Prepare for rendering and presentation

This commit is contained in:
Lillian Salehi 2024-10-08 01:57:32 -05:00
parent a8cbb97fd0
commit 10a8c236f0
7 changed files with 337 additions and 117 deletions

View File

@ -15,11 +15,10 @@
namespace DeviceControl {
VkSurfaceKHR surface;
VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
VkPhysicalDeviceProperties deviceProperties;
VkPhysicalDeviceFeatures deviceFeatures;
VkSwapchainKHR swapChain;
std::vector<VkImage> swapChainImages;
VkFormat swapChainImageFormat;
@ -29,16 +28,6 @@ namespace DeviceControl {
VkQueue graphicsQueue;
VkQueue presentQueue;
struct QueueFamilyIndices {
// We need to check that the Queue families support graphics operations and window presentation, sometimes they can support one or the other,
// therefore, we take into account both for completion.
std::optional<uint32_t> graphicsFamily;
std::optional<uint32_t> presentFamily;
bool isComplete() {
return graphicsFamily.has_value() && presentFamily.has_value();
}
};
struct SwapChainSupportDetails {
VkSurfaceCapabilitiesKHR capabilities;
std::vector<VkSurfaceFormatKHR> formats;
@ -47,38 +36,33 @@ namespace DeviceControl {
const std::vector<const char*> deviceExtensions = {
VK_KHR_SWAPCHAIN_EXTENSION_NAME
};
QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) {
// First we feed in a integer we want to use to hold the number of queued items, that fills it, then we create that amount of default constructed *VkQueueFamilyProperties* structs.
// These store the flags, the amount of queued items in the family, and timestamp data. Queue families are simply group collections of tasks we want to get done.
// Next, we check the flags of the queueFamily item, use a bitwise and to see if they match, i.e. support graphical operations, then return that to notify that we have at least one family that supports VK_QUEUE_GRAPHICS_BIT.
// Which means this device supports graphical operations!
// We also do the same thing for window presentation, just check to see if its supported.
QueueFamilyIndices indices;
SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) {
uint32_t queueFamilyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);
// Swap chains are weird ngl, it's another one of those Vulkan platform agnosticity. The swapchain is basically a wrapper for GDI+, DXGI, X11, Wayland, etc.
// It lets us use the swap chain rather than create a different framebuffer handler for every targeted platform.
// Swap chains handle the ownership of buffers before sending them to the presentation engine.
// (still no fucking clue how it works though)
SwapChainSupportDetails details;
std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, Global::surface, &details.capabilities);
int i = 0;
for(const auto& queueFamily : queueFamilies) {
if(queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
indices.graphicsFamily = i;
}
uint32_t formatCount;
vkGetPhysicalDeviceSurfaceFormatsKHR(device, Global::surface, &formatCount, nullptr);
VkBool32 presentSupport = false;
vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport);
if(presentSupport) {
indices.presentFamily = i;
}
if(indices.isComplete()) {
break;
}
i++;
if(formatCount != 0) {
details.formats.resize(formatCount);
vkGetPhysicalDeviceSurfaceFormatsKHR(device, Global::surface, &formatCount, details.formats.data());
}
return indices;
uint32_t presentModeCount;
vkGetPhysicalDeviceSurfacePresentModesKHR(device, Global::surface, &presentModeCount, details.presentModes.data());
if(presentModeCount != 0) {
details.presentModes.resize(presentModeCount);
vkGetPhysicalDeviceSurfacePresentModesKHR(device, Global::surface, &presentModeCount, details.presentModes.data());
}
return details;
}
bool checkDeviceExtensionSupport(VkPhysicalDevice device) {
@ -90,40 +74,13 @@ namespace DeviceControl {
std::set<std::string> requiredExtensions(deviceExtensions.begin(), deviceExtensions.end());
for(const auto& extension : availableExtensions) {
requiredExtensions.erase(extension.extensionName);
for (const auto& extension : availableExtensions) {
requiredExtensions.erase(extension.extensionName);
}
return requiredExtensions.empty();
}
SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) {
// Swap chains are weird ngl, it's another one of those Vulkan platform agnosticity. The swapchain is basically a wrapper for GDI+, DXGI, X11, Wayland, etc.
// It lets us use the swap chain rather than create a different framebuffer handler for every targeted platform.
// Swap chains handle the ownership of buffers before sending them to the presentation engine.
// (still no fucking clue how it works though)
SwapChainSupportDetails details;
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &details.capabilities);
uint32_t formatCount;
vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr);
if(formatCount != 0) {
details.formats.resize(formatCount);
vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, details.formats.data());
}
uint32_t presentModeCount;
vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, details.presentModes.data());
if(presentModeCount != 0) {
details.presentModes.resize(presentModeCount);
vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, details.presentModes.data());
}
return details;
}
bool isDeviceSuitable(VkPhysicalDevice device) {
// These two are simple, create a structure to hold the apiVersion, driverVersion, vendorID, deviceID and type, name, and a few other settings.
// Then populate it by passing in the device and the structure reference.
@ -133,7 +90,7 @@ namespace DeviceControl {
vkGetPhysicalDeviceFeatures(device, &deviceFeatures);
// We need to find a device that supports graphical operations, or else we cant do much with it! This function just runs over all the queueFamilies and sees if there
// is a queue family with the VK_QUEUE_GRAPHICS_BIT flipped!
QueueFamilyIndices indices = findQueueFamilies(device);
Global::QueueFamilyIndices indices = Global::findQueueFamilies(device);
bool extensionSupported = checkDeviceExtensionSupport(device);
bool swapChainAdequate = false;
@ -148,7 +105,7 @@ namespace DeviceControl {
&& extensionSupported
&& swapChainAdequate;
}
// -------------------------------------- Swap Chain Settings -----------------------------------------//
// -------------------------------------- Swap Chain Settings ----------------------------------------- //
VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {
// One of three settings we can set, Surface Format controls the color space and format.
@ -197,7 +154,7 @@ namespace DeviceControl {
return actualExtent;
}
}
// --------------------------------------- External Functions -----------------------------------------//
// --------------------------------------- External Functions ----------------------------------------- //
void devicelibrary::pickPhysicalDevice(VkInstance& instance) {
uint32_t deviceCount = 0;
vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);
@ -212,29 +169,29 @@ namespace DeviceControl {
if(isDeviceSuitable(device)) {
if(Global::enableValidationLayers) std::cout << "Using device: " << deviceProperties.deviceName << std::endl;
//Once we have buttons or such, maybe ask the user or write a config file for which GPU to use?
physicalDevice = device;
Global::physicalDevice = device;
break;
}
}
if(physicalDevice == VK_NULL_HANDLE) {
if(Global::physicalDevice == VK_NULL_HANDLE) {
throw std::runtime_error("Failed to find a suitable GPU!");
}
}
void devicelibrary::destroySurface(VkInstance& instance) {
vkDestroySurfaceKHR(instance, surface, nullptr);
vkDestroySurfaceKHR(instance, Global::surface, nullptr);
if(Global::enableValidationLayers) std::cout << "Destroyed surface safely\n" << std::endl;
}
void devicelibrary::createSurface(VkInstance& instance, GLFWwindow* window) {
if(glfwCreateWindowSurface(instance, window, nullptr, &surface) != VK_SUCCESS) {
if(glfwCreateWindowSurface(instance, window, nullptr, &Global::surface) != VK_SUCCESS) {
throw std::runtime_error("Failed to create window surface!!");
}
if(Global::enableValidationLayers) std::cout << "GLFW Window Surface created successfully\n" << std::endl;
}
void devicelibrary::createLogicalDevice(VkDevice& device) {
void devicelibrary::createLogicalDevice() {
// Describe how many queues we want for a single family (1) here, right now we are solely interested in graphics capabilites,
// but Compute Shaders, transfer ops, decode and encode operations can also queued with setup! We also assign each queue a priority.
// We do this by looping over all the queueFamilies and sorting them by indices to fill the queue at the end!
QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
Global::QueueFamilyIndices indices = Global::findQueueFamilies(Global::physicalDevice);
std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
std::set<uint32_t> uniqueQueueFamilies = {
@ -265,16 +222,16 @@ namespace DeviceControl {
} else {
createDeviceInfo.enabledLayerCount = 0;
}
if(vkCreateDevice(physicalDevice, &createDeviceInfo, nullptr, &device) != VK_SUCCESS) {
if(vkCreateDevice(Global::physicalDevice, &createDeviceInfo, nullptr, &Global::device) != VK_SUCCESS) {
throw std::runtime_error("Failed to create logical device");
}
if(Global::enableValidationLayers) std::cout << "Created Logical device successfully!\n" << std::endl;
vkGetDeviceQueue(device, indices.graphicsFamily.value(), 0, &graphicsQueue);
vkGetDeviceQueue(device, indices.presentFamily.value(), 0, &presentQueue);
vkGetDeviceQueue(Global::device, indices.graphicsFamily.value(), 0, &graphicsQueue);
vkGetDeviceQueue(Global::device, indices.presentFamily.value(), 0, &presentQueue);
}
void devicelibrary::createSwapChain(GLFWwindow* window, VkDevice& device) {
SwapChainSupportDetails swapChainSupport = querySwapChainSupport(physicalDevice);
void devicelibrary::createSwapChain(GLFWwindow* window) {
SwapChainSupportDetails swapChainSupport = querySwapChainSupport(Global::physicalDevice);
VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats);
VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes);
@ -290,7 +247,7 @@ namespace DeviceControl {
VkSwapchainCreateInfoKHR createSwapChainInfo{};
createSwapChainInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
createSwapChainInfo.surface = surface;
createSwapChainInfo.surface = Global::surface;
createSwapChainInfo.minImageCount = imageCount;
createSwapChainInfo.imageFormat = surfaceFormat.format;
createSwapChainInfo.imageColorSpace = surfaceFormat.colorSpace;
@ -303,7 +260,7 @@ namespace DeviceControl {
createSwapChainInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
// This handles swap chain images across multiple queue families, ie, if the graphics queue family is different from the present queue
QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
Global::QueueFamilyIndices indices = Global::findQueueFamilies(Global::physicalDevice);
uint32_t queueFamilyIndices[] = {indices.graphicsFamily.value(), indices.presentFamily.value()};
// Usage across multiple queue families without explicit transfer of ownership if they are different queue families.
// Otherwise, no sharing without explicit handoffs, faster, but not easily supported with multiple families.
@ -327,23 +284,23 @@ namespace DeviceControl {
// require you to recreate it and reference the old one specified here, will revisit in a few days.
createSwapChainInfo.oldSwapchain = VK_NULL_HANDLE;
if(vkCreateSwapchainKHR(device, &createSwapChainInfo, nullptr, &swapChain) != VK_SUCCESS) {
if(vkCreateSwapchainKHR(Global::device, &createSwapChainInfo, nullptr, &swapChain) != VK_SUCCESS) {
throw std::runtime_error("Failed to create the swap chain!!");
}
if(Global::enableValidationLayers) std::cout << "Swap Chain created successfully\n" << std::endl;
vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr);
vkGetSwapchainImagesKHR(Global::device, swapChain, &imageCount, nullptr);
swapChainImages.resize(imageCount);
vkGetSwapchainImagesKHR(device, swapChain, &imageCount, swapChainImages.data());
vkGetSwapchainImagesKHR(Global::device, swapChain, &imageCount, swapChainImages.data());
swapChainImageFormat = surfaceFormat.format;
swapChainExtent = extent;
}
void devicelibrary::destroySwapChain(VkDevice& device) {
vkDestroySwapchainKHR(device, swapChain, nullptr);
void devicelibrary::destroySwapChain() {
vkDestroySwapchainKHR(Global::device, swapChain, nullptr);
if(Global::enableValidationLayers) std::cout << "Destroyed Swap Chain safely\n" << std::endl;
}
void devicelibrary::createImageViews(VkDevice& device) {
void devicelibrary::createImageViews() {
swapChainImageViews.resize(swapChainImages.size());
for(size_t i = 0; i < swapChainImages.size(); i++) {
VkImageViewCreateInfo createImageViewInfo{};
@ -365,16 +322,28 @@ namespace DeviceControl {
// Yet another setting we would increase for VR applications, and specifically create a swap chain with more layers as well. The other layers would be the eye outputs.
createImageViewInfo.subresourceRange.layerCount = 1;
if(vkCreateImageView(device, &createImageViewInfo, nullptr, &swapChainImageViews[i]) != VK_SUCCESS) {
if(vkCreateImageView(Global::device, &createImageViewInfo, nullptr, &swapChainImageViews[i]) != VK_SUCCESS) {
throw std::runtime_error("failed to create image views!");
}
if(Global::enableValidationLayers) std::cout << "Image views created successfully\n" << std::endl;
}
}
void devicelibrary::destroyImageViews(VkDevice& device) {
void devicelibrary::destroyImageViews() {
for (auto imageView : swapChainImageViews) {
vkDestroyImageView(device, imageView, nullptr);
vkDestroyImageView(Global::device, imageView, nullptr);
}
if(Global::enableValidationLayers) std::cout << "Image destroyed safely\n" << std::endl;
}
// --------------------------------------- Getters & Setters ------------------------------------------ //
VkFormat devicelibrary::getImageFormat() {
return swapChainImageFormat;
}
std::vector<VkImageView> devicelibrary::getSwapChainImageViews() {
return swapChainImageViews;
}
VkExtent2D devicelibrary::getSwapChainExtent() {
return swapChainExtent;
}
}

View File

@ -1,17 +1,23 @@
#pragma once
#include "global.h"
#include <optional>
namespace DeviceControl {
class devicelibrary {
public:
void pickPhysicalDevice(VkInstance& instance);
void createLogicalDevice(VkDevice& device);
void createLogicalDevice();
void createSurface(VkInstance& instance, GLFWwindow* window);
void destroySurface(VkInstance& instance);
void createSwapChain(GLFWwindow* window, VkDevice& device);
void destroySwapChain(VkDevice& device);
void createImageViews(VkDevice& device);
void destroyImageViews(VkDevice& device);
void createSwapChain(GLFWwindow* window);
void destroySwapChain();
void createImageViews();
void destroyImageViews();
void createCommandPool();
void destroyCommandPool();
// ---------- Getters & Setters ----------- //
VkFormat getImageFormat();
std::vector<VkImageView> getSwapChainImageViews();
VkExtent2D getSwapChainExtent();
};
}

View File

@ -1,4 +1,5 @@
#include "global.h"
#include "devicelibrary.h"
namespace Global {
const std::vector<const char*> validationLayers = {
@ -9,4 +10,43 @@ namespace Global {
#else
const bool enableValidationLayers = false;
#endif
VkSurfaceKHR surface = VK_NULL_HANDLE;
VkDevice device = VK_NULL_HANDLE;
VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
Global::QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) {
// First we feed in a integer we want to use to hold the number of queued items, that fills it, then we create that amount of default constructed *VkQueueFamilyProperties* structs.
// These store the flags, the amount of queued items in the family, and timestamp data. Queue families are simply group collections of tasks we want to get done.
// Next, we check the flags of the queueFamily item, use a bitwise and to see if they match, i.e. support graphical operations, then return that to notify that we have at least one family that supports VK_QUEUE_GRAPHICS_BIT.
// Which means this device supports graphical operations!
// We also do the same thing for window presentation, just check to see if its supported.
DeviceControl::devicelibrary deviceLibs;
Global::QueueFamilyIndices indices;
uint32_t queueFamilyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);
std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());
int i = 0;
for(const auto& queueFamily : queueFamilies) {
if(queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
indices.graphicsFamily = i;
}
VkBool32 presentSupport = false;
vkGetPhysicalDeviceSurfaceSupportKHR(device, i, Global::surface, &presentSupport);
if(presentSupport) {
indices.presentFamily = i;
}
if(indices.isComplete()) {
break;
}
i++;
}
return indices;
}
}

View File

@ -2,6 +2,7 @@
#include "debug/vulkandebuglibs.h"
#include <iostream>
#include <vector>
#include <optional>
#include <vulkan/vulkan_core.h>
#define GLFW_INCLUDE_VULKAN
@ -12,4 +13,19 @@ namespace Global {
// so that's one obvious global, as well as the glfw includes!
extern const std::vector<const char*> validationLayers;
extern const bool enableValidationLayers;
extern VkDevice device;
struct QueueFamilyIndices {
// We need to check that the Queue families support graphics operations and window presentation, sometimes they can support one or the other,
// therefore, we take into account both for completion.
std::optional<uint32_t> graphicsFamily;
std::optional<uint32_t> presentFamily;
bool isComplete() {
return graphicsFamily.has_value() && presentFamily.has_value();
}
};
extern VkSurfaceKHR surface;
extern VkPhysicalDevice physicalDevice;
Global::QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device);
}

View File

@ -1,11 +1,23 @@
#include "graphicspipeline.h"
#include "../devicelibrary.h"
#include <cstdint>
#include <fstream>
#include <stdexcept>
#include <vulkan/vulkan_core.h>
namespace Graphics {
std::vector<VkDynamicState> dynamicStates = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
std::vector<VkFramebuffer> swapChainFramebuffers;
VkCommandPool commandPool;
VkCommandBuffer commandBuffer;
VkRenderPass renderPass;
VkPipelineLayout pipelineLayout;
VkPipeline graphicsPipeline;
DeviceControl::devicelibrary deviceLibs;
static std::vector<char> readFile(const std::string& filename) {
std::ifstream file(filename, std::ios::ate | std::ios::binary);
@ -36,17 +48,20 @@ namespace Graphics {
return shaderModule;
}
void graphicspipeline::destroyGraphicsPipeline(VkDevice& device) {
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
void graphicspipeline::destroyGraphicsPipeline() {
vkDestroyPipeline(Global::device, graphicsPipeline, nullptr);
if(Global::enableValidationLayers) std::cout << "Destroyed Graphics Pipeline safely\n" << std::endl;
vkDestroyPipelineLayout(Global::device, pipelineLayout, nullptr);
if(Global::enableValidationLayers) std::cout << "Destroyed Layout Pipeline safely\n" << std::endl;
}
void graphicspipeline::createGraphicsPipeline(VkDevice& device) {
void graphicspipeline::createGraphicsPipeline() {
// Note to self, for some reason the working directory is not where a read file is called from, but the project folder!
auto vertShaderCode = readFile("src/shaders/vert.spv");
auto fragShaderCode = readFile("src/shaders/frag.spv");
VkShaderModule vertShaderModule = createShaderModule(vertShaderCode, device);
VkShaderModule fragShaderModule = createShaderModule(fragShaderCode, device);
VkShaderModule vertShaderModule = createShaderModule(vertShaderCode, Global::device);
VkShaderModule fragShaderModule = createShaderModule(fragShaderCode, Global::device);
// ------------------ STAGE 1 - INPUT ASSEMBLER ---------------- //
// This can get a little complicated, normally, vertices are loaded in sequential order, with an element buffer however, you can specify the indices yourself!
@ -133,13 +148,174 @@ namespace Graphics {
pipelineLayoutInfo.setLayoutCount = 0;
pipelineLayoutInfo.pushConstantRangeCount = 0;
if (vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) {
if (vkCreatePipelineLayout(Global::device, &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) {
throw std::runtime_error("failed to create pipeline layout!");
}
// Here we combine all of the structures we created to make the final pipeline!
VkGraphicsPipelineCreateInfo pipelineInfo{};
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineInfo.stageCount = 2;
pipelineInfo.pStages = shaderStages;
pipelineInfo.pVertexInputState = &vertexInputInfo;
pipelineInfo.pInputAssemblyState = &inputAssembly;
pipelineInfo.pViewportState = &viewportState;
pipelineInfo.pRasterizationState = &rasterizer;
pipelineInfo.pMultisampleState = &multisampling;
pipelineInfo.pColorBlendState = &colorBlending;
pipelineInfo.pDynamicState = &dynamicState;
pipelineInfo.layout = pipelineLayout;
pipelineInfo.renderPass = renderPass;
pipelineInfo.subpass = 0;
vkDestroyShaderModule(device, fragShaderModule, nullptr);
vkDestroyShaderModule(device, vertShaderModule, nullptr);
if (vkCreateGraphicsPipelines(Global::device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) {
throw std::runtime_error("failed to create graphics pipeline!");
}
vkDestroyShaderModule(Global::device, fragShaderModule, nullptr);
vkDestroyShaderModule(Global::device, vertShaderModule, nullptr);
if(Global::enableValidationLayers) std::cout << "Pipeline Layout created successfully\n" << std::endl;
}
void graphicspipeline::createRenderPass() {
VkAttachmentDescription colorAttachment{};
colorAttachment.format = deviceLibs.getImageFormat();
colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
VkAttachmentReference colorAttachmentRef{};
colorAttachmentRef.attachment = 0;
colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass{};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &colorAttachmentRef;
VkRenderPassCreateInfo renderPassInfo{};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.attachmentCount = 1;
renderPassInfo.pAttachments = &colorAttachment;
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpass;
if (vkCreateRenderPass(Global::device, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) {
throw std::runtime_error("failed to create render pass!");
}
if(Global::enableValidationLayers) std::cout << "Render pass created successfully\n" << std::endl;
}
void graphicspipeline::destroyRenderPass() {
vkDestroyRenderPass(Global::device, renderPass, nullptr);
std::cout << "Destroyed Render Pass Safely\n" << std::endl;
}
void graphicspipeline::createFramebuffers() {
// Resize the container to hold all the framebuffers.
int framebuffersSize = deviceLibs.getSwapChainImageViews().size();
swapChainFramebuffers.resize(framebuffersSize);
for(size_t i = 0; i < framebuffersSize; i++) {
VkImageView attachments[] = {
deviceLibs.getSwapChainImageViews()[i]
};
VkFramebufferCreateInfo framebufferInfo{};
framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
framebufferInfo.renderPass = renderPass;
framebufferInfo.attachmentCount = 1;
framebufferInfo.pAttachments = attachments;
framebufferInfo.width = deviceLibs.getSwapChainExtent().width;
framebufferInfo.height = deviceLibs.getSwapChainExtent().height;
framebufferInfo.layers = 1;
if(vkCreateFramebuffer(Global::device, &framebufferInfo, nullptr, &swapChainFramebuffers[i]) != VK_SUCCESS) {
throw std::runtime_error("Failed to create framebuffer!");
}
}
}
void graphicspipeline::destroyFramebuffers() {
for (auto framebuffer : swapChainFramebuffers) {
vkDestroyFramebuffer(Global::device, framebuffer, nullptr);
}
}
void graphicspipeline::createCommandPool() {
Global::QueueFamilyIndices queueFamilyIndices = Global::findQueueFamilies(Global::physicalDevice);
VkCommandPoolCreateInfo poolInfo{};
poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily.value();
if(vkCreateCommandPool(Global::device, &poolInfo, nullptr, &commandPool) != VK_SUCCESS) {
throw std::runtime_error("Failed to create command pool!");
}
if(Global::enableValidationLayers) std::cout << "Command pool created successfully\n" << std::endl;
}
void graphicspipeline::destroyCommandPool() {
vkDestroyCommandPool(Global::device, commandPool, nullptr);
}
void graphicspipeline::createCommandBuffer() {
VkCommandBufferAllocateInfo allocInfo{};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.commandPool = commandPool;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = 1;
if(vkAllocateCommandBuffers(Global::device, &allocInfo, &commandBuffer) != VK_SUCCESS) {
throw std::runtime_error("Failed to allocate command buffers");
}
if(Global::enableValidationLayers) std::cout << "Allocated command buffers successfully\n" << std::endl;
}
void recordCommandBuffer(VkCommandBuffer commandBuffer, uint32_t imageIndex) {
VkCommandBufferBeginInfo beginInfo{};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = 0; // Optional
beginInfo.pInheritanceInfo = nullptr; // Optional
if (vkBeginCommandBuffer(commandBuffer, &beginInfo) != VK_SUCCESS) {
throw std::runtime_error("failed to begin recording command buffer!");
}
if(Global::enableValidationLayers) std::cout << "Recording command buffer...\n" << std::endl;
VkRenderPassBeginInfo renderPassInfo{};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassInfo.renderPass = renderPass;
renderPassInfo.framebuffer = swapChainFramebuffers[imageIndex];
renderPassInfo.renderArea.offset = {0, 0};
renderPassInfo.renderArea.extent = deviceLibs.getSwapChainExtent();
VkClearValue clearColor = {{{0.0f, 0.0f, 0.0f, 1.0f}}};
renderPassInfo.clearValueCount = 1;
renderPassInfo.pClearValues = &clearColor;
vkCmdBeginRenderPass(commandBuffer, &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);
VkViewport viewport{};
viewport.x = 0.0f;
viewport.y = 0.0f;
viewport.width = (float) deviceLibs.getSwapChainExtent().width;
viewport.height = (float) deviceLibs.getSwapChainExtent().height;
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
vkCmdSetViewport(commandBuffer, 0, 1, &viewport);
VkRect2D scissor{};
scissor.offset = {0, 0};
scissor.extent = deviceLibs.getSwapChainExtent();
vkCmdSetScissor(commandBuffer, 0, 1, &scissor);
vkCmdDraw(commandBuffer, 3, 1, 0, 0);
vkCmdEndRenderPass(commandBuffer);
if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) {
throw std::runtime_error("failed to record command buffer!");
}
}
}

View File

@ -4,7 +4,14 @@
namespace Graphics {
class graphicspipeline {
public:
void createGraphicsPipeline(VkDevice& device);
void destroyGraphicsPipeline(VkDevice& device);
void createGraphicsPipeline();
void destroyGraphicsPipeline();
void createRenderPass();
void destroyRenderPass();
void createFramebuffers();
void destroyFramebuffers();
void createCommandPool();
void destroyCommandPool();
void createCommandBuffer();
};
}

View File

@ -27,7 +27,6 @@ private:
Graphics::graphicspipeline graphicsPipeline;
GLFWwindow* window;
VkInstance instance;
VkDevice device;
// Initialize GLFW Window. First, Initialize GLFW lib, disable resizing for
// now, and create window.
@ -45,10 +44,14 @@ private:
debugController.setupDebugMessenger(instance); // The debug messenger is out holy grail, it gives us Vulkan related debug info when built with the -DNDEBUG flag (as per the makefile)
deviceLibs.createSurface(instance, window);
deviceLibs.pickPhysicalDevice(instance);
deviceLibs.createLogicalDevice(device);
deviceLibs.createSwapChain(window, device);
deviceLibs.createImageViews(device);
graphicsPipeline.createGraphicsPipeline(device);
deviceLibs.createLogicalDevice();
deviceLibs.createSwapChain(window);
deviceLibs.createImageViews();
graphicsPipeline.createRenderPass();
graphicsPipeline.createGraphicsPipeline();
graphicsPipeline.createFramebuffers();
graphicsPipeline.createCommandPool();
graphicsPipeline.createCommandBuffer();
}
void createInstance() {
@ -78,10 +81,13 @@ private:
}
void cleanup() { // Similar to the last handoff, destroy the utils in a safe manner in the library!
graphicsPipeline.destroyGraphicsPipeline(device);
deviceLibs.destroyImageViews(device);
deviceLibs.destroySwapChain(device);
vkDestroyDevice(device, nullptr);
graphicsPipeline.destroyCommandPool();
graphicsPipeline.destroyFramebuffers();
graphicsPipeline.destroyGraphicsPipeline();
graphicsPipeline.destroyRenderPass();
deviceLibs.destroyImageViews();
deviceLibs.destroySwapChain();
vkDestroyDevice(Global::device, nullptr);
if(Global::enableValidationLayers) {
debugController.DestroyDebugUtilsMessengerEXT(instance, nullptr);
}