2024-10-05 16:53:36 -05:00
# include "DeviceLibrary.h"
2024-10-05 19:59:15 -05:00
# include "debug/VulkanDebugLibs.h"
# include "global.h"
2024-10-05 16:53:36 -05:00
# include <cstdint>
# include <optional>
# include <ostream>
# include <stdexcept>
# include <vulkan/vulkan_core.h>
using namespace AgnosiaEngine ;
VkPhysicalDevice physicalDevice = VK_NULL_HANDLE ;
VkPhysicalDeviceProperties deviceProperties ;
VkPhysicalDeviceFeatures deviceFeatures ;
2024-10-05 19:59:15 -05:00
VulkanDebugLibs debug ;
VkQueue graphicsQueue ;
# ifdef DEBUG
const bool enableValidationLayers = true ;
# else
const bool enableValidationLayers = false ;
# endif
2024-10-05 16:53:36 -05:00
struct QueueFamilyIndices {
std : : optional < uint32_t > graphicsFamily ;
bool isComplete ( ) {
return graphicsFamily . has_value ( ) ;
}
} ;
QueueFamilyIndices findQueueFamilies ( VkPhysicalDevice device ) {
// First we feed in a integer we want to use to hold the number of queued items, that fills it, then we create that amount of default constructed *VkQueueFamilyProperties* structs.
// These store the flags, the amount of queued items in the family, and timestamp data. Queue families are simply group collections of tasks we want to get done.
// Next, we check the flags of the queueFamily item, use a bitwise and to see if they match, i.e. support graphical operations, then return that to notify that we have at least one family that supports VK_QUEUE_GRAPHICS_BIT.
// Which means this device supports graphical operations!
QueueFamilyIndices indices ;
uint32_t queueFamilyCount ;
vkGetPhysicalDeviceQueueFamilyProperties ( device , & queueFamilyCount , nullptr ) ;
std : : vector < VkQueueFamilyProperties > queueFamilies ( queueFamilyCount ) ;
vkGetPhysicalDeviceQueueFamilyProperties ( device , & queueFamilyCount , queueFamilies . data ( ) ) ;
int i = 0 ;
for ( const auto & queueFamily : queueFamilies ) {
if ( queueFamily . queueFlags & VK_QUEUE_GRAPHICS_BIT ) {
indices . graphicsFamily = i ;
}
if ( indices . isComplete ( ) ) {
break ;
}
i + + ;
}
return indices ;
}
bool isDeviceSuitable ( VkPhysicalDevice device ) {
// These two are simple, create a structure to hold the apiVersion, driverVersion, vendorID, deviceID and type, name, and a few other settings.
// Then populate it by passing in the device and the structure reference.
vkGetPhysicalDeviceProperties ( device , & deviceProperties ) ;
// Similarly, we can pass in the device and a deviceFeatures struct, this is quite special, it holds a struct of optional features the GPU can perform.
// Some, like a geometry shader, and stereoscopic rendering (multiViewport) we want, so we dont return true without them.
vkGetPhysicalDeviceFeatures ( device , & deviceFeatures ) ;
// We need to find a device that supports graphical operations, or else we cant do much with it! This function just runs over all the queueFamilies and sees if there
// is a queue family with the VK_QUEUE_GRAPHICS_BIT flipped!
QueueFamilyIndices indices = findQueueFamilies ( device ) ;
2024-10-05 19:59:15 -05:00
2024-10-05 16:53:36 -05:00
return deviceProperties . deviceType = = VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU & & deviceFeatures . multiViewport & & deviceFeatures . geometryShader & & indices . isComplete ( ) ;
}
void DeviceLibrary : : pickPhysicalDevice ( VkInstance & instance ) {
uint32_t deviceCount = 0 ;
vkEnumeratePhysicalDevices ( instance , & deviceCount , nullptr ) ;
if ( deviceCount = = 0 ) {
throw std : : runtime_error ( " Failed to find GPU's with Vulkan Support!! " ) ;
}
std : : vector < VkPhysicalDevice > devices ( deviceCount ) ; // Direct Initialization is weird af, yo
vkEnumeratePhysicalDevices ( instance , & deviceCount , devices . data ( ) ) ;
for ( const auto & device : devices ) {
if ( isDeviceSuitable ( device ) ) {
std : : cout < < " Using device: " < < deviceProperties . deviceName < < std : : endl ;
//Once we have buttons or such, maybe ask the user or write a config file for which GPU to use?
physicalDevice = device ;
break ;
}
}
if ( physicalDevice = = VK_NULL_HANDLE ) {
throw std : : runtime_error ( " Failed to find a suitable GPU! " ) ;
}
}
2024-10-05 19:59:15 -05:00
void DeviceLibrary : : createLogicalDevice ( VkDevice & device ) {
// Describe how many queues we want for a single family (1) here, right now we are solely interested in graphics capabilites,
// but Compute Shaders, transfer ops, decode and encode operations can also queued with setup! We also assign each queue a priority.
QueueFamilyIndices indices = findQueueFamilies ( physicalDevice ) ;
VkDeviceQueueCreateInfo queueCreateInfo { } ;
queueCreateInfo . sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO ;
queueCreateInfo . queueFamilyIndex = indices . graphicsFamily . value ( ) ;
queueCreateInfo . queueCount = 1 ;
float queuePriority = 1.0f ;
queueCreateInfo . pQueuePriorities = & queuePriority ;
2024-10-05 16:53:36 -05:00
2024-10-05 19:59:15 -05:00
VkDeviceCreateInfo createInfo { } ;
createInfo . sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO ;
createInfo . pQueueCreateInfos = & queueCreateInfo ;
createInfo . queueCreateInfoCount = 1 ;
createInfo . pEnabledFeatures = & deviceFeatures ;
createInfo . enabledExtensionCount = 0 ;
if ( enableValidationLayers ) {
createInfo . enabledLayerCount = static_cast < uint32_t > ( validationLayers . size ( ) ) ;
createInfo . ppEnabledLayerNames = validationLayers . data ( ) ;
} else {
createInfo . enabledLayerCount = 0 ;
}
if ( vkCreateDevice ( physicalDevice , & createInfo , nullptr , & device ) ! = VK_SUCCESS ) {
throw std : : runtime_error ( " Failed to create logical device " ) ;
}
vkGetDeviceQueue ( device , indices . graphicsFamily . value ( ) , 0 , & graphicsQueue ) ;
}