1
0
mirror of https://git.suyu.dev/suyu/suyu synced 2025-01-17 13:20:15 -06:00
suyu-mirror/src/common/x64/native_clock.cpp

136 lines
4.8 KiB
C++
Raw Normal View History

// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <array>
#include <chrono>
#include <thread>
#include "common/uint128.h"
#include "common/x64/native_clock.h"
2022-04-02 15:54:39 -05:00
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace Common {
2022-04-02 15:54:39 -05:00
#ifdef _MSC_VER
__forceinline static u64 FencedRDTSC() {
2022-04-02 15:54:39 -05:00
_mm_lfence();
_ReadWriteBarrier();
const u64 result = __rdtsc();
_mm_lfence();
_ReadWriteBarrier();
return result;
}
2022-04-02 15:54:39 -05:00
#else
static u64 FencedRDTSC() {
2022-04-02 15:54:39 -05:00
u64 result;
asm volatile("lfence\n\t"
"rdtsc\n\t"
"shl $32, %%rdx\n\t"
"or %%rdx, %0\n\t"
"lfence"
: "=a"(result)
:
: "rdx", "memory", "cc");
return result;
}
#endif
2022-04-02 15:54:39 -05:00
u64 EstimateRDTSCFrequency() {
// Discard the first result measuring the rdtsc.
2022-04-02 15:54:39 -05:00
FencedRDTSC();
std::this_thread::sleep_for(std::chrono::milliseconds{1});
2022-04-02 15:54:39 -05:00
FencedRDTSC();
// Get the current time.
const auto start_time = std::chrono::steady_clock::now();
2022-04-02 15:54:39 -05:00
const u64 tsc_start = FencedRDTSC();
// Wait for 200 milliseconds.
std::this_thread::sleep_for(std::chrono::milliseconds{200});
const auto end_time = std::chrono::steady_clock::now();
2022-04-02 15:54:39 -05:00
const u64 tsc_end = FencedRDTSC();
// Calculate differences.
const u64 timer_diff = static_cast<u64>(
std::chrono::duration_cast<std::chrono::nanoseconds>(end_time - start_time).count());
const u64 tsc_diff = tsc_end - tsc_start;
const u64 tsc_freq = MultiplyAndDivide64(tsc_diff, 1000000000ULL, timer_diff);
return tsc_freq;
}
namespace X64 {
NativeClock::NativeClock(u64 emulated_cpu_frequency_, u64 emulated_clock_frequency_,
u64 rtsc_frequency_)
: WallClock(emulated_cpu_frequency_, emulated_clock_frequency_, true), rtsc_frequency{
rtsc_frequency_} {
2021-11-22 20:29:00 -06:00
TimePoint new_time_point{};
new_time_point.last_measure = FencedRDTSC();
new_time_point.accumulated_ticks = 0U;
time_point.store(new_time_point);
ns_rtsc_factor = GetFixedPoint64Factor(NS_RATIO, rtsc_frequency);
us_rtsc_factor = GetFixedPoint64Factor(US_RATIO, rtsc_frequency);
ms_rtsc_factor = GetFixedPoint64Factor(MS_RATIO, rtsc_frequency);
clock_rtsc_factor = GetFixedPoint64Factor(emulated_clock_frequency, rtsc_frequency);
cpu_rtsc_factor = GetFixedPoint64Factor(emulated_cpu_frequency, rtsc_frequency);
}
u64 NativeClock::GetRTSC() {
TimePoint new_time_point{};
2021-11-22 20:29:00 -06:00
TimePoint current_time_point = time_point.load(std::memory_order_acquire);
do {
2022-04-02 15:54:39 -05:00
const u64 current_measure = FencedRDTSC();
2021-11-22 20:29:00 -06:00
u64 diff = current_measure - current_time_point.last_measure;
diff = diff & ~static_cast<u64>(static_cast<s64>(diff) >> 63); // max(diff, 0)
2021-11-22 20:29:00 -06:00
new_time_point.last_measure = current_measure > current_time_point.last_measure
? current_measure
: current_time_point.last_measure;
new_time_point.accumulated_ticks = current_time_point.accumulated_ticks + diff;
} while (!time_point.compare_exchange_weak(
current_time_point, new_time_point, std::memory_order_release, std::memory_order_acquire));
/// The clock cannot be more precise than the guest timer, remove the lower bits
2021-11-22 20:29:00 -06:00
return new_time_point.accumulated_ticks & inaccuracy_mask;
}
void NativeClock::Pause(bool is_paused) {
if (!is_paused) {
TimePoint new_time_point{};
2021-11-22 20:29:00 -06:00
TimePoint current_time_point = time_point.load(std::memory_order_acquire);
do {
2021-11-22 20:29:00 -06:00
new_time_point = current_time_point;
new_time_point.last_measure = FencedRDTSC();
} while (!time_point.compare_exchange_weak(current_time_point, new_time_point,
std::memory_order_release,
std::memory_order_acquire));
}
}
std::chrono::nanoseconds NativeClock::GetTimeNS() {
const u64 rtsc_value = GetRTSC();
return std::chrono::nanoseconds{MultiplyHigh(rtsc_value, ns_rtsc_factor)};
}
std::chrono::microseconds NativeClock::GetTimeUS() {
const u64 rtsc_value = GetRTSC();
return std::chrono::microseconds{MultiplyHigh(rtsc_value, us_rtsc_factor)};
}
std::chrono::milliseconds NativeClock::GetTimeMS() {
const u64 rtsc_value = GetRTSC();
return std::chrono::milliseconds{MultiplyHigh(rtsc_value, ms_rtsc_factor)};
}
u64 NativeClock::GetClockCycles() {
const u64 rtsc_value = GetRTSC();
return MultiplyHigh(rtsc_value, clock_rtsc_factor);
}
u64 NativeClock::GetCPUCycles() {
const u64 rtsc_value = GetRTSC();
return MultiplyHigh(rtsc_value, cpu_rtsc_factor);
}
} // namespace X64
} // namespace Common