Properly set up transitioning image layouts to pair well with dynamic rendering, refactor some code.
This commit is contained in:
@@ -1,162 +1,174 @@
|
||||
#include "render.h"
|
||||
#include "graphicspipeline.h"
|
||||
#include "../devicelibrary.h"
|
||||
#include "../entrypoint.h"
|
||||
#include "graphicspipeline.h"
|
||||
#include "render.h"
|
||||
#include "texture.h"
|
||||
#include <vulkan/vulkan_core.h>
|
||||
namespace render_present {
|
||||
|
||||
std::vector<VkSemaphore> imageAvailableSemaphores;
|
||||
std::vector<VkSemaphore> renderFinishedSemaphores;
|
||||
std::vector<VkFence> inFlightFences;
|
||||
std::vector<VkSemaphore> imageAvailableSemaphores;
|
||||
std::vector<VkSemaphore> renderFinishedSemaphores;
|
||||
std::vector<VkFence> inFlightFences;
|
||||
|
||||
void recreateSwapChain() {
|
||||
int width = 0, height = 0;
|
||||
void recreateSwapChain() {
|
||||
int width = 0, height = 0;
|
||||
glfwGetFramebufferSize(Global::window, &width, &height);
|
||||
while (width == 0 || height == 0) {
|
||||
glfwGetFramebufferSize(Global::window, &width, &height);
|
||||
while (width == 0 || height == 0) {
|
||||
glfwGetFramebufferSize(Global::window, &width, &height);
|
||||
glfwWaitEvents();
|
||||
}
|
||||
vkDeviceWaitIdle(Global::device);
|
||||
// Don't really wanna do this but I also don't want to create an extra class instance just to call the cleanup function.
|
||||
|
||||
for(auto imageView : Global::swapChainImageViews) {
|
||||
vkDestroyImageView(Global::device, imageView, nullptr);
|
||||
}
|
||||
vkDestroySwapchainKHR(Global::device, Global::swapChain, nullptr);
|
||||
|
||||
device_libs::DeviceControl::createSwapChain(Global::window);
|
||||
device_libs::DeviceControl::createImageViews();
|
||||
texture_libs::Texture::createDepthResources();
|
||||
glfwWaitEvents();
|
||||
}
|
||||
// At a high level, rendering in Vulkan consists of 5 steps:
|
||||
// Wait for the previous frame, acquire a image from the swap chain
|
||||
// record a comman d buffer which draws the scene onto that image
|
||||
// submit the recorded command buffer and present the image!
|
||||
void Render::drawFrame() {
|
||||
vkDeviceWaitIdle(Global::device);
|
||||
// Don't really wanna do this but I also don't want to create an extra class
|
||||
// instance just to call the cleanup function.
|
||||
|
||||
vkWaitForFences(Global::device, 1, &inFlightFences[Global::currentFrame], VK_TRUE, UINT64_MAX);
|
||||
vkResetFences(Global::device, 1, &inFlightFences[Global::currentFrame]);
|
||||
|
||||
uint32_t imageIndex;
|
||||
VkResult result = vkAcquireNextImageKHR(Global::device, Global::swapChain, UINT64_MAX, imageAvailableSemaphores[Global::currentFrame], VK_NULL_HANDLE, &imageIndex);
|
||||
if (result == VK_ERROR_OUT_OF_DATE_KHR) {
|
||||
recreateSwapChain();
|
||||
return;
|
||||
} else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
|
||||
throw std::runtime_error("failed to acquire swap chain image!");
|
||||
}
|
||||
|
||||
buffers_libs::Buffers::updateUniformBuffer(Global::currentFrame);
|
||||
|
||||
vkResetFences(Global::device, 1, &inFlightFences[Global::currentFrame]);
|
||||
|
||||
vkResetCommandBuffer(Global::commandBuffers[Global::currentFrame], /*VkCommandBufferResetFlagBits*/ 0);
|
||||
graphics_pipeline::Graphics::recordCommandBuffer(Global::commandBuffers[Global::currentFrame], imageIndex);
|
||||
|
||||
VkSubmitInfo submitInfo{};
|
||||
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
||||
|
||||
VkSemaphore waitSemaphores[] = {imageAvailableSemaphores[Global::currentFrame]};
|
||||
VkPipelineStageFlags waitStages[] = {VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT};
|
||||
submitInfo.waitSemaphoreCount = 1;
|
||||
submitInfo.pWaitSemaphores = waitSemaphores;
|
||||
submitInfo.pWaitDstStageMask = waitStages;
|
||||
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &Global::commandBuffers[Global::currentFrame];
|
||||
|
||||
VkSemaphore signalSemaphores[] = {renderFinishedSemaphores[Global::currentFrame]};
|
||||
submitInfo.signalSemaphoreCount = 1;
|
||||
submitInfo.pSignalSemaphores = signalSemaphores;
|
||||
|
||||
if (vkQueueSubmit(Global::graphicsQueue, 1, &submitInfo, inFlightFences[Global::currentFrame]) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to submit draw command buffer!");
|
||||
}
|
||||
|
||||
VkPresentInfoKHR presentInfo{};
|
||||
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
|
||||
|
||||
presentInfo.waitSemaphoreCount = 1;
|
||||
presentInfo.pWaitSemaphores = signalSemaphores;
|
||||
|
||||
VkSwapchainKHR swapChains[] = {Global::swapChain};
|
||||
presentInfo.swapchainCount = 1;
|
||||
presentInfo.pSwapchains = swapChains;
|
||||
|
||||
presentInfo.pImageIndices = &imageIndex;
|
||||
|
||||
result = vkQueuePresentKHR(Global::presentQueue, &presentInfo);
|
||||
if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR || EntryApp::getInstance().getFramebufferResized()) {
|
||||
EntryApp::getInstance().setFramebufferResized(false);
|
||||
recreateSwapChain();
|
||||
} else if (result != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to present swap chain image!");
|
||||
}
|
||||
Global::currentFrame = (Global::currentFrame + 1) % Global::MAX_FRAMES_IN_FLIGHT;
|
||||
}
|
||||
#pragma info
|
||||
// SEMAPHORES
|
||||
// Synchronization of execution on the GPU in Vulkan is *explicit* The Order of ops is up to us to
|
||||
// define the how we want things to run.
|
||||
// Similarly, Semaphores are used to add order between queue ops. There are 2 kinds of Semaphores; binary, and timeline.
|
||||
// We are using Binary semaphores, which can be signaled or unsignaled.
|
||||
// Semaphores are initizalized unsignaled, the way we use them to order queue operations is by providing the same semaphore in one queue op and a wait in another.
|
||||
// For example:
|
||||
// VkCommandBuffer QueueOne, QueueTwo = ...
|
||||
// VkSemaphore semaphore = ...
|
||||
// enqueue QueueOne, Signal semaphore when done, start now.
|
||||
// vkQueueSubmit(work: QueueOne, signal: semaphore, wait: none)
|
||||
// enqueue QueueTwo, wait on semaphore to start
|
||||
// vkQueueSubmit(
|
||||
// work: QueueTwo, signal: None, wait: semaphore)
|
||||
// FENCES
|
||||
// Fences are basically semaphores for the CPU! Otherwise known as the host. If the host needs to know when the GPU has finished a task, we use a fence.
|
||||
// VkCommandBuffer cmndBuf = ...
|
||||
// VkFence fence = ...
|
||||
// Start work immediately, signal fence when done.
|
||||
// vkQueueSubmit(work: cmndBuf, fence: fence)
|
||||
// vkWaitForFence(fence)
|
||||
// doStuffOnceFenceDone()
|
||||
#pragma endinfo
|
||||
|
||||
void Render::createSyncObject() {
|
||||
imageAvailableSemaphores.resize(Global::MAX_FRAMES_IN_FLIGHT);
|
||||
renderFinishedSemaphores.resize(Global::MAX_FRAMES_IN_FLIGHT);
|
||||
inFlightFences.resize(Global::MAX_FRAMES_IN_FLIGHT);
|
||||
|
||||
VkSemaphoreCreateInfo semaphoreInfo{};
|
||||
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
|
||||
|
||||
VkFenceCreateInfo fenceInfo{};
|
||||
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
|
||||
fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
|
||||
|
||||
for (size_t i = 0; i < Global::MAX_FRAMES_IN_FLIGHT; i++) {
|
||||
if(vkCreateSemaphore(Global::device, &semaphoreInfo, nullptr, &imageAvailableSemaphores[i]) != VK_SUCCESS ||
|
||||
vkCreateSemaphore(Global::device, &semaphoreInfo, nullptr, &renderFinishedSemaphores[i]) != VK_SUCCESS ||
|
||||
vkCreateFence(Global::device, &fenceInfo, nullptr, &inFlightFences[i]) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create semaphores!");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
void Render::destroyFenceSemaphores() {
|
||||
for (size_t i = 0; i < Global::MAX_FRAMES_IN_FLIGHT; i++) {
|
||||
vkDestroySemaphore(Global::device, renderFinishedSemaphores[i], nullptr);
|
||||
vkDestroySemaphore(Global::device, imageAvailableSemaphores[i], nullptr);
|
||||
vkDestroyFence(Global::device, inFlightFences[i], nullptr);
|
||||
}
|
||||
}
|
||||
void Render::cleanupSwapChain() {
|
||||
vkDestroyImageView(Global::device, Global::depthImageView, nullptr);
|
||||
vkDestroyImage(Global::device, Global::depthImage, nullptr);
|
||||
vkFreeMemory(Global::device, Global::depthImageMemory, nullptr);
|
||||
|
||||
for(auto imageView : Global::swapChainImageViews) {
|
||||
vkDestroyImageView(Global::device, imageView, nullptr);
|
||||
}
|
||||
vkDestroySwapchainKHR(Global::device, Global::swapChain, nullptr);
|
||||
for (auto imageView : Global::swapChainImageViews) {
|
||||
vkDestroyImageView(Global::device, imageView, nullptr);
|
||||
}
|
||||
vkDestroySwapchainKHR(Global::device, Global::swapChain, nullptr);
|
||||
|
||||
device_libs::DeviceControl::createSwapChain(Global::window);
|
||||
device_libs::DeviceControl::createImageViews();
|
||||
texture_libs::Texture::createDepthResources();
|
||||
}
|
||||
// At a high level, rendering in Vulkan consists of 5 steps:
|
||||
// Wait for the previous frame, acquire a image from the swap chain
|
||||
// record a comman d buffer which draws the scene onto that image
|
||||
// submit the recorded command buffer and present the image!
|
||||
void Render::drawFrame() {
|
||||
vkWaitForFences(Global::device, 1, &inFlightFences[Global::currentFrame],
|
||||
VK_TRUE, UINT64_MAX);
|
||||
vkResetFences(Global::device, 1, &inFlightFences[Global::currentFrame]);
|
||||
|
||||
uint32_t imageIndex;
|
||||
VkResult result =
|
||||
vkAcquireNextImageKHR(Global::device, Global::swapChain, UINT64_MAX,
|
||||
imageAvailableSemaphores[Global::currentFrame],
|
||||
VK_NULL_HANDLE, &imageIndex);
|
||||
if (result == VK_ERROR_OUT_OF_DATE_KHR) {
|
||||
recreateSwapChain();
|
||||
return;
|
||||
} else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
|
||||
throw std::runtime_error("failed to acquire swap chain image!");
|
||||
}
|
||||
|
||||
buffers_libs::Buffers::updateUniformBuffer(Global::currentFrame);
|
||||
|
||||
vkResetFences(Global::device, 1, &inFlightFences[Global::currentFrame]);
|
||||
|
||||
vkResetCommandBuffer(Global::commandBuffers[Global::currentFrame],
|
||||
/*VkCommandBufferResetFlagBits*/ 0);
|
||||
graphics_pipeline::Graphics::recordCommandBuffer(
|
||||
Global::commandBuffers[Global::currentFrame], imageIndex);
|
||||
|
||||
VkSubmitInfo submitInfo{};
|
||||
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
||||
|
||||
VkSemaphore waitSemaphores[] = {
|
||||
imageAvailableSemaphores[Global::currentFrame]};
|
||||
VkPipelineStageFlags waitStages[] = {
|
||||
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT};
|
||||
submitInfo.waitSemaphoreCount = 1;
|
||||
submitInfo.pWaitSemaphores = waitSemaphores;
|
||||
submitInfo.pWaitDstStageMask = waitStages;
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &Global::commandBuffers[Global::currentFrame];
|
||||
|
||||
VkSemaphore signalSemaphores[] = {
|
||||
renderFinishedSemaphores[Global::currentFrame]};
|
||||
submitInfo.signalSemaphoreCount = 1;
|
||||
submitInfo.pSignalSemaphores = signalSemaphores;
|
||||
|
||||
if (vkQueueSubmit(Global::graphicsQueue, 1, &submitInfo,
|
||||
inFlightFences[Global::currentFrame]) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to submit draw command buffer!");
|
||||
}
|
||||
|
||||
VkPresentInfoKHR presentInfo{};
|
||||
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
|
||||
|
||||
presentInfo.waitSemaphoreCount = 1;
|
||||
presentInfo.pWaitSemaphores = signalSemaphores;
|
||||
|
||||
VkSwapchainKHR swapChains[] = {Global::swapChain};
|
||||
presentInfo.swapchainCount = 1;
|
||||
presentInfo.pSwapchains = swapChains;
|
||||
presentInfo.pImageIndices = &imageIndex;
|
||||
|
||||
result = vkQueuePresentKHR(Global::presentQueue, &presentInfo);
|
||||
|
||||
if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR ||
|
||||
EntryApp::getInstance().getFramebufferResized()) {
|
||||
EntryApp::getInstance().setFramebufferResized(false);
|
||||
recreateSwapChain();
|
||||
} else if (result != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to present swap chain image!");
|
||||
}
|
||||
Global::currentFrame =
|
||||
(Global::currentFrame + 1) % Global::MAX_FRAMES_IN_FLIGHT;
|
||||
}
|
||||
#pragma info
|
||||
// SEMAPHORES
|
||||
// Synchronization of execution on the GPU in Vulkan is *explicit* The Order of
|
||||
// ops is up to us to define the how we want things to run. Similarly,
|
||||
// Semaphores are used to add order between queue ops. There are 2 kinds of
|
||||
// Semaphores; binary, and timeline. We are using Binary semaphores, which can
|
||||
// be signaled or unsignaled. Semaphores are initizalized unsignaled, the way we
|
||||
// use them to order queue operations is by providing the same semaphore in one
|
||||
// queue op and a wait in another. For example: VkCommandBuffer QueueOne,
|
||||
// QueueTwo = ... VkSemaphore semaphore = ... enqueue QueueOne, Signal semaphore
|
||||
// when done, start now. vkQueueSubmit(work: QueueOne, signal: semaphore, wait:
|
||||
// none) enqueue QueueTwo, wait on semaphore to start vkQueueSubmit(
|
||||
// work: QueueTwo, signal: None, wait: semaphore)
|
||||
// FENCES
|
||||
// Fences are basically semaphores for the CPU! Otherwise known as the host. If
|
||||
// the host needs to know when the GPU has finished a task, we use a fence.
|
||||
// VkCommandBuffer cmndBuf = ...
|
||||
// VkFence fence = ...
|
||||
// Start work immediately, signal fence when done.
|
||||
// vkQueueSubmit(work: cmndBuf, fence: fence)
|
||||
// vkWaitForFence(fence)
|
||||
// doStuffOnceFenceDone()
|
||||
#pragma endinfo
|
||||
|
||||
void Render::createSyncObject() {
|
||||
imageAvailableSemaphores.resize(Global::MAX_FRAMES_IN_FLIGHT);
|
||||
renderFinishedSemaphores.resize(Global::MAX_FRAMES_IN_FLIGHT);
|
||||
inFlightFences.resize(Global::MAX_FRAMES_IN_FLIGHT);
|
||||
|
||||
VkSemaphoreCreateInfo semaphoreInfo{};
|
||||
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
|
||||
|
||||
VkFenceCreateInfo fenceInfo{};
|
||||
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
|
||||
fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
|
||||
|
||||
for (size_t i = 0; i < Global::MAX_FRAMES_IN_FLIGHT; i++) {
|
||||
if (vkCreateSemaphore(Global::device, &semaphoreInfo, nullptr,
|
||||
&imageAvailableSemaphores[i]) != VK_SUCCESS ||
|
||||
vkCreateSemaphore(Global::device, &semaphoreInfo, nullptr,
|
||||
&renderFinishedSemaphores[i]) != VK_SUCCESS ||
|
||||
vkCreateFence(Global::device, &fenceInfo, nullptr,
|
||||
&inFlightFences[i]) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create semaphores!");
|
||||
}
|
||||
}
|
||||
}
|
||||
void Render::destroyFenceSemaphores() {
|
||||
for (size_t i = 0; i < Global::MAX_FRAMES_IN_FLIGHT; i++) {
|
||||
vkDestroySemaphore(Global::device, renderFinishedSemaphores[i], nullptr);
|
||||
vkDestroySemaphore(Global::device, imageAvailableSemaphores[i], nullptr);
|
||||
vkDestroyFence(Global::device, inFlightFences[i], nullptr);
|
||||
}
|
||||
}
|
||||
void Render::cleanupSwapChain() {
|
||||
vkDestroyImageView(Global::device, Global::depthImageView, nullptr);
|
||||
vkDestroyImage(Global::device, Global::depthImage, nullptr);
|
||||
vkFreeMemory(Global::device, Global::depthImageMemory, nullptr);
|
||||
|
||||
for (auto imageView : Global::swapChainImageViews) {
|
||||
vkDestroyImageView(Global::device, imageView, nullptr);
|
||||
}
|
||||
vkDestroySwapchainKHR(Global::device, Global::swapChain, nullptr);
|
||||
}
|
||||
|
||||
} // namespace render_present
|
||||
|
Reference in New Issue
Block a user