AgnosiaEngine/src/devicelibrary.cpp

333 lines
16 KiB
C++
Raw Normal View History

#include "devicelibrary.h"
2024-10-24 20:21:10 -05:00
#include <vulkan/vulkan_core.h>
namespace device_libs {
VkPhysicalDeviceProperties deviceProperties;
std::vector<VkImage> swapChainImages;
VkFormat swapChainImageFormat;
VkExtent2D swapChainExtent;
struct SwapChainSupportDetails {
VkSurfaceCapabilitiesKHR capabilities;
std::vector<VkSurfaceFormatKHR> formats;
std::vector<VkPresentModeKHR> presentModes;
};
const std::vector<const char*> deviceExtensions = {
VK_KHR_SWAPCHAIN_EXTENSION_NAME
};
SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) {
2024-10-24 20:21:10 -05:00
/* Swap chains are weird ngl, it's another one of those Vulkan platform agnosticity.
The swapchain is basically a wrapper for GDI+, DXGI, X11, Wayland, etc.
It lets us use the swap chain rather than create a different framebuffer
handler for every targeted platform. Swap chains handle the ownership
of buffers before sending them to the presentation engine. (still no
fucking clue how it works though) */
SwapChainSupportDetails details;
2024-10-08 01:57:32 -05:00
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, Global::surface, &details.capabilities);
uint32_t formatCount;
2024-10-08 01:57:32 -05:00
vkGetPhysicalDeviceSurfaceFormatsKHR(device, Global::surface, &formatCount, nullptr);
if(formatCount != 0) {
details.formats.resize(formatCount);
2024-10-24 20:21:10 -05:00
vkGetPhysicalDeviceSurfaceFormatsKHR(device, Global::surface, &formatCount, details.formats.data());
}
uint32_t presentModeCount;
2024-10-08 01:57:32 -05:00
vkGetPhysicalDeviceSurfacePresentModesKHR(device, Global::surface, &presentModeCount, details.presentModes.data());
if(presentModeCount != 0) {
details.presentModes.resize(presentModeCount);
2024-10-08 01:57:32 -05:00
vkGetPhysicalDeviceSurfacePresentModesKHR(device, Global::surface, &presentModeCount, details.presentModes.data());
}
return details;
}
2024-10-08 01:57:32 -05:00
bool checkDeviceExtensionSupport(VkPhysicalDevice device) {
uint32_t extensionCount;
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr);
std::vector<VkExtensionProperties> availableExtensions(extensionCount);
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data());
std::set<std::string> requiredExtensions(deviceExtensions.begin(), deviceExtensions.end());
for (const auto& extension : availableExtensions) {
requiredExtensions.erase(extension.extensionName);
}
return requiredExtensions.empty();
}
bool isDeviceSuitable(VkPhysicalDevice device) {
// These two are simple, create a structure to hold the apiVersion, driverVersion, vendorID, deviceID and type, name, and a few other settings.
// Then populate it by passing in the device and the structure reference.
vkGetPhysicalDeviceProperties(device, &deviceProperties);
// Similarly, we can pass in the device and a deviceFeatures struct, this is quite special, it holds a struct of optional features the GPU can perform.
// Some, like a geometry shader, and stereoscopic rendering (multiViewport) we want, so we dont return true without them.
VkPhysicalDeviceFeatures supportedFeatures;
vkGetPhysicalDeviceFeatures(device, &supportedFeatures);
// We need to find a device that supports graphical operations, or else we cant do much with it! This function just runs over all the queueFamilies and sees if there
// is a queue family with the VK_QUEUE_GRAPHICS_BIT flipped!
2024-10-08 01:57:32 -05:00
Global::QueueFamilyIndices indices = Global::findQueueFamilies(device);
bool extensionSupported = checkDeviceExtensionSupport(device);
bool swapChainAdequate = false;
if(extensionSupported) {
SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty();
}
return deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU
&& supportedFeatures.samplerAnisotropy
&& indices.isComplete()
&& extensionSupported
&& swapChainAdequate;
}
2024-10-08 01:57:32 -05:00
// -------------------------------------- Swap Chain Settings ----------------------------------------- //
VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {
// One of three settings we can set, Surface Format controls the color space and format.
for (const auto& availableFormat : availableFormats) {
if (availableFormat.format == VK_FORMAT_B8G8R8A8_SRGB && availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
// sRGB & 32bit BGRA
return availableFormat;
}
}
return availableFormats[0];
}
VkPresentModeKHR chooseSwapPresentMode(const std::vector<VkPresentModeKHR>& availablePresentModes) {
// The second of the three settings, arguably the most important, the presentation mode! This dictates how images are displayed.
// MAILBOX is basically equivalent to triple buffering, it avoids screen tearing with fairly low latency,
// However, it is not always supported, so in the case that it isn't, currently we will default to FIFO,
// This is most similarly to standard V-Sync.
for(const auto& availablePresentMode : availablePresentModes) {
if(availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
return availablePresentMode;
}
}
return VK_PRESENT_MODE_FIFO_KHR;
}
VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities, GLFWwindow* window) {
// Swap Extent is just a fancy way of saying the resolution of the swap images to display.
// This is almost always going to equal the resolution of the window in pixels.
// The max int32 value tells us that the window manager lets us change the windth and height to what we wish!
if (capabilities.currentExtent.width != std::numeric_limits<uint32_t>::max()) {
return capabilities.currentExtent;
} else {
int width, height;
glfwGetFramebufferSize(window, &width, &height);
VkExtent2D actualExtent = {
static_cast<uint32_t>(width),
static_cast<uint32_t>(height)
};
// Clamp the image size to the minimum extent values specified by vulkan for our window manager.
actualExtent.width = std::clamp(actualExtent.width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width);
actualExtent.height = std::clamp(actualExtent.height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height);
return actualExtent;
}
}
2024-10-08 01:57:32 -05:00
// --------------------------------------- External Functions ----------------------------------------- //
void DeviceControl::pickPhysicalDevice(VkInstance& instance) {
uint32_t deviceCount = 0;
vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);
if(deviceCount == 0) {
throw std::runtime_error("Failed to find GPU's with Vulkan Support!!");
}
std::vector<VkPhysicalDevice> devices(deviceCount); // Direct Initialization is weird af, yo
vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());
for(const auto& device : devices) {
if(isDeviceSuitable(device)) {
//Once we have buttons or such, maybe ask the user or write a config file for which GPU to use?
2024-10-08 01:57:32 -05:00
Global::physicalDevice = device;
break;
}
}
2024-10-08 01:57:32 -05:00
if(Global::physicalDevice == VK_NULL_HANDLE) {
throw std::runtime_error("Failed to find a suitable GPU!");
}
}
void DeviceControl::destroySurface(VkInstance& instance) {
2024-10-08 01:57:32 -05:00
vkDestroySurfaceKHR(instance, Global::surface, nullptr);
}
void DeviceControl::createSurface(VkInstance& instance, GLFWwindow* window) {
2024-10-08 01:57:32 -05:00
if(glfwCreateWindowSurface(instance, window, nullptr, &Global::surface) != VK_SUCCESS) {
throw std::runtime_error("Failed to create window surface!!");
}
}
void DeviceControl::createLogicalDevice() {
// Describe how many queues we want for a single family (1) here, right now we are solely interested in graphics capabilites,
// but Compute Shaders, transfer ops, decode and encode operations can also queued with setup! We also assign each queue a priority.
// We do this by looping over all the queueFamilies and sorting them by indices to fill the queue at the end!
2024-10-08 01:57:32 -05:00
Global::QueueFamilyIndices indices = Global::findQueueFamilies(Global::physicalDevice);
std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
std::set<uint32_t> uniqueQueueFamilies = {
indices.graphicsFamily.value(),
indices.presentFamily.value()
};
float queuePriority = 1.0f;
for(uint32_t queueFamily : uniqueQueueFamilies) {
VkDeviceQueueCreateInfo queueCreateSingularInfo = {};
queueCreateSingularInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateSingularInfo.queueFamilyIndex = queueFamily;
queueCreateSingularInfo.queueCount = 1;
queueCreateSingularInfo.pQueuePriorities = &queuePriority;
queueCreateInfos.push_back(queueCreateSingularInfo);
}
2024-10-24 20:21:10 -05:00
VkPhysicalDeviceVulkan13Features features13 {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES,
.pNext = nullptr,
.dynamicRendering = true,
};
VkPhysicalDeviceFeatures featuresBase {
.samplerAnisotropy = true,
};
VkPhysicalDeviceFeatures2 deviceFeatures {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2,
.pNext = &features13,
.features = featuresBase,
};
VkDeviceCreateInfo createDeviceInfo = {};
2024-10-24 20:21:10 -05:00
createDeviceInfo.pNext = &deviceFeatures;
createDeviceInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
createDeviceInfo.pQueueCreateInfos = queueCreateInfos.data();
createDeviceInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());
createDeviceInfo.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size());
createDeviceInfo.ppEnabledExtensionNames = deviceExtensions.data();
2024-10-08 01:57:32 -05:00
if(vkCreateDevice(Global::physicalDevice, &createDeviceInfo, nullptr, &Global::device) != VK_SUCCESS) {
throw std::runtime_error("Failed to create logical device");
}
vkGetDeviceQueue(Global::device, indices.graphicsFamily.value(), 0, &Global::graphicsQueue);
vkGetDeviceQueue(Global::device, indices.presentFamily.value(), 0, &Global::presentQueue);
}
void DeviceControl::createSwapChain(GLFWwindow* window) {
2024-10-08 01:57:32 -05:00
SwapChainSupportDetails swapChainSupport = querySwapChainSupport(Global::physicalDevice);
VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats);
VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes);
VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities, window);
// Number of images to hold in the swap chain, 1 over the minimum guarantees we won't have to wait on the driver to complete
// internal operations before acquiring another image. Absolutely a TODO to determine the best amount to queue.
uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
// Make sure not to queue more than the max! 0 indicates that there is no maximum.
if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) {
imageCount = swapChainSupport.capabilities.maxImageCount;
}
VkSwapchainCreateInfoKHR createSwapChainInfo{};
createSwapChainInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
2024-10-08 01:57:32 -05:00
createSwapChainInfo.surface = Global::surface;
createSwapChainInfo.minImageCount = imageCount;
createSwapChainInfo.imageFormat = surfaceFormat.format;
createSwapChainInfo.imageColorSpace = surfaceFormat.colorSpace;
createSwapChainInfo.imageExtent = extent;
// Image array layers is always 1 unless we are developing for VR (Spoiler: we are, we will use a build flag.)
// Image Usage specifies what operations you use the images for, COLOR_ATTACH means we render directly to them,
// if you wanted to render to separate images for things like post processing, you can use TRANSFER_DST and use a
// memory operation to transfer the image to a swap chain, this is also a TODO item eventually.
createSwapChainInfo.imageArrayLayers = 1;
createSwapChainInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
// This handles swap chain images across multiple queue families, ie, if the graphics queue family is different from the present queue
2024-10-08 01:57:32 -05:00
Global::QueueFamilyIndices indices = Global::findQueueFamilies(Global::physicalDevice);
uint32_t queueFamilyIndices[] = {indices.graphicsFamily.value(), indices.presentFamily.value()};
// Usage across multiple queue families without explicit transfer of ownership if they are different queue families.
// Otherwise, no sharing without explicit handoffs, faster, but not easily supported with multiple families.
// Presentation and Graphics families are usually merged on most hardware.
if (indices.graphicsFamily != indices.presentFamily) {
createSwapChainInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
createSwapChainInfo.queueFamilyIndexCount = 2;
createSwapChainInfo.pQueueFamilyIndices = queueFamilyIndices;
} else {
createSwapChainInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
}
// Transformation of image support.
createSwapChainInfo.preTransform = swapChainSupport.capabilities.currentTransform;
// Do NOT blend with other windows on the system.
createSwapChainInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
createSwapChainInfo.presentMode = presentMode;
2024-10-09 06:14:01 -05:00
// This is interesting, clip pixels that are obscured for performance, but that means you wont be able to read them reliably..
// I am curious if this would affect screen-space rendering techniques, may be something to note.
createSwapChainInfo.clipped = VK_TRUE;
// This is something that needs to be implemented later, operations like resizing the window invalidate the swap chain and
// require you to recreate it and reference the old one specified here, will revisit in a few days.
//createSwapChainInfo.oldSwapchain = VK_NULL_HANDLE;
if(vkCreateSwapchainKHR(Global::device, &createSwapChainInfo, nullptr, &Global::swapChain) != VK_SUCCESS) {
throw std::runtime_error("Failed to create the swap chain!!");
}
vkGetSwapchainImagesKHR(Global::device, Global::swapChain, &imageCount, nullptr);
swapChainImages.resize(imageCount);
vkGetSwapchainImagesKHR(Global::device, Global::swapChain, &imageCount, swapChainImages.data());
swapChainImageFormat = surfaceFormat.format;
swapChainExtent = extent;
}
void DeviceControl::destroySwapChain() {
vkDestroySwapchainKHR(Global::device, Global::swapChain, nullptr);
}
VkImageView DeviceControl::createImageView(VkImage image, VkFormat format, VkImageAspectFlags flags, uint32_t mipLevels) {
2024-10-13 20:32:20 -05:00
// This defines the parameters of a newly created image object!
VkImageViewCreateInfo viewInfo{};
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.image = image;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = format;
viewInfo.subresourceRange.aspectMask = flags;
viewInfo.subresourceRange.baseMipLevel = 0;
viewInfo.subresourceRange.levelCount = 1;
viewInfo.subresourceRange.baseArrayLayer = 0;
viewInfo.subresourceRange.layerCount = 1;
viewInfo.subresourceRange.levelCount = mipLevels;
VkImageView imageView;
if (vkCreateImageView(Global::device, &viewInfo, nullptr, &imageView) != VK_SUCCESS) {
throw std::runtime_error("failed to create image view!");
}
return imageView;
}
void DeviceControl::createImageViews() {
2024-10-24 20:21:10 -05:00
Global::swapChainImageViews.resize(swapChainImages.size());
for (uint32_t i = 0; i < swapChainImages.size(); i++) {
2024-10-24 20:21:10 -05:00
Global::swapChainImageViews[i] = createImageView(swapChainImages[i], swapChainImageFormat, VK_IMAGE_ASPECT_COLOR_BIT, 1);
}
}
void DeviceControl::destroyImageViews() {
2024-10-24 20:21:10 -05:00
for (auto imageView : Global::swapChainImageViews) {
2024-10-08 01:57:32 -05:00
vkDestroyImageView(Global::device, imageView, nullptr);
}
}
2024-10-08 01:57:32 -05:00
// --------------------------------------- Getters & Setters ------------------------------------------ //
2024-10-24 20:21:10 -05:00
VkFormat* DeviceControl::getImageFormat() {
return &swapChainImageFormat;
2024-10-08 01:57:32 -05:00
}
VkExtent2D DeviceControl::getSwapChainExtent() {
2024-10-08 01:57:32 -05:00
return swapChainExtent;
}
2024-10-24 20:21:10 -05:00
std::vector<VkImage> DeviceControl::getSwapChainImages() {
return swapChainImages;
}
}