Files
AgnosiaEngine/src/devicelibrary.cpp

390 lines
17 KiB
C++

#include "devicelibrary.h"
namespace device_libs {
VkPhysicalDeviceProperties deviceProperties;
std::vector<VkImage> swapChainImages;
VkFormat swapChainImageFormat;
VkExtent2D swapChainExtent;
struct SwapChainSupportDetails {
VkSurfaceCapabilitiesKHR capabilities;
std::vector<VkSurfaceFormatKHR> formats;
std::vector<VkPresentModeKHR> presentModes;
};
const std::vector<const char *> deviceExtensions = {
VK_KHR_SWAPCHAIN_EXTENSION_NAME,
VK_KHR_DYNAMIC_RENDERING_EXTENSION_NAME,
};
SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) {
/* Swap chains are weird ngl, it's another one of those Vulkan platform
agnosticity. The swapchain is basically a wrapper for GDI+, DXGI, X11,
Wayland, etc. It lets us use the swap chain rather than create a different
framebuffer handler for every targeted platform. Swap chains handle the
ownership of buffers before sending them to the presentation engine. (still
no fucking clue how it works though) */
SwapChainSupportDetails details;
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, Global::surface,
&details.capabilities);
uint32_t formatCount;
vkGetPhysicalDeviceSurfaceFormatsKHR(device, Global::surface, &formatCount,
nullptr);
if (formatCount != 0) {
details.formats.resize(formatCount);
vkGetPhysicalDeviceSurfaceFormatsKHR(device, Global::surface, &formatCount,
details.formats.data());
}
uint32_t presentModeCount;
vkGetPhysicalDeviceSurfacePresentModesKHR(
device, Global::surface, &presentModeCount, details.presentModes.data());
if (presentModeCount != 0) {
details.presentModes.resize(presentModeCount);
vkGetPhysicalDeviceSurfacePresentModesKHR(device, Global::surface,
&presentModeCount,
details.presentModes.data());
}
return details;
}
bool checkDeviceExtensionSupport(VkPhysicalDevice device) {
uint32_t extensionCount;
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount,
nullptr);
std::vector<VkExtensionProperties> availableExtensions(extensionCount);
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount,
availableExtensions.data());
std::set<std::string> requiredExtensions(deviceExtensions.begin(),
deviceExtensions.end());
for (const auto &extension : availableExtensions) {
requiredExtensions.erase(extension.extensionName);
}
return requiredExtensions.empty();
}
bool isDeviceSuitable(VkPhysicalDevice device) {
// These two are simple, create a structure to hold the apiVersion,
// driverVersion, vendorID, deviceID and type, name, and a few other settings.
// Then populate it by passing in the device and the structure reference.
vkGetPhysicalDeviceProperties(device, &deviceProperties);
// Similarly, we can pass in the device and a deviceFeatures struct, this is
// quite special, it holds a struct of optional features the GPU can perform.
// Some, like a geometry shader, and stereoscopic rendering (multiViewport) we
// want, so we dont return true without them.
VkPhysicalDeviceFeatures supportedFeatures;
vkGetPhysicalDeviceFeatures(device, &supportedFeatures);
// We need to find a device that supports graphical operations, or else we
// cant do much with it! This function just runs over all the queueFamilies
// and sees if there is a queue family with the VK_QUEUE_GRAPHICS_BIT flipped!
Global::QueueFamilyIndices indices = Global::findQueueFamilies(device);
bool extensionSupported = checkDeviceExtensionSupport(device);
bool swapChainAdequate = false;
if (extensionSupported) {
SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
swapChainAdequate = !swapChainSupport.formats.empty() &&
!swapChainSupport.presentModes.empty();
}
return deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU &&
supportedFeatures.samplerAnisotropy && indices.isComplete() &&
extensionSupported && swapChainAdequate;
}
// -------------------------------------- Swap Chain Settings
// ----------------------------------------- //
VkSurfaceFormatKHR chooseSwapSurfaceFormat(
const std::vector<VkSurfaceFormatKHR> &availableFormats) {
// One of three settings we can set, Surface Format controls the color space
// and format.
for (const auto &availableFormat : availableFormats) {
if (availableFormat.format == VK_FORMAT_B8G8R8A8_SRGB &&
availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
// sRGB & 32bit BGRA
return availableFormat;
}
}
return availableFormats[0];
}
VkPresentModeKHR chooseSwapPresentMode(
const std::vector<VkPresentModeKHR> &availablePresentModes) {
// The second of the three settings, arguably the most important, the
// presentation mode! This dictates how images are displayed. MAILBOX is
// basically equivalent to triple buffering, it avoids screen tearing with
// fairly low latency, However, it is not always supported, so in the case
// that it isn't, currently we will default to FIFO, This is most similarly to
// standard V-Sync.
for (const auto &availablePresentMode : availablePresentModes) {
if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
return availablePresentMode;
}
}
return VK_PRESENT_MODE_FIFO_KHR;
}
VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR &capabilities,
GLFWwindow *window) {
// Swap Extent is just a fancy way of saying the resolution of the swap images
// to display. This is almost always going to equal the resolution of the
// window in pixels.
// The max int32 value tells us that the window manager lets us change the
// windth and height to what we wish!
if (capabilities.currentExtent.width !=
std::numeric_limits<uint32_t>::max()) {
return capabilities.currentExtent;
} else {
int width, height;
glfwGetFramebufferSize(window, &width, &height);
VkExtent2D actualExtent = {static_cast<uint32_t>(width),
static_cast<uint32_t>(height)};
// Clamp the image size to the minimum extent values specified by vulkan for
// our window manager.
actualExtent.width =
std::clamp(actualExtent.width, capabilities.minImageExtent.width,
capabilities.maxImageExtent.width);
actualExtent.height =
std::clamp(actualExtent.height, capabilities.minImageExtent.height,
capabilities.maxImageExtent.height);
return actualExtent;
}
}
// --------------------------------------- External Functions
// ----------------------------------------- //
void DeviceControl::pickPhysicalDevice(VkInstance &instance) {
uint32_t deviceCount = 0;
vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);
if (deviceCount == 0) {
throw std::runtime_error("Failed to find GPU's with Vulkan Support!!");
}
std::vector<VkPhysicalDevice> devices(
deviceCount); // Direct Initialization is weird af, yo
vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());
for (const auto &device : devices) {
if (isDeviceSuitable(device)) {
// Once we have buttons or such, maybe ask the user or write a config file
// for which GPU to use?
Global::physicalDevice = device;
break;
}
}
if (Global::physicalDevice == VK_NULL_HANDLE) {
throw std::runtime_error("Failed to find a suitable GPU!");
}
}
void DeviceControl::destroySurface(VkInstance &instance) {
vkDestroySurfaceKHR(instance, Global::surface, nullptr);
}
void DeviceControl::createSurface(VkInstance &instance, GLFWwindow *window) {
if (glfwCreateWindowSurface(instance, window, nullptr, &Global::surface) !=
VK_SUCCESS) {
throw std::runtime_error("Failed to create window surface!!");
}
}
void DeviceControl::createLogicalDevice() {
// Describe how many queues we want for a single family (1) here, right now we
// are solely interested in graphics capabilites, but Compute Shaders,
// transfer ops, decode and encode operations can also queued with setup! We
// also assign each queue a priority. We do this by looping over all the
// queueFamilies and sorting them by indices to fill the queue at the end!
Global::QueueFamilyIndices indices =
Global::findQueueFamilies(Global::physicalDevice);
std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
std::set<uint32_t> uniqueQueueFamilies = {indices.graphicsFamily.value(),
indices.presentFamily.value()};
float queuePriority = 1.0f;
for (uint32_t queueFamily : uniqueQueueFamilies) {
VkDeviceQueueCreateInfo queueCreateSingularInfo = {};
queueCreateSingularInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateSingularInfo.queueFamilyIndex = queueFamily;
queueCreateSingularInfo.queueCount = 1;
queueCreateSingularInfo.pQueuePriorities = &queuePriority;
queueCreateInfos.push_back(queueCreateSingularInfo);
}
VkPhysicalDeviceVulkan13Features features13{
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES,
.pNext = nullptr,
.synchronization2 = true,
.dynamicRendering = true,
};
VkPhysicalDeviceFeatures featuresBase{
.samplerAnisotropy = true,
};
VkPhysicalDeviceFeatures2 deviceFeatures{
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2,
.pNext = &features13,
.features = featuresBase,
};
VkDeviceCreateInfo createDeviceInfo = {};
createDeviceInfo.pNext = &deviceFeatures;
createDeviceInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
createDeviceInfo.pQueueCreateInfos = queueCreateInfos.data();
createDeviceInfo.queueCreateInfoCount =
static_cast<uint32_t>(queueCreateInfos.size());
createDeviceInfo.enabledExtensionCount =
static_cast<uint32_t>(deviceExtensions.size());
createDeviceInfo.ppEnabledExtensionNames = deviceExtensions.data();
if (vkCreateDevice(Global::physicalDevice, &createDeviceInfo, nullptr,
&Global::device) != VK_SUCCESS) {
throw std::runtime_error("Failed to create logical device");
}
vkGetDeviceQueue(Global::device, indices.graphicsFamily.value(), 0,
&Global::graphicsQueue);
vkGetDeviceQueue(Global::device, indices.presentFamily.value(), 0,
&Global::presentQueue);
}
void DeviceControl::createSwapChain(GLFWwindow *window) {
SwapChainSupportDetails swapChainSupport =
querySwapChainSupport(Global::physicalDevice);
VkSurfaceFormatKHR surfaceFormat =
chooseSwapSurfaceFormat(swapChainSupport.formats);
VkPresentModeKHR presentMode =
chooseSwapPresentMode(swapChainSupport.presentModes);
VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities, window);
// Number of images to hold in the swap chain, 1 over the minimum guarantees
// we won't have to wait on the driver to complete internal operations before
// acquiring another image. Absolutely a TODO to determine the best amount to
// queue.
uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
// Make sure not to queue more than the max! 0 indicates that there is no
// maximum.
if (swapChainSupport.capabilities.maxImageCount > 0 &&
imageCount > swapChainSupport.capabilities.maxImageCount) {
imageCount = swapChainSupport.capabilities.maxImageCount;
}
VkSwapchainCreateInfoKHR createSwapChainInfo{};
createSwapChainInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
createSwapChainInfo.surface = Global::surface;
createSwapChainInfo.minImageCount = imageCount;
createSwapChainInfo.imageFormat = surfaceFormat.format;
createSwapChainInfo.imageColorSpace = surfaceFormat.colorSpace;
createSwapChainInfo.imageExtent = extent;
// Image array layers is always 1 unless we are developing for VR (Spoiler: we
// are, we will use a build flag.) Image Usage specifies what operations you
// use the images for, COLOR_ATTACH means we render directly to them, if you
// wanted to render to separate images for things like post processing, you
// can use TRANSFER_DST and use a memory operation to transfer the image to a
// swap chain, this is also a TODO item eventually.
createSwapChainInfo.imageArrayLayers = 1;
createSwapChainInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
// This handles swap chain images across multiple queue families, ie, if the
// graphics queue family is different from the present queue
Global::QueueFamilyIndices indices =
Global::findQueueFamilies(Global::physicalDevice);
uint32_t queueFamilyIndices[] = {indices.graphicsFamily.value(),
indices.presentFamily.value()};
// Usage across multiple queue families without explicit transfer of ownership
// if they are different queue families. Otherwise, no sharing without
// explicit handoffs, faster, but not easily supported with multiple families.
// Presentation and Graphics families are usually merged on most hardware.
if (indices.graphicsFamily != indices.presentFamily) {
createSwapChainInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
createSwapChainInfo.queueFamilyIndexCount = 2;
createSwapChainInfo.pQueueFamilyIndices = queueFamilyIndices;
} else {
createSwapChainInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
}
// Transformation of image support.
createSwapChainInfo.preTransform =
swapChainSupport.capabilities.currentTransform;
// Do NOT blend with other windows on the system.
createSwapChainInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
createSwapChainInfo.presentMode = presentMode;
// This is interesting, clip pixels that are obscured for performance, but
// that means you wont be able to read them reliably.. I am curious if this
// would affect screen-space rendering techniques, may be something to note.
createSwapChainInfo.clipped = VK_TRUE;
// This is something that needs to be implemented later, operations like
// resizing the window invalidate the swap chain and require you to recreate
// it and reference the old one specified here, will revisit in a few days.
// createSwapChainInfo.oldSwapchain = VK_NULL_HANDLE;
if (vkCreateSwapchainKHR(Global::device, &createSwapChainInfo, nullptr,
&Global::swapChain) != VK_SUCCESS) {
throw std::runtime_error("Failed to create the swap chain!!");
}
vkGetSwapchainImagesKHR(Global::device, Global::swapChain, &imageCount,
nullptr);
swapChainImages.resize(imageCount);
vkGetSwapchainImagesKHR(Global::device, Global::swapChain, &imageCount,
swapChainImages.data());
swapChainImageFormat = surfaceFormat.format;
swapChainExtent = extent;
}
void DeviceControl::destroySwapChain() {
vkDestroySwapchainKHR(Global::device, Global::swapChain, nullptr);
}
VkImageView DeviceControl::createImageView(VkImage image, VkFormat format,
VkImageAspectFlags flags,
uint32_t mipLevels) {
// This defines the parameters of a newly created image object!
VkImageViewCreateInfo viewInfo{};
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.image = image;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = format;
viewInfo.subresourceRange.aspectMask = flags;
viewInfo.subresourceRange.baseMipLevel = 0;
viewInfo.subresourceRange.levelCount = 1;
viewInfo.subresourceRange.baseArrayLayer = 0;
viewInfo.subresourceRange.layerCount = 1;
viewInfo.subresourceRange.levelCount = mipLevels;
VkImageView imageView;
if (vkCreateImageView(Global::device, &viewInfo, nullptr, &imageView) !=
VK_SUCCESS) {
throw std::runtime_error("failed to create image view!");
}
return imageView;
}
void DeviceControl::createImageViews() {
Global::swapChainImageViews.resize(swapChainImages.size());
for (uint32_t i = 0; i < swapChainImages.size(); i++) {
Global::swapChainImageViews[i] = createImageView(
swapChainImages[i], swapChainImageFormat, VK_IMAGE_ASPECT_COLOR_BIT, 1);
}
}
void DeviceControl::destroyImageViews() {
for (auto imageView : Global::swapChainImageViews) {
vkDestroyImageView(Global::device, imageView, nullptr);
}
}
// --------------------------------------- Getters & Setters
// ------------------------------------------ //
VkFormat *DeviceControl::getImageFormat() { return &swapChainImageFormat; }
VkExtent2D DeviceControl::getSwapChainExtent() { return swapChainExtent; }
std::vector<VkImage> DeviceControl::getSwapChainImages() {
return swapChainImages;
}
} // namespace device_libs