1
0
mirror of https://git.suyu.dev/suyu/suyu synced 2025-01-15 20:30:12 -06:00

const, pack result_vector and replicate tables,

undo amd opts
This commit is contained in:
Ameer J 2023-08-01 17:22:03 -04:00
parent 998246efc2
commit 5248fa926d

View File

@ -57,20 +57,40 @@ const uint GOB_SIZE_SHIFT = GOB_SIZE_X_SHIFT + GOB_SIZE_Y_SHIFT;
const uint BYTES_PER_BLOCK_LOG2 = 4;
const int JUST_BITS = 0;
const int QUINT = 1;
const int TRIT = 2;
const uint JUST_BITS = 0u;
const uint QUINT = 1u;
const uint TRIT = 2u;
// ASTC Encodings data, sorted in ascending order based on their BitLength value
// (see GetBitLength() function)
const EncodingData encoding_values[22] = EncodingData[](
EncodingData(JUST_BITS), EncodingData(JUST_BITS | (1u << 8u)), EncodingData(TRIT), EncodingData(JUST_BITS | (2u << 8u)),
EncodingData(QUINT), EncodingData(TRIT | (1u << 8u)), EncodingData(JUST_BITS | (3u << 8u)), EncodingData(QUINT | (1u << 8u)),
EncodingData(TRIT | (2u << 8u)), EncodingData(JUST_BITS | (4u << 8u)), EncodingData(QUINT | (2u << 8u)), EncodingData(TRIT | (3u << 8u)),
EncodingData(JUST_BITS | (5u << 8u)), EncodingData(QUINT | (3u << 8u)), EncodingData(TRIT | (4u << 8u)), EncodingData(JUST_BITS | (6u << 8u)),
EncodingData(QUINT | (4u << 8u)), EncodingData(TRIT | (5u << 8u)), EncodingData(JUST_BITS | (7u << 8u)), EncodingData(QUINT | (5u << 8u)),
EncodingData(TRIT | (6u << 8u)), EncodingData(JUST_BITS | (8u << 8u))
);
const uvec4 encoding_values[6] = uvec4[](
uvec4((JUST_BITS), (JUST_BITS | (1u << 8u)), (TRIT), (JUST_BITS | (2u << 8u))),
uvec4((QUINT), (TRIT | (1u << 8u)), (JUST_BITS | (3u << 8u)), (QUINT | (1u << 8u))),
uvec4((TRIT | (2u << 8u)), (JUST_BITS | (4u << 8u)), (QUINT | (2u << 8u)), (TRIT | (3u << 8u))),
uvec4((JUST_BITS | (5u << 8u)), (QUINT | (3u << 8u)), (TRIT | (4u << 8u)), (JUST_BITS | (6u << 8u))),
uvec4((QUINT | (4u << 8u)), (TRIT | (5u << 8u)), (JUST_BITS | (7u << 8u)), (QUINT | (5u << 8u))),
uvec4((TRIT | (6u << 8u)), (JUST_BITS | (8u << 8u)), 0u, 0u));
// Input ASTC texture globals
int total_bitsread = 0;
uvec4 local_buff;
// Color data globals
uvec4 color_endpoint_data;
int color_bitsread = 0;
// Global "vector" to be pushed into when decoding
// At most will require BLOCK_WIDTH x BLOCK_HEIGHT in single plane mode
// At most will require BLOCK_WIDTH x BLOCK_HEIGHT x 2 in dual plane mode
// So the maximum would be 144 (12 x 12) elements, x 2 for two planes
#define DIVCEIL(number, divisor) (number + divisor - 1) / divisor
#define ARRAY_NUM_ELEMENTS 144
#define VECTOR_ARRAY_SIZE DIVCEIL(ARRAY_NUM_ELEMENTS * 2, 4)
uvec4 result_vector[VECTOR_ARRAY_SIZE];
int result_index = 0;
uint result_vector_max_index;
bool result_limit_reached = false;
// EncodingData helpers
uint Encoding(EncodingData val) {
@ -104,78 +124,17 @@ EncodingData CreateEncodingData(uint encoding, uint num_bits, uint bit_val, uint
((bit_val) << 16u) | ((quint_trit_val) << 24u));
}
// The following constants are expanded variants of the Replicate()
// function calls corresponding to the following arguments:
// value: index into the generated table
// num_bits: the after "REPLICATE" in the table name. i.e. 4 is num_bits in REPLICATE_4.
// to_bit: the integer after "TO_"
const uint REPLICATE_BIT_TO_7_TABLE[2] = uint[](0, 127);
const uint REPLICATE_1_BIT_TO_9_TABLE[2] = uint[](0, 511);
const uint REPLICATE_1_BIT_TO_8_TABLE[2] = uint[](0, 255);
const uint REPLICATE_2_BIT_TO_8_TABLE[4] = uint[](0, 85, 170, 255);
const uint REPLICATE_3_BIT_TO_8_TABLE[8] = uint[](0, 36, 73, 109, 146, 182, 219, 255);
const uint REPLICATE_4_BIT_TO_8_TABLE[16] =
uint[](0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255);
const uint REPLICATE_5_BIT_TO_8_TABLE[32] =
uint[](0, 8, 16, 24, 33, 41, 49, 57, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, 148, 156, 165,
173, 181, 189, 198, 206, 214, 222, 231, 239, 247, 255);
const uint REPLICATE_1_BIT_TO_6_TABLE[2] = uint[](0, 63);
const uint REPLICATE_2_BIT_TO_6_TABLE[4] = uint[](0, 21, 42, 63);
const uint REPLICATE_3_BIT_TO_6_TABLE[8] = uint[](0, 9, 18, 27, 36, 45, 54, 63);
const uint REPLICATE_4_BIT_TO_6_TABLE[16] =
uint[](0, 4, 8, 12, 17, 21, 25, 29, 34, 38, 42, 46, 51, 55, 59, 63);
const uint REPLICATE_5_BIT_TO_6_TABLE[32] =
uint[](0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 45,
47, 49, 51, 53, 55, 57, 59, 61, 63);
const uint REPLICATE_6_BIT_TO_8_TABLE[64] =
uint[](0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 65, 69, 73, 77, 81, 85, 89,
93, 97, 101, 105, 109, 113, 117, 121, 125, 130, 134, 138, 142, 146, 150, 154, 158, 162,
166, 170, 174, 178, 182, 186, 190, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235,
239, 243, 247, 251, 255);
const uint REPLICATE_7_BIT_TO_8_TABLE[128] =
uint[](0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44,
46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88,
90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126,
129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163,
165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199,
201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235,
237, 239, 241, 243, 245, 247, 249, 251, 253, 255);
// Input ASTC texture globals
int total_bitsread = 0;
uvec4 local_buff;
// Color data globals
uvec4 color_endpoint_data;
int color_bitsread = 0;
// Four values, two endpoints, four maximum partitions
uint color_values[32];
int colvals_index = 0;
// Global "vectors" to be pushed into when decoding
EncodingData result_vector[144];
int result_index = 0;
// Replicates low num_bits such that [(to_bit - 1):(to_bit - 1 - from_bit)]
// is the same as [(num_bits - 1):0] and repeats all the way down.
uint Replicate(uint val, uint num_bits, uint to_bit) {
const uint v = val & uint((1 << num_bits) - 1);
uint res = v;
uint reslen = num_bits;
while (reslen < to_bit) {
uint comp = 0;
if (num_bits > to_bit - reslen) {
uint newshift = to_bit - reslen;
comp = num_bits - newshift;
num_bits = newshift;
}
res = uint(res << num_bits);
res = uint(res | (v >> comp));
reslen += num_bits;
void ResultEmplaceBack(EncodingData val) {
if (result_index >= result_vector_max_index) {
// Alert callers to avoid decoding more than needed by this phase
result_limit_reached = true;
return;
}
return res;
const uint array_index = result_index / 4;
const uint vector_index = result_index % 4;
result_vector[array_index][vector_index] = val.data;
++result_index;
}
uvec4 ReplicateByteTo16(uvec4 value) {
@ -183,64 +142,105 @@ uvec4 ReplicateByteTo16(uvec4 value) {
}
uint ReplicateBitTo7(uint value) {
return REPLICATE_BIT_TO_7_TABLE[value];
return value * 127;
}
uint ReplicateBitTo9(uint value) {
return REPLICATE_1_BIT_TO_9_TABLE[value];
}
uint FastReplicate(uint value, uint num_bits, uint to_bit) {
if (num_bits == 0) {
return 0;
}
if (num_bits == to_bit) {
return value;
}
if (to_bit == 6) {
switch (num_bits) {
case 1:
return REPLICATE_1_BIT_TO_6_TABLE[value];
case 2:
return REPLICATE_2_BIT_TO_6_TABLE[value];
case 3:
return REPLICATE_3_BIT_TO_6_TABLE[value];
case 4:
return REPLICATE_4_BIT_TO_6_TABLE[value];
case 5:
return REPLICATE_5_BIT_TO_6_TABLE[value];
default:
break;
}
} else { /* if (to_bit == 8) */
switch (num_bits) {
case 1:
return REPLICATE_1_BIT_TO_8_TABLE[value];
case 2:
return REPLICATE_2_BIT_TO_8_TABLE[value];
case 3:
return REPLICATE_3_BIT_TO_8_TABLE[value];
case 4:
return REPLICATE_4_BIT_TO_8_TABLE[value];
case 5:
return REPLICATE_5_BIT_TO_8_TABLE[value];
case 6:
return REPLICATE_6_BIT_TO_8_TABLE[value];
case 7:
return REPLICATE_7_BIT_TO_8_TABLE[value];
default:
break;
}
}
return Replicate(value, num_bits, to_bit);
return value * 511;
}
uint FastReplicateTo8(uint value, uint num_bits) {
return FastReplicate(value, num_bits, 8);
if (value == 0) {
return 0;
}
const uint array_index = value / 4;
const uint vector_index = value % 4;
switch (num_bits) {
case 1:
return 255;
case 2: {
const uvec4 REPLICATE_2_BIT_TO_8_TABLE = (uvec4(0, 85, 170, 255));
return REPLICATE_2_BIT_TO_8_TABLE[vector_index];
}
case 3: {
const uvec4 REPLICATE_3_BIT_TO_8_TABLE[2] =
uvec4[](uvec4(0, 36, 73, 109), uvec4(146, 182, 219, 255));
return REPLICATE_3_BIT_TO_8_TABLE[array_index][vector_index];
}
case 4: {
const uvec4 REPLICATE_4_BIT_TO_8_TABLE[4] =
uvec4[](uvec4(0, 17, 34, 51), uvec4(68, 85, 102, 119), uvec4(136, 153, 170, 187),
uvec4(204, 221, 238, 255));
return REPLICATE_4_BIT_TO_8_TABLE[array_index][vector_index];
}
case 5: {
const uvec4 REPLICATE_5_BIT_TO_8_TABLE[8] =
uvec4[](uvec4(0, 8, 16, 24), uvec4(33, 41, 49, 57), uvec4(66, 74, 82, 90),
uvec4(99, 107, 115, 123), uvec4(132, 140, 148, 156), uvec4(165, 173, 181, 189),
uvec4(198, 206, 214, 222), uvec4(231, 239, 247, 255));
return REPLICATE_5_BIT_TO_8_TABLE[array_index][vector_index];
}
case 6: {
const uvec4 REPLICATE_6_BIT_TO_8_TABLE[16] = uvec4[](
uvec4(0, 4, 8, 12), uvec4(16, 20, 24, 28), uvec4(32, 36, 40, 44), uvec4(48, 52, 56, 60),
uvec4(65, 69, 73, 77), uvec4(81, 85, 89, 93), uvec4(97, 101, 105, 109),
uvec4(113, 117, 121, 125), uvec4(130, 134, 138, 142), uvec4(146, 150, 154, 158),
uvec4(162, 166, 170, 174), uvec4(178, 182, 186, 190), uvec4(195, 199, 203, 207),
uvec4(211, 215, 219, 223), uvec4(227, 231, 235, 239), uvec4(243, 247, 251, 255));
return REPLICATE_6_BIT_TO_8_TABLE[array_index][vector_index];
}
case 7: {
const uvec4 REPLICATE_7_BIT_TO_8_TABLE[32] =
uvec4[](uvec4(0, 2, 4, 6), uvec4(8, 10, 12, 14), uvec4(16, 18, 20, 22),
uvec4(24, 26, 28, 30), uvec4(32, 34, 36, 38), uvec4(40, 42, 44, 46),
uvec4(48, 50, 52, 54), uvec4(56, 58, 60, 62), uvec4(64, 66, 68, 70),
uvec4(72, 74, 76, 78), uvec4(80, 82, 84, 86), uvec4(88, 90, 92, 94),
uvec4(96, 98, 100, 102), uvec4(104, 106, 108, 110), uvec4(112, 114, 116, 118),
uvec4(120, 122, 124, 126), uvec4(129, 131, 133, 135), uvec4(137, 139, 141, 143),
uvec4(145, 147, 149, 151), uvec4(153, 155, 157, 159), uvec4(161, 163, 165, 167),
uvec4(169, 171, 173, 175), uvec4(177, 179, 181, 183), uvec4(185, 187, 189, 191),
uvec4(193, 195, 197, 199), uvec4(201, 203, 205, 207), uvec4(209, 211, 213, 215),
uvec4(217, 219, 221, 223), uvec4(225, 227, 229, 231), uvec4(233, 235, 237, 239),
uvec4(241, 243, 245, 247), uvec4(249, 251, 253, 255));
return REPLICATE_7_BIT_TO_8_TABLE[array_index][vector_index];
}
}
return value;
}
uint FastReplicateTo6(uint value, uint num_bits) {
return FastReplicate(value, num_bits, 6);
if (value == 0) {
return 0;
}
const uint array_index = value / 4;
const uint vector_index = value % 4;
switch (num_bits) {
case 1:
return 63;
case 2: {
const uvec4 REPLICATE_2_BIT_TO_6_TABLE = uvec4(0, 21, 42, 63);
return REPLICATE_2_BIT_TO_6_TABLE[vector_index];
}
case 3: {
const uvec4 REPLICATE_3_BIT_TO_6_TABLE[2] =
uvec4[](uvec4(0, 9, 18, 27), uvec4(36, 45, 54, 63));
return REPLICATE_3_BIT_TO_6_TABLE[array_index][vector_index];
}
case 4: {
const uvec4 REPLICATE_4_BIT_TO_6_TABLE[4] =
uvec4[](uvec4(0, 4, 8, 12), uvec4(17, 21, 25, 29), uvec4(34, 38, 42, 46),
uvec4(51, 55, 59, 63));
return REPLICATE_4_BIT_TO_6_TABLE[array_index][vector_index];
}
case 5: {
const uvec4 REPLICATE_5_BIT_TO_6_TABLE[8] =
uvec4[](uvec4(0, 2, 4, 6), uvec4(8, 10, 12, 14), uvec4(16, 18, 20, 22),
uvec4(24, 26, 28, 30), uvec4(33, 35, 37, 39), uvec4(41, 43, 45, 47),
uvec4(49, 51, 53, 55), uvec4(57, 59, 61, 63));
return REPLICATE_5_BIT_TO_6_TABLE[array_index][vector_index];
}
}
return value;
}
uint Div3Floor(uint v) {
@ -281,7 +281,7 @@ uint Select2DPartition(uint seed, uint x, uint y, uint partition_count, bool sma
seed += (partition_count - 1) * 1024;
uint rnum = Hash52(uint(seed));
const uint rnum = Hash52(uint(seed));
uint seed1 = uint(rnum & 0xF);
uint seed2 = uint((rnum >> 4) & 0xF);
uint seed3 = uint((rnum >> 8) & 0xF);
@ -364,8 +364,8 @@ uint ExtractBits(uvec4 payload, int offset, int bits) {
}
uint StreamBits(uint num_bits) {
int int_bits = int(num_bits);
uint ret = ExtractBits(local_buff, total_bitsread, int_bits);
const int int_bits = int(num_bits);
const uint ret = ExtractBits(local_buff, total_bitsread, int_bits);
total_bitsread += int_bits;
return ret;
}
@ -382,14 +382,18 @@ uint StreamColorBits(uint num_bits) {
return ret;
}
void ResultEmplaceBack(EncodingData val) {
result_vector[result_index] = val;
++result_index;
EncodingData GetEncodingFromVector(uint index) {
const uint array_index = index / 4;
const uint vector_index = index % 4;
const uint data = result_vector[array_index][vector_index];
return EncodingData(data);
}
// Returns the number of bits required to encode n_vals values.
uint GetBitLength(uint n_vals, uint encoding_index) {
const EncodingData encoding_value = encoding_values[encoding_index];
const EncodingData encoding_value =
EncodingData(encoding_values[encoding_index / 4][encoding_index % 4]);
const uint encoding = Encoding(encoding_value);
uint total_bits = NumBits(encoding_value) * n_vals;
if (encoding == TRIT) {
@ -409,7 +413,7 @@ uint GetNumWeightValues(uvec2 size, bool dual_plane) {
}
uint GetPackedBitSize(uvec2 size, bool dual_plane, uint max_weight) {
uint n_vals = GetNumWeightValues(size, dual_plane);
const uint n_vals = GetNumWeightValues(size, dual_plane);
return GetBitLength(n_vals, max_weight);
}
@ -418,13 +422,13 @@ uint BitsBracket(uint bits, uint pos) {
}
uint BitsOp(uint bits, uint start, uint end) {
uint mask = (1 << (end - start + 1)) - 1;
const uint mask = (1 << (end - start + 1)) - 1;
return ((bits >> start) & mask);
}
void DecodeQuintBlock(uint num_bits) {
uint m[3];
uint q[3];
uvec3 m;
uvec3 q;
uint Q;
m[0] = StreamColorBits(num_bits);
Q = StreamColorBits(3);
@ -433,25 +437,25 @@ void DecodeQuintBlock(uint num_bits) {
m[2] = StreamColorBits(num_bits);
Q |= StreamColorBits(2) << 5;
if (BitsOp(Q, 1, 2) == 3 && BitsOp(Q, 5, 6) == 0) {
q[0] = 4;
q[1] = 4;
q[2] = (BitsBracket(Q, 0) << 2) | ((BitsBracket(Q, 4) & ~BitsBracket(Q, 0)) << 1) |
(BitsBracket(Q, 3) & ~BitsBracket(Q, 0));
q.x = 4;
q.y = 4;
q.z = (BitsBracket(Q, 0) << 2) | ((BitsBracket(Q, 4) & ~BitsBracket(Q, 0)) << 1) |
(BitsBracket(Q, 3) & ~BitsBracket(Q, 0));
} else {
uint C = 0;
if (BitsOp(Q, 1, 2) == 3) {
q[2] = 4;
q.z = 4;
C = (BitsOp(Q, 3, 4) << 3) | ((~BitsOp(Q, 5, 6) & 3) << 1) | BitsBracket(Q, 0);
} else {
q[2] = BitsOp(Q, 5, 6);
q.z = BitsOp(Q, 5, 6);
C = BitsOp(Q, 0, 4);
}
if (BitsOp(C, 0, 2) == 5) {
q[1] = 4;
q[0] = BitsOp(C, 3, 4);
q.y = 4;
q.x = BitsOp(C, 3, 4);
} else {
q[1] = BitsOp(C, 3, 4);
q[0] = BitsOp(C, 0, 2);
q.y = BitsOp(C, 3, 4);
q.x = BitsOp(C, 0, 2);
}
}
for (uint i = 0; i < 3; i++) {
@ -509,11 +513,11 @@ void DecodeTritBlock(uint num_bits) {
}
void DecodeIntegerSequence(uint max_range, uint num_values) {
EncodingData val = encoding_values[max_range];
EncodingData val = EncodingData(encoding_values[max_range / 4][max_range % 4]);
const uint encoding = Encoding(val);
const uint num_bits = NumBits(val);
uint vals_decoded = 0;
while (vals_decoded < num_values) {
while (vals_decoded < num_values && !result_limit_reached) {
switch (encoding) {
case QUINT:
DecodeQuintBlock(num_bits);
@ -532,7 +536,8 @@ void DecodeIntegerSequence(uint max_range, uint num_values) {
}
}
void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) {
void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits,
out uvec4 color_values[8]) {
uint num_values = 0;
for (uint i = 0; i < num_partitions; i++) {
num_values += ((modes[i] >> 2) + 1) << 1;
@ -540,8 +545,8 @@ void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) {
// Find the largest encoding that's within color_data_bits
// TODO(ameerj): profile with binary search
int range = 0;
while (++range < encoding_values.length()) {
uint bit_length = GetBitLength(num_values, range);
while (++range < ((encoding_values.length() * 4) - 2)) {
const uint bit_length = GetBitLength(num_values, range);
if (bit_length > color_data_bits) {
break;
}
@ -552,7 +557,7 @@ void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) {
if (out_index >= num_values) {
break;
}
const EncodingData val = result_vector[itr];
const EncodingData val = GetEncodingFromVector(itr);
const uint encoding = Encoding(val);
const uint bitlen = NumBits(val);
const uint bitval = BitValue(val);
@ -560,7 +565,8 @@ void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) {
A = ReplicateBitTo9((bitval & 1));
switch (encoding) {
case JUST_BITS:
color_values[out_index++] = FastReplicateTo8(bitval, bitlen);
color_values[out_index / 4][out_index % 4] = FastReplicateTo8(bitval, bitlen);
++out_index;
break;
case TRIT: {
D = QuintTritValue(val);
@ -570,31 +576,31 @@ void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) {
break;
case 2: {
C = 93;
uint b = (bitval >> 1) & 1;
const uint b = (bitval >> 1) & 1;
B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
break;
}
case 3: {
C = 44;
uint cb = (bitval >> 1) & 3;
const uint cb = (bitval >> 1) & 3;
B = (cb << 7) | (cb << 2) | cb;
break;
}
case 4: {
C = 22;
uint dcb = (bitval >> 1) & 7;
const uint dcb = (bitval >> 1) & 7;
B = (dcb << 6) | dcb;
break;
}
case 5: {
C = 11;
uint edcb = (bitval >> 1) & 0xF;
const uint edcb = (bitval >> 1) & 0xF;
B = (edcb << 5) | (edcb >> 2);
break;
}
case 6: {
C = 5;
uint fedcb = (bitval >> 1) & 0x1F;
const uint fedcb = (bitval >> 1) & 0x1F;
B = (fedcb << 4) | (fedcb >> 4);
break;
}
@ -609,25 +615,25 @@ void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) {
break;
case 2: {
C = 54;
uint b = (bitval >> 1) & 1;
const uint b = (bitval >> 1) & 1;
B = (b << 8) | (b << 3) | (b << 2);
break;
}
case 3: {
C = 26;
uint cb = (bitval >> 1) & 3;
const uint cb = (bitval >> 1) & 3;
B = (cb << 7) | (cb << 1) | (cb >> 1);
break;
}
case 4: {
C = 13;
uint dcb = (bitval >> 1) & 7;
const uint dcb = (bitval >> 1) & 7;
B = (dcb << 6) | (dcb >> 1);
break;
}
case 5: {
C = 6;
uint edcb = (bitval >> 1) & 0xF;
const uint edcb = (bitval >> 1) & 0xF;
B = (edcb << 5) | (edcb >> 3);
break;
}
@ -639,7 +645,8 @@ void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) {
uint T = (D * C) + B;
T ^= A;
T = (A & 0x80) | (T >> 2);
color_values[out_index++] = T;
color_values[out_index / 4][out_index % 4] = T;
++out_index;
}
}
}
@ -657,25 +664,30 @@ ivec2 BitTransferSigned(int a, int b) {
}
uvec4 ClampByte(ivec4 color) {
const uvec4 clamped = uvec4(clamp(color, 0, 255));
return clamped;
for (uint i = 0; i < 4; ++i) {
color[i] = clamp(color[i], 0, 255);
}
return uvec4(color);
}
ivec4 BlueContract(int a, int r, int g, int b) {
return ivec4(a, (r + b) >> 1, (g + b) >> 1, b);
}
void ComputeEndpoints(out uvec4 ep1, out uvec4 ep2, uint color_endpoint_mode) {
void ComputeEndpoints(out uvec4 ep1, out uvec4 ep2, uint color_endpoint_mode,
in uvec4 color_values[8], inout uint colvals_index) {
#define READ_UINT_VALUES(N) \
uint v[N]; \
for (uint i = 0; i < N; i++) { \
v[i] = color_values[colvals_index++]; \
v[i] = color_values[colvals_index / 4][colvals_index % 4]; \
++colvals_index; \
}
#define READ_INT_VALUES(N) \
int v[N]; \
for (uint i = 0; i < N; i++) { \
v[i] = int(color_values[colvals_index++]); \
v[i] = int(color_values[colvals_index / 4][colvals_index % 4]); \
++colvals_index; \
}
switch (color_endpoint_mode) {
@ -687,8 +699,8 @@ void ComputeEndpoints(out uvec4 ep1, out uvec4 ep2, uint color_endpoint_mode) {
}
case 1: {
READ_UINT_VALUES(2)
uint L0 = (v[0] >> 2) | (v[1] & 0xC0);
uint L1 = min(L0 + (v[1] & 0x3F), 0xFFU);
const uint L0 = (v[0] >> 2) | (v[1] & 0xC0);
const uint L1 = min(L0 + (v[1] & 0x3F), 0xFFU);
ep1 = uvec4(0xFF, L0, L0, L0);
ep2 = uvec4(0xFF, L1, L1, L1);
break;
@ -817,7 +829,7 @@ uint UnquantizeTexelWeight(EncodingData val) {
D = QuintTritValue(val);
switch (bitlen) {
case 0: {
uint results[3] = {0, 32, 63};
const uint results[3] = {0, 32, 63};
result = results[D];
break;
}
@ -827,13 +839,13 @@ uint UnquantizeTexelWeight(EncodingData val) {
}
case 2: {
C = 23;
uint b = (bitval >> 1) & 1;
const uint b = (bitval >> 1) & 1;
B = (b << 6) | (b << 2) | b;
break;
}
case 3: {
C = 11;
uint cb = (bitval >> 1) & 3;
const uint cb = (bitval >> 1) & 3;
B = (cb << 5) | cb;
break;
}
@ -846,7 +858,7 @@ uint UnquantizeTexelWeight(EncodingData val) {
D = QuintTritValue(val);
switch (bitlen) {
case 0: {
uint results[5] = {0, 16, 32, 47, 63};
const uint results[5] = {0, 16, 32, 47, 63};
result = results[D];
break;
}
@ -856,7 +868,7 @@ uint UnquantizeTexelWeight(EncodingData val) {
}
case 2: {
C = 13;
uint b = (bitval >> 1) & 1;
const uint b = (bitval >> 1) & 1;
B = (b << 6) | (b << 1);
break;
}
@ -875,15 +887,18 @@ uint UnquantizeTexelWeight(EncodingData val) {
return result;
}
void UnquantizeTexelWeights(bool is_dual_plane, uvec2 size, out uint unquantized_texel_weights[2 * 144]) {
void UnquantizeTexelWeights(uvec2 size, bool is_dual_plane,
out uvec4 unquantized_texel_weights[VECTOR_ARRAY_SIZE]) {
const uint Ds = uint((block_dims.x * 0.5f + 1024) / (block_dims.x - 1));
const uint Dt = uint((block_dims.y * 0.5f + 1024) / (block_dims.y - 1));
const uint num_planes = is_dual_plane ? 2 : 1;
const uint area = size.x * size.y;
const uint loop_count = min(result_index, area * num_planes);
uint unquantized[2 * 144];
for (uint itr = 0; itr < loop_count; ++itr) {
unquantized[itr] = UnquantizeTexelWeight(result_vector[itr]);
const uint array_index = itr / 4;
const uint vector_index = itr % 4;
result_vector[array_index][vector_index] =
UnquantizeTexelWeight(GetEncodingFromVector(itr));
}
for (uint plane = 0; plane < num_planes; ++plane) {
for (uint t = 0; t < block_dims.y; t++) {
@ -907,28 +922,33 @@ void UnquantizeTexelWeights(bool is_dual_plane, uvec2 size, out uint unquantized
#define VectorIndicesFromBase(offset_base) \
const uint offset = is_dual_plane ? 2 * offset_base + plane : offset_base; \
const uint array_index = offset / 4; \
const uint vector_index = offset % 4;
if (v0 < area) {
const uint offset_base = v0;
VectorIndicesFromBase(offset_base);
p.x = unquantized[offset];
p.x = result_vector[array_index][vector_index];
}
if ((v0 + 1) < (area)) {
const uint offset_base = v0 + 1;
VectorIndicesFromBase(offset_base);
p.y = unquantized[offset];
p.y = result_vector[array_index][vector_index];
}
if ((v0 + size.x) < (area)) {
const uint offset_base = v0 + size.x;
VectorIndicesFromBase(offset_base);
p.z = unquantized[offset];
p.z = result_vector[array_index][vector_index];
}
if ((v0 + size.x + 1) < (area)) {
const uint offset_base = v0 + size.x + 1;
VectorIndicesFromBase(offset_base);
p.w = unquantized[offset];
p.w = result_vector[array_index][vector_index];
}
unquantized_texel_weights[plane * 144 + t * block_dims.x + s] = (uint(dot(p, w)) + 8) >> 4;
const uint offset = (t * block_dims.x + s) + ARRAY_NUM_ELEMENTS * plane;
const uint array_index = offset / 4;
const uint vector_index = offset % 4;
unquantized_texel_weights[array_index][vector_index] = (uint(dot(p, w)) + 8) >> 4;
}
}
}
@ -1050,6 +1070,7 @@ TexelWeightParams DecodeBlockInfo() {
weight_index += 6;
}
params.max_weight = weight_index + 1;
return params;
}
@ -1079,7 +1100,7 @@ void FillVoidExtentLDR(ivec3 coord) {
}
void DecompressBlock(ivec3 coord) {
TexelWeightParams params = DecodeBlockInfo();
const TexelWeightParams params = DecodeBlockInfo();
if (params.error_state) {
FillError(coord);
return;
@ -1096,12 +1117,11 @@ void DecompressBlock(ivec3 coord) {
FillError(coord);
return;
}
uint num_partitions = StreamBits(2) + 1;
const uint num_partitions = StreamBits(2) + 1;
if (num_partitions > 4 || (num_partitions == 4 && params.dual_plane)) {
FillError(coord);
return;
}
int plane_index = -1;
uint partition_index = 1;
uvec4 color_endpoint_mode = uvec4(0);
uint ced_pointer = 0;
@ -1113,8 +1133,8 @@ void DecompressBlock(ivec3 coord) {
partition_index = StreamBits(10);
base_cem = StreamBits(6);
}
uint base_mode = base_cem & 3;
uint weight_bits = GetPackedBitSize(params.size, params.dual_plane, params.max_weight);
const uint base_mode = base_cem & 3;
const uint weight_bits = GetPackedBitSize(params.size, params.dual_plane, params.max_weight);
uint remaining_bits = 128 - weight_bits - total_bitsread;
uint extra_cem_bits = 0;
if (base_mode > 0) {
@ -1133,10 +1153,7 @@ void DecompressBlock(ivec3 coord) {
}
}
remaining_bits -= extra_cem_bits;
uint plane_selector_bits = 0;
if (params.dual_plane) {
plane_selector_bits = 2;
}
const uint plane_selector_bits = params.dual_plane ? 2 : 0;
remaining_bits -= plane_selector_bits;
if (remaining_bits > 128) {
// Bad data, more remaining bits than 4 bytes
@ -1144,17 +1161,17 @@ void DecompressBlock(ivec3 coord) {
return;
}
// Read color data...
uint color_data_bits = remaining_bits;
const uint color_data_bits = remaining_bits;
while (remaining_bits > 0) {
int nb = int(min(remaining_bits, 32U));
uint b = StreamBits(nb);
const int nb = int(min(remaining_bits, 32U));
const uint b = StreamBits(nb);
color_endpoint_data[ced_pointer] = uint(bitfieldExtract(b, 0, nb));
++ced_pointer;
remaining_bits -= nb;
}
plane_index = int(StreamBits(plane_selector_bits));
const uint plane_index = uint(StreamBits(plane_selector_bits));
if (base_mode > 0) {
uint extra_cem = StreamBits(extra_cem_bits);
const uint extra_cem = StreamBits(extra_cem_bits);
uint cem = (extra_cem << 6) | base_cem;
cem >>= 2;
uvec4 C = uvec4(0);
@ -1176,43 +1193,54 @@ void DecompressBlock(ivec3 coord) {
color_endpoint_mode[i] |= M[i];
}
} else if (num_partitions > 1) {
uint cem = base_cem >> 2;
const uint cem = base_cem >> 2;
for (uint i = 0; i < num_partitions; i++) {
color_endpoint_mode[i] = cem;
}
}
DecodeColorValues(color_endpoint_mode, num_partitions, color_data_bits);
uvec4 endpoints[4][2];
for (uint i = 0; i < num_partitions; i++) {
ComputeEndpoints(endpoints[i][0], endpoints[i][1], color_endpoint_mode[i]);
uvec4 endpoints0[4];
uvec4 endpoints1[4];
{
// This decode phase should at most push 32 elements into the vector
result_vector_max_index = 32;
uvec4 color_values[8];
uint colvals_index = 0;
DecodeColorValues(color_endpoint_mode, num_partitions, color_data_bits, color_values);
for (uint i = 0; i < num_partitions; i++) {
ComputeEndpoints(endpoints0[i], endpoints1[i], color_endpoint_mode[i], color_values,
colvals_index);
}
}
color_endpoint_data = local_buff;
color_endpoint_data = bitfieldReverse(color_endpoint_data).wzyx;
uint clear_byte_start =
(GetPackedBitSize(params.size, params.dual_plane, params.max_weight) >> 3) + 1;
const uint clear_byte_start = (weight_bits >> 3) + 1;
uint byte_insert = ExtractBits(color_endpoint_data, int(clear_byte_start - 1) * 8, 8) &
uint(
((1 << (GetPackedBitSize(params.size, params.dual_plane, params.max_weight) % 8)) - 1));
uint vec_index = (clear_byte_start - 1) >> 2;
color_endpoint_data[vec_index] =
bitfieldInsert(color_endpoint_data[vec_index], byte_insert, int((clear_byte_start - 1) % 4) * 8, 8);
const uint byte_insert = ExtractBits(color_endpoint_data, int(clear_byte_start - 1) * 8, 8) &
uint(((1 << (weight_bits % 8)) - 1));
const uint vec_index = (clear_byte_start - 1) >> 2;
color_endpoint_data[vec_index] = bitfieldInsert(color_endpoint_data[vec_index], byte_insert,
int((clear_byte_start - 1) % 4) * 8, 8);
for (uint i = clear_byte_start; i < 16; ++i) {
uint idx = i >> 2;
const uint idx = i >> 2;
color_endpoint_data[idx] = bitfieldInsert(color_endpoint_data[idx], 0, int(i % 4) * 8, 8);
}
// Re-init vector variables for next decode phase
result_index = 0;
color_bitsread = 0;
result_limit_reached = false;
// The limit for the Unquantize phase, avoids decoding more data than needed.
result_vector_max_index = params.size.x * params.size.y;
if (params.dual_plane) {
result_vector_max_index *= 2;
}
DecodeIntegerSequence(params.max_weight, GetNumWeightValues(params.size, params.dual_plane));
uint unquantized_texel_weights[2 * 144];
UnquantizeTexelWeights(params.dual_plane, params.size, unquantized_texel_weights);
uvec4 unquantized_texel_weights[VECTOR_ARRAY_SIZE];
UnquantizeTexelWeights(params.size, params.dual_plane, unquantized_texel_weights);
for (uint j = 0; j < block_dims.y; j++) {
for (uint i = 0; i < block_dims.x; i++) {
uint local_partition = 0;
@ -1220,13 +1248,19 @@ void DecompressBlock(ivec3 coord) {
local_partition = Select2DPartition(partition_index, i, j, num_partitions,
(block_dims.y * block_dims.x) < 32);
}
const uvec4 C0 = ReplicateByteTo16(endpoints[local_partition][0]);
const uvec4 C1 = ReplicateByteTo16(endpoints[local_partition][1]);
const uvec4 C0 = ReplicateByteTo16(endpoints0[local_partition]);
const uvec4 C1 = ReplicateByteTo16(endpoints1[local_partition]);
const uint weight_offset = (j * block_dims.x + i);
const uint primary_weight = unquantized_texel_weights[weight_offset];
const uint array_index = weight_offset / 4;
const uint vector_index = weight_offset % 4;
const uint primary_weight = unquantized_texel_weights[array_index][vector_index];
uvec4 weight_vec = uvec4(primary_weight);
if (params.dual_plane) {
const uint secondary_weight = unquantized_texel_weights[weight_offset + 144];
const uint secondary_weight_offset = (j * block_dims.x + i) + ARRAY_NUM_ELEMENTS;
const uint secondary_array_index = secondary_weight_offset / 4;
const uint secondary_vector_index = secondary_weight_offset % 4;
const uint secondary_weight =
unquantized_texel_weights[secondary_array_index][secondary_vector_index];
for (uint c = 0; c < 4; c++) {
const bool is_secondary = ((plane_index + 1u) & 3u) == c;
weight_vec[c] = is_secondary ? secondary_weight : primary_weight;
@ -1240,12 +1274,11 @@ void DecompressBlock(ivec3 coord) {
}
}
uint SwizzleOffset(uvec2 pos) {
uint x = pos.x;
uint y = pos.y;
return ((x % 64) / 32) * 256 + ((y % 8) / 2) * 64 + ((x % 32) / 16) * 32 +
(y % 2) * 16 + (x % 16);
const uint x = pos.x;
const uint y = pos.y;
return ((x % 64) / 32) * 256 + ((y % 8) / 2) * 64 +
((x % 32) / 16) * 32 + (y % 2) * 16 + (x % 16);
}
void main() {