Add stanford dragon model
This commit is contained in:
parent
7d2949ca73
commit
5c2f82b995
BIN
.cache/clangd/index/buffers.cpp.FC2CC275D910BCB7.idx
Normal file
BIN
.cache/clangd/index/buffers.cpp.FC2CC275D910BCB7.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/buffers.h.CC15E40B6084C10D.idx
Normal file
BIN
.cache/clangd/index/buffers.h.CC15E40B6084C10D.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/devicelibrary.cpp.A6A50BF3BD186A09.idx
Normal file
BIN
.cache/clangd/index/devicelibrary.cpp.A6A50BF3BD186A09.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/devicelibrary.h.D7B097F0839961AC.idx
Normal file
BIN
.cache/clangd/index/devicelibrary.h.D7B097F0839961AC.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/entrypoint.cpp.9286A9B0BD8A276E.idx
Normal file
BIN
.cache/clangd/index/entrypoint.cpp.9286A9B0BD8A276E.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/entrypoint.h.1BBE0276DA7F0CE2.idx
Normal file
BIN
.cache/clangd/index/entrypoint.h.1BBE0276DA7F0CE2.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/global.cpp.DB8A6A1A4BC0BF3A.idx
Normal file
BIN
.cache/clangd/index/global.cpp.DB8A6A1A4BC0BF3A.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/global.h.67055BFC9A2F7BD6.idx
Normal file
BIN
.cache/clangd/index/global.h.67055BFC9A2F7BD6.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/graphicspipeline.cpp.F94E3ACB17FA6762.idx
Normal file
BIN
.cache/clangd/index/graphicspipeline.cpp.F94E3ACB17FA6762.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/graphicspipeline.h.093A3C67F46BDBAE.idx
Normal file
BIN
.cache/clangd/index/graphicspipeline.h.093A3C67F46BDBAE.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/main.cpp.6FA2B2FABDE63972.idx
Normal file
BIN
.cache/clangd/index/main.cpp.6FA2B2FABDE63972.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/model.cpp.56D1ED026EF1D5F1.idx
Normal file
BIN
.cache/clangd/index/model.cpp.56D1ED026EF1D5F1.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/model.h.C3ECCCBE7C04E4C8.idx
Normal file
BIN
.cache/clangd/index/model.h.C3ECCCBE7C04E4C8.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/render.cpp.657B8B8CBD5B3B6B.idx
Normal file
BIN
.cache/clangd/index/render.cpp.657B8B8CBD5B3B6B.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/render.h.A0C955D8D0DA424C.idx
Normal file
BIN
.cache/clangd/index/render.h.A0C955D8D0DA424C.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/texture.cpp.14763AFB742F8112.idx
Normal file
BIN
.cache/clangd/index/texture.cpp.14763AFB742F8112.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/texture.h.712506A996DB5236.idx
Normal file
BIN
.cache/clangd/index/texture.h.712506A996DB5236.idx
Normal file
Binary file not shown.
2
.gitignore
vendored
2
.gitignore
vendored
@ -35,3 +35,5 @@
|
||||
*.out
|
||||
*.app
|
||||
build/
|
||||
|
||||
compile_commands.json
|
||||
|
4
Makefile
4
Makefile
@ -1,4 +1,4 @@
|
||||
CPPFLAGS=-g
|
||||
CPPFLAGS=-std=c++23 -g
|
||||
LDFLAGS=-lglfw -lvulkan -ldl -lpthread -lX11 -lXxf86vm -lXrandr -lXi -ltinyobjloader
|
||||
DEBUGFLAGS=-DDEBUG -fsanitize=address
|
||||
GDBFLAGS=
|
||||
@ -42,7 +42,7 @@ $(BIN): $(OBJ) $(SPV)
|
||||
g++ $(CPPFLAGS) -o $(BIN) $(OBJ) $(LDFLAGS)
|
||||
|
||||
%.o: %.cpp
|
||||
g++ -c -g $< -o $@ $(LDFLAGS)
|
||||
g++ -c $(CPPFLAGS) $< -o $@ $(LDFLAGS)
|
||||
|
||||
%.spv: %.frag
|
||||
glslc $< -o $@
|
||||
|
2693634
assets/models/StanfordDragon800k.obj
Normal file
2693634
assets/models/StanfordDragon800k.obj
Normal file
File diff suppressed because it is too large
Load Diff
18901
assets/models/teapot.obj
Normal file
18901
assets/models/teapot.obj
Normal file
File diff suppressed because it is too large
Load Diff
16053
assets/models/viking_room.obj
Normal file
16053
assets/models/viking_room.obj
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,150 +0,0 @@
|
||||
#include "vulkandebuglibs.h"
|
||||
|
||||
// This is our messenger object! It handles passing along debug messages to the debug callback we will also set.
|
||||
VkDebugUtilsMessengerEXT debugMessenger;
|
||||
// This is the set of "layers" to hook into. Basically, layers are used to tell the messenger what data we want, its a filter. *validation* is the general blanket layer to cover incorrect usage.
|
||||
namespace debug_libs {
|
||||
std::vector<const char*> getRequiredExtensions() {
|
||||
// This gets a little weird, Vulkan is platform agnostic, so you need to figure out what extensions to interface with the current system are needed
|
||||
// So, to figure out what extension codes and how many to use, feed the pointer into *glfwGetRequiredInstanceExtensions*, which will get the necessary extensions!
|
||||
// From there, we can send that over to our createInfo Vulkan info struct to make it fully platform agnostic!
|
||||
uint32_t glfwExtensionCount = 0;
|
||||
const char** glfwExtensions;
|
||||
glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
|
||||
|
||||
std::vector<const char*> extensions(glfwExtensions, glfwExtensions + glfwExtensionCount);
|
||||
|
||||
if(Global::enableValidationLayers) {
|
||||
extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
|
||||
}
|
||||
return extensions;
|
||||
}
|
||||
|
||||
static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(
|
||||
VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
|
||||
VkDebugUtilsMessageTypeFlagsEXT messageType,
|
||||
const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData,
|
||||
void* pUserData) {
|
||||
// One hell of a function, this is using the *PFN_vkDestroyDebugUtilsMessengerEXT* prototype, the prototype for an, "Application-defined debug messenger callback function".
|
||||
// The VKAPI_CALL and VKAPI_ATTR ensure that the function has the right signature for vulkan to call it. The callback message can be anything from a diagnostic to error!
|
||||
// You can even sort by those diagnostics with their flags, since they are just integers, maybe TODO?
|
||||
std::cerr << "Validation layer: " << pCallbackData->pMessage << std::endl;
|
||||
std::cout << "\n";
|
||||
|
||||
return VK_FALSE;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void populateDebugMessengerCreateInfo(VkDebugUtilsMessengerCreateInfoEXT& createInfo) {
|
||||
// There is absolutely nothing about this i like, those long ass flags for messageType and Severity are just fucking hex values. Khronos should never cook again ToT
|
||||
// On a serious note, this is just a struct to define the parameters of the debug messenger, nothing super special.
|
||||
createInfo = {};
|
||||
createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
|
||||
createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
|
||||
createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
|
||||
createInfo.pfnUserCallback = debugCallback;
|
||||
createInfo.pUserData = nullptr; // Optional
|
||||
}
|
||||
|
||||
void Debug::vulkanDebugSetup(VkInstanceCreateInfo& createInfo, VkInstance& instance) {
|
||||
// This function is quite useful, we first populate the debug create info structure, all the parameters dictating how the debug messenger will operate.
|
||||
// The reason we populate the debug messenger so late is actually on purpose, we need to set the createInfo, which depends on the debugMessenger info,
|
||||
// and if we set it before the creation of the instance, we cant debug vkCreateInstance or vkDestroyInstance! It's timed perfectly as of now.
|
||||
VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo{};
|
||||
auto extensions = getRequiredExtensions();
|
||||
createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
|
||||
createInfo.ppEnabledExtensionNames = extensions.data();
|
||||
|
||||
if(Global::enableValidationLayers) {
|
||||
createInfo.enabledLayerCount = static_cast<uint32_t>(Global::validationLayers.size());
|
||||
createInfo.ppEnabledLayerNames = Global::validationLayers.data();
|
||||
|
||||
populateDebugMessengerCreateInfo(debugCreateInfo);
|
||||
createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXT*) &debugCreateInfo;
|
||||
|
||||
} else {
|
||||
createInfo.enabledLayerCount = 0;
|
||||
createInfo.pNext = nullptr;
|
||||
}
|
||||
|
||||
if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create instance!");
|
||||
}
|
||||
}
|
||||
|
||||
void Debug::checkUnavailableValidationLayers() {
|
||||
// Check if we are trying to hook validation layers in without support.
|
||||
if(Global::enableValidationLayers && !checkValidationLayerSupport()) {
|
||||
throw std::runtime_error("Validation layers request, but not available! Are your SDK path variables set?");
|
||||
}
|
||||
}
|
||||
|
||||
bool Debug::checkValidationLayerSupport() {
|
||||
// This function is used to check Validation Layer Support, validation layers are the debug trace tools in the Vulkan SDK.
|
||||
// layerCount will be used as the var to keep track of the number of requested validation layer
|
||||
// VkLayerProperties is a structure with data on the layername, desc, versions and etc.
|
||||
|
||||
uint32_t layerCount;
|
||||
vkEnumerateInstanceLayerProperties(&layerCount, nullptr);
|
||||
|
||||
std::vector<VkLayerProperties> availableLayers(layerCount);
|
||||
vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());
|
||||
|
||||
for(const char* layerName : Global::validationLayers) {
|
||||
bool layerFound = false;
|
||||
|
||||
for(const auto& layerProperties : availableLayers) {
|
||||
if(strcmp(layerName, layerProperties.layerName) == 0) {
|
||||
layerFound = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(!layerFound) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
VkResult CreateDebugUtilsMessengerEXT(
|
||||
VkInstance instance,
|
||||
const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo,
|
||||
const VkAllocationCallbacks* pAllocator,
|
||||
VkDebugUtilsMessengerEXT* pDebugMessenger) {
|
||||
// This function builds out debug messenger structure!
|
||||
// It's a little odd, we have to look up the address of the vkCreateDebugUtilsMessengerEXT ourselves because its an extension function,
|
||||
// therefore, not auto-loaded.
|
||||
|
||||
auto func = (PFN_vkCreateDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT");
|
||||
|
||||
if (func != nullptr) {
|
||||
return func(instance, pCreateInfo, pAllocator, pDebugMessenger);
|
||||
} else {
|
||||
return VK_ERROR_EXTENSION_NOT_PRESENT;
|
||||
}
|
||||
}
|
||||
|
||||
void Debug::DestroyDebugUtilsMessengerEXT(VkInstance instance,
|
||||
const VkAllocationCallbacks* pAllocator) {
|
||||
// We are doing kind of the same thing as before in the create function, find the address of the DestroyDebugUtils function, and call it.
|
||||
|
||||
auto func = (PFN_vkDestroyDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkDestroyDebugUtilsMessengerEXT");
|
||||
if(func != nullptr) {
|
||||
func(instance, debugMessenger, pAllocator);
|
||||
}
|
||||
}
|
||||
|
||||
void Debug::setupDebugMessenger(VkInstance& vulkanInstance) {
|
||||
// This is a pretty simple function! we just pass in the values to build the debug messenger, populate the structure with the data we want,
|
||||
// and safely create it, covering for runtime errors as per usual, this is the first thing that will be called!
|
||||
if(!Global::enableValidationLayers) return;
|
||||
|
||||
VkDebugUtilsMessengerCreateInfoEXT createInfo;
|
||||
populateDebugMessengerCreateInfo(createInfo);
|
||||
|
||||
if(CreateDebugUtilsMessengerEXT(vulkanInstance, &createInfo, nullptr, &debugMessenger) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to set up the Debug Messenger!");
|
||||
}
|
||||
}
|
||||
}
|
@ -1,14 +0,0 @@
|
||||
#pragma once
|
||||
#include <cstring>
|
||||
#include "../global.h"
|
||||
|
||||
namespace debug_libs {
|
||||
class Debug {
|
||||
public:
|
||||
static void vulkanDebugSetup(VkInstanceCreateInfo& createInfo, VkInstance& instance);
|
||||
static bool checkValidationLayerSupport();
|
||||
static void checkUnavailableValidationLayers();
|
||||
static void setupDebugMessenger(VkInstance& vulkanInstance);
|
||||
static void DestroyDebugUtilsMessengerEXT(VkInstance instance, const VkAllocationCallbacks* pAllocator);
|
||||
};
|
||||
}
|
@ -1,4 +1,5 @@
|
||||
#include "devicelibrary.h"
|
||||
#include <vulkan/vulkan_core.h>
|
||||
|
||||
namespace device_libs {
|
||||
|
||||
@ -7,7 +8,6 @@ namespace device_libs {
|
||||
std::vector<VkImage> swapChainImages;
|
||||
VkFormat swapChainImageFormat;
|
||||
VkExtent2D swapChainExtent;
|
||||
std::vector<VkImageView> swapChainImageViews;
|
||||
|
||||
struct SwapChainSupportDetails {
|
||||
VkSurfaceCapabilitiesKHR capabilities;
|
||||
@ -19,10 +19,12 @@ namespace device_libs {
|
||||
};
|
||||
SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) {
|
||||
|
||||
// Swap chains are weird ngl, it's another one of those Vulkan platform agnosticity. The swapchain is basically a wrapper for GDI+, DXGI, X11, Wayland, etc.
|
||||
// It lets us use the swap chain rather than create a different framebuffer handler for every targeted platform.
|
||||
// Swap chains handle the ownership of buffers before sending them to the presentation engine.
|
||||
// (still no fucking clue how it works though)
|
||||
/* Swap chains are weird ngl, it's another one of those Vulkan platform agnosticity.
|
||||
The swapchain is basically a wrapper for GDI+, DXGI, X11, Wayland, etc.
|
||||
It lets us use the swap chain rather than create a different framebuffer
|
||||
handler for every targeted platform. Swap chains handle the ownership
|
||||
of buffers before sending them to the presentation engine. (still no
|
||||
fucking clue how it works though) */
|
||||
SwapChainSupportDetails details;
|
||||
|
||||
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, Global::surface, &details.capabilities);
|
||||
@ -32,7 +34,7 @@ namespace device_libs {
|
||||
|
||||
if(formatCount != 0) {
|
||||
details.formats.resize(formatCount);
|
||||
vkGetPhysicalDeviceSurfaceFormatsKHR(device, Global::surface, &formatCount, details.formats.data());
|
||||
vkGetPhysicalDeviceSurfaceFormatsKHR(device, Global::surface, &formatCount, details.formats.data());
|
||||
}
|
||||
|
||||
uint32_t presentModeCount;
|
||||
@ -106,12 +108,10 @@ namespace device_libs {
|
||||
// This is most similarly to standard V-Sync.
|
||||
for(const auto& availablePresentMode : availablePresentModes) {
|
||||
if(availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
|
||||
if(Global::enableValidationLayers) std::cout << "Using Triple Buffering\n" << std::endl;
|
||||
return availablePresentMode;
|
||||
}
|
||||
}
|
||||
|
||||
if(Global::enableValidationLayers) std::cout << "Using FIFO (V-Sync)\n" << std::endl;
|
||||
return VK_PRESENT_MODE_FIFO_KHR;
|
||||
}
|
||||
VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities, GLFWwindow* window) {
|
||||
@ -149,7 +149,6 @@ namespace device_libs {
|
||||
|
||||
for(const auto& device : devices) {
|
||||
if(isDeviceSuitable(device)) {
|
||||
if(Global::enableValidationLayers) std::cout << "Using device: " << deviceProperties.deviceName << std::endl;
|
||||
//Once we have buttons or such, maybe ask the user or write a config file for which GPU to use?
|
||||
Global::physicalDevice = device;
|
||||
break;
|
||||
@ -161,13 +160,11 @@ namespace device_libs {
|
||||
}
|
||||
void DeviceControl::destroySurface(VkInstance& instance) {
|
||||
vkDestroySurfaceKHR(instance, Global::surface, nullptr);
|
||||
if(Global::enableValidationLayers) std::cout << "Destroyed surface safely\n" << std::endl;
|
||||
}
|
||||
void DeviceControl::createSurface(VkInstance& instance, GLFWwindow* window) {
|
||||
if(glfwCreateWindowSurface(instance, window, nullptr, &Global::surface) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create window surface!!");
|
||||
}
|
||||
if(Global::enableValidationLayers) std::cout << "GLFW Window Surface created successfully\n" << std::endl;
|
||||
}
|
||||
void DeviceControl::createLogicalDevice() {
|
||||
// Describe how many queues we want for a single family (1) here, right now we are solely interested in graphics capabilites,
|
||||
@ -190,28 +187,33 @@ namespace device_libs {
|
||||
queueCreateSingularInfo.pQueuePriorities = &queuePriority;
|
||||
queueCreateInfos.push_back(queueCreateSingularInfo);
|
||||
}
|
||||
VkPhysicalDeviceFeatures deviceFeatures{};
|
||||
deviceFeatures.samplerAnisotropy = VK_TRUE;
|
||||
|
||||
VkPhysicalDeviceVulkan13Features features13 {
|
||||
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES,
|
||||
.pNext = nullptr,
|
||||
.dynamicRendering = true,
|
||||
};
|
||||
VkPhysicalDeviceFeatures featuresBase {
|
||||
.samplerAnisotropy = true,
|
||||
};
|
||||
|
||||
VkPhysicalDeviceFeatures2 deviceFeatures {
|
||||
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2,
|
||||
.pNext = &features13,
|
||||
.features = featuresBase,
|
||||
};
|
||||
|
||||
VkDeviceCreateInfo createDeviceInfo = {};
|
||||
createDeviceInfo.pNext = &deviceFeatures;
|
||||
createDeviceInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
|
||||
createDeviceInfo.pQueueCreateInfos = queueCreateInfos.data();
|
||||
createDeviceInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());
|
||||
createDeviceInfo.pEnabledFeatures = &deviceFeatures;
|
||||
createDeviceInfo.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size());
|
||||
createDeviceInfo.ppEnabledExtensionNames = deviceExtensions.data();
|
||||
|
||||
if(Global::enableValidationLayers) {
|
||||
createDeviceInfo.enabledLayerCount = static_cast<uint32_t>(Global::validationLayers.size());
|
||||
createDeviceInfo.ppEnabledLayerNames = Global::validationLayers.data();
|
||||
} else {
|
||||
createDeviceInfo.enabledLayerCount = 0;
|
||||
}
|
||||
if(vkCreateDevice(Global::physicalDevice, &createDeviceInfo, nullptr, &Global::device) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create logical device");
|
||||
}
|
||||
if(Global::enableValidationLayers) std::cout << "Created Logical device successfully!\n" << std::endl;
|
||||
|
||||
vkGetDeviceQueue(Global::device, indices.graphicsFamily.value(), 0, &Global::graphicsQueue);
|
||||
vkGetDeviceQueue(Global::device, indices.presentFamily.value(), 0, &Global::presentQueue);
|
||||
}
|
||||
@ -272,7 +274,6 @@ namespace device_libs {
|
||||
if(vkCreateSwapchainKHR(Global::device, &createSwapChainInfo, nullptr, &Global::swapChain) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create the swap chain!!");
|
||||
}
|
||||
if(Global::enableValidationLayers) std::cout << "Swap Chain created successfully\n" << std::endl;
|
||||
|
||||
vkGetSwapchainImagesKHR(Global::device, Global::swapChain, &imageCount, nullptr);
|
||||
swapChainImages.resize(imageCount);
|
||||
@ -283,7 +284,6 @@ namespace device_libs {
|
||||
}
|
||||
void DeviceControl::destroySwapChain() {
|
||||
vkDestroySwapchainKHR(Global::device, Global::swapChain, nullptr);
|
||||
if(Global::enableValidationLayers) std::cout << "Destroyed Swap Chain safely\n" << std::endl;
|
||||
}
|
||||
VkImageView DeviceControl::createImageView(VkImage image, VkFormat format, VkImageAspectFlags flags, uint32_t mipLevels) {
|
||||
// This defines the parameters of a newly created image object!
|
||||
@ -307,27 +307,26 @@ namespace device_libs {
|
||||
return imageView;
|
||||
}
|
||||
void DeviceControl::createImageViews() {
|
||||
swapChainImageViews.resize(swapChainImages.size());
|
||||
Global::swapChainImageViews.resize(swapChainImages.size());
|
||||
|
||||
for (uint32_t i = 0; i < swapChainImages.size(); i++) {
|
||||
swapChainImageViews[i] = createImageView(swapChainImages[i], swapChainImageFormat, VK_IMAGE_ASPECT_COLOR_BIT, 1);
|
||||
Global::swapChainImageViews[i] = createImageView(swapChainImages[i], swapChainImageFormat, VK_IMAGE_ASPECT_COLOR_BIT, 1);
|
||||
}
|
||||
}
|
||||
void DeviceControl::destroyImageViews() {
|
||||
for (auto imageView : swapChainImageViews) {
|
||||
for (auto imageView : Global::swapChainImageViews) {
|
||||
vkDestroyImageView(Global::device, imageView, nullptr);
|
||||
}
|
||||
if(Global::enableValidationLayers) std::cout << "Image destroyed safely\n" << std::endl;
|
||||
}
|
||||
// --------------------------------------- Getters & Setters ------------------------------------------ //
|
||||
VkFormat DeviceControl::getImageFormat() {
|
||||
return swapChainImageFormat;
|
||||
}
|
||||
std::vector<VkImageView> DeviceControl::getSwapChainImageViews() {
|
||||
return swapChainImageViews;
|
||||
VkFormat* DeviceControl::getImageFormat() {
|
||||
return &swapChainImageFormat;
|
||||
}
|
||||
VkExtent2D DeviceControl::getSwapChainExtent() {
|
||||
return swapChainExtent;
|
||||
}
|
||||
std::vector<VkImage> DeviceControl::getSwapChainImages() {
|
||||
return swapChainImages;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
@ -21,9 +21,9 @@ class DeviceControl {
|
||||
static void destroyCommandPool();
|
||||
|
||||
// ---------- Getters & Setters ----------- //
|
||||
static VkFormat getImageFormat();
|
||||
static std::vector<VkImageView> getSwapChainImageViews();
|
||||
static VkFormat* getImageFormat();
|
||||
static VkExtent2D getSwapChainExtent();
|
||||
static std::vector<VkImage> getSwapChainImages();
|
||||
static std::vector<VkFramebuffer> getSwapChainFramebuffers();
|
||||
};
|
||||
}
|
||||
|
@ -27,8 +27,7 @@ void initWindow() {
|
||||
}
|
||||
|
||||
void createInstance() {
|
||||
debug_libs::Debug::checkUnavailableValidationLayers(); // Check if there is a mistake with our Validation Layers.
|
||||
|
||||
|
||||
// Set application info for the vulkan instance!
|
||||
VkApplicationInfo appInfo{};
|
||||
|
||||
@ -39,28 +38,38 @@ void createInstance() {
|
||||
appInfo.engineVersion = VK_MAKE_VERSION(1,0,0); // Similar to the App version, give vulkan an *engine* version
|
||||
appInfo.apiVersion = VK_API_VERSION_1_3; // Tell vulkan what the highest API version we will allow this program to run on
|
||||
|
||||
// This gets a little weird, Vulkan is platform agnostic, so you need to figure out what extensions to interface with the current system are needed
|
||||
// So, to figure out what extension codes and how many to use, feed the pointer into *glfwGetRequiredInstanceExtensions*, which will get the necessary extensions!
|
||||
// From there, we can send that over to our createInfo Vulkan info struct to make it fully platform agnostic!
|
||||
uint32_t glfwExtensionCount = 0;
|
||||
const char** glfwExtensions;
|
||||
glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
|
||||
std::vector<const char*> extensions(glfwExtensions, glfwExtensions + glfwExtensionCount);
|
||||
|
||||
VkInstanceCreateInfo createInfo{}; // Define parameters of new vulkan instance
|
||||
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; // Tell vulkan this is a info structure
|
||||
createInfo.pApplicationInfo = &appInfo; // We just created a new appInfo structure, so we pass the pointer to it.
|
||||
createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
|
||||
createInfo.ppEnabledExtensionNames = extensions.data();
|
||||
|
||||
if (vkCreateInstance(&createInfo, nullptr, &vulkaninstance) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create instance!");
|
||||
}
|
||||
|
||||
debug_libs::Debug::vulkanDebugSetup(createInfo, vulkaninstance); // Handoff to the debug library to wrap the validation libs in! (And set the window up!)
|
||||
}
|
||||
|
||||
void initVulkan() {
|
||||
// Initialize vulkan and set up pipeline.
|
||||
createInstance();
|
||||
debug_libs::Debug::setupDebugMessenger(vulkaninstance);
|
||||
device_libs::DeviceControl::createSurface(vulkaninstance, Global::window);
|
||||
device_libs::DeviceControl::pickPhysicalDevice(vulkaninstance);
|
||||
device_libs::DeviceControl::createLogicalDevice();
|
||||
device_libs::DeviceControl::createSwapChain(Global::window);
|
||||
device_libs::DeviceControl::createImageViews();
|
||||
graphics_pipeline::Graphics::createRenderPass();
|
||||
buffers_libs::Buffers::createDescriptorSetLayout();
|
||||
graphics_pipeline::Graphics::createGraphicsPipeline();
|
||||
graphics_pipeline::Graphics::createCommandPool();
|
||||
texture_libs::Texture::createDepthResources();
|
||||
graphics_pipeline::Graphics::createFramebuffers();
|
||||
texture_libs::Texture::createTextureImage();
|
||||
texture_libs::Texture::createTextureImageView();
|
||||
texture_libs::Texture::createTextureSampler();
|
||||
@ -85,7 +94,7 @@ void mainLoop() {
|
||||
void cleanup() {
|
||||
render_present::Render::cleanupSwapChain();
|
||||
graphics_pipeline::Graphics::destroyGraphicsPipeline();
|
||||
graphics_pipeline::Graphics::destroyRenderPass();
|
||||
//graphics_pipeline::Graphics::destroyRenderPass();
|
||||
buffers_libs::Buffers::destroyUniformBuffer();
|
||||
buffers_libs::Buffers::destroyDescriptorPool();
|
||||
texture_libs::Texture::destroyTextureSampler();
|
||||
@ -96,9 +105,6 @@ void cleanup() {
|
||||
graphics_pipeline::Graphics::destroyCommandPool();
|
||||
|
||||
vkDestroyDevice(Global::device, nullptr);
|
||||
if(Global::enableValidationLayers) {
|
||||
debug_libs::Debug::DestroyDebugUtilsMessengerEXT(vulkaninstance, nullptr);
|
||||
}
|
||||
device_libs::DeviceControl::destroySurface(vulkaninstance);
|
||||
vkDestroyInstance(vulkaninstance, nullptr);
|
||||
glfwDestroyWindow(Global::window);
|
||||
|
@ -1,4 +1,3 @@
|
||||
#include "debug/vulkandebuglibs.h"
|
||||
#include "graphics/graphicspipeline.h"
|
||||
#include "graphics/render.h"
|
||||
#include "global.h"
|
||||
|
@ -2,15 +2,6 @@
|
||||
|
||||
namespace Global {
|
||||
|
||||
const std::vector<const char*> validationLayers = {
|
||||
"VK_LAYER_KHRONOS_validation"
|
||||
};
|
||||
#ifdef DEBUG
|
||||
const bool enableValidationLayers = true;
|
||||
#else
|
||||
const bool enableValidationLayers = false;
|
||||
#endif
|
||||
|
||||
VkSurfaceKHR surface;
|
||||
VkDevice device;
|
||||
VkPhysicalDevice physicalDevice;
|
||||
@ -29,6 +20,7 @@ namespace Global {
|
||||
VkImage depthImage;
|
||||
VkDeviceMemory depthImageMemory;
|
||||
|
||||
std::vector<VkImageView> swapChainImageViews;
|
||||
std::vector<Vertex> vertices;
|
||||
// Index buffer definition, showing which points to reuse.
|
||||
std::vector<uint32_t> indices;
|
||||
|
178
src/global.h
178
src/global.h
@ -4,113 +4,119 @@
|
||||
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
||||
#include <glm/glm.hpp>
|
||||
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
#include <glm/detail/qualifier.hpp>
|
||||
#include <glm/ext/vector_float2.hpp>
|
||||
#include <glm/ext/vector_float3.hpp>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
#include <glm/fwd.hpp>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
|
||||
#define GLFW_INCLUDE_VULKAN
|
||||
#include <GLFW/glfw3.h>
|
||||
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
#include <iostream>
|
||||
#include <optional>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
#include <optional>
|
||||
#include <array>
|
||||
|
||||
|
||||
|
||||
namespace Global {
|
||||
// Global variables and includes we are going to use almost everywhere, validation layers hook into everything, and you need to check if they are enabled first,
|
||||
// so that's one obvious global, as well as the glfw includes!
|
||||
// Global variables and includes we are going to use almost everywhere,
|
||||
// validation layers hook into everything, and you need to check if they are
|
||||
// enabled first, so that's one obvious global, as well as the glfw includes!
|
||||
|
||||
extern const std::vector<const char*> validationLayers;
|
||||
extern const bool enableValidationLayers;
|
||||
extern VkDevice device;
|
||||
extern VkCommandPool commandPool;
|
||||
extern std::vector<VkCommandBuffer> commandBuffers;
|
||||
extern VkQueue graphicsQueue;
|
||||
extern VkQueue presentQueue;
|
||||
const int MAX_FRAMES_IN_FLIGHT = 2;
|
||||
extern GLFWwindow* window;
|
||||
extern VkDescriptorSetLayout descriptorSetLayout;
|
||||
extern uint32_t currentFrame;
|
||||
extern std::vector<VkDescriptorSet> descriptorSets;
|
||||
extern VkImageView textureImageView;
|
||||
extern VkSampler textureSampler;
|
||||
extern VkImageView depthImageView;
|
||||
extern VkImage depthImage;
|
||||
extern VkDeviceMemory depthImageMemory;
|
||||
const std::string MODEL_PATH = "assets/models/StanfordDragon800k.obj";
|
||||
const std::string TEXTURE_PATH = "assets/textures/checkermap.png";
|
||||
extern VkPhysicalDevice physicalDevice;
|
||||
extern VkDevice device;
|
||||
|
||||
extern VkCommandPool commandPool;
|
||||
extern std::vector<VkCommandBuffer> commandBuffers;
|
||||
|
||||
extern VkQueue graphicsQueue;
|
||||
extern VkQueue presentQueue;
|
||||
|
||||
struct UniformBufferObject {
|
||||
float time;
|
||||
alignas(16) glm::mat4 model;
|
||||
alignas(16) glm::mat4 view;
|
||||
alignas(16) glm::mat4 proj;
|
||||
};
|
||||
struct Vertex {
|
||||
// This defines what a vertex is!
|
||||
// We control the position, color and texture coordinate here!
|
||||
glm::vec3 pos;
|
||||
glm::vec3 color;
|
||||
glm::vec2 texCoord;
|
||||
|
||||
static VkVertexInputBindingDescription getBindingDescription() {
|
||||
VkVertexInputBindingDescription bindingDescription{};
|
||||
bindingDescription.binding = 0;
|
||||
bindingDescription.stride = sizeof(Vertex);
|
||||
bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
|
||||
extern GLFWwindow *window;
|
||||
extern VkSurfaceKHR surface;
|
||||
extern uint32_t currentFrame;
|
||||
|
||||
return bindingDescription;
|
||||
}
|
||||
static std::array<VkVertexInputAttributeDescription, 3> getAttributeDescriptions() {
|
||||
std::array<VkVertexInputAttributeDescription, 3> attributeDescriptions{};
|
||||
extern std::vector<VkDescriptorSet> descriptorSets;
|
||||
extern VkDescriptorSetLayout descriptorSetLayout;
|
||||
|
||||
attributeDescriptions[0].binding = 0;
|
||||
attributeDescriptions[0].location = 0;
|
||||
attributeDescriptions[0].format = VK_FORMAT_R32G32B32_SFLOAT;
|
||||
attributeDescriptions[0].offset = offsetof(Vertex, pos);
|
||||
extern VkImageView textureImageView;
|
||||
extern VkSampler textureSampler;
|
||||
|
||||
attributeDescriptions[1].binding = 0;
|
||||
attributeDescriptions[1].location = 1;
|
||||
attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT;
|
||||
attributeDescriptions[1].offset = offsetof(Vertex, color);
|
||||
extern VkImage depthImage;
|
||||
extern VkImageView depthImageView;
|
||||
extern VkDeviceMemory depthImageMemory;
|
||||
|
||||
attributeDescriptions[2].binding = 0;
|
||||
attributeDescriptions[2].location = 2;
|
||||
attributeDescriptions[2].format = VK_FORMAT_R32G32_SFLOAT;
|
||||
attributeDescriptions[2].offset = offsetof(Vertex, texCoord);
|
||||
return attributeDescriptions;
|
||||
}
|
||||
bool operator==(const Vertex& other) const {
|
||||
return pos == other.pos && color == other.color && texCoord == other.texCoord;
|
||||
}
|
||||
};
|
||||
extern VkSwapchainKHR swapChain;
|
||||
extern std::vector<VkImageView> swapChainImageViews;
|
||||
|
||||
const uint32_t WIDTH = 800;
|
||||
const uint32_t HEIGHT = 600;
|
||||
extern std::vector<Vertex> vertices;
|
||||
// Index buffer definition, showing which points to reuse.
|
||||
extern std::vector<uint32_t> indices;
|
||||
struct QueueFamilyIndices {
|
||||
// We need to check that the Queue families support graphics operations and window presentation, sometimes they can support one or the other,
|
||||
// therefore, we take into account both for completion.
|
||||
std::optional<uint32_t> graphicsFamily;
|
||||
std::optional<uint32_t> presentFamily;
|
||||
const std::string MODEL_PATH = "assets/models/teapot.obj";
|
||||
const std::string TEXTURE_PATH = "assets/textures/checkermap.png";
|
||||
const uint32_t WIDTH = 800;
|
||||
const uint32_t HEIGHT = 600;
|
||||
const int MAX_FRAMES_IN_FLIGHT = 2;
|
||||
|
||||
bool isComplete() {
|
||||
return graphicsFamily.has_value() && presentFamily.has_value();
|
||||
}
|
||||
};
|
||||
extern VkSwapchainKHR swapChain;
|
||||
extern VkSurfaceKHR surface;
|
||||
extern VkPhysicalDevice physicalDevice;
|
||||
Global::QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device);
|
||||
}
|
||||
struct UniformBufferObject {
|
||||
float time;
|
||||
alignas(16) glm::mat4 model;
|
||||
alignas(16) glm::mat4 view;
|
||||
alignas(16) glm::mat4 proj;
|
||||
};
|
||||
struct Vertex {
|
||||
// This defines what a vertex is!
|
||||
// We control the position, color and texture coordinate here!
|
||||
glm::vec3 pos;
|
||||
glm::vec3 color;
|
||||
glm::vec2 texCoord;
|
||||
|
||||
static VkVertexInputBindingDescription getBindingDescription() {
|
||||
VkVertexInputBindingDescription bindingDescription{};
|
||||
bindingDescription.binding = 0;
|
||||
bindingDescription.stride = sizeof(Vertex);
|
||||
bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
|
||||
|
||||
return bindingDescription;
|
||||
}
|
||||
static std::array<VkVertexInputAttributeDescription, 3>
|
||||
getAttributeDescriptions() {
|
||||
std::array<VkVertexInputAttributeDescription, 3> attributeDescriptions{};
|
||||
|
||||
attributeDescriptions[0].binding = 0;
|
||||
attributeDescriptions[0].location = 0;
|
||||
attributeDescriptions[0].format = VK_FORMAT_R32G32B32_SFLOAT;
|
||||
attributeDescriptions[0].offset = offsetof(Vertex, pos);
|
||||
|
||||
attributeDescriptions[1].binding = 0;
|
||||
attributeDescriptions[1].location = 1;
|
||||
attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT;
|
||||
attributeDescriptions[1].offset = offsetof(Vertex, color);
|
||||
|
||||
attributeDescriptions[2].binding = 0;
|
||||
attributeDescriptions[2].location = 2;
|
||||
attributeDescriptions[2].format = VK_FORMAT_R32G32_SFLOAT;
|
||||
attributeDescriptions[2].offset = offsetof(Vertex, texCoord);
|
||||
return attributeDescriptions;
|
||||
}
|
||||
bool operator==(const Vertex &other) const {
|
||||
return pos == other.pos && color == other.color &&
|
||||
texCoord == other.texCoord;
|
||||
}
|
||||
};
|
||||
|
||||
extern std::vector<Vertex> vertices;
|
||||
// Index buffer definition, showing which points to reuse.
|
||||
extern std::vector<uint32_t> indices;
|
||||
struct QueueFamilyIndices {
|
||||
// We need to check that the Queue families support graphics operations and
|
||||
// window presentation, sometimes they can support one or the other,
|
||||
// therefore, we take into account both for completion.
|
||||
std::optional<uint32_t> graphicsFamily;
|
||||
std::optional<uint32_t> presentFamily;
|
||||
|
||||
bool isComplete() {
|
||||
return graphicsFamily.has_value() && presentFamily.has_value();
|
||||
}
|
||||
};
|
||||
Global::QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device);
|
||||
} // namespace Global
|
||||
|
@ -113,7 +113,7 @@ namespace buffers_libs {
|
||||
|
||||
VkBuffer stagingBuffer;
|
||||
VkDeviceMemory stagingBufferMemory;
|
||||
createBuffer(bufferSize, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);
|
||||
createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);
|
||||
|
||||
void* data;
|
||||
vkMapMemory(Global::device, stagingBufferMemory, 0, bufferSize, 0, &data);
|
||||
@ -285,4 +285,3 @@ namespace buffers_libs {
|
||||
vkDestroyDescriptorPool(Global::device, descriptorPool, nullptr);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,362 +1,355 @@
|
||||
#include "graphicspipeline.h"
|
||||
#include "texture.h"
|
||||
#include <vulkan/vulkan_core.h>
|
||||
|
||||
namespace graphics_pipeline {
|
||||
|
||||
std::vector<VkDynamicState> dynamicStates = {
|
||||
VK_DYNAMIC_STATE_VIEWPORT,
|
||||
VK_DYNAMIC_STATE_SCISSOR
|
||||
std::vector<VkDynamicState> dynamicStates = {VK_DYNAMIC_STATE_VIEWPORT,
|
||||
VK_DYNAMIC_STATE_SCISSOR};
|
||||
|
||||
VkPipelineLayout pipelineLayout;
|
||||
VkPipeline graphicsPipeline;
|
||||
|
||||
static std::vector<char> readFile(const std::string &filename) {
|
||||
std::ifstream file(filename, std::ios::ate | std::ios::binary);
|
||||
if (!file.is_open()) {
|
||||
throw std::runtime_error("failed to open file!");
|
||||
}
|
||||
|
||||
size_t fileSize = (size_t)file.tellg();
|
||||
std::vector<char> buffer(fileSize);
|
||||
|
||||
file.seekg(0);
|
||||
file.read(buffer.data(), fileSize);
|
||||
|
||||
file.close();
|
||||
|
||||
return buffer;
|
||||
}
|
||||
VkShaderModule createShaderModule(const std::vector<char> &code,
|
||||
VkDevice &device) {
|
||||
VkShaderModuleCreateInfo createInfo{};
|
||||
createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
|
||||
createInfo.codeSize = code.size();
|
||||
createInfo.pCode = reinterpret_cast<const uint32_t *>(code.data());
|
||||
|
||||
VkShaderModule shaderModule;
|
||||
if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) !=
|
||||
VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create shader module!");
|
||||
}
|
||||
return shaderModule;
|
||||
}
|
||||
|
||||
void Graphics::destroyGraphicsPipeline() {
|
||||
vkDestroyPipeline(Global::device, graphicsPipeline, nullptr);
|
||||
vkDestroyPipelineLayout(Global::device, pipelineLayout, nullptr);
|
||||
}
|
||||
|
||||
void Graphics::createGraphicsPipeline() {
|
||||
// Note to self, for some reason the working directory is not where a read
|
||||
// file is called from, but the project folder!
|
||||
auto vertShaderCode = readFile("src/shaders/vertex.spv");
|
||||
auto fragShaderCode = readFile("src/shaders/fragment.spv");
|
||||
VkShaderModule vertShaderModule =
|
||||
createShaderModule(vertShaderCode, Global::device);
|
||||
VkShaderModule fragShaderModule =
|
||||
createShaderModule(fragShaderCode, Global::device);
|
||||
// ------------------ STAGE 1 - INPUT ASSEMBLER ---------------- //
|
||||
// This can get a little complicated, normally, vertices are loaded in
|
||||
// sequential order, with an element buffer however, you can specify the
|
||||
// indices yourself! Using an element buffer means you can reuse vertices,
|
||||
// which can lead to optimizations. If you set PrimRestart to TRUE, you can
|
||||
// utilize the _STRIP modes with special indices
|
||||
VkPipelineInputAssemblyStateCreateInfo inputAssembly{};
|
||||
inputAssembly.sType =
|
||||
VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
|
||||
inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
|
||||
inputAssembly.primitiveRestartEnable = VK_FALSE;
|
||||
|
||||
// ------------------ STAGE 2 - VERTEX SHADER ------------------ //
|
||||
// this will be revisited, right now we are hardcoding shader data, so we tell
|
||||
// it to not load anything, but that will change.
|
||||
VkPipelineShaderStageCreateInfo vertShaderStageInfo{};
|
||||
vertShaderStageInfo.sType =
|
||||
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
|
||||
vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
|
||||
vertShaderStageInfo.module = vertShaderModule;
|
||||
vertShaderStageInfo.pName = "main";
|
||||
VkPipelineVertexInputStateCreateInfo vertexInputInfo{};
|
||||
vertexInputInfo.sType =
|
||||
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
|
||||
|
||||
auto bindingDescription = Global::Vertex::getBindingDescription();
|
||||
auto attributeDescriptions = Global::Vertex::getAttributeDescriptions();
|
||||
|
||||
vertexInputInfo.vertexBindingDescriptionCount = 1;
|
||||
vertexInputInfo.pVertexBindingDescriptions = &bindingDescription;
|
||||
vertexInputInfo.vertexAttributeDescriptionCount =
|
||||
static_cast<uint32_t>(attributeDescriptions.size());
|
||||
vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data();
|
||||
|
||||
// ------------------- STAGE 5 - RASTERIZATION ----------------- //
|
||||
// Take Vertex shader vertices and fragmentize them for the frament shader.
|
||||
// The rasterizer also can perform depth testing, face culling, and scissor
|
||||
// testing. In addition, it can also be configured for wireframe rendering.
|
||||
VkPipelineRasterizationStateCreateInfo rasterizer{};
|
||||
rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
|
||||
// Render regardless of the near and far planes, useful for shadow maps,
|
||||
// requires GPU feature *depthClamp*
|
||||
rasterizer.depthClampEnable = VK_FALSE;
|
||||
rasterizer.rasterizerDiscardEnable = VK_FALSE;
|
||||
// MODE_FILL, fill polygons, MODE_LINE, draw wireframe, MODE_POINT, draw
|
||||
// vertices. Anything other than fill requires GPU feature *fillModeNonSolid*
|
||||
rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
|
||||
rasterizer.lineWidth = 1.0f;
|
||||
// How to cull the faces, right here we cull the back faces and tell the
|
||||
// rasterizer front facing vertices are ordered clockwise.
|
||||
rasterizer.cullMode = VK_CULL_MODE_NONE;
|
||||
rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
|
||||
// Whether or not to add depth values. e.x. for shadow maps.
|
||||
rasterizer.depthBiasEnable = VK_FALSE;
|
||||
|
||||
// ------------------ STAGE 6 - FRAGMENT SHADER ---------------- //
|
||||
VkPipelineShaderStageCreateInfo fragShaderStageInfo{};
|
||||
fragShaderStageInfo.sType =
|
||||
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
|
||||
fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
|
||||
fragShaderStageInfo.module = fragShaderModule;
|
||||
fragShaderStageInfo.pName = "main";
|
||||
|
||||
VkPipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo,
|
||||
fragShaderStageInfo};
|
||||
|
||||
// ------------------ STAGE 7 - COLOR BLENDING ----------------- //
|
||||
VkPipelineColorBlendAttachmentState colorBlendAttachment{};
|
||||
colorBlendAttachment.colorWriteMask =
|
||||
VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT |
|
||||
VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
|
||||
colorBlendAttachment.blendEnable = VK_FALSE;
|
||||
|
||||
VkPipelineColorBlendStateCreateInfo colorBlending{};
|
||||
colorBlending.sType =
|
||||
VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
|
||||
colorBlending.logicOpEnable = VK_FALSE;
|
||||
colorBlending.logicOp = VK_LOGIC_OP_COPY;
|
||||
colorBlending.attachmentCount = 1;
|
||||
colorBlending.pAttachments = &colorBlendAttachment;
|
||||
|
||||
// ---------------------- STATE CONTROLS ---------------------- //
|
||||
VkPipelineViewportStateCreateInfo viewportState{};
|
||||
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
|
||||
viewportState.viewportCount = 1;
|
||||
viewportState.scissorCount = 1;
|
||||
// Again, this will be revisited, multisampling can be very useful for
|
||||
// anti-aliasing, since it is fast, but we won't implement it for now.
|
||||
// Requires GPU feature UNKNOWN eanbled.
|
||||
VkPipelineMultisampleStateCreateInfo multisampling{};
|
||||
multisampling.sType =
|
||||
VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
|
||||
multisampling.sampleShadingEnable = VK_FALSE;
|
||||
multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
|
||||
|
||||
// TODO: Document!
|
||||
VkPipelineDepthStencilStateCreateInfo depthStencil{};
|
||||
depthStencil.sType =
|
||||
VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
|
||||
depthStencil.depthTestEnable = VK_TRUE;
|
||||
depthStencil.depthWriteEnable = VK_TRUE;
|
||||
depthStencil.depthCompareOp = VK_COMPARE_OP_LESS;
|
||||
depthStencil.depthBoundsTestEnable = VK_FALSE;
|
||||
depthStencil.stencilTestEnable = VK_FALSE;
|
||||
// Most of the graphics pipeline is set in stone, some of the pipeline state
|
||||
// can be modified without recreating it at runtime though! There are TONS of
|
||||
// settings, this would be another TODO to see what else we can mess with
|
||||
// dynamically, but right now we just allow dynamic size of the viewport and
|
||||
// dynamic scissor states. Scissors are pretty straightforward, they are
|
||||
// basically pixel masks for the rasterizer. Scissors describe what regions
|
||||
// pixels will be stored, it doesnt cut them after being rendered, it stops
|
||||
// them from ever being rendered in that area in the first place.
|
||||
VkPipelineDynamicStateCreateInfo dynamicState{};
|
||||
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
|
||||
dynamicState.dynamicStateCount = static_cast<uint32_t>(dynamicStates.size());
|
||||
dynamicState.pDynamicStates = dynamicStates.data();
|
||||
|
||||
VkPipelineLayoutCreateInfo pipelineLayoutInfo{};
|
||||
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
|
||||
pipelineLayoutInfo.setLayoutCount = 1;
|
||||
pipelineLayoutInfo.pSetLayouts = &Global::descriptorSetLayout;
|
||||
|
||||
if (vkCreatePipelineLayout(Global::device, &pipelineLayoutInfo, nullptr,
|
||||
&pipelineLayout) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create pipeline layout!");
|
||||
}
|
||||
|
||||
VkPipelineRenderingCreateInfo pipelineRenderingCreateInfo{
|
||||
.sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO,
|
||||
.colorAttachmentCount = 1,
|
||||
.pColorAttachmentFormats = device_libs::DeviceControl::getImageFormat(),
|
||||
.depthAttachmentFormat = texture_libs::Texture::findDepthFormat(),
|
||||
};
|
||||
|
||||
VkRenderPass renderPass;
|
||||
VkPipelineLayout pipelineLayout;
|
||||
VkPipeline graphicsPipeline;
|
||||
|
||||
std::vector<VkFramebuffer> swapChainFramebuffers;
|
||||
// Here we combine all of the structures we created to make the final
|
||||
// pipeline!
|
||||
VkGraphicsPipelineCreateInfo pipelineInfo{
|
||||
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
|
||||
.pNext = &pipelineRenderingCreateInfo,
|
||||
.stageCount = 2,
|
||||
.pStages = shaderStages,
|
||||
.pVertexInputState = &vertexInputInfo,
|
||||
.pInputAssemblyState = &inputAssembly,
|
||||
.pViewportState = &viewportState,
|
||||
.pRasterizationState = &rasterizer,
|
||||
.pMultisampleState = &multisampling,
|
||||
.pDepthStencilState = &depthStencil,
|
||||
.pColorBlendState = &colorBlending,
|
||||
.pDynamicState = &dynamicState,
|
||||
.layout = pipelineLayout,
|
||||
.renderPass = nullptr,
|
||||
.subpass = 0,
|
||||
};
|
||||
|
||||
static std::vector<char> readFile(const std::string& filename) {
|
||||
std::ifstream file(filename, std::ios::ate | std::ios::binary);
|
||||
if (!file.is_open()) {
|
||||
throw std::runtime_error("failed to open file!");
|
||||
}
|
||||
|
||||
size_t fileSize = (size_t) file.tellg();
|
||||
std::vector<char> buffer(fileSize);
|
||||
|
||||
file.seekg(0);
|
||||
file.read(buffer.data(), fileSize);
|
||||
|
||||
file.close();
|
||||
|
||||
return buffer;
|
||||
if (vkCreateGraphicsPipelines(Global::device, VK_NULL_HANDLE, 1,
|
||||
&pipelineInfo, nullptr,
|
||||
&graphicsPipeline) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create graphics pipeline!");
|
||||
}
|
||||
VkShaderModule createShaderModule(const std::vector<char>& code, VkDevice& device) {
|
||||
VkShaderModuleCreateInfo createInfo{};
|
||||
createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
|
||||
createInfo.codeSize = code.size();
|
||||
createInfo.pCode = reinterpret_cast<const uint32_t*>(code.data());
|
||||
|
||||
VkShaderModule shaderModule;
|
||||
if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create shader module!");
|
||||
}
|
||||
return shaderModule;
|
||||
}
|
||||
|
||||
void Graphics::destroyGraphicsPipeline() {
|
||||
vkDestroyPipeline(Global::device, graphicsPipeline, nullptr);
|
||||
if(Global::enableValidationLayers) std::cout << "Destroyed Graphics Pipeline safely\n" << std::endl;
|
||||
vkDestroyPipelineLayout(Global::device, pipelineLayout, nullptr);
|
||||
if(Global::enableValidationLayers) std::cout << "Destroyed Layout Pipeline safely\n" << std::endl;
|
||||
|
||||
}
|
||||
|
||||
void Graphics::createGraphicsPipeline() {
|
||||
// Note to self, for some reason the working directory is not where a read file is called from, but the project folder!
|
||||
auto vertShaderCode = readFile("src/shaders/vertex.spv");
|
||||
auto fragShaderCode = readFile("src/shaders/fragment.spv");
|
||||
VkShaderModule vertShaderModule = createShaderModule(vertShaderCode, Global::device);
|
||||
VkShaderModule fragShaderModule = createShaderModule(fragShaderCode, Global::device);
|
||||
// ------------------ STAGE 1 - INPUT ASSEMBLER ---------------- //
|
||||
// This can get a little complicated, normally, vertices are loaded in sequential order, with an element buffer however, you can specify the indices yourself!
|
||||
// Using an element buffer means you can reuse vertices, which can lead to optimizations. If you set PrimRestart to TRUE, you can utilize the _STRIP modes with special indices
|
||||
VkPipelineInputAssemblyStateCreateInfo inputAssembly{};
|
||||
inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
|
||||
inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
|
||||
inputAssembly.primitiveRestartEnable = VK_FALSE;
|
||||
|
||||
// ------------------ STAGE 2 - VERTEX SHADER ------------------ //
|
||||
// this will be revisited, right now we are hardcoding shader data, so we tell it to not load anything, but that will change.
|
||||
VkPipelineShaderStageCreateInfo vertShaderStageInfo{};
|
||||
vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
|
||||
vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
|
||||
vertShaderStageInfo.module = vertShaderModule;
|
||||
vertShaderStageInfo.pName = "main";
|
||||
VkPipelineVertexInputStateCreateInfo vertexInputInfo{};
|
||||
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
|
||||
|
||||
auto bindingDescription = Global::Vertex::getBindingDescription();
|
||||
auto attributeDescriptions = Global::Vertex::getAttributeDescriptions();
|
||||
|
||||
vertexInputInfo.vertexBindingDescriptionCount = 1;
|
||||
vertexInputInfo.pVertexBindingDescriptions = &bindingDescription;
|
||||
vertexInputInfo.vertexAttributeDescriptionCount = static_cast<uint32_t>(attributeDescriptions.size());
|
||||
vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data();
|
||||
|
||||
// ------------------- STAGE 5 - RASTERIZATION ----------------- //
|
||||
// Take Vertex shader vertices and fragmentize them for the frament shader. The rasterizer also can perform depth testing, face culling, and scissor testing.
|
||||
// In addition, it can also be configured for wireframe rendering.
|
||||
VkPipelineRasterizationStateCreateInfo rasterizer{};
|
||||
rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
|
||||
// Render regardless of the near and far planes, useful for shadow maps, requires GPU feature *depthClamp*
|
||||
rasterizer.depthClampEnable = VK_FALSE;
|
||||
rasterizer.rasterizerDiscardEnable = VK_FALSE;
|
||||
// MODE_FILL, fill polygons, MODE_LINE, draw wireframe, MODE_POINT, draw vertices. Anything other than fill requires GPU feature *fillModeNonSolid*
|
||||
rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
|
||||
rasterizer.lineWidth = 1.0f;
|
||||
// How to cull the faces, right here we cull the back faces and tell the rasterizer front facing vertices are ordered clockwise.
|
||||
rasterizer.cullMode = VK_CULL_MODE_NONE;
|
||||
rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
|
||||
// Whether or not to add depth values. e.x. for shadow maps.
|
||||
rasterizer.depthBiasEnable = VK_FALSE;
|
||||
|
||||
// ------------------ STAGE 6 - FRAGMENT SHADER ---------------- //
|
||||
VkPipelineShaderStageCreateInfo fragShaderStageInfo{};
|
||||
fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
|
||||
fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
|
||||
fragShaderStageInfo.module = fragShaderModule;
|
||||
fragShaderStageInfo.pName = "main";
|
||||
|
||||
VkPipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo, fragShaderStageInfo};
|
||||
|
||||
// ------------------ STAGE 7 - COLOR BLENDING ----------------- //
|
||||
VkPipelineColorBlendAttachmentState colorBlendAttachment{};
|
||||
colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
|
||||
colorBlendAttachment.blendEnable = VK_FALSE;
|
||||
|
||||
VkPipelineColorBlendStateCreateInfo colorBlending{};
|
||||
colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
|
||||
colorBlending.logicOpEnable = VK_FALSE;
|
||||
colorBlending.logicOp = VK_LOGIC_OP_COPY;
|
||||
colorBlending.attachmentCount = 1;
|
||||
colorBlending.pAttachments = &colorBlendAttachment;
|
||||
|
||||
// ---------------------- STATE CONTROLS ---------------------- //
|
||||
VkPipelineViewportStateCreateInfo viewportState{};
|
||||
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
|
||||
viewportState.viewportCount = 1;
|
||||
viewportState.scissorCount = 1;
|
||||
// Again, this will be revisited, multisampling can be very useful for anti-aliasing, since it is fast, but we won't implement it for now.
|
||||
// Requires GPU feature UNKNOWN eanbled.
|
||||
VkPipelineMultisampleStateCreateInfo multisampling{};
|
||||
multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
|
||||
multisampling.sampleShadingEnable = VK_FALSE;
|
||||
multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
|
||||
|
||||
// TODO: Document!
|
||||
VkPipelineDepthStencilStateCreateInfo depthStencil{};
|
||||
depthStencil.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
|
||||
depthStencil.depthTestEnable = VK_TRUE;
|
||||
depthStencil.depthWriteEnable = VK_TRUE;
|
||||
depthStencil.depthCompareOp = VK_COMPARE_OP_LESS;
|
||||
depthStencil.depthBoundsTestEnable = VK_FALSE;
|
||||
depthStencil.stencilTestEnable = VK_FALSE;
|
||||
// Most of the graphics pipeline is set in stone, some of the pipeline state can be modified without recreating it at runtime though!
|
||||
// There are TONS of settings, this would be another TODO to see what else we can mess with dynamically, but right now we just allow dynamic size of the viewport
|
||||
// and dynamic scissor states. Scissors are pretty straightforward, they are basically pixel masks for the rasterizer.
|
||||
// Scissors describe what regions pixels will be stored, it doesnt cut them after being rendered, it stops them from ever being rendered in that area in the first place.
|
||||
VkPipelineDynamicStateCreateInfo dynamicState{};
|
||||
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
|
||||
dynamicState.dynamicStateCount = static_cast<uint32_t>(dynamicStates.size());
|
||||
dynamicState.pDynamicStates = dynamicStates.data();
|
||||
|
||||
VkPipelineLayoutCreateInfo pipelineLayoutInfo{};
|
||||
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
|
||||
pipelineLayoutInfo.setLayoutCount = 1;
|
||||
pipelineLayoutInfo.pSetLayouts = &Global::descriptorSetLayout;
|
||||
|
||||
if (vkCreatePipelineLayout(Global::device, &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create pipeline layout!");
|
||||
}
|
||||
// Here we combine all of the structures we created to make the final pipeline!
|
||||
VkGraphicsPipelineCreateInfo pipelineInfo{};
|
||||
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
|
||||
pipelineInfo.stageCount = 2;
|
||||
pipelineInfo.pStages = shaderStages;
|
||||
pipelineInfo.pVertexInputState = &vertexInputInfo;
|
||||
pipelineInfo.pInputAssemblyState = &inputAssembly;
|
||||
pipelineInfo.pViewportState = &viewportState;
|
||||
pipelineInfo.pRasterizationState = &rasterizer;
|
||||
pipelineInfo.pMultisampleState = &multisampling;
|
||||
pipelineInfo.pColorBlendState = &colorBlending;
|
||||
pipelineInfo.pDynamicState = &dynamicState;
|
||||
pipelineInfo.layout = pipelineLayout;
|
||||
pipelineInfo.renderPass = renderPass;
|
||||
pipelineInfo.subpass = 0;
|
||||
pipelineInfo.pDepthStencilState = &depthStencil;
|
||||
|
||||
if (vkCreateGraphicsPipelines(Global::device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create graphics pipeline!");
|
||||
}
|
||||
vkDestroyShaderModule(Global::device, fragShaderModule, nullptr);
|
||||
vkDestroyShaderModule(Global::device, vertShaderModule, nullptr);
|
||||
|
||||
if(Global::enableValidationLayers) std::cout << "Pipeline Layout created successfully\n" << std::endl;
|
||||
}
|
||||
void Graphics::createRenderPass() {
|
||||
VkAttachmentDescription colorAttachment{};
|
||||
colorAttachment.format = device_libs::DeviceControl::getImageFormat();
|
||||
colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
|
||||
colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
||||
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
|
||||
colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
||||
colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
||||
colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
||||
colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
|
||||
|
||||
VkAttachmentReference colorAttachmentRef{};
|
||||
colorAttachmentRef.attachment = 0;
|
||||
colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
||||
|
||||
VkAttachmentDescription depthAttachment{};
|
||||
depthAttachment.format = texture_libs::Texture::findDepthFormat();
|
||||
depthAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
|
||||
depthAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
||||
depthAttachment.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
||||
depthAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
||||
depthAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
||||
depthAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
||||
depthAttachment.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
|
||||
|
||||
VkAttachmentReference depthAttachmentRef{};
|
||||
depthAttachmentRef.attachment = 1;
|
||||
depthAttachmentRef.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
|
||||
|
||||
VkSubpassDescription subpass{};
|
||||
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
|
||||
subpass.colorAttachmentCount = 1;
|
||||
subpass.pColorAttachments = &colorAttachmentRef;
|
||||
subpass.pDepthStencilAttachment = &depthAttachmentRef;
|
||||
|
||||
VkSubpassDependency dependency{};
|
||||
dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
|
||||
dependency.dstSubpass = 0;
|
||||
dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
|
||||
dependency.srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
|
||||
dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT;
|
||||
dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
|
||||
|
||||
std::array<VkAttachmentDescription, 2> attachments = {colorAttachment, depthAttachment};
|
||||
VkRenderPassCreateInfo renderPassInfo{};
|
||||
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
|
||||
renderPassInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
|
||||
renderPassInfo.pAttachments = attachments.data();
|
||||
renderPassInfo.subpassCount = 1;
|
||||
renderPassInfo.pSubpasses = &subpass;
|
||||
renderPassInfo.dependencyCount = 1;
|
||||
renderPassInfo.pDependencies = &dependency;
|
||||
|
||||
|
||||
if (vkCreateRenderPass(Global::device, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create render pass!");
|
||||
}
|
||||
if(Global::enableValidationLayers) std::cout << "Render pass created successfully\n" << std::endl;
|
||||
}
|
||||
void Graphics::destroyRenderPass() {
|
||||
vkDestroyRenderPass(Global::device, renderPass, nullptr);
|
||||
if(Global::enableValidationLayers) std::cout << "Destroyed Render Pass Safely\n" << std::endl;
|
||||
}
|
||||
void Graphics::createFramebuffers() {
|
||||
// Resize the container to hold all the framebuffers.
|
||||
int framebuffersSize = device_libs::DeviceControl::getSwapChainImageViews().size();
|
||||
swapChainFramebuffers.resize(framebuffersSize);
|
||||
|
||||
for(size_t i = 0; i < framebuffersSize; i++) {
|
||||
std::array<VkImageView, 2> attachments = {
|
||||
device_libs::DeviceControl::getSwapChainImageViews()[i],
|
||||
Global::depthImageView
|
||||
};
|
||||
|
||||
VkFramebufferCreateInfo framebufferInfo{};
|
||||
framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
|
||||
framebufferInfo.renderPass = renderPass;
|
||||
framebufferInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
|
||||
framebufferInfo.pAttachments = attachments.data();
|
||||
framebufferInfo.width = device_libs::DeviceControl::getSwapChainExtent().width;
|
||||
framebufferInfo.height = device_libs::DeviceControl::getSwapChainExtent().height;
|
||||
framebufferInfo.layers = 1;
|
||||
|
||||
if(vkCreateFramebuffer(Global::device, &framebufferInfo, nullptr, &swapChainFramebuffers[i]) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create framebuffer!");
|
||||
}
|
||||
}
|
||||
}
|
||||
void Graphics::createCommandPool() {
|
||||
// Commands in Vulkan are not executed using function calls, you have to record the ops you wish to perform
|
||||
// to command buffers, pools manage the memory used by the buffer!
|
||||
Global::QueueFamilyIndices queueFamilyIndices = Global::findQueueFamilies(Global::physicalDevice);
|
||||
|
||||
VkCommandPoolCreateInfo poolInfo{};
|
||||
poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
|
||||
poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
|
||||
poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily.value();
|
||||
|
||||
if(vkCreateCommandPool(Global::device, &poolInfo, nullptr, &Global::commandPool) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create command pool!");
|
||||
}
|
||||
if(Global::enableValidationLayers) std::cout << "Command pool created successfully\n" << std::endl;
|
||||
}
|
||||
void Graphics::destroyCommandPool() {
|
||||
vkDestroyCommandPool(Global::device, Global::commandPool, nullptr);
|
||||
}
|
||||
void Graphics::createCommandBuffer() {
|
||||
Global::commandBuffers.resize(Global::MAX_FRAMES_IN_FLIGHT);
|
||||
|
||||
VkCommandBufferAllocateInfo allocInfo{};
|
||||
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
|
||||
allocInfo.commandPool = Global::commandPool;
|
||||
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
|
||||
allocInfo.commandBufferCount = (uint32_t) Global::commandBuffers.size();
|
||||
|
||||
if(vkAllocateCommandBuffers(Global::device, &allocInfo, Global::commandBuffers.data()) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to allocate command buffers");
|
||||
}
|
||||
if(Global::enableValidationLayers) std::cout << "Allocated command buffers successfully\n" << std::endl;
|
||||
}
|
||||
|
||||
void Graphics::recordCommandBuffer(VkCommandBuffer commandBuffer, uint32_t imageIndex) {
|
||||
VkCommandBufferBeginInfo beginInfo{};
|
||||
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
||||
|
||||
if (vkBeginCommandBuffer(commandBuffer, &beginInfo) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to begin recording command buffer!");
|
||||
}
|
||||
|
||||
VkRenderPassBeginInfo renderPassInfo{};
|
||||
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
|
||||
renderPassInfo.renderPass = renderPass;
|
||||
renderPassInfo.framebuffer = swapChainFramebuffers[imageIndex];
|
||||
renderPassInfo.renderArea.offset = {0, 0};
|
||||
renderPassInfo.renderArea.extent = device_libs::DeviceControl::getSwapChainExtent();
|
||||
|
||||
std::array<VkClearValue, 2> clearValues{};
|
||||
clearValues[0].color = {{0.0f, 0.0f, 0.0f, 1.0f}};
|
||||
clearValues[1].depthStencil = {1.0f, 0};
|
||||
|
||||
renderPassInfo.clearValueCount = static_cast<uint32_t>(clearValues.size());
|
||||
renderPassInfo.pClearValues = clearValues.data();
|
||||
|
||||
vkCmdBeginRenderPass(commandBuffer, &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);
|
||||
|
||||
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);
|
||||
VkViewport viewport{};
|
||||
viewport.x = 0.0f;
|
||||
viewport.y = 0.0f;
|
||||
viewport.width = (float) device_libs::DeviceControl::getSwapChainExtent().width;
|
||||
viewport.height = (float) device_libs::DeviceControl::getSwapChainExtent().height;
|
||||
viewport.minDepth = 0.0f;
|
||||
viewport.maxDepth = 1.0f;
|
||||
vkCmdSetViewport(commandBuffer, 0, 1, &viewport);
|
||||
|
||||
VkRect2D scissor{};
|
||||
scissor.offset = {0, 0};
|
||||
scissor.extent = device_libs::DeviceControl::getSwapChainExtent();
|
||||
vkCmdSetScissor(commandBuffer, 0, 1, &scissor);
|
||||
|
||||
VkBuffer vertexBuffers[] = {buffers_libs::Buffers::getVertexBuffer()};
|
||||
VkDeviceSize offsets[] = {0};
|
||||
vkCmdBindVertexBuffers(commandBuffer, 0, 1, vertexBuffers, offsets);
|
||||
vkCmdBindIndexBuffer(commandBuffer, buffers_libs::Buffers::getIndexBuffer(), 0, VK_INDEX_TYPE_UINT32);
|
||||
|
||||
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &Global::descriptorSets[Global::currentFrame], 0, nullptr);
|
||||
|
||||
vkCmdDrawIndexed(commandBuffer, static_cast<uint32_t>(Global::indices.size()), 1, 0, 0, 0);
|
||||
vkCmdEndRenderPass(commandBuffer);
|
||||
|
||||
if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to record command buffer!");
|
||||
}
|
||||
}
|
||||
std::vector<VkFramebuffer> Graphics::getSwapChainFramebuffers() {
|
||||
return swapChainFramebuffers;
|
||||
}
|
||||
vkDestroyShaderModule(Global::device, fragShaderModule, nullptr);
|
||||
vkDestroyShaderModule(Global::device, vertShaderModule, nullptr);
|
||||
}
|
||||
|
||||
void Graphics::createCommandPool() {
|
||||
// Commands in Vulkan are not executed using function calls, you have to
|
||||
// record the ops you wish to perform to command buffers, pools manage the
|
||||
// memory used by the buffer!
|
||||
Global::QueueFamilyIndices queueFamilyIndices =
|
||||
Global::findQueueFamilies(Global::physicalDevice);
|
||||
|
||||
VkCommandPoolCreateInfo poolInfo{};
|
||||
poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
|
||||
poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
|
||||
poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily.value();
|
||||
|
||||
if (vkCreateCommandPool(Global::device, &poolInfo, nullptr,
|
||||
&Global::commandPool) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create command pool!");
|
||||
}
|
||||
}
|
||||
void Graphics::destroyCommandPool() {
|
||||
vkDestroyCommandPool(Global::device, Global::commandPool, nullptr);
|
||||
}
|
||||
void Graphics::createCommandBuffer() {
|
||||
Global::commandBuffers.resize(Global::MAX_FRAMES_IN_FLIGHT);
|
||||
|
||||
VkCommandBufferAllocateInfo allocInfo{};
|
||||
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
|
||||
allocInfo.commandPool = Global::commandPool;
|
||||
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
|
||||
allocInfo.commandBufferCount = (uint32_t)Global::commandBuffers.size();
|
||||
|
||||
if (vkAllocateCommandBuffers(Global::device, &allocInfo,
|
||||
Global::commandBuffers.data()) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to allocate command buffers");
|
||||
}
|
||||
}
|
||||
|
||||
void Graphics::recordCommandBuffer(VkCommandBuffer commandBuffer,
|
||||
uint32_t imageIndex) {
|
||||
VkCommandBufferBeginInfo beginInfo{};
|
||||
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
||||
|
||||
if (vkBeginCommandBuffer(commandBuffer, &beginInfo) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to begin recording command buffer!");
|
||||
}
|
||||
|
||||
const VkImageMemoryBarrier imageMemoryBarrier{
|
||||
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
|
||||
.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
|
||||
.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
|
||||
.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
|
||||
.image = device_libs::DeviceControl::getSwapChainImages()[imageIndex],
|
||||
.subresourceRange = {
|
||||
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
|
||||
.baseMipLevel = 0,
|
||||
.levelCount = texture_libs::Texture::getMipLevels(),
|
||||
.baseArrayLayer = 0,
|
||||
.layerCount = 1,
|
||||
}};
|
||||
|
||||
vkCmdPipelineBarrier(commandBuffer,
|
||||
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
|
||||
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, nullptr, 0,
|
||||
nullptr, 1, &imageMemoryBarrier
|
||||
|
||||
);
|
||||
// ------------------- DYNAMIC RENDER INFO ---------------------- //
|
||||
|
||||
const VkRenderingAttachmentInfo colorAttachmentInfo{
|
||||
.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO,
|
||||
.imageView = Global::swapChainImageViews[imageIndex],
|
||||
.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
|
||||
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
|
||||
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
|
||||
.clearValue = {.color = {0.0f, 0.0f, 0.0f, 1.0f}},
|
||||
};
|
||||
const VkRenderingAttachmentInfo depthAttachmentInfo{
|
||||
.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO,
|
||||
.imageView = Global::depthImageView,
|
||||
.imageLayout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
|
||||
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
|
||||
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
|
||||
.clearValue = {.depthStencil = {1.0f, 0}},
|
||||
};
|
||||
|
||||
const VkRenderingInfo renderInfo{
|
||||
.sType = VK_STRUCTURE_TYPE_RENDERING_INFO,
|
||||
.renderArea = {.offset = {0, 0},
|
||||
.extent =
|
||||
device_libs::DeviceControl::getSwapChainExtent()},
|
||||
.layerCount = 1,
|
||||
.colorAttachmentCount = 1,
|
||||
.pColorAttachments = &colorAttachmentInfo,
|
||||
.pDepthAttachment = &depthAttachmentInfo,
|
||||
};
|
||||
|
||||
vkCmdBeginRendering(commandBuffer, &renderInfo);
|
||||
|
||||
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
|
||||
graphicsPipeline);
|
||||
VkViewport viewport{};
|
||||
viewport.x = 0.0f;
|
||||
viewport.y = 0.0f;
|
||||
viewport.width =
|
||||
(float)device_libs::DeviceControl::getSwapChainExtent().width;
|
||||
viewport.height =
|
||||
(float)device_libs::DeviceControl::getSwapChainExtent().height;
|
||||
viewport.minDepth = 0.0f;
|
||||
viewport.maxDepth = 1.0f;
|
||||
vkCmdSetViewport(commandBuffer, 0, 1, &viewport);
|
||||
|
||||
VkRect2D scissor{};
|
||||
scissor.offset = {0, 0};
|
||||
scissor.extent = device_libs::DeviceControl::getSwapChainExtent();
|
||||
vkCmdSetScissor(commandBuffer, 0, 1, &scissor);
|
||||
|
||||
VkBuffer vertexBuffers[] = {buffers_libs::Buffers::getVertexBuffer()};
|
||||
VkDeviceSize offsets[] = {0};
|
||||
vkCmdBindVertexBuffers(commandBuffer, 0, 1, vertexBuffers, offsets);
|
||||
vkCmdBindIndexBuffer(commandBuffer, buffers_libs::Buffers::getIndexBuffer(),
|
||||
0, VK_INDEX_TYPE_UINT32);
|
||||
|
||||
vkCmdBindDescriptorSets(
|
||||
commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1,
|
||||
&Global::descriptorSets[Global::currentFrame], 0, nullptr);
|
||||
|
||||
vkCmdDrawIndexed(commandBuffer, static_cast<uint32_t>(Global::indices.size()),
|
||||
1, 0, 0, 0);
|
||||
|
||||
vkCmdEndRendering(commandBuffer);
|
||||
|
||||
if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to record command buffer!");
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace graphics_pipeline
|
||||
|
@ -10,14 +10,11 @@ namespace graphics_pipeline {
|
||||
public:
|
||||
static void createGraphicsPipeline();
|
||||
static void destroyGraphicsPipeline();
|
||||
static void createRenderPass();
|
||||
static void destroyRenderPass();
|
||||
static void createFramebuffers();
|
||||
static void destroyFramebuffers();
|
||||
static void createCommandPool();
|
||||
static void destroyCommandPool();
|
||||
static void createCommandBuffer();
|
||||
static void recordCommandBuffer(VkCommandBuffer cmndBuffer, uint32_t imageIndex);
|
||||
static std::vector<VkFramebuffer> getSwapChainFramebuffers();
|
||||
};
|
||||
}
|
||||
|
@ -18,10 +18,8 @@ namespace render_present {
|
||||
}
|
||||
vkDeviceWaitIdle(Global::device);
|
||||
// Don't really wanna do this but I also don't want to create an extra class instance just to call the cleanup function.
|
||||
for(auto framebuffer : graphics_pipeline::Graphics::getSwapChainFramebuffers()) {
|
||||
vkDestroyFramebuffer(Global::device, framebuffer, nullptr);
|
||||
}
|
||||
for(auto imageView : device_libs::DeviceControl::getSwapChainImageViews()) {
|
||||
|
||||
for(auto imageView : Global::swapChainImageViews) {
|
||||
vkDestroyImageView(Global::device, imageView, nullptr);
|
||||
}
|
||||
vkDestroySwapchainKHR(Global::device, Global::swapChain, nullptr);
|
||||
@ -29,7 +27,6 @@ namespace render_present {
|
||||
device_libs::DeviceControl::createSwapChain(Global::window);
|
||||
device_libs::DeviceControl::createImageViews();
|
||||
texture_libs::Texture::createDepthResources();
|
||||
graphics_pipeline::Graphics::createFramebuffers();
|
||||
}
|
||||
// At a high level, rendering in Vulkan consists of 5 steps:
|
||||
// Wait for the previous frame, acquire a image from the swap chain
|
||||
@ -155,10 +152,8 @@ namespace render_present {
|
||||
vkDestroyImageView(Global::device, Global::depthImageView, nullptr);
|
||||
vkDestroyImage(Global::device, Global::depthImage, nullptr);
|
||||
vkFreeMemory(Global::device, Global::depthImageMemory, nullptr);
|
||||
for(auto framebuffer : graphics_pipeline::Graphics::getSwapChainFramebuffers()) {
|
||||
vkDestroyFramebuffer(Global::device, framebuffer, nullptr);
|
||||
}
|
||||
for(auto imageView : device_libs::DeviceControl::getSwapChainImageViews()) {
|
||||
|
||||
for(auto imageView : Global::swapChainImageViews) {
|
||||
vkDestroyImageView(Global::device, imageView, nullptr);
|
||||
}
|
||||
vkDestroySwapchainKHR(Global::device, Global::swapChain, nullptr);
|
||||
|
@ -10,4 +10,3 @@ int main() {
|
||||
}
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user