.prop=''
n.child.left=l_node
while len(left)>0:
c=left.pop(0)
for i in c:
l_node.prop+=i+ ' '
if len(left)>0:
l_node.prop+=' and '
if '(' in l_node.prop:
l_node.prop='(%s)' % l_node.prop
#Preparing right selection
if len(right)>0:
changes=1
r_node=optimizer.node()
r_node.name='σ'
r_node.prop=''
r_node.kind=optimizer.UNARY
r_node.child=n.child.right
n.child.right=r_node
while len(right)>0:
c=right.pop(0)
for i in c:
r_node.prop+=i+ ' '
if len(right)>0:
r_node.prop+=' and '
if '(' in r_node.prop:
r_node.prop='(%s)' % r_node.prop
#Changing main selection
n.prop=''
if len(both)!=0:
while len(both)>0:
c=both.pop(0)
for i in c:
n.prop+=i+ ' '
if len(both)>0:
n.prop+=' and '
if '(' in n.prop:
n.prop='(%s)' % n.prop
else:#No need for general select
replace_node(n,n.child)
return changes+recoursive_scan(selection_and_product,n,rels)
general_optimizations=[duplicated_select,down_to_unions_subtractions_intersections,duplicated_projection,selection_inside_projection,subsequent_renames,swap_rename_select,futile_union_intersection_subtraction,swap_union_renames,swap_rename_projection]
specific_optimizations=[selection_and_product]
if __name__=="__main__":
print tokenize_select("skill == 'C' and id % 2 == 0")