1
0
mirror of https://git.suyu.dev/suyu/suyu synced 2025-09-08 07:16:33 -05:00

Initial commit

This commit is contained in:
Crimson-Hawk
2024-03-05 16:42:40 +08:00
commit f1e4595ebf
39576 changed files with 7006612 additions and 0 deletions

View File

@@ -0,0 +1,2 @@
CRTLinkage: dynamic
LibraryLinkage: dynamic

View File

@@ -0,0 +1,8 @@
Package: boost-iterator
Version: 1.79.0
Depends: boost-assert, boost-concept-check, boost-config, boost-conversion, boost-core, boost-detail, boost-function-types, boost-fusion, boost-mpl, boost-optional, boost-smart-ptr, boost-static-assert, boost-type-traits, boost-utility, boost-vcpkg-helpers
Architecture: x64-windows
Multi-Arch: same
Abi: 198407720ab08cc171b7d0c2a7640ae035c7aee5a21a0e1d3c185c4b8c495f30
Description: Boost iterator module
Type: Port

View File

@@ -0,0 +1,18 @@
// (C) Copyright Andrey Semashev 2017.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_FUNCTION_OUTPUT_ITERATOR_HPP
#define BOOST_FUNCTION_OUTPUT_ITERATOR_HPP
// This is a deprecated header left for backward compatibility.
// Use boost/iterator/function_output_iterator.hpp instead.
#include <boost/config/header_deprecated.hpp>
BOOST_HEADER_DEPRECATED("<boost/iterator/function_output_iterator.hpp>")
#include <boost/iterator/function_output_iterator.hpp>
#endif // BOOST_FUNCTION_OUTPUT_ITERATOR_HPP

View File

@@ -0,0 +1,85 @@
// (C) Copyright Jens Maurer 2001.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// Revision History:
// 15 Nov 2001 Jens Maurer
// created.
// See http://www.boost.org/libs/utility/iterator_adaptors.htm for documentation.
#ifndef BOOST_ITERATOR_ADAPTOR_GENERATOR_ITERATOR_HPP
#define BOOST_ITERATOR_ADAPTOR_GENERATOR_ITERATOR_HPP
#include <boost/iterator/iterator_facade.hpp>
#include <boost/ref.hpp>
namespace boost {
namespace iterators {
template<class Generator>
class generator_iterator
: public iterator_facade<
generator_iterator<Generator>
, typename Generator::result_type
, single_pass_traversal_tag
, typename Generator::result_type const&
>
{
typedef iterator_facade<
generator_iterator<Generator>
, typename Generator::result_type
, single_pass_traversal_tag
, typename Generator::result_type const&
> super_t;
public:
generator_iterator() {}
generator_iterator(Generator* g) : m_g(g), m_value((*m_g)()) {}
void increment()
{
m_value = (*m_g)();
}
const typename Generator::result_type&
dereference() const
{
return m_value;
}
bool equal(generator_iterator const& y) const
{
return this->m_g == y.m_g && this->m_value == y.m_value;
}
private:
Generator* m_g;
typename Generator::result_type m_value;
};
template<class Generator>
struct generator_iterator_generator
{
typedef generator_iterator<Generator> type;
};
template <class Generator>
inline generator_iterator<Generator>
make_generator_iterator(Generator & gen)
{
typedef generator_iterator<Generator> result_t;
return result_t(&gen);
}
} // namespace iterators
using iterators::generator_iterator;
using iterators::generator_iterator_generator;
using iterators::make_generator_iterator;
} // namespace boost
#endif // BOOST_ITERATOR_ADAPTOR_GENERATOR_ITERATOR_HPP

View File

@@ -0,0 +1,43 @@
#ifndef INDIRECT_REFERENCE_DWA200415_HPP
# define INDIRECT_REFERENCE_DWA200415_HPP
//
// Copyright David Abrahams 2004. Use, modification and distribution is
// subject to the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// typename indirect_reference<P>::type provides the type of *p.
//
// http://www.boost.org/libs/iterator/doc/pointee.html
//
# include <boost/detail/is_incrementable.hpp>
# include <boost/iterator/iterator_traits.hpp>
# include <boost/type_traits/remove_cv.hpp>
# include <boost/mpl/eval_if.hpp>
# include <boost/pointee.hpp>
namespace boost {
namespace detail
{
template <class P>
struct smart_ptr_reference
{
typedef typename boost::pointee<P>::type& type;
};
}
template <class P>
struct indirect_reference
: mpl::eval_if<
detail::is_incrementable<P>
, iterator_reference<P>
, detail::smart_ptr_reference<P>
>
{
};
} // namespace boost
#endif // INDIRECT_REFERENCE_DWA200415_HPP

View File

@@ -0,0 +1,95 @@
// Copyright (C) 2017 Michel Morin.
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_ITERATOR_ADVANCE_HPP
#define BOOST_ITERATOR_ADVANCE_HPP
#include <boost/config.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/iterator/iterator_categories.hpp>
namespace boost {
namespace iterators {
namespace detail {
template <typename InputIterator, typename Distance>
inline BOOST_CXX14_CONSTEXPR void
advance_impl(
InputIterator& it
, Distance n
, incrementable_traversal_tag
)
{
while (n > 0) {
++it;
--n;
}
}
#if BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 40600)
// type-limits warning issued below when n is an unsigned integral
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtype-limits"
#endif
template <typename BidirectionalIterator, typename Distance>
inline BOOST_CXX14_CONSTEXPR void
advance_impl(
BidirectionalIterator& it
, Distance n
, bidirectional_traversal_tag
)
{
if (n >= 0) {
while (n > 0) {
++it;
--n;
}
}
else {
while (n < 0) {
--it;
++n;
}
}
}
#if BOOST_WORKAROUND(BOOST_GCC_VERSION, >= 40600)
#pragma GCC diagnostic pop
#endif
template <typename RandomAccessIterator, typename Distance>
inline BOOST_CXX14_CONSTEXPR void
advance_impl(
RandomAccessIterator& it
, Distance n
, random_access_traversal_tag
)
{
it += n;
}
}
namespace advance_adl_barrier {
template <typename InputIterator, typename Distance>
inline BOOST_CXX14_CONSTEXPR void
advance(InputIterator& it, Distance n)
{
detail::advance_impl(
it, n, typename iterator_traversal<InputIterator>::type()
);
}
}
using namespace advance_adl_barrier;
} // namespace iterators
using namespace iterators::advance_adl_barrier;
} // namespace boost
#endif

View File

@@ -0,0 +1,254 @@
// Copyright David Abrahams 2003.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef COUNTING_ITERATOR_DWA200348_HPP
# define COUNTING_ITERATOR_DWA200348_HPP
# include <boost/config.hpp>
# include <boost/static_assert.hpp>
# ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
# include <limits>
# elif !BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x551))
# include <boost/type_traits/is_convertible.hpp>
# else
# include <boost/type_traits/is_arithmetic.hpp>
# endif
# include <boost/type_traits/is_integral.hpp>
# include <boost/type_traits/type_identity.hpp>
# include <boost/type_traits/conditional.hpp>
# include <boost/type_traits/integral_constant.hpp>
# include <boost/detail/numeric_traits.hpp>
# include <boost/iterator/iterator_adaptor.hpp>
namespace boost {
namespace iterators {
template <
class Incrementable
, class CategoryOrTraversal
, class Difference
>
class counting_iterator;
namespace detail
{
// Try to detect numeric types at compile time in ways compatible
// with the limitations of the compiler and library.
template <class T>
struct is_numeric_impl
{
// For a while, this wasn't true, but we rely on it below. This is a regression assert.
BOOST_STATIC_ASSERT(::boost::is_integral<char>::value);
# ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
BOOST_STATIC_CONSTANT(bool, value = std::numeric_limits<T>::is_specialized);
# else
# if !BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x551))
BOOST_STATIC_CONSTANT(
bool, value = (
boost::is_convertible<int,T>::value
&& boost::is_convertible<T,int>::value
));
# else
BOOST_STATIC_CONSTANT(bool, value = ::boost::is_arithmetic<T>::value);
# endif
# endif
};
template <class T>
struct is_numeric
: boost::integral_constant<bool, ::boost::iterators::detail::is_numeric_impl<T>::value>
{};
# if defined(BOOST_HAS_LONG_LONG)
template <>
struct is_numeric<boost::long_long_type>
: boost::true_type {};
template <>
struct is_numeric<boost::ulong_long_type>
: boost::true_type {};
# endif
# if defined(BOOST_HAS_INT128)
template <>
struct is_numeric<boost::int128_type>
: boost::true_type {};
template <>
struct is_numeric<boost::uint128_type>
: boost::true_type {};
# endif
// Some compilers fail to have a numeric_limits specialization
template <>
struct is_numeric<wchar_t>
: true_type {};
template <class T>
struct numeric_difference
{
typedef typename boost::detail::numeric_traits<T>::difference_type type;
};
# if defined(BOOST_HAS_INT128)
// std::numeric_limits, which is used by numeric_traits, is not specialized for __int128 in some standard libraries
template <>
struct numeric_difference<boost::int128_type>
{
typedef boost::int128_type type;
};
template <>
struct numeric_difference<boost::uint128_type>
{
typedef boost::int128_type type;
};
# endif
template <class Incrementable, class CategoryOrTraversal, class Difference>
struct counting_iterator_base
{
typedef typename detail::ia_dflt_help<
CategoryOrTraversal
, typename boost::conditional<
is_numeric<Incrementable>::value
, boost::type_identity<random_access_traversal_tag>
, iterator_traversal<Incrementable>
>::type
>::type traversal;
typedef typename detail::ia_dflt_help<
Difference
, typename boost::conditional<
is_numeric<Incrementable>::value
, numeric_difference<Incrementable>
, iterator_difference<Incrementable>
>::type
>::type difference;
typedef iterator_adaptor<
counting_iterator<Incrementable, CategoryOrTraversal, Difference> // self
, Incrementable // Base
, Incrementable // Value
# ifndef BOOST_ITERATOR_REF_CONSTNESS_KILLS_WRITABILITY
const // MSVC won't strip this. Instead we enable Thomas'
// criterion (see boost/iterator/detail/facade_iterator_category.hpp)
# endif
, traversal
, Incrementable const& // reference
, difference
> type;
};
// Template class distance_policy_select -- choose a policy for computing the
// distance between counting_iterators at compile-time based on whether or not
// the iterator wraps an integer or an iterator, using "poor man's partial
// specialization".
template <bool is_integer> struct distance_policy_select;
// A policy for wrapped iterators
template <class Difference, class Incrementable1, class Incrementable2>
struct iterator_distance
{
static Difference distance(Incrementable1 x, Incrementable2 y)
{
return y - x;
}
};
// A policy for wrapped numbers
template <class Difference, class Incrementable1, class Incrementable2>
struct number_distance
{
static Difference distance(Incrementable1 x, Incrementable2 y)
{
return boost::detail::numeric_distance(x, y);
}
};
}
template <
class Incrementable
, class CategoryOrTraversal = use_default
, class Difference = use_default
>
class counting_iterator
: public detail::counting_iterator_base<
Incrementable, CategoryOrTraversal, Difference
>::type
{
typedef typename detail::counting_iterator_base<
Incrementable, CategoryOrTraversal, Difference
>::type super_t;
friend class iterator_core_access;
public:
typedef typename super_t::difference_type difference_type;
BOOST_DEFAULTED_FUNCTION(counting_iterator(), {})
BOOST_DEFAULTED_FUNCTION(counting_iterator(counting_iterator const& rhs), : super_t(rhs.base()) {})
counting_iterator(Incrementable x)
: super_t(x)
{
}
# if 0
template<class OtherIncrementable>
counting_iterator(
counting_iterator<OtherIncrementable, CategoryOrTraversal, Difference> const& t
, typename enable_if_convertible<OtherIncrementable, Incrementable>::type* = 0
)
: super_t(t.base())
{}
# endif
BOOST_DEFAULTED_FUNCTION(counting_iterator& operator=(counting_iterator const& rhs), { *static_cast< super_t* >(this) = static_cast< super_t const& >(rhs); return *this; })
private:
typename super_t::reference dereference() const
{
return this->base_reference();
}
template <class OtherIncrementable>
difference_type
distance_to(counting_iterator<OtherIncrementable, CategoryOrTraversal, Difference> const& y) const
{
typedef typename boost::conditional<
detail::is_numeric<Incrementable>::value
, detail::number_distance<difference_type, Incrementable, OtherIncrementable>
, detail::iterator_distance<difference_type, Incrementable, OtherIncrementable>
>::type d;
return d::distance(this->base(), y.base());
}
};
// Manufacture a counting iterator for an arbitrary incrementable type
template <class Incrementable>
inline counting_iterator<Incrementable>
make_counting_iterator(Incrementable x)
{
typedef counting_iterator<Incrementable> result_t;
return result_t(x);
}
} // namespace iterators
using iterators::counting_iterator;
using iterators::make_counting_iterator;
} // namespace boost
#endif // COUNTING_ITERATOR_DWA200348_HPP

View File

@@ -0,0 +1,21 @@
// Copyright David Abrahams 2003. Use, modification and distribution is
// subject to the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef ANY_CONVERSION_EATER_DWA20031117_HPP
# define ANY_CONVERSION_EATER_DWA20031117_HPP
namespace boost {
namespace iterators {
namespace detail {
// This type can be used in traits to "eat" up the one user-defined
// implicit conversion allowed.
struct any_conversion_eater
{
template <class T>
any_conversion_eater(T const&);
};
}}} // namespace boost::iterators::detail
#endif // ANY_CONVERSION_EATER_DWA20031117_HPP

View File

@@ -0,0 +1,128 @@
// (C) Copyright David Abrahams 2002.
// (C) Copyright Jeremy Siek 2002.
// (C) Copyright Thomas Witt 2002.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// no include guard multiple inclusion intended
//
// This is a temporary workaround until the bulk of this is
// available in boost config.
// 23/02/03 thw
//
#include <boost/config.hpp> // for prior
#include <boost/detail/workaround.hpp>
#ifdef BOOST_ITERATOR_CONFIG_DEF
# error you have nested config_def #inclusion.
#else
# define BOOST_ITERATOR_CONFIG_DEF
#endif
// We enable this always now. Otherwise, the simple case in
// libs/iterator/test/constant_iterator_arrow.cpp fails to compile
// because the operator-> return is improperly deduced as a non-const
// pointer.
#if 1 || defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) \
|| BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x531))
// Recall that in general, compilers without partial specialization
// can't strip constness. Consider counting_iterator, which normally
// passes a const Value to iterator_facade. As a result, any code
// which makes a std::vector of the iterator's value_type will fail
// when its allocator declares functions overloaded on reference and
// const_reference (the same type).
//
// Furthermore, Borland 5.5.1 drops constness in enough ways that we
// end up using a proxy for operator[] when we otherwise shouldn't.
// Using reference constness gives it an extra hint that it can
// return the value_type from operator[] directly, but is not
// strictly necessary. Not sure how best to resolve this one.
# define BOOST_ITERATOR_REF_CONSTNESS_KILLS_WRITABILITY 1
#endif
#if BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x5A0)) \
|| (BOOST_WORKAROUND(BOOST_INTEL_CXX_VERSION, <= 700) && defined(_MSC_VER)) \
|| BOOST_WORKAROUND(__DECCXX_VER, BOOST_TESTED_AT(60590042)) \
|| BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x590))
# define BOOST_NO_LVALUE_RETURN_DETECTION
# if 0 // test code
struct v {};
typedef char (&no)[3];
template <class T>
no foo(T const&, ...);
template <class T>
char foo(T&, int);
struct value_iterator
{
v operator*() const;
};
template <class T>
struct lvalue_deref_helper
{
static T& x;
enum { value = (sizeof(foo(*x,0)) == 1) };
};
int z2[(lvalue_deref_helper<v*>::value == 1) ? 1 : -1];
int z[(lvalue_deref_helper<value_iterator>::value) == 1 ? -1 : 1 ];
# endif
#endif
#if BOOST_WORKAROUND(__MWERKS__, <=0x2407)
# define BOOST_NO_IS_CONVERTIBLE // "is_convertible doesn't work for simple types"
#endif
#if BOOST_WORKAROUND(__GNUC__, == 3) && BOOST_WORKAROUND(__GNUC_MINOR__, < 4) && !defined(__EDG_VERSION__) \
|| BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x551))
# define BOOST_NO_IS_CONVERTIBLE_TEMPLATE // The following program fails to compile:
# if 0 // test code
#include <boost/type_traits/is_convertible.hpp>
template <class T>
struct foo
{
foo(T);
template <class U>
foo(foo<U> const& other) : p(other.p) { }
T p;
};
bool x = boost::is_convertible<foo<int const*>, foo<int*> >::value;
# endif
#endif
#if !defined(BOOST_MSVC) && (defined(BOOST_NO_SFINAE) || defined(BOOST_NO_IS_CONVERTIBLE) || defined(BOOST_NO_IS_CONVERTIBLE_TEMPLATE))
# define BOOST_NO_STRICT_ITERATOR_INTEROPERABILITY
#endif
# if BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x564))
// GCC-2.95 (obsolete) eagerly instantiates templated constructors and conversion
// operators in convertibility checks, causing premature errors.
//
// Borland's problems are harder to diagnose due to lack of an
// instantiation stack backtrace. They may be due in part to the fact
// that it drops cv-qualification willy-nilly in templates.
# define BOOST_NO_ONE_WAY_ITERATOR_INTEROP
# endif
// no include guard; multiple inclusion intended

View File

@@ -0,0 +1,24 @@
// (C) Copyright Thomas Witt 2002.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// no include guard multiple inclusion intended
//
// This is a temporary workaround until the bulk of this is
// available in boost config.
// 23/02/03 thw
//
#undef BOOST_NO_IS_CONVERTIBLE
#undef BOOST_NO_IS_CONVERTIBLE_TEMPLATE
#undef BOOST_NO_STRICT_ITERATOR_INTEROPERABILITY
#undef BOOST_NO_LVALUE_RETURN_DETECTION
#undef BOOST_NO_ONE_WAY_ITERATOR_INTEROP
#ifdef BOOST_ITERATOR_CONFIG_DEF
# undef BOOST_ITERATOR_CONFIG_DEF
#else
# error missing or nested #include config_def
#endif

View File

@@ -0,0 +1,83 @@
// (C) Copyright David Abrahams 2002.
// (C) Copyright Jeremy Siek 2002.
// (C) Copyright Thomas Witt 2002.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_ENABLE_IF_23022003THW_HPP
#define BOOST_ENABLE_IF_23022003THW_HPP
#include <boost/config.hpp>
#include <boost/iterator/detail/config_def.hpp>
#if defined(BOOST_NO_SFINAE) || defined(BOOST_NO_IS_CONVERTIBLE)
#include <boost/type_traits/type_identity.hpp>
#endif
//
// Boost iterators uses its own enable_if cause we need
// special semantics for deficient compilers.
// 23/02/03 thw
//
namespace boost
{
namespace iterators
{
//
// Base machinery for all kinds of enable if
//
template<bool>
struct enabled
{
template<typename T>
struct base
{
typedef T type;
};
};
//
// For compilers that don't support "Substitution Failure Is Not An Error"
// enable_if falls back to always enabled. See comments
// on operator implementation for consequences.
//
template<>
struct enabled<false>
{
template<typename T>
struct base
{
#ifdef BOOST_NO_SFINAE
typedef T type;
// This way to do it would give a nice error message containing
// invalid overload, but has the big disadvantage that
// there is no reference to user code in the error message.
//
// struct invalid_overload;
// typedef invalid_overload type;
//
#endif
};
};
template <class Cond,
class Return>
struct enable_if
# if !defined(BOOST_NO_SFINAE) && !defined(BOOST_NO_IS_CONVERTIBLE)
: enabled<(Cond::value)>::template base<Return>
# else
: boost::type_identity<Return>
# endif
{
};
} // namespace iterators
} // namespace boost
#include <boost/iterator/detail/config_undef.hpp>
#endif // BOOST_ENABLE_IF_23022003THW_HPP

View File

@@ -0,0 +1,194 @@
// Copyright David Abrahams 2003. Use, modification and distribution is
// subject to the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef FACADE_ITERATOR_CATEGORY_DWA20031118_HPP
# define FACADE_ITERATOR_CATEGORY_DWA20031118_HPP
# include <boost/core/use_default.hpp>
# include <boost/iterator/iterator_categories.hpp>
# include <boost/mpl/or.hpp> // used in iterator_tag inheritance logic
# include <boost/mpl/and.hpp>
# include <boost/mpl/if.hpp>
# include <boost/mpl/eval_if.hpp>
# include <boost/mpl/identity.hpp>
# include <boost/mpl/assert.hpp>
# include <boost/type_traits/is_same.hpp>
# include <boost/type_traits/is_const.hpp>
# include <boost/type_traits/is_reference.hpp>
# include <boost/type_traits/is_convertible.hpp>
# include <boost/type_traits/is_same.hpp>
# include <boost/iterator/detail/config_def.hpp> // try to keep this last
# ifdef BOOST_ITERATOR_REF_CONSTNESS_KILLS_WRITABILITY
# include <boost/detail/indirect_traits.hpp>
# endif
//
// iterator_category deduction for iterator_facade
//
namespace boost {
namespace iterators {
using boost::use_default;
namespace detail {
struct input_output_iterator_tag
: std::input_iterator_tag
{
// Using inheritance for only input_iterator_tag helps to avoid
// ambiguities when a stdlib implementation dispatches on a
// function which is overloaded on both input_iterator_tag and
// output_iterator_tag, as STLPort does, in its __valid_range
// function. I claim it's better to avoid the ambiguity in these
// cases.
operator std::output_iterator_tag() const
{
return std::output_iterator_tag();
}
};
//
// True iff the user has explicitly disabled writability of this
// iterator. Pass the iterator_facade's Value parameter and its
// nested ::reference type.
//
template <class ValueParam, class Reference>
struct iterator_writability_disabled
# ifdef BOOST_ITERATOR_REF_CONSTNESS_KILLS_WRITABILITY // Adding Thomas' logic?
: mpl::or_<
is_const<Reference>
, boost::detail::indirect_traits::is_reference_to_const<Reference>
, is_const<ValueParam>
>
# else
: is_const<ValueParam>
# endif
{};
//
// Convert an iterator_facade's traversal category, Value parameter,
// and ::reference type to an appropriate old-style category.
//
// Due to changeset 21683, this now never results in a category convertible
// to output_iterator_tag.
//
// Change at: https://svn.boost.org/trac/boost/changeset/21683
template <class Traversal, class ValueParam, class Reference>
struct iterator_facade_default_category
: mpl::eval_if<
mpl::and_<
is_reference<Reference>
, is_convertible<Traversal,forward_traversal_tag>
>
, mpl::eval_if<
is_convertible<Traversal,random_access_traversal_tag>
, mpl::identity<std::random_access_iterator_tag>
, mpl::if_<
is_convertible<Traversal,bidirectional_traversal_tag>
, std::bidirectional_iterator_tag
, std::forward_iterator_tag
>
>
, typename mpl::eval_if<
mpl::and_<
is_convertible<Traversal, single_pass_traversal_tag>
// check for readability
, is_convertible<Reference, ValueParam>
>
, mpl::identity<std::input_iterator_tag>
, mpl::identity<Traversal>
>
>
{
};
// True iff T is convertible to an old-style iterator category.
template <class T>
struct is_iterator_category
: mpl::or_<
is_convertible<T,std::input_iterator_tag>
, is_convertible<T,std::output_iterator_tag>
>
{
};
template <class T>
struct is_iterator_traversal
: is_convertible<T,incrementable_traversal_tag>
{};
//
// A composite iterator_category tag convertible to Category (a pure
// old-style category) and Traversal (a pure traversal tag).
// Traversal must be a strict increase of the traversal power given by
// Category.
//
template <class Category, class Traversal>
struct iterator_category_with_traversal
: Category, Traversal
{
// Make sure this isn't used to build any categories where
// convertibility to Traversal is redundant. Should just use the
// Category element in that case.
BOOST_MPL_ASSERT_NOT((
is_convertible<
typename iterator_category_to_traversal<Category>::type
, Traversal
>));
BOOST_MPL_ASSERT((is_iterator_category<Category>));
BOOST_MPL_ASSERT_NOT((is_iterator_category<Traversal>));
BOOST_MPL_ASSERT_NOT((is_iterator_traversal<Category>));
# if !BOOST_WORKAROUND(BOOST_MSVC, BOOST_TESTED_AT(1310))
BOOST_MPL_ASSERT((is_iterator_traversal<Traversal>));
# endif
};
// Computes an iterator_category tag whose traversal is Traversal and
// which is appropriate for an iterator
template <class Traversal, class ValueParam, class Reference>
struct facade_iterator_category_impl
{
BOOST_MPL_ASSERT_NOT((is_iterator_category<Traversal>));
typedef typename iterator_facade_default_category<
Traversal,ValueParam,Reference
>::type category;
typedef typename mpl::if_<
is_same<
Traversal
, typename iterator_category_to_traversal<category>::type
>
, category
, iterator_category_with_traversal<category,Traversal>
>::type type;
};
//
// Compute an iterator_category for iterator_facade
//
template <class CategoryOrTraversal, class ValueParam, class Reference>
struct facade_iterator_category
: mpl::eval_if<
is_iterator_category<CategoryOrTraversal>
, mpl::identity<CategoryOrTraversal> // old-style categories are fine as-is
, facade_iterator_category_impl<CategoryOrTraversal,ValueParam,Reference>
>
{
};
}}} // namespace boost::iterators::detail
# include <boost/iterator/detail/config_undef.hpp>
#endif // FACADE_ITERATOR_CATEGORY_DWA20031118_HPP

View File

@@ -0,0 +1,19 @@
// Copyright David Abrahams 2003. Use, modification and distribution is
// subject to the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef MINIMUM_CATEGORY_DWA20031119_HPP
# define MINIMUM_CATEGORY_DWA20031119_HPP
# include <boost/iterator/minimum_category.hpp>
namespace boost {
// This import below (as well as the whole header) is for backward compatibility
// with boost/token_iterator.hpp. It should be removed as soon as that header is fixed.
namespace detail {
using iterators::minimum_category;
} // namespace detail
} // namespace boost
#endif // MINIMUM_CATEGORY_DWA20031119_HPP

View File

@@ -0,0 +1,65 @@
// Copyright (C) 2017 Michel Morin.
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_ITERATOR_DISTANCE_HPP
#define BOOST_ITERATOR_DISTANCE_HPP
#include <boost/config.hpp>
#include <boost/iterator/iterator_categories.hpp>
#include <boost/iterator/iterator_traits.hpp>
namespace boost {
namespace iterators {
namespace detail {
template <typename SinglePassIterator>
inline BOOST_CXX14_CONSTEXPR typename iterator_difference<SinglePassIterator>::type
distance_impl(
SinglePassIterator first
, SinglePassIterator last
, single_pass_traversal_tag
)
{
typename iterator_difference<SinglePassIterator>::type n = 0;
while (first != last) {
++first;
++n;
}
return n;
}
template <typename RandomAccessIterator>
inline BOOST_CXX14_CONSTEXPR typename iterator_difference<RandomAccessIterator>::type
distance_impl(
RandomAccessIterator first
, RandomAccessIterator last
, random_access_traversal_tag
)
{
return last - first;
}
}
namespace distance_adl_barrier {
template <typename SinglePassIterator>
inline BOOST_CXX14_CONSTEXPR typename iterator_difference<SinglePassIterator>::type
distance(SinglePassIterator first, SinglePassIterator last)
{
return detail::distance_impl(
first, last, typename iterator_traversal<SinglePassIterator>::type()
);
}
}
using namespace distance_adl_barrier;
} // namespace iterators
using namespace iterators::distance_adl_barrier;
} // namespace boost
#endif

View File

@@ -0,0 +1,136 @@
// (C) Copyright David Abrahams 2002.
// (C) Copyright Jeremy Siek 2002.
// (C) Copyright Thomas Witt 2002.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_FILTER_ITERATOR_23022003THW_HPP
#define BOOST_FILTER_ITERATOR_23022003THW_HPP
#include <boost/iterator/iterator_adaptor.hpp>
#include <boost/iterator/iterator_categories.hpp>
#include <boost/type_traits/is_class.hpp>
#include <boost/static_assert.hpp>
namespace boost {
namespace iterators {
template <class Predicate, class Iterator>
class filter_iterator;
namespace detail
{
template <class Predicate, class Iterator>
struct filter_iterator_base
{
typedef iterator_adaptor<
filter_iterator<Predicate, Iterator>
, Iterator
, use_default
, typename mpl::if_<
is_convertible<
typename iterator_traversal<Iterator>::type
, random_access_traversal_tag
>
, bidirectional_traversal_tag
, use_default
>::type
> type;
};
}
template <class Predicate, class Iterator>
class filter_iterator
: public detail::filter_iterator_base<Predicate, Iterator>::type
{
typedef typename detail::filter_iterator_base<
Predicate, Iterator
>::type super_t;
friend class iterator_core_access;
public:
filter_iterator() { }
filter_iterator(Predicate f, Iterator x, Iterator end_ = Iterator())
: super_t(x), m_predicate(f), m_end(end_)
{
satisfy_predicate();
}
filter_iterator(Iterator x, Iterator end_ = Iterator())
: super_t(x), m_predicate(), m_end(end_)
{
// Pro8 is a little too aggressive about instantiating the
// body of this function.
#if !BOOST_WORKAROUND(__MWERKS__, BOOST_TESTED_AT(0x3003))
// Don't allow use of this constructor if Predicate is a
// function pointer type, since it will be 0.
BOOST_STATIC_ASSERT(is_class<Predicate>::value);
#endif
satisfy_predicate();
}
template<class OtherIterator>
filter_iterator(
filter_iterator<Predicate, OtherIterator> const& t
, typename enable_if_convertible<OtherIterator, Iterator>::type* = 0
)
: super_t(t.base()), m_predicate(t.predicate()), m_end(t.end()) {}
Predicate predicate() const { return m_predicate; }
Iterator end() const { return m_end; }
private:
void increment()
{
++(this->base_reference());
satisfy_predicate();
}
void decrement()
{
while(!this->m_predicate(*--(this->base_reference()))){};
}
void satisfy_predicate()
{
while (this->base() != this->m_end && !this->m_predicate(*this->base()))
++(this->base_reference());
}
// Probably should be the initial base class so it can be
// optimized away via EBO if it is an empty class.
Predicate m_predicate;
Iterator m_end;
};
template <class Predicate, class Iterator>
inline filter_iterator<Predicate,Iterator>
make_filter_iterator(Predicate f, Iterator x, Iterator end = Iterator())
{
return filter_iterator<Predicate,Iterator>(f,x,end);
}
template <class Predicate, class Iterator>
inline filter_iterator<Predicate,Iterator>
make_filter_iterator(
typename iterators::enable_if<
is_class<Predicate>
, Iterator
>::type x
, Iterator end = Iterator())
{
return filter_iterator<Predicate,Iterator>(x,end);
}
} // namespace iterators
using iterators::filter_iterator;
using iterators::make_filter_iterator;
} // namespace boost
#endif // BOOST_FILTER_ITERATOR_23022003THW_HPP

View File

@@ -0,0 +1,173 @@
// Copyright 2009 (C) Dean Michael Berris <me@deanberris.com>
// Copyright 2012 (C) Google, Inc.
// Copyright 2012 (C) Jeffrey Lee Hellrung, Jr.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_FUNCTION_INPUT_ITERATOR
#define BOOST_FUNCTION_INPUT_ITERATOR
#include <boost/config.hpp>
#include <boost/assert.hpp>
#include <boost/core/addressof.hpp>
#include <boost/type_traits/conditional.hpp>
#include <boost/function_types/is_function_pointer.hpp>
#include <boost/function_types/result_type.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/none.hpp>
#include <boost/optional/optional.hpp>
#include <boost/utility/result_of.hpp>
#ifdef BOOST_RESULT_OF_USE_TR1
#include <boost/type_traits/is_function.hpp>
#endif
namespace boost {
namespace iterators {
namespace impl {
// Computes the return type of an lvalue-call with an empty argument,
// i.e. decltype(declval<F&>()()). F should be a nullary lvalue-callable
// or function.
template <class F>
struct result_of_nullary_lvalue_call
{
typedef typename result_of<
#ifdef BOOST_RESULT_OF_USE_TR1
typename boost::conditional<is_function<F>::value, F&, F>::type()
#else
F&()
#endif
>::type type;
};
template <class Function, class Input>
class function_input_iterator :
public iterator_facade<
function_input_iterator<Function, Input>,
typename result_of_nullary_lvalue_call<Function>::type,
single_pass_traversal_tag,
typename result_of_nullary_lvalue_call<Function>::type const &
>
{
public:
function_input_iterator() {}
function_input_iterator(Function & f_, Input state_ = Input())
: f(boost::addressof(f_)), state(state_) {}
void increment() {
if(value)
value = none;
else
(*f)();
++state;
}
typename result_of_nullary_lvalue_call<Function>::type const &
dereference() const {
return (value ? value : value = (*f)()).get();
}
bool equal(function_input_iterator const & other) const {
return f == other.f && state == other.state;
}
private:
Function * f;
Input state;
mutable optional<typename result_of_nullary_lvalue_call<Function>::type> value;
};
template <class Function, class Input>
class function_pointer_input_iterator :
public iterator_facade<
function_pointer_input_iterator<Function, Input>,
typename function_types::result_type<Function>::type,
single_pass_traversal_tag,
typename function_types::result_type<Function>::type const &
>
{
public:
function_pointer_input_iterator() {}
function_pointer_input_iterator(Function &f_, Input state_ = Input())
: f(f_), state(state_) {}
void increment() {
if(value)
value = none;
else
(*f)();
++state;
}
typename function_types::result_type<Function>::type const &
dereference() const {
return (value ? value : value = (*f)()).get();
}
bool equal(function_pointer_input_iterator const & other) const {
return f == other.f && state == other.state;
}
private:
Function f;
Input state;
mutable optional<typename function_types::result_type<Function>::type> value;
};
} // namespace impl
template <class Function, class Input>
class function_input_iterator :
public boost::conditional<
function_types::is_function_pointer<Function>::value,
impl::function_pointer_input_iterator<Function,Input>,
impl::function_input_iterator<Function,Input>
>::type
{
typedef typename boost::conditional<
function_types::is_function_pointer<Function>::value,
impl::function_pointer_input_iterator<Function,Input>,
impl::function_input_iterator<Function,Input>
>::type base_type;
public:
function_input_iterator(Function & f, Input i)
: base_type(f, i) {}
};
template <class Function, class Input>
inline function_input_iterator<Function, Input>
make_function_input_iterator(Function & f, Input state) {
typedef function_input_iterator<Function, Input> result_t;
return result_t(f, state);
}
template <class Function, class Input>
inline function_input_iterator<Function*, Input>
make_function_input_iterator(Function * f, Input state) {
typedef function_input_iterator<Function*, Input> result_t;
return result_t(f, state);
}
struct infinite
{
infinite & operator++() { return *this; }
infinite & operator++(int) { return *this; }
bool operator==(infinite &) const { return false; };
bool operator==(infinite const &) const { return false; };
};
} // namespace iterators
using iterators::function_input_iterator;
using iterators::make_function_input_iterator;
using iterators::infinite;
} // namespace boost
#endif

View File

@@ -0,0 +1,62 @@
// (C) Copyright Jeremy Siek 2001.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Revision History:
// 27 Feb 2001 Jeremy Siek
// Initial checkin.
#ifndef BOOST_ITERATOR_FUNCTION_OUTPUT_ITERATOR_HPP
#define BOOST_ITERATOR_FUNCTION_OUTPUT_ITERATOR_HPP
#include <iterator>
namespace boost {
namespace iterators {
template <class UnaryFunction>
class function_output_iterator {
typedef function_output_iterator self;
public:
typedef std::output_iterator_tag iterator_category;
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
explicit function_output_iterator() {}
explicit function_output_iterator(const UnaryFunction& f)
: m_f(f) {}
struct output_proxy {
output_proxy(UnaryFunction& f) : m_f(f) { }
template <class T> output_proxy& operator=(const T& value) {
m_f(value);
return *this;
}
UnaryFunction& m_f;
};
output_proxy operator*() { return output_proxy(m_f); }
self& operator++() { return *this; }
self& operator++(int) { return *this; }
private:
UnaryFunction m_f;
};
template <class UnaryFunction>
inline function_output_iterator<UnaryFunction>
make_function_output_iterator(const UnaryFunction& f = UnaryFunction()) {
return function_output_iterator<UnaryFunction>(f);
}
} // namespace iterators
using iterators::function_output_iterator;
using iterators::make_function_output_iterator;
} // namespace boost
#endif // BOOST_ITERATOR_FUNCTION_OUTPUT_ITERATOR_HPP

View File

@@ -0,0 +1,145 @@
// (C) Copyright David Abrahams 2002.
// (C) Copyright Jeremy Siek 2002.
// (C) Copyright Thomas Witt 2002.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_INDIRECT_ITERATOR_23022003THW_HPP
#define BOOST_INDIRECT_ITERATOR_23022003THW_HPP
#include <boost/iterator/iterator_adaptor.hpp>
#include <boost/pointee.hpp>
#include <boost/indirect_reference.hpp>
#include <boost/detail/indirect_traits.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/add_reference.hpp>
#include <boost/mpl/bool.hpp>
#include <boost/mpl/identity.hpp>
#include <boost/mpl/eval_if.hpp>
#include <boost/mpl/not.hpp>
#include <boost/mpl/has_xxx.hpp>
#include <iterator>
#ifdef BOOST_MPL_CFG_NO_HAS_XXX
# include <boost/shared_ptr.hpp>
# include <boost/scoped_ptr.hpp>
# include <boost/mpl/bool.hpp>
# include <memory>
#endif
#include <boost/iterator/detail/config_def.hpp> // must be last #include
namespace boost {
namespace iterators {
template <class Iter, class Value, class Category, class Reference, class Difference>
class indirect_iterator;
namespace detail
{
template <class Iter, class Value, class Category, class Reference, class Difference>
struct indirect_base
{
typedef typename std::iterator_traits<Iter>::value_type dereferenceable;
typedef iterator_adaptor<
indirect_iterator<Iter, Value, Category, Reference, Difference>
, Iter
, typename ia_dflt_help<
Value, pointee<dereferenceable>
>::type
, Category
, typename ia_dflt_help<
Reference
, mpl::eval_if<
is_same<Value,use_default>
, indirect_reference<dereferenceable>
, add_reference<Value>
>
>::type
, Difference
> type;
};
template <>
struct indirect_base<int, int, int, int, int> {};
} // namespace detail
template <
class Iterator
, class Value = use_default
, class Category = use_default
, class Reference = use_default
, class Difference = use_default
>
class indirect_iterator
: public detail::indirect_base<
Iterator, Value, Category, Reference, Difference
>::type
{
typedef typename detail::indirect_base<
Iterator, Value, Category, Reference, Difference
>::type super_t;
friend class iterator_core_access;
public:
indirect_iterator() {}
indirect_iterator(Iterator iter)
: super_t(iter) {}
template <
class Iterator2, class Value2, class Category2
, class Reference2, class Difference2
>
indirect_iterator(
indirect_iterator<
Iterator2, Value2, Category2, Reference2, Difference2
> const& y
, typename enable_if_convertible<Iterator2, Iterator>::type* = 0
)
: super_t(y.base())
{}
private:
typename super_t::reference dereference() const
{
# if BOOST_WORKAROUND(BOOST_BORLANDC, < 0x5A0 )
return const_cast<super_t::reference>(**this->base());
# else
return **this->base();
# endif
}
};
template <class Iter>
inline
indirect_iterator<Iter> make_indirect_iterator(Iter x)
{
return indirect_iterator<Iter>(x);
}
template <class Traits, class Iter>
inline
indirect_iterator<Iter,Traits> make_indirect_iterator(Iter x, Traits* = 0)
{
return indirect_iterator<Iter, Traits>(x);
}
} // namespace iterators
using iterators::indirect_iterator;
using iterators::make_indirect_iterator;
} // namespace boost
#include <boost/iterator/detail/config_undef.hpp>
#endif // BOOST_INDIRECT_ITERATOR_23022003THW_HPP

View File

@@ -0,0 +1,54 @@
// (C) Copyright David Abrahams 2002.
// (C) Copyright Jeremy Siek 2002.
// (C) Copyright Thomas Witt 2002.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_INTEROPERABLE_23022003THW_HPP
# define BOOST_INTEROPERABLE_23022003THW_HPP
# include <boost/mpl/bool.hpp>
# include <boost/mpl/or.hpp>
# include <boost/type_traits/is_convertible.hpp>
# include <boost/iterator/detail/config_def.hpp> // must appear last
namespace boost {
namespace iterators {
//
// Meta function that determines whether two
// iterator types are considered interoperable.
//
// Two iterator types A,B are considered interoperable if either
// A is convertible to B or vice versa.
// This interoperability definition is in sync with the
// standards requirements on constant/mutable container
// iterators (23.1 [lib.container.requirements]).
//
// For compilers that don't support is_convertible
// is_interoperable gives false positives. See comments
// on operator implementation for consequences.
//
template <typename A, typename B>
struct is_interoperable
# ifdef BOOST_NO_STRICT_ITERATOR_INTEROPERABILITY
: mpl::true_
# else
: mpl::or_<
is_convertible< A, B >
, is_convertible< B, A > >
# endif
{
};
} // namespace iterators
using iterators::is_interoperable;
} // namespace boost
# include <boost/iterator/detail/config_undef.hpp>
#endif // BOOST_INTEROPERABLE_23022003THW_HPP

View File

@@ -0,0 +1,164 @@
// Copyright David Abrahams 2003. Use, modification and distribution is
// subject to the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef IS_LVALUE_ITERATOR_DWA2003112_HPP
# define IS_LVALUE_ITERATOR_DWA2003112_HPP
#include <boost/detail/workaround.hpp>
#include <boost/type_traits/add_lvalue_reference.hpp>
#include <boost/iterator/detail/any_conversion_eater.hpp>
#include <boost/mpl/bool.hpp>
#include <boost/mpl/aux_/lambda_support.hpp>
#include <iterator>
// should be the last #includes
#include <boost/type_traits/integral_constant.hpp>
#include <boost/iterator/detail/config_def.hpp>
#ifndef BOOST_NO_IS_CONVERTIBLE
namespace boost {
namespace iterators {
namespace detail
{
#ifndef BOOST_NO_LVALUE_RETURN_DETECTION
// Calling lvalue_preserver( <expression>, 0 ) returns a reference
// to the expression's result if <expression> is an lvalue, or
// not_an_lvalue() otherwise.
struct not_an_lvalue {};
template <class T>
T& lvalue_preserver(T&, int);
template <class U>
not_an_lvalue lvalue_preserver(U const&, ...);
# define BOOST_LVALUE_PRESERVER(expr) detail::lvalue_preserver(expr,0)
#else
# define BOOST_LVALUE_PRESERVER(expr) expr
#endif
// Guts of is_lvalue_iterator. Value is the iterator's value_type
// and the result is computed in the nested rebind template.
template <class Value>
struct is_lvalue_iterator_impl
{
// Eat implicit conversions so we don't report true for things
// convertible to Value const&
struct conversion_eater
{
conversion_eater(typename add_lvalue_reference<Value>::type);
};
static char tester(conversion_eater, int);
static char (& tester(any_conversion_eater, ...) )[2];
template <class It>
struct rebind
{
static It& x;
BOOST_STATIC_CONSTANT(
bool
, value = (
sizeof(
is_lvalue_iterator_impl<Value>::tester(
BOOST_LVALUE_PRESERVER(*x), 0
)
) == 1
)
);
};
};
#undef BOOST_LVALUE_PRESERVER
//
// void specializations to handle std input and output iterators
//
template <>
struct is_lvalue_iterator_impl<void>
{
template <class It>
struct rebind : boost::mpl::false_
{};
};
#ifndef BOOST_NO_CV_VOID_SPECIALIZATIONS
template <>
struct is_lvalue_iterator_impl<const void>
{
template <class It>
struct rebind : boost::mpl::false_
{};
};
template <>
struct is_lvalue_iterator_impl<volatile void>
{
template <class It>
struct rebind : boost::mpl::false_
{};
};
template <>
struct is_lvalue_iterator_impl<const volatile void>
{
template <class It>
struct rebind : boost::mpl::false_
{};
};
#endif
//
// This level of dispatching is required for Borland. We might save
// an instantiation by removing it for others.
//
template <class It>
struct is_readable_lvalue_iterator_impl
: is_lvalue_iterator_impl<
BOOST_DEDUCED_TYPENAME std::iterator_traits<It>::value_type const
>::template rebind<It>
{};
template <class It>
struct is_non_const_lvalue_iterator_impl
: is_lvalue_iterator_impl<
BOOST_DEDUCED_TYPENAME std::iterator_traits<It>::value_type
>::template rebind<It>
{};
} // namespace detail
template< typename T > struct is_lvalue_iterator
: public ::boost::integral_constant<bool,::boost::iterators::detail::is_readable_lvalue_iterator_impl<T>::value>
{
public:
BOOST_MPL_AUX_LAMBDA_SUPPORT(1,is_lvalue_iterator,(T))
};
template< typename T > struct is_non_const_lvalue_iterator
: public ::boost::integral_constant<bool,::boost::iterators::detail::is_non_const_lvalue_iterator_impl<T>::value>
{
public:
BOOST_MPL_AUX_LAMBDA_SUPPORT(1,is_non_const_lvalue_iterator,(T))
};
} // namespace iterators
using iterators::is_lvalue_iterator;
using iterators::is_non_const_lvalue_iterator;
} // namespace boost
#endif
#include <boost/iterator/detail/config_undef.hpp>
#endif // IS_LVALUE_ITERATOR_DWA2003112_HPP

View File

@@ -0,0 +1,119 @@
// Copyright David Abrahams 2003. Use, modification and distribution is
// subject to the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef IS_READABLE_ITERATOR_DWA2003112_HPP
# define IS_READABLE_ITERATOR_DWA2003112_HPP
#include <boost/mpl/bool.hpp>
#include <boost/mpl/aux_/lambda_support.hpp>
#include <boost/type_traits/add_lvalue_reference.hpp>
#include <boost/iterator/detail/any_conversion_eater.hpp>
#include <iterator>
// should be the last #include
#include <boost/type_traits/integral_constant.hpp>
#include <boost/iterator/detail/config_def.hpp>
#ifndef BOOST_NO_IS_CONVERTIBLE
namespace boost {
namespace iterators {
namespace detail
{
// Guts of is_readable_iterator. Value is the iterator's value_type
// and the result is computed in the nested rebind template.
template <class Value>
struct is_readable_iterator_impl
{
static char tester(typename add_lvalue_reference<Value>::type, int);
static char (& tester(any_conversion_eater, ...) )[2];
template <class It>
struct rebind
{
static It& x;
BOOST_STATIC_CONSTANT(
bool
, value = (
sizeof(
is_readable_iterator_impl<Value>::tester(*x, 1)
) == 1
)
);
};
};
#undef BOOST_READABLE_PRESERVER
//
// void specializations to handle std input and output iterators
//
template <>
struct is_readable_iterator_impl<void>
{
template <class It>
struct rebind : boost::mpl::false_
{};
};
#ifndef BOOST_NO_CV_VOID_SPECIALIZATIONS
template <>
struct is_readable_iterator_impl<const void>
{
template <class It>
struct rebind : boost::mpl::false_
{};
};
template <>
struct is_readable_iterator_impl<volatile void>
{
template <class It>
struct rebind : boost::mpl::false_
{};
};
template <>
struct is_readable_iterator_impl<const volatile void>
{
template <class It>
struct rebind : boost::mpl::false_
{};
};
#endif
//
// This level of dispatching is required for Borland. We might save
// an instantiation by removing it for others.
//
template <class It>
struct is_readable_iterator_impl2
: is_readable_iterator_impl<
BOOST_DEDUCED_TYPENAME std::iterator_traits<It>::value_type const
>::template rebind<It>
{};
} // namespace detail
template< typename T > struct is_readable_iterator
: public ::boost::integral_constant<bool,::boost::iterators::detail::is_readable_iterator_impl2<T>::value>
{
public:
BOOST_MPL_AUX_LAMBDA_SUPPORT(1,is_readable_iterator,(T))
};
} // namespace iterators
using iterators::is_readable_iterator;
} // namespace boost
#endif
#include <boost/iterator/detail/config_undef.hpp>
#endif // IS_READABLE_ITERATOR_DWA2003112_HPP

View File

@@ -0,0 +1,358 @@
// (C) Copyright David Abrahams 2002.
// (C) Copyright Jeremy Siek 2002.
// (C) Copyright Thomas Witt 2002.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_ITERATOR_ADAPTOR_23022003THW_HPP
#define BOOST_ITERATOR_ADAPTOR_23022003THW_HPP
#include <boost/static_assert.hpp>
#include <boost/core/use_default.hpp>
#include <boost/iterator/iterator_categories.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/iterator/detail/enable_if.hpp>
#include <boost/mpl/and.hpp>
#include <boost/mpl/not.hpp>
#include <boost/mpl/or.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/is_convertible.hpp>
#ifdef BOOST_ITERATOR_REF_CONSTNESS_KILLS_WRITABILITY
# include <boost/type_traits/remove_reference.hpp>
#endif
#include <boost/type_traits/add_reference.hpp>
#include <boost/iterator/detail/config_def.hpp>
#include <boost/iterator/iterator_traits.hpp>
namespace boost {
namespace iterators {
// Used as a default template argument internally, merely to
// indicate "use the default", this can also be passed by users
// explicitly in order to specify that the default should be used.
using boost::use_default;
} // namespace iterators
// the incompleteness of use_default causes massive problems for
// is_convertible (naturally). This workaround is fortunately not
// needed for vc6/vc7.
template<class To>
struct is_convertible<use_default,To>
: mpl::false_ {};
namespace iterators {
namespace detail
{
//
// Result type used in enable_if_convertible meta function.
// This can be an incomplete type, as only pointers to
// enable_if_convertible< ... >::type are used.
// We could have used void for this, but conversion to
// void* is just to easy.
//
struct enable_type;
}
//
// enable_if for use in adapted iterators constructors.
//
// In order to provide interoperability between adapted constant and
// mutable iterators, adapted iterators will usually provide templated
// conversion constructors of the following form
//
// template <class BaseIterator>
// class adapted_iterator :
// public iterator_adaptor< adapted_iterator<Iterator>, Iterator >
// {
// public:
//
// ...
//
// template <class OtherIterator>
// adapted_iterator(
// OtherIterator const& it
// , typename enable_if_convertible<OtherIterator, Iterator>::type* = 0);
//
// ...
// };
//
// enable_if_convertible is used to remove those overloads from the overload
// set that cannot be instantiated. For all practical purposes only overloads
// for constant/mutable interaction will remain. This has the advantage that
// meta functions like boost::is_convertible do not return false positives,
// as they can only look at the signature of the conversion constructor
// and not at the actual instantiation.
//
// enable_if_interoperable can be safely used in user code. It falls back to
// always enabled for compilers that don't support enable_if or is_convertible.
// There is no need for compiler specific workarounds in user code.
//
// The operators implementation relies on boost::is_convertible not returning
// false positives for user/library defined iterator types. See comments
// on operator implementation for consequences.
//
# if defined(BOOST_NO_IS_CONVERTIBLE) || defined(BOOST_NO_SFINAE)
template <class From, class To>
struct enable_if_convertible
{
typedef boost::iterators::detail::enable_type type;
};
# elif BOOST_WORKAROUND(_MSC_FULL_VER, BOOST_TESTED_AT(13102292))
// For some reason vc7.1 needs us to "cut off" instantiation
// of is_convertible in a few cases.
template<typename From, typename To>
struct enable_if_convertible
: iterators::enable_if<
mpl::or_<
is_same<From,To>
, is_convertible<From, To>
>
, boost::iterators::detail::enable_type
>
{};
# else
template<typename From, typename To>
struct enable_if_convertible
: iterators::enable_if<
is_convertible<From, To>
, boost::iterators::detail::enable_type
>
{};
# endif
//
// Default template argument handling for iterator_adaptor
//
namespace detail
{
// If T is use_default, return the result of invoking
// DefaultNullaryFn, otherwise return T.
template <class T, class DefaultNullaryFn>
struct ia_dflt_help
: mpl::eval_if<
is_same<T, use_default>
, DefaultNullaryFn
, mpl::identity<T>
>
{
};
// A metafunction which computes an iterator_adaptor's base class,
// a specialization of iterator_facade.
template <
class Derived
, class Base
, class Value
, class Traversal
, class Reference
, class Difference
>
struct iterator_adaptor_base
{
typedef iterator_facade<
Derived
# ifdef BOOST_ITERATOR_REF_CONSTNESS_KILLS_WRITABILITY
, typename boost::iterators::detail::ia_dflt_help<
Value
, mpl::eval_if<
is_same<Reference,use_default>
, iterator_value<Base>
, remove_reference<Reference>
>
>::type
# else
, typename boost::iterators::detail::ia_dflt_help<
Value, iterator_value<Base>
>::type
# endif
, typename boost::iterators::detail::ia_dflt_help<
Traversal
, iterator_traversal<Base>
>::type
, typename boost::iterators::detail::ia_dflt_help<
Reference
, mpl::eval_if<
is_same<Value,use_default>
, iterator_reference<Base>
, add_reference<Value>
>
>::type
, typename boost::iterators::detail::ia_dflt_help<
Difference, iterator_difference<Base>
>::type
>
type;
};
// workaround for aC++ CR JAGaf33512
template <class Tr1, class Tr2>
inline void iterator_adaptor_assert_traversal ()
{
BOOST_STATIC_ASSERT((is_convertible<Tr1, Tr2>::value));
}
}
//
// Iterator Adaptor
//
// The parameter ordering changed slightly with respect to former
// versions of iterator_adaptor The idea is that when the user needs
// to fiddle with the reference type it is highly likely that the
// iterator category has to be adjusted as well. Any of the
// following four template arguments may be ommitted or explicitly
// replaced by use_default.
//
// Value - if supplied, the value_type of the resulting iterator, unless
// const. If const, a conforming compiler strips constness for the
// value_type. If not supplied, iterator_traits<Base>::value_type is used
//
// Category - the traversal category of the resulting iterator. If not
// supplied, iterator_traversal<Base>::type is used.
//
// Reference - the reference type of the resulting iterator, and in
// particular, the result type of operator*(). If not supplied but
// Value is supplied, Value& is used. Otherwise
// iterator_traits<Base>::reference is used.
//
// Difference - the difference_type of the resulting iterator. If not
// supplied, iterator_traits<Base>::difference_type is used.
//
template <
class Derived
, class Base
, class Value = use_default
, class Traversal = use_default
, class Reference = use_default
, class Difference = use_default
>
class iterator_adaptor
: public boost::iterators::detail::iterator_adaptor_base<
Derived, Base, Value, Traversal, Reference, Difference
>::type
{
friend class iterator_core_access;
protected:
typedef typename boost::iterators::detail::iterator_adaptor_base<
Derived, Base, Value, Traversal, Reference, Difference
>::type super_t;
public:
iterator_adaptor() {}
explicit iterator_adaptor(Base const &iter)
: m_iterator(iter)
{
}
typedef Base base_type;
Base const& base() const
{ return m_iterator; }
protected:
// for convenience in derived classes
typedef iterator_adaptor<Derived,Base,Value,Traversal,Reference,Difference> iterator_adaptor_;
//
// lvalue access to the Base object for Derived
//
Base const& base_reference() const
{ return m_iterator; }
Base& base_reference()
{ return m_iterator; }
private:
//
// Core iterator interface for iterator_facade. This is private
// to prevent temptation for Derived classes to use it, which
// will often result in an error. Derived classes should use
// base_reference(), above, to get direct access to m_iterator.
//
typename super_t::reference dereference() const
{ return *m_iterator; }
template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D
>
bool equal(iterator_adaptor<OtherDerived, OtherIterator, V, C, R, D> const& x) const
{
// Maybe readd with same_distance
// BOOST_STATIC_ASSERT(
// (detail::same_category_and_difference<Derived,OtherDerived>::value)
// );
return m_iterator == x.base();
}
typedef typename iterator_category_to_traversal<
typename super_t::iterator_category
>::type my_traversal;
# define BOOST_ITERATOR_ADAPTOR_ASSERT_TRAVERSAL(cat) \
boost::iterators::detail::iterator_adaptor_assert_traversal<my_traversal, cat>();
void advance(typename super_t::difference_type n)
{
BOOST_ITERATOR_ADAPTOR_ASSERT_TRAVERSAL(random_access_traversal_tag)
m_iterator += n;
}
void increment() { ++m_iterator; }
void decrement()
{
BOOST_ITERATOR_ADAPTOR_ASSERT_TRAVERSAL(bidirectional_traversal_tag)
--m_iterator;
}
template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D
>
typename super_t::difference_type distance_to(
iterator_adaptor<OtherDerived, OtherIterator, V, C, R, D> const& y) const
{
BOOST_ITERATOR_ADAPTOR_ASSERT_TRAVERSAL(random_access_traversal_tag)
// Maybe readd with same_distance
// BOOST_STATIC_ASSERT(
// (detail::same_category_and_difference<Derived,OtherDerived>::value)
// );
return y.base() - m_iterator;
}
# undef BOOST_ITERATOR_ADAPTOR_ASSERT_TRAVERSAL
private: // data members
Base m_iterator;
};
} // namespace iterators
using iterators::iterator_adaptor;
using iterators::enable_if_convertible;
} // namespace boost
#include <boost/iterator/detail/config_undef.hpp>
#endif // BOOST_ITERATOR_ADAPTOR_23022003THW_HPP

View File

@@ -0,0 +1,509 @@
// (C) Copyright Jeremy Siek 2002.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_ITERATOR_ARCHETYPES_HPP
#define BOOST_ITERATOR_ARCHETYPES_HPP
#include <boost/iterator/iterator_categories.hpp>
#include <boost/operators.hpp>
#include <boost/static_assert.hpp>
#include <boost/iterator/detail/facade_iterator_category.hpp>
#include <boost/type_traits/is_const.hpp>
#include <boost/type_traits/add_const.hpp>
#include <boost/type_traits/remove_const.hpp>
#include <boost/type_traits/remove_cv.hpp>
#include <boost/concept_archetype.hpp>
#include <boost/mpl/bitand.hpp>
#include <boost/mpl/int.hpp>
#include <boost/mpl/equal_to.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/eval_if.hpp>
#include <boost/mpl/and.hpp>
#include <boost/mpl/identity.hpp>
#include <cstddef>
namespace boost {
namespace iterators {
template <class Value, class AccessCategory>
struct access_archetype;
template <class Derived, class Value, class AccessCategory, class TraversalCategory>
struct traversal_archetype;
namespace archetypes
{
enum {
readable_iterator_bit = 1
, writable_iterator_bit = 2
, swappable_iterator_bit = 4
, lvalue_iterator_bit = 8
};
// Not quite tags, since dispatching wouldn't work.
typedef mpl::int_<readable_iterator_bit>::type readable_iterator_t;
typedef mpl::int_<writable_iterator_bit>::type writable_iterator_t;
typedef mpl::int_<
(readable_iterator_bit|writable_iterator_bit)
>::type readable_writable_iterator_t;
typedef mpl::int_<
(readable_iterator_bit|lvalue_iterator_bit)
>::type readable_lvalue_iterator_t;
typedef mpl::int_<
(lvalue_iterator_bit|writable_iterator_bit)
>::type writable_lvalue_iterator_t;
typedef mpl::int_<swappable_iterator_bit>::type swappable_iterator_t;
typedef mpl::int_<lvalue_iterator_bit>::type lvalue_iterator_t;
template <class Derived, class Base>
struct has_access
: mpl::equal_to<
mpl::bitand_<Derived,Base>
, Base
>
{};
}
namespace detail
{
template <class T>
struct assign_proxy
{
assign_proxy& operator=(T) { return *this; }
};
template <class T>
struct read_proxy
{
operator T() { return static_object<T>::get(); }
};
template <class T>
struct read_write_proxy
: read_proxy<T> // Use to inherit from assign_proxy, but that doesn't work. -JGS
{
read_write_proxy& operator=(T) { return *this; }
};
template <class T>
struct arrow_proxy
{
T const* operator->() const { return 0; }
};
struct no_operator_brackets {};
template <class ValueType>
struct readable_operator_brackets
{
read_proxy<ValueType> operator[](std::ptrdiff_t n) const { return read_proxy<ValueType>(); }
};
template <class ValueType>
struct writable_operator_brackets
{
read_write_proxy<ValueType> operator[](std::ptrdiff_t n) const { return read_write_proxy<ValueType>(); }
};
template <class Value, class AccessCategory, class TraversalCategory>
struct operator_brackets
: mpl::eval_if<
is_convertible<TraversalCategory, random_access_traversal_tag>
, mpl::eval_if<
archetypes::has_access<
AccessCategory
, archetypes::writable_iterator_t
>
, mpl::identity<writable_operator_brackets<Value> >
, mpl::if_<
archetypes::has_access<
AccessCategory
, archetypes::readable_iterator_t
>
, readable_operator_brackets<Value>
, no_operator_brackets
>
>
, mpl::identity<no_operator_brackets>
>::type
{};
template <class TraversalCategory>
struct traversal_archetype_impl
{
template <class Derived,class Value> struct archetype;
};
// Constructor argument for those iterators that
// are not default constructible
struct ctor_arg {};
template <class Derived, class Value, class TraversalCategory>
struct traversal_archetype_
: traversal_archetype_impl<TraversalCategory>::template archetype<Derived,Value>
{
typedef typename
traversal_archetype_impl<TraversalCategory>::template archetype<Derived,Value>
base;
traversal_archetype_() {}
traversal_archetype_(ctor_arg arg)
: base(arg)
{}
};
template <>
struct traversal_archetype_impl<incrementable_traversal_tag>
{
template<class Derived, class Value>
struct archetype
{
explicit archetype(ctor_arg) {}
struct bogus { }; // This use to be void, but that causes trouble for iterator_facade. Need more research. -JGS
typedef bogus difference_type;
Derived& operator++() { return (Derived&)static_object<Derived>::get(); }
Derived operator++(int) const { return (Derived&)static_object<Derived>::get(); }
};
};
template <>
struct traversal_archetype_impl<single_pass_traversal_tag>
{
template<class Derived, class Value>
struct archetype
: public equality_comparable< traversal_archetype_<Derived, Value, single_pass_traversal_tag> >,
public traversal_archetype_<Derived, Value, incrementable_traversal_tag>
{
explicit archetype(ctor_arg arg)
: traversal_archetype_<Derived, Value, incrementable_traversal_tag>(arg)
{}
typedef std::ptrdiff_t difference_type;
};
};
template <class Derived, class Value>
bool operator==(traversal_archetype_<Derived, Value, single_pass_traversal_tag> const&,
traversal_archetype_<Derived, Value, single_pass_traversal_tag> const&) { return true; }
template <>
struct traversal_archetype_impl<forward_traversal_tag>
{
template<class Derived, class Value>
struct archetype
: public traversal_archetype_<Derived, Value, single_pass_traversal_tag>
{
archetype()
: traversal_archetype_<Derived, Value, single_pass_traversal_tag>(ctor_arg())
{}
};
};
template <>
struct traversal_archetype_impl<bidirectional_traversal_tag>
{
template<class Derived, class Value>
struct archetype
: public traversal_archetype_<Derived, Value, forward_traversal_tag>
{
Derived& operator--() { return static_object<Derived>::get(); }
Derived operator--(int) const { return static_object<Derived>::get(); }
};
};
template <>
struct traversal_archetype_impl<random_access_traversal_tag>
{
template<class Derived, class Value>
struct archetype
: public traversal_archetype_<Derived, Value, bidirectional_traversal_tag>
{
Derived& operator+=(std::ptrdiff_t) { return static_object<Derived>::get(); }
Derived& operator-=(std::ptrdiff_t) { return static_object<Derived>::get(); }
};
};
template <class Derived, class Value>
Derived& operator+(traversal_archetype_<Derived, Value, random_access_traversal_tag> const&,
std::ptrdiff_t) { return static_object<Derived>::get(); }
template <class Derived, class Value>
Derived& operator+(std::ptrdiff_t,
traversal_archetype_<Derived, Value, random_access_traversal_tag> const&)
{ return static_object<Derived>::get(); }
template <class Derived, class Value>
Derived& operator-(traversal_archetype_<Derived, Value, random_access_traversal_tag> const&,
std::ptrdiff_t)
{ return static_object<Derived>::get(); }
template <class Derived, class Value>
std::ptrdiff_t operator-(traversal_archetype_<Derived, Value, random_access_traversal_tag> const&,
traversal_archetype_<Derived, Value, random_access_traversal_tag> const&)
{ return 0; }
template <class Derived, class Value>
bool operator<(traversal_archetype_<Derived, Value, random_access_traversal_tag> const&,
traversal_archetype_<Derived, Value, random_access_traversal_tag> const&)
{ return true; }
template <class Derived, class Value>
bool operator>(traversal_archetype_<Derived, Value, random_access_traversal_tag> const&,
traversal_archetype_<Derived, Value, random_access_traversal_tag> const&)
{ return true; }
template <class Derived, class Value>
bool operator<=(traversal_archetype_<Derived, Value, random_access_traversal_tag> const&,
traversal_archetype_<Derived, Value, random_access_traversal_tag> const&)
{ return true; }
template <class Derived, class Value>
bool operator>=(traversal_archetype_<Derived, Value, random_access_traversal_tag> const&,
traversal_archetype_<Derived, Value, random_access_traversal_tag> const&)
{ return true; }
struct bogus_type;
template <class Value>
struct convertible_type
: mpl::if_< is_const<Value>,
typename remove_const<Value>::type,
bogus_type >
{};
} // namespace detail
template <class> struct undefined;
template <class AccessCategory>
struct iterator_access_archetype_impl
{
template <class Value> struct archetype;
};
template <class Value, class AccessCategory>
struct iterator_access_archetype
: iterator_access_archetype_impl<
AccessCategory
>::template archetype<Value>
{
};
template <>
struct iterator_access_archetype_impl<
archetypes::readable_iterator_t
>
{
template <class Value>
struct archetype
{
typedef typename remove_cv<Value>::type value_type;
typedef Value reference;
typedef Value* pointer;
value_type operator*() const { return static_object<value_type>::get(); }
detail::arrow_proxy<Value> operator->() const { return detail::arrow_proxy<Value>(); }
};
};
template <>
struct iterator_access_archetype_impl<
archetypes::writable_iterator_t
>
{
template <class Value>
struct archetype
{
BOOST_STATIC_ASSERT(!is_const<Value>::value);
typedef void value_type;
typedef void reference;
typedef void pointer;
detail::assign_proxy<Value> operator*() const { return detail::assign_proxy<Value>(); }
};
};
template <>
struct iterator_access_archetype_impl<
archetypes::readable_writable_iterator_t
>
{
template <class Value>
struct archetype
: public virtual iterator_access_archetype<
Value, archetypes::readable_iterator_t
>
{
typedef detail::read_write_proxy<Value> reference;
detail::read_write_proxy<Value> operator*() const { return detail::read_write_proxy<Value>(); }
};
};
template <>
struct iterator_access_archetype_impl<archetypes::readable_lvalue_iterator_t>
{
template <class Value>
struct archetype
: public virtual iterator_access_archetype<
Value, archetypes::readable_iterator_t
>
{
typedef Value& reference;
Value& operator*() const { return static_object<Value>::get(); }
Value* operator->() const { return 0; }
};
};
template <>
struct iterator_access_archetype_impl<archetypes::writable_lvalue_iterator_t>
{
template <class Value>
struct archetype
: public virtual iterator_access_archetype<
Value, archetypes::readable_lvalue_iterator_t
>
{
BOOST_STATIC_ASSERT((!is_const<Value>::value));
};
};
template <class Value, class AccessCategory, class TraversalCategory>
struct iterator_archetype;
template <class Value, class AccessCategory, class TraversalCategory>
struct traversal_archetype_base
: detail::operator_brackets<
typename remove_cv<Value>::type
, AccessCategory
, TraversalCategory
>
, detail::traversal_archetype_<
iterator_archetype<Value, AccessCategory, TraversalCategory>
, Value
, TraversalCategory
>
{
};
namespace detail
{
template <class Value, class AccessCategory, class TraversalCategory>
struct iterator_archetype_base
: iterator_access_archetype<Value, AccessCategory>
, traversal_archetype_base<Value, AccessCategory, TraversalCategory>
{
typedef iterator_access_archetype<Value, AccessCategory> access;
typedef typename detail::facade_iterator_category<
TraversalCategory
, typename mpl::eval_if<
archetypes::has_access<
AccessCategory, archetypes::writable_iterator_t
>
, remove_const<Value>
, add_const<Value>
>::type
, typename access::reference
>::type iterator_category;
// Needed for some broken libraries (see below)
struct workaround_iterator_base
{
typedef typename iterator_archetype_base::iterator_category iterator_category;
typedef Value value_type;
typedef typename traversal_archetype_base<
Value, AccessCategory, TraversalCategory
>::difference_type difference_type;
typedef typename access::pointer pointer;
typedef typename access::reference reference;
};
};
}
template <class Value, class AccessCategory, class TraversalCategory>
struct iterator_archetype
: public detail::iterator_archetype_base<Value, AccessCategory, TraversalCategory>
// These broken libraries require derivation from std::iterator
// (or related magic) in order to handle iter_swap and other
// iterator operations
# if BOOST_WORKAROUND(BOOST_DINKUMWARE_STDLIB, < 310) \
|| BOOST_WORKAROUND(_RWSTD_VER, BOOST_TESTED_AT(0x20101))
, public detail::iterator_archetype_base<
Value, AccessCategory, TraversalCategory
>::workaround_iterator_base
# endif
{
// Derivation from std::iterator above caused references to nested
// types to be ambiguous, so now we have to redeclare them all
// here.
# if BOOST_WORKAROUND(BOOST_DINKUMWARE_STDLIB, < 310) \
|| BOOST_WORKAROUND(_RWSTD_VER, BOOST_TESTED_AT(0x20101))
typedef detail::iterator_archetype_base<
Value,AccessCategory,TraversalCategory
> base;
typedef typename base::value_type value_type;
typedef typename base::reference reference;
typedef typename base::pointer pointer;
typedef typename base::difference_type difference_type;
typedef typename base::iterator_category iterator_category;
# endif
iterator_archetype() { }
iterator_archetype(iterator_archetype const& x)
: detail::iterator_archetype_base<
Value
, AccessCategory
, TraversalCategory
>(x)
{}
iterator_archetype& operator=(iterator_archetype const&)
{ return *this; }
# if 0
// Optional conversion from mutable
iterator_archetype(
iterator_archetype<
typename detail::convertible_type<Value>::type
, AccessCategory
, TraversalCategory> const&
);
# endif
};
} // namespace iterators
// Backward compatibility names
namespace iterator_archetypes = iterators::archetypes;
using iterators::access_archetype;
using iterators::traversal_archetype;
using iterators::iterator_archetype;
using iterators::undefined;
using iterators::iterator_access_archetype_impl;
using iterators::traversal_archetype_base;
} // namespace boost
#endif // BOOST_ITERATOR_ARCHETYPES_HPP

View File

@@ -0,0 +1,216 @@
// (C) Copyright Jeremy Siek 2002.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_ITERATOR_CATEGORIES_HPP
# define BOOST_ITERATOR_CATEGORIES_HPP
# include <boost/config.hpp>
# include <boost/iterator/detail/config_def.hpp>
# include <boost/detail/workaround.hpp>
# include <boost/mpl/eval_if.hpp>
# include <boost/mpl/identity.hpp>
# include <boost/mpl/placeholders.hpp>
# include <boost/mpl/aux_/lambda_support.hpp>
# include <boost/type_traits/is_convertible.hpp>
# include <boost/static_assert.hpp>
#include <iterator>
namespace boost {
namespace iterators {
//
// Traversal Categories
//
struct no_traversal_tag {};
struct incrementable_traversal_tag
: no_traversal_tag
{
// incrementable_traversal_tag() {}
// incrementable_traversal_tag(std::output_iterator_tag const&) {};
};
struct single_pass_traversal_tag
: incrementable_traversal_tag
{
// single_pass_traversal_tag() {}
// single_pass_traversal_tag(std::input_iterator_tag const&) {};
};
struct forward_traversal_tag
: single_pass_traversal_tag
{
// forward_traversal_tag() {}
// forward_traversal_tag(std::forward_iterator_tag const&) {};
};
struct bidirectional_traversal_tag
: forward_traversal_tag
{
// bidirectional_traversal_tag() {};
// bidirectional_traversal_tag(std::bidirectional_iterator_tag const&) {};
};
struct random_access_traversal_tag
: bidirectional_traversal_tag
{
// random_access_traversal_tag() {};
// random_access_traversal_tag(std::random_access_iterator_tag const&) {};
};
namespace detail
{
//
// Convert a "strictly old-style" iterator category to a traversal
// tag. This is broken out into a separate metafunction to reduce
// the cost of instantiating iterator_category_to_traversal, below,
// for new-style types.
//
template <class Cat>
struct old_category_to_traversal
: mpl::eval_if<
is_convertible<Cat,std::random_access_iterator_tag>
, mpl::identity<random_access_traversal_tag>
, mpl::eval_if<
is_convertible<Cat,std::bidirectional_iterator_tag>
, mpl::identity<bidirectional_traversal_tag>
, mpl::eval_if<
is_convertible<Cat,std::forward_iterator_tag>
, mpl::identity<forward_traversal_tag>
, mpl::eval_if<
is_convertible<Cat,std::input_iterator_tag>
, mpl::identity<single_pass_traversal_tag>
, mpl::eval_if<
is_convertible<Cat,std::output_iterator_tag>
, mpl::identity<incrementable_traversal_tag>
, void
>
>
>
>
>
{};
} // namespace detail
//
// Convert an iterator category into a traversal tag
//
template <class Cat>
struct iterator_category_to_traversal
: mpl::eval_if< // if already convertible to a traversal tag, we're done.
is_convertible<Cat,incrementable_traversal_tag>
, mpl::identity<Cat>
, boost::iterators::detail::old_category_to_traversal<Cat>
>
{};
// Trait to get an iterator's traversal category
template <class Iterator = mpl::_1>
struct iterator_traversal
: iterator_category_to_traversal<
typename std::iterator_traits<Iterator>::iterator_category
>
{};
# ifdef BOOST_MPL_CFG_NO_FULL_LAMBDA_SUPPORT
// Hack because BOOST_MPL_AUX_LAMBDA_SUPPORT doesn't seem to work
// out well. Instantiating the nested apply template also
// requires instantiating iterator_traits on the
// placeholder. Instead we just specialize it as a metafunction
// class.
template <>
struct iterator_traversal<mpl::_1>
{
template <class T>
struct apply : iterator_traversal<T>
{};
};
template <>
struct iterator_traversal<mpl::_>
: iterator_traversal<mpl::_1>
{};
# endif
//
// Convert an iterator traversal to one of the traversal tags.
//
template <class Traversal>
struct pure_traversal_tag
: mpl::eval_if<
is_convertible<Traversal,random_access_traversal_tag>
, mpl::identity<random_access_traversal_tag>
, mpl::eval_if<
is_convertible<Traversal,bidirectional_traversal_tag>
, mpl::identity<bidirectional_traversal_tag>
, mpl::eval_if<
is_convertible<Traversal,forward_traversal_tag>
, mpl::identity<forward_traversal_tag>
, mpl::eval_if<
is_convertible<Traversal,single_pass_traversal_tag>
, mpl::identity<single_pass_traversal_tag>
, mpl::eval_if<
is_convertible<Traversal,incrementable_traversal_tag>
, mpl::identity<incrementable_traversal_tag>
, void
>
>
>
>
>
{
};
//
// Trait to retrieve one of the iterator traversal tags from the iterator category or traversal.
//
template <class Iterator = mpl::_1>
struct pure_iterator_traversal
: pure_traversal_tag<typename iterator_traversal<Iterator>::type>
{};
# ifdef BOOST_MPL_CFG_NO_FULL_LAMBDA_SUPPORT
template <>
struct pure_iterator_traversal<mpl::_1>
{
template <class T>
struct apply : pure_iterator_traversal<T>
{};
};
template <>
struct pure_iterator_traversal<mpl::_>
: pure_iterator_traversal<mpl::_1>
{};
# endif
} // namespace iterators
using iterators::no_traversal_tag;
using iterators::incrementable_traversal_tag;
using iterators::single_pass_traversal_tag;
using iterators::forward_traversal_tag;
using iterators::bidirectional_traversal_tag;
using iterators::random_access_traversal_tag;
using iterators::iterator_category_to_traversal;
using iterators::iterator_traversal;
// This import is needed for backward compatibility with Boost.Range:
// boost/range/detail/demote_iterator_traversal_tag.hpp
// It should be removed when that header is fixed.
namespace detail {
using iterators::pure_traversal_tag;
} // namespace detail
} // namespace boost
#include <boost/iterator/detail/config_undef.hpp>
#endif // BOOST_ITERATOR_CATEGORIES_HPP

View File

@@ -0,0 +1,273 @@
// (C) Copyright Jeremy Siek 2002.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_ITERATOR_CONCEPTS_HPP
#define BOOST_ITERATOR_CONCEPTS_HPP
#include <boost/concept_check.hpp>
#include <boost/iterator/iterator_categories.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/mpl/bool.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/and.hpp>
#include <boost/mpl/or.hpp>
#include <boost/static_assert.hpp>
// Use boost/limits to work around missing limits headers on some compilers
#include <boost/limits.hpp>
#include <boost/config.hpp>
#include <algorithm>
#include <iterator>
#include <boost/concept/detail/concept_def.hpp>
namespace boost_concepts
{
// Used a different namespace here (instead of "boost") so that the
// concept descriptions do not take for granted the names in
// namespace boost.
//===========================================================================
// Iterator Access Concepts
BOOST_concept(ReadableIterator,(Iterator))
: boost::Assignable<Iterator>
, boost::CopyConstructible<Iterator>
{
typedef BOOST_DEDUCED_TYPENAME std::iterator_traits<Iterator>::value_type value_type;
typedef BOOST_DEDUCED_TYPENAME std::iterator_traits<Iterator>::reference reference;
BOOST_CONCEPT_USAGE(ReadableIterator)
{
value_type v = *i;
boost::ignore_unused_variable_warning(v);
}
private:
Iterator i;
};
template <
typename Iterator
, typename ValueType = BOOST_DEDUCED_TYPENAME std::iterator_traits<Iterator>::value_type
>
struct WritableIterator
: boost::CopyConstructible<Iterator>
{
BOOST_CONCEPT_USAGE(WritableIterator)
{
*i = v;
}
private:
ValueType v;
Iterator i;
};
template <
typename Iterator
, typename ValueType = BOOST_DEDUCED_TYPENAME std::iterator_traits<Iterator>::value_type
>
struct WritableIteratorConcept : WritableIterator<Iterator,ValueType> {};
BOOST_concept(SwappableIterator,(Iterator))
{
BOOST_CONCEPT_USAGE(SwappableIterator)
{
std::iter_swap(i1, i2);
}
private:
Iterator i1;
Iterator i2;
};
BOOST_concept(LvalueIterator,(Iterator))
{
typedef typename std::iterator_traits<Iterator>::value_type value_type;
BOOST_CONCEPT_USAGE(LvalueIterator)
{
value_type& r = const_cast<value_type&>(*i);
boost::ignore_unused_variable_warning(r);
}
private:
Iterator i;
};
//===========================================================================
// Iterator Traversal Concepts
BOOST_concept(IncrementableIterator,(Iterator))
: boost::Assignable<Iterator>
, boost::CopyConstructible<Iterator>
{
typedef typename boost::iterator_traversal<Iterator>::type traversal_category;
BOOST_CONCEPT_ASSERT((
boost::Convertible<
traversal_category
, boost::incrementable_traversal_tag
>));
BOOST_CONCEPT_USAGE(IncrementableIterator)
{
++i;
(void)i++;
}
private:
Iterator i;
};
BOOST_concept(SinglePassIterator,(Iterator))
: IncrementableIterator<Iterator>
, boost::EqualityComparable<Iterator>
{
BOOST_CONCEPT_ASSERT((
boost::Convertible<
BOOST_DEDUCED_TYPENAME SinglePassIterator::traversal_category
, boost::single_pass_traversal_tag
> ));
};
BOOST_concept(ForwardTraversal,(Iterator))
: SinglePassIterator<Iterator>
, boost::DefaultConstructible<Iterator>
{
typedef typename std::iterator_traits<Iterator>::difference_type difference_type;
BOOST_MPL_ASSERT((boost::is_integral<difference_type>));
BOOST_MPL_ASSERT_RELATION(std::numeric_limits<difference_type>::is_signed, ==, true);
BOOST_CONCEPT_ASSERT((
boost::Convertible<
BOOST_DEDUCED_TYPENAME ForwardTraversal::traversal_category
, boost::forward_traversal_tag
> ));
};
BOOST_concept(BidirectionalTraversal,(Iterator))
: ForwardTraversal<Iterator>
{
BOOST_CONCEPT_ASSERT((
boost::Convertible<
BOOST_DEDUCED_TYPENAME BidirectionalTraversal::traversal_category
, boost::bidirectional_traversal_tag
> ));
BOOST_CONCEPT_USAGE(BidirectionalTraversal)
{
--i;
(void)i--;
}
private:
Iterator i;
};
BOOST_concept(RandomAccessTraversal,(Iterator))
: BidirectionalTraversal<Iterator>
{
BOOST_CONCEPT_ASSERT((
boost::Convertible<
BOOST_DEDUCED_TYPENAME RandomAccessTraversal::traversal_category
, boost::random_access_traversal_tag
> ));
BOOST_CONCEPT_USAGE(RandomAccessTraversal)
{
i += n;
i = i + n;
i = n + i;
i -= n;
i = i - n;
n = i - j;
}
private:
typename BidirectionalTraversal<Iterator>::difference_type n;
Iterator i, j;
};
//===========================================================================
// Iterator Interoperability
namespace detail
{
template <typename Iterator1, typename Iterator2>
void interop_single_pass_constraints(Iterator1 const& i1, Iterator2 const& i2)
{
bool b;
b = i1 == i2;
b = i1 != i2;
b = i2 == i1;
b = i2 != i1;
boost::ignore_unused_variable_warning(b);
}
template <typename Iterator1, typename Iterator2>
void interop_rand_access_constraints(
Iterator1 const& i1, Iterator2 const& i2,
boost::random_access_traversal_tag, boost::random_access_traversal_tag)
{
bool b;
typename std::iterator_traits<Iterator2>::difference_type n;
b = i1 < i2;
b = i1 <= i2;
b = i1 > i2;
b = i1 >= i2;
n = i1 - i2;
b = i2 < i1;
b = i2 <= i1;
b = i2 > i1;
b = i2 >= i1;
n = i2 - i1;
boost::ignore_unused_variable_warning(b);
boost::ignore_unused_variable_warning(n);
}
template <typename Iterator1, typename Iterator2>
void interop_rand_access_constraints(
Iterator1 const&, Iterator2 const&,
boost::single_pass_traversal_tag, boost::single_pass_traversal_tag)
{ }
} // namespace detail
BOOST_concept(InteroperableIterator,(Iterator)(ConstIterator))
{
private:
typedef typename boost::iterators::pure_iterator_traversal<Iterator>::type traversal_category;
typedef typename boost::iterators::pure_iterator_traversal<ConstIterator>::type const_traversal_category;
public:
BOOST_CONCEPT_ASSERT((SinglePassIterator<Iterator>));
BOOST_CONCEPT_ASSERT((SinglePassIterator<ConstIterator>));
BOOST_CONCEPT_USAGE(InteroperableIterator)
{
detail::interop_single_pass_constraints(i, ci);
detail::interop_rand_access_constraints(i, ci, traversal_category(), const_traversal_category());
ci = i;
}
private:
Iterator i;
ConstIterator ci;
};
} // namespace boost_concepts
#include <boost/concept/detail/concept_undef.hpp>
#endif // BOOST_ITERATOR_CONCEPTS_HPP

View File

@@ -0,0 +1,981 @@
// (C) Copyright David Abrahams 2002.
// (C) Copyright Jeremy Siek 2002.
// (C) Copyright Thomas Witt 2002.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_ITERATOR_FACADE_23022003THW_HPP
#define BOOST_ITERATOR_FACADE_23022003THW_HPP
#include <boost/config.hpp>
#include <boost/iterator/interoperable.hpp>
#include <boost/iterator/iterator_traits.hpp>
#include <boost/iterator/iterator_categories.hpp>
#include <boost/iterator/detail/facade_iterator_category.hpp>
#include <boost/iterator/detail/enable_if.hpp>
#include <boost/static_assert.hpp>
#include <boost/core/addressof.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/add_const.hpp>
#include <boost/type_traits/add_pointer.hpp>
#include <boost/type_traits/add_lvalue_reference.hpp>
#include <boost/type_traits/remove_const.hpp>
#include <boost/type_traits/remove_reference.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/type_traits/is_pod.hpp>
#include <boost/mpl/eval_if.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/or.hpp>
#include <boost/mpl/and.hpp>
#include <boost/mpl/not.hpp>
#include <boost/mpl/always.hpp>
#include <boost/mpl/apply.hpp>
#include <boost/mpl/identity.hpp>
#include <cstddef>
#include <boost/iterator/detail/config_def.hpp> // this goes last
namespace boost {
namespace iterators {
// This forward declaration is required for the friend declaration
// in iterator_core_access
template <class I, class V, class TC, class R, class D> class iterator_facade;
namespace detail
{
// A binary metafunction class that always returns bool. VC6
// ICEs on mpl::always<bool>, probably because of the default
// parameters.
struct always_bool2
{
template <class T, class U>
struct apply
{
typedef bool type;
};
};
// The type trait checks if the category or traversal is at least as advanced as the specified required traversal
template< typename CategoryOrTraversal, typename Required >
struct is_traversal_at_least :
public boost::is_convertible< typename iterator_category_to_traversal< CategoryOrTraversal >::type, Required >
{};
//
// enable if for use in operator implementation.
//
template <
class Facade1
, class Facade2
, class Return
>
struct enable_if_interoperable :
public boost::iterators::enable_if<
is_interoperable< Facade1, Facade2 >
, Return
>
{};
//
// enable if for use in implementation of operators specific for random access traversal.
//
template <
class Facade1
, class Facade2
, class Return
>
struct enable_if_interoperable_and_random_access_traversal :
public boost::iterators::enable_if<
mpl::and_<
is_interoperable< Facade1, Facade2 >
, is_traversal_at_least< typename iterator_category< Facade1 >::type, random_access_traversal_tag >
, is_traversal_at_least< typename iterator_category< Facade2 >::type, random_access_traversal_tag >
>
, Return
>
{};
//
// Generates associated types for an iterator_facade with the
// given parameters.
//
template <
class ValueParam
, class CategoryOrTraversal
, class Reference
, class Difference
>
struct iterator_facade_types
{
typedef typename facade_iterator_category<
CategoryOrTraversal, ValueParam, Reference
>::type iterator_category;
typedef typename remove_const<ValueParam>::type value_type;
// Not the real associated pointer type
typedef typename mpl::eval_if<
boost::iterators::detail::iterator_writability_disabled<ValueParam,Reference>
, add_pointer<const value_type>
, add_pointer<value_type>
>::type pointer;
# if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) \
&& (BOOST_WORKAROUND(_STLPORT_VERSION, BOOST_TESTED_AT(0x452)) \
|| BOOST_WORKAROUND(BOOST_DINKUMWARE_STDLIB, BOOST_TESTED_AT(310))) \
|| BOOST_WORKAROUND(BOOST_RWSTD_VER, BOOST_TESTED_AT(0x20101)) \
|| BOOST_WORKAROUND(BOOST_DINKUMWARE_STDLIB, <= 310)
// To interoperate with some broken library/compiler
// combinations, user-defined iterators must be derived from
// std::iterator. It is possible to implement a standard
// library for broken compilers without this limitation.
# define BOOST_ITERATOR_FACADE_NEEDS_ITERATOR_BASE 1
typedef
iterator<iterator_category, value_type, Difference, pointer, Reference>
base;
# endif
};
// iterators whose dereference operators reference the same value
// for all iterators into the same sequence (like many input
// iterators) need help with their postfix ++: the referenced
// value must be read and stored away before the increment occurs
// so that *a++ yields the originally referenced element and not
// the next one.
template <class Iterator>
class postfix_increment_proxy
{
typedef typename iterator_value<Iterator>::type value_type;
public:
explicit postfix_increment_proxy(Iterator const& x)
: stored_value(*x)
{}
// Returning a mutable reference allows nonsense like
// (*r++).mutate(), but it imposes fewer assumptions about the
// behavior of the value_type. In particular, recall that
// (*r).mutate() is legal if operator* returns by value.
value_type&
operator*() const
{
return this->stored_value;
}
private:
mutable value_type stored_value;
};
//
// In general, we can't determine that such an iterator isn't
// writable -- we also need to store a copy of the old iterator so
// that it can be written into.
template <class Iterator>
class writable_postfix_increment_proxy
{
typedef typename iterator_value<Iterator>::type value_type;
public:
explicit writable_postfix_increment_proxy(Iterator const& x)
: stored_value(*x)
, stored_iterator(x)
{}
// Dereferencing must return a proxy so that both *r++ = o and
// value_type(*r++) can work. In this case, *r is the same as
// *r++, and the conversion operator below is used to ensure
// readability.
writable_postfix_increment_proxy const&
operator*() const
{
return *this;
}
// Provides readability of *r++
operator value_type&() const
{
return stored_value;
}
// Provides writability of *r++
template <class T>
T const& operator=(T const& x) const
{
*this->stored_iterator = x;
return x;
}
// This overload just in case only non-const objects are writable
template <class T>
T& operator=(T& x) const
{
*this->stored_iterator = x;
return x;
}
// Provides X(r++)
operator Iterator const&() const
{
return stored_iterator;
}
private:
mutable value_type stored_value;
Iterator stored_iterator;
};
# ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class Reference, class Value>
struct is_non_proxy_reference_impl
{
static Reference r;
template <class R>
static typename mpl::if_<
is_convertible<
R const volatile*
, Value const volatile*
>
, char[1]
, char[2]
>::type& helper(R const&);
BOOST_STATIC_CONSTANT(bool, value = sizeof(helper(r)) == 1);
};
template <class Reference, class Value>
struct is_non_proxy_reference
: mpl::bool_<
is_non_proxy_reference_impl<Reference, Value>::value
>
{};
# else
template <class Reference, class Value>
struct is_non_proxy_reference
: is_convertible<
typename remove_reference<Reference>::type
const volatile*
, Value const volatile*
>
{};
# endif
// A metafunction to choose the result type of postfix ++
//
// Because the C++98 input iterator requirements say that *r++ has
// type T (value_type), implementations of some standard
// algorithms like lexicographical_compare may use constructions
// like:
//
// *r++ < *s++
//
// If *r++ returns a proxy (as required if r is writable but not
// multipass), this sort of expression will fail unless the proxy
// supports the operator<. Since there are any number of such
// operations, we're not going to try to support them. Therefore,
// even if r++ returns a proxy, *r++ will only return a proxy if
// *r also returns a proxy.
template <class Iterator, class Value, class Reference, class CategoryOrTraversal>
struct postfix_increment_result
: mpl::eval_if<
mpl::and_<
// A proxy is only needed for readable iterators
is_convertible<
Reference
// Use add_lvalue_reference to form `reference to Value` due to
// some (strict) C++03 compilers (e.g. `gcc -std=c++03`) reject
// 'reference-to-reference' in the template which described in CWG
// DR106.
// http://www.open-std.org/Jtc1/sc22/wg21/docs/cwg_defects.html#106
, typename add_lvalue_reference<Value const>::type
>
// No multipass iterator can have values that disappear
// before positions can be re-visited
, mpl::not_<
is_convertible<
typename iterator_category_to_traversal<CategoryOrTraversal>::type
, forward_traversal_tag
>
>
>
, mpl::if_<
is_non_proxy_reference<Reference,Value>
, postfix_increment_proxy<Iterator>
, writable_postfix_increment_proxy<Iterator>
>
, mpl::identity<Iterator>
>
{};
// operator->() needs special support for input iterators to strictly meet the
// standard's requirements. If *i is not a reference type, we must still
// produce an lvalue to which a pointer can be formed. We do that by
// returning a proxy object containing an instance of the reference object.
template <class Reference, class Pointer>
struct operator_arrow_dispatch // proxy references
{
struct proxy
{
explicit proxy(Reference const & x) : m_ref(x) {}
Reference* operator->() { return boost::addressof(m_ref); }
// This function is needed for MWCW and BCC, which won't call
// operator-> again automatically per 13.3.1.2 para 8
operator Reference*() { return boost::addressof(m_ref); }
Reference m_ref;
};
typedef proxy result_type;
static result_type apply(Reference const & x)
{
return result_type(x);
}
};
template <class T, class Pointer>
struct operator_arrow_dispatch<T&, Pointer> // "real" references
{
typedef Pointer result_type;
static result_type apply(T& x)
{
return boost::addressof(x);
}
};
// A proxy return type for operator[], needed to deal with
// iterators that may invalidate referents upon destruction.
// Consider the temporary iterator in *(a + n)
template <class Iterator>
class operator_brackets_proxy
{
// Iterator is actually an iterator_facade, so we do not have to
// go through iterator_traits to access the traits.
typedef typename Iterator::reference reference;
typedef typename Iterator::value_type value_type;
public:
operator_brackets_proxy(Iterator const& iter)
: m_iter(iter)
{}
operator reference() const
{
return *m_iter;
}
operator_brackets_proxy& operator=(value_type const& val)
{
*m_iter = val;
return *this;
}
private:
Iterator m_iter;
};
// A metafunction that determines whether operator[] must return a
// proxy, or whether it can simply return a copy of the value_type.
template <class ValueType, class Reference>
struct use_operator_brackets_proxy
: mpl::not_<
mpl::and_<
// Really we want an is_copy_constructible trait here,
// but is_POD will have to suffice in the meantime.
boost::is_POD<ValueType>
, iterator_writability_disabled<ValueType,Reference>
>
>
{};
template <class Iterator, class Value, class Reference>
struct operator_brackets_result
{
typedef typename mpl::if_<
use_operator_brackets_proxy<Value,Reference>
, operator_brackets_proxy<Iterator>
, Value
>::type type;
};
template <class Iterator>
operator_brackets_proxy<Iterator> make_operator_brackets_result(Iterator const& iter, mpl::true_)
{
return operator_brackets_proxy<Iterator>(iter);
}
template <class Iterator>
typename Iterator::value_type make_operator_brackets_result(Iterator const& iter, mpl::false_)
{
return *iter;
}
struct choose_difference_type
{
template <class I1, class I2>
struct apply
:
# ifdef BOOST_NO_ONE_WAY_ITERATOR_INTEROP
iterator_difference<I1>
# else
mpl::eval_if<
is_convertible<I2,I1>
, iterator_difference<I1>
, iterator_difference<I2>
>
# endif
{};
};
template <
class Derived
, class Value
, class CategoryOrTraversal
, class Reference
, class Difference
, bool IsBidirectionalTraversal
, bool IsRandomAccessTraversal
>
class iterator_facade_base;
} // namespace detail
// Macros which describe the declarations of binary operators
# ifdef BOOST_NO_STRICT_ITERATOR_INTEROPERABILITY
# define BOOST_ITERATOR_FACADE_INTEROP_HEAD_IMPL(prefix, op, result_type, enabler) \
template < \
class Derived1, class V1, class TC1, class Reference1, class Difference1 \
, class Derived2, class V2, class TC2, class Reference2, class Difference2 \
> \
prefix typename mpl::apply2<result_type,Derived1,Derived2>::type \
operator op( \
iterator_facade<Derived1, V1, TC1, Reference1, Difference1> const& lhs \
, iterator_facade<Derived2, V2, TC2, Reference2, Difference2> const& rhs)
# else
# define BOOST_ITERATOR_FACADE_INTEROP_HEAD_IMPL(prefix, op, result_type, enabler) \
template < \
class Derived1, class V1, class TC1, class Reference1, class Difference1 \
, class Derived2, class V2, class TC2, class Reference2, class Difference2 \
> \
prefix typename enabler< \
Derived1, Derived2 \
, typename mpl::apply2<result_type,Derived1,Derived2>::type \
>::type \
operator op( \
iterator_facade<Derived1, V1, TC1, Reference1, Difference1> const& lhs \
, iterator_facade<Derived2, V2, TC2, Reference2, Difference2> const& rhs)
# endif
# define BOOST_ITERATOR_FACADE_INTEROP_HEAD(prefix, op, result_type) \
BOOST_ITERATOR_FACADE_INTEROP_HEAD_IMPL(prefix, op, result_type, boost::iterators::detail::enable_if_interoperable)
# define BOOST_ITERATOR_FACADE_INTEROP_RANDOM_ACCESS_HEAD(prefix, op, result_type) \
BOOST_ITERATOR_FACADE_INTEROP_HEAD_IMPL(prefix, op, result_type, boost::iterators::detail::enable_if_interoperable_and_random_access_traversal)
# define BOOST_ITERATOR_FACADE_PLUS_HEAD(prefix,args) \
template <class Derived, class V, class TC, class R, class D> \
prefix typename boost::iterators::enable_if< \
boost::iterators::detail::is_traversal_at_least< TC, boost::iterators::random_access_traversal_tag >, \
Derived \
>::type operator+ args
//
// Helper class for granting access to the iterator core interface.
//
// The simple core interface is used by iterator_facade. The core
// interface of a user/library defined iterator type should not be made public
// so that it does not clutter the public interface. Instead iterator_core_access
// should be made friend so that iterator_facade can access the core
// interface through iterator_core_access.
//
class iterator_core_access
{
# if defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
// Tasteless as this may seem, making all members public allows member templates
// to work in the absence of member template friends.
public:
# else
template <class I, class V, class TC, class R, class D> friend class iterator_facade;
template <class I, class V, class TC, class R, class D, bool IsBidirectionalTraversal, bool IsRandomAccessTraversal>
friend class detail::iterator_facade_base;
# define BOOST_ITERATOR_FACADE_RELATION(op) \
BOOST_ITERATOR_FACADE_INTEROP_HEAD(friend,op, boost::iterators::detail::always_bool2);
BOOST_ITERATOR_FACADE_RELATION(==)
BOOST_ITERATOR_FACADE_RELATION(!=)
# undef BOOST_ITERATOR_FACADE_RELATION
# define BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(op) \
BOOST_ITERATOR_FACADE_INTEROP_RANDOM_ACCESS_HEAD(friend,op, boost::iterators::detail::always_bool2);
BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(<)
BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(>)
BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(<=)
BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(>=)
# undef BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION
BOOST_ITERATOR_FACADE_INTEROP_RANDOM_ACCESS_HEAD(
friend, -, boost::iterators::detail::choose_difference_type)
;
BOOST_ITERATOR_FACADE_PLUS_HEAD(
friend inline
, (iterator_facade<Derived, V, TC, R, D> const&
, typename Derived::difference_type)
)
;
BOOST_ITERATOR_FACADE_PLUS_HEAD(
friend inline
, (typename Derived::difference_type
, iterator_facade<Derived, V, TC, R, D> const&)
)
;
# endif
template <class Facade>
static typename Facade::reference dereference(Facade const& f)
{
return f.dereference();
}
template <class Facade>
static void increment(Facade& f)
{
f.increment();
}
template <class Facade>
static void decrement(Facade& f)
{
f.decrement();
}
template <class Facade1, class Facade2>
static bool equal(Facade1 const& f1, Facade2 const& f2, mpl::true_)
{
return f1.equal(f2);
}
template <class Facade1, class Facade2>
static bool equal(Facade1 const& f1, Facade2 const& f2, mpl::false_)
{
return f2.equal(f1);
}
template <class Facade>
static void advance(Facade& f, typename Facade::difference_type n)
{
f.advance(n);
}
template <class Facade1, class Facade2>
static typename Facade1::difference_type distance_from(
Facade1 const& f1, Facade2 const& f2, mpl::true_)
{
return -f1.distance_to(f2);
}
template <class Facade1, class Facade2>
static typename Facade2::difference_type distance_from(
Facade1 const& f1, Facade2 const& f2, mpl::false_)
{
return f2.distance_to(f1);
}
//
// Curiously Recurring Template interface.
//
template <class I, class V, class TC, class R, class D>
static I& derived(iterator_facade<I,V,TC,R,D>& facade)
{
return *static_cast<I*>(&facade);
}
template <class I, class V, class TC, class R, class D>
static I const& derived(iterator_facade<I,V,TC,R,D> const& facade)
{
return *static_cast<I const*>(&facade);
}
// objects of this class are useless
BOOST_DELETED_FUNCTION(iterator_core_access())
};
namespace detail {
// Implementation for forward traversal iterators
template <
class Derived
, class Value
, class CategoryOrTraversal
, class Reference
, class Difference
>
class iterator_facade_base< Derived, Value, CategoryOrTraversal, Reference, Difference, false, false >
# ifdef BOOST_ITERATOR_FACADE_NEEDS_ITERATOR_BASE
: public boost::iterators::detail::iterator_facade_types<
Value, CategoryOrTraversal, Reference, Difference
>::base
# undef BOOST_ITERATOR_FACADE_NEEDS_ITERATOR_BASE
# endif
{
private:
typedef boost::iterators::detail::iterator_facade_types<
Value, CategoryOrTraversal, Reference, Difference
> associated_types;
typedef boost::iterators::detail::operator_arrow_dispatch<
Reference
, typename associated_types::pointer
> operator_arrow_dispatch_;
public:
typedef typename associated_types::value_type value_type;
typedef Reference reference;
typedef Difference difference_type;
typedef typename operator_arrow_dispatch_::result_type pointer;
typedef typename associated_types::iterator_category iterator_category;
public:
reference operator*() const
{
return iterator_core_access::dereference(this->derived());
}
pointer operator->() const
{
return operator_arrow_dispatch_::apply(*this->derived());
}
Derived& operator++()
{
iterator_core_access::increment(this->derived());
return this->derived();
}
protected:
//
// Curiously Recurring Template interface.
//
Derived& derived()
{
return *static_cast<Derived*>(this);
}
Derived const& derived() const
{
return *static_cast<Derived const*>(this);
}
};
// Implementation for bidirectional traversal iterators
template <
class Derived
, class Value
, class CategoryOrTraversal
, class Reference
, class Difference
>
class iterator_facade_base< Derived, Value, CategoryOrTraversal, Reference, Difference, true, false > :
public iterator_facade_base< Derived, Value, CategoryOrTraversal, Reference, Difference, false, false >
{
public:
Derived& operator--()
{
iterator_core_access::decrement(this->derived());
return this->derived();
}
Derived operator--(int)
{
Derived tmp(this->derived());
--*this;
return tmp;
}
};
// Implementation for random access traversal iterators
template <
class Derived
, class Value
, class CategoryOrTraversal
, class Reference
, class Difference
>
class iterator_facade_base< Derived, Value, CategoryOrTraversal, Reference, Difference, true, true > :
public iterator_facade_base< Derived, Value, CategoryOrTraversal, Reference, Difference, true, false >
{
private:
typedef iterator_facade_base< Derived, Value, CategoryOrTraversal, Reference, Difference, true, false > base_type;
public:
typedef typename base_type::reference reference;
typedef typename base_type::difference_type difference_type;
public:
typename boost::iterators::detail::operator_brackets_result<Derived, Value, reference>::type
operator[](difference_type n) const
{
typedef boost::iterators::detail::use_operator_brackets_proxy<Value, Reference> use_proxy;
return boost::iterators::detail::make_operator_brackets_result<Derived>(
this->derived() + n
, use_proxy()
);
}
Derived& operator+=(difference_type n)
{
iterator_core_access::advance(this->derived(), n);
return this->derived();
}
Derived& operator-=(difference_type n)
{
iterator_core_access::advance(this->derived(), -n);
return this->derived();
}
Derived operator-(difference_type x) const
{
Derived result(this->derived());
return result -= x;
}
};
} // namespace detail
//
// iterator_facade - use as a public base class for defining new
// standard-conforming iterators.
//
template <
class Derived // The derived iterator type being constructed
, class Value
, class CategoryOrTraversal
, class Reference = Value&
, class Difference = std::ptrdiff_t
>
class iterator_facade :
public detail::iterator_facade_base<
Derived,
Value,
CategoryOrTraversal,
Reference,
Difference,
detail::is_traversal_at_least< CategoryOrTraversal, bidirectional_traversal_tag >::value,
detail::is_traversal_at_least< CategoryOrTraversal, random_access_traversal_tag >::value
>
{
protected:
// For use by derived classes
typedef iterator_facade<Derived,Value,CategoryOrTraversal,Reference,Difference> iterator_facade_;
};
template <class I, class V, class TC, class R, class D>
inline typename boost::iterators::detail::postfix_increment_result<I,V,R,TC>::type
operator++(
iterator_facade<I,V,TC,R,D>& i
, int
)
{
typename boost::iterators::detail::postfix_increment_result<I,V,R,TC>::type
tmp(*static_cast<I*>(&i));
++i;
return tmp;
}
//
// Comparison operator implementation. The library supplied operators
// enables the user to provide fully interoperable constant/mutable
// iterator types. I.e. the library provides all operators
// for all mutable/constant iterator combinations.
//
// Note though that this kind of interoperability for constant/mutable
// iterators is not required by the standard for container iterators.
// All the standard asks for is a conversion mutable -> constant.
// Most standard library implementations nowadays provide fully interoperable
// iterator implementations, but there are still heavily used implementations
// that do not provide them. (Actually it's even worse, they do not provide
// them for only a few iterators.)
//
// ?? Maybe a BOOST_ITERATOR_NO_FULL_INTEROPERABILITY macro should
// enable the user to turn off mixed type operators
//
// The library takes care to provide only the right operator overloads.
// I.e.
//
// bool operator==(Iterator, Iterator);
// bool operator==(ConstIterator, Iterator);
// bool operator==(Iterator, ConstIterator);
// bool operator==(ConstIterator, ConstIterator);
//
// ...
//
// In order to do so it uses c++ idioms that are not yet widely supported
// by current compiler releases. The library is designed to degrade gracefully
// in the face of compiler deficiencies. In general compiler
// deficiencies result in less strict error checking and more obscure
// error messages, functionality is not affected.
//
// For full operation compiler support for "Substitution Failure Is Not An Error"
// (aka. enable_if) and boost::is_convertible is required.
//
// The following problems occur if support is lacking.
//
// Pseudo code
//
// ---------------
// AdaptorA<Iterator1> a1;
// AdaptorA<Iterator2> a2;
//
// // This will result in a no such overload error in full operation
// // If enable_if or is_convertible is not supported
// // The instantiation will fail with an error hopefully indicating that
// // there is no operator== for Iterator1, Iterator2
// // The same will happen if no enable_if is used to remove
// // false overloads from the templated conversion constructor
// // of AdaptorA.
//
// a1 == a2;
// ----------------
//
// AdaptorA<Iterator> a;
// AdaptorB<Iterator> b;
//
// // This will result in a no such overload error in full operation
// // If enable_if is not supported the static assert used
// // in the operator implementation will fail.
// // This will accidently work if is_convertible is not supported.
//
// a == b;
// ----------------
//
# ifdef BOOST_NO_ONE_WAY_ITERATOR_INTEROP
# define BOOST_ITERATOR_CONVERTIBLE(a,b) mpl::true_()
# else
# define BOOST_ITERATOR_CONVERTIBLE(a,b) is_convertible<a,b>()
# endif
# define BOOST_ITERATOR_FACADE_INTEROP(op, result_type, return_prefix, base_op) \
BOOST_ITERATOR_FACADE_INTEROP_HEAD(inline, op, result_type) \
{ \
/* For those compilers that do not support enable_if */ \
BOOST_STATIC_ASSERT(( \
is_interoperable< Derived1, Derived2 >::value \
)); \
return_prefix iterator_core_access::base_op( \
*static_cast<Derived1 const*>(&lhs) \
, *static_cast<Derived2 const*>(&rhs) \
, BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \
); \
}
# define BOOST_ITERATOR_FACADE_RELATION(op, return_prefix, base_op) \
BOOST_ITERATOR_FACADE_INTEROP( \
op \
, boost::iterators::detail::always_bool2 \
, return_prefix \
, base_op \
)
BOOST_ITERATOR_FACADE_RELATION(==, return, equal)
BOOST_ITERATOR_FACADE_RELATION(!=, return !, equal)
# undef BOOST_ITERATOR_FACADE_RELATION
# define BOOST_ITERATOR_FACADE_INTEROP_RANDOM_ACCESS(op, result_type, return_prefix, base_op) \
BOOST_ITERATOR_FACADE_INTEROP_RANDOM_ACCESS_HEAD(inline, op, result_type) \
{ \
/* For those compilers that do not support enable_if */ \
BOOST_STATIC_ASSERT(( \
is_interoperable< Derived1, Derived2 >::value && \
boost::iterators::detail::is_traversal_at_least< typename iterator_category< Derived1 >::type, random_access_traversal_tag >::value && \
boost::iterators::detail::is_traversal_at_least< typename iterator_category< Derived2 >::type, random_access_traversal_tag >::value \
)); \
return_prefix iterator_core_access::base_op( \
*static_cast<Derived1 const*>(&lhs) \
, *static_cast<Derived2 const*>(&rhs) \
, BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \
); \
}
# define BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(op, return_prefix, base_op) \
BOOST_ITERATOR_FACADE_INTEROP_RANDOM_ACCESS( \
op \
, boost::iterators::detail::always_bool2 \
, return_prefix \
, base_op \
)
BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(<, return 0 >, distance_from)
BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(>, return 0 <, distance_from)
BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(<=, return 0 >=, distance_from)
BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION(>=, return 0 <=, distance_from)
# undef BOOST_ITERATOR_FACADE_RANDOM_ACCESS_RELATION
// operator- requires an additional part in the static assertion
BOOST_ITERATOR_FACADE_INTEROP_RANDOM_ACCESS(
-
, boost::iterators::detail::choose_difference_type
, return
, distance_from
)
# undef BOOST_ITERATOR_FACADE_INTEROP
# undef BOOST_ITERATOR_FACADE_INTEROP_RANDOM_ACCESS
# define BOOST_ITERATOR_FACADE_PLUS(args) \
BOOST_ITERATOR_FACADE_PLUS_HEAD(inline, args) \
{ \
Derived tmp(static_cast<Derived const&>(i)); \
return tmp += n; \
}
BOOST_ITERATOR_FACADE_PLUS((
iterator_facade<Derived, V, TC, R, D> const& i
, typename Derived::difference_type n
))
BOOST_ITERATOR_FACADE_PLUS((
typename Derived::difference_type n
, iterator_facade<Derived, V, TC, R, D> const& i
))
# undef BOOST_ITERATOR_FACADE_PLUS
# undef BOOST_ITERATOR_FACADE_PLUS_HEAD
# undef BOOST_ITERATOR_FACADE_INTEROP_HEAD
# undef BOOST_ITERATOR_FACADE_INTEROP_RANDOM_ACCESS_HEAD
# undef BOOST_ITERATOR_FACADE_INTEROP_HEAD_IMPL
} // namespace iterators
using iterators::iterator_core_access;
using iterators::iterator_facade;
} // namespace boost
#include <boost/iterator/detail/config_undef.hpp>
#endif // BOOST_ITERATOR_FACADE_23022003THW_HPP

View File

@@ -0,0 +1,61 @@
// Copyright David Abrahams 2003.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef ITERATOR_TRAITS_DWA200347_HPP
# define ITERATOR_TRAITS_DWA200347_HPP
# include <boost/detail/workaround.hpp>
#include <iterator>
namespace boost {
namespace iterators {
// Macro for supporting old compilers, no longer needed but kept
// for backwards compatibility (it was documented).
#define BOOST_ITERATOR_CATEGORY iterator_category
template <class Iterator>
struct iterator_value
{
typedef typename std::iterator_traits<Iterator>::value_type type;
};
template <class Iterator>
struct iterator_reference
{
typedef typename std::iterator_traits<Iterator>::reference type;
};
template <class Iterator>
struct iterator_pointer
{
typedef typename std::iterator_traits<Iterator>::pointer type;
};
template <class Iterator>
struct iterator_difference
{
typedef typename std::iterator_traits<Iterator>::difference_type type;
};
template <class Iterator>
struct iterator_category
{
typedef typename std::iterator_traits<Iterator>::iterator_category type;
};
} // namespace iterators
using iterators::iterator_value;
using iterators::iterator_reference;
using iterators::iterator_pointer;
using iterators::iterator_difference;
using iterators::iterator_category;
} // namespace boost
#endif // ITERATOR_TRAITS_DWA200347_HPP

View File

@@ -0,0 +1,95 @@
// Copyright David Abrahams 2003. Use, modification and distribution is
// subject to the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_ITERATOR_MINIMUM_CATEGORY_HPP_INCLUDED_
# define BOOST_ITERATOR_MINIMUM_CATEGORY_HPP_INCLUDED_
# include <boost/static_assert.hpp>
# include <boost/type_traits/is_convertible.hpp>
# include <boost/type_traits/is_same.hpp>
# include <boost/mpl/placeholders.hpp>
# include <boost/mpl/aux_/lambda_support.hpp>
namespace boost {
namespace iterators {
namespace detail {
template <bool GreaterEqual, bool LessEqual>
struct minimum_category_impl;
template <class T1, class T2>
struct error_not_related_by_convertibility;
template <>
struct minimum_category_impl<true,false>
{
template <class T1, class T2> struct apply
{
typedef T2 type;
};
};
template <>
struct minimum_category_impl<false,true>
{
template <class T1, class T2> struct apply
{
typedef T1 type;
};
};
template <>
struct minimum_category_impl<true,true>
{
template <class T1, class T2> struct apply
{
BOOST_STATIC_ASSERT((is_same<T1,T2>::value));
typedef T1 type;
};
};
template <>
struct minimum_category_impl<false,false>
{
template <class T1, class T2> struct apply
: error_not_related_by_convertibility<T1,T2>
{
};
};
} // namespace detail
//
// Returns the minimum category type or fails to compile
// if T1 and T2 are unrelated.
//
template <class T1 = mpl::_1, class T2 = mpl::_2>
struct minimum_category
{
typedef boost::iterators::detail::minimum_category_impl<
::boost::is_convertible<T1,T2>::value
, ::boost::is_convertible<T2,T1>::value
> outer;
typedef typename outer::template apply<T1,T2> inner;
typedef typename inner::type type;
BOOST_MPL_AUX_LAMBDA_SUPPORT(2,minimum_category,(T1,T2))
};
template <>
struct minimum_category<mpl::_1,mpl::_2>
{
template <class T1, class T2>
struct apply : minimum_category<T1,T2>
{};
BOOST_MPL_AUX_LAMBDA_SUPPORT_SPEC(2,minimum_category,(mpl::_1,mpl::_2))
};
} // namespace iterators
} // namespace boost
#endif // BOOST_ITERATOR_MINIMUM_CATEGORY_HPP_INCLUDED_

View File

@@ -0,0 +1,265 @@
#ifndef BOOST_NEW_ITERATOR_TESTS_HPP
# define BOOST_NEW_ITERATOR_TESTS_HPP
//
// Copyright (c) David Abrahams 2001.
// Copyright (c) Jeremy Siek 2001-2003.
// Copyright (c) Thomas Witt 2002.
//
// Use, modification and distribution is subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// This is meant to be the beginnings of a comprehensive, generic
// test suite for STL concepts such as iterators and containers.
//
// Revision History:
// 28 Oct 2002 Started update for new iterator categories
// (Jeremy Siek)
// 28 Apr 2002 Fixed input iterator requirements.
// For a == b a++ == b++ is no longer required.
// See 24.1.1/3 for details.
// (Thomas Witt)
// 08 Feb 2001 Fixed bidirectional iterator test so that
// --i is no longer a precondition.
// (Jeremy Siek)
// 04 Feb 2001 Added lvalue test, corrected preconditions
// (David Abrahams)
# include <iterator>
# include <boost/static_assert.hpp>
# include <boost/concept_archetype.hpp> // for detail::dummy_constructor
# include <boost/pending/iterator_tests.hpp>
# include <boost/iterator/is_readable_iterator.hpp>
# include <boost/iterator/is_lvalue_iterator.hpp>
# include <boost/type_traits/is_same.hpp>
# include <boost/mpl/bool.hpp>
# include <boost/mpl/and.hpp>
# include <boost/iterator/detail/config_def.hpp>
# include <boost/detail/is_incrementable.hpp>
# include <boost/core/lightweight_test.hpp>
namespace boost {
// Do separate tests for *i++ so we can treat, e.g., smart pointers,
// as readable and/or writable iterators.
template <class Iterator, class T>
void readable_iterator_traversal_test(Iterator i1, T v, mpl::true_)
{
T v2(*i1++);
BOOST_TEST(v == v2);
}
template <class Iterator, class T>
void readable_iterator_traversal_test(const Iterator i1, T v, mpl::false_)
{}
template <class Iterator, class T>
void writable_iterator_traversal_test(Iterator i1, T v, mpl::true_)
{
++i1; // we just wrote into that position
*i1++ = v;
Iterator x(i1++);
(void)x;
}
template <class Iterator, class T>
void writable_iterator_traversal_test(const Iterator i1, T v, mpl::false_)
{}
// Preconditions: *i == v
template <class Iterator, class T>
void readable_iterator_test(const Iterator i1, T v)
{
Iterator i2(i1); // Copy Constructible
typedef typename std::iterator_traits<Iterator>::reference ref_t;
ref_t r1 = *i1;
ref_t r2 = *i2;
T v1 = r1;
T v2 = r2;
BOOST_TEST(v1 == v);
BOOST_TEST(v2 == v);
# if !BOOST_WORKAROUND(__MWERKS__, <= 0x2407)
readable_iterator_traversal_test(i1, v, detail::is_postfix_incrementable<Iterator>());
// I think we don't really need this as it checks the same things as
// the above code.
BOOST_STATIC_ASSERT(is_readable_iterator<Iterator>::value);
# endif
}
template <class Iterator, class T>
void writable_iterator_test(Iterator i, T v, T v2)
{
Iterator i2(i); // Copy Constructible
*i2 = v;
# if !BOOST_WORKAROUND(__MWERKS__, <= 0x2407)
writable_iterator_traversal_test(
i, v2, mpl::and_<
detail::is_incrementable<Iterator>
, detail::is_postfix_incrementable<Iterator>
>());
# endif
}
template <class Iterator>
void swappable_iterator_test(Iterator i, Iterator j)
{
Iterator i2(i), j2(j);
typename std::iterator_traits<Iterator>::value_type bi = *i, bj = *j;
iter_swap(i2, j2);
typename std::iterator_traits<Iterator>::value_type ai = *i, aj = *j;
BOOST_TEST(bi == aj && bj == ai);
}
template <class Iterator, class T>
void constant_lvalue_iterator_test(Iterator i, T v1)
{
Iterator i2(i);
typedef typename std::iterator_traits<Iterator>::value_type value_type;
typedef typename std::iterator_traits<Iterator>::reference reference;
BOOST_STATIC_ASSERT((is_same<const value_type&, reference>::value));
const T& v2 = *i2;
BOOST_TEST(v1 == v2);
# ifndef BOOST_NO_LVALUE_RETURN_DETECTION
BOOST_STATIC_ASSERT(is_lvalue_iterator<Iterator>::value);
BOOST_STATIC_ASSERT(!is_non_const_lvalue_iterator<Iterator>::value);
# endif
}
template <class Iterator, class T>
void non_const_lvalue_iterator_test(Iterator i, T v1, T v2)
{
Iterator i2(i);
typedef typename std::iterator_traits<Iterator>::value_type value_type;
typedef typename std::iterator_traits<Iterator>::reference reference;
BOOST_STATIC_ASSERT((is_same<value_type&, reference>::value));
T& v3 = *i2;
BOOST_TEST(v1 == v3);
// A non-const lvalue iterator is not neccessarily writable, but we
// are assuming the value_type is assignable here
*i = v2;
T& v4 = *i2;
BOOST_TEST(v2 == v4);
# ifndef BOOST_NO_LVALUE_RETURN_DETECTION
BOOST_STATIC_ASSERT(is_lvalue_iterator<Iterator>::value);
BOOST_STATIC_ASSERT(is_non_const_lvalue_iterator<Iterator>::value);
# endif
}
template <class Iterator, class T>
void forward_readable_iterator_test(Iterator i, Iterator j, T val1, T val2)
{
Iterator i2;
Iterator i3(i);
i2 = i;
BOOST_TEST(i2 == i3);
BOOST_TEST(i != j);
BOOST_TEST(i2 != j);
readable_iterator_test(i, val1);
readable_iterator_test(i2, val1);
readable_iterator_test(i3, val1);
BOOST_TEST(i == i2++);
BOOST_TEST(i != ++i3);
readable_iterator_test(i2, val2);
readable_iterator_test(i3, val2);
readable_iterator_test(i, val1);
}
template <class Iterator, class T>
void forward_swappable_iterator_test(Iterator i, Iterator j, T val1, T val2)
{
forward_readable_iterator_test(i, j, val1, val2);
Iterator i2 = i;
++i2;
swappable_iterator_test(i, i2);
}
// bidirectional
// Preconditions: *i == v1, *++i == v2
template <class Iterator, class T>
void bidirectional_readable_iterator_test(Iterator i, T v1, T v2)
{
Iterator j(i);
++j;
forward_readable_iterator_test(i, j, v1, v2);
++i;
Iterator i1 = i, i2 = i;
BOOST_TEST(i == i1--);
BOOST_TEST(i != --i2);
readable_iterator_test(i, v2);
readable_iterator_test(i1, v1);
readable_iterator_test(i2, v1);
--i;
BOOST_TEST(i == i1);
BOOST_TEST(i == i2);
++i1;
++i2;
readable_iterator_test(i, v1);
readable_iterator_test(i1, v2);
readable_iterator_test(i2, v2);
}
// random access
// Preconditions: [i,i+N) is a valid range
template <class Iterator, class TrueVals>
void random_access_readable_iterator_test(Iterator i, int N, TrueVals vals)
{
bidirectional_readable_iterator_test(i, vals[0], vals[1]);
const Iterator j = i;
int c;
for (c = 0; c < N-1; ++c)
{
BOOST_TEST(i == j + c);
BOOST_TEST(*i == vals[c]);
typename std::iterator_traits<Iterator>::value_type x = j[c];
BOOST_TEST(*i == x);
BOOST_TEST(*i == *(j + c));
BOOST_TEST(*i == *(c + j));
++i;
BOOST_TEST(i > j);
BOOST_TEST(i >= j);
BOOST_TEST(j <= i);
BOOST_TEST(j < i);
}
Iterator k = j + N - 1;
for (c = 0; c < N-1; ++c)
{
BOOST_TEST(i == k - c);
BOOST_TEST(*i == vals[N - 1 - c]);
typename std::iterator_traits<Iterator>::value_type x = j[N - 1 - c];
BOOST_TEST(*i == x);
Iterator q = k - c;
BOOST_TEST(*i == *q);
BOOST_TEST(i > j);
BOOST_TEST(i >= j);
BOOST_TEST(j <= i);
BOOST_TEST(j < i);
--i;
}
}
} // namespace boost
# include <boost/iterator/detail/config_undef.hpp>
#endif // BOOST_NEW_ITERATOR_TESTS_HPP

View File

@@ -0,0 +1,76 @@
// (C) Copyright Toon Knapen 2001.
// (C) Copyright David Abrahams 2003.
// (C) Copyright Roland Richter 2003.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_PERMUTATION_ITERATOR_HPP
#define BOOST_PERMUTATION_ITERATOR_HPP
#include <iterator>
#include <boost/iterator/iterator_adaptor.hpp>
namespace boost {
namespace iterators {
template< class ElementIterator
, class IndexIterator>
class permutation_iterator
: public iterator_adaptor<
permutation_iterator<ElementIterator, IndexIterator>
, IndexIterator, typename std::iterator_traits<ElementIterator>::value_type
, use_default, typename std::iterator_traits<ElementIterator>::reference>
{
typedef iterator_adaptor<
permutation_iterator<ElementIterator, IndexIterator>
, IndexIterator, typename std::iterator_traits<ElementIterator>::value_type
, use_default, typename std::iterator_traits<ElementIterator>::reference> super_t;
friend class iterator_core_access;
public:
permutation_iterator() : m_elt_iter() {}
explicit permutation_iterator(ElementIterator x, IndexIterator y)
: super_t(y), m_elt_iter(x) {}
template<class OtherElementIterator, class OtherIndexIterator>
permutation_iterator(
permutation_iterator<OtherElementIterator, OtherIndexIterator> const& r
, typename enable_if_convertible<OtherElementIterator, ElementIterator>::type* = 0
, typename enable_if_convertible<OtherIndexIterator, IndexIterator>::type* = 0
)
: super_t(r.base()), m_elt_iter(r.m_elt_iter)
{}
private:
typename super_t::reference dereference() const
{ return *(m_elt_iter + *this->base()); }
#ifndef BOOST_NO_MEMBER_TEMPLATE_FRIENDS
template <class,class> friend class permutation_iterator;
#else
public:
#endif
ElementIterator m_elt_iter;
};
template <class ElementIterator, class IndexIterator>
inline permutation_iterator<ElementIterator, IndexIterator>
make_permutation_iterator( ElementIterator e, IndexIterator i )
{
return permutation_iterator<ElementIterator, IndexIterator>( e, i );
}
} // namespace iterators
using iterators::permutation_iterator;
using iterators::make_permutation_iterator;
} // namespace boost
#endif

View File

@@ -0,0 +1,77 @@
// (C) Copyright David Abrahams 2002.
// (C) Copyright Jeremy Siek 2002.
// (C) Copyright Thomas Witt 2002.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_REVERSE_ITERATOR_23022003THW_HPP
#define BOOST_REVERSE_ITERATOR_23022003THW_HPP
#include <boost/iterator/iterator_adaptor.hpp>
namespace boost {
namespace iterators {
//
//
//
template <class Iterator>
class reverse_iterator
: public iterator_adaptor< reverse_iterator<Iterator>, Iterator >
{
typedef iterator_adaptor< reverse_iterator<Iterator>, Iterator > super_t;
friend class iterator_core_access;
public:
reverse_iterator() {}
explicit reverse_iterator(Iterator x)
: super_t(x) {}
template<class OtherIterator>
reverse_iterator(
reverse_iterator<OtherIterator> const& r
, typename enable_if_convertible<OtherIterator, Iterator>::type* = 0
)
: super_t(r.base())
{}
private:
typename super_t::reference dereference() const
{
Iterator it = this->base_reference();
--it;
return *it;
}
void increment() { --this->base_reference(); }
void decrement() { ++this->base_reference(); }
void advance(typename super_t::difference_type n)
{
this->base_reference() -= n;
}
template <class OtherIterator>
typename super_t::difference_type
distance_to(reverse_iterator<OtherIterator> const& y) const
{
return this->base_reference() - y.base();
}
};
template <class BidirectionalIterator>
inline reverse_iterator<BidirectionalIterator> make_reverse_iterator(BidirectionalIterator x)
{
return reverse_iterator<BidirectionalIterator>(x);
}
} // namespace iterators
using iterators::reverse_iterator;
using iterators::make_reverse_iterator;
} // namespace boost
#endif // BOOST_REVERSE_ITERATOR_23022003THW_HPP

View File

@@ -0,0 +1,179 @@
// (C) Copyright David Abrahams 2002.
// (C) Copyright Jeremy Siek 2002.
// (C) Copyright Thomas Witt 2002.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_TRANSFORM_ITERATOR_23022003THW_HPP
#define BOOST_TRANSFORM_ITERATOR_23022003THW_HPP
#include <boost/config.hpp>
#include <boost/config/workaround.hpp>
#include <boost/iterator/detail/enable_if.hpp>
#include <boost/iterator/iterator_adaptor.hpp>
#include <boost/iterator/iterator_categories.hpp>
#include <boost/type_traits/function_traits.hpp>
#include <boost/type_traits/is_const.hpp>
#include <boost/type_traits/is_class.hpp>
#include <boost/type_traits/is_function.hpp>
#include <boost/type_traits/is_reference.hpp>
#include <boost/type_traits/remove_const.hpp>
#include <boost/type_traits/remove_reference.hpp>
#include <boost/utility/result_of.hpp>
#include <iterator>
#if BOOST_WORKAROUND(BOOST_MSVC, BOOST_TESTED_AT(1310))
#include <boost/type_traits/is_base_and_derived.hpp>
#endif
#if !BOOST_WORKAROUND(__MWERKS__, BOOST_TESTED_AT(0x3003))
#include <boost/static_assert.hpp>
#endif
#include <boost/iterator/detail/config_def.hpp>
namespace boost {
namespace iterators {
template <class UnaryFunction, class Iterator, class Reference = use_default, class Value = use_default>
class transform_iterator;
namespace detail
{
// Compute the iterator_adaptor instantiation to be used for transform_iterator
template <class UnaryFunc, class Iterator, class Reference, class Value>
struct transform_iterator_base
{
private:
// By default, dereferencing the iterator yields the same as
// the function.
typedef typename ia_dflt_help<
Reference
#ifdef BOOST_RESULT_OF_USE_TR1
, result_of<const UnaryFunc(typename std::iterator_traits<Iterator>::reference)>
#else
, result_of<const UnaryFunc&(typename std::iterator_traits<Iterator>::reference)>
#endif
>::type reference;
// To get the default for Value: remove any reference on the
// result type, but retain any constness to signal
// non-writability. Note that if we adopt Thomas' suggestion
// to key non-writability *only* on the Reference argument,
// we'd need to strip constness here as well.
typedef typename ia_dflt_help<
Value
, remove_reference<reference>
>::type cv_value_type;
public:
typedef iterator_adaptor<
transform_iterator<UnaryFunc, Iterator, Reference, Value>
, Iterator
, cv_value_type
, use_default // Leave the traversal category alone
, reference
> type;
};
}
template <class UnaryFunc, class Iterator, class Reference, class Value>
class transform_iterator
: public boost::iterators::detail::transform_iterator_base<UnaryFunc, Iterator, Reference, Value>::type
{
typedef typename
boost::iterators::detail::transform_iterator_base<UnaryFunc, Iterator, Reference, Value>::type
super_t;
friend class iterator_core_access;
public:
transform_iterator() { }
transform_iterator(Iterator const& x, UnaryFunc f)
: super_t(x), m_f(f) { }
explicit transform_iterator(Iterator const& x)
: super_t(x)
{
// Pro8 is a little too aggressive about instantiating the
// body of this function.
#if !BOOST_WORKAROUND(__MWERKS__, BOOST_TESTED_AT(0x3003))
// don't provide this constructor if UnaryFunc is a
// function pointer type, since it will be 0. Too dangerous.
BOOST_STATIC_ASSERT(is_class<UnaryFunc>::value);
#endif
}
template <
class OtherUnaryFunction
, class OtherIterator
, class OtherReference
, class OtherValue>
transform_iterator(
transform_iterator<OtherUnaryFunction, OtherIterator, OtherReference, OtherValue> const& t
, typename enable_if_convertible<OtherIterator, Iterator>::type* = 0
#if !BOOST_WORKAROUND(BOOST_MSVC, == 1310)
, typename enable_if_convertible<OtherUnaryFunction, UnaryFunc>::type* = 0
#endif
)
: super_t(t.base()), m_f(t.functor())
{}
UnaryFunc functor() const
{ return m_f; }
private:
typename super_t::reference dereference() const
{ return m_f(*this->base()); }
// Probably should be the initial base class so it can be
// optimized away via EBO if it is an empty class.
UnaryFunc m_f;
};
template <class UnaryFunc, class Iterator>
inline transform_iterator<UnaryFunc, Iterator>
make_transform_iterator(Iterator it, UnaryFunc fun)
{
return transform_iterator<UnaryFunc, Iterator>(it, fun);
}
// Version which allows explicit specification of the UnaryFunc
// type.
//
// This generator is not provided if UnaryFunc is a function
// pointer type, because it's too dangerous: the default-constructed
// function pointer in the iterator be 0, leading to a runtime
// crash.
template <class UnaryFunc, class Iterator>
inline typename iterators::enable_if<
is_class<UnaryFunc> // We should probably find a cheaper test than is_class<>
, transform_iterator<UnaryFunc, Iterator>
>::type
make_transform_iterator(Iterator it)
{
return transform_iterator<UnaryFunc, Iterator>(it, UnaryFunc());
}
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING)
template <class Return, class Argument, class Iterator>
inline transform_iterator< Return (*)(Argument), Iterator, Return>
make_transform_iterator(Iterator it, Return (*fun)(Argument))
{
return transform_iterator<Return (*)(Argument), Iterator, Return>(it, fun);
}
#endif
} // namespace iterators
using iterators::transform_iterator;
using iterators::make_transform_iterator;
} // namespace boost
#include <boost/iterator/detail/config_undef.hpp>
#endif // BOOST_TRANSFORM_ITERATOR_23022003THW_HPP

View File

@@ -0,0 +1,367 @@
// Copyright David Abrahams and Thomas Becker 2000-2006.
// Copyright Kohei Takahashi 2012-2014.
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_ZIP_ITERATOR_TMB_07_13_2003_HPP_
# define BOOST_ZIP_ITERATOR_TMB_07_13_2003_HPP_
#include <stddef.h>
#include <boost/iterator/iterator_traits.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/iterator/iterator_adaptor.hpp> // for enable_if_convertible
#include <boost/iterator/iterator_categories.hpp>
#include <boost/iterator/minimum_category.hpp>
#include <utility> // for std::pair
#include <boost/fusion/adapted/boost_tuple.hpp> // for backward compatibility
#include <boost/type_traits/remove_reference.hpp>
#include <boost/type_traits/remove_cv.hpp>
#include <boost/mpl/at.hpp>
#include <boost/mpl/fold.hpp>
#include <boost/mpl/transform.hpp>
#include <boost/mpl/placeholders.hpp>
#include <boost/fusion/algorithm/iteration/for_each.hpp>
#include <boost/fusion/algorithm/transformation/transform.hpp>
#include <boost/fusion/sequence/convert.hpp>
#include <boost/fusion/sequence/intrinsic/at_c.hpp>
#include <boost/fusion/sequence/comparison/equal_to.hpp>
#include <boost/fusion/support/tag_of_fwd.hpp>
namespace boost {
namespace iterators {
// Zip iterator forward declaration for zip_iterator_base
template<typename IteratorTuple>
class zip_iterator;
namespace detail
{
// Functors to be used with tuple algorithms
//
template<typename DiffType>
class advance_iterator
{
public:
advance_iterator(DiffType step) : m_step(step) {}
template<typename Iterator>
void operator()(Iterator& it) const
{ it += m_step; }
private:
DiffType m_step;
};
//
struct increment_iterator
{
template<typename Iterator>
void operator()(Iterator& it) const
{ ++it; }
};
//
struct decrement_iterator
{
template<typename Iterator>
void operator()(Iterator& it) const
{ --it; }
};
//
struct dereference_iterator
{
template<typename>
struct result;
template<typename This, typename Iterator>
struct result<This(Iterator)>
{
typedef typename
remove_cv<typename remove_reference<Iterator>::type>::type
iterator;
typedef typename iterator_reference<iterator>::type type;
};
template<typename Iterator>
typename result<dereference_iterator(Iterator)>::type
operator()(Iterator const& it) const
{ return *it; }
};
// Metafunction to obtain the type of the tuple whose element types
// are the reference types of an iterator tuple.
//
template<typename IteratorTuple>
struct tuple_of_references
: mpl::transform<
IteratorTuple,
iterator_reference<mpl::_1>
>
{
};
// Specialization for std::pair
template<typename Iterator1, typename Iterator2>
struct tuple_of_references<std::pair<Iterator1, Iterator2> >
{
typedef std::pair<
typename iterator_reference<Iterator1>::type
, typename iterator_reference<Iterator2>::type
> type;
};
// Metafunction to obtain the minimal traversal tag in a tuple
// of iterators.
//
template<typename IteratorTuple>
struct minimum_traversal_category_in_iterator_tuple
{
typedef typename mpl::transform<
IteratorTuple
, pure_traversal_tag<iterator_traversal<> >
>::type tuple_of_traversal_tags;
typedef typename mpl::fold<
tuple_of_traversal_tags
, random_access_traversal_tag
, minimum_category<>
>::type type;
};
template<typename Iterator1, typename Iterator2>
struct minimum_traversal_category_in_iterator_tuple<std::pair<Iterator1, Iterator2> >
{
typedef typename pure_traversal_tag<
typename iterator_traversal<Iterator1>::type
>::type iterator1_traversal;
typedef typename pure_traversal_tag<
typename iterator_traversal<Iterator2>::type
>::type iterator2_traversal;
typedef typename minimum_category<
iterator1_traversal
, typename minimum_category<
iterator2_traversal
, random_access_traversal_tag
>::type
>::type type;
};
///////////////////////////////////////////////////////////////////
//
// Class zip_iterator_base
//
// Builds and exposes the iterator facade type from which the zip
// iterator will be derived.
//
template<typename IteratorTuple>
struct zip_iterator_base
{
private:
// Reference type is the type of the tuple obtained from the
// iterators' reference types.
typedef typename
detail::tuple_of_references<IteratorTuple>::type reference;
// Value type is the same as reference type.
typedef reference value_type;
// Difference type is the first iterator's difference type
typedef typename iterator_difference<
typename mpl::at_c<IteratorTuple, 0>::type
>::type difference_type;
// Traversal catetgory is the minimum traversal category in the
// iterator tuple.
typedef typename
detail::minimum_traversal_category_in_iterator_tuple<
IteratorTuple
>::type traversal_category;
public:
// The iterator facade type from which the zip iterator will
// be derived.
typedef iterator_facade<
zip_iterator<IteratorTuple>,
value_type,
traversal_category,
reference,
difference_type
> type;
};
template <>
struct zip_iterator_base<int>
{
typedef int type;
};
template <typename reference>
struct converter
{
template <typename Seq>
static reference call(Seq seq)
{
typedef typename fusion::traits::tag_of<reference>::type tag;
return fusion::convert<tag>(seq);
}
};
template <typename Reference1, typename Reference2>
struct converter<std::pair<Reference1, Reference2> >
{
typedef std::pair<Reference1, Reference2> reference;
template <typename Seq>
static reference call(Seq seq)
{
return reference(
fusion::at_c<0>(seq)
, fusion::at_c<1>(seq));
}
};
}
/////////////////////////////////////////////////////////////////////
//
// zip_iterator class definition
//
template<typename IteratorTuple>
class zip_iterator :
public detail::zip_iterator_base<IteratorTuple>::type
{
// Typedef super_t as our base class.
typedef typename
detail::zip_iterator_base<IteratorTuple>::type super_t;
// iterator_core_access is the iterator's best friend.
friend class iterator_core_access;
public:
// Construction
// ============
// Default constructor
zip_iterator() { }
// Constructor from iterator tuple
zip_iterator(IteratorTuple iterator_tuple)
: m_iterator_tuple(iterator_tuple)
{ }
// Copy constructor
template<typename OtherIteratorTuple>
zip_iterator(
const zip_iterator<OtherIteratorTuple>& other,
typename enable_if_convertible<
OtherIteratorTuple,
IteratorTuple
>::type* = 0
) : m_iterator_tuple(other.get_iterator_tuple())
{}
// Get method for the iterator tuple.
const IteratorTuple& get_iterator_tuple() const
{ return m_iterator_tuple; }
private:
// Implementation of Iterator Operations
// =====================================
// Dereferencing returns a tuple built from the dereferenced
// iterators in the iterator tuple.
typename super_t::reference dereference() const
{
typedef typename super_t::reference reference;
typedef detail::converter<reference> gen;
return gen::call(fusion::transform(
get_iterator_tuple(),
detail::dereference_iterator()));
}
// Two zip iterators are equal if all iterators in the iterator
// tuple are equal. NOTE: It should be possible to implement this
// as
//
// return get_iterator_tuple() == other.get_iterator_tuple();
//
// but equality of tuples currently (7/2003) does not compile
// under several compilers. No point in bringing in a bunch
// of #ifdefs here.
//
template<typename OtherIteratorTuple>
bool equal(const zip_iterator<OtherIteratorTuple>& other) const
{
return fusion::equal_to(
get_iterator_tuple(),
other.get_iterator_tuple());
}
// Advancing a zip iterator means to advance all iterators in the
// iterator tuple.
void advance(typename super_t::difference_type n)
{
fusion::for_each(
m_iterator_tuple,
detail::advance_iterator<BOOST_DEDUCED_TYPENAME super_t::difference_type>(n));
}
// Incrementing a zip iterator means to increment all iterators in
// the iterator tuple.
void increment()
{
fusion::for_each(
m_iterator_tuple,
detail::increment_iterator());
}
// Decrementing a zip iterator means to decrement all iterators in
// the iterator tuple.
void decrement()
{
fusion::for_each(
m_iterator_tuple,
detail::decrement_iterator());
}
// Distance is calculated using the first iterator in the tuple.
template<typename OtherIteratorTuple>
typename super_t::difference_type distance_to(
const zip_iterator<OtherIteratorTuple>& other
) const
{
return fusion::at_c<0>(other.get_iterator_tuple()) -
fusion::at_c<0>(this->get_iterator_tuple());
}
// Data Members
// ============
// The iterator tuple.
IteratorTuple m_iterator_tuple;
};
// Make function for zip iterator
//
template<typename IteratorTuple>
inline zip_iterator<IteratorTuple>
make_zip_iterator(IteratorTuple t)
{ return zip_iterator<IteratorTuple>(t); }
} // namespace iterators
using iterators::zip_iterator;
using iterators::make_zip_iterator;
} // namespace boost
#endif

View File

@@ -0,0 +1,13 @@
// Copyright David Abrahams 2004. Distributed under the Boost
// Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See www.boost.org/libs/iterator for documentation.
#ifndef ITERATOR_ADAPTORS_DWA2004725_HPP
# define ITERATOR_ADAPTORS_DWA2004725_HPP
#define BOOST_ITERATOR_ADAPTORS_VERSION 0x0200
#include <boost/iterator/iterator_adaptor.hpp>
#endif // ITERATOR_ADAPTORS_DWA2004725_HPP

View File

@@ -0,0 +1,195 @@
// Boost next_prior.hpp header file ---------------------------------------//
// (C) Copyright Dave Abrahams and Daniel Walker 1999-2003.
// Copyright (c) Andrey Semashev 2017
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/libs/utility for documentation.
// Revision History
// 13 Dec 2003 Added next(x, n) and prior(x, n) (Daniel Walker)
#ifndef BOOST_NEXT_PRIOR_HPP_INCLUDED
#define BOOST_NEXT_PRIOR_HPP_INCLUDED
#include <iterator>
#include <boost/config.hpp>
#include <boost/core/enable_if.hpp>
#include <boost/type_traits/has_plus.hpp>
#include <boost/type_traits/has_plus_assign.hpp>
#include <boost/type_traits/has_minus.hpp>
#include <boost/type_traits/has_minus_assign.hpp>
#include <boost/iterator/advance.hpp>
#include <boost/iterator/reverse_iterator.hpp>
namespace boost {
// Helper functions for classes like bidirectional iterators not supporting
// operator+ and operator-
//
// Usage:
// const std::list<T>::iterator p = get_some_iterator();
// const std::list<T>::iterator prev = boost::prior(p);
// const std::list<T>::iterator next = boost::next(prev, 2);
// Contributed by Dave Abrahams
namespace next_prior_detail {
// The trait attempts to detect if the T type is an iterator. Class-type iterators are assumed
// to have the nested type iterator_category. Strictly speaking, this is not required to be the
// case (e.g. a user can specialize iterator_traits for T without defining T::iterator_category).
// Still, this is a good heuristic in practice, and we can't do anything better anyway.
// Since C++17 we can test for iterator_traits<T>::iterator_category presence instead as it is
// required to be only present for iterators.
template< typename T, typename Void = void >
struct is_iterator_class
{
static BOOST_CONSTEXPR_OR_CONST bool value = false;
};
template< typename T >
struct is_iterator_class<
T,
typename enable_if_has_type<
#if !defined(BOOST_NO_CXX17_ITERATOR_TRAITS)
typename std::iterator_traits< T >::iterator_category
#else
typename T::iterator_category
#endif
>::type
>
{
static BOOST_CONSTEXPR_OR_CONST bool value = true;
};
template< typename T >
struct is_iterator :
public is_iterator_class< T >
{
};
template< typename T >
struct is_iterator< T* >
{
static BOOST_CONSTEXPR_OR_CONST bool value = true;
};
template< typename T, typename Distance, bool HasPlus = has_plus< T, Distance >::value >
struct next_plus_impl;
template< typename T, typename Distance >
struct next_plus_impl< T, Distance, true >
{
static T call(T x, Distance n)
{
return x + n;
}
};
template< typename T, typename Distance, bool HasPlusAssign = has_plus_assign< T, Distance >::value >
struct next_plus_assign_impl :
public next_plus_impl< T, Distance >
{
};
template< typename T, typename Distance >
struct next_plus_assign_impl< T, Distance, true >
{
static T call(T x, Distance n)
{
x += n;
return x;
}
};
template< typename T, typename Distance, bool IsIterator = is_iterator< T >::value >
struct next_advance_impl :
public next_plus_assign_impl< T, Distance >
{
};
template< typename T, typename Distance >
struct next_advance_impl< T, Distance, true >
{
static T call(T x, Distance n)
{
boost::iterators::advance(x, n);
return x;
}
};
template< typename T, typename Distance, bool HasMinus = has_minus< T, Distance >::value >
struct prior_minus_impl;
template< typename T, typename Distance >
struct prior_minus_impl< T, Distance, true >
{
static T call(T x, Distance n)
{
return x - n;
}
};
template< typename T, typename Distance, bool HasMinusAssign = has_minus_assign< T, Distance >::value >
struct prior_minus_assign_impl :
public prior_minus_impl< T, Distance >
{
};
template< typename T, typename Distance >
struct prior_minus_assign_impl< T, Distance, true >
{
static T call(T x, Distance n)
{
x -= n;
return x;
}
};
template< typename T, typename Distance, bool IsIterator = is_iterator< T >::value >
struct prior_advance_impl :
public prior_minus_assign_impl< T, Distance >
{
};
template< typename T, typename Distance >
struct prior_advance_impl< T, Distance, true >
{
static T call(T x, Distance n)
{
// Avoid negating n to sidestep possible integer overflow
boost::iterators::reverse_iterator< T > rx(x);
boost::iterators::advance(rx, n);
return rx.base();
}
};
} // namespace next_prior_detail
template <class T>
inline T next(T x) { return ++x; }
template <class T, class Distance>
inline T next(T x, Distance n)
{
return next_prior_detail::next_advance_impl< T, Distance >::call(x, n);
}
template <class T>
inline T prior(T x) { return --x; }
template <class T, class Distance>
inline T prior(T x, Distance n)
{
return next_prior_detail::prior_advance_impl< T, Distance >::call(x, n);
}
} // namespace boost
#endif // BOOST_NEXT_PRIOR_HPP_INCLUDED

View File

@@ -0,0 +1,82 @@
// (C) Copyright Jeremy Siek 1999.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_INT_ITERATOR_H
#define BOOST_INT_ITERATOR_H
#if !defined BOOST_MSVC
#include <boost/operators.hpp>
#endif
#include <iostream>
#include <iterator>
#include <cstddef>
//using namespace std;
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
namespace boost {
namespace iterators {
#endif
// this should use random_access_iterator_helper but I've had
// VC++ portablility problems with that. -JGS
template <class IntT>
class int_iterator
{
typedef int_iterator self;
public:
typedef std::random_access_iterator_tag iterator_category;
typedef IntT value_type;
typedef IntT& reference;
typedef IntT* pointer;
typedef std::ptrdiff_t difference_type;
inline int_iterator() : _i(0) { }
inline int_iterator(IntT i) : _i(i) { }
inline int_iterator(const self& x) : _i(x._i) { }
inline self& operator=(const self& x) { _i = x._i; return *this; }
inline IntT operator*() { return _i; }
inline IntT operator[](IntT n) { return _i + n; }
inline self& operator++() { ++_i; return *this; }
inline self operator++(int) { self t = *this; ++_i; return t; }
inline self& operator+=(IntT n) { _i += n; return *this; }
inline self operator+(IntT n) { self t = *this; t += n; return t; }
inline self& operator--() { --_i; return *this; }
inline self operator--(int) { self t = *this; --_i; return t; }
inline self& operator-=(IntT n) { _i -= n; return *this; }
inline IntT operator-(const self& x) const { return _i - x._i; }
inline bool operator==(const self& x) const { return _i == x._i; }
// vc++ had a problem finding != in random_access_iterator_helper
// need to look into this... for now implementing everything here -JGS
inline bool operator!=(const self& x) const { return _i != x._i; }
inline bool operator<(const self& x) const { return _i < x._i; }
inline bool operator<=(const self& x) const { return _i <= x._i; }
inline bool operator>(const self& x) const { return _i > x._i; }
inline bool operator>=(const self& x) const { return _i >= x._i; }
protected:
IntT _i;
};
template <class IntT>
inline int_iterator<IntT>
operator+(IntT n, int_iterator<IntT> t) { t += n; return t; }
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
} /* namespace iterators */
using iterators::int_iterator;
} /* namespace boost */
#endif
#ifdef BOOST_NO_OPERATORS_IN_NAMESPACE
namespace boost {
using ::int_iterator;
namespace iterators {
using ::int_iterator;
}}
#endif
#endif /* BOOST_INT_ITERATOR_H */

View File

@@ -0,0 +1,6 @@
// Copyright David Abrahams 2003.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/iterator_adaptors.hpp>

View File

@@ -0,0 +1,288 @@
// Copyright David Abrahams and Jeremy Siek 2003.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_ITERATOR_TESTS_HPP
# define BOOST_ITERATOR_TESTS_HPP
// This is meant to be the beginnings of a comprehensive, generic
// test suite for STL concepts such as iterators and containers.
//
// Revision History:
// 28 Apr 2002 Fixed input iterator requirements.
// For a == b a++ == b++ is no longer required.
// See 24.1.1/3 for details.
// (Thomas Witt)
// 08 Feb 2001 Fixed bidirectional iterator test so that
// --i is no longer a precondition.
// (Jeremy Siek)
// 04 Feb 2001 Added lvalue test, corrected preconditions
// (David Abrahams)
# include <iterator>
# include <boost/static_assert.hpp>
# include <boost/concept_archetype.hpp> // for detail::dummy_constructor
# include <boost/implicit_cast.hpp>
# include <boost/core/ignore_unused.hpp>
# include <boost/core/lightweight_test.hpp>
# include <boost/type_traits/is_same.hpp>
# include <boost/type_traits/is_pointer.hpp>
# include <boost/type_traits/is_reference.hpp>
namespace boost {
// use this for the value type
struct dummyT {
dummyT() { }
dummyT(detail::dummy_constructor) { }
dummyT(int x) : m_x(x) { }
int foo() const { return m_x; }
bool operator==(const dummyT& d) const { return m_x == d.m_x; }
int m_x;
};
}
namespace boost {
namespace iterators {
// Tests whether type Iterator satisfies the requirements for a
// TrivialIterator.
// Preconditions: i != j, *i == val
template <class Iterator, class T>
void trivial_iterator_test(const Iterator i, const Iterator j, T val)
{
Iterator k;
BOOST_TEST(i == i);
BOOST_TEST(j == j);
BOOST_TEST(i != j);
#ifdef BOOST_NO_STD_ITERATOR_TRAITS
T v = *i;
#else
typename std::iterator_traits<Iterator>::value_type v = *i;
#endif
BOOST_TEST(v == val);
boost::ignore_unused(v);
#if 0
// hmm, this will give a warning for transform_iterator... perhaps
// this should be separated out into a stand-alone test since there
// are several situations where it can't be used, like for
// integer_range::iterator.
BOOST_TEST(v == i->foo());
#endif
k = i;
BOOST_TEST(k == k);
BOOST_TEST(k == i);
BOOST_TEST(k != j);
BOOST_TEST(*k == val);
boost::ignore_unused(k);
}
// Preconditions: i != j
template <class Iterator, class T>
void mutable_trivial_iterator_test(const Iterator i, const Iterator j, T val)
{
*i = val;
trivial_iterator_test(i, j, val);
}
// Preconditions: *i == v1, *++i == v2
template <class Iterator, class T>
void input_iterator_test(Iterator i, T v1, T v2)
{
Iterator i1(i);
BOOST_TEST(i == i1);
BOOST_TEST(!(i != i1));
// I can see no generic way to create an input iterator
// that is in the domain of== of i and != i.
// The following works for istream_iterator but is not
// guaranteed to work for arbitrary input iterators.
//
// Iterator i2;
//
// BOOST_TEST(i != i2);
// BOOST_TEST(!(i == i2));
BOOST_TEST(*i1 == v1);
BOOST_TEST(*i == v1);
// we cannot test for equivalence of (void)++i & (void)i++
// as i is only guaranteed to be single pass.
BOOST_TEST(*i++ == v1);
boost::ignore_unused(i1);
i1 = i;
BOOST_TEST(i == i1);
BOOST_TEST(!(i != i1));
BOOST_TEST(*i1 == v2);
BOOST_TEST(*i == v2);
boost::ignore_unused(i1);
// i is dereferencable, so it must be incrementable.
++i;
// how to test for operator-> ?
}
// how to test output iterator?
template <bool is_pointer> struct lvalue_test
{
template <class Iterator> static void check(Iterator)
{
# ifndef BOOST_NO_STD_ITERATOR_TRAITS
typedef typename std::iterator_traits<Iterator>::reference reference;
typedef typename std::iterator_traits<Iterator>::value_type value_type;
# else
typedef typename Iterator::reference reference;
typedef typename Iterator::value_type value_type;
# endif
BOOST_STATIC_ASSERT(boost::is_reference<reference>::value);
BOOST_STATIC_ASSERT((boost::is_same<reference,value_type&>::value
|| boost::is_same<reference,const value_type&>::value
));
}
};
# ifdef BOOST_NO_STD_ITERATOR_TRAITS
template <> struct lvalue_test<true> {
template <class T> static void check(T) {}
};
#endif
template <class Iterator, class T>
void forward_iterator_test(Iterator i, T v1, T v2)
{
input_iterator_test(i, v1, v2);
Iterator i1 = i, i2 = i;
BOOST_TEST(i == i1++);
BOOST_TEST(i != ++i2);
trivial_iterator_test(i, i1, v1);
trivial_iterator_test(i, i2, v1);
++i;
BOOST_TEST(i == i1);
BOOST_TEST(i == i2);
++i1;
++i2;
trivial_iterator_test(i, i1, v2);
trivial_iterator_test(i, i2, v2);
// borland doesn't allow non-type template parameters
# if !defined(BOOST_BORLANDC) || (BOOST_BORLANDC > 0x551)
lvalue_test<(boost::is_pointer<Iterator>::value)>::check(i);
#endif
}
// Preconditions: *i == v1, *++i == v2
template <class Iterator, class T>
void bidirectional_iterator_test(Iterator i, T v1, T v2)
{
forward_iterator_test(i, v1, v2);
++i;
Iterator i1 = i, i2 = i;
BOOST_TEST(i == i1--);
BOOST_TEST(i != --i2);
trivial_iterator_test(i, i1, v2);
trivial_iterator_test(i, i2, v2);
--i;
BOOST_TEST(i == i1);
BOOST_TEST(i == i2);
++i1;
++i2;
trivial_iterator_test(i, i1, v1);
trivial_iterator_test(i, i2, v1);
}
// mutable_bidirectional_iterator_test
template <class U> struct undefined;
// Preconditions: [i,i+N) is a valid range
template <class Iterator, class TrueVals>
void random_access_iterator_test(Iterator i, int N, TrueVals vals)
{
bidirectional_iterator_test(i, vals[0], vals[1]);
const Iterator j = i;
int c;
typedef typename std::iterator_traits<Iterator>::value_type value_type;
boost::ignore_unused<value_type>();
for (c = 0; c < N-1; ++c) {
BOOST_TEST(i == j + c);
BOOST_TEST(*i == vals[c]);
BOOST_TEST(*i == boost::implicit_cast<value_type>(j[c]));
BOOST_TEST(*i == *(j + c));
BOOST_TEST(*i == *(c + j));
++i;
BOOST_TEST(i > j);
BOOST_TEST(i >= j);
BOOST_TEST(j <= i);
BOOST_TEST(j < i);
}
Iterator k = j + N - 1;
for (c = 0; c < N-1; ++c) {
BOOST_TEST(i == k - c);
BOOST_TEST(*i == vals[N - 1 - c]);
BOOST_TEST(*i == boost::implicit_cast<value_type>(j[N - 1 - c]));
Iterator q = k - c;
boost::ignore_unused(q);
BOOST_TEST(*i == *q);
BOOST_TEST(i > j);
BOOST_TEST(i >= j);
BOOST_TEST(j <= i);
BOOST_TEST(j < i);
--i;
}
}
// Precondition: i != j
template <class Iterator, class ConstIterator>
void const_nonconst_iterator_test(Iterator i, ConstIterator j)
{
BOOST_TEST(i != j);
BOOST_TEST(j != i);
ConstIterator k(i);
BOOST_TEST(k == i);
BOOST_TEST(i == k);
k = i;
BOOST_TEST(k == i);
BOOST_TEST(i == k);
boost::ignore_unused(k);
}
} // namespace iterators
using iterators::undefined;
using iterators::trivial_iterator_test;
using iterators::mutable_trivial_iterator_test;
using iterators::input_iterator_test;
using iterators::lvalue_test;
using iterators::forward_iterator_test;
using iterators::bidirectional_iterator_test;
using iterators::random_access_iterator_test;
using iterators::const_nonconst_iterator_test;
} // namespace boost
#endif // BOOST_ITERATOR_TESTS_HPP

View File

@@ -0,0 +1,76 @@
#ifndef POINTEE_DWA200415_HPP
# define POINTEE_DWA200415_HPP
//
// Copyright David Abrahams 2004. Use, modification and distribution is
// subject to the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// typename pointee<P>::type provides the pointee type of P.
//
// For example, it is T for T* and X for shared_ptr<X>.
//
// http://www.boost.org/libs/iterator/doc/pointee.html
//
# include <boost/detail/is_incrementable.hpp>
# include <boost/iterator/iterator_traits.hpp>
# include <boost/type_traits/add_const.hpp>
# include <boost/type_traits/remove_cv.hpp>
# include <boost/mpl/if.hpp>
# include <boost/mpl/eval_if.hpp>
#include <iterator>
namespace boost {
namespace detail
{
template <class P>
struct smart_ptr_pointee
{
typedef typename P::element_type type;
};
template <class Iterator>
struct iterator_pointee
{
typedef typename std::iterator_traits<Iterator>::value_type value_type;
struct impl
{
template <class T>
static char test(T const&);
static char (& test(value_type&) )[2];
static Iterator& x;
};
BOOST_STATIC_CONSTANT(bool, is_constant = sizeof(impl::test(*impl::x)) == 1);
typedef typename mpl::if_c<
# if BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x551))
::boost::detail::iterator_pointee<Iterator>::is_constant
# else
is_constant
# endif
, typename add_const<value_type>::type
, value_type
>::type type;
};
}
template <class P>
struct pointee
: mpl::eval_if<
detail::is_incrementable<P>
, detail::iterator_pointee<P>
, detail::smart_ptr_pointee<P>
>
{
};
} // namespace boost
#endif // POINTEE_DWA200415_HPP

View File

@@ -0,0 +1,69 @@
// (C) Copyright Ronald Garcia 2002. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org/libs/utility/shared_container_iterator.html for documentation.
#ifndef BOOST_SHARED_CONTAINER_ITERATOR_HPP
#define BOOST_SHARED_CONTAINER_ITERATOR_HPP
#include "boost/iterator_adaptors.hpp"
#include "boost/shared_ptr.hpp"
#include <utility>
namespace boost {
namespace iterators {
template <typename Container>
class shared_container_iterator : public iterator_adaptor<
shared_container_iterator<Container>,
typename Container::iterator> {
typedef iterator_adaptor<
shared_container_iterator<Container>,
typename Container::iterator> super_t;
typedef typename Container::iterator iterator_t;
typedef boost::shared_ptr<Container> container_ref_t;
container_ref_t container_ref;
public:
shared_container_iterator() { }
shared_container_iterator(iterator_t const& x,container_ref_t const& c) :
super_t(x), container_ref(c) { }
};
template <typename Container>
inline shared_container_iterator<Container>
make_shared_container_iterator(typename Container::iterator iter,
boost::shared_ptr<Container> const& container) {
typedef shared_container_iterator<Container> iterator;
return iterator(iter,container);
}
template <typename Container>
inline std::pair<
shared_container_iterator<Container>,
shared_container_iterator<Container> >
make_shared_container_range(boost::shared_ptr<Container> const& container) {
return
std::make_pair(
make_shared_container_iterator(container->begin(),container),
make_shared_container_iterator(container->end(),container));
}
} // namespace iterators
using iterators::shared_container_iterator;
using iterators::make_shared_container_iterator;
using iterators::make_shared_container_range;
} // namespace boost
#endif

View File

@@ -0,0 +1,23 @@
Boost Software License - Version 1.0 - August 17th, 2003
Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:
The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

View File

@@ -0,0 +1,4 @@
The package boost is compatible with built-in CMake targets:
find_package(Boost REQUIRED [COMPONENTS <libs>...])
target_link_libraries(main PRIVATE Boost::boost Boost::<lib1> Boost::<lib2> ...)

View File

@@ -0,0 +1,115 @@
{
"$schema": "https://raw.githubusercontent.com/spdx/spdx-spec/v2.2.1/schemas/spdx-schema.json",
"spdxVersion": "SPDX-2.2",
"dataLicense": "CC0-1.0",
"SPDXID": "SPDXRef-DOCUMENT",
"documentNamespace": "https://spdx.org/spdxdocs/boost-iterator-x64-windows-1.79.0-cdb0d69f-3a98-42b4-87e8-3211d495de98",
"name": "boost-iterator:x64-windows@1.79.0 198407720ab08cc171b7d0c2a7640ae035c7aee5a21a0e1d3c185c4b8c495f30",
"creationInfo": {
"creators": [
"Tool: vcpkg-9268e366206712e38102b28dbd1617697a99ff2e"
],
"created": "2022-07-23T08:23:05Z"
},
"relationships": [
{
"spdxElementId": "SPDXRef-port",
"relationshipType": "GENERATES",
"relatedSpdxElement": "SPDXRef-binary"
},
{
"spdxElementId": "SPDXRef-port",
"relationshipType": "CONTAINS",
"relatedSpdxElement": "SPDXRef-file-0"
},
{
"spdxElementId": "SPDXRef-port",
"relationshipType": "CONTAINS",
"relatedSpdxElement": "SPDXRef-file-1"
},
{
"spdxElementId": "SPDXRef-binary",
"relationshipType": "GENERATED_FROM",
"relatedSpdxElement": "SPDXRef-port"
},
{
"spdxElementId": "SPDXRef-file-0",
"relationshipType": "CONTAINED_BY",
"relatedSpdxElement": "SPDXRef-port"
},
{
"spdxElementId": "SPDXRef-file-1",
"relationshipType": "CONTAINED_BY",
"relatedSpdxElement": "SPDXRef-port"
},
{
"spdxElementId": "SPDXRef-file-1",
"relationshipType": "DEPENDENCY_MANIFEST_OF",
"relatedSpdxElement": "SPDXRef-port"
}
],
"packages": [
{
"name": "boost-iterator",
"SPDXID": "SPDXRef-port",
"versionInfo": "1.79.0",
"downloadLocation": "NOASSERTION",
"homepage": "https://github.com/boostorg/iterator",
"licenseConcluded": "BSL-1.0",
"licenseDeclared": "NOASSERTION",
"copyrightText": "NOASSERTION",
"description": "Boost iterator module",
"comment": "This is the port (recipe) consumed by vcpkg."
},
{
"name": "boost-iterator:x64-windows",
"SPDXID": "SPDXRef-binary",
"versionInfo": "198407720ab08cc171b7d0c2a7640ae035c7aee5a21a0e1d3c185c4b8c495f30",
"downloadLocation": "NONE",
"licenseConcluded": "BSL-1.0",
"licenseDeclared": "NOASSERTION",
"copyrightText": "NOASSERTION",
"comment": "This is a binary package built by vcpkg."
},
{
"SPDXID": "SPDXRef-resource-1",
"name": "boostorg/iterator",
"downloadLocation": "git+https://github.com/boostorg/iterator@boost-1.79.0",
"licenseConcluded": "NOASSERTION",
"licenseDeclared": "NOASSERTION",
"copyrightText": "NOASSERTION",
"checksums": [
{
"algorithm": "SHA512",
"checksumValue": "26b0308126df522725887fcb9578d7e645f181cd8a6850915a5ce0c832a5f2e5521ba75a17f29a5eba788e3d8bd46d61ebb4b61fa40f233c33e99f83949516f6"
}
]
}
],
"files": [
{
"fileName": "./portfile.cmake",
"SPDXID": "SPDXRef-file-0",
"checksums": [
{
"algorithm": "SHA256",
"checksumValue": "773d1ef9d26b70bc949f8eabe707486c81b1382493c889637da1c9c0ab07332f"
}
],
"licenseConcluded": "NOASSERTION",
"copyrightText": "NOASSERTION"
},
{
"fileName": "./vcpkg.json",
"SPDXID": "SPDXRef-file-1",
"checksums": [
{
"algorithm": "SHA256",
"checksumValue": "64b5923d9c06ec18e94e63a1c613d81b6f120a3f7a7484adada60a3747562bf4"
}
],
"licenseConcluded": "NOASSERTION",
"copyrightText": "NOASSERTION"
}
]
}

View File

@@ -0,0 +1,26 @@
boost-assert a50eed453b8be6c8932fb3d5f8feaf194a2ebeaed7982db4e36e3ba17f3ec107
boost-concept-check 75beb01f38e36d13c1410f893e49f1fbc5d6b15d7323f1f3e21ad44ab467ba1b
boost-config 797535e8975ed7cf5bbe11d9f7fe26caa5da8fe819888564758d82a21109fade
boost-conversion be5f99a73be1cda28552c3d6efdaf39ed065f34c78fcd7d45a71d30610fcfc26
boost-core 498aea0b6b68bcfe1ec683e76c2f0d32477dfe9ba958f518980ff806b6faba90
boost-detail f4d5f2563d2fd11703a20ab829d98c80441af223edd45ef9767a638ead123b15
boost-function-types 62bb37e6456348c32f9971b254f2647c013769fb4e5263fe293f32fb4a75c597
boost-fusion 2fab41d6868a3f968d72ebf7b6ecde277aea54b450ee6bc73753eb6ce04eddb9
boost-mpl 89695bf75ab1fa2b706b2a0c2ef28c6726c3abd61ff51fb0966e3270153a6cd9
boost-optional f788fa553a62db44c8dbf2137e97e0f1a39b4482fdc2770c3f9fe67785726eed
boost-smart-ptr 38f44cf21554a20b78483abc4409c3edd633b78cc519fcf48803a1fe6b53316f
boost-static-assert 795e87a155fce50821163bc84e802f28dce54e4af6a3a86045f9ecec76ad4c95
boost-type-traits 74f62124585467fbb6c4fa16015164d11e1a079d6bdb70ec1c3fe7cf65b9a594
boost-utility cbe2d95223a1f8fb253145878922052018dccca3926ffb59d0e20676d6b0d3ac
boost-vcpkg-helpers c81c7b003df356a1a120a7c0c2f5a2ac95f3c33b006a2a5b4c02dcf0c9f3deaa
cmake 3.23.2
features core
portfile.cmake 773d1ef9d26b70bc949f8eabe707486c81b1382493c889637da1c9c0ab07332f
ports.cmake 366c60b768113102408b32ac1d7c7b48ef7d30a477af2a220ecc222d9ffa3166
post_build_checks 2
powershell 7.2.5
triplet x64-windows
triplet_abi 4556164a2cd3dd6f4742101eabb46def7e71b6e5856faa88e5d005aac12a803c-c0600b35e024ce0485ed253ef5419f3686f7257cfb58cb6a24febcb600fc4b4c-27ebd443f77a6c449168adfa6ce8def60cf46e88
vcpkg.json 64b5923d9c06ec18e94e63a1c613d81b6f120a3f7a7484adada60a3747562bf4
vcpkg_from_git 0aab20e34e84d52ba4763f009e539bfa8f418c41c918c8cf700156f1a8551a10
vcpkg_from_github b743742296a114ea1b18ae99672e02f142c4eb2bef7f57d36c038bedbfb0502f