#include "devicelibrary.h" #include "global.h" #include namespace DeviceControl { VkPhysicalDeviceProperties deviceProperties; std::vector swapChainImages; VkFormat swapChainImageFormat; VkExtent2D swapChainExtent; std::vector swapChainImageViews; struct SwapChainSupportDetails { VkSurfaceCapabilitiesKHR capabilities; std::vector formats; std::vector presentModes; }; const std::vector deviceExtensions = { VK_KHR_SWAPCHAIN_EXTENSION_NAME }; SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) { // Swap chains are weird ngl, it's another one of those Vulkan platform agnosticity. The swapchain is basically a wrapper for GDI+, DXGI, X11, Wayland, etc. // It lets us use the swap chain rather than create a different framebuffer handler for every targeted platform. // Swap chains handle the ownership of buffers before sending them to the presentation engine. // (still no fucking clue how it works though) SwapChainSupportDetails details; vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, Global::surface, &details.capabilities); uint32_t formatCount; vkGetPhysicalDeviceSurfaceFormatsKHR(device, Global::surface, &formatCount, nullptr); if(formatCount != 0) { details.formats.resize(formatCount); vkGetPhysicalDeviceSurfaceFormatsKHR(device, Global::surface, &formatCount, details.formats.data()); } uint32_t presentModeCount; vkGetPhysicalDeviceSurfacePresentModesKHR(device, Global::surface, &presentModeCount, details.presentModes.data()); if(presentModeCount != 0) { details.presentModes.resize(presentModeCount); vkGetPhysicalDeviceSurfacePresentModesKHR(device, Global::surface, &presentModeCount, details.presentModes.data()); } return details; } bool checkDeviceExtensionSupport(VkPhysicalDevice device) { uint32_t extensionCount; vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr); std::vector availableExtensions(extensionCount); vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data()); std::set requiredExtensions(deviceExtensions.begin(), deviceExtensions.end()); for (const auto& extension : availableExtensions) { requiredExtensions.erase(extension.extensionName); } return requiredExtensions.empty(); } bool isDeviceSuitable(VkPhysicalDevice device) { // These two are simple, create a structure to hold the apiVersion, driverVersion, vendorID, deviceID and type, name, and a few other settings. // Then populate it by passing in the device and the structure reference. vkGetPhysicalDeviceProperties(device, &deviceProperties); // Similarly, we can pass in the device and a deviceFeatures struct, this is quite special, it holds a struct of optional features the GPU can perform. // Some, like a geometry shader, and stereoscopic rendering (multiViewport) we want, so we dont return true without them. VkPhysicalDeviceFeatures supportedFeatures; vkGetPhysicalDeviceFeatures(device, &supportedFeatures); // We need to find a device that supports graphical operations, or else we cant do much with it! This function just runs over all the queueFamilies and sees if there // is a queue family with the VK_QUEUE_GRAPHICS_BIT flipped! Global::QueueFamilyIndices indices = Global::findQueueFamilies(device); bool extensionSupported = checkDeviceExtensionSupport(device); bool swapChainAdequate = false; if(extensionSupported) { SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device); swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty(); } return deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU && supportedFeatures.samplerAnisotropy && indices.isComplete() && extensionSupported && swapChainAdequate; } // -------------------------------------- Swap Chain Settings ----------------------------------------- // VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector& availableFormats) { // One of three settings we can set, Surface Format controls the color space and format. for (const auto& availableFormat : availableFormats) { if (availableFormat.format == VK_FORMAT_B8G8R8A8_SRGB && availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) { // sRGB & 32bit BGRA return availableFormat; } } return availableFormats[0]; } VkPresentModeKHR chooseSwapPresentMode(const std::vector& availablePresentModes) { // The second of the three settings, arguably the most important, the presentation mode! This dictates how images are displayed. // MAILBOX is basically equivalent to triple buffering, it avoids screen tearing with fairly low latency, // However, it is not always supported, so in the case that it isn't, currently we will default to FIFO, // This is most similarly to standard V-Sync. for(const auto& availablePresentMode : availablePresentModes) { if(availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) { if(Global::enableValidationLayers) std::cout << "Using Triple Buffering\n" << std::endl; return availablePresentMode; } } if(Global::enableValidationLayers) std::cout << "Using FIFO (V-Sync)\n" << std::endl; return VK_PRESENT_MODE_FIFO_KHR; } VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities, GLFWwindow* window) { // Swap Extent is just a fancy way of saying the resolution of the swap images to display. // This is almost always going to equal the resolution of the window in pixels. // The max int32 value tells us that the window manager lets us change the windth and height to what we wish! if (capabilities.currentExtent.width != std::numeric_limits::max()) { return capabilities.currentExtent; } else { int width, height; glfwGetFramebufferSize(window, &width, &height); VkExtent2D actualExtent = { static_cast(width), static_cast(height) }; // Clamp the image size to the minimum extent values specified by vulkan for our window manager. actualExtent.width = std::clamp(actualExtent.width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width); actualExtent.height = std::clamp(actualExtent.height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height); return actualExtent; } } // --------------------------------------- External Functions ----------------------------------------- // void devicelibrary::pickPhysicalDevice(VkInstance& instance) { uint32_t deviceCount = 0; vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr); if(deviceCount == 0) { throw std::runtime_error("Failed to find GPU's with Vulkan Support!!"); } std::vector devices(deviceCount); // Direct Initialization is weird af, yo vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data()); for(const auto& device : devices) { if(isDeviceSuitable(device)) { if(Global::enableValidationLayers) std::cout << "Using device: " << deviceProperties.deviceName << std::endl; //Once we have buttons or such, maybe ask the user or write a config file for which GPU to use? Global::physicalDevice = device; break; } } if(Global::physicalDevice == VK_NULL_HANDLE) { throw std::runtime_error("Failed to find a suitable GPU!"); } } void devicelibrary::destroySurface(VkInstance& instance) { vkDestroySurfaceKHR(instance, Global::surface, nullptr); if(Global::enableValidationLayers) std::cout << "Destroyed surface safely\n" << std::endl; } void devicelibrary::createSurface(VkInstance& instance, GLFWwindow* window) { if(glfwCreateWindowSurface(instance, window, nullptr, &Global::surface) != VK_SUCCESS) { throw std::runtime_error("Failed to create window surface!!"); } if(Global::enableValidationLayers) std::cout << "GLFW Window Surface created successfully\n" << std::endl; } void devicelibrary::createLogicalDevice() { // Describe how many queues we want for a single family (1) here, right now we are solely interested in graphics capabilites, // but Compute Shaders, transfer ops, decode and encode operations can also queued with setup! We also assign each queue a priority. // We do this by looping over all the queueFamilies and sorting them by indices to fill the queue at the end! Global::QueueFamilyIndices indices = Global::findQueueFamilies(Global::physicalDevice); std::vector queueCreateInfos; std::set uniqueQueueFamilies = { indices.graphicsFamily.value(), indices.presentFamily.value() }; float queuePriority = 1.0f; for(uint32_t queueFamily : uniqueQueueFamilies) { VkDeviceQueueCreateInfo queueCreateSingularInfo = {}; queueCreateSingularInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queueCreateSingularInfo.queueFamilyIndex = queueFamily; queueCreateSingularInfo.queueCount = 1; queueCreateSingularInfo.pQueuePriorities = &queuePriority; queueCreateInfos.push_back(queueCreateSingularInfo); } VkPhysicalDeviceFeatures deviceFeatures{}; deviceFeatures.samplerAnisotropy = VK_TRUE; VkDeviceCreateInfo createDeviceInfo = {}; createDeviceInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; createDeviceInfo.pQueueCreateInfos = queueCreateInfos.data(); createDeviceInfo.queueCreateInfoCount = static_cast(queueCreateInfos.size()); createDeviceInfo.pEnabledFeatures = &deviceFeatures; createDeviceInfo.enabledExtensionCount = static_cast(deviceExtensions.size()); createDeviceInfo.ppEnabledExtensionNames = deviceExtensions.data(); if(Global::enableValidationLayers) { createDeviceInfo.enabledLayerCount = static_cast(Global::validationLayers.size()); createDeviceInfo.ppEnabledLayerNames = Global::validationLayers.data(); } else { createDeviceInfo.enabledLayerCount = 0; } if(vkCreateDevice(Global::physicalDevice, &createDeviceInfo, nullptr, &Global::device) != VK_SUCCESS) { throw std::runtime_error("Failed to create logical device"); } if(Global::enableValidationLayers) std::cout << "Created Logical device successfully!\n" << std::endl; vkGetDeviceQueue(Global::device, indices.graphicsFamily.value(), 0, &Global::graphicsQueue); vkGetDeviceQueue(Global::device, indices.presentFamily.value(), 0, &Global::presentQueue); } void devicelibrary::createSwapChain(GLFWwindow* window) { SwapChainSupportDetails swapChainSupport = querySwapChainSupport(Global::physicalDevice); VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats); VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes); VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities, window); // Number of images to hold in the swap chain, 1 over the minimum guarantees we won't have to wait on the driver to complete // internal operations before acquiring another image. Absolutely a TODO to determine the best amount to queue. uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1; // Make sure not to queue more than the max! 0 indicates that there is no maximum. if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) { imageCount = swapChainSupport.capabilities.maxImageCount; } VkSwapchainCreateInfoKHR createSwapChainInfo{}; createSwapChainInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; createSwapChainInfo.surface = Global::surface; createSwapChainInfo.minImageCount = imageCount; createSwapChainInfo.imageFormat = surfaceFormat.format; createSwapChainInfo.imageColorSpace = surfaceFormat.colorSpace; createSwapChainInfo.imageExtent = extent; // Image array layers is always 1 unless we are developing for VR (Spoiler: we are, we will use a build flag.) // Image Usage specifies what operations you use the images for, COLOR_ATTACH means we render directly to them, // if you wanted to render to separate images for things like post processing, you can use TRANSFER_DST and use a // memory operation to transfer the image to a swap chain, this is also a TODO item eventually. createSwapChainInfo.imageArrayLayers = 1; createSwapChainInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; // This handles swap chain images across multiple queue families, ie, if the graphics queue family is different from the present queue Global::QueueFamilyIndices indices = Global::findQueueFamilies(Global::physicalDevice); uint32_t queueFamilyIndices[] = {indices.graphicsFamily.value(), indices.presentFamily.value()}; // Usage across multiple queue families without explicit transfer of ownership if they are different queue families. // Otherwise, no sharing without explicit handoffs, faster, but not easily supported with multiple families. // Presentation and Graphics families are usually merged on most hardware. if (indices.graphicsFamily != indices.presentFamily) { createSwapChainInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT; createSwapChainInfo.queueFamilyIndexCount = 2; createSwapChainInfo.pQueueFamilyIndices = queueFamilyIndices; } else { createSwapChainInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; } // Transformation of image support. createSwapChainInfo.preTransform = swapChainSupport.capabilities.currentTransform; // Do NOT blend with other windows on the system. createSwapChainInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; createSwapChainInfo.presentMode = presentMode; // This is interesting, clip pixels that are obscured for performance, but that means you wont be able to read them reliably.. // I am curious if this would affect screen-space rendering techniques, may be something to note. createSwapChainInfo.clipped = VK_TRUE; // This is something that needs to be implemented later, operations like resizing the window invalidate the swap chain and // require you to recreate it and reference the old one specified here, will revisit in a few days. //createSwapChainInfo.oldSwapchain = VK_NULL_HANDLE; if(vkCreateSwapchainKHR(Global::device, &createSwapChainInfo, nullptr, &Global::swapChain) != VK_SUCCESS) { throw std::runtime_error("Failed to create the swap chain!!"); } if(Global::enableValidationLayers) std::cout << "Swap Chain created successfully\n" << std::endl; vkGetSwapchainImagesKHR(Global::device, Global::swapChain, &imageCount, nullptr); swapChainImages.resize(imageCount); vkGetSwapchainImagesKHR(Global::device, Global::swapChain, &imageCount, swapChainImages.data()); swapChainImageFormat = surfaceFormat.format; swapChainExtent = extent; } void devicelibrary::destroySwapChain() { vkDestroySwapchainKHR(Global::device, Global::swapChain, nullptr); if(Global::enableValidationLayers) std::cout << "Destroyed Swap Chain safely\n" << std::endl; } VkImageView devicelibrary::createImageView(VkImage image, VkFormat format) { VkImageViewCreateInfo viewInfo{}; viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; viewInfo.image = image; viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; viewInfo.format = format; viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; viewInfo.subresourceRange.baseMipLevel = 0; viewInfo.subresourceRange.levelCount = 1; viewInfo.subresourceRange.baseArrayLayer = 0; viewInfo.subresourceRange.layerCount = 1; VkImageView imageView; if (vkCreateImageView(Global::device, &viewInfo, nullptr, &imageView) != VK_SUCCESS) { throw std::runtime_error("failed to create image view!"); } return imageView; } void devicelibrary::createImageViews() { swapChainImageViews.resize(swapChainImages.size()); for (uint32_t i = 0; i < swapChainImages.size(); i++) { swapChainImageViews[i] = createImageView(swapChainImages[i], swapChainImageFormat); } } void devicelibrary::destroyImageViews() { for (auto imageView : swapChainImageViews) { vkDestroyImageView(Global::device, imageView, nullptr); } if(Global::enableValidationLayers) std::cout << "Image destroyed safely\n" << std::endl; } // --------------------------------------- Getters & Setters ------------------------------------------ // VkFormat devicelibrary::getImageFormat() { return swapChainImageFormat; } std::vector devicelibrary::getSwapChainImageViews() { return swapChainImageViews; } VkExtent2D devicelibrary::getSwapChainExtent() { return swapChainExtent; } }