1
1
mirror of https://github.com/ryujinx-mirror/ryujinx.git synced 2025-01-19 06:10:04 -06:00
ryujinx/Ryujinx.HLE/HOS/Kernel/SupervisorCall/SvcIpc.cs

534 lines
16 KiB
C#
Raw Normal View History

using Ryujinx.Common.Logging;
using Ryujinx.HLE.HOS.Ipc;
using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Ipc;
using Ryujinx.HLE.HOS.Kernel.Process;
using Ryujinx.HLE.HOS.Kernel.Threading;
using System.Threading;
namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
{
partial class SvcHandler
{
private struct HleIpcMessage
{
public KThread Thread { get; private set; }
public KClientSession Session { get; private set; }
public IpcMessage Message { get; private set; }
public long MessagePtr { get; private set; }
public HleIpcMessage(
KThread thread,
KClientSession session,
IpcMessage message,
long messagePtr)
{
Thread = thread;
Session = session;
Message = message;
MessagePtr = messagePtr;
}
}
public KernelResult ConnectToNamedPort64([R(1)] ulong namePtr, [R(1)] out int handle)
{
return ConnectToNamedPort(namePtr, out handle);
}
private KernelResult ConnectToNamedPort(ulong namePtr, out int handle)
{
handle = 0;
if (!KernelTransfer.UserToKernelString(_system, namePtr, 12, out string name))
{
return KernelResult.UserCopyFailed;
}
if (name.Length > 11)
{
return KernelResult.MaximumExceeded;
}
KAutoObject autoObj = KAutoObject.FindNamedObject(_system, name);
if (!(autoObj is KClientPort clientPort))
{
return KernelResult.NotFound;
}
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
KernelResult result = currentProcess.HandleTable.ReserveHandle(out handle);
if (result != KernelResult.Success)
{
return result;
}
result = clientPort.Connect(out KClientSession clientSession);
if (result != KernelResult.Success)
{
currentProcess.HandleTable.CancelHandleReservation(handle);
return result;
}
currentProcess.HandleTable.SetReservedHandleObj(handle, clientSession);
clientSession.DecrementReferenceCount();
return result;
}
public KernelResult SendSyncRequest64([R(0)] int handle)
{
Add a new JIT compiler for CPU code (#693) * Start of the ARMeilleure project * Refactoring around the old IRAdapter, now renamed to PreAllocator * Optimize the LowestBitSet method * Add CLZ support and fix CLS implementation * Add missing Equals and GetHashCode overrides on some structs, misc small tweaks * Implement the ByteSwap IR instruction, and some refactoring on the assembler * Implement the DivideUI IR instruction and fix 64-bits IDIV * Correct constant operand type on CSINC * Move division instructions implementation to InstEmitDiv * Fix destination type for the ConditionalSelect IR instruction * Implement UMULH and SMULH, with new IR instructions * Fix some issues with shift instructions * Fix constant types for BFM instructions * Fix up new tests using the new V128 struct * Update tests * Move DIV tests to a separate file * Add support for calls, and some instructions that depends on them * Start adding support for SIMD & FP types, along with some of the related ARM instructions * Fix some typos and the divide instruction with FP operands * Fix wrong method call on Clz_V * Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes * Implement SIMD logical instructions and more misc. fixes * Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations * Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes * Implement SIMD shift instruction and fix Dup_V * Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table * Fix check with tolerance on tester * Implement FP & SIMD comparison instructions, and some fixes * Update FCVT (Scalar) encoding on the table to support the Half-float variants * Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes * Use old memory access methods, made a start on SIMD memory insts support, some fixes * Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes * Fix arguments count with struct return values, other fixes * More instructions * Misc. fixes and integrate LDj3SNuD fixes * Update tests * Add a faster linear scan allocator, unwinding support on windows, and other changes * Update Ryujinx.HLE * Update Ryujinx.Graphics * Fix V128 return pointer passing, RCX is clobbered * Update Ryujinx.Tests * Update ITimeZoneService * Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks * Use generic GetFunctionPointerForDelegate method and other tweaks * Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics * Remove some unused code on the assembler * Fix REX.W prefix regression on float conversion instructions, add some sort of profiler * Add hardware capability detection * Fix regression on Sha1h and revert Fcm** changes * Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator * Fix silly mistake introduced on last commit on CpuId * Generate inline stack probes when the stack allocation is too large * Initial support for the System-V ABI * Support multiple destination operands * Fix SSE2 VectorInsert8 path, and other fixes * Change placement of XMM callee save and restore code to match other compilers * Rename Dest to Destination and Inst to Instruction * Fix a regression related to calls and the V128 type * Add an extra space on comments to match code style * Some refactoring * Fix vector insert FP32 SSE2 path * Port over the ARM32 instructions * Avoid memory protection races on JIT Cache * Another fix on VectorInsert FP32 (thanks to LDj3SNuD * Float operands don't need to use the same register when VEX is supported * Add a new register allocator, higher quality code for hot code (tier up), and other tweaks * Some nits, small improvements on the pre allocator * CpuThreadState is gone * Allow changing CPU emulators with a config entry * Add runtime identifiers on the ARMeilleure project * Allow switching between CPUs through a config entry (pt. 2) * Change win10-x64 to win-x64 on projects * Update the Ryujinx project to use ARMeilleure * Ensure that the selected register is valid on the hybrid allocator * Allow exiting on returns to 0 (should fix test regression) * Remove register assignments for most used variables on the hybrid allocator * Do not use fixed registers as spill temp * Add missing namespace and remove unneeded using * Address PR feedback * Fix types, etc * Enable AssumeStrictAbiCompliance by default * Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 13:56:22 -05:00
return SendSyncRequest((ulong)_system.Scheduler.GetCurrentThread().Context.Tpidr, 0x100, handle);
}
public KernelResult SendSyncRequestWithUserBuffer64([R(0)] ulong messagePtr, [R(1)] ulong size, [R(2)] int handle)
{
return SendSyncRequest(messagePtr, size, handle);
}
private KernelResult SendSyncRequest(ulong messagePtr, ulong size, int handle)
{
byte[] messageData = _process.CpuMemory.ReadBytes((long)messagePtr, (long)size);
KClientSession clientSession = _process.HandleTable.GetObject<KClientSession>(handle);
if (clientSession == null || clientSession.Service == null)
{
return SendSyncRequest_(handle);
}
if (clientSession != null)
{
_system.CriticalSection.Enter();
KThread currentThread = _system.Scheduler.GetCurrentThread();
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = KernelResult.Success;
currentThread.Reschedule(ThreadSchedState.Paused);
IpcMessage message = new IpcMessage(messageData, (long)messagePtr);
ThreadPool.QueueUserWorkItem(ProcessIpcRequest, new HleIpcMessage(
currentThread,
clientSession,
message,
(long)messagePtr));
_system.ThreadCounter.AddCount();
_system.CriticalSection.Leave();
return currentThread.ObjSyncResult;
}
else
{
Logger.PrintWarning(LogClass.KernelSvc, $"Invalid session handle 0x{handle:x8}!");
return KernelResult.InvalidHandle;
}
}
private void ProcessIpcRequest(object state)
{
HleIpcMessage ipcMessage = (HleIpcMessage)state;
ipcMessage.Thread.ObjSyncResult = IpcHandler.IpcCall(
_device,
_process,
_process.CpuMemory,
ipcMessage.Thread,
ipcMessage.Session,
ipcMessage.Message,
ipcMessage.MessagePtr);
_system.ThreadCounter.Signal();
ipcMessage.Thread.Reschedule(ThreadSchedState.Running);
}
private KernelResult SendSyncRequest_(int handle)
{
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
KClientSession session = currentProcess.HandleTable.GetObject<KClientSession>(handle);
if (session == null)
{
return KernelResult.InvalidHandle;
}
return session.SendSyncRequest();
}
public KernelResult CreateSession64(
[R(2)] bool isLight,
[R(3)] ulong namePtr,
[R(1)] out int serverSessionHandle,
[R(2)] out int clientSessionHandle)
{
return CreateSession(isLight, namePtr, out serverSessionHandle, out clientSessionHandle);
}
private KernelResult CreateSession(
bool isLight,
ulong namePtr,
out int serverSessionHandle,
out int clientSessionHandle)
{
serverSessionHandle = 0;
clientSessionHandle = 0;
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
KResourceLimit resourceLimit = currentProcess.ResourceLimit;
KernelResult result = KernelResult.Success;
if (resourceLimit != null && !resourceLimit.Reserve(LimitableResource.Session, 1))
{
return KernelResult.ResLimitExceeded;
}
if (isLight)
{
KLightSession session = new KLightSession(_system);
result = currentProcess.HandleTable.GenerateHandle(session.ServerSession, out serverSessionHandle);
if (result == KernelResult.Success)
{
result = currentProcess.HandleTable.GenerateHandle(session.ClientSession, out clientSessionHandle);
if (result != KernelResult.Success)
{
currentProcess.HandleTable.CloseHandle(serverSessionHandle);
serverSessionHandle = 0;
}
}
session.ServerSession.DecrementReferenceCount();
session.ClientSession.DecrementReferenceCount();
}
else
{
KSession session = new KSession(_system);
result = currentProcess.HandleTable.GenerateHandle(session.ServerSession, out serverSessionHandle);
if (result == KernelResult.Success)
{
result = currentProcess.HandleTable.GenerateHandle(session.ClientSession, out clientSessionHandle);
if (result != KernelResult.Success)
{
currentProcess.HandleTable.CloseHandle(serverSessionHandle);
serverSessionHandle = 0;
}
}
session.ServerSession.DecrementReferenceCount();
session.ClientSession.DecrementReferenceCount();
}
return result;
}
public KernelResult AcceptSession64([R(1)] int portHandle, [R(1)] out int sessionHandle)
{
return AcceptSession(portHandle, out sessionHandle);
}
private KernelResult AcceptSession(int portHandle, out int sessionHandle)
{
sessionHandle = 0;
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
KServerPort serverPort = currentProcess.HandleTable.GetObject<KServerPort>(portHandle);
if (serverPort == null)
{
return KernelResult.InvalidHandle;
}
KernelResult result = currentProcess.HandleTable.ReserveHandle(out int handle);
if (result != KernelResult.Success)
{
return result;
}
KAutoObject session;
if (serverPort.IsLight)
{
session = serverPort.AcceptIncomingLightConnection();
}
else
{
session = serverPort.AcceptIncomingConnection();
}
if (session != null)
{
currentProcess.HandleTable.SetReservedHandleObj(handle, session);
session.DecrementReferenceCount();
sessionHandle = handle;
result = KernelResult.Success;
}
else
{
currentProcess.HandleTable.CancelHandleReservation(handle);
result = KernelResult.NotFound;
}
return result;
}
public KernelResult ReplyAndReceive64(
[R(1)] ulong handlesPtr,
[R(2)] int handlesCount,
[R(3)] int replyTargetHandle,
[R(4)] long timeout,
[R(1)] out int handleIndex)
{
handleIndex = 0;
if ((uint)handlesCount > 0x40)
{
return KernelResult.MaximumExceeded;
}
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
ulong copySize = (ulong)((long)handlesCount * 4);
if (!currentProcess.MemoryManager.InsideAddrSpace(handlesPtr, copySize))
{
return KernelResult.UserCopyFailed;
}
if (handlesPtr + copySize < handlesPtr)
{
return KernelResult.UserCopyFailed;
}
int[] handles = new int[handlesCount];
if (!KernelTransfer.UserToKernelInt32Array(_system, handlesPtr, handles))
{
return KernelResult.UserCopyFailed;
}
KSynchronizationObject[] syncObjs = new KSynchronizationObject[handlesCount];
for (int index = 0; index < handlesCount; index++)
{
KSynchronizationObject obj = currentProcess.HandleTable.GetObject<KSynchronizationObject>(handles[index]);
if (obj == null)
{
return KernelResult.InvalidHandle;
}
syncObjs[index] = obj;
}
KernelResult result;
if (replyTargetHandle != 0)
{
KServerSession replyTarget = currentProcess.HandleTable.GetObject<KServerSession>(replyTargetHandle);
if (replyTarget == null)
{
return KernelResult.InvalidHandle;
}
result = replyTarget.Reply();
if (result != KernelResult.Success)
{
return result;
}
}
while ((result = _system.Synchronization.WaitFor(syncObjs, timeout, out handleIndex)) == KernelResult.Success)
{
KServerSession session = currentProcess.HandleTable.GetObject<KServerSession>(handles[handleIndex]);
if (session == null)
{
break;
}
if ((result = session.Receive()) != KernelResult.NotFound)
{
break;
}
}
return result;
}
public KernelResult CreatePort64(
[R(2)] int maxSessions,
[R(3)] bool isLight,
[R(4)] ulong namePtr,
[R(1)] out int serverPortHandle,
[R(2)] out int clientPortHandle)
{
return CreatePort(maxSessions, isLight, namePtr, out serverPortHandle, out clientPortHandle);
}
private KernelResult CreatePort(
int maxSessions,
bool isLight,
ulong namePtr,
out int serverPortHandle,
out int clientPortHandle)
{
serverPortHandle = clientPortHandle = 0;
if (maxSessions < 1)
{
return KernelResult.MaximumExceeded;
}
KPort port = new KPort(_system, maxSessions, isLight, (long)namePtr);
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
KernelResult result = currentProcess.HandleTable.GenerateHandle(port.ClientPort, out clientPortHandle);
if (result != KernelResult.Success)
{
return result;
}
result = currentProcess.HandleTable.GenerateHandle(port.ServerPort, out serverPortHandle);
if (result != KernelResult.Success)
{
currentProcess.HandleTable.CloseHandle(clientPortHandle);
}
return result;
}
public KernelResult ManageNamedPort64([R(1)] ulong namePtr, [R(2)] int maxSessions, [R(1)] out int handle)
{
return ManageNamedPort(namePtr, maxSessions, out handle);
}
private KernelResult ManageNamedPort(ulong namePtr, int maxSessions, out int handle)
{
handle = 0;
if (!KernelTransfer.UserToKernelString(_system, namePtr, 12, out string name))
{
return KernelResult.UserCopyFailed;
}
if (maxSessions < 0 || name.Length > 11)
{
return KernelResult.MaximumExceeded;
}
if (maxSessions == 0)
{
return KClientPort.RemoveName(_system, name);
}
KPort port = new KPort(_system, maxSessions, false, 0);
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
KernelResult result = currentProcess.HandleTable.GenerateHandle(port.ServerPort, out handle);
if (result != KernelResult.Success)
{
return result;
}
result = port.ClientPort.SetName(name);
if (result != KernelResult.Success)
{
currentProcess.HandleTable.CloseHandle(handle);
}
return result;
}
public KernelResult ConnectToPort64([R(1)] int clientPortHandle, [R(1)] out int clientSessionHandle)
{
return ConnectToPort(clientPortHandle, out clientSessionHandle);
}
private KernelResult ConnectToPort(int clientPortHandle, out int clientSessionHandle)
{
clientSessionHandle = 0;
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
KClientPort clientPort = currentProcess.HandleTable.GetObject<KClientPort>(clientPortHandle);
if (clientPort == null)
{
return KernelResult.InvalidHandle;
}
KernelResult result = currentProcess.HandleTable.ReserveHandle(out int handle);
if (result != KernelResult.Success)
{
return result;
}
KAutoObject session;
if (clientPort.IsLight)
{
result = clientPort.ConnectLight(out KLightClientSession clientSession);
session = clientSession;
}
else
{
result = clientPort.Connect(out KClientSession clientSession);
session = clientSession;
}
if (result != KernelResult.Success)
{
currentProcess.HandleTable.CancelHandleReservation(handle);
return result;
}
currentProcess.HandleTable.SetReservedHandleObj(handle, session);
session.DecrementReferenceCount();
clientSessionHandle = handle;
return result;
}
}
}