mirror of
https://git.suyu.dev/suyu/suyu
synced 2025-01-23 16:20:11 -06:00
fix clang V2
This commit is contained in:
parent
eed403ea0c
commit
7d0b6e781d
@ -50,14 +50,21 @@ to create, resume, yield or destroy a coroutine.
|
||||
|
||||
# Caveats
|
||||
|
||||
- Avoid using coroutines with C++ exceptions, this is not recommended, it may not behave as you expect.
|
||||
- When using C++ RAII (i.e. destructors) you must resume the coroutine until it dies to properly execute all destructors.
|
||||
- Avoid using coroutines with C++ exceptions, this is not recommended, it may not behave as you
|
||||
expect.
|
||||
- When using C++ RAII (i.e. destructors) you must resume the coroutine until it dies to properly
|
||||
execute all destructors.
|
||||
- Some unsupported sanitizers for C may trigger false warnings when using coroutines.
|
||||
- The `mco_coro` object is not thread safe, you should use a mutex for manipulating it in multithread applications.
|
||||
- To use in multithread applications, you must compile with C compiler that supports `thread_local` qualifier.
|
||||
- Avoid using `thread_local` inside coroutine code, the compiler may cache thread local variables pointers which can be invalid when a coroutine switch threads.
|
||||
- Stack space is limited. By default it has 56KB of space, this can be changed on coroutine creation, or by enabling the virtual memory backed allocator to make it 2040KB.
|
||||
- Take care to not cause stack overflows (run out of stack space), otherwise your program may crash or not, the behavior is undefined.
|
||||
- The `mco_coro` object is not thread safe, you should use a mutex for manipulating it in
|
||||
multithread applications.
|
||||
- To use in multithread applications, you must compile with C compiler that supports `thread_local`
|
||||
qualifier.
|
||||
- Avoid using `thread_local` inside coroutine code, the compiler may cache thread local variables
|
||||
pointers which can be invalid when a coroutine switch threads.
|
||||
- Stack space is limited. By default it has 56KB of space, this can be changed on coroutine
|
||||
creation, or by enabling the virtual memory backed allocator to make it 2040KB.
|
||||
- Take care to not cause stack overflows (run out of stack space), otherwise your program may crash
|
||||
or not, the behavior is undefined.
|
||||
- On WebAssembly you must compile with Emscripten flag `-s ASYNCIFY=1`.
|
||||
- The WebAssembly Binaryen asyncify method can be used when explicitly enabled,
|
||||
you may want to do this only to use minicoro with WebAssembly native interpreters
|
||||
@ -72,7 +79,8 @@ a coroutine only suspends its execution by explicitly calling a yield function.
|
||||
|
||||
You create a coroutine by calling `mco_create`.
|
||||
Its sole argument is a `mco_desc` structure with a description for the coroutine.
|
||||
The `mco_create` function only creates a new coroutine and returns a handle to it, it does not start the coroutine.
|
||||
The `mco_create` function only creates a new coroutine and returns a handle to it, it does not start
|
||||
the coroutine.
|
||||
|
||||
You execute a coroutine by calling `mco_resume`.
|
||||
When calling a resume function the coroutine starts its execution by calling its body function.
|
||||
@ -81,7 +89,8 @@ After the coroutine starts running, it runs until it terminates or yields.
|
||||
A coroutine yields by calling `mco_yield`.
|
||||
When a coroutine yields, the corresponding resume returns immediately,
|
||||
even if the yield happens inside nested function calls (that is, not in the main function).
|
||||
The next time you resume the same coroutine, it continues its execution from the point where it yielded.
|
||||
The next time you resume the same coroutine, it continues its execution from the point where it
|
||||
yielded.
|
||||
|
||||
To associate a persistent value with the coroutine,
|
||||
you can optionally set `user_data` on its creation and later retrieve with `mco_get_user_data`.
|
||||
@ -89,7 +98,8 @@ you can optionally set `user_data` on its creation and later retrieve with `mco
|
||||
To pass values between resume and yield,
|
||||
you can optionally use `mco_push` and `mco_pop` APIs,
|
||||
they are intended to pass temporary values using a LIFO style buffer.
|
||||
The storage system can also be used to send and receive initial values on coroutine creation or before it finishes.
|
||||
The storage system can also be used to send and receive initial values on coroutine creation or
|
||||
before it finishes.
|
||||
|
||||
# Usage
|
||||
|
||||
@ -108,9 +118,9 @@ The following simple example demonstrates on how to use the library:
|
||||
|
||||
```c
|
||||
#define MINICORO_IMPL
|
||||
#include "minicoro.h"
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include <stdio.h>
|
||||
#include "minicoro.h"
|
||||
|
||||
// Coroutine entry function.
|
||||
void coro_entry(mco_coro* co) {
|
||||
@ -181,8 +191,9 @@ for example, an application with 100 thousands coroutine with stacks of 56KB wou
|
||||
as 5GB of memory, however your application may not really full stack usage for every coroutine.
|
||||
|
||||
Some developers often prefer stackless coroutines over stackful coroutines
|
||||
because of this problem, stackless memory footprint is low, therefore often considered more lightweight.
|
||||
However stackless have many other limitations, like you cannot run unconstrained code inside them.
|
||||
because of this problem, stackless memory footprint is low, therefore often considered more
|
||||
lightweight. However stackless have many other limitations, like you cannot run unconstrained code
|
||||
inside them.
|
||||
|
||||
One remedy to the solution is to make stackful coroutines growable,
|
||||
to only use physical memory on demand when its really needed,
|
||||
@ -192,19 +203,21 @@ when supported by the operating system.
|
||||
The virtual memory backed allocator will reserve virtual memory in the OS for each coroutine stack,
|
||||
but not trigger real physical memory usage yet.
|
||||
While the application virtual memory usage will be high,
|
||||
the physical memory usage will be low and actually grow on demand (usually every 4KB chunk in Linux).
|
||||
the physical memory usage will be low and actually grow on demand (usually every 4KB chunk in
|
||||
Linux).
|
||||
|
||||
The virtual memory backed allocator also raises the default stack size to about 2MB,
|
||||
typically the size of extra threads in Linux,
|
||||
so you have more space in your coroutines and the risk of stack overflow is low.
|
||||
|
||||
As an example, allocating 100 thousands coroutines with nearly 2MB stack reserved space
|
||||
with the virtual memory allocator uses 783MB of physical memory usage, that is about 8KB per coroutine,
|
||||
however the virtual memory usage will be at 98GB.
|
||||
with the virtual memory allocator uses 783MB of physical memory usage, that is about 8KB per
|
||||
coroutine, however the virtual memory usage will be at 98GB.
|
||||
|
||||
It is recommended to enable this option only if you plan to spawn thousands of coroutines
|
||||
while wanting to have a low memory footprint.
|
||||
Not all environments have an OS with virtual memory support, therefore this option is disabled by default.
|
||||
Not all environments have an OS with virtual memory support, therefore this option is disabled by
|
||||
default.
|
||||
|
||||
This option may add an order of magnitude overhead to `mco_create()`/`mco_destroy()`,
|
||||
because they will request the OS to manage virtual memory page tables,
|
||||
@ -215,17 +228,23 @@ if this is a problem for you, please customize a custom allocator for your own n
|
||||
The following can be defined to change the library behavior:
|
||||
|
||||
- `MCO_API` - Public API qualifier. Default is `extern`.
|
||||
- `MCO_MIN_STACK_SIZE` - Minimum stack size when creating a coroutine. Default is 32768 (32KB).
|
||||
- `MCO_MIN_STACK_SIZE` - Minimum stack size when creating a coroutine. Default is 32768
|
||||
(32KB).
|
||||
- `MCO_DEFAULT_STORAGE_SIZE` - Size of coroutine storage buffer. Default is 1024.
|
||||
- `MCO_DEFAULT_STACK_SIZE` - Default stack size when creating a coroutine. Default is 57344 (56KB). When `MCO_USE_VMEM_ALLOCATOR` is true the default is 2040KB (nearly 2MB).
|
||||
- `MCO_DEFAULT_STACK_SIZE` - Default stack size when creating a coroutine. Default is 57344
|
||||
(56KB). When `MCO_USE_VMEM_ALLOCATOR` is true the default is 2040KB (nearly 2MB).
|
||||
- `MCO_ALLOC` - Default allocation function. Default is `calloc`.
|
||||
- `MCO_DEALLOC` - Default deallocation function. Default is `free`.
|
||||
- `MCO_USE_VMEM_ALLOCATOR` - Use virtual memory backed allocator, improving memory footprint per coroutine.
|
||||
- `MCO_USE_VMEM_ALLOCATOR` - Use virtual memory backed allocator, improving memory footprint per
|
||||
coroutine.
|
||||
- `MCO_NO_DEFAULT_ALLOCATOR` - Disable the default allocator using `MCO_ALLOC` and `MCO_DEALLOC`.
|
||||
- `MCO_ZERO_MEMORY` - Zero memory of stack when poping storage, intended for garbage collected environments.
|
||||
- `MCO_DEBUG` - Enable debug mode, logging any runtime error to stdout. Defined automatically unless `NDEBUG` or `MCO_NO_DEBUG` is defined.
|
||||
- `MCO_ZERO_MEMORY` - Zero memory of stack when poping storage, intended for garbage
|
||||
collected environments.
|
||||
- `MCO_DEBUG` - Enable debug mode, logging any runtime error to stdout. Defined
|
||||
automatically unless `NDEBUG` or `MCO_NO_DEBUG` is defined.
|
||||
- `MCO_NO_DEBUG` - Disable debug mode.
|
||||
- `MCO_NO_MULTITHREAD` - Disable multithread usage. Multithread is supported when `thread_local` is supported.
|
||||
- `MCO_NO_MULTITHREAD` - Disable multithread usage. Multithread is supported when
|
||||
`thread_local` is supported.
|
||||
- `MCO_USE_ASM` - Force use of assembly context switch implementation.
|
||||
- `MCO_USE_UCONTEXT` - Force use of ucontext context switch implementation.
|
||||
- `MCO_USE_FIBERS` - Force use of fibers context switch implementation.
|
||||
@ -237,7 +256,6 @@ The following can be defined to change the library behavior:
|
||||
Your choice of either Public Domain or MIT No Attribution, see end of file.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef MINICORO_H
|
||||
#define MINICORO_H
|
||||
|
||||
@ -262,9 +280,11 @@ extern "C" {
|
||||
/* Coroutine states. */
|
||||
typedef enum mco_state {
|
||||
MCO_DEAD = 0, /* The coroutine has finished normally or was uninitialized before finishing. */
|
||||
MCO_NORMAL, /* The coroutine is active but not running (that is, it has resumed another coroutine). */
|
||||
MCO_NORMAL, /* The coroutine is active but not running (that is, it has resumed another
|
||||
coroutine). */
|
||||
MCO_RUNNING, /* The coroutine is active and running. */
|
||||
MCO_SUSPENDED /* The coroutine is suspended (in a call to yield, or it has not started running yet). */
|
||||
MCO_SUSPENDED /* The coroutine is suspended (in a call to yield, or it has not started running
|
||||
yet). */
|
||||
} mco_state;
|
||||
|
||||
/* Coroutine result codes. */
|
||||
@ -312,7 +332,8 @@ typedef struct mco_desc {
|
||||
void* user_data; /* Coroutine user data, can be get with `mco_get_user_data`. */
|
||||
/* Custom allocation interface. */
|
||||
void* (*alloc_cb)(size_t size, void* allocator_data); /* Custom allocation function. */
|
||||
void (*dealloc_cb)(void* ptr, size_t size, void* allocator_data); /* Custom deallocation function. */
|
||||
void (*dealloc_cb)(void* ptr, size_t size,
|
||||
void* allocator_data); /* Custom deallocation function. */
|
||||
void* allocator_data; /* User data pointer passed to `alloc`/`dealloc` allocation functions. */
|
||||
size_t storage_size; /* Coroutine storage size, to be used with the storage APIs. */
|
||||
/* These must be initialized only through `mco_init_desc`. */
|
||||
@ -321,21 +342,35 @@ typedef struct mco_desc {
|
||||
} mco_desc;
|
||||
|
||||
/* Coroutine functions. */
|
||||
MCO_API mco_desc mco_desc_init(void (*func)(mco_coro* co), size_t stack_size); /* Initialize description of a coroutine. When stack size is 0 then MCO_DEFAULT_STACK_SIZE is used. */
|
||||
MCO_API mco_desc
|
||||
mco_desc_init(void (*func)(mco_coro* co),
|
||||
size_t stack_size); /* Initialize description of a coroutine. When stack size is 0
|
||||
then MCO_DEFAULT_STACK_SIZE is used. */
|
||||
MCO_API mco_result mco_init(mco_coro* co, mco_desc* desc); /* Initialize the coroutine. */
|
||||
MCO_API mco_result mco_uninit(mco_coro* co); /* Uninitialize the coroutine, may fail if it's not dead or suspended. */
|
||||
MCO_API mco_result mco_create(mco_coro** out_co, mco_desc* desc); /* Allocates and initializes a new coroutine. */
|
||||
MCO_API mco_result mco_destroy(mco_coro* co); /* Uninitialize and deallocate the coroutine, may fail if it's not dead or suspended. */
|
||||
MCO_API mco_result mco_resume(mco_coro* co); /* Starts or continues the execution of the coroutine. */
|
||||
MCO_API mco_result
|
||||
mco_uninit(mco_coro* co); /* Uninitialize the coroutine, may fail if it's not dead or suspended. */
|
||||
MCO_API mco_result mco_create(mco_coro** out_co,
|
||||
mco_desc* desc); /* Allocates and initializes a new coroutine. */
|
||||
MCO_API mco_result mco_destroy(mco_coro* co); /* Uninitialize and deallocate the coroutine, may fail
|
||||
if it's not dead or suspended. */
|
||||
MCO_API mco_result
|
||||
mco_resume(mco_coro* co); /* Starts or continues the execution of the coroutine. */
|
||||
MCO_API mco_result mco_yield(mco_coro* co); /* Suspends the execution of a coroutine. */
|
||||
MCO_API mco_state mco_status(mco_coro* co); /* Returns the status of the coroutine. */
|
||||
MCO_API void* mco_get_user_data(mco_coro* co); /* Get coroutine user data supplied on coroutine creation. */
|
||||
MCO_API void* mco_get_user_data(
|
||||
mco_coro* co); /* Get coroutine user data supplied on coroutine creation. */
|
||||
|
||||
/* Storage interface functions, used to pass values between yield and resume. */
|
||||
MCO_API mco_result mco_push(mco_coro* co, const void* src, size_t len); /* Push bytes to the coroutine storage. Use to send values between yield and resume. */
|
||||
MCO_API mco_result mco_pop(mco_coro* co, void* dest, size_t len); /* Pop bytes from the coroutine storage. Use to get values between yield and resume. */
|
||||
MCO_API mco_result mco_peek(mco_coro* co, void* dest, size_t len); /* Like `mco_pop` but it does not consumes the storage. */
|
||||
MCO_API size_t mco_get_bytes_stored(mco_coro* co); /* Get the available bytes that can be retrieved with a `mco_pop`. */
|
||||
MCO_API mco_result mco_push(mco_coro* co, const void* src,
|
||||
size_t len); /* Push bytes to the coroutine storage. Use to send values
|
||||
between yield and resume. */
|
||||
MCO_API mco_result mco_pop(mco_coro* co, void* dest,
|
||||
size_t len); /* Pop bytes from the coroutine storage. Use to get values
|
||||
between yield and resume. */
|
||||
MCO_API mco_result mco_peek(mco_coro* co, void* dest,
|
||||
size_t len); /* Like `mco_pop` but it does not consumes the storage. */
|
||||
MCO_API size_t mco_get_bytes_stored(
|
||||
mco_coro* co); /* Get the available bytes that can be retrieved with a `mco_pop`. */
|
||||
MCO_API size_t mco_get_storage_size(mco_coro* co); /* Get the total storage size. */
|
||||
|
||||
/* Misc functions. */
|
||||
@ -365,7 +400,8 @@ extern "C" {
|
||||
#ifndef MCO_DEFAULT_STACK_SIZE
|
||||
/* Use multiples of 64KB minus 8KB, because 8KB is reserved for coroutine internal structures. */
|
||||
#ifdef MCO_USE_VMEM_ALLOCATOR
|
||||
#define MCO_DEFAULT_STACK_SIZE 2040*1024 /* 2040KB, nearly the same stack size of a thread in x86_64 Linux. */
|
||||
#define MCO_DEFAULT_STACK_SIZE \
|
||||
2040 * 1024 /* 2040KB, nearly the same stack size of a thread in x86_64 Linux. */
|
||||
#else
|
||||
#define MCO_DEFAULT_STACK_SIZE 56 * 1024 /* 56KB */
|
||||
#endif
|
||||
@ -375,7 +411,8 @@ extern "C" {
|
||||
#define MCO_MAGIC_NUMBER 0x7E3CB1A9
|
||||
|
||||
/* Detect implementation based on OS, arch and compiler. */
|
||||
#if !defined(MCO_USE_UCONTEXT) && !defined(MCO_USE_FIBERS) && !defined(MCO_USE_ASM) && !defined(MCO_USE_ASYNCIFY)
|
||||
#if !defined(MCO_USE_UCONTEXT) && !defined(MCO_USE_FIBERS) && !defined(MCO_USE_ASM) && \
|
||||
!defined(MCO_USE_ASYNCIFY)
|
||||
#if defined(_WIN32)
|
||||
#if (defined(__GNUC__) && defined(__x86_64__)) || (defined(_MSC_VER) && defined(_M_X64))
|
||||
#define MCO_USE_ASM
|
||||
@ -390,10 +427,8 @@ extern "C" {
|
||||
#define MCO_USE_ASYNCIFY
|
||||
#else
|
||||
#if __GNUC__ >= 3 /* Assembly extension supported. */
|
||||
#if defined(__x86_64__) || \
|
||||
defined(__i386) || defined(__i386__) || \
|
||||
defined(__ARM_EABI__) || defined(__aarch64__) || \
|
||||
defined(__riscv)
|
||||
#if defined(__x86_64__) || defined(__i386) || defined(__i386__) || defined(__ARM_EABI__) || \
|
||||
defined(__aarch64__) || defined(__riscv)
|
||||
#define MCO_USE_ASM
|
||||
#else
|
||||
#define MCO_USE_UCONTEXT
|
||||
@ -436,7 +471,8 @@ extern "C" {
|
||||
#define MCO_THREAD_LOCAL thread_local
|
||||
#elif __STDC_VERSION__ >= 201112 && !defined(__STDC_NO_THREADS__)
|
||||
#define MCO_THREAD_LOCAL _Thread_local
|
||||
#elif defined(_WIN32) && (defined(_MSC_VER) || defined(__ICL) || defined(__DMC__) || defined(__BORLANDC__))
|
||||
#elif defined(_WIN32) && \
|
||||
(defined(_MSC_VER) || defined(__ICL) || defined(__DMC__) || defined(__BORLANDC__))
|
||||
#define MCO_THREAD_LOCAL __declspec(thread)
|
||||
#elif defined(__GNUC__) || defined(__SUNPRO_C) || defined(__xlC__)
|
||||
#define MCO_THREAD_LOCAL __thread
|
||||
@ -456,7 +492,8 @@ extern "C" {
|
||||
#else
|
||||
#define MCO_FORCE_INLINE inline __attribute__((always_inline))
|
||||
#endif
|
||||
#elif defined(__BORLANDC__) || defined(__DMC__) || defined(__SC__) || defined(__WATCOMC__) || defined(__LCC__) || defined(__DECC)
|
||||
#elif defined(__BORLANDC__) || defined(__DMC__) || defined(__SC__) || defined(__WATCOMC__) || \
|
||||
defined(__LCC__) || defined(__DECC)
|
||||
#define MCO_FORCE_INLINE __inline
|
||||
#else /* No inline support. */
|
||||
#define MCO_FORCE_INLINE
|
||||
@ -512,8 +549,8 @@ extern "C" {
|
||||
#else /* C allocator */
|
||||
#ifndef MCO_ALLOC
|
||||
#include <stdlib.h>
|
||||
/* We use calloc() so we give a chance for the OS to reserve virtual memory without really using physical memory,
|
||||
calloc() also has the nice property of initializing the stack to zeros. */
|
||||
/* We use calloc() so we give a chance for the OS to reserve virtual memory without really using
|
||||
physical memory, calloc() also has the nice property of initializing the stack to zeros. */
|
||||
#define MCO_ALLOC(size) calloc(1, size)
|
||||
#define MCO_DEALLOC(ptr, size) free(ptr)
|
||||
#endif
|
||||
@ -545,7 +582,8 @@ extern "C" {
|
||||
#endif
|
||||
#ifdef _MCO_USE_ASAN
|
||||
void __sanitizer_start_switch_fiber(void** fake_stack_save, const void* bottom, size_t size);
|
||||
void __sanitizer_finish_switch_fiber(void* fake_stack_save, const void **bottom_old, size_t *size_old);
|
||||
void __sanitizer_finish_switch_fiber(void* fake_stack_save, const void** bottom_old,
|
||||
size_t* size_old);
|
||||
#endif
|
||||
#ifdef _MCO_USE_TSAN
|
||||
void* __tsan_get_current_fiber(void);
|
||||
@ -578,7 +616,8 @@ static MCO_FORCE_INLINE void _mco_prepare_jumpin(mco_coro* co) {
|
||||
if (prev_co) {
|
||||
void* bottom_old = NULL;
|
||||
size_t size_old = 0;
|
||||
__sanitizer_finish_switch_fiber(prev_co->asan_prev_stack, (const void**)&bottom_old, &size_old);
|
||||
__sanitizer_finish_switch_fiber(prev_co->asan_prev_stack, (const void**)&bottom_old,
|
||||
&size_old);
|
||||
prev_co->asan_prev_stack = NULL;
|
||||
}
|
||||
__sanitizer_start_switch_fiber(&co->asan_prev_stack, co->stack_base, co->stack_size);
|
||||
@ -750,9 +789,12 @@ _MCO_ASM_BLOB static unsigned char _mco_switch_code[] = {
|
||||
};
|
||||
|
||||
void (*_mco_wrap_main)(void) = (void (*)(void))(void*)_mco_wrap_main_code;
|
||||
void (*_mco_switch)(_mco_ctxbuf* from, _mco_ctxbuf* to) = (void(*)(_mco_ctxbuf* from, _mco_ctxbuf* to))(void*)_mco_switch_code;
|
||||
void (*_mco_switch)(_mco_ctxbuf* from,
|
||||
_mco_ctxbuf* to) = (void (*)(_mco_ctxbuf* from,
|
||||
_mco_ctxbuf* to))(void*)_mco_switch_code;
|
||||
|
||||
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base, size_t stack_size) {
|
||||
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base,
|
||||
size_t stack_size) {
|
||||
stack_size = stack_size - 32; /* Reserve 32 bytes for the shadow space. */
|
||||
void** stack_high_ptr = (void**)((size_t)stack_base + stack_size - sizeof(size_t));
|
||||
stack_high_ptr[0] = (void*)(0xdeaddeaddeaddead); /* Dummy return address. */
|
||||
@ -776,8 +818,7 @@ typedef struct _mco_ctxbuf {
|
||||
void _mco_wrap_main(void);
|
||||
int _mco_switch(_mco_ctxbuf* from, _mco_ctxbuf* to);
|
||||
|
||||
__asm__(
|
||||
".text\n"
|
||||
__asm__(".text\n"
|
||||
#ifdef __MACH__ /* Mac OS X assembler */
|
||||
".globl __mco_wrap_main\n"
|
||||
"__mco_wrap_main:\n"
|
||||
@ -794,8 +835,7 @@ __asm__(
|
||||
#endif
|
||||
);
|
||||
|
||||
__asm__(
|
||||
".text\n"
|
||||
__asm__(".text\n"
|
||||
#ifdef __MACH__ /* Mac OS assembler */
|
||||
".globl __mco_switch\n"
|
||||
"__mco_switch:\n"
|
||||
@ -828,8 +868,10 @@ __asm__(
|
||||
#endif
|
||||
);
|
||||
|
||||
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base, size_t stack_size) {
|
||||
stack_size = stack_size - 128; /* Reserve 128 bytes for the Red Zone space (System V AMD64 ABI). */
|
||||
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base,
|
||||
size_t stack_size) {
|
||||
stack_size =
|
||||
stack_size - 128; /* Reserve 128 bytes for the Red Zone space (System V AMD64 ABI). */
|
||||
void** stack_high_ptr = (void**)((size_t)stack_base + stack_size - sizeof(size_t));
|
||||
stack_high_ptr[0] = (void*)(0xdeaddeaddeaddead); /* Dummy return address. */
|
||||
ctx->rip = (void*)(_mco_wrap_main);
|
||||
@ -860,19 +902,16 @@ typedef struct _mco_ctxbuf {
|
||||
void _mco_wrap_main(void);
|
||||
int _mco_switch(_mco_ctxbuf* from, _mco_ctxbuf* to);
|
||||
|
||||
__asm__(
|
||||
".text\n"
|
||||
__asm__(".text\n"
|
||||
".globl _mco_wrap_main\n"
|
||||
".type _mco_wrap_main @function\n"
|
||||
".hidden _mco_wrap_main\n"
|
||||
"_mco_wrap_main:\n"
|
||||
" mv a0, s0\n"
|
||||
" jr s1\n"
|
||||
".size _mco_wrap_main, .-_mco_wrap_main\n"
|
||||
);
|
||||
".size _mco_wrap_main, .-_mco_wrap_main\n");
|
||||
|
||||
__asm__(
|
||||
".text\n"
|
||||
__asm__(".text\n"
|
||||
".globl _mco_switch\n"
|
||||
".type _mco_switch @function\n"
|
||||
".hidden _mco_switch\n"
|
||||
@ -1029,10 +1068,10 @@ __asm__(
|
||||
#else
|
||||
#error "Unsupported RISC-V XLEN"
|
||||
#endif /* __riscv_xlen */
|
||||
".size _mco_switch, .-_mco_switch\n"
|
||||
);
|
||||
".size _mco_switch, .-_mco_switch\n");
|
||||
|
||||
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base, size_t stack_size) {
|
||||
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base,
|
||||
size_t stack_size) {
|
||||
ctx->s[0] = (void*)(co);
|
||||
ctx->s[1] = (void*)(_mco_main);
|
||||
ctx->pc = (void*)(_mco_wrap_main);
|
||||
@ -1088,7 +1127,8 @@ __asm__(
|
||||
#endif
|
||||
);
|
||||
|
||||
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base, size_t stack_size) {
|
||||
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base,
|
||||
size_t stack_size) {
|
||||
void** stack_high_ptr = (void**)((size_t)stack_base + stack_size - 16 - 1 * sizeof(size_t));
|
||||
stack_high_ptr[0] = (void*)(0xdeaddead); /* Dummy return address. */
|
||||
stack_high_ptr[1] = (void*)(co);
|
||||
@ -1112,8 +1152,7 @@ typedef struct _mco_ctxbuf {
|
||||
void _mco_wrap_main(void);
|
||||
int _mco_switch(_mco_ctxbuf* from, _mco_ctxbuf* to);
|
||||
|
||||
__asm__(
|
||||
".text\n"
|
||||
__asm__(".text\n"
|
||||
#ifdef __APPLE__
|
||||
".globl __mco_switch\n"
|
||||
"__mco_switch:\n"
|
||||
@ -1138,8 +1177,7 @@ __asm__(
|
||||
#endif
|
||||
);
|
||||
|
||||
__asm__(
|
||||
".text\n"
|
||||
__asm__(".text\n"
|
||||
#ifdef __APPLE__
|
||||
".globl __mco_wrap_main\n"
|
||||
"__mco_wrap_main:\n"
|
||||
@ -1158,7 +1196,8 @@ __asm__(
|
||||
#endif
|
||||
);
|
||||
|
||||
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base, size_t stack_size) {
|
||||
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base,
|
||||
size_t stack_size) {
|
||||
ctx->d[0] = (void*)(co);
|
||||
ctx->d[1] = (void*)(_mco_main);
|
||||
ctx->d[2] = (void*)(0xdeaddead); /* Dummy return address. */
|
||||
@ -1179,8 +1218,7 @@ typedef struct _mco_ctxbuf {
|
||||
void _mco_wrap_main(void);
|
||||
int _mco_switch(_mco_ctxbuf* from, _mco_ctxbuf* to);
|
||||
|
||||
__asm__(
|
||||
".text\n"
|
||||
__asm__(".text\n"
|
||||
#ifdef __APPLE__
|
||||
".globl __mco_switch\n"
|
||||
"__mco_switch:\n"
|
||||
@ -1222,8 +1260,7 @@ __asm__(
|
||||
#endif
|
||||
);
|
||||
|
||||
__asm__(
|
||||
".text\n"
|
||||
__asm__(".text\n"
|
||||
#ifdef __APPLE__
|
||||
".globl __mco_wrap_main\n"
|
||||
"__mco_wrap_main:\n"
|
||||
@ -1241,7 +1278,8 @@ __asm__(
|
||||
#endif
|
||||
);
|
||||
|
||||
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base, size_t stack_size) {
|
||||
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base,
|
||||
size_t stack_size) {
|
||||
ctx->x[0] = (void*)(co);
|
||||
ctx->x[1] = (void*)(_mco_main);
|
||||
ctx->x[2] = (void*)(0xdeaddeaddeaddead); /* Dummy return address. */
|
||||
@ -1264,7 +1302,8 @@ typedef ucontext_t _mco_ctxbuf;
|
||||
|
||||
#if defined(_LP64) || defined(__LP64__)
|
||||
static void _mco_wrap_main(unsigned int lo, unsigned int hi) {
|
||||
mco_coro* co = (mco_coro*)(((size_t)lo) | (((size_t)hi) << 32)); /* Extract coroutine pointer. */
|
||||
mco_coro* co =
|
||||
(mco_coro*)(((size_t)lo) | (((size_t)hi) << 32)); /* Extract coroutine pointer. */
|
||||
_mco_main(co);
|
||||
}
|
||||
#else
|
||||
@ -1280,7 +1319,8 @@ static MCO_FORCE_INLINE void _mco_switch(_mco_ctxbuf* from, _mco_ctxbuf* to) {
|
||||
MCO_ASSERT(res == 0);
|
||||
}
|
||||
|
||||
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base, size_t stack_size) {
|
||||
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base,
|
||||
size_t stack_size) {
|
||||
/* Initialize ucontext. */
|
||||
if (getcontext(ctx) != 0) {
|
||||
MCO_LOG("failed to get ucontext");
|
||||
@ -1370,8 +1410,7 @@ static void _mco_destroy_context(mco_coro* co) {
|
||||
static MCO_FORCE_INLINE void _mco_init_desc_sizes(mco_desc* desc, size_t stack_size) {
|
||||
desc->coro_size = _mco_align_forward(sizeof(mco_coro), 16) +
|
||||
_mco_align_forward(sizeof(_mco_context), 16) +
|
||||
_mco_align_forward(desc->storage_size, 16) +
|
||||
stack_size + 16;
|
||||
_mco_align_forward(desc->storage_size, 16) + stack_size + 16;
|
||||
desc->stack_size = stack_size; /* This is just a hint, it won't be the real one. */
|
||||
}
|
||||
|
||||
@ -1390,7 +1429,10 @@ typedef struct _mco_context {
|
||||
|
||||
static void _mco_jumpin(mco_coro* co) {
|
||||
void* cur_fib = GetCurrentFiber();
|
||||
if(!cur_fib || cur_fib == (void*)0x1e00) { /* See http://blogs.msdn.com/oldnewthing/archive/2004/12/31/344799.aspx */
|
||||
if (!cur_fib ||
|
||||
cur_fib ==
|
||||
(void*)0x1e00) { /* See http://blogs.msdn.com/oldnewthing/archive/2004/12/31/344799.aspx
|
||||
*/
|
||||
cur_fib = ConvertThreadToFiber(NULL);
|
||||
}
|
||||
MCO_ASSERT(cur_fib != NULL);
|
||||
@ -1437,7 +1479,8 @@ static mco_result _mco_create_context(mco_coro* co, mco_desc* desc) {
|
||||
/* Initialize storage. */
|
||||
unsigned char* storage = (unsigned char*)storage_addr;
|
||||
/* Create the fiber. */
|
||||
_mco_fiber* fib = (_mco_fiber*)CreateFiberEx(desc->stack_size, desc->stack_size, FIBER_FLAG_FLOAT_SWITCH, _mco_wrap_main, co);
|
||||
_mco_fiber* fib = (_mco_fiber*)CreateFiberEx(desc->stack_size, desc->stack_size,
|
||||
FIBER_FLAG_FLOAT_SWITCH, _mco_wrap_main, co);
|
||||
if (!fib) {
|
||||
MCO_LOG("failed to create fiber");
|
||||
return MCO_MAKE_CONTEXT_ERROR;
|
||||
@ -1462,8 +1505,7 @@ static void _mco_destroy_context(mco_coro* co) {
|
||||
static MCO_FORCE_INLINE void _mco_init_desc_sizes(mco_desc* desc, size_t stack_size) {
|
||||
desc->coro_size = _mco_align_forward(sizeof(mco_coro), 16) +
|
||||
_mco_align_forward(sizeof(_mco_context), 16) +
|
||||
_mco_align_forward(desc->storage_size, 16) +
|
||||
16;
|
||||
_mco_align_forward(desc->storage_size, 16) + 16;
|
||||
desc->stack_size = stack_size;
|
||||
}
|
||||
|
||||
@ -1493,7 +1535,8 @@ static void _mco_jumpin(mco_coro* co) {
|
||||
emscripten_fiber_t* back_fib = running_fib;
|
||||
if (!back_fib) {
|
||||
back_fib = &main_fib;
|
||||
emscripten_fiber_init_from_current_context(back_fib, main_asyncify_stack, MCO_ASYNCFY_STACK_SIZE);
|
||||
emscripten_fiber_init_from_current_context(back_fib, main_asyncify_stack,
|
||||
MCO_ASYNCFY_STACK_SIZE);
|
||||
}
|
||||
running_fib = &context->fib;
|
||||
context->back_fib = back_fib;
|
||||
@ -1530,7 +1573,8 @@ static mco_result _mco_create_context(mco_coro* co, mco_desc* desc) {
|
||||
void* asyncify_stack_base = (void*)asyncify_stack_addr;
|
||||
size_t asyncify_stack_size = co_addr + desc->coro_size - asyncify_stack_addr;
|
||||
/* Create the fiber. */
|
||||
emscripten_fiber_init(&context->fib, _mco_wrap_main, co, stack_base, stack_size, asyncify_stack_base, asyncify_stack_size);
|
||||
emscripten_fiber_init(&context->fib, _mco_wrap_main, co, stack_base, stack_size,
|
||||
asyncify_stack_base, asyncify_stack_size);
|
||||
co->context = context;
|
||||
co->stack_base = stack_base;
|
||||
co->stack_size = stack_size;
|
||||
@ -1545,12 +1589,10 @@ static void _mco_destroy_context(mco_coro* co) {
|
||||
}
|
||||
|
||||
static MCO_FORCE_INLINE void _mco_init_desc_sizes(mco_desc* desc, size_t stack_size) {
|
||||
desc->coro_size = _mco_align_forward(sizeof(mco_coro), 16) +
|
||||
_mco_align_forward(sizeof(_mco_context), 16) +
|
||||
_mco_align_forward(desc->storage_size, 16) +
|
||||
_mco_align_forward(stack_size, 16) +
|
||||
_mco_align_forward(MCO_ASYNCFY_STACK_SIZE, 16) +
|
||||
16;
|
||||
desc->coro_size =
|
||||
_mco_align_forward(sizeof(mco_coro), 16) + _mco_align_forward(sizeof(_mco_context), 16) +
|
||||
_mco_align_forward(desc->storage_size, 16) + _mco_align_forward(stack_size, 16) +
|
||||
_mco_align_forward(MCO_ASYNCFY_STACK_SIZE, 16) + 16;
|
||||
desc->stack_size = stack_size; /* This is just a hint, it won't be the real one. */
|
||||
}
|
||||
|
||||
@ -1576,9 +1618,11 @@ typedef struct _mco_context {
|
||||
_asyncify_stack_region stack_region;
|
||||
} _mco_context;
|
||||
|
||||
__attribute__((import_module("asyncify"), import_name("start_unwind"))) void _asyncify_start_unwind(void*);
|
||||
__attribute__((import_module("asyncify"), import_name("start_unwind"))) void _asyncify_start_unwind(
|
||||
void*);
|
||||
__attribute__((import_module("asyncify"), import_name("stop_unwind"))) void _asyncify_stop_unwind();
|
||||
__attribute__((import_module("asyncify"), import_name("start_rewind"))) void _asyncify_start_rewind(void*);
|
||||
__attribute__((import_module("asyncify"), import_name("start_rewind"))) void _asyncify_start_rewind(
|
||||
void*);
|
||||
__attribute__((import_module("asyncify"), import_name("stop_rewind"))) void _asyncify_stop_rewind();
|
||||
|
||||
MCO_NO_INLINE void _mco_jumpin(mco_coro* co) {
|
||||
@ -1594,7 +1638,8 @@ MCO_NO_INLINE void _mco_jumpin(mco_coro* co) {
|
||||
static MCO_NO_INLINE void _mco_finish_jumpout(mco_coro* co, volatile int rewind_id) {
|
||||
_mco_context* context = (_mco_context*)co->context;
|
||||
int next_rewind_id = context->rewind_id + 1;
|
||||
if(rewind_id == next_rewind_id) { /* Begins unwinding the stack (save locals and call stack to rewind later) */
|
||||
if (rewind_id == next_rewind_id) { /* Begins unwinding the stack (save locals and call stack to
|
||||
rewind later) */
|
||||
_mco_prepare_jumpout(co);
|
||||
context->rewind_id = next_rewind_id;
|
||||
_asyncify_start_unwind(&context->stack_region);
|
||||
@ -1645,11 +1690,9 @@ static void _mco_destroy_context(mco_coro* co) {
|
||||
}
|
||||
|
||||
static MCO_FORCE_INLINE void _mco_init_desc_sizes(mco_desc* desc, size_t stack_size) {
|
||||
desc->coro_size = _mco_align_forward(sizeof(mco_coro), 16) +
|
||||
_mco_align_forward(sizeof(_mco_context), 16) +
|
||||
_mco_align_forward(desc->storage_size, 16) +
|
||||
_mco_align_forward(stack_size, 16) +
|
||||
16;
|
||||
desc->coro_size =
|
||||
_mco_align_forward(sizeof(mco_coro), 16) + _mco_align_forward(sizeof(_mco_context), 16) +
|
||||
_mco_align_forward(desc->storage_size, 16) + _mco_align_forward(stack_size, 16) + 16;
|
||||
desc->stack_size = stack_size; /* This is just a hint, it won't be the real one. */
|
||||
}
|
||||
|
||||
@ -1823,7 +1866,8 @@ mco_result mco_yield(mco_coro* co) {
|
||||
size_t stack_addr = (size_t)&dummy;
|
||||
size_t stack_min = (size_t)co->stack_base;
|
||||
size_t stack_max = stack_min + co->stack_size;
|
||||
if(co->magic_number != MCO_MAGIC_NUMBER || stack_addr < stack_min || stack_addr > stack_max) { /* Stack overflow. */
|
||||
if (co->magic_number != MCO_MAGIC_NUMBER || stack_addr < stack_min ||
|
||||
stack_addr > stack_max) { /* Stack overflow. */
|
||||
MCO_LOG("coroutine stack overflow, try increasing the stack size");
|
||||
return MCO_STACK_OVERFLOW;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user