This commit it automatically generated by command in zsh:
sed -i -- 's/BitField<\(.*\)_le>/BitField<\1>/g' **/*(D.)
BitField is now aware to endianness and default to little endian. It expects a value representation type without storage specification for its template parameter.
This is compromise for swap type being used in union. A union has deleted default constructor if it has at least one variant member with non-trivial default constructor, and no variant member of T has a default member initializer. In the use case of Bitfield, all variant members will be the swap type on endianness mismatch, which would all have non-trivial default constructor if default value is specified, and non of them can have member initializer
Converts many of the Find* functions to return a std::optional<T> as
opposed to returning the raw return values directly. This allows
removing a few assertions and handles error cases like the service
itself does.
Some games search conditionally use global memory instructions. This
allows the heuristic to search inside conditional nodes for the source
constant buffer.
Some games call LDG at the top of a basic block, making the tracking
heuristic to fail. This commit lets the heuristic the decoded nodes as a
whole instead of per basic blocks.
This may lead to some false positives but allows it the heuristic to
track cases it previously couldn't.
A holdover from citra, the Horizon kernel on the switch has no
prominent kernel object that functions as a timer. At least not
to the degree of sophistication that this class provided.
As such, this can be removed entirely. This class also wasn't used at
all in any meaningful way within the core, so this was just code sitting
around doing nothing. This also allows removing a few things from the
main KernelCore class that allows it to use slightly less resources
overall (though very minor and not anything really noticeable).
No inheritors of the WaitObject class actually make use of their own
implementations of these functions, so they can be made non-virtual.
It's also kind of sketchy to allow overriding how the threads get added
to the list anyways, given the kernel itself on the actual hardware
doesn't seem to customize based off this.
This was previously causing:
warning C4828: The file contains a character starting at offset 0xa33
that is illegal in the current source character set (codepage 65001).
warnings on Windows when compiling yuzu.
This functions almost identically to DecodeInterleavedWithPerfOld,
however this function also has the ability to reset the decoder context.
This is documented as a potentially desirable thing in the libopus
manual in some circumstances as it says for the OPUS_RESET_STATE ctl:
"This should be called when switching streams in order to prevent the
back to back decoding from giving different result from one at a time
decoding."
Constant buffer values on the shader IR were using different offsets if
the access direct or indirect. cbuf34 has a non-multiplied offset while
cbuf36 does. On shader decoding this commit multiplies it by four on
cbuf34 queries.
* Implemented the puller semaphore operations.
* Nit: Fix 2 style issues
* Nit: Add Break to default case.
* Fix style.
* Update for comments. Added ReferenceCount method
* Forgot to remove GpuSmaphoreAddress union.
* Fix the clang-format issues.
* More clang formatting.
* two more white spaces for the Clang formatting.
* Move puller members into the regs union
* Updated to use Memory::WriteBlock instead of Memory::Write*
* Fix clang style issues
* White space clang error
* Removing unused funcitons and other pr comment
* Removing unused funcitons and other pr comment
* More union magic for setting regs value.
* union magic refcnt as well
* Remove local var
* Set up the regs and regs_assert_positions up properly
* Fix clang error
Cubemaps are considered layered and to create a texture view the texture
mustn't be a layered texture, resulting in cubemaps being bound as
cubemap arrays. To fix this issue this commit introduces an extra
surface parameter called "is_array" and uses this to query for texture
view creation.
Now that texture views for cubemaps are actually being created, this
also fixes the number of layers created for the texture view (since they
have to be 6 to create a texture view of cubemaps).
Some games (like Xenoblade Chronicles 2) clear both depth and stencil
buffers while there's a depth-only texture attached (e.g. D16 Unorm).
This commit reads the zeta format of the bound surface on
ConfigureFramebuffers and returns if depth and/or stencil attachments
were set. This is ignored on DrawArrays but on Clear it's used to just
clear those attachments, bypassing an OpenGL error.
In addition to the default, external, EDID, and internal displays,
there's also a null display provided as well, which as the name
suggests, does nothing but discard all commands given to it. This is
provided for completeness.
Opening a display isn't really a thing to warn about. It's an expected
thing, so this can be a debug log. This also alters the string to
indicate the display name better.
Opening "Default" display reads a little nicer compared to Opening
display Default.
This quite literally functions as a basic setter. No other error
checking or anything (since there's nothing to really check against).
With this, it completes the pm:bm interface in terms of functionality.
This appears to be a vestigial API function that's only kept around for
compatibility's sake, given the function only returns a success error
code and exits.
Since that's the case, we can remove the stubbed notification from the
log, since doing nothing is technically the correct behavior in this
case.
std::moveing a local variable in a return statement has the potential to
prevent copy elision from occurring, so this can just be converted into
a regular return.
Looking into the implementation of the C++ standard facilities that seem
to be within all modules, it appears that they use 7 as a break reason
to indicate an uncaught C++ exception.
This was primarily found via the third last function called within
Horizon's equivalent of libcxxabi's demangling_terminate_handler(),
which passes the value 0x80000007 to svcBreak.
According to documentation, if the argument of std::exp is zero, one is returned.
However we want the return value to be also zero in this case so no audio is played.
Commercial games assume that this value is 1 but they never set it. On
the other hand nouveau manually sets this register. On
ConfigureFramebuffers we were asserting for what we are actually
implementing (according to envytools).
With shader caches on the horizon, one requirement is to provide visible
feedback for the progress. The shader cache reportedly takes several
minutes to load for large caches that were invalidated, and as such we
should provide a loading screen with progress.
Adds a loading screen widget that will be shown until the first frame of
the game is swapped. This was chosen in case shader caches are not being
used, several games still take more than a few seconds to launch and
could benefit from a loading screen.
This is a function that definitely doesn't always have a non-modifying
behavior across all implementations, so this should be made non-const.
This gets rid of the need to mark data members as mutable to work around
the fact mutating data members needs to occur.
There is a bug on Intel's blob driver where it fails to properly build a
vertex array object if it's not bound even after creating it with
glCreateVertexArrays. This workaround binds it after creating it to
bypass the issue.
Since the data is doing the path CPU -> GPU -> GPU copy is the most
approximate hint. Using GL_STREAM_DRAW generated a performance warning
on Nvidia's stack. Changing this hint removed the warning.
These values are not equivalent, based off RE. The internal value is put
into a lookup table with the following values:
[3, 0, 1, 2, 4]
So the values absolutely do not map 1:1 like the comment was indicating.
Avoids entangling the IPC buffer appending with the actual operation of
converting the scaling values over. This also inserts the proper error
handling for invalid scaling values.
This appears to only check if the scaling mode can actually be
handled, rather than actually setting the scaling mode for the layer.
This implements the same error handling performed on the passed in
values.
Within the actual service, it makes no distinguishing between docked and
undocked modes. This will always return the constants values reporting
1280x720 as the dimensions.
This IPC command is simply a stub inside the actual service itself, and
just returns a successful error code regardless of input. This is likely
only retained in the service interface to not break older code that relied
upon it succeeding in some way.
In many cases, we didn't bother to log out any of the popped data
members. This logs them out to the console within the logging call to
provide more contextual information.
Internally within the vi services, this is essentially all that
OpenDefaultDisplay does, so it's trivial to just do the same, and
forward the default display string into the function.
It appears that the two members indicate whether a display has a bounded
number of layers (and if set, the second member indicates the total
number of layers).
This is a bounds check to ensure that the thread priority is within the
valid range of 0-64. If it exceeds 64, that doesn't necessarily mean
that an actual priority of 64 was expected (it actually means whoever
called the function screwed up their math).
Instead clarify the message to indicate the allowed range of thread
priorities.
Now that we handle the kernel capability descriptors we can correct
CreateThread to properly check against the core and priority masks
like the actual kernel does.
When a shader samples a texture array but that texture in OpenGL is
created without layers, use a texture view to increase the texture
hierarchy. For example, instead of binding a GL_TEXTURE_2D bind a
GL_TEXTURE_2D_ARRAY view.
These two macros being used in tandem were used prior to the
introduction of UNIMPLEMENTED and UNIMPLEMENTED_MSG. This provides
equivalent behavior, just with less typing/reading involved.
This makes the naming more closely match its meaning. It's just a
preferred core, not a required default core. This also makes the usages
of this term consistent across the thread and process implementations.
This function isn't a general purpose function that should be exposed to
everything, given it's specific to initializing the main thread for a
Process instance.
Given that, it's a tad bit more sensible to place this within
process.cpp, which keeps it visible only to the code that actually needs
it.
Provides extra information that makes it easier to tell if an executable
being run is using a 36-bit address space or a 39-bit address space.
While we don't support AArch32 executables yet, this also puts in
distinguishing information for the 32-bit address space types as well.
In all cases that these functions are needed, the VMManager can just be
retrieved and used instead of providing the same functions in Process'
interface.
This also makes it a little nicer dependency-wise, since it gets rid of
cases where the VMManager interface was being used, and then switched
over to using the interface for a Process instance. Instead, it makes
all accesses uniform and uses the VMManager instance for all necessary
tasks.
All the basic memory mapping functions did was forward to the Process'
VMManager instance anyways.
This stores a file in the save directory called '.yuzu_save_size' which stores the two save sizes (normal area and journaled area) sequentially as u64s.
Calling tr() from a file-scope array isn't advisable, since it can be
executed before the Qt libraries are even fully initialized, which can
lead to crashes.
Instead, the translatable strings should be annotated, and the tr()
function should be called at the string's usage site.
This allows us to present a much nicer UI to the user over a simple combo box and is made easy with the modular nature of the profile-selection applet frontend.
Using the QtProfileSelectorDialog, this implementation is trivial. This mimics the real switch behavior of asking which user on every game boot, but it is default disabled as that might get inconvenient.
Similar to the service capability flags, however, we currently don't
emulate the GIC, so this currently handles all interrupts as being valid
for the time being.
Handles the priority mask and core mask flags to allow building up the
masks to determine the usable thread priorities and cores for a kernel
process instance.
We've had the old kernel capability parser from Citra, however, this is
unused code and doesn't actually map to how the kernel on the Switch
does it. This introduces the basic functional skeleton for parsing
process capabilities.
If a thread handle is passed to svcGetProcessId, the kernel attempts to
access the process ID via the thread's instance's owning process.
Technically, this function should also be handling the kernel debug
objects as well, however we currently don't handle those kernel objects
yet, so I've left a note via a comment about it to remind myself when
implementing it in the future.
Starts the process ID counter off at 81, which is what the kernel itself
checks against internally when creating processes. It's actually
supposed to panic if the PID is less than 81 for a userland process.
Now it also indicates the name and max session count. This also gives a
name to the unknown bool. This indicates if the created port is supposed
to be using light handles or regular handles internally. This is passed
to the respective svcCreatePort parameter internally.
Allows capturing screenshot at the current internal resolution (native for software renderer), but a setting is available to capture it in other resolutions. The screenshot is saved to a single PNG in the current layout.
Adds the barebones enumeration constants and functions in place to
handle memory attributes, while also essentially leaving the attribute
itself non-functional.
We can hide the direct array from external view and instead provide
functions to retrieve the necessary info. This has the benefit of
completely hiding the makeup of the SinkDetails structure from the rest
of the code.
Given that this makes the array hidden, we can also make the array
constexpr by altering the members slightly. This gets rid of several
static constructor calls related to std::vector and std::function.
Now we don't have heap allocations here that need to occur before the
program can even enter main(). It also has the benefit of saving a
little bit of heap space, but this doesn't matter too much, since the
savings in that regard are pretty tiny.
Services created with the ServiceFramework base class install themselves as HleHandlers with an owning shared_ptr in the ServerPort ServiceFrameworkBase::port member variable, creating a cyclic ownership between ServiceFrameworkBase and the ServerPort, preventing deletion of the service objects.
Fix that by removing the ServiceFrameworkBase::port member because that was only used to detect multiple attempts at installing a port. Instead store a flag if the port was already installed to achieve the same functionality.
In the previous change, the memory writing was moved into the service
function itself, however it still had a problem, in that the entire
MemoryInfo structure wasn't being written out, only the first 32 bytes
of it were being written out. We still need to write out the trailing
two reference count members and zero out the padding bits.
Not doing this can result in wrong behavior in userland code in the following
scenario:
MemoryInfo info; // Put on the stack, not quaranteed to be zeroed out.
svcQueryMemory(&info, ...);
if (info.device_refcount == ...) // Whoops, uninitialized read.
This can also cause the wrong thing to happen if the user code uses
std::memcmp to compare the struct, with another one (questionable, but
allowed), as the padding bits are not guaranteed to be a deterministic
value. Note that the kernel itself also fully zeroes out the structure
before writing it out including the padding bits.
Moves the memory writes directly into QueryProcessMemory instead of
letting the wrapper function do it. It would be inaccurate to allow the
handler to do it because there's cases where memory shouldn't even be
written to. For example, if the given process handle is invalid.
HOWEVER, if the memory writing is within the wrapper, then we have no
control over if these memory writes occur, meaning in an error case, 68
bytes of memory randomly get trashed with zeroes, 64 of those being
written to wherever the memory info address points to, and the remaining
4 being written wherever the page info address points to.
One solution in this case would be to just conditionally check within
the handler itself, but this is kind of smelly, given the handler
shouldn't be performing conditional behavior itself, it's a behavior of
the managed function. In other words, if you remove the handler from the
equation entirely, does the function still retain its proper behavior?
In this case, no.
Now, we don't potentially trash memory from this function if an invalid
query is performed.
This would result in svcSetMemoryAttribute getting the wrong value for
its third parameter. This is currently fine, given the service function
is stubbed, however this will be unstubbed in a future change, so this
needs to change.
The kernel returns a memory info instance with the base address set to
the end of the address space, and the size of said block as
0 - address_space_end, it doesn't set both of said members to zero.
Gets the two structures out of an unrelated header and places them with
the rest of the memory management code.
This also corrects the structures. PageInfo appears to only contain a
32-bit flags member, and the extra padding word in MemoryInfo isn't
necessary.
Amends the MemoryState enum to use the same values like the actual
kernel does. Also provides the necessary operators to operate on them.
This will be necessary in the future for implementing
svcSetMemoryAttribute, as memory block state is checked before applying
the attribute.
The Process object kept itself alive indefinitely because its handle_table
contains a SharedMemory object which owns a reference to the same Process object,
creating a circular ownership scenario.
Break that up by storing only a non-owning pointer in the SharedMemory object.
fmt::format() returns a std::string instance by value, so calling
.c_str() on it here is equivalent to doing:
auto* ptr = std::string{}.c_str();
The data being pointed to isn't guaranteed to actually be valid anymore
after that expression ends. Instead, we can just take the string as is,
and provide the necessary formatting parameters.
Based off RE, the backing code only ever seems to use 0-2 as the range
of values 1 being a generic log enable, with 2 indicating logging should
go to the SD card. These are used as a set of flags internally.
Given we only care about receiving the log in general, we can just
always signify that we want logging in general.
This was causing some games (most notably Pokemon Quest) to softlock due to an event being fired when not supposed to. This also removes a hack wherein we were firing the state changed event when the game retrieves it, which is incorrect.
Amends it with missing values deduced from RE (ProperSystem being from
SwitchBrew for naming)
(SdCardUser wasn't that difficult to discern given it's used alongside
SdCardSystem when creating the save data indexer, based off the usage of
the string "saveDataIxrDbSd" nearby).
Original reason:
As Windows multi-byte character codec is unspecified while we always assume std::string uses UTF-8 in our code base, this can output gibberish when the string contains non-ASCII characters. ::OutputDebugStringW combined with Common::UTF8ToUTF16W is preferred here.
This was only ever public so that code could check whether or not a
handle was valid or not. Instead of exposing the object directly and
allowing external code to potentially mess with the map contents, we
just provide a member function that allows checking whether or not a
handle is valid.
This makes all member variables of the VMManager class private except
for the page table.
These auto-deduce the result based off its arguments, so there's no need
to do that work for the compiler, plus, the function return value itself
already indicates what we're returning.
Similarly, here we can avoid doing unnecessary work twice by retrieving
the file type only once and comparing it against relevant operands,
avoiding potential unnecessary object construction/destruction.
While GetFileType() is indeed a getter function, that doesn't mean it's
a trivial function, given some case require reading from the data or
constructing other objects in the background. Instead, only do necessary
work once.
No implementations actually modify instance state (and it would be
questionable to do that in the first place given the name), so we can
make this a const member function.
Greatly simplifies the current input UI, while still allowing power users to tweak advanced settings. Adds 'input profiles', which are easy autoconfigurations to make getting started easy and fast. Also has a custom option which brings up the current, full UI.
This allows the array to be constexpr. std::function is also allowed to
allocate memory, which makes its constructor non-trivial, we definitely
don't want to have all of these execute at runtime, taking up time
before the application can actually load.
While partially correct, this service call allows the retrieved event to
be null, as it also uses the same handle to check if it was referring to
a Process instance. The previous two changes put the necessary machinery
in place to allow for this, so we can simply call those member functions
here and be done with it.
Process instances can be waited upon for state changes. This is also
utilized by svcResetSignal, which will be modified in an upcoming
change. This simply puts all of the WaitObject related machinery in
place.
svcResetSignal relies on the event instance to have already been
signaled before attempting to reset it. If this isn't the case, then an
error code has to be returned.
In some constexpr functions, msvc is building the LUT at runtime
(pushing each element onto the stack) out of an abundance of caution. Moving the
arrays into be file-scoped constexpr's avoids this and turns the functions into
simple look-ups as intended.
This function simply does a handle table lookup for a writable event
instance identified by the given handle value. If a writable event
cannot be found for the given handle, then an invalid handle error is
returned. If a writable event is found, then it simply signals the
event, as one would expect.
svcCreateEvent operates by creating both a readable and writable event
and then attempts to add both to the current process' handle table.
If adding either of the events to the handle table fails, then the
relevant error from the handle table is returned.
If adding the readable event after the writable event to the table
fails, then the writable event is removed from the handle table and the
relevant error from the handle table is returned.
Note that since we do not currently test resource limits, we don't check
the resource limit table yet.
Two kernel object should absolutely never have the same handle ID type.
This can cause incorrect behavior when it comes to retrieving object
types from the handle table. In this case it allows converting a
WritableEvent into a ReadableEvent and vice-versa, which is undefined
behavior, since the object types are not the same.
This also corrects ClearEvent() to check both kernel types like the
kernel itself does.
Previously, ILibraryAppletAccessor would signal upon creation of any applet, but this is incorrect. A flag inside of the applet code determines whether or not creation should signal state change and swkbd happens to be one of these applets.
Load() is already given the process instance as a parameter, so instead
of coupling the class to the System class, we can just forward that
parameter to LoadNro()
These slots are only ever attached to event handling mechanisms within
the class itself, they're never used externally. Because of this, we can
make the functions private.
This also removes redundant usages of the private access specifier.
The previous code could potentially be a compilation issue waiting to
occur, given we forward declare the type for a std::unique_ptr. If the
complete definition of the forward declared type isn't visible in a
translation unit that the class is used in, then it would fail to
compile.
Defaulting the destructor in a cpp file ensures the std::unique_ptr's
destructor is only invoked where its complete type is known.
The kernel uses the handle table of the current process to retrieve the
process that should be used to retrieve certain information. To someone
not familiar with the kernel, this might raise the question of "Ok,
sounds nice, but doesn't this make it impossible to retrieve information
about the current process?".
No, it doesn't, because HandleTable instances in the kernel have the
notion of a "pseudo-handle", where certain values allow the kernel to
lookup objects outside of a given handle table. Currently, there's only
a pseudo-handle for the current process (0xFFFF8001) and a pseudo-handle
for the current thread (0xFFFF8000), so to retrieve the current process,
one would just pass 0xFFFF8001 into svcGetInfo.
The lookup itself in the handle table would be something like:
template <typename T>
T* Lookup(Handle handle) {
if (handle == PSEUDO_HANDLE_CURRENT_PROCESS) {
return CurrentProcess();
}
if (handle == PSUEDO_HANDLE_CURRENT_THREAD) {
return CurrentThread();
}
return static_cast<T*>(&objects[handle]);
}
which, as is shown, allows accessing the current process or current
thread, even if those two objects aren't actually within the HandleTable
instance.
Our implementation of svcGetInfo was slightly incorrect in that we
weren't doing proper error checking everywhere. Instead, reorganize it
to be similar to how the kernel seems to do it.
We can just return a new instance of this when it's requested. This only
ever holds pointers to the existing registed caches, so it's not a large
object. Plus, this also gets rid of the need to keep around a separate
member function just to properly clear out the union.
Gets rid of one of five globals in the filesystem code.
We don't need to call out to our own file handling functions when we're
going to construct a QFileInfo instance right after it. We also don't
need to convert to a std::string again just to compare the file
extension.