1
0
mirror of https://git.suyu.dev/suyu/suyu synced 2025-09-15 02:27:58 -05:00

Initial commit

This commit is contained in:
Crimson-Hawk
2024-03-05 16:42:40 +08:00
commit f1e4595ebf
39576 changed files with 7006612 additions and 0 deletions

View File

View File

View File

@@ -0,0 +1,96 @@
* text=auto !eol svneol=native#text/plain
*.gitattributes text svneol=native#text/plain
# Scriptish formats
*.bat text svneol=native#text/plain
*.bsh text svneol=native#text/x-beanshell
*.cgi text svneol=native#text/plain
*.cmd text svneol=native#text/plain
*.js text svneol=native#text/javascript
*.php text svneol=native#text/x-php
*.pl text svneol=native#text/x-perl
*.pm text svneol=native#text/x-perl
*.py text svneol=native#text/x-python
*.sh eol=lf svneol=LF#text/x-sh
configure eol=lf svneol=LF#text/x-sh
# Image formats
*.bmp binary svneol=unset#image/bmp
*.gif binary svneol=unset#image/gif
*.ico binary svneol=unset#image/ico
*.jpeg binary svneol=unset#image/jpeg
*.jpg binary svneol=unset#image/jpeg
*.png binary svneol=unset#image/png
*.tif binary svneol=unset#image/tiff
*.tiff binary svneol=unset#image/tiff
*.svg text svneol=native#image/svg%2Bxml
# Data formats
*.pdf binary svneol=unset#application/pdf
*.avi binary svneol=unset#video/avi
*.doc binary svneol=unset#application/msword
*.dsp text svneol=crlf#text/plain
*.dsw text svneol=crlf#text/plain
*.eps binary svneol=unset#application/postscript
*.gz binary svneol=unset#application/gzip
*.mov binary svneol=unset#video/quicktime
*.mp3 binary svneol=unset#audio/mpeg
*.ppt binary svneol=unset#application/vnd.ms-powerpoint
*.ps binary svneol=unset#application/postscript
*.psd binary svneol=unset#application/photoshop
*.rdf binary svneol=unset#text/rdf
*.rss text svneol=unset#text/xml
*.rtf binary svneol=unset#text/rtf
*.sln text svneol=native#text/plain
*.swf binary svneol=unset#application/x-shockwave-flash
*.tgz binary svneol=unset#application/gzip
*.vcproj text svneol=native#text/xml
*.vcxproj text svneol=native#text/xml
*.vsprops text svneol=native#text/xml
*.wav binary svneol=unset#audio/wav
*.xls binary svneol=unset#application/vnd.ms-excel
*.zip binary svneol=unset#application/zip
# Text formats
.htaccess text svneol=native#text/plain
*.bbk text svneol=native#text/xml
*.cmake text svneol=native#text/plain
*.css text svneol=native#text/css
*.dtd text svneol=native#text/xml
*.htm text svneol=native#text/html
*.html text svneol=native#text/html
*.ini text svneol=native#text/plain
*.log text svneol=native#text/plain
*.mak text svneol=native#text/plain
*.qbk text svneol=native#text/plain
*.rst text svneol=native#text/plain
*.sql text svneol=native#text/x-sql
*.txt text svneol=native#text/plain
*.xhtml text svneol=native#text/xhtml%2Bxml
*.xml text svneol=native#text/xml
*.xsd text svneol=native#text/xml
*.xsl text svneol=native#text/xml
*.xslt text svneol=native#text/xml
*.xul text svneol=native#text/xul
*.yml text svneol=native#text/plain
boost-no-inspect text svneol=native#text/plain
CHANGES text svneol=native#text/plain
COPYING text svneol=native#text/plain
INSTALL text svneol=native#text/plain
Jamfile text svneol=native#text/plain
Jamroot text svneol=native#text/plain
Jamfile.v2 text svneol=native#text/plain
Jamrules text svneol=native#text/plain
Makefile* text svneol=native#text/plain
README text svneol=native#text/plain
TODO text svneol=native#text/plain
# Code formats
*.c text svneol=native#text/plain
*.cpp text svneol=native#text/plain
*.h text svneol=native#text/plain
*.hpp text svneol=native#text/plain
*.ipp text svneol=native#text/plain
*.tpp text svneol=native#text/plain
*.jam text svneol=native#text/plain
*.java text svneol=native#text/plain

View File

@@ -0,0 +1,198 @@
name: CI
on:
pull_request:
push:
branches:
- master
- develop
- feature/**
env:
UBSAN_OPTIONS: print_stacktrace=1
jobs:
posix:
strategy:
fail-fast: false
matrix:
include:
- toolset: gcc-4.8
cxxstd: "03,11"
os: ubuntu-18.04
install: g++-4.8
- toolset: gcc-5
cxxstd: "03,11,14,1z"
os: ubuntu-18.04
install: g++-5
- toolset: gcc-6
cxxstd: "03,11,14,1z"
os: ubuntu-18.04
install: g++-6
- toolset: gcc-7
cxxstd: "03,11,14,17"
os: ubuntu-18.04
- toolset: gcc-8
cxxstd: "03,11,14,17,2a"
os: ubuntu-18.04
install: g++-8
- toolset: gcc-9
cxxstd: "03,11,14,17,2a"
os: ubuntu-20.04
- toolset: gcc-10
cxxstd: "03,11,14,17,2a"
os: ubuntu-20.04
install: g++-10
- toolset: gcc-11
cxxstd: "03,11,14,17,2a"
os: ubuntu-20.04
install: g++-11
- toolset: clang
compiler: clang++-3.9
cxxstd: "03,11,14"
os: ubuntu-18.04
install: clang-3.9
- toolset: clang
compiler: clang++-4.0
cxxstd: "03,11,14"
os: ubuntu-18.04
install: clang-4.0
- toolset: clang
compiler: clang++-5.0
cxxstd: "03,11,14,1z"
os: ubuntu-18.04
install: clang-5.0
- toolset: clang
compiler: clang++-6.0
cxxstd: "03,11,14,17"
os: ubuntu-18.04
install: clang-6.0
- toolset: clang
compiler: clang++-7
cxxstd: "03,11,14,17"
os: ubuntu-18.04
install: clang-7
- toolset: clang
compiler: clang++-8
cxxstd: "03,11,14,17"
os: ubuntu-20.04
install: clang-8
- toolset: clang
compiler: clang++-9
cxxstd: "03,11,14,17,2a"
os: ubuntu-20.04
install: clang-9
- toolset: clang
compiler: clang++-10
cxxstd: "03,11,14,17,2a"
os: ubuntu-20.04
install: clang-10
- toolset: clang
compiler: clang++-11
cxxstd: "03,11,14,17,2a"
os: ubuntu-20.04
install: clang-11
- toolset: clang
compiler: clang++-12
cxxstd: "03,11,14,17,2a"
os: ubuntu-20.04
install: clang-12
- toolset: clang
cxxstd: "03,11,14,17,2a"
os: macos-10.15
runs-on: ${{matrix.os}}
steps:
- uses: actions/checkout@v2
- name: Install packages
if: matrix.install
run: sudo apt install ${{matrix.install}}
- name: Setup Boost
run: |
echo GITHUB_REPOSITORY: $GITHUB_REPOSITORY
LIBRARY=${GITHUB_REPOSITORY#*/}
echo LIBRARY: $LIBRARY
echo "LIBRARY=$LIBRARY" >> $GITHUB_ENV
echo GITHUB_BASE_REF: $GITHUB_BASE_REF
echo GITHUB_REF: $GITHUB_REF
REF=${GITHUB_BASE_REF:-$GITHUB_REF}
REF=${REF#refs/heads/}
echo REF: $REF
BOOST_BRANCH=develop && [ "$REF" == "master" ] && BOOST_BRANCH=master || true
echo BOOST_BRANCH: $BOOST_BRANCH
cd ..
git clone -b $BOOST_BRANCH --depth 1 https://github.com/boostorg/boost.git boost-root
cd boost-root
cp -r $GITHUB_WORKSPACE/* libs/$LIBRARY
git submodule update --init tools/boostdep
python tools/boostdep/depinst/depinst.py --git_args "--jobs 3" $LIBRARY
./bootstrap.sh
./b2 -d0 headers
- name: Create user-config.jam
if: matrix.compiler
run: |
echo "using ${{matrix.toolset}} : : ${{matrix.compiler}} ;" > ~/user-config.jam
- name: Run tests
run: |
cd ../boost-root
./b2 -j3 libs/$LIBRARY/test toolset=${{matrix.toolset}} cxxstd=${{matrix.cxxstd}} variant=debug,release
windows:
strategy:
fail-fast: false
matrix:
include:
- toolset: msvc-14.1
cxxstd: "14,17,latest"
addrmd: 32,64
os: windows-2016
- toolset: msvc-14.2
cxxstd: "14,17,latest"
addrmd: 32,64
os: windows-2019
- toolset: msvc-14.3
cxxstd: "14,17,latest"
addrmd: 32,64
os: windows-2022
- toolset: gcc
cxxstd: "03,11,14,17,2a"
addrmd: 64
os: windows-2019
runs-on: ${{matrix.os}}
steps:
- uses: actions/checkout@v2
- name: Setup Boost
shell: cmd
run: |
echo GITHUB_REPOSITORY: %GITHUB_REPOSITORY%
for /f %%i in ("%GITHUB_REPOSITORY%") do set LIBRARY=%%~nxi
echo LIBRARY: %LIBRARY%
echo LIBRARY=%LIBRARY%>>%GITHUB_ENV%
echo GITHUB_BASE_REF: %GITHUB_BASE_REF%
echo GITHUB_REF: %GITHUB_REF%
if "%GITHUB_BASE_REF%" == "" set GITHUB_BASE_REF=%GITHUB_REF%
set BOOST_BRANCH=develop
for /f %%i in ("%GITHUB_BASE_REF%") do if "%%~nxi" == "master" set BOOST_BRANCH=master
echo BOOST_BRANCH: %BOOST_BRANCH%
cd ..
git clone -b %BOOST_BRANCH% --depth 1 https://github.com/boostorg/boost.git boost-root
cd boost-root
xcopy /s /e /q %GITHUB_WORKSPACE% libs\%LIBRARY%\
git submodule update --init tools/boostdep
python tools/boostdep/depinst/depinst.py --git_args "--jobs 3" %LIBRARY%
cmd /c bootstrap
b2 -d0 headers
- name: Run tests
shell: cmd
run: |
cd ../boost-root
b2 -j3 libs/%LIBRARY%/test toolset=${{matrix.toolset}} cxxstd=${{matrix.cxxstd}} address-model=${{matrix.addrmd}} variant=debug,release

View File

@@ -0,0 +1,223 @@
# Copyright 2016-2020 Peter Dimov
# Distributed under the Boost Software License, Version 1.0.
# (See accompanying file LICENSE_1_0.txt or copy at http://boost.org/LICENSE_1_0.txt)
language: cpp
dist: xenial
branches:
only:
- master
- develop
- /feature\/.*/
env:
matrix:
- BOGUS_JOB=true
matrix:
exclude:
- env: BOGUS_JOB=true
include:
- os: linux
dist: trusty
compiler: g++
env: TOOLSET=gcc CXXSTD=03,11
- os: linux
dist: xenial
compiler: g++
env: TOOLSET=gcc CXXSTD=03,11,14
- os: linux
dist: bionic
compiler: g++
env: TOOLSET=gcc CXXSTD=03,11,14,17
- os: linux
dist: focal
compiler: g++
env: TOOLSET=gcc CXXSTD=03,11,14,17
- os: linux
arch: arm64
compiler: g++
env: TOOLSET=gcc CXXSTD=03,11,14
- os: linux
arch: ppc64le
compiler: g++
env: TOOLSET=gcc CXXSTD=03,11,14
- os: linux
arch: s390x
compiler: g++
env: TOOLSET=gcc CXXSTD=03,11,14
- os: freebsd
compiler: clang++
env: TOOLSET=clang CXXSTD=03,11,14,17,2a
- os: linux
compiler: g++-4.4
env: TOOLSET=gcc CXXSTD=98,0x
addons:
apt:
packages:
- g++-4.4
sources:
- ubuntu-toolchain-r-test
- os: linux
compiler: g++-4.6
env: TOOLSET=gcc CXXSTD=03,0x
addons:
apt:
packages:
- g++-4.6
sources:
- ubuntu-toolchain-r-test
- os: linux
dist: bionic
compiler: g++-10
env: UBSAN=1 TOOLSET=gcc CXXSTD=03,11,14 UBSAN_OPTIONS=print_stacktrace=1 LINKFLAGS=-fuse-ld=gold
addons:
apt:
packages:
- g++-10
sources:
- ubuntu-toolchain-r-test
- os: linux
dist: bionic
compiler: g++-10
env: UBSAN=1 TOOLSET=gcc CXXSTD=17,2a UBSAN_OPTIONS=print_stacktrace=1 LINKFLAGS=-fuse-ld=gold
addons:
apt:
packages:
- g++-10
sources:
- ubuntu-toolchain-r-test
- os: linux
dist: trusty
compiler: /usr/bin/clang++
env: TOOLSET=clang COMMENT=clang-3.3 CXXSTD=03,11
addons:
apt:
packages:
- clang-3.3
- os: linux
dist: trusty
compiler: /usr/bin/clang++
env: TOOLSET=clang COMMENT=clang-3.4 CXXSTD=03,11
addons:
apt:
packages:
- clang-3.4
- os: linux
compiler: clang++-11
env: UBSAN=1 TOOLSET=clang CXXSTD=03,11,14,17,2a UBSAN_OPTIONS=print_stacktrace=1
addons:
apt:
packages:
- clang-11
sources:
- ubuntu-toolchain-r-test
- sourceline: 'deb https://apt.llvm.org/xenial/ llvm-toolchain-xenial-11 main'
key_url: 'https://apt.llvm.org/llvm-snapshot.gpg.key'
- os: linux
dist: trusty
compiler: clang++-libc++
env: UBSAN=1 TOOLSET=clang COMPILER=clang++-libc++ CXXSTD=03,11,14,1z UBSAN_OPTIONS=print_stacktrace=1
addons:
apt:
packages:
- libc++-dev
- os: linux
dist: bionic
compiler: clang++-libc++
env: UBSAN=1 TOOLSET=clang COMPILER=clang++-libc++ CXXSTD=03,11,14,17,2a UBSAN_OPTIONS=print_stacktrace=1
addons:
apt:
packages:
- libc++-dev
- os: osx
compiler: clang++
env: UBSAN=1 TOOLSET=clang COMPILER=clang++ CXXSTD=03,11,14,1z UBSAN_OPTIONS=print_stacktrace=1
- os: linux
env: CMAKE_TEST=1
script:
- mkdir __build__ && cd __build__
- cmake -DBOOST_ENABLE_CMAKE=1 -DBoost_VERBOSE=1 -DBOOST_INCLUDE_LIBRARIES=smart_ptr -DBUILD_TESTING=ON ..
- cmake --build . --target tests -- -k
- ctest --output-on-failure -R boost_smart_ptr
- os: linux
compiler: g++
env: CMAKE_SUBDIR_TEST=1
script:
- cd libs/smart_ptr/test/cmake_subdir_test && mkdir __build__ && cd __build__
- cmake ..
- cmake --build .
- cmake --build . --target check
- os: linux
env: CMAKE_INSTALL_TEST=1
script:
- pip install --user cmake
- mkdir __build__ && cd __build__
- cmake -DBOOST_ENABLE_CMAKE=1 -DBoost_VERBOSE=1 -DBOOST_INCLUDE_LIBRARIES=smart_ptr -DBUILD_TESTING=OFF -DCMAKE_INSTALL_PREFIX=~/.local ..
- cmake --build . --target install
- cd ../libs/smart_ptr/test/cmake_install_test && mkdir __build__ && cd __build__
- cmake -DCMAKE_INSTALL_PREFIX=~/.local ..
- cmake --build .
- cmake --build . --target check
install:
- BOOST_BRANCH=develop && [ "$TRAVIS_BRANCH" == "master" ] && BOOST_BRANCH=master || true
- cd ..
- git clone -b $BOOST_BRANCH https://github.com/boostorg/boost.git boost-root
- cd boost-root
- git submodule init libs/align
- git submodule init libs/assert
- git submodule init libs/atomic
- git submodule init libs/config
- git submodule init libs/container_hash
- git submodule init libs/core
- git submodule init libs/move
- git submodule init libs/predef
- git submodule init libs/static_assert
- git submodule init libs/throw_exception
- git submodule init libs/type_traits
- git submodule init libs/detail
- git submodule init libs/integer
- git submodule init tools/build
- git submodule init libs/headers
- git submodule init tools/boost_install
- git submodule init tools/cmake
- git submodule init libs/preprocessor
- git submodule init libs/bind
- git submodule update # no --jobs 3 on non-amd64
- cp -r $TRAVIS_BUILD_DIR/* libs/smart_ptr
- ./bootstrap.sh
- ./b2 headers
script:
- |-
echo "using $TOOLSET : : $TRAVIS_COMPILER ;" > ~/user-config.jam
- ./b2 -j3 libs/smart_ptr/test toolset=$TOOLSET cxxstd=$CXXSTD variant=debug,release ${UBSAN:+cxxflags=-fsanitize=undefined cxxflags=-fno-sanitize-recover=undefined linkflags=-fsanitize=undefined debug-symbols=on} ${LINKFLAGS:+linkflags=$LINKFLAGS}
notifications:
email:
on_success: always

View File

@@ -0,0 +1,29 @@
# Copyright 2018-2020 Peter Dimov
# Distributed under the Boost Software License, Version 1.0.
# See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt
cmake_minimum_required(VERSION 3.5...3.16)
project(boost_smart_ptr VERSION "${BOOST_SUPERPROJECT_VERSION}" LANGUAGES CXX)
add_library(boost_smart_ptr INTERFACE)
add_library(Boost::smart_ptr ALIAS boost_smart_ptr)
target_include_directories(boost_smart_ptr INTERFACE include)
target_link_libraries(boost_smart_ptr
INTERFACE
Boost::assert
Boost::config
Boost::core
Boost::move
Boost::static_assert
Boost::throw_exception
Boost::type_traits
)
if(BUILD_TESTING)
add_subdirectory(test)
endif()

View File

@@ -0,0 +1,6 @@
# Boost.SmartPtr
Branch | Travis | Appveyor
---------|--------|---------
Develop | [![Build Status](https://travis-ci.org/boostorg/smart_ptr.svg?branch=develop)](https://travis-ci.org/boostorg/smart_ptr) | [![Build Status](https://ci.appveyor.com/api/projects/status/github/boostorg/smart_ptr?branch=develop&svg=true)](https://ci.appveyor.com/project/pdimov/smart-ptr)
Master | [![Build Status](https://travis-ci.org/boostorg/smart_ptr.svg?branch=master)](https://travis-ci.org/boostorg/smart_ptr) | [![Build Status](https://ci.appveyor.com/api/projects/status/github/boostorg/smart_ptr?branch=master&svg=true)](https://ci.appveyor.com/project/pdimov/smart-ptr)

View File

@@ -0,0 +1,82 @@
# Copyright 2016-2019 Peter Dimov
# Distributed under the Boost Software License, Version 1.0.
# (See accompanying file LICENSE_1_0.txt or copy at http://boost.org/LICENSE_1_0.txt)
version: 1.0.{build}-{branch}
shallow_clone: true
branches:
only:
- master
- develop
- /feature\/.*/
environment:
matrix:
- APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2015
TOOLSET: msvc-9.0,msvc-10.0,msvc-11.0
ADDRMD: 32
- APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2015
TOOLSET: msvc-12.0,msvc-14.0
ADDRMD: 32,64
- APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2017
TOOLSET: msvc-14.1
CXXSTD: 14,17
ADDRMD: 32,64
- APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2019
TOOLSET: clang-win
CXXSTD: 14,17,latest
ADDRMD: 64
- APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2015
ADDPATH: C:\cygwin\bin;
TOOLSET: gcc
CXXSTD: 03,11,14,1z
- APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2015
ADDPATH: C:\cygwin64\bin;
TOOLSET: gcc
CXXSTD: 03,11,14,1z
- APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2015
ADDPATH: C:\mingw\bin;
TOOLSET: gcc
CXXSTD: 03,11,14,1z
- APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2015
ADDPATH: C:\mingw-w64\x86_64-7.2.0-posix-seh-rt_v5-rev1\mingw64\bin;
TOOLSET: gcc
CXXSTD: 03,11,14,1z
install:
- set BOOST_BRANCH=develop
- if "%APPVEYOR_REPO_BRANCH%" == "master" set BOOST_BRANCH=master
- cd ..
- git clone -b %BOOST_BRANCH% --depth 1 https://github.com/boostorg/boost.git boost-root
- cd boost-root
- git submodule init libs/align
- git submodule init libs/assert
- git submodule init libs/atomic
- git submodule init libs/config
- git submodule init libs/container_hash
- git submodule init libs/core
- git submodule init libs/move
- git submodule init libs/predef
- git submodule init libs/static_assert
- git submodule init libs/throw_exception
- git submodule init libs/type_traits
- git submodule init libs/detail
- git submodule init libs/integer
- git submodule init tools/build
- git submodule init libs/headers
- git submodule init tools/boost_install
- git submodule init libs/bind
- git submodule update --jobs 3
- xcopy /s /e /q %APPVEYOR_BUILD_FOLDER% libs\smart_ptr\
- cmd /c bootstrap
- b2 -d0 headers
build: off
test_script:
- PATH=%ADDPATH%%PATH%
- if not "%CXXSTD%" == "" set CXXSTD=cxxstd=%CXXSTD%
- if not "%ADDRMD%" == "" set ADDRMD=address-model=%ADDRMD%
- b2 -j3 libs/smart_ptr/test toolset=%TOOLSET% %CXXSTD% %ADDRMD% variant=debug,release embed-manifest-via=linker

View File

@@ -0,0 +1,2 @@
/html/
/pdf/

View File

@@ -0,0 +1,24 @@
# Copyright 2017 Peter Dimov
#
# Distributed under the Boost Software License, Version 1.0.
#
# See accompanying file LICENSE_1_0.txt or copy at
# http://www.boost.org/LICENSE_1_0.txt
import asciidoctor ;
html smart_ptr.html : smart_ptr.adoc ;
install html_ : smart_ptr.html : <location>html ;
pdf smart_ptr.pdf : smart_ptr.adoc ;
explicit smart_ptr.pdf ;
install pdf_ : smart_ptr.pdf : <location>pdf ;
explicit pdf_ ;
###############################################################################
alias boostdoc ;
explicit boostdoc ;
alias boostrelease : html_ ;
explicit boostrelease ;

View File

@@ -0,0 +1,7 @@
<style>
*:not(pre)>code { background: none; color: #600000; }
:not(pre):not([class^=L])>code { background: none; color: #600000; }
table tr.even, table tr.alt, table tr:nth-of-type(even) { background: none; }
</style>

View File

@@ -0,0 +1,70 @@
////
Copyright 2017 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
# Boost.SmartPtr: The Smart Pointer Library
Greg Colvin, Beman Dawes, Peter Dimov, Glen Fernandes
:toc: left
:toclevels: 2
:idprefix:
:listing-caption: Code Example
:docinfo: private-footer
:source-highlighter: rouge
:source-language: c++
:leveloffset: +1
include::smart_ptr/introduction.adoc[]
include::smart_ptr/changelog.adoc[]
include::smart_ptr/scoped_ptr.adoc[]
include::smart_ptr/scoped_array.adoc[]
include::smart_ptr/shared_ptr.adoc[]
include::smart_ptr/weak_ptr.adoc[]
include::smart_ptr/make_shared.adoc[]
include::smart_ptr/enable_shared_from_this.adoc[]
include::smart_ptr/enable_shared_from.adoc[]
include::smart_ptr/make_unique.adoc[]
include::smart_ptr/allocate_unique.adoc[]
include::smart_ptr/intrusive_ptr.adoc[]
include::smart_ptr/intrusive_ref_counter.adoc[]
include::smart_ptr/local_shared_ptr.adoc[]
include::smart_ptr/make_local_shared.adoc[]
include::smart_ptr/pointer_cast.adoc[]
include::smart_ptr/pointer_to_other.adoc[]
include::smart_ptr/atomic_shared_ptr.adoc[]
include::smart_ptr/owner_less.adoc[]
include::smart_ptr/owner_equal_to.adoc[]
include::smart_ptr/owner_hash.adoc[]
// appendix
include::smart_ptr/techniques.adoc[]
// appendix
include::smart_ptr/history.adoc[]
// appendix, deprecated
include::smart_ptr/shared_array.adoc[]
:leveloffset: -1
[[copyright]]
[appendix]
## Copyright and License
This documentation is
* Copyright 1999 Greg Colvin
* Copyright 1999 Beman Dawes
* Copyright 2002 Darin Adler
* Copyright 2003-2020 Peter Dimov
* Copyright 2005, 2006 Ion Gaztañaga
* Copyright 2008 Frank Mori Hess
* Copyright 2012-2017 Glen Fernandes
* Copyright 2013 Andrey Semashev
and is distributed under the http://www.boost.org/LICENSE_1_0.txt[Boost Software License, Version 1.0].

View File

@@ -0,0 +1,335 @@
////
Copyright 2019-2021 Glen Joseph Fernandes (glenjofe@gmail.com)
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[#allocate_unique]
# allocate_unique: Creating unique_ptr
:toc:
:toc-title:
:idprefix: allocate_unique_
## Description
The `allocate_unique` family of function templates provide convenient and safe
ways to obtain a `std::unique_ptr` that manages a new object created using an
allocator.
## Rationale
The {cpp}14 standard introduced `std::make_unique` which used operator `new` to
create new objects. However, there is no convenient facility in the standard
library to use an allocator for the creation of the objects managed by
`std::unique_ptr`. Users writing allocator aware code have often requested an
`allocate_unique` factory function. This function is to `std::unique_ptr` what
`std::allocate_shared` is to `std::shared_ptr`.
## Synopsis
`allocate_unique` is defined in `<boost/smart_ptr/allocate_unique.hpp>`.
[subs=+quotes]
```
namespace boost {
template<class T, class A>
class alloc_deleter;
template<class T, class A>
using alloc_noinit_deleter = alloc_deleter<T, noinit_adaptor<A>>;
`// T is not an array`
template<class T, class A, class... Args>
std::unique_ptr<T, alloc_deleter<T, A>>
allocate_unique(const A& a, Args&&... args);
`// T is not an array`
template<class T, class A>
std::unique_ptr<T, alloc_deleter<T, A>>
allocate_unique(const A& a, type_identity_t<T>&& v);
`// T is an array of unknown bounds`
template<class T, class A>
std::unique_ptr<T, alloc_deleter<T, A>>
allocate_unique(const A& a, std::size_t n);
`// T is an array of known bounds`
template<class T, class A>
std::unique_ptr<remove_extent_t<T>[], alloc_deleter<T, A>>
allocate_unique(const A& a);
`// T is an array of unknown bounds`
template<class T, class A>
std::unique_ptr<T, alloc_deleter<T, A>>
allocate_unique(const A& a, std::size_t n, const remove_extent_t<T>& v);
`// T is an array of known bounds`
template<class T, class A>
std::unique_ptr<remove_extent_t<T>[], alloc_deleter<T, A>>
allocate_unique(const A& a, const remove_extent_t<T>& v);
`// T is not an array`
template<class T, class A>
std::unique_ptr<T, alloc_noinit_deleter<T, A>>
allocate_unique_noinit(const A& a);
`// T is an array of unknown bounds`
template<class T, class A>
std::unique_ptr<T, alloc_noinit_deleter<T, A>>
allocate_unique_noinit(const A& a, std::size_t n);
`// T is an array of known bounds`
template<class T, class A>
std::unique_ptr<remove_extent_t<T>[], alloc_noinit_deleter<T, A>>
allocate_unique_noinit(const A& a);
template<class T, class U, class A>
allocator_pointer_t<allocator_rebind_t<A, remove_cv_t<remove_extent_t<T>>>>
get_allocator_pointer(const std::unique_ptr<T,
alloc_deleter<U, A>>& p) noexcept;
}
```
## Common Requirements
The common requirements that apply to all `allocate_unique` and
`allocate_unique_noinit` overloads, unless specified otherwise, are described
below.
Requires:: `A` shall be an _allocator_. The copy constructor and destructor
of `A` shall not throw exceptions.
Effects:: Allocates memory for an object of type `T` or `n` objects of `U`
(if `T` is an array type of the form `U[]` and `n` is determined by
arguments, as specified by the concrete overload). The object is initialized
from arguments as specified by the concrete overload. Uses a rebound copy of
`a` (for an unspecified `value_type`) to allocate memory. If an exception is
thrown, the functions have no effect.
Returns:: A `std::unique_ptr` instance that stores and owns the address of the
newly constructed object.
Postconditions:: `r.get() != 0`, where `r` is the return value.
Throws:: An exception thrown from `A::allocate`, or from the initialization of
the object.
Remarks::
* When an object of an array type is specified to be initialized to a value of
the same type `v`, this shall be interpreted to mean that each array element
of the object is initialized to the corresponding element from `v`.
* When an object of an array type is specified to be value-initialized, this
shall be interpreted to mean that each array element of the object is
value-initialized.
* When a (sub)object of non-array type `U` is specified to be initialized to a
value `v`, or constructed from `args\...`, `allocate_unique` shall perform this
initialization via the expression
`std::allocator_traits<A2>::construct(a2, p, expr)` (where `_expr_` is `v` or
`std::forward<Args>(args)\...)` respectively), `p` points to storage suitable
to hold an object of type `U`, and `a2` of type `A2` is a potentially rebound
copy of `a`.
* When a (sub)object of non-array type `U` is specified to be
default-initialized, `allocate_unique_noinit` shall perform this initialization
via the expression `::new(p) U`, where `p` has type `void*` and points to
storage suitable to hold an object of type `U`.
* When a (sub)object of non-array type `U` is specified to be
value-initialized, `allocate_unique` shall perform this initialization via the
expression `std::allocator_traits<A2>::construct(a2, p)`, where `p` points to
storage suitable to hold an object of type `U` and `a2` of type `A2` is a
potentially rebound copy of `a`.
* Array elements are initialized in ascending order of their addresses.
* When the lifetime of the object managed by the return value ends, or when the
initialization of an array element throws an exception, the initialized
elements should be destroyed in the reverse order of their construction.
## Free Functions
```
template<class T, class A, class... Args>
std::unique_ptr<T, alloc_deleter<T, A>>
allocate_unique(const A& a, Args&&... args);
```
[none]
* {blank}
+
Constraints:: `T` is not an array.
Returns:: A `std::unique_ptr` to an object of type `T`, constructed from
`args\...`.
Examples::
* `auto p = allocate_unique<int>(a);`
* `auto p = allocate_unique<std::vector<int>>(a, 16, 1);`
```
template<class T, class A>
std::unique_ptr<T, alloc_deleter<T, A>>
allocate_unique(const A& a, type_identity_t<T>&& v);
```
[none]
* {blank}
+
Constraints:: `T` is not an array.
Returns:: A `std::unique_ptr` to an object of type `T`, constructed from `v`.
Example:: `auto p = allocate_unique<std::vector<int>>(a, {1, 2});`
```
template<class T, class A>
std::unique_ptr<T, alloc_deleter<T, A>>
allocate_unique(const A& a, std::size_t n);
```
[none]
* {blank}
+
Constraints:: `T` is an array of unknown bounds.
Returns:: A `std::unique_ptr` to a sequence of `n` value-initialized objects of
type `remove_extent_t<T>`.
Examples::
* `auto p = allocate_unique<double[]>(a, 1024);`
* `auto p = allocate_unique<double[][2][2]>(a, 6);`
```
template<class T, class A>
std::unique_ptr<remove_extent_t<T>[], alloc_deleter<T, A>>
allocate_unique(const A& a);
```
[none]
* {blank}
+
Constraints:: `T` is an array of known bounds.
Returns:: A `std::unique_ptr` to a sequence of `extent_v<T>` value-initialized
objects of type `remove_extent_t<T>`.
Examples::
* `auto p = allocate_unique<double[1024]>(a);`
* `auto p = allocate_unique<double[6][2][2]>(a);`
```
template<class T, class A>
std::unique_ptr<T, alloc_deleter<T, A>>
allocate_unique(const A& a, std::size_t n, const remove_extent_t<T>& v);
```
[none]
* {blank}
+
Constraints:: `T` is an array of unknown bounds.
Returns:: A `std::unique_ptr` to a sequence of `n` objects of type
`remove_extent_t<T>`, each initialized to `v`.
Examples::
* `auto p = allocate_unique<double[]>(a, 1024, 1.0);`
* `auto p = allocate_unique<double[][2]>(a, 6, {1.0, 0.0});`
* `auto p = allocate_unique<std::vector<int>[]>(a, 4, {1, 2});`
```
template<class T, class A>
std::unique_ptr<remove_extent_t<T>[], alloc_deleter<T, A>>
allocate_unique(const A& a, const remove_extent_t<T>& v);
```
[none]
* {blank}
+
Constraints:: `T` is an array of known bounds.
Returns:: A `std::unique_ptr` to a sequence of `extent_v<T>` objects of type
`remove_extent_t<T>`, each initialized to `v`.
Examples::
* `auto p = allocate_unique<double[1024]>(a, 1.0);`
* `auto p = allocate_unique<double[6][2]>(a, {1.0, 0.0});`
* `auto p = allocate_unique<std::vector<int>[4]>(a, {1, 2});`
```
template<class T, class A>
std::unique_ptr<T, alloc_noinit_deleter<T, A>>
allocate_unique_noinit(const A& a);
```
[none]
* {blank}
+
Constraints:: `T` is not an array.
Returns:: A `std::unique_ptr` to a default-initialized object of type `T`.
Example:: `auto p = allocate_unique_noinit<double>(a);`
```
template<class T, class A>
std::unique_ptr<T, alloc_noinit_deleter<T, A>>
allocate_unique_noinit(const A& a, std::size_t n);
```
[none]
* {blank}
+
Constraints:: `T` is an array of unknown bounds.
Returns:: A `std::unique_ptr` to a sequence of `n` default-initialized objects
of type `remove_extent_t<T>`.
Example:: `auto p = allocate_unique_noinit<double[]>(a, 1024);`
```
template<class T, class A>
std::unique_ptr<remove_extent_t<T>, alloc_noinit_deleter<T, A>>
allocate_unique_noinit(const A& a);
```
[none]
* {blank}
+
Constraints:: `T` is an array of known bounds.
Returns:: A `std::unique_ptr` to a sequence of `extent_v<T>`
default-initialized objects of type `remove_extent_t<T>`.
Example:: `auto p = allocate_unique_noinit<double[1024]>(a);`
```
template<class T, class U, class A>
allocator_pointer_t<allocator_rebind_t<A, remove_cv_t<remove_extent_t<T>>>>
get_allocator_pointer(const std::unique_ptr<T,
alloc_deleter<U, A>>& p) noexcept;
```
[none]
* {blank}
+
Returns:: The allocator pointer to the allocation.
Example:: `auto r = boost::get_allocator_ptr(p);`
## Deleter
Class template `alloc_deleter` is the deleter used by the `allocate_unique`
functions.
### Synopsis
[subs=+quotes]
```
template<class T, class A>
class alloc_deleter {
public:
using pointer = `unspecified`;
explicit alloc_deleter(const A& a) noexcept;
void operator()(pointer p);
};
```
### Members
[subs=+quotes]
```
using pointer = `unspecified`;
```
[none]
* {blank}
+
A type that satisfies _NullablePointer_.
```
explicit alloc_deleter(const A& a) noexcept;
```
[none]
* {blank}
+
Effects:: Initializes the stored allocator from `a`.
```
void operator()(pointer p);
```
[none]
* {blank}
+
Effects:: Destroys the objects and deallocates the storage referenced by `p`,
using the stored allocator.

View File

@@ -0,0 +1,170 @@
////
Copyright 2017 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[#atomic_shared_ptr]
# atomic_shared_ptr
:toc:
:toc-title:
:idprefix: atomic_shared_ptr_
## Description
The class template `atomic_shared_ptr<T>` implements the interface of `std::atomic`
for a contained value of type `shared_ptr<T>`. Concurrent access to `atomic_shared_ptr`
is not a data race.
## Synopsis
`atomic_shared_ptr` is defined in `<boost/smart_ptr/atomic_shared_ptr.hpp>`.
```
namespace boost {
template<class T> class atomic_shared_ptr {
private:
shared_ptr<T> p_; // exposition only
atomic_shared_ptr(const atomic_shared_ptr&) = delete;
atomic_shared_ptr& operator=(const atomic_shared_ptr&) = delete;
public:
constexpr atomic_shared_ptr() noexcept;
atomic_shared_ptr( shared_ptr<T> p ) noexcept;
atomic_shared_ptr& operator=( shared_ptr<T> r ) noexcept;
bool is_lock_free() const noexcept;
shared_ptr<T> load( int = 0 ) const noexcept;
operator shared_ptr<T>() const noexcept;
void store( shared_ptr<T> r, int = 0 ) noexcept;
shared_ptr<T> exchange( shared_ptr<T> r, int = 0 ) noexcept;
bool compare_exchange_weak( shared_ptr<T>& v, const shared_ptr<T>& w, int, int ) noexcept;
bool compare_exchange_weak( shared_ptr<T>& v, const shared_ptr<T>& w, int = 0 ) noexcept;
bool compare_exchange_strong( shared_ptr<T>& v, const shared_ptr<T>& w, int, int ) noexcept;
bool compare_exchange_strong( shared_ptr<T>& v, const shared_ptr<T>& w, int = 0 ) noexcept;
bool compare_exchange_weak( shared_ptr<T>& v, shared_ptr<T>&& w, int, int ) noexcept;
bool compare_exchange_weak( shared_ptr<T>& v, shared_ptr<T>&& w, int = 0 ) noexcept;
bool compare_exchange_strong( shared_ptr<T>& v, shared_ptr<T>&& w, int, int ) noexcept;
bool compare_exchange_strong( shared_ptr<T>& v, shared_ptr<T>&& w, int = 0 ) noexcept;
};
}
```
## Members
```
constexpr atomic_shared_ptr() noexcept;
```
[none]
* {blank}
+
Effects:: Default-initializes `p_`.
```
atomic_shared_ptr( shared_ptr<T> p ) noexcept;
```
[none]
* {blank}
+
Effects:: Initializes `p_` to `p`.
```
atomic_shared_ptr& operator=( shared_ptr<T> r ) noexcept;
```
[none]
* {blank}
+
Effects:: `p_.swap(r)`.
Returns:: `*this`.
```
bool is_lock_free() const noexcept;
```
[none]
* {blank}
+
Returns:: `false`.
NOTE: This implementation is not lock-free.
```
shared_ptr<T> load( int = 0 ) const noexcept;
```
```
operator shared_ptr<T>() const noexcept;
```
[none]
* {blank}
+
Returns:: `p_`.
NOTE: The `int` argument is intended to be of type `memory_order`, but is ignored.
This implementation is lock-based and therefore always sequentially consistent.
```
void store( shared_ptr<T> r, int = 0 ) noexcept;
```
[none]
* {blank}
+
Effects:: `p_.swap(r)`.
```
shared_ptr<T> exchange( shared_ptr<T> r, int = 0 ) noexcept;
```
[none]
* {blank}
+
Effects:: `p_.swap(r)`.
Returns:: The old value of `p_`.
```
bool compare_exchange_weak( shared_ptr<T>& v, const shared_ptr<T>& w, int, int ) noexcept;
```
```
bool compare_exchange_weak( shared_ptr<T>& v, const shared_ptr<T>& w, int = 0 ) noexcept;
```
```
bool compare_exchange_strong( shared_ptr<T>& v, const shared_ptr<T>& w, int, int ) noexcept;
```
```
bool compare_exchange_strong( shared_ptr<T>& v, const shared_ptr<T>& w, int = 0 ) noexcept;
```
[none]
* {blank}
+
Effects:: If `p_` is equivalent to `v`, assigns `w` to `p_`, otherwise assigns `p_` to `v`.
Returns:: `true` if `p_` was equivalent to `v`, `false` otherwise.
Remarks:: Two `shared_ptr` instances are equivalent if they store the same pointer value and _share ownership_.
```
bool compare_exchange_weak( shared_ptr<T>& v, shared_ptr<T>&& w, int, int ) noexcept;
```
```
bool compare_exchange_weak( shared_ptr<T>& v, shared_ptr<T>&& w, int = 0 ) noexcept;
```
```
bool compare_exchange_strong( shared_ptr<T>& v, shared_ptr<T>&& w, int, int ) noexcept;
```
```
bool compare_exchange_strong( shared_ptr<T>& v, shared_ptr<T>&& w, int = 0 ) noexcept;
```
[none]
* {blank}
+
Effects:: If `p_` is equivalent to `v`, assigns `std::move(w)` to `p_`, otherwise assigns `p_` to `v`.
Returns:: `true` if `p_` was equivalent to `v`, `false` otherwise.
Remarks:: The old value of `w` is not preserved in either case.

View File

@@ -0,0 +1,42 @@
////
Copyright 2019, 2020 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[#changelog]
# Revision History
:toc:
:toc-title:
:idprefix: changelog_
## Changes in 1.79.0
* Added `get_allocator_pointer`
## Changes in 1.74.0
* Added `owner_equals` to `shared_ptr`, `weak_ptr`, `local_shared_ptr`
* Added `owner_hash_value` to `shared_ptr`, `weak_ptr`
* Added `owner_equal_to`, `owner_hash`
* Added `std::hash` specializations for `shared_ptr`, `local_shared_ptr`
* Added `boost::hash` support to, and `std::hash`, `std::equal_to`
specializations for, `weak_ptr`
## Changes in 1.72.0
* Added `allocate_unique`
## Changes in 1.71.0
* Added aliasing constructors to `weak_ptr`
* Added `weak_ptr<T>::empty()`
* Added `enable_shared_from`, `shared_from`, and `weak_from`
## Changes in 1.65.0
* Added `atomic_shared_ptr`
* Added `local_shared_ptr`, `make_local_shared`

View File

@@ -0,0 +1,89 @@
////
Copyright 2002, 2003, 2015, 2017, 2019 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[#enable_shared_from]
# enable_shared_from
:toc:
:toc-title:
:idprefix: enable_shared_from_
## Description
`enable_shared_from` is used as a base class that allows a `shared_ptr` or a
`weak_ptr` to be obtained given a raw pointer to the object, by using the
functions `shared_from` and `weak_from`.
`enable_shared_from` differs from `enable_shared_from_this<T>` by the fact
that it's not a template, and is its recommended replacement for new code.
## Example
```
#include <boost/smart_ptr/enable_shared_from.hpp>
#include <boost/shared_ptr.hpp>
#include <cassert>
class Y: public boost::enable_shared_from
{
public:
boost::shared_ptr<Y> f()
{
return boost::shared_from( this );
}
};
int main()
{
boost::shared_ptr<Y> p(new Y);
boost::shared_ptr<Y> q = p->f();
assert(p == q);
assert(!(p < q || q < p)); // p and q must share ownership
}
```
## Synopsis
`enable_shared_from` is defined in `<boost/smart_ptr/enable_shared_from.hpp>`.
```
namespace boost {
class enable_shared_from: public enable_shared_from_this<enable_shared_from>
{
};
template<class T> shared_ptr<T> shared_from( T * p );
template<class T> weak_ptr<T> weak_from( T * p ) noexcept;
}
```
## Functions
```
template<class T> shared_ptr<T> shared_from( T * p );
```
[none]
* {blank}
+
Returns:: `shared_ptr<T>( p\->enable_shared_from::shared_from_this(), p )`.
NOTE: Throws `bad_weak_ptr` when `p` is not owned by a `shared_ptr`.
```
template<class T> weak_ptr<T> weak_from( T * p ) noexcept;
```
[none]
* {blank}
+
Returns:: `weak_ptr<T>( p\->enable_shared_from::weak_from_this(), p )`.
NOTE: Unlike `shared_from(this)`, `weak_from(this)` is valid in a destructor
and returns a `weak_ptr` that is `expired()` but still shares ownership
with other `weak_ptr` instances (if any) that refer to the object.

View File

@@ -0,0 +1,148 @@
////
Copyright 2002, 2003, 2015, 2017 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[#enable_shared_from_this]
# enable_shared_from_this
:toc:
:toc-title:
:idprefix: enable_shared_from_this_
## Description
The class template `enable_shared_from_this` is used as a base class that allows
a `shared_ptr` or a `weak_ptr` to the current object to be obtained from within a
member function.
`enable_shared_from_this<T>` defines two member functions called `shared_from_this`
that return a `shared_ptr<T>` and `shared_ptr<T const>`, depending on constness, to
`this`. It also defines two member functions called `weak_from_this` that return a
corresponding `weak_ptr`.
## Example
```
#include <boost/enable_shared_from_this.hpp>
#include <boost/shared_ptr.hpp>
#include <cassert>
class Y: public boost::enable_shared_from_this<Y>
{
public:
boost::shared_ptr<Y> f()
{
return shared_from_this();
}
};
int main()
{
boost::shared_ptr<Y> p(new Y);
boost::shared_ptr<Y> q = p->f();
assert(p == q);
assert(!(p < q || q < p)); // p and q must share ownership
}
```
## Synopsis
`enable_shared_from_this` is defined in `<boost/smart_ptr/enable_shared_from_this.hpp>`.
```
namespace boost {
template<class T> class enable_shared_from_this {
private:
// exposition only
weak_ptr<T> weak_this_;
protected:
enable_shared_from_this() = default;
~enable_shared_from_this() = default;
enable_shared_from_this(const enable_shared_from_this&) noexcept;
enable_shared_from_this& operator=(const enable_shared_from_this&) noexcept;
public:
shared_ptr<T> shared_from_this();
shared_ptr<T const> shared_from_this() const;
weak_ptr<T> weak_from_this() noexcept;
weak_ptr<T const> weak_from_this() const noexcept;
}
}
```
## Members
```
enable_shared_from_this(enable_shared_from_this const &) noexcept;
```
[none]
* {blank}
+
Effects:: Default-constructs `weak_this_`.
NOTE: `weak_this_` is _not_ copied from the argument.
```
enable_shared_from_this& operator=(enable_shared_from_this const &) noexcept;
```
[none]
* {blank}
+
Returns:: `*this`.
NOTE: `weak_this_` is unchanged.
```
template<class T> shared_ptr<T> shared_from_this();
```
```
template<class T> shared_ptr<T const> shared_from_this() const;
```
[none]
* {blank}
+
Returns:: `shared_ptr<T>(weak_this_)`.
NOTE: These members throw `bad_weak_ptr` when `*this` is not owned by a `shared_ptr`.
[NOTE]
====
`weak_this_` is initialized by `shared_ptr` to a copy of itself when it's constructed by a pointer to `*this`.
For example, in the following code:
```
class Y: public boost::enable_shared_from_this<Y> {};
int main()
{
boost::shared_ptr<Y> p(new Y);
}
```
the construction of `p` will automatically initialize `p\->weak_this_` to `p`.
====
```
template<class T> weak_ptr<T> weak_from_this() noexcept;
```
```
template<class T> weak_ptr<T const> weak_from_this() const noexcept;
```
[none]
* {blank}
+
Returns:: `weak_this_`.
NOTE: Unlike `shared_from_this()`, `weak_from_this()` is valid in a destructor
and returns a `weak_ptr` that is `expired()` but still shares ownership
with other `weak_ptr` instances (if any) that refer to the object.

View File

@@ -0,0 +1,117 @@
////
Copyright 1999 Greg Colvin and Beman Dawes
Copyright 2002 Darin Adler
Copyright 2017 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[[history]]
[appendix]
# History and Acknowledgments
:idprefix: history_
## Summer 1994
Greg Colvin http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1994/N0555.pdf[proposed]
to the {cpp} Standards Committee classes named `auto_ptr` and `counted_ptr` which were very
similar to what we now call `scoped_ptr` and `shared_ptr`. In one of the very few cases
where the Library Working Group's recommendations were not followed by the full committee,
`counted_ptr` was rejected and surprising transfer-of-ownership semantics were added to `auto_ptr`.
## October 1998
Beman Dawes proposed reviving the original semantics under the names `safe_ptr` and `counted_ptr`,
meeting of Per Andersson, Matt Austern, Greg Colvin, Sean Corfield, Pete Becker, Nico Josuttis,
Dietmar Kühl, Nathan Myers, Chichiang Wan and Judy Ward. During the discussion, the four new class
names were finalized, it was decided that there was no need to exactly follow the `std::auto_ptr`
interface, and various function signatures and semantics were finalized.
Over the next three months, several implementations were considered for `shared_ptr`, and discussed
on the http://www.boost.org/[boost.org] mailing list. The implementation questions revolved around
the reference count which must be kept, either attached to the pointed to object, or detached elsewhere.
Each of those variants have themselves two major variants:
* Direct detached: the `shared_ptr` contains a pointer to the object, and a pointer to the count.
* Indirect detached: the `shared_ptr` contains a pointer to a helper object, which in turn contains a pointer to the object and the count.
* Embedded attached: the count is a member of the object pointed to.
* Placement attached: the count is attached via operator new manipulations.
Each implementation technique has advantages and disadvantages. We went so far as to run various timings
of the direct and indirect approaches, and found that at least on Intel Pentium chips there was very little
measurable difference. Kevlin Henney provided a paper he wrote on "Counted Body Techniques." Dietmar Kühl
suggested an elegant partial template specialization technique to allow users to choose which implementation
they preferred, and that was also experimented with.
But Greg Colvin and Jerry Schwarz argued that "parameterization will discourage users", and in the end we choose
to supply only the direct implementation.
## May 1999
In April and May, 1999, Valentin Bonnard and David Abrahams made a number of suggestions resulting in numerous improvements.
## September 1999
Luis Coelho provided `shared_ptr::swap` and `shared_array::swap`.
## November 1999
Darin Adler provided `operator ==`, `operator !=`, and `std::swap` and `std::less` specializations for shared types.
## May 2001
Vladimir Prus suggested requiring a complete type on destruction. Refinement evolved in discussions including Dave Abrahams,
Greg Colvin, Beman Dawes, Rainer Deyke, Peter Dimov, John Maddock, Vladimir Prus, Shankar Sai, and others.
## January 2002
Peter Dimov reworked all four classes, adding features, fixing bugs, splitting them into four separate headers, and adding
`weak_ptr`.
## March 2003
Peter Dimov, Beman Dawes and Greg Colvin http://open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1450.html[proposed] `shared_ptr`
and `weak_ptr` for inclusion in the Standard Library via the first Library Technical Report (known as TR1). The proposal was
accepted and eventually went on to become a part of the {cpp} standard in its 2011 iteration.
## July 2007
Peter Dimov and Beman Dawes http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2351.htm[proposed] a number of enhancements
to `shared_ptr` as it was entering the working paper that eventually became the {cpp}11 standard.
## November 2012
Glen Fernandes provided implementations of `make_shared` and `allocate_shared` for arrays. They achieve a single allocation
for an array that can be initialized with constructor arguments or initializer lists as well as overloads for default initialization
and no value initialization.
Peter Dimov aided this development by extending `shared_ptr` to support arrays via the syntax `shared_ptr<T[]>` and `shared_ptr<T[N]>`.
## April 2013
Peter Dimov http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3640.html[proposed] the extension of `shared_ptr` to support
arrays for inclusion into the standard, and it was accepted.
## February 2014
Glen Fernandes updated `make_shared` and `allocate_shared` to conform to the specification in {cpp} standard paper
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3870.html[N3870], and implemented `make_unique` for arrays and objects.
Peter Dimov and Glen Fernandes updated the scalar and array implementations, respectively, to resolve {cpp} standard library defect 2070.
## February 2017
Glen Fernandes rewrote `allocate_shared` and `make_shared` for arrays for a more optimal and more maintainable implementation.
## June 2017
Peter Dimov and Glen Fernandes rewrote the documentation in Asciidoc format.
Peter Dimov added `atomic_shared_ptr` and `local_shared_ptr`.
## August 2019
Glen Fernandes implemented `allocate_unique` for scalars and arrays.

View File

@@ -0,0 +1,53 @@
////
Copyright 1999 Greg Colvin and Beman Dawes
Copyright 2002 Darin Adler
Copyright 2017 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[#introduction]
# Introduction
:toc:
:toc-title:
:idprefix: intro_
Smart pointers are objects which store pointers to dynamically allocated (heap) objects.
They behave much like built-in {cpp} pointers except that they automatically delete the object
pointed to at the appropriate time. Smart pointers are particularly useful in the face of
exceptions as they ensure proper destruction of dynamically allocated objects. They can also be
used to keep track of dynamically allocated objects shared by multiple owners.
Conceptually, smart pointers are seen as owning the object pointed to, and thus responsible for
deletion of the object when it is no longer needed. As such, they are examples of the "resource
acquisition is initialization" idiom described in Bjarne Stroustrup's "The C++ Programming Language",
3rd edition, Section 14.4, Resource Management.
This library provides six smart pointer class templates:
* `<<scoped_ptr,scoped_ptr>>`, used to contain ownership of a dynamically allocated object to the current scope;
* `<<scoped_array,scoped_array>>`, which provides scoped ownership for a dynamically allocated array;
* `<<shared_ptr,shared_ptr>>`, a versatile tool for managing shared ownership of an object or array;
* `<<weak_ptr,weak_ptr>>`, a non-owning observer to a `shared_ptr`-managed object that can be promoted temporarily to `shared_ptr`;
* `<<intrusive_ptr,intrusive_ptr>>`, a pointer to objects with an embedded reference count;
* `<<local_shared_ptr,local_shared_ptr>>`, providing shared ownership within a single thread.
`shared_ptr` and `weak_ptr` are part of the {cpp} standard since its 2011 iteration.
In addition, the library contains the following supporting utility functions and classes:
* `<<make_shared,make_shared>>` and `allocate_shared`, factory functions for creating objects that return a `shared_ptr`;
* `<<make_unique,make_unique>>`, a factory function returning `std::unique_ptr`;
* `<<allocate_unique,allocate_unique>>`, a factory function for creating objects using an allocator that returns a `std::unique_ptr`;
* `<<enable_shared_from_this,enable_shared_from_this>>`, a helper base class that enables the acquisition of a `shared_ptr` pointing to `this`;
* `<<enable_shared_from,enable_shared_from>>`, a newer and better replacement for `enable_shared_from_this`;
* `<<pointer_to_other,pointer_to_other>>`, a helper trait for converting one smart pointer type to another;
* `<<pointer_cast,static_pointer_cast>>` and companions, generic smart pointer casts;
* `<<intrusive_ref_counter,intrusive_ref_counter>>`, a helper base class containing a reference count.
* `<<atomic_shared_ptr,atomic_shared_ptr>>`, a helper class implementing the interface of `std::atomic` for a value of type `shared_ptr`.
As a general rule, the destructor or `operator delete` for an object managed by pointers in the library
are not allowed to throw exceptions.

View File

@@ -0,0 +1,487 @@
////
Copyright 2003-2005, 2013, 2017 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[#intrusive_ptr]
# intrusive_ptr: Managing Objects with Embedded Counts
:toc:
:toc-title:
:idprefix: intrusive_ptr_
## Description
The `intrusive_ptr` class template stores a pointer to an object with an embedded reference count.
Every new `intrusive_ptr` instance increments the reference count by using an unqualified call to the
function `intrusive_ptr_add_ref`, passing it the pointer as an argument. Similarly, when an `intrusive_ptr`
is destroyed, it calls `intrusive_ptr_release`; this function is responsible for destroying the object when
its reference count drops to zero. The user is expected to provide suitable definitions of these two functions.
On compilers that support argument-dependent lookup, `intrusive_ptr_add_ref` and `intrusive_ptr_release` should
be defined in the namespace that corresponds to their parameter; otherwise, the definitions need to go in namespace
`boost`. The library provides a helper base class template `<<intrusive_ref_counter,intrusive_ref_counter>>` which
may help adding support for `intrusive_ptr` to user types.
The class template is parameterized on `T`, the type of the object pointed to. `intrusive_ptr<T>` can be implicitly
converted to `intrusive_ptr<U>` whenever `T*` can be implicitly converted to `U*`.
The main reasons to use `intrusive_ptr` are:
* Some existing frameworks or OSes provide objects with embedded reference counts;
* The memory footprint of `intrusive_ptr` is the same as the corresponding raw pointer;
* `intrusive_ptr<T>` can be constructed from an arbitrary raw pointer of type `T*`.
As a general rule, if it isn't obvious whether `intrusive_ptr` better fits your needs than `shared_ptr`, try a `shared_ptr`-based design first.
## Synopsis
`intrusive_ptr` is defined in `<boost/smart_ptr/intrusive_ptr.hpp>`.
```
namespace boost {
template<class T> class intrusive_ptr {
public:
typedef T element_type;
intrusive_ptr() noexcept;
intrusive_ptr(T * p, bool add_ref = true);
intrusive_ptr(intrusive_ptr const & r);
template<class Y> intrusive_ptr(intrusive_ptr<Y> const & r);
intrusive_ptr(intrusive_ptr && r);
template<class Y> intrusive_ptr(intrusive_ptr<Y> && r);
~intrusive_ptr();
intrusive_ptr & operator=(intrusive_ptr const & r);
template<class Y> intrusive_ptr & operator=(intrusive_ptr<Y> const & r);
intrusive_ptr & operator=(T * r);
intrusive_ptr & operator=(intrusive_ptr && r);
template<class Y> intrusive_ptr & operator=(intrusive_ptr<Y> && r);
void reset();
void reset(T * r);
void reset(T * r, bool add_ref);
T & operator*() const noexcept;
T * operator->() const noexcept;
T * get() const noexcept;
T * detach() noexcept;
explicit operator bool () const noexcept;
void swap(intrusive_ptr & b) noexcept;
};
template<class T, class U>
bool operator==(intrusive_ptr<T> const & a, intrusive_ptr<U> const & b) noexcept;
template<class T, class U>
bool operator!=(intrusive_ptr<T> const & a, intrusive_ptr<U> const & b) noexcept;
template<class T, class U>
bool operator==(intrusive_ptr<T> const & a, U * b) noexcept;
template<class T, class U>
bool operator!=(intrusive_ptr<T> const & a, U * b) noexcept;
template<class T, class U>
bool operator==(T * a, intrusive_ptr<U> const & b) noexcept;
template<class T, class U>
bool operator!=(T * a, intrusive_ptr<U> const & b) noexcept;
template<class T>
bool operator<(intrusive_ptr<T> const & a, intrusive_ptr<T> const & b) noexcept;
template<class T> void swap(intrusive_ptr<T> & a, intrusive_ptr<T> & b) noexcept;
template<class T> T * get_pointer(intrusive_ptr<T> const & p) noexcept;
template<class T, class U>
intrusive_ptr<T> static_pointer_cast(intrusive_ptr<U> const & r) noexcept;
template<class T, class U>
intrusive_ptr<T> const_pointer_cast(intrusive_ptr<U> const & r) noexcept;
template<class T, class U>
intrusive_ptr<T> dynamic_pointer_cast(intrusive_ptr<U> const & r) noexcept;
template<class E, class T, class Y>
std::basic_ostream<E, T> & operator<< (std::basic_ostream<E, T> & os,
intrusive_ptr<Y> const & p);
}
```
## Members
### element_type
```
typedef T element_type;
```
Provides the type of the template parameter T.
### constructors
```
intrusive_ptr() noexcept;
```
[none]
* {blank}
+
Postconditions:: `get() == 0`.
```
intrusive_ptr(T * p, bool add_ref = true);
```
[none]
* {blank}
+
Effects:: `if(p != 0 && add_ref) intrusive_ptr_add_ref(p);`.
Postconditions:: `get() == p`.
```
intrusive_ptr(intrusive_ptr const & r);
```
```
template<class Y> intrusive_ptr(intrusive_ptr<Y> const & r);
```
[none]
* {blank}
+
Effects:: `T * p = r.get(); if(p != 0) intrusive_ptr_add_ref(p);`.
Postconditions:: `get() == r.get()`.
```
intrusive_ptr(intrusive_ptr && r);
```
```
template<class Y> intrusive_ptr(intrusive_ptr<Y> && r);
```
[none]
* {blank}
+
Postconditions::
`get()` equals the old value of `r.get()`. `r.get() == 0`.
### destructor
```
~intrusive_ptr();
```
[none]
* {blank}
+
Effects::
`if(get() != 0) intrusive_ptr_release(get());`.
### assignment
```
intrusive_ptr & operator=(intrusive_ptr const & r);
```
```
template<class Y> intrusive_ptr & operator=(intrusive_ptr<Y> const & r);
```
```
intrusive_ptr & operator=(T * r);
```
[none]
* {blank}
+
Effects:: Equivalent to `intrusive_ptr(r).swap(*this)`.
Returns:: `*this`.
```
intrusive_ptr & operator=(intrusive_ptr && r);
```
```
template<class Y> intrusive_ptr & operator=(intrusive_ptr<Y> && r);
```
[none]
* {blank}
+
Effects:: Equivalent to `intrusive_ptr(std::move(r)).swap(*this)`.
Returns:: `*this`.
### reset
```
void reset();
```
[none]
* {blank}
+
Effects:: Equivalent to `intrusive_ptr().swap(*this)`.
```
void reset(T * r);
```
[none]
* {blank}
+
Effects:: Equivalent to `intrusive_ptr(r).swap(*this)`.
```
void reset(T * r, bool add_ref);
```
[none]
* {blank}
+
Effects::
Equivalent to `intrusive_ptr(r, add_ref).swap(*this)`.
### indirection
```
T & operator*() const noexcept;
```
[none]
* {blank}
+
Requirements:: `get() != 0`.
Returns:: `*get()`.
```
T * operator->() const noexcept;
```
[none]
* {blank}
+
Requirements:: `get() != 0`.
Returns:: `get()`.
### get
```
T * get() const noexcept;
```
[none]
* {blank}
+
Returns::
the stored pointer.
### detach
```
T * detach() noexcept;
```
[none]
* {blank}
+
Returns:: the stored pointer.
Postconditions:: `get() == 0`.
NOTE: The returned pointer has an elevated reference count. This allows conversion of an `intrusive_ptr`
back to a raw pointer, without the performance overhead of acquiring and dropping an extra reference.
It can be viewed as the complement of the non-reference-incrementing constructor.
CAUTION: Using `detach` escapes the safety of automatic reference counting provided by `intrusive_ptr`.
It should by used only where strictly necessary (such as when interfacing to an existing API), and when
the implications are thoroughly understood.
### conversions
```
explicit operator bool () const noexcept;
```
[none]
* {blank}
+
Returns:: `get() != 0`.
NOTE: This conversion operator allows `intrusive_ptr` objects to be used in boolean contexts,
like `if (p && p\->valid()) {}`.
NOTE: On C++03 compilers, the return value is of an unspecified type.
### swap
```
void swap(intrusive_ptr & b) noexcept;
```
[none]
* {blank}
+
Effects::
Exchanges the contents of the two smart pointers.
## Free Functions
### comparison
```
template<class T, class U>
bool operator==(intrusive_ptr<T> const & a, intrusive_ptr<U> const & b) noexcept;
```
[none]
* {blank}
+
Returns:: `a.get() == b.get()`.
```
template<class T, class U>
bool operator!=(intrusive_ptr<T> const & a, intrusive_ptr<U> const & b) noexcept;
```
[none]
* {blank}
+
Returns:: `a.get() != b.get()`.
```
template<class T, class U>
bool operator==(intrusive_ptr<T> const & a, U * b) noexcept;
```
[none]
* {blank}
+
Returns:: `a.get() == b`.
```
template<class T, class U>
bool operator!=(intrusive_ptr<T> const & a, U * b) noexcept;
```
[none]
* {blank}
+
Returns:: `a.get() != b`.
```
template<class T, class U>
bool operator==(T * a, intrusive_ptr<U> const & b) noexcept;
```
[none]
* {blank}
+
Returns:: `a == b.get()`.
```
template<class T, class U>
bool operator!=(T * a, intrusive_ptr<U> const & b) noexcept;
```
[none]
* {blank}
+
Returns:: `a != b.get()`.
```
template<class T>
bool operator<(intrusive_ptr<T> const & a, intrusive_ptr<T> const & b) noexcept;
```
[none]
* {blank}
+
Returns:: `std::less<T *>()(a.get(), b.get())`.
NOTE: Allows `intrusive_ptr` objects to be used as keys in associative containers.
### swap
```
template<class T> void swap(intrusive_ptr<T> & a, intrusive_ptr<T> & b) noexcept;
```
[none]
* {blank}
+
Effects::
Equivalent to `a.swap(b)`.
### get_pointer
```
template<class T> T * get_pointer(intrusive_ptr<T> const & p) noexcept;
```
[none]
* {blank}
+
Returns:: `p.get()`.
NOTE: Provided as an aid to generic programming. Used by `mem_fn`.
### static_pointer_cast
```
template<class T, class U>
intrusive_ptr<T> static_pointer_cast(intrusive_ptr<U> const & r) noexcept;
```
[none]
* {blank}
+
Returns::
`intrusive_ptr<T>(static_cast<T*>(r.get()))`.
### const_pointer_cast
```
template<class T, class U>
intrusive_ptr<T> const_pointer_cast(intrusive_ptr<U> const & r) noexcept;
```
[none]
* {blank}
+
Returns::
`intrusive_ptr<T>(const_cast<T*>(r.get()))`.
### dynamic_pointer_cast
```
template<class T, class U>
intrusive_ptr<T> dynamic_pointer_cast(intrusive_ptr<U> const & r) noexcept;
```
[none]
* {blank}
+
Returns::
`intrusive_ptr<T>(dynamic_cast<T*>(r.get()))`.
### operator<<
```
template<class E, class T, class Y>
std::basic_ostream<E, T> & operator<< (std::basic_ostream<E, T> & os,
intrusive_ptr<Y> const & p);
```
[none]
* {blank}
+
Effects:: `os << p.get();`.
Returns:: `os`.

View File

@@ -0,0 +1,155 @@
////
Copyright 2017 Peter Dimov
Copyright 2013 Andrey Semashev
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[#intrusive_ref_counter]
# intrusive_ref_counter
:toc:
:toc-title:
:idprefix: intrusive_ref_counter_
## Description
The `intrusive_ref_counter` class template implements a reference counter for
a derived user's class that is intended to be used with `intrusive_ptr`. The
base class has associated `intrusive_ptr_add_ref` and `intrusive_ptr_release`
functions which modify the reference counter as needed and destroy the user's
object when the counter drops to zero.
The class template is parameterized on `Derived` and `CounterPolicy`
parameters. The first parameter is the user's class that derives from
`intrusive_ref_counter`. This type is needed in order to destroy the object
correctly when there are no references to it left.
The second parameter is a policy that defines the nature of the reference
counter. The library provides two such policies: `thread_unsafe_counter` and
`thread_safe_counter`. The former instructs the `intrusive_ref_counter` base
class to use a counter only suitable for a single-threaded use. Pointers to a
single object that uses this kind of reference counter must not be used in
different threads. The latter policy makes the reference counter thread-safe,
unless the target platform doesn't support threading. Since in modern systems
support for threading is common, the default counter policy is
`thread_safe_counter`.
## Synopsis
`intrusive_ref_counter` is defined in
`<boost/smart_ptr/intrusive_ref_counter.hpp>`.
```
namespace boost {
struct thread_unsafe_counter;
struct thread_safe_counter;
template<class Derived, class CounterPolicy = thread_safe_counter>
class intrusive_ref_counter {
public:
intrusive_ref_counter() noexcept;
intrusive_ref_counter(const intrusive_ref_counter& v) noexcept;
intrusive_ref_counter& operator=(const intrusive_ref_counter& v) noexcept;
unsigned int use_count() const noexcept;
protected:
~intrusive_ref_counter() = default;
};
template<class Derived, class CounterPolicy>
void intrusive_ptr_add_ref(
const intrusive_ref_counter<Derived, CounterPolicy>* p) noexcept;
template<class Derived, class CounterPolicy>
void intrusive_ptr_release(
const intrusive_ref_counter<Derived, CounterPolicy>* p) noexcept;
}
```
## Members
### Constructors
```
intrusive_ref_counter() noexcept;
```
```
intrusive_ref_counter(const intrusive_ref_counter&) noexcept;
```
[none]
* {blank}
+
Postconditions:: `use_count() == 0`.
NOTE: The pointer to the constructed object is expected to be passed to
`intrusive_ptr` constructor, assignment operator or `reset` method, which
would increment the reference counter.
### Destructor
```
~intrusive_ref_counter();
```
[none]
* {blank}
+
Effects:: Destroys the counter object.
NOTE: The destructor is protected so that the object can only be destroyed
through the `Derived` class.
### Assignment
```
intrusive_ref_counter& operator=(const intrusive_ref_counter& v) noexcept;
```
[none]
* {blank}
+
Effects::
Does nothing, reference counter is not modified.
### use_count
```
unsigned int use_count() const noexcept;
```
[none]
* {blank}
+
Returns:: The current value of the reference counter.
NOTE: The returned value may not be actual in multi-threaded applications.
## Free Functions
### intrusive_ptr_add_ref
```
template<class Derived, class CounterPolicy>
void intrusive_ptr_add_ref(
const intrusive_ref_counter<Derived, CounterPolicy>* p) noexcept;
```
[none]
* {blank}
+
Effects::
Increments the reference counter.
### intrusive_ptr_release
```
template<class Derived, class CounterPolicy>
void intrusive_ptr_release(
const intrusive_ref_counter<Derived, CounterPolicy>* p) noexcept;
```
[none]
* {blank}
+
Effects:: Decrements the reference counter. If the reference counter reaches
0, calls `delete static_cast<const Derived*>(p)`.

View File

@@ -0,0 +1,738 @@
////
Copyright 2017 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[#local_shared_ptr]
# local_shared_ptr: Shared Ownership within a Single Thread
:toc:
:toc-title:
:idprefix: local_shared_ptr_
## Description
`local_shared_ptr` is nearly identical to `shared_ptr`, with the only difference of note being that its reference count is
updated with non-atomic operations. As such, a `local_shared_ptr` and all its copies must reside in (be local to) a single
thread (hence the name.)
`local_shared_ptr` can be converted to `shared_ptr` and vice versa. Creating a `local_shared_ptr` from a `shared_ptr` creates
a new local reference count; this means that two `local_shared_ptr` instances, both created from the same `shared_ptr`, refer
to the same object but don't share the same count, and as such, can safely be used by two different threads.
.Two local_shared_ptr instances created from a shared_ptr
```
shared_ptr<X> p1( new X );
local_shared_ptr<X> p2( p1 ); // p2.local_use_count() == 1
local_shared_ptr<X> p3( p1 ); // p3.local_use_count() also 1
```
Creating the second `local_shared_ptr` from the first one, however, does lead to the two sharing the same count:
.A local_shared_ptr created from another local_shared_ptr
```
shared_ptr<X> p1( new X );
local_shared_ptr<X> p2( p1 ); // p2.local_use_count() == 1
local_shared_ptr<X> p3( p2 ); // p3.local_use_count() == 2
```
Two `shared_ptr` instances created from the same `local_shared_ptr` do share ownership:
.Two shared_ptr instances created from a local_shared_ptr
```
local_shared_ptr<X> p1( new X );
shared_ptr<X> p2( p1 ); // p2.use_count() == 2
shared_ptr<X> p3( p1 ); // p3.use_count() == 3
```
Here `p2.use_count()` is 2, because `p1` holds a reference, too.
One can think of `local_shared_ptr<T>` as `shared_ptr<shared_ptr<T>>`, with the outer `shared_ptr` using non-atomic operations for
its count. Converting from `local_shared_ptr` to `shared_ptr` gives you a copy of the inner `shared_ptr`; converting from `shared_ptr`
wraps it into an outer `shared_ptr` with a non-atomic use count (conceptually speaking) and returns the result.
## Synopsis
`local_shared_ptr` is defined in `<boost/smart_ptr/local_shared_ptr.hpp>`.
```
namespace boost {
template<class T> class local_shared_ptr {
public:
typedef /*see below*/ element_type;
// constructors
constexpr local_shared_ptr() noexcept;
constexpr local_shared_ptr(std::nullptr_t) noexcept;
template<class Y> explicit local_shared_ptr(Y * p);
template<class Y, class D> local_shared_ptr(Y * p, D d);
template<class D> local_shared_ptr(std::nullptr_t p, D d);
template<class Y, class D, class A> local_shared_ptr(Y * p, D d, A a);
template<class D, class A> local_shared_ptr(std::nullptr_t p, D d, A a);
local_shared_ptr(local_shared_ptr const & r) noexcept;
template<class Y> local_shared_ptr(local_shared_ptr<Y> const & r) noexcept;
local_shared_ptr(local_shared_ptr && r) noexcept;
template<class Y> local_shared_ptr(local_shared_ptr<Y> && r) noexcept;
template<class Y> local_shared_ptr( shared_ptr<Y> const & r );
template<class Y> local_shared_ptr( shared_ptr<Y> && r );
template<class Y> local_shared_ptr(local_shared_ptr<Y> const & r, element_type * p) noexcept;
template<class Y> local_shared_ptr(local_shared_ptr<Y> && r, element_type * p) noexcept;
template<class Y, class D> local_shared_ptr(std::unique_ptr<Y, D> && r);
// destructor
~local_shared_ptr() noexcept;
// assignment
local_shared_ptr & operator=(local_shared_ptr const & r) noexcept;
template<class Y> local_shared_ptr & operator=(local_shared_ptr<Y> const & r) noexcept;
local_shared_ptr & operator=(local_shared_ptr const && r) noexcept;
template<class Y> local_shared_ptr & operator=(local_shared_ptr<Y> const && r) noexcept;
template<class Y, class D> local_shared_ptr & operator=(std::unique_ptr<Y, D> && r);
local_shared_ptr & operator=(std::nullptr_t) noexcept;
// reset
void reset() noexcept;
template<class Y> void reset(Y * p);
template<class Y, class D> void reset(Y * p, D d);
template<class Y, class D, class A> void reset(Y * p, D d, A a);
template<class Y> void reset(local_shared_ptr<Y> const & r, element_type * p) noexcept;
template<class Y> void reset(local_shared_ptr<Y> && r, element_type * p) noexcept;
// accessors
T & operator*() const noexcept; // only valid when T is not an array type
T * operator->() const noexcept; // only valid when T is not an array type
// only valid when T is an array type
element_type & operator[](std::ptrdiff_t i) const noexcept;
element_type * get() const noexcept;
long local_use_count() const noexcept;
// conversions
explicit operator bool() const noexcept;
template<class Y> operator shared_ptr<Y>() const noexcept;
template<class Y> operator weak_ptr<Y>() const noexcept;
// swap
void swap(local_shared_ptr & b) noexcept;
// owner_before
template<class Y> bool owner_before(local_shared_ptr<Y> const & r) const noexcept;
// owner_equals
template<class Y> bool owner_equals(local_shared_ptr<Y> const & r) const noexcept;
};
// comparisons
template<class T, class U>
bool operator==(local_shared_ptr<T> const & a, local_shared_ptr<U> const & b) noexcept;
template<class T, class U>
bool operator==(local_shared_ptr<T> const & a, shared_ptr<U> const & b) noexcept;
template<class T, class U>
bool operator==(shared_ptr<T> const & a, local_shared_ptr<U> const & b) noexcept;
template<class T, class U>
bool operator!=(local_shared_ptr<T> const & a, local_shared_ptr<U> const & b) noexcept;
template<class T, class U>
bool operator!=(local_shared_ptr<T> const & a, shared_ptr<U> const & b) noexcept;
template<class T, class U>
bool operator!=(shared_ptr<T> const & a, local_shared_ptr<U> const & b) noexcept;
template<class T> bool operator==(local_shared_ptr<T> const & p, std::nullptr_t) noexcept;
template<class T> bool operator==(std::nullptr_t, local_shared_ptr<T> const & p) noexcept;
template<class T> bool operator!=(local_shared_ptr<T> const & p, std::nullptr_t) noexcept;
template<class T> bool operator!=(std::nullptr_t, local_shared_ptr<T> const & p) noexcept;
template<class T, class U>
bool operator<(local_shared_ptr<T> const & a, local_shared_ptr<U> const & b) noexcept;
// swap
template<class T> void swap(local_shared_ptr<T> & a, local_shared_ptr<T> & b) noexcept;
// get_pointer
template<class T>
typename local_shared_ptr<T>::element_type *
get_pointer(local_shared_ptr<T> const & p) noexcept;
// casts
template<class T, class U>
local_shared_ptr<T> static_pointer_cast(local_shared_ptr<U> const & r) noexcept;
template<class T, class U>
local_shared_ptr<T> const_pointer_cast(local_shared_ptr<U> const & r) noexcept;
template<class T, class U>
local_shared_ptr<T> dynamic_pointer_cast(local_shared_ptr<U> const & r) noexcept;
template<class T, class U>
local_shared_ptr<T> reinterpret_pointer_cast(local_shared_ptr<U> const & r) noexcept;
// stream I/O
template<class E, class T, class Y>
std::basic_ostream<E, T> &
operator<< (std::basic_ostream<E, T> & os, local_shared_ptr<Y> const & p);
// get_deleter
template<class D, class T> D * get_deleter(local_shared_ptr<T> const & p) noexcept;
}
```
## Members
### element_type
```
typedef ... element_type;
```
`element_type` is `T` when `T` is not an array type, and `U` when `T` is `U[]` or `U[N]`.
### default constructor
```
constexpr local_shared_ptr() noexcept;
```
```
constexpr local_shared_ptr(std::nullptr_t) noexcept;
```
[none]
* {blank}
+
Effects:: Constructs an empty `local_shared_ptr`.
Postconditions:: `local_use_count() == 0 && get() == 0`.
### pointer constructor
```
template<class Y> explicit local_shared_ptr(Y * p);
```
[none]
* {blank}
+
Effects:: Constructs a `local_shared_ptr` that owns `shared_ptr<T>( p )`.
Postconditions:: `local_use_count() == 1 && get() == p`.
Throws:: `std::bad_alloc`, or an implementation-defined exception when a resource other than memory could not be obtained.
### constructors taking a deleter
```
template<class Y, class D> local_shared_ptr(Y * p, D d);
```
```
template<class D> local_shared_ptr(std::nullptr_t p, D d);
```
[none]
* {blank}
+
Effects:: Constructs a `local_shared_ptr` that owns `shared_ptr<T>( p, d )`.
Postconditions:: `local_use_count() == 1 && get() == p`.
Throws:: `std::bad_alloc`, or an implementation-defined exception when a resource other than memory could not be obtained.
```
template<class Y, class D, class A> local_shared_ptr(Y * p, D d, A a);
```
```
template<class D, class A> local_shared_ptr(std::nullptr_t p, D d, A a);
```
[none]
* {blank}
+
Effects:: Constructs a `local_shared_ptr` that owns `shared_ptr<T>( p, d, a )`.
Postconditions:: `local_use_count() == 1 && get() == p`.
Throws:: `std::bad_alloc`, or an implementation-defined exception when a resource other than memory could not be obtained.
### copy and converting constructors
```
local_shared_ptr(local_shared_ptr const & r) noexcept;
```
```
template<class Y> local_shared_ptr(local_shared_ptr<Y> const & r) noexcept;
```
[none]
* {blank}
+
Requires:: `Y*` should be convertible to `T*`.
Effects:: If `r` is empty, constructs an empty `local_shared_ptr`; otherwise, constructs a `local_shared_ptr` that shares ownership with `r`.
Postconditions:: `get() == r.get() && local_use_count() == r.local_use_count()`.
### move constructors
```
local_shared_ptr(local_shared_ptr && r) noexcept;
```
```
template<class Y> local_shared_ptr(local_shared_ptr<Y> && r) noexcept;
```
[none]
* {blank}
+
Requires:: `Y*` should be convertible to `T*`.
Effects:: Move-constructs a `local_shared_ptr` from `r`.
Postconditions:: `*this` contains the old value of `r`. `r` is empty and `r.get() == 0`.
### shared_ptr constructor
```
template<class Y> local_shared_ptr( shared_ptr<Y> const & r );
```
```
template<class Y> local_shared_ptr( shared_ptr<Y> && r );
```
[none]
* {blank}
+
Effects:: Constructs a `local_shared_ptr` that owns `r`.
Postconditions:: `local_use_count() == 1`. `get()` returns the old value of `r.get()`.
Throws:: `std::bad_alloc`, or an implementation-defined exception when a resource other than memory could not be obtained.
### aliasing constructor
```
template<class Y> local_shared_ptr(local_shared_ptr<Y> const & r, element_type * p) noexcept;
```
[none]
* {blank}
+
Effects:: constructs a `local_shared_ptr` that shares ownership with `r` and stores `p`.
Postconditions:: `get() == p && local_use_count() == r.local_use_count()`.
### aliasing move constructor
```
template<class Y> local_shared_ptr(local_shared_ptr<Y> && r, element_type * p) noexcept;
```
[none]
* {blank}
+
Effects:: Move-constructs a `local_shared_ptr` from `r`, while storing `p` instead.
Postconditions:: `get() == p` and `local_use_count()` equals the old count of `r`. `r` is empty and `r.get() == 0`.
### unique_ptr constructor
```
template<class Y, class D> local_shared_ptr(std::unique_ptr<Y, D> && r);
```
[none]
* {blank}
+
Requires:: `Y*` should be convertible to `T*`.
Effects::
- When `r.get() == 0`, equivalent to `local_shared_ptr()`;
- Otherwise, constructs a `local_shared_ptr` that owns `shared_ptr<T>( std::move(r) )`.
Throws:: `std::bad_alloc`, or an implementation-defined exception when a resource other than memory could not be obtained.
Exception safety:: If an exception is thrown, the constructor has no effect.
### destructor
```
~local_shared_ptr() noexcept;
```
[none]
* {blank}
+
Effects::
- If `*this` is empty, or shares ownership with another `local_shared_ptr` instance (`local_use_count() > 1`), there are no side effects.
- Otherwise, destroys the owned `shared_ptr`.
### assignment
```
local_shared_ptr & operator=(local_shared_ptr const & r) noexcept;
```
```
template<class Y> local_shared_ptr & operator=(local_shared_ptr<Y> const & r) noexcept;
```
[none]
* {blank}
+
Effects:: Equivalent to `local_shared_ptr(r).swap(*this)`.
Returns:: `*this`.
```
local_shared_ptr & operator=(local_shared_ptr && r) noexcept;
```
```
template<class Y> local_shared_ptr & operator=(local_shared_ptr<Y> && r) noexcept;
```
```
template<class Y, class D> local_shared_ptr & operator=(std::unique_ptr<Y, D> && r);
```
[none]
* {blank}
+
Effects:: Equivalent to `local_shared_ptr(std::move(r)).swap(*this)`.
Returns:: `*this`.
```
local_shared_ptr & operator=(std::nullptr_t) noexcept;
```
[none]
* {blank}
+
Effects:: Equivalent to `local_shared_ptr().swap(*this)`.
Returns:: `*this`.
### reset
```
void reset() noexcept;
```
[none]
* {blank}
+
Effects:: Equivalent to `local_shared_ptr().swap(*this)`.
```
template<class Y> void reset(Y * p);
```
[none]
* {blank}
+
Effects:: Equivalent to `local_shared_ptr(p).swap(*this)`.
```
template<class Y, class D> void reset(Y * p, D d);
```
[none]
* {blank}
+
Effects:: Equivalent to `local_shared_ptr(p, d).swap(*this)`.
```
template<class Y, class D, class A> void reset(Y * p, D d, A a);
```
[none]
* {blank}
+
Effects:: Equivalent to `local_shared_ptr(p, d, a).swap(*this)`.
```
template<class Y> void reset(local_shared_ptr<Y> const & r, element_type * p) noexcept;
```
[none]
* {blank}
+
Effects:: Equivalent to `local_shared_ptr(r, p).swap(*this)`.
```
template<class Y> void reset(local_shared_ptr<Y> && r, element_type * p) noexcept;
```
[none]
* {blank}
+
Effects::
Equivalent to `local_shared_ptr(std::move(r), p).swap(*this)`.
### indirection
```
T & operator*() const noexcept;
```
[none]
* {blank}
+
Requires:: `T` should not be an array type.
Returns:: `*get()`.
```
T * operator->() const noexcept;
```
[none]
* {blank}
+
Requires:: `T` should not be an array type.
Returns:: `get()`.
```
element_type & operator[](std::ptrdiff_t i) const noexcept;
```
[none]
* {blank}
+
Requires:: `T` should be an array type. The stored pointer must not be 0. `i >= 0`. If `T` is `U[N]`, `i < N`.
Returns:: `get()[i]`.
### get
```
element_type * get() const noexcept;
```
[none]
* {blank}
+
Returns::
The stored pointer.
### local_use_count
```
long local_use_count() const noexcept;
```
[none]
* {blank}
+
Returns::
The number of `local_shared_ptr` objects, `*this` included, that share ownership with `*this`, or 0 when `*this` is empty.
### conversions
```
explicit operator bool() const noexcept;
```
[none]
* {blank}
+
Returns:: `get() != 0`.
NOTE: On C++03 compilers, the return value is of an unspecified type.
```
template<class Y> operator shared_ptr<Y>() const noexcept;
```
```
template<class Y> operator weak_ptr<Y>() const noexcept;
```
[none]
* {blank}
+
Requires:: `T*` should be convertible to `Y*`.
Returns:: a copy of the owned `shared_ptr`.
### swap
```
void swap(local_shared_ptr & b) noexcept;
```
[none]
* {blank}
+
Effects::
Exchanges the contents of the two smart pointers.
### owner_before
```
template<class Y> bool owner_before(local_shared_ptr<Y> const & r) const noexcept;
```
[none]
* {blank}
+
Returns::
See the description of `operator<`.
### owner_equals
```
template<class Y> bool owner_equals(local_shared_ptr<Y> const & r) const noexcept;
```
[none]
* {blank}
+
Returns::
`true` if and only if `*this` and `r` share ownership or are both empty.
## Free Functions
### comparison
```
template<class T, class U>
bool operator==(local_shared_ptr<T> const & a, local_shared_ptr<U> const & b) noexcept;
```
```
template<class T, class U>
bool operator==(local_shared_ptr<T> const & a, shared_ptr<U> const & b) noexcept;
```
```
template<class T, class U>
bool operator==(shared_ptr<T> const & a, local_shared_ptr<U> const & b) noexcept;
```
[none]
* {blank}
+
Returns:: `a.get() == b.get()`.
```
template<class T, class U>
bool operator!=(local_shared_ptr<T> const & a, local_shared_ptr<U> const & b) noexcept;
```
```
template<class T, class U>
bool operator!=(local_shared_ptr<T> const & a, shared_ptr<U> const & b) noexcept;
```
```
template<class T, class U>
bool operator!=(shared_ptr<T> const & a, local_shared_ptr<U> const & b) noexcept;
```
[none]
* {blank}
+
Returns:: `a.get() != b.get()`.
```
template<class T> bool operator==(local_shared_ptr<T> const & p, std::nullptr_t) noexcept;
```
```
template<class T> bool operator==(std::nullptr_t, local_shared_ptr<T> const & p) noexcept;
```
[none]
* {blank}
+
Returns:: `p.get() == 0`.
```
template<class T> bool operator!=(local_shared_ptr<T> const & p, std::nullptr_t) noexcept;
```
```
template<class T> bool operator!=(std::nullptr_t, local_shared_ptr<T> const & p) noexcept;
```
[none]
* {blank}
+
Returns:: `p.get() != 0`.
```
template<class T, class U>
bool operator<(local_shared_ptr<T> const & a, local_shared_ptr<U> const & b) noexcept;
```
[none]
* {blank}
+
Returns:: An unspecified value such that
- `operator<` is a strict weak ordering as described in section [lib.alg.sorting] of the {cpp} standard;
- under the equivalence relation defined by `operator<`, `!(a < b) && !(b < a)`, two `local_shared_ptr` instances
are equivalent if and only if they share ownership or are both empty.
NOTE: Allows `local_shared_ptr` objects to be used as keys in associative containers.
NOTE: The rest of the comparison operators are omitted by design.
### swap
```
template<class T> void swap(local_shared_ptr<T> & a, local_shared_ptr<T> & b) noexcept;
```
[none]
* {blank}
+
Effects::
Equivalent to `a.swap(b)`.
### get_pointer
```
template<class T>
typename local_shared_ptr<T>::element_type *
get_pointer(local_shared_ptr<T> const & p) noexcept;
```
[none]
* {blank}
+
Returns:: `p.get()`.
NOTE: Provided as an aid to generic programming. Used by `mem_fn`.
### static_pointer_cast
```
template<class T, class U>
local_shared_ptr<T> static_pointer_cast(local_shared_ptr<U> const & r) noexcept;
```
[none]
* {blank}
+
Requires:: The expression `static_cast<T*>( (U*)0 )` must be well-formed.
Returns:: `local_shared_ptr<T>( r, static_cast<typename local_shared_ptr<T>::element_type*>(r.get()) )`.
CAUTION: The seemingly equivalent expression `local_shared_ptr<T>(static_cast<T*>(r.get()))` will eventually
result in undefined behavior, attempting to delete the same object twice.
### const_pointer_cast
```
template<class T, class U>
local_shared_ptr<T> const_pointer_cast(local_shared_ptr<U> const & r) noexcept;
```
[none]
* {blank}
+
Requires:: The expression `const_cast<T*>( (U*)0 )` must be well-formed.
Returns:: `local_shared_ptr<T>( r, const_cast<typename local_shared_ptr<T>::element_type*>(r.get()) )`.
### dynamic_pointer_cast
```
template<class T, class U>
local_shared_ptr<T> dynamic_pointer_cast(local_shared_ptr<U> const & r) noexcept;
```
[none]
* {blank}
+
Requires:: The expression `dynamic_cast<T*>( (U*)0 )` must be well-formed.
Returns::
- When `dynamic_cast<typename local_shared_ptr<T>::element_type*>(r.get())` returns a nonzero value `p`, `local_shared_ptr<T>(r, p)`;
- Otherwise, `local_shared_ptr<T>()`.
### reinterpret_pointer_cast
```
template<class T, class U>
local_shared_ptr<T> reinterpret_pointer_cast(local_shared_ptr<U> const & r) noexcept;
```
[none]
* {blank}
+
Requires:: The expression `reinterpret_cast<T*>( (U*)0 )` must be well-formed.
Returns:: `local_shared_ptr<T>( r, reinterpret_cast<typename local_shared_ptr<T>::element_type*>(r.get()) )`.
### operator<<
```
template<class E, class T, class Y>
std::basic_ostream<E, T> &
operator<< (std::basic_ostream<E, T> & os, local_shared_ptr<Y> const & p);
```
[none]
* {blank}
+
Effects:: `os << p.get();`.
Returns:: `os`.
### get_deleter
```
template<class D, class T>
D * get_deleter(local_shared_ptr<T> const & p) noexcept;
```
[none]
* {blank}
+
Returns:: If `*this` owns a `shared_ptr` instance `p`, `get_deleter<D>( p )`, otherwise 0.

View File

@@ -0,0 +1,81 @@
////
Copyright 2017 Glen Joseph Fernandes (glenjofe@gmail.com)
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[#make_local_shared]
# make_local_shared: Creating local_shared_ptr
:toc:
:toc-title:
:idprefix: make_local_shared_
## Description
The function templates `make_local_shared` and `allocate_local_shared` provide
convenient, safe and efficient ways to create `local_shared_ptr` objects. They
are analogous to `make_shared` and `allocate_shared` for `shared_ptr`.
## Synopsis
`make_local_shared` and `allocate_local_shared` are defined in
`<boost/smart_ptr/make_local_shared.hpp>`.
[subs=+quotes]
```
namespace boost {
`// T is not an array`
template<class T, class... Args>
local_shared_ptr<T> make_local_shared(Args&&... args);
template<class T, class A, class... Args>
local_shared_ptr<T> allocate_local_shared(const A& a, Args&&... args);
`// T is an array of unknown bounds`
template<class T>
local_shared_ptr<T> make_local_shared(std::size_t n);
template<class T, class A>
local_shared_ptr<T> allocate_local_shared(const A& a, std::size_t n);
`// T is an array of known bounds`
template<class T>
local_shared_ptr<T> make_local_shared();
template<class T, class A>
local_shared_ptr<T> allocate_local_shared(const A& a);
`// T is an array of unknown bounds`
template<class T>
local_shared_ptr<T> make_local_shared(std::size_t n,
const remove_extent_t<T>& v);
template<class T, class A>
local_shared_ptr<T> allocate_local_shared(const A& a, std::size_t n,
const remove_extent_t<T>& v);
`// T is an array of known bounds`
template<class T>
local_shared_ptr<T> make_local_shared(const remove_extent_t<T>& v);
template<class T, class A>
local_shared_ptr<T> allocate_local_shared(const A& a,
const remove_extent_t<T>& v);
`// T is not an array of known bounds`
template<class T>
local_shared_ptr<T> make_local_shared_noinit();
template<class T, class A>
local_shared_ptr<T> allocate_local_shared_noinit(const A& a);
`// T is an array of unknown bounds`
template<class T>
local_shared_ptr<T> make_local_shared_noinit(std::size_t n);
template<class T, class A>
local_shared_ptr<T> allocate_local_shared_noinit(const A& a,
std::size_t n);
}
```
## Description
The requirements and effects of these functions are the same as `make_shared`
and `allocate_shared`, except that a `local_shared_ptr` is returned.

View File

@@ -0,0 +1,296 @@
////
Copyright 2017 Peter Dimov
Copyright 2017 Glen Joseph Fernandes (glenjofe@gmail.com)
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[#make_shared]
# make_shared: Creating shared_ptr
:toc:
:toc-title:
:idprefix: make_shared_
## Description
The function templates `make_shared` and `allocate_shared` provide convenient,
safe and efficient ways to create `shared_ptr` objects.
## Rationale
Consistent use of `shared_ptr` can eliminate the need to use an explicit
`delete`, but alone it provides no support in avoiding explicit `new`. There
were repeated requests from users for a factory function that creates an
object of a given type and returns a `shared_ptr` to it. Besides convenience
and style, such a function is also exception safe and considerably faster
because it can use a single allocation for both the object and its
corresponding control block, eliminating a significant portion of
`shared_ptr` construction overhead. This eliminates one of the major
efficiency complaints about `shared_ptr`.
The family of overloaded function templates, `make_shared` and
`allocate_shared`, were provided to address this need. `make_shared` uses the
global `operator new` to allocate memory, whereas `allocate_shared` uses an
user-supplied allocator, allowing finer control.
The rationale for choosing the name `make_shared` is that the expression
`make_shared<Widget>()` can be read aloud and conveys the intended meaning.
Originally the Boost function templates `allocate_shared` and `make_shared`
were provided for scalar objects only. There was a need to have efficient
allocation of array objects. One criticism of class template `shared_array`
was always the lack of a utility like `make_shared` that uses only a single
allocation. When `shared_ptr` was enhanced to support array types, additional
overloads of `allocate_shared` and `make_shared` were provided for array
types.
## Synopsis
`make_shared` and `allocate_shared` are defined in
`<boost/smart_ptr/make_shared.hpp>`.
[subs=+quotes]
```
namespace boost {
`// T is not an array`
template<class T, class... Args>
shared_ptr<T> make_shared(Args&&... args);
template<class T, class A, class... Args>
shared_ptr<T> allocate_shared(const A& a, Args&&... args);
`// T is an array of unknown bounds`
template<class T>
shared_ptr<T> make_shared(std::size_t n);
template<class T, class A>
shared_ptr<T> allocate_shared(const A& a, std::size_t n);
`// T is an array of known bounds`
template<class T>
shared_ptr<T> make_shared();
template<class T, class A>
shared_ptr<T> allocate_shared(const A& a);
`// T is an array of unknown bounds`
template<class T> shared_ptr<T>
make_shared(std::size_t n, const remove_extent_t<T>& v);
template<class T, class A> shared_ptr<T>
allocate_shared(const A& a, std::size_t n, const remove_extent_t<T>& v);
`// T is an array of known bounds`
template<class T>
shared_ptr<T> make_shared(const remove_extent_t<T>& v);
template<class T, class A>
shared_ptr<T> allocate_shared(const A& a, const remove_extent_t<T>& v);
`// T is not an array of unknown bounds`
template<class T>
shared_ptr<T> make_shared_noinit();
template<class T, class A>
shared_ptr<T> allocate_shared_noinit(const A& a);
`// T is an array of unknown bounds`
template<class T>
shared_ptr<T> make_shared_noinit(std::size_t n);
template<class T, class A>
shared_ptr<T> allocate_shared_noinit(const A& a, std::size_t n);
}
```
## Common Requirements
The common requirements that apply to all `make_shared` and `allocate_shared`
overloads, unless specified otherwise, are described below.
Requires:: `A` shall be an _allocator_. The copy constructor and destructor
of `A` shall not throw exceptions.
Effects:: Allocates memory for an object of type `T` or `n` objects of `U`
(if `T` is an array type of the form `U[]` and `n` is determined by
arguments, as specified by the concrete overload). The object is initialized
from arguments as specified by the concrete overload. Uses a rebound copy of
`a` (for an unspecified `value_type`) to allocate memory. If an exception is
thrown, the functions have no effect.
Returns:: A `shared_ptr` instance that stores and owns the address of the
newly constructed object.
Postconditions:: `r.get() != 0` and `r.use_count() == 1`, where `r`
is the return value.
Throws:: `std::bad_alloc`, an exception thrown from `A::allocate`, or from the
initialization of the object.
Remarks::
* Performs no more than one memory allocation. This provides efficiency
equivalent to an intrusive smart pointer.
* When an object of an array type is specified to be initialized to a value of
the same type `v`, this shall be interpreted to mean that each array element
of the object is initialized to the corresponding element from `v`.
* When an object of an array type is specified to be value-initialized, this
shall be interpreted to mean that each array element of the object is
value-initialized.
* When a (sub)object of non-array type `U` is specified to be initialized to
a value `v`, or constructed from `args\...`, `make_shared` shall perform
this initialization via the expression `::new(p) U(expr)` (where
`_expr_` is `v` or `std::forward<Args>(args)\...)` respectively) and `p`
has type `void*` and points to storage suitable to hold an object of type
`U`.
* When a (sub)object of non-array type `U` is specified to be initialized to
a value `v`, or constructed from `args\...`, `allocate_shared` shall
perform this initialization via the expression
`std::allocator_traits<A2>::construct(a2, p, expr)` (where
`_expr_` is `v` or `std::forward<Args>(args)\...)` respectively), `p`
points to storage suitable to hold an object of type `U`, and `a2` of
type `A2` is a potentially rebound copy of `a`.
* When a (sub)object of non-array type `U` is specified to be
default-initialized, `make_shared_noinit` and `allocate_shared_noinit` shall
perform this initialization via the expression `::new(p) U`, where
`p` has type `void*` and points to storage suitable to hold an object of
type `U`.
* When a (sub)object of non-array type `U` is specified to be
value-initialized, `make_shared` shall perform this initialization via the
expression `::new(p) U()`, where `p` has type `void*` and points to
storage suitable to hold an object of type `U`.
* When a (sub)object of non-array type `U` is specified to be
value-initialized, `allocate_shared` shall perform this initialization via the
expression `std::allocator_traits<A2>::construct(a2, p)`, where
`p` points to storage suitable to hold an object of type `U` and `a2` of
type `A2` is a potentially rebound copy of `a`.
* Array elements are initialized in ascending order of their addresses.
* When the lifetime of the object managed by the return value ends, or when
the initialization of an array element throws an exception, the initialized
elements should be destroyed in the reverse order of their construction.
NOTE: These functions will typically allocate more memory than the total size
of the element objects to allow for internal bookkeeping structures such as
the reference counts.
## Free Functions
```
template<class T, class... Args>
shared_ptr<T> make_shared(Args&&... args);
```
```
template<class T, class A, class... Args>
shared_ptr<T> allocate_shared(const A& a, Args&&... args);
```
[none]
* {blank}
+
Constraints:: `T` is not an array.
Returns:: A `shared_ptr` to an object of type `T`, constructed from
`args\...`.
Examples::
* `auto p = make_shared<int>();`
* `auto p = make_shared<std::vector<int> >(16, 1);`
```
template<class T>
shared_ptr<T> make_shared(std::size_t n);
```
```
template<class T, class A>
shared_ptr<T> allocate_shared(const A& a, std::size_t n);
```
[none]
* {blank}
+
Constraints:: `T` is an array of unknown bounds.
Returns:: A `shared_ptr` to a sequence of `n` value-initialized objects of
type `remove_extent_t<T>`.
Examples::
* `auto p = make_shared<double[]>(1024);`
* `auto p = make_shared<double[][2][2]>(6);`
```
template<class T>
shared_ptr<T> make_shared();
```
```
template<class T, class A>
shared_ptr<T> allocate_shared(const A& a);
```
[none]
* {blank}
+
Constraints:: `T` is an array of known bounds.
Returns:: A `shared_ptr` to a sequence of `extent_v<T>` value-initialized
objects of type `remove_extent_t<T>`.
Examples::
* `auto p = make_shared<double[1024]>();`
* `auto p = make_shared<double[6][2][2]>();`
```
template<class T> shared_ptr<T>
make_shared(std::size_t n, const remove_extent_t<T>& v);
```
```
template<class T, class A> shared_ptr<T>
allocate_shared(const A& a, std::size_t n, const remove_extent_t<T>& v);
```
[none]
* {blank}
+
Constraints:: `T` is an array of unknown bounds.
Returns:: A `shared_ptr` to a sequence of `n` objects of type
`remove_extent_t<T>`, each initialized to `v`.
Examples::
* `auto p = make_shared<double[]>(1024, 1.0);`
* `auto p = make_shared<double[][2]>(6, {1.0, 0.0});`
* `auto p = make_shared<std::vector<int>[]>(4, {1, 2});`
```
template<class T>
shared_ptr<T> make_shared(const remove_extent_t<T>& v);
```
```
template<class T, class A>
shared_ptr<T> allocate_shared(const A& a, const remove_extent_t<T>& v);
```
[none]
* {blank}
+
Constraints:: `T` is an array of known bounds.
Returns:: A `shared_ptr` to a sequence of `extent_v<T>` objects of type
`remove_extent_t<T>`, each initialized to `v`.
Examples::
* `auto p = make_shared<double[1024]>(1.0);`
* `auto p = make_shared<double[6][2]>({1.0, 0.0});`
* `auto p = make_shared<std::vector<int>[4]>({1, 2});`
```
template<class T>
shared_ptr<T> make_shared_noinit();
```
```
template<class T, class A>
shared_ptr<T> allocate_shared_noinit(const A& a);
```
[none]
* {blank}
+
Constraints:: `T` is not an array, or is an array of known bounds.
Returns:: A `shared_ptr` to a default-initialized object of type `T`, or a
sequence of `extent_v<T>` default-initialized objects of type
`remove_extent_t<T>`, respectively.
Example:: `auto p = make_shared_noinit<double[1024]>();`
```
template<class T>
shared_ptr<T> make_shared_noinit(std::size_t n);
```
```
template<class T, class A>
shared_ptr<T> allocate_shared_noinit(const A& a, std::size_t n);
```
[none]
* {blank}
+
Constraints:: `T` is an array of unknown bounds.
Returns:: A `shared_ptr` to a sequence of `_n_` default-initialized objects
of type `remove_extent_t<T>`.
Example:: `auto p = make_shared_noinit<double[]>(1024);`

View File

@@ -0,0 +1,120 @@
////
Copyright 2017 Peter Dimov
Copyright 2017 Glen Joseph Fernandes (glenjofe@gmail.com)
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[#make_unique]
# make_unique: Creating unique_ptr
:toc:
:toc-title:
:idprefix: make_unique_
## Description
The `make_unique` function templates provide convenient and safe ways to
create `std::unique_ptr` objects.
## Rationale
The {cpp}11 standard introduced `std::unique_ptr` but did not provide any
`make_unique` utility like `std::make_shared` that provided the same
exception safety and facility to avoid writing `new` expressions. Before it
was implemented by some standard library vendors (and prior to the {cpp}14
standard introducing `std::make_unique`), this library provided it due to
requests from users.
This library also provides additional overloads of `make_unique` for
default-initialization, when users do not need or want to incur the expense
of value-initialization. The {cpp} standard does not yet provide this
feature with `std::make_unique`.
## Synopsis
`make_unique` is defined in `<boost/smart_ptr/make_unique.hpp>`.
[subs=+quotes]
```
namespace boost {
`// T is not an array`
template<class T, class... Args>
std::unique_ptr<T> make_unique(Args&&... args);
`// T is not an array`
template<class T>
std::unique_ptr<T> make_unique(type_identity_t<T>&& v);
`// T is an array of unknown bounds`
template<class T>
std::unique_ptr<T> make_unique(std::size_t n);
`// T is not an array`
template<class T>
std::unique_ptr<T> make_unique_noinit();
`// T is an array of unknown bounds`
template<class T>
std::unique_ptr<T> make_unique_noinit(std::size_t n);
}
```
## Free Functions
```
template<class T, class... Args>
std::unique_ptr<T> make_unique(Args&&... args);
```
[none]
* {blank}
+
Constraints:: `T` is not an array.
Returns:: `std::unique_ptr<T>(new T(std::forward<Args>(args)\...)`.
Example:: `auto p = make_unique<int>();`
```
template<class T>
std::unique_ptr<T> make_unique(type_identity_t<T>&& v);
```
[none]
* {blank}
+
Constraints:: `T` is not an array.
Returns:: `std::unique_ptr<T>(new T(std::move(v))`.
Example:: `auto p = make_unique<std::vector<int> >({1, 2});`
```
template<class T>
std::unique_ptr<T> make_unique(std::size_t n);
```
[none]
* {blank}
+
Constraints:: `T` is an array of unknown bounds.
Returns:: `std::unique_ptr<T>(new remove_extent_t<T>[n]())`.
Example:: `auto p = make_unique<double[]>(1024);`
```
template<class T>
std::unique_ptr<T> make_unique_noinit();
```
[none]
* {blank}
+
Constraints:: `T` is not an array.
Returns:: `std::unique_ptr<T>(new T)`.
Example:: `auto p = make_unique_noinit<std::array<double, 1024> >();`
```
template<class T>
std::unique_ptr<T> make_unique_noinit(std::size_t n);
```
[none]
* {blank}
+
Constraints:: `T` is an array of unknown bounds.
Returns:: `std::unique_ptr<T>(new remove_extent_t<T>[n])`.
Example:: `auto p = make_unique_noinit<double[]>(1024);`

View File

@@ -0,0 +1,45 @@
////
Copyright 2020 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
https://www.boost.org/LICENSE_1_0.txt
////
[#owner_equal_to]
# owner_equal_to
:toc:
:toc-title:
:idprefix: owner_equal_to_
## Description
`owner_equal_to<T>` is a helper function object that compares two smart
pointer objects using `owner_equals`.
## Synopsis
`owner_equal_to` is defined in `<boost/smart_ptr/owner_equal_to.hpp>`.
```
namespace boost {
template<class T = void> struct owner_equal_to
{
typedef bool result_type;
typedef T first_argument_type;
typedef T second_argument_type;
template<class U, class V> bool operator()( U const & u, V const & v ) const noexcept;
};
}
```
## Members
```
template<class U, class V> bool operator()( U const & u, V const & v ) const noexcept;
```
[none]
* {blank}
+
Returns::
`u.owner_equals( v )`.

View File

@@ -0,0 +1,56 @@
////
Copyright 2020 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
https://www.boost.org/LICENSE_1_0.txt
////
[#owner_hash]
# owner_hash
:toc:
:toc-title:
:idprefix: owner_hash_to_
## Description
`owner_hash<T>` is a helper function object that takes a smart pointer `p`
and returns `p.owner_hash_value()`. It's useful for creating unordered
containers of `shared_ptr` that use ownership-based equality, instead of
the default pointer value equality. (It can be used with `weak_ptr` too,
but there's no need, because `boost::hash` and `std::hash` for `weak_ptr`
already use ownership-based equality.)
## Example
```
std::unordered_set< boost::shared_ptr<void>,
boost::owner_hash< boost::shared_ptr<void> >,
boost::owner_equal_to< boost::shared_ptr<void> > > set;
```
## Synopsis
`owner_hash` is defined in `<boost/smart_ptr/owner_hash.hpp>`.
```
namespace boost {
template<class T> struct owner_hash
{
typedef std::size_t result_type;
typedef T argument_type;
std::size_t operator()( T const & p ) const noexcept;
};
}
```
## Members
```
std::size_t operator()( T const & p ) const noexcept;
```
[none]
* {blank}
+
Returns::
`p.owner_hash_value()`.

View File

@@ -0,0 +1,50 @@
////
Copyright 2020 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
https://www.boost.org/LICENSE_1_0.txt
////
[#owner_less]
# owner_less
:toc:
:toc-title:
:idprefix: owner_less_
## Description
`owner_less<T>` is a helper function object that compares two smart
pointer objects using `owner_before`. It is only provided for compatibility
with {cpp}11 and corresponds to the standard component of the same name.
When using Boost smart pointers, the use of `owner_less` is unnecessary, as
the supplied `operator<` overloads (and, correspondingly, `std::less`) return
the same result.
## Synopsis
`owner_less` is defined in `<boost/smart_ptr/owner_less.hpp>`.
```
namespace boost {
template<class T = void> struct owner_less
{
typedef bool result_type;
typedef T first_argument_type;
typedef T second_argument_type;
template<class U, class V> bool operator()( U const & u, V const & v ) const noexcept;
};
}
```
## Members
```
template<class U, class V> bool operator()( U const & u, V const & v ) const noexcept;
```
[none]
* {blank}
+
Returns::
`u.owner_before( v )`.

View File

@@ -0,0 +1,237 @@
////
Copyright 2017 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[#pointer_cast]
# Generic Pointer Casts
:toc:
:toc-title:
:idprefix: pointer_cast_
## Description
The pointer cast function templates (`static_pointer_cast`,
`dynamic_pointer_cast`, `const_pointer_cast`, and `reinterpret_pointer_cast`)
provide a way to write generic pointer castings for raw pointers,
`std::shared_ptr` and `std::unique_ptr`.
There is test and example code in
link:../../test/pointer_cast_test.cpp[pointer_cast_test.cpp]
## Rationale
Boost smart pointers usually overload those functions to provide a mechanism
to emulate pointers casts. For example, `shared_ptr<T>` implements a static
pointer cast this way:
```
template<class T, class U>
shared_ptr<T> static_pointer_cast(const shared_ptr<U>& p);
```
Pointer cast functions templates are overloads of `static_pointer_cast`,
`dynamic_pointer_cast`, `const_pointer_cast`, and `reinterpret_pointer_cast`
for raw pointers, `std::shared_ptr` and `std::unique_ptr`. This way when
developing pointer type independent classes, for example, memory managers or
shared memory compatible classes, the same code can be used for raw and smart
pointers.
## Synopsis
The generic pointer casts are defined in `<boost/pointer_cast.hpp>`.
```
namespace boost {
template<class T, class U> T* static_pointer_cast(U* p) noexcept;
template<class T, class U> T* dynamic_pointer_cast(U* p) noexcept;
template<class T, class U> T* const_pointer_cast(U* p) noexcept;
template<class T, class U> T* reinterpret_pointer_cast(U* p) noexcept;
template<class T, class U> std::shared_ptr<T>
static_pointer_cast(const std::shared_ptr<U>& p) noexcept;
template<class T, class U> std::shared_ptr<T>
dynamic_pointer_cast(const std::shared_ptr<U>& p) noexcept;
template<class T, class U> std::shared_ptr<T>
const_pointer_cast(const std::shared_ptr<U>& p) noexcept;
template<class T, class U> std::shared_ptr<T>
reinterpret_pointer_cast(const std::shared_ptr<U>& p) noexcept;
template<class T, class U> std::unique_ptr<T>
static_pointer_cast(std::unique_ptr<U>&& p) noexcept;
template<class T, class U> std::unique_ptr<T>
dynamic_pointer_cast(std::unique_ptr<U>&& p) noexcept;
template<class T, class U> std::unique_ptr<T>
const_pointer_cast(std::unique_ptr<U>&& p) noexcept;
template<class T, class U> std::unique_ptr<T>
reinterpret_pointer_cast(std::unique_ptr<U>&& p) noexcept;
}
```
## Free Functions
### static_pointer_cast
```
template<class T, class U> T* static_pointer_cast(U* p) noexcept;
```
[none]
* {blank}
+
Returns:: `static_cast<T*>(p)`
```
template<class T, class U> std::shared_ptr<T>
static_pointer_cast(const std::shared_ptr<U>& p) noexcept;
```
[none]
* {blank}
+
Returns:: `std::static_pointer_cast<T>(p)`
```
template<class T, class U> std::unique_ptr<T>
static_pointer_cast(std::unique_ptr<U>&& p) noexcept;
```
[none]
* {blank}
+
Requires:: The expression `static_cast<T*>((U*)0)` must be well-formed.
Returns:: `std::unique_ptr<T>(static_cast<typename
std::unique_ptr<T>::element_type*>(p.release()))`.
CAUTION: The seemingly equivalent expression
`std::unique_ptr<T>(static_cast<T*>(p.get()))` will eventually result in
undefined behavior, attempting to delete the same object twice.
### dynamic_pointer_cast
```
template<class T, class U> T* dynamic_pointer_cast(U* p) noexcept;
```
[none]
* {blank}
+
Returns:: `dynamic_cast<T*>(p)`
```
template<class T, class U> std::shared_ptr<T>
dynamic_pointer_cast(const std::shared_ptr<U>& p) noexcept;
```
[none]
* {blank}
+
Returns:: `std::dynamic_pointer_cast<T>(p)`
```
template<class T, class U> std::unique_ptr<T>
dynamic_pointer_cast(std::unique_ptr<U>&& p) noexcept;
```
[none]
* {blank}
+
Requires::
* The expression `static_cast<T*>((U*)0)` must be well-formed.
* `T` must have a virtual destructor.
Returns::
* When `dynamic_cast<typename std::unique_ptr<T>::element_type*>(p.get())`
returns a non-zero value, `std::unique_ptr<T>(dynamic_cast<typename
std::unique_ptr<T>::element_type*>(p.release()));`.
* Otherwise, `std::unique_ptr<T>()`.
### const_pointer_cast
```
template<class T, class U> T* const_pointer_cast(U* p) noexcept;
```
[none]
* {blank}
+
Returns:: `const_cast<T*>(p)`
```
template<class T, class U> std::shared_ptr<T>
const_pointer_cast(const std::shared_ptr<U>& p) noexcept;
```
[none]
* {blank}
+
Returns:: `std::const_pointer_cast<T>(p)`
```
template<class T, class U> std::unique_ptr<T>
const_pointer_cast(std::unique_ptr<U>&& p) noexcept;
```
[none]
* {blank}
+
Requires:: The expression `const_cast<T*>((U*)0)` must be well-formed.
Returns:: `std::unique_ptr<T>(const_cast<typename
std::unique_ptr<T>::element_type*>(p.release()))`.
### reinterpret_pointer_cast
```
template<class T, class U> T* reinterpret_pointer_cast(U* p) noexcept;
```
[none]
* {blank}
+
Returns:: `reinterpret_cast<T*>(p)`
```
template<class T, class U> std::shared_ptr<T>
reinterpret_pointer_cast(const std::shared_ptr<U>& p) noexcept;
```
[none]
* {blank}
+
Returns:: `std::reinterpret_pointer_cast<T>(p)`
```
template<class T, class U> std::unique_ptr<T>
reinterpret_pointer_cast(std::unique_ptr<U>&& p) noexcept;
```
[none]
* {blank}
+
Requires:: The expression `reinterpret_cast<T*>((U*)0)` must be well-formed.
Returns:: `std::unique_ptr<T>(reinterpret_cast<typename
std::unique_ptr<T>::element_type*>(p.release()))`.
## Example
The following example demonstrates how the generic pointer casts help us
create pointer independent code.
```
#include <boost/pointer_cast.hpp>
#include <boost/shared_ptr.hpp>
class base {
public:
virtual ~base() { }
};
class derived : public base { };
template<class Ptr>
void check_if_it_is_derived(const Ptr& ptr)
{
assert(boost::dynamic_pointer_cast<derived>(ptr) != 0);
}
int main()
{
base* ptr = new derived;
boost::shared_ptr<base> sptr(new derived);
check_if_it_is_derived(ptr);
check_if_it_is_derived(sptr);
delete ptr;
}
```

View File

@@ -0,0 +1,114 @@
////
Copyright 2005, 2006 Ion Gaztañaga
Copyright 2005, 2006, 2017 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[#pointer_to_other]
# pointer_to_other
:toc:
:toc-title:
:idprefix: pointer_to_other_
## Description
The `pointer_to_other` utility provides a way, given a source pointer type, to obtain a pointer of the same type
to another pointee type.
There is test/example code in link:../../test/pointer_to_other_test.cpp[pointer_to_other_test.cpp].
## Rationale
When building pointer independent classes, like memory managers, allocators, or containers, there is often a need to
define pointers generically, so that if a template parameter represents a pointer (for example, a raw or smart pointer
to an `int`), we can define another pointer of the same type to another pointee (a raw or smart pointer to a `float`.)
```
template <class IntPtr> class FloatPointerHolder
{
// Let's define a pointer to a float
typedef typename boost::pointer_to_other
<IntPtr, float>::type float_ptr_t;
float_ptr_t float_ptr;
};
```
## Synopsis
`pointer_to_other` is defined in `<boost/smart_ptr/pointer_to_other.hpp>`.
```
namespace boost {
template<class T, class U> struct pointer_to_other;
template<class T, class U,
template <class> class Sp>
struct pointer_to_other< Sp<T>, U >
{
typedef Sp<U> type;
};
template<class T, class T2, class U,
template <class, class> class Sp>
struct pointer_to_other< Sp<T, T2>, U >
{
typedef Sp<U, T2> type;
};
template<class T, class T2, class T3, class U,
template <class, class, class> class Sp>
struct pointer_to_other< Sp<T, T2, T3>, U >
{
typedef Sp<U, T2, T3> type;
};
template<class T, class U>
struct pointer_to_other< T*, U >
{
typedef U* type;
};
}
```
If these definitions are not correct for a specific smart pointer, we can define a specialization of `pointer_to_other`.
## Example
```
// Let's define a memory allocator that can
// work with raw and smart pointers
#include <boost/pointer_to_other.hpp>
template <class VoidPtr>
class memory_allocator
{
// Predefine a memory_block
struct block;
// Define a pointer to a memory_block from a void pointer
// If VoidPtr is void *, block_ptr_t is block*
// If VoidPtr is smart_ptr<void>, block_ptr_t is smart_ptr<block>
typedef typename boost::pointer_to_other
<VoidPtr, block>::type block_ptr_t;
struct block
{
std::size_t size;
block_ptr_t next_block;
};
block_ptr_t free_blocks;
};
```
As we can see, using `pointer_to_other` we can create pointer independent code.

View File

@@ -0,0 +1,175 @@
////
Copyright 1999 Greg Colvin and Beman Dawes
Copyright 2002 Darin Adler
Copyright 2002-2005, 2017 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[#scoped_array]
# scoped_array: Scoped Array Ownership
:toc:
:toc-title:
:idprefix: scoped_array_
## Description
The `scoped_array` class template stores a pointer to a dynamically allocated array.
(Dynamically allocated arrays are allocated with the {cpp} `new[]` expression.) The array
pointed to is guaranteed to be deleted, either on destruction of the `scoped_array`,
or via an explicit `reset`.
The `scoped_array` template is a simple solution for simple needs. It supplies a basic
"resource acquisition is initialization" facility, without shared-ownership or
transfer-of-ownership semantics. Both its name and enforcement of semantics
(by being noncopyable) signal its intent to retain ownership solely within the current scope.
Because it is noncopyable, it is safer than `shared_ptr<T[]>` for pointers which should not be copied.
Because `scoped_array` is so simple, in its usual implementation every operation is as fast as a
built-in array pointer and it has no more space overhead that a built-in array pointer.
It cannot be used in {cpp} standard library containers. See `shared_ptr<T[]>` if `scoped_array`
does not meet your needs.
It cannot correctly hold a pointer to a single object. See `scoped_ptr` for that usage.
`std::vector` is an alternative to `scoped_array` that is a bit heavier duty but far more flexible.
`boost::array` is an alternative that does not use dynamic allocation.
The class template is parameterized on `T`, the type of the object pointed to.
## Synopsis
`scoped_array` is defined in `<boost/smart_ptr/scoped_array.hpp>`.
```
namespace boost {
template<class T> class scoped_array {
private:
scoped_array(scoped_array const &);
scoped_array & operator=(scoped_array const &);
void operator==( scoped_array const& ) const;
void operator!=( scoped_array const& ) const;
public:
typedef T element_type;
explicit scoped_array(T * p = 0) noexcept;
~scoped_array() noexcept;
void reset(T * p = 0) noexcept;
T & operator[](std::ptrdiff_t i) const noexcept;
T * get() const noexcept;
explicit operator bool () const noexcept;
void swap(scoped_array & b) noexcept;
};
template<class T> void swap(scoped_array<T> & a, scoped_array<T> & b) noexcept;
template<class T>
bool operator==( scoped_array<T> const & p, std::nullptr_t ) noexcept;
template<class T>
bool operator==( std::nullptr_t, scoped_array<T> const & p ) noexcept;
template<class T>
bool operator!=( scoped_array<T> const & p, std::nullptr_t ) noexcept;
template<class T>
bool operator!=( std::nullptr_t, scoped_array<T> const & p ) noexcept;
}
```
## Members
### element_type
typedef T element_type;
Provides the type of the stored pointer.
### constructors
explicit scoped_array(T * p = 0) noexcept;
Constructs a `scoped_array`, storing a copy of `p`, which must have been
allocated via a {cpp} `new[]` expression or be 0. `T` is not required be a complete type.
### destructor
~scoped_array() noexcept;
Deletes the array pointed to by the stored pointer. Note that `delete[]` on a pointer with
a value of 0 is harmless. `T` must be complete, and `delete[]` on the stored pointer must
not throw exceptions.
### reset
void reset(T * p = 0) noexcept;
Deletes the array pointed to by the stored pointer and then stores a copy of `p`,
which must have been allocated via a {cpp} `new[]` expression or be 0. `T` must be complete,
and `delete[]` on the stored pointer must not throw exceptions.
### subscripting
T & operator[](std::ptrdiff_t i) const noexcept;
Returns a reference to element `i` of the array pointed to by the stored pointer.
Behavior is undefined and almost certainly undesirable if the stored pointer is 0,
or if `i` is less than 0 or is greater than or equal to the number of elements in
the array.
### get
T * get() const noexcept;
Returns the stored pointer. `T` need not be a complete type.
### conversions
explicit operator bool () const noexcept;
Returns `get() != 0`.
NOTE: On C++03 compilers, the return value is of an unspecified type.
### swap
void swap(scoped_array & b) noexcept;
Exchanges the contents of the two smart pointers. `T` need not be a complete type.
## Free Functions
### swap
template<class T> void swap(scoped_array<T> & a, scoped_array<T> & b) noexcept;
Equivalent to `a.swap(b)`.
### comparisons
template<class T>
bool operator==( scoped_array<T> const & p, std::nullptr_t ) noexcept;
template<class T>
bool operator==( std::nullptr_t, scoped_array<T> const & p ) noexcept;
Returns `p.get() == nullptr`.
template<class T>
bool operator!=( scoped_array<T> const & p, std::nullptr_t ) noexcept;
template<class T>
bool operator!=( std::nullptr_t, scoped_array<T> const & p ) noexcept;
Returns `p.get() != nullptr`.

View File

@@ -0,0 +1,234 @@
////
Copyright 2017 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[#scoped_ptr]
# scoped_ptr: Scoped Object Ownership
:toc:
:toc-title:
:idprefix: scoped_ptr_
## Description
The `scoped_ptr` class template stores a pointer to a dynamically allocated object.
(Dynamically allocated objects are allocated with the {cpp} `new` expression.) The
object pointed to is guaranteed to be deleted, either on destruction of the `scoped_ptr`,
or via an explicit `reset`. See the <<scoped_ptr_example,example>>.
`scoped_ptr` is a simple solution for simple needs. It supplies a basic "resource acquisition
is initialization" facility, without shared-ownership or transfer-of-ownership semantics.
Both its name and enforcement of semantics (by being noncopyable) signal its intent to retain
ownership solely within the current scope. Because it is noncopyable, it is safer than `shared_ptr`
for pointers which should not be copied.
Because `scoped_ptr` is simple, in its usual implementation every operation is as fast as for a
built-in pointer and it has no more space overhead that a built-in pointer.
`scoped_ptr` cannot be used in {cpp} Standard Library containers. Use `shared_ptr` or `std::unique_ptr`
if you need a smart pointer that can.
`scoped_ptr` cannot correctly hold a pointer to a dynamically allocated array. See `scoped_array` for that usage.
The class template is parameterized on `T`, the type of the object pointed to. Destroying `T` must not thow exceptions,
and `T` must be complete at the point `scoped_ptr<T>::~scoped_ptr` is instantiated.
## Synopsis
`scoped_ptr` is defined in `<boost/smart_ptr/scoped_ptr.hpp>`.
```
namespace boost {
template<class T> class scoped_ptr {
private:
scoped_ptr(scoped_ptr const&);
scoped_ptr& operator=(scoped_ptr const&);
void operator==(scoped_ptr const&) const;
void operator!=(scoped_ptr const&) const;
public:
typedef T element_type;
explicit scoped_ptr(T * p = 0) noexcept;
~scoped_ptr() noexcept;
void reset(T * p = 0) noexcept;
T & operator*() const noexcept;
T * operator->() const noexcept;
T * get() const noexcept;
explicit operator bool() const noexcept;
void swap(scoped_ptr & b) noexcept;
};
template<class T> void swap(scoped_ptr<T> & a, scoped_ptr<T> & b) noexcept;
template<class T>
bool operator==( scoped_ptr<T> const & p, std::nullptr_t ) noexcept;
template<class T>
bool operator==( std::nullptr_t, scoped_ptr<T> const & p ) noexcept;
template<class T>
bool operator!=( scoped_ptr<T> const & p, std::nullptr_t ) noexcept;
template<class T>
bool operator!=( std::nullptr_t, scoped_ptr<T> const & p ) noexcept;
}
```
## Members
### element_type
typedef T element_type;
Provides the type of the stored pointer.
### constructor
explicit scoped_ptr(T * p = 0) noexcept;
Constructs a `scoped_ptr`, storing a copy of `p`, which must have been allocated via a
{cpp} `new` expression or be 0. `T` is not required be a complete type.
### destructor
~scoped_ptr() noexcept;
Destroys the object pointed to by the stored pointer, if any, as if by using
`delete this\->get()`. `T` must be a complete type.
### reset
void reset(T * p = 0) noexcept;
Deletes the object pointed to by the stored pointer and then stores a copy of
`p`, which must have been allocated via a {cpp} `new` expression or be 0.
Since the previous object needs to be deleted, `T` must be a complete type.
### indirection
T & operator*() const noexcept;
Returns a reference to the object pointed to by the stored pointer. Behavior is undefined if the stored pointer is 0.
T * operator->() const noexcept;
Returns the stored pointer. Behavior is undefined if the stored pointer is 0.
### get
T * get() const noexcept;
Returns the stored pointer. `T` need not be a complete type.
### conversions
explicit operator bool () const noexcept; // never throws
Returns `get() != 0`.
NOTE: On C++03 compilers, the return value is of an unspecified type.
### swap
void swap(scoped_ptr & b) noexcept;
Exchanges the contents of the two smart pointers. `T` need not be a complete type.
## Free Functions
### swap
template<class T> void swap(scoped_ptr<T> & a, scoped_ptr<T> & b) noexcept;
Equivalent to `a.swap(b)`.
### comparisons
template<class T> bool operator==( scoped_ptr<T> const & p, std::nullptr_t ) noexcept;
template<class T> bool operator==( std::nullptr_t, scoped_ptr<T> const & p ) noexcept;
Returns `p.get() == nullptr`.
template<class T> bool operator!=( scoped_ptr<T> const & p, std::nullptr_t ) noexcept;
template<class T> bool operator!=( std::nullptr_t, scoped_ptr<T> const & p ) noexcept;
Returns `p.get() != nullptr`.
## Example
Here's an example that uses `scoped_ptr`.
```
#include <boost/scoped_ptr.hpp>
#include <iostream>
struct Shoe { ~Shoe() { std::cout << "Buckle my shoe\n"; } };
class MyClass {
boost::scoped_ptr<int> ptr;
public:
MyClass() : ptr(new int) { *ptr = 0; }
int add_one() { return ++*ptr; }
};
int main()
{
boost::scoped_ptr<Shoe> x(new Shoe);
MyClass my_instance;
std::cout << my_instance.add_one() << '\n';
std::cout << my_instance.add_one() << '\n';
}
```
The example program produces the beginning of a child's nursery rhyme:
```
1
2
Buckle my shoe
```
## Rationale
The primary reason to use `scoped_ptr` rather than `std::auto_ptr` or `std::unique_ptr` is to let readers of your code
know that you intend "resource acquisition is initialization" to be applied only for the current scope, and have no intent to transfer ownership.
A secondary reason to use `scoped_ptr` is to prevent a later maintenance programmer from adding a function that transfers
ownership by returning the `auto_ptr`, because the maintenance programmer saw `auto_ptr`, and assumed ownership could safely be transferred.
Think of `bool` vs `int`. We all know that under the covers `bool` is usually just an `int`. Indeed, some argued against including bool in the {cpp}
standard because of that. But by coding `bool` rather than `int`, you tell your readers what your intent is. Same with `scoped_ptr`; by using it you are signaling intent.
It has been suggested that `scoped_ptr<T>` is equivalent to `std::auto_ptr<T> const`. Ed Brey pointed out, however, that `reset` will not work on a `std::auto_ptr<T> const`.
## Handle/Body Idiom
One common usage of `scoped_ptr` is to implement a handle/body (also called pimpl) idiom which avoids exposing the body (implementation) in the header file.
The `link:../../example/scoped_ptr_example_test.cpp[scoped_ptr_example_test.cpp]` sample program includes a header file,
`link:../../example/scoped_ptr_example.hpp[scoped_ptr_example.hpp]`, which uses a `scoped_ptr<>` to an incomplete type to hide the
implementation. The instantiation of member functions which require a complete type occurs in the `link:../../example/scoped_ptr_example.cpp[scoped_ptr_example.cpp]`
implementation file.
## Frequently Asked Questions
[qanda]
Why doesn't `scoped_ptr` have a `release()` member?::
When reading source code, it is valuable to be able to draw conclusions about program behavior based on the types being used. If `scoped_ptr` had a `release()` member,
it would become possible to transfer ownership of the held pointer, weakening its role as a way of limiting resource lifetime to a given context. Use `std::auto_ptr` where
transfer of ownership is required. (supplied by Dave Abrahams)

View File

@@ -0,0 +1,298 @@
////
Copyright 2017 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[[shared_array]]
[appendix]
# shared_array (deprecated)
:toc:
:toc-title:
:idprefix: shared_array_
NOTE: This facility is deprecated because a `shared_ptr` to `T[]` or `T[N]`
is now available, and is superior in every regard.
## Description
The `shared_array` class template stores a pointer to a dynamically allocated
array. (Dynamically allocated array are allocated with the C++ `new[]`
expression.) The object pointed to is guaranteed to be deleted when the last
`shared_array` pointing to it is destroyed or reset.
Every `shared_array` meets the _CopyConstructible_ and _Assignable_
requirements of the {cpp} Standard Library, and so can be used in standard
library containers. Comparison operators are supplied so that shared_array
works with the standard library's associative containers.
Normally, a `shared_array` cannot correctly hold a pointer to an object that
has been allocated with the non-array form of `new`. See `shared_ptr` for that
usage.
Because the implementation uses reference counting, cycles of `shared_array`
instances will not be reclaimed. For example, if `main` holds a shared_array
to `A`, which directly or indirectly holds a shared_array back to `A`, the use
count of `A` will be 2. Destruction of the original `shared_array` will leave
`A` dangling with a use count of 1.
A `shared_ptr` to a `std::vector` is an alternative to a `shared_array` that
is a bit heavier duty but far more flexible.
The class template is parameterized on `T`, the type of the object pointed to.
`shared_array` and most of its member functions place no requirements on `T`;
it is allowed to be an incomplete type, or `void`. Member functions that do
place additional requirements (constructors, reset) are explicitly documented
below.
## Synopsis
```
namespace boost {
template<class T> class shared_array {
public:
typedef T element_type;
explicit shared_array(T* p = 0);
template<class D> shared_array(T* p, D d);
shared_array(const shared_array& v) noexcept;
~shared_array() noexcept;
shared_array& operator=(const shared_array& v) noexcept;
void reset(T* p = 0);
template<class D> void reset(T* p, D d);
T& operator[](std::ptrdiff_t n) const noexcept;
T* get() const noexcept;
bool unique() const noexcept;
long use_count() const noexcept;
explicit operator bool() const noexcept;
void swap(shared_array<T>& v) noexcept;
};
template<class T> bool
operator==(const shared_array<T>& a, const shared_array<T>& b) noexcept;
template<class T> bool
operator!=(const shared_array<T>& a, const shared_array<T>& b) noexcept;
template<class T> bool
operator<(const shared_array<T>& a, const shared_array<T>& b) noexcept;
template<class T>
void swap(shared_array<T>& a, shared_array<T>& b) noexcept;
}
```
## Members
### element_type
```
typedef T element_type;
```
Type:: Provides the type of the stored pointer.
### Constructors
```
explicit shared_array(T* p = 0);
```
[none]
* {blank}
+
Effects:: Constructs a `shared_array`, storing a copy of `p`, which must be a
pointer to an array that was allocated via a C++ `new[]` expression or be 0.
Afterwards, the use count is 1 (even if `p == 0`; see `~shared_array`).
Requires:: `T` is a complete type.
Throws:: `std::bad_alloc`. If an exception is thrown, `delete[] p` is called.
```
template<class D> shared_array(T* p, D d);
```
[none]
* {blank}
+
Effects:: Constructs a `shared_array`, storing a copy of `p` and of `d`.
Afterwards, the use count is 1. When the the time comes to delete the array
pointed to by `p`, the object `d` is used in the statement `d(p)`.
Requires::
* `T` is a complete type.
* The copy constructor and destructor of `D` must not throw.
* Invoking the object `d` with parameter `p` must not throw.
Throws:: `std::bad_alloc`. If an exception is thrown, `d(p)` is called.
```
shared_array(const shared_array& v) noexcept;
```
[none]
* {blank}
+
Effects:: Constructs a `shared_array`, as if by storing a copy of the pointer
stored in `v`. Afterwards, the use count for all copies is 1 more than the
initial use count.
Requires:: `T` is a complete type.
### Destructor
```
~shared_array() noexcept;
```
[none]
* {blank}
+
Effects:: Decrements the use count. Then, if the use count is 0, deletes the
array pointed to by the stored pointer. Note that `delete[]` on a pointer with
a value of 0 is harmless.
### Assignment
```
shared_array& operator=(const shared_array& v) noexcept;
```
[none]
* {blank}
+
Effects:: Constructs a new `shared_array` as described above, then replaces
this `shared_array` with the new one, destroying the replaced object.
Requires:: `T` is a complete type.
Returns:: `*this`.
### reset
```
void reset(T* p = 0);
```
[none]
* {blank}
+
Effects:: Constructs a new `shared_array` as described above, then replaces
this `shared_array` with the new one, destroying the replaced object.
Requires:: `T` is a complete type.
Throws:: `std::bad_alloc`. If an exception is thrown, `delete[] p` is called.
```
template<class D> void reset(T* p, D d);
```
[none]
* {blank}
+
Effects:: Constructs a new `shared_array` as described above, then replaces
this `shared_array` with the new one, destroying the replaced object.
Requires::
* `T` is a complete type.
* The copy constructor of `D` must not throw.
Throws:: `std::bad_alloc`. If an exception is thrown, `d(p)` is called.
### Indexing
```
T& operator[](std::ptrdiff_t n) const noexcept;
```
Returns:: A reference to element `n` of the array pointed to by the stored
pointer. Behavior is undefined and almost certainly undesirable if the stored
pointer is 0, or if `n` is less than 0 or is greater than or equal to the
number of elements in the array.
Requires:: `T` is a complete type.
### get
```
T* get() const noexcept;
```
[none]
* {blank}
+
Returns:: The stored pointer.
### unique
```
bool unique() const noexcept;
```
[none]
* {blank}
+
Returns:: `true` if no other `shared_array` is sharing ownership of the
stored pointer, `false` otherwise.
### use_count
```
long use_count() const noexcept;
```
[none]
* {blank}
+
Returns:: The number of `shared_array` objects sharing ownership of the
stored pointer.
### Conversions
```
explicit operator bool() const noexcept;
```
[none]
* {blank}
+
Returns:: `get() != 0`.
Requires:: `T` is a complete type.
### swap
```
void swap(shared_array<T>& b) noexcept;
```
[none]
* {blank}
+
Effects:: Exchanges the contents of the two smart pointers.
## Free Functions
### Comparison
```
template<class T> bool
operator==(const shared_array<T>& a, const shared_array<T>& b) noexcept;
```
```
template<class T> bool
operator!=(const shared_array<T>& a, const shared_array<T>& b) noexcept;
```
```
template<class T> bool
operator<(const shared_array<T>& a, const shared_array<T>& b) noexcept;
```
[none]
* {blank}
+
Returns:: The result of comparing the stored pointers of the two smart
pointers.
NOTE: The `operator<` overload is provided to define an ordering so that
`shared_array` objects can be used in associative containers such as
`std::map`. The implementation uses `std::less<T*>` to perform the comparison.
This ensures that the comparison is handled correctly, since the standard
mandates that relational operations on pointers are unspecified (5.9
[expr.rel] paragraph 2) but `std::less` on pointers is well-defined (20.3.3
[lib.comparisons] paragraph 8).
### swap
```
template<class T>
void swap(shared_array<T>& a, shared_array<T>& b) noexcept;
```
[none]
* {blank}
+
Returns:: `a.swap(b)`.
Requires:: `T` is a complete type.

View File

@@ -0,0 +1,768 @@
////
Copyright 2003, 2017 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[[techniques]]
[appendix]
# Smart Pointer Programming Techniques
:toc:
:toc-title:
:idprefix: techniques_
[#techniques_incomplete]
## Using incomplete classes for implementation hiding
A proven technique (that works in C, too) for separating interface from implementation is to use a pointer to an incomplete class as an opaque handle:
```
class FILE;
FILE * fopen(char const * name, char const * mode);
void fread(FILE * f, void * data, size_t size);
void fclose(FILE * f);
```
It is possible to express the above interface using `shared_ptr`, eliminating the need to manually call `fclose`:
```
class FILE;
shared_ptr<FILE> fopen(char const * name, char const * mode);
void fread(shared_ptr<FILE> f, void * data, size_t size);
```
This technique relies on `shared_ptr`&#8217;s ability to execute a custom deleter, eliminating the explicit call to `fclose`, and on the fact that `shared_ptr<X>` can be copied and destroyed when `X` is incomplete.
## The "Pimpl" idiom
A {cpp} specific variation of the incomplete class pattern is the "Pimpl" idiom. The incomplete class is not exposed to the user; it is hidden behind a forwarding facade. `shared_ptr` can be used to implement a "Pimpl":
```
// file.hpp:
class file
{
private:
class impl;
shared_ptr<impl> pimpl_;
public:
file(char const * name, char const * mode);
// compiler generated members are fine and useful
void read(void * data, size_t size);
};
// file.cpp:
#include "file.hpp"
class file::impl
{
private:
impl(impl const &);
impl & operator=(impl const &);
// private data
public:
impl(char const * name, char const * mode) { ... }
~impl() { ... }
void read(void * data, size_t size) { ... }
};
file::file(char const * name, char const * mode): pimpl_(new impl(name, mode))
{
}
void file::read(void * data, size_t size)
{
pimpl_->read(data, size);
}
```
The key thing to note here is that the compiler-generated copy constructor, assignment operator, and destructor all have a sensible meaning. As a result, `file` is `CopyConstructible` and `Assignable`, allowing its use in standard containers.
## Using abstract classes for implementation hiding
Another widely used C++ idiom for separating inteface and implementation is to use abstract base classes and factory functions.
The abstract classes are sometimes called "interfaces" and the pattern is known as "interface-based programming". Again,
`shared_ptr` can be used as the return type of the factory functions:
```
// X.hpp:
class X
{
public:
virtual void f() = 0;
virtual void g() = 0;
protected:
~X() {}
};
shared_ptr<X> createX();
// X.cpp:
class X_impl: public X
{
private:
X_impl(X_impl const &);
X_impl & operator=(X_impl const &);
public:
virtual void f()
{
// ...
}
virtual void g()
{
// ...
}
};
shared_ptr<X> createX()
{
shared_ptr<X> px(new X_impl);
return px;
}
```
A key property of `shared_ptr` is that the allocation, construction, deallocation, and destruction details are captured at the point of construction, inside the factory function.
Note the protected and nonvirtual destructor in the example above. The client code cannot, and does not need to, delete a pointer to `X`; the `shared_ptr<X>` instance returned from `createX` will correctly call `~X_impl`.
## Preventing `delete px.get()`
It is often desirable to prevent client code from deleting a pointer that is being managed by `shared_ptr`. The previous technique showed one possible approach, using a protected destructor. Another alternative is to use a private deleter:
```
class X
{
private:
~X();
class deleter;
friend class deleter;
class deleter
{
public:
void operator()(X * p) { delete p; }
};
public:
static shared_ptr<X> create()
{
shared_ptr<X> px(new X, X::deleter());
return px;
}
};
```
## Encapsulating allocation details, wrapping factory functions
`shared_ptr` can be used in creating {cpp} wrappers over existing C style library interfaces that return raw pointers from their factory functions
to encapsulate allocation details. As an example, consider this interface, where `CreateX` might allocate `X` from its own private heap, `~X` may
be inaccessible, or `X` may be incomplete:
X * CreateX();
void DestroyX(X *);
The only way to reliably destroy a pointer returned by `CreateX` is to call `DestroyX`.
Here is how a `shared_ptr`-based wrapper may look like:
shared_ptr<X> createX()
{
shared_ptr<X> px(CreateX(), DestroyX);
return px;
}
Client code that calls `createX` still does not need to know how the object has been allocated, but now the destruction is automatic.
[#techniques_static]
## Using a shared_ptr to hold a pointer to a statically allocated object
Sometimes it is desirable to create a `shared_ptr` to an already existing object, so that the `shared_ptr` does not attempt to destroy the
object when there are no more references left. As an example, the factory function:
shared_ptr<X> createX();
in certain situations may need to return a pointer to a statically allocated `X` instance.
The solution is to use a custom deleter that does nothing:
```
struct null_deleter
{
void operator()(void const *) const
{
}
};
static X x;
shared_ptr<X> createX()
{
shared_ptr<X> px(&x, null_deleter());
return px;
}
```
The same technique works for any object known to outlive the pointer.
## Using a shared_ptr to hold a pointer to a COM Object
Background: COM objects have an embedded reference count and two member functions that manipulate it. `AddRef()` increments the count.
`Release()` decrements the count and destroys itself when the count drops to zero.
It is possible to hold a pointer to a COM object in a `shared_ptr`:
shared_ptr<IWhatever> make_shared_from_COM(IWhatever * p)
{
p->AddRef();
shared_ptr<IWhatever> pw(p, mem_fn(&IWhatever::Release));
return pw;
}
Note, however, that `shared_ptr` copies created from `pw` will not "register" in the embedded count of the COM object;
they will share the single reference created in `make_shared_from_COM`. Weak pointers created from `pw` will be invalidated when the last
`shared_ptr` is destroyed, regardless of whether the COM object itself is still alive.
As link:../../../../libs/bind/mem_fn.html#Q3[explained] in the `mem_fn` documentation, you need to `#define BOOST_MEM_FN_ENABLE_STDCALL` first.
[#techniques_intrusive]
## Using a shared_ptr to hold a pointer to an object with an embedded reference count
This is a generalization of the above technique. The example assumes that the object implements the two functions required by `<<intrusive_ptr,intrusive_ptr>>`,
`intrusive_ptr_add_ref` and `intrusive_ptr_release`:
```
template<class T> struct intrusive_deleter
{
void operator()(T * p)
{
if(p) intrusive_ptr_release(p);
}
};
shared_ptr<X> make_shared_from_intrusive(X * p)
{
if(p) intrusive_ptr_add_ref(p);
shared_ptr<X> px(p, intrusive_deleter<X>());
return px;
}
```
## Using a shared_ptr to hold another shared ownership smart pointer
One of the design goals of `shared_ptr` is to be used in library interfaces. It is possible to encounter a situation where a library takes a
`shared_ptr` argument, but the object at hand is being managed by a different reference counted or linked smart pointer.
It is possible to exploit `shared_ptr`&#8217;s custom deleter feature to wrap this existing smart pointer behind a `shared_ptr` facade:
```
template<class P> struct smart_pointer_deleter
{
private:
P p_;
public:
smart_pointer_deleter(P const & p): p_(p)
{
}
void operator()(void const *)
{
p_.reset();
}
P const & get() const
{
return p_;
}
};
shared_ptr<X> make_shared_from_another(another_ptr<X> qx)
{
shared_ptr<X> px(qx.get(), smart_pointer_deleter< another_ptr<X> >(qx));
return px;
}
```
One subtle point is that deleters are not allowed to throw exceptions, and the above example as written assumes that `p_.reset()` doesn't throw.
If this is not the case, `p_.reset();` should be wrapped in a `try {} catch(...) {}` block that ignores exceptions. In the (usually unlikely) event
when an exception is thrown and ignored, `p_` will be released when the lifetime of the deleter ends. This happens when all references, including
weak pointers, are destroyed or reset.
Another twist is that it is possible, given the above `shared_ptr` instance, to recover the original smart pointer, using `<<shared_ptr_get_deleter,get_deleter>>`:
```
void extract_another_from_shared(shared_ptr<X> px)
{
typedef smart_pointer_deleter< another_ptr<X> > deleter;
if(deleter const * pd = get_deleter<deleter>(px))
{
another_ptr<X> qx = pd->get();
}
else
{
// not one of ours
}
}
```
[#techniques_from_raw]
## Obtaining a shared_ptr from a raw pointer
Sometimes it is necessary to obtain a `shared_ptr` given a raw pointer to an object that is already managed by another `shared_ptr` instance. Example:
void f(X * p)
{
shared_ptr<X> px(???);
}
Inside `f`, we'd like to create a `shared_ptr` to `*p`.
In the general case, this problem has no solution. One approach is to modify `f` to take a `shared_ptr`, if possible:
void f(shared_ptr<X> px);
The same transformation can be used for nonvirtual member functions, to convert the implicit `this`:
void X::f(int m);
would become a free function with a `shared_ptr` first argument:
void f(shared_ptr<X> this_, int m);
If `f` cannot be changed, but `X` uses intrusive counting, use `<<techniques_intrusive,make_shared_from_intrusive>>` described above. Or, if it's known that the `shared_ptr` created in `f` will never outlive the object, use <<techniques_static,a null deleter>>.
## Obtaining a shared_ptr (weak_ptr) to this in a constructor
Some designs require objects to register themselves on construction with a central authority. When the registration routines take a `shared_ptr`, this leads to the question how could a constructor obtain a `shared_ptr` to `this`:
```
class X
{
public:
X()
{
shared_ptr<X> this_(???);
}
};
```
In the general case, the problem cannot be solved. The `X` instance being constructed can be an automatic variable or a static variable; it can be created on the heap:
shared_ptr<X> px(new X);
but at construction time, `px` does not exist yet, and it is impossible to create another `shared_ptr` instance that shares ownership with it.
Depending on context, if the inner `shared_ptr this_` doesn't need to keep the object alive, use a `null_deleter` as explained <<techniques_static,here>> and <<techniques_weak_without_shared,here>>.
If `X` is supposed to always live on the heap, and be managed by a `shared_ptr`, use a static factory function:
```
class X
{
private:
X() { ... }
public:
static shared_ptr<X> create()
{
shared_ptr<X> px(new X);
// use px as 'this_'
return px;
}
};
```
## Obtaining a shared_ptr to this
Sometimes it is needed to obtain a `shared_ptr` from `this` in a virtual member function under the assumption that `this` is already managed by a `shared_ptr`.
The transformations <<techniques_from_raw,described in the previous technique>> cannot be applied.
A typical example:
```
class X
{
public:
virtual void f() = 0;
protected:
~X() {}
};
class Y
{
public:
virtual shared_ptr<X> getX() = 0;
protected:
~Y() {}
};
// --
class impl: public X, public Y
{
public:
impl() { ... }
virtual void f() { ... }
virtual shared_ptr<X> getX()
{
shared_ptr<X> px(???);
return px;
}
};
```
The solution is to keep a weak pointer to `this` as a member in `impl`:
```
class impl: public X, public Y
{
private:
weak_ptr<impl> weak_this;
impl(impl const &);
impl & operator=(impl const &);
impl() { ... }
public:
static shared_ptr<impl> create()
{
shared_ptr<impl> pi(new impl);
pi->weak_this = pi;
return pi;
}
virtual void f() { ... }
virtual shared_ptr<X> getX()
{
shared_ptr<X> px(weak_this);
return px;
}
};
```
The library now includes a helper class template `<<enable_shared_from_this,enable_shared_from_this>>` that can be used to encapsulate the solution:
```
class impl: public X, public Y, public enable_shared_from_this<impl>
{
public:
impl(impl const &);
impl & operator=(impl const &);
public:
virtual void f() { ... }
virtual shared_ptr<X> getX()
{
return shared_from_this();
}
}
```
Note that you no longer need to manually initialize the `weak_ptr` member in `enable_shared_from_this`. Constructing a `shared_ptr` to `impl` takes care of that.
## Using shared_ptr as a smart counted handle
Some library interfaces use opaque handles, a variation of the <<techniques_incomplete,incomplete class technique>> described above. An example:
```
typedef void * HANDLE;
HANDLE CreateProcess();
void CloseHandle(HANDLE);
```
Instead of a raw pointer, it is possible to use `shared_ptr` as the handle and get reference counting and automatic resource management for free:
```
typedef shared_ptr<void> handle;
handle createProcess()
{
shared_ptr<void> pv(CreateProcess(), CloseHandle);
return pv;
}
```
## Using shared_ptr to execute code on block exit
`shared_ptr<void>` can automatically execute cleanup code when control leaves a scope.
* Executing `f(p)`, where `p` is a pointer:
+
```
shared_ptr<void> guard(p, f);
```
* Executing arbitrary code: `f(x, y)`:
+
```
shared_ptr<void> guard(static_cast<void*>(0), bind(f, x, y));
```
## Using shared_ptr<void> to hold an arbitrary object
`shared_ptr<void>` can act as a generic object pointer similar to `void*`. When a `shared_ptr<void>` instance constructed as:
shared_ptr<void> pv(new X);
is destroyed, it will correctly dispose of the `X` object by executing `~X`.
This propery can be used in much the same manner as a raw `void*` is used to temporarily strip type information from an object pointer.
A `shared_ptr<void>` can later be cast back to the correct type by using `<<shared_ptr_static_pointer_cast,static_pointer_cast>>`.
## Associating arbitrary data with heterogeneous `shared_ptr` instances
`shared_ptr` and `weak_ptr` support `operator<` comparisons required by standard associative containers such as `std::map`. This can be
used to non-intrusively associate arbitrary data with objects managed by `shared_ptr`:
```
typedef int Data;
std::map<shared_ptr<void>, Data> userData;
// or std::map<weak_ptr<void>, Data> userData; to not affect the lifetime
shared_ptr<X> px(new X);
shared_ptr<int> pi(new int(3));
userData[px] = 42;
userData[pi] = 91;
```
## Using `shared_ptr` as a `CopyConstructible` mutex lock
Sometimes it's necessary to return a mutex lock from a function, and a noncopyable lock cannot be returned by value. It is possible to use `shared_ptr` as a mutex lock:
```
class mutex
{
public:
void lock();
void unlock();
};
shared_ptr<mutex> lock(mutex & m)
{
m.lock();
return shared_ptr<mutex>(&m, mem_fn(&mutex::unlock));
}
```
Better yet, the `shared_ptr` instance acting as a lock can be encapsulated in a dedicated `shared_lock` class:
```
class shared_lock
{
private:
shared_ptr<void> pv;
public:
template<class Mutex> explicit shared_lock(Mutex & m): pv((m.lock(), &m), mem_fn(&Mutex::unlock)) {}
};
```
`shared_lock` can now be used as:
shared_lock lock(m);
Note that `shared_lock` is not templated on the mutex type, thanks to `shared_ptr<void>`&#8217;s ability to hide type information.
## Using shared_ptr to wrap member function calls
`shared_ptr` implements the ownership semantics required from the `Wrap/CallProxy` scheme described in Bjarne Stroustrup's article
"Wrapping C++ Member Function Calls" (available online at http://www.stroustrup.com/wrapper.pdf). An implementation is given below:
```
template<class T> class pointer
{
private:
T * p_;
public:
explicit pointer(T * p): p_(p)
{
}
shared_ptr<T> operator->() const
{
p_->prefix();
return shared_ptr<T>(p_, mem_fn(&T::suffix));
}
};
class X
{
private:
void prefix();
void suffix();
friend class pointer<X>;
public:
void f();
void g();
};
int main()
{
X x;
pointer<X> px(&x);
px->f();
px->g();
}
```
## Delayed deallocation
In some situations, a single `px.reset()` can trigger an expensive deallocation in a performance-critical region:
```
class X; // ~X is expensive
class Y
{
shared_ptr<X> px;
public:
void f()
{
px.reset();
}
};
```
The solution is to postpone the potential deallocation by moving `px` to a dedicated free list that can be periodically emptied when performance and response times are not an issue:
```
vector< shared_ptr<void> > free_list;
class Y
{
shared_ptr<X> px;
public:
void f()
{
free_list.push_back(px);
px.reset();
}
};
// periodically invoke free_list.clear() when convenient
```
Another variation is to move the free list logic to the construction point by using a delayed deleter:
```
struct delayed_deleter
{
template<class T> void operator()(T * p)
{
try
{
shared_ptr<void> pv(p);
free_list.push_back(pv);
}
catch(...)
{
}
}
};
```
[#techniques_weak_without_shared]
## Weak pointers to objects not managed by a shared_ptr
Make the object hold a `shared_ptr` to itself, using a `null_deleter`:
```
class X
{
private:
shared_ptr<X> this_;
int i_;
public:
explicit X(int i): this_(this, null_deleter()), i_(i)
{
}
// repeat in all constructors (including the copy constructor!)
X(X const & rhs): this_(this, null_deleter()), i_(rhs.i_)
{
}
// do not forget to not assign this_ in the copy assignment
X & operator=(X const & rhs)
{
i_ = rhs.i_;
}
weak_ptr<X> get_weak_ptr() const { return this_; }
};
```
When the object's lifetime ends, `X::this_` will be destroyed, and all weak pointers will automatically expire.

View File

@@ -0,0 +1,368 @@
////
Copyright 1999 Greg Colvin and Beman Dawes
Copyright 2002 Darin Adler
Copyright 2002-2005, 2017 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt
////
[#weak_ptr]
# weak_ptr: Non-owning Observer
:toc:
:toc-title:
:idprefix: weak_ptr_
## Description
The `weak_ptr` class template stores a "weak reference" to an object that's already managed by a `shared_ptr`.
To access the object, a `weak_ptr` can be converted to a `shared_ptr` using the `shared_ptr` constructor taking
`weak_ptr`, or the `weak_ptr` member function `lock`. When the last `shared_ptr` to the object goes away and the
object is deleted, the attempt to obtain a `shared_ptr` from the `weak_ptr` instances that refer to the deleted
object will fail: the constructor will throw an exception of type `boost::bad_weak_ptr`, and `weak_ptr::lock` will
return an empty `shared_ptr`.
Every `weak_ptr` meets the `CopyConstructible` and `Assignable` requirements of the {cpp} Standard Library, and so
can be used in standard library containers. Comparison operators are supplied so that `weak_ptr` works with the standard
library's associative containers.
`weak_ptr` operations never throw exceptions.
The class template is parameterized on `T`, the type of the object pointed to.
Compared to `shared_ptr`, `weak_ptr` provides a very limited subset of operations since accessing its stored pointer is
often dangerous in multithreaded programs, and sometimes unsafe even within a single thread (that is, it may invoke undefined
behavior.) Pretend for a moment that `weak_ptr` had a get member function that returned a raw pointer, and consider this innocent
piece of code:
```
shared_ptr<int> p(new int(5));
weak_ptr<int> q(p);
// some time later
if(int * r = q.get())
{
// use *r
}
```
Imagine that after the `if`, but immediately before `r` is used, another thread executes the statement `p.reset()`. Now `r` is a dangling pointer.
The solution to this problem is to create a temporary `shared_ptr` from `q`:
```
shared_ptr<int> p(new int(5));
weak_ptr<int> q(p);
// some time later
if(shared_ptr<int> r = q.lock())
{
// use *r
}
```
Now `r` holds a reference to the object that was pointed by `q`. Even if `p.reset()` is executed in another thread, the object will stay alive until
`r` goes out of scope or is reset. By obtaining a `shared_ptr` to the object, we have effectively locked it against destruction.
## Synopsis
`weak_ptr` is defined in `<boost/smart_ptr/weak_ptr.hpp>`.
```
namespace boost {
template<class T> class weak_ptr {
public:
typedef /*see below*/ element_type;
weak_ptr() noexcept;
template<class Y> weak_ptr(shared_ptr<Y> const & r) noexcept;
weak_ptr(weak_ptr const & r) noexcept;
template<class Y> weak_ptr(weak_ptr<Y> const & r) noexcept;
weak_ptr(weak_ptr && r) noexcept;
template<class Y> weak_ptr(shared_ptr<Y> const & r, element_type * p) noexcept;
template<class Y> weak_ptr(weak_ptr<Y> const & r, element_type * p) noexcept;
template<class Y> weak_ptr(weak_ptr<Y> && r, element_type * p) noexcept;
~weak_ptr() noexcept;
weak_ptr & operator=(weak_ptr const & r) noexcept;
weak_ptr & operator=(weak_ptr && r) noexcept;
template<class Y> weak_ptr & operator=(weak_ptr<Y> const & r) noexcept;
template<class Y> weak_ptr & operator=(shared_ptr<Y> const & r) noexcept;
long use_count() const noexcept;
bool expired() const noexcept;
bool empty() const noexcept;
shared_ptr<T> lock() const noexcept;
void reset() noexcept;
void swap(weak_ptr<T> & b) noexcept;
template<class Y> bool owner_before( weak_ptr<Y> const & r ) const noexcept;
template<class Y> bool owner_before( shared_ptr<Y> const & r ) const noexcept;
template<class Y> bool owner_equals( weak_ptr<Y> const & r ) const noexcept;
template<class Y> bool owner_equals( shared_ptr<Y> const & r ) const noexcept;
std::size_t owner_hash_value() const noexcept;
};
template<class T, class U>
bool operator<(weak_ptr<T> const & a, weak_ptr<U> const & b) noexcept;
template<class T> void swap(weak_ptr<T> & a, weak_ptr<T> & b) noexcept;
}
```
## Members
### element_type
```
typedef ... element_type;
```
`element_type` is `T` when `T` is not an array type, and `U` when `T` is `U[]` or `U[N]`.
### constructors
```
weak_ptr() noexcept;
```
[none]
* {blank}
+
Effects:: Constructs an empty `weak_ptr`.
Postconditions:: `use_count() == 0`.
```
template<class Y> weak_ptr(shared_ptr<Y> const & r) noexcept;
```
```
weak_ptr(weak_ptr const & r) noexcept;
```
```
template<class Y> weak_ptr(weak_ptr<Y> const & r) noexcept;
```
[none]
* {blank}
+
Effects:: If `r` is empty, constructs an empty `weak_ptr`; otherwise, constructs a `weak_ptr` that shares ownership with `r` as if by storing a copy of the pointer stored in `r`.
Postconditions:: `use_count() == r.use_count()`.
```
weak_ptr(weak_ptr && r) noexcept;
```
[none]
* {blank}
+
Effects:: Constructs a `weak_ptr` that has the value `r` held.
Postconditions:: `r` is empty.
### aliasing constructors
```
template<class Y> weak_ptr(shared_ptr<Y> const & r, element_type * p) noexcept;
```
```
template<class Y> weak_ptr(weak_ptr<Y> const & r, element_type * p) noexcept;
```
```
template<class Y> weak_ptr(weak_ptr<Y> && r, element_type * p) noexcept;
```
Effects:: Constructs a `weak_ptr` from `r` as if by using the corresponding converting/copy/move constructor, but stores `p` instead.
Postconditions:: `use_count() == r.use_count()`. When `!expired()`, `shared_ptr<T>(*this).get() == p`.
NOTE: These constructors are an extension, not present in `std::weak_ptr`.
### destructor
```
~weak_ptr() noexcept;
```
[none]
* {blank}
+
Effects::
Destroys this `weak_ptr` but has no effect on the object its stored pointer points to.
### assignment
```
weak_ptr & operator=(weak_ptr const & r) noexcept;
```
```
weak_ptr & operator=(weak_ptr && r) noexcept;
```
```
template<class Y> weak_ptr & operator=(weak_ptr<Y> const & r) noexcept;
```
```
template<class Y> weak_ptr & operator=(shared_ptr<Y> const & r) noexcept;
```
[none]
* {blank}
+
Effects:: Equivalent to `weak_ptr(r).swap(*this)`.
NOTE: The implementation is free to meet the effects (and the implied guarantees) via different means, without creating a temporary.
### use_count
```
long use_count() const noexcept;
```
[none]
* {blank}
+
Returns::
0 if `*this` is empty; otherwise, the number of `shared_ptr` objects that share ownership with `*this`.
### expired
```
bool expired() const noexcept;
```
[none]
* {blank}
+
Returns::
`use_count() == 0`.
### empty
```
bool empty() const noexcept;
```
[none]
* {blank}
+
Returns:: `true` when `*this` is empty, `false` otherwise.
NOTE: This function is an extension, not present in `std::weak_ptr`.
### lock
```
shared_ptr<T> lock() const noexcept;
```
[none]
* {blank}
+
Returns::
`expired()? shared_ptr<T>(): shared_ptr<T>(*this)`.
### reset
```
void reset() noexcept;
```
[none]
* {blank}
+
Effects::
Equivalent to `weak_ptr().swap(*this)`.
### swap
```
void swap(weak_ptr & b) noexcept;
```
[none]
* {blank}
+
Effects::
Exchanges the contents of the two smart pointers.
### owner_before
```
template<class Y> bool owner_before( weak_ptr<Y> const & r ) const noexcept;
```
```
template<class Y> bool owner_before( shared_ptr<Y> const & r ) const noexcept;
```
[none]
* {blank}
+
Returns::
See the description of `operator<`.
### owner_equals
```
template<class Y> bool owner_equals( weak_ptr<Y> const & r ) const noexcept;
```
```
template<class Y> bool owner_equals( shared_ptr<Y> const & r ) const noexcept;
```
[none]
* {blank}
+
Returns::
`true` if and only if `*this` and `r` share ownership or are both empty.
### owner_hash_value
```
std::size_t owner_hash_value() const noexcept;
```
[none]
* {blank}
+
Returns::
An unspecified hash value such that two instances that share ownership
have the same hash value.
## Free Functions
### comparison
```
template<class T, class U>
bool operator<(weak_ptr<T> const & a, weak_ptr<U> const & b) noexcept;
```
[none]
* {blank}
+
Returns:: An unspecified value such that
- `operator<` is a strict weak ordering as described in section [lib.alg.sorting] of the {cpp} standard;
- under the equivalence relation defined by `operator<`, `!(a < b) && !(b < a)`, two `weak_ptr` instances
are equivalent if and only if they share ownership or are both empty.
NOTE: Allows `weak_ptr` objects to be used as keys in associative containers.
### swap
```
template<class T> void swap(weak_ptr<T> & a, weak_ptr<T> & b) noexcept;
```
[none]
* {blank}
+
Effects::
Equivalent to `a.swap(b)`.
## Frequently Asked Questions
[qanda]
Can an object create a weak_ptr to itself in its constructor?::
No. A `weak_ptr` can only be created from a `shared_ptr`, and at object construction time no
`shared_ptr` to the object exists yet. Even if you could create a temporary `shared_ptr` to `this`,
it would go out of scope at the end of the constructor, and all `weak_ptr` instances would instantly expire.
+
The solution is to make the constructor private, and supply a factory function that returns a `shared_ptr`:
+
```
class X
{
private:
X();
public:
static shared_ptr<X> create()
{
shared_ptr<X> px(new X);
// create weak pointers from px here
return px;
}
};
```

View File

@@ -0,0 +1,23 @@
// Boost scoped_ptr_example implementation file -----------------------------//
// Copyright Beman Dawes 2001. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/libs/smart_ptr for documentation.
#include "scoped_ptr_example.hpp"
#include <iostream>
class example::implementation
{
public:
~implementation() { std::cout << "destroying implementation\n"; }
};
example::example() : _imp( new implementation ) {}
void example::do_something() { std::cout << "did something\n"; }
example::~example() {}

View File

@@ -0,0 +1,29 @@
// Boost scoped_ptr_example header file ------------------------------------//
// Copyright Beman Dawes 2001. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/libs/smart_ptr for documentation.
#include <boost/utility.hpp>
#include <boost/scoped_ptr.hpp>
// The point of this example is to prove that even though
// example::implementation is an incomplete type in translation units using
// this header, scoped_ptr< implementation > is still valid because the type
// is complete where it counts - in the inplementation translation unit where
// destruction is actually instantiated.
class example : private boost::noncopyable
{
public:
example();
~example();
void do_something();
private:
class implementation;
boost::scoped_ptr< implementation > _imp; // hide implementation details
};

View File

@@ -0,0 +1,17 @@
// Boost scoped_ptr_example_test main program -------------------------------//
// Copyright Beman Dawes 2001. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/libs/smart_ptr for documentation.
#include "scoped_ptr_example.hpp"
int main()
{
example my_example;
my_example.do_something();
return 0;
}

View File

@@ -0,0 +1,95 @@
// Boost shared_ptr_example.cpp --------------------------------------------//
// Copyright Beman Dawes 2001. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/libs/smart_ptr for documentation.
// Revision History
// 21 May 01 Initial complete version (Beman Dawes)
// The original code for this example appeared in the shared_ptr documentation.
// Ray Gallimore pointed out that foo_set was missing a Compare template
// argument, so would not work as intended. At that point the code was
// turned into an actual .cpp file so it could be compiled and tested.
#include <vector>
#include <set>
#include <iostream>
#include <algorithm>
#include <boost/shared_ptr.hpp>
// The application will produce a series of
// objects of type Foo which later must be
// accessed both by occurrence (std::vector)
// and by ordering relationship (std::set).
struct Foo
{
Foo( int _x ) : x(_x) {}
~Foo() { std::cout << "Destructing a Foo with x=" << x << "\n"; }
int x;
/* ... */
};
typedef boost::shared_ptr<Foo> FooPtr;
struct FooPtrOps
{
bool operator()( const FooPtr & a, const FooPtr & b )
{ return a->x > b->x; }
void operator()( const FooPtr & a )
{ std::cout << a->x << "\n"; }
};
int main()
{
std::vector<FooPtr> foo_vector;
std::set<FooPtr,FooPtrOps> foo_set; // NOT multiset!
FooPtr foo_ptr( new Foo( 2 ) );
foo_vector.push_back( foo_ptr );
foo_set.insert( foo_ptr );
foo_ptr.reset( new Foo( 1 ) );
foo_vector.push_back( foo_ptr );
foo_set.insert( foo_ptr );
foo_ptr.reset( new Foo( 3 ) );
foo_vector.push_back( foo_ptr );
foo_set.insert( foo_ptr );
foo_ptr.reset ( new Foo( 2 ) );
foo_vector.push_back( foo_ptr );
foo_set.insert( foo_ptr );
std::cout << "foo_vector:\n";
std::for_each( foo_vector.begin(), foo_vector.end(), FooPtrOps() );
std::cout << "\nfoo_set:\n";
std::for_each( foo_set.begin(), foo_set.end(), FooPtrOps() );
std::cout << "\n";
// Expected output:
//
// foo_vector:
// 2
// 1
// 3
// 2
//
// foo_set:
// 3
// 2
// 1
//
// Destructing a Foo with x=2
// Destructing a Foo with x=1
// Destructing a Foo with x=3
// Destructing a Foo with x=2
return 0;
}

View File

@@ -0,0 +1,22 @@
// Boost shared_ptr_example2 implementation file -----------------------------//
// Copyright Beman Dawes 2001. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/libs/smart_ptr for documentation.
#include "shared_ptr_example2.hpp"
#include <iostream>
class example::implementation
{
public:
~implementation() { std::cout << "destroying implementation\n"; }
};
example::example() : _imp( new implementation ) {}
void example::do_something()
{ std::cout << "use_count() is " << _imp.use_count() << "\n"; }

View File

@@ -0,0 +1,31 @@
// Boost shared_ptr_example2 header file -----------------------------------//
// Copyright Beman Dawes 2001. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/libs/smart_ptr for documentation.
#include <boost/shared_ptr.hpp>
// This example demonstrates the handle/body idiom (also called pimpl and
// several other names). It separates the interface (in this header file)
// from the implementation (in shared_ptr_example2.cpp).
// Note that even though example::implementation is an incomplete type in
// some translation units using this header, shared_ptr< implementation >
// is still valid because the type is complete where it counts - in the
// shared_ptr_example2.cpp translation unit where functions requiring a
// complete type are actually instantiated.
class example
{
public:
example();
void do_something();
private:
class implementation;
boost::shared_ptr< implementation > _imp; // hide implementation details
};

View File

@@ -0,0 +1,22 @@
// Boost shared_ptr_example2_test main program ------------------------------//
// Copyright Beman Dawes 2001. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/libs/smart_ptr for documentation.
#include "shared_ptr_example2.hpp"
int main()
{
example a;
a.do_something();
example b(a);
b.do_something();
example c;
c = a;
c.do_something();
return 0;
}

View File

@@ -0,0 +1,270 @@
//
// sp_collector.cpp
//
// Copyright (c) 2002, 2003 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
#include <boost/assert.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/detail/lightweight_mutex.hpp>
#include <cstdlib>
#include <map>
#include <deque>
#include <iostream>
typedef std::map< void const *, std::pair<void *, size_t> > map_type;
static map_type & get_map()
{
static map_type m;
return m;
}
typedef boost::detail::lightweight_mutex mutex_type;
static mutex_type & get_mutex()
{
static mutex_type m;
return m;
}
static void * init_mutex_before_main = &get_mutex();
namespace
{
class X;
struct count_layout
{
boost::detail::sp_counted_base * pi;
int id;
};
struct shared_ptr_layout
{
X * px;
count_layout pn;
};
}
// assume 4 byte alignment for pointers when scanning
size_t const pointer_align = 4;
typedef std::map<void const *, long> map2_type;
static void scan_and_count(void const * area, size_t size, map_type const & m, map2_type & m2)
{
unsigned char const * p = static_cast<unsigned char const *>(area);
for(size_t n = 0; n + sizeof(shared_ptr_layout) <= size; p += pointer_align, n += pointer_align)
{
shared_ptr_layout const * q = reinterpret_cast<shared_ptr_layout const *>(p);
if(q->pn.id == boost::detail::shared_count_id && q->pn.pi != 0 && m.count(q->pn.pi) != 0)
{
++m2[q->pn.pi];
}
}
}
typedef std::deque<void const *> open_type;
static void scan_and_mark(void const * area, size_t size, map2_type & m2, open_type & open)
{
unsigned char const * p = static_cast<unsigned char const *>(area);
for(size_t n = 0; n + sizeof(shared_ptr_layout) <= size; p += pointer_align, n += pointer_align)
{
shared_ptr_layout const * q = reinterpret_cast<shared_ptr_layout const *>(p);
if(q->pn.id == boost::detail::shared_count_id && q->pn.pi != 0 && m2.count(q->pn.pi) != 0)
{
open.push_back(q->pn.pi);
m2.erase(q->pn.pi);
}
}
}
static void find_unreachable_objects_impl(map_type const & m, map2_type & m2)
{
// scan objects for shared_ptr members, compute internal counts
{
std::cout << "... " << m.size() << " objects in m.\n";
for(map_type::const_iterator i = m.begin(); i != m.end(); ++i)
{
boost::detail::sp_counted_base const * p = static_cast<boost::detail::sp_counted_base const *>(i->first);
BOOST_ASSERT(p->use_count() != 0); // there should be no inactive counts in the map
m2[ i->first ];
scan_and_count(i->second.first, i->second.second, m, m2);
}
std::cout << "... " << m2.size() << " objects in m2.\n";
}
// mark reachable objects
{
open_type open;
for(map2_type::iterator i = m2.begin(); i != m2.end(); ++i)
{
boost::detail::sp_counted_base const * p = static_cast<boost::detail::sp_counted_base const *>(i->first);
if(p->use_count() != i->second) open.push_back(p);
}
std::cout << "... " << open.size() << " objects in open.\n";
for(open_type::iterator j = open.begin(); j != open.end(); ++j)
{
m2.erase(*j);
}
while(!open.empty())
{
void const * p = open.front();
open.pop_front();
map_type::const_iterator i = m.find(p);
BOOST_ASSERT(i != m.end());
scan_and_mark(i->second.first, i->second.second, m2, open);
}
}
// m2 now contains the unreachable objects
}
std::size_t find_unreachable_objects(bool report)
{
map2_type m2;
#ifdef BOOST_HAS_THREADS
// This will work without the #ifdef, but some compilers warn
// that lock is not referenced
mutex_type::scoped_lock lock(get_mutex());
#endif
map_type const & m = get_map();
find_unreachable_objects_impl(m, m2);
if(report)
{
for(map2_type::iterator j = m2.begin(); j != m2.end(); ++j)
{
map_type::const_iterator i = m.find(j->first);
BOOST_ASSERT(i != m.end());
std::cout << "Unreachable object at " << i->second.first << ", " << i->second.second << " bytes long.\n";
}
}
return m2.size();
}
typedef std::deque< boost::shared_ptr<X> > free_list_type;
static void scan_and_free(void * area, size_t size, map2_type const & m2, free_list_type & free)
{
unsigned char * p = static_cast<unsigned char *>(area);
for(size_t n = 0; n + sizeof(shared_ptr_layout) <= size; p += pointer_align, n += pointer_align)
{
shared_ptr_layout * q = reinterpret_cast<shared_ptr_layout *>(p);
if(q->pn.id == boost::detail::shared_count_id && q->pn.pi != 0 && m2.count(q->pn.pi) != 0 && q->px != 0)
{
boost::shared_ptr<X> * ppx = reinterpret_cast< boost::shared_ptr<X> * >(p);
free.push_back(*ppx);
ppx->reset();
}
}
}
void free_unreachable_objects()
{
free_list_type free;
{
map2_type m2;
#ifdef BOOST_HAS_THREADS
mutex_type::scoped_lock lock(get_mutex());
#endif
map_type const & m = get_map();
find_unreachable_objects_impl(m, m2);
for(map2_type::iterator j = m2.begin(); j != m2.end(); ++j)
{
map_type::const_iterator i = m.find(j->first);
BOOST_ASSERT(i != m.end());
scan_and_free(i->second.first, i->second.second, m2, free);
}
}
std::cout << "... about to free " << free.size() << " objects.\n";
}
// debug hooks
namespace boost
{
void sp_scalar_constructor_hook(void *)
{
}
void sp_scalar_constructor_hook(void * px, std::size_t size, void * pn)
{
#ifdef BOOST_HAS_THREADS
mutex_type::scoped_lock lock(get_mutex());
#endif
get_map()[pn] = std::make_pair(px, size);
}
void sp_scalar_destructor_hook(void *)
{
}
void sp_scalar_destructor_hook(void *, std::size_t, void * pn)
{
#ifdef BOOST_HAS_THREADS
mutex_type::scoped_lock lock(get_mutex());
#endif
get_map().erase(pn);
}
void sp_array_constructor_hook(void *)
{
}
void sp_array_destructor_hook(void *)
{
}
} // namespace boost
#endif // defined(BOOST_SP_ENABLE_DEBUG_HOOKS)

View File

@@ -0,0 +1,243 @@
//
// sp_debug_hooks.cpp
//
// Copyright (c) 2002, 2003 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
#include <boost/assert.hpp>
#include <new>
#include <cstdlib>
int const m = 2; // m * sizeof(int) must be aligned appropriately
// magic values to mark heap blocks with
int const allocated_scalar = 0x1234560C;
int const allocated_array = 0x1234560A;
int const adopted_scalar = 0x0567890C;
int const adopted_array = 0x0567890A;
int const deleted = 0x498769DE;
using namespace std; // for compilers where things aren't in std
// operator new
static new_handler get_new_handler()
{
new_handler p = set_new_handler(0);
set_new_handler(p);
return p;
}
static void * allocate(size_t n, int mark)
{
int * pm;
for(;;)
{
pm = static_cast<int*>(malloc(n + m * sizeof(int)));
if(pm != 0) break;
if(new_handler pnh = get_new_handler())
{
pnh();
}
else
{
return 0;
}
}
*pm = mark;
return pm + m;
}
void * operator new(size_t n) throw(bad_alloc)
{
void * p = allocate(n, allocated_scalar);
#if !defined(BOOST_NO_EXCEPTIONS)
if(p == 0) throw bad_alloc();
#endif
return p;
}
#if !defined(BOOST_BORLANDC) || (BOOST_BORLANDC > 0x551)
void * operator new(size_t n, nothrow_t const &) throw()
{
return allocate(n, allocated_scalar);
}
#endif
void * operator new[](size_t n) throw(bad_alloc)
{
void * p = allocate(n, allocated_array);
#if !defined(BOOST_NO_EXCEPTIONS)
if(p == 0) throw bad_alloc();
#endif
return p;
}
#if !defined(BOOST_BORLANDC) || (BOOST_BORLANDC > 0x551)
void * operator new[](size_t n, nothrow_t const &) throw()
{
return allocate(n, allocated_array);
}
#endif
// debug hooks
namespace boost
{
void sp_scalar_constructor_hook(void * p)
{
if(p == 0) return;
int * pm = static_cast<int*>(p);
pm -= m;
BOOST_ASSERT(*pm != adopted_scalar); // second smart pointer to the same address
BOOST_ASSERT(*pm != allocated_array); // allocated with new[]
BOOST_ASSERT(*pm == allocated_scalar); // not allocated with new
*pm = adopted_scalar;
}
void sp_scalar_constructor_hook(void * px, std::size_t, void *)
{
sp_scalar_constructor_hook(px);
}
void sp_scalar_destructor_hook(void * p)
{
if(p == 0) return;
int * pm = static_cast<int*>(p);
pm -= m;
BOOST_ASSERT(*pm == adopted_scalar); // attempt to destroy nonmanaged block
*pm = allocated_scalar;
}
void sp_scalar_destructor_hook(void * px, std::size_t, void *)
{
sp_scalar_destructor_hook(px);
}
// It is not possible to handle the array hooks in a portable manner.
// The implementation typically reserves a bit of storage for the number
// of objects in the array, and the argument of the array hook isn't
// equal to the return value of operator new[].
void sp_array_constructor_hook(void * /* p */)
{
/*
if(p == 0) return;
// adjust p depending on the implementation
int * pm = static_cast<int*>(p);
pm -= m;
BOOST_ASSERT(*pm != adopted_array); // second smart array pointer to the same address
BOOST_ASSERT(*pm != allocated_scalar); // allocated with new
BOOST_ASSERT(*pm == allocated_array); // not allocated with new[]
*pm = adopted_array;
*/
}
void sp_array_destructor_hook(void * /* p */)
{
/*
if(p == 0) return;
// adjust p depending on the implementation
int * pm = static_cast<int*>(p);
pm -= m;
BOOST_ASSERT(*pm == adopted_array); // attempt to destroy nonmanaged block
*pm = allocated_array;
*/
}
} // namespace boost
// operator delete
void operator delete(void * p) throw()
{
if(p == 0) return;
int * pm = static_cast<int*>(p);
pm -= m;
BOOST_ASSERT(*pm != deleted); // double delete
BOOST_ASSERT(*pm != adopted_scalar); // delete p.get();
BOOST_ASSERT(*pm != allocated_array); // allocated with new[]
BOOST_ASSERT(*pm == allocated_scalar); // not allocated with new
*pm = deleted;
free(pm);
}
#if !defined(BOOST_BORLANDC) || (BOOST_BORLANDC > 0x551)
void operator delete(void * p, nothrow_t const &) throw()
{
::operator delete(p);
}
#endif
void operator delete[](void * p) throw()
{
if(p == 0) return;
int * pm = static_cast<int*>(p);
pm -= m;
BOOST_ASSERT(*pm != deleted); // double delete
BOOST_ASSERT(*pm != adopted_scalar); // delete p.get();
BOOST_ASSERT(*pm != allocated_scalar); // allocated with new
BOOST_ASSERT(*pm == allocated_array); // not allocated with new[]
*pm = deleted;
free(pm);
}
#if !defined(BOOST_BORLANDC) || (BOOST_BORLANDC > 0x551)
void operator delete[](void * p, nothrow_t const &) throw()
{
::operator delete[](p);
}
#endif
#endif // defined(BOOST_SP_ENABLE_DEBUG_HOOKS)

View File

@@ -0,0 +1,82 @@
#include <boost/config.hpp>
#if defined(BOOST_MSVC)
#pragma warning(disable: 4786) // identifier truncated in debug info
#pragma warning(disable: 4710) // function not inlined
#pragma warning(disable: 4711) // function selected for automatic inline expansion
#pragma warning(disable: 4514) // unreferenced inline removed
#endif
// shared_ptr_mt_test.cpp - tests shared_ptr with multiple threads
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
// Copyright (c) 2008 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
#include <boost/shared_ptr.hpp>
#include <boost/bind.hpp>
#include <vector>
#include <cstdio>
#include <ctime>
#include <boost/detail/lightweight_thread.hpp>
//
int const n = 1024 * 1024;
void test( boost::shared_ptr<int> const & pi )
{
std::vector< boost::shared_ptr<int> > v;
for( int i = 0; i < n; ++i )
{
v.push_back( pi );
}
}
int const m = 16; // threads
#if defined( BOOST_HAS_PTHREADS )
char const * thmodel = "POSIX";
#else
char const * thmodel = "Windows";
#endif
int main()
{
using namespace std; // printf, clock_t, clock
printf( "Using %s threads: %d threads, %d iterations: ", thmodel, m, n );
boost::shared_ptr<int> pi( new int(42) );
clock_t t = clock();
boost::detail::lw_thread_t a[ m ];
for( int i = 0; i < m; ++i )
{
boost::detail::lw_thread_create( a[ i ], boost::bind( test, pi ) );
}
for( int j = 0; j < m; ++j )
{
boost::detail::lw_thread_join( a[j] );
}
t = clock() - t;
printf( "\n\n%.3f seconds.\n", static_cast<double>(t) / CLOCKS_PER_SEC );
return 0;
}

View File

@@ -0,0 +1,46 @@
#include <boost/config.hpp>
#if defined(BOOST_MSVC)
#pragma warning(disable: 4786) // identifier truncated in debug info
#pragma warning(disable: 4710) // function not inlined
#pragma warning(disable: 4711) // function selected for automatic inline expansion
#pragma warning(disable: 4514) // unreferenced inline removed
#endif
//
// shared_ptr_timing_test.cpp - use to evaluate the impact of thread safety
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/shared_ptr.hpp>
#include <iostream>
#include <vector>
#include <ctime>
int const n = 8 * 1024 * 1024;
int main()
{
using namespace std;
std::vector< boost::shared_ptr<int> > v;
boost::shared_ptr<int> pi(new int);
clock_t t = clock();
for(int i = 0; i < n; ++i)
{
v.push_back(pi);
}
t = clock() - t;
std::cout << static_cast<double>(t) / CLOCKS_PER_SEC << '\n';
return 0;
}

View File

@@ -0,0 +1,247 @@
// Copyright (c) 2008 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
#include <boost/config.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/bind.hpp>
#include <boost/thread/shared_mutex.hpp>
#include <boost/thread/locks.hpp>
#include <boost/detail/lightweight_mutex.hpp>
#include <boost/detail/lightweight_thread.hpp>
#include <vector>
#include <numeric>
#include <cstdio>
#include <cstdlib>
#include <cstddef>
#include <ctime>
//
static void next_value( unsigned & v )
{
v = v % 2? 3 * v + 1: v / 2;
}
struct X
{
std::vector<unsigned> v_;
explicit X( std::size_t n ): v_( n )
{
for( std::size_t i = 0; i < n; ++i )
{
v_[ i ] = i;
}
}
unsigned get() const
{
return std::accumulate( v_.begin(), v_.end(), 0 );
}
void set()
{
std::for_each( v_.begin(), v_.end(), next_value );
}
};
static boost::shared_ptr<X> ps;
static boost::detail::lightweight_mutex lm;
static boost::shared_mutex rw;
enum prim_type
{
pt_mutex,
pt_rwlock,
pt_atomics
};
int read_access( prim_type pt )
{
switch( pt )
{
case pt_mutex:
{
boost::detail::lightweight_mutex::scoped_lock lock( lm );
return ps->get();
}
case pt_rwlock:
{
boost::shared_lock<boost::shared_mutex> lock( rw );
return ps->get();
}
case pt_atomics:
{
boost::shared_ptr<X> p2 = boost::atomic_load( &ps );
return p2->get();
}
}
}
void write_access( prim_type pt )
{
switch( pt )
{
case pt_mutex:
{
boost::detail::lightweight_mutex::scoped_lock lock( lm );
ps->set();
}
break;
case pt_rwlock:
{
boost::unique_lock<boost::shared_mutex> lock( rw );
ps->set();
}
break;
case pt_atomics:
{
boost::shared_ptr<X> p1 = boost::atomic_load( &ps );
for( ;; )
{
boost::shared_ptr<X> p2( new X( *p1 ) );
p2->set();
if( boost::atomic_compare_exchange( &ps, &p1, p2 ) ) break;
}
}
break;
}
}
void worker( int k, prim_type pt, int n, int r )
{
++r;
unsigned s = 0, nr = 0, nw = 0;
for( int i = 0; i < n; ++i )
{
if( i % r )
{
s += read_access( pt );
++nr;
}
else
{
write_access( pt );
++s;
++nw;
}
}
printf( "Worker %2d: %u:%u, %10u\n", k, nr, nw, s );
}
#if defined( BOOST_HAS_PTHREADS )
char const * thmodel = "POSIX";
#else
char const * thmodel = "Windows";
#endif
char const * pt_to_string( prim_type pt )
{
switch( pt )
{
case pt_mutex:
return "mutex";
case pt_rwlock:
return "rwlock";
case pt_atomics:
return "atomics";
}
}
static void handle_pt_option( std::string const & opt, prim_type & pt, prim_type pt2 )
{
if( opt == pt_to_string( pt2 ) )
{
pt = pt2;
}
}
static void handle_int_option( std::string const & opt, std::string const & prefix, int & k, int kmin, int kmax )
{
if( opt.substr( 0, prefix.size() ) == prefix )
{
int v = atoi( opt.substr( prefix.size() ).c_str() );
if( v >= kmin && v <= kmax )
{
k = v;
}
}
}
int main( int ac, char const * av[] )
{
using namespace std; // printf, clock_t, clock
int m = 4; // threads
int n = 10000; // vector size
int k = 1000000; // iterations
int r = 100; // read/write ratio, r:1
prim_type pt = pt_atomics;
for( int i = 1; i < ac; ++i )
{
handle_pt_option( av[i], pt, pt_mutex );
handle_pt_option( av[i], pt, pt_rwlock );
handle_pt_option( av[i], pt, pt_atomics );
handle_int_option( av[i], "n=", n, 1, INT_MAX );
handle_int_option( av[i], "size=", n, 1, INT_MAX );
handle_int_option( av[i], "k=", k, 1, INT_MAX );
handle_int_option( av[i], "iterations=", k, 1, INT_MAX );
handle_int_option( av[i], "m=", m, 1, INT_MAX );
handle_int_option( av[i], "threads=", m, 1, INT_MAX );
handle_int_option( av[i], "r=", r, 1, INT_MAX );
handle_int_option( av[i], "ratio=", r, 1, INT_MAX );
}
printf( "%s: threads=%d size=%d iterations=%d ratio=%d %s\n\n", thmodel, m, n, k, r, pt_to_string( pt ) );
ps.reset( new X( n ) );
clock_t t = clock();
std::vector<boost::detail::lw_thread_t> a( m );
for( int i = 0; i < m; ++i )
{
boost::detail::lw_thread_create( a[ i ], boost::bind( worker, i, pt, k, r ) );
}
for( int j = 0; j < m; ++j )
{
boost::detail::lw_thread_join( a[ j ] );
}
t = clock() - t;
double ts = static_cast<double>( t ) / CLOCKS_PER_SEC;
printf( "%.3f seconds, %.3f accesses per microsecond.\n", ts, m * k / ts / 1e+6 );
}

View File

@@ -0,0 +1,191 @@
// Copyright (c) 2008 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//#define USE_MUTEX
//#define USE_RWLOCK
#include <boost/config.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/bind.hpp>
#if defined( USE_RWLOCK )
#include <boost/thread/shared_mutex.hpp>
#include <boost/thread/locks.hpp>
#endif
#include <boost/detail/lightweight_mutex.hpp>
#include <boost/detail/lightweight_test.hpp>
#include <boost/detail/lightweight_thread.hpp>
#include <cstdio>
#include <ctime>
//
int const n = 1024 * 1024;
struct X
{
int v_; // version
unsigned a_;
unsigned b_;
X(): v_( 0 ), a_( 1 ), b_( 1 )
{
}
int get() const
{
return a_ * 7 + b_ * 11;
}
void set()
{
int tmp = get();
b_ = a_;
a_ = tmp;
++v_;
}
};
static boost::shared_ptr<X> ps( new X );
static boost::detail::lightweight_mutex lm;
#if defined( USE_RWLOCK )
static boost::shared_mutex rw;
#endif
static int tr = 0;
void reader( int r )
{
int k = 0;
unsigned s = 0;
for( int i = 0; i < n; ++k )
{
#if defined( USE_MUTEX )
boost::detail::lightweight_mutex::scoped_lock lock( lm );
s += ps->get();
BOOST_TEST( ps->v_ >= i );
i = ps->v_;
#elif defined( USE_RWLOCK )
boost::shared_lock<boost::shared_mutex> lock( rw );
s += ps->get();
BOOST_TEST( ps->v_ >= i );
i = ps->v_;
#else
boost::shared_ptr<X> p2 = boost::atomic_load( &ps );
s += p2->get();
BOOST_TEST( p2->v_ >= i );
i = p2->v_;
#endif
}
printf( "Reader %d: %9d iterations (%6.3fx), %u\n", r, k, (double)k / n, s );
boost::detail::lightweight_mutex::scoped_lock lock( lm );
tr += k;
}
void writer()
{
for( int i = 0; i < n; ++i )
{
#if defined( USE_MUTEX )
boost::detail::lightweight_mutex::scoped_lock lock( lm );
BOOST_TEST( ps->v_ == i );
ps->set();
#elif defined( USE_RWLOCK )
boost::unique_lock<boost::shared_mutex> lock( rw );
BOOST_TEST( ps->v_ == i );
ps->set();
#else
boost::shared_ptr<X> p2( new X( *ps ) );
BOOST_TEST( p2->v_ == i );
p2->set();
boost::atomic_store( &ps, p2 );
#endif
}
}
#if defined( BOOST_HAS_PTHREADS )
char const * thmodel = "POSIX";
#else
char const * thmodel = "Windows";
#endif
int const mr = 8; // reader threads
int const mw = 1; // writer thread
#if defined( USE_MUTEX )
char const * prim = "mutex";
#elif defined( USE_RWLOCK )
char const * prim = "rwlock";
#else
char const * prim = "atomics";
#endif
int main()
{
using namespace std; // printf, clock_t, clock
printf( "Using %s threads: %dR + %dW threads, %d iterations, %s\n\n", thmodel, mr, mw, n, prim );
clock_t t = clock();
boost::detail::lw_thread_t a[ mr+mw ];
for( int i = 0; i < mr; ++i )
{
boost::detail::lw_thread_create( a[ i ], boost::bind( reader, i ) );
}
for( int i = mr; i < mr+mw; ++i )
{
boost::detail::lw_thread_create( a[ i ], writer );
}
for( int j = 0; j < mr+mw; ++j )
{
boost::detail::lw_thread_join( a[ j ] );
}
t = clock() - t;
double ts = static_cast<double>( t ) / CLOCKS_PER_SEC;
printf( "%.3f seconds, %.3f reads per microsecond.\n", ts, tr / ts / 1e+6 );
return boost::report_errors();
}

View File

@@ -0,0 +1,122 @@
#include <boost/config.hpp>
#if defined(BOOST_MSVC)
#pragma warning(disable: 4786) // identifier truncated in debug info
#pragma warning(disable: 4710) // function not inlined
#pragma warning(disable: 4711) // function selected for automatic inline expansion
#pragma warning(disable: 4514) // unreferenced inline removed
#endif
// weak_ptr_mt_test.cpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
// Copyright 2005, 2008 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
#include <boost/shared_ptr.hpp>
#include <boost/weak_ptr.hpp>
#include <boost/bind.hpp>
#include <vector>
#include <cstdio>
#include <ctime>
#include <cstdlib>
#include <boost/detail/lightweight_thread.hpp>
//
int const n = 16384;
int const k = 512; // vector size
int const m = 16; // threads
void test( std::vector< boost::shared_ptr<int> > & v )
{
using namespace std; // printf, rand
std::vector< boost::weak_ptr<int> > w( v.begin(), v.end() );
int s = 0, f = 0, r = 0;
for( int i = 0; i < n; ++i )
{
// randomly kill a pointer
v[ rand() % k ].reset();
++s;
for( int j = 0; j < k; ++j )
{
if( boost::shared_ptr<int> px = w[ j ].lock() )
{
++s;
if( rand() & 4 )
{
continue;
}
// rebind anyway with prob. 50% for add_ref_lock() against weak_release() contention
++f;
}
else
{
++r;
}
w[ j ] = v[ rand() % k ];
}
}
printf( "\n%d locks, %d forced rebinds, %d normal rebinds.", s, f, r );
}
#if defined( BOOST_HAS_PTHREADS )
char const * thmodel = "POSIX";
#else
char const * thmodel = "Windows";
#endif
int main()
{
using namespace std; // printf, clock_t, clock
printf("Using %s threads: %d threads, %d * %d iterations: ", thmodel, m, n, k );
std::vector< boost::shared_ptr<int> > v( k );
for( int i = 0; i < k; ++i )
{
v[ i ].reset( new int( 0 ) );
}
clock_t t = clock();
boost::detail::lw_thread_t a[ m ];
for( int i = 0; i < m; ++i )
{
boost::detail::lw_thread_create( a[ i ], boost::bind( test, v ) );
}
v.resize( 0 ); // kill original copies
for( int j = 0; j < m; ++j )
{
boost::detail::lw_thread_join( a[j] );
}
t = clock() - t;
printf("\n\n%.3f seconds.\n", static_cast<double>(t) / CLOCKS_PER_SEC);
return 0;
}

View File

@@ -0,0 +1,85 @@
#include <boost/config.hpp>
#if defined(BOOST_MSVC)
#pragma warning(disable: 4786) // identifier truncated in debug info
#pragma warning(disable: 4710) // function not inlined
#pragma warning(disable: 4711) // function selected for automatic inline expansion
#pragma warning(disable: 4514) // unreferenced inline removed
#endif
//
// weak_ptr_timing_test.cpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
// Copyright 2005 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/shared_ptr.hpp>
#include <boost/weak_ptr.hpp>
#include <vector>
#include <cstdio>
#include <ctime>
#include <cstdlib>
//
int const n = 29000;
int const k = 2048;
void test( std::vector< boost::shared_ptr<int> > & v )
{
using namespace std; // printf, rand
std::vector< boost::weak_ptr<int> > w( v.begin(), v.end() );
int s = 0, r = 0;
for( int i = 0; i < n; ++i )
{
// randomly kill a pointer
v[ rand() % k ].reset();
for( int j = 0; j < k; ++j )
{
if( boost::shared_ptr<int> px = w[ j ].lock() )
{
++s;
}
else
{
++r;
w[ j ] = v[ rand() % k ];
}
}
}
printf( "\n%d locks, %d rebinds.", s, r );
}
int main()
{
using namespace std; // printf, clock_t, clock
std::vector< boost::shared_ptr<int> > v( k );
for( int i = 0; i < k; ++i )
{
v[ i ].reset( new int( 0 ) );
}
clock_t t = clock();
test( v );
t = clock() - t;
printf( "\n\n%.3f seconds.\n", static_cast<double>( t ) / CLOCKS_PER_SEC );
return 0;
}

View File

@@ -0,0 +1,21 @@
#ifndef BOOST_DETAIL_ATOMIC_COUNT_HPP_INCLUDED
#define BOOST_DETAIL_ATOMIC_COUNT_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
//
// boost/detail/atomic_count.hpp - thread/SMP safe reference counter
//
// Copyright (c) 2001, 2002 Peter Dimov and Multi Media Ltd.
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
#include <boost/smart_ptr/detail/atomic_count.hpp>
#endif // #ifndef BOOST_DETAIL_ATOMIC_COUNT_HPP_INCLUDED

View File

@@ -0,0 +1,22 @@
#ifndef BOOST_DETAIL_LIGHTWEIGHT_MUTEX_HPP_INCLUDED
#define BOOST_DETAIL_LIGHTWEIGHT_MUTEX_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
//
// boost/detail/lightweight_mutex.hpp - lightweight mutex
//
// Copyright (c) 2002, 2003 Peter Dimov and Multi Media Ltd.
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
#include <boost/smart_ptr/detail/lightweight_mutex.hpp>
#endif // #ifndef BOOST_DETAIL_LIGHTWEIGHT_MUTEX_HPP_INCLUDED

View File

@@ -0,0 +1,26 @@
#ifndef BOOST_DETAIL_LIGHTWEIGHT_THREAD_HPP_INCLUDED
#define BOOST_DETAIL_LIGHTWEIGHT_THREAD_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
// boost/detail/lightweight_thread.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
// Copyright (c) 2008, 2018 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
//
// typedef /*...*/ lw_thread_t; // as pthread_t
// template<class F> int lw_thread_create( lw_thread_t & th, F f );
// void lw_thread_join( lw_thread_t th );
#include <boost/smart_ptr/detail/lightweight_thread.hpp>
#endif // #ifndef BOOST_DETAIL_LIGHTWEIGHT_THREAD_HPP_INCLUDED

View File

@@ -0,0 +1,23 @@
#ifndef BOOST_DETAIL_QUICK_ALLOCATOR_HPP_INCLUDED
#define BOOST_DETAIL_QUICK_ALLOCATOR_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
//
// detail/quick_allocator.hpp
//
// Copyright (c) 2003 David Abrahams
// Copyright (c) 2003 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
#include <boost/smart_ptr/detail/quick_allocator.hpp>
#endif // #ifndef BOOST_DETAIL_QUICK_ALLOCATOR_HPP_INCLUDED

View File

@@ -0,0 +1,18 @@
#ifndef BOOST_ENABLE_SHARED_FROM_THIS_HPP_INCLUDED
#define BOOST_ENABLE_SHARED_FROM_THIS_HPP_INCLUDED
//
// enable_shared_from_this.hpp
//
// Copyright (c) 2002 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://www.boost.org/libs/smart_ptr/ for documentation.
//
#include <boost/smart_ptr/enable_shared_from_this.hpp>
#endif // #ifndef BOOST_ENABLE_SHARED_FROM_THIS_HPP_INCLUDED

View File

@@ -0,0 +1,18 @@
#ifndef BOOST_INTRUSIVE_PTR_HPP_INCLUDED
#define BOOST_INTRUSIVE_PTR_HPP_INCLUDED
//
// intrusive_ptr.hpp
//
// Copyright (c) 2001, 2002 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://www.boost.org/libs/smart_ptr/ for documentation.
//
#include <boost/smart_ptr/intrusive_ptr.hpp>
#endif // #ifndef BOOST_INTRUSIVE_PTR_HPP_INCLUDED

View File

@@ -0,0 +1,16 @@
#ifndef BOOST_MAKE_SHARED_HPP_INCLUDED
#define BOOST_MAKE_SHARED_HPP_INCLUDED
// make_shared.hpp
//
// Copyright (c) 2007, 2008 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://www.boost.org/libs/smart_ptr/ for documentation.
#include <boost/smart_ptr/make_shared.hpp>
#endif // #ifndef BOOST_MAKE_SHARED_HPP_INCLUDED

View File

@@ -0,0 +1,13 @@
/*
Copyright 2014 Glen Joseph Fernandes
(glenjofe@gmail.com)
Distributed under the Boost Software License, Version 1.0.
(http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_MAKE_UNIQUE_HPP_INCLUDED
#define BOOST_MAKE_UNIQUE_HPP_INCLUDED
#include <boost/smart_ptr/make_unique.hpp>
#endif

View File

@@ -0,0 +1,122 @@
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_POINTER_CAST_HPP
#define BOOST_POINTER_CAST_HPP
#include <boost/config.hpp>
#include <boost/smart_ptr/detail/sp_noexcept.hpp>
namespace boost {
//static_pointer_cast overload for raw pointers
template<class T, class U>
inline T* static_pointer_cast(U *ptr) BOOST_SP_NOEXCEPT
{
return static_cast<T*>(ptr);
}
//dynamic_pointer_cast overload for raw pointers
template<class T, class U>
inline T* dynamic_pointer_cast(U *ptr) BOOST_SP_NOEXCEPT
{
return dynamic_cast<T*>(ptr);
}
//const_pointer_cast overload for raw pointers
template<class T, class U>
inline T* const_pointer_cast(U *ptr) BOOST_SP_NOEXCEPT
{
return const_cast<T*>(ptr);
}
//reinterpret_pointer_cast overload for raw pointers
template<class T, class U>
inline T* reinterpret_pointer_cast(U *ptr) BOOST_SP_NOEXCEPT
{
return reinterpret_cast<T*>(ptr);
}
} // namespace boost
#if !defined( BOOST_NO_CXX11_SMART_PTR )
#include <boost/type_traits/has_virtual_destructor.hpp>
#include <boost/static_assert.hpp>
#include <memory>
namespace boost {
//static_pointer_cast overload for std::shared_ptr
using std::static_pointer_cast;
//dynamic_pointer_cast overload for std::shared_ptr
using std::dynamic_pointer_cast;
//const_pointer_cast overload for std::shared_ptr
using std::const_pointer_cast;
//reinterpret_pointer_cast overload for std::shared_ptr
template<class T, class U> std::shared_ptr<T> reinterpret_pointer_cast(const std::shared_ptr<U> & r ) BOOST_SP_NOEXCEPT
{
(void) reinterpret_cast< T* >( static_cast< U* >( 0 ) );
typedef typename std::shared_ptr<T>::element_type E;
E * p = reinterpret_cast< E* >( r.get() );
return std::shared_ptr<T>( r, p );
}
//static_pointer_cast overload for std::unique_ptr
template<class T, class U> std::unique_ptr<T> static_pointer_cast( std::unique_ptr<U> && r ) BOOST_SP_NOEXCEPT
{
(void) static_cast< T* >( static_cast< U* >( 0 ) );
typedef typename std::unique_ptr<T>::element_type E;
return std::unique_ptr<T>( static_cast<E*>( r.release() ) );
}
//dynamic_pointer_cast overload for std::unique_ptr
template<class T, class U> std::unique_ptr<T> dynamic_pointer_cast( std::unique_ptr<U> && r ) BOOST_SP_NOEXCEPT
{
(void) dynamic_cast< T* >( static_cast< U* >( 0 ) );
BOOST_STATIC_ASSERT_MSG( boost::has_virtual_destructor<T>::value, "The target of dynamic_pointer_cast must have a virtual destructor." );
T * p = dynamic_cast<T*>( r.get() );
if( p ) r.release();
return std::unique_ptr<T>( p );
}
//const_pointer_cast overload for std::unique_ptr
template<class T, class U> std::unique_ptr<T> const_pointer_cast( std::unique_ptr<U> && r ) BOOST_SP_NOEXCEPT
{
(void) const_cast< T* >( static_cast< U* >( 0 ) );
typedef typename std::unique_ptr<T>::element_type E;
return std::unique_ptr<T>( const_cast<E*>( r.release() ) );
}
//reinterpret_pointer_cast overload for std::unique_ptr
template<class T, class U> std::unique_ptr<T> reinterpret_pointer_cast( std::unique_ptr<U> && r ) BOOST_SP_NOEXCEPT
{
(void) reinterpret_cast< T* >( static_cast< U* >( 0 ) );
typedef typename std::unique_ptr<T>::element_type E;
return std::unique_ptr<T>( reinterpret_cast<E*>( r.release() ) );
}
} // namespace boost
#endif // #if !defined( BOOST_NO_CXX11_SMART_PTR )
#endif //BOOST_POINTER_CAST_HPP

View File

@@ -0,0 +1,55 @@
#ifndef BOOST_POINTER_TO_OTHER_HPP_INCLUDED
#define BOOST_POINTER_TO_OTHER_HPP_INCLUDED
//
// pointer_to_other.hpp
//
// (C) Copyright Ion Gaztanaga 2005.
// Copyright (c) 2005 Peter Dimov.
//
// Distributed under the Boost Software License, Version 1.0.
//
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/smart_ptr/ for documentation.
//
namespace boost
{
// Defines the same pointer type (raw or smart) to another pointee type
template<class T, class U>
struct pointer_to_other;
template<class T, class U,
template<class> class Sp>
struct pointer_to_other< Sp<T>, U >
{
typedef Sp<U> type;
};
template<class T, class T2, class U,
template<class, class> class Sp>
struct pointer_to_other< Sp<T, T2>, U >
{
typedef Sp<U, T2> type;
};
template<class T, class T2, class T3, class U,
template<class, class, class> class Sp>
struct pointer_to_other< Sp<T, T2, T3>, U >
{
typedef Sp<U, T2, T3> type;
};
template<class T, class U>
struct pointer_to_other< T*, U >
{
typedef U* type;
};
} // namespace boost
#endif // #ifndef BOOST_POINTER_TO_OTHER_HPP_INCLUDED

View File

@@ -0,0 +1,15 @@
#ifndef BOOST_SCOPED_ARRAY_HPP_INCLUDED
#define BOOST_SCOPED_ARRAY_HPP_INCLUDED
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// Copyright (c) 2001, 2002 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/smart_ptr/ for documentation.
#include <boost/smart_ptr/scoped_array.hpp>
#endif // #ifndef BOOST_SCOPED_ARRAY_HPP_INCLUDED

View File

@@ -0,0 +1,15 @@
#ifndef BOOST_SCOPED_PTR_HPP_INCLUDED
#define BOOST_SCOPED_PTR_HPP_INCLUDED
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// Copyright (c) 2001, 2002 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/smart_ptr/ for documentation.
#include <boost/smart_ptr/scoped_ptr.hpp>
#endif // #ifndef BOOST_SCOPED_PTR_HPP_INCLUDED

View File

@@ -0,0 +1,19 @@
#ifndef BOOST_SHARED_ARRAY_HPP_INCLUDED
#define BOOST_SHARED_ARRAY_HPP_INCLUDED
//
// shared_array.hpp
//
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// Copyright (c) 2001, 2002 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/smart_ptr/ for documentation.
//
#include <boost/smart_ptr/shared_array.hpp>
#endif // #ifndef BOOST_SHARED_ARRAY_HPP_INCLUDED

View File

@@ -0,0 +1,19 @@
#ifndef BOOST_SHARED_PTR_HPP_INCLUDED
#define BOOST_SHARED_PTR_HPP_INCLUDED
//
// shared_ptr.hpp
//
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// Copyright (c) 2001-2008 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/smart_ptr/ for documentation.
//
#include <boost/smart_ptr/shared_ptr.hpp>
#endif // #ifndef BOOST_SHARED_PTR_HPP_INCLUDED

View File

@@ -0,0 +1,26 @@
#ifndef BOOST_SMART_PTR_HPP_INCLUDED
#define BOOST_SMART_PTR_HPP_INCLUDED
//
// smart_ptr.hpp
//
// For convenience, this header includes the rest of the smart
// pointer library headers.
//
// Copyright (c) 2003 Peter Dimov Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/smart_ptr/ for documentation.
//
#include <boost/scoped_ptr.hpp>
#include <boost/scoped_array.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/shared_array.hpp>
#include <boost/weak_ptr.hpp>
#include <boost/intrusive_ptr.hpp>
#include <boost/enable_shared_from_this.hpp>
#include <boost/make_shared.hpp>
#endif // #ifndef BOOST_SMART_PTR_HPP_INCLUDED

View File

@@ -0,0 +1,178 @@
/*
Copyright 2017-2019 Glen Joseph Fernandes
(glenjofe@gmail.com)
Distributed under the Boost Software License, Version 1.0.
(http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_SMART_PTR_ALLOCATE_LOCAL_SHARED_ARRAY_HPP
#define BOOST_SMART_PTR_ALLOCATE_LOCAL_SHARED_ARRAY_HPP
#include <boost/smart_ptr/allocate_shared_array.hpp>
#include <boost/smart_ptr/local_shared_ptr.hpp>
namespace boost {
namespace detail {
class BOOST_SYMBOL_VISIBLE lsp_array_base
: public local_counted_base {
public:
void set(sp_counted_base* base) BOOST_SP_NOEXCEPT {
count_ = shared_count(base);
}
void local_cb_destroy() BOOST_SP_NOEXCEPT BOOST_OVERRIDE {
shared_count().swap(count_);
}
shared_count local_cb_get_shared_count() const
BOOST_SP_NOEXCEPT BOOST_OVERRIDE {
return count_;
}
private:
shared_count count_;
};
template<class A>
class lsp_array_state
: public sp_array_state<A> {
public:
template<class U>
lsp_array_state(const U& other, std::size_t size) BOOST_SP_NOEXCEPT
: sp_array_state<A>(other, size) { }
lsp_array_base& base() BOOST_SP_NOEXCEPT {
return base_;
}
private:
lsp_array_base base_;
};
template<class A, std::size_t N>
class lsp_size_array_state
: public sp_size_array_state<A, N> {
public:
template<class U>
lsp_size_array_state(const U& other, std::size_t size) BOOST_SP_NOEXCEPT
: sp_size_array_state<A, N>(other, size) { }
lsp_array_base& base() BOOST_SP_NOEXCEPT {
return base_;
}
private:
lsp_array_base base_;
};
} /* detail */
template<class T, class A>
inline typename enable_if_<is_unbounded_array<T>::value,
local_shared_ptr<T> >::type
allocate_local_shared(const A& allocator, std::size_t count)
{
typedef typename detail::sp_array_element<T>::type element;
typedef typename allocator_rebind<A, element>::type other;
typedef detail::lsp_array_state<other> state;
typedef detail::sp_array_base<state> base;
detail::sp_array_result<other, base> result(allocator, count);
base* node = result.get();
element* start = detail::sp_array_start<element>(node);
::new(static_cast<void*>(node)) base(allocator, start, count);
detail::lsp_array_base& local = node->state().base();
local.set(node);
result.release();
return local_shared_ptr<T>(detail::lsp_internal_constructor_tag(), start,
&local);
}
template<class T, class A>
inline typename enable_if_<is_bounded_array<T>::value,
local_shared_ptr<T> >::type
allocate_local_shared(const A& allocator)
{
enum {
count = extent<T>::value
};
typedef typename detail::sp_array_element<T>::type element;
typedef typename allocator_rebind<A, element>::type other;
typedef detail::lsp_size_array_state<other, count> state;
typedef detail::sp_array_base<state> base;
detail::sp_array_result<other, base> result(allocator, count);
base* node = result.get();
element* start = detail::sp_array_start<element>(node);
::new(static_cast<void*>(node)) base(allocator, start, count);
detail::lsp_array_base& local = node->state().base();
local.set(node);
result.release();
return local_shared_ptr<T>(detail::lsp_internal_constructor_tag(), start,
&local);
}
template<class T, class A>
inline typename enable_if_<is_unbounded_array<T>::value,
local_shared_ptr<T> >::type
allocate_local_shared(const A& allocator, std::size_t count,
const typename remove_extent<T>::type& value)
{
typedef typename detail::sp_array_element<T>::type element;
typedef typename allocator_rebind<A, element>::type other;
typedef detail::lsp_array_state<other> state;
typedef detail::sp_array_base<state> base;
detail::sp_array_result<other, base> result(allocator, count);
base* node = result.get();
element* start = detail::sp_array_start<element>(node);
::new(static_cast<void*>(node)) base(allocator, start, count, value);
detail::lsp_array_base& local = node->state().base();
local.set(node);
result.release();
return local_shared_ptr<T>(detail::lsp_internal_constructor_tag(), start,
&local);
}
template<class T, class A>
inline typename enable_if_<is_bounded_array<T>::value,
local_shared_ptr<T> >::type
allocate_local_shared(const A& allocator,
const typename remove_extent<T>::type& value)
{
enum {
count = extent<T>::value
};
typedef typename detail::sp_array_element<T>::type element;
typedef typename allocator_rebind<A, element>::type other;
typedef detail::lsp_size_array_state<other, count> state;
typedef detail::sp_array_base<state> base;
detail::sp_array_result<other, base> result(allocator, count);
base* node = result.get();
element* start = detail::sp_array_start<element>(node);
::new(static_cast<void*>(node)) base(allocator, start, count, value);
detail::lsp_array_base& local = node->state().base();
local.set(node);
result.release();
return local_shared_ptr<T>(detail::lsp_internal_constructor_tag(), start,
&local);
}
template<class T, class A>
inline typename enable_if_<is_unbounded_array<T>::value,
local_shared_ptr<T> >::type
allocate_local_shared_noinit(const A& allocator, std::size_t count)
{
return boost::allocate_local_shared<T>(boost::noinit_adapt(allocator),
count);
}
template<class T, class A>
inline typename enable_if_<is_bounded_array<T>::value,
local_shared_ptr<T> >::type
allocate_local_shared_noinit(const A& allocator)
{
return boost::allocate_local_shared<T>(boost::noinit_adapt(allocator));
}
} /* boost */
#endif

View File

@@ -0,0 +1,352 @@
/*
Copyright 2012-2019 Glen Joseph Fernandes
(glenjofe@gmail.com)
Distributed under the Boost Software License, Version 1.0.
(http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_SMART_PTR_ALLOCATE_SHARED_ARRAY_HPP
#define BOOST_SMART_PTR_ALLOCATE_SHARED_ARRAY_HPP
#include <boost/core/allocator_access.hpp>
#include <boost/core/alloc_construct.hpp>
#include <boost/core/first_scalar.hpp>
#include <boost/smart_ptr/shared_ptr.hpp>
#include <boost/type_traits/alignment_of.hpp>
#include <boost/type_traits/enable_if.hpp>
#include <boost/type_traits/extent.hpp>
#include <boost/type_traits/is_bounded_array.hpp>
#include <boost/type_traits/is_unbounded_array.hpp>
#include <boost/type_traits/remove_cv.hpp>
#include <boost/type_traits/remove_extent.hpp>
#include <boost/type_traits/type_with_alignment.hpp>
namespace boost {
namespace detail {
template<class T>
struct sp_array_element {
typedef typename boost::remove_cv<typename
boost::remove_extent<T>::type>::type type;
};
template<class T>
struct sp_array_count {
enum {
value = 1
};
};
template<class T, std::size_t N>
struct sp_array_count<T[N]> {
enum {
value = N * sp_array_count<T>::value
};
};
template<std::size_t N, std::size_t M>
struct sp_max_size {
enum {
value = N < M ? M : N
};
};
template<std::size_t N, std::size_t M>
struct sp_align_up {
enum {
value = (N + M - 1) & ~(M - 1)
};
};
template<class T>
BOOST_CONSTEXPR inline std::size_t
sp_objects(std::size_t size) BOOST_SP_NOEXCEPT
{
return (size + sizeof(T) - 1) / sizeof(T);
}
template<class A>
class sp_array_state {
public:
typedef A type;
template<class U>
sp_array_state(const U& _allocator, std::size_t _size) BOOST_SP_NOEXCEPT
: allocator_(_allocator),
size_(_size) { }
A& allocator() BOOST_SP_NOEXCEPT {
return allocator_;
}
std::size_t size() const BOOST_SP_NOEXCEPT {
return size_;
}
private:
A allocator_;
std::size_t size_;
};
template<class A, std::size_t N>
class sp_size_array_state {
public:
typedef A type;
template<class U>
sp_size_array_state(const U& _allocator, std::size_t) BOOST_SP_NOEXCEPT
: allocator_(_allocator) { }
A& allocator() BOOST_SP_NOEXCEPT {
return allocator_;
}
BOOST_CONSTEXPR std::size_t size() const BOOST_SP_NOEXCEPT {
return N;
}
private:
A allocator_;
};
template<class T, class U>
struct sp_array_alignment {
enum {
value = sp_max_size<boost::alignment_of<T>::value,
boost::alignment_of<U>::value>::value
};
};
template<class T, class U>
struct sp_array_offset {
enum {
value = sp_align_up<sizeof(T), sp_array_alignment<T, U>::value>::value
};
};
template<class U, class T>
inline U*
sp_array_start(T* base) BOOST_SP_NOEXCEPT
{
enum {
size = sp_array_offset<T, U>::value
};
return reinterpret_cast<U*>(reinterpret_cast<char*>(base) + size);
}
template<class A, class T>
class sp_array_creator {
typedef typename A::value_type element;
enum {
offset = sp_array_offset<T, element>::value
};
typedef typename boost::type_with_alignment<sp_array_alignment<T,
element>::value>::type type;
public:
template<class U>
sp_array_creator(const U& other, std::size_t size) BOOST_SP_NOEXCEPT
: other_(other),
size_(sp_objects<type>(offset + sizeof(element) * size)) { }
T* create() {
return reinterpret_cast<T*>(other_.allocate(size_));
}
void destroy(T* base) {
other_.deallocate(reinterpret_cast<type*>(base), size_);
}
private:
typename boost::allocator_rebind<A, type>::type other_;
std::size_t size_;
};
template<class T>
class BOOST_SYMBOL_VISIBLE sp_array_base
: public sp_counted_base {
typedef typename T::type allocator;
public:
typedef typename allocator::value_type type;
template<class A>
sp_array_base(const A& other, type* start, std::size_t size)
: state_(other, size) {
boost::alloc_construct_n(state_.allocator(),
boost::first_scalar(start),
state_.size() * sp_array_count<type>::value);
}
template<class A, class U>
sp_array_base(const A& other, type* start, std::size_t size, const U& list)
: state_(other, size) {
enum {
count = sp_array_count<type>::value
};
boost::alloc_construct_n(state_.allocator(),
boost::first_scalar(start), state_.size() * count,
boost::first_scalar(&list), count);
}
T& state() BOOST_SP_NOEXCEPT {
return state_;
}
void dispose() BOOST_SP_NOEXCEPT BOOST_OVERRIDE {
boost::alloc_destroy_n(state_.allocator(),
boost::first_scalar(sp_array_start<type>(this)),
state_.size() * sp_array_count<type>::value);
}
void destroy() BOOST_SP_NOEXCEPT BOOST_OVERRIDE {
sp_array_creator<allocator, sp_array_base> other(state_.allocator(),
state_.size());
this->~sp_array_base();
other.destroy(this);
}
void* get_deleter(const sp_typeinfo_&) BOOST_SP_NOEXCEPT BOOST_OVERRIDE {
return 0;
}
void* get_local_deleter(const sp_typeinfo_&)
BOOST_SP_NOEXCEPT BOOST_OVERRIDE {
return 0;
}
void* get_untyped_deleter() BOOST_SP_NOEXCEPT BOOST_OVERRIDE {
return 0;
}
private:
T state_;
};
template<class A, class T>
struct sp_array_result {
public:
template<class U>
sp_array_result(const U& other, std::size_t size)
: creator_(other, size),
result_(creator_.create()) { }
~sp_array_result() {
if (result_) {
creator_.destroy(result_);
}
}
T* get() const BOOST_SP_NOEXCEPT {
return result_;
}
void release() BOOST_SP_NOEXCEPT {
result_ = 0;
}
private:
sp_array_result(const sp_array_result&);
sp_array_result& operator=(const sp_array_result&);
sp_array_creator<A, T> creator_;
T* result_;
};
} /* detail */
template<class T, class A>
inline typename enable_if_<is_unbounded_array<T>::value, shared_ptr<T> >::type
allocate_shared(const A& allocator, std::size_t count)
{
typedef typename detail::sp_array_element<T>::type element;
typedef typename allocator_rebind<A, element>::type other;
typedef detail::sp_array_state<other> state;
typedef detail::sp_array_base<state> base;
detail::sp_array_result<other, base> result(allocator, count);
base* node = result.get();
element* start = detail::sp_array_start<element>(node);
::new(static_cast<void*>(node)) base(allocator, start, count);
result.release();
return shared_ptr<T>(detail::sp_internal_constructor_tag(), start,
detail::shared_count(static_cast<detail::sp_counted_base*>(node)));
}
template<class T, class A>
inline typename enable_if_<is_bounded_array<T>::value, shared_ptr<T> >::type
allocate_shared(const A& allocator)
{
enum {
count = extent<T>::value
};
typedef typename detail::sp_array_element<T>::type element;
typedef typename allocator_rebind<A, element>::type other;
typedef detail::sp_size_array_state<other, extent<T>::value> state;
typedef detail::sp_array_base<state> base;
detail::sp_array_result<other, base> result(allocator, count);
base* node = result.get();
element* start = detail::sp_array_start<element>(node);
::new(static_cast<void*>(node)) base(allocator, start, count);
result.release();
return shared_ptr<T>(detail::sp_internal_constructor_tag(), start,
detail::shared_count(static_cast<detail::sp_counted_base*>(node)));
}
template<class T, class A>
inline typename enable_if_<is_unbounded_array<T>::value, shared_ptr<T> >::type
allocate_shared(const A& allocator, std::size_t count,
const typename remove_extent<T>::type& value)
{
typedef typename detail::sp_array_element<T>::type element;
typedef typename allocator_rebind<A, element>::type other;
typedef detail::sp_array_state<other> state;
typedef detail::sp_array_base<state> base;
detail::sp_array_result<other, base> result(allocator, count);
base* node = result.get();
element* start = detail::sp_array_start<element>(node);
::new(static_cast<void*>(node)) base(allocator, start, count, value);
result.release();
return shared_ptr<T>(detail::sp_internal_constructor_tag(), start,
detail::shared_count(static_cast<detail::sp_counted_base*>(node)));
}
template<class T, class A>
inline typename enable_if_<is_bounded_array<T>::value, shared_ptr<T> >::type
allocate_shared(const A& allocator,
const typename remove_extent<T>::type& value)
{
enum {
count = extent<T>::value
};
typedef typename detail::sp_array_element<T>::type element;
typedef typename allocator_rebind<A, element>::type other;
typedef detail::sp_size_array_state<other, extent<T>::value> state;
typedef detail::sp_array_base<state> base;
detail::sp_array_result<other, base> result(allocator, count);
base* node = result.get();
element* start = detail::sp_array_start<element>(node);
::new(static_cast<void*>(node)) base(allocator, start, count, value);
result.release();
return shared_ptr<T>(detail::sp_internal_constructor_tag(), start,
detail::shared_count(static_cast<detail::sp_counted_base*>(node)));
}
template<class T, class A>
inline typename enable_if_<is_unbounded_array<T>::value, shared_ptr<T> >::type
allocate_shared_noinit(const A& allocator, std::size_t count)
{
return boost::allocate_shared<T>(boost::noinit_adapt(allocator), count);
}
template<class T, class A>
inline typename enable_if_<is_bounded_array<T>::value, shared_ptr<T> >::type
allocate_shared_noinit(const A& allocator)
{
return boost::allocate_shared<T>(boost::noinit_adapt(allocator));
}
} /* boost */
#endif

View File

@@ -0,0 +1,491 @@
/*
Copyright 2019-2021 Glen Joseph Fernandes
(glenjofe@gmail.com)
Distributed under the Boost Software License, Version 1.0.
(http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_SMART_PTR_ALLOCATE_UNIQUE_HPP
#define BOOST_SMART_PTR_ALLOCATE_UNIQUE_HPP
#include <boost/smart_ptr/detail/sp_noexcept.hpp>
#include <boost/smart_ptr/detail/sp_nullptr_t.hpp>
#include <boost/core/allocator_access.hpp>
#include <boost/core/alloc_construct.hpp>
#include <boost/core/empty_value.hpp>
#include <boost/core/first_scalar.hpp>
#include <boost/core/noinit_adaptor.hpp>
#include <boost/core/pointer_traits.hpp>
#include <boost/type_traits/enable_if.hpp>
#include <boost/type_traits/extent.hpp>
#include <boost/type_traits/is_array.hpp>
#include <boost/type_traits/is_bounded_array.hpp>
#include <boost/type_traits/is_unbounded_array.hpp>
#include <boost/type_traits/remove_cv.hpp>
#include <boost/type_traits/remove_extent.hpp>
#include <boost/type_traits/type_identity.hpp>
#include <boost/config.hpp>
#include <memory>
#include <utility>
namespace boost {
namespace detail {
template<class T>
struct sp_alloc_size {
BOOST_STATIC_CONSTEXPR std::size_t value = 1;
};
template<class T>
struct sp_alloc_size<T[]> {
BOOST_STATIC_CONSTEXPR std::size_t value = sp_alloc_size<T>::value;
};
template<class T, std::size_t N>
struct sp_alloc_size<T[N]> {
BOOST_STATIC_CONSTEXPR std::size_t value = N * sp_alloc_size<T>::value;
};
template<class T>
struct sp_alloc_result {
typedef T type;
};
template<class T, std::size_t N>
struct sp_alloc_result<T[N]> {
typedef T type[];
};
template<class T>
struct sp_alloc_value {
typedef typename boost::remove_cv<typename
boost::remove_extent<T>::type>::type type;
};
template<class T, class P>
class sp_alloc_ptr {
public:
typedef T element_type;
sp_alloc_ptr() BOOST_SP_NOEXCEPT
: p_() { }
#if defined(BOOST_MSVC) && BOOST_MSVC == 1600
sp_alloc_ptr(T* p) BOOST_SP_NOEXCEPT
: p_(const_cast<typename boost::remove_cv<T>::type*>(p)) { }
#endif
sp_alloc_ptr(std::size_t, P p) BOOST_SP_NOEXCEPT
: p_(p) { }
#if !defined(BOOST_NO_CXX11_NULLPTR)
sp_alloc_ptr(detail::sp_nullptr_t) BOOST_SP_NOEXCEPT
: p_() { }
#endif
T& operator*() const {
return *p_;
}
T* operator->() const BOOST_SP_NOEXCEPT {
return boost::to_address(p_);
}
#if !defined(BOOST_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS)
explicit operator bool() const BOOST_SP_NOEXCEPT {
return !!p_;
}
#endif
bool operator!() const BOOST_SP_NOEXCEPT {
return !p_;
}
P ptr() const BOOST_SP_NOEXCEPT {
return p_;
}
BOOST_STATIC_CONSTEXPR std::size_t size() BOOST_SP_NOEXCEPT {
return 1;
}
#if defined(BOOST_MSVC) && BOOST_MSVC < 1910
static sp_alloc_ptr pointer_to(T& v) {
return sp_alloc_ptr(1,
std::pointer_traits<P>::pointer_to(const_cast<typename
boost::remove_cv<T>::type&>(v)));
}
#endif
private:
P p_;
};
template<class T, class P>
class sp_alloc_ptr<T[], P> {
public:
typedef T element_type;
sp_alloc_ptr() BOOST_SP_NOEXCEPT
: p_() { }
sp_alloc_ptr(std::size_t n, P p) BOOST_SP_NOEXCEPT
: p_(p)
, n_(n) { }
#if !defined(BOOST_NO_CXX11_NULLPTR)
sp_alloc_ptr(detail::sp_nullptr_t) BOOST_SP_NOEXCEPT
: p_() { }
#endif
T& operator[](std::size_t i) const {
return p_[i];
}
#if !defined(BOOST_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS)
explicit operator bool() const BOOST_SP_NOEXCEPT {
return !!p_;
}
#endif
bool operator!() const BOOST_SP_NOEXCEPT {
return !p_;
}
P ptr() const BOOST_SP_NOEXCEPT {
return p_;
}
std::size_t size() const BOOST_SP_NOEXCEPT {
return n_;
}
#if defined(BOOST_MSVC) && BOOST_MSVC < 1910
static sp_alloc_ptr pointer_to(T& v) {
return sp_alloc_ptr(n_,
std::pointer_traits<P>::pointer_to(const_cast<typename
boost::remove_cv<T>::type&>(v)));
}
#endif
private:
P p_;
std::size_t n_;
};
template<class T, std::size_t N, class P>
class sp_alloc_ptr<T[N], P> {
public:
typedef T element_type;
sp_alloc_ptr() BOOST_SP_NOEXCEPT
: p_() { }
sp_alloc_ptr(std::size_t, P p) BOOST_SP_NOEXCEPT
: p_(p) { }
#if !defined(BOOST_NO_CXX11_NULLPTR)
sp_alloc_ptr(detail::sp_nullptr_t) BOOST_SP_NOEXCEPT
: p_() { }
#endif
T& operator[](std::size_t i) const {
return p_[i];
}
#if !defined(BOOST_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS)
explicit operator bool() const BOOST_SP_NOEXCEPT {
return !!p_;
}
#endif
bool operator!() const BOOST_SP_NOEXCEPT {
return !p_;
}
P ptr() const BOOST_SP_NOEXCEPT {
return p_;
}
BOOST_STATIC_CONSTEXPR std::size_t size() BOOST_SP_NOEXCEPT {
return N;
}
#if defined(BOOST_MSVC) && BOOST_MSVC < 1910
static sp_alloc_ptr pointer_to(T& v) {
return sp_alloc_ptr(N,
std::pointer_traits<P>::pointer_to(const_cast<typename
boost::remove_cv<T>::type&>(v)));
}
#endif
private:
P p_;
};
template<class T, class P>
inline bool
operator==(const sp_alloc_ptr<T, P>& lhs, const sp_alloc_ptr<T, P>& rhs)
{
return lhs.ptr() == rhs.ptr();
}
template<class T, class P>
inline bool
operator!=(const sp_alloc_ptr<T, P>& lhs, const sp_alloc_ptr<T, P>& rhs)
{
return !(lhs == rhs);
}
#if !defined(BOOST_NO_CXX11_NULLPTR)
template<class T, class P>
inline bool
operator==(const sp_alloc_ptr<T, P>& lhs,
detail::sp_nullptr_t) BOOST_SP_NOEXCEPT
{
return !lhs.ptr();
}
template<class T, class P>
inline bool
operator==(detail::sp_nullptr_t,
const sp_alloc_ptr<T, P>& rhs) BOOST_SP_NOEXCEPT
{
return !rhs.ptr();
}
template<class T, class P>
inline bool
operator!=(const sp_alloc_ptr<T, P>& lhs,
detail::sp_nullptr_t) BOOST_SP_NOEXCEPT
{
return !!lhs.ptr();
}
template<class T, class P>
inline bool
operator!=(detail::sp_nullptr_t,
const sp_alloc_ptr<T, P>& rhs) BOOST_SP_NOEXCEPT
{
return !!rhs.ptr();
}
#endif
template<class A>
inline void
sp_alloc_clear(A& a, typename boost::allocator_pointer<A>::type p, std::size_t,
boost::false_type)
{
boost::alloc_destroy(a, boost::to_address(p));
}
template<class A>
inline void
sp_alloc_clear(A& a, typename boost::allocator_pointer<A>::type p,
std::size_t n, boost::true_type)
{
#if defined(BOOST_MSVC) && BOOST_MSVC < 1800
if (!p) {
return;
}
#endif
boost::alloc_destroy_n(a, boost::first_scalar(boost::to_address(p)),
n * sp_alloc_size<typename A::value_type>::value);
}
} /* detail */
template<class T, class A>
class alloc_deleter
: empty_value<typename allocator_rebind<A,
typename detail::sp_alloc_value<T>::type>::type> {
typedef typename allocator_rebind<A,
typename detail::sp_alloc_value<T>::type>::type allocator;
typedef empty_value<allocator> base;
public:
typedef detail::sp_alloc_ptr<T,
typename allocator_pointer<allocator>::type> pointer;
explicit alloc_deleter(const allocator& a) BOOST_SP_NOEXCEPT
: base(empty_init_t(), a) { }
void operator()(pointer p) {
detail::sp_alloc_clear(base::get(), p.ptr(), p.size(), is_array<T>());
base::get().deallocate(p.ptr(), p.size());
}
};
#if !defined(BOOST_NO_CXX11_TEMPLATE_ALIASES)
template<class T, class A>
using alloc_noinit_deleter = alloc_deleter<T, noinit_adaptor<A> >;
#endif
namespace detail {
template<class T, class A>
class sp_alloc_make {
public:
typedef typename boost::allocator_rebind<A,
typename sp_alloc_value<T>::type>::type allocator;
private:
typedef boost::alloc_deleter<T, A> deleter;
public:
typedef std::unique_ptr<typename sp_alloc_result<T>::type, deleter> type;
sp_alloc_make(const A& a, std::size_t n)
: a_(a)
, n_(n)
, p_(a_.allocate(n)) { }
~sp_alloc_make() {
if (p_) {
a_.deallocate(p_, n_);
}
}
typename allocator::value_type* get() const BOOST_SP_NOEXCEPT {
return boost::to_address(p_);
}
allocator& state() BOOST_SP_NOEXCEPT {
return a_;
}
type release() BOOST_SP_NOEXCEPT {
pointer p = p_;
p_ = pointer();
return type(typename deleter::pointer(n_, p), deleter(a_));
}
private:
typedef typename boost::allocator_pointer<allocator>::type pointer;
allocator a_;
std::size_t n_;
pointer p_;
};
} /* detail */
template<class T, class A>
inline typename enable_if_<!is_array<T>::value,
std::unique_ptr<T, alloc_deleter<T, A> > >::type
allocate_unique(const A& alloc)
{
detail::sp_alloc_make<T, A> c(alloc, 1);
boost::alloc_construct(c.state(), c.get());
return c.release();
}
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template<class T, class A, class... Args>
inline typename enable_if_<!is_array<T>::value,
std::unique_ptr<T, alloc_deleter<T, A> > >::type
allocate_unique(const A& alloc, Args&&... args)
{
detail::sp_alloc_make<T, A> c(alloc, 1);
boost::alloc_construct(c.state(), c.get(), std::forward<Args>(args)...);
return c.release();
}
#endif
template<class T, class A>
inline typename enable_if_<!is_array<T>::value,
std::unique_ptr<T, alloc_deleter<T, A> > >::type
allocate_unique(const A& alloc, typename type_identity<T>::type&& value)
{
detail::sp_alloc_make<T, A> c(alloc, 1);
boost::alloc_construct(c.state(), c.get(), std::move(value));
return c.release();
}
template<class T, class A>
inline typename enable_if_<!is_array<T>::value,
std::unique_ptr<T, alloc_deleter<T, noinit_adaptor<A> > > >::type
allocate_unique_noinit(const A& alloc)
{
return boost::allocate_unique<T, noinit_adaptor<A> >(alloc);
}
template<class T, class A>
inline typename enable_if_<is_unbounded_array<T>::value,
std::unique_ptr<T, alloc_deleter<T, A> > >::type
allocate_unique(const A& alloc, std::size_t size)
{
detail::sp_alloc_make<T, A> c(alloc, size);
boost::alloc_construct_n(c.state(), boost::first_scalar(c.get()),
size * detail::sp_alloc_size<T>::value);
return c.release();
}
template<class T, class A>
inline typename enable_if_<is_bounded_array<T>::value,
std::unique_ptr<typename detail::sp_alloc_result<T>::type,
alloc_deleter<T, A> > >::type
allocate_unique(const A& alloc)
{
detail::sp_alloc_make<T, A> c(alloc, extent<T>::value);
boost::alloc_construct_n(c.state(), boost::first_scalar(c.get()),
detail::sp_alloc_size<T>::value);
return c.release();
}
template<class T, class A>
inline typename enable_if_<is_unbounded_array<T>::value,
std::unique_ptr<T, alloc_deleter<T, noinit_adaptor<A> > > >::type
allocate_unique_noinit(const A& alloc, std::size_t size)
{
return boost::allocate_unique<T, noinit_adaptor<A> >(alloc, size);
}
template<class T, class A>
inline typename enable_if_<is_bounded_array<T>::value,
std::unique_ptr<typename detail::sp_alloc_result<T>::type,
alloc_deleter<T, noinit_adaptor<A> > > >::type
allocate_unique_noinit(const A& alloc)
{
return boost::allocate_unique<T, noinit_adaptor<A> >(alloc);
}
template<class T, class A>
inline typename enable_if_<is_unbounded_array<T>::value,
std::unique_ptr<T, alloc_deleter<T, A> > >::type
allocate_unique(const A& alloc, std::size_t size,
const typename remove_extent<T>::type& value)
{
detail::sp_alloc_make<T, A> c(alloc, size);
boost::alloc_construct_n(c.state(), boost::first_scalar(c.get()),
size * detail::sp_alloc_size<T>::value, boost::first_scalar(&value),
detail::sp_alloc_size<typename remove_extent<T>::type>::value);
return c.release();
}
template<class T, class A>
inline typename enable_if_<is_bounded_array<T>::value,
std::unique_ptr<typename detail::sp_alloc_result<T>::type,
alloc_deleter<T, A> > >::type
allocate_unique(const A& alloc,
const typename remove_extent<T>::type& value)
{
detail::sp_alloc_make<T, A> c(alloc, extent<T>::value);
boost::alloc_construct_n(c.state(), boost::first_scalar(c.get()),
detail::sp_alloc_size<T>::value, boost::first_scalar(&value),
detail::sp_alloc_size<typename remove_extent<T>::type>::value);
return c.release();
}
template<class T, class U, class A>
inline typename allocator_pointer<typename allocator_rebind<A,
typename detail::sp_alloc_value<T>::type>::type>::type
get_allocator_pointer(const std::unique_ptr<T,
alloc_deleter<U, A> >& p) BOOST_NOEXCEPT
{
return p.get().ptr();
}
} /* boost */
#endif

View File

@@ -0,0 +1,238 @@
#ifndef BOOST_SMART_PTR_ATOMIC_SHARED_PTR_HPP_INCLUDED
#define BOOST_SMART_PTR_ATOMIC_SHARED_PTR_HPP_INCLUDED
//
// atomic_shared_ptr.hpp
//
// Copyright 2017 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/smart_ptr/ for documentation.
//
#include <boost/smart_ptr/shared_ptr.hpp>
#include <boost/smart_ptr/detail/spinlock.hpp>
#include <cstring>
namespace boost
{
template<class T> class atomic_shared_ptr
{
private:
boost::shared_ptr<T> p_;
mutable boost::detail::spinlock l_;
atomic_shared_ptr(const atomic_shared_ptr&);
atomic_shared_ptr& operator=(const atomic_shared_ptr&);
private:
bool compare_exchange( shared_ptr<T>& v, shared_ptr<T> w ) BOOST_SP_NOEXCEPT
{
l_.lock();
if( p_._internal_equiv( v ) )
{
p_.swap( w );
l_.unlock();
return true;
}
else
{
shared_ptr<T> tmp( p_ );
l_.unlock();
tmp.swap( v );
return false;
}
}
public:
#if !defined( BOOST_NO_CXX11_UNIFIED_INITIALIZATION_SYNTAX ) && !defined( BOOST_NO_CXX11_CONSTEXPR )
constexpr atomic_shared_ptr() BOOST_SP_NOEXCEPT: l_ BOOST_DETAIL_SPINLOCK_INIT
{
}
atomic_shared_ptr( shared_ptr<T> p ) BOOST_SP_NOEXCEPT
: p_( std::move( p ) ), l_ BOOST_DETAIL_SPINLOCK_INIT
{
}
#else
atomic_shared_ptr() BOOST_SP_NOEXCEPT
{
boost::detail::spinlock init = BOOST_DETAIL_SPINLOCK_INIT;
std::memcpy( &l_, &init, sizeof( init ) );
}
atomic_shared_ptr( shared_ptr<T> p ) BOOST_SP_NOEXCEPT
#if !defined( BOOST_NO_CXX11_RVALUE_REFERENCES )
: p_( std::move( p ) )
#else
: p_( p )
#endif
{
boost::detail::spinlock init = BOOST_DETAIL_SPINLOCK_INIT;
std::memcpy( &l_, &init, sizeof( init ) );
}
#endif
atomic_shared_ptr& operator=( shared_ptr<T> r ) BOOST_SP_NOEXCEPT
{
boost::detail::spinlock::scoped_lock lock( l_ );
p_.swap( r );
return *this;
}
BOOST_CONSTEXPR bool is_lock_free() const BOOST_SP_NOEXCEPT
{
return false;
}
shared_ptr<T> load() const BOOST_SP_NOEXCEPT
{
boost::detail::spinlock::scoped_lock lock( l_ );
return p_;
}
template<class M> shared_ptr<T> load( M ) const BOOST_SP_NOEXCEPT
{
boost::detail::spinlock::scoped_lock lock( l_ );
return p_;
}
operator shared_ptr<T>() const BOOST_SP_NOEXCEPT
{
boost::detail::spinlock::scoped_lock lock( l_ );
return p_;
}
void store( shared_ptr<T> r ) BOOST_SP_NOEXCEPT
{
boost::detail::spinlock::scoped_lock lock( l_ );
p_.swap( r );
}
template<class M> void store( shared_ptr<T> r, M ) BOOST_SP_NOEXCEPT
{
boost::detail::spinlock::scoped_lock lock( l_ );
p_.swap( r );
}
shared_ptr<T> exchange( shared_ptr<T> r ) BOOST_SP_NOEXCEPT
{
{
boost::detail::spinlock::scoped_lock lock( l_ );
p_.swap( r );
}
#if !defined( BOOST_NO_CXX11_RVALUE_REFERENCES )
return std::move( r );
#else
return r;
#endif
}
template<class M> shared_ptr<T> exchange( shared_ptr<T> r, M ) BOOST_SP_NOEXCEPT
{
{
boost::detail::spinlock::scoped_lock lock( l_ );
p_.swap( r );
}
#if !defined( BOOST_NO_CXX11_RVALUE_REFERENCES )
return std::move( r );
#else
return r;
#endif
}
template<class M> bool compare_exchange_weak( shared_ptr<T>& v, const shared_ptr<T>& w, M, M ) BOOST_SP_NOEXCEPT
{
return compare_exchange( v, w );
}
template<class M> bool compare_exchange_weak( shared_ptr<T>& v, const shared_ptr<T>& w, M ) BOOST_SP_NOEXCEPT
{
return compare_exchange( v, w );
}
bool compare_exchange_weak( shared_ptr<T>& v, const shared_ptr<T>& w ) BOOST_SP_NOEXCEPT
{
return compare_exchange( v, w );
}
template<class M> bool compare_exchange_strong( shared_ptr<T>& v, const shared_ptr<T>& w, M, M ) BOOST_SP_NOEXCEPT
{
return compare_exchange( v, w );
}
template<class M> bool compare_exchange_strong( shared_ptr<T>& v, const shared_ptr<T>& w, M ) BOOST_SP_NOEXCEPT
{
return compare_exchange( v, w );
}
bool compare_exchange_strong( shared_ptr<T>& v, const shared_ptr<T>& w ) BOOST_SP_NOEXCEPT
{
return compare_exchange( v, w );
}
#if !defined( BOOST_NO_CXX11_RVALUE_REFERENCES )
template<class M> bool compare_exchange_weak( shared_ptr<T>& v, shared_ptr<T>&& w, M, M ) BOOST_SP_NOEXCEPT
{
return compare_exchange( v, std::move( w ) );
}
template<class M> bool compare_exchange_weak( shared_ptr<T>& v, shared_ptr<T>&& w, M ) BOOST_SP_NOEXCEPT
{
return compare_exchange( v, std::move( w ) );
}
bool compare_exchange_weak( shared_ptr<T>& v, shared_ptr<T>&& w ) BOOST_SP_NOEXCEPT
{
return compare_exchange( v, std::move( w ) );
}
template<class M> bool compare_exchange_strong( shared_ptr<T>& v, shared_ptr<T>&& w, M, M ) BOOST_SP_NOEXCEPT
{
return compare_exchange( v, std::move( w ) );
}
template<class M> bool compare_exchange_strong( shared_ptr<T>& v, shared_ptr<T>&& w, M ) BOOST_SP_NOEXCEPT
{
return compare_exchange( v, std::move( w ) );
}
bool compare_exchange_strong( shared_ptr<T>& v, shared_ptr<T>&& w ) BOOST_SP_NOEXCEPT
{
return compare_exchange( v, std::move( w ) );
}
#endif
};
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_ATOMIC_SHARED_PTR_HPP_INCLUDED

View File

@@ -0,0 +1,70 @@
#ifndef BOOST_SMART_PTR_BAD_WEAK_PTR_HPP_INCLUDED
#define BOOST_SMART_PTR_BAD_WEAK_PTR_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
//
// boost/smart_ptr/bad_weak_ptr.hpp
//
// Copyright (c) 2001, 2002, 2003 Peter Dimov and Multi Media Ltd.
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/config.hpp>
#include <exception>
#ifdef BOOST_BORLANDC
# pragma warn -8026 // Functions with excep. spec. are not expanded inline
#endif
namespace boost
{
// The standard library that comes with Borland C++ 5.5.1, 5.6.4
// defines std::exception and its members as having C calling
// convention (-pc). When the definition of bad_weak_ptr
// is compiled with -ps, the compiler issues an error.
// Hence, the temporary #pragma option -pc below.
#if defined(BOOST_BORLANDC) && BOOST_BORLANDC <= 0x564
# pragma option push -pc
#endif
#if defined(BOOST_CLANG)
// Intel C++ on Mac defines __clang__ but doesn't support the pragma
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wweak-vtables"
#endif
class bad_weak_ptr: public std::exception
{
public:
char const * what() const BOOST_NOEXCEPT_OR_NOTHROW BOOST_OVERRIDE
{
return "tr1::bad_weak_ptr";
}
};
#if defined(BOOST_CLANG)
# pragma clang diagnostic pop
#endif
#if defined(BOOST_BORLANDC) && BOOST_BORLANDC <= 0x564
# pragma option pop
#endif
} // namespace boost
#ifdef BOOST_BORLANDC
# pragma warn .8026 // Functions with excep. spec. are not expanded inline
#endif
#endif // #ifndef BOOST_SMART_PTR_BAD_WEAK_PTR_HPP_INCLUDED

View File

@@ -0,0 +1,103 @@
#ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
//
// boost/detail/atomic_count.hpp - thread/SMP safe reference counter
//
// Copyright (c) 2001, 2002 Peter Dimov and Multi Media Ltd.
// Copyright (c) 2013 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// typedef <implementation-defined> boost::detail::atomic_count;
//
// atomic_count a(n);
//
// (n is convertible to long)
//
// Effects: Constructs an atomic_count with an initial value of n
//
// a;
//
// Returns: (long) the current value of a
// Memory Ordering: acquire
//
// ++a;
//
// Effects: Atomically increments the value of a
// Returns: (long) the new value of a
// Memory Ordering: acquire/release
//
// --a;
//
// Effects: Atomically decrements the value of a
// Returns: (long) the new value of a
// Memory Ordering: acquire/release
//
#include <boost/smart_ptr/detail/sp_has_gcc_intrinsics.hpp>
#include <boost/smart_ptr/detail/sp_has_sync_intrinsics.hpp>
#include <boost/config.hpp>
#if defined( BOOST_AC_DISABLE_THREADS )
# include <boost/smart_ptr/detail/atomic_count_nt.hpp>
#elif defined( BOOST_AC_USE_STD_ATOMIC )
# include <boost/smart_ptr/detail/atomic_count_std_atomic.hpp>
#elif defined( BOOST_AC_USE_SPINLOCK )
# include <boost/smart_ptr/detail/atomic_count_spin.hpp>
#elif defined( BOOST_AC_USE_PTHREADS )
# include <boost/smart_ptr/detail/atomic_count_pt.hpp>
#elif defined( BOOST_SP_DISABLE_THREADS )
# include <boost/smart_ptr/detail/atomic_count_nt.hpp>
#elif defined( BOOST_SP_USE_STD_ATOMIC )
# include <boost/smart_ptr/detail/atomic_count_std_atomic.hpp>
#elif defined( BOOST_SP_USE_SPINLOCK )
# include <boost/smart_ptr/detail/atomic_count_spin.hpp>
#elif defined( BOOST_SP_USE_PTHREADS )
# include <boost/smart_ptr/detail/atomic_count_pt.hpp>
#elif defined( BOOST_DISABLE_THREADS ) && !defined( BOOST_SP_ENABLE_THREADS ) && !defined( BOOST_DISABLE_WIN32 )
# include <boost/smart_ptr/detail/atomic_count_nt.hpp>
#elif defined( BOOST_SP_HAS_GCC_INTRINSICS )
# include <boost/smart_ptr/detail/atomic_count_gcc_atomic.hpp>
#elif !defined( BOOST_NO_CXX11_HDR_ATOMIC )
# include <boost/smart_ptr/detail/atomic_count_std_atomic.hpp>
#elif defined( BOOST_SP_HAS_SYNC_INTRINSICS )
# include <boost/smart_ptr/detail/atomic_count_sync.hpp>
#elif defined( __GNUC__ ) && ( defined( __i386__ ) || defined( __x86_64__ ) ) && !defined( __PATHSCALE__ )
# include <boost/smart_ptr/detail/atomic_count_gcc_x86.hpp>
#elif defined(WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(__CYGWIN__)
# include <boost/smart_ptr/detail/atomic_count_win32.hpp>
#elif defined(__GLIBCPP__) || defined(__GLIBCXX__)
# include <boost/smart_ptr/detail/atomic_count_gcc.hpp>
#elif !defined( BOOST_HAS_THREADS )
# include <boost/smart_ptr/detail/atomic_count_nt.hpp>
#else
# include <boost/smart_ptr/detail/atomic_count_spin.hpp>
#endif
#endif // #ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_HPP_INCLUDED

View File

@@ -0,0 +1,79 @@
#ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_GCC_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_GCC_HPP_INCLUDED
//
// boost/detail/atomic_count_gcc.hpp
//
// atomic_count for GNU libstdc++ v3
//
// http://gcc.gnu.org/onlinedocs/porting/Thread-safety.html
//
// Copyright (c) 2001, 2002 Peter Dimov and Multi Media Ltd.
// Copyright (c) 2002 Lars Gullik Bjønnes <larsbj@lyx.org>
// Copyright 2003-2005 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#if __GNUC__ * 100 + __GNUC_MINOR__ >= 402
# include <ext/atomicity.h>
#else
# include <bits/atomicity.h>
#endif
#if defined(BOOST_SP_REPORT_IMPLEMENTATION)
#include <boost/config/pragma_message.hpp>
BOOST_PRAGMA_MESSAGE("Using libstdc++ atomic_count")
#endif
namespace boost
{
namespace detail
{
#if defined(__GLIBCXX__) // g++ 3.4+
using __gnu_cxx::__atomic_add;
using __gnu_cxx::__exchange_and_add;
#endif
class atomic_count
{
public:
explicit atomic_count( long v ) : value_( v ) {}
long operator++()
{
return __exchange_and_add( &value_, +1 ) + 1;
}
long operator--()
{
return __exchange_and_add( &value_, -1 ) - 1;
}
operator long() const
{
return __exchange_and_add( &value_, 0 );
}
private:
atomic_count(atomic_count const &);
atomic_count & operator=(atomic_count const &);
mutable _Atomic_word value_;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_GCC_HPP_INCLUDED

View File

@@ -0,0 +1,63 @@
#ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_GCC_ATOMIC_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_GCC_ATOMIC_HPP_INCLUDED
// boost/detail/atomic_count_gcc_atomic.hpp
//
// atomic_count for g++ 4.7+
//
// Copyright 2007, 2020 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
#include <boost/cstdint.hpp>
#if defined(BOOST_SP_REPORT_IMPLEMENTATION)
#include <boost/config/pragma_message.hpp>
BOOST_PRAGMA_MESSAGE("Using __atomic atomic_count")
#endif
namespace boost
{
namespace detail
{
class atomic_count
{
public:
explicit atomic_count( long v ): value_( static_cast< boost::int_least32_t >( v ) )
{
}
long operator++()
{
return __atomic_add_fetch( &value_, +1, __ATOMIC_ACQ_REL );
}
long operator--()
{
return __atomic_add_fetch( &value_, -1, __ATOMIC_ACQ_REL );
}
operator long() const
{
return __atomic_load_n( &value_, __ATOMIC_ACQUIRE );
}
private:
atomic_count(atomic_count const &);
atomic_count & operator=(atomic_count const &);
boost::int_least32_t value_;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_GCC_ATOMIC_HPP_INCLUDED

View File

@@ -0,0 +1,88 @@
#ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_GCC_X86_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_GCC_X86_HPP_INCLUDED
//
// boost/detail/atomic_count_gcc_x86.hpp
//
// atomic_count for g++ on 486+/AMD64
//
// Copyright 2007 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/smart_ptr/detail/sp_obsolete.hpp>
#if defined(BOOST_SP_REPORT_IMPLEMENTATION)
#include <boost/config/pragma_message.hpp>
BOOST_PRAGMA_MESSAGE("Using g++/x86 atomic_count")
#endif
BOOST_SP_OBSOLETE()
namespace boost
{
namespace detail
{
class atomic_count
{
public:
explicit atomic_count( long v ) : value_( static_cast< int >( v ) ) {}
long operator++()
{
return atomic_exchange_and_add( &value_, +1 ) + 1;
}
long operator--()
{
return atomic_exchange_and_add( &value_, -1 ) - 1;
}
operator long() const
{
return atomic_exchange_and_add( &value_, 0 );
}
private:
atomic_count(atomic_count const &);
atomic_count & operator=(atomic_count const &);
mutable int value_;
private:
static int atomic_exchange_and_add( int * pw, int dv )
{
// int r = *pw;
// *pw += dv;
// return r;
int r;
__asm__ __volatile__
(
"lock\n\t"
"xadd %1, %0":
"+m"( *pw ), "=r"( r ): // outputs (%0, %1)
"1"( dv ): // inputs (%2 == %1)
"memory", "cc" // clobbers
);
return r;
}
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_GCC_X86_HPP_INCLUDED

View File

@@ -0,0 +1,66 @@
#ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_NT_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_NT_HPP_INCLUDED
//
// boost/detail/atomic_count_nt.hpp
//
// Trivial atomic_count for the single-threaded case
//
// http://gcc.gnu.org/onlinedocs/porting/Thread-safety.html
//
// Copyright 2013 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
#if defined(BOOST_SP_REPORT_IMPLEMENTATION)
#include <boost/config/pragma_message.hpp>
BOOST_PRAGMA_MESSAGE("Using single-threaded, non-atomic atomic_count")
#endif
namespace boost
{
namespace detail
{
class atomic_count
{
public:
explicit atomic_count( long v ): value_( v )
{
}
long operator++()
{
return ++value_;
}
long operator--()
{
return --value_;
}
operator long() const
{
return value_;
}
private:
atomic_count(atomic_count const &);
atomic_count & operator=(atomic_count const &);
long value_;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_NT_HPP_INCLUDED

View File

@@ -0,0 +1,104 @@
#ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_PTHREADS_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_PTHREADS_HPP_INCLUDED
//
// boost/detail/atomic_count_pthreads.hpp
//
// Copyright (c) 2001, 2002 Peter Dimov and Multi Media Ltd.
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/assert.hpp>
#include <pthread.h>
#if defined(BOOST_SP_REPORT_IMPLEMENTATION)
#include <boost/config/pragma_message.hpp>
BOOST_PRAGMA_MESSAGE("Using pthread_mutex atomic_count")
#endif
//
// The generic pthread_mutex-based implementation sometimes leads to
// inefficiencies. Example: a class with two atomic_count members
// can get away with a single mutex.
//
// Users can detect this situation by checking BOOST_AC_USE_PTHREADS.
//
namespace boost
{
namespace detail
{
class atomic_count
{
private:
class scoped_lock
{
public:
scoped_lock(pthread_mutex_t & m): m_(m)
{
BOOST_VERIFY( pthread_mutex_lock( &m_ ) == 0 );
}
~scoped_lock()
{
BOOST_VERIFY( pthread_mutex_unlock( &m_ ) == 0 );
}
private:
pthread_mutex_t & m_;
};
public:
explicit atomic_count(long v): value_(v)
{
BOOST_VERIFY( pthread_mutex_init( &mutex_, 0 ) == 0 );
}
~atomic_count()
{
BOOST_VERIFY( pthread_mutex_destroy( &mutex_ ) == 0 );
}
long operator++()
{
scoped_lock lock(mutex_);
return ++value_;
}
long operator--()
{
scoped_lock lock(mutex_);
return --value_;
}
operator long() const
{
scoped_lock lock(mutex_);
return value_;
}
private:
atomic_count(atomic_count const &);
atomic_count & operator=(atomic_count const &);
mutable pthread_mutex_t mutex_;
long value_;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_PTHREADS_HPP_INCLUDED

View File

@@ -0,0 +1,69 @@
#ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_SPIN_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_SPIN_HPP_INCLUDED
//
// boost/detail/atomic_count_spin.hpp
//
// Copyright (c) 2013 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
#include <boost/smart_ptr/detail/spinlock_pool.hpp>
#if defined(BOOST_SP_REPORT_IMPLEMENTATION)
#include <boost/config/pragma_message.hpp>
BOOST_PRAGMA_MESSAGE("Using spinlock-based atomic_count")
#endif
namespace boost
{
namespace detail
{
class atomic_count
{
private:
public:
explicit atomic_count( long v ): value_( v )
{
}
long operator++()
{
spinlock_pool<0>::scoped_lock lock( &value_ );
return ++value_;
}
long operator--()
{
spinlock_pool<0>::scoped_lock lock( &value_ );
return --value_;
}
operator long() const
{
spinlock_pool<0>::scoped_lock lock( &value_ );
return value_;
}
private:
atomic_count(atomic_count const &);
atomic_count & operator=(atomic_count const &);
long value_;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_SPIN_HPP_INCLUDED

View File

@@ -0,0 +1,67 @@
#ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_STD_ATOMIC_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_STD_ATOMIC_HPP_INCLUDED
//
// boost/detail/atomic_count_std_atomic.hpp
//
// atomic_count for std::atomic
//
// Copyright 2013 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
#include <atomic>
#include <cstdint>
#if defined(BOOST_SP_REPORT_IMPLEMENTATION)
#include <boost/config/pragma_message.hpp>
BOOST_PRAGMA_MESSAGE("Using std::atomic atomic_count")
#endif
namespace boost
{
namespace detail
{
class atomic_count
{
public:
explicit atomic_count( long v ): value_( static_cast< std::int_least32_t >( v ) )
{
}
long operator++()
{
return value_.fetch_add( 1, std::memory_order_acq_rel ) + 1;
}
long operator--()
{
return value_.fetch_sub( 1, std::memory_order_acq_rel ) - 1;
}
operator long() const
{
return value_.load( std::memory_order_acquire );
}
private:
atomic_count(atomic_count const &);
atomic_count & operator=(atomic_count const &);
std::atomic_int_least32_t value_;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_STD_ATOMIC_HPP_INCLUDED

View File

@@ -0,0 +1,72 @@
#ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_SYNC_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_SYNC_HPP_INCLUDED
//
// boost/detail/atomic_count_sync.hpp
//
// atomic_count for g++ 4.1+
//
// http://gcc.gnu.org/onlinedocs/gcc-4.1.1/gcc/Atomic-Builtins.html
//
// Copyright 2007 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/cstdint.hpp>
#if defined( __ia64__ ) && defined( __INTEL_COMPILER )
# include <ia64intrin.h>
#endif
#if defined(BOOST_SP_REPORT_IMPLEMENTATION)
#include <boost/config/pragma_message.hpp>
BOOST_PRAGMA_MESSAGE("Using __sync atomic_count")
#endif
namespace boost
{
namespace detail
{
class atomic_count
{
public:
explicit atomic_count( long v ): value_( static_cast< boost::int_least32_t >( v ) )
{
}
long operator++()
{
return __sync_add_and_fetch( &value_, 1 );
}
long operator--()
{
return __sync_add_and_fetch( &value_, -1 );
}
operator long() const
{
return __sync_fetch_and_add( &value_, 0 );
}
private:
atomic_count(atomic_count const &);
atomic_count & operator=(atomic_count const &);
mutable boost::int_least32_t value_;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_SYNC_HPP_INCLUDED

View File

@@ -0,0 +1,70 @@
#ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_WIN32_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_WIN32_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
//
// boost/detail/atomic_count_win32.hpp
//
// Copyright (c) 2001-2005 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/smart_ptr/detail/sp_interlocked.hpp>
#if defined(BOOST_SP_REPORT_IMPLEMENTATION)
#include <boost/config/pragma_message.hpp>
BOOST_PRAGMA_MESSAGE("Using Win32 atomic_count")
#endif
namespace boost
{
namespace detail
{
class atomic_count
{
public:
explicit atomic_count( long v ): value_( v )
{
}
long operator++()
{
return BOOST_SP_INTERLOCKED_INCREMENT( &value_ );
}
long operator--()
{
return BOOST_SP_INTERLOCKED_DECREMENT( &value_ );
}
operator long() const
{
return static_cast<long const volatile &>( value_ );
}
private:
atomic_count( atomic_count const & );
atomic_count & operator=( atomic_count const & );
long value_;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_ATOMIC_COUNT_WIN32_HPP_INCLUDED

View File

@@ -0,0 +1,39 @@
#ifndef BOOST_SMART_PTR_DETAIL_LIGHTWEIGHT_MUTEX_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_LIGHTWEIGHT_MUTEX_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
//
// boost/detail/lightweight_mutex.hpp - lightweight mutex
//
// Copyright (c) 2002, 2003 Peter Dimov and Multi Media Ltd.
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// typedef <unspecified> boost::detail::lightweight_mutex;
//
// boost::detail::lightweight_mutex is a header-only implementation of
// a subset of the Mutex concept requirements:
//
// http://www.boost.org/doc/html/threads/concepts.html#threads.concepts.Mutex
//
// It maps to a CRITICAL_SECTION on Windows or a pthread_mutex on POSIX.
//
#include <boost/config.hpp>
#if !defined(BOOST_NO_CXX11_HDR_MUTEX )
# include <boost/smart_ptr/detail/lwm_std_mutex.hpp>
#elif defined(_WIN32) || defined(__WIN32__) || defined(__CYGWIN__)
# include <boost/smart_ptr/detail/lwm_win32_cs.hpp>
#else
# include <boost/smart_ptr/detail/lwm_pthreads.hpp>
#endif
#endif // #ifndef BOOST_SMART_PTR_DETAIL_LIGHTWEIGHT_MUTEX_HPP_INCLUDED

View File

@@ -0,0 +1,188 @@
#ifndef BOOST_SMART_PTR_DETAIL_LIGHTWEIGHT_THREAD_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_LIGHTWEIGHT_THREAD_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
// boost/detail/lightweight_thread.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
// Copyright (c) 2008, 2018 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
//
// typedef /*...*/ lw_thread_t; // as pthread_t
// template<class F> int lw_thread_create( lw_thread_t & th, F f );
// void lw_thread_join( lw_thread_t th );
#include <boost/config.hpp>
#include <memory>
#include <cerrno>
#if defined( BOOST_HAS_PTHREADS )
#include <pthread.h>
namespace boost
{
namespace detail
{
typedef ::pthread_t lw_thread_t;
inline int lw_thread_create_( lw_thread_t* thread, const pthread_attr_t* attr, void* (*start_routine)( void* ), void* arg )
{
return ::pthread_create( thread, attr, start_routine, arg );
}
inline void lw_thread_join( lw_thread_t th )
{
::pthread_join( th, 0 );
}
} // namespace detail
} // namespace boost
#else // defined( BOOST_HAS_PTHREADS )
#include <windows.h>
#include <process.h>
namespace boost
{
namespace detail
{
typedef HANDLE lw_thread_t;
inline int lw_thread_create_( lw_thread_t * thread, void const *, unsigned (__stdcall * start_routine) (void*), void* arg )
{
HANDLE h = (HANDLE)_beginthreadex( 0, 0, start_routine, arg, 0, 0 );
if( h != 0 )
{
*thread = h;
return 0;
}
else
{
return EAGAIN;
}
}
inline void lw_thread_join( lw_thread_t thread )
{
::WaitForSingleObject( thread, INFINITE );
::CloseHandle( thread );
}
} // namespace detail
} // namespace boost
#endif // defined( BOOST_HAS_PTHREADS )
namespace boost
{
namespace detail
{
class lw_abstract_thread
{
public:
virtual ~lw_abstract_thread() {}
virtual void run() = 0;
};
#if defined( BOOST_HAS_PTHREADS )
extern "C" void * lw_thread_routine( void * pv )
{
#if defined(BOOST_NO_CXX11_SMART_PTR)
std::auto_ptr<lw_abstract_thread> pt( static_cast<lw_abstract_thread *>( pv ) );
#else
std::unique_ptr<lw_abstract_thread> pt( static_cast<lw_abstract_thread *>( pv ) );
#endif
pt->run();
return 0;
}
#else
unsigned __stdcall lw_thread_routine( void * pv )
{
#if defined(BOOST_NO_CXX11_SMART_PTR)
std::auto_ptr<lw_abstract_thread> pt( static_cast<lw_abstract_thread *>( pv ) );
#else
std::unique_ptr<lw_abstract_thread> pt( static_cast<lw_abstract_thread *>( pv ) );
#endif
pt->run();
return 0;
}
#endif
template<class F> class lw_thread_impl: public lw_abstract_thread
{
public:
explicit lw_thread_impl( F f ): f_( f )
{
}
void run()
{
f_();
}
private:
F f_;
};
template<class F> int lw_thread_create( lw_thread_t & th, F f )
{
#if defined(BOOST_NO_CXX11_SMART_PTR)
std::auto_ptr<lw_abstract_thread> p( new lw_thread_impl<F>( f ) );
#else
std::unique_ptr<lw_abstract_thread> p( new lw_thread_impl<F>( f ) );
#endif
int r = lw_thread_create_( &th, 0, lw_thread_routine, p.get() );
if( r == 0 )
{
p.release();
}
return r;
}
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_LIGHTWEIGHT_THREAD_HPP_INCLUDED

View File

@@ -0,0 +1,148 @@
#ifndef BOOST_SMART_PTR_DETAIL_LOCAL_COUNTED_BASE_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_LOCAL_COUNTED_BASE_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
// detail/local_counted_base.hpp
//
// Copyright 2017 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/smart_ptr/ for documentation.
#include <boost/smart_ptr/detail/shared_count.hpp>
#include <boost/config.hpp>
#include <utility>
namespace boost
{
namespace detail
{
class BOOST_SYMBOL_VISIBLE local_counted_base
{
private:
local_counted_base & operator= ( local_counted_base const & );
private:
// not 'int' or 'unsigned' to avoid aliasing and enable optimizations
enum count_type { min_ = 0, initial_ = 1, max_ = 2147483647 };
count_type local_use_count_;
public:
BOOST_CONSTEXPR local_counted_base() BOOST_SP_NOEXCEPT: local_use_count_( initial_ )
{
}
BOOST_CONSTEXPR local_counted_base( local_counted_base const & ) BOOST_SP_NOEXCEPT: local_use_count_( initial_ )
{
}
virtual ~local_counted_base() /*BOOST_SP_NOEXCEPT*/
{
}
virtual void local_cb_destroy() BOOST_SP_NOEXCEPT = 0;
virtual boost::detail::shared_count local_cb_get_shared_count() const BOOST_SP_NOEXCEPT = 0;
void add_ref() BOOST_SP_NOEXCEPT
{
#if !defined(__NVCC__)
#if defined( __has_builtin )
# if __has_builtin( __builtin_assume )
__builtin_assume( local_use_count_ >= 1 );
# endif
#endif
#endif
local_use_count_ = static_cast<count_type>( local_use_count_ + 1 );
}
void release() BOOST_SP_NOEXCEPT
{
local_use_count_ = static_cast<count_type>( local_use_count_ - 1 );
if( local_use_count_ == 0 )
{
local_cb_destroy();
}
}
long local_use_count() const BOOST_SP_NOEXCEPT
{
return local_use_count_;
}
};
class BOOST_SYMBOL_VISIBLE local_counted_impl: public local_counted_base
{
private:
local_counted_impl( local_counted_impl const & );
private:
shared_count pn_;
public:
explicit local_counted_impl( shared_count const& pn ) BOOST_SP_NOEXCEPT: pn_( pn )
{
}
#if !defined( BOOST_NO_CXX11_RVALUE_REFERENCES )
explicit local_counted_impl( shared_count && pn ) BOOST_SP_NOEXCEPT: pn_( std::move(pn) )
{
}
#endif
void local_cb_destroy() BOOST_SP_NOEXCEPT BOOST_OVERRIDE
{
delete this;
}
boost::detail::shared_count local_cb_get_shared_count() const BOOST_SP_NOEXCEPT BOOST_OVERRIDE
{
return pn_;
}
};
class BOOST_SYMBOL_VISIBLE local_counted_impl_em: public local_counted_base
{
public:
shared_count pn_;
void local_cb_destroy() BOOST_SP_NOEXCEPT BOOST_OVERRIDE
{
shared_count().swap( pn_ );
}
boost::detail::shared_count local_cb_get_shared_count() const BOOST_SP_NOEXCEPT BOOST_OVERRIDE
{
return pn_;
}
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_LOCAL_COUNTED_BASE_HPP_INCLUDED

View File

@@ -0,0 +1,91 @@
#ifndef BOOST_SMART_PTR_DETAIL_LOCAL_SP_DELETER_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_LOCAL_SP_DELETER_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
// detail/local_sp_deleter.hpp
//
// Copyright 2017 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/smart_ptr/ for documentation.
#include <boost/smart_ptr/detail/local_counted_base.hpp>
#include <boost/config.hpp>
namespace boost
{
namespace detail
{
template<class D> class local_sp_deleter: public local_counted_impl_em
{
private:
D d_;
public:
local_sp_deleter(): d_()
{
}
explicit local_sp_deleter( D const& d ) BOOST_SP_NOEXCEPT: d_( d )
{
}
#if !defined( BOOST_NO_CXX11_RVALUE_REFERENCES )
explicit local_sp_deleter( D&& d ) BOOST_SP_NOEXCEPT: d_( std::move(d) )
{
}
#endif
D& deleter() BOOST_SP_NOEXCEPT
{
return d_;
}
template<class Y> void operator()( Y* p ) BOOST_SP_NOEXCEPT
{
d_( p );
}
#if !defined( BOOST_NO_CXX11_NULLPTR )
void operator()( boost::detail::sp_nullptr_t p ) BOOST_SP_NOEXCEPT
{
d_( p );
}
#endif
};
template<> class local_sp_deleter<void>
{
};
template<class D> D * get_local_deleter( local_sp_deleter<D> * p ) BOOST_SP_NOEXCEPT
{
return &p->deleter();
}
inline void * get_local_deleter( local_sp_deleter<void> * /*p*/ ) BOOST_SP_NOEXCEPT
{
return 0;
}
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_LOCAL_SP_DELETER_HPP_INCLUDED

View File

@@ -0,0 +1,87 @@
#ifndef BOOST_SMART_PTR_DETAIL_LWM_PTHREADS_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_LWM_PTHREADS_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
//
// boost/detail/lwm_pthreads.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/assert.hpp>
#include <pthread.h>
namespace boost
{
namespace detail
{
class lightweight_mutex
{
private:
pthread_mutex_t m_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex()
{
// HPUX 10.20 / DCE has a nonstandard pthread_mutex_init
#if defined(__hpux) && defined(_DECTHREADS_)
BOOST_VERIFY( pthread_mutex_init( &m_, pthread_mutexattr_default ) == 0 );
#else
BOOST_VERIFY( pthread_mutex_init( &m_, 0 ) == 0 );
#endif
}
~lightweight_mutex()
{
BOOST_VERIFY( pthread_mutex_destroy( &m_ ) == 0 );
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
pthread_mutex_t & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
scoped_lock(lightweight_mutex & m): m_(m.m_)
{
BOOST_VERIFY( pthread_mutex_lock( &m_ ) == 0 );
}
~scoped_lock()
{
BOOST_VERIFY( pthread_mutex_unlock( &m_ ) == 0 );
}
};
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_LWM_PTHREADS_HPP_INCLUDED

View File

@@ -0,0 +1,62 @@
#ifndef BOOST_SMART_PTR_DETAIL_LWM_STD_MUTEX_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_LWM_STD_MUTEX_HPP_INCLUDED
// Copyright 2020 Peter Dimov
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt)
#include <boost/assert.hpp>
#include <mutex>
namespace boost
{
namespace detail
{
class lightweight_mutex
{
private:
std::mutex m_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex()
{
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
std::mutex & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
scoped_lock( lightweight_mutex & m ): m_( m.m_ )
{
m_.lock();
}
~scoped_lock()
{
m_.unlock();
}
};
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_LWM_STD_MUTEX_HPP_INCLUDED

View File

@@ -0,0 +1,123 @@
#ifndef BOOST_SMART_PTR_DETAIL_LWM_WIN32_CS_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_LWM_WIN32_CS_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
//
// boost/detail/lwm_win32_cs.hpp
//
// Copyright (c) 2002, 2003 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#ifdef BOOST_USE_WINDOWS_H
#include <windows.h>
#else
struct _RTL_CRITICAL_SECTION;
#endif
namespace boost
{
namespace detail
{
#ifndef BOOST_USE_WINDOWS_H
struct critical_section
{
struct critical_section_debug * DebugInfo;
long LockCount;
long RecursionCount;
void * OwningThread;
void * LockSemaphore;
#if defined(_WIN64)
unsigned __int64 SpinCount;
#else
unsigned long SpinCount;
#endif
};
extern "C" __declspec(dllimport) void __stdcall InitializeCriticalSection(::_RTL_CRITICAL_SECTION *);
extern "C" __declspec(dllimport) void __stdcall EnterCriticalSection(::_RTL_CRITICAL_SECTION *);
extern "C" __declspec(dllimport) void __stdcall LeaveCriticalSection(::_RTL_CRITICAL_SECTION *);
extern "C" __declspec(dllimport) void __stdcall DeleteCriticalSection(::_RTL_CRITICAL_SECTION *);
typedef ::_RTL_CRITICAL_SECTION rtl_critical_section;
#else // #ifndef BOOST_USE_WINDOWS_H
typedef ::CRITICAL_SECTION critical_section;
using ::InitializeCriticalSection;
using ::EnterCriticalSection;
using ::LeaveCriticalSection;
using ::DeleteCriticalSection;
typedef ::CRITICAL_SECTION rtl_critical_section;
#endif // #ifndef BOOST_USE_WINDOWS_H
class lightweight_mutex
{
private:
critical_section cs_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex()
{
boost::detail::InitializeCriticalSection(reinterpret_cast< rtl_critical_section* >(&cs_));
}
~lightweight_mutex()
{
boost::detail::DeleteCriticalSection(reinterpret_cast< rtl_critical_section* >(&cs_));
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
lightweight_mutex & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
explicit scoped_lock(lightweight_mutex & m): m_(m)
{
boost::detail::EnterCriticalSection(reinterpret_cast< rtl_critical_section* >(&m_.cs_));
}
~scoped_lock()
{
boost::detail::LeaveCriticalSection(reinterpret_cast< rtl_critical_section* >(&m_.cs_));
}
};
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_LWM_WIN32_CS_HPP_INCLUDED

View File

@@ -0,0 +1,64 @@
// This header intentionally has no include guards.
//
// Copyright (c) 2001-2009, 2012 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
#if !defined( BOOST_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS ) && !defined( BOOST_NO_CXX11_NULLPTR )\
&& !(defined(__SUNPRO_CC) && BOOST_WORKAROUND(__SUNPRO_CC, <= 0x5130))
explicit operator bool () const BOOST_SP_NOEXCEPT
{
return px != 0;
}
#elif ( defined(__SUNPRO_CC) && BOOST_WORKAROUND(__SUNPRO_CC, < 0x570) ) || defined(__CINT__)
operator bool () const BOOST_SP_NOEXCEPT
{
return px != 0;
}
#elif defined( _MANAGED )
static void unspecified_bool( this_type*** )
{
}
typedef void (*unspecified_bool_type)( this_type*** );
operator unspecified_bool_type() const BOOST_SP_NOEXCEPT
{
return px == 0? 0: unspecified_bool;
}
#elif \
( defined(__MWERKS__) && BOOST_WORKAROUND(__MWERKS__, < 0x3200) ) || \
( defined(__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ < 304) ) || \
( defined(__SUNPRO_CC) && BOOST_WORKAROUND(__SUNPRO_CC, <= 0x590) )
typedef element_type * (this_type::*unspecified_bool_type)() const;
operator unspecified_bool_type() const BOOST_SP_NOEXCEPT
{
return px == 0? 0: &this_type::get;
}
#else
typedef element_type * this_type::*unspecified_bool_type;
operator unspecified_bool_type() const BOOST_SP_NOEXCEPT
{
return px == 0? 0: &this_type::px;
}
#endif
// operator! is redundant, but some compilers need it
bool operator! () const BOOST_SP_NOEXCEPT
{
return px == 0;
}

View File

@@ -0,0 +1,199 @@
#ifndef BOOST_SMART_PTR_DETAIL_QUICK_ALLOCATOR_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_QUICK_ALLOCATOR_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
//
// detail/quick_allocator.hpp
//
// Copyright (c) 2003 David Abrahams
// Copyright (c) 2003 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/config.hpp>
#include <boost/smart_ptr/detail/lightweight_mutex.hpp>
#include <boost/type_traits/type_with_alignment.hpp>
#include <boost/type_traits/alignment_of.hpp>
#include <new> // ::operator new, ::operator delete
#include <cstddef> // std::size_t
namespace boost
{
namespace detail
{
template<unsigned size, unsigned align_> union freeblock
{
typedef typename boost::type_with_alignment<align_>::type aligner_type;
aligner_type aligner;
char bytes[size];
freeblock * next;
};
template<unsigned size, unsigned align_> struct allocator_impl
{
typedef freeblock<size, align_> block;
// It may seem odd to use such small pages.
//
// However, on a typical Windows implementation that uses
// the OS allocator, "normal size" pages interact with the
// "ordinary" operator new, slowing it down dramatically.
//
// 512 byte pages are handled by the small object allocator,
// and don't interfere with ::new.
//
// The other alternative is to use much bigger pages (1M.)
//
// It is surprisingly easy to hit pathological behavior by
// varying the page size. g++ 2.96 on Red Hat Linux 7.2,
// for example, passionately dislikes 496. 512 seems OK.
#if defined(BOOST_QA_PAGE_SIZE)
enum { items_per_page = BOOST_QA_PAGE_SIZE / size };
#else
enum { items_per_page = 512 / size }; // 1048560 / size
#endif
#ifdef BOOST_HAS_THREADS
static lightweight_mutex & mutex()
{
static freeblock< sizeof( lightweight_mutex ), boost::alignment_of< lightweight_mutex >::value > fbm;
static lightweight_mutex * pm = new( &fbm ) lightweight_mutex;
return *pm;
}
static lightweight_mutex * mutex_init;
#endif
static block * free;
static block * page;
static unsigned last;
static inline void * alloc()
{
#ifdef BOOST_HAS_THREADS
lightweight_mutex::scoped_lock lock( mutex() );
#endif
if(block * x = free)
{
free = x->next;
return x;
}
else
{
if(last == items_per_page)
{
// "Listen to me carefully: there is no memory leak"
// -- Scott Meyers, Eff C++ 2nd Ed Item 10
page = ::new block[items_per_page];
last = 0;
}
return &page[last++];
}
}
static inline void * alloc(std::size_t n)
{
if(n != size) // class-specific new called for a derived object
{
return ::operator new(n);
}
else
{
#ifdef BOOST_HAS_THREADS
lightweight_mutex::scoped_lock lock( mutex() );
#endif
if(block * x = free)
{
free = x->next;
return x;
}
else
{
if(last == items_per_page)
{
page = ::new block[items_per_page];
last = 0;
}
return &page[last++];
}
}
}
static inline void dealloc(void * pv)
{
if(pv != 0) // 18.4.1.1/13
{
#ifdef BOOST_HAS_THREADS
lightweight_mutex::scoped_lock lock( mutex() );
#endif
block * pb = static_cast<block *>(pv);
pb->next = free;
free = pb;
}
}
static inline void dealloc(void * pv, std::size_t n)
{
if(n != size) // class-specific delete called for a derived object
{
::operator delete(pv);
}
else if(pv != 0) // 18.4.1.1/13
{
#ifdef BOOST_HAS_THREADS
lightweight_mutex::scoped_lock lock( mutex() );
#endif
block * pb = static_cast<block *>(pv);
pb->next = free;
free = pb;
}
}
};
#ifdef BOOST_HAS_THREADS
template<unsigned size, unsigned align_>
lightweight_mutex * allocator_impl<size, align_>::mutex_init = &allocator_impl<size, align_>::mutex();
#endif
template<unsigned size, unsigned align_>
freeblock<size, align_> * allocator_impl<size, align_>::free = 0;
template<unsigned size, unsigned align_>
freeblock<size, align_> * allocator_impl<size, align_>::page = 0;
template<unsigned size, unsigned align_>
unsigned allocator_impl<size, align_>::last = allocator_impl<size, align_>::items_per_page;
template<class T>
struct quick_allocator: public allocator_impl< sizeof(T), boost::alignment_of<T>::value >
{
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_QUICK_ALLOCATOR_HPP_INCLUDED

View File

@@ -0,0 +1,707 @@
#ifndef BOOST_SMART_PTR_DETAIL_SHARED_COUNT_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_SHARED_COUNT_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
//
// detail/shared_count.hpp
//
// Copyright (c) 2001, 2002, 2003 Peter Dimov and Multi Media Ltd.
// Copyright 2004-2005 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#if defined(__BORLANDC__) && !defined(__clang__)
# pragma warn -8027 // Functions containing try are not expanded inline
#endif
#include <boost/smart_ptr/bad_weak_ptr.hpp>
#include <boost/smart_ptr/detail/sp_counted_base.hpp>
#include <boost/smart_ptr/detail/sp_counted_impl.hpp>
#include <boost/smart_ptr/detail/sp_disable_deprecated.hpp>
#include <boost/smart_ptr/detail/sp_noexcept.hpp>
#include <boost/checked_delete.hpp>
#include <boost/throw_exception.hpp>
#include <boost/core/addressof.hpp>
#include <boost/config.hpp>
#include <boost/config/workaround.hpp>
#include <boost/cstdint.hpp>
#include <memory> // std::auto_ptr
#include <functional> // std::less
#include <cstddef> // std::size_t
#ifdef BOOST_NO_EXCEPTIONS
# include <new> // std::bad_alloc
#endif
#if defined( BOOST_SP_DISABLE_DEPRECATED )
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
namespace boost
{
namespace movelib
{
template< class T, class D > class unique_ptr;
} // namespace movelib
namespace detail
{
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
int const shared_count_id = 0x2C35F101;
int const weak_count_id = 0x298C38A4;
#endif
struct sp_nothrow_tag {};
template< class D > struct sp_inplace_tag
{
};
template< class T > class sp_reference_wrapper
{
public:
explicit sp_reference_wrapper( T & t): t_( boost::addressof( t ) )
{
}
template< class Y > void operator()( Y * p ) const
{
(*t_)( p );
}
private:
T * t_;
};
template< class D > struct sp_convert_reference
{
typedef D type;
};
template< class D > struct sp_convert_reference< D& >
{
typedef sp_reference_wrapper< D > type;
};
template<class T> std::size_t sp_hash_pointer( T* p ) BOOST_NOEXCEPT
{
boost::uintptr_t v = reinterpret_cast<boost::uintptr_t>( p );
// match boost::hash<T*>
return static_cast<std::size_t>( v + ( v >> 3 ) );
}
class weak_count;
class shared_count
{
private:
sp_counted_base * pi_;
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
int id_;
#endif
friend class weak_count;
public:
BOOST_CONSTEXPR shared_count() BOOST_SP_NOEXCEPT: pi_(0)
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
}
BOOST_CONSTEXPR explicit shared_count( sp_counted_base * pi ) BOOST_SP_NOEXCEPT: pi_( pi )
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
}
template<class Y> explicit shared_count( Y * p ): pi_( 0 )
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
#ifndef BOOST_NO_EXCEPTIONS
try
{
pi_ = new sp_counted_impl_p<Y>( p );
}
catch(...)
{
boost::checked_delete( p );
throw;
}
#else
pi_ = new sp_counted_impl_p<Y>( p );
if( pi_ == 0 )
{
boost::checked_delete( p );
boost::throw_exception( std::bad_alloc() );
}
#endif
}
#if defined( BOOST_MSVC ) && BOOST_WORKAROUND( BOOST_MSVC, <= 1200 )
template<class Y, class D> shared_count( Y * p, D d ): pi_(0)
#else
template<class P, class D> shared_count( P p, D d ): pi_(0)
#endif
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
#if defined( BOOST_MSVC ) && BOOST_WORKAROUND( BOOST_MSVC, <= 1200 )
typedef Y* P;
#endif
#ifndef BOOST_NO_EXCEPTIONS
try
{
pi_ = new sp_counted_impl_pd<P, D>(p, d);
}
catch(...)
{
d(p); // delete p
throw;
}
#else
pi_ = new sp_counted_impl_pd<P, D>(p, d);
if(pi_ == 0)
{
d(p); // delete p
boost::throw_exception(std::bad_alloc());
}
#endif
}
#if !defined( BOOST_NO_FUNCTION_TEMPLATE_ORDERING )
template< class P, class D > shared_count( P p, sp_inplace_tag<D> ): pi_( 0 )
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
#ifndef BOOST_NO_EXCEPTIONS
try
{
pi_ = new sp_counted_impl_pd< P, D >( p );
}
catch( ... )
{
D::operator_fn( p ); // delete p
throw;
}
#else
pi_ = new sp_counted_impl_pd< P, D >( p );
if( pi_ == 0 )
{
D::operator_fn( p ); // delete p
boost::throw_exception( std::bad_alloc() );
}
#endif // #ifndef BOOST_NO_EXCEPTIONS
}
#endif // !defined( BOOST_NO_FUNCTION_TEMPLATE_ORDERING )
template<class P, class D, class A> shared_count( P p, D d, A a ): pi_( 0 )
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
typedef sp_counted_impl_pda<P, D, A> impl_type;
#if !defined( BOOST_NO_CXX11_ALLOCATOR )
typedef typename std::allocator_traits<A>::template rebind_alloc< impl_type > A2;
#else
typedef typename A::template rebind< impl_type >::other A2;
#endif
A2 a2( a );
#ifndef BOOST_NO_EXCEPTIONS
try
{
pi_ = a2.allocate( 1 );
::new( static_cast< void* >( pi_ ) ) impl_type( p, d, a );
}
catch(...)
{
d( p );
if( pi_ != 0 )
{
a2.deallocate( static_cast< impl_type* >( pi_ ), 1 );
}
throw;
}
#else
pi_ = a2.allocate( 1 );
if( pi_ != 0 )
{
::new( static_cast< void* >( pi_ ) ) impl_type( p, d, a );
}
else
{
d( p );
boost::throw_exception( std::bad_alloc() );
}
#endif
}
#if !defined( BOOST_NO_FUNCTION_TEMPLATE_ORDERING )
template< class P, class D, class A > shared_count( P p, sp_inplace_tag< D >, A a ): pi_( 0 )
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
typedef sp_counted_impl_pda< P, D, A > impl_type;
#if !defined( BOOST_NO_CXX11_ALLOCATOR )
typedef typename std::allocator_traits<A>::template rebind_alloc< impl_type > A2;
#else
typedef typename A::template rebind< impl_type >::other A2;
#endif
A2 a2( a );
#ifndef BOOST_NO_EXCEPTIONS
try
{
pi_ = a2.allocate( 1 );
::new( static_cast< void* >( pi_ ) ) impl_type( p, a );
}
catch(...)
{
D::operator_fn( p );
if( pi_ != 0 )
{
a2.deallocate( static_cast< impl_type* >( pi_ ), 1 );
}
throw;
}
#else
pi_ = a2.allocate( 1 );
if( pi_ != 0 )
{
::new( static_cast< void* >( pi_ ) ) impl_type( p, a );
}
else
{
D::operator_fn( p );
boost::throw_exception( std::bad_alloc() );
}
#endif // #ifndef BOOST_NO_EXCEPTIONS
}
#endif // !defined( BOOST_NO_FUNCTION_TEMPLATE_ORDERING )
#ifndef BOOST_NO_AUTO_PTR
// auto_ptr<Y> is special cased to provide the strong guarantee
template<class Y>
explicit shared_count( std::auto_ptr<Y> & r ): pi_( new sp_counted_impl_p<Y>( r.get() ) )
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
#ifdef BOOST_NO_EXCEPTIONS
if( pi_ == 0 )
{
boost::throw_exception(std::bad_alloc());
}
#endif
r.release();
}
#endif
#if !defined( BOOST_NO_CXX11_SMART_PTR )
template<class Y, class D>
explicit shared_count( std::unique_ptr<Y, D> & r ): pi_( 0 )
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
typedef typename sp_convert_reference<D>::type D2;
D2 d2( static_cast<D&&>( r.get_deleter() ) );
pi_ = new sp_counted_impl_pd< typename std::unique_ptr<Y, D>::pointer, D2 >( r.get(), d2 );
#ifdef BOOST_NO_EXCEPTIONS
if( pi_ == 0 )
{
boost::throw_exception( std::bad_alloc() );
}
#endif
r.release();
}
#endif
template<class Y, class D>
explicit shared_count( boost::movelib::unique_ptr<Y, D> & r ): pi_( 0 )
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
typedef typename sp_convert_reference<D>::type D2;
D2 d2( r.get_deleter() );
pi_ = new sp_counted_impl_pd< typename boost::movelib::unique_ptr<Y, D>::pointer, D2 >( r.get(), d2 );
#ifdef BOOST_NO_EXCEPTIONS
if( pi_ == 0 )
{
boost::throw_exception( std::bad_alloc() );
}
#endif
r.release();
}
~shared_count() /*BOOST_SP_NOEXCEPT*/
{
if( pi_ != 0 ) pi_->release();
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
id_ = 0;
#endif
}
shared_count(shared_count const & r) BOOST_SP_NOEXCEPT: pi_(r.pi_)
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
if( pi_ != 0 ) pi_->add_ref_copy();
}
#if !defined( BOOST_NO_CXX11_RVALUE_REFERENCES )
shared_count(shared_count && r) BOOST_SP_NOEXCEPT: pi_(r.pi_)
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
r.pi_ = 0;
}
#endif
explicit shared_count(weak_count const & r); // throws bad_weak_ptr when r.use_count() == 0
shared_count( weak_count const & r, sp_nothrow_tag ) BOOST_SP_NOEXCEPT; // constructs an empty *this when r.use_count() == 0
shared_count & operator= (shared_count const & r) BOOST_SP_NOEXCEPT
{
sp_counted_base * tmp = r.pi_;
if( tmp != pi_ )
{
if( tmp != 0 ) tmp->add_ref_copy();
if( pi_ != 0 ) pi_->release();
pi_ = tmp;
}
return *this;
}
void swap(shared_count & r) BOOST_SP_NOEXCEPT
{
sp_counted_base * tmp = r.pi_;
r.pi_ = pi_;
pi_ = tmp;
}
long use_count() const BOOST_SP_NOEXCEPT
{
return pi_ != 0? pi_->use_count(): 0;
}
bool unique() const BOOST_SP_NOEXCEPT
{
return use_count() == 1;
}
bool empty() const BOOST_SP_NOEXCEPT
{
return pi_ == 0;
}
bool operator==( shared_count const & r ) const BOOST_SP_NOEXCEPT
{
return pi_ == r.pi_;
}
bool operator==( weak_count const & r ) const BOOST_SP_NOEXCEPT;
bool operator<( shared_count const & r ) const BOOST_SP_NOEXCEPT
{
return std::less<sp_counted_base *>()( pi_, r.pi_ );
}
bool operator<( weak_count const & r ) const BOOST_SP_NOEXCEPT;
void * get_deleter( sp_typeinfo_ const & ti ) const BOOST_SP_NOEXCEPT
{
return pi_? pi_->get_deleter( ti ): 0;
}
void * get_local_deleter( sp_typeinfo_ const & ti ) const BOOST_SP_NOEXCEPT
{
return pi_? pi_->get_local_deleter( ti ): 0;
}
void * get_untyped_deleter() const BOOST_SP_NOEXCEPT
{
return pi_? pi_->get_untyped_deleter(): 0;
}
std::size_t hash_value() const BOOST_SP_NOEXCEPT
{
return sp_hash_pointer( pi_ );
}
};
class weak_count
{
private:
sp_counted_base * pi_;
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
int id_;
#endif
friend class shared_count;
public:
BOOST_CONSTEXPR weak_count() BOOST_SP_NOEXCEPT: pi_(0)
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(weak_count_id)
#endif
{
}
weak_count(shared_count const & r) BOOST_SP_NOEXCEPT: pi_(r.pi_)
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(weak_count_id)
#endif
{
if(pi_ != 0) pi_->weak_add_ref();
}
weak_count(weak_count const & r) BOOST_SP_NOEXCEPT: pi_(r.pi_)
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(weak_count_id)
#endif
{
if(pi_ != 0) pi_->weak_add_ref();
}
// Move support
#if !defined( BOOST_NO_CXX11_RVALUE_REFERENCES )
weak_count(weak_count && r) BOOST_SP_NOEXCEPT: pi_(r.pi_)
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(weak_count_id)
#endif
{
r.pi_ = 0;
}
#endif
~weak_count() /*BOOST_SP_NOEXCEPT*/
{
if(pi_ != 0) pi_->weak_release();
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
id_ = 0;
#endif
}
weak_count & operator= (shared_count const & r) BOOST_SP_NOEXCEPT
{
sp_counted_base * tmp = r.pi_;
if( tmp != pi_ )
{
if(tmp != 0) tmp->weak_add_ref();
if(pi_ != 0) pi_->weak_release();
pi_ = tmp;
}
return *this;
}
weak_count & operator= (weak_count const & r) BOOST_SP_NOEXCEPT
{
sp_counted_base * tmp = r.pi_;
if( tmp != pi_ )
{
if(tmp != 0) tmp->weak_add_ref();
if(pi_ != 0) pi_->weak_release();
pi_ = tmp;
}
return *this;
}
void swap(weak_count & r) BOOST_SP_NOEXCEPT
{
sp_counted_base * tmp = r.pi_;
r.pi_ = pi_;
pi_ = tmp;
}
long use_count() const BOOST_SP_NOEXCEPT
{
return pi_ != 0? pi_->use_count(): 0;
}
bool empty() const BOOST_SP_NOEXCEPT
{
return pi_ == 0;
}
bool operator==( weak_count const & r ) const BOOST_SP_NOEXCEPT
{
return pi_ == r.pi_;
}
bool operator==( shared_count const & r ) const BOOST_SP_NOEXCEPT
{
return pi_ == r.pi_;
}
bool operator<( weak_count const & r ) const BOOST_SP_NOEXCEPT
{
return std::less<sp_counted_base *>()( pi_, r.pi_ );
}
bool operator<( shared_count const & r ) const BOOST_SP_NOEXCEPT
{
return std::less<sp_counted_base *>()( pi_, r.pi_ );
}
std::size_t hash_value() const BOOST_SP_NOEXCEPT
{
return sp_hash_pointer( pi_ );
}
};
inline shared_count::shared_count( weak_count const & r ): pi_( r.pi_ )
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
if( pi_ == 0 || !pi_->add_ref_lock() )
{
boost::throw_exception( boost::bad_weak_ptr() );
}
}
inline shared_count::shared_count( weak_count const & r, sp_nothrow_tag ) BOOST_SP_NOEXCEPT: pi_( r.pi_ )
#if defined(BOOST_SP_ENABLE_DEBUG_HOOKS)
, id_(shared_count_id)
#endif
{
if( pi_ != 0 && !pi_->add_ref_lock() )
{
pi_ = 0;
}
}
inline bool shared_count::operator==( weak_count const & r ) const BOOST_SP_NOEXCEPT
{
return pi_ == r.pi_;
}
inline bool shared_count::operator<( weak_count const & r ) const BOOST_SP_NOEXCEPT
{
return std::less<sp_counted_base *>()( pi_, r.pi_ );
}
} // namespace detail
} // namespace boost
#if defined( BOOST_SP_DISABLE_DEPRECATED )
#pragma GCC diagnostic pop
#endif
#if defined(__BORLANDC__) && !defined(__clang__)
# pragma warn .8027 // Functions containing try are not expanded inline
#endif
#endif // #ifndef BOOST_SMART_PTR_DETAIL_SHARED_COUNT_HPP_INCLUDED

View File

@@ -0,0 +1,92 @@
#ifndef BOOST_SMART_PTR_DETAIL_SP_CONVERTIBLE_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_SP_CONVERTIBLE_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
// detail/sp_convertible.hpp
//
// Copyright 2008 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
#include <boost/config.hpp>
#include <cstddef>
#if !defined( BOOST_SP_NO_SP_CONVERTIBLE ) && defined( BOOST_NO_SFINAE )
# define BOOST_SP_NO_SP_CONVERTIBLE
#endif
#if !defined( BOOST_SP_NO_SP_CONVERTIBLE ) && defined( __GNUC__ ) && ( __GNUC__ * 100 + __GNUC_MINOR__ < 303 )
# define BOOST_SP_NO_SP_CONVERTIBLE
#endif
#if !defined( BOOST_SP_NO_SP_CONVERTIBLE ) && defined( BOOST_BORLANDC ) && ( BOOST_BORLANDC < 0x630 )
# define BOOST_SP_NO_SP_CONVERTIBLE
#endif
#if !defined( BOOST_SP_NO_SP_CONVERTIBLE )
namespace boost
{
namespace detail
{
template< class Y, class T > struct sp_convertible
{
typedef char (&yes) [1];
typedef char (&no) [2];
static yes f( T* );
static no f( ... );
enum _vt { value = sizeof( (f)( static_cast<Y*>(0) ) ) == sizeof(yes) };
};
template< class Y, class T > struct sp_convertible< Y, T[] >
{
enum _vt { value = false };
};
template< class Y, class T > struct sp_convertible< Y[], T[] >
{
enum _vt { value = sp_convertible< Y[1], T[1] >::value };
};
template< class Y, std::size_t N, class T > struct sp_convertible< Y[N], T[] >
{
enum _vt { value = sp_convertible< Y[1], T[1] >::value };
};
struct sp_empty
{
};
template< bool > struct sp_enable_if_convertible_impl;
template<> struct sp_enable_if_convertible_impl<true>
{
typedef sp_empty type;
};
template<> struct sp_enable_if_convertible_impl<false>
{
};
template< class Y, class T > struct sp_enable_if_convertible: public sp_enable_if_convertible_impl< sp_convertible< Y, T >::value >
{
};
} // namespace detail
} // namespace boost
#endif // !defined( BOOST_SP_NO_SP_CONVERTIBLE )
#endif // #ifndef BOOST_SMART_PTR_DETAIL_SP_CONVERTIBLE_HPP_INCLUDED

View File

@@ -0,0 +1,92 @@
#ifndef BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
//
// detail/sp_counted_base.hpp
//
// Copyright 2005-2013 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/smart_ptr/detail/sp_has_gcc_intrinsics.hpp>
#include <boost/smart_ptr/detail/sp_has_sync_intrinsics.hpp>
#include <boost/config.hpp>
#if defined( BOOST_SP_DISABLE_THREADS )
# include <boost/smart_ptr/detail/sp_counted_base_nt.hpp>
#elif defined( BOOST_SP_USE_STD_ATOMIC )
# include <boost/smart_ptr/detail/sp_counted_base_std_atomic.hpp>
#elif defined( BOOST_SP_USE_SPINLOCK )
# include <boost/smart_ptr/detail/sp_counted_base_spin.hpp>
#elif defined( BOOST_SP_USE_PTHREADS )
# include <boost/smart_ptr/detail/sp_counted_base_pt.hpp>
#elif defined( BOOST_DISABLE_THREADS ) && !defined( BOOST_SP_ENABLE_THREADS ) && !defined( BOOST_DISABLE_WIN32 )
# include <boost/smart_ptr/detail/sp_counted_base_nt.hpp>
#elif defined( BOOST_SP_HAS_GCC_INTRINSICS )
# include <boost/smart_ptr/detail/sp_counted_base_gcc_atomic.hpp>
#elif !defined( BOOST_NO_CXX11_HDR_ATOMIC )
# include <boost/smart_ptr/detail/sp_counted_base_std_atomic.hpp>
#elif defined( __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4 )
# include <boost/smart_ptr/detail/sp_counted_base_sync.hpp>
#elif defined( __GNUC__ ) && ( defined( __i386__ ) || defined( __x86_64__ ) ) && !defined(__PATHSCALE__)
# include <boost/smart_ptr/detail/sp_counted_base_gcc_x86.hpp>
#elif defined( BOOST_SP_HAS_SYNC_INTRINSICS )
# include <boost/smart_ptr/detail/sp_counted_base_sync.hpp>
#elif defined( __SNC__ )
# include <boost/smart_ptr/detail/sp_counted_base_snc_ps3.hpp>
#elif defined(__HP_aCC) && defined(__ia64)
# include <boost/smart_ptr/detail/sp_counted_base_acc_ia64.hpp>
#elif defined( __GNUC__ ) && defined( __ia64__ ) && !defined( __INTEL_COMPILER ) && !defined(__PATHSCALE__)
# include <boost/smart_ptr/detail/sp_counted_base_gcc_ia64.hpp>
#elif defined( __IBMCPP__ ) && defined( __powerpc )
# include <boost/smart_ptr/detail/sp_counted_base_vacpp_ppc.hpp>
#elif defined( __MWERKS__ ) && defined( __POWERPC__ )
# include <boost/smart_ptr/detail/sp_counted_base_cw_ppc.hpp>
#elif defined( __GNUC__ ) && ( defined( __powerpc__ ) || defined( __ppc__ ) || defined( __ppc ) ) && !defined(__PATHSCALE__) && !defined( _AIX )
# include <boost/smart_ptr/detail/sp_counted_base_gcc_ppc.hpp>
#elif defined( __GNUC__ ) && ( defined( __mips__ ) || defined( _mips ) ) && !defined(__PATHSCALE__) && !defined( __mips16 )
# include <boost/smart_ptr/detail/sp_counted_base_gcc_mips.hpp>
#elif defined(__GNUC__) && ( defined( __sparcv9 ) || ( defined( __sparcv8 ) && ( __GNUC__ * 100 + __GNUC_MINOR__ >= 402 ) ) )
# include <boost/smart_ptr/detail/sp_counted_base_gcc_sparc.hpp>
#elif defined( WIN32 ) || defined( _WIN32 ) || defined( __WIN32__ ) || defined(__CYGWIN__)
# include <boost/smart_ptr/detail/sp_counted_base_w32.hpp>
#elif defined( _AIX )
# include <boost/smart_ptr/detail/sp_counted_base_aix.hpp>
#elif !defined( BOOST_HAS_THREADS )
# include <boost/smart_ptr/detail/sp_counted_base_nt.hpp>
#else
# include <boost/smart_ptr/detail/sp_counted_base_spin.hpp>
#endif
#endif // #ifndef BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_HPP_INCLUDED

View File

@@ -0,0 +1,163 @@
#ifndef BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_ACC_IA64_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_ACC_IA64_HPP_INCLUDED
//
// detail/sp_counted_base_acc_ia64.hpp - aC++ on HP-UX IA64
//
// Copyright 2007 Baruch Zilber
// Copyright 2007 Boris Gubenko
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
//
// Lock-free algorithm by Alexander Terekhov
//
#include <boost/smart_ptr/detail/sp_typeinfo_.hpp>
#include <boost/smart_ptr/detail/sp_obsolete.hpp>
#include <boost/config.hpp>
#include <machine/sys/inline.h>
#if defined(BOOST_SP_REPORT_IMPLEMENTATION)
#include <boost/config/pragma_message.hpp>
BOOST_PRAGMA_MESSAGE("Using HP aCC++/HP-UX/IA64 sp_counted_base")
#endif
BOOST_SP_OBSOLETE()
namespace boost
{
namespace detail
{
inline void atomic_increment( int * pw )
{
// ++*pw;
_Asm_fetchadd(_FASZ_W, _SEM_REL, pw, +1, _LDHINT_NONE);
}
inline int atomic_decrement( int * pw )
{
// return --*pw;
int r = static_cast<int>(_Asm_fetchadd(_FASZ_W, _SEM_REL, pw, -1, _LDHINT_NONE));
if (1 == r)
{
_Asm_mf();
}
return r - 1;
}
inline int atomic_conditional_increment( int * pw )
{
// if( *pw != 0 ) ++*pw;
// return *pw;
int v = *pw;
for (;;)
{
if (0 == v)
{
return 0;
}
_Asm_mov_to_ar(_AREG_CCV,
v,
(_UP_CALL_FENCE | _UP_SYS_FENCE | _DOWN_CALL_FENCE | _DOWN_SYS_FENCE));
int r = static_cast<int>(_Asm_cmpxchg(_SZ_W, _SEM_ACQ, pw, v + 1, _LDHINT_NONE));
if (r == v)
{
return r + 1;
}
v = r;
}
}
class BOOST_SYMBOL_VISIBLE sp_counted_base
{
private:
sp_counted_base( sp_counted_base const & );
sp_counted_base & operator= ( sp_counted_base const & );
int use_count_; // #shared
int weak_count_; // #weak + (#shared != 0)
public:
sp_counted_base(): use_count_( 1 ), weak_count_( 1 )
{
}
virtual ~sp_counted_base() // nothrow
{
}
// dispose() is called when use_count_ drops to zero, to release
// the resources managed by *this.
virtual void dispose() = 0; // nothrow
// destroy() is called when weak_count_ drops to zero.
virtual void destroy() // nothrow
{
delete this;
}
virtual void * get_deleter( sp_typeinfo_ const & ti ) = 0;
virtual void * get_local_deleter( sp_typeinfo_ const & ti ) = 0;
virtual void * get_untyped_deleter() = 0;
void add_ref_copy()
{
atomic_increment( &use_count_ );
}
bool add_ref_lock() // true on success
{
return atomic_conditional_increment( &use_count_ ) != 0;
}
void release() // nothrow
{
if( atomic_decrement( &use_count_ ) == 0 )
{
dispose();
weak_release();
}
}
void weak_add_ref() // nothrow
{
atomic_increment( &weak_count_ );
}
void weak_release() // nothrow
{
if( atomic_decrement( &weak_count_ ) == 0 )
{
destroy();
}
}
long use_count() const // nothrow
{
return static_cast<int const volatile &>( use_count_ ); // TODO use ld.acq here
}
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_ACC_IA64_HPP_INCLUDED

View File

@@ -0,0 +1,152 @@
#ifndef BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_AIX_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_AIX_HPP_INCLUDED
//
// detail/sp_counted_base_aix.hpp
// based on: detail/sp_counted_base_w32.hpp
//
// Copyright (c) 2001, 2002, 2003 Peter Dimov and Multi Media Ltd.
// Copyright 2004-2005 Peter Dimov
// Copyright 2006 Michael van der Westhuizen
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
//
// Lock-free algorithm by Alexander Terekhov
//
// Thanks to Ben Hitchings for the #weak + (#shared != 0)
// formulation
//
#include <boost/smart_ptr/detail/sp_typeinfo_.hpp>
#include <boost/config.hpp>
#include <builtins.h>
#include <sys/atomic_op.h>
#if defined(BOOST_SP_REPORT_IMPLEMENTATION)
#include <boost/config/pragma_message.hpp>
BOOST_PRAGMA_MESSAGE("Using AIX sp_counted_base")
#endif
namespace boost
{
namespace detail
{
inline void atomic_increment( int32_t* pw )
{
// ++*pw;
fetch_and_add( pw, 1 );
}
inline int32_t atomic_decrement( int32_t * pw )
{
// return --*pw;
int32_t originalValue;
__lwsync();
originalValue = fetch_and_add( pw, -1 );
__isync();
return (originalValue - 1);
}
inline int32_t atomic_conditional_increment( int32_t * pw )
{
// if( *pw != 0 ) ++*pw;
// return *pw;
int32_t tmp = fetch_and_add( pw, 0 );
for( ;; )
{
if( tmp == 0 ) return 0;
if( compare_and_swap( pw, &tmp, tmp + 1 ) ) return (tmp + 1);
}
}
class BOOST_SYMBOL_VISIBLE sp_counted_base
{
private:
sp_counted_base( sp_counted_base const & );
sp_counted_base & operator= ( sp_counted_base const & );
int32_t use_count_; // #shared
int32_t weak_count_; // #weak + (#shared != 0)
public:
sp_counted_base(): use_count_( 1 ), weak_count_( 1 )
{
}
virtual ~sp_counted_base() // nothrow
{
}
// dispose() is called when use_count_ drops to zero, to release
// the resources managed by *this.
virtual void dispose() = 0; // nothrow
// destroy() is called when weak_count_ drops to zero.
virtual void destroy() // nothrow
{
delete this;
}
virtual void * get_deleter( sp_typeinfo_ const & ti ) = 0;
virtual void * get_local_deleter( sp_typeinfo_ const & ti ) = 0;
virtual void * get_untyped_deleter() = 0;
void add_ref_copy()
{
atomic_increment( &use_count_ );
}
bool add_ref_lock() // true on success
{
return atomic_conditional_increment( &use_count_ ) != 0;
}
void release() // nothrow
{
if( atomic_decrement( &use_count_ ) == 0 )
{
dispose();
weak_release();
}
}
void weak_add_ref() // nothrow
{
atomic_increment( &weak_count_ );
}
void weak_release() // nothrow
{
if( atomic_decrement( &weak_count_ ) == 0 )
{
destroy();
}
}
long use_count() const // nothrow
{
return fetch_and_add( const_cast<int32_t*>(&use_count_), 0 );
}
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_AIX_HPP_INCLUDED

View File

@@ -0,0 +1,183 @@
#ifndef BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_CW_PPC_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_CW_PPC_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
//
// detail/sp_counted_base_cw_ppc.hpp - CodeWarrior on PowerPC
//
// Copyright (c) 2001, 2002, 2003 Peter Dimov and Multi Media Ltd.
// Copyright 2004-2005 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
//
// Lock-free algorithm by Alexander Terekhov
//
// Thanks to Ben Hitchings for the #weak + (#shared != 0)
// formulation
//
#include <boost/smart_ptr/detail/sp_typeinfo_.hpp>
#include <boost/smart_ptr/detail/sp_obsolete.hpp>
#include <boost/config.hpp>
#if defined(BOOST_SP_REPORT_IMPLEMENTATION)
#include <boost/config/pragma_message.hpp>
BOOST_PRAGMA_MESSAGE("Using CodeWarrior/PowerPC sp_counted_base")
#endif
BOOST_SP_OBSOLETE()
namespace boost
{
namespace detail
{
inline void atomic_increment( register long * pw )
{
register int a;
asm
{
loop:
lwarx a, 0, pw
addi a, a, 1
stwcx. a, 0, pw
bne- loop
}
}
inline long atomic_decrement( register long * pw )
{
register int a;
asm
{
sync
loop:
lwarx a, 0, pw
addi a, a, -1
stwcx. a, 0, pw
bne- loop
isync
}
return a;
}
inline long atomic_conditional_increment( register long * pw )
{
register int a;
asm
{
loop:
lwarx a, 0, pw
cmpwi a, 0
beq store
addi a, a, 1
store:
stwcx. a, 0, pw
bne- loop
}
return a;
}
class BOOST_SYMBOL_VISIBLE sp_counted_base
{
private:
sp_counted_base( sp_counted_base const & );
sp_counted_base & operator= ( sp_counted_base const & );
long use_count_; // #shared
long weak_count_; // #weak + (#shared != 0)
public:
sp_counted_base(): use_count_( 1 ), weak_count_( 1 )
{
}
virtual ~sp_counted_base() // nothrow
{
}
// dispose() is called when use_count_ drops to zero, to release
// the resources managed by *this.
virtual void dispose() = 0; // nothrow
// destroy() is called when weak_count_ drops to zero.
virtual void destroy() // nothrow
{
delete this;
}
virtual void * get_deleter( sp_typeinfo_ const & ti ) = 0;
virtual void * get_local_deleter( sp_typeinfo_ const & ti ) = 0;
virtual void * get_untyped_deleter() = 0;
void add_ref_copy()
{
atomic_increment( &use_count_ );
}
bool add_ref_lock() // true on success
{
return atomic_conditional_increment( &use_count_ ) != 0;
}
void release() // nothrow
{
if( atomic_decrement( &use_count_ ) == 0 )
{
dispose();
weak_release();
}
}
void weak_add_ref() // nothrow
{
atomic_increment( &weak_count_ );
}
void weak_release() // nothrow
{
if( atomic_decrement( &weak_count_ ) == 0 )
{
destroy();
}
}
long use_count() const // nothrow
{
return static_cast<long const volatile &>( use_count_ );
}
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_CW_PPC_HPP_INCLUDED

View File

@@ -0,0 +1,148 @@
#ifndef BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_GCC_ATOMIC_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_GCC_ATOMIC_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
// detail/sp_counted_base_gcc_atomic.hpp - g++ 4.7+ __atomic intrinsics
//
// Copyright 2007, 2020 Peter Dimov
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
#include <boost/smart_ptr/detail/sp_typeinfo_.hpp>
#include <boost/config.hpp>
#include <boost/cstdint.hpp>
#if defined(BOOST_SP_REPORT_IMPLEMENTATION)
#include <boost/config/pragma_message.hpp>
BOOST_PRAGMA_MESSAGE("Using __atomic sp_counted_base")
#endif
namespace boost
{
namespace detail
{
inline void atomic_increment( boost::uint_least32_t * pw )
{
__atomic_fetch_add( pw, 1, __ATOMIC_RELAXED );
}
inline boost::uint_least32_t atomic_decrement( boost::uint_least32_t * pw )
{
return __atomic_fetch_sub( pw, 1, __ATOMIC_ACQ_REL );
}
inline boost::uint_least32_t atomic_conditional_increment( boost::uint_least32_t * pw )
{
// long r = *pw;
// if( r != 0 ) ++*pw;
// return r;
boost::uint_least32_t r = __atomic_load_n( pw, __ATOMIC_RELAXED );
for( ;; )
{
if( r == 0 )
{
return r;
}
if( __atomic_compare_exchange_n( pw, &r, r + 1, true, __ATOMIC_RELAXED, __ATOMIC_RELAXED ) )
{
return r;
}
}
}
inline boost::uint_least32_t atomic_load( boost::uint_least32_t const * pw )
{
return __atomic_load_n( pw, __ATOMIC_ACQUIRE );
}
class BOOST_SYMBOL_VISIBLE sp_counted_base
{
private:
sp_counted_base( sp_counted_base const & );
sp_counted_base & operator= ( sp_counted_base const & );
boost::uint_least32_t use_count_; // #shared
boost::uint_least32_t weak_count_; // #weak + (#shared != 0)
public:
sp_counted_base(): use_count_( 1 ), weak_count_( 1 )
{
}
virtual ~sp_counted_base() // nothrow
{
}
// dispose() is called when use_count_ drops to zero, to release
// the resources managed by *this.
virtual void dispose() = 0; // nothrow
// destroy() is called when weak_count_ drops to zero.
virtual void destroy() // nothrow
{
delete this;
}
virtual void * get_deleter( sp_typeinfo_ const & ti ) = 0;
virtual void * get_local_deleter( sp_typeinfo_ const & ti ) = 0;
virtual void * get_untyped_deleter() = 0;
void add_ref_copy()
{
atomic_increment( &use_count_ );
}
bool add_ref_lock() // true on success
{
return atomic_conditional_increment( &use_count_ ) != 0;
}
void release() // nothrow
{
if( atomic_decrement( &use_count_ ) == 1 )
{
dispose();
weak_release();
}
}
void weak_add_ref() // nothrow
{
atomic_increment( &weak_count_ );
}
void weak_release() // nothrow
{
if( atomic_decrement( &weak_count_ ) == 1 )
{
destroy();
}
}
long use_count() const // nothrow
{
return atomic_load( &use_count_ );
}
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_SYNC_HPP_INCLUDED

View File

@@ -0,0 +1,170 @@
#ifndef BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_GCC_IA64_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_GCC_IA64_HPP_INCLUDED
//
// detail/sp_counted_base_gcc_ia64.hpp - g++ on IA64
//
// Copyright (c) 2001, 2002, 2003 Peter Dimov and Multi Media Ltd.
// Copyright 2004-2006 Peter Dimov
// Copyright 2005 Ben Hutchings
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
//
// Lock-free algorithm by Alexander Terekhov
//
#include <boost/smart_ptr/detail/sp_typeinfo_.hpp>
#include <boost/smart_ptr/detail/sp_obsolete.hpp>
#include <boost/config.hpp>
#if defined(BOOST_SP_REPORT_IMPLEMENTATION)
#include <boost/config/pragma_message.hpp>
BOOST_PRAGMA_MESSAGE("Using g++/IA64 sp_counted_base")
#endif
BOOST_SP_OBSOLETE()
namespace boost
{
namespace detail
{
inline void atomic_increment( int * pw )
{
// ++*pw;
int tmp;
// No barrier is required here but fetchadd always has an acquire or
// release barrier associated with it. We choose release as it should be
// cheaper.
__asm__ ("fetchadd4.rel %0=%1,1" :
"=r"(tmp), "=m"(*pw) :
"m"( *pw ));
}
inline int atomic_decrement( int * pw )
{
// return --*pw;
int rv;
__asm__ (" fetchadd4.rel %0=%1,-1 ;; \n"
" cmp.eq p7,p0=1,%0 ;; \n"
"(p7) ld4.acq %0=%1 " :
"=&r"(rv), "=m"(*pw) :
"m"( *pw ) :
"p7");
return rv;
}
inline int atomic_conditional_increment( int * pw )
{
// if( *pw != 0 ) ++*pw;
// return *pw;
int rv, tmp, tmp2;
__asm__ ("0: ld4 %0=%3 ;; \n"
" cmp.eq p7,p0=0,%0 ;; \n"
"(p7) br.cond.spnt 1f \n"
" mov ar.ccv=%0 \n"
" add %1=1,%0 ;; \n"
" cmpxchg4.acq %2=%3,%1,ar.ccv ;; \n"
" cmp.ne p7,p0=%0,%2 ;; \n"
"(p7) br.cond.spnt 0b \n"
" mov %0=%1 ;; \n"
"1:" :
"=&r"(rv), "=&r"(tmp), "=&r"(tmp2), "=m"(*pw) :
"m"( *pw ) :
"ar.ccv", "p7");
return rv;
}
class BOOST_SYMBOL_VISIBLE sp_counted_base
{
private:
sp_counted_base( sp_counted_base const & );
sp_counted_base & operator= ( sp_counted_base const & );
int use_count_; // #shared
int weak_count_; // #weak + (#shared != 0)
public:
sp_counted_base(): use_count_( 1 ), weak_count_( 1 )
{
}
virtual ~sp_counted_base() // nothrow
{
}
// dispose() is called when use_count_ drops to zero, to release
// the resources managed by *this.
virtual void dispose() = 0; // nothrow
// destroy() is called when weak_count_ drops to zero.
virtual void destroy() // nothrow
{
delete this;
}
virtual void * get_deleter( sp_typeinfo_ const & ti ) = 0;
virtual void * get_local_deleter( sp_typeinfo_ const & ti ) = 0;
virtual void * get_untyped_deleter() = 0;
void add_ref_copy()
{
atomic_increment( &use_count_ );
}
bool add_ref_lock() // true on success
{
return atomic_conditional_increment( &use_count_ ) != 0;
}
void release() // nothrow
{
if( atomic_decrement( &use_count_ ) == 0 )
{
dispose();
weak_release();
}
}
void weak_add_ref() // nothrow
{
atomic_increment( &weak_count_ );
}
void weak_release() // nothrow
{
if( atomic_decrement( &weak_count_ ) == 0 )
{
destroy();
}
}
long use_count() const // nothrow
{
return static_cast<int const volatile &>( use_count_ ); // TODO use ld.acq here
}
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_GCC_IA64_HPP_INCLUDED

View File

@@ -0,0 +1,200 @@
#ifndef BOOST_DETAIL_SP_COUNTED_BASE_GCC_MIPS_HPP_INCLUDED
#define BOOST_DETAIL_SP_COUNTED_BASE_GCC_MIPS_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
//
// detail/sp_counted_base_gcc_mips.hpp - g++ on MIPS
//
// Copyright (c) 2009, Spirent Communications, Inc.
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
//
// Lock-free algorithm by Alexander Terekhov
//
#include <boost/smart_ptr/detail/sp_typeinfo_.hpp>
#include <boost/smart_ptr/detail/sp_obsolete.hpp>
#include <boost/config.hpp>
#if defined(BOOST_SP_REPORT_IMPLEMENTATION)
#include <boost/config/pragma_message.hpp>
BOOST_PRAGMA_MESSAGE("Using g++/MIPS sp_counted_base")
#endif
BOOST_SP_OBSOLETE()
namespace boost
{
namespace detail
{
inline void atomic_increment( int * pw )
{
// ++*pw;
int tmp;
__asm__ __volatile__
(
"0:\n\t"
".set push\n\t"
#if !defined(__mips_isa_rev) || (__mips_isa_rev < 6)
".set mips2\n\t"
#endif
"ll %0, %1\n\t"
"addiu %0, 1\n\t"
"sc %0, %1\n\t"
".set pop\n\t"
"beqz %0, 0b":
"=&r"( tmp ), "=m"( *pw ):
"m"( *pw )
);
}
inline int atomic_decrement( int * pw )
{
// return --*pw;
int rv, tmp;
__asm__ __volatile__
(
"0:\n\t"
".set push\n\t"
#if !defined(__mips_isa_rev) || (__mips_isa_rev < 6)
".set mips2\n\t"
#endif
"ll %1, %2\n\t"
"addiu %0, %1, -1\n\t"
"sc %0, %2\n\t"
".set pop\n\t"
"beqz %0, 0b\n\t"
"addiu %0, %1, -1":
"=&r"( rv ), "=&r"( tmp ), "=m"( *pw ):
"m"( *pw ):
"memory"
);
return rv;
}
inline int atomic_conditional_increment( int * pw )
{
// if( *pw != 0 ) ++*pw;
// return *pw;
int rv, tmp;
__asm__ __volatile__
(
"0:\n\t"
".set push\n\t"
#if !defined(__mips_isa_rev) || (__mips_isa_rev < 6)
".set mips2\n\t"
#endif
"ll %0, %2\n\t"
"beqz %0, 1f\n\t"
"addiu %1, %0, 1\n\t"
"sc %1, %2\n\t"
".set pop\n\t"
"beqz %1, 0b\n\t"
"addiu %0, %0, 1\n\t"
"1:":
"=&r"( rv ), "=&r"( tmp ), "=m"( *pw ):
"m"( *pw ):
"memory"
);
return rv;
}
class BOOST_SYMBOL_VISIBLE sp_counted_base
{
private:
sp_counted_base( sp_counted_base const & );
sp_counted_base & operator= ( sp_counted_base const & );
int use_count_; // #shared
int weak_count_; // #weak + (#shared != 0)
public:
sp_counted_base(): use_count_( 1 ), weak_count_( 1 )
{
}
virtual ~sp_counted_base() // nothrow
{
}
// dispose() is called when use_count_ drops to zero, to release
// the resources managed by *this.
virtual void dispose() = 0; // nothrow
// destroy() is called when weak_count_ drops to zero.
virtual void destroy() // nothrow
{
delete this;
}
virtual void * get_deleter( sp_typeinfo_ const & ti ) = 0;
virtual void * get_local_deleter( sp_typeinfo_ const & ti ) = 0;
virtual void * get_untyped_deleter() = 0;
void add_ref_copy()
{
atomic_increment( &use_count_ );
}
bool add_ref_lock() // true on success
{
return atomic_conditional_increment( &use_count_ ) != 0;
}
void release() // nothrow
{
if( atomic_decrement( &use_count_ ) == 0 )
{
dispose();
weak_release();
}
}
void weak_add_ref() // nothrow
{
atomic_increment( &weak_count_ );
}
void weak_release() // nothrow
{
if( atomic_decrement( &weak_count_ ) == 0 )
{
destroy();
}
}
long use_count() const // nothrow
{
return static_cast<int const volatile &>( use_count_ );
}
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_SP_COUNTED_BASE_GCC_MIPS_HPP_INCLUDED

View File

@@ -0,0 +1,194 @@
#ifndef BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_GCC_PPC_HPP_INCLUDED
#define BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_GCC_PPC_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
//
// detail/sp_counted_base_gcc_ppc.hpp - g++ on PowerPC
//
// Copyright (c) 2001, 2002, 2003 Peter Dimov and Multi Media Ltd.
// Copyright 2004-2005 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
//
// Lock-free algorithm by Alexander Terekhov
//
// Thanks to Ben Hitchings for the #weak + (#shared != 0)
// formulation
//
#include <boost/smart_ptr/detail/sp_typeinfo_.hpp>
#include <boost/smart_ptr/detail/sp_obsolete.hpp>
#include <boost/config.hpp>
#if defined(BOOST_SP_REPORT_IMPLEMENTATION)
#include <boost/config/pragma_message.hpp>
BOOST_PRAGMA_MESSAGE("Using g++/PowerPC sp_counted_base")
#endif
BOOST_SP_OBSOLETE()
namespace boost
{
namespace detail
{
inline void atomic_increment( int * pw )
{
// ++*pw;
int tmp;
__asm__
(
"0:\n\t"
"lwarx %1, 0, %2\n\t"
"addi %1, %1, 1\n\t"
"stwcx. %1, 0, %2\n\t"
"bne- 0b":
"=m"( *pw ), "=&b"( tmp ):
"r"( pw ), "m"( *pw ):
"cc"
);
}
inline int atomic_decrement( int * pw )
{
// return --*pw;
int rv;
__asm__ __volatile__
(
"sync\n\t"
"0:\n\t"
"lwarx %1, 0, %2\n\t"
"addi %1, %1, -1\n\t"
"stwcx. %1, 0, %2\n\t"
"bne- 0b\n\t"
"isync":
"=m"( *pw ), "=&b"( rv ):
"r"( pw ), "m"( *pw ):
"memory", "cc"
);
return rv;
}
inline int atomic_conditional_increment( int * pw )
{
// if( *pw != 0 ) ++*pw;
// return *pw;
int rv;
__asm__
(
"0:\n\t"
"lwarx %1, 0, %2\n\t"
"cmpwi %1, 0\n\t"
"beq 1f\n\t"
"addi %1, %1, 1\n\t"
"1:\n\t"
"stwcx. %1, 0, %2\n\t"
"bne- 0b":
"=m"( *pw ), "=&b"( rv ):
"r"( pw ), "m"( *pw ):
"cc"
);
return rv;
}
class BOOST_SYMBOL_VISIBLE sp_counted_base
{
private:
sp_counted_base( sp_counted_base const & );
sp_counted_base & operator= ( sp_counted_base const & );
int use_count_; // #shared
int weak_count_; // #weak + (#shared != 0)
public:
sp_counted_base(): use_count_( 1 ), weak_count_( 1 )
{
}
virtual ~sp_counted_base() // nothrow
{
}
// dispose() is called when use_count_ drops to zero, to release
// the resources managed by *this.
virtual void dispose() = 0; // nothrow
// destroy() is called when weak_count_ drops to zero.
virtual void destroy() // nothrow
{
delete this;
}
virtual void * get_deleter( sp_typeinfo_ const & ti ) = 0;
virtual void * get_local_deleter( sp_typeinfo_ const & ti ) = 0;
virtual void * get_untyped_deleter() = 0;
void add_ref_copy()
{
atomic_increment( &use_count_ );
}
bool add_ref_lock() // true on success
{
return atomic_conditional_increment( &use_count_ ) != 0;
}
void release() // nothrow
{
if( atomic_decrement( &use_count_ ) == 0 )
{
dispose();
weak_release();
}
}
void weak_add_ref() // nothrow
{
atomic_increment( &weak_count_ );
}
void weak_release() // nothrow
{
if( atomic_decrement( &weak_count_ ) == 0 )
{
destroy();
}
}
long use_count() const // nothrow
{
return static_cast<int const volatile &>( use_count_ );
}
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_SMART_PTR_DETAIL_SP_COUNTED_BASE_GCC_PPC_HPP_INCLUDED

Some files were not shown because too many files have changed in this diff Show More