mirror of
https://git.suyu.dev/suyu/suyu
synced 2025-01-15 12:20:11 -06:00
kernel: use KScheduler from mesosphere
This commit is contained in:
parent
53fb4a78a3
commit
0624c880bd
@ -155,9 +155,10 @@ void ARM_Interface::Run() {
|
||||
break;
|
||||
}
|
||||
|
||||
// Handle syscalls and scheduling (this may change the current thread)
|
||||
// Handle syscalls and scheduling (this may change the current thread/core)
|
||||
if (Has(hr, svc_call)) {
|
||||
Kernel::Svc::Call(system, GetSvcNumber());
|
||||
break;
|
||||
}
|
||||
if (Has(hr, break_loop) || !uses_wall_clock) {
|
||||
break;
|
||||
|
@ -8,6 +8,7 @@
|
||||
#include "core/core.h"
|
||||
#include "core/core_timing.h"
|
||||
#include "core/cpu_manager.h"
|
||||
#include "core/hle/kernel/k_interrupt_manager.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
@ -41,6 +42,14 @@ void CpuManager::Shutdown() {
|
||||
}
|
||||
}
|
||||
|
||||
void CpuManager::GuestActivateFunction() {
|
||||
if (is_multicore) {
|
||||
MultiCoreGuestActivate();
|
||||
} else {
|
||||
SingleCoreGuestActivate();
|
||||
}
|
||||
}
|
||||
|
||||
void CpuManager::GuestThreadFunction() {
|
||||
if (is_multicore) {
|
||||
MultiCoreRunGuestThread();
|
||||
@ -49,36 +58,49 @@ void CpuManager::GuestThreadFunction() {
|
||||
}
|
||||
}
|
||||
|
||||
void CpuManager::GuestRewindFunction() {
|
||||
if (is_multicore) {
|
||||
MultiCoreRunGuestLoop();
|
||||
} else {
|
||||
SingleCoreRunGuestLoop();
|
||||
}
|
||||
}
|
||||
|
||||
void CpuManager::IdleThreadFunction() {
|
||||
if (is_multicore) {
|
||||
MultiCoreRunIdleThread();
|
||||
} else {
|
||||
SingleCoreRunIdleThread();
|
||||
}
|
||||
}
|
||||
|
||||
void CpuManager::ShutdownThreadFunction() {
|
||||
ShutdownThread();
|
||||
}
|
||||
|
||||
void CpuManager::WaitForAndHandleInterrupt() {
|
||||
auto& kernel = system.Kernel();
|
||||
auto& physical_core = kernel.CurrentPhysicalCore();
|
||||
|
||||
ASSERT(Kernel::GetCurrentThread(kernel).GetDisableDispatchCount() == 1);
|
||||
|
||||
if (!physical_core.IsInterrupted()) {
|
||||
physical_core.Idle();
|
||||
}
|
||||
|
||||
HandleInterrupt();
|
||||
}
|
||||
|
||||
void CpuManager::HandleInterrupt() {
|
||||
auto& kernel = system.Kernel();
|
||||
auto core_index = kernel.CurrentPhysicalCoreIndex();
|
||||
|
||||
Kernel::KInterruptManager::HandleInterrupt(kernel, static_cast<s32>(core_index));
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
/// MultiCore ///
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void CpuManager::MultiCoreRunGuestThread() {
|
||||
void CpuManager::MultiCoreGuestActivate() {
|
||||
// Similar to the HorizonKernelMain callback in HOS
|
||||
auto& kernel = system.Kernel();
|
||||
kernel.CurrentScheduler()->OnThreadStart();
|
||||
auto* thread = kernel.CurrentScheduler()->GetSchedulerCurrentThread();
|
||||
auto& host_context = thread->GetHostContext();
|
||||
host_context->SetRewindPoint([this] { GuestRewindFunction(); });
|
||||
auto* scheduler = kernel.CurrentScheduler();
|
||||
|
||||
scheduler->Activate();
|
||||
UNREACHABLE();
|
||||
}
|
||||
|
||||
void CpuManager::MultiCoreRunGuestThread() {
|
||||
// Similar to UserModeThreadStarter in HOS
|
||||
auto& kernel = system.Kernel();
|
||||
auto* thread = kernel.GetCurrentEmuThread();
|
||||
thread->EnableDispatch();
|
||||
|
||||
MultiCoreRunGuestLoop();
|
||||
}
|
||||
|
||||
@ -91,18 +113,8 @@ void CpuManager::MultiCoreRunGuestLoop() {
|
||||
physical_core->Run();
|
||||
physical_core = &kernel.CurrentPhysicalCore();
|
||||
}
|
||||
{
|
||||
Kernel::KScopedDisableDispatch dd(kernel);
|
||||
physical_core->ArmInterface().ClearExclusiveState();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CpuManager::MultiCoreRunIdleThread() {
|
||||
auto& kernel = system.Kernel();
|
||||
while (true) {
|
||||
Kernel::KScopedDisableDispatch dd(kernel);
|
||||
kernel.CurrentPhysicalCore().Idle();
|
||||
HandleInterrupt();
|
||||
}
|
||||
}
|
||||
|
||||
@ -110,83 +122,20 @@ void CpuManager::MultiCoreRunIdleThread() {
|
||||
/// SingleCore ///
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void CpuManager::SingleCoreRunGuestThread() {
|
||||
auto& kernel = system.Kernel();
|
||||
kernel.CurrentScheduler()->OnThreadStart();
|
||||
auto* thread = kernel.CurrentScheduler()->GetSchedulerCurrentThread();
|
||||
auto& host_context = thread->GetHostContext();
|
||||
host_context->SetRewindPoint([this] { GuestRewindFunction(); });
|
||||
SingleCoreRunGuestLoop();
|
||||
}
|
||||
void CpuManager::SingleCoreGuestActivate() {}
|
||||
|
||||
void CpuManager::SingleCoreRunGuestLoop() {
|
||||
auto& kernel = system.Kernel();
|
||||
while (true) {
|
||||
auto* physical_core = &kernel.CurrentPhysicalCore();
|
||||
if (!physical_core->IsInterrupted()) {
|
||||
physical_core->Run();
|
||||
physical_core = &kernel.CurrentPhysicalCore();
|
||||
}
|
||||
kernel.SetIsPhantomModeForSingleCore(true);
|
||||
system.CoreTiming().Advance();
|
||||
kernel.SetIsPhantomModeForSingleCore(false);
|
||||
physical_core->ArmInterface().ClearExclusiveState();
|
||||
PreemptSingleCore();
|
||||
auto& scheduler = kernel.Scheduler(current_core);
|
||||
scheduler.RescheduleCurrentCore();
|
||||
}
|
||||
}
|
||||
void CpuManager::SingleCoreRunGuestThread() {}
|
||||
|
||||
void CpuManager::SingleCoreRunIdleThread() {
|
||||
auto& kernel = system.Kernel();
|
||||
while (true) {
|
||||
auto& physical_core = kernel.CurrentPhysicalCore();
|
||||
PreemptSingleCore(false);
|
||||
system.CoreTiming().AddTicks(1000U);
|
||||
idle_count++;
|
||||
auto& scheduler = physical_core.Scheduler();
|
||||
scheduler.RescheduleCurrentCore();
|
||||
}
|
||||
}
|
||||
void CpuManager::SingleCoreRunGuestLoop() {}
|
||||
|
||||
void CpuManager::PreemptSingleCore(bool from_running_enviroment) {
|
||||
{
|
||||
auto& kernel = system.Kernel();
|
||||
auto& scheduler = kernel.Scheduler(current_core);
|
||||
Kernel::KThread* current_thread = scheduler.GetSchedulerCurrentThread();
|
||||
if (idle_count >= 4 || from_running_enviroment) {
|
||||
if (!from_running_enviroment) {
|
||||
system.CoreTiming().Idle();
|
||||
idle_count = 0;
|
||||
}
|
||||
kernel.SetIsPhantomModeForSingleCore(true);
|
||||
system.CoreTiming().Advance();
|
||||
kernel.SetIsPhantomModeForSingleCore(false);
|
||||
}
|
||||
current_core.store((current_core + 1) % Core::Hardware::NUM_CPU_CORES);
|
||||
system.CoreTiming().ResetTicks();
|
||||
scheduler.Unload(scheduler.GetSchedulerCurrentThread());
|
||||
|
||||
auto& next_scheduler = kernel.Scheduler(current_core);
|
||||
Common::Fiber::YieldTo(current_thread->GetHostContext(), *next_scheduler.ControlContext());
|
||||
}
|
||||
|
||||
// May have changed scheduler
|
||||
{
|
||||
auto& scheduler = system.Kernel().Scheduler(current_core);
|
||||
scheduler.Reload(scheduler.GetSchedulerCurrentThread());
|
||||
if (!scheduler.IsIdle()) {
|
||||
idle_count = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
void CpuManager::PreemptSingleCore(bool from_running_enviroment) {}
|
||||
|
||||
void CpuManager::ShutdownThread() {
|
||||
auto& kernel = system.Kernel();
|
||||
auto* thread = kernel.GetCurrentEmuThread();
|
||||
auto core = is_multicore ? kernel.CurrentPhysicalCoreIndex() : 0;
|
||||
auto* current_thread = kernel.GetCurrentEmuThread();
|
||||
|
||||
Common::Fiber::YieldTo(current_thread->GetHostContext(), *core_data[core].host_context);
|
||||
Common::Fiber::YieldTo(thread->GetHostContext(), *core_data[core].host_context);
|
||||
UNREACHABLE();
|
||||
}
|
||||
|
||||
@ -218,9 +167,21 @@ void CpuManager::RunThread(std::size_t core) {
|
||||
system.GPU().ObtainContext();
|
||||
}
|
||||
|
||||
auto* current_thread = system.Kernel().CurrentScheduler()->GetIdleThread();
|
||||
Kernel::SetCurrentThread(system.Kernel(), current_thread);
|
||||
Common::Fiber::YieldTo(data.host_context, *current_thread->GetHostContext());
|
||||
auto& kernel = system.Kernel();
|
||||
|
||||
auto* main_thread = Kernel::KThread::Create(kernel);
|
||||
main_thread->SetName(fmt::format("MainThread:{}", core));
|
||||
ASSERT(Kernel::KThread::InitializeMainThread(system, main_thread, static_cast<s32>(core))
|
||||
.IsSuccess());
|
||||
|
||||
auto* idle_thread = Kernel::KThread::Create(kernel);
|
||||
ASSERT(Kernel::KThread::InitializeIdleThread(system, idle_thread, static_cast<s32>(core))
|
||||
.IsSuccess());
|
||||
|
||||
kernel.SetCurrentEmuThread(main_thread);
|
||||
kernel.CurrentScheduler()->Initialize(idle_thread);
|
||||
|
||||
Common::Fiber::YieldTo(data.host_context, *main_thread->GetHostContext());
|
||||
}
|
||||
|
||||
} // namespace Core
|
||||
|
@ -5,6 +5,7 @@
|
||||
|
||||
#include <array>
|
||||
#include <atomic>
|
||||
#include <csetjmp>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <thread>
|
||||
@ -47,10 +48,14 @@ public:
|
||||
gpu_barrier->Sync();
|
||||
}
|
||||
|
||||
void WaitForAndHandleInterrupt();
|
||||
void Initialize();
|
||||
void Shutdown();
|
||||
|
||||
std::function<void()> GetGuestThreadStartFunc() {
|
||||
std::function<void()> GetGuestActivateFunc() {
|
||||
return [this] { GuestActivateFunction(); };
|
||||
}
|
||||
std::function<void()> GetGuestThreadFunc() {
|
||||
return [this] { GuestThreadFunction(); };
|
||||
}
|
||||
std::function<void()> GetIdleThreadStartFunc() {
|
||||
@ -67,21 +72,22 @@ public:
|
||||
}
|
||||
|
||||
private:
|
||||
void GuestActivateFunction();
|
||||
void GuestThreadFunction();
|
||||
void GuestRewindFunction();
|
||||
void IdleThreadFunction();
|
||||
void ShutdownThreadFunction();
|
||||
|
||||
void MultiCoreGuestActivate();
|
||||
void MultiCoreRunGuestThread();
|
||||
void MultiCoreRunGuestLoop();
|
||||
void MultiCoreRunIdleThread();
|
||||
|
||||
void SingleCoreGuestActivate();
|
||||
void SingleCoreRunGuestThread();
|
||||
void SingleCoreRunGuestLoop();
|
||||
void SingleCoreRunIdleThread();
|
||||
|
||||
static void ThreadStart(std::stop_token stop_token, CpuManager& cpu_manager, std::size_t core);
|
||||
|
||||
void HandleInterrupt();
|
||||
void ShutdownThread();
|
||||
void RunThread(std::size_t core);
|
||||
|
||||
|
@ -41,7 +41,7 @@ void GlobalSchedulerContext::PreemptThreads() {
|
||||
ASSERT(IsLocked());
|
||||
for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
|
||||
const u32 priority = preemption_priorities[core_id];
|
||||
kernel.Scheduler(core_id).RotateScheduledQueue(core_id, priority);
|
||||
KScheduler::RotateScheduledQueue(kernel, core_id, priority);
|
||||
|
||||
// Signal an interrupt occurred. For core 3, this is a certainty, as preemption will result
|
||||
// in the rotator thread being scheduled. For cores 0-2, this is to simulate or system
|
||||
|
@ -6,6 +6,7 @@
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/physical_core.h"
|
||||
|
||||
namespace Kernel::KInterruptManager {
|
||||
|
||||
@ -15,6 +16,9 @@ void HandleInterrupt(KernelCore& kernel, s32 core_id) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Acknowledge the interrupt.
|
||||
kernel.PhysicalCore(core_id).ClearInterrupt();
|
||||
|
||||
auto& current_thread = GetCurrentThread(kernel);
|
||||
|
||||
// If the user disable count is set, we may need to pin the current thread.
|
||||
@ -27,6 +31,9 @@ void HandleInterrupt(KernelCore& kernel, s32 core_id) {
|
||||
// Set the interrupt flag for the thread.
|
||||
GetCurrentThread(kernel).SetInterruptFlag();
|
||||
}
|
||||
|
||||
// Request interrupt scheduling.
|
||||
kernel.CurrentScheduler()->RequestScheduleOnInterrupt();
|
||||
}
|
||||
|
||||
} // namespace Kernel::KInterruptManager
|
||||
|
@ -27,69 +27,162 @@ static void IncrementScheduledCount(Kernel::KThread* thread) {
|
||||
}
|
||||
}
|
||||
|
||||
void KScheduler::RescheduleCores(KernelCore& kernel, u64 cores_pending_reschedule) {
|
||||
auto scheduler = kernel.CurrentScheduler();
|
||||
|
||||
u32 current_core{0xF};
|
||||
bool must_context_switch{};
|
||||
if (scheduler) {
|
||||
current_core = scheduler->core_id;
|
||||
// TODO(bunnei): Should be set to true when we deprecate single core
|
||||
must_context_switch = !kernel.IsPhantomModeForSingleCore();
|
||||
}
|
||||
|
||||
while (cores_pending_reschedule != 0) {
|
||||
const auto core = static_cast<u32>(std::countr_zero(cores_pending_reschedule));
|
||||
ASSERT(core < Core::Hardware::NUM_CPU_CORES);
|
||||
if (!must_context_switch || core != current_core) {
|
||||
auto& phys_core = kernel.PhysicalCore(core);
|
||||
phys_core.Interrupt();
|
||||
KScheduler::KScheduler(KernelCore& kernel_) : kernel{kernel_} {
|
||||
m_idle_stack = std::make_shared<Common::Fiber>([this] {
|
||||
while (true) {
|
||||
ScheduleImplOffStack();
|
||||
}
|
||||
cores_pending_reschedule &= ~(1ULL << core);
|
||||
}
|
||||
});
|
||||
|
||||
for (std::size_t core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; ++core_id) {
|
||||
if (kernel.PhysicalCore(core_id).IsInterrupted()) {
|
||||
KInterruptManager::HandleInterrupt(kernel, static_cast<s32>(core_id));
|
||||
}
|
||||
}
|
||||
m_state.needs_scheduling = true;
|
||||
}
|
||||
|
||||
if (must_context_switch) {
|
||||
auto core_scheduler = kernel.CurrentScheduler();
|
||||
kernel.ExitSVCProfile();
|
||||
core_scheduler->RescheduleCurrentCore();
|
||||
kernel.EnterSVCProfile();
|
||||
KScheduler::~KScheduler() = default;
|
||||
|
||||
void KScheduler::SetInterruptTaskRunnable() {
|
||||
m_state.interrupt_task_runnable = true;
|
||||
m_state.needs_scheduling = true;
|
||||
}
|
||||
|
||||
void KScheduler::RequestScheduleOnInterrupt() {
|
||||
m_state.needs_scheduling = true;
|
||||
|
||||
if (CanSchedule(kernel)) {
|
||||
ScheduleOnInterrupt();
|
||||
}
|
||||
}
|
||||
|
||||
u64 KScheduler::UpdateHighestPriorityThread(KThread* highest_thread) {
|
||||
KScopedSpinLock lk{guard};
|
||||
if (KThread* prev_highest_thread = state.highest_priority_thread;
|
||||
prev_highest_thread != highest_thread) {
|
||||
if (prev_highest_thread != nullptr) {
|
||||
IncrementScheduledCount(prev_highest_thread);
|
||||
prev_highest_thread->SetLastScheduledTick(system.CoreTiming().GetCPUTicks());
|
||||
void KScheduler::DisableScheduling(KernelCore& kernel) {
|
||||
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() >= 0);
|
||||
GetCurrentThread(kernel).DisableDispatch();
|
||||
}
|
||||
|
||||
void KScheduler::EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling) {
|
||||
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() >= 1);
|
||||
|
||||
auto* scheduler = kernel.CurrentScheduler();
|
||||
|
||||
if (!scheduler) {
|
||||
// HACK: we cannot schedule from this thread, it is not a core thread
|
||||
RescheduleCores(kernel, cores_needing_scheduling);
|
||||
if (GetCurrentThread(kernel).GetDisableDispatchCount() == 1) {
|
||||
// Special case to ensure dummy threads that are waiting block
|
||||
GetCurrentThread(kernel).IfDummyThreadTryWait();
|
||||
}
|
||||
if (state.should_count_idle) {
|
||||
if (highest_thread != nullptr) {
|
||||
GetCurrentThread(kernel).EnableDispatch();
|
||||
return;
|
||||
}
|
||||
|
||||
scheduler->RescheduleOtherCores(cores_needing_scheduling);
|
||||
|
||||
if (GetCurrentThread(kernel).GetDisableDispatchCount() > 1) {
|
||||
GetCurrentThread(kernel).EnableDispatch();
|
||||
} else {
|
||||
scheduler->RescheduleCurrentCore();
|
||||
}
|
||||
}
|
||||
|
||||
u64 KScheduler::UpdateHighestPriorityThreads(KernelCore& kernel) {
|
||||
if (IsSchedulerUpdateNeeded(kernel)) {
|
||||
return UpdateHighestPriorityThreadsImpl(kernel);
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
void KScheduler::Schedule() {
|
||||
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() == 1);
|
||||
ASSERT(m_core_id == GetCurrentCoreId(kernel));
|
||||
|
||||
ScheduleImpl();
|
||||
}
|
||||
|
||||
void KScheduler::ScheduleOnInterrupt() {
|
||||
GetCurrentThread(kernel).DisableDispatch();
|
||||
Schedule();
|
||||
GetCurrentThread(kernel).EnableDispatch();
|
||||
}
|
||||
|
||||
void KScheduler::RescheduleCurrentCore() {
|
||||
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() == 1);
|
||||
|
||||
GetCurrentThread(kernel).EnableDispatch();
|
||||
|
||||
if (m_state.needs_scheduling.load()) {
|
||||
// Disable interrupts, and then check again if rescheduling is needed.
|
||||
// KScopedInterruptDisable intr_disable;
|
||||
|
||||
kernel.CurrentScheduler()->RescheduleCurrentCoreImpl();
|
||||
}
|
||||
}
|
||||
|
||||
void KScheduler::RescheduleCurrentCoreImpl() {
|
||||
// Check that scheduling is needed.
|
||||
if (m_state.needs_scheduling.load()) [[likely]] {
|
||||
GetCurrentThread(kernel).DisableDispatch();
|
||||
Schedule();
|
||||
GetCurrentThread(kernel).EnableDispatch();
|
||||
}
|
||||
}
|
||||
|
||||
void KScheduler::Initialize(KThread* idle_thread) {
|
||||
// Set core ID/idle thread/interrupt task manager.
|
||||
m_core_id = GetCurrentCoreId(kernel);
|
||||
m_idle_thread = idle_thread;
|
||||
// m_state.idle_thread_stack = m_idle_thread->GetStackTop();
|
||||
// m_state.interrupt_task_manager = &kernel.GetInterruptTaskManager();
|
||||
|
||||
// Insert the main thread into the priority queue.
|
||||
// {
|
||||
// KScopedSchedulerLock lk{kernel};
|
||||
// GetPriorityQueue(kernel).PushBack(GetCurrentThreadPointer(kernel));
|
||||
// SetSchedulerUpdateNeeded(kernel);
|
||||
// }
|
||||
|
||||
// Bind interrupt handler.
|
||||
// kernel.GetInterruptManager().BindHandler(
|
||||
// GetSchedulerInterruptHandler(kernel), KInterruptName::Scheduler, m_core_id,
|
||||
// KInterruptController::PriorityLevel_Scheduler, false, false);
|
||||
|
||||
// Set the current thread.
|
||||
m_current_thread = GetCurrentThreadPointer(kernel);
|
||||
}
|
||||
|
||||
void KScheduler::Activate() {
|
||||
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() == 1);
|
||||
|
||||
// m_state.should_count_idle = KTargetSystem::IsDebugMode();
|
||||
m_is_active = true;
|
||||
RescheduleCurrentCore();
|
||||
}
|
||||
|
||||
u64 KScheduler::UpdateHighestPriorityThread(KThread* highest_thread) {
|
||||
if (KThread* prev_highest_thread = m_state.highest_priority_thread;
|
||||
prev_highest_thread != highest_thread) [[likely]] {
|
||||
if (prev_highest_thread != nullptr) [[likely]] {
|
||||
IncrementScheduledCount(prev_highest_thread);
|
||||
prev_highest_thread->SetLastScheduledTick(kernel.System().CoreTiming().GetCPUTicks());
|
||||
}
|
||||
if (m_state.should_count_idle) {
|
||||
if (highest_thread != nullptr) [[likely]] {
|
||||
if (KProcess* process = highest_thread->GetOwnerProcess(); process != nullptr) {
|
||||
process->SetRunningThread(core_id, highest_thread, state.idle_count);
|
||||
process->SetRunningThread(m_core_id, highest_thread, m_state.idle_count);
|
||||
}
|
||||
} else {
|
||||
state.idle_count++;
|
||||
m_state.idle_count++;
|
||||
}
|
||||
}
|
||||
|
||||
state.highest_priority_thread = highest_thread;
|
||||
state.needs_scheduling.store(true);
|
||||
return (1ULL << core_id);
|
||||
m_state.highest_priority_thread = highest_thread;
|
||||
m_state.needs_scheduling = true;
|
||||
return (1ULL << m_core_id);
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
|
||||
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
||||
ASSERT(IsSchedulerLockedByCurrentThread(kernel));
|
||||
|
||||
// Clear that we need to update.
|
||||
ClearSchedulerUpdateNeeded(kernel);
|
||||
@ -98,18 +191,20 @@ u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
|
||||
KThread* top_threads[Core::Hardware::NUM_CPU_CORES];
|
||||
auto& priority_queue = GetPriorityQueue(kernel);
|
||||
|
||||
/// We want to go over all cores, finding the highest priority thread and determining if
|
||||
/// scheduling is needed for that core.
|
||||
// We want to go over all cores, finding the highest priority thread and determining if
|
||||
// scheduling is needed for that core.
|
||||
for (size_t core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
|
||||
KThread* top_thread = priority_queue.GetScheduledFront(static_cast<s32>(core_id));
|
||||
if (top_thread != nullptr) {
|
||||
// If the thread has no waiters, we need to check if the process has a thread pinned.
|
||||
if (top_thread->GetNumKernelWaiters() == 0) {
|
||||
if (KProcess* parent = top_thread->GetOwnerProcess(); parent != nullptr) {
|
||||
if (KThread* pinned = parent->GetPinnedThread(static_cast<s32>(core_id));
|
||||
pinned != nullptr && pinned != top_thread) {
|
||||
// We prefer our parent's pinned thread if possible. However, we also don't
|
||||
// want to schedule un-runnable threads.
|
||||
// We need to check if the thread's process has a pinned thread.
|
||||
if (KProcess* parent = top_thread->GetOwnerProcess()) {
|
||||
// Check that there's a pinned thread other than the current top thread.
|
||||
if (KThread* pinned = parent->GetPinnedThread(static_cast<s32>(core_id));
|
||||
pinned != nullptr && pinned != top_thread) {
|
||||
// We need to prefer threads with kernel waiters to the pinned thread.
|
||||
if (top_thread->GetNumKernelWaiters() ==
|
||||
0 /* && top_thread != parent->GetExceptionThread() */) {
|
||||
// If the pinned thread is runnable, use it.
|
||||
if (pinned->GetRawState() == ThreadState::Runnable) {
|
||||
top_thread = pinned;
|
||||
} else {
|
||||
@ -129,7 +224,8 @@ u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
|
||||
|
||||
// Idle cores are bad. We're going to try to migrate threads to each idle core in turn.
|
||||
while (idle_cores != 0) {
|
||||
const auto core_id = static_cast<u32>(std::countr_zero(idle_cores));
|
||||
const s32 core_id = static_cast<s32>(std::countr_zero(idle_cores));
|
||||
|
||||
if (KThread* suggested = priority_queue.GetSuggestedFront(core_id); suggested != nullptr) {
|
||||
s32 migration_candidates[Core::Hardware::NUM_CPU_CORES];
|
||||
size_t num_candidates = 0;
|
||||
@ -150,7 +246,6 @@ u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
|
||||
// The suggested thread isn't bound to its core, so we can migrate it!
|
||||
suggested->SetActiveCore(core_id);
|
||||
priority_queue.ChangeCore(suggested_core, suggested);
|
||||
|
||||
top_threads[core_id] = suggested;
|
||||
cores_needing_scheduling |=
|
||||
kernel.Scheduler(core_id).UpdateHighestPriorityThread(top_threads[core_id]);
|
||||
@ -183,7 +278,6 @@ u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
|
||||
// Perform the migration.
|
||||
suggested->SetActiveCore(core_id);
|
||||
priority_queue.ChangeCore(candidate_core, suggested);
|
||||
|
||||
top_threads[core_id] = suggested;
|
||||
cores_needing_scheduling |=
|
||||
kernel.Scheduler(core_id).UpdateHighestPriorityThread(
|
||||
@ -200,24 +294,223 @@ u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
|
||||
return cores_needing_scheduling;
|
||||
}
|
||||
|
||||
void KScheduler::SwitchThread(KThread* next_thread) {
|
||||
KProcess* const cur_process = kernel.CurrentProcess();
|
||||
KThread* const cur_thread = GetCurrentThreadPointer(kernel);
|
||||
|
||||
// We never want to schedule a null thread, so use the idle thread if we don't have a next.
|
||||
if (next_thread == nullptr) {
|
||||
next_thread = m_idle_thread;
|
||||
}
|
||||
|
||||
if (next_thread->GetCurrentCore() != m_core_id) {
|
||||
next_thread->SetCurrentCore(m_core_id);
|
||||
}
|
||||
|
||||
// If we're not actually switching thread, there's nothing to do.
|
||||
if (next_thread == cur_thread) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Next thread is now known not to be nullptr, and must not be dispatchable.
|
||||
ASSERT(next_thread->GetDisableDispatchCount() == 1);
|
||||
ASSERT(!next_thread->IsDummyThread());
|
||||
|
||||
// Update the CPU time tracking variables.
|
||||
const s64 prev_tick = m_last_context_switch_time;
|
||||
const s64 cur_tick = kernel.System().CoreTiming().GetCPUTicks();
|
||||
const s64 tick_diff = cur_tick - prev_tick;
|
||||
cur_thread->AddCpuTime(m_core_id, tick_diff);
|
||||
if (cur_process != nullptr) {
|
||||
cur_process->UpdateCPUTimeTicks(tick_diff);
|
||||
}
|
||||
m_last_context_switch_time = cur_tick;
|
||||
|
||||
// Update our previous thread.
|
||||
if (cur_process != nullptr) {
|
||||
if (!cur_thread->IsTerminationRequested() && cur_thread->GetActiveCore() == m_core_id)
|
||||
[[likely]] {
|
||||
m_state.prev_thread = cur_thread;
|
||||
} else {
|
||||
m_state.prev_thread = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
// Switch the current process, if we're switching processes.
|
||||
// if (KProcess *next_process = next_thread->GetOwnerProcess(); next_process != cur_process) {
|
||||
// KProcess::Switch(cur_process, next_process);
|
||||
// }
|
||||
|
||||
// Set the new thread.
|
||||
SetCurrentThread(kernel, next_thread);
|
||||
m_current_thread = next_thread;
|
||||
|
||||
// Set the new Thread Local region.
|
||||
// cpu::SwitchThreadLocalRegion(GetInteger(next_thread->GetThreadLocalRegionAddress()));
|
||||
}
|
||||
|
||||
void KScheduler::ScheduleImpl() {
|
||||
// First, clear the needs scheduling bool.
|
||||
m_state.needs_scheduling.store(false, std::memory_order_seq_cst);
|
||||
|
||||
// Load the appropriate thread pointers for scheduling.
|
||||
KThread* const cur_thread{GetCurrentThreadPointer(kernel)};
|
||||
KThread* highest_priority_thread{m_state.highest_priority_thread};
|
||||
|
||||
// Check whether there are runnable interrupt tasks.
|
||||
if (m_state.interrupt_task_runnable) {
|
||||
// The interrupt task is runnable.
|
||||
// We want to switch to the interrupt task/idle thread.
|
||||
highest_priority_thread = nullptr;
|
||||
}
|
||||
|
||||
// If there aren't, we want to check if the highest priority thread is the same as the current
|
||||
// thread.
|
||||
if (highest_priority_thread == cur_thread) {
|
||||
// If they're the same, then we can just return.
|
||||
return;
|
||||
}
|
||||
|
||||
// The highest priority thread is not the same as the current thread.
|
||||
// Switch to the idle thread stack and continue executing from there.
|
||||
m_idle_cur_thread = cur_thread;
|
||||
m_idle_highest_priority_thread = highest_priority_thread;
|
||||
Common::Fiber::YieldTo(cur_thread->host_context, *m_idle_stack);
|
||||
|
||||
// Returning from ScheduleImpl occurs after this thread has been scheduled again.
|
||||
}
|
||||
|
||||
void KScheduler::ScheduleImplOffStack() {
|
||||
KThread* const cur_thread{m_idle_cur_thread};
|
||||
KThread* highest_priority_thread{m_idle_highest_priority_thread};
|
||||
|
||||
// Get a reference to the current thread's stack parameters.
|
||||
auto& sp{cur_thread->GetStackParameters()};
|
||||
|
||||
// Save the original thread context.
|
||||
{
|
||||
auto& physical_core = kernel.System().CurrentPhysicalCore();
|
||||
auto& cpu_core = physical_core.ArmInterface();
|
||||
cpu_core.SaveContext(cur_thread->GetContext32());
|
||||
cpu_core.SaveContext(cur_thread->GetContext64());
|
||||
// Save the TPIDR_EL0 system register in case it was modified.
|
||||
cur_thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0());
|
||||
cpu_core.ClearExclusiveState();
|
||||
}
|
||||
|
||||
// Check if the thread is terminated by checking the DPC flags.
|
||||
if ((sp.dpc_flags & static_cast<u32>(DpcFlag::Terminated)) == 0) {
|
||||
// The thread isn't terminated, so we want to unlock it.
|
||||
sp.m_lock.store(false, std::memory_order_seq_cst);
|
||||
}
|
||||
|
||||
// The current thread's context has been entirely taken care of.
|
||||
// Now we want to loop until we successfully switch the thread context.
|
||||
while (true) {
|
||||
// We're starting to try to do the context switch.
|
||||
// Check if the highest priority thread is null.
|
||||
if (!highest_priority_thread) {
|
||||
// The next thread is nullptr!
|
||||
// Switch to nullptr. This will actually switch to the idle thread.
|
||||
SwitchThread(nullptr);
|
||||
|
||||
// We've switched to the idle thread, so we want to process interrupt tasks until we
|
||||
// schedule a non-idle thread.
|
||||
while (!m_state.interrupt_task_runnable) {
|
||||
// Check if we need scheduling.
|
||||
if (m_state.needs_scheduling.load(std::memory_order_seq_cst)) {
|
||||
goto retry;
|
||||
}
|
||||
|
||||
// Clear the previous thread.
|
||||
m_state.prev_thread = nullptr;
|
||||
|
||||
// Wait for an interrupt before checking again.
|
||||
kernel.System().GetCpuManager().WaitForAndHandleInterrupt();
|
||||
}
|
||||
|
||||
// Execute any pending interrupt tasks.
|
||||
// m_state.interrupt_task_manager->DoTasks();
|
||||
|
||||
// Clear the interrupt task thread as runnable.
|
||||
m_state.interrupt_task_runnable = false;
|
||||
|
||||
// Retry the scheduling loop.
|
||||
goto retry;
|
||||
} else {
|
||||
// We want to try to lock the highest priority thread's context.
|
||||
// Try to take it.
|
||||
bool expected{false};
|
||||
while (!highest_priority_thread->stack_parameters.m_lock.compare_exchange_strong(
|
||||
expected, true, std::memory_order_seq_cst)) {
|
||||
// The highest priority thread's context is already locked.
|
||||
// Check if we need scheduling. If we don't, we can retry directly.
|
||||
if (m_state.needs_scheduling.load(std::memory_order_seq_cst)) {
|
||||
// If we do, another core is interfering, and we must start again.
|
||||
goto retry;
|
||||
}
|
||||
expected = false;
|
||||
}
|
||||
|
||||
// It's time to switch the thread.
|
||||
// Switch to the highest priority thread.
|
||||
SwitchThread(highest_priority_thread);
|
||||
|
||||
// Check if we need scheduling. If we do, then we can't complete the switch and should
|
||||
// retry.
|
||||
if (m_state.needs_scheduling.load(std::memory_order_seq_cst)) {
|
||||
// Our switch failed.
|
||||
// We should unlock the thread context, and then retry.
|
||||
highest_priority_thread->stack_parameters.m_lock.store(false,
|
||||
std::memory_order_seq_cst);
|
||||
goto retry;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
retry:
|
||||
|
||||
// We failed to successfully do the context switch, and need to retry.
|
||||
// Clear needs_scheduling.
|
||||
m_state.needs_scheduling.store(false, std::memory_order_seq_cst);
|
||||
|
||||
// Refresh the highest priority thread.
|
||||
highest_priority_thread = m_state.highest_priority_thread;
|
||||
}
|
||||
|
||||
// Reload the guest thread context.
|
||||
{
|
||||
auto& cpu_core = kernel.System().CurrentArmInterface();
|
||||
cpu_core.LoadContext(highest_priority_thread->GetContext32());
|
||||
cpu_core.LoadContext(highest_priority_thread->GetContext64());
|
||||
cpu_core.SetTlsAddress(highest_priority_thread->GetTLSAddress());
|
||||
cpu_core.SetTPIDR_EL0(highest_priority_thread->GetTPIDR_EL0());
|
||||
cpu_core.LoadWatchpointArray(highest_priority_thread->GetOwnerProcess()->GetWatchpoints());
|
||||
cpu_core.ClearExclusiveState();
|
||||
}
|
||||
|
||||
// Reload the host thread.
|
||||
Common::Fiber::YieldTo(m_idle_stack, *highest_priority_thread->host_context);
|
||||
}
|
||||
|
||||
void KScheduler::ClearPreviousThread(KernelCore& kernel, KThread* thread) {
|
||||
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
||||
ASSERT(IsSchedulerLockedByCurrentThread(kernel));
|
||||
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; ++i) {
|
||||
// Get an atomic reference to the core scheduler's previous thread.
|
||||
std::atomic_ref<KThread*> prev_thread(kernel.Scheduler(static_cast<s32>(i)).prev_thread);
|
||||
static_assert(std::atomic_ref<KThread*>::is_always_lock_free);
|
||||
auto& prev_thread{kernel.Scheduler(i).m_state.prev_thread};
|
||||
|
||||
// Atomically clear the previous thread if it's our target.
|
||||
KThread* compare = thread;
|
||||
prev_thread.compare_exchange_strong(compare, nullptr);
|
||||
prev_thread.compare_exchange_strong(compare, nullptr, std::memory_order_seq_cst);
|
||||
}
|
||||
}
|
||||
|
||||
void KScheduler::OnThreadStateChanged(KernelCore& kernel, KThread* thread, ThreadState old_state) {
|
||||
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
||||
ASSERT(IsSchedulerLockedByCurrentThread(kernel));
|
||||
|
||||
// Check if the state has changed, because if it hasn't there's nothing to do.
|
||||
const auto cur_state = thread->GetRawState();
|
||||
const ThreadState cur_state = thread->GetRawState();
|
||||
if (cur_state == old_state) {
|
||||
return;
|
||||
}
|
||||
@ -237,12 +530,12 @@ void KScheduler::OnThreadStateChanged(KernelCore& kernel, KThread* thread, Threa
|
||||
}
|
||||
|
||||
void KScheduler::OnThreadPriorityChanged(KernelCore& kernel, KThread* thread, s32 old_priority) {
|
||||
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
||||
ASSERT(IsSchedulerLockedByCurrentThread(kernel));
|
||||
|
||||
// If the thread is runnable, we want to change its priority in the queue.
|
||||
if (thread->GetRawState() == ThreadState::Runnable) {
|
||||
GetPriorityQueue(kernel).ChangePriority(old_priority,
|
||||
thread == kernel.GetCurrentEmuThread(), thread);
|
||||
thread == GetCurrentThreadPointer(kernel), thread);
|
||||
IncrementScheduledCount(thread);
|
||||
SetSchedulerUpdateNeeded(kernel);
|
||||
}
|
||||
@ -250,7 +543,7 @@ void KScheduler::OnThreadPriorityChanged(KernelCore& kernel, KThread* thread, s3
|
||||
|
||||
void KScheduler::OnThreadAffinityMaskChanged(KernelCore& kernel, KThread* thread,
|
||||
const KAffinityMask& old_affinity, s32 old_core) {
|
||||
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
||||
ASSERT(IsSchedulerLockedByCurrentThread(kernel));
|
||||
|
||||
// If the thread is runnable, we want to change its affinity in the queue.
|
||||
if (thread->GetRawState() == ThreadState::Runnable) {
|
||||
@ -260,15 +553,14 @@ void KScheduler::OnThreadAffinityMaskChanged(KernelCore& kernel, KThread* thread
|
||||
}
|
||||
}
|
||||
|
||||
void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) {
|
||||
ASSERT(system.GlobalSchedulerContext().IsLocked());
|
||||
void KScheduler::RotateScheduledQueue(KernelCore& kernel, s32 core_id, s32 priority) {
|
||||
ASSERT(IsSchedulerLockedByCurrentThread(kernel));
|
||||
|
||||
// Get a reference to the priority queue.
|
||||
auto& kernel = system.Kernel();
|
||||
auto& priority_queue = GetPriorityQueue(kernel);
|
||||
|
||||
// Rotate the front of the queue to the end.
|
||||
KThread* top_thread = priority_queue.GetScheduledFront(cpu_core_id, priority);
|
||||
KThread* top_thread = priority_queue.GetScheduledFront(core_id, priority);
|
||||
KThread* next_thread = nullptr;
|
||||
if (top_thread != nullptr) {
|
||||
next_thread = priority_queue.MoveToScheduledBack(top_thread);
|
||||
@ -280,7 +572,7 @@ void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) {
|
||||
|
||||
// While we have a suggested thread, try to migrate it!
|
||||
{
|
||||
KThread* suggested = priority_queue.GetSuggestedFront(cpu_core_id, priority);
|
||||
KThread* suggested = priority_queue.GetSuggestedFront(core_id, priority);
|
||||
while (suggested != nullptr) {
|
||||
// Check if the suggested thread is the top thread on its core.
|
||||
const s32 suggested_core = suggested->GetActiveCore();
|
||||
@ -301,7 +593,7 @@ void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) {
|
||||
// to the front of the queue.
|
||||
if (top_on_suggested_core == nullptr ||
|
||||
top_on_suggested_core->GetPriority() >= HighestCoreMigrationAllowedPriority) {
|
||||
suggested->SetActiveCore(cpu_core_id);
|
||||
suggested->SetActiveCore(core_id);
|
||||
priority_queue.ChangeCore(suggested_core, suggested, true);
|
||||
IncrementScheduledCount(suggested);
|
||||
break;
|
||||
@ -309,22 +601,21 @@ void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) {
|
||||
}
|
||||
|
||||
// Get the next suggestion.
|
||||
suggested = priority_queue.GetSamePriorityNext(cpu_core_id, suggested);
|
||||
suggested = priority_queue.GetSamePriorityNext(core_id, suggested);
|
||||
}
|
||||
}
|
||||
|
||||
// Now that we might have migrated a thread with the same priority, check if we can do better.
|
||||
|
||||
{
|
||||
KThread* best_thread = priority_queue.GetScheduledFront(cpu_core_id);
|
||||
KThread* best_thread = priority_queue.GetScheduledFront(core_id);
|
||||
if (best_thread == GetCurrentThreadPointer(kernel)) {
|
||||
best_thread = priority_queue.GetScheduledNext(cpu_core_id, best_thread);
|
||||
best_thread = priority_queue.GetScheduledNext(core_id, best_thread);
|
||||
}
|
||||
|
||||
// If the best thread we can choose has a priority the same or worse than ours, try to
|
||||
// migrate a higher priority thread.
|
||||
if (best_thread != nullptr && best_thread->GetPriority() >= priority) {
|
||||
KThread* suggested = priority_queue.GetSuggestedFront(cpu_core_id);
|
||||
KThread* suggested = priority_queue.GetSuggestedFront(core_id);
|
||||
while (suggested != nullptr) {
|
||||
// If the suggestion's priority is the same as ours, don't bother.
|
||||
if (suggested->GetPriority() >= best_thread->GetPriority()) {
|
||||
@ -343,7 +634,7 @@ void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) {
|
||||
if (top_on_suggested_core == nullptr ||
|
||||
top_on_suggested_core->GetPriority() >=
|
||||
HighestCoreMigrationAllowedPriority) {
|
||||
suggested->SetActiveCore(cpu_core_id);
|
||||
suggested->SetActiveCore(core_id);
|
||||
priority_queue.ChangeCore(suggested_core, suggested, true);
|
||||
IncrementScheduledCount(suggested);
|
||||
break;
|
||||
@ -351,7 +642,7 @@ void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) {
|
||||
}
|
||||
|
||||
// Get the next suggestion.
|
||||
suggested = priority_queue.GetSuggestedNext(cpu_core_id, suggested);
|
||||
suggested = priority_queue.GetSuggestedNext(core_id, suggested);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -360,64 +651,6 @@ void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) {
|
||||
SetSchedulerUpdateNeeded(kernel);
|
||||
}
|
||||
|
||||
bool KScheduler::CanSchedule(KernelCore& kernel) {
|
||||
return kernel.GetCurrentEmuThread()->GetDisableDispatchCount() <= 1;
|
||||
}
|
||||
|
||||
bool KScheduler::IsSchedulerUpdateNeeded(const KernelCore& kernel) {
|
||||
return kernel.GlobalSchedulerContext().scheduler_update_needed.load(std::memory_order_acquire);
|
||||
}
|
||||
|
||||
void KScheduler::SetSchedulerUpdateNeeded(KernelCore& kernel) {
|
||||
kernel.GlobalSchedulerContext().scheduler_update_needed.store(true, std::memory_order_release);
|
||||
}
|
||||
|
||||
void KScheduler::ClearSchedulerUpdateNeeded(KernelCore& kernel) {
|
||||
kernel.GlobalSchedulerContext().scheduler_update_needed.store(false, std::memory_order_release);
|
||||
}
|
||||
|
||||
void KScheduler::DisableScheduling(KernelCore& kernel) {
|
||||
// If we are shutting down the kernel, none of this is relevant anymore.
|
||||
if (kernel.IsShuttingDown()) {
|
||||
return;
|
||||
}
|
||||
|
||||
ASSERT(GetCurrentThreadPointer(kernel)->GetDisableDispatchCount() >= 0);
|
||||
GetCurrentThreadPointer(kernel)->DisableDispatch();
|
||||
}
|
||||
|
||||
void KScheduler::EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling) {
|
||||
// If we are shutting down the kernel, none of this is relevant anymore.
|
||||
if (kernel.IsShuttingDown()) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto* current_thread = GetCurrentThreadPointer(kernel);
|
||||
|
||||
ASSERT(current_thread->GetDisableDispatchCount() >= 1);
|
||||
|
||||
if (current_thread->GetDisableDispatchCount() > 1) {
|
||||
current_thread->EnableDispatch();
|
||||
} else {
|
||||
RescheduleCores(kernel, cores_needing_scheduling);
|
||||
}
|
||||
|
||||
// Special case to ensure dummy threads that are waiting block.
|
||||
current_thread->IfDummyThreadTryWait();
|
||||
}
|
||||
|
||||
u64 KScheduler::UpdateHighestPriorityThreads(KernelCore& kernel) {
|
||||
if (IsSchedulerUpdateNeeded(kernel)) {
|
||||
return UpdateHighestPriorityThreadsImpl(kernel);
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
KSchedulerPriorityQueue& KScheduler::GetPriorityQueue(KernelCore& kernel) {
|
||||
return kernel.GlobalSchedulerContext().priority_queue;
|
||||
}
|
||||
|
||||
void KScheduler::YieldWithoutCoreMigration(KernelCore& kernel) {
|
||||
// Validate preconditions.
|
||||
ASSERT(CanSchedule(kernel));
|
||||
@ -437,7 +670,7 @@ void KScheduler::YieldWithoutCoreMigration(KernelCore& kernel) {
|
||||
|
||||
// Perform the yield.
|
||||
{
|
||||
KScopedSchedulerLock lock(kernel);
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
const auto cur_state = cur_thread.GetRawState();
|
||||
if (cur_state == ThreadState::Runnable) {
|
||||
@ -476,7 +709,7 @@ void KScheduler::YieldWithCoreMigration(KernelCore& kernel) {
|
||||
|
||||
// Perform the yield.
|
||||
{
|
||||
KScopedSchedulerLock lock(kernel);
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
const auto cur_state = cur_thread.GetRawState();
|
||||
if (cur_state == ThreadState::Runnable) {
|
||||
@ -496,7 +729,7 @@ void KScheduler::YieldWithCoreMigration(KernelCore& kernel) {
|
||||
|
||||
if (KThread* running_on_suggested_core =
|
||||
(suggested_core >= 0)
|
||||
? kernel.Scheduler(suggested_core).state.highest_priority_thread
|
||||
? kernel.Scheduler(suggested_core).m_state.highest_priority_thread
|
||||
: nullptr;
|
||||
running_on_suggested_core != suggested) {
|
||||
// If the current thread's priority is higher than our suggestion's we prefer
|
||||
@ -564,7 +797,7 @@ void KScheduler::YieldToAnyThread(KernelCore& kernel) {
|
||||
|
||||
// Perform the yield.
|
||||
{
|
||||
KScopedSchedulerLock lock(kernel);
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
const auto cur_state = cur_thread.GetRawState();
|
||||
if (cur_state == ThreadState::Runnable) {
|
||||
@ -621,223 +854,19 @@ void KScheduler::YieldToAnyThread(KernelCore& kernel) {
|
||||
}
|
||||
}
|
||||
|
||||
KScheduler::KScheduler(Core::System& system_, s32 core_id_) : system{system_}, core_id{core_id_} {
|
||||
switch_fiber = std::make_shared<Common::Fiber>([this] { SwitchToCurrent(); });
|
||||
state.needs_scheduling.store(true);
|
||||
state.interrupt_task_thread_runnable = false;
|
||||
state.should_count_idle = false;
|
||||
state.idle_count = 0;
|
||||
state.idle_thread_stack = nullptr;
|
||||
state.highest_priority_thread = nullptr;
|
||||
}
|
||||
|
||||
void KScheduler::Finalize() {
|
||||
if (idle_thread) {
|
||||
idle_thread->Close();
|
||||
idle_thread = nullptr;
|
||||
void KScheduler::RescheduleOtherCores(u64 cores_needing_scheduling) {
|
||||
if (const u64 core_mask = cores_needing_scheduling & ~(1ULL << m_core_id); core_mask != 0) {
|
||||
RescheduleCores(kernel, core_mask);
|
||||
}
|
||||
}
|
||||
|
||||
KScheduler::~KScheduler() {
|
||||
ASSERT(!idle_thread);
|
||||
}
|
||||
|
||||
KThread* KScheduler::GetSchedulerCurrentThread() const {
|
||||
if (auto result = current_thread.load(); result) {
|
||||
return result;
|
||||
}
|
||||
return idle_thread;
|
||||
}
|
||||
|
||||
u64 KScheduler::GetLastContextSwitchTicks() const {
|
||||
return last_context_switch_time;
|
||||
}
|
||||
|
||||
void KScheduler::RescheduleCurrentCore() {
|
||||
ASSERT(GetCurrentThread(system.Kernel()).GetDisableDispatchCount() == 1);
|
||||
|
||||
auto& phys_core = system.Kernel().PhysicalCore(core_id);
|
||||
if (phys_core.IsInterrupted()) {
|
||||
phys_core.ClearInterrupt();
|
||||
}
|
||||
|
||||
guard.Lock();
|
||||
if (state.needs_scheduling.load()) {
|
||||
Schedule();
|
||||
} else {
|
||||
GetCurrentThread(system.Kernel()).EnableDispatch();
|
||||
guard.Unlock();
|
||||
}
|
||||
}
|
||||
|
||||
void KScheduler::OnThreadStart() {
|
||||
SwitchContextStep2();
|
||||
}
|
||||
|
||||
void KScheduler::Unload(KThread* thread) {
|
||||
ASSERT(thread);
|
||||
|
||||
LOG_TRACE(Kernel, "core {}, unload thread {}", core_id, thread ? thread->GetName() : "nullptr");
|
||||
|
||||
if (thread->IsCallingSvc()) {
|
||||
thread->ClearIsCallingSvc();
|
||||
}
|
||||
|
||||
auto& physical_core = system.Kernel().PhysicalCore(core_id);
|
||||
if (!physical_core.IsInitialized()) {
|
||||
return;
|
||||
}
|
||||
|
||||
Core::ARM_Interface& cpu_core = physical_core.ArmInterface();
|
||||
cpu_core.SaveContext(thread->GetContext32());
|
||||
cpu_core.SaveContext(thread->GetContext64());
|
||||
// Save the TPIDR_EL0 system register in case it was modified.
|
||||
thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0());
|
||||
cpu_core.ClearExclusiveState();
|
||||
|
||||
if (!thread->IsTerminationRequested() && thread->GetActiveCore() == core_id) {
|
||||
prev_thread = thread;
|
||||
} else {
|
||||
prev_thread = nullptr;
|
||||
}
|
||||
|
||||
thread->context_guard.unlock();
|
||||
}
|
||||
|
||||
void KScheduler::Reload(KThread* thread) {
|
||||
LOG_TRACE(Kernel, "core {}, reload thread {}", core_id, thread->GetName());
|
||||
|
||||
Core::ARM_Interface& cpu_core = system.ArmInterface(core_id);
|
||||
cpu_core.LoadContext(thread->GetContext32());
|
||||
cpu_core.LoadContext(thread->GetContext64());
|
||||
cpu_core.LoadWatchpointArray(thread->GetOwnerProcess()->GetWatchpoints());
|
||||
cpu_core.SetTlsAddress(thread->GetTLSAddress());
|
||||
cpu_core.SetTPIDR_EL0(thread->GetTPIDR_EL0());
|
||||
cpu_core.ClearExclusiveState();
|
||||
}
|
||||
|
||||
void KScheduler::SwitchContextStep2() {
|
||||
// Load context of new thread
|
||||
Reload(GetCurrentThreadPointer(system.Kernel()));
|
||||
|
||||
RescheduleCurrentCore();
|
||||
}
|
||||
|
||||
void KScheduler::Schedule() {
|
||||
ASSERT(GetCurrentThread(system.Kernel()).GetDisableDispatchCount() == 1);
|
||||
this->ScheduleImpl();
|
||||
}
|
||||
|
||||
void KScheduler::ScheduleImpl() {
|
||||
KThread* previous_thread = GetCurrentThreadPointer(system.Kernel());
|
||||
KThread* next_thread = state.highest_priority_thread;
|
||||
|
||||
state.needs_scheduling.store(false);
|
||||
|
||||
// We never want to schedule a null thread, so use the idle thread if we don't have a next.
|
||||
if (next_thread == nullptr) {
|
||||
next_thread = idle_thread;
|
||||
}
|
||||
|
||||
if (next_thread->GetCurrentCore() != core_id) {
|
||||
next_thread->SetCurrentCore(core_id);
|
||||
}
|
||||
|
||||
// We never want to schedule a dummy thread, as these are only used by host threads for locking.
|
||||
if (next_thread->GetThreadType() == ThreadType::Dummy) {
|
||||
ASSERT_MSG(false, "Dummy threads should never be scheduled!");
|
||||
next_thread = idle_thread;
|
||||
}
|
||||
|
||||
// If we're not actually switching thread, there's nothing to do.
|
||||
if (next_thread == current_thread.load()) {
|
||||
previous_thread->EnableDispatch();
|
||||
guard.Unlock();
|
||||
return;
|
||||
}
|
||||
|
||||
// Update the CPU time tracking variables.
|
||||
KProcess* const previous_process = system.Kernel().CurrentProcess();
|
||||
UpdateLastContextSwitchTime(previous_thread, previous_process);
|
||||
|
||||
// Save context for previous thread
|
||||
Unload(previous_thread);
|
||||
|
||||
std::shared_ptr<Common::Fiber>* old_context;
|
||||
old_context = &previous_thread->GetHostContext();
|
||||
|
||||
// Set the new thread.
|
||||
SetCurrentThread(system.Kernel(), next_thread);
|
||||
current_thread.store(next_thread);
|
||||
|
||||
guard.Unlock();
|
||||
|
||||
Common::Fiber::YieldTo(*old_context, *switch_fiber);
|
||||
/// When a thread wakes up, the scheduler may have changed to other in another core.
|
||||
auto& next_scheduler = *system.Kernel().CurrentScheduler();
|
||||
next_scheduler.SwitchContextStep2();
|
||||
}
|
||||
|
||||
void KScheduler::SwitchToCurrent() {
|
||||
while (true) {
|
||||
{
|
||||
KScopedSpinLock lk{guard};
|
||||
current_thread.store(state.highest_priority_thread);
|
||||
state.needs_scheduling.store(false);
|
||||
void KScheduler::RescheduleCores(KernelCore& kernel, u64 core_mask) {
|
||||
// Send IPI
|
||||
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
|
||||
if (core_mask & (1ULL << i)) {
|
||||
kernel.PhysicalCore(i).Interrupt();
|
||||
}
|
||||
const auto is_switch_pending = [this] {
|
||||
KScopedSpinLock lk{guard};
|
||||
return state.needs_scheduling.load();
|
||||
};
|
||||
do {
|
||||
auto next_thread = current_thread.load();
|
||||
if (next_thread != nullptr) {
|
||||
const auto locked = next_thread->context_guard.try_lock();
|
||||
if (state.needs_scheduling.load()) {
|
||||
next_thread->context_guard.unlock();
|
||||
break;
|
||||
}
|
||||
if (next_thread->GetActiveCore() != core_id) {
|
||||
next_thread->context_guard.unlock();
|
||||
break;
|
||||
}
|
||||
if (!locked) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
auto thread = next_thread ? next_thread : idle_thread;
|
||||
SetCurrentThread(system.Kernel(), thread);
|
||||
Common::Fiber::YieldTo(switch_fiber, *thread->GetHostContext());
|
||||
} while (!is_switch_pending());
|
||||
}
|
||||
}
|
||||
|
||||
void KScheduler::UpdateLastContextSwitchTime(KThread* thread, KProcess* process) {
|
||||
const u64 prev_switch_ticks = last_context_switch_time;
|
||||
const u64 most_recent_switch_ticks = system.CoreTiming().GetCPUTicks();
|
||||
const u64 update_ticks = most_recent_switch_ticks - prev_switch_ticks;
|
||||
|
||||
if (thread != nullptr) {
|
||||
thread->AddCpuTime(core_id, update_ticks);
|
||||
}
|
||||
|
||||
if (process != nullptr) {
|
||||
process->UpdateCPUTimeTicks(update_ticks);
|
||||
}
|
||||
|
||||
last_context_switch_time = most_recent_switch_ticks;
|
||||
}
|
||||
|
||||
void KScheduler::Initialize() {
|
||||
idle_thread = KThread::Create(system.Kernel());
|
||||
ASSERT(KThread::InitializeIdleThread(system, idle_thread, core_id).IsSuccess());
|
||||
idle_thread->SetName(fmt::format("IdleThread:{}", core_id));
|
||||
idle_thread->EnableDispatch();
|
||||
}
|
||||
|
||||
KScopedSchedulerLock::KScopedSchedulerLock(KernelCore& kernel)
|
||||
: KScopedLock(kernel.GlobalSchedulerContext().SchedulerLock()) {}
|
||||
|
||||
KScopedSchedulerLock::~KScopedSchedulerLock() = default;
|
||||
|
||||
} // namespace Kernel
|
||||
|
@ -11,6 +11,7 @@
|
||||
#include "core/hle/kernel/k_scheduler_lock.h"
|
||||
#include "core/hle/kernel/k_scoped_lock.h"
|
||||
#include "core/hle/kernel/k_spin_lock.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
|
||||
namespace Common {
|
||||
class Fiber;
|
||||
@ -23,184 +24,139 @@ class System;
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class KInterruptTaskManager;
|
||||
class KProcess;
|
||||
class SchedulerLock;
|
||||
class KThread;
|
||||
class KScopedDisableDispatch;
|
||||
class KScopedSchedulerLock;
|
||||
class KScopedSchedulerLockAndSleep;
|
||||
|
||||
class KScheduler final {
|
||||
public:
|
||||
explicit KScheduler(Core::System& system_, s32 core_id_);
|
||||
YUZU_NON_COPYABLE(KScheduler);
|
||||
YUZU_NON_MOVEABLE(KScheduler);
|
||||
|
||||
using LockType = KAbstractSchedulerLock<KScheduler>;
|
||||
|
||||
explicit KScheduler(KernelCore& kernel);
|
||||
~KScheduler();
|
||||
|
||||
void Finalize();
|
||||
void Initialize(KThread* idle_thread);
|
||||
void Activate();
|
||||
|
||||
/// Reschedules to the next available thread (call after current thread is suspended)
|
||||
void RescheduleCurrentCore();
|
||||
void SetInterruptTaskRunnable();
|
||||
void RequestScheduleOnInterrupt();
|
||||
|
||||
/// Reschedules cores pending reschedule, to be called on EnableScheduling.
|
||||
static void RescheduleCores(KernelCore& kernel, u64 cores_pending_reschedule);
|
||||
|
||||
/// The next two are for SingleCore Only.
|
||||
/// Unload current thread before preempting core.
|
||||
void Unload(KThread* thread);
|
||||
|
||||
/// Reload current thread after core preemption.
|
||||
void Reload(KThread* thread);
|
||||
|
||||
/// Gets the current running thread
|
||||
[[nodiscard]] KThread* GetSchedulerCurrentThread() const;
|
||||
|
||||
/// Gets the idle thread
|
||||
[[nodiscard]] KThread* GetIdleThread() const {
|
||||
return idle_thread;
|
||||
u64 GetIdleCount() {
|
||||
return m_state.idle_count;
|
||||
}
|
||||
|
||||
/// Returns true if the scheduler is idle
|
||||
[[nodiscard]] bool IsIdle() const {
|
||||
return GetSchedulerCurrentThread() == idle_thread;
|
||||
KThread* GetIdleThread() const {
|
||||
return m_idle_thread;
|
||||
}
|
||||
|
||||
/// Gets the timestamp for the last context switch in ticks.
|
||||
[[nodiscard]] u64 GetLastContextSwitchTicks() const;
|
||||
|
||||
[[nodiscard]] bool ContextSwitchPending() const {
|
||||
return state.needs_scheduling.load(std::memory_order_relaxed);
|
||||
KThread* GetPreviousThread() const {
|
||||
return m_state.prev_thread;
|
||||
}
|
||||
|
||||
void Initialize();
|
||||
|
||||
void OnThreadStart();
|
||||
|
||||
[[nodiscard]] std::shared_ptr<Common::Fiber>& ControlContext() {
|
||||
return switch_fiber;
|
||||
KThread* GetSchedulerCurrentThread() const {
|
||||
return m_current_thread.load();
|
||||
}
|
||||
|
||||
[[nodiscard]] const std::shared_ptr<Common::Fiber>& ControlContext() const {
|
||||
return switch_fiber;
|
||||
s64 GetLastContextSwitchTime() const {
|
||||
return m_last_context_switch_time;
|
||||
}
|
||||
|
||||
[[nodiscard]] u64 UpdateHighestPriorityThread(KThread* highest_thread);
|
||||
// Static public API.
|
||||
static bool CanSchedule(KernelCore& kernel) {
|
||||
return kernel.GetCurrentEmuThread()->GetDisableDispatchCount() == 0;
|
||||
}
|
||||
static bool IsSchedulerLockedByCurrentThread(KernelCore& kernel) {
|
||||
return kernel.GlobalSchedulerContext().scheduler_lock.IsLockedByCurrentThread();
|
||||
}
|
||||
|
||||
/**
|
||||
* Takes a thread and moves it to the back of the it's priority list.
|
||||
*
|
||||
* @note This operation can be redundant and no scheduling is changed if marked as so.
|
||||
*/
|
||||
static void YieldWithoutCoreMigration(KernelCore& kernel);
|
||||
static bool IsSchedulerUpdateNeeded(KernelCore& kernel) {
|
||||
return kernel.GlobalSchedulerContext().scheduler_update_needed;
|
||||
}
|
||||
static void SetSchedulerUpdateNeeded(KernelCore& kernel) {
|
||||
kernel.GlobalSchedulerContext().scheduler_update_needed = true;
|
||||
}
|
||||
static void ClearSchedulerUpdateNeeded(KernelCore& kernel) {
|
||||
kernel.GlobalSchedulerContext().scheduler_update_needed = false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Takes a thread and moves it to the back of the it's priority list.
|
||||
* Afterwards, tries to pick a suggested thread from the suggested queue that has worse time or
|
||||
* a better priority than the next thread in the core.
|
||||
*
|
||||
* @note This operation can be redundant and no scheduling is changed if marked as so.
|
||||
*/
|
||||
static void YieldWithCoreMigration(KernelCore& kernel);
|
||||
static void DisableScheduling(KernelCore& kernel);
|
||||
static void EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling);
|
||||
|
||||
/**
|
||||
* Takes a thread and moves it out of the scheduling queue.
|
||||
* and into the suggested queue. If no thread can be scheduled afterwards in that core,
|
||||
* a suggested thread is obtained instead.
|
||||
*
|
||||
* @note This operation can be redundant and no scheduling is changed if marked as so.
|
||||
*/
|
||||
static void YieldToAnyThread(KernelCore& kernel);
|
||||
static u64 UpdateHighestPriorityThreads(KernelCore& kernel);
|
||||
|
||||
static void ClearPreviousThread(KernelCore& kernel, KThread* thread);
|
||||
|
||||
/// Notify the scheduler a thread's status has changed.
|
||||
static void OnThreadStateChanged(KernelCore& kernel, KThread* thread, ThreadState old_state);
|
||||
|
||||
/// Notify the scheduler a thread's priority has changed.
|
||||
static void OnThreadPriorityChanged(KernelCore& kernel, KThread* thread, s32 old_priority);
|
||||
|
||||
/// Notify the scheduler a thread's core and/or affinity mask has changed.
|
||||
static void OnThreadAffinityMaskChanged(KernelCore& kernel, KThread* thread,
|
||||
const KAffinityMask& old_affinity, s32 old_core);
|
||||
|
||||
static bool CanSchedule(KernelCore& kernel);
|
||||
static bool IsSchedulerUpdateNeeded(const KernelCore& kernel);
|
||||
static void SetSchedulerUpdateNeeded(KernelCore& kernel);
|
||||
static void ClearSchedulerUpdateNeeded(KernelCore& kernel);
|
||||
static void DisableScheduling(KernelCore& kernel);
|
||||
static void EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling);
|
||||
[[nodiscard]] static u64 UpdateHighestPriorityThreads(KernelCore& kernel);
|
||||
static void RotateScheduledQueue(KernelCore& kernel, s32 core_id, s32 priority);
|
||||
static void RescheduleCores(KernelCore& kernel, u64 cores_needing_scheduling);
|
||||
|
||||
static void YieldWithoutCoreMigration(KernelCore& kernel);
|
||||
static void YieldWithCoreMigration(KernelCore& kernel);
|
||||
static void YieldToAnyThread(KernelCore& kernel);
|
||||
|
||||
private:
|
||||
friend class GlobalSchedulerContext;
|
||||
// Static private API.
|
||||
static KSchedulerPriorityQueue& GetPriorityQueue(KernelCore& kernel) {
|
||||
return kernel.GlobalSchedulerContext().priority_queue;
|
||||
}
|
||||
static u64 UpdateHighestPriorityThreadsImpl(KernelCore& kernel);
|
||||
|
||||
/**
|
||||
* Takes care of selecting the new scheduled threads in three steps:
|
||||
*
|
||||
* 1. First a thread is selected from the top of the priority queue. If no thread
|
||||
* is obtained then we move to step two, else we are done.
|
||||
*
|
||||
* 2. Second we try to get a suggested thread that's not assigned to any core or
|
||||
* that is not the top thread in that core.
|
||||
*
|
||||
* 3. Third is no suggested thread is found, we do a second pass and pick a running
|
||||
* thread in another core and swap it with its current thread.
|
||||
*
|
||||
* returns the cores needing scheduling.
|
||||
*/
|
||||
[[nodiscard]] static u64 UpdateHighestPriorityThreadsImpl(KernelCore& kernel);
|
||||
|
||||
[[nodiscard]] static KSchedulerPriorityQueue& GetPriorityQueue(KernelCore& kernel);
|
||||
|
||||
void RotateScheduledQueue(s32 cpu_core_id, s32 priority);
|
||||
// Instanced private API.
|
||||
void ScheduleImpl();
|
||||
void ScheduleImplOffStack();
|
||||
void SwitchThread(KThread* next_thread);
|
||||
|
||||
void Schedule();
|
||||
void ScheduleOnInterrupt();
|
||||
|
||||
/// Switches the CPU's active thread context to that of the specified thread
|
||||
void ScheduleImpl();
|
||||
void RescheduleOtherCores(u64 cores_needing_scheduling);
|
||||
void RescheduleCurrentCore();
|
||||
void RescheduleCurrentCoreImpl();
|
||||
|
||||
/// When a thread wakes up, it must run this through it's new scheduler
|
||||
void SwitchContextStep2();
|
||||
u64 UpdateHighestPriorityThread(KThread* thread);
|
||||
|
||||
/**
|
||||
* Called on every context switch to update the internal timestamp
|
||||
* This also updates the running time ticks for the given thread and
|
||||
* process using the following difference:
|
||||
*
|
||||
* ticks += most_recent_ticks - last_context_switch_ticks
|
||||
*
|
||||
* The internal tick timestamp for the scheduler is simply the
|
||||
* most recent tick count retrieved. No special arithmetic is
|
||||
* applied to it.
|
||||
*/
|
||||
void UpdateLastContextSwitchTime(KThread* thread, KProcess* process);
|
||||
|
||||
void SwitchToCurrent();
|
||||
|
||||
KThread* prev_thread{};
|
||||
std::atomic<KThread*> current_thread{};
|
||||
|
||||
KThread* idle_thread{};
|
||||
|
||||
std::shared_ptr<Common::Fiber> switch_fiber{};
|
||||
private:
|
||||
friend class KScopedDisableDispatch;
|
||||
|
||||
struct SchedulingState {
|
||||
std::atomic<bool> needs_scheduling{};
|
||||
bool interrupt_task_thread_runnable{};
|
||||
bool should_count_idle{};
|
||||
u64 idle_count{};
|
||||
KThread* highest_priority_thread{};
|
||||
void* idle_thread_stack{};
|
||||
std::atomic<bool> needs_scheduling{false};
|
||||
bool interrupt_task_runnable{false};
|
||||
bool should_count_idle{false};
|
||||
u64 idle_count{0};
|
||||
KThread* highest_priority_thread{nullptr};
|
||||
void* idle_thread_stack{nullptr};
|
||||
std::atomic<KThread*> prev_thread{nullptr};
|
||||
KInterruptTaskManager* interrupt_task_manager{nullptr};
|
||||
};
|
||||
|
||||
SchedulingState state;
|
||||
KernelCore& kernel;
|
||||
SchedulingState m_state;
|
||||
bool m_is_active{false};
|
||||
s32 m_core_id{0};
|
||||
s64 m_last_context_switch_time{0};
|
||||
KThread* m_idle_thread{nullptr};
|
||||
std::atomic<KThread*> m_current_thread{nullptr};
|
||||
|
||||
Core::System& system;
|
||||
u64 last_context_switch_time{};
|
||||
const s32 core_id;
|
||||
|
||||
KSpinLock guard{};
|
||||
std::shared_ptr<Common::Fiber> m_idle_stack{};
|
||||
KThread* m_idle_cur_thread{};
|
||||
KThread* m_idle_highest_priority_thread{};
|
||||
};
|
||||
|
||||
class [[nodiscard]] KScopedSchedulerLock : KScopedLock<GlobalSchedulerContext::LockType> {
|
||||
class KScopedSchedulerLock : public KScopedLock<KScheduler::LockType> {
|
||||
public:
|
||||
explicit KScopedSchedulerLock(KernelCore& kernel);
|
||||
~KScopedSchedulerLock();
|
||||
explicit KScopedSchedulerLock(KernelCore& kernel)
|
||||
: KScopedLock(kernel.GlobalSchedulerContext().scheduler_lock) {}
|
||||
~KScopedSchedulerLock() = default;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
@ -5,9 +5,11 @@
|
||||
|
||||
#include <atomic>
|
||||
#include "common/assert.h"
|
||||
#include "core/hle/kernel/k_interrupt_manager.h"
|
||||
#include "core/hle/kernel/k_spin_lock.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/physical_core.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
|
@ -261,9 +261,14 @@ Result KThread::InitializeDummyThread(KThread* thread) {
|
||||
return thread->Initialize({}, {}, {}, DummyThreadPriority, 3, {}, ThreadType::Dummy);
|
||||
}
|
||||
|
||||
Result KThread::InitializeMainThread(Core::System& system, KThread* thread, s32 virt_core) {
|
||||
return InitializeThread(thread, {}, {}, {}, IdleThreadPriority, virt_core, {}, ThreadType::Main,
|
||||
system.GetCpuManager().GetGuestActivateFunc());
|
||||
}
|
||||
|
||||
Result KThread::InitializeIdleThread(Core::System& system, KThread* thread, s32 virt_core) {
|
||||
return InitializeThread(thread, {}, {}, {}, IdleThreadPriority, virt_core, {}, ThreadType::Main,
|
||||
system.GetCpuManager().GetIdleThreadStartFunc());
|
||||
abort);
|
||||
}
|
||||
|
||||
Result KThread::InitializeHighPriorityThread(Core::System& system, KThread* thread,
|
||||
@ -277,7 +282,7 @@ Result KThread::InitializeUserThread(Core::System& system, KThread* thread, KThr
|
||||
KProcess* owner) {
|
||||
system.Kernel().GlobalSchedulerContext().AddThread(thread);
|
||||
return InitializeThread(thread, func, arg, user_stack_top, prio, virt_core, owner,
|
||||
ThreadType::User, system.GetCpuManager().GetGuestThreadStartFunc());
|
||||
ThreadType::User, system.GetCpuManager().GetGuestThreadFunc());
|
||||
}
|
||||
|
||||
void KThread::PostDestroy(uintptr_t arg) {
|
||||
@ -1058,6 +1063,8 @@ void KThread::Exit() {
|
||||
// Register the thread as a work task.
|
||||
KWorkerTaskManager::AddTask(kernel, KWorkerTaskManager::WorkerType::Exit, this);
|
||||
}
|
||||
|
||||
UNREACHABLE_MSG("KThread::Exit() would return");
|
||||
}
|
||||
|
||||
Result KThread::Sleep(s64 timeout) {
|
||||
|
@ -110,6 +110,7 @@ void SetCurrentThread(KernelCore& kernel, KThread* thread);
|
||||
[[nodiscard]] KThread* GetCurrentThreadPointer(KernelCore& kernel);
|
||||
[[nodiscard]] KThread& GetCurrentThread(KernelCore& kernel);
|
||||
[[nodiscard]] s32 GetCurrentCoreId(KernelCore& kernel);
|
||||
size_t CaptureBacktrace(void** buffer, size_t max);
|
||||
|
||||
class KThread final : public KAutoObjectWithSlabHeapAndContainer<KThread, KWorkerTask>,
|
||||
public boost::intrusive::list_base_hook<> {
|
||||
@ -413,6 +414,9 @@ public:
|
||||
|
||||
[[nodiscard]] static Result InitializeDummyThread(KThread* thread);
|
||||
|
||||
[[nodiscard]] static Result InitializeMainThread(Core::System& system, KThread* thread,
|
||||
s32 virt_core);
|
||||
|
||||
[[nodiscard]] static Result InitializeIdleThread(Core::System& system, KThread* thread,
|
||||
s32 virt_core);
|
||||
|
||||
@ -435,6 +439,7 @@ public:
|
||||
bool is_pinned;
|
||||
s32 disable_count;
|
||||
KThread* cur_thread;
|
||||
std::atomic<bool> m_lock;
|
||||
};
|
||||
|
||||
[[nodiscard]] StackParameters& GetStackParameters() {
|
||||
|
@ -75,7 +75,6 @@ struct KernelCore::Impl {
|
||||
InitializeSystemResourceLimit(kernel, system.CoreTiming());
|
||||
InitializeMemoryLayout();
|
||||
Init::InitializeKPageBufferSlabHeap(system);
|
||||
InitializeSchedulers();
|
||||
InitializeShutdownThreads();
|
||||
InitializePreemption(kernel);
|
||||
|
||||
@ -148,7 +147,6 @@ struct KernelCore::Impl {
|
||||
shutdown_threads[core_id] = nullptr;
|
||||
}
|
||||
|
||||
schedulers[core_id]->Finalize();
|
||||
schedulers[core_id].reset();
|
||||
}
|
||||
|
||||
@ -195,17 +193,11 @@ struct KernelCore::Impl {
|
||||
exclusive_monitor =
|
||||
Core::MakeExclusiveMonitor(system.Memory(), Core::Hardware::NUM_CPU_CORES);
|
||||
for (u32 i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
|
||||
schedulers[i] = std::make_unique<Kernel::KScheduler>(system, i);
|
||||
schedulers[i] = std::make_unique<Kernel::KScheduler>(system.Kernel());
|
||||
cores.emplace_back(i, system, *schedulers[i], interrupts);
|
||||
}
|
||||
}
|
||||
|
||||
void InitializeSchedulers() {
|
||||
for (u32 i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
|
||||
cores[i].Scheduler().Initialize();
|
||||
}
|
||||
}
|
||||
|
||||
// Creates the default system resource limit
|
||||
void InitializeSystemResourceLimit(KernelCore& kernel,
|
||||
const Core::Timing::CoreTiming& core_timing) {
|
||||
|
@ -887,7 +887,7 @@ static Result GetInfo(Core::System& system, u64* result, u64 info_id, Handle han
|
||||
const auto* const current_thread = GetCurrentThreadPointer(system.Kernel());
|
||||
const bool same_thread = current_thread == thread.GetPointerUnsafe();
|
||||
|
||||
const u64 prev_ctx_ticks = scheduler.GetLastContextSwitchTicks();
|
||||
const u64 prev_ctx_ticks = scheduler.GetLastContextSwitchTime();
|
||||
u64 out_ticks = 0;
|
||||
if (same_thread && info_sub_id == 0xFFFFFFFFFFFFFFFF) {
|
||||
const u64 thread_ticks = current_thread->GetCpuTime();
|
||||
@ -3026,11 +3026,6 @@ void Call(Core::System& system, u32 immediate) {
|
||||
}
|
||||
|
||||
kernel.ExitSVCProfile();
|
||||
|
||||
if (!thread->IsCallingSvc()) {
|
||||
auto* host_context = thread->GetHostContext().get();
|
||||
host_context->Rewind();
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Kernel::Svc
|
||||
|
Loading…
Reference in New Issue
Block a user