Added vertex normal to the Agnosia_T::Vertex definition, pre-calculated using TinyObjLoader's built in vertex normal calculator

This commit is contained in:
Lillian Salehi 2024-12-04 01:55:40 -06:00
parent d862068c6e
commit c42133f426
13 changed files with 150 additions and 117 deletions

View File

@ -3,6 +3,6 @@ Pos=60,60
Size=400,400
[Window][Agnosia Debug]
Pos=40,377
Pos=59,322
Size=623,438

View File

@ -87,8 +87,7 @@ void createInstance() {
throw std::runtime_error("failed to create instance!");
}
}
void initVulkan() {
void initAgnosia() {
Material *vikingRoomMaterial =
new Material("vikingRoomMaterial", "assets/textures/viking_room.png");
Material *stanfordDragonMaterial =
@ -104,7 +103,8 @@ void initVulkan() {
Model *teapot =
new Model("teapot", *teapotMaterial, "assets/models/teapot.obj",
glm::vec3(1.0f, -3.0f, -1.0f));
}
void initVulkan() {
// Initialize volk and continue if successful.
volkInitialize();
// Initialize vulkan and set up pipeline.
@ -122,9 +122,7 @@ void initVulkan() {
Graphics::createCommandPool();
// Image creation MUST be after command pool, because command
// buffers.
vikingRoom->populateData();
stanfordDragon->populateData();
teapot->populateData();
Model::populateModels();
Texture::createMaterialTextures(Model::getInstances());
Texture::createColorResources();
Texture::createDepthResources();
@ -150,6 +148,11 @@ void mainLoop() {
void cleanup() {
Render::cleanupSwapChain();
Graphics::destroyGraphicsPipeline();
Buffers::destroyDescriptorPool();
Model::destroyTextures();
vkDestroyDescriptorSetLayout(DeviceControl::getDevice(),
Buffers::getDescriptorSetLayout(), nullptr);
Buffers::destroyBuffers();
Render::destroyFenceSemaphores();
@ -179,6 +182,7 @@ GLFWwindow *EntryApp::getWindow() { return window; }
void EntryApp::run() {
initWindow();
initAgnosia();
initVulkan();
mainLoop();
cleanup();

View File

@ -122,6 +122,9 @@ void Buffers::createDescriptorPool() {
throw std::runtime_error("failed to create descriptor pool!");
}
}
void Buffers::destroyDescriptorPool() {
vkDestroyDescriptorPool(DeviceControl::getDevice(), descriptorPool, nullptr);
}
void Buffers::createDescriptorSet(std::vector<Model *> models) {
VkDescriptorSetAllocateInfo allocInfo{};
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;

View File

@ -19,6 +19,7 @@ public:
static void createDescriptorSetLayout();
static void createDescriptorSet(std::vector<Model *> models);
static void createDescriptorPool();
static void destroyDescriptorPool();
static void createBuffer(VkDeviceSize size, VkBufferUsageFlags usage,
VkMemoryPropertyFlags props, VkBuffer &buffer,
VkDeviceMemory &bufferMemory);

View File

@ -20,15 +20,21 @@
std::vector<Model *> Model::instances;
VmaAllocator _allocator;
// chatgpt did this and the haters can WEEP fuck hash functions.
namespace std {
template <> struct hash<Agnosia_T::Vertex> {
size_t operator()(Agnosia_T::Vertex const &vertex) const {
return ((hash<glm::vec3>()(vertex.pos) ^
(hash<glm::vec3>()(vertex.color) << 1)) >>
1) ^
(hash<glm::vec2>()(vertex.texCoord) << 1);
size_t hashPos = hash<glm::vec3>()(vertex.pos);
size_t hashColor = hash<glm::vec3>()(vertex.color);
size_t hashUV = hash<glm::vec2>()(vertex.uv);
size_t hashNormal = hash<glm::vec3>()(vertex.normal);
// Combine all hashes
return ((hashPos ^ (hashColor << 1)) >> 1) ^ (hashUV << 1) ^
(hashNormal << 2);
}
};
} // namespace std
void Model::createMemoryAllocator(VkInstance vkInstance) {
VmaVulkanFunctions vulkanFuncs{
@ -105,112 +111,128 @@ Model::Model(const std::string &modelID, const Material &material,
instances.push_back(this);
}
void Model::populateData() {
void Model::populateModels() {
for (Model *model : getInstances()) {
std::vector<Agnosia_T::Vertex> vertices;
// Index buffer definition, showing which points to reuse.
std::vector<uint32_t> indices;
tinyobj::ObjReaderConfig readerConfig;
tinyobj::ObjReader reader;
std::vector<Agnosia_T::Vertex> vertices;
// Index buffer definition, showing which points to reuse.
std::vector<uint32_t> indices;
tinyobj::ObjReaderConfig readerConfig;
tinyobj::ObjReader reader;
if (!reader.ParseFromFile(modelPath, readerConfig)) {
if (!reader.Error().empty()) {
throw std::runtime_error(reader.Error());
}
if (!reader.Warning().empty()) {
throw std::runtime_error(reader.Warning());
}
}
auto &attrib = reader.GetAttrib();
auto &shapes = reader.GetShapes();
auto &materials = reader.GetMaterials();
std::unordered_map<Agnosia_T::Vertex, uint32_t> uniqueVertices{};
for (const auto &shape : shapes) {
for (const auto &index : shape.mesh.indices) {
Agnosia_T::Vertex vertex{};
vertex.pos = {attrib.vertices[3 * index.vertex_index + 0],
attrib.vertices[3 * index.vertex_index + 1],
attrib.vertices[3 * index.vertex_index + 2]};
// TODO: Small fix here, handle if there are no UV's unwrapped for the
// model.
// As of now, if it is not unwrapped, it segfaults on texCoord
// assignment. Obviously we should always have UV's, but it
// shouldn't crash, just unwrap in a default method.
vertex.texCoord = {attrib.texcoords[2 * index.texcoord_index + 0],
1.0f - attrib.texcoords[2 * index.texcoord_index + 1]};
vertex.color = {1.0f, 1.0f, 1.0f};
if (uniqueVertices.count(vertex) == 0) {
uniqueVertices[vertex] = static_cast<uint32_t>(vertices.size());
vertices.push_back(vertex);
if (!reader.ParseFromFile(model->modelPath, readerConfig)) {
if (!reader.Error().empty()) {
throw std::runtime_error(reader.Error());
}
if (!reader.Warning().empty()) {
throw std::runtime_error(reader.Warning());
}
indices.push_back(uniqueVertices[vertex]);
}
auto &attrib = reader.GetAttrib();
auto &shapes = reader.GetShapes();
auto &materials = reader.GetMaterials();
std::unordered_map<Agnosia_T::Vertex, uint32_t> uniqueVertices{};
for (const auto &shape : shapes) {
for (const auto &index : shape.mesh.indices) {
Agnosia_T::Vertex vertex{};
vertex.pos = {attrib.vertices[3 * index.vertex_index + 0],
attrib.vertices[3 * index.vertex_index + 1],
attrib.vertices[3 * index.vertex_index + 2]};
vertex.normal = {attrib.normals[3 * index.normal_index + 0],
attrib.normals[3 * index.normal_index + 1],
attrib.normals[3 * index.normal_index + 2]};
// TODO: Small fix here, handle if there are no UV's unwrapped for the
// model.
// As of now, if it is not unwrapped, it segfaults on texCoord
// assignment. Obviously we should always have UV's, but it
// shouldn't crash, just unwrap in a default method.
vertex.uv = {attrib.texcoords[2 * index.texcoord_index + 0],
1.0f - attrib.texcoords[2 * index.texcoord_index + 1]};
vertex.color = {1.0f, 1.0f, 1.0f};
if (uniqueVertices.count(vertex) == 0) {
uniqueVertices[vertex] = static_cast<uint32_t>(vertices.size());
vertices.push_back(vertex);
}
indices.push_back(uniqueVertices[vertex]);
}
}
const size_t vertexBufferSize = vertices.size() * sizeof(Agnosia_T::Vertex);
const size_t indexBufferSize = indices.size() * sizeof(uint32_t);
Agnosia_T::GPUMeshBuffers newSurface;
// Create a Vertex Buffer here, infinitely easier than the old Vulkan
// method!
newSurface.vertexBuffer = createBuffer(
vertexBufferSize,
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT |
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT,
VMA_MEMORY_USAGE_GPU_ONLY);
// Find the address of the vertex buffer!
VkBufferDeviceAddressInfo deviceAddressInfo{
.sType = VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO,
.buffer = newSurface.vertexBuffer.buffer,
};
newSurface.vertexBufferAddress = vkGetBufferDeviceAddress(
DeviceControl::getDevice(), &deviceAddressInfo);
// Create the index buffer to iterate over and check for duplicate vertices
newSurface.indexBuffer = createBuffer(indexBufferSize,
VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VMA_MEMORY_USAGE_GPU_ONLY);
Agnosia_T::AllocatedBuffer stagingBuffer = createBuffer(
vertexBufferSize + indexBufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VMA_MEMORY_USAGE_CPU_ONLY);
void *data = stagingBuffer.allocation->GetMappedData();
// Copy the vertex buffer
memcpy(data, vertices.data(), vertexBufferSize);
// Copy the index buffer
memcpy((char *)data + vertexBufferSize, indices.data(), indexBufferSize);
immediate_submit([&](VkCommandBuffer cmd) {
VkBufferCopy vertexCopy{0};
vertexCopy.dstOffset = 0;
vertexCopy.srcOffset = 0;
vertexCopy.size = vertexBufferSize;
vkCmdCopyBuffer(cmd, stagingBuffer.buffer, newSurface.vertexBuffer.buffer,
1, &vertexCopy);
VkBufferCopy indexCopy{0};
indexCopy.dstOffset = 0;
indexCopy.srcOffset = vertexBufferSize;
indexCopy.size = indexBufferSize;
vkCmdCopyBuffer(cmd, stagingBuffer.buffer, newSurface.indexBuffer.buffer,
1, &indexCopy);
});
vmaDestroyBuffer(_allocator, stagingBuffer.buffer,
stagingBuffer.allocation);
model->buffers = newSurface;
model->indiceCount = indices.size();
}
}
void Model::destroyTextures() {
for (Model *model : Model::getInstances()) {
vkDestroySampler(DeviceControl::getDevice(),
model->getMaterial().getTextureSampler(), nullptr);
vkDestroyImageView(DeviceControl::getDevice(),
model->getMaterial().getTextureView(), nullptr);
vkDestroyImage(DeviceControl::getDevice(),
model->getMaterial().getTextureImage(), nullptr);
}
const size_t vertexBufferSize = vertices.size() * sizeof(Agnosia_T::Vertex);
const size_t indexBufferSize = indices.size() * sizeof(uint32_t);
Agnosia_T::GPUMeshBuffers newSurface;
// Create a Vertex Buffer here, infinitely easier than the old Vulkan method!
newSurface.vertexBuffer = createBuffer(
vertexBufferSize,
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT |
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT,
VMA_MEMORY_USAGE_GPU_ONLY);
// Find the address of the vertex buffer!
VkBufferDeviceAddressInfo deviceAddressInfo{
.sType = VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO,
.buffer = newSurface.vertexBuffer.buffer,
};
newSurface.vertexBufferAddress =
vkGetBufferDeviceAddress(DeviceControl::getDevice(), &deviceAddressInfo);
// Create the index buffer to iterate over and check for duplicate vertices
newSurface.indexBuffer = createBuffer(indexBufferSize,
VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VMA_MEMORY_USAGE_GPU_ONLY);
Agnosia_T::AllocatedBuffer stagingBuffer =
createBuffer(vertexBufferSize + indexBufferSize,
VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VMA_MEMORY_USAGE_CPU_ONLY);
void *data = stagingBuffer.allocation->GetMappedData();
// Copy the vertex buffer
memcpy(data, vertices.data(), vertexBufferSize);
// Copy the index buffer
memcpy((char *)data + vertexBufferSize, indices.data(), indexBufferSize);
immediate_submit([&](VkCommandBuffer cmd) {
VkBufferCopy vertexCopy{0};
vertexCopy.dstOffset = 0;
vertexCopy.srcOffset = 0;
vertexCopy.size = vertexBufferSize;
vkCmdCopyBuffer(cmd, stagingBuffer.buffer, newSurface.vertexBuffer.buffer,
1, &vertexCopy);
VkBufferCopy indexCopy{0};
indexCopy.dstOffset = 0;
indexCopy.srcOffset = vertexBufferSize;
indexCopy.size = indexBufferSize;
vkCmdCopyBuffer(cmd, stagingBuffer.buffer, newSurface.indexBuffer.buffer, 1,
&indexCopy);
});
vmaDestroyBuffer(_allocator, stagingBuffer.buffer, stagingBuffer.allocation);
this->buffers = newSurface;
this->objPosition = objPosition;
this->indiceCount = indices.size();
}
std::string Model::getID() { return this->ID; }

View File

@ -28,7 +28,8 @@ public:
static void createMemoryAllocator(VkInstance instance);
static const std::vector<Model *> &getInstances();
void populateData();
static void populateModels();
static void destroyTextures();
Agnosia_T::GPUMeshBuffers getBuffers();
std::string getID();

View File

@ -4,6 +4,7 @@
struct Vertex {
vec3 pos;
vec3 normal;
vec3 color;
vec2 texCoord;
};

View File

@ -11,5 +11,5 @@ layout(location = 1) in vec2 fragTexCoord;
layout(location = 0) out vec4 outColor;
void main() {
outColor = texture(texSampler[PushConstants.textureID], fragTexCoord);
outColor = texture(texSampler[PushConstants.textureID], fragTexCoord) * vec4(fragColor, 1.0f);
}

View File

@ -10,12 +10,13 @@ public:
// This defines what a vertex is!
// We control the position, color and texture coordinate here!
glm::vec3 pos;
glm::vec3 normal;
glm::vec3 color;
glm::vec2 texCoord;
glm::vec2 uv;
bool operator==(const Vertex &other) const {
return pos == other.pos && color == other.color &&
texCoord == other.texCoord;
return pos == other.pos && normal == other.normal &&
color == other.color && uv == other.uv;
}
};
struct AllocatedBuffer {