1
0
mirror of https://git.suyu.dev/suyu/suyu synced 2025-01-18 05:40:11 -06:00
suyu-mirror/src/core/hle/result.h

489 lines
16 KiB
C++
Raw Normal View History

chore: make yuzu REUSE compliant [REUSE] is a specification that aims at making file copyright information consistent, so that it can be both human and machine readable. It basically requires that all files have a header containing copyright and licensing information. When this isn't possible, like when dealing with binary assets, generated files or embedded third-party dependencies, it is permitted to insert copyright information in the `.reuse/dep5` file. Oh, and it also requires that all the licenses used in the project are present in the `LICENSES` folder, that's why the diff is so huge. This can be done automatically with `reuse download --all`. The `reuse` tool also contains a handy subcommand that analyzes the project and tells whether or not the project is (still) compliant, `reuse lint`. Following REUSE has a few advantages over the current approach: - Copyright information is easy to access for users / downstream - Files like `dist/license.md` do not need to exist anymore, as `.reuse/dep5` is used instead - `reuse lint` makes it easy to ensure that copyright information of files like binary assets / images is always accurate and up to date To add copyright information of files that didn't have it I looked up who committed what and when, for each file. As yuzu contributors do not have to sign a CLA or similar I couldn't assume that copyright ownership was of the "yuzu Emulator Project", so I used the name and/or email of the commit author instead. [REUSE]: https://reuse.software Follow-up to 01cf05bc75b1e47beb08937439f3ed9339e7b254
2022-05-14 19:06:02 -05:00
// SPDX-FileCopyrightText: 2014 Citra Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
2015-05-06 02:06:12 -05:00
#include "common/assert.h"
#include "common/bit_field.h"
2022-10-04 19:05:08 -05:00
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/expected.h"
// All the constants in this file come from http://switchbrew.org/index.php?title=Error_codes
/**
* Identifies the module which caused the error. Error codes can be propagated through a call
* chain, meaning that this doesn't always correspond to the module where the API call made is
* contained.
*/
enum class ErrorModule : u32 {
Common = 0,
Kernel = 1,
FS = 2,
2018-05-23 07:22:42 -05:00
OS = 3, // used for Memory, Thread, Mutex, Nvidia
HTCS = 4,
NCM = 5,
DD = 6,
LR = 8,
Loader = 9,
CMIF = 10,
HIPC = 11,
PM = 15,
NS = 16,
HTC = 18,
NCMContent = 20,
SM = 21,
RO = 22,
SDMMC = 24,
OVLN = 25,
SPL = 26,
ETHC = 100,
I2C = 101,
GPIO = 102,
UART = 103,
Settings = 105,
WLAN = 107,
XCD = 108,
NIFM = 110,
Hwopus = 111,
Bluetooth = 113,
VI = 114,
NFP = 115,
Time = 116,
FGM = 117,
2018-05-23 07:22:42 -05:00
OE = 118,
PCIe = 120,
Friends = 121,
BCAT = 122,
SSLSrv = 123,
Account = 124,
News = 125,
Mii = 126,
NFC = 127,
AM = 128,
PlayReport = 129,
AHID = 130,
Qlaunch = 132,
PCV = 133,
OMM = 134,
BPC = 135,
PSM = 136,
NIM = 137,
PSC = 138,
TC = 139,
USB = 140,
NSD = 141,
PCTL = 142,
BTM = 143,
ETicket = 145,
NGC = 146,
ERPT = 147,
APM = 148,
2018-05-23 07:22:42 -05:00
Profiler = 150,
ErrorUpload = 151,
Audio = 153,
NPNS = 154,
NPNSHTTPSTREAM = 155,
ARP = 157,
2018-05-23 07:22:42 -05:00
SWKBD = 158,
BOOT = 159,
NFCMifare = 161,
UserlandAssert = 162,
Fatal = 163,
NIMShop = 164,
SPSM = 165,
BGTC = 167,
UserlandCrash = 168,
SREPO = 180,
2018-05-23 07:22:42 -05:00
Dauth = 181,
HID = 202,
LDN = 203,
Irsensor = 205,
Capture = 206,
Manu = 208,
2018-05-23 07:22:42 -05:00
ATK = 209,
GRC = 212,
Migration = 216,
MigrationLdcServ = 217,
GeneralWebApplet = 800,
WifiWebAuthApplet = 809,
WhitelistedApplet = 810,
ShopN = 811,
};
/// Encapsulates a Horizon OS error code, allowing it to be separated into its constituent fields.
union Result {
u32 raw;
BitField<0, 9, ErrorModule> module;
BitField<9, 13, u32> description;
Result() = default;
constexpr explicit Result(u32 raw_) : raw(raw_) {}
constexpr Result(ErrorModule module_, u32 description_)
: raw(module.FormatValue(module_) | description.FormatValue(description_)) {}
[[nodiscard]] constexpr bool IsSuccess() const {
return raw == 0;
}
[[nodiscard]] constexpr bool IsError() const {
return !IsSuccess();
}
2022-10-04 19:05:08 -05:00
[[nodiscard]] constexpr bool IsFailure() const {
return !IsSuccess();
}
[[nodiscard]] constexpr u32 GetInnerValue() const {
return static_cast<u32>(module.Value()) | (description << module.bits);
}
[[nodiscard]] constexpr bool Includes(Result result) const {
return GetInnerValue() == result.GetInnerValue();
}
};
static_assert(std::is_trivial_v<Result>);
[[nodiscard]] constexpr bool operator==(const Result& a, const Result& b) {
return a.raw == b.raw;
}
[[nodiscard]] constexpr bool operator!=(const Result& a, const Result& b) {
return !operator==(a, b);
}
// Convenience functions for creating some common kinds of errors:
/// The default success `Result`.
constexpr Result ResultSuccess(0);
/**
* Placeholder result code used for unknown error codes.
*
* @note This should only be used when a particular error code
* is not known yet.
*/
constexpr Result ResultUnknown(UINT32_MAX);
/**
* A ResultRange defines an inclusive range of error descriptions within an error module.
* This can be used to check whether the description of a given Result falls within the range.
* The conversion function returns a Result with its description set to description_start.
*
* An example of how it could be used:
* \code
* constexpr ResultRange ResultCommonError{ErrorModule::Common, 0, 9999};
*
* Result Example(int value) {
* const Result result = OtherExample(value);
*
* // This will only evaluate to true if result.module is ErrorModule::Common and
* // result.description is in between 0 and 9999 inclusive.
* if (ResultCommonError.Includes(result)) {
* // This returns Result{ErrorModule::Common, 0};
* return ResultCommonError;
* }
*
* return ResultSuccess;
* }
* \endcode
*/
class ResultRange {
public:
consteval ResultRange(ErrorModule module, u32 description_start, u32 description_end_)
: code{module, description_start}, description_end{description_end_} {}
[[nodiscard]] constexpr operator Result() const {
return code;
}
[[nodiscard]] constexpr bool Includes(Result other) const {
return code.module == other.module && code.description <= other.description &&
other.description <= description_end;
}
private:
Result code;
u32 description_end;
};
/**
* This is an optional value type. It holds a `Result` and, if that code is ResultSuccess, it
* also holds a result of type `T`. If the code is an error code (not ResultSuccess), then trying
* to access the inner value with operator* is undefined behavior and will assert with Unwrap().
* Users of this class must be cognizant to check the status of the ResultVal with operator bool(),
* Code(), Succeeded() or Failed() prior to accessing the inner value.
*
* An example of how it could be used:
* \code
* ResultVal<int> Frobnicate(float strength) {
* if (strength < 0.f || strength > 1.0f) {
* // Can't frobnicate too weakly or too strongly
* return Result{ErrorModule::Common, 1};
* } else {
* // Frobnicated! Give caller a cookie
* return 42;
* }
* }
* \endcode
*
* \code
* auto frob_result = Frobnicate(0.75f);
* if (frob_result) {
* // Frobbed ok
* printf("My cookie is %d\n", *frob_result);
* } else {
* printf("Guess I overdid it. :( Error code: %ux\n", frob_result.Code().raw);
* }
* \endcode
*/
template <typename T>
class ResultVal {
public:
constexpr ResultVal() : expected{} {}
constexpr ResultVal(Result code) : expected{Common::Unexpected(code)} {}
constexpr ResultVal(ResultRange range) : expected{Common::Unexpected(range)} {}
template <typename U>
constexpr ResultVal(U&& val) : expected{std::forward<U>(val)} {}
template <typename... Args>
constexpr ResultVal(Args&&... args) : expected{std::in_place, std::forward<Args>(args)...} {}
~ResultVal() = default;
constexpr ResultVal(const ResultVal&) = default;
constexpr ResultVal(ResultVal&&) = default;
ResultVal& operator=(const ResultVal&) = default;
ResultVal& operator=(ResultVal&&) = default;
[[nodiscard]] constexpr explicit operator bool() const noexcept {
return expected.has_value();
}
[[nodiscard]] constexpr Result Code() const {
return expected.has_value() ? ResultSuccess : expected.error();
}
[[nodiscard]] constexpr bool Succeeded() const {
return expected.has_value();
}
[[nodiscard]] constexpr bool Failed() const {
return !expected.has_value();
}
[[nodiscard]] constexpr T* operator->() {
return std::addressof(expected.value());
}
[[nodiscard]] constexpr const T* operator->() const {
return std::addressof(expected.value());
}
[[nodiscard]] constexpr T& operator*() & {
return *expected;
}
[[nodiscard]] constexpr const T& operator*() const& {
return *expected;
}
[[nodiscard]] constexpr T&& operator*() && {
return *expected;
}
[[nodiscard]] constexpr const T&& operator*() const&& {
return *expected;
}
[[nodiscard]] constexpr T& Unwrap() & {
ASSERT_MSG(Succeeded(), "Tried to Unwrap empty ResultVal");
return expected.value();
}
[[nodiscard]] constexpr const T& Unwrap() const& {
ASSERT_MSG(Succeeded(), "Tried to Unwrap empty ResultVal");
return expected.value();
}
[[nodiscard]] constexpr T&& Unwrap() && {
ASSERT_MSG(Succeeded(), "Tried to Unwrap empty ResultVal");
return std::move(expected.value());
}
[[nodiscard]] constexpr const T&& Unwrap() const&& {
ASSERT_MSG(Succeeded(), "Tried to Unwrap empty ResultVal");
return std::move(expected.value());
}
template <typename U>
[[nodiscard]] constexpr T ValueOr(U&& v) const& {
return expected.value_or(v);
}
template <typename U>
[[nodiscard]] constexpr T ValueOr(U&& v) && {
return expected.value_or(v);
}
private:
// TODO (Morph): Replace this with C++23 std::expected.
Common::Expected<T, Result> expected;
};
/**
* Check for the success of `source` (which must evaluate to a ResultVal). If it succeeds, unwraps
* the contained value and assigns it to `target`, which can be either an l-value expression or a
* variable declaration. If it fails the return code is returned from the current function. Thus it
* can be used to cascade errors out, achieving something akin to exception handling.
*/
#define CASCADE_RESULT(target, source) \
auto CONCAT2(check_result_L, __LINE__) = source; \
if (CONCAT2(check_result_L, __LINE__).Failed()) { \
return CONCAT2(check_result_L, __LINE__).Code(); \
} \
target = std::move(*CONCAT2(check_result_L, __LINE__))
/**
* Analogous to CASCADE_RESULT, but for a bare Result. The code will be propagated if
* non-success, or discarded otherwise.
*/
#define CASCADE_CODE(source) \
do { \
auto CONCAT2(check_result_L, __LINE__) = source; \
if (CONCAT2(check_result_L, __LINE__).IsError()) { \
return CONCAT2(check_result_L, __LINE__); \
} \
} while (false)
2022-10-04 19:05:08 -05:00
#define R_SUCCEEDED(res) (static_cast<Result>(res).IsSuccess())
#define R_FAILED(res) (static_cast<Result>(res).IsFailure())
2022-10-04 19:05:08 -05:00
namespace ResultImpl {
template <auto EvaluateResult, class F>
class ScopedResultGuard {
YUZU_NON_COPYABLE(ScopedResultGuard);
YUZU_NON_MOVEABLE(ScopedResultGuard);
private:
Result& m_ref;
F m_f;
public:
constexpr ScopedResultGuard(Result& ref, F f) : m_ref(ref), m_f(std::move(f)) {}
constexpr ~ScopedResultGuard() {
if (EvaluateResult(m_ref)) {
m_f();
}
}
};
template <auto EvaluateResult>
class ResultReferenceForScopedResultGuard {
private:
Result& m_ref;
public:
constexpr ResultReferenceForScopedResultGuard(Result& r) : m_ref(r) {}
constexpr operator Result&() const {
return m_ref;
}
};
template <auto EvaluateResult, typename F>
constexpr ScopedResultGuard<EvaluateResult, F> operator+(
ResultReferenceForScopedResultGuard<EvaluateResult> ref, F&& f) {
return ScopedResultGuard<EvaluateResult, F>(static_cast<Result&>(ref), std::forward<F>(f));
}
constexpr bool EvaluateResultSuccess(const Result& r) {
return R_SUCCEEDED(r);
}
constexpr bool EvaluateResultFailure(const Result& r) {
return R_FAILED(r);
}
template <typename T>
constexpr void UpdateCurrentResultReference(T result_reference, Result result) = delete;
// Intentionally not defined
2022-10-04 19:05:08 -05:00
template <>
constexpr void UpdateCurrentResultReference<Result&>(Result& result_reference, Result result) {
result_reference = result;
}
template <>
constexpr void UpdateCurrentResultReference<const Result>(Result result_reference, Result result) {}
2022-10-04 19:05:08 -05:00
} // namespace ResultImpl
#define DECLARE_CURRENT_RESULT_REFERENCE_AND_STORAGE(COUNTER_VALUE) \
[[maybe_unused]] constexpr bool CONCAT2(HasPrevRef_, COUNTER_VALUE) = \
2022-10-04 19:05:08 -05:00
std::same_as<decltype(__TmpCurrentResultReference), Result&>; \
[[maybe_unused]] Result CONCAT2(PrevRef_, COUNTER_VALUE) = __TmpCurrentResultReference; \
[[maybe_unused]] Result CONCAT2(__tmp_result_, COUNTER_VALUE) = ResultSuccess; \
Result& __TmpCurrentResultReference = CONCAT2(HasPrevRef_, COUNTER_VALUE) \
? CONCAT2(PrevRef_, COUNTER_VALUE) \
: CONCAT2(__tmp_result_, COUNTER_VALUE)
2022-10-04 19:05:08 -05:00
#define ON_RESULT_RETURN_IMPL(...) \
static_assert(std::same_as<decltype(__TmpCurrentResultReference), Result&>); \
auto CONCAT2(RESULT_GUARD_STATE_, __COUNTER__) = \
2022-10-04 19:05:08 -05:00
ResultImpl::ResultReferenceForScopedResultGuard<__VA_ARGS__>( \
__TmpCurrentResultReference) + \
[&]()
#define ON_RESULT_FAILURE_2 ON_RESULT_RETURN_IMPL(ResultImpl::EvaluateResultFailure)
#define ON_RESULT_FAILURE \
DECLARE_CURRENT_RESULT_REFERENCE_AND_STORAGE(__COUNTER__); \
ON_RESULT_FAILURE_2
#define ON_RESULT_SUCCESS_2 ON_RESULT_RETURN_IMPL(ResultImpl::EvaluateResultSuccess)
#define ON_RESULT_SUCCESS \
DECLARE_CURRENT_RESULT_REFERENCE_AND_STORAGE(__COUNTER__); \
ON_RESULT_SUCCESS_2
constexpr inline Result __TmpCurrentResultReference = ResultSuccess;
/// Returns a result.
#define R_RETURN(res_expr) \
{ \
const Result _tmp_r_throw_rc = (res_expr); \
ResultImpl::UpdateCurrentResultReference<decltype(__TmpCurrentResultReference)>( \
__TmpCurrentResultReference, _tmp_r_throw_rc); \
return _tmp_r_throw_rc; \
}
/// Returns ResultSuccess()
#define R_SUCCEED() R_RETURN(ResultSuccess)
/// Throws a result.
#define R_THROW(res_expr) R_RETURN(res_expr)
/// Evaluates a boolean expression, and returns a result unless that expression is true.
#define R_UNLESS(expr, res) \
{ \
if (!(expr)) { \
2022-10-04 19:05:08 -05:00
R_THROW(res); \
} \
}
/// Evaluates an expression that returns a result, and returns the result if it would fail.
#define R_TRY(res_expr) \
{ \
const auto _tmp_r_try_rc = (res_expr); \
2022-10-04 19:05:08 -05:00
if (R_FAILED(_tmp_r_try_rc)) { \
R_THROW(_tmp_r_try_rc); \
} \
}
2022-10-04 19:05:08 -05:00
/// Evaluates a boolean expression, and succeeds if that expression is true.
#define R_SUCCEED_IF(expr) R_UNLESS(!(expr), ResultSuccess)