1
0
mirror of https://git.suyu.dev/suyu/suyu synced 2025-01-16 04:40:12 -06:00

kernel: remove kernel_

This commit is contained in:
Liam 2023-03-07 10:49:41 -05:00
parent 9368e17a92
commit c0b9e93b77
41 changed files with 290 additions and 295 deletions

View File

@ -12,11 +12,11 @@ KAutoObject* KAutoObject::Create(KAutoObject* obj) {
}
void KAutoObject::RegisterWithKernel() {
kernel.RegisterKernelObject(this);
m_kernel.RegisterKernelObject(this);
}
void KAutoObject::UnregisterWithKernel() {
kernel.UnregisterKernelObject(this);
m_kernel.UnregisterKernelObject(this);
}
} // namespace Kernel

View File

@ -80,7 +80,7 @@ private:
KERNEL_AUTOOBJECT_TRAITS_IMPL(KAutoObject, KAutoObject, const);
public:
explicit KAutoObject(KernelCore& kernel_) : kernel(kernel_) {
explicit KAutoObject(KernelCore& kernel) : m_kernel(kernel) {
RegisterWithKernel();
}
virtual ~KAutoObject() = default;
@ -169,7 +169,7 @@ private:
void UnregisterWithKernel();
protected:
KernelCore& kernel;
KernelCore& m_kernel;
private:
std::atomic<u32> m_ref_count{};
@ -179,7 +179,7 @@ class KAutoObjectWithListContainer;
class KAutoObjectWithList : public KAutoObject, public boost::intrusive::set_base_hook<> {
public:
explicit KAutoObjectWithList(KernelCore& kernel_) : KAutoObject(kernel_) {}
explicit KAutoObjectWithList(KernelCore& kernel) : KAutoObject(kernel) {}
static int Compare(const KAutoObjectWithList& lhs, const KAutoObjectWithList& rhs) {
const u64 lid = lhs.GetId();

View File

@ -11,7 +11,7 @@
namespace Kernel {
KClientPort::KClientPort(KernelCore& kernel_) : KSynchronizationObject{kernel_} {}
KClientPort::KClientPort(KernelCore& kernel) : KSynchronizationObject{kernel} {}
KClientPort::~KClientPort() = default;
void KClientPort::Initialize(KPort* parent, s32 max_sessions) {
@ -23,7 +23,7 @@ void KClientPort::Initialize(KPort* parent, s32 max_sessions) {
}
void KClientPort::OnSessionFinalized() {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (const auto prev = m_num_sessions--; prev == m_max_sessions) {
this->NotifyAvailable();
@ -58,12 +58,12 @@ Result KClientPort::CreateSession(KClientSession** out) {
// Reserve a new session from the resource limit.
//! FIXME: we are reserving this from the wrong resource limit!
KScopedResourceReservation session_reservation(kernel.ApplicationProcess()->GetResourceLimit(),
LimitableResource::SessionCountMax);
KScopedResourceReservation session_reservation(
m_kernel.ApplicationProcess()->GetResourceLimit(), LimitableResource::SessionCountMax);
R_UNLESS(session_reservation.Succeeded(), ResultLimitReached);
// Allocate a session normally.
session = KSession::Create(kernel);
session = KSession::Create(m_kernel);
// Check that we successfully created a session.
R_UNLESS(session != nullptr, ResultOutOfResource);
@ -105,7 +105,7 @@ Result KClientPort::CreateSession(KClientSession** out) {
session_reservation.Commit();
// Register the session.
KSession::Register(kernel, session);
KSession::Register(m_kernel, session);
ON_RESULT_FAILURE {
session->GetClientSession().Close();
session->GetServerSession().Close();

View File

@ -12,8 +12,7 @@ namespace Kernel {
static constexpr u32 MessageBufferSize = 0x100;
KClientSession::KClientSession(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_} {}
KClientSession::KClientSession(KernelCore& kernel) : KAutoObjectWithSlabHeapAndContainer{kernel} {}
KClientSession::~KClientSession() = default;
void KClientSession::Destroy() {
@ -25,12 +24,12 @@ void KClientSession::OnServerClosed() {}
Result KClientSession::SendSyncRequest() {
// Create a session request.
KSessionRequest* request = KSessionRequest::Create(kernel);
KSessionRequest* request = KSessionRequest::Create(m_kernel);
R_UNLESS(request != nullptr, ResultOutOfResource);
SCOPE_EXIT({ request->Close(); });
// Initialize the request.
request->Initialize(nullptr, GetCurrentThread(kernel).GetTLSAddress(), MessageBufferSize);
request->Initialize(nullptr, GetCurrentThread(m_kernel).GetTLSAddress(), MessageBufferSize);
// Send the request.
R_RETURN(m_parent->GetServerSession().OnRequest(request));

View File

@ -30,7 +30,7 @@ class KClientSession final
KERNEL_AUTOOBJECT_TRAITS(KClientSession, KAutoObject);
public:
explicit KClientSession(KernelCore& kernel_);
explicit KClientSession(KernelCore& kernel);
~KClientSession() override;
void Initialize(KSession* parent) {

View File

@ -16,18 +16,18 @@
namespace Kernel {
KCodeMemory::KCodeMemory(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_}, m_lock(kernel_) {}
KCodeMemory::KCodeMemory(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel}, m_lock(kernel) {}
Result KCodeMemory::Initialize(Core::DeviceMemory& device_memory, VAddr addr, size_t size) {
// Set members.
m_owner = GetCurrentProcessPointer(kernel);
m_owner = GetCurrentProcessPointer(m_kernel);
// Get the owner page table.
auto& page_table = m_owner->PageTable();
// Construct the page group.
m_page_group.emplace(kernel, page_table.GetBlockInfoManager());
m_page_group.emplace(m_kernel, page_table.GetBlockInfoManager());
// Lock the memory.
R_TRY(page_table.LockForCodeMemory(std::addressof(*m_page_group), addr, size))
@ -74,7 +74,7 @@ Result KCodeMemory::Map(VAddr address, size_t size) {
R_UNLESS(!m_is_mapped, ResultInvalidState);
// Map the memory.
R_TRY(GetCurrentProcess(kernel).PageTable().MapPageGroup(
R_TRY(GetCurrentProcess(m_kernel).PageTable().MapPageGroup(
address, *m_page_group, KMemoryState::CodeOut, KMemoryPermission::UserReadWrite));
// Mark ourselves as mapped.
@ -91,8 +91,8 @@ Result KCodeMemory::Unmap(VAddr address, size_t size) {
KScopedLightLock lk(m_lock);
// Unmap the memory.
R_TRY(GetCurrentProcess(kernel).PageTable().UnmapPageGroup(address, *m_page_group,
KMemoryState::CodeOut));
R_TRY(GetCurrentProcess(m_kernel).PageTable().UnmapPageGroup(address, *m_page_group,
KMemoryState::CodeOut));
// Mark ourselves as unmapped.
m_is_mapped = false;

View File

@ -29,7 +29,7 @@ class KCodeMemory final
KERNEL_AUTOOBJECT_TRAITS(KCodeMemory, KAutoObject);
public:
explicit KCodeMemory(KernelCore& kernel_);
explicit KCodeMemory(KernelCore& kernel);
Result Initialize(Core::DeviceMemory& device_memory, VAddr address, size_t size);
void Finalize() override;

View File

@ -57,8 +57,8 @@ bool UpdateLockAtomic(Core::System& system, u32* out, VAddr address, u32 if_zero
class ThreadQueueImplForKConditionVariableWaitForAddress final : public KThreadQueue {
public:
explicit ThreadQueueImplForKConditionVariableWaitForAddress(KernelCore& kernel_)
: KThreadQueue(kernel_) {}
explicit ThreadQueueImplForKConditionVariableWaitForAddress(KernelCore& kernel)
: KThreadQueue(kernel) {}
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
// Remove the thread as a waiter from its owner.
@ -75,8 +75,8 @@ private:
public:
explicit ThreadQueueImplForKConditionVariableWaitConditionVariable(
KernelCore& kernel_, KConditionVariable::ThreadTree* t)
: KThreadQueue(kernel_), m_tree(t) {}
KernelCore& kernel, KConditionVariable::ThreadTree* t)
: KThreadQueue(kernel), m_tree(t) {}
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
// Remove the thread as a waiter from its owner.

View File

@ -12,7 +12,7 @@ class KDebug final : public KAutoObjectWithSlabHeapAndContainer<KDebug, KAutoObj
KERNEL_AUTOOBJECT_TRAITS(KDebug, KAutoObject);
public:
explicit KDebug(KernelCore& kernel_) : KAutoObjectWithSlabHeapAndContainer{kernel_} {}
explicit KDebug(KernelCore& kernel) : KAutoObjectWithSlabHeapAndContainer{kernel} {}
static void PostDestroy(uintptr_t arg) {}
};

View File

@ -9,8 +9,8 @@
namespace Kernel {
KDeviceAddressSpace::KDeviceAddressSpace(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer(kernel_), m_lock(kernel_), m_is_initialized(false) {}
KDeviceAddressSpace::KDeviceAddressSpace(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer(kernel), m_lock(kernel), m_is_initialized(false) {}
KDeviceAddressSpace::~KDeviceAddressSpace() = default;
void KDeviceAddressSpace::Initialize() {

View File

@ -7,8 +7,8 @@
namespace Kernel {
KEvent::KEvent(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_}, m_readable_event{kernel_} {}
KEvent::KEvent(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel}, m_readable_event{kernel} {}
KEvent::~KEvent() = default;
@ -36,7 +36,7 @@ void KEvent::Finalize() {
}
Result KEvent::Signal() {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
R_SUCCEED_IF(m_readable_event_destroyed);
@ -44,7 +44,7 @@ Result KEvent::Signal() {
}
Result KEvent::Clear() {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
R_SUCCEED_IF(m_readable_event_destroyed);

View File

@ -16,7 +16,7 @@ class KEvent final : public KAutoObjectWithSlabHeapAndContainer<KEvent, KAutoObj
KERNEL_AUTOOBJECT_TRAITS(KEvent, KAutoObject);
public:
explicit KEvent(KernelCore& kernel_);
explicit KEvent(KernelCore& kernel);
~KEvent() override;
void Initialize(KProcess* owner);

View File

@ -7,8 +7,8 @@
namespace Kernel {
KPort::KPort(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_}, m_server{kernel_}, m_client{kernel_} {}
KPort::KPort(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel}, m_server{kernel}, m_client{kernel} {}
KPort::~KPort() = default;
@ -29,7 +29,7 @@ void KPort::Initialize(s32 max_sessions, bool is_light, uintptr_t name) {
}
void KPort::OnClientClosed() {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (m_state == State::Normal) {
m_state = State::ClientClosed;
@ -37,7 +37,7 @@ void KPort::OnClientClosed() {
}
void KPort::OnServerClosed() {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (m_state == State::Normal) {
m_state = State::ServerClosed;
@ -45,12 +45,12 @@ void KPort::OnServerClosed() {
}
bool KPort::IsServerClosed() const {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
return m_state == State::ServerClosed;
}
Result KPort::EnqueueSession(KServerSession* session) {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
R_UNLESS(m_state == State::Normal, ResultPortClosed);

View File

@ -19,7 +19,7 @@ class KPort final : public KAutoObjectWithSlabHeapAndContainer<KPort, KAutoObjec
KERNEL_AUTOOBJECT_TRAITS(KPort, KAutoObject);
public:
explicit KPort(KernelCore& kernel_);
explicit KPort(KernelCore& kernel);
~KPort() override;
static void PostDestroy(uintptr_t arg) {}

View File

@ -126,7 +126,7 @@ u64 KProcess::GetTotalPhysicalMemoryAvailable() {
const u64 capacity{resource_limit->GetFreeValue(LimitableResource::PhysicalMemoryMax) +
page_table.GetNormalMemorySize() + GetSystemResourceSize() + image_size +
main_thread_stack_size};
if (const auto pool_size = kernel.MemoryManager().GetSize(KMemoryManager::Pool::Application);
if (const auto pool_size = m_kernel.MemoryManager().GetSize(KMemoryManager::Pool::Application);
capacity != pool_size) {
LOG_WARNING(Kernel, "capacity {} != application pool size {}", capacity, pool_size);
}
@ -150,7 +150,7 @@ u64 KProcess::GetTotalPhysicalMemoryUsedWithoutSystemResource() {
}
bool KProcess::ReleaseUserException(KThread* thread) {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (exception_thread == thread) {
exception_thread = nullptr;
@ -164,7 +164,7 @@ bool KProcess::ReleaseUserException(KThread* thread) {
next->EndWait(ResultSuccess);
}
KScheduler::SetSchedulerUpdateNeeded(kernel);
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
return true;
} else {
@ -173,11 +173,11 @@ bool KProcess::ReleaseUserException(KThread* thread) {
}
void KProcess::PinCurrentThread(s32 core_id) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(m_kernel.GlobalSchedulerContext().IsLocked());
// Get the current thread.
KThread* cur_thread =
kernel.Scheduler(static_cast<std::size_t>(core_id)).GetSchedulerCurrentThread();
m_kernel.Scheduler(static_cast<std::size_t>(core_id)).GetSchedulerCurrentThread();
// If the thread isn't terminated, pin it.
if (!cur_thread->IsTerminationRequested()) {
@ -186,27 +186,27 @@ void KProcess::PinCurrentThread(s32 core_id) {
cur_thread->Pin(core_id);
// An update is needed.
KScheduler::SetSchedulerUpdateNeeded(kernel);
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
}
void KProcess::UnpinCurrentThread(s32 core_id) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(m_kernel.GlobalSchedulerContext().IsLocked());
// Get the current thread.
KThread* cur_thread =
kernel.Scheduler(static_cast<std::size_t>(core_id)).GetSchedulerCurrentThread();
m_kernel.Scheduler(static_cast<std::size_t>(core_id)).GetSchedulerCurrentThread();
// Unpin it.
cur_thread->Unpin();
UnpinThread(core_id, cur_thread);
// An update is needed.
KScheduler::SetSchedulerUpdateNeeded(kernel);
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
void KProcess::UnpinThread(KThread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(m_kernel.GlobalSchedulerContext().IsLocked());
// Get the thread's core id.
const auto core_id = thread->GetActiveCore();
@ -216,7 +216,7 @@ void KProcess::UnpinThread(KThread* thread) {
thread->Unpin();
// An update is needed.
KScheduler::SetSchedulerUpdateNeeded(kernel);
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
Result KProcess::AddSharedMemory(KSharedMemory* shmem, [[maybe_unused]] VAddr address,
@ -234,7 +234,7 @@ Result KProcess::AddSharedMemory(KSharedMemory* shmem, [[maybe_unused]] VAddr ad
}
if (shemen_info == nullptr) {
shemen_info = KSharedMemoryInfo::Allocate(kernel);
shemen_info = KSharedMemoryInfo::Allocate(m_kernel);
R_UNLESS(shemen_info != nullptr, ResultOutOfMemory);
shemen_info->Initialize(shmem);
@ -265,7 +265,7 @@ void KProcess::RemoveSharedMemory(KSharedMemory* shmem, [[maybe_unused]] VAddr a
if (shemen_info->Close()) {
shared_memory_list.erase(iter);
KSharedMemoryInfo::Free(kernel, shemen_info);
KSharedMemoryInfo::Free(m_kernel, shemen_info);
}
// Close a reference to the shared memory.
@ -298,7 +298,7 @@ u64 KProcess::GetFreeThreadCount() const {
Result KProcess::Reset() {
// Lock the process and the scheduler.
KScopedLightLock lk(state_lock);
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Validate that we're in a state that we can reset.
R_UNLESS(state != State::Terminated, ResultInvalidState);
@ -313,7 +313,7 @@ Result KProcess::SetActivity(ProcessActivity activity) {
// Lock ourselves and the scheduler.
KScopedLightLock lk{state_lock};
KScopedLightLock list_lk{list_lock};
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Validate our state.
R_UNLESS(state != State::Terminating, ResultInvalidState);
@ -366,7 +366,7 @@ Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std:
// Initialize process address space
if (const Result result{page_table.InitializeForProcess(
metadata.GetAddressSpaceType(), false, false, false, KMemoryManager::Pool::Application,
0x8000000, code_size, &kernel.GetAppSystemResource(), resource_limit)};
0x8000000, code_size, &m_kernel.GetAppSystemResource(), resource_limit)};
result.IsError()) {
R_RETURN(result);
}
@ -421,7 +421,7 @@ void KProcess::Run(s32 main_thread_priority, u64 stack_size) {
ChangeState(State::Running);
SetupMainThread(kernel.System(), *this, main_thread_priority, main_thread_stack_top);
SetupMainThread(m_kernel.System(), *this, main_thread_priority, main_thread_stack_top);
}
void KProcess::PrepareForTermination() {
@ -432,7 +432,7 @@ void KProcess::PrepareForTermination() {
if (thread->GetOwnerProcess() != this)
continue;
if (thread == GetCurrentThreadPointer(kernel))
if (thread == GetCurrentThreadPointer(m_kernel))
continue;
// TODO(Subv): When are the other running/ready threads terminated?
@ -443,7 +443,7 @@ void KProcess::PrepareForTermination() {
}
};
stop_threads(kernel.System().GlobalSchedulerContext().GetThreadList());
stop_threads(m_kernel.System().GlobalSchedulerContext().GetThreadList());
this->DeleteThreadLocalRegion(plr_address);
plr_address = 0;
@ -471,7 +471,7 @@ void KProcess::Finalize() {
shmem->Close();
it = shared_memory_list.erase(it);
KSharedMemoryInfo::Free(kernel, info);
KSharedMemoryInfo::Free(m_kernel, info);
}
}
@ -494,7 +494,7 @@ Result KProcess::CreateThreadLocalRegion(VAddr* out) {
// See if we can get a region from a partially used TLP.
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (auto it = partially_used_tlp_tree.begin(); it != partially_used_tlp_tree.end()) {
tlr = it->Reserve();
@ -512,12 +512,12 @@ Result KProcess::CreateThreadLocalRegion(VAddr* out) {
}
// Allocate a new page.
tlp = KThreadLocalPage::Allocate(kernel);
tlp = KThreadLocalPage::Allocate(m_kernel);
R_UNLESS(tlp != nullptr, ResultOutOfMemory);
auto tlp_guard = SCOPE_GUARD({ KThreadLocalPage::Free(kernel, tlp); });
auto tlp_guard = SCOPE_GUARD({ KThreadLocalPage::Free(m_kernel, tlp); });
// Initialize the new page.
R_TRY(tlp->Initialize(kernel, this));
R_TRY(tlp->Initialize(m_kernel, this));
// Reserve a TLR.
tlr = tlp->Reserve();
@ -525,7 +525,7 @@ Result KProcess::CreateThreadLocalRegion(VAddr* out) {
// Insert into our tree.
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (tlp->IsAllUsed()) {
fully_used_tlp_tree.insert(*tlp);
} else {
@ -544,7 +544,7 @@ Result KProcess::DeleteThreadLocalRegion(VAddr addr) {
// Release the region.
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Try to find the page in the partially used list.
auto it = partially_used_tlp_tree.find_key(Common::AlignDown(addr, PageSize));
@ -581,7 +581,7 @@ Result KProcess::DeleteThreadLocalRegion(VAddr addr) {
if (page_to_free != nullptr) {
page_to_free->Finalize();
KThreadLocalPage::Free(kernel, page_to_free);
KThreadLocalPage::Free(m_kernel, page_to_free);
}
R_SUCCEED();
@ -639,8 +639,8 @@ void KProcess::LoadModule(CodeSet code_set, VAddr base_addr) {
page_table.SetProcessMemoryPermission(segment.addr + base_addr, segment.size, permission);
};
kernel.System().Memory().WriteBlock(*this, base_addr, code_set.memory.data(),
code_set.memory.size());
m_kernel.System().Memory().WriteBlock(*this, base_addr, code_set.memory.data(),
code_set.memory.size());
ReprotectSegment(code_set.CodeSegment(), Svc::MemoryPermission::ReadExecute);
ReprotectSegment(code_set.RODataSegment(), Svc::MemoryPermission::Read);
@ -648,14 +648,14 @@ void KProcess::LoadModule(CodeSet code_set, VAddr base_addr) {
}
bool KProcess::IsSignaled() const {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(m_kernel.GlobalSchedulerContext().IsLocked());
return is_signaled;
}
KProcess::KProcess(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_}, page_table{kernel_.System()},
handle_table{kernel_}, address_arbiter{kernel_.System()}, condition_var{kernel_.System()},
state_lock{kernel_}, list_lock{kernel_} {}
KProcess::KProcess(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel}, page_table{m_kernel.System()},
handle_table{m_kernel}, address_arbiter{m_kernel.System()}, condition_var{m_kernel.System()},
state_lock{m_kernel}, list_lock{m_kernel} {}
KProcess::~KProcess() = default;

View File

@ -68,7 +68,7 @@ class KProcess final : public KAutoObjectWithSlabHeapAndContainer<KProcess, KWor
KERNEL_AUTOOBJECT_TRAITS(KProcess, KSynchronizationObject);
public:
explicit KProcess(KernelCore& kernel_);
explicit KProcess(KernelCore& kernel);
~KProcess() override;
enum class State {

View File

@ -11,7 +11,7 @@
namespace Kernel {
KReadableEvent::KReadableEvent(KernelCore& kernel_) : KSynchronizationObject{kernel_} {}
KReadableEvent::KReadableEvent(KernelCore& kernel) : KSynchronizationObject{kernel} {}
KReadableEvent::~KReadableEvent() = default;
@ -25,7 +25,7 @@ void KReadableEvent::Initialize(KEvent* parent) {
}
bool KReadableEvent::IsSignaled() const {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
return m_is_signaled;
}
@ -33,7 +33,7 @@ bool KReadableEvent::IsSignaled() const {
void KReadableEvent::Destroy() {
if (m_parent) {
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
m_parent->OnReadableEventDestroyed();
}
m_parent->Close();
@ -41,7 +41,7 @@ void KReadableEvent::Destroy() {
}
Result KReadableEvent::Signal() {
KScopedSchedulerLock lk{kernel};
KScopedSchedulerLock lk{m_kernel};
if (!m_is_signaled) {
m_is_signaled = true;
@ -58,7 +58,7 @@ Result KReadableEvent::Clear() {
}
Result KReadableEvent::Reset() {
KScopedSchedulerLock lk{kernel};
KScopedSchedulerLock lk{m_kernel};
R_UNLESS(m_is_signaled, ResultInvalidState);

View File

@ -17,7 +17,7 @@ class KReadableEvent : public KSynchronizationObject {
KERNEL_AUTOOBJECT_TRAITS(KReadableEvent, KSynchronizationObject);
public:
explicit KReadableEvent(KernelCore& kernel_);
explicit KReadableEvent(KernelCore& kernel);
~KReadableEvent() override;
void Initialize(KEvent* parent);

View File

@ -11,8 +11,8 @@
namespace Kernel {
constexpr s64 DefaultTimeout = 10000000000; // 10 seconds
KResourceLimit::KResourceLimit(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_}, lock{kernel_}, cond_var{kernel_} {}
KResourceLimit::KResourceLimit(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel}, lock{kernel}, cond_var{kernel} {}
KResourceLimit::~KResourceLimit() = default;
void KResourceLimit::Initialize(const Core::Timing::CoreTiming* core_timing_) {

View File

@ -27,7 +27,7 @@ static void IncrementScheduledCount(Kernel::KThread* thread) {
}
}
KScheduler::KScheduler(KernelCore& kernel_) : kernel{kernel_} {
KScheduler::KScheduler(KernelCore& kernel) : m_kernel{kernel} {
m_switch_fiber = std::make_shared<Common::Fiber>([this] {
while (true) {
ScheduleImplFiber();
@ -47,7 +47,7 @@ void KScheduler::SetInterruptTaskRunnable() {
void KScheduler::RequestScheduleOnInterrupt() {
m_state.needs_scheduling = true;
if (CanSchedule(kernel)) {
if (CanSchedule(m_kernel)) {
ScheduleOnInterrupt();
}
}
@ -97,50 +97,50 @@ u64 KScheduler::UpdateHighestPriorityThreads(KernelCore& kernel) {
}
void KScheduler::Schedule() {
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() == 1);
ASSERT(m_core_id == GetCurrentCoreId(kernel));
ASSERT(GetCurrentThread(m_kernel).GetDisableDispatchCount() == 1);
ASSERT(m_core_id == GetCurrentCoreId(m_kernel));
ScheduleImpl();
}
void KScheduler::ScheduleOnInterrupt() {
GetCurrentThread(kernel).DisableDispatch();
GetCurrentThread(m_kernel).DisableDispatch();
Schedule();
GetCurrentThread(kernel).EnableDispatch();
GetCurrentThread(m_kernel).EnableDispatch();
}
void KScheduler::PreemptSingleCore() {
GetCurrentThread(kernel).DisableDispatch();
GetCurrentThread(m_kernel).DisableDispatch();
auto* thread = GetCurrentThreadPointer(kernel);
auto& previous_scheduler = kernel.Scheduler(thread->GetCurrentCore());
auto* thread = GetCurrentThreadPointer(m_kernel);
auto& previous_scheduler = m_kernel.Scheduler(thread->GetCurrentCore());
previous_scheduler.Unload(thread);
Common::Fiber::YieldTo(thread->GetHostContext(), *m_switch_fiber);
GetCurrentThread(kernel).EnableDispatch();
GetCurrentThread(m_kernel).EnableDispatch();
}
void KScheduler::RescheduleCurrentCore() {
ASSERT(!kernel.IsPhantomModeForSingleCore());
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() == 1);
ASSERT(!m_kernel.IsPhantomModeForSingleCore());
ASSERT(GetCurrentThread(m_kernel).GetDisableDispatchCount() == 1);
GetCurrentThread(kernel).EnableDispatch();
GetCurrentThread(m_kernel).EnableDispatch();
if (m_state.needs_scheduling.load()) {
// Disable interrupts, and then check again if rescheduling is needed.
// KScopedInterruptDisable intr_disable;
kernel.CurrentScheduler()->RescheduleCurrentCoreImpl();
m_kernel.CurrentScheduler()->RescheduleCurrentCoreImpl();
}
}
void KScheduler::RescheduleCurrentCoreImpl() {
// Check that scheduling is needed.
if (m_state.needs_scheduling.load()) [[likely]] {
GetCurrentThread(kernel).DisableDispatch();
GetCurrentThread(m_kernel).DisableDispatch();
Schedule();
GetCurrentThread(kernel).EnableDispatch();
GetCurrentThread(m_kernel).EnableDispatch();
}
}
@ -153,14 +153,14 @@ void KScheduler::Initialize(KThread* main_thread, KThread* idle_thread, s32 core
// Insert the main thread into the priority queue.
// {
// KScopedSchedulerLock lk{kernel};
// GetPriorityQueue(kernel).PushBack(GetCurrentThreadPointer(kernel));
// SetSchedulerUpdateNeeded(kernel);
// KScopedSchedulerLock lk{m_kernel};
// GetPriorityQueue(m_kernel).PushBack(GetCurrentThreadPointer(m_kernel));
// SetSchedulerUpdateNeeded(m_kernel);
// }
// Bind interrupt handler.
// kernel.GetInterruptManager().BindHandler(
// GetSchedulerInterruptHandler(kernel), KInterruptName::Scheduler, m_core_id,
// GetSchedulerInterruptHandler(m_kernel), KInterruptName::Scheduler, m_core_id,
// KInterruptController::PriorityLevel::Scheduler, false, false);
// Set the current thread.
@ -168,7 +168,7 @@ void KScheduler::Initialize(KThread* main_thread, KThread* idle_thread, s32 core
}
void KScheduler::Activate() {
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() == 1);
ASSERT(GetCurrentThread(m_kernel).GetDisableDispatchCount() == 1);
// m_state.should_count_idle = KTargetSystem::IsDebugMode();
m_is_active = true;
@ -176,7 +176,7 @@ void KScheduler::Activate() {
}
void KScheduler::OnThreadStart() {
GetCurrentThread(kernel).EnableDispatch();
GetCurrentThread(m_kernel).EnableDispatch();
}
u64 KScheduler::UpdateHighestPriorityThread(KThread* highest_thread) {
@ -184,7 +184,7 @@ u64 KScheduler::UpdateHighestPriorityThread(KThread* highest_thread) {
prev_highest_thread != highest_thread) [[likely]] {
if (prev_highest_thread != nullptr) [[likely]] {
IncrementScheduledCount(prev_highest_thread);
prev_highest_thread->SetLastScheduledTick(kernel.System().CoreTiming().GetCPUTicks());
prev_highest_thread->SetLastScheduledTick(m_kernel.System().CoreTiming().GetCPUTicks());
}
if (m_state.should_count_idle) {
if (highest_thread != nullptr) [[likely]] {
@ -328,8 +328,8 @@ u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
}
void KScheduler::SwitchThread(KThread* next_thread) {
KProcess* const cur_process = GetCurrentProcessPointer(kernel);
KThread* const cur_thread = GetCurrentThreadPointer(kernel);
KProcess* const cur_process = GetCurrentProcessPointer(m_kernel);
KThread* const cur_thread = GetCurrentThreadPointer(m_kernel);
// We never want to schedule a null thread, so use the idle thread if we don't have a next.
if (next_thread == nullptr) {
@ -351,7 +351,7 @@ void KScheduler::SwitchThread(KThread* next_thread) {
// Update the CPU time tracking variables.
const s64 prev_tick = m_last_context_switch_time;
const s64 cur_tick = kernel.System().CoreTiming().GetCPUTicks();
const s64 cur_tick = m_kernel.System().CoreTiming().GetCPUTicks();
const s64 tick_diff = cur_tick - prev_tick;
cur_thread->AddCpuTime(m_core_id, tick_diff);
if (cur_process != nullptr) {
@ -375,7 +375,7 @@ void KScheduler::SwitchThread(KThread* next_thread) {
// }
// Set the new thread.
SetCurrentThread(kernel, next_thread);
SetCurrentThread(m_kernel, next_thread);
m_current_thread = next_thread;
// Set the new Thread Local region.
@ -388,7 +388,7 @@ void KScheduler::ScheduleImpl() {
std::atomic_thread_fence(std::memory_order_seq_cst);
// Load the appropriate thread pointers for scheduling.
KThread* const cur_thread{GetCurrentThreadPointer(kernel)};
KThread* const cur_thread{GetCurrentThreadPointer(m_kernel)};
KThread* highest_priority_thread{m_state.highest_priority_thread};
// Check whether there are runnable interrupt tasks.
@ -493,7 +493,7 @@ void KScheduler::ScheduleImplFiber() {
}
void KScheduler::Unload(KThread* thread) {
auto& cpu_core = kernel.System().ArmInterface(m_core_id);
auto& cpu_core = m_kernel.System().ArmInterface(m_core_id);
cpu_core.SaveContext(thread->GetContext32());
cpu_core.SaveContext(thread->GetContext64());
// Save the TPIDR_EL0 system register in case it was modified.
@ -508,7 +508,7 @@ void KScheduler::Unload(KThread* thread) {
}
void KScheduler::Reload(KThread* thread) {
auto& cpu_core = kernel.System().ArmInterface(m_core_id);
auto& cpu_core = m_kernel.System().ArmInterface(m_core_id);
cpu_core.LoadContext(thread->GetContext32());
cpu_core.LoadContext(thread->GetContext64());
cpu_core.SetTlsAddress(thread->GetTLSAddress());
@ -891,7 +891,7 @@ void KScheduler::YieldToAnyThread(KernelCore& kernel) {
void KScheduler::RescheduleOtherCores(u64 cores_needing_scheduling) {
if (const u64 core_mask = cores_needing_scheduling & ~(1ULL << m_core_id); core_mask != 0) {
RescheduleCores(kernel, core_mask);
RescheduleCores(m_kernel, core_mask);
}
}

View File

@ -149,7 +149,7 @@ private:
KInterruptTaskManager* interrupt_task_manager{nullptr};
};
KernelCore& kernel;
KernelCore& m_kernel;
SchedulingState m_state;
bool m_is_active{false};
s32 m_core_id{0};

View File

@ -12,7 +12,7 @@
namespace Kernel {
KServerPort::KServerPort(KernelCore& kernel_) : KSynchronizationObject{kernel_} {}
KServerPort::KServerPort(KernelCore& kernel) : KSynchronizationObject{kernel} {}
KServerPort::~KServerPort() = default;
void KServerPort::Initialize(KPort* parent) {
@ -35,7 +35,7 @@ void KServerPort::CleanupSessions() {
// Get the last session in the list
KServerSession* session = nullptr;
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (!m_session_list.empty()) {
session = std::addressof(m_session_list.front());
m_session_list.pop_front();
@ -74,7 +74,7 @@ bool KServerPort::IsSignaled() const {
void KServerPort::EnqueueSession(KServerSession* session) {
ASSERT(!this->IsLight());
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Add the session to our queue.
m_session_list.push_back(*session);
@ -86,7 +86,7 @@ void KServerPort::EnqueueSession(KServerSession* session) {
KServerSession* KServerPort::AcceptSession() {
ASSERT(!this->IsLight());
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Return the first session in the list.
if (m_session_list.empty()) {

View File

@ -22,7 +22,7 @@ class KServerPort final : public KSynchronizationObject {
KERNEL_AUTOOBJECT_TRAITS(KServerPort, KSynchronizationObject);
public:
explicit KServerPort(KernelCore& kernel_);
explicit KServerPort(KernelCore& kernel);
~KServerPort() override;
void Initialize(KPort* parent);

View File

@ -28,8 +28,8 @@ namespace Kernel {
using ThreadQueueImplForKServerSessionRequest = KThreadQueue;
KServerSession::KServerSession(KernelCore& kernel_)
: KSynchronizationObject{kernel_}, m_lock{kernel_} {}
KServerSession::KServerSession(KernelCore& kernel)
: KSynchronizationObject{kernel}, m_lock{m_kernel} {}
KServerSession::~KServerSession() = default;
@ -56,7 +56,7 @@ void KServerSession::OnClientClosed() {
// Get the next request.
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (m_current_request != nullptr && m_current_request != prev_request) {
// Set the request, open a reference as we process it.
@ -135,7 +135,7 @@ void KServerSession::OnClientClosed() {
}
bool KServerSession::IsSignaled() const {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// If the client is closed, we're always signaled.
if (m_parent->IsClientClosed()) {
@ -148,17 +148,17 @@ bool KServerSession::IsSignaled() const {
Result KServerSession::OnRequest(KSessionRequest* request) {
// Create the wait queue.
ThreadQueueImplForKServerSessionRequest wait_queue{kernel};
ThreadQueueImplForKServerSessionRequest wait_queue{m_kernel};
{
// Lock the scheduler.
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Ensure that we can handle new requests.
R_UNLESS(!m_parent->IsServerClosed(), ResultSessionClosed);
// Check that we're not terminating.
R_UNLESS(!GetCurrentThread(kernel).IsTerminationRequested(), ResultTerminationRequested);
R_UNLESS(!GetCurrentThread(m_kernel).IsTerminationRequested(), ResultTerminationRequested);
// Get whether we're empty.
const bool was_empty = m_request_list.empty();
@ -176,11 +176,11 @@ Result KServerSession::OnRequest(KSessionRequest* request) {
R_SUCCEED_IF(request->GetEvent() != nullptr);
// This is a synchronous request, so we should wait for our request to complete.
GetCurrentThread(kernel).SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::IPC);
GetCurrentThread(kernel).BeginWait(&wait_queue);
GetCurrentThread(m_kernel).SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::IPC);
GetCurrentThread(m_kernel).BeginWait(&wait_queue);
}
return GetCurrentThread(kernel).GetWaitResult();
return GetCurrentThread(m_kernel).GetWaitResult();
}
Result KServerSession::SendReply(bool is_hle) {
@ -190,7 +190,7 @@ Result KServerSession::SendReply(bool is_hle) {
// Get the request.
KSessionRequest* request;
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Get the current request.
request = m_current_request;
@ -222,8 +222,8 @@ Result KServerSession::SendReply(bool is_hle) {
// HLE servers write directly to a pointer to the thread command buffer. Therefore
// the reply has already been written in this case.
} else {
Core::Memory::Memory& memory{kernel.System().Memory()};
KThread* server_thread{GetCurrentThreadPointer(kernel)};
Core::Memory::Memory& memory{m_kernel.System().Memory()};
KThread* server_thread{GetCurrentThreadPointer(m_kernel)};
UNIMPLEMENTED_IF(server_thread->GetOwnerProcess() != client_thread->GetOwnerProcess());
auto* src_msg_buffer = memory.GetPointer(server_thread->GetTLSAddress());
@ -264,7 +264,7 @@ Result KServerSession::SendReply(bool is_hle) {
event->Signal();
} else {
// End the client thread's wait.
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (!client_thread->IsTerminationRequested()) {
client_thread->EndWait(client_result);
@ -285,7 +285,7 @@ Result KServerSession::ReceiveRequest(std::shared_ptr<Service::HLERequestContext
KThread* client_thread;
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Ensure that we can service the request.
R_UNLESS(!m_parent->IsClientClosed(), ResultSessionClosed);
@ -319,18 +319,18 @@ Result KServerSession::ReceiveRequest(std::shared_ptr<Service::HLERequestContext
// bool recv_list_broken = false;
// Receive the message.
Core::Memory::Memory& memory{kernel.System().Memory()};
Core::Memory::Memory& memory{m_kernel.System().Memory()};
if (out_context != nullptr) {
// HLE request.
u32* cmd_buf{reinterpret_cast<u32*>(memory.GetPointer(client_message))};
*out_context =
std::make_shared<Service::HLERequestContext>(kernel, memory, this, client_thread);
std::make_shared<Service::HLERequestContext>(m_kernel, memory, this, client_thread);
(*out_context)->SetSessionRequestManager(manager);
(*out_context)
->PopulateFromIncomingCommandBuffer(client_thread->GetOwnerProcess()->GetHandleTable(),
cmd_buf);
} else {
KThread* server_thread{GetCurrentThreadPointer(kernel)};
KThread* server_thread{GetCurrentThreadPointer(m_kernel)};
UNIMPLEMENTED_IF(server_thread->GetOwnerProcess() != client_thread->GetOwnerProcess());
auto* src_msg_buffer = memory.GetPointer(client_message);
@ -350,7 +350,7 @@ void KServerSession::CleanupRequests() {
// Get the next request.
KSessionRequest* request = nullptr;
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (m_current_request) {
// Choose the current request if we have one.
@ -401,7 +401,7 @@ void KServerSession::CleanupRequests() {
event->Signal();
} else {
// End the client thread's wait.
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (!client_thread->IsTerminationRequested()) {
client_thread->EndWait(ResultSessionClosed);

View File

@ -33,7 +33,7 @@ class KServerSession final : public KSynchronizationObject,
friend class ServiceThread;
public:
explicit KServerSession(KernelCore& kernel_);
explicit KServerSession(KernelCore& kernel);
~KServerSession() override;
void Destroy() override;

View File

@ -9,8 +9,8 @@
namespace Kernel {
KSession::KSession(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_}, m_server{kernel_}, m_client{kernel_} {}
KSession::KSession(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel}, m_server{kernel}, m_client{kernel} {}
KSession::~KSession() = default;
void KSession::Initialize(KClientPort* client_port, uintptr_t name) {
@ -34,7 +34,7 @@ void KSession::Initialize(KClientPort* client_port, uintptr_t name) {
// Set our owner process.
//! FIXME: this is the wrong process!
m_process = kernel.ApplicationProcess();
m_process = m_kernel.ApplicationProcess();
m_process->Open();
// Set our port.

View File

@ -18,7 +18,7 @@ class KSession final : public KAutoObjectWithSlabHeapAndContainer<KSession, KAut
KERNEL_AUTOOBJECT_TRAITS(KSession, KAutoObject);
public:
explicit KSession(KernelCore& kernel_);
explicit KSession(KernelCore& kernel);
~KSession() override;
void Initialize(KClientPort* port, uintptr_t name);

View File

@ -158,7 +158,7 @@ public:
};
public:
explicit KSessionRequest(KernelCore& kernel_) : KAutoObject(kernel_), m_mappings(kernel_) {}
explicit KSessionRequest(KernelCore& kernel) : KAutoObject(kernel), m_mappings(kernel) {}
static KSessionRequest* Create(KernelCore& kernel) {
KSessionRequest* req = KSessionRequest::Allocate(kernel);
@ -170,13 +170,13 @@ public:
void Destroy() override {
this->Finalize();
KSessionRequest::Free(kernel, this);
KSessionRequest::Free(m_kernel, this);
}
void Initialize(KEvent* event, uintptr_t address, size_t size) {
m_mappings.Initialize();
m_thread = GetCurrentThreadPointer(kernel);
m_thread = GetCurrentThreadPointer(m_kernel);
m_event = event;
m_address = address;
m_size = size;

View File

@ -12,7 +12,7 @@
namespace Kernel {
KSharedMemory::KSharedMemory(KernelCore& kernel_) : KAutoObjectWithSlabHeapAndContainer{kernel_} {}
KSharedMemory::KSharedMemory(KernelCore& kernel) : KAutoObjectWithSlabHeapAndContainer{kernel} {}
KSharedMemory::~KSharedMemory() = default;
Result KSharedMemory::Initialize(Core::DeviceMemory& device_memory, KProcess* owner_process,
@ -28,7 +28,7 @@ Result KSharedMemory::Initialize(Core::DeviceMemory& device_memory, KProcess* ow
const size_t num_pages = Common::DivideUp(size, PageSize);
// Get the resource limit.
KResourceLimit* reslimit = kernel.GetSystemResourceLimit();
KResourceLimit* reslimit = m_kernel.GetSystemResourceLimit();
// Reserve memory for ourselves.
KScopedResourceReservation memory_reservation(reslimit, LimitableResource::PhysicalMemoryMax,
@ -40,11 +40,11 @@ Result KSharedMemory::Initialize(Core::DeviceMemory& device_memory, KProcess* ow
//! HACK: Open continuous mapping from sysmodule pool.
auto option = KMemoryManager::EncodeOption(KMemoryManager::Pool::Secure,
KMemoryManager::Direction::FromBack);
m_physical_address = kernel.MemoryManager().AllocateAndOpenContinuous(num_pages, 1, option);
m_physical_address = m_kernel.MemoryManager().AllocateAndOpenContinuous(num_pages, 1, option);
R_UNLESS(m_physical_address != 0, ResultOutOfMemory);
//! Insert the result into our page group.
m_page_group.emplace(kernel, &kernel.GetSystemSystemResource().GetBlockInfoManager());
m_page_group.emplace(m_kernel, &m_kernel.GetSystemSystemResource().GetBlockInfoManager());
m_page_group->AddBlock(m_physical_address, num_pages);
// Commit our reservation.

View File

@ -23,7 +23,7 @@ class KSharedMemory final
KERNEL_AUTOOBJECT_TRAITS(KSharedMemory, KAutoObject);
public:
explicit KSharedMemory(KernelCore& kernel_);
explicit KSharedMemory(KernelCore& kernel);
~KSharedMemory() override;
Result Initialize(Core::DeviceMemory& device_memory_, KProcess* owner_process_,

View File

@ -17,9 +17,9 @@ namespace {
class ThreadQueueImplForKSynchronizationObjectWait final : public KThreadQueueWithoutEndWait {
public:
ThreadQueueImplForKSynchronizationObjectWait(KernelCore& kernel_, KSynchronizationObject** o,
ThreadQueueImplForKSynchronizationObjectWait(KernelCore& kernel, KSynchronizationObject** o,
KSynchronizationObject::ThreadListNode* n, s32 c)
: KThreadQueueWithoutEndWait(kernel_), m_objects(o), m_nodes(n), m_count(c) {}
: KThreadQueueWithoutEndWait(kernel), m_objects(o), m_nodes(n), m_count(c) {}
void NotifyAvailable(KThread* waiting_thread, KSynchronizationObject* signaled_object,
Result wait_result) override {
@ -144,13 +144,12 @@ Result KSynchronizationObject::Wait(KernelCore& kernel, s32* out_index,
R_RETURN(thread->GetWaitResult());
}
KSynchronizationObject::KSynchronizationObject(KernelCore& kernel_)
: KAutoObjectWithList{kernel_} {}
KSynchronizationObject::KSynchronizationObject(KernelCore& kernel) : KAutoObjectWithList{kernel} {}
KSynchronizationObject::~KSynchronizationObject() = default;
void KSynchronizationObject::NotifyAvailable(Result result) {
KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
// If we're not signaled, we've nothing to notify.
if (!this->IsSignaled()) {
@ -168,7 +167,7 @@ std::vector<KThread*> KSynchronizationObject::GetWaitingThreadsForDebugging() co
// If debugging, dump the list of waiters.
{
KScopedSchedulerLock lock(kernel);
KScopedSchedulerLock lock(m_kernel);
for (auto* cur_node = m_thread_list_head; cur_node != nullptr; cur_node = cur_node->next) {
threads.emplace_back(cur_node->thread);
}

View File

@ -21,7 +21,7 @@ class KSystemResource : public KAutoObject {
KERNEL_AUTOOBJECT_TRAITS(KSystemResource, KAutoObject);
public:
explicit KSystemResource(KernelCore& kernel_) : KAutoObject(kernel_) {}
explicit KSystemResource(KernelCore& kernel) : KAutoObject(kernel) {}
protected:
void SetSecureResource() {
@ -87,8 +87,8 @@ private:
class KSecureSystemResource final
: public KAutoObjectWithSlabHeap<KSecureSystemResource, KSystemResource> {
public:
explicit KSecureSystemResource(KernelCore& kernel_)
: KAutoObjectWithSlabHeap<KSecureSystemResource, KSystemResource>(kernel_) {
explicit KSecureSystemResource(KernelCore& kernel)
: KAutoObjectWithSlabHeap<KSecureSystemResource, KSystemResource>(kernel) {
// Mark ourselves as being a secure resource.
this->SetSecureResource();
}

View File

@ -77,14 +77,14 @@ struct ThreadLocalRegion {
class ThreadQueueImplForKThreadSleep final : public KThreadQueueWithoutEndWait {
public:
explicit ThreadQueueImplForKThreadSleep(KernelCore& kernel_)
: KThreadQueueWithoutEndWait(kernel_) {}
explicit ThreadQueueImplForKThreadSleep(KernelCore& kernel)
: KThreadQueueWithoutEndWait(kernel) {}
};
class ThreadQueueImplForKThreadSetProperty final : public KThreadQueue {
public:
explicit ThreadQueueImplForKThreadSetProperty(KernelCore& kernel_, KThread::WaiterList* wl)
: KThreadQueue(kernel_), m_wait_list(wl) {}
explicit ThreadQueueImplForKThreadSetProperty(KernelCore& kernel, KThread::WaiterList* wl)
: KThreadQueue(kernel), m_wait_list(wl) {}
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
// Remove the thread from the wait list.
@ -100,8 +100,8 @@ private:
} // namespace
KThread::KThread(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_}, activity_pause_lock{kernel_} {}
KThread::KThread(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel}, activity_pause_lock{kernel} {}
KThread::~KThread() = default;
Result KThread::Initialize(KThreadFunction func, uintptr_t arg, VAddr user_stack_top, s32 prio,
@ -236,7 +236,7 @@ Result KThread::Initialize(KThreadFunction func, uintptr_t arg, VAddr user_stack
SetInExceptionHandler();
// Set thread ID.
thread_id = kernel.CreateNewThreadID();
thread_id = m_kernel.CreateNewThreadID();
// We initialized!
initialized = true;
@ -343,7 +343,7 @@ void KThread::Finalize() {
// Release any waiters.
{
ASSERT(waiting_lock_info == nullptr);
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Check that we have no kernel waiters.
ASSERT(num_kernel_waiters == 0);
@ -374,7 +374,7 @@ void KThread::Finalize() {
it = held_lock_info_list.erase(it);
// Free the lock info.
LockWithPriorityInheritanceInfo::Free(kernel, lock_info);
LockWithPriorityInheritanceInfo::Free(m_kernel, lock_info);
}
}
@ -390,7 +390,7 @@ bool KThread::IsSignaled() const {
}
void KThread::OnTimer() {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(m_kernel.GlobalSchedulerContext().IsLocked());
// If we're waiting, cancel the wait.
if (GetState() == ThreadState::Waiting) {
@ -399,12 +399,12 @@ void KThread::OnTimer() {
}
void KThread::StartTermination() {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(m_kernel.GlobalSchedulerContext().IsLocked());
// Release user exception and unpin, if relevant.
if (parent != nullptr) {
parent->ReleaseUserException(this);
if (parent->GetPinnedThread(GetCurrentCoreId(kernel)) == this) {
if (parent->GetPinnedThread(GetCurrentCoreId(m_kernel)) == this) {
parent->UnpinCurrentThread(core_id);
}
}
@ -422,7 +422,7 @@ void KThread::StartTermination() {
KSynchronizationObject::NotifyAvailable();
// Clear previous thread in KScheduler.
KScheduler::ClearPreviousThread(kernel, this);
KScheduler::ClearPreviousThread(m_kernel, this);
// Register terminated dpc flag.
RegisterDpc(DpcFlag::Terminated);
@ -434,7 +434,7 @@ void KThread::FinishTermination() {
for (std::size_t i = 0; i < static_cast<std::size_t>(Core::Hardware::NUM_CPU_CORES); ++i) {
KThread* core_thread{};
do {
core_thread = kernel.Scheduler(i).GetSchedulerCurrentThread();
core_thread = m_kernel.Scheduler(i).GetSchedulerCurrentThread();
} while (core_thread == this);
}
}
@ -449,7 +449,7 @@ void KThread::DoWorkerTaskImpl() {
}
void KThread::Pin(s32 current_core) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(m_kernel.GlobalSchedulerContext().IsLocked());
// Set ourselves as pinned.
GetStackParameters().is_pinned = true;
@ -472,7 +472,7 @@ void KThread::Pin(s32 current_core) {
if (active_core != current_core || physical_affinity_mask.GetAffinityMask() !=
original_physical_affinity_mask.GetAffinityMask()) {
KScheduler::OnThreadAffinityMaskChanged(kernel, this, original_physical_affinity_mask,
KScheduler::OnThreadAffinityMaskChanged(m_kernel, this, original_physical_affinity_mask,
active_core);
}
}
@ -492,7 +492,7 @@ void KThread::Pin(s32 current_core) {
}
void KThread::Unpin() {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(m_kernel.GlobalSchedulerContext().IsLocked());
// Set ourselves as unpinned.
GetStackParameters().is_pinned = false;
@ -520,7 +520,7 @@ void KThread::Unpin() {
std::countl_zero(physical_affinity_mask.GetAffinityMask())));
}
}
KScheduler::OnThreadAffinityMaskChanged(kernel, this, old_mask, active_core);
KScheduler::OnThreadAffinityMaskChanged(m_kernel, this, old_mask, active_core);
}
}
@ -549,7 +549,7 @@ u16 KThread::GetUserDisableCount() const {
return {};
}
auto& memory = kernel.System().Memory();
auto& memory = m_kernel.System().Memory();
return memory.Read16(tls_address + offsetof(ThreadLocalRegion, disable_count));
}
@ -559,7 +559,7 @@ void KThread::SetInterruptFlag() {
return;
}
auto& memory = kernel.System().Memory();
auto& memory = m_kernel.System().Memory();
memory.Write16(tls_address + offsetof(ThreadLocalRegion, interrupt_flag), 1);
}
@ -569,12 +569,12 @@ void KThread::ClearInterruptFlag() {
return;
}
auto& memory = kernel.System().Memory();
auto& memory = m_kernel.System().Memory();
memory.Write16(tls_address + offsetof(ThreadLocalRegion, interrupt_flag), 0);
}
Result KThread::GetCoreMask(s32* out_ideal_core, u64* out_affinity_mask) {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Get the virtual mask.
*out_ideal_core = virtual_ideal_core_id;
@ -584,7 +584,7 @@ Result KThread::GetCoreMask(s32* out_ideal_core, u64* out_affinity_mask) {
}
Result KThread::GetPhysicalCoreMask(s32* out_ideal_core, u64* out_affinity_mask) {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
ASSERT(num_core_migration_disables >= 0);
// Select between core mask and original core mask.
@ -607,7 +607,7 @@ Result KThread::SetCoreMask(s32 core_id_, u64 v_affinity_mask) {
// Set the core mask.
u64 p_affinity_mask = 0;
{
KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
ASSERT(num_core_migration_disables >= 0);
// If we're updating, set our ideal virtual core.
@ -653,7 +653,7 @@ Result KThread::SetCoreMask(s32 core_id_, u64 v_affinity_mask) {
std::countl_zero(physical_affinity_mask.GetAffinityMask()));
SetActiveCore(new_core);
}
KScheduler::OnThreadAffinityMaskChanged(kernel, this, old_mask, active_core);
KScheduler::OnThreadAffinityMaskChanged(m_kernel, this, old_mask, active_core);
}
} else {
// Otherwise, we edit the original affinity for restoration later.
@ -663,12 +663,12 @@ Result KThread::SetCoreMask(s32 core_id_, u64 v_affinity_mask) {
}
// Update the pinned waiter list.
ThreadQueueImplForKThreadSetProperty wait_queue_(kernel, std::addressof(pinned_waiter_list));
ThreadQueueImplForKThreadSetProperty wait_queue_(m_kernel, std::addressof(pinned_waiter_list));
{
bool retry_update{};
do {
// Lock the scheduler.
KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
// Don't do any further management if our termination has been requested.
R_SUCCEED_IF(IsTerminationRequested());
@ -681,7 +681,7 @@ Result KThread::SetCoreMask(s32 core_id_, u64 v_affinity_mask) {
s32 thread_core;
for (thread_core = 0; thread_core < static_cast<s32>(Core::Hardware::NUM_CPU_CORES);
++thread_core) {
if (kernel.Scheduler(thread_core).GetSchedulerCurrentThread() == this) {
if (m_kernel.Scheduler(thread_core).GetSchedulerCurrentThread() == this) {
thread_is_current = true;
break;
}
@ -693,12 +693,12 @@ Result KThread::SetCoreMask(s32 core_id_, u64 v_affinity_mask) {
// If the thread is pinned, we want to wait until it's not pinned.
if (GetStackParameters().is_pinned) {
// Verify that the current thread isn't terminating.
R_UNLESS(!GetCurrentThread(kernel).IsTerminationRequested(),
R_UNLESS(!GetCurrentThread(m_kernel).IsTerminationRequested(),
ResultTerminationRequested);
// Wait until the thread isn't pinned any more.
pinned_waiter_list.push_back(GetCurrentThread(kernel));
GetCurrentThread(kernel).BeginWait(std::addressof(wait_queue_));
pinned_waiter_list.push_back(GetCurrentThread(m_kernel));
GetCurrentThread(m_kernel).BeginWait(std::addressof(wait_queue_));
} else {
// If the thread isn't pinned, release the scheduler lock and retry until it's
// not current.
@ -714,13 +714,13 @@ Result KThread::SetCoreMask(s32 core_id_, u64 v_affinity_mask) {
void KThread::SetBasePriority(s32 value) {
ASSERT(Svc::HighestThreadPriority <= value && value <= Svc::LowestThreadPriority);
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Change our base priority.
base_priority = value;
// Perform a priority restoration.
RestorePriority(kernel, this);
RestorePriority(m_kernel, this);
}
KThread* KThread::GetLockOwner() const {
@ -729,7 +729,7 @@ KThread* KThread::GetLockOwner() const {
void KThread::IncreaseBasePriority(s32 priority_) {
ASSERT(Svc::HighestThreadPriority <= priority_ && priority_ <= Svc::LowestThreadPriority);
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
ASSERT(!this->GetStackParameters().is_pinned);
// Set our base priority.
@ -737,12 +737,12 @@ void KThread::IncreaseBasePriority(s32 priority_) {
base_priority = priority_;
// Perform a priority restoration.
RestorePriority(kernel, this);
RestorePriority(m_kernel, this);
}
}
void KThread::RequestSuspend(SuspendType type) {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Note the request in our flags.
suspend_request_flags |=
@ -753,7 +753,7 @@ void KThread::RequestSuspend(SuspendType type) {
}
void KThread::Resume(SuspendType type) {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Clear the request in our flags.
suspend_request_flags &=
@ -764,7 +764,7 @@ void KThread::Resume(SuspendType type) {
}
void KThread::WaitCancel() {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Check if we're waiting and cancellable.
if (this->GetState() == ThreadState::Waiting && cancellable) {
@ -777,7 +777,7 @@ void KThread::WaitCancel() {
}
void KThread::TrySuspend() {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(m_kernel.GlobalSchedulerContext().IsLocked());
ASSERT(IsSuspendRequested());
// Ensure that we have no waiters.
@ -791,7 +791,7 @@ void KThread::TrySuspend() {
}
void KThread::UpdateState() {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(m_kernel.GlobalSchedulerContext().IsLocked());
// Set our suspend flags in state.
const ThreadState old_state = thread_state.load(std::memory_order_relaxed);
@ -801,37 +801,37 @@ void KThread::UpdateState() {
// Note the state change in scheduler.
if (new_state != old_state) {
KScheduler::OnThreadStateChanged(kernel, this, old_state);
KScheduler::OnThreadStateChanged(m_kernel, this, old_state);
}
}
void KThread::Continue() {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(m_kernel.GlobalSchedulerContext().IsLocked());
// Clear our suspend flags in state.
const ThreadState old_state = thread_state.load(std::memory_order_relaxed);
thread_state.store(old_state & ThreadState::Mask, std::memory_order_relaxed);
// Note the state change in scheduler.
KScheduler::OnThreadStateChanged(kernel, this, old_state);
KScheduler::OnThreadStateChanged(m_kernel, this, old_state);
}
void KThread::CloneFpuStatus() {
// We shouldn't reach here when starting kernel threads.
ASSERT(this->GetOwnerProcess() != nullptr);
ASSERT(this->GetOwnerProcess() == GetCurrentProcessPointer(kernel));
ASSERT(this->GetOwnerProcess() == GetCurrentProcessPointer(m_kernel));
if (this->GetOwnerProcess()->Is64BitProcess()) {
// Clone FPSR and FPCR.
ThreadContext64 cur_ctx{};
kernel.System().CurrentArmInterface().SaveContext(cur_ctx);
m_kernel.System().CurrentArmInterface().SaveContext(cur_ctx);
this->GetContext64().fpcr = cur_ctx.fpcr;
this->GetContext64().fpsr = cur_ctx.fpsr;
} else {
// Clone FPSCR.
ThreadContext32 cur_ctx{};
kernel.System().CurrentArmInterface().SaveContext(cur_ctx);
m_kernel.System().CurrentArmInterface().SaveContext(cur_ctx);
this->GetContext32().fpscr = cur_ctx.fpscr;
}
@ -844,7 +844,7 @@ Result KThread::SetActivity(Svc::ThreadActivity activity) {
// Set the activity.
{
// Lock the scheduler.
KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
// Verify our state.
const auto cur_state = this->GetState();
@ -871,13 +871,13 @@ Result KThread::SetActivity(Svc::ThreadActivity activity) {
// If the thread is now paused, update the pinned waiter list.
if (activity == Svc::ThreadActivity::Paused) {
ThreadQueueImplForKThreadSetProperty wait_queue_(kernel,
ThreadQueueImplForKThreadSetProperty wait_queue_(m_kernel,
std::addressof(pinned_waiter_list));
bool thread_is_current;
do {
// Lock the scheduler.
KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
// Don't do any further management if our termination has been requested.
R_SUCCEED_IF(this->IsTerminationRequested());
@ -888,17 +888,17 @@ Result KThread::SetActivity(Svc::ThreadActivity activity) {
// Check whether the thread is pinned.
if (this->GetStackParameters().is_pinned) {
// Verify that the current thread isn't terminating.
R_UNLESS(!GetCurrentThread(kernel).IsTerminationRequested(),
R_UNLESS(!GetCurrentThread(m_kernel).IsTerminationRequested(),
ResultTerminationRequested);
// Wait until the thread isn't pinned any more.
pinned_waiter_list.push_back(GetCurrentThread(kernel));
GetCurrentThread(kernel).BeginWait(std::addressof(wait_queue_));
pinned_waiter_list.push_back(GetCurrentThread(m_kernel));
GetCurrentThread(m_kernel).BeginWait(std::addressof(wait_queue_));
} else {
// Check if the thread is currently running.
// If it is, we'll need to retry.
for (auto i = 0; i < static_cast<s32>(Core::Hardware::NUM_CPU_CORES); ++i) {
if (kernel.Scheduler(i).GetSchedulerCurrentThread() == this) {
if (m_kernel.Scheduler(i).GetSchedulerCurrentThread() == this) {
thread_is_current = true;
break;
}
@ -917,7 +917,7 @@ Result KThread::GetThreadContext3(std::vector<u8>& out) {
// Get the context.
{
// Lock the scheduler.
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Verify that we're suspended.
R_UNLESS(IsSuspendRequested(SuspendType::Thread), ResultInvalidState);
@ -946,7 +946,7 @@ Result KThread::GetThreadContext3(std::vector<u8>& out) {
}
void KThread::AddHeldLock(LockWithPriorityInheritanceInfo* lock_info) {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Set ourselves as the lock's owner.
lock_info->SetOwner(this);
@ -957,7 +957,7 @@ void KThread::AddHeldLock(LockWithPriorityInheritanceInfo* lock_info) {
KThread::LockWithPriorityInheritanceInfo* KThread::FindHeldLock(VAddr address_key_,
bool is_kernel_address_key_) {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Try to find an existing held lock.
for (auto& held_lock : held_lock_info_list) {
@ -971,7 +971,7 @@ KThread::LockWithPriorityInheritanceInfo* KThread::FindHeldLock(VAddr address_ke
}
void KThread::AddWaiterImpl(KThread* thread) {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
ASSERT(thread->GetConditionVariableTree() == nullptr);
// Get the thread's address key.
@ -981,7 +981,7 @@ void KThread::AddWaiterImpl(KThread* thread) {
// Keep track of how many kernel waiters we have.
if (is_kernel_address_key_) {
ASSERT((num_kernel_waiters++) >= 0);
KScheduler::SetSchedulerUpdateNeeded(kernel);
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
// Get the relevant lock info.
@ -989,7 +989,7 @@ void KThread::AddWaiterImpl(KThread* thread) {
if (lock_info == nullptr) {
// Create a new lock for the address key.
lock_info =
LockWithPriorityInheritanceInfo::Create(kernel, address_key_, is_kernel_address_key_);
LockWithPriorityInheritanceInfo::Create(m_kernel, address_key_, is_kernel_address_key_);
// Add the new lock to our list.
this->AddHeldLock(lock_info);
@ -1000,12 +1000,12 @@ void KThread::AddWaiterImpl(KThread* thread) {
}
void KThread::RemoveWaiterImpl(KThread* thread) {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Keep track of how many kernel waiters we have.
if (thread->GetIsKernelAddressKey()) {
ASSERT((num_kernel_waiters--) > 0);
KScheduler::SetSchedulerUpdateNeeded(kernel);
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
// Get the info for the lock the thread is waiting on.
@ -1015,7 +1015,7 @@ void KThread::RemoveWaiterImpl(KThread* thread) {
// Remove the waiter.
if (lock_info->RemoveWaiter(thread)) {
held_lock_info_list.erase(held_lock_info_list.iterator_to(*lock_info));
LockWithPriorityInheritanceInfo::Free(kernel, lock_info);
LockWithPriorityInheritanceInfo::Free(m_kernel, lock_info);
}
}
@ -1076,7 +1076,7 @@ void KThread::AddWaiter(KThread* thread) {
// If the thread has a higher priority than us, we should inherit.
if (thread->GetPriority() < this->GetPriority()) {
RestorePriority(kernel, this);
RestorePriority(m_kernel, this);
}
}
@ -1087,12 +1087,12 @@ void KThread::RemoveWaiter(KThread* thread) {
// lower priority.
if (this->GetPriority() == thread->GetPriority() &&
this->GetPriority() < this->GetBasePriority()) {
RestorePriority(kernel, this);
RestorePriority(m_kernel, this);
}
}
KThread* KThread::RemoveWaiterByKey(bool* out_has_waiters, VAddr key, bool is_kernel_address_key_) {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Get the relevant lock info.
auto* lock_info = this->FindHeldLock(key, is_kernel_address_key_);
@ -1108,7 +1108,7 @@ KThread* KThread::RemoveWaiterByKey(bool* out_has_waiters, VAddr key, bool is_ke
if (lock_info->GetIsKernelAddressKey()) {
num_kernel_waiters -= lock_info->GetWaiterCount();
ASSERT(num_kernel_waiters >= 0);
KScheduler::SetSchedulerUpdateNeeded(kernel);
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
ASSERT(lock_info->GetWaiterCount() > 0);
@ -1120,7 +1120,7 @@ KThread* KThread::RemoveWaiterByKey(bool* out_has_waiters, VAddr key, bool is_ke
*out_has_waiters = false;
// Free the lock info, since it has no waiters.
LockWithPriorityInheritanceInfo::Free(kernel, lock_info);
LockWithPriorityInheritanceInfo::Free(m_kernel, lock_info);
} else {
// There are additional waiters on the lock.
*out_has_waiters = true;
@ -1142,7 +1142,7 @@ KThread* KThread::RemoveWaiterByKey(bool* out_has_waiters, VAddr key, bool is_ke
// to lower priority.
if (this->GetPriority() == next_lock_owner->GetPriority() &&
this->GetPriority() < this->GetBasePriority()) {
RestorePriority(kernel, this);
RestorePriority(m_kernel, this);
// NOTE: No need to restore priority on the next lock owner, because it was already the
// highest priority waiter on the lock.
}
@ -1153,18 +1153,18 @@ KThread* KThread::RemoveWaiterByKey(bool* out_has_waiters, VAddr key, bool is_ke
Result KThread::Run() {
while (true) {
KScopedSchedulerLock lk{kernel};
KScopedSchedulerLock lk{m_kernel};
// If either this thread or the current thread are requesting termination, note it.
R_UNLESS(!IsTerminationRequested(), ResultTerminationRequested);
R_UNLESS(!GetCurrentThread(kernel).IsTerminationRequested(), ResultTerminationRequested);
R_UNLESS(!GetCurrentThread(m_kernel).IsTerminationRequested(), ResultTerminationRequested);
// Ensure our thread state is correct.
R_UNLESS(GetState() == ThreadState::Initialized, ResultInvalidState);
// If the current thread has been asked to suspend, suspend it and retry.
if (GetCurrentThread(kernel).IsSuspended()) {
GetCurrentThread(kernel).UpdateState();
if (GetCurrentThread(m_kernel).IsSuspended()) {
GetCurrentThread(m_kernel).UpdateState();
continue;
}
@ -1184,7 +1184,7 @@ Result KThread::Run() {
}
void KThread::Exit() {
ASSERT(this == GetCurrentThreadPointer(kernel));
ASSERT(this == GetCurrentThreadPointer(m_kernel));
// Release the thread resource hint, running thread count from parent.
if (parent != nullptr) {
@ -1195,7 +1195,7 @@ void KThread::Exit() {
// Perform termination.
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Disallow all suspension.
suspend_allowed_flags = 0;
@ -1208,21 +1208,21 @@ void KThread::Exit() {
StartTermination();
// Register the thread as a work task.
KWorkerTaskManager::AddTask(kernel, KWorkerTaskManager::WorkerType::Exit, this);
KWorkerTaskManager::AddTask(m_kernel, KWorkerTaskManager::WorkerType::Exit, this);
}
UNREACHABLE_MSG("KThread::Exit() would return");
}
Result KThread::Terminate() {
ASSERT(this != GetCurrentThreadPointer(kernel));
ASSERT(this != GetCurrentThreadPointer(m_kernel));
// Request the thread terminate if it hasn't already.
if (const auto new_state = this->RequestTerminate(); new_state != ThreadState::Terminated) {
// If the thread isn't terminated, wait for it to terminate.
s32 index;
KSynchronizationObject* objects[] = {this};
R_TRY(KSynchronizationObject::Wait(kernel, std::addressof(index), objects, 1,
R_TRY(KSynchronizationObject::Wait(m_kernel, std::addressof(index), objects, 1,
Svc::WaitInfinite));
}
@ -1230,9 +1230,9 @@ Result KThread::Terminate() {
}
ThreadState KThread::RequestTerminate() {
ASSERT(this != GetCurrentThreadPointer(kernel));
ASSERT(this != GetCurrentThreadPointer(m_kernel));
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Determine if this is the first termination request.
const bool first_request = [&]() -> bool {
@ -1268,10 +1268,10 @@ ThreadState KThread::RequestTerminate() {
// If the thread is runnable, send a termination interrupt to other cores.
if (this->GetState() == ThreadState::Runnable) {
if (const u64 core_mask =
physical_affinity_mask.GetAffinityMask() & ~(1ULL << GetCurrentCoreId(kernel));
if (const u64 core_mask = physical_affinity_mask.GetAffinityMask() &
~(1ULL << GetCurrentCoreId(m_kernel));
core_mask != 0) {
Kernel::KInterruptManager::SendInterProcessorInterrupt(kernel, core_mask);
Kernel::KInterruptManager::SendInterProcessorInterrupt(m_kernel, core_mask);
}
}
@ -1285,15 +1285,15 @@ ThreadState KThread::RequestTerminate() {
}
Result KThread::Sleep(s64 timeout) {
ASSERT(!kernel.GlobalSchedulerContext().IsLocked());
ASSERT(this == GetCurrentThreadPointer(kernel));
ASSERT(!m_kernel.GlobalSchedulerContext().IsLocked());
ASSERT(this == GetCurrentThreadPointer(m_kernel));
ASSERT(timeout > 0);
ThreadQueueImplForKThreadSleep wait_queue_(kernel);
ThreadQueueImplForKThreadSleep wait_queue_(m_kernel);
KHardwareTimer* timer{};
{
// Setup the scheduling lock and sleep.
KScopedSchedulerLockAndSleep slp(kernel, std::addressof(timer), this, timeout);
KScopedSchedulerLockAndSleep slp(m_kernel, std::addressof(timer), this, timeout);
// Check if the thread should terminate.
if (this->IsTerminationRequested()) {
@ -1311,7 +1311,7 @@ Result KThread::Sleep(s64 timeout) {
}
void KThread::RequestDummyThreadWait() {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
ASSERT(this->IsDummyThread());
// We will block when the scheduler lock is released.
@ -1319,7 +1319,7 @@ void KThread::RequestDummyThreadWait() {
}
void KThread::DummyThreadBeginWait() {
if (!this->IsDummyThread() || kernel.IsPhantomModeForSingleCore()) {
if (!this->IsDummyThread() || m_kernel.IsPhantomModeForSingleCore()) {
// Occurs in single core mode.
return;
}
@ -1329,7 +1329,7 @@ void KThread::DummyThreadBeginWait() {
}
void KThread::DummyThreadEndWait() {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
ASSERT(this->IsDummyThread());
// Wake up the waiting thread.
@ -1347,7 +1347,7 @@ void KThread::BeginWait(KThreadQueue* queue) {
void KThread::NotifyAvailable(KSynchronizationObject* signaled_object, Result wait_result_) {
// Lock the scheduler.
KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
// If we're waiting, notify our queue that we're available.
if (GetState() == ThreadState::Waiting) {
@ -1357,7 +1357,7 @@ void KThread::NotifyAvailable(KSynchronizationObject* signaled_object, Result wa
void KThread::EndWait(Result wait_result_) {
// Lock the scheduler.
KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
// If we're waiting, notify our queue that we're available.
if (GetState() == ThreadState::Waiting) {
@ -1373,7 +1373,7 @@ void KThread::EndWait(Result wait_result_) {
void KThread::CancelWait(Result wait_result_, bool cancel_timer_task) {
// Lock the scheduler.
KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
// If we're waiting, notify our queue that we're available.
if (GetState() == ThreadState::Waiting) {
@ -1382,7 +1382,7 @@ void KThread::CancelWait(Result wait_result_, bool cancel_timer_task) {
}
void KThread::SetState(ThreadState state) {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Clear debugging state
SetMutexWaitAddressForDebugging({});
@ -1393,7 +1393,7 @@ void KThread::SetState(ThreadState state) {
static_cast<ThreadState>((old_state & ~ThreadState::Mask) | (state & ThreadState::Mask)),
std::memory_order_relaxed);
if (thread_state.load(std::memory_order_relaxed) != old_state) {
KScheduler::OnThreadStateChanged(kernel, this, old_state);
KScheduler::OnThreadStateChanged(m_kernel, this, old_state);
}
}
@ -1427,20 +1427,20 @@ s32 GetCurrentCoreId(KernelCore& kernel) {
KScopedDisableDispatch::~KScopedDisableDispatch() {
// If we are shutting down the kernel, none of this is relevant anymore.
if (kernel.IsShuttingDown()) {
if (m_kernel.IsShuttingDown()) {
return;
}
if (GetCurrentThread(kernel).GetDisableDispatchCount() <= 1) {
auto* scheduler = kernel.CurrentScheduler();
if (GetCurrentThread(m_kernel).GetDisableDispatchCount() <= 1) {
auto* scheduler = m_kernel.CurrentScheduler();
if (scheduler && !kernel.IsPhantomModeForSingleCore()) {
if (scheduler && !m_kernel.IsPhantomModeForSingleCore()) {
scheduler->RescheduleCurrentCore();
} else {
KScheduler::RescheduleCurrentHLEThread(kernel);
KScheduler::RescheduleCurrentHLEThread(m_kernel);
}
} else {
GetCurrentThread(kernel).EnableDispatch();
GetCurrentThread(m_kernel).EnableDispatch();
}
}

View File

@ -128,7 +128,7 @@ public:
static constexpr s32 IdleThreadPriority = Svc::LowestThreadPriority + 1;
static constexpr s32 DummyThreadPriority = Svc::LowestThreadPriority + 2;
explicit KThread(KernelCore& kernel_);
explicit KThread(KernelCore& kernel);
~KThread() override;
public:
@ -494,12 +494,12 @@ public:
}
void DisableDispatch() {
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() >= 0);
ASSERT(GetCurrentThread(m_kernel).GetDisableDispatchCount() >= 0);
this->GetStackParameters().disable_count++;
}
void EnableDispatch() {
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() > 0);
ASSERT(GetCurrentThread(m_kernel).GetDisableDispatchCount() > 0);
this->GetStackParameters().disable_count--;
}
@ -970,9 +970,9 @@ public:
class KScopedDisableDispatch {
public:
[[nodiscard]] explicit KScopedDisableDispatch(KernelCore& kernel_) : kernel{kernel_} {
[[nodiscard]] explicit KScopedDisableDispatch(KernelCore& kernel) : m_kernel{kernel} {
// If we are shutting down the kernel, none of this is relevant anymore.
if (kernel.IsShuttingDown()) {
if (m_kernel.IsShuttingDown()) {
return;
}
GetCurrentThread(kernel).DisableDispatch();
@ -981,7 +981,7 @@ public:
~KScopedDisableDispatch();
private:
KernelCore& kernel;
KernelCore& m_kernel;
};
inline void KTimerTask::OnTimer() {

View File

@ -31,7 +31,7 @@ private:
class KThreadQueueWithoutEndWait : public KThreadQueue {
public:
explicit KThreadQueueWithoutEndWait(KernelCore& kernel_) : KThreadQueue(kernel_) {}
explicit KThreadQueueWithoutEndWait(KernelCore& kernel) : KThreadQueue(kernel) {}
void EndWait(KThread* waiting_thread, Result wait_result) override final;
};

View File

@ -8,23 +8,23 @@
namespace Kernel {
KTransferMemory::KTransferMemory(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_} {}
KTransferMemory::KTransferMemory(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel} {}
KTransferMemory::~KTransferMemory() = default;
Result KTransferMemory::Initialize(VAddr address_, std::size_t size_,
Svc::MemoryPermission owner_perm_) {
Result KTransferMemory::Initialize(VAddr address, std::size_t size,
Svc::MemoryPermission owner_perm) {
// Set members.
m_owner = GetCurrentProcessPointer(kernel);
m_owner = GetCurrentProcessPointer(m_kernel);
// TODO(bunnei): Lock for transfer memory
// Set remaining tracking members.
m_owner->Open();
m_owner_perm = owner_perm_;
m_address = address_;
m_size = size_;
m_owner_perm = owner_perm;
m_address = address;
m_size = size;
m_is_initialized = true;
R_SUCCEED();

View File

@ -23,10 +23,10 @@ class KTransferMemory final
KERNEL_AUTOOBJECT_TRAITS(KTransferMemory, KAutoObject);
public:
explicit KTransferMemory(KernelCore& kernel_);
explicit KTransferMemory(KernelCore& kernel);
~KTransferMemory() override;
Result Initialize(VAddr address_, std::size_t size_, Svc::MemoryPermission owner_perm_);
Result Initialize(VAddr address, std::size_t size, Svc::MemoryPermission owner_perm);
void Finalize() override;

View File

@ -9,7 +9,7 @@ namespace Kernel {
class KWorkerTask : public KSynchronizationObject {
public:
explicit KWorkerTask(KernelCore& kernel_);
explicit KWorkerTask(KernelCore& kernel);
void DoWorkerTask();
};

View File

@ -10,7 +10,7 @@
namespace Kernel {
KWorkerTask::KWorkerTask(KernelCore& kernel_) : KSynchronizationObject{kernel_} {}
KWorkerTask::KWorkerTask(KernelCore& kernel) : KSynchronizationObject{kernel} {}
void KWorkerTask::DoWorkerTask() {
if (auto* const thread = this->DynamicCast<KThread*>(); thread != nullptr) {

View File

@ -20,7 +20,7 @@ public:
KWorkerTaskManager();
static void AddTask(KernelCore& kernel_, WorkerType type, KWorkerTask* task);
static void AddTask(KernelCore& kernel, WorkerType type, KWorkerTask* task);
private:
void AddTask(KernelCore& kernel, KWorkerTask* task);

View File

@ -66,7 +66,7 @@ private:
}
public:
explicit KAutoObjectWithSlabHeap(KernelCore& kernel_) : Base(kernel_), kernel(kernel_) {}
explicit KAutoObjectWithSlabHeap(KernelCore& kernel) : Base(kernel) {}
virtual ~KAutoObjectWithSlabHeap() = default;
virtual void Destroy() override {
@ -76,7 +76,7 @@ public:
arg = this->GetPostDestroyArgument();
this->Finalize();
}
Free(kernel, static_cast<Derived*>(this));
Free(Base::m_kernel, static_cast<Derived*>(this));
if (is_initialized) {
Derived::PostDestroy(arg);
}
@ -90,7 +90,7 @@ public:
}
size_t GetSlabIndex() const {
return SlabHeap<Derived>(kernel).GetObjectIndex(static_cast<const Derived*>(this));
return SlabHeap<Derived>(Base::m_kernel).GetObjectIndex(static_cast<const Derived*>(this));
}
public:
@ -125,9 +125,6 @@ public:
static size_t GetNumRemaining(KernelCore& kernel) {
return kernel.SlabHeap<Derived>().GetNumRemaining();
}
protected:
KernelCore& kernel;
};
template <typename Derived, typename Base>
@ -144,18 +141,18 @@ private:
}
public:
KAutoObjectWithSlabHeapAndContainer(KernelCore& kernel_) : Base(kernel_) {}
KAutoObjectWithSlabHeapAndContainer(KernelCore& kernel) : Base(kernel) {}
virtual ~KAutoObjectWithSlabHeapAndContainer() {}
virtual void Destroy() override {
const bool is_initialized = this->IsInitialized();
uintptr_t arg = 0;
if (is_initialized) {
Base::kernel.ObjectListContainer().Unregister(this);
Base::m_kernel.ObjectListContainer().Unregister(this);
arg = this->GetPostDestroyArgument();
this->Finalize();
}
Free(Base::kernel, static_cast<Derived*>(this));
Free(Base::m_kernel, static_cast<Derived*>(this));
if (is_initialized) {
Derived::PostDestroy(arg);
}
@ -169,7 +166,7 @@ public:
}
size_t GetSlabIndex() const {
return SlabHeap<Derived>(Base::kernel).GetObjectIndex(static_cast<const Derived*>(this));
return SlabHeap<Derived>(Base::m_kernel).GetObjectIndex(static_cast<const Derived*>(this));
}
public: