1
0
mirror of https://git.suyu.dev/suyu/suyu synced 2025-01-15 20:30:12 -06:00

General: Cleanup legacy code.

This commit is contained in:
Fernando Sahmkow 2020-04-01 17:28:49 -04:00
parent c8bf47dcfb
commit 48fa3b7a0f
19 changed files with 8 additions and 740 deletions

View File

@ -17,8 +17,6 @@ add_library(core STATIC
constants.h
core.cpp
core.h
core_manager.cpp
core_manager.h
core_timing.cpp
core_timing.h
core_timing_util.cpp

View File

@ -12,7 +12,6 @@
#include "core/arm/dynarmic/arm_dynarmic_64.h"
#include "core/arm/dynarmic/arm_dynarmic_cp15.h"
#include "core/core.h"
#include "core/core_manager.h"
#include "core/core_timing.h"
#include "core/hle/kernel/svc.h"
#include "core/memory.h"

View File

@ -11,7 +11,6 @@
#include "core/arm/cpu_interrupt_handler.h"
#include "core/arm/dynarmic/arm_dynarmic_64.h"
#include "core/core.h"
#include "core/core_manager.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/gdbstub/gdbstub.h"

View File

@ -1,51 +0,0 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <condition_variable>
#include <mutex>
#include "common/logging/log.h"
#include "core/arm/exclusive_monitor.h"
#include "core/arm/unicorn/arm_unicorn.h"
#include "core/core.h"
#include "core/core_manager.h"
#include "core/core_timing.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/physical_core.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/lock.h"
#include "core/settings.h"
namespace Core {
CoreManager::CoreManager(System& system, std::size_t core_index)
: global_scheduler{system.GlobalScheduler()}, physical_core{system.Kernel().PhysicalCore(
core_index)},
core_timing{system.CoreTiming()}, core_index{core_index} {}
CoreManager::~CoreManager() = default;
void CoreManager::RunLoop(bool tight_loop) {
/// Deprecated
}
void CoreManager::SingleStep() {
return RunLoop(false);
}
void CoreManager::PrepareReschedule() {
//physical_core.Stop();
}
void CoreManager::Reschedule() {
// Lock the global kernel mutex when we manipulate the HLE state
std::lock_guard lock(HLE::g_hle_lock);
// global_scheduler.SelectThread(core_index);
physical_core.Scheduler().TryDoContextSwitch();
}
} // namespace Core

View File

@ -1,63 +0,0 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <atomic>
#include <cstddef>
#include <memory>
#include "common/common_types.h"
namespace Kernel {
class GlobalScheduler;
class PhysicalCore;
} // namespace Kernel
namespace Core {
class System;
}
namespace Core::Timing {
class CoreTiming;
}
namespace Core::Memory {
class Memory;
}
namespace Core {
constexpr unsigned NUM_CPU_CORES{4};
class CoreManager {
public:
CoreManager(System& system, std::size_t core_index);
~CoreManager();
void RunLoop(bool tight_loop = true);
void SingleStep();
void PrepareReschedule();
bool IsMainCore() const {
return core_index == 0;
}
std::size_t CoreIndex() const {
return core_index;
}
private:
void Reschedule();
Kernel::GlobalScheduler& global_scheduler;
Kernel::PhysicalCore& physical_core;
Timing::CoreTiming& core_timing;
std::atomic<bool> reschedule_pending = false;
std::size_t core_index;
};
} // namespace Core

View File

@ -35,7 +35,6 @@
#include "common/swap.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/core_manager.h"
#include "core/gdbstub/gdbstub.h"
#include "core/hle/kernel/memory/page_table.h"
#include "core/hle/kernel/process.h"

View File

@ -34,7 +34,7 @@ ResultVal<std::shared_ptr<ClientSession>> ClientPort::Connect() {
}
// Wake the threads waiting on the ServerPort
server_port->WakeupAllWaitingThreads();
server_port->Signal();
return MakeResult(std::move(client));
}

View File

@ -48,72 +48,6 @@ MICROPROFILE_DEFINE(Kernel_SVC, "Kernel", "SVC", MP_RGB(70, 200, 70));
namespace Kernel {
/**
* Callback that will wake up the thread it was scheduled for
* @param thread_handle The handle of the thread that's been awoken
* @param cycles_late The number of CPU cycles that have passed since the desired wakeup time
*/
static void ThreadWakeupCallback(u64 thread_handle, [[maybe_unused]] s64 cycles_late) {
UNREACHABLE();
const auto proper_handle = static_cast<Handle>(thread_handle);
const auto& system = Core::System::GetInstance();
// Lock the global kernel mutex when we enter the kernel HLE.
std::lock_guard lock{HLE::g_hle_lock};
std::shared_ptr<Thread> thread =
system.Kernel().RetrieveThreadFromGlobalHandleTable(proper_handle);
if (thread == nullptr) {
LOG_CRITICAL(Kernel, "Callback fired for invalid thread {:08X}", proper_handle);
return;
}
bool resume = true;
if (thread->GetStatus() == ThreadStatus::WaitSynch ||
thread->GetStatus() == ThreadStatus::WaitHLEEvent) {
// Remove the thread from each of its waiting objects' waitlists
for (const auto& object : thread->GetSynchronizationObjects()) {
object->RemoveWaitingThread(thread);
}
thread->ClearSynchronizationObjects();
// Invoke the wakeup callback before clearing the wait objects
if (thread->HasWakeupCallback()) {
resume = thread->InvokeWakeupCallback(ThreadWakeupReason::Timeout, thread, nullptr, 0);
}
} else if (thread->GetStatus() == ThreadStatus::WaitMutex ||
thread->GetStatus() == ThreadStatus::WaitCondVar) {
thread->SetMutexWaitAddress(0);
thread->SetWaitHandle(0);
if (thread->GetStatus() == ThreadStatus::WaitCondVar) {
thread->GetOwnerProcess()->RemoveConditionVariableThread(thread);
thread->SetCondVarWaitAddress(0);
}
auto* const lock_owner = thread->GetLockOwner();
// Threads waking up by timeout from WaitProcessWideKey do not perform priority inheritance
// and don't have a lock owner unless SignalProcessWideKey was called first and the thread
// wasn't awakened due to the mutex already being acquired.
if (lock_owner != nullptr) {
lock_owner->RemoveMutexWaiter(thread);
}
}
if (thread->GetStatus() == ThreadStatus::WaitArb) {
auto& address_arbiter = thread->GetOwnerProcess()->GetAddressArbiter();
address_arbiter.HandleWakeupThread(thread);
}
if (resume) {
if (thread->GetStatus() == ThreadStatus::WaitCondVar ||
thread->GetStatus() == ThreadStatus::WaitArb) {
thread->SetWaitSynchronizationResult(RESULT_TIMEOUT);
}
thread->ResumeFromWait();
}
}
struct KernelCore::Impl {
explicit Impl(Core::System& system, KernelCore& kernel)
: global_scheduler{kernel}, synchronization{system}, time_manager{system}, system{system} {}
@ -129,7 +63,6 @@ struct KernelCore::Impl {
InitializePhysicalCores();
InitializeSystemResourceLimit(kernel);
InitializeMemoryLayout();
InitializeThreads();
InitializePreemption(kernel);
InitializeSchedulers();
InitializeSuspendThreads();
@ -161,7 +94,6 @@ struct KernelCore::Impl {
system_resource_limit = nullptr;
global_handle_table.Clear();
thread_wakeup_event_type = nullptr;
preemption_event = nullptr;
global_scheduler.Shutdown();
@ -210,11 +142,6 @@ struct KernelCore::Impl {
}
}
void InitializeThreads() {
thread_wakeup_event_type =
Core::Timing::CreateEvent("ThreadWakeupCallback", ThreadWakeupCallback);
}
void InitializePreemption(KernelCore& kernel) {
preemption_event = Core::Timing::CreateEvent(
"PreemptionCallback", [this, &kernel](u64 userdata, s64 cycles_late) {
@ -376,7 +303,6 @@ struct KernelCore::Impl {
std::shared_ptr<ResourceLimit> system_resource_limit;
std::shared_ptr<Core::Timing::EventType> thread_wakeup_event_type;
std::shared_ptr<Core::Timing::EventType> preemption_event;
// This is the kernel's handle table or supervisor handle table which
@ -516,7 +442,8 @@ std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES>& KernelCore
return impl->interrupts;
}
const std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES>& KernelCore::Interrupts() const {
const std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES>& KernelCore::Interrupts()
const {
return impl->interrupts;
}
@ -595,10 +522,6 @@ u64 KernelCore::CreateNewUserProcessID() {
return impl->next_user_process_id++;
}
const std::shared_ptr<Core::Timing::EventType>& KernelCore::ThreadWakeupCallbackEventType() const {
return impl->thread_wakeup_event_type;
}
Kernel::HandleTable& KernelCore::GlobalHandleTable() {
return impl->global_handle_table;
}

View File

@ -241,9 +241,6 @@ private:
/// Creates a new thread ID, incrementing the internal thread ID counter.
u64 CreateNewThreadID();
/// Retrieves the event type used for thread wakeup callbacks.
const std::shared_ptr<Core::Timing::EventType>& ThreadWakeupCallbackEventType() const;
/// Provides a reference to the global handle table.
Kernel::HandleTable& GlobalHandleTable();

View File

@ -16,7 +16,6 @@
#include "common/string_util.h"
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/core_manager.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/cpu_manager.h"
@ -1909,7 +1908,7 @@ static ResultCode SetThreadCoreMask(Core::System& system, Handle thread_handle,
return ERR_INVALID_COMBINATION;
}
if (core < Core::NUM_CPU_CORES) {
if (core < Core::Hardware::NUM_CPU_CORES) {
if ((affinity_mask & (1ULL << core)) == 0) {
LOG_ERROR(Kernel_SVC,
"Core is not enabled for the current mask, core={}, mask={:016X}", core,

View File

@ -38,70 +38,6 @@ void SynchronizationObject::RemoveWaitingThread(std::shared_ptr<Thread> thread)
waiting_threads.erase(itr);
}
std::shared_ptr<Thread> SynchronizationObject::GetHighestPriorityReadyThread() const {
Thread* candidate = nullptr;
u32 candidate_priority = THREADPRIO_LOWEST + 1;
for (const auto& thread : waiting_threads) {
const ThreadStatus thread_status = thread->GetStatus();
// The list of waiting threads must not contain threads that are not waiting to be awakened.
ASSERT_MSG(thread_status == ThreadStatus::WaitSynch ||
thread_status == ThreadStatus::WaitHLEEvent,
"Inconsistent thread statuses in waiting_threads");
if (thread->GetPriority() >= candidate_priority)
continue;
if (ShouldWait(thread.get()))
continue;
candidate = thread.get();
candidate_priority = thread->GetPriority();
}
return SharedFrom(candidate);
}
void SynchronizationObject::WakeupWaitingThread(std::shared_ptr<Thread> thread) {
ASSERT(!ShouldWait(thread.get()));
if (!thread) {
return;
}
if (thread->IsSleepingOnWait()) {
for (const auto& object : thread->GetSynchronizationObjects()) {
ASSERT(!object->ShouldWait(thread.get()));
object->Acquire(thread.get());
}
} else {
Acquire(thread.get());
}
const std::size_t index = thread->GetSynchronizationObjectIndex(SharedFrom(this));
thread->ClearSynchronizationObjects();
thread->CancelWakeupTimer();
bool resume = true;
if (thread->HasWakeupCallback()) {
resume = thread->InvokeWakeupCallback(ThreadWakeupReason::Signal, thread, SharedFrom(this),
index);
}
if (resume) {
thread->ResumeFromWait();
kernel.PrepareReschedule(thread->GetProcessorID());
}
}
void SynchronizationObject::WakeupAllWaitingThreads() {
while (auto thread = GetHighestPriorityReadyThread()) {
WakeupWaitingThread(thread);
}
}
void SynchronizationObject::ClearWaitingThreads() {
waiting_threads.clear();
}

View File

@ -50,21 +50,6 @@ public:
*/
void RemoveWaitingThread(std::shared_ptr<Thread> thread);
/**
* Wake up all threads waiting on this object that can be awoken, in priority order,
* and set the synchronization result and output of the thread.
*/
void /* deprecated */ WakeupAllWaitingThreads();
/**
* Wakes up a single thread waiting on this object.
* @param thread Thread that is waiting on this object to wakeup.
*/
void WakeupWaitingThread(std::shared_ptr<Thread> thread);
/// Obtains the highest priority thread that is ready to run from this object's waiting list.
std::shared_ptr<Thread> /* deprecated */ GetHighestPriorityReadyThread() const;
/// Get a const reference to the waiting threads list for debug use
const std::vector<std::shared_ptr<Thread>>& GetWaitingThreads() const;

View File

@ -56,9 +56,6 @@ Thread::~Thread() = default;
void Thread::Stop() {
{
SchedulerLock lock(kernel);
// Cancel any outstanding wakeup events for this thread
Core::System::GetInstance().CoreTiming().UnscheduleEvent(
kernel.ThreadWakeupCallbackEventType(), global_handle);
SetStatus(ThreadStatus::Dead);
Signal();
kernel.GlobalHandleTable().Close(global_handle);
@ -75,22 +72,6 @@ void Thread::Stop() {
global_handle = 0;
}
void Thread::WakeAfterDelay(s64 nanoseconds) {
// Don't schedule a wakeup if the thread wants to wait forever
if (nanoseconds == -1)
return;
// This function might be called from any thread so we have to be cautious and use the
// thread-safe version of ScheduleEvent.
Core::System::GetInstance().CoreTiming().ScheduleEvent(
nanoseconds, kernel.ThreadWakeupCallbackEventType(), global_handle);
}
void Thread::CancelWakeupTimer() {
Core::System::GetInstance().CoreTiming().UnscheduleEvent(kernel.ThreadWakeupCallbackEventType(),
global_handle);
}
void Thread::ResumeFromWait() {
SchedulerLock lock(kernel);
switch (status) {
@ -284,14 +265,6 @@ void Thread::SetPriority(u32 priority) {
UpdatePriority();
}
void Thread::SetWaitSynchronizationResult(ResultCode result) {
UNREACHABLE();
}
void Thread::SetWaitSynchronizationOutput(s32 output) {
UNREACHABLE();
}
void Thread::SetSynchronizationResults(SynchronizationObject* object, ResultCode result) {
signaling_object = object;
signaling_result = result;
@ -425,13 +398,6 @@ bool Thread::AllSynchronizationObjectsReady() const {
});
}
bool Thread::InvokeWakeupCallback(ThreadWakeupReason reason, std::shared_ptr<Thread> thread,
std::shared_ptr<SynchronizationObject> object,
std::size_t index) {
ASSERT(wakeup_callback);
return wakeup_callback(reason, std::move(thread), std::move(object), index);
}
bool Thread::InvokeHLECallback(std::shared_ptr<Thread> thread) {
ASSERT(hle_callback);
return hle_callback(std::move(thread));

View File

@ -128,9 +128,6 @@ public:
using ThreadSynchronizationObjects = std::vector<std::shared_ptr<SynchronizationObject>>;
using WakeupCallback =
std::function<bool(ThreadWakeupReason reason, std::shared_ptr<Thread> thread,
std::shared_ptr<SynchronizationObject> object, std::size_t index)>;
using HLECallback = std::function<bool(std::shared_ptr<Thread> thread)>;
/**
@ -235,7 +232,7 @@ public:
}
/// Resumes a thread from waiting
void /* deprecated */ ResumeFromWait();
void ResumeFromWait();
void OnWakeUp();
@ -249,27 +246,6 @@ public:
///
void CancelWait();
/**
* Schedules an event to wake up the specified thread after the specified delay
* @param nanoseconds The time this thread will be allowed to sleep for
*/
void /* deprecated */ WakeAfterDelay(s64 nanoseconds);
/// Cancel any outstanding wakeup events for this thread
void /* deprecated */ CancelWakeupTimer();
/**
* Sets the result after the thread awakens (from svcWaitSynchronization)
* @param result Value to set to the returned result
*/
void /*deprecated*/ SetWaitSynchronizationResult(ResultCode result);
/**
* Sets the output parameter value after the thread awakens (from svcWaitSynchronization)
* @param output Value to set to the output parameter
*/
void /*deprecated*/ SetWaitSynchronizationOutput(s32 output);
void SetSynchronizationResults(SynchronizationObject* object, ResultCode result);
Core::ARM_Interface& ArmInterface();
@ -330,11 +306,6 @@ public:
*/
VAddr GetCommandBufferAddress() const;
/// Returns whether this thread is waiting on objects from a WaitSynchronization call.
bool IsSleepingOnWait() const {
return status == ThreadStatus::WaitSynch;
}
ThreadContext32& GetContext32() {
return context_32;
}
@ -469,18 +440,10 @@ public:
arb_wait_address = address;
}
bool HasWakeupCallback() const {
return wakeup_callback != nullptr;
}
bool HasHLECallback() const {
return hle_callback != nullptr;
}
void SetWakeupCallback(WakeupCallback callback) {
wakeup_callback = std::move(callback);
}
void SetHLECallback(HLECallback callback) {
hle_callback = std::move(callback);
}
@ -501,22 +464,10 @@ public:
return hle_object;
}
void InvalidateWakeupCallback() {
SetWakeupCallback(nullptr);
}
void InvalidateHLECallback() {
SetHLECallback(nullptr);
}
/**
* Invokes the thread's wakeup callback.
*
* @pre A valid wakeup callback has been set. Violating this precondition
* will cause an assertion to trigger.
*/
bool InvokeWakeupCallback(ThreadWakeupReason reason, std::shared_ptr<Thread> thread,
std::shared_ptr<SynchronizationObject> object, std::size_t index);
bool InvokeHLECallback(std::shared_ptr<Thread> thread);
u32 GetIdealCore() const {
@ -698,11 +649,6 @@ private:
/// Handle used as userdata to reference this object when inserting into the CoreTiming queue.
Handle global_handle = 0;
/// Callback that will be invoked when the thread is resumed from a waiting state. If the thread
/// was waiting via WaitSynchronization then the object will be the last object that became
/// available. In case of a timeout, the object will be nullptr. DEPRECATED
WakeupCallback wakeup_callback;
/// Callback for HLE Events
HLECallback hle_callback;
Handle hle_time_event;

View File

@ -142,7 +142,7 @@ void SM::GetService(Kernel::HLERequestContext& ctx) {
}
// Wake the threads waiting on the ServerPort
server_port->WakeupAllWaitingThreads();
server_port->Signal();
LOG_DEBUG(Service_SM, "called service={} -> session={}", name, client->GetObjectId());
IPC::ResponseBuilder rb{ctx, 2, 0, 1, IPC::ResponseBuilder::Flags::AlwaysMoveHandles};

View File

@ -1,206 +0,0 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "core/host_timing.h"
#include <algorithm>
#include <mutex>
#include <string>
#include <tuple>
#include "common/assert.h"
#include "core/core_timing_util.h"
namespace Core::HostTiming {
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) {
return std::make_shared<EventType>(std::move(callback), std::move(name));
}
struct CoreTiming::Event {
u64 time;
u64 fifo_order;
u64 userdata;
std::weak_ptr<EventType> type;
// Sort by time, unless the times are the same, in which case sort by
// the order added to the queue
friend bool operator>(const Event& left, const Event& right) {
return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
}
friend bool operator<(const Event& left, const Event& right) {
return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
}
};
CoreTiming::CoreTiming() {
clock =
Common::CreateBestMatchingClock(Core::Hardware::BASE_CLOCK_RATE, Core::Hardware::CNTFREQ);
}
CoreTiming::~CoreTiming() = default;
void CoreTiming::ThreadEntry(CoreTiming& instance) {
instance.ThreadLoop();
}
void CoreTiming::Initialize() {
event_fifo_id = 0;
const auto empty_timed_callback = [](u64, s64) {};
ev_lost = CreateEvent("_lost_event", empty_timed_callback);
timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this));
}
void CoreTiming::Shutdown() {
paused = true;
shutting_down = true;
event.Set();
timer_thread->join();
ClearPendingEvents();
timer_thread.reset();
has_started = false;
}
void CoreTiming::Pause(bool is_paused) {
paused = is_paused;
}
void CoreTiming::SyncPause(bool is_paused) {
if (is_paused == paused && paused_set == paused) {
return;
}
Pause(is_paused);
event.Set();
while (paused_set != is_paused)
;
}
bool CoreTiming::IsRunning() const {
return !paused_set;
}
bool CoreTiming::HasPendingEvents() const {
return !(wait_set && event_queue.empty());
}
void CoreTiming::ScheduleEvent(s64 ns_into_future, const std::shared_ptr<EventType>& event_type,
u64 userdata) {
basic_lock.lock();
const u64 timeout = static_cast<u64>(GetGlobalTimeNs().count() + ns_into_future);
event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type});
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
basic_lock.unlock();
event.Set();
}
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata) {
basic_lock.lock();
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
return e.type.lock().get() == event_type.get() && e.userdata == userdata;
});
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != event_queue.end()) {
event_queue.erase(itr, event_queue.end());
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
basic_lock.unlock();
}
void CoreTiming::AddTicks(std::size_t core_index, u64 ticks) {
ticks_count[core_index] += ticks;
}
void CoreTiming::ResetTicks(std::size_t core_index) {
ticks_count[core_index] = 0;
}
u64 CoreTiming::GetCPUTicks() const {
return clock->GetCPUCycles();
}
u64 CoreTiming::GetClockTicks() const {
return clock->GetClockCycles();
}
void CoreTiming::ClearPendingEvents() {
event_queue.clear();
}
void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
basic_lock.lock();
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
return e.type.lock().get() == event_type.get();
});
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != event_queue.end()) {
event_queue.erase(itr, event_queue.end());
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
basic_lock.unlock();
}
std::optional<u64> CoreTiming::Advance() {
advance_lock.lock();
basic_lock.lock();
global_timer = GetGlobalTimeNs().count();
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
Event evt = std::move(event_queue.front());
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
event_queue.pop_back();
basic_lock.unlock();
if (auto event_type{evt.type.lock()}) {
event_type->callback(evt.userdata, global_timer - evt.time);
}
basic_lock.lock();
}
if (!event_queue.empty()) {
const u64 next_time = event_queue.front().time - global_timer;
basic_lock.unlock();
advance_lock.unlock();
return next_time;
} else {
basic_lock.unlock();
advance_lock.unlock();
return std::nullopt;
}
}
void CoreTiming::ThreadLoop() {
has_started = true;
while (!shutting_down) {
while (!paused) {
paused_set = false;
const auto next_time = Advance();
if (next_time) {
std::chrono::nanoseconds next_time_ns = std::chrono::nanoseconds(*next_time);
event.WaitFor(next_time_ns);
} else {
wait_set = true;
event.Wait();
}
wait_set = false;
}
paused_set = true;
}
}
std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const {
return clock->GetTimeNS();
}
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
return clock->GetTimeUS();
}
} // namespace Core::HostTiming

View File

@ -1,160 +0,0 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <atomic>
#include <chrono>
#include <functional>
#include <memory>
#include <mutex>
#include <optional>
#include <string>
#include <thread>
#include <vector>
#include "common/common_types.h"
#include "common/spin_lock.h"
#include "common/thread.h"
#include "common/threadsafe_queue.h"
#include "common/wall_clock.h"
#include "core/hardware_properties.h"
namespace Core::HostTiming {
/// A callback that may be scheduled for a particular core timing event.
using TimedCallback = std::function<void(u64 userdata, s64 cycles_late)>;
/// Contains the characteristics of a particular event.
struct EventType {
EventType(TimedCallback&& callback, std::string&& name)
: callback{std::move(callback)}, name{std::move(name)} {}
/// The event's callback function.
TimedCallback callback;
/// A pointer to the name of the event.
const std::string name;
};
/**
* This is a system to schedule events into the emulated machine's future. Time is measured
* in main CPU clock cycles.
*
* To schedule an event, you first have to register its type. This is where you pass in the
* callback. You then schedule events using the type id you get back.
*
* The int cyclesLate that the callbacks get is how many cycles late it was.
* So to schedule a new event on a regular basis:
* inside callback:
* ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever")
*/
class CoreTiming {
public:
CoreTiming();
~CoreTiming();
CoreTiming(const CoreTiming&) = delete;
CoreTiming(CoreTiming&&) = delete;
CoreTiming& operator=(const CoreTiming&) = delete;
CoreTiming& operator=(CoreTiming&&) = delete;
/// CoreTiming begins at the boundary of timing slice -1. An initial call to Advance() is
/// required to end slice - 1 and start slice 0 before the first cycle of code is executed.
void Initialize();
/// Tears down all timing related functionality.
void Shutdown();
/// Pauses/Unpauses the execution of the timer thread.
void Pause(bool is_paused);
/// Pauses/Unpauses the execution of the timer thread and waits until paused.
void SyncPause(bool is_paused);
/// Checks if core timing is running.
bool IsRunning() const;
/// Checks if the timer thread has started.
bool HasStarted() const {
return has_started;
}
/// Checks if there are any pending time events.
bool HasPendingEvents() const;
/// Schedules an event in core timing
void ScheduleEvent(s64 ns_into_future, const std::shared_ptr<EventType>& event_type,
u64 userdata = 0);
void UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata);
/// We only permit one event of each type in the queue at a time.
void RemoveEvent(const std::shared_ptr<EventType>& event_type);
void AddTicks(std::size_t core_index, u64 ticks);
void ResetTicks(std::size_t core_index);
/// Returns current time in emulated CPU cycles
u64 GetCPUTicks() const;
/// Returns current time in emulated in Clock cycles
u64 GetClockTicks() const;
/// Returns current time in microseconds.
std::chrono::microseconds GetGlobalTimeUs() const;
/// Returns current time in nanoseconds.
std::chrono::nanoseconds GetGlobalTimeNs() const;
/// Checks for events manually and returns time in nanoseconds for next event, threadsafe.
std::optional<u64> Advance();
private:
struct Event;
/// Clear all pending events. This should ONLY be done on exit.
void ClearPendingEvents();
static void ThreadEntry(CoreTiming& instance);
void ThreadLoop();
std::unique_ptr<Common::WallClock> clock;
u64 global_timer = 0;
std::chrono::nanoseconds start_point;
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't
// accomodated by the standard adaptor class.
std::vector<Event> event_queue;
u64 event_fifo_id = 0;
std::shared_ptr<EventType> ev_lost;
Common::Event event{};
Common::SpinLock basic_lock{};
Common::SpinLock advance_lock{};
std::unique_ptr<std::thread> timer_thread;
std::atomic<bool> paused{};
std::atomic<bool> paused_set{};
std::atomic<bool> wait_set{};
std::atomic<bool> shutting_down{};
std::atomic<bool> has_started{};
std::array<std::atomic<u64>, Core::Hardware::NUM_CPU_CORES> ticks_count{};
};
/// Creates a core timing event with the given name and callback.
///
/// @param name The name of the core timing event to create.
/// @param callback The callback to execute for the event.
///
/// @returns An EventType instance representing the created event.
///
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback);
} // namespace Core::HostTiming

View File

@ -39,6 +39,7 @@ u64 callbacks_done = 0;
struct ScopeInit final {
ScopeInit() {
core_timing.SetMulticore(true);
core_timing.Initialize([]() {});
}
~ScopeInit() {

View File

@ -340,7 +340,7 @@ std::vector<std::unique_ptr<WaitTreeItem>> WaitTreeThread::GetChildren() const {
if (thread.GetStatus() == Kernel::ThreadStatus::WaitSynch) {
list.push_back(std::make_unique<WaitTreeObjectList>(thread.GetSynchronizationObjects(),
thread.IsSleepingOnWait()));
thread.IsWaitingSync()));
}
list.push_back(std::make_unique<WaitTreeCallstack>(thread));