Compare commits
29 Commits
b11d15764e
...
master
Author | SHA1 | Date | |
---|---|---|---|
454b8e6c28 | |||
c42133f426 | |||
d862068c6e | |||
e2ef2e4134 | |||
d5190c8207 | |||
f8bd7fdf3b | |||
d8c82d3351 | |||
a1544ce989 | |||
aa53a80fce | |||
2631bbbaba | |||
4a8f6909a8 | |||
7770063537 | |||
57516a3f12 | |||
5c2f82b995 | |||
7d2949ca73 | |||
0797c418da | |||
6e8e75d5b3 | |||
57496aea2c | |||
0a7d5a787c | |||
af7b533f50 | |||
56fb496ec7 | |||
43fd780e0b | |||
ac402dbef8 | |||
19c25ba670 | |||
9878070b4c | |||
e2a732c98c | |||
cb4500d97f | |||
086adae47a | |||
6b8b24da65 |
BIN
.cache/clangd/index/agnosiaimgui.cpp.D917B7EB41E8A56F.idx
Normal file
BIN
.cache/clangd/index/agnosiaimgui.cpp.D917B7EB41E8A56F.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/agnosiaimgui.h.C442C0E7D513336B.idx
Normal file
BIN
.cache/clangd/index/agnosiaimgui.h.C442C0E7D513336B.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/buffers.cpp.FC2CC275D910BCB7.idx
Normal file
BIN
.cache/clangd/index/buffers.cpp.FC2CC275D910BCB7.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/buffers.h.CC15E40B6084C10D.idx
Normal file
BIN
.cache/clangd/index/buffers.h.CC15E40B6084C10D.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/devicelibrary.cpp.A6A50BF3BD186A09.idx
Normal file
BIN
.cache/clangd/index/devicelibrary.cpp.A6A50BF3BD186A09.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/devicelibrary.h.D7B097F0839961AC.idx
Normal file
BIN
.cache/clangd/index/devicelibrary.h.D7B097F0839961AC.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/entrypoint.cpp.9286A9B0BD8A276E.idx
Normal file
BIN
.cache/clangd/index/entrypoint.cpp.9286A9B0BD8A276E.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/entrypoint.h.1BBE0276DA7F0CE2.idx
Normal file
BIN
.cache/clangd/index/entrypoint.h.1BBE0276DA7F0CE2.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/global.cpp.DB8A6A1A4BC0BF3A.idx
Normal file
BIN
.cache/clangd/index/global.cpp.DB8A6A1A4BC0BF3A.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/global.h.67055BFC9A2F7BD6.idx
Normal file
BIN
.cache/clangd/index/global.h.67055BFC9A2F7BD6.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/graphicspipeline.cpp.F94E3ACB17FA6762.idx
Normal file
BIN
.cache/clangd/index/graphicspipeline.cpp.F94E3ACB17FA6762.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/graphicspipeline.h.093A3C67F46BDBAE.idx
Normal file
BIN
.cache/clangd/index/graphicspipeline.h.093A3C67F46BDBAE.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/imconfig.h.3ADA6E76D666621B.idx
Normal file
BIN
.cache/clangd/index/imconfig.h.3ADA6E76D666621B.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/imgui.cpp.2302CEB72C8D9CA1.idx
Normal file
BIN
.cache/clangd/index/imgui.cpp.2302CEB72C8D9CA1.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/imgui.h.ACC246D76711413E.idx
Normal file
BIN
.cache/clangd/index/imgui.h.ACC246D76711413E.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/imgui_demo.cpp.F91A753A09CDE374.idx
Normal file
BIN
.cache/clangd/index/imgui_demo.cpp.F91A753A09CDE374.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/imgui_draw.cpp.5B7D6E505867D9EB.idx
Normal file
BIN
.cache/clangd/index/imgui_draw.cpp.5B7D6E505867D9EB.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/imgui_impl_glfw.cpp.99B2D46074E7E29B.idx
Normal file
BIN
.cache/clangd/index/imgui_impl_glfw.cpp.99B2D46074E7E29B.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/imgui_impl_glfw.h.45E4F0EDCF23819B.idx
Normal file
BIN
.cache/clangd/index/imgui_impl_glfw.h.45E4F0EDCF23819B.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/imgui_impl_vulkan.cpp.258735B3A169763B.idx
Normal file
BIN
.cache/clangd/index/imgui_impl_vulkan.cpp.258735B3A169763B.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/imgui_impl_vulkan.h.E293D4932B27A48C.idx
Normal file
BIN
.cache/clangd/index/imgui_impl_vulkan.h.E293D4932B27A48C.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/imgui_internal.h.B25AF3943BB1AD2B.idx
Normal file
BIN
.cache/clangd/index/imgui_internal.h.B25AF3943BB1AD2B.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/imgui_tables.cpp.A43F5F055F44B37C.idx
Normal file
BIN
.cache/clangd/index/imgui_tables.cpp.A43F5F055F44B37C.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/imgui_widgets.cpp.2C6A8C974E4B792B.idx
Normal file
BIN
.cache/clangd/index/imgui_widgets.cpp.2C6A8C974E4B792B.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/imstb_rectpack.h.426331EB29A2B17C.idx
Normal file
BIN
.cache/clangd/index/imstb_rectpack.h.426331EB29A2B17C.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/imstb_textedit.h.421029FE98AFFA96.idx
Normal file
BIN
.cache/clangd/index/imstb_textedit.h.421029FE98AFFA96.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/imstb_truetype.h.0A3563D846CA9ABF.idx
Normal file
BIN
.cache/clangd/index/imstb_truetype.h.0A3563D846CA9ABF.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/main.cpp.6FA2B2FABDE63972.idx
Normal file
BIN
.cache/clangd/index/main.cpp.6FA2B2FABDE63972.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/material.h.3635D536A26B1F7D.idx
Normal file
BIN
.cache/clangd/index/material.h.3635D536A26B1F7D.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/model.cpp.56D1ED026EF1D5F1.idx
Normal file
BIN
.cache/clangd/index/model.cpp.56D1ED026EF1D5F1.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/model.h.C3ECCCBE7C04E4C8.idx
Normal file
BIN
.cache/clangd/index/model.h.C3ECCCBE7C04E4C8.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/render.cpp.657B8B8CBD5B3B6B.idx
Normal file
BIN
.cache/clangd/index/render.cpp.657B8B8CBD5B3B6B.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/render.h.A0C955D8D0DA424C.idx
Normal file
BIN
.cache/clangd/index/render.h.A0C955D8D0DA424C.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/texture.cpp.14763AFB742F8112.idx
Normal file
BIN
.cache/clangd/index/texture.cpp.14763AFB742F8112.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/texture.h.712506A996DB5236.idx
Normal file
BIN
.cache/clangd/index/texture.h.712506A996DB5236.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/types.h.2A872A9A515562E6.idx
Normal file
BIN
.cache/clangd/index/types.h.2A872A9A515562E6.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/vk_mem_alloc.h.F667345C57A24872.idx
Normal file
BIN
.cache/clangd/index/vk_mem_alloc.h.F667345C57A24872.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/volk.c.7B12D4D8A514BDD2.idx
Normal file
BIN
.cache/clangd/index/volk.c.7B12D4D8A514BDD2.idx
Normal file
Binary file not shown.
BIN
.cache/clangd/index/volk.h.58430F1E9A139B4F.idx
Normal file
BIN
.cache/clangd/index/volk.h.58430F1E9A139B4F.idx
Normal file
Binary file not shown.
3
.gitignore
vendored
3
.gitignore
vendored
@@ -6,7 +6,6 @@
|
||||
*.slo
|
||||
*.lo
|
||||
*.o
|
||||
*.obj
|
||||
|
||||
# Compiled Shader files
|
||||
*.spv
|
||||
@@ -35,3 +34,5 @@
|
||||
*.out
|
||||
*.app
|
||||
build/
|
||||
|
||||
compile_commands.json
|
||||
|
@@ -5,7 +5,7 @@ caption
|
||||
//**This dictates basic flow of the vulkan boilerplate system. **//
|
||||
endcaption
|
||||
|
||||
:main;
|
||||
://**main()**//; <<procedure>>
|
||||
://**run()**//; <<procedure>>
|
||||
split
|
||||
://**initWindow()**//; <<procedure>>
|
||||
@@ -30,7 +30,7 @@ split again
|
||||
split
|
||||
://**createInstance()**//; <<procedure>>
|
||||
split
|
||||
:Debug::checkUnavailableValidationLayers();
|
||||
:**Debug**::checkUnavailableValidationLayers();
|
||||
:**VkApplicationInfo** appInfo{};
|
||||
://set appInfo data, Vulkan version,//
|
||||
//Engine version and name, and title//;
|
||||
@@ -39,16 +39,17 @@ split
|
||||
:Debug::vulkanDebugSetup(createInfo, vulkaninstance);
|
||||
end split
|
||||
split again
|
||||
:Debug::setupDebugMessenger(VkInstance&);
|
||||
:**Debug**::setupDebugMessenger(VkInstance&);
|
||||
note right: Setup debug messenger, print data to console
|
||||
:glfwCreateWindowSurface(...);
|
||||
|
||||
partition "**DeviceControl**" {
|
||||
:createSurface(...);
|
||||
note right
|
||||
This function handles Window System Integration
|
||||
automatically across platforms based on build environment.
|
||||
====
|
||||
//Basically, this is an abstraction of the Window across platforms//
|
||||
end note
|
||||
partition "**DeviceControl**" {
|
||||
:pickPhysicalDevice(...);
|
||||
note right
|
||||
Enumerate through GPU's in the
|
||||
@@ -77,24 +78,26 @@ partition "**DeviceControl**" {
|
||||
end note
|
||||
}
|
||||
|
||||
:**Graphics**::createRenderPass(...);
|
||||
note right
|
||||
This is pretty simple, it sets up the image bit depth
|
||||
and the color bit depth! Basically, the format of the
|
||||
displayed images, simple, but important!
|
||||
end note
|
||||
:**Buffers**::createDescriptorSetLayout();
|
||||
note right
|
||||
This function creates a table of pointers to the stored
|
||||
data that we want, in this case it would be pointing to
|
||||
pre-programmed model view and projection values, and
|
||||
a time variable.
|
||||
end note
|
||||
partition "**Graphics**" {
|
||||
:createRenderPass(...);
|
||||
note right
|
||||
This is pretty simple, it sets up the image bit depth
|
||||
and the color bit depth! Basically, the format of the
|
||||
displayed images, simple, but important!
|
||||
end note
|
||||
:createGraphicsPipeline(...);
|
||||
note right
|
||||
This is a complex function that goes through every
|
||||
step of the render pipeline and sets the settings we
|
||||
desire for each step! **HEAVILY** documented.
|
||||
end note
|
||||
:createFramebuffers(...);
|
||||
note right
|
||||
This function creates framebuffers for all the images
|
||||
that are queued to be displayed, very important!
|
||||
end note
|
||||
:createCommandPool(...);
|
||||
note right
|
||||
Commands in Vulkan are not executed using function calls
|
||||
@@ -102,6 +105,52 @@ partition "**Graphics**" {
|
||||
buffer objects, pools manage the memory used for buffers.
|
||||
end note
|
||||
}
|
||||
|
||||
:**Texture**::createDepthResources();
|
||||
note right
|
||||
This function sets up the image views and sets for the
|
||||
depth testing buffer to handle objects above or below
|
||||
other objects!
|
||||
end note
|
||||
:**Graphics**::createFramebuffers(...);
|
||||
note right
|
||||
This function creates framebuffers for all the images
|
||||
that are queued to be displayed, very important!
|
||||
end note
|
||||
|
||||
partition "**Texture**" {
|
||||
:createTextureImage();
|
||||
note right
|
||||
This function imports the pixels from an image, puts them
|
||||
into a buffer, and copies them from memory into a texture!
|
||||
A bit complicated because we are moving and freeing lots of
|
||||
memory, but quite useful.
|
||||
end note
|
||||
:createTextureImageView();
|
||||
note right
|
||||
This function creates a image view for the texture, just
|
||||
builds a struct holding information about the texture, like
|
||||
layers, mip levels, and etc.
|
||||
end note
|
||||
:createTextureSampler();
|
||||
note right
|
||||
This function is **incredibly** important. This builds a
|
||||
texture sampler, information about what to do with the
|
||||
texture once its created. This defines settings like
|
||||
//UVW mode//, //Filtering//, //Anisotropy//, and
|
||||
//Mipmap modes//
|
||||
end note
|
||||
}
|
||||
partition "**Model**" {
|
||||
:loadModel();
|
||||
note right
|
||||
Exactly what it sounds like, as of now, call our function
|
||||
to load .OBJ files with STB. Obviously want to support FBX
|
||||
in the future but the format is quite complex.
|
||||
This function simply loads vertices and indices into the
|
||||
arrays to be parsed!
|
||||
end note
|
||||
}
|
||||
partition "**Buffers**" {
|
||||
:createVertexBuffer();
|
||||
note right
|
||||
@@ -116,14 +165,36 @@ partition "**Buffers**" {
|
||||
at corners to triangulate. this saves cycles at
|
||||
scale, complex objects rejoice!
|
||||
end note
|
||||
:createUniformBuffer();
|
||||
note right
|
||||
Map the buffer data to memory (The struct) as a pointer
|
||||
we can use this as a reference of where to write data to
|
||||
when the fence lets us write data.
|
||||
(see **recordCommandBuffer()**).
|
||||
end note
|
||||
:createDescriptorPool();
|
||||
note right
|
||||
Here we create a pool to manage the memory and allocate
|
||||
space for the descriptor sets! Very useful and the same
|
||||
structure as command buffers & pools.
|
||||
end note
|
||||
:createDescriptorSetLayout();
|
||||
note right
|
||||
//Descriptor set **layouts** specify the types of resources accessible//
|
||||
//by the graphical pipeline. A descriptor set is the actual buffer//
|
||||
//or resource that gets bound to descriptors and passed in.//
|
||||
These differ from Vertex & Index buffers, as they are not unique
|
||||
to the graphics pipeline. Specification of compute vs. graphics is
|
||||
therefore necessary. (see **createDescriptorSets()**)
|
||||
end note
|
||||
}
|
||||
:Graphics::createCommandBuffer();
|
||||
:**Graphics**::createCommandBuffer();
|
||||
note right
|
||||
This is the partner to the commandPool creator,
|
||||
storing the commands we wish to perform whilst
|
||||
waiting in a queue. These are very efficient.
|
||||
end note
|
||||
:RenderPresent::createSyncObject();
|
||||
:**RenderPresent**::createSyncObject();
|
||||
note right
|
||||
This is **HEAVILY** documented, create Semaphores
|
||||
and Fences, for halting and starting execution, basically
|
1
Flowgraph.svg
Normal file
1
Flowgraph.svg
Normal file
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 71 KiB |
File diff suppressed because one or more lines are too long
Before Width: | Height: | Size: 50 KiB |
28
Makefile
28
Makefile
@@ -1,12 +1,13 @@
|
||||
CPPFLAGS=-g
|
||||
LDFLAGS=-lglfw -lvulkan -ldl -lpthread -lX11 -lXxf86vm -lXrandr -lXi
|
||||
DEBUGFLAGS=-DDEBUG -fsanitize=address
|
||||
GDBFLAGS=
|
||||
CPPFLAGS=-std=c++23 -g
|
||||
CFLAGS = -g
|
||||
LDFLAGS=-lglfw -Ilib -ldl -lpthread -lX11 -lXxf86vm -lXrandr -lXi -ltinyobjloader -Ilib/imgui -DIMGUI_IMPL_VULKAN_NO_PROTOTYPES
|
||||
MAKEFLAGS += -j16
|
||||
SRC = $(shell find . -name "*.cpp")
|
||||
SHDRSRC = $(shell find . -name "*.frag" -o -name "*vert")
|
||||
CSRC = $(shell find . -name "*.c")
|
||||
SHDRSRC = $(shell find . -name "*.frag" -o -name "*.vert")
|
||||
SPV = $(SHDRSRC:%.vert=%.spv) $(SHDRSRC:%.frag=%.spv)
|
||||
OBJ = $(SRC:%.cpp=%.o)
|
||||
MAKEFLAGS += -j16
|
||||
COBJ=$(CSRC:%.c=%.o)
|
||||
BIN=build/agnosiaengine
|
||||
|
||||
.PHONY: all
|
||||
@@ -17,17 +18,15 @@ run: $(BIN)
|
||||
./$(BIN)
|
||||
|
||||
.PHONY: gdb
|
||||
gdb: LDFLAGS+=$(GDBFLAGS)
|
||||
gdb: $(BIN)
|
||||
gdb -q $(BIN)
|
||||
.PHONY: debug
|
||||
debug: LDFLAGS+=$(DEBUGFLAGS)
|
||||
debug: $(BIN)
|
||||
./$(BIN)
|
||||
|
||||
.PHONY: dep
|
||||
dep:
|
||||
sudo pacman -S gcc glfw glm shaderc libxi libxxf86vm gdb shaderc
|
||||
sudo pacman -S gcc glfw glm shaderc libxi libxxf86vm gdb shaderc stb
|
||||
.PHONY: info
|
||||
info:
|
||||
@echo "make: Build executable"
|
||||
@@ -37,17 +36,20 @@ info:
|
||||
@echo "make clean: Clean all files"
|
||||
@echo "make run: Run the executable after building"
|
||||
|
||||
$(BIN): $(OBJ) $(SPV)
|
||||
$(BIN): $(OBJ) $(COBJ) $(SPV)
|
||||
mkdir -p build
|
||||
g++ $(CPPFLAGS) -o $(BIN) $(OBJ) $(LDFLAGS)
|
||||
g++ $(CPPFLAGS) -o $(BIN) $(OBJ) $(COBJ) $(LDFLAGS)
|
||||
|
||||
%.o: %.cpp
|
||||
g++ -c -g $< -o $@ $(LDFLAGS)
|
||||
|
||||
g++ -c $(CPPFLAGS) $< -o $@ $(LDFLAGS)
|
||||
%.o : %.c
|
||||
gcc -c $(CFLAGS) $< -o $@ $(LDFLAGS)
|
||||
%.spv: %.frag
|
||||
glslc $< -o $@
|
||||
%.spv: %.vert
|
||||
glslc $< -o $@
|
||||
%.spv: %.glsl
|
||||
glslc $< -o $@
|
||||
|
||||
.PHONY: clean
|
||||
clean:
|
||||
|
2693634
assets/models/StanfordDragon800k.obj
Normal file
2693634
assets/models/StanfordDragon800k.obj
Normal file
File diff suppressed because it is too large
Load Diff
2
assets/models/UVSphere.mtl
Normal file
2
assets/models/UVSphere.mtl
Normal file
@@ -0,0 +1,2 @@
|
||||
# Blender 4.2.3 LTS MTL File: 'None'
|
||||
# www.blender.org
|
2070
assets/models/UVSphere.obj
Normal file
2070
assets/models/UVSphere.obj
Normal file
File diff suppressed because it is too large
Load Diff
18901
assets/models/teapot.obj
Normal file
18901
assets/models/teapot.obj
Normal file
File diff suppressed because it is too large
Load Diff
2
assets/models/untitled.mtl
Normal file
2
assets/models/untitled.mtl
Normal file
@@ -0,0 +1,2 @@
|
||||
# Blender 4.2.3 LTS MTL File: 'None'
|
||||
# www.blender.org
|
39
assets/models/untitled.obj
Normal file
39
assets/models/untitled.obj
Normal file
@@ -0,0 +1,39 @@
|
||||
# Blender 4.2.3 LTS
|
||||
# www.blender.org
|
||||
mtllib untitled.mtl
|
||||
o Cube
|
||||
v -6.996062 0.060240 6.002291
|
||||
v -6.996062 0.123414 6.002291
|
||||
v -6.996062 0.060240 -6.002291
|
||||
v -6.996062 0.123414 -6.002291
|
||||
v 6.996062 0.060240 6.002291
|
||||
v 6.996062 0.123414 6.002291
|
||||
v 6.996062 0.060240 -6.002291
|
||||
v 6.996062 0.123414 -6.002291
|
||||
vn -1.0000 -0.0000 -0.0000
|
||||
vn -0.0000 -0.0000 -1.0000
|
||||
vn 1.0000 -0.0000 -0.0000
|
||||
vn -0.0000 -0.0000 1.0000
|
||||
vn -0.0000 -1.0000 -0.0000
|
||||
vn -0.0000 1.0000 -0.0000
|
||||
vt 0.561014 0.000000
|
||||
vt 0.625000 0.000000
|
||||
vt 0.625000 0.250000
|
||||
vt 0.561014 0.250000
|
||||
vt 0.625000 0.500000
|
||||
vt 0.561014 0.500000
|
||||
vt 0.625000 0.750000
|
||||
vt 0.561014 0.750000
|
||||
vt 0.625000 1.000000
|
||||
vt 0.561014 1.000000
|
||||
vt 0.125000 0.500000
|
||||
vt 0.125000 0.750000
|
||||
vt 0.875000 0.500000
|
||||
vt 0.875000 0.750000
|
||||
s 0
|
||||
f 1/1/1 2/2/1 4/3/1 3/4/1
|
||||
f 3/4/2 4/3/2 8/5/2 7/6/2
|
||||
f 7/6/3 8/5/3 6/7/3 5/8/3
|
||||
f 5/8/4 6/7/4 2/9/4 1/10/4
|
||||
f 3/11/5 7/6/5 5/8/5 1/12/5
|
||||
f 8/5/6 4/13/6 2/14/6 6/7/6
|
16053
assets/models/viking_room.obj
Normal file
16053
assets/models/viking_room.obj
Normal file
File diff suppressed because it is too large
Load Diff
BIN
assets/textures/checkermap.png
Normal file
BIN
assets/textures/checkermap.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.0 MiB |
BIN
assets/textures/test.png
Normal file
BIN
assets/textures/test.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 21 KiB |
BIN
assets/textures/viking_room.png
Normal file
BIN
assets/textures/viking_room.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 940 KiB |
BIN
escher.blend
BIN
escher.blend
Binary file not shown.
8
imgui.ini
Normal file
8
imgui.ini
Normal file
@@ -0,0 +1,8 @@
|
||||
[Window][Debug##Default]
|
||||
Pos=60,60
|
||||
Size=400,400
|
||||
|
||||
[Window][Agnosia Debug]
|
||||
Pos=57,392
|
||||
Size=623,438
|
||||
|
138
lib/imgui/imconfig.h
Normal file
138
lib/imgui/imconfig.h
Normal file
@@ -0,0 +1,138 @@
|
||||
//-----------------------------------------------------------------------------
|
||||
// DEAR IMGUI COMPILE-TIME OPTIONS
|
||||
// Runtime options (clipboard callbacks, enabling various features, etc.) can generally be set via the ImGuiIO structure.
|
||||
// You can use ImGui::SetAllocatorFunctions() before calling ImGui::CreateContext() to rewire memory allocation functions.
|
||||
//-----------------------------------------------------------------------------
|
||||
// A) You may edit imconfig.h (and not overwrite it when updating Dear ImGui, or maintain a patch/rebased branch with your modifications to it)
|
||||
// B) or '#define IMGUI_USER_CONFIG "my_imgui_config.h"' in your project and then add directives in your own file without touching this template.
|
||||
//-----------------------------------------------------------------------------
|
||||
// You need to make sure that configuration settings are defined consistently _everywhere_ Dear ImGui is used, which include the imgui*.cpp
|
||||
// files but also _any_ of your code that uses Dear ImGui. This is because some compile-time options have an affect on data structures.
|
||||
// Defining those options in imconfig.h will ensure every compilation unit gets to see the same data structure layouts.
|
||||
// Call IMGUI_CHECKVERSION() from your .cpp file to verify that the data structures your files are using are matching the ones imgui.cpp is using.
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
#pragma once
|
||||
|
||||
//---- Define assertion handler. Defaults to calling assert().
|
||||
// If your macro uses multiple statements, make sure is enclosed in a 'do { .. } while (0)' block so it can be used as a single statement.
|
||||
//#define IM_ASSERT(_EXPR) MyAssert(_EXPR)
|
||||
//#define IM_ASSERT(_EXPR) ((void)(_EXPR)) // Disable asserts
|
||||
|
||||
//---- Define attributes of all API symbols declarations, e.g. for DLL under Windows
|
||||
// Using Dear ImGui via a shared library is not recommended, because of function call overhead and because we don't guarantee backward nor forward ABI compatibility.
|
||||
// - Windows DLL users: heaps and globals are not shared across DLL boundaries! You will need to call SetCurrentContext() + SetAllocatorFunctions()
|
||||
// for each static/DLL boundary you are calling from. Read "Context and Memory Allocators" section of imgui.cpp for more details.
|
||||
//#define IMGUI_API __declspec(dllexport) // MSVC Windows: DLL export
|
||||
//#define IMGUI_API __declspec(dllimport) // MSVC Windows: DLL import
|
||||
//#define IMGUI_API __attribute__((visibility("default"))) // GCC/Clang: override visibility when set is hidden
|
||||
|
||||
//---- Don't define obsolete functions/enums/behaviors. Consider enabling from time to time after updating to clean your code of obsolete function/names.
|
||||
//#define IMGUI_DISABLE_OBSOLETE_FUNCTIONS
|
||||
|
||||
//---- Disable all of Dear ImGui or don't implement standard windows/tools.
|
||||
// It is very strongly recommended to NOT disable the demo windows and debug tool during development. They are extremely useful in day to day work. Please read comments in imgui_demo.cpp.
|
||||
//#define IMGUI_DISABLE // Disable everything: all headers and source files will be empty.
|
||||
//#define IMGUI_DISABLE_DEMO_WINDOWS // Disable demo windows: ShowDemoWindow()/ShowStyleEditor() will be empty.
|
||||
//#define IMGUI_DISABLE_DEBUG_TOOLS // Disable metrics/debugger and other debug tools: ShowMetricsWindow(), ShowDebugLogWindow() and ShowIDStackToolWindow() will be empty.
|
||||
|
||||
//---- Don't implement some functions to reduce linkage requirements.
|
||||
//#define IMGUI_DISABLE_WIN32_DEFAULT_CLIPBOARD_FUNCTIONS // [Win32] Don't implement default clipboard handler. Won't use and link with OpenClipboard/GetClipboardData/CloseClipboard etc. (user32.lib/.a, kernel32.lib/.a)
|
||||
//#define IMGUI_ENABLE_WIN32_DEFAULT_IME_FUNCTIONS // [Win32] [Default with Visual Studio] Implement default IME handler (require imm32.lib/.a, auto-link for Visual Studio, -limm32 on command-line for MinGW)
|
||||
//#define IMGUI_DISABLE_WIN32_DEFAULT_IME_FUNCTIONS // [Win32] [Default with non-Visual Studio compilers] Don't implement default IME handler (won't require imm32.lib/.a)
|
||||
//#define IMGUI_DISABLE_WIN32_FUNCTIONS // [Win32] Won't use and link with any Win32 function (clipboard, IME).
|
||||
//#define IMGUI_ENABLE_OSX_DEFAULT_CLIPBOARD_FUNCTIONS // [OSX] Implement default OSX clipboard handler (need to link with '-framework ApplicationServices', this is why this is not the default).
|
||||
//#define IMGUI_DISABLE_DEFAULT_SHELL_FUNCTIONS // Don't implement default platform_io.Platform_OpenInShellFn() handler (Win32: ShellExecute(), require shell32.lib/.a, Mac/Linux: use system("")).
|
||||
//#define IMGUI_DISABLE_DEFAULT_FORMAT_FUNCTIONS // Don't implement ImFormatString/ImFormatStringV so you can implement them yourself (e.g. if you don't want to link with vsnprintf)
|
||||
//#define IMGUI_DISABLE_DEFAULT_MATH_FUNCTIONS // Don't implement ImFabs/ImSqrt/ImPow/ImFmod/ImCos/ImSin/ImAcos/ImAtan2 so you can implement them yourself.
|
||||
//#define IMGUI_DISABLE_FILE_FUNCTIONS // Don't implement ImFileOpen/ImFileClose/ImFileRead/ImFileWrite and ImFileHandle at all (replace them with dummies)
|
||||
//#define IMGUI_DISABLE_DEFAULT_FILE_FUNCTIONS // Don't implement ImFileOpen/ImFileClose/ImFileRead/ImFileWrite and ImFileHandle so you can implement them yourself if you don't want to link with fopen/fclose/fread/fwrite. This will also disable the LogToTTY() function.
|
||||
//#define IMGUI_DISABLE_DEFAULT_ALLOCATORS // Don't implement default allocators calling malloc()/free() to avoid linking with them. You will need to call ImGui::SetAllocatorFunctions().
|
||||
//#define IMGUI_DISABLE_SSE // Disable use of SSE intrinsics even if available
|
||||
|
||||
//---- Enable Test Engine / Automation features.
|
||||
//#define IMGUI_ENABLE_TEST_ENGINE // Enable imgui_test_engine hooks. Generally set automatically by include "imgui_te_config.h", see Test Engine for details.
|
||||
|
||||
//---- Include imgui_user.h at the end of imgui.h as a convenience
|
||||
// May be convenient for some users to only explicitly include vanilla imgui.h and have extra stuff included.
|
||||
//#define IMGUI_INCLUDE_IMGUI_USER_H
|
||||
//#define IMGUI_USER_H_FILENAME "my_folder/my_imgui_user.h"
|
||||
|
||||
//---- Pack colors to BGRA8 instead of RGBA8 (to avoid converting from one to another)
|
||||
//#define IMGUI_USE_BGRA_PACKED_COLOR
|
||||
|
||||
//---- Use 32-bit for ImWchar (default is 16-bit) to support Unicode planes 1-16. (e.g. point beyond 0xFFFF like emoticons, dingbats, symbols, shapes, ancient languages, etc...)
|
||||
//#define IMGUI_USE_WCHAR32
|
||||
|
||||
//---- Avoid multiple STB libraries implementations, or redefine path/filenames to prioritize another version
|
||||
// By default the embedded implementations are declared static and not available outside of Dear ImGui sources files.
|
||||
//#define IMGUI_STB_TRUETYPE_FILENAME "my_folder/stb_truetype.h"
|
||||
//#define IMGUI_STB_RECT_PACK_FILENAME "my_folder/stb_rect_pack.h"
|
||||
//#define IMGUI_STB_SPRINTF_FILENAME "my_folder/stb_sprintf.h" // only used if IMGUI_USE_STB_SPRINTF is defined.
|
||||
//#define IMGUI_DISABLE_STB_TRUETYPE_IMPLEMENTATION
|
||||
//#define IMGUI_DISABLE_STB_RECT_PACK_IMPLEMENTATION
|
||||
//#define IMGUI_DISABLE_STB_SPRINTF_IMPLEMENTATION // only disabled if IMGUI_USE_STB_SPRINTF is defined.
|
||||
|
||||
//---- Use stb_sprintf.h for a faster implementation of vsnprintf instead of the one from libc (unless IMGUI_DISABLE_DEFAULT_FORMAT_FUNCTIONS is defined)
|
||||
// Compatibility checks of arguments and formats done by clang and GCC will be disabled in order to support the extra formats provided by stb_sprintf.h.
|
||||
//#define IMGUI_USE_STB_SPRINTF
|
||||
|
||||
//---- Use FreeType to build and rasterize the font atlas (instead of stb_truetype which is embedded by default in Dear ImGui)
|
||||
// Requires FreeType headers to be available in the include path. Requires program to be compiled with 'misc/freetype/imgui_freetype.cpp' (in this repository) + the FreeType library (not provided).
|
||||
// On Windows you may use vcpkg with 'vcpkg install freetype --triplet=x64-windows' + 'vcpkg integrate install'.
|
||||
//#define IMGUI_ENABLE_FREETYPE
|
||||
|
||||
//---- Use FreeType + plutosvg or lunasvg to render OpenType SVG fonts (SVGinOT)
|
||||
// Only works in combination with IMGUI_ENABLE_FREETYPE.
|
||||
// - lunasvg is currently easier to acquire/install, as e.g. it is part of vcpkg.
|
||||
// - plutosvg will support more fonts and may load them faster. It currently requires to be built manually but it is fairly easy. See misc/freetype/README for instructions.
|
||||
// - Both require headers to be available in the include path + program to be linked with the library code (not provided).
|
||||
// - (note: lunasvg implementation is based on Freetype's rsvg-port.c which is licensed under CeCILL-C Free Software License Agreement)
|
||||
//#define IMGUI_ENABLE_FREETYPE_PLUTOSVG
|
||||
//#define IMGUI_ENABLE_FREETYPE_LUNASVG
|
||||
|
||||
//---- Use stb_truetype to build and rasterize the font atlas (default)
|
||||
// The only purpose of this define is if you want force compilation of the stb_truetype backend ALONG with the FreeType backend.
|
||||
//#define IMGUI_ENABLE_STB_TRUETYPE
|
||||
|
||||
//---- Define constructor and implicit cast operators to convert back<>forth between your math types and ImVec2/ImVec4.
|
||||
// This will be inlined as part of ImVec2 and ImVec4 class declarations.
|
||||
/*
|
||||
#define IM_VEC2_CLASS_EXTRA \
|
||||
constexpr ImVec2(const MyVec2& f) : x(f.x), y(f.y) {} \
|
||||
operator MyVec2() const { return MyVec2(x,y); }
|
||||
|
||||
#define IM_VEC4_CLASS_EXTRA \
|
||||
constexpr ImVec4(const MyVec4& f) : x(f.x), y(f.y), z(f.z), w(f.w) {} \
|
||||
operator MyVec4() const { return MyVec4(x,y,z,w); }
|
||||
*/
|
||||
//---- ...Or use Dear ImGui's own very basic math operators.
|
||||
//#define IMGUI_DEFINE_MATH_OPERATORS
|
||||
|
||||
//---- Use 32-bit vertex indices (default is 16-bit) is one way to allow large meshes with more than 64K vertices.
|
||||
// Your renderer backend will need to support it (most example renderer backends support both 16/32-bit indices).
|
||||
// Another way to allow large meshes while keeping 16-bit indices is to handle ImDrawCmd::VtxOffset in your renderer.
|
||||
// Read about ImGuiBackendFlags_RendererHasVtxOffset for details.
|
||||
//#define ImDrawIdx unsigned int
|
||||
|
||||
//---- Override ImDrawCallback signature (will need to modify renderer backends accordingly)
|
||||
//struct ImDrawList;
|
||||
//struct ImDrawCmd;
|
||||
//typedef void (*MyImDrawCallback)(const ImDrawList* draw_list, const ImDrawCmd* cmd, void* my_renderer_user_data);
|
||||
//#define ImDrawCallback MyImDrawCallback
|
||||
|
||||
//---- Debug Tools: Macro to break in Debugger (we provide a default implementation of this in the codebase)
|
||||
// (use 'Metrics->Tools->Item Picker' to pick widgets with the mouse and break into them for easy debugging.)
|
||||
//#define IM_DEBUG_BREAK IM_ASSERT(0)
|
||||
//#define IM_DEBUG_BREAK __debugbreak()
|
||||
|
||||
//---- Debug Tools: Enable slower asserts
|
||||
//#define IMGUI_DEBUG_PARANOID
|
||||
|
||||
//---- Tip: You can add extra functions within the ImGui:: namespace from anywhere (e.g. your own sources/header files)
|
||||
/*
|
||||
namespace ImGui
|
||||
{
|
||||
void MyFunction(const char* name, MyMatrix44* mtx);
|
||||
}
|
||||
*/
|
16789
lib/imgui/imgui.cpp
Normal file
16789
lib/imgui/imgui.cpp
Normal file
File diff suppressed because it is too large
Load Diff
3714
lib/imgui/imgui.h
Normal file
3714
lib/imgui/imgui.h
Normal file
File diff suppressed because it is too large
Load Diff
10384
lib/imgui/imgui_demo.cpp
Normal file
10384
lib/imgui/imgui_demo.cpp
Normal file
File diff suppressed because it is too large
Load Diff
4674
lib/imgui/imgui_draw.cpp
Normal file
4674
lib/imgui/imgui_draw.cpp
Normal file
File diff suppressed because it is too large
Load Diff
925
lib/imgui/imgui_impl_glfw.cpp
Normal file
925
lib/imgui/imgui_impl_glfw.cpp
Normal file
@@ -0,0 +1,925 @@
|
||||
// dear imgui: Platform Backend for GLFW
|
||||
// This needs to be used along with a Renderer (e.g. OpenGL3, Vulkan, WebGPU..)
|
||||
// (Info: GLFW is a cross-platform general purpose library for handling windows, inputs, OpenGL/Vulkan graphics context creation, etc.)
|
||||
// (Requires: GLFW 3.1+. Prefer GLFW 3.3+ or GLFW 3.4+ for full feature support.)
|
||||
|
||||
// Implemented features:
|
||||
// [X] Platform: Clipboard support.
|
||||
// [X] Platform: Mouse support. Can discriminate Mouse/TouchScreen/Pen (Windows only).
|
||||
// [X] Platform: Keyboard support. Since 1.87 we are using the io.AddKeyEvent() function. Pass ImGuiKey values to all key functions e.g. ImGui::IsKeyPressed(ImGuiKey_Space). [Legacy GLFW_KEY_* values are obsolete since 1.87 and not supported since 1.91.5]
|
||||
// [X] Platform: Gamepad support. Enable with 'io.ConfigFlags |= ImGuiConfigFlags_NavEnableGamepad'.
|
||||
// [X] Platform: Mouse cursor shape and visibility. Disable with 'io.ConfigFlags |= ImGuiConfigFlags_NoMouseCursorChange' (note: the resizing cursors requires GLFW 3.4+).
|
||||
|
||||
// You can use unmodified imgui_impl_* files in your project. See examples/ folder for examples of using this.
|
||||
// Prefer including the entire imgui/ repository into your project (either as a copy or as a submodule), and only build the backends you need.
|
||||
// Learn about Dear ImGui:
|
||||
// - FAQ https://dearimgui.com/faq
|
||||
// - Getting Started https://dearimgui.com/getting-started
|
||||
// - Documentation https://dearimgui.com/docs (same as your local docs/ folder).
|
||||
// - Introduction, links and more at the top of imgui.cpp
|
||||
|
||||
// About Emscripten support:
|
||||
// - Emscripten provides its own GLFW (3.2.1) implementation (syntax: "-sUSE_GLFW=3"), but Joystick is broken and several features are not supported (multiple windows, clipboard, timer, etc.)
|
||||
// - A third-party Emscripten GLFW (3.4.0) implementation (syntax: "--use-port=contrib.glfw3") fixes the Joystick issue and implements all relevant features for the browser.
|
||||
// See https://github.com/pongasoft/emscripten-glfw/blob/master/docs/Comparison.md for details.
|
||||
|
||||
// CHANGELOG
|
||||
// (minor and older changes stripped away, please see git history for details)
|
||||
// 2024-08-22: moved some OS/backend related function pointers from ImGuiIO to ImGuiPlatformIO:
|
||||
// - io.GetClipboardTextFn -> platform_io.Platform_GetClipboardTextFn
|
||||
// - io.SetClipboardTextFn -> platform_io.Platform_SetClipboardTextFn
|
||||
// - io.PlatformOpenInShellFn -> platform_io.Platform_OpenInShellFn
|
||||
// 2024-07-31: Added ImGui_ImplGlfw_Sleep() helper function for usage by our examples app, since GLFW doesn't provide one.
|
||||
// 2024-07-08: *BREAKING* Renamed ImGui_ImplGlfw_InstallEmscriptenCanvasResizeCallback to ImGui_ImplGlfw_InstallEmscriptenCallbacks(), added GLFWWindow* parameter.
|
||||
// 2024-07-08: Emscripten: Added support for GLFW3 contrib port (GLFW 3.4.0 features + bug fixes): to enable, replace -sUSE_GLFW=3 with --use-port=contrib.glfw3 (requires emscripten 3.1.59+) (https://github.com/pongasoft/emscripten-glfw)
|
||||
// 2024-07-02: Emscripten: Added io.PlatformOpenInShellFn() handler for Emscripten versions.
|
||||
// 2023-12-19: Emscripten: Added ImGui_ImplGlfw_InstallEmscriptenCanvasResizeCallback() to register canvas selector and auto-resize GLFW window.
|
||||
// 2023-10-05: Inputs: Added support for extra ImGuiKey values: F13 to F24 function keys.
|
||||
// 2023-07-18: Inputs: Revert ignoring mouse data on GLFW_CURSOR_DISABLED as it can be used differently. User may set ImGuiConfigFLags_NoMouse if desired. (#5625, #6609)
|
||||
// 2023-06-12: Accept glfwGetTime() not returning a monotonically increasing value. This seems to happens on some Windows setup when peripherals disconnect, and is likely to also happen on browser + Emscripten. (#6491)
|
||||
// 2023-04-04: Inputs: Added support for io.AddMouseSourceEvent() to discriminate ImGuiMouseSource_Mouse/ImGuiMouseSource_TouchScreen/ImGuiMouseSource_Pen on Windows ONLY, using a custom WndProc hook. (#2702)
|
||||
// 2023-03-16: Inputs: Fixed key modifiers handling on secondary viewports (docking branch). Broken on 2023/01/04. (#6248, #6034)
|
||||
// 2023-03-14: Emscripten: Avoid using glfwGetError() and glfwGetGamepadState() which are not correctly implemented in Emscripten emulation. (#6240)
|
||||
// 2023-02-03: Emscripten: Registering custom low-level mouse wheel handler to get more accurate scrolling impulses on Emscripten. (#4019, #6096)
|
||||
// 2023-01-04: Inputs: Fixed mods state on Linux when using Alt-GR text input (e.g. German keyboard layout), could lead to broken text input. Revert a 2022/01/17 change were we resumed using mods provided by GLFW, turns out they were faulty.
|
||||
// 2022-11-22: Perform a dummy glfwGetError() read to cancel missing names with glfwGetKeyName(). (#5908)
|
||||
// 2022-10-18: Perform a dummy glfwGetError() read to cancel missing mouse cursors errors. Using GLFW_VERSION_COMBINED directly. (#5785)
|
||||
// 2022-10-11: Using 'nullptr' instead of 'NULL' as per our switch to C++11.
|
||||
// 2022-09-26: Inputs: Renamed ImGuiKey_ModXXX introduced in 1.87 to ImGuiMod_XXX (old names still supported).
|
||||
// 2022-09-01: Inputs: Honor GLFW_CURSOR_DISABLED by not setting mouse position *EDIT* Reverted 2023-07-18.
|
||||
// 2022-04-30: Inputs: Fixed ImGui_ImplGlfw_TranslateUntranslatedKey() for lower case letters on OSX.
|
||||
// 2022-03-23: Inputs: Fixed a regression in 1.87 which resulted in keyboard modifiers events being reported incorrectly on Linux/X11.
|
||||
// 2022-02-07: Added ImGui_ImplGlfw_InstallCallbacks()/ImGui_ImplGlfw_RestoreCallbacks() helpers to facilitate user installing callbacks after initializing backend.
|
||||
// 2022-01-26: Inputs: replaced short-lived io.AddKeyModsEvent() (added two weeks ago) with io.AddKeyEvent() using ImGuiKey_ModXXX flags. Sorry for the confusion.
|
||||
// 2021-01-20: Inputs: calling new io.AddKeyAnalogEvent() for gamepad support, instead of writing directly to io.NavInputs[].
|
||||
// 2022-01-17: Inputs: calling new io.AddMousePosEvent(), io.AddMouseButtonEvent(), io.AddMouseWheelEvent() API (1.87+).
|
||||
// 2022-01-17: Inputs: always update key mods next and before key event (not in NewFrame) to fix input queue with very low framerates.
|
||||
// 2022-01-12: *BREAKING CHANGE*: Now using glfwSetCursorPosCallback(). If you called ImGui_ImplGlfw_InitXXX() with install_callbacks = false, you MUST install glfwSetCursorPosCallback() and forward it to the backend via ImGui_ImplGlfw_CursorPosCallback().
|
||||
// 2022-01-10: Inputs: calling new io.AddKeyEvent(), io.AddKeyModsEvent() + io.SetKeyEventNativeData() API (1.87+). Support for full ImGuiKey range.
|
||||
// 2022-01-05: Inputs: Converting GLFW untranslated keycodes back to translated keycodes (in the ImGui_ImplGlfw_KeyCallback() function) in order to match the behavior of every other backend, and facilitate the use of GLFW with lettered-shortcuts API.
|
||||
// 2021-08-17: *BREAKING CHANGE*: Now using glfwSetWindowFocusCallback() to calling io.AddFocusEvent(). If you called ImGui_ImplGlfw_InitXXX() with install_callbacks = false, you MUST install glfwSetWindowFocusCallback() and forward it to the backend via ImGui_ImplGlfw_WindowFocusCallback().
|
||||
// 2021-07-29: *BREAKING CHANGE*: Now using glfwSetCursorEnterCallback(). MousePos is correctly reported when the host platform window is hovered but not focused. If you called ImGui_ImplGlfw_InitXXX() with install_callbacks = false, you MUST install glfwSetWindowFocusCallback() callback and forward it to the backend via ImGui_ImplGlfw_CursorEnterCallback().
|
||||
// 2021-06-29: Reorganized backend to pull data from a single structure to facilitate usage with multiple-contexts (all g_XXXX access changed to bd->XXXX).
|
||||
// 2020-01-17: Inputs: Disable error callback while assigning mouse cursors because some X11 setup don't have them and it generates errors.
|
||||
// 2019-12-05: Inputs: Added support for new mouse cursors added in GLFW 3.4+ (resizing cursors, not allowed cursor).
|
||||
// 2019-10-18: Misc: Previously installed user callbacks are now restored on shutdown.
|
||||
// 2019-07-21: Inputs: Added mapping for ImGuiKey_KeyPadEnter.
|
||||
// 2019-05-11: Inputs: Don't filter value from character callback before calling AddInputCharacter().
|
||||
// 2019-03-12: Misc: Preserve DisplayFramebufferScale when main window is minimized.
|
||||
// 2018-11-30: Misc: Setting up io.BackendPlatformName so it can be displayed in the About Window.
|
||||
// 2018-11-07: Inputs: When installing our GLFW callbacks, we save user's previously installed ones - if any - and chain call them.
|
||||
// 2018-08-01: Inputs: Workaround for Emscripten which doesn't seem to handle focus related calls.
|
||||
// 2018-06-29: Inputs: Added support for the ImGuiMouseCursor_Hand cursor.
|
||||
// 2018-06-08: Misc: Extracted imgui_impl_glfw.cpp/.h away from the old combined GLFW+OpenGL/Vulkan examples.
|
||||
// 2018-03-20: Misc: Setup io.BackendFlags ImGuiBackendFlags_HasMouseCursors flag + honor ImGuiConfigFlags_NoMouseCursorChange flag.
|
||||
// 2018-02-20: Inputs: Added support for mouse cursors (ImGui::GetMouseCursor() value, passed to glfwSetCursor()).
|
||||
// 2018-02-06: Misc: Removed call to ImGui::Shutdown() which is not available from 1.60 WIP, user needs to call CreateContext/DestroyContext themselves.
|
||||
// 2018-02-06: Inputs: Added mapping for ImGuiKey_Space.
|
||||
// 2018-01-25: Inputs: Added gamepad support if ImGuiConfigFlags_NavEnableGamepad is set.
|
||||
// 2018-01-25: Inputs: Honoring the io.WantSetMousePos by repositioning the mouse (when using navigation and ImGuiConfigFlags_NavMoveMouse is set).
|
||||
// 2018-01-20: Inputs: Added Horizontal Mouse Wheel support.
|
||||
// 2018-01-18: Inputs: Added mapping for ImGuiKey_Insert.
|
||||
// 2017-08-25: Inputs: MousePos set to -FLT_MAX,-FLT_MAX when mouse is unavailable/missing (instead of -1,-1).
|
||||
// 2016-10-15: Misc: Added a void* user_data parameter to Clipboard function handlers.
|
||||
|
||||
#include "imgui.h"
|
||||
#ifndef IMGUI_DISABLE
|
||||
#include "imgui_impl_glfw.h"
|
||||
|
||||
// Clang warnings with -Weverything
|
||||
#if defined(__clang__)
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wold-style-cast" // warning: use of old-style cast
|
||||
#pragma clang diagnostic ignored "-Wsign-conversion" // warning: implicit conversion changes signedness
|
||||
#endif
|
||||
|
||||
// GLFW
|
||||
#include <GLFW/glfw3.h>
|
||||
|
||||
#ifdef _WIN32
|
||||
#undef APIENTRY
|
||||
#ifndef GLFW_EXPOSE_NATIVE_WIN32
|
||||
#define GLFW_EXPOSE_NATIVE_WIN32
|
||||
#endif
|
||||
#include <GLFW/glfw3native.h> // for glfwGetWin32Window()
|
||||
#endif
|
||||
#ifdef __APPLE__
|
||||
#ifndef GLFW_EXPOSE_NATIVE_COCOA
|
||||
#define GLFW_EXPOSE_NATIVE_COCOA
|
||||
#endif
|
||||
#include <GLFW/glfw3native.h> // for glfwGetCocoaWindow()
|
||||
#endif
|
||||
#ifndef _WIN32
|
||||
#include <unistd.h> // for usleep()
|
||||
#endif
|
||||
|
||||
#ifdef __EMSCRIPTEN__
|
||||
#include <emscripten.h>
|
||||
#include <emscripten/html5.h>
|
||||
#ifdef EMSCRIPTEN_USE_PORT_CONTRIB_GLFW3
|
||||
#include <GLFW/emscripten_glfw3.h>
|
||||
#else
|
||||
#define EMSCRIPTEN_USE_EMBEDDED_GLFW3
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// We gather version tests as define in order to easily see which features are version-dependent.
|
||||
#define GLFW_VERSION_COMBINED (GLFW_VERSION_MAJOR * 1000 + GLFW_VERSION_MINOR * 100 + GLFW_VERSION_REVISION)
|
||||
#ifdef GLFW_RESIZE_NESW_CURSOR // Let's be nice to people who pulled GLFW between 2019-04-16 (3.4 define) and 2019-11-29 (cursors defines) // FIXME: Remove when GLFW 3.4 is released?
|
||||
#define GLFW_HAS_NEW_CURSORS (GLFW_VERSION_COMBINED >= 3400) // 3.4+ GLFW_RESIZE_ALL_CURSOR, GLFW_RESIZE_NESW_CURSOR, GLFW_RESIZE_NWSE_CURSOR, GLFW_NOT_ALLOWED_CURSOR
|
||||
#else
|
||||
#define GLFW_HAS_NEW_CURSORS (0)
|
||||
#endif
|
||||
#define GLFW_HAS_GAMEPAD_API (GLFW_VERSION_COMBINED >= 3300) // 3.3+ glfwGetGamepadState() new api
|
||||
#define GLFW_HAS_GETKEYNAME (GLFW_VERSION_COMBINED >= 3200) // 3.2+ glfwGetKeyName()
|
||||
#define GLFW_HAS_GETERROR (GLFW_VERSION_COMBINED >= 3300) // 3.3+ glfwGetError()
|
||||
|
||||
// GLFW data
|
||||
enum GlfwClientApi
|
||||
{
|
||||
GlfwClientApi_Unknown,
|
||||
GlfwClientApi_OpenGL,
|
||||
GlfwClientApi_Vulkan,
|
||||
};
|
||||
|
||||
struct ImGui_ImplGlfw_Data
|
||||
{
|
||||
GLFWwindow* Window;
|
||||
GlfwClientApi ClientApi;
|
||||
double Time;
|
||||
GLFWwindow* MouseWindow;
|
||||
GLFWcursor* MouseCursors[ImGuiMouseCursor_COUNT];
|
||||
ImVec2 LastValidMousePos;
|
||||
bool InstalledCallbacks;
|
||||
bool CallbacksChainForAllWindows;
|
||||
#ifdef EMSCRIPTEN_USE_EMBEDDED_GLFW3
|
||||
const char* CanvasSelector;
|
||||
#endif
|
||||
|
||||
// Chain GLFW callbacks: our callbacks will call the user's previously installed callbacks, if any.
|
||||
GLFWwindowfocusfun PrevUserCallbackWindowFocus;
|
||||
GLFWcursorposfun PrevUserCallbackCursorPos;
|
||||
GLFWcursorenterfun PrevUserCallbackCursorEnter;
|
||||
GLFWmousebuttonfun PrevUserCallbackMousebutton;
|
||||
GLFWscrollfun PrevUserCallbackScroll;
|
||||
GLFWkeyfun PrevUserCallbackKey;
|
||||
GLFWcharfun PrevUserCallbackChar;
|
||||
GLFWmonitorfun PrevUserCallbackMonitor;
|
||||
#ifdef _WIN32
|
||||
WNDPROC PrevWndProc;
|
||||
#endif
|
||||
|
||||
ImGui_ImplGlfw_Data() { memset((void*)this, 0, sizeof(*this)); }
|
||||
};
|
||||
|
||||
// Backend data stored in io.BackendPlatformUserData to allow support for multiple Dear ImGui contexts
|
||||
// It is STRONGLY preferred that you use docking branch with multi-viewports (== single Dear ImGui context + multiple windows) instead of multiple Dear ImGui contexts.
|
||||
// FIXME: multi-context support is not well tested and probably dysfunctional in this backend.
|
||||
// - Because glfwPollEvents() process all windows and some events may be called outside of it, you will need to register your own callbacks
|
||||
// (passing install_callbacks=false in ImGui_ImplGlfw_InitXXX functions), set the current dear imgui context and then call our callbacks.
|
||||
// - Otherwise we may need to store a GLFWWindow* -> ImGuiContext* map and handle this in the backend, adding a little bit of extra complexity to it.
|
||||
// FIXME: some shared resources (mouse cursor shape, gamepad) are mishandled when using multi-context.
|
||||
static ImGui_ImplGlfw_Data* ImGui_ImplGlfw_GetBackendData()
|
||||
{
|
||||
return ImGui::GetCurrentContext() ? (ImGui_ImplGlfw_Data*)ImGui::GetIO().BackendPlatformUserData : nullptr;
|
||||
}
|
||||
|
||||
// Functions
|
||||
|
||||
// Not static to allow third-party code to use that if they want to (but undocumented)
|
||||
ImGuiKey ImGui_ImplGlfw_KeyToImGuiKey(int keycode, int scancode);
|
||||
ImGuiKey ImGui_ImplGlfw_KeyToImGuiKey(int keycode, int scancode)
|
||||
{
|
||||
IM_UNUSED(scancode);
|
||||
switch (keycode)
|
||||
{
|
||||
case GLFW_KEY_TAB: return ImGuiKey_Tab;
|
||||
case GLFW_KEY_LEFT: return ImGuiKey_LeftArrow;
|
||||
case GLFW_KEY_RIGHT: return ImGuiKey_RightArrow;
|
||||
case GLFW_KEY_UP: return ImGuiKey_UpArrow;
|
||||
case GLFW_KEY_DOWN: return ImGuiKey_DownArrow;
|
||||
case GLFW_KEY_PAGE_UP: return ImGuiKey_PageUp;
|
||||
case GLFW_KEY_PAGE_DOWN: return ImGuiKey_PageDown;
|
||||
case GLFW_KEY_HOME: return ImGuiKey_Home;
|
||||
case GLFW_KEY_END: return ImGuiKey_End;
|
||||
case GLFW_KEY_INSERT: return ImGuiKey_Insert;
|
||||
case GLFW_KEY_DELETE: return ImGuiKey_Delete;
|
||||
case GLFW_KEY_BACKSPACE: return ImGuiKey_Backspace;
|
||||
case GLFW_KEY_SPACE: return ImGuiKey_Space;
|
||||
case GLFW_KEY_ENTER: return ImGuiKey_Enter;
|
||||
case GLFW_KEY_ESCAPE: return ImGuiKey_Escape;
|
||||
case GLFW_KEY_APOSTROPHE: return ImGuiKey_Apostrophe;
|
||||
case GLFW_KEY_COMMA: return ImGuiKey_Comma;
|
||||
case GLFW_KEY_MINUS: return ImGuiKey_Minus;
|
||||
case GLFW_KEY_PERIOD: return ImGuiKey_Period;
|
||||
case GLFW_KEY_SLASH: return ImGuiKey_Slash;
|
||||
case GLFW_KEY_SEMICOLON: return ImGuiKey_Semicolon;
|
||||
case GLFW_KEY_EQUAL: return ImGuiKey_Equal;
|
||||
case GLFW_KEY_LEFT_BRACKET: return ImGuiKey_LeftBracket;
|
||||
case GLFW_KEY_BACKSLASH: return ImGuiKey_Backslash;
|
||||
case GLFW_KEY_RIGHT_BRACKET: return ImGuiKey_RightBracket;
|
||||
case GLFW_KEY_GRAVE_ACCENT: return ImGuiKey_GraveAccent;
|
||||
case GLFW_KEY_CAPS_LOCK: return ImGuiKey_CapsLock;
|
||||
case GLFW_KEY_SCROLL_LOCK: return ImGuiKey_ScrollLock;
|
||||
case GLFW_KEY_NUM_LOCK: return ImGuiKey_NumLock;
|
||||
case GLFW_KEY_PRINT_SCREEN: return ImGuiKey_PrintScreen;
|
||||
case GLFW_KEY_PAUSE: return ImGuiKey_Pause;
|
||||
case GLFW_KEY_KP_0: return ImGuiKey_Keypad0;
|
||||
case GLFW_KEY_KP_1: return ImGuiKey_Keypad1;
|
||||
case GLFW_KEY_KP_2: return ImGuiKey_Keypad2;
|
||||
case GLFW_KEY_KP_3: return ImGuiKey_Keypad3;
|
||||
case GLFW_KEY_KP_4: return ImGuiKey_Keypad4;
|
||||
case GLFW_KEY_KP_5: return ImGuiKey_Keypad5;
|
||||
case GLFW_KEY_KP_6: return ImGuiKey_Keypad6;
|
||||
case GLFW_KEY_KP_7: return ImGuiKey_Keypad7;
|
||||
case GLFW_KEY_KP_8: return ImGuiKey_Keypad8;
|
||||
case GLFW_KEY_KP_9: return ImGuiKey_Keypad9;
|
||||
case GLFW_KEY_KP_DECIMAL: return ImGuiKey_KeypadDecimal;
|
||||
case GLFW_KEY_KP_DIVIDE: return ImGuiKey_KeypadDivide;
|
||||
case GLFW_KEY_KP_MULTIPLY: return ImGuiKey_KeypadMultiply;
|
||||
case GLFW_KEY_KP_SUBTRACT: return ImGuiKey_KeypadSubtract;
|
||||
case GLFW_KEY_KP_ADD: return ImGuiKey_KeypadAdd;
|
||||
case GLFW_KEY_KP_ENTER: return ImGuiKey_KeypadEnter;
|
||||
case GLFW_KEY_KP_EQUAL: return ImGuiKey_KeypadEqual;
|
||||
case GLFW_KEY_LEFT_SHIFT: return ImGuiKey_LeftShift;
|
||||
case GLFW_KEY_LEFT_CONTROL: return ImGuiKey_LeftCtrl;
|
||||
case GLFW_KEY_LEFT_ALT: return ImGuiKey_LeftAlt;
|
||||
case GLFW_KEY_LEFT_SUPER: return ImGuiKey_LeftSuper;
|
||||
case GLFW_KEY_RIGHT_SHIFT: return ImGuiKey_RightShift;
|
||||
case GLFW_KEY_RIGHT_CONTROL: return ImGuiKey_RightCtrl;
|
||||
case GLFW_KEY_RIGHT_ALT: return ImGuiKey_RightAlt;
|
||||
case GLFW_KEY_RIGHT_SUPER: return ImGuiKey_RightSuper;
|
||||
case GLFW_KEY_MENU: return ImGuiKey_Menu;
|
||||
case GLFW_KEY_0: return ImGuiKey_0;
|
||||
case GLFW_KEY_1: return ImGuiKey_1;
|
||||
case GLFW_KEY_2: return ImGuiKey_2;
|
||||
case GLFW_KEY_3: return ImGuiKey_3;
|
||||
case GLFW_KEY_4: return ImGuiKey_4;
|
||||
case GLFW_KEY_5: return ImGuiKey_5;
|
||||
case GLFW_KEY_6: return ImGuiKey_6;
|
||||
case GLFW_KEY_7: return ImGuiKey_7;
|
||||
case GLFW_KEY_8: return ImGuiKey_8;
|
||||
case GLFW_KEY_9: return ImGuiKey_9;
|
||||
case GLFW_KEY_A: return ImGuiKey_A;
|
||||
case GLFW_KEY_B: return ImGuiKey_B;
|
||||
case GLFW_KEY_C: return ImGuiKey_C;
|
||||
case GLFW_KEY_D: return ImGuiKey_D;
|
||||
case GLFW_KEY_E: return ImGuiKey_E;
|
||||
case GLFW_KEY_F: return ImGuiKey_F;
|
||||
case GLFW_KEY_G: return ImGuiKey_G;
|
||||
case GLFW_KEY_H: return ImGuiKey_H;
|
||||
case GLFW_KEY_I: return ImGuiKey_I;
|
||||
case GLFW_KEY_J: return ImGuiKey_J;
|
||||
case GLFW_KEY_K: return ImGuiKey_K;
|
||||
case GLFW_KEY_L: return ImGuiKey_L;
|
||||
case GLFW_KEY_M: return ImGuiKey_M;
|
||||
case GLFW_KEY_N: return ImGuiKey_N;
|
||||
case GLFW_KEY_O: return ImGuiKey_O;
|
||||
case GLFW_KEY_P: return ImGuiKey_P;
|
||||
case GLFW_KEY_Q: return ImGuiKey_Q;
|
||||
case GLFW_KEY_R: return ImGuiKey_R;
|
||||
case GLFW_KEY_S: return ImGuiKey_S;
|
||||
case GLFW_KEY_T: return ImGuiKey_T;
|
||||
case GLFW_KEY_U: return ImGuiKey_U;
|
||||
case GLFW_KEY_V: return ImGuiKey_V;
|
||||
case GLFW_KEY_W: return ImGuiKey_W;
|
||||
case GLFW_KEY_X: return ImGuiKey_X;
|
||||
case GLFW_KEY_Y: return ImGuiKey_Y;
|
||||
case GLFW_KEY_Z: return ImGuiKey_Z;
|
||||
case GLFW_KEY_F1: return ImGuiKey_F1;
|
||||
case GLFW_KEY_F2: return ImGuiKey_F2;
|
||||
case GLFW_KEY_F3: return ImGuiKey_F3;
|
||||
case GLFW_KEY_F4: return ImGuiKey_F4;
|
||||
case GLFW_KEY_F5: return ImGuiKey_F5;
|
||||
case GLFW_KEY_F6: return ImGuiKey_F6;
|
||||
case GLFW_KEY_F7: return ImGuiKey_F7;
|
||||
case GLFW_KEY_F8: return ImGuiKey_F8;
|
||||
case GLFW_KEY_F9: return ImGuiKey_F9;
|
||||
case GLFW_KEY_F10: return ImGuiKey_F10;
|
||||
case GLFW_KEY_F11: return ImGuiKey_F11;
|
||||
case GLFW_KEY_F12: return ImGuiKey_F12;
|
||||
case GLFW_KEY_F13: return ImGuiKey_F13;
|
||||
case GLFW_KEY_F14: return ImGuiKey_F14;
|
||||
case GLFW_KEY_F15: return ImGuiKey_F15;
|
||||
case GLFW_KEY_F16: return ImGuiKey_F16;
|
||||
case GLFW_KEY_F17: return ImGuiKey_F17;
|
||||
case GLFW_KEY_F18: return ImGuiKey_F18;
|
||||
case GLFW_KEY_F19: return ImGuiKey_F19;
|
||||
case GLFW_KEY_F20: return ImGuiKey_F20;
|
||||
case GLFW_KEY_F21: return ImGuiKey_F21;
|
||||
case GLFW_KEY_F22: return ImGuiKey_F22;
|
||||
case GLFW_KEY_F23: return ImGuiKey_F23;
|
||||
case GLFW_KEY_F24: return ImGuiKey_F24;
|
||||
default: return ImGuiKey_None;
|
||||
}
|
||||
}
|
||||
|
||||
// X11 does not include current pressed/released modifier key in 'mods' flags submitted by GLFW
|
||||
// See https://github.com/ocornut/imgui/issues/6034 and https://github.com/glfw/glfw/issues/1630
|
||||
static void ImGui_ImplGlfw_UpdateKeyModifiers(GLFWwindow* window)
|
||||
{
|
||||
ImGuiIO& io = ImGui::GetIO();
|
||||
io.AddKeyEvent(ImGuiMod_Ctrl, (glfwGetKey(window, GLFW_KEY_LEFT_CONTROL) == GLFW_PRESS) || (glfwGetKey(window, GLFW_KEY_RIGHT_CONTROL) == GLFW_PRESS));
|
||||
io.AddKeyEvent(ImGuiMod_Shift, (glfwGetKey(window, GLFW_KEY_LEFT_SHIFT) == GLFW_PRESS) || (glfwGetKey(window, GLFW_KEY_RIGHT_SHIFT) == GLFW_PRESS));
|
||||
io.AddKeyEvent(ImGuiMod_Alt, (glfwGetKey(window, GLFW_KEY_LEFT_ALT) == GLFW_PRESS) || (glfwGetKey(window, GLFW_KEY_RIGHT_ALT) == GLFW_PRESS));
|
||||
io.AddKeyEvent(ImGuiMod_Super, (glfwGetKey(window, GLFW_KEY_LEFT_SUPER) == GLFW_PRESS) || (glfwGetKey(window, GLFW_KEY_RIGHT_SUPER) == GLFW_PRESS));
|
||||
}
|
||||
|
||||
static bool ImGui_ImplGlfw_ShouldChainCallback(GLFWwindow* window)
|
||||
{
|
||||
ImGui_ImplGlfw_Data* bd = ImGui_ImplGlfw_GetBackendData();
|
||||
return bd->CallbacksChainForAllWindows ? true : (window == bd->Window);
|
||||
}
|
||||
|
||||
void ImGui_ImplGlfw_MouseButtonCallback(GLFWwindow* window, int button, int action, int mods)
|
||||
{
|
||||
ImGui_ImplGlfw_Data* bd = ImGui_ImplGlfw_GetBackendData();
|
||||
if (bd->PrevUserCallbackMousebutton != nullptr && ImGui_ImplGlfw_ShouldChainCallback(window))
|
||||
bd->PrevUserCallbackMousebutton(window, button, action, mods);
|
||||
|
||||
ImGui_ImplGlfw_UpdateKeyModifiers(window);
|
||||
|
||||
ImGuiIO& io = ImGui::GetIO();
|
||||
if (button >= 0 && button < ImGuiMouseButton_COUNT)
|
||||
io.AddMouseButtonEvent(button, action == GLFW_PRESS);
|
||||
}
|
||||
|
||||
void ImGui_ImplGlfw_ScrollCallback(GLFWwindow* window, double xoffset, double yoffset)
|
||||
{
|
||||
ImGui_ImplGlfw_Data* bd = ImGui_ImplGlfw_GetBackendData();
|
||||
if (bd->PrevUserCallbackScroll != nullptr && ImGui_ImplGlfw_ShouldChainCallback(window))
|
||||
bd->PrevUserCallbackScroll(window, xoffset, yoffset);
|
||||
|
||||
#ifdef EMSCRIPTEN_USE_EMBEDDED_GLFW3
|
||||
// Ignore GLFW events: will be processed in ImGui_ImplEmscripten_WheelCallback().
|
||||
return;
|
||||
#endif
|
||||
|
||||
ImGuiIO& io = ImGui::GetIO();
|
||||
io.AddMouseWheelEvent((float)xoffset, (float)yoffset);
|
||||
}
|
||||
|
||||
// FIXME: should this be baked into ImGui_ImplGlfw_KeyToImGuiKey()? then what about the values passed to io.SetKeyEventNativeData()?
|
||||
static int ImGui_ImplGlfw_TranslateUntranslatedKey(int key, int scancode)
|
||||
{
|
||||
#if GLFW_HAS_GETKEYNAME && !defined(EMSCRIPTEN_USE_EMBEDDED_GLFW3)
|
||||
// GLFW 3.1+ attempts to "untranslate" keys, which goes the opposite of what every other framework does, making using lettered shortcuts difficult.
|
||||
// (It had reasons to do so: namely GLFW is/was more likely to be used for WASD-type game controls rather than lettered shortcuts, but IHMO the 3.1 change could have been done differently)
|
||||
// See https://github.com/glfw/glfw/issues/1502 for details.
|
||||
// Adding a workaround to undo this (so our keys are translated->untranslated->translated, likely a lossy process).
|
||||
// This won't cover edge cases but this is at least going to cover common cases.
|
||||
if (key >= GLFW_KEY_KP_0 && key <= GLFW_KEY_KP_EQUAL)
|
||||
return key;
|
||||
GLFWerrorfun prev_error_callback = glfwSetErrorCallback(nullptr);
|
||||
const char* key_name = glfwGetKeyName(key, scancode);
|
||||
glfwSetErrorCallback(prev_error_callback);
|
||||
#if GLFW_HAS_GETERROR && !defined(EMSCRIPTEN_USE_EMBEDDED_GLFW3) // Eat errors (see #5908)
|
||||
(void)glfwGetError(nullptr);
|
||||
#endif
|
||||
if (key_name && key_name[0] != 0 && key_name[1] == 0)
|
||||
{
|
||||
const char char_names[] = "`-=[]\\,;\'./";
|
||||
const int char_keys[] = { GLFW_KEY_GRAVE_ACCENT, GLFW_KEY_MINUS, GLFW_KEY_EQUAL, GLFW_KEY_LEFT_BRACKET, GLFW_KEY_RIGHT_BRACKET, GLFW_KEY_BACKSLASH, GLFW_KEY_COMMA, GLFW_KEY_SEMICOLON, GLFW_KEY_APOSTROPHE, GLFW_KEY_PERIOD, GLFW_KEY_SLASH, 0 };
|
||||
IM_ASSERT(IM_ARRAYSIZE(char_names) == IM_ARRAYSIZE(char_keys));
|
||||
if (key_name[0] >= '0' && key_name[0] <= '9') { key = GLFW_KEY_0 + (key_name[0] - '0'); }
|
||||
else if (key_name[0] >= 'A' && key_name[0] <= 'Z') { key = GLFW_KEY_A + (key_name[0] - 'A'); }
|
||||
else if (key_name[0] >= 'a' && key_name[0] <= 'z') { key = GLFW_KEY_A + (key_name[0] - 'a'); }
|
||||
else if (const char* p = strchr(char_names, key_name[0])) { key = char_keys[p - char_names]; }
|
||||
}
|
||||
// if (action == GLFW_PRESS) printf("key %d scancode %d name '%s'\n", key, scancode, key_name);
|
||||
#else
|
||||
IM_UNUSED(scancode);
|
||||
#endif
|
||||
return key;
|
||||
}
|
||||
|
||||
void ImGui_ImplGlfw_KeyCallback(GLFWwindow* window, int keycode, int scancode, int action, int mods)
|
||||
{
|
||||
ImGui_ImplGlfw_Data* bd = ImGui_ImplGlfw_GetBackendData();
|
||||
if (bd->PrevUserCallbackKey != nullptr && ImGui_ImplGlfw_ShouldChainCallback(window))
|
||||
bd->PrevUserCallbackKey(window, keycode, scancode, action, mods);
|
||||
|
||||
if (action != GLFW_PRESS && action != GLFW_RELEASE)
|
||||
return;
|
||||
|
||||
ImGui_ImplGlfw_UpdateKeyModifiers(window);
|
||||
|
||||
keycode = ImGui_ImplGlfw_TranslateUntranslatedKey(keycode, scancode);
|
||||
|
||||
ImGuiIO& io = ImGui::GetIO();
|
||||
ImGuiKey imgui_key = ImGui_ImplGlfw_KeyToImGuiKey(keycode, scancode);
|
||||
io.AddKeyEvent(imgui_key, (action == GLFW_PRESS));
|
||||
io.SetKeyEventNativeData(imgui_key, keycode, scancode); // To support legacy indexing (<1.87 user code)
|
||||
}
|
||||
|
||||
void ImGui_ImplGlfw_WindowFocusCallback(GLFWwindow* window, int focused)
|
||||
{
|
||||
ImGui_ImplGlfw_Data* bd = ImGui_ImplGlfw_GetBackendData();
|
||||
if (bd->PrevUserCallbackWindowFocus != nullptr && ImGui_ImplGlfw_ShouldChainCallback(window))
|
||||
bd->PrevUserCallbackWindowFocus(window, focused);
|
||||
|
||||
ImGuiIO& io = ImGui::GetIO();
|
||||
io.AddFocusEvent(focused != 0);
|
||||
}
|
||||
|
||||
void ImGui_ImplGlfw_CursorPosCallback(GLFWwindow* window, double x, double y)
|
||||
{
|
||||
ImGui_ImplGlfw_Data* bd = ImGui_ImplGlfw_GetBackendData();
|
||||
if (bd->PrevUserCallbackCursorPos != nullptr && ImGui_ImplGlfw_ShouldChainCallback(window))
|
||||
bd->PrevUserCallbackCursorPos(window, x, y);
|
||||
|
||||
ImGuiIO& io = ImGui::GetIO();
|
||||
io.AddMousePosEvent((float)x, (float)y);
|
||||
bd->LastValidMousePos = ImVec2((float)x, (float)y);
|
||||
}
|
||||
|
||||
// Workaround: X11 seems to send spurious Leave/Enter events which would make us lose our position,
|
||||
// so we back it up and restore on Leave/Enter (see https://github.com/ocornut/imgui/issues/4984)
|
||||
void ImGui_ImplGlfw_CursorEnterCallback(GLFWwindow* window, int entered)
|
||||
{
|
||||
ImGui_ImplGlfw_Data* bd = ImGui_ImplGlfw_GetBackendData();
|
||||
if (bd->PrevUserCallbackCursorEnter != nullptr && ImGui_ImplGlfw_ShouldChainCallback(window))
|
||||
bd->PrevUserCallbackCursorEnter(window, entered);
|
||||
|
||||
ImGuiIO& io = ImGui::GetIO();
|
||||
if (entered)
|
||||
{
|
||||
bd->MouseWindow = window;
|
||||
io.AddMousePosEvent(bd->LastValidMousePos.x, bd->LastValidMousePos.y);
|
||||
}
|
||||
else if (!entered && bd->MouseWindow == window)
|
||||
{
|
||||
bd->LastValidMousePos = io.MousePos;
|
||||
bd->MouseWindow = nullptr;
|
||||
io.AddMousePosEvent(-FLT_MAX, -FLT_MAX);
|
||||
}
|
||||
}
|
||||
|
||||
void ImGui_ImplGlfw_CharCallback(GLFWwindow* window, unsigned int c)
|
||||
{
|
||||
ImGui_ImplGlfw_Data* bd = ImGui_ImplGlfw_GetBackendData();
|
||||
if (bd->PrevUserCallbackChar != nullptr && ImGui_ImplGlfw_ShouldChainCallback(window))
|
||||
bd->PrevUserCallbackChar(window, c);
|
||||
|
||||
ImGuiIO& io = ImGui::GetIO();
|
||||
io.AddInputCharacter(c);
|
||||
}
|
||||
|
||||
void ImGui_ImplGlfw_MonitorCallback(GLFWmonitor*, int)
|
||||
{
|
||||
// Unused in 'master' branch but 'docking' branch will use this, so we declare it ahead of it so if you have to install callbacks you can install this one too.
|
||||
}
|
||||
|
||||
#ifdef EMSCRIPTEN_USE_EMBEDDED_GLFW3
|
||||
static EM_BOOL ImGui_ImplEmscripten_WheelCallback(int, const EmscriptenWheelEvent* ev, void*)
|
||||
{
|
||||
// Mimic Emscripten_HandleWheel() in SDL.
|
||||
// Corresponding equivalent in GLFW JS emulation layer has incorrect quantizing preventing small values. See #6096
|
||||
float multiplier = 0.0f;
|
||||
if (ev->deltaMode == DOM_DELTA_PIXEL) { multiplier = 1.0f / 100.0f; } // 100 pixels make up a step.
|
||||
else if (ev->deltaMode == DOM_DELTA_LINE) { multiplier = 1.0f / 3.0f; } // 3 lines make up a step.
|
||||
else if (ev->deltaMode == DOM_DELTA_PAGE) { multiplier = 80.0f; } // A page makes up 80 steps.
|
||||
float wheel_x = ev->deltaX * -multiplier;
|
||||
float wheel_y = ev->deltaY * -multiplier;
|
||||
ImGuiIO& io = ImGui::GetIO();
|
||||
io.AddMouseWheelEvent(wheel_x, wheel_y);
|
||||
//IMGUI_DEBUG_LOG("[Emsc] mode %d dx: %.2f, dy: %.2f, dz: %.2f --> feed %.2f %.2f\n", (int)ev->deltaMode, ev->deltaX, ev->deltaY, ev->deltaZ, wheel_x, wheel_y);
|
||||
return EM_TRUE;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef _WIN32
|
||||
// GLFW doesn't allow to distinguish Mouse vs TouchScreen vs Pen.
|
||||
// Add support for Win32 (based on imgui_impl_win32), because we rely on _TouchScreen info to trickle inputs differently.
|
||||
static ImGuiMouseSource GetMouseSourceFromMessageExtraInfo()
|
||||
{
|
||||
LPARAM extra_info = ::GetMessageExtraInfo();
|
||||
if ((extra_info & 0xFFFFFF80) == 0xFF515700)
|
||||
return ImGuiMouseSource_Pen;
|
||||
if ((extra_info & 0xFFFFFF80) == 0xFF515780)
|
||||
return ImGuiMouseSource_TouchScreen;
|
||||
return ImGuiMouseSource_Mouse;
|
||||
}
|
||||
static LRESULT CALLBACK ImGui_ImplGlfw_WndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)
|
||||
{
|
||||
ImGui_ImplGlfw_Data* bd = ImGui_ImplGlfw_GetBackendData();
|
||||
switch (msg)
|
||||
{
|
||||
case WM_MOUSEMOVE: case WM_NCMOUSEMOVE:
|
||||
case WM_LBUTTONDOWN: case WM_LBUTTONDBLCLK: case WM_LBUTTONUP:
|
||||
case WM_RBUTTONDOWN: case WM_RBUTTONDBLCLK: case WM_RBUTTONUP:
|
||||
case WM_MBUTTONDOWN: case WM_MBUTTONDBLCLK: case WM_MBUTTONUP:
|
||||
case WM_XBUTTONDOWN: case WM_XBUTTONDBLCLK: case WM_XBUTTONUP:
|
||||
ImGui::GetIO().AddMouseSourceEvent(GetMouseSourceFromMessageExtraInfo());
|
||||
break;
|
||||
}
|
||||
return ::CallWindowProcW(bd->PrevWndProc, hWnd, msg, wParam, lParam);
|
||||
}
|
||||
#endif
|
||||
|
||||
void ImGui_ImplGlfw_InstallCallbacks(GLFWwindow* window)
|
||||
{
|
||||
ImGui_ImplGlfw_Data* bd = ImGui_ImplGlfw_GetBackendData();
|
||||
IM_ASSERT(bd->InstalledCallbacks == false && "Callbacks already installed!");
|
||||
IM_ASSERT(bd->Window == window);
|
||||
|
||||
bd->PrevUserCallbackWindowFocus = glfwSetWindowFocusCallback(window, ImGui_ImplGlfw_WindowFocusCallback);
|
||||
bd->PrevUserCallbackCursorEnter = glfwSetCursorEnterCallback(window, ImGui_ImplGlfw_CursorEnterCallback);
|
||||
bd->PrevUserCallbackCursorPos = glfwSetCursorPosCallback(window, ImGui_ImplGlfw_CursorPosCallback);
|
||||
bd->PrevUserCallbackMousebutton = glfwSetMouseButtonCallback(window, ImGui_ImplGlfw_MouseButtonCallback);
|
||||
bd->PrevUserCallbackScroll = glfwSetScrollCallback(window, ImGui_ImplGlfw_ScrollCallback);
|
||||
bd->PrevUserCallbackKey = glfwSetKeyCallback(window, ImGui_ImplGlfw_KeyCallback);
|
||||
bd->PrevUserCallbackChar = glfwSetCharCallback(window, ImGui_ImplGlfw_CharCallback);
|
||||
bd->PrevUserCallbackMonitor = glfwSetMonitorCallback(ImGui_ImplGlfw_MonitorCallback);
|
||||
bd->InstalledCallbacks = true;
|
||||
}
|
||||
|
||||
void ImGui_ImplGlfw_RestoreCallbacks(GLFWwindow* window)
|
||||
{
|
||||
ImGui_ImplGlfw_Data* bd = ImGui_ImplGlfw_GetBackendData();
|
||||
IM_ASSERT(bd->InstalledCallbacks == true && "Callbacks not installed!");
|
||||
IM_ASSERT(bd->Window == window);
|
||||
|
||||
glfwSetWindowFocusCallback(window, bd->PrevUserCallbackWindowFocus);
|
||||
glfwSetCursorEnterCallback(window, bd->PrevUserCallbackCursorEnter);
|
||||
glfwSetCursorPosCallback(window, bd->PrevUserCallbackCursorPos);
|
||||
glfwSetMouseButtonCallback(window, bd->PrevUserCallbackMousebutton);
|
||||
glfwSetScrollCallback(window, bd->PrevUserCallbackScroll);
|
||||
glfwSetKeyCallback(window, bd->PrevUserCallbackKey);
|
||||
glfwSetCharCallback(window, bd->PrevUserCallbackChar);
|
||||
glfwSetMonitorCallback(bd->PrevUserCallbackMonitor);
|
||||
bd->InstalledCallbacks = false;
|
||||
bd->PrevUserCallbackWindowFocus = nullptr;
|
||||
bd->PrevUserCallbackCursorEnter = nullptr;
|
||||
bd->PrevUserCallbackCursorPos = nullptr;
|
||||
bd->PrevUserCallbackMousebutton = nullptr;
|
||||
bd->PrevUserCallbackScroll = nullptr;
|
||||
bd->PrevUserCallbackKey = nullptr;
|
||||
bd->PrevUserCallbackChar = nullptr;
|
||||
bd->PrevUserCallbackMonitor = nullptr;
|
||||
}
|
||||
|
||||
// Set to 'true' to enable chaining installed callbacks for all windows (including secondary viewports created by backends or by user.
|
||||
// This is 'false' by default meaning we only chain callbacks for the main viewport.
|
||||
// We cannot set this to 'true' by default because user callbacks code may be not testing the 'window' parameter of their callback.
|
||||
// If you set this to 'true' your user callback code will need to make sure you are testing the 'window' parameter.
|
||||
void ImGui_ImplGlfw_SetCallbacksChainForAllWindows(bool chain_for_all_windows)
|
||||
{
|
||||
ImGui_ImplGlfw_Data* bd = ImGui_ImplGlfw_GetBackendData();
|
||||
bd->CallbacksChainForAllWindows = chain_for_all_windows;
|
||||
}
|
||||
|
||||
#ifdef __EMSCRIPTEN__
|
||||
#if EMSCRIPTEN_USE_PORT_CONTRIB_GLFW3 >= 34020240817
|
||||
void ImGui_ImplGlfw_EmscriptenOpenURL(const char* url) { if (url) emscripten::glfw3::OpenURL(url); }
|
||||
#else
|
||||
EM_JS(void, ImGui_ImplGlfw_EmscriptenOpenURL, (const char* url), { url = url ? UTF8ToString(url) : null; if (url) window.open(url, '_blank'); });
|
||||
#endif
|
||||
#endif
|
||||
|
||||
static bool ImGui_ImplGlfw_Init(GLFWwindow* window, bool install_callbacks, GlfwClientApi client_api)
|
||||
{
|
||||
ImGuiIO& io = ImGui::GetIO();
|
||||
IMGUI_CHECKVERSION();
|
||||
IM_ASSERT(io.BackendPlatformUserData == nullptr && "Already initialized a platform backend!");
|
||||
//printf("GLFW_VERSION: %d.%d.%d (%d)", GLFW_VERSION_MAJOR, GLFW_VERSION_MINOR, GLFW_VERSION_REVISION, GLFW_VERSION_COMBINED);
|
||||
|
||||
// Setup backend capabilities flags
|
||||
ImGui_ImplGlfw_Data* bd = IM_NEW(ImGui_ImplGlfw_Data)();
|
||||
io.BackendPlatformUserData = (void*)bd;
|
||||
io.BackendPlatformName = "imgui_impl_glfw";
|
||||
io.BackendFlags |= ImGuiBackendFlags_HasMouseCursors; // We can honor GetMouseCursor() values (optional)
|
||||
io.BackendFlags |= ImGuiBackendFlags_HasSetMousePos; // We can honor io.WantSetMousePos requests (optional, rarely used)
|
||||
|
||||
bd->Window = window;
|
||||
bd->Time = 0.0;
|
||||
|
||||
ImGuiPlatformIO& platform_io = ImGui::GetPlatformIO();
|
||||
platform_io.Platform_SetClipboardTextFn = [](ImGuiContext*, const char* text) { glfwSetClipboardString(NULL, text); };
|
||||
platform_io.Platform_GetClipboardTextFn = [](ImGuiContext*) { return glfwGetClipboardString(NULL); };
|
||||
#ifdef __EMSCRIPTEN__
|
||||
platform_io.Platform_OpenInShellFn = [](ImGuiContext*, const char* url) { ImGui_ImplGlfw_EmscriptenOpenURL(url); return true; };
|
||||
#endif
|
||||
|
||||
// Create mouse cursors
|
||||
// (By design, on X11 cursors are user configurable and some cursors may be missing. When a cursor doesn't exist,
|
||||
// GLFW will emit an error which will often be printed by the app, so we temporarily disable error reporting.
|
||||
// Missing cursors will return nullptr and our _UpdateMouseCursor() function will use the Arrow cursor instead.)
|
||||
GLFWerrorfun prev_error_callback = glfwSetErrorCallback(nullptr);
|
||||
bd->MouseCursors[ImGuiMouseCursor_Arrow] = glfwCreateStandardCursor(GLFW_ARROW_CURSOR);
|
||||
bd->MouseCursors[ImGuiMouseCursor_TextInput] = glfwCreateStandardCursor(GLFW_IBEAM_CURSOR);
|
||||
bd->MouseCursors[ImGuiMouseCursor_ResizeNS] = glfwCreateStandardCursor(GLFW_VRESIZE_CURSOR);
|
||||
bd->MouseCursors[ImGuiMouseCursor_ResizeEW] = glfwCreateStandardCursor(GLFW_HRESIZE_CURSOR);
|
||||
bd->MouseCursors[ImGuiMouseCursor_Hand] = glfwCreateStandardCursor(GLFW_HAND_CURSOR);
|
||||
#if GLFW_HAS_NEW_CURSORS
|
||||
bd->MouseCursors[ImGuiMouseCursor_ResizeAll] = glfwCreateStandardCursor(GLFW_RESIZE_ALL_CURSOR);
|
||||
bd->MouseCursors[ImGuiMouseCursor_ResizeNESW] = glfwCreateStandardCursor(GLFW_RESIZE_NESW_CURSOR);
|
||||
bd->MouseCursors[ImGuiMouseCursor_ResizeNWSE] = glfwCreateStandardCursor(GLFW_RESIZE_NWSE_CURSOR);
|
||||
bd->MouseCursors[ImGuiMouseCursor_NotAllowed] = glfwCreateStandardCursor(GLFW_NOT_ALLOWED_CURSOR);
|
||||
#else
|
||||
bd->MouseCursors[ImGuiMouseCursor_ResizeAll] = glfwCreateStandardCursor(GLFW_ARROW_CURSOR);
|
||||
bd->MouseCursors[ImGuiMouseCursor_ResizeNESW] = glfwCreateStandardCursor(GLFW_ARROW_CURSOR);
|
||||
bd->MouseCursors[ImGuiMouseCursor_ResizeNWSE] = glfwCreateStandardCursor(GLFW_ARROW_CURSOR);
|
||||
bd->MouseCursors[ImGuiMouseCursor_NotAllowed] = glfwCreateStandardCursor(GLFW_ARROW_CURSOR);
|
||||
#endif
|
||||
glfwSetErrorCallback(prev_error_callback);
|
||||
#if GLFW_HAS_GETERROR && !defined(__EMSCRIPTEN__) // Eat errors (see #5908)
|
||||
(void)glfwGetError(nullptr);
|
||||
#endif
|
||||
|
||||
// Chain GLFW callbacks: our callbacks will call the user's previously installed callbacks, if any.
|
||||
if (install_callbacks)
|
||||
ImGui_ImplGlfw_InstallCallbacks(window);
|
||||
|
||||
// Set platform dependent data in viewport
|
||||
ImGuiViewport* main_viewport = ImGui::GetMainViewport();
|
||||
main_viewport->PlatformHandle = (void*)bd->Window;
|
||||
#ifdef _WIN32
|
||||
main_viewport->PlatformHandleRaw = glfwGetWin32Window(bd->Window);
|
||||
#elif defined(__APPLE__)
|
||||
main_viewport->PlatformHandleRaw = (void*)glfwGetCocoaWindow(bd->Window);
|
||||
#else
|
||||
IM_UNUSED(main_viewport);
|
||||
#endif
|
||||
|
||||
// Windows: register a WndProc hook so we can intercept some messages.
|
||||
#ifdef _WIN32
|
||||
bd->PrevWndProc = (WNDPROC)::GetWindowLongPtrW((HWND)main_viewport->PlatformHandleRaw, GWLP_WNDPROC);
|
||||
IM_ASSERT(bd->PrevWndProc != nullptr);
|
||||
::SetWindowLongPtrW((HWND)main_viewport->PlatformHandleRaw, GWLP_WNDPROC, (LONG_PTR)ImGui_ImplGlfw_WndProc);
|
||||
#endif
|
||||
|
||||
// Emscripten: the same application can run on various platforms, so we detect the Apple platform at runtime
|
||||
// to override io.ConfigMacOSXBehaviors from its default (which is always false in Emscripten).
|
||||
#ifdef __EMSCRIPTEN__
|
||||
#if EMSCRIPTEN_USE_PORT_CONTRIB_GLFW3 >= 34020240817
|
||||
if (emscripten::glfw3::IsRuntimePlatformApple())
|
||||
{
|
||||
ImGui::GetIO().ConfigMacOSXBehaviors = true;
|
||||
|
||||
// Due to how the browser (poorly) handles the Meta Key, this line essentially disables repeats when used.
|
||||
// This means that Meta + V only registers a single key-press, even if the keys are held.
|
||||
// This is a compromise for dealing with this issue in ImGui since ImGui implements key repeat itself.
|
||||
// See https://github.com/pongasoft/emscripten-glfw/blob/v3.4.0.20240817/docs/Usage.md#the-problem-of-the-super-key
|
||||
emscripten::glfw3::SetSuperPlusKeyTimeouts(10, 10);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
bd->ClientApi = client_api;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool ImGui_ImplGlfw_InitForOpenGL(GLFWwindow* window, bool install_callbacks)
|
||||
{
|
||||
return ImGui_ImplGlfw_Init(window, install_callbacks, GlfwClientApi_OpenGL);
|
||||
}
|
||||
|
||||
bool ImGui_ImplGlfw_InitForVulkan(GLFWwindow* window, bool install_callbacks)
|
||||
{
|
||||
return ImGui_ImplGlfw_Init(window, install_callbacks, GlfwClientApi_Vulkan);
|
||||
}
|
||||
|
||||
bool ImGui_ImplGlfw_InitForOther(GLFWwindow* window, bool install_callbacks)
|
||||
{
|
||||
return ImGui_ImplGlfw_Init(window, install_callbacks, GlfwClientApi_Unknown);
|
||||
}
|
||||
|
||||
void ImGui_ImplGlfw_Shutdown()
|
||||
{
|
||||
ImGui_ImplGlfw_Data* bd = ImGui_ImplGlfw_GetBackendData();
|
||||
IM_ASSERT(bd != nullptr && "No platform backend to shutdown, or already shutdown?");
|
||||
ImGuiIO& io = ImGui::GetIO();
|
||||
|
||||
if (bd->InstalledCallbacks)
|
||||
ImGui_ImplGlfw_RestoreCallbacks(bd->Window);
|
||||
#ifdef EMSCRIPTEN_USE_EMBEDDED_GLFW3
|
||||
if (bd->CanvasSelector)
|
||||
emscripten_set_wheel_callback(bd->CanvasSelector, nullptr, false, nullptr);
|
||||
#endif
|
||||
|
||||
for (ImGuiMouseCursor cursor_n = 0; cursor_n < ImGuiMouseCursor_COUNT; cursor_n++)
|
||||
glfwDestroyCursor(bd->MouseCursors[cursor_n]);
|
||||
|
||||
// Windows: restore our WndProc hook
|
||||
#ifdef _WIN32
|
||||
ImGuiViewport* main_viewport = ImGui::GetMainViewport();
|
||||
::SetWindowLongPtrW((HWND)main_viewport->PlatformHandleRaw, GWLP_WNDPROC, (LONG_PTR)bd->PrevWndProc);
|
||||
bd->PrevWndProc = nullptr;
|
||||
#endif
|
||||
|
||||
io.BackendPlatformName = nullptr;
|
||||
io.BackendPlatformUserData = nullptr;
|
||||
io.BackendFlags &= ~(ImGuiBackendFlags_HasMouseCursors | ImGuiBackendFlags_HasSetMousePos | ImGuiBackendFlags_HasGamepad);
|
||||
IM_DELETE(bd);
|
||||
}
|
||||
|
||||
static void ImGui_ImplGlfw_UpdateMouseData()
|
||||
{
|
||||
ImGui_ImplGlfw_Data* bd = ImGui_ImplGlfw_GetBackendData();
|
||||
ImGuiIO& io = ImGui::GetIO();
|
||||
|
||||
// (those braces are here to reduce diff with multi-viewports support in 'docking' branch)
|
||||
{
|
||||
GLFWwindow* window = bd->Window;
|
||||
#ifdef EMSCRIPTEN_USE_EMBEDDED_GLFW3
|
||||
const bool is_window_focused = true;
|
||||
#else
|
||||
const bool is_window_focused = glfwGetWindowAttrib(window, GLFW_FOCUSED) != 0;
|
||||
#endif
|
||||
if (is_window_focused)
|
||||
{
|
||||
// (Optional) Set OS mouse position from Dear ImGui if requested (rarely used, only when io.ConfigNavMoveSetMousePos is enabled by user)
|
||||
if (io.WantSetMousePos)
|
||||
glfwSetCursorPos(window, (double)io.MousePos.x, (double)io.MousePos.y);
|
||||
|
||||
// (Optional) Fallback to provide mouse position when focused (ImGui_ImplGlfw_CursorPosCallback already provides this when hovered or captured)
|
||||
if (bd->MouseWindow == nullptr)
|
||||
{
|
||||
double mouse_x, mouse_y;
|
||||
glfwGetCursorPos(window, &mouse_x, &mouse_y);
|
||||
bd->LastValidMousePos = ImVec2((float)mouse_x, (float)mouse_y);
|
||||
io.AddMousePosEvent((float)mouse_x, (float)mouse_y);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ImGui_ImplGlfw_UpdateMouseCursor()
|
||||
{
|
||||
ImGuiIO& io = ImGui::GetIO();
|
||||
ImGui_ImplGlfw_Data* bd = ImGui_ImplGlfw_GetBackendData();
|
||||
if ((io.ConfigFlags & ImGuiConfigFlags_NoMouseCursorChange) || glfwGetInputMode(bd->Window, GLFW_CURSOR) == GLFW_CURSOR_DISABLED)
|
||||
return;
|
||||
|
||||
ImGuiMouseCursor imgui_cursor = ImGui::GetMouseCursor();
|
||||
// (those braces are here to reduce diff with multi-viewports support in 'docking' branch)
|
||||
{
|
||||
GLFWwindow* window = bd->Window;
|
||||
if (imgui_cursor == ImGuiMouseCursor_None || io.MouseDrawCursor)
|
||||
{
|
||||
// Hide OS mouse cursor if imgui is drawing it or if it wants no cursor
|
||||
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_HIDDEN);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Show OS mouse cursor
|
||||
// FIXME-PLATFORM: Unfocused windows seems to fail changing the mouse cursor with GLFW 3.2, but 3.3 works here.
|
||||
glfwSetCursor(window, bd->MouseCursors[imgui_cursor] ? bd->MouseCursors[imgui_cursor] : bd->MouseCursors[ImGuiMouseCursor_Arrow]);
|
||||
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_NORMAL);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Update gamepad inputs
|
||||
static inline float Saturate(float v) { return v < 0.0f ? 0.0f : v > 1.0f ? 1.0f : v; }
|
||||
static void ImGui_ImplGlfw_UpdateGamepads()
|
||||
{
|
||||
ImGuiIO& io = ImGui::GetIO();
|
||||
if ((io.ConfigFlags & ImGuiConfigFlags_NavEnableGamepad) == 0) // FIXME: Technically feeding gamepad shouldn't depend on this now that they are regular inputs.
|
||||
return;
|
||||
|
||||
io.BackendFlags &= ~ImGuiBackendFlags_HasGamepad;
|
||||
#if GLFW_HAS_GAMEPAD_API && !defined(EMSCRIPTEN_USE_EMBEDDED_GLFW3)
|
||||
GLFWgamepadstate gamepad;
|
||||
if (!glfwGetGamepadState(GLFW_JOYSTICK_1, &gamepad))
|
||||
return;
|
||||
#define MAP_BUTTON(KEY_NO, BUTTON_NO, _UNUSED) do { io.AddKeyEvent(KEY_NO, gamepad.buttons[BUTTON_NO] != 0); } while (0)
|
||||
#define MAP_ANALOG(KEY_NO, AXIS_NO, _UNUSED, V0, V1) do { float v = gamepad.axes[AXIS_NO]; v = (v - V0) / (V1 - V0); io.AddKeyAnalogEvent(KEY_NO, v > 0.10f, Saturate(v)); } while (0)
|
||||
#else
|
||||
int axes_count = 0, buttons_count = 0;
|
||||
const float* axes = glfwGetJoystickAxes(GLFW_JOYSTICK_1, &axes_count);
|
||||
const unsigned char* buttons = glfwGetJoystickButtons(GLFW_JOYSTICK_1, &buttons_count);
|
||||
if (axes_count == 0 || buttons_count == 0)
|
||||
return;
|
||||
#define MAP_BUTTON(KEY_NO, _UNUSED, BUTTON_NO) do { io.AddKeyEvent(KEY_NO, (buttons_count > BUTTON_NO && buttons[BUTTON_NO] == GLFW_PRESS)); } while (0)
|
||||
#define MAP_ANALOG(KEY_NO, _UNUSED, AXIS_NO, V0, V1) do { float v = (axes_count > AXIS_NO) ? axes[AXIS_NO] : V0; v = (v - V0) / (V1 - V0); io.AddKeyAnalogEvent(KEY_NO, v > 0.10f, Saturate(v)); } while (0)
|
||||
#endif
|
||||
io.BackendFlags |= ImGuiBackendFlags_HasGamepad;
|
||||
MAP_BUTTON(ImGuiKey_GamepadStart, GLFW_GAMEPAD_BUTTON_START, 7);
|
||||
MAP_BUTTON(ImGuiKey_GamepadBack, GLFW_GAMEPAD_BUTTON_BACK, 6);
|
||||
MAP_BUTTON(ImGuiKey_GamepadFaceLeft, GLFW_GAMEPAD_BUTTON_X, 2); // Xbox X, PS Square
|
||||
MAP_BUTTON(ImGuiKey_GamepadFaceRight, GLFW_GAMEPAD_BUTTON_B, 1); // Xbox B, PS Circle
|
||||
MAP_BUTTON(ImGuiKey_GamepadFaceUp, GLFW_GAMEPAD_BUTTON_Y, 3); // Xbox Y, PS Triangle
|
||||
MAP_BUTTON(ImGuiKey_GamepadFaceDown, GLFW_GAMEPAD_BUTTON_A, 0); // Xbox A, PS Cross
|
||||
MAP_BUTTON(ImGuiKey_GamepadDpadLeft, GLFW_GAMEPAD_BUTTON_DPAD_LEFT, 13);
|
||||
MAP_BUTTON(ImGuiKey_GamepadDpadRight, GLFW_GAMEPAD_BUTTON_DPAD_RIGHT, 11);
|
||||
MAP_BUTTON(ImGuiKey_GamepadDpadUp, GLFW_GAMEPAD_BUTTON_DPAD_UP, 10);
|
||||
MAP_BUTTON(ImGuiKey_GamepadDpadDown, GLFW_GAMEPAD_BUTTON_DPAD_DOWN, 12);
|
||||
MAP_BUTTON(ImGuiKey_GamepadL1, GLFW_GAMEPAD_BUTTON_LEFT_BUMPER, 4);
|
||||
MAP_BUTTON(ImGuiKey_GamepadR1, GLFW_GAMEPAD_BUTTON_RIGHT_BUMPER, 5);
|
||||
MAP_ANALOG(ImGuiKey_GamepadL2, GLFW_GAMEPAD_AXIS_LEFT_TRIGGER, 4, -0.75f, +1.0f);
|
||||
MAP_ANALOG(ImGuiKey_GamepadR2, GLFW_GAMEPAD_AXIS_RIGHT_TRIGGER, 5, -0.75f, +1.0f);
|
||||
MAP_BUTTON(ImGuiKey_GamepadL3, GLFW_GAMEPAD_BUTTON_LEFT_THUMB, 8);
|
||||
MAP_BUTTON(ImGuiKey_GamepadR3, GLFW_GAMEPAD_BUTTON_RIGHT_THUMB, 9);
|
||||
MAP_ANALOG(ImGuiKey_GamepadLStickLeft, GLFW_GAMEPAD_AXIS_LEFT_X, 0, -0.25f, -1.0f);
|
||||
MAP_ANALOG(ImGuiKey_GamepadLStickRight, GLFW_GAMEPAD_AXIS_LEFT_X, 0, +0.25f, +1.0f);
|
||||
MAP_ANALOG(ImGuiKey_GamepadLStickUp, GLFW_GAMEPAD_AXIS_LEFT_Y, 1, -0.25f, -1.0f);
|
||||
MAP_ANALOG(ImGuiKey_GamepadLStickDown, GLFW_GAMEPAD_AXIS_LEFT_Y, 1, +0.25f, +1.0f);
|
||||
MAP_ANALOG(ImGuiKey_GamepadRStickLeft, GLFW_GAMEPAD_AXIS_RIGHT_X, 2, -0.25f, -1.0f);
|
||||
MAP_ANALOG(ImGuiKey_GamepadRStickRight, GLFW_GAMEPAD_AXIS_RIGHT_X, 2, +0.25f, +1.0f);
|
||||
MAP_ANALOG(ImGuiKey_GamepadRStickUp, GLFW_GAMEPAD_AXIS_RIGHT_Y, 3, -0.25f, -1.0f);
|
||||
MAP_ANALOG(ImGuiKey_GamepadRStickDown, GLFW_GAMEPAD_AXIS_RIGHT_Y, 3, +0.25f, +1.0f);
|
||||
#undef MAP_BUTTON
|
||||
#undef MAP_ANALOG
|
||||
}
|
||||
|
||||
void ImGui_ImplGlfw_NewFrame()
|
||||
{
|
||||
ImGuiIO& io = ImGui::GetIO();
|
||||
ImGui_ImplGlfw_Data* bd = ImGui_ImplGlfw_GetBackendData();
|
||||
IM_ASSERT(bd != nullptr && "Context or backend not initialized! Did you call ImGui_ImplGlfw_InitForXXX()?");
|
||||
|
||||
// Setup display size (every frame to accommodate for window resizing)
|
||||
int w, h;
|
||||
int display_w, display_h;
|
||||
glfwGetWindowSize(bd->Window, &w, &h);
|
||||
glfwGetFramebufferSize(bd->Window, &display_w, &display_h);
|
||||
io.DisplaySize = ImVec2((float)w, (float)h);
|
||||
if (w > 0 && h > 0)
|
||||
io.DisplayFramebufferScale = ImVec2((float)display_w / (float)w, (float)display_h / (float)h);
|
||||
|
||||
// Setup time step
|
||||
// (Accept glfwGetTime() not returning a monotonically increasing value. Seems to happens on disconnecting peripherals and probably on VMs and Emscripten, see #6491, #6189, #6114, #3644)
|
||||
double current_time = glfwGetTime();
|
||||
if (current_time <= bd->Time)
|
||||
current_time = bd->Time + 0.00001f;
|
||||
io.DeltaTime = bd->Time > 0.0 ? (float)(current_time - bd->Time) : (float)(1.0f / 60.0f);
|
||||
bd->Time = current_time;
|
||||
|
||||
ImGui_ImplGlfw_UpdateMouseData();
|
||||
ImGui_ImplGlfw_UpdateMouseCursor();
|
||||
|
||||
// Update game controllers (if enabled and available)
|
||||
ImGui_ImplGlfw_UpdateGamepads();
|
||||
}
|
||||
|
||||
// GLFW doesn't provide a portable sleep function
|
||||
void ImGui_ImplGlfw_Sleep(int milliseconds)
|
||||
{
|
||||
#ifdef _WIN32
|
||||
::Sleep(milliseconds);
|
||||
#else
|
||||
usleep(milliseconds * 1000);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef EMSCRIPTEN_USE_EMBEDDED_GLFW3
|
||||
static EM_BOOL ImGui_ImplGlfw_OnCanvasSizeChange(int event_type, const EmscriptenUiEvent* event, void* user_data)
|
||||
{
|
||||
ImGui_ImplGlfw_Data* bd = (ImGui_ImplGlfw_Data*)user_data;
|
||||
double canvas_width, canvas_height;
|
||||
emscripten_get_element_css_size(bd->CanvasSelector, &canvas_width, &canvas_height);
|
||||
glfwSetWindowSize(bd->Window, (int)canvas_width, (int)canvas_height);
|
||||
return true;
|
||||
}
|
||||
|
||||
static EM_BOOL ImGui_ImplEmscripten_FullscreenChangeCallback(int event_type, const EmscriptenFullscreenChangeEvent* event, void* user_data)
|
||||
{
|
||||
ImGui_ImplGlfw_Data* bd = (ImGui_ImplGlfw_Data*)user_data;
|
||||
double canvas_width, canvas_height;
|
||||
emscripten_get_element_css_size(bd->CanvasSelector, &canvas_width, &canvas_height);
|
||||
glfwSetWindowSize(bd->Window, (int)canvas_width, (int)canvas_height);
|
||||
return true;
|
||||
}
|
||||
|
||||
// 'canvas_selector' is a CSS selector. The event listener is applied to the first element that matches the query.
|
||||
// STRING MUST PERSIST FOR THE APPLICATION DURATION. PLEASE USE A STRING LITERAL OR ENSURE POINTER WILL STAY VALID.
|
||||
void ImGui_ImplGlfw_InstallEmscriptenCallbacks(GLFWwindow*, const char* canvas_selector)
|
||||
{
|
||||
IM_ASSERT(canvas_selector != nullptr);
|
||||
ImGui_ImplGlfw_Data* bd = ImGui_ImplGlfw_GetBackendData();
|
||||
IM_ASSERT(bd != nullptr && "Context or backend not initialized! Did you call ImGui_ImplGlfw_InitForXXX()?");
|
||||
|
||||
bd->CanvasSelector = canvas_selector;
|
||||
emscripten_set_resize_callback(EMSCRIPTEN_EVENT_TARGET_WINDOW, bd, false, ImGui_ImplGlfw_OnCanvasSizeChange);
|
||||
emscripten_set_fullscreenchange_callback(EMSCRIPTEN_EVENT_TARGET_DOCUMENT, bd, false, ImGui_ImplEmscripten_FullscreenChangeCallback);
|
||||
|
||||
// Change the size of the GLFW window according to the size of the canvas
|
||||
ImGui_ImplGlfw_OnCanvasSizeChange(EMSCRIPTEN_EVENT_RESIZE, {}, bd);
|
||||
|
||||
// Register Emscripten Wheel callback to workaround issue in Emscripten GLFW Emulation (#6096)
|
||||
// We intentionally do not check 'if (install_callbacks)' here, as some users may set it to false and call GLFW callback themselves.
|
||||
// FIXME: May break chaining in case user registered their own Emscripten callback?
|
||||
emscripten_set_wheel_callback(bd->CanvasSelector, nullptr, false, ImGui_ImplEmscripten_WheelCallback);
|
||||
}
|
||||
#elif defined(EMSCRIPTEN_USE_PORT_CONTRIB_GLFW3)
|
||||
// When using --use-port=contrib.glfw3 for the GLFW implementation, you can override the behavior of this call
|
||||
// by invoking emscripten_glfw_make_canvas_resizable afterward.
|
||||
// See https://github.com/pongasoft/emscripten-glfw/blob/master/docs/Usage.md#how-to-make-the-canvas-resizable-by-the-user for an explanation
|
||||
void ImGui_ImplGlfw_InstallEmscriptenCallbacks(GLFWwindow* window, const char* canvas_selector)
|
||||
{
|
||||
GLFWwindow* w = (GLFWwindow*)(EM_ASM_INT({ return Module.glfwGetWindow(UTF8ToString($0)); }, canvas_selector));
|
||||
IM_ASSERT(window == w); // Sanity check
|
||||
IM_UNUSED(w);
|
||||
emscripten_glfw_make_canvas_resizable(window, "window", nullptr);
|
||||
}
|
||||
#endif // #ifdef EMSCRIPTEN_USE_PORT_CONTRIB_GLFW3
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
#if defined(__clang__)
|
||||
#pragma clang diagnostic pop
|
||||
#endif
|
||||
|
||||
#endif // #ifndef IMGUI_DISABLE
|
63
lib/imgui/imgui_impl_glfw.h
Normal file
63
lib/imgui/imgui_impl_glfw.h
Normal file
@@ -0,0 +1,63 @@
|
||||
// dear imgui: Platform Backend for GLFW
|
||||
// This needs to be used along with a Renderer (e.g. OpenGL3, Vulkan, WebGPU..)
|
||||
// (Info: GLFW is a cross-platform general purpose library for handling windows, inputs, OpenGL/Vulkan graphics context creation, etc.)
|
||||
|
||||
// Implemented features:
|
||||
// [X] Platform: Clipboard support.
|
||||
// [X] Platform: Mouse support. Can discriminate Mouse/TouchScreen/Pen (Windows only).
|
||||
// [X] Platform: Keyboard support. Since 1.87 we are using the io.AddKeyEvent() function. Pass ImGuiKey values to all key functions e.g. ImGui::IsKeyPressed(ImGuiKey_Space). [Legacy GLFW_KEY_* values are obsolete since 1.87 and not supported since 1.91.5]
|
||||
// [X] Platform: Gamepad support. Enable with 'io.ConfigFlags |= ImGuiConfigFlags_NavEnableGamepad'.
|
||||
// [X] Platform: Mouse cursor shape and visibility. Disable with 'io.ConfigFlags |= ImGuiConfigFlags_NoMouseCursorChange' (note: the resizing cursors requires GLFW 3.4+).
|
||||
|
||||
// You can use unmodified imgui_impl_* files in your project. See examples/ folder for examples of using this.
|
||||
// Prefer including the entire imgui/ repository into your project (either as a copy or as a submodule), and only build the backends you need.
|
||||
// Learn about Dear ImGui:
|
||||
// - FAQ https://dearimgui.com/faq
|
||||
// - Getting Started https://dearimgui.com/getting-started
|
||||
// - Documentation https://dearimgui.com/docs (same as your local docs/ folder).
|
||||
// - Introduction, links and more at the top of imgui.cpp
|
||||
|
||||
#pragma once
|
||||
#include "imgui.h" // IMGUI_IMPL_API
|
||||
#ifndef IMGUI_DISABLE
|
||||
|
||||
struct GLFWwindow;
|
||||
struct GLFWmonitor;
|
||||
|
||||
// Follow "Getting Started" link and check examples/ folder to learn about using backends!
|
||||
IMGUI_IMPL_API bool ImGui_ImplGlfw_InitForOpenGL(GLFWwindow* window, bool install_callbacks);
|
||||
IMGUI_IMPL_API bool ImGui_ImplGlfw_InitForVulkan(GLFWwindow* window, bool install_callbacks);
|
||||
IMGUI_IMPL_API bool ImGui_ImplGlfw_InitForOther(GLFWwindow* window, bool install_callbacks);
|
||||
IMGUI_IMPL_API void ImGui_ImplGlfw_Shutdown();
|
||||
IMGUI_IMPL_API void ImGui_ImplGlfw_NewFrame();
|
||||
|
||||
// Emscripten related initialization phase methods (call after ImGui_ImplGlfw_InitForOpenGL)
|
||||
#ifdef __EMSCRIPTEN__
|
||||
IMGUI_IMPL_API void ImGui_ImplGlfw_InstallEmscriptenCallbacks(GLFWwindow* window, const char* canvas_selector);
|
||||
//static inline void ImGui_ImplGlfw_InstallEmscriptenCanvasResizeCallback(const char* canvas_selector) { ImGui_ImplGlfw_InstallEmscriptenCallbacks(nullptr, canvas_selector); } } // Renamed in 1.91.0
|
||||
#endif
|
||||
|
||||
// GLFW callbacks install
|
||||
// - When calling Init with 'install_callbacks=true': ImGui_ImplGlfw_InstallCallbacks() is called. GLFW callbacks will be installed for you. They will chain-call user's previously installed callbacks, if any.
|
||||
// - When calling Init with 'install_callbacks=false': GLFW callbacks won't be installed. You will need to call individual function yourself from your own GLFW callbacks.
|
||||
IMGUI_IMPL_API void ImGui_ImplGlfw_InstallCallbacks(GLFWwindow* window);
|
||||
IMGUI_IMPL_API void ImGui_ImplGlfw_RestoreCallbacks(GLFWwindow* window);
|
||||
|
||||
// GFLW callbacks options:
|
||||
// - Set 'chain_for_all_windows=true' to enable chaining callbacks for all windows (including secondary viewports created by backends or by user)
|
||||
IMGUI_IMPL_API void ImGui_ImplGlfw_SetCallbacksChainForAllWindows(bool chain_for_all_windows);
|
||||
|
||||
// GLFW callbacks (individual callbacks to call yourself if you didn't install callbacks)
|
||||
IMGUI_IMPL_API void ImGui_ImplGlfw_WindowFocusCallback(GLFWwindow* window, int focused); // Since 1.84
|
||||
IMGUI_IMPL_API void ImGui_ImplGlfw_CursorEnterCallback(GLFWwindow* window, int entered); // Since 1.84
|
||||
IMGUI_IMPL_API void ImGui_ImplGlfw_CursorPosCallback(GLFWwindow* window, double x, double y); // Since 1.87
|
||||
IMGUI_IMPL_API void ImGui_ImplGlfw_MouseButtonCallback(GLFWwindow* window, int button, int action, int mods);
|
||||
IMGUI_IMPL_API void ImGui_ImplGlfw_ScrollCallback(GLFWwindow* window, double xoffset, double yoffset);
|
||||
IMGUI_IMPL_API void ImGui_ImplGlfw_KeyCallback(GLFWwindow* window, int key, int scancode, int action, int mods);
|
||||
IMGUI_IMPL_API void ImGui_ImplGlfw_CharCallback(GLFWwindow* window, unsigned int c);
|
||||
IMGUI_IMPL_API void ImGui_ImplGlfw_MonitorCallback(GLFWmonitor* monitor, int event);
|
||||
|
||||
// GLFW helpers
|
||||
IMGUI_IMPL_API void ImGui_ImplGlfw_Sleep(int milliseconds);
|
||||
|
||||
#endif // #ifndef IMGUI_DISABLE
|
1593
lib/imgui/imgui_impl_vulkan.cpp
Normal file
1593
lib/imgui/imgui_impl_vulkan.cpp
Normal file
File diff suppressed because it is too large
Load Diff
203
lib/imgui/imgui_impl_vulkan.h
Normal file
203
lib/imgui/imgui_impl_vulkan.h
Normal file
@@ -0,0 +1,203 @@
|
||||
// dear imgui: Renderer Backend for Vulkan
|
||||
// This needs to be used along with a Platform Backend (e.g. GLFW, SDL, Win32, custom..)
|
||||
|
||||
// Implemented features:
|
||||
// [!] Renderer: User texture binding. Use 'VkDescriptorSet' as ImTextureID. Read the FAQ about ImTextureID! See https://github.com/ocornut/imgui/pull/914 for discussions.
|
||||
// [X] Renderer: Large meshes support (64k+ vertices) with 16-bit indices.
|
||||
// [X] Renderer: Expose selected render state for draw callbacks to use. Access in '(ImGui_ImplXXXX_RenderState*)GetPlatformIO().Renderer_RenderState'.
|
||||
|
||||
// The aim of imgui_impl_vulkan.h/.cpp is to be usable in your engine without any modification.
|
||||
// IF YOU FEEL YOU NEED TO MAKE ANY CHANGE TO THIS CODE, please share them and your feedback at https://github.com/ocornut/imgui/
|
||||
|
||||
// You can use unmodified imgui_impl_* files in your project. See examples/ folder for examples of using this.
|
||||
// Prefer including the entire imgui/ repository into your project (either as a copy or as a submodule), and only build the backends you need.
|
||||
// Learn about Dear ImGui:
|
||||
// - FAQ https://dearimgui.com/faq
|
||||
// - Getting Started https://dearimgui.com/getting-started
|
||||
// - Documentation https://dearimgui.com/docs (same as your local docs/ folder).
|
||||
// - Introduction, links and more at the top of imgui.cpp
|
||||
|
||||
// Important note to the reader who wish to integrate imgui_impl_vulkan.cpp/.h in their own engine/app.
|
||||
// - Common ImGui_ImplVulkan_XXX functions and structures are used to interface with imgui_impl_vulkan.cpp/.h.
|
||||
// You will use those if you want to use this rendering backend in your engine/app.
|
||||
// - Helper ImGui_ImplVulkanH_XXX functions and structures are only used by this example (main.cpp) and by
|
||||
// the backend itself (imgui_impl_vulkan.cpp), but should PROBABLY NOT be used by your own engine/app code.
|
||||
// Read comments in imgui_impl_vulkan.h.
|
||||
|
||||
#pragma once
|
||||
#ifndef IMGUI_DISABLE
|
||||
#include "imgui.h" // IMGUI_IMPL_API
|
||||
|
||||
// [Configuration] in order to use a custom Vulkan function loader:
|
||||
// (1) You'll need to disable default Vulkan function prototypes.
|
||||
// We provide a '#define IMGUI_IMPL_VULKAN_NO_PROTOTYPES' convenience configuration flag.
|
||||
// In order to make sure this is visible from the imgui_impl_vulkan.cpp compilation unit:
|
||||
// - Add '#define IMGUI_IMPL_VULKAN_NO_PROTOTYPES' in your imconfig.h file
|
||||
// - Or as a compilation flag in your build system
|
||||
// - Or uncomment here (not recommended because you'd be modifying imgui sources!)
|
||||
// - Do not simply add it in a .cpp file!
|
||||
// (2) Call ImGui_ImplVulkan_LoadFunctions() before ImGui_ImplVulkan_Init() with your custom function.
|
||||
// If you have no idea what this is, leave it alone!
|
||||
//#define IMGUI_IMPL_VULKAN_NO_PROTOTYPES
|
||||
|
||||
// Convenience support for Volk
|
||||
// (you can also technically use IMGUI_IMPL_VULKAN_NO_PROTOTYPES + wrap Volk via ImGui_ImplVulkan_LoadFunctions().)
|
||||
//#define IMGUI_IMPL_VULKAN_USE_VOLK
|
||||
|
||||
#if defined(IMGUI_IMPL_VULKAN_NO_PROTOTYPES) && !defined(VK_NO_PROTOTYPES)
|
||||
#define VK_NO_PROTOTYPES
|
||||
#endif
|
||||
#if defined(VK_USE_PLATFORM_WIN32_KHR) && !defined(NOMINMAX)
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
|
||||
// Vulkan includes
|
||||
#ifdef IMGUI_IMPL_VULKAN_USE_VOLK
|
||||
#include <volk.h>
|
||||
#else
|
||||
#include <vulkan/vulkan.h>
|
||||
#endif
|
||||
#if defined(VK_VERSION_1_3) || defined(VK_KHR_dynamic_rendering)
|
||||
#define IMGUI_IMPL_VULKAN_HAS_DYNAMIC_RENDERING
|
||||
#endif
|
||||
|
||||
// Initialization data, for ImGui_ImplVulkan_Init()
|
||||
// - VkDescriptorPool should be created with VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT,
|
||||
// and must contain a pool size large enough to hold an ImGui VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER descriptor.
|
||||
// - When using dynamic rendering, set UseDynamicRendering=true and fill PipelineRenderingCreateInfo structure.
|
||||
// [Please zero-clear before use!]
|
||||
struct ImGui_ImplVulkan_InitInfo
|
||||
{
|
||||
VkInstance Instance;
|
||||
VkPhysicalDevice PhysicalDevice;
|
||||
VkDevice Device;
|
||||
uint32_t QueueFamily;
|
||||
VkQueue Queue;
|
||||
VkDescriptorPool DescriptorPool; // See requirements in note above
|
||||
VkRenderPass RenderPass; // Ignored if using dynamic rendering
|
||||
uint32_t MinImageCount; // >= 2
|
||||
uint32_t ImageCount; // >= MinImageCount
|
||||
VkSampleCountFlagBits MSAASamples; // 0 defaults to VK_SAMPLE_COUNT_1_BIT
|
||||
|
||||
// (Optional)
|
||||
VkPipelineCache PipelineCache;
|
||||
uint32_t Subpass;
|
||||
|
||||
// (Optional) Dynamic Rendering
|
||||
// Need to explicitly enable VK_KHR_dynamic_rendering extension to use this, even for Vulkan 1.3.
|
||||
bool UseDynamicRendering;
|
||||
#ifdef IMGUI_IMPL_VULKAN_HAS_DYNAMIC_RENDERING
|
||||
VkPipelineRenderingCreateInfoKHR PipelineRenderingCreateInfo;
|
||||
#endif
|
||||
|
||||
// (Optional) Allocation, Debugging
|
||||
const VkAllocationCallbacks* Allocator;
|
||||
void (*CheckVkResultFn)(VkResult err);
|
||||
VkDeviceSize MinAllocationSize; // Minimum allocation size. Set to 1024*1024 to satisfy zealous best practices validation layer and waste a little memory.
|
||||
};
|
||||
|
||||
// Follow "Getting Started" link and check examples/ folder to learn about using backends!
|
||||
IMGUI_IMPL_API bool ImGui_ImplVulkan_Init(ImGui_ImplVulkan_InitInfo* info);
|
||||
IMGUI_IMPL_API void ImGui_ImplVulkan_Shutdown();
|
||||
IMGUI_IMPL_API void ImGui_ImplVulkan_NewFrame();
|
||||
IMGUI_IMPL_API void ImGui_ImplVulkan_RenderDrawData(ImDrawData* draw_data, VkCommandBuffer command_buffer, VkPipeline pipeline = VK_NULL_HANDLE);
|
||||
IMGUI_IMPL_API bool ImGui_ImplVulkan_CreateFontsTexture();
|
||||
IMGUI_IMPL_API void ImGui_ImplVulkan_DestroyFontsTexture();
|
||||
IMGUI_IMPL_API void ImGui_ImplVulkan_SetMinImageCount(uint32_t min_image_count); // To override MinImageCount after initialization (e.g. if swap chain is recreated)
|
||||
|
||||
// Register a texture (VkDescriptorSet == ImTextureID)
|
||||
// FIXME: This is experimental in the sense that we are unsure how to best design/tackle this problem
|
||||
// Please post to https://github.com/ocornut/imgui/pull/914 if you have suggestions.
|
||||
IMGUI_IMPL_API VkDescriptorSet ImGui_ImplVulkan_AddTexture(VkSampler sampler, VkImageView image_view, VkImageLayout image_layout);
|
||||
IMGUI_IMPL_API void ImGui_ImplVulkan_RemoveTexture(VkDescriptorSet descriptor_set);
|
||||
|
||||
// Optional: load Vulkan functions with a custom function loader
|
||||
// This is only useful with IMGUI_IMPL_VULKAN_NO_PROTOTYPES / VK_NO_PROTOTYPES
|
||||
IMGUI_IMPL_API bool ImGui_ImplVulkan_LoadFunctions(PFN_vkVoidFunction(*loader_func)(const char* function_name, void* user_data), void* user_data = nullptr);
|
||||
|
||||
// [BETA] Selected render state data shared with callbacks.
|
||||
// This is temporarily stored in GetPlatformIO().Renderer_RenderState during the ImGui_ImplVulkan_RenderDrawData() call.
|
||||
// (Please open an issue if you feel you need access to more data)
|
||||
struct ImGui_ImplVulkan_RenderState
|
||||
{
|
||||
VkCommandBuffer CommandBuffer;
|
||||
VkPipeline Pipeline;
|
||||
VkPipelineLayout PipelineLayout;
|
||||
};
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// Internal / Miscellaneous Vulkan Helpers
|
||||
// (Used by example's main.cpp. Used by multi-viewport features. PROBABLY NOT used by your own engine/app.)
|
||||
//-------------------------------------------------------------------------
|
||||
// You probably do NOT need to use or care about those functions.
|
||||
// Those functions only exist because:
|
||||
// 1) they facilitate the readability and maintenance of the multiple main.cpp examples files.
|
||||
// 2) the multi-viewport / platform window implementation needs them internally.
|
||||
// Generally we avoid exposing any kind of superfluous high-level helpers in the bindings,
|
||||
// but it is too much code to duplicate everywhere so we exceptionally expose them.
|
||||
//
|
||||
// Your engine/app will likely _already_ have code to setup all that stuff (swap chain, render pass, frame buffers, etc.).
|
||||
// You may read this code to learn about Vulkan, but it is recommended you use you own custom tailored code to do equivalent work.
|
||||
// (The ImGui_ImplVulkanH_XXX functions do not interact with any of the state used by the regular ImGui_ImplVulkan_XXX functions)
|
||||
//-------------------------------------------------------------------------
|
||||
|
||||
struct ImGui_ImplVulkanH_Frame;
|
||||
struct ImGui_ImplVulkanH_Window;
|
||||
|
||||
// Helpers
|
||||
IMGUI_IMPL_API void ImGui_ImplVulkanH_CreateOrResizeWindow(VkInstance instance, VkPhysicalDevice physical_device, VkDevice device, ImGui_ImplVulkanH_Window* wnd, uint32_t queue_family, const VkAllocationCallbacks* allocator, int w, int h, uint32_t min_image_count);
|
||||
IMGUI_IMPL_API void ImGui_ImplVulkanH_DestroyWindow(VkInstance instance, VkDevice device, ImGui_ImplVulkanH_Window* wnd, const VkAllocationCallbacks* allocator);
|
||||
IMGUI_IMPL_API VkSurfaceFormatKHR ImGui_ImplVulkanH_SelectSurfaceFormat(VkPhysicalDevice physical_device, VkSurfaceKHR surface, const VkFormat* request_formats, int request_formats_count, VkColorSpaceKHR request_color_space);
|
||||
IMGUI_IMPL_API VkPresentModeKHR ImGui_ImplVulkanH_SelectPresentMode(VkPhysicalDevice physical_device, VkSurfaceKHR surface, const VkPresentModeKHR* request_modes, int request_modes_count);
|
||||
IMGUI_IMPL_API int ImGui_ImplVulkanH_GetMinImageCountFromPresentMode(VkPresentModeKHR present_mode);
|
||||
|
||||
// Helper structure to hold the data needed by one rendering frame
|
||||
// (Used by example's main.cpp. Used by multi-viewport features. Probably NOT used by your own engine/app.)
|
||||
// [Please zero-clear before use!]
|
||||
struct ImGui_ImplVulkanH_Frame
|
||||
{
|
||||
VkCommandPool CommandPool;
|
||||
VkCommandBuffer CommandBuffer;
|
||||
VkFence Fence;
|
||||
VkImage Backbuffer;
|
||||
VkImageView BackbufferView;
|
||||
VkFramebuffer Framebuffer;
|
||||
};
|
||||
|
||||
struct ImGui_ImplVulkanH_FrameSemaphores
|
||||
{
|
||||
VkSemaphore ImageAcquiredSemaphore;
|
||||
VkSemaphore RenderCompleteSemaphore;
|
||||
};
|
||||
|
||||
// Helper structure to hold the data needed by one rendering context into one OS window
|
||||
// (Used by example's main.cpp. Used by multi-viewport features. Probably NOT used by your own engine/app.)
|
||||
struct ImGui_ImplVulkanH_Window
|
||||
{
|
||||
int Width;
|
||||
int Height;
|
||||
VkSwapchainKHR Swapchain;
|
||||
VkSurfaceKHR Surface;
|
||||
VkSurfaceFormatKHR SurfaceFormat;
|
||||
VkPresentModeKHR PresentMode;
|
||||
VkRenderPass RenderPass;
|
||||
VkPipeline Pipeline; // The window pipeline may uses a different VkRenderPass than the one passed in ImGui_ImplVulkan_InitInfo
|
||||
bool UseDynamicRendering;
|
||||
bool ClearEnable;
|
||||
VkClearValue ClearValue;
|
||||
uint32_t FrameIndex; // Current frame being rendered to (0 <= FrameIndex < FrameInFlightCount)
|
||||
uint32_t ImageCount; // Number of simultaneous in-flight frames (returned by vkGetSwapchainImagesKHR, usually derived from min_image_count)
|
||||
uint32_t SemaphoreCount; // Number of simultaneous in-flight frames + 1, to be able to use it in vkAcquireNextImageKHR
|
||||
uint32_t SemaphoreIndex; // Current set of swapchain wait semaphores we're using (needs to be distinct from per frame data)
|
||||
ImGui_ImplVulkanH_Frame* Frames;
|
||||
ImGui_ImplVulkanH_FrameSemaphores* FrameSemaphores;
|
||||
|
||||
ImGui_ImplVulkanH_Window()
|
||||
{
|
||||
memset((void*)this, 0, sizeof(*this));
|
||||
PresentMode = (VkPresentModeKHR)~0; // Ensure we get an error if user doesn't set this.
|
||||
ClearEnable = true;
|
||||
}
|
||||
};
|
||||
|
||||
#endif // #ifndef IMGUI_DISABLE
|
3578
lib/imgui/imgui_internal.h
Normal file
3578
lib/imgui/imgui_internal.h
Normal file
File diff suppressed because it is too large
Load Diff
4467
lib/imgui/imgui_tables.cpp
Normal file
4467
lib/imgui/imgui_tables.cpp
Normal file
File diff suppressed because it is too large
Load Diff
10310
lib/imgui/imgui_widgets.cpp
Normal file
10310
lib/imgui/imgui_widgets.cpp
Normal file
File diff suppressed because it is too large
Load Diff
627
lib/imgui/imstb_rectpack.h
Normal file
627
lib/imgui/imstb_rectpack.h
Normal file
@@ -0,0 +1,627 @@
|
||||
// [DEAR IMGUI]
|
||||
// This is a slightly modified version of stb_rect_pack.h 1.01.
|
||||
// Grep for [DEAR IMGUI] to find the changes.
|
||||
//
|
||||
// stb_rect_pack.h - v1.01 - public domain - rectangle packing
|
||||
// Sean Barrett 2014
|
||||
//
|
||||
// Useful for e.g. packing rectangular textures into an atlas.
|
||||
// Does not do rotation.
|
||||
//
|
||||
// Before #including,
|
||||
//
|
||||
// #define STB_RECT_PACK_IMPLEMENTATION
|
||||
//
|
||||
// in the file that you want to have the implementation.
|
||||
//
|
||||
// Not necessarily the awesomest packing method, but better than
|
||||
// the totally naive one in stb_truetype (which is primarily what
|
||||
// this is meant to replace).
|
||||
//
|
||||
// Has only had a few tests run, may have issues.
|
||||
//
|
||||
// More docs to come.
|
||||
//
|
||||
// No memory allocations; uses qsort() and assert() from stdlib.
|
||||
// Can override those by defining STBRP_SORT and STBRP_ASSERT.
|
||||
//
|
||||
// This library currently uses the Skyline Bottom-Left algorithm.
|
||||
//
|
||||
// Please note: better rectangle packers are welcome! Please
|
||||
// implement them to the same API, but with a different init
|
||||
// function.
|
||||
//
|
||||
// Credits
|
||||
//
|
||||
// Library
|
||||
// Sean Barrett
|
||||
// Minor features
|
||||
// Martins Mozeiko
|
||||
// github:IntellectualKitty
|
||||
//
|
||||
// Bugfixes / warning fixes
|
||||
// Jeremy Jaussaud
|
||||
// Fabian Giesen
|
||||
//
|
||||
// Version history:
|
||||
//
|
||||
// 1.01 (2021-07-11) always use large rect mode, expose STBRP__MAXVAL in public section
|
||||
// 1.00 (2019-02-25) avoid small space waste; gracefully fail too-wide rectangles
|
||||
// 0.99 (2019-02-07) warning fixes
|
||||
// 0.11 (2017-03-03) return packing success/fail result
|
||||
// 0.10 (2016-10-25) remove cast-away-const to avoid warnings
|
||||
// 0.09 (2016-08-27) fix compiler warnings
|
||||
// 0.08 (2015-09-13) really fix bug with empty rects (w=0 or h=0)
|
||||
// 0.07 (2015-09-13) fix bug with empty rects (w=0 or h=0)
|
||||
// 0.06 (2015-04-15) added STBRP_SORT to allow replacing qsort
|
||||
// 0.05: added STBRP_ASSERT to allow replacing assert
|
||||
// 0.04: fixed minor bug in STBRP_LARGE_RECTS support
|
||||
// 0.01: initial release
|
||||
//
|
||||
// LICENSE
|
||||
//
|
||||
// See end of file for license information.
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// INCLUDE SECTION
|
||||
//
|
||||
|
||||
#ifndef STB_INCLUDE_STB_RECT_PACK_H
|
||||
#define STB_INCLUDE_STB_RECT_PACK_H
|
||||
|
||||
#define STB_RECT_PACK_VERSION 1
|
||||
|
||||
#ifdef STBRP_STATIC
|
||||
#define STBRP_DEF static
|
||||
#else
|
||||
#define STBRP_DEF extern
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
typedef struct stbrp_context stbrp_context;
|
||||
typedef struct stbrp_node stbrp_node;
|
||||
typedef struct stbrp_rect stbrp_rect;
|
||||
|
||||
typedef int stbrp_coord;
|
||||
|
||||
#define STBRP__MAXVAL 0x7fffffff
|
||||
// Mostly for internal use, but this is the maximum supported coordinate value.
|
||||
|
||||
STBRP_DEF int stbrp_pack_rects (stbrp_context *context, stbrp_rect *rects, int num_rects);
|
||||
// Assign packed locations to rectangles. The rectangles are of type
|
||||
// 'stbrp_rect' defined below, stored in the array 'rects', and there
|
||||
// are 'num_rects' many of them.
|
||||
//
|
||||
// Rectangles which are successfully packed have the 'was_packed' flag
|
||||
// set to a non-zero value and 'x' and 'y' store the minimum location
|
||||
// on each axis (i.e. bottom-left in cartesian coordinates, top-left
|
||||
// if you imagine y increasing downwards). Rectangles which do not fit
|
||||
// have the 'was_packed' flag set to 0.
|
||||
//
|
||||
// You should not try to access the 'rects' array from another thread
|
||||
// while this function is running, as the function temporarily reorders
|
||||
// the array while it executes.
|
||||
//
|
||||
// To pack into another rectangle, you need to call stbrp_init_target
|
||||
// again. To continue packing into the same rectangle, you can call
|
||||
// this function again. Calling this multiple times with multiple rect
|
||||
// arrays will probably produce worse packing results than calling it
|
||||
// a single time with the full rectangle array, but the option is
|
||||
// available.
|
||||
//
|
||||
// The function returns 1 if all of the rectangles were successfully
|
||||
// packed and 0 otherwise.
|
||||
|
||||
struct stbrp_rect
|
||||
{
|
||||
// reserved for your use:
|
||||
int id;
|
||||
|
||||
// input:
|
||||
stbrp_coord w, h;
|
||||
|
||||
// output:
|
||||
stbrp_coord x, y;
|
||||
int was_packed; // non-zero if valid packing
|
||||
|
||||
}; // 16 bytes, nominally
|
||||
|
||||
|
||||
STBRP_DEF void stbrp_init_target (stbrp_context *context, int width, int height, stbrp_node *nodes, int num_nodes);
|
||||
// Initialize a rectangle packer to:
|
||||
// pack a rectangle that is 'width' by 'height' in dimensions
|
||||
// using temporary storage provided by the array 'nodes', which is 'num_nodes' long
|
||||
//
|
||||
// You must call this function every time you start packing into a new target.
|
||||
//
|
||||
// There is no "shutdown" function. The 'nodes' memory must stay valid for
|
||||
// the following stbrp_pack_rects() call (or calls), but can be freed after
|
||||
// the call (or calls) finish.
|
||||
//
|
||||
// Note: to guarantee best results, either:
|
||||
// 1. make sure 'num_nodes' >= 'width'
|
||||
// or 2. call stbrp_allow_out_of_mem() defined below with 'allow_out_of_mem = 1'
|
||||
//
|
||||
// If you don't do either of the above things, widths will be quantized to multiples
|
||||
// of small integers to guarantee the algorithm doesn't run out of temporary storage.
|
||||
//
|
||||
// If you do #2, then the non-quantized algorithm will be used, but the algorithm
|
||||
// may run out of temporary storage and be unable to pack some rectangles.
|
||||
|
||||
STBRP_DEF void stbrp_setup_allow_out_of_mem (stbrp_context *context, int allow_out_of_mem);
|
||||
// Optionally call this function after init but before doing any packing to
|
||||
// change the handling of the out-of-temp-memory scenario, described above.
|
||||
// If you call init again, this will be reset to the default (false).
|
||||
|
||||
|
||||
STBRP_DEF void stbrp_setup_heuristic (stbrp_context *context, int heuristic);
|
||||
// Optionally select which packing heuristic the library should use. Different
|
||||
// heuristics will produce better/worse results for different data sets.
|
||||
// If you call init again, this will be reset to the default.
|
||||
|
||||
enum
|
||||
{
|
||||
STBRP_HEURISTIC_Skyline_default=0,
|
||||
STBRP_HEURISTIC_Skyline_BL_sortHeight = STBRP_HEURISTIC_Skyline_default,
|
||||
STBRP_HEURISTIC_Skyline_BF_sortHeight
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// the details of the following structures don't matter to you, but they must
|
||||
// be visible so you can handle the memory allocations for them
|
||||
|
||||
struct stbrp_node
|
||||
{
|
||||
stbrp_coord x,y;
|
||||
stbrp_node *next;
|
||||
};
|
||||
|
||||
struct stbrp_context
|
||||
{
|
||||
int width;
|
||||
int height;
|
||||
int align;
|
||||
int init_mode;
|
||||
int heuristic;
|
||||
int num_nodes;
|
||||
stbrp_node *active_head;
|
||||
stbrp_node *free_head;
|
||||
stbrp_node extra[2]; // we allocate two extra nodes so optimal user-node-count is 'width' not 'width+2'
|
||||
};
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPLEMENTATION SECTION
|
||||
//
|
||||
|
||||
#ifdef STB_RECT_PACK_IMPLEMENTATION
|
||||
#ifndef STBRP_SORT
|
||||
#include <stdlib.h>
|
||||
#define STBRP_SORT qsort
|
||||
#endif
|
||||
|
||||
#ifndef STBRP_ASSERT
|
||||
#include <assert.h>
|
||||
#define STBRP_ASSERT assert
|
||||
#endif
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#define STBRP__NOTUSED(v) (void)(v)
|
||||
#define STBRP__CDECL __cdecl
|
||||
#else
|
||||
#define STBRP__NOTUSED(v) (void)sizeof(v)
|
||||
#define STBRP__CDECL
|
||||
#endif
|
||||
|
||||
enum
|
||||
{
|
||||
STBRP__INIT_skyline = 1
|
||||
};
|
||||
|
||||
STBRP_DEF void stbrp_setup_heuristic(stbrp_context *context, int heuristic)
|
||||
{
|
||||
switch (context->init_mode) {
|
||||
case STBRP__INIT_skyline:
|
||||
STBRP_ASSERT(heuristic == STBRP_HEURISTIC_Skyline_BL_sortHeight || heuristic == STBRP_HEURISTIC_Skyline_BF_sortHeight);
|
||||
context->heuristic = heuristic;
|
||||
break;
|
||||
default:
|
||||
STBRP_ASSERT(0);
|
||||
}
|
||||
}
|
||||
|
||||
STBRP_DEF void stbrp_setup_allow_out_of_mem(stbrp_context *context, int allow_out_of_mem)
|
||||
{
|
||||
if (allow_out_of_mem)
|
||||
// if it's ok to run out of memory, then don't bother aligning them;
|
||||
// this gives better packing, but may fail due to OOM (even though
|
||||
// the rectangles easily fit). @TODO a smarter approach would be to only
|
||||
// quantize once we've hit OOM, then we could get rid of this parameter.
|
||||
context->align = 1;
|
||||
else {
|
||||
// if it's not ok to run out of memory, then quantize the widths
|
||||
// so that num_nodes is always enough nodes.
|
||||
//
|
||||
// I.e. num_nodes * align >= width
|
||||
// align >= width / num_nodes
|
||||
// align = ceil(width/num_nodes)
|
||||
|
||||
context->align = (context->width + context->num_nodes-1) / context->num_nodes;
|
||||
}
|
||||
}
|
||||
|
||||
STBRP_DEF void stbrp_init_target(stbrp_context *context, int width, int height, stbrp_node *nodes, int num_nodes)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i=0; i < num_nodes-1; ++i)
|
||||
nodes[i].next = &nodes[i+1];
|
||||
nodes[i].next = NULL;
|
||||
context->init_mode = STBRP__INIT_skyline;
|
||||
context->heuristic = STBRP_HEURISTIC_Skyline_default;
|
||||
context->free_head = &nodes[0];
|
||||
context->active_head = &context->extra[0];
|
||||
context->width = width;
|
||||
context->height = height;
|
||||
context->num_nodes = num_nodes;
|
||||
stbrp_setup_allow_out_of_mem(context, 0);
|
||||
|
||||
// node 0 is the full width, node 1 is the sentinel (lets us not store width explicitly)
|
||||
context->extra[0].x = 0;
|
||||
context->extra[0].y = 0;
|
||||
context->extra[0].next = &context->extra[1];
|
||||
context->extra[1].x = (stbrp_coord) width;
|
||||
context->extra[1].y = (1<<30);
|
||||
context->extra[1].next = NULL;
|
||||
}
|
||||
|
||||
// find minimum y position if it starts at x1
|
||||
static int stbrp__skyline_find_min_y(stbrp_context *c, stbrp_node *first, int x0, int width, int *pwaste)
|
||||
{
|
||||
stbrp_node *node = first;
|
||||
int x1 = x0 + width;
|
||||
int min_y, visited_width, waste_area;
|
||||
|
||||
STBRP__NOTUSED(c);
|
||||
|
||||
STBRP_ASSERT(first->x <= x0);
|
||||
|
||||
#if 0
|
||||
// skip in case we're past the node
|
||||
while (node->next->x <= x0)
|
||||
++node;
|
||||
#else
|
||||
STBRP_ASSERT(node->next->x > x0); // we ended up handling this in the caller for efficiency
|
||||
#endif
|
||||
|
||||
STBRP_ASSERT(node->x <= x0);
|
||||
|
||||
min_y = 0;
|
||||
waste_area = 0;
|
||||
visited_width = 0;
|
||||
while (node->x < x1) {
|
||||
if (node->y > min_y) {
|
||||
// raise min_y higher.
|
||||
// we've accounted for all waste up to min_y,
|
||||
// but we'll now add more waste for everything we've visted
|
||||
waste_area += visited_width * (node->y - min_y);
|
||||
min_y = node->y;
|
||||
// the first time through, visited_width might be reduced
|
||||
if (node->x < x0)
|
||||
visited_width += node->next->x - x0;
|
||||
else
|
||||
visited_width += node->next->x - node->x;
|
||||
} else {
|
||||
// add waste area
|
||||
int under_width = node->next->x - node->x;
|
||||
if (under_width + visited_width > width)
|
||||
under_width = width - visited_width;
|
||||
waste_area += under_width * (min_y - node->y);
|
||||
visited_width += under_width;
|
||||
}
|
||||
node = node->next;
|
||||
}
|
||||
|
||||
*pwaste = waste_area;
|
||||
return min_y;
|
||||
}
|
||||
|
||||
typedef struct
|
||||
{
|
||||
int x,y;
|
||||
stbrp_node **prev_link;
|
||||
} stbrp__findresult;
|
||||
|
||||
static stbrp__findresult stbrp__skyline_find_best_pos(stbrp_context *c, int width, int height)
|
||||
{
|
||||
int best_waste = (1<<30), best_x, best_y = (1 << 30);
|
||||
stbrp__findresult fr;
|
||||
stbrp_node **prev, *node, *tail, **best = NULL;
|
||||
|
||||
// align to multiple of c->align
|
||||
width = (width + c->align - 1);
|
||||
width -= width % c->align;
|
||||
STBRP_ASSERT(width % c->align == 0);
|
||||
|
||||
// if it can't possibly fit, bail immediately
|
||||
if (width > c->width || height > c->height) {
|
||||
fr.prev_link = NULL;
|
||||
fr.x = fr.y = 0;
|
||||
return fr;
|
||||
}
|
||||
|
||||
node = c->active_head;
|
||||
prev = &c->active_head;
|
||||
while (node->x + width <= c->width) {
|
||||
int y,waste;
|
||||
y = stbrp__skyline_find_min_y(c, node, node->x, width, &waste);
|
||||
if (c->heuristic == STBRP_HEURISTIC_Skyline_BL_sortHeight) { // actually just want to test BL
|
||||
// bottom left
|
||||
if (y < best_y) {
|
||||
best_y = y;
|
||||
best = prev;
|
||||
}
|
||||
} else {
|
||||
// best-fit
|
||||
if (y + height <= c->height) {
|
||||
// can only use it if it first vertically
|
||||
if (y < best_y || (y == best_y && waste < best_waste)) {
|
||||
best_y = y;
|
||||
best_waste = waste;
|
||||
best = prev;
|
||||
}
|
||||
}
|
||||
}
|
||||
prev = &node->next;
|
||||
node = node->next;
|
||||
}
|
||||
|
||||
best_x = (best == NULL) ? 0 : (*best)->x;
|
||||
|
||||
// if doing best-fit (BF), we also have to try aligning right edge to each node position
|
||||
//
|
||||
// e.g, if fitting
|
||||
//
|
||||
// ____________________
|
||||
// |____________________|
|
||||
//
|
||||
// into
|
||||
//
|
||||
// | |
|
||||
// | ____________|
|
||||
// |____________|
|
||||
//
|
||||
// then right-aligned reduces waste, but bottom-left BL is always chooses left-aligned
|
||||
//
|
||||
// This makes BF take about 2x the time
|
||||
|
||||
if (c->heuristic == STBRP_HEURISTIC_Skyline_BF_sortHeight) {
|
||||
tail = c->active_head;
|
||||
node = c->active_head;
|
||||
prev = &c->active_head;
|
||||
// find first node that's admissible
|
||||
while (tail->x < width)
|
||||
tail = tail->next;
|
||||
while (tail) {
|
||||
int xpos = tail->x - width;
|
||||
int y,waste;
|
||||
STBRP_ASSERT(xpos >= 0);
|
||||
// find the left position that matches this
|
||||
while (node->next->x <= xpos) {
|
||||
prev = &node->next;
|
||||
node = node->next;
|
||||
}
|
||||
STBRP_ASSERT(node->next->x > xpos && node->x <= xpos);
|
||||
y = stbrp__skyline_find_min_y(c, node, xpos, width, &waste);
|
||||
if (y + height <= c->height) {
|
||||
if (y <= best_y) {
|
||||
if (y < best_y || waste < best_waste || (waste==best_waste && xpos < best_x)) {
|
||||
best_x = xpos;
|
||||
//STBRP_ASSERT(y <= best_y); [DEAR IMGUI]
|
||||
best_y = y;
|
||||
best_waste = waste;
|
||||
best = prev;
|
||||
}
|
||||
}
|
||||
}
|
||||
tail = tail->next;
|
||||
}
|
||||
}
|
||||
|
||||
fr.prev_link = best;
|
||||
fr.x = best_x;
|
||||
fr.y = best_y;
|
||||
return fr;
|
||||
}
|
||||
|
||||
static stbrp__findresult stbrp__skyline_pack_rectangle(stbrp_context *context, int width, int height)
|
||||
{
|
||||
// find best position according to heuristic
|
||||
stbrp__findresult res = stbrp__skyline_find_best_pos(context, width, height);
|
||||
stbrp_node *node, *cur;
|
||||
|
||||
// bail if:
|
||||
// 1. it failed
|
||||
// 2. the best node doesn't fit (we don't always check this)
|
||||
// 3. we're out of memory
|
||||
if (res.prev_link == NULL || res.y + height > context->height || context->free_head == NULL) {
|
||||
res.prev_link = NULL;
|
||||
return res;
|
||||
}
|
||||
|
||||
// on success, create new node
|
||||
node = context->free_head;
|
||||
node->x = (stbrp_coord) res.x;
|
||||
node->y = (stbrp_coord) (res.y + height);
|
||||
|
||||
context->free_head = node->next;
|
||||
|
||||
// insert the new node into the right starting point, and
|
||||
// let 'cur' point to the remaining nodes needing to be
|
||||
// stiched back in
|
||||
|
||||
cur = *res.prev_link;
|
||||
if (cur->x < res.x) {
|
||||
// preserve the existing one, so start testing with the next one
|
||||
stbrp_node *next = cur->next;
|
||||
cur->next = node;
|
||||
cur = next;
|
||||
} else {
|
||||
*res.prev_link = node;
|
||||
}
|
||||
|
||||
// from here, traverse cur and free the nodes, until we get to one
|
||||
// that shouldn't be freed
|
||||
while (cur->next && cur->next->x <= res.x + width) {
|
||||
stbrp_node *next = cur->next;
|
||||
// move the current node to the free list
|
||||
cur->next = context->free_head;
|
||||
context->free_head = cur;
|
||||
cur = next;
|
||||
}
|
||||
|
||||
// stitch the list back in
|
||||
node->next = cur;
|
||||
|
||||
if (cur->x < res.x + width)
|
||||
cur->x = (stbrp_coord) (res.x + width);
|
||||
|
||||
#ifdef _DEBUG
|
||||
cur = context->active_head;
|
||||
while (cur->x < context->width) {
|
||||
STBRP_ASSERT(cur->x < cur->next->x);
|
||||
cur = cur->next;
|
||||
}
|
||||
STBRP_ASSERT(cur->next == NULL);
|
||||
|
||||
{
|
||||
int count=0;
|
||||
cur = context->active_head;
|
||||
while (cur) {
|
||||
cur = cur->next;
|
||||
++count;
|
||||
}
|
||||
cur = context->free_head;
|
||||
while (cur) {
|
||||
cur = cur->next;
|
||||
++count;
|
||||
}
|
||||
STBRP_ASSERT(count == context->num_nodes+2);
|
||||
}
|
||||
#endif
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
static int STBRP__CDECL rect_height_compare(const void *a, const void *b)
|
||||
{
|
||||
const stbrp_rect *p = (const stbrp_rect *) a;
|
||||
const stbrp_rect *q = (const stbrp_rect *) b;
|
||||
if (p->h > q->h)
|
||||
return -1;
|
||||
if (p->h < q->h)
|
||||
return 1;
|
||||
return (p->w > q->w) ? -1 : (p->w < q->w);
|
||||
}
|
||||
|
||||
static int STBRP__CDECL rect_original_order(const void *a, const void *b)
|
||||
{
|
||||
const stbrp_rect *p = (const stbrp_rect *) a;
|
||||
const stbrp_rect *q = (const stbrp_rect *) b;
|
||||
return (p->was_packed < q->was_packed) ? -1 : (p->was_packed > q->was_packed);
|
||||
}
|
||||
|
||||
STBRP_DEF int stbrp_pack_rects(stbrp_context *context, stbrp_rect *rects, int num_rects)
|
||||
{
|
||||
int i, all_rects_packed = 1;
|
||||
|
||||
// we use the 'was_packed' field internally to allow sorting/unsorting
|
||||
for (i=0; i < num_rects; ++i) {
|
||||
rects[i].was_packed = i;
|
||||
}
|
||||
|
||||
// sort according to heuristic
|
||||
STBRP_SORT(rects, num_rects, sizeof(rects[0]), rect_height_compare);
|
||||
|
||||
for (i=0; i < num_rects; ++i) {
|
||||
if (rects[i].w == 0 || rects[i].h == 0) {
|
||||
rects[i].x = rects[i].y = 0; // empty rect needs no space
|
||||
} else {
|
||||
stbrp__findresult fr = stbrp__skyline_pack_rectangle(context, rects[i].w, rects[i].h);
|
||||
if (fr.prev_link) {
|
||||
rects[i].x = (stbrp_coord) fr.x;
|
||||
rects[i].y = (stbrp_coord) fr.y;
|
||||
} else {
|
||||
rects[i].x = rects[i].y = STBRP__MAXVAL;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// unsort
|
||||
STBRP_SORT(rects, num_rects, sizeof(rects[0]), rect_original_order);
|
||||
|
||||
// set was_packed flags and all_rects_packed status
|
||||
for (i=0; i < num_rects; ++i) {
|
||||
rects[i].was_packed = !(rects[i].x == STBRP__MAXVAL && rects[i].y == STBRP__MAXVAL);
|
||||
if (!rects[i].was_packed)
|
||||
all_rects_packed = 0;
|
||||
}
|
||||
|
||||
// return the all_rects_packed status
|
||||
return all_rects_packed;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
------------------------------------------------------------------------------
|
||||
This software is available under 2 licenses -- choose whichever you prefer.
|
||||
------------------------------------------------------------------------------
|
||||
ALTERNATIVE A - MIT License
|
||||
Copyright (c) 2017 Sean Barrett
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||||
this software and associated documentation files (the "Software"), to deal in
|
||||
the Software without restriction, including without limitation the rights to
|
||||
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
||||
of the Software, and to permit persons to whom the Software is furnished to do
|
||||
so, subject to the following conditions:
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
------------------------------------------------------------------------------
|
||||
ALTERNATIVE B - Public Domain (www.unlicense.org)
|
||||
This is free and unencumbered software released into the public domain.
|
||||
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
|
||||
software, either in source code form or as a compiled binary, for any purpose,
|
||||
commercial or non-commercial, and by any means.
|
||||
In jurisdictions that recognize copyright laws, the author or authors of this
|
||||
software dedicate any and all copyright interest in the software to the public
|
||||
domain. We make this dedication for the benefit of the public at large and to
|
||||
the detriment of our heirs and successors. We intend this dedication to be an
|
||||
overt act of relinquishment in perpetuity of all present and future rights to
|
||||
this software under copyright law.
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||||
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
||||
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
------------------------------------------------------------------------------
|
||||
*/
|
1469
lib/imgui/imstb_textedit.h
Normal file
1469
lib/imgui/imstb_textedit.h
Normal file
File diff suppressed because it is too large
Load Diff
5085
lib/imgui/imstb_truetype.h
Normal file
5085
lib/imgui/imstb_truetype.h
Normal file
File diff suppressed because it is too large
Load Diff
18676
lib/vk_mem_alloc.h
Normal file
18676
lib/vk_mem_alloc.h
Normal file
File diff suppressed because it is too large
Load Diff
3221
lib/volk.c
Normal file
3221
lib/volk.c
Normal file
File diff suppressed because it is too large
Load Diff
2089
lib/volk.h
Normal file
2089
lib/volk.h
Normal file
File diff suppressed because it is too large
Load Diff
124
src/agnosiaimgui.cpp
Normal file
124
src/agnosiaimgui.cpp
Normal file
@@ -0,0 +1,124 @@
|
||||
#include "agnosiaimgui.h"
|
||||
#include "devicelibrary.h"
|
||||
#include "entrypoint.h"
|
||||
#include "graphics/buffers.h"
|
||||
#include "graphics/graphicspipeline.h"
|
||||
#include "graphics/texture.h"
|
||||
#include "imgui.h"
|
||||
#include "imgui_impl_glfw.h"
|
||||
#include "imgui_impl_vulkan.h"
|
||||
#include <glm/gtc/type_ptr.hpp>
|
||||
#include <stdexcept>
|
||||
|
||||
VkDescriptorPool imGuiDescriptorPool;
|
||||
|
||||
void initImGuiWindow() {
|
||||
if (ImGui::TreeNode("Model Transforms")) {
|
||||
for (Model *model : Model::getInstances()) {
|
||||
|
||||
ImGui::DragFloat3(model->getID().c_str(),
|
||||
const_cast<float *>(glm::value_ptr(model->getPos())));
|
||||
}
|
||||
ImGui::TreePop();
|
||||
}
|
||||
|
||||
ImGui::DragFloat3("Camera Position", Graphics::getCamPos());
|
||||
ImGui::DragFloat3("Light Position", Graphics::getLightPos());
|
||||
ImGui::DragFloat3("Center Position", Graphics::getCenterPos());
|
||||
ImGui::DragFloat("Depth of Field", &Graphics::getDepthField(), 0.1f, 1.0f,
|
||||
180.0f, NULL, ImGuiSliderFlags_AlwaysClamp);
|
||||
ImGui::DragFloat2("Near and Far fields", Graphics::getDistanceField());
|
||||
}
|
||||
|
||||
void drawTabs() {
|
||||
if (ImGui::BeginTabBar("MainTabBar", ImGuiTabBarFlags_Reorderable)) {
|
||||
if (ImGui::BeginTabItem("Transforms Control")) {
|
||||
initImGuiWindow();
|
||||
ImGui::EndTabItem();
|
||||
}
|
||||
|
||||
ImGui::EndTabBar();
|
||||
}
|
||||
}
|
||||
|
||||
void Gui::drawImGui() {
|
||||
|
||||
ImGui_ImplVulkan_NewFrame();
|
||||
ImGui_ImplGlfw_NewFrame();
|
||||
ImGui::NewFrame();
|
||||
|
||||
ImGui::Begin("Agnosia Debug");
|
||||
|
||||
ImGui::Text("Application average %.3f ms/frame (%.1f FPS)",
|
||||
1000.0f / ImGui::GetIO().Framerate, ImGui::GetIO().Framerate);
|
||||
|
||||
drawTabs();
|
||||
|
||||
ImGui::End();
|
||||
|
||||
ImGui::Render();
|
||||
}
|
||||
|
||||
void Gui::initImgui(VkInstance instance) {
|
||||
auto load_vk_func = [&](const char *fn) {
|
||||
if (auto proc = vkGetDeviceProcAddr(DeviceControl::getDevice(), fn))
|
||||
return proc;
|
||||
return vkGetInstanceProcAddr(instance, fn);
|
||||
};
|
||||
ImGui_ImplVulkan_LoadFunctions(
|
||||
[](const char *fn, void *data) {
|
||||
return (*(decltype(load_vk_func) *)data)(fn);
|
||||
},
|
||||
&load_vk_func);
|
||||
|
||||
IMGUI_CHECKVERSION();
|
||||
ImGui::CreateContext();
|
||||
// TODO
|
||||
ImGuiIO &io = ImGui::GetIO();
|
||||
(void)io;
|
||||
io.ConfigFlags |= ImGuiConfigFlags_NavEnableKeyboard;
|
||||
|
||||
ImGui::StyleColorsDark();
|
||||
|
||||
ImGui_ImplGlfw_InitForVulkan(EntryApp::getWindow(), true);
|
||||
|
||||
VkDescriptorPoolSize ImGuiPoolSizes[]{
|
||||
{VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1},
|
||||
};
|
||||
VkDescriptorPoolCreateInfo ImGuiPoolInfo{
|
||||
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
|
||||
.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT,
|
||||
.maxSets = 1,
|
||||
.poolSizeCount = 1,
|
||||
.pPoolSizes = ImGuiPoolSizes,
|
||||
};
|
||||
if (vkCreateDescriptorPool(DeviceControl::getDevice(), &ImGuiPoolInfo,
|
||||
nullptr, &imGuiDescriptorPool) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create ImGui descriptor pool!");
|
||||
}
|
||||
|
||||
VkPipelineRenderingCreateInfo pipelineRenderingCreateInfo{
|
||||
.sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO,
|
||||
.colorAttachmentCount = 1,
|
||||
.pColorAttachmentFormats = &DeviceControl::getImageFormat(),
|
||||
.depthAttachmentFormat = Texture::findDepthFormat(),
|
||||
};
|
||||
|
||||
ImGui_ImplVulkan_InitInfo initInfo{
|
||||
.Instance = instance,
|
||||
.PhysicalDevice = DeviceControl::getPhysicalDevice(),
|
||||
.Device = DeviceControl::getDevice(),
|
||||
.QueueFamily =
|
||||
DeviceControl::findQueueFamilies(DeviceControl::getPhysicalDevice())
|
||||
.graphicsFamily.value(),
|
||||
.Queue = DeviceControl::getGraphicsQueue(),
|
||||
.DescriptorPool = imGuiDescriptorPool,
|
||||
.MinImageCount = Buffers::getMaxFramesInFlight(),
|
||||
.ImageCount = Buffers::getMaxFramesInFlight(),
|
||||
.MSAASamples = DeviceControl::getPerPixelSampleCount(),
|
||||
.UseDynamicRendering = true,
|
||||
.PipelineRenderingCreateInfo = pipelineRenderingCreateInfo,
|
||||
};
|
||||
|
||||
ImGui_ImplVulkan_Init(&initInfo);
|
||||
}
|
8
src/agnosiaimgui.h
Normal file
8
src/agnosiaimgui.h
Normal file
@@ -0,0 +1,8 @@
|
||||
#pragma once
|
||||
#include "volk.h"
|
||||
|
||||
class Gui {
|
||||
public:
|
||||
static void drawImGui();
|
||||
static void initImgui(VkInstance instance);
|
||||
};
|
@@ -1,151 +0,0 @@
|
||||
#include "vulkandebuglibs.h"
|
||||
using namespace Debug;
|
||||
|
||||
// This is our messenger object! It handles passing along debug messages to the debug callback we will also set.
|
||||
VkDebugUtilsMessengerEXT debugMessenger;
|
||||
// This is the set of "layers" to hook into. Basically, layers are used to tell the messenger what data we want, its a filter. *validation* is the general blanket layer to cover incorrect usage.
|
||||
|
||||
std::vector<const char*> getRequiredExtensions() {
|
||||
// This gets a little weird, Vulkan is platform agnostic, so you need to figure out what extensions to interface with the current system are needed
|
||||
// So, to figure out what extension codes and how many to use, feed the pointer into *glfwGetRequiredInstanceExtensions*, which will get the necessary extensions!
|
||||
// From there, we can send that over to our createInfo Vulkan info struct to make it fully platform agnostic!
|
||||
uint32_t glfwExtensionCount = 0;
|
||||
const char** glfwExtensions;
|
||||
glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
|
||||
|
||||
std::vector<const char*> extensions(glfwExtensions, glfwExtensions + glfwExtensionCount);
|
||||
|
||||
if(Global::enableValidationLayers) {
|
||||
extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
|
||||
}
|
||||
return extensions;
|
||||
}
|
||||
|
||||
static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(
|
||||
VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
|
||||
VkDebugUtilsMessageTypeFlagsEXT messageType,
|
||||
const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData,
|
||||
void* pUserData) {
|
||||
// One hell of a function, this is using the *PFN_vkDestroyDebugUtilsMessengerEXT* prototype, the prototype for an, "Application-defined debug messenger callback function".
|
||||
// The VKAPI_CALL and VKAPI_ATTR ensure that the function has the right signature for vulkan to call it. The callback message can be anything from a diagnostic to error!
|
||||
// You can even sort by those diagnostics with their flags, since they are just integers, maybe TODO?
|
||||
std::cerr << "Validation layer: " << pCallbackData->pMessage << std::endl;
|
||||
std::cout << "\n";
|
||||
|
||||
return VK_FALSE;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void populateDebugMessengerCreateInfo(VkDebugUtilsMessengerCreateInfoEXT& createInfo) {
|
||||
// There is absolutely nothing about this i like, those long ass flags for messageType and Severity are just fucking hex values. Khronos should never cook again ToT
|
||||
// On a serious note, this is just a struct to define the parameters of the debug messenger, nothing super special.
|
||||
createInfo = {};
|
||||
createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
|
||||
createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
|
||||
createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
|
||||
createInfo.pfnUserCallback = debugCallback;
|
||||
createInfo.pUserData = nullptr; // Optional
|
||||
}
|
||||
|
||||
void vulkandebuglibs::vulkanDebugSetup(VkInstanceCreateInfo& createInfo, VkInstance& instance) {
|
||||
// This function is quite useful, we first populate the debug create info structure, all the parameters dictating how the debug messenger will operate.
|
||||
// The reason we populate the debug messenger so late is actually on purpose, we need to set the createInfo, which depends on the debugMessenger info,
|
||||
// and if we set it before the creation of the instance, we cant debug vkCreateInstance or vkDestroyInstance! It's timed perfectly as of now.
|
||||
VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo{};
|
||||
auto extensions = getRequiredExtensions();
|
||||
createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
|
||||
createInfo.ppEnabledExtensionNames = extensions.data();
|
||||
|
||||
if(Global::enableValidationLayers) {
|
||||
createInfo.enabledLayerCount = static_cast<uint32_t>(Global::validationLayers.size());
|
||||
createInfo.ppEnabledLayerNames = Global::validationLayers.data();
|
||||
|
||||
populateDebugMessengerCreateInfo(debugCreateInfo);
|
||||
createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXT*) &debugCreateInfo;
|
||||
|
||||
} else {
|
||||
createInfo.enabledLayerCount = 0;
|
||||
createInfo.pNext = nullptr;
|
||||
}
|
||||
|
||||
if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create instance!");
|
||||
}
|
||||
}
|
||||
|
||||
void vulkandebuglibs::checkUnavailableValidationLayers() {
|
||||
// Check if we are trying to hook validation layers in without support.
|
||||
if(Global::enableValidationLayers && !checkValidationLayerSupport()) {
|
||||
throw std::runtime_error("Validation layers request, but not available! Are your SDK path variables set?");
|
||||
}
|
||||
}
|
||||
|
||||
bool vulkandebuglibs::checkValidationLayerSupport() {
|
||||
// This function is used to check Validation Layer Support, validation layers are the debug trace tools in the Vulkan SDK.
|
||||
// layerCount will be used as the var to keep track of the number of requested validation layer
|
||||
// VkLayerProperties is a structure with data on the layername, desc, versions and etc.
|
||||
|
||||
uint32_t layerCount;
|
||||
vkEnumerateInstanceLayerProperties(&layerCount, nullptr);
|
||||
|
||||
std::vector<VkLayerProperties> availableLayers(layerCount);
|
||||
vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());
|
||||
|
||||
for(const char* layerName : Global::validationLayers) {
|
||||
bool layerFound = false;
|
||||
|
||||
for(const auto& layerProperties : availableLayers) {
|
||||
if(strcmp(layerName, layerProperties.layerName) == 0) {
|
||||
layerFound = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if(!layerFound) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
VkResult CreateDebugUtilsMessengerEXT(
|
||||
VkInstance instance,
|
||||
const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo,
|
||||
const VkAllocationCallbacks* pAllocator,
|
||||
VkDebugUtilsMessengerEXT* pDebugMessenger) {
|
||||
// This function builds out debug messenger structure!
|
||||
// It's a little odd, we have to look up the address of the vkCreateDebugUtilsMessengerEXT ourselves because its an extension function,
|
||||
// therefore, not auto-loaded.
|
||||
|
||||
auto func = (PFN_vkCreateDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT");
|
||||
if (func != nullptr) {
|
||||
return func(instance, pCreateInfo, pAllocator, pDebugMessenger);
|
||||
} else {
|
||||
return VK_ERROR_EXTENSION_NOT_PRESENT;
|
||||
}
|
||||
}
|
||||
|
||||
void vulkandebuglibs::DestroyDebugUtilsMessengerEXT(VkInstance instance,
|
||||
const VkAllocationCallbacks* pAllocator) {
|
||||
// We are doing kind of the same thing as before in the create function, find the address of the DestroyDebugUtils function, and call it.
|
||||
|
||||
auto func = (PFN_vkDestroyDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkDestroyDebugUtilsMessengerEXT");
|
||||
if(func != nullptr) {
|
||||
func(instance, debugMessenger, pAllocator);
|
||||
}
|
||||
}
|
||||
|
||||
void vulkandebuglibs::setupDebugMessenger(VkInstance& vulkanInstance) {
|
||||
// This is a pretty simple function! we just pass in the values to build the debug messenger, populate the structure with the data we want,
|
||||
// and safely create it, covering for runtime errors as per usual, this is the first thing that will be called!
|
||||
if(!Global::enableValidationLayers) return;
|
||||
|
||||
VkDebugUtilsMessengerCreateInfoEXT createInfo;
|
||||
populateDebugMessengerCreateInfo(createInfo);
|
||||
|
||||
if(CreateDebugUtilsMessengerEXT(vulkanInstance, &createInfo, nullptr, &debugMessenger) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to set up the Debug Messenger!");
|
||||
}
|
||||
}
|
||||
|
@@ -1,17 +0,0 @@
|
||||
#pragma once
|
||||
#include <vulkan/vulkan_core.h>
|
||||
#include <cstdint>
|
||||
#include <cstring>
|
||||
#include "../global.h"
|
||||
|
||||
namespace Debug {
|
||||
class vulkandebuglibs {
|
||||
|
||||
public:
|
||||
void vulkanDebugSetup(VkInstanceCreateInfo& createInfo, VkInstance& instance);
|
||||
bool checkValidationLayerSupport();
|
||||
void checkUnavailableValidationLayers();
|
||||
void setupDebugMessenger(VkInstance& vulkanInstance);
|
||||
void DestroyDebugUtilsMessengerEXT(VkInstance instance, const VkAllocationCallbacks* pAllocator);
|
||||
};
|
||||
}
|
@@ -1,337 +1,496 @@
|
||||
#include "devicelibrary.h"
|
||||
#include "global.h"
|
||||
#include <algorithm>
|
||||
#include <limits>
|
||||
#include <set>
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
|
||||
VkPhysicalDeviceProperties deviceProperties;
|
||||
VkDevice device;
|
||||
VkSurfaceKHR surface;
|
||||
VkQueue graphicsQueue;
|
||||
VkQueue presentQueue;
|
||||
VkPhysicalDevice physicalDevice;
|
||||
VkSampleCountFlagBits perPixelSampleCount;
|
||||
|
||||
namespace DeviceControl {
|
||||
VkSwapchainKHR swapChain;
|
||||
std::vector<VkImage> swapChainImages;
|
||||
std::vector<VkImageView> swapChainImageViews;
|
||||
VkFormat swapChainImageFormat;
|
||||
VkExtent2D swapChainExtent;
|
||||
|
||||
struct SwapChainSupportDetails {
|
||||
VkSurfaceCapabilitiesKHR capabilities;
|
||||
std::vector<VkSurfaceFormatKHR> formats;
|
||||
std::vector<VkPresentModeKHR> presentModes;
|
||||
};
|
||||
const std::vector<const char *> deviceExtensions = {
|
||||
VK_KHR_SWAPCHAIN_EXTENSION_NAME,
|
||||
VK_KHR_DYNAMIC_RENDERING_EXTENSION_NAME,
|
||||
};
|
||||
|
||||
VkPhysicalDeviceProperties deviceProperties;
|
||||
VkPhysicalDeviceFeatures deviceFeatures;
|
||||
DeviceControl::QueueFamilyIndices
|
||||
DeviceControl::findQueueFamilies(VkPhysicalDevice device) {
|
||||
// First we feed in a integer we want to use to hold the number of queued
|
||||
// items, that fills it, then we create that amount of default constructed
|
||||
// *VkQueueFamilyProperties* structs. These store the flags, the amount of
|
||||
// queued items in the family, and timestamp data. Queue families are simply
|
||||
// group collections of tasks we want to get done. Next, we check the flags of
|
||||
// the queueFamily item, use a bitwise and to see if they match, i.e. support
|
||||
// graphical operations, then return that to notify that we have at least one
|
||||
// family that supports VK_QUEUE_GRAPHICS_BIT. Which means this device
|
||||
// supports graphical operations! We also do the same thing for window
|
||||
// presentation, just check to see if its supported.
|
||||
DeviceControl::QueueFamilyIndices indices;
|
||||
uint32_t queueFamilyCount = 0;
|
||||
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);
|
||||
|
||||
std::vector<VkImage> swapChainImages;
|
||||
VkFormat swapChainImageFormat;
|
||||
VkExtent2D swapChainExtent;
|
||||
std::vector<VkImageView> swapChainImageViews;
|
||||
std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
|
||||
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount,
|
||||
queueFamilies.data());
|
||||
|
||||
|
||||
|
||||
struct SwapChainSupportDetails {
|
||||
VkSurfaceCapabilitiesKHR capabilities;
|
||||
std::vector<VkSurfaceFormatKHR> formats;
|
||||
std::vector<VkPresentModeKHR> presentModes;
|
||||
};
|
||||
const std::vector<const char*> deviceExtensions = {
|
||||
VK_KHR_SWAPCHAIN_EXTENSION_NAME
|
||||
};
|
||||
SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) {
|
||||
|
||||
// Swap chains are weird ngl, it's another one of those Vulkan platform agnosticity. The swapchain is basically a wrapper for GDI+, DXGI, X11, Wayland, etc.
|
||||
// It lets us use the swap chain rather than create a different framebuffer handler for every targeted platform.
|
||||
// Swap chains handle the ownership of buffers before sending them to the presentation engine.
|
||||
// (still no fucking clue how it works though)
|
||||
SwapChainSupportDetails details;
|
||||
|
||||
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, Global::surface, &details.capabilities);
|
||||
|
||||
uint32_t formatCount;
|
||||
vkGetPhysicalDeviceSurfaceFormatsKHR(device, Global::surface, &formatCount, nullptr);
|
||||
|
||||
if(formatCount != 0) {
|
||||
details.formats.resize(formatCount);
|
||||
vkGetPhysicalDeviceSurfaceFormatsKHR(device, Global::surface, &formatCount, details.formats.data());
|
||||
int i = 0;
|
||||
for (const auto &queueFamily : queueFamilies) {
|
||||
if (queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
|
||||
indices.graphicsFamily = i;
|
||||
}
|
||||
|
||||
uint32_t presentModeCount;
|
||||
vkGetPhysicalDeviceSurfacePresentModesKHR(device, Global::surface, &presentModeCount, details.presentModes.data());
|
||||
|
||||
if(presentModeCount != 0) {
|
||||
details.presentModes.resize(presentModeCount);
|
||||
vkGetPhysicalDeviceSurfacePresentModesKHR(device, Global::surface, &presentModeCount, details.presentModes.data());
|
||||
VkBool32 presentSupport = false;
|
||||
vkGetPhysicalDeviceSurfaceSupportKHR(device, i, DeviceControl::getSurface(),
|
||||
&presentSupport);
|
||||
if (presentSupport) {
|
||||
indices.presentFamily = i;
|
||||
}
|
||||
|
||||
return details;
|
||||
|
||||
if (indices.isComplete()) {
|
||||
break;
|
||||
}
|
||||
i++;
|
||||
}
|
||||
return indices;
|
||||
}
|
||||
SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) {
|
||||
|
||||
/* Swap chains are weird ngl, it's another one of those Vulkan platform
|
||||
agnosticity. The swapchain is basically a wrapper for GDI+, DXGI, X11,
|
||||
Wayland, etc. It lets us use the swap chain rather than create a different
|
||||
framebuffer handler for every targeted platform. Swap chains handle the
|
||||
ownership of buffers before sending them to the presentation engine. (still
|
||||
no fucking clue how it works though) */
|
||||
SwapChainSupportDetails details;
|
||||
|
||||
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface,
|
||||
&details.capabilities);
|
||||
|
||||
uint32_t formatCount;
|
||||
vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr);
|
||||
|
||||
if (formatCount != 0) {
|
||||
details.formats.resize(formatCount);
|
||||
vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount,
|
||||
details.formats.data());
|
||||
}
|
||||
|
||||
bool checkDeviceExtensionSupport(VkPhysicalDevice device) {
|
||||
uint32_t extensionCount;
|
||||
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr);
|
||||
uint32_t presentModeCount;
|
||||
vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount,
|
||||
details.presentModes.data());
|
||||
|
||||
std::vector<VkExtensionProperties> availableExtensions(extensionCount);
|
||||
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data());
|
||||
|
||||
std::set<std::string> requiredExtensions(deviceExtensions.begin(), deviceExtensions.end());
|
||||
|
||||
for (const auto& extension : availableExtensions) {
|
||||
requiredExtensions.erase(extension.extensionName);
|
||||
}
|
||||
|
||||
return requiredExtensions.empty();
|
||||
if (presentModeCount != 0) {
|
||||
details.presentModes.resize(presentModeCount);
|
||||
vkGetPhysicalDeviceSurfacePresentModesKHR(
|
||||
device, surface, &presentModeCount, details.presentModes.data());
|
||||
}
|
||||
|
||||
bool isDeviceSuitable(VkPhysicalDevice device) {
|
||||
// These two are simple, create a structure to hold the apiVersion, driverVersion, vendorID, deviceID and type, name, and a few other settings.
|
||||
// Then populate it by passing in the device and the structure reference.
|
||||
vkGetPhysicalDeviceProperties(device, &deviceProperties);
|
||||
// Similarly, we can pass in the device and a deviceFeatures struct, this is quite special, it holds a struct of optional features the GPU can perform.
|
||||
// Some, like a geometry shader, and stereoscopic rendering (multiViewport) we want, so we dont return true without them.
|
||||
vkGetPhysicalDeviceFeatures(device, &deviceFeatures);
|
||||
// We need to find a device that supports graphical operations, or else we cant do much with it! This function just runs over all the queueFamilies and sees if there
|
||||
// is a queue family with the VK_QUEUE_GRAPHICS_BIT flipped!
|
||||
Global::QueueFamilyIndices indices = Global::findQueueFamilies(device);
|
||||
bool extensionSupported = checkDeviceExtensionSupport(device);
|
||||
bool swapChainAdequate = false;
|
||||
return details;
|
||||
}
|
||||
|
||||
if(extensionSupported) {
|
||||
SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
|
||||
swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty();
|
||||
}
|
||||
|
||||
return deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU
|
||||
&& deviceFeatures.multiViewport
|
||||
&& indices.isComplete()
|
||||
&& extensionSupported
|
||||
&& swapChainAdequate;
|
||||
}
|
||||
// -------------------------------------- Swap Chain Settings ----------------------------------------- //
|
||||
VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {
|
||||
// One of three settings we can set, Surface Format controls the color space and format.
|
||||
|
||||
for (const auto& availableFormat : availableFormats) {
|
||||
if (availableFormat.format == VK_FORMAT_B8G8R8A8_SRGB && availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
|
||||
// sRGB & 32bit BGRA
|
||||
return availableFormat;
|
||||
}
|
||||
}
|
||||
return availableFormats[0];
|
||||
}
|
||||
VkPresentModeKHR chooseSwapPresentMode(const std::vector<VkPresentModeKHR>& availablePresentModes) {
|
||||
// The second of the three settings, arguably the most important, the presentation mode! This dictates how images are displayed.
|
||||
// MAILBOX is basically equivalent to triple buffering, it avoids screen tearing with fairly low latency,
|
||||
// However, it is not always supported, so in the case that it isn't, currently we will default to FIFO,
|
||||
// This is most similarly to standard V-Sync.
|
||||
for(const auto& availablePresentMode : availablePresentModes) {
|
||||
if(availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
|
||||
if(Global::enableValidationLayers) std::cout << "Using Triple Buffering\n" << std::endl;
|
||||
return availablePresentMode;
|
||||
}
|
||||
}
|
||||
bool checkDeviceExtensionSupport(VkPhysicalDevice device) {
|
||||
uint32_t extensionCount;
|
||||
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount,
|
||||
nullptr);
|
||||
|
||||
if(Global::enableValidationLayers) std::cout << "Using FIFO (V-Sync)\n" << std::endl;
|
||||
return VK_PRESENT_MODE_FIFO_KHR;
|
||||
}
|
||||
VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities, GLFWwindow* window) {
|
||||
// Swap Extent is just a fancy way of saying the resolution of the swap images to display.
|
||||
// This is almost always going to equal the resolution of the window in pixels.
|
||||
|
||||
// The max int32 value tells us that the window manager lets us change the windth and height to what we wish!
|
||||
if (capabilities.currentExtent.width != std::numeric_limits<uint32_t>::max()) {
|
||||
return capabilities.currentExtent;
|
||||
} else {
|
||||
int width, height;
|
||||
glfwGetFramebufferSize(window, &width, &height);
|
||||
std::vector<VkExtensionProperties> availableExtensions(extensionCount);
|
||||
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount,
|
||||
availableExtensions.data());
|
||||
|
||||
VkExtent2D actualExtent = {
|
||||
static_cast<uint32_t>(width),
|
||||
static_cast<uint32_t>(height)
|
||||
};
|
||||
// Clamp the image size to the minimum extent values specified by vulkan for our window manager.
|
||||
actualExtent.width = std::clamp(actualExtent.width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width);
|
||||
actualExtent.height = std::clamp(actualExtent.height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height);
|
||||
std::set<std::string> requiredExtensions(deviceExtensions.begin(),
|
||||
deviceExtensions.end());
|
||||
|
||||
return actualExtent;
|
||||
}
|
||||
}
|
||||
// --------------------------------------- External Functions ----------------------------------------- //
|
||||
void devicelibrary::pickPhysicalDevice(VkInstance& instance) {
|
||||
uint32_t deviceCount = 0;
|
||||
vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);
|
||||
|
||||
if(deviceCount == 0) {
|
||||
throw std::runtime_error("Failed to find GPU's with Vulkan Support!!");
|
||||
}
|
||||
std::vector<VkPhysicalDevice> devices(deviceCount); // Direct Initialization is weird af, yo
|
||||
vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());
|
||||
|
||||
for(const auto& device : devices) {
|
||||
if(isDeviceSuitable(device)) {
|
||||
if(Global::enableValidationLayers) std::cout << "Using device: " << deviceProperties.deviceName << std::endl;
|
||||
//Once we have buttons or such, maybe ask the user or write a config file for which GPU to use?
|
||||
Global::physicalDevice = device;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(Global::physicalDevice == VK_NULL_HANDLE) {
|
||||
throw std::runtime_error("Failed to find a suitable GPU!");
|
||||
}
|
||||
}
|
||||
void devicelibrary::destroySurface(VkInstance& instance) {
|
||||
vkDestroySurfaceKHR(instance, Global::surface, nullptr);
|
||||
if(Global::enableValidationLayers) std::cout << "Destroyed surface safely\n" << std::endl;
|
||||
}
|
||||
void devicelibrary::createSurface(VkInstance& instance, GLFWwindow* window) {
|
||||
if(glfwCreateWindowSurface(instance, window, nullptr, &Global::surface) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create window surface!!");
|
||||
}
|
||||
if(Global::enableValidationLayers) std::cout << "GLFW Window Surface created successfully\n" << std::endl;
|
||||
}
|
||||
void devicelibrary::createLogicalDevice() {
|
||||
// Describe how many queues we want for a single family (1) here, right now we are solely interested in graphics capabilites,
|
||||
// but Compute Shaders, transfer ops, decode and encode operations can also queued with setup! We also assign each queue a priority.
|
||||
// We do this by looping over all the queueFamilies and sorting them by indices to fill the queue at the end!
|
||||
Global::QueueFamilyIndices indices = Global::findQueueFamilies(Global::physicalDevice);
|
||||
|
||||
std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
|
||||
std::set<uint32_t> uniqueQueueFamilies = {
|
||||
indices.graphicsFamily.value(),
|
||||
indices.presentFamily.value()
|
||||
};
|
||||
|
||||
float queuePriority = 1.0f;
|
||||
for(uint32_t queueFamily : uniqueQueueFamilies) {
|
||||
VkDeviceQueueCreateInfo queueCreateSingularInfo = {};
|
||||
queueCreateSingularInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
|
||||
queueCreateSingularInfo.queueFamilyIndex = queueFamily;
|
||||
queueCreateSingularInfo.queueCount = 1;
|
||||
queueCreateSingularInfo.pQueuePriorities = &queuePriority;
|
||||
queueCreateInfos.push_back(queueCreateSingularInfo);
|
||||
}
|
||||
VkDeviceCreateInfo createDeviceInfo = {};
|
||||
createDeviceInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
|
||||
createDeviceInfo.pQueueCreateInfos = queueCreateInfos.data();
|
||||
createDeviceInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());
|
||||
createDeviceInfo.pEnabledFeatures = &deviceFeatures;
|
||||
createDeviceInfo.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size());
|
||||
createDeviceInfo.ppEnabledExtensionNames = deviceExtensions.data();
|
||||
|
||||
if(Global::enableValidationLayers) {
|
||||
createDeviceInfo.enabledLayerCount = static_cast<uint32_t>(Global::validationLayers.size());
|
||||
createDeviceInfo.ppEnabledLayerNames = Global::validationLayers.data();
|
||||
} else {
|
||||
createDeviceInfo.enabledLayerCount = 0;
|
||||
}
|
||||
if(vkCreateDevice(Global::physicalDevice, &createDeviceInfo, nullptr, &Global::device) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create logical device");
|
||||
}
|
||||
if(Global::enableValidationLayers) std::cout << "Created Logical device successfully!\n" << std::endl;
|
||||
|
||||
vkGetDeviceQueue(Global::device, indices.graphicsFamily.value(), 0, &Global::graphicsQueue);
|
||||
vkGetDeviceQueue(Global::device, indices.presentFamily.value(), 0, &Global::presentQueue);
|
||||
}
|
||||
void devicelibrary::createSwapChain(GLFWwindow* window) {
|
||||
SwapChainSupportDetails swapChainSupport = querySwapChainSupport(Global::physicalDevice);
|
||||
|
||||
VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats);
|
||||
VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes);
|
||||
VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities, window);
|
||||
|
||||
// Number of images to hold in the swap chain, 1 over the minimum guarantees we won't have to wait on the driver to complete
|
||||
// internal operations before acquiring another image. Absolutely a TODO to determine the best amount to queue.
|
||||
uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
|
||||
// Make sure not to queue more than the max! 0 indicates that there is no maximum.
|
||||
if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) {
|
||||
imageCount = swapChainSupport.capabilities.maxImageCount;
|
||||
}
|
||||
|
||||
VkSwapchainCreateInfoKHR createSwapChainInfo{};
|
||||
createSwapChainInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
|
||||
createSwapChainInfo.surface = Global::surface;
|
||||
createSwapChainInfo.minImageCount = imageCount;
|
||||
createSwapChainInfo.imageFormat = surfaceFormat.format;
|
||||
createSwapChainInfo.imageColorSpace = surfaceFormat.colorSpace;
|
||||
createSwapChainInfo.imageExtent = extent;
|
||||
// Image array layers is always 1 unless we are developing for VR (Spoiler: we are, we will use a build flag.)
|
||||
// Image Usage specifies what operations you use the images for, COLOR_ATTACH means we render directly to them,
|
||||
// if you wanted to render to separate images for things like post processing, you can use TRANSFER_DST and use a
|
||||
// memory operation to transfer the image to a swap chain, this is also a TODO item eventually.
|
||||
createSwapChainInfo.imageArrayLayers = 1;
|
||||
createSwapChainInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
|
||||
|
||||
// This handles swap chain images across multiple queue families, ie, if the graphics queue family is different from the present queue
|
||||
Global::QueueFamilyIndices indices = Global::findQueueFamilies(Global::physicalDevice);
|
||||
uint32_t queueFamilyIndices[] = {indices.graphicsFamily.value(), indices.presentFamily.value()};
|
||||
// Usage across multiple queue families without explicit transfer of ownership if they are different queue families.
|
||||
// Otherwise, no sharing without explicit handoffs, faster, but not easily supported with multiple families.
|
||||
// Presentation and Graphics families are usually merged on most hardware.
|
||||
if (indices.graphicsFamily != indices.presentFamily) {
|
||||
createSwapChainInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
|
||||
createSwapChainInfo.queueFamilyIndexCount = 2;
|
||||
createSwapChainInfo.pQueueFamilyIndices = queueFamilyIndices;
|
||||
} else {
|
||||
createSwapChainInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
||||
}
|
||||
// Transformation of image support.
|
||||
createSwapChainInfo.preTransform = swapChainSupport.capabilities.currentTransform;
|
||||
// Do NOT blend with other windows on the system.
|
||||
createSwapChainInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
|
||||
createSwapChainInfo.presentMode = presentMode;
|
||||
// This is interesting, clip pixels that are obscured for performance, but that means you wont be able to read them reliably..
|
||||
// I am curious if this would affect screen-space rendering techniques, may be something to note.
|
||||
createSwapChainInfo.clipped = VK_TRUE;
|
||||
// This is something that needs to be implemented later, operations like resizing the window invalidate the swap chain and
|
||||
// require you to recreate it and reference the old one specified here, will revisit in a few days.
|
||||
//createSwapChainInfo.oldSwapchain = VK_NULL_HANDLE;
|
||||
|
||||
if(vkCreateSwapchainKHR(Global::device, &createSwapChainInfo, nullptr, &Global::swapChain) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create the swap chain!!");
|
||||
}
|
||||
if(Global::enableValidationLayers) std::cout << "Swap Chain created successfully\n" << std::endl;
|
||||
|
||||
vkGetSwapchainImagesKHR(Global::device, Global::swapChain, &imageCount, nullptr);
|
||||
swapChainImages.resize(imageCount);
|
||||
vkGetSwapchainImagesKHR(Global::device, Global::swapChain, &imageCount, swapChainImages.data());
|
||||
|
||||
swapChainImageFormat = surfaceFormat.format;
|
||||
swapChainExtent = extent;
|
||||
}
|
||||
void devicelibrary::destroySwapChain() {
|
||||
vkDestroySwapchainKHR(Global::device, Global::swapChain, nullptr);
|
||||
if(Global::enableValidationLayers) std::cout << "Destroyed Swap Chain safely\n" << std::endl;
|
||||
for (const auto &extension : availableExtensions) {
|
||||
requiredExtensions.erase(extension.extensionName);
|
||||
}
|
||||
|
||||
void devicelibrary::createImageViews() {
|
||||
swapChainImageViews.resize(swapChainImages.size());
|
||||
for(size_t i = 0; i < swapChainImages.size(); i++) {
|
||||
VkImageViewCreateInfo createImageViewInfo{};
|
||||
createImageViewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
|
||||
createImageViewInfo.image = swapChainImages[i];
|
||||
// Are we treating images as 1D, 2D or 3D?
|
||||
createImageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
||||
createImageViewInfo.format = swapChainImageFormat;
|
||||
// Allow us to swizzle color channels
|
||||
createImageViewInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
|
||||
createImageViewInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
|
||||
createImageViewInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
|
||||
createImageViewInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
|
||||
return requiredExtensions.empty();
|
||||
}
|
||||
|
||||
createImageViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||
createImageViewInfo.subresourceRange.baseMipLevel = 0;
|
||||
createImageViewInfo.subresourceRange.levelCount = 1;
|
||||
createImageViewInfo.subresourceRange.baseArrayLayer = 0;
|
||||
// Yet another setting we would increase for VR applications, and specifically create a swap chain with more layers as well. The other layers would be the eye outputs.
|
||||
createImageViewInfo.subresourceRange.layerCount = 1;
|
||||
bool isDeviceSuitable(VkPhysicalDevice device) {
|
||||
// These two are simple, create a structure to hold the apiVersion,
|
||||
// driverVersion, vendorID, deviceID and type, name, and a few other settings.
|
||||
// Then populate it by passing in the device and the structure reference.
|
||||
vkGetPhysicalDeviceProperties(device, &deviceProperties);
|
||||
// Similarly, we can pass in the device and a deviceFeatures struct, this is
|
||||
// quite special, it holds a struct of optional features the GPU can perform.
|
||||
// Some, like a geometry shader, and stereoscopic rendering (multiViewport) we
|
||||
// want, so we dont return true without them.
|
||||
VkPhysicalDeviceFeatures supportedFeatures;
|
||||
vkGetPhysicalDeviceFeatures(device, &supportedFeatures);
|
||||
// We need to find a device that supports graphical operations, or else we
|
||||
// cant do much with it! This function just runs over all the queueFamilies
|
||||
// and sees if there is a queue family with the VK_QUEUE_GRAPHICS_BIT flipped!
|
||||
DeviceControl::QueueFamilyIndices indices =
|
||||
DeviceControl::findQueueFamilies(device);
|
||||
bool extensionSupported = checkDeviceExtensionSupport(device);
|
||||
bool swapChainAdequate = false;
|
||||
|
||||
if(vkCreateImageView(Global::device, &createImageViewInfo, nullptr, &swapChainImageViews[i]) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create image views!");
|
||||
}
|
||||
if(Global::enableValidationLayers) std::cout << "Image views created successfully\n" << std::endl;
|
||||
if (extensionSupported) {
|
||||
SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
|
||||
swapChainAdequate = !swapChainSupport.formats.empty() &&
|
||||
!swapChainSupport.presentModes.empty();
|
||||
}
|
||||
|
||||
return deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU &&
|
||||
supportedFeatures.samplerAnisotropy && indices.isComplete() &&
|
||||
extensionSupported && swapChainAdequate;
|
||||
}
|
||||
// -------------------------------------- Swap Chain Settings
|
||||
// ----------------------------------------- //
|
||||
VkSurfaceFormatKHR chooseSwapSurfaceFormat(
|
||||
const std::vector<VkSurfaceFormatKHR> &availableFormats) {
|
||||
// One of three settings we can set, Surface Format controls the color space
|
||||
// and format.
|
||||
|
||||
for (const auto &availableFormat : availableFormats) {
|
||||
if (availableFormat.format == VK_FORMAT_B8G8R8A8_SRGB &&
|
||||
availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
|
||||
// sRGB & 32bit BGRA
|
||||
return availableFormat;
|
||||
}
|
||||
}
|
||||
void devicelibrary::destroyImageViews() {
|
||||
for (auto imageView : swapChainImageViews) {
|
||||
vkDestroyImageView(Global::device, imageView, nullptr);
|
||||
return availableFormats[0];
|
||||
}
|
||||
VkPresentModeKHR chooseSwapPresentMode(
|
||||
const std::vector<VkPresentModeKHR> &availablePresentModes) {
|
||||
// The second of the three settings, arguably the most important, the
|
||||
// presentation mode! This dictates how images are displayed. MAILBOX is
|
||||
// basically equivalent to triple buffering, it avoids screen tearing with
|
||||
// fairly low latency, However, it is not always supported, so in the case
|
||||
// that it isn't, currently we will default to FIFO, This is most similarly to
|
||||
// standard V-Sync.
|
||||
for (const auto &availablePresentMode : availablePresentModes) {
|
||||
if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
|
||||
return availablePresentMode;
|
||||
}
|
||||
if(Global::enableValidationLayers) std::cout << "Image destroyed safely\n" << std::endl;
|
||||
}
|
||||
// --------------------------------------- Getters & Setters ------------------------------------------ //
|
||||
VkFormat devicelibrary::getImageFormat() {
|
||||
return swapChainImageFormat;
|
||||
}
|
||||
std::vector<VkImageView> devicelibrary::getSwapChainImageViews() {
|
||||
return swapChainImageViews;
|
||||
}
|
||||
|
||||
VkExtent2D devicelibrary::getSwapChainExtent() {
|
||||
return swapChainExtent;
|
||||
return VK_PRESENT_MODE_FIFO_KHR;
|
||||
}
|
||||
VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR &capabilities,
|
||||
GLFWwindow *window) {
|
||||
// Swap Extent is just a fancy way of saying the resolution of the swap images
|
||||
// to display. This is almost always going to equal the resolution of the
|
||||
// window in pixels.
|
||||
|
||||
// The max int32 value tells us that the window manager lets us change the
|
||||
// windth and height to what we wish!
|
||||
if (capabilities.currentExtent.width !=
|
||||
std::numeric_limits<uint32_t>::max()) {
|
||||
return capabilities.currentExtent;
|
||||
} else {
|
||||
int width, height;
|
||||
glfwGetFramebufferSize(window, &width, &height);
|
||||
|
||||
VkExtent2D actualExtent = {static_cast<uint32_t>(width),
|
||||
static_cast<uint32_t>(height)};
|
||||
// Clamp the image size to the minimum extent values specified by vulkan for
|
||||
// our window manager.
|
||||
actualExtent.width =
|
||||
std::clamp(actualExtent.width, capabilities.minImageExtent.width,
|
||||
capabilities.maxImageExtent.width);
|
||||
actualExtent.height =
|
||||
std::clamp(actualExtent.height, capabilities.minImageExtent.height,
|
||||
capabilities.maxImageExtent.height);
|
||||
|
||||
return actualExtent;
|
||||
}
|
||||
}
|
||||
|
||||
VkSampleCountFlagBits getMaxUsableSampleCount() {
|
||||
VkPhysicalDeviceProperties physicalDeviceProps;
|
||||
VkSampleCountFlags maxCounts;
|
||||
vkGetPhysicalDeviceProperties(physicalDevice, &physicalDeviceProps);
|
||||
|
||||
VkSampleCountFlags counts =
|
||||
physicalDeviceProps.limits.framebufferColorSampleCounts &
|
||||
physicalDeviceProps.limits.framebufferDepthSampleCounts;
|
||||
if (counts & VK_SAMPLE_COUNT_64_BIT) {
|
||||
return VK_SAMPLE_COUNT_64_BIT;
|
||||
}
|
||||
if (counts & VK_SAMPLE_COUNT_32_BIT) {
|
||||
return VK_SAMPLE_COUNT_32_BIT;
|
||||
}
|
||||
if (counts & VK_SAMPLE_COUNT_16_BIT) {
|
||||
return VK_SAMPLE_COUNT_16_BIT;
|
||||
}
|
||||
if (counts & VK_SAMPLE_COUNT_8_BIT) {
|
||||
return VK_SAMPLE_COUNT_8_BIT;
|
||||
}
|
||||
if (counts & VK_SAMPLE_COUNT_4_BIT) {
|
||||
return VK_SAMPLE_COUNT_4_BIT;
|
||||
}
|
||||
if (counts & VK_SAMPLE_COUNT_2_BIT) {
|
||||
return VK_SAMPLE_COUNT_2_BIT;
|
||||
}
|
||||
|
||||
return VK_SAMPLE_COUNT_1_BIT;
|
||||
}
|
||||
// --------------------------------------- External Functions
|
||||
// ----------------------------------------- //
|
||||
void DeviceControl::pickPhysicalDevice(VkInstance &instance) {
|
||||
uint32_t deviceCount = 0;
|
||||
vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);
|
||||
|
||||
if (deviceCount == 0) {
|
||||
throw std::runtime_error("Failed to find GPU's with Vulkan Support!!");
|
||||
}
|
||||
std::vector<VkPhysicalDevice> devices(
|
||||
deviceCount); // Direct Initialization is weird af, yo
|
||||
vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());
|
||||
|
||||
for (const auto &device : devices) {
|
||||
if (isDeviceSuitable(device)) {
|
||||
// Once we have buttons or such, maybe ask the user or write a config file
|
||||
// for which GPU to use?
|
||||
physicalDevice = device;
|
||||
perPixelSampleCount = getMaxUsableSampleCount();
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (physicalDevice == VK_NULL_HANDLE) {
|
||||
throw std::runtime_error("Failed to find a suitable GPU!");
|
||||
}
|
||||
}
|
||||
void DeviceControl::destroySurface(VkInstance &instance) {
|
||||
vkDestroySurfaceKHR(instance, surface, nullptr);
|
||||
}
|
||||
void DeviceControl::createSurface(VkInstance &instance, GLFWwindow *window) {
|
||||
if (glfwCreateWindowSurface(instance, window, nullptr, &surface) !=
|
||||
VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create window surface!!");
|
||||
}
|
||||
}
|
||||
void DeviceControl::createLogicalDevice() {
|
||||
// Describe how many queues we want for a single family (1) here, right now we
|
||||
// are solely interested in graphics capabilites, but Compute Shaders,
|
||||
// transfer ops, decode and encode operations can also queued with setup! We
|
||||
// also assign each queue a priority. We do this by looping over all the
|
||||
// queueFamilies and sorting them by indices to fill the queue at the end!
|
||||
QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
|
||||
|
||||
std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
|
||||
std::set<uint32_t> uniqueQueueFamilies = {indices.graphicsFamily.value(),
|
||||
indices.presentFamily.value()};
|
||||
|
||||
float queuePriority = 1.0f;
|
||||
for (uint32_t queueFamily : uniqueQueueFamilies) {
|
||||
VkDeviceQueueCreateInfo queueCreateSingularInfo = {};
|
||||
queueCreateSingularInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
|
||||
queueCreateSingularInfo.queueFamilyIndex = queueFamily;
|
||||
queueCreateSingularInfo.queueCount = 1;
|
||||
queueCreateSingularInfo.pQueuePriorities = &queuePriority;
|
||||
queueCreateInfos.push_back(queueCreateSingularInfo);
|
||||
}
|
||||
VkPhysicalDeviceVulkan12Features features12{
|
||||
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
|
||||
.pNext = nullptr,
|
||||
.shaderSampledImageArrayNonUniformIndexing = true,
|
||||
.shaderStorageBufferArrayNonUniformIndexing = true,
|
||||
.shaderStorageImageArrayNonUniformIndexing = true,
|
||||
.descriptorBindingSampledImageUpdateAfterBind = true,
|
||||
.descriptorBindingStorageImageUpdateAfterBind = true,
|
||||
.descriptorBindingStorageBufferUpdateAfterBind = true,
|
||||
.descriptorBindingUpdateUnusedWhilePending = true,
|
||||
.descriptorBindingPartiallyBound = true,
|
||||
.runtimeDescriptorArray = true,
|
||||
.scalarBlockLayout = true,
|
||||
.bufferDeviceAddress = true,
|
||||
|
||||
};
|
||||
VkPhysicalDeviceVulkan13Features features13{
|
||||
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES,
|
||||
.pNext = &features12,
|
||||
.synchronization2 = true,
|
||||
.dynamicRendering = true,
|
||||
|
||||
};
|
||||
VkPhysicalDeviceFeatures featuresBase{
|
||||
.robustBufferAccess = true,
|
||||
.sampleRateShading = true,
|
||||
.samplerAnisotropy = true,
|
||||
|
||||
};
|
||||
|
||||
VkPhysicalDeviceFeatures2 deviceFeatures{
|
||||
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2,
|
||||
.pNext = &features13,
|
||||
.features = featuresBase,
|
||||
};
|
||||
|
||||
VkDeviceCreateInfo createDeviceInfo = {};
|
||||
createDeviceInfo.pNext = &deviceFeatures;
|
||||
createDeviceInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
|
||||
createDeviceInfo.pQueueCreateInfos = queueCreateInfos.data();
|
||||
createDeviceInfo.queueCreateInfoCount =
|
||||
static_cast<uint32_t>(queueCreateInfos.size());
|
||||
createDeviceInfo.enabledExtensionCount =
|
||||
static_cast<uint32_t>(deviceExtensions.size());
|
||||
createDeviceInfo.ppEnabledExtensionNames = deviceExtensions.data();
|
||||
|
||||
if (vkCreateDevice(physicalDevice, &createDeviceInfo, nullptr, &device) !=
|
||||
VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create logical device");
|
||||
}
|
||||
vkGetDeviceQueue(device, indices.graphicsFamily.value(), 0, &graphicsQueue);
|
||||
vkGetDeviceQueue(device, indices.presentFamily.value(), 0, &presentQueue);
|
||||
}
|
||||
void DeviceControl::createSwapChain(GLFWwindow *window) {
|
||||
SwapChainSupportDetails swapChainSupport =
|
||||
querySwapChainSupport(physicalDevice);
|
||||
|
||||
VkSurfaceFormatKHR surfaceFormat =
|
||||
chooseSwapSurfaceFormat(swapChainSupport.formats);
|
||||
VkPresentModeKHR presentMode =
|
||||
chooseSwapPresentMode(swapChainSupport.presentModes);
|
||||
VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities, window);
|
||||
|
||||
// Number of images to hold in the swap chain, 1 over the minimum guarantees
|
||||
// we won't have to wait on the driver to complete internal operations before
|
||||
// acquiring another image. Absolutely a TODO to determine the best amount to
|
||||
// queue.
|
||||
uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
|
||||
// Make sure not to queue more than the max! 0 indicates that there is no
|
||||
// maximum.
|
||||
if (swapChainSupport.capabilities.maxImageCount > 0 &&
|
||||
imageCount > swapChainSupport.capabilities.maxImageCount) {
|
||||
imageCount = swapChainSupport.capabilities.maxImageCount;
|
||||
}
|
||||
|
||||
VkSwapchainCreateInfoKHR createSwapChainInfo{};
|
||||
createSwapChainInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
|
||||
createSwapChainInfo.surface = surface;
|
||||
createSwapChainInfo.minImageCount = imageCount;
|
||||
createSwapChainInfo.imageFormat = surfaceFormat.format;
|
||||
createSwapChainInfo.imageColorSpace = surfaceFormat.colorSpace;
|
||||
createSwapChainInfo.imageExtent = extent;
|
||||
// Image array layers is always 1 unless we are developing for VR (Spoiler: we
|
||||
// are, we will use a build flag.) Image Usage specifies what operations you
|
||||
// use the images for, COLOR_ATTACH means we render directly to them, if you
|
||||
// wanted to render to separate images for things like post processing, you
|
||||
// can use TRANSFER_DST and use a memory operation to transfer the image to a
|
||||
// swap chain, this is also a TODO item eventually.
|
||||
createSwapChainInfo.imageArrayLayers = 1;
|
||||
createSwapChainInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
|
||||
|
||||
// This handles swap chain images across multiple queue families, ie, if the
|
||||
// graphics queue family is different from the present queue
|
||||
QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
|
||||
uint32_t queueFamilyIndices[] = {indices.graphicsFamily.value(),
|
||||
indices.presentFamily.value()};
|
||||
// Usage across multiple queue families without explicit transfer of ownership
|
||||
// if they are different queue families. Otherwise, no sharing without
|
||||
// explicit handoffs, faster, but not easily supported with multiple families.
|
||||
// Presentation and Graphics families are usually merged on most hardware.
|
||||
if (indices.graphicsFamily != indices.presentFamily) {
|
||||
createSwapChainInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
|
||||
createSwapChainInfo.queueFamilyIndexCount = 2;
|
||||
createSwapChainInfo.pQueueFamilyIndices = queueFamilyIndices;
|
||||
} else {
|
||||
createSwapChainInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
||||
}
|
||||
// Transformation of image support.
|
||||
createSwapChainInfo.preTransform =
|
||||
swapChainSupport.capabilities.currentTransform;
|
||||
// Do NOT blend with other windows on the system.
|
||||
createSwapChainInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
|
||||
createSwapChainInfo.presentMode = presentMode;
|
||||
// This is interesting, clip pixels that are obscured for performance, but
|
||||
// that means you wont be able to read them reliably.. I am curious if this
|
||||
// would affect screen-space rendering techniques, may be something to note.
|
||||
createSwapChainInfo.clipped = VK_TRUE;
|
||||
// This is something that needs to be implemented later, operations like
|
||||
// resizing the window invalidate the swap chain and require you to recreate
|
||||
// it and reference the old one specified here, will revisit in a few days.
|
||||
// createSwapChainInfo.oldSwapchain = VK_NULL_HANDLE;
|
||||
|
||||
if (vkCreateSwapchainKHR(device, &createSwapChainInfo, nullptr, &swapChain) !=
|
||||
VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create the swap chain!!");
|
||||
}
|
||||
|
||||
vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr);
|
||||
swapChainImages.resize(imageCount);
|
||||
vkGetSwapchainImagesKHR(device, swapChain, &imageCount,
|
||||
swapChainImages.data());
|
||||
|
||||
swapChainImageFormat = surfaceFormat.format;
|
||||
swapChainExtent = extent;
|
||||
}
|
||||
void DeviceControl::destroySwapChain() {
|
||||
vkDestroySwapchainKHR(device, swapChain, nullptr);
|
||||
}
|
||||
VkImageView DeviceControl::createImageView(VkImage image, VkFormat format,
|
||||
VkImageAspectFlags flags,
|
||||
uint32_t mipLevels) {
|
||||
// This defines the parameters of a newly created image object!
|
||||
VkImageViewCreateInfo viewInfo{};
|
||||
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
|
||||
viewInfo.image = image;
|
||||
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
||||
viewInfo.format = format;
|
||||
viewInfo.subresourceRange.aspectMask = flags;
|
||||
viewInfo.subresourceRange.baseMipLevel = 0;
|
||||
viewInfo.subresourceRange.levelCount = 1;
|
||||
viewInfo.subresourceRange.baseArrayLayer = 0;
|
||||
viewInfo.subresourceRange.layerCount = 1;
|
||||
viewInfo.subresourceRange.levelCount = mipLevels;
|
||||
|
||||
VkImageView imageView;
|
||||
if (vkCreateImageView(device, &viewInfo, nullptr, &imageView) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create image view!");
|
||||
}
|
||||
|
||||
return imageView;
|
||||
}
|
||||
void DeviceControl::createImageViews() {
|
||||
swapChainImageViews.resize(swapChainImages.size());
|
||||
|
||||
for (uint32_t i = 0; i < swapChainImages.size(); i++) {
|
||||
swapChainImageViews[i] = createImageView(
|
||||
swapChainImages[i], swapChainImageFormat, VK_IMAGE_ASPECT_COLOR_BIT, 1);
|
||||
}
|
||||
}
|
||||
void DeviceControl::destroyImageViews() {
|
||||
for (auto imageView : swapChainImageViews) {
|
||||
vkDestroyImageView(device, imageView, nullptr);
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------- Getters & Setters
|
||||
// ------------------------------------------ //
|
||||
VkFormat &DeviceControl::getImageFormat() { return swapChainImageFormat; }
|
||||
VkSwapchainKHR &DeviceControl::getSwapChain() { return swapChain; }
|
||||
VkExtent2D &DeviceControl::getSwapChainExtent() { return swapChainExtent; }
|
||||
std::vector<VkImage> &DeviceControl::getSwapChainImages() {
|
||||
return swapChainImages;
|
||||
}
|
||||
|
||||
std::vector<VkImageView> &DeviceControl::getSwapChainImageViews() {
|
||||
return swapChainImageViews;
|
||||
}
|
||||
VkDevice &DeviceControl::getDevice() { return device; }
|
||||
VkPhysicalDevice &DeviceControl::getPhysicalDevice() { return physicalDevice; }
|
||||
VkSampleCountFlagBits &DeviceControl::getPerPixelSampleCount() {
|
||||
return perPixelSampleCount;
|
||||
}
|
||||
VkQueue &DeviceControl::getGraphicsQueue() { return graphicsQueue; }
|
||||
VkQueue &DeviceControl::getPresentQueue() { return presentQueue; }
|
||||
VkSurfaceKHR &DeviceControl::getSurface() { return surface; }
|
||||
|
@@ -1,32 +1,50 @@
|
||||
#pragma once
|
||||
#include "global.h"
|
||||
#define VK_NO_PROTOTYPES
|
||||
#include "volk.h"
|
||||
#include <optional>
|
||||
#include <algorithm>
|
||||
#include <limits>
|
||||
#include <ostream>
|
||||
#include <set>
|
||||
#include <string>
|
||||
#define GLFW_INCLUDE_VULKAN
|
||||
#include <GLFW/glfw3.h>
|
||||
#include <vector>
|
||||
namespace DeviceControl {
|
||||
class devicelibrary {
|
||||
public:
|
||||
void pickPhysicalDevice(VkInstance& instance);
|
||||
void createLogicalDevice();
|
||||
void createSurface(VkInstance& instance, GLFWwindow* window);
|
||||
void destroySurface(VkInstance& instance);
|
||||
void createSwapChain(GLFWwindow* window);
|
||||
void destroySwapChain();
|
||||
void createImageViews();
|
||||
void destroyImageViews();
|
||||
void createCommandPool();
|
||||
void destroyCommandPool();
|
||||
|
||||
// ---------- Getters & Setters ----------- //
|
||||
VkFormat getImageFormat();
|
||||
std::vector<VkImageView> getSwapChainImageViews();
|
||||
VkExtent2D getSwapChainExtent();
|
||||
std::vector<VkFramebuffer> getSwapChainFramebuffers();
|
||||
class DeviceControl {
|
||||
public:
|
||||
struct QueueFamilyIndices {
|
||||
// We need to check that the Queue families support graphics operations and
|
||||
// window presentation, sometimes they can support one or the other,
|
||||
// therefore, we take into account both for completion.
|
||||
std::optional<uint32_t> graphicsFamily;
|
||||
std::optional<uint32_t> presentFamily;
|
||||
|
||||
bool isComplete() {
|
||||
return graphicsFamily.has_value() && presentFamily.has_value();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
static void pickPhysicalDevice(VkInstance &instance);
|
||||
static void createLogicalDevice();
|
||||
static void createSurface(VkInstance &instance, GLFWwindow *window);
|
||||
static void destroySurface(VkInstance &instance);
|
||||
static void createSwapChain(GLFWwindow *window);
|
||||
static void destroySwapChain();
|
||||
static VkImageView createImageView(VkImage image, VkFormat format,
|
||||
VkImageAspectFlags flags,
|
||||
uint32_t mipLevels);
|
||||
static void createImageViews();
|
||||
static void destroyImageViews();
|
||||
static void createCommandPool();
|
||||
static void destroyCommandPool();
|
||||
static QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device);
|
||||
|
||||
// ---------- Getters & Setters ----------- //
|
||||
static VkFormat &getImageFormat();
|
||||
static VkExtent2D &getSwapChainExtent();
|
||||
static std::vector<VkImage> &getSwapChainImages();
|
||||
static std::vector<VkFramebuffer> &getSwapChainFramebuffers();
|
||||
static VkDevice &getDevice();
|
||||
static VkSurfaceKHR &getSurface();
|
||||
static VkQueue &getGraphicsQueue();
|
||||
static VkQueue &getPresentQueue();
|
||||
static VkPhysicalDevice &getPhysicalDevice();
|
||||
static VkSampleCountFlagBits &getPerPixelSampleCount();
|
||||
static std::vector<VkImageView> &getSwapChainImageViews();
|
||||
static VkSwapchainKHR &getSwapChain();
|
||||
};
|
||||
|
@@ -1,118 +1,189 @@
|
||||
#include "agnosiaimgui.h"
|
||||
#include "devicelibrary.h"
|
||||
#include "entrypoint.h"
|
||||
#include "graphics/buffers.h"
|
||||
DeviceControl::devicelibrary deviceLibs;
|
||||
Debug::vulkandebuglibs debugController;
|
||||
Graphics::graphicspipeline graphicsPipeline;
|
||||
RenderPresent::render renderPresentation;
|
||||
Buffers::bufferslibrary buffers;
|
||||
#include "graphics/graphicspipeline.h"
|
||||
|
||||
#include "graphics/model.h"
|
||||
#include "graphics/render.h"
|
||||
#include "graphics/texture.h"
|
||||
|
||||
#define VK_NO_PROTOTYPES
|
||||
#include "volk.h"
|
||||
#define GLFW_INCLUDE_VULKAN
|
||||
#include <GLFW/glfw3.h>
|
||||
|
||||
#include "imgui.h"
|
||||
#include "imgui_impl_glfw.h"
|
||||
#include "imgui_impl_vulkan.h"
|
||||
|
||||
#include <stdexcept>
|
||||
VkInstance vulkaninstance;
|
||||
GLFWwindow *window;
|
||||
const uint32_t WIDTH = 800;
|
||||
const uint32_t HEIGHT = 600;
|
||||
|
||||
// Getters and Setters!
|
||||
void EntryApp::setFramebufferResized(bool setter) {
|
||||
framebufferResized = setter;
|
||||
}
|
||||
bool EntryApp::getFramebufferResized() const {
|
||||
return framebufferResized;
|
||||
}
|
||||
static void framebufferResizeCallback(GLFWwindow* window, int width, int height) {
|
||||
auto app = reinterpret_cast<EntryApp*>(glfwGetWindowUserPointer(window));
|
||||
bool EntryApp::getFramebufferResized() const { return framebufferResized; }
|
||||
static void framebufferResizeCallback(GLFWwindow *window, int width,
|
||||
int height) {
|
||||
auto app = reinterpret_cast<EntryApp *>(glfwGetWindowUserPointer(window));
|
||||
app->setFramebufferResized(true);
|
||||
}
|
||||
// Initialize GLFW Window. First, Initialize GLFW lib, disable resizing for
|
||||
// now, and create window.
|
||||
|
||||
// Initialize GLFW Window. First, Initialize GLFW lib, disable resizing for
|
||||
// now, and create window.
|
||||
void initWindow() {
|
||||
glfwInit();
|
||||
glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
|
||||
// Settings for the window are set, create window reference.
|
||||
Global::window = glfwCreateWindow(Global::WIDTH, Global::HEIGHT, "Trimgles :o", nullptr, nullptr);
|
||||
glfwSetWindowUserPointer(Global::window, &EntryApp::getInstance());
|
||||
glfwSetFramebufferSizeCallback(Global::window, framebufferResizeCallback);
|
||||
// Settings for the window are set, create window reference.
|
||||
window = glfwCreateWindow(WIDTH, HEIGHT, "Trimgles :o", nullptr, nullptr);
|
||||
glfwSetWindowUserPointer(window, &EntryApp::getInstance());
|
||||
glfwSetFramebufferSizeCallback(window, framebufferResizeCallback);
|
||||
}
|
||||
|
||||
void createInstance() {
|
||||
debugController.checkUnavailableValidationLayers(); // Check if there is a mistake with our Validation Layers.
|
||||
|
||||
// Set application info for the vulkan instance!
|
||||
VkApplicationInfo appInfo{};
|
||||
|
||||
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; // Tell vulkan that appInfo is a Application Info structure
|
||||
appInfo.pApplicationName = "Triangle Test"; // Give the struct a name to use
|
||||
appInfo.applicationVersion = VK_MAKE_VERSION(1,0,0); // Create a Major Minor Patch version number for the application!
|
||||
appInfo.pEngineName = "Agnosia Engine"; // Give an internal name for the engine running
|
||||
appInfo.engineVersion = VK_MAKE_VERSION(1,0,0); // Similar to the App version, give vulkan an *engine* version
|
||||
appInfo.apiVersion = VK_API_VERSION_1_3; // Tell vulkan what the highest API version we will allow this program to run on
|
||||
|
||||
VkInstanceCreateInfo createInfo{}; // Define parameters of new vulkan instance
|
||||
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; // Tell vulkan this is a info structure
|
||||
createInfo.pApplicationInfo = &appInfo; // We just created a new appInfo structure, so we pass the pointer to it.
|
||||
VkApplicationInfo appInfo{};
|
||||
|
||||
debugController.vulkanDebugSetup(createInfo, vulkaninstance); // Handoff to the debug library to wrap the validation libs in! (And set the window up!)
|
||||
appInfo.sType =
|
||||
VK_STRUCTURE_TYPE_APPLICATION_INFO; // Tell vulkan that appInfo is a
|
||||
// Application Info structure
|
||||
appInfo.pApplicationName = "Triangle Test"; // Give the struct a name to use
|
||||
appInfo.applicationVersion = VK_MAKE_VERSION(
|
||||
1, 0,
|
||||
0); // Create a Major Minor Patch version number for the application!
|
||||
appInfo.pEngineName =
|
||||
"Agnosia Engine"; // Give an internal name for the engine running
|
||||
appInfo.engineVersion = VK_MAKE_VERSION(
|
||||
1, 0, 0); // Similar to the App version, give vulkan an *engine* version
|
||||
appInfo.apiVersion =
|
||||
VK_API_VERSION_1_3; // Tell vulkan what the highest API version we will
|
||||
// allow this program to run on
|
||||
|
||||
// This gets a little weird, Vulkan is platform agnostic, so you need to
|
||||
// figure out what extensions to interface with the current system are needed
|
||||
// So, to figure out what extension codes and how many to use, feed the
|
||||
// pointer into *glfwGetRequiredInstanceExtensions*, which will get the
|
||||
// necessary extensions! From there, we can send that over to our createInfo
|
||||
// Vulkan info struct to make it fully platform agnostic!
|
||||
uint32_t glfwExtensionCount = 0;
|
||||
const char **glfwExtensions;
|
||||
glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
|
||||
std::vector<const char *> extensions(glfwExtensions,
|
||||
glfwExtensions + glfwExtensionCount);
|
||||
|
||||
VkInstanceCreateInfo createInfo{}; // Define parameters of new vulkan instance
|
||||
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
|
||||
createInfo.pApplicationInfo = &appInfo;
|
||||
createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
|
||||
createInfo.ppEnabledExtensionNames = extensions.data();
|
||||
|
||||
if (vkCreateInstance(&createInfo, nullptr, &vulkaninstance) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create instance!");
|
||||
}
|
||||
}
|
||||
void initAgnosia() {
|
||||
Material *sphereMaterial =
|
||||
new Material("sphereMaterial", "assets/textures/checkermap.png");
|
||||
Material *stanfordDragonMaterial =
|
||||
new Material("stanfordDragonMaterial", "assets/textures/checkermap.png");
|
||||
Material *teapotMaterial =
|
||||
new Material("teapotMaterial", "assets/textures/checkermap.png");
|
||||
Model *uvSphere =
|
||||
new Model("uvSphere", *sphereMaterial, "assets/models/UVSphere.obj",
|
||||
glm::vec3(0.0f, 0.0f, 0.0f));
|
||||
Model *stanfordDragon = new Model("stanfordDragon", *stanfordDragonMaterial,
|
||||
"assets/models/StanfordDragon800k.obj",
|
||||
glm::vec3(0.0f, 2.0f, 0.0f));
|
||||
Model *teapot =
|
||||
new Model("teapot", *teapotMaterial, "assets/models/teapot.obj",
|
||||
glm::vec3(1.0f, -3.0f, -1.0f));
|
||||
}
|
||||
|
||||
|
||||
void initVulkan() {
|
||||
// Initialize volk and continue if successful.
|
||||
volkInitialize();
|
||||
// Initialize vulkan and set up pipeline.
|
||||
createInstance();
|
||||
debugController.setupDebugMessenger(vulkaninstance); // The debug messenger is out holy grail, it gives us Vulkan related debug info when built with the -DDEBUG flag (as per the makefile)
|
||||
deviceLibs.createSurface(vulkaninstance, Global::window);
|
||||
deviceLibs.pickPhysicalDevice(vulkaninstance);
|
||||
deviceLibs.createLogicalDevice();
|
||||
deviceLibs.createSwapChain(Global::window);
|
||||
deviceLibs.createImageViews();
|
||||
graphicsPipeline.createRenderPass();
|
||||
graphicsPipeline.createGraphicsPipeline();
|
||||
graphicsPipeline.createFramebuffers();
|
||||
graphicsPipeline.createCommandPool();
|
||||
buffers.createVertexBuffer();
|
||||
buffers.createIndexBuffer();
|
||||
graphicsPipeline.createCommandBuffer();
|
||||
renderPresentation.createSyncObject();
|
||||
volkLoadInstance(vulkaninstance);
|
||||
DeviceControl::createSurface(vulkaninstance, window);
|
||||
DeviceControl::pickPhysicalDevice(vulkaninstance);
|
||||
DeviceControl::createLogicalDevice();
|
||||
volkLoadDevice(DeviceControl::getDevice());
|
||||
DeviceControl::createSwapChain(window);
|
||||
Model::createMemoryAllocator(vulkaninstance);
|
||||
DeviceControl::createImageViews();
|
||||
Buffers::createDescriptorSetLayout();
|
||||
Graphics::createGraphicsPipeline();
|
||||
Graphics::createCommandPool();
|
||||
// Image creation MUST be after command pool, because command
|
||||
// buffers.
|
||||
Model::populateModels();
|
||||
Texture::createMaterialTextures(Model::getInstances());
|
||||
Texture::createColorResources();
|
||||
Texture::createDepthResources();
|
||||
|
||||
Buffers::createDescriptorPool();
|
||||
Buffers::createDescriptorSet(Model::getInstances());
|
||||
Graphics::createCommandBuffer();
|
||||
Render::createSyncObject();
|
||||
|
||||
Gui::initImgui(vulkaninstance);
|
||||
}
|
||||
|
||||
void mainLoop() { // This loop just updates the GLFW window.
|
||||
while (!glfwWindowShouldClose(Global::window)) {
|
||||
void mainLoop() {
|
||||
while (!glfwWindowShouldClose(window)) {
|
||||
glfwPollEvents();
|
||||
renderPresentation.drawFrame();
|
||||
|
||||
Gui::drawImGui();
|
||||
Render::drawFrame();
|
||||
}
|
||||
vkDeviceWaitIdle(Global::device);
|
||||
vkDeviceWaitIdle(DeviceControl::getDevice());
|
||||
}
|
||||
|
||||
void cleanup() { // Similar to the last handoff, destroy the utils in a safe manner in the library!
|
||||
renderPresentation.cleanupSwapChain();
|
||||
graphicsPipeline.destroyGraphicsPipeline();
|
||||
graphicsPipeline.destroyRenderPass();
|
||||
void cleanup() {
|
||||
Render::cleanupSwapChain();
|
||||
Graphics::destroyGraphicsPipeline();
|
||||
Buffers::destroyDescriptorPool();
|
||||
Model::destroyTextures();
|
||||
|
||||
buffers.destroyBuffers();
|
||||
renderPresentation.destroyFenceSemaphores();
|
||||
graphicsPipeline.destroyCommandPool();
|
||||
vkDestroyDescriptorSetLayout(DeviceControl::getDevice(),
|
||||
Buffers::getDescriptorSetLayout(), nullptr);
|
||||
|
||||
vkDestroyDevice(Global::device, nullptr);
|
||||
if(Global::enableValidationLayers) {
|
||||
debugController.DestroyDebugUtilsMessengerEXT(vulkaninstance, nullptr);
|
||||
}
|
||||
|
||||
deviceLibs.destroySurface(vulkaninstance);
|
||||
Buffers::destroyBuffers();
|
||||
Render::destroyFenceSemaphores();
|
||||
Graphics::destroyCommandPool();
|
||||
|
||||
ImGui_ImplVulkan_Shutdown();
|
||||
ImGui_ImplGlfw_Shutdown();
|
||||
ImGui::DestroyContext();
|
||||
|
||||
vkDestroyDevice(DeviceControl::getDevice(), nullptr);
|
||||
DeviceControl::destroySurface(vulkaninstance);
|
||||
vkDestroyInstance(vulkaninstance, nullptr);
|
||||
glfwDestroyWindow(Global::window);
|
||||
glfwDestroyWindow(window);
|
||||
glfwTerminate();
|
||||
}
|
||||
|
||||
// External Functions
|
||||
EntryApp& EntryApp::getInstance() {
|
||||
EntryApp &EntryApp::getInstance() {
|
||||
static EntryApp instance;
|
||||
return instance;
|
||||
}
|
||||
EntryApp::EntryApp() : initialized(false), framebufferResized(false) {}
|
||||
|
||||
void EntryApp::initialize() {
|
||||
initialized = true;
|
||||
}
|
||||
bool EntryApp::isInitialized() const {
|
||||
return initialized;
|
||||
}
|
||||
|
||||
void EntryApp::initialize() { initialized = true; }
|
||||
bool EntryApp::isInitialized() const { return initialized; }
|
||||
GLFWwindow *EntryApp::getWindow() { return window; }
|
||||
void EntryApp::run() {
|
||||
|
||||
initWindow();
|
||||
initAgnosia();
|
||||
initVulkan();
|
||||
mainLoop();
|
||||
cleanup();
|
||||
}
|
||||
|
||||
|
@@ -1,22 +1,23 @@
|
||||
#include <cstdlib>
|
||||
#include "devicelibrary.h" // Device Library includes global, redundant to include with it here
|
||||
#include "debug/vulkandebuglibs.h"
|
||||
#include "graphics/graphicspipeline.h"
|
||||
#include "graphics/render.h"
|
||||
class EntryApp {
|
||||
public:
|
||||
static EntryApp& getInstance();
|
||||
void initialize();
|
||||
bool isInitialized() const;
|
||||
void run();
|
||||
void setFramebufferResized(bool frame);
|
||||
bool getFramebufferResized() const;
|
||||
private:
|
||||
EntryApp();
|
||||
|
||||
EntryApp(const EntryApp&) = delete;
|
||||
void operator=(const EntryApp&) = delete;
|
||||
#pragma once
|
||||
|
||||
bool framebufferResized;
|
||||
bool initialized;
|
||||
#include <GLFW/glfw3.h>
|
||||
|
||||
class EntryApp {
|
||||
public:
|
||||
static EntryApp &getInstance();
|
||||
void initialize();
|
||||
bool isInitialized() const;
|
||||
void run();
|
||||
void setFramebufferResized(bool frame);
|
||||
bool getFramebufferResized() const;
|
||||
static GLFWwindow *getWindow();
|
||||
|
||||
private:
|
||||
EntryApp();
|
||||
|
||||
EntryApp(const EntryApp &) = delete;
|
||||
void operator=(const EntryApp &) = delete;
|
||||
|
||||
bool framebufferResized;
|
||||
bool initialized;
|
||||
};
|
||||
|
@@ -1,60 +0,0 @@
|
||||
#include "global.h"
|
||||
#include "devicelibrary.h"
|
||||
#include <vulkan/vulkan_core.h>
|
||||
namespace Global {
|
||||
|
||||
const std::vector<const char*> validationLayers = {
|
||||
"VK_LAYER_KHRONOS_validation"
|
||||
};
|
||||
#ifdef DEBUG
|
||||
const bool enableValidationLayers = true;
|
||||
#else
|
||||
const bool enableValidationLayers = false;
|
||||
#endif
|
||||
|
||||
VkSurfaceKHR surface;
|
||||
VkDevice device;
|
||||
VkPhysicalDevice physicalDevice;
|
||||
VkSwapchainKHR swapChain;
|
||||
VkCommandPool commandPool;
|
||||
std::vector<VkCommandBuffer> commandBuffers;
|
||||
VkQueue graphicsQueue;
|
||||
VkQueue presentQueue;
|
||||
GLFWwindow* window;
|
||||
|
||||
|
||||
Global::QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) {
|
||||
// First we feed in a integer we want to use to hold the number of queued items, that fills it, then we create that amount of default constructed *VkQueueFamilyProperties* structs.
|
||||
// These store the flags, the amount of queued items in the family, and timestamp data. Queue families are simply group collections of tasks we want to get done.
|
||||
// Next, we check the flags of the queueFamily item, use a bitwise and to see if they match, i.e. support graphical operations, then return that to notify that we have at least one family that supports VK_QUEUE_GRAPHICS_BIT.
|
||||
// Which means this device supports graphical operations!
|
||||
// We also do the same thing for window presentation, just check to see if its supported.
|
||||
DeviceControl::devicelibrary deviceLibs;
|
||||
Global::QueueFamilyIndices indices;
|
||||
|
||||
uint32_t queueFamilyCount = 0;
|
||||
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);
|
||||
|
||||
std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
|
||||
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());
|
||||
|
||||
int i = 0;
|
||||
for(const auto& queueFamily : queueFamilies) {
|
||||
if(queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
|
||||
indices.graphicsFamily = i;
|
||||
}
|
||||
|
||||
VkBool32 presentSupport = false;
|
||||
vkGetPhysicalDeviceSurfaceSupportKHR(device, i, Global::surface, &presentSupport);
|
||||
if(presentSupport) {
|
||||
indices.presentFamily = i;
|
||||
}
|
||||
|
||||
if(indices.isComplete()) {
|
||||
break;
|
||||
}
|
||||
i++;
|
||||
}
|
||||
return indices;
|
||||
}
|
||||
}
|
72
src/global.h
72
src/global.h
@@ -1,72 +0,0 @@
|
||||
#pragma once
|
||||
#include <glm/ext/vector_float2.hpp>
|
||||
#include <glm/ext/vector_float3.hpp>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <optional>
|
||||
#include <vulkan/vulkan_core.h>
|
||||
#include "debug/vulkandebuglibs.h"
|
||||
|
||||
#include <array>
|
||||
#define GLFW_INCLUDE_VULKAN
|
||||
#include <GLFW/glfw3.h>
|
||||
|
||||
namespace Global {
|
||||
// Global variables and includes we are going to use almost everywhere, validation layers hook into everything, and you need to check if they are enabled first,
|
||||
// so that's one obvious global, as well as the glfw includes!
|
||||
extern const std::vector<const char*> validationLayers;
|
||||
extern const bool enableValidationLayers;
|
||||
extern VkDevice device;
|
||||
extern VkCommandPool commandPool;
|
||||
extern std::vector<VkCommandBuffer> commandBuffers;
|
||||
extern VkQueue graphicsQueue;
|
||||
extern VkQueue presentQueue;
|
||||
const int MAX_FRAMES_IN_FLIGHT = 2;
|
||||
extern GLFWwindow* window;
|
||||
|
||||
struct Vertex {
|
||||
glm::vec2 pos;
|
||||
glm::vec3 color;
|
||||
|
||||
static VkVertexInputBindingDescription getBindingDescription() {
|
||||
VkVertexInputBindingDescription bindingDescription{};
|
||||
bindingDescription.binding = 0;
|
||||
bindingDescription.stride = sizeof(Vertex);
|
||||
bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
|
||||
|
||||
return bindingDescription;
|
||||
}
|
||||
static std::array<VkVertexInputAttributeDescription, 2> getAttributeDescriptions() {
|
||||
std::array<VkVertexInputAttributeDescription, 2> attributeDescriptions{};
|
||||
|
||||
attributeDescriptions[0].binding = 0;
|
||||
attributeDescriptions[0].location = 0;
|
||||
attributeDescriptions[0].format = VK_FORMAT_R32G32_SFLOAT;
|
||||
attributeDescriptions[0].offset = offsetof(Vertex, pos);
|
||||
|
||||
attributeDescriptions[1].binding = 0;
|
||||
attributeDescriptions[1].location = 1;
|
||||
attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT;
|
||||
attributeDescriptions[1].offset = offsetof(Vertex, color);
|
||||
return attributeDescriptions;
|
||||
}
|
||||
};
|
||||
|
||||
const uint32_t WIDTH = 800;
|
||||
const uint32_t HEIGHT = 600;
|
||||
|
||||
struct QueueFamilyIndices {
|
||||
// We need to check that the Queue families support graphics operations and window presentation, sometimes they can support one or the other,
|
||||
// therefore, we take into account both for completion.
|
||||
std::optional<uint32_t> graphicsFamily;
|
||||
std::optional<uint32_t> presentFamily;
|
||||
|
||||
bool isComplete() {
|
||||
return graphicsFamily.has_value() && presentFamily.has_value();
|
||||
}
|
||||
};
|
||||
extern VkSwapchainKHR swapChain;
|
||||
extern VkSurfaceKHR surface;
|
||||
extern VkPhysicalDevice physicalDevice;
|
||||
Global::QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device);
|
||||
}
|
@@ -1,159 +1,273 @@
|
||||
#include "../devicelibrary.h"
|
||||
|
||||
#include "buffers.h"
|
||||
#include "model.h"
|
||||
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
#include <cstring>
|
||||
|
||||
#include <glm/ext/matrix_clip_space.hpp>
|
||||
#include <glm/ext/matrix_transform.hpp>
|
||||
|
||||
#include <stdexcept>
|
||||
#include <vulkan/vulkan_core.h>
|
||||
|
||||
std::vector<VkDescriptorSetLayout> modelSetLayouts;
|
||||
|
||||
VkBuffer vertexBuffer;
|
||||
VkDeviceMemory vertexBufferMemory;
|
||||
VkBuffer indexBuffer;
|
||||
VkDeviceMemory indexBufferMemory;
|
||||
|
||||
namespace Buffers {
|
||||
uint32_t indicesSize;
|
||||
|
||||
const std::vector<Global::Vertex> vertices = {
|
||||
{{-0.5f, -0.5f}, {1.0f, 0.0f, 0.0f}},
|
||||
{{0.5f, -0.5f}, {0.0f, 1.0f, 0.0f}},
|
||||
{{0.5f, 0.5f}, {0.0f, 0.0f, 1.0f}},
|
||||
{{-0.5f, 0.5f}, {1.0f, 1.0f, 1.0f}}
|
||||
};
|
||||
// Index buffer definition, showing which points to reuse.
|
||||
const std::vector<uint16_t> indices = {
|
||||
0, 1, 2, 2, 3, 0
|
||||
// Select a binding for each descriptor type
|
||||
constexpr int STORAGE_BINDING = 0;
|
||||
constexpr int SAMPLER_BINDING = 1;
|
||||
constexpr int IMAGE_BINDING = 2;
|
||||
// Max count of each descriptor type
|
||||
// You can query the max values for these with
|
||||
// physicalDevice.getProperties().limits.maxDescriptrorSet*******
|
||||
constexpr int STORAGE_COUNT = 65536;
|
||||
constexpr int SAMPLER_COUNT = 65536;
|
||||
constexpr int IMAGE_COUNT = 65536;
|
||||
|
||||
// Create descriptor pool
|
||||
|
||||
VkDescriptorPool descriptorPool;
|
||||
VkDescriptorSetLayout descriptorSetLayout;
|
||||
VkDescriptorSet descriptorSet;
|
||||
|
||||
VkCommandPool commandPool;
|
||||
std::vector<VkCommandBuffer> commandBuffers;
|
||||
|
||||
const int MAX_FRAMES_IN_FLIGHT = 2;
|
||||
|
||||
void Buffers::createDescriptorSetLayout() {
|
||||
// Create a table of pointers to data, a Descriptor Set!
|
||||
|
||||
VkDescriptorSetLayoutBinding storageLayoutBinding = {
|
||||
.binding = STORAGE_BINDING,
|
||||
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
||||
.descriptorCount = STORAGE_COUNT,
|
||||
.stageFlags = VK_SHADER_STAGE_ALL,
|
||||
.pImmutableSamplers = nullptr,
|
||||
};
|
||||
|
||||
uint32_t findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties) {
|
||||
// Graphics cards offer different types of memory to allocate from, here we query to find the right type of memory for our needs.
|
||||
// Query the available types of memory to iterate over.
|
||||
VkPhysicalDeviceMemoryProperties memProperties;
|
||||
vkGetPhysicalDeviceMemoryProperties(Global::physicalDevice, &memProperties);
|
||||
// iterate over and see if any of the memory types match our needs, in this case, HOST_VISIBLE and HOST_COHERENT. These will be explained shortly.
|
||||
for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
|
||||
if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
throw std::runtime_error("failed to find suitable memory type!");
|
||||
}
|
||||
VkDescriptorSetLayoutBinding samplerLayoutBinding = {
|
||||
.binding = SAMPLER_BINDING,
|
||||
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
||||
.descriptorCount = SAMPLER_COUNT,
|
||||
.stageFlags = VK_SHADER_STAGE_ALL,
|
||||
.pImmutableSamplers = nullptr,
|
||||
};
|
||||
|
||||
void copyBuffer(VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size) {
|
||||
VkCommandBufferAllocateInfo allocInfo{};
|
||||
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
|
||||
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
|
||||
allocInfo.commandPool = Global::commandPool;
|
||||
allocInfo.commandBufferCount = 1;
|
||||
VkDescriptorSetLayoutBinding imageLayoutBinding = {
|
||||
.binding = IMAGE_BINDING,
|
||||
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
|
||||
.descriptorCount = IMAGE_COUNT,
|
||||
.stageFlags = VK_SHADER_STAGE_ALL,
|
||||
.pImmutableSamplers = nullptr,
|
||||
};
|
||||
|
||||
VkCommandBuffer commandBuffer;
|
||||
vkAllocateCommandBuffers(Global::device, &allocInfo, &commandBuffer);
|
||||
std::vector<VkDescriptorSetLayoutBinding> bindings = {
|
||||
storageLayoutBinding, imageLayoutBinding, samplerLayoutBinding};
|
||||
|
||||
VkCommandBufferBeginInfo beginInfo{};
|
||||
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
||||
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
|
||||
std::vector<VkDescriptorBindingFlags> bindingFlags = {
|
||||
VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT |
|
||||
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT,
|
||||
VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT |
|
||||
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT,
|
||||
VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT |
|
||||
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT,
|
||||
};
|
||||
VkDescriptorSetLayoutBindingFlagsCreateInfo setLayoutBindingsFlags = {
|
||||
.sType =
|
||||
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO,
|
||||
.bindingCount = 3,
|
||||
.pBindingFlags = bindingFlags.data(),
|
||||
};
|
||||
|
||||
vkBeginCommandBuffer(commandBuffer, &beginInfo);
|
||||
VkDescriptorSetLayoutCreateInfo layoutInfo = {
|
||||
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
|
||||
|
||||
VkBufferCopy copyRegion{};
|
||||
copyRegion.size = size;
|
||||
vkCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, 1, ©Region);
|
||||
.pNext = &setLayoutBindingsFlags,
|
||||
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT,
|
||||
.bindingCount = static_cast<uint32_t>(bindings.size()),
|
||||
.pBindings = bindings.data(),
|
||||
|
||||
vkEndCommandBuffer(commandBuffer);
|
||||
|
||||
VkSubmitInfo submitInfo{};
|
||||
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &commandBuffer;
|
||||
|
||||
vkQueueSubmit(Global::graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
|
||||
vkQueueWaitIdle(Global::graphicsQueue);
|
||||
|
||||
vkFreeCommandBuffers(Global::device, Global::commandPool, 1, &commandBuffer);
|
||||
}
|
||||
|
||||
void createBuffer(VkDeviceSize size, VkBufferUsageFlags usage, VkMemoryPropertyFlags properties, VkBuffer& buffer, VkDeviceMemory& bufferMemory) {
|
||||
VkBufferCreateInfo bufferInfo{};
|
||||
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
||||
bufferInfo.size = size;
|
||||
bufferInfo.usage = usage;
|
||||
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
||||
|
||||
if (vkCreateBuffer(Global::device, &bufferInfo, nullptr, &buffer) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create buffer!");
|
||||
}
|
||||
|
||||
VkMemoryRequirements memRequirements;
|
||||
vkGetBufferMemoryRequirements(Global::device, buffer, &memRequirements);
|
||||
|
||||
VkMemoryAllocateInfo allocInfo{};
|
||||
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
||||
allocInfo.allocationSize = memRequirements.size;
|
||||
allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties);
|
||||
|
||||
if (vkAllocateMemory(Global::device, &allocInfo, nullptr, &bufferMemory) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to allocate buffer memory!");
|
||||
}
|
||||
|
||||
vkBindBufferMemory(Global::device, buffer, bufferMemory, 0);
|
||||
}
|
||||
|
||||
void bufferslibrary::createIndexBuffer() {
|
||||
VkDeviceSize bufferSize = sizeof(indices[0]) * indices.size();
|
||||
|
||||
VkBuffer stagingBuffer;
|
||||
VkDeviceMemory stagingBufferMemory;
|
||||
|
||||
createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);
|
||||
|
||||
void* data;
|
||||
vkMapMemory(Global::device, stagingBufferMemory, 0, bufferSize, 0, &data);
|
||||
memcpy(data, indices.data(), (size_t) bufferSize);
|
||||
vkUnmapMemory(Global::device, stagingBufferMemory);
|
||||
|
||||
createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBuffer, indexBufferMemory);
|
||||
|
||||
copyBuffer(stagingBuffer, indexBuffer, bufferSize);
|
||||
|
||||
vkDestroyBuffer(Global::device, stagingBuffer, nullptr);
|
||||
vkFreeMemory(Global::device, stagingBufferMemory, nullptr);
|
||||
}
|
||||
void bufferslibrary::createVertexBuffer() {
|
||||
// Create a Vertex Buffer to hold the vertex information in memory so it doesn't have to be hardcoded!
|
||||
// Size denotes the size of the buffer in bytes, usage in this case is the buffer behaviour, using a bitwise OR.
|
||||
// Sharing mode denostes the same as the images in the swap chain! in this case, only the graphics queue uses this buffer, so we make it exclusive.
|
||||
VkDeviceSize bufferSize = sizeof(vertices[0]) * vertices.size();
|
||||
|
||||
VkBuffer stagingBuffer;
|
||||
VkDeviceMemory stagingBufferMemory;
|
||||
createBuffer(bufferSize, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);
|
||||
|
||||
void* data;
|
||||
vkMapMemory(Global::device, stagingBufferMemory, 0, bufferSize, 0, &data);
|
||||
memcpy(data, vertices.data(), (size_t) bufferSize);
|
||||
vkUnmapMemory(Global::device, stagingBufferMemory);
|
||||
|
||||
createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBuffer, vertexBufferMemory);
|
||||
|
||||
copyBuffer(stagingBuffer, vertexBuffer, bufferSize);
|
||||
|
||||
vkDestroyBuffer(Global::device, stagingBuffer, nullptr);
|
||||
vkFreeMemory(Global::device, stagingBufferMemory, nullptr);
|
||||
}
|
||||
|
||||
void bufferslibrary::destroyBuffers() {
|
||||
vkDestroyBuffer(Global::device, indexBuffer, nullptr);
|
||||
vkFreeMemory(Global::device, indexBufferMemory, nullptr);
|
||||
|
||||
vkDestroyBuffer(Global::device, vertexBuffer, nullptr);
|
||||
vkFreeMemory(Global::device, vertexBufferMemory, nullptr);
|
||||
}
|
||||
VkBuffer bufferslibrary::getVertexBuffer() {
|
||||
return vertexBuffer;
|
||||
}
|
||||
VkBuffer bufferslibrary::getIndexBuffer() {
|
||||
return indexBuffer;
|
||||
}
|
||||
std::vector<Global::Vertex> bufferslibrary::getVertices() {
|
||||
return vertices;
|
||||
}
|
||||
std::vector<uint16_t> bufferslibrary::getIndices() {
|
||||
return indices;
|
||||
};
|
||||
if (vkCreateDescriptorSetLayout(DeviceControl::getDevice(), &layoutInfo,
|
||||
nullptr,
|
||||
&descriptorSetLayout) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create descriptor set layout!");
|
||||
}
|
||||
}
|
||||
void Buffers::createDescriptorPool() {
|
||||
|
||||
std::vector<VkDescriptorPoolSize> poolSizes = {
|
||||
{VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, STORAGE_COUNT},
|
||||
{VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, SAMPLER_COUNT},
|
||||
{VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, IMAGE_COUNT},
|
||||
};
|
||||
VkDescriptorPoolCreateInfo poolInfo{};
|
||||
poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
|
||||
poolInfo.poolSizeCount = static_cast<uint32_t>(poolSizes.size());
|
||||
poolInfo.pPoolSizes = poolSizes.data();
|
||||
poolInfo.maxSets = 1;
|
||||
poolInfo.flags = VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT;
|
||||
|
||||
if (vkCreateDescriptorPool(DeviceControl::getDevice(), &poolInfo, nullptr,
|
||||
&descriptorPool) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create descriptor pool!");
|
||||
}
|
||||
}
|
||||
void Buffers::destroyDescriptorPool() {
|
||||
vkDestroyDescriptorPool(DeviceControl::getDevice(), descriptorPool, nullptr);
|
||||
}
|
||||
void Buffers::createDescriptorSet(std::vector<Model *> models) {
|
||||
VkDescriptorSetAllocateInfo allocInfo{};
|
||||
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
|
||||
allocInfo.descriptorPool = descriptorPool;
|
||||
allocInfo.descriptorSetCount = 1;
|
||||
allocInfo.pSetLayouts = &descriptorSetLayout;
|
||||
|
||||
if (vkAllocateDescriptorSets(DeviceControl::getDevice(), &allocInfo,
|
||||
&descriptorSet) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to allocate descriptor sets!");
|
||||
}
|
||||
std::vector<VkDescriptorImageInfo> imageInfoSet;
|
||||
imageInfoSet.resize(models.size());
|
||||
|
||||
for (int i = 0; i < models.size(); i++) {
|
||||
imageInfoSet[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
||||
imageInfoSet[i].imageView = models[i]->getMaterial().getTextureView();
|
||||
imageInfoSet[i].sampler = models[i]->getMaterial().getTextureSampler();
|
||||
}
|
||||
|
||||
std::vector<VkWriteDescriptorSet> descriptorWrites{};
|
||||
descriptorWrites.resize(models.size());
|
||||
|
||||
for (int i = 0; i < models.size(); i++) {
|
||||
descriptorWrites[i].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
||||
descriptorWrites[i].dstSet = descriptorSet;
|
||||
descriptorWrites[i].dstBinding = SAMPLER_BINDING;
|
||||
descriptorWrites[i].dstArrayElement = i;
|
||||
descriptorWrites[i].descriptorType =
|
||||
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
|
||||
descriptorWrites[i].descriptorCount = 1;
|
||||
descriptorWrites[i].pImageInfo = &imageInfoSet[i];
|
||||
}
|
||||
|
||||
vkUpdateDescriptorSets(DeviceControl::getDevice(),
|
||||
static_cast<uint32_t>(descriptorWrites.size()),
|
||||
descriptorWrites.data(), 0, nullptr);
|
||||
}
|
||||
|
||||
uint32_t Buffers::findMemoryType(uint32_t typeFilter,
|
||||
VkMemoryPropertyFlags properties) {
|
||||
// Graphics cards offer different types of memory to allocate from, here we
|
||||
// query to find the right type of memory for our needs. Query the available
|
||||
// types of memory to iterate over.
|
||||
VkPhysicalDeviceMemoryProperties memProperties;
|
||||
vkGetPhysicalDeviceMemoryProperties(DeviceControl::getPhysicalDevice(),
|
||||
&memProperties);
|
||||
// iterate over and see if any of the memory types match our needs, in this
|
||||
// case, HOST_VISIBLE and HOST_COHERENT. These will be explained shortly.
|
||||
for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
|
||||
if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags &
|
||||
properties) == properties) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
throw std::runtime_error("failed to find suitable memory type!");
|
||||
}
|
||||
|
||||
void copyBuffer(VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size) {
|
||||
VkCommandBufferAllocateInfo allocInfo{};
|
||||
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
|
||||
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
|
||||
allocInfo.commandPool = commandPool;
|
||||
allocInfo.commandBufferCount = 1;
|
||||
|
||||
VkCommandBuffer commandBuffer;
|
||||
vkAllocateCommandBuffers(DeviceControl::getDevice(), &allocInfo,
|
||||
&commandBuffer);
|
||||
|
||||
VkCommandBufferBeginInfo beginInfo{};
|
||||
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
||||
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
|
||||
|
||||
vkBeginCommandBuffer(commandBuffer, &beginInfo);
|
||||
|
||||
VkBufferCopy copyRegion{};
|
||||
copyRegion.size = size;
|
||||
vkCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, 1, ©Region);
|
||||
|
||||
vkEndCommandBuffer(commandBuffer);
|
||||
|
||||
VkSubmitInfo submitInfo{};
|
||||
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &commandBuffer;
|
||||
|
||||
vkQueueSubmit(DeviceControl::getGraphicsQueue(), 1, &submitInfo,
|
||||
VK_NULL_HANDLE);
|
||||
vkQueueWaitIdle(DeviceControl::getGraphicsQueue());
|
||||
|
||||
vkFreeCommandBuffers(DeviceControl::getDevice(), commandPool, 1,
|
||||
&commandBuffer);
|
||||
}
|
||||
|
||||
void Buffers::createBuffer(VkDeviceSize size, VkBufferUsageFlags usage,
|
||||
VkMemoryPropertyFlags properties, VkBuffer &buffer,
|
||||
VkDeviceMemory &bufferMemory) {
|
||||
VkBufferCreateInfo bufferInfo{};
|
||||
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
||||
bufferInfo.size = size;
|
||||
bufferInfo.usage = usage;
|
||||
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
||||
|
||||
if (vkCreateBuffer(DeviceControl::getDevice(), &bufferInfo, nullptr,
|
||||
&buffer) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create buffer!");
|
||||
}
|
||||
|
||||
VkMemoryRequirements memRequirements;
|
||||
vkGetBufferMemoryRequirements(DeviceControl::getDevice(), buffer,
|
||||
&memRequirements);
|
||||
|
||||
VkMemoryAllocateInfo allocInfo{};
|
||||
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
||||
allocInfo.allocationSize = memRequirements.size;
|
||||
allocInfo.memoryTypeIndex =
|
||||
findMemoryType(memRequirements.memoryTypeBits, properties);
|
||||
|
||||
if (vkAllocateMemory(DeviceControl::getDevice(), &allocInfo, nullptr,
|
||||
&bufferMemory) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to allocate buffer memory!");
|
||||
}
|
||||
|
||||
vkBindBufferMemory(DeviceControl::getDevice(), buffer, bufferMemory, 0);
|
||||
}
|
||||
VkDescriptorPool &Buffers::getDescriptorPool() { return descriptorPool; }
|
||||
VkDescriptorSet &Buffers::getDescriptorSet() { return descriptorSet; }
|
||||
VkDescriptorSetLayout &Buffers::getDescriptorSetLayout() {
|
||||
return descriptorSetLayout;
|
||||
}
|
||||
|
||||
void Buffers::destroyBuffers() {
|
||||
vkDestroyBuffer(DeviceControl::getDevice(), indexBuffer, nullptr);
|
||||
vkFreeMemory(DeviceControl::getDevice(), indexBufferMemory, nullptr);
|
||||
|
||||
vkDestroyBuffer(DeviceControl::getDevice(), vertexBuffer, nullptr);
|
||||
vkFreeMemory(DeviceControl::getDevice(), vertexBufferMemory, nullptr);
|
||||
}
|
||||
|
||||
uint32_t Buffers::getMaxFramesInFlight() { return MAX_FRAMES_IN_FLIGHT; }
|
||||
std::vector<VkCommandBuffer> &Buffers::getCommandBuffers() {
|
||||
return commandBuffers;
|
||||
}
|
||||
|
||||
VkCommandPool &Buffers::getCommandPool() { return commandPool; }
|
||||
uint32_t Buffers::getIndicesSize() { return indicesSize; }
|
||||
|
@@ -1,15 +1,38 @@
|
||||
#pragma once
|
||||
#include "../global.h"
|
||||
|
||||
namespace Buffers {
|
||||
class bufferslibrary {
|
||||
public:
|
||||
void createIndexBuffer();
|
||||
void createVertexBuffer();
|
||||
void destroyBuffers();
|
||||
VkBuffer getVertexBuffer();
|
||||
VkBuffer getIndexBuffer();
|
||||
std::vector<Global::Vertex> getVertices();
|
||||
std::vector<uint16_t> getIndices();
|
||||
};
|
||||
}
|
||||
#include <cstdint>
|
||||
|
||||
#define VK_NO_PROTOTYPES
|
||||
#include "../types.h"
|
||||
#include "model.h"
|
||||
#include "volk.h"
|
||||
#include <vector>
|
||||
#define GLFW_INCLUDE_VULKAN
|
||||
#include <GLFW/glfw3.h>
|
||||
|
||||
class Buffers {
|
||||
public:
|
||||
static Agnosia_T::AllocatedBuffer createBuffer(size_t allocSize,
|
||||
VkBufferUsageFlags usage,
|
||||
VmaMemoryUsage memUsage);
|
||||
static void createMemoryAllocator(VkInstance vkInstance);
|
||||
static void createDescriptorSetLayout();
|
||||
static void createDescriptorSet(std::vector<Model *> models);
|
||||
static void createDescriptorPool();
|
||||
static void destroyDescriptorPool();
|
||||
static void createBuffer(VkDeviceSize size, VkBufferUsageFlags usage,
|
||||
VkMemoryPropertyFlags props, VkBuffer &buffer,
|
||||
VkDeviceMemory &bufferMemory);
|
||||
static uint32_t findMemoryType(uint32_t typeFilter,
|
||||
VkMemoryPropertyFlags flags);
|
||||
static void destroyBuffers();
|
||||
static VkDescriptorPool &getDescriptorPool();
|
||||
static VkDescriptorSet &getDescriptorSet();
|
||||
|
||||
static VkDescriptorSetLayout &getDescriptorSetLayout();
|
||||
static uint32_t getMaxFramesInFlight();
|
||||
static std::vector<VkCommandBuffer> &getCommandBuffers();
|
||||
|
||||
static VkCommandPool &getCommandPool();
|
||||
static uint32_t getIndicesSize();
|
||||
};
|
||||
|
@@ -1,323 +1,442 @@
|
||||
|
||||
#include "graphicspipeline.h"
|
||||
#include "../devicelibrary.h"
|
||||
#include "buffers.h"
|
||||
#include <vector>
|
||||
namespace Graphics {
|
||||
std::vector<VkDynamicState> dynamicStates = {
|
||||
VK_DYNAMIC_STATE_VIEWPORT,
|
||||
VK_DYNAMIC_STATE_SCISSOR
|
||||
#include "graphicspipeline.h"
|
||||
#include "imgui.h"
|
||||
#include "imgui_impl_vulkan.h"
|
||||
#include "render.h"
|
||||
#include "texture.h"
|
||||
#include <fstream>
|
||||
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
||||
#include <glm/ext/matrix_clip_space.hpp>
|
||||
#include <glm/ext/matrix_transform.hpp>
|
||||
|
||||
#include <iostream>
|
||||
#include <vulkan/vulkan_core.h>
|
||||
|
||||
float lightPos[4] = {5.0f, 5.0f, 5.0f, 0.44f};
|
||||
float camPos[4] = {3.0f, 3.0f, 3.0f, 0.44f};
|
||||
float centerPos[4] = {0.0f, 0.0f, 0.0f, 0.44f};
|
||||
float upDir[4] = {0.0f, 0.0f, 1.0f, 0.44f};
|
||||
float depthField = 45.0f;
|
||||
float distanceField[2] = {0.1f, 100.0f};
|
||||
|
||||
std::vector<VkDynamicState> dynamicStates = {VK_DYNAMIC_STATE_VIEWPORT,
|
||||
VK_DYNAMIC_STATE_SCISSOR};
|
||||
|
||||
VkPipelineLayout pipelineLayout;
|
||||
VkPipeline graphicsPipeline;
|
||||
|
||||
static std::vector<char> readFile(const std::string &filename) {
|
||||
std::ifstream file(filename, std::ios::ate | std::ios::binary);
|
||||
if (!file.is_open()) {
|
||||
throw std::runtime_error("failed to open file!");
|
||||
}
|
||||
|
||||
size_t fileSize = (size_t)file.tellg();
|
||||
std::vector<char> buffer(fileSize);
|
||||
|
||||
file.seekg(0);
|
||||
file.read(buffer.data(), fileSize);
|
||||
|
||||
file.close();
|
||||
|
||||
return buffer;
|
||||
}
|
||||
VkShaderModule createShaderModule(const std::vector<char> &code,
|
||||
VkDevice &device) {
|
||||
VkShaderModuleCreateInfo createInfo{};
|
||||
createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
|
||||
createInfo.codeSize = code.size();
|
||||
createInfo.pCode = reinterpret_cast<const uint32_t *>(code.data());
|
||||
|
||||
VkShaderModule shaderModule;
|
||||
if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) !=
|
||||
VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create shader module!");
|
||||
}
|
||||
return shaderModule;
|
||||
}
|
||||
|
||||
void Graphics::destroyGraphicsPipeline() {
|
||||
vkDestroyPipeline(DeviceControl::getDevice(), graphicsPipeline, nullptr);
|
||||
vkDestroyPipelineLayout(DeviceControl::getDevice(), pipelineLayout, nullptr);
|
||||
}
|
||||
|
||||
void Graphics::createGraphicsPipeline() {
|
||||
// Note to self, for some reason the working directory is not where a read
|
||||
// file is called from, but the project folder!
|
||||
auto vertShaderCode = readFile("src/shaders/vertex.spv");
|
||||
auto fragShaderCode = readFile("src/shaders/fragment.spv");
|
||||
VkShaderModule vertShaderModule =
|
||||
createShaderModule(vertShaderCode, DeviceControl::getDevice());
|
||||
VkShaderModule fragShaderModule =
|
||||
createShaderModule(fragShaderCode, DeviceControl::getDevice());
|
||||
// ------------------ STAGE 1 - INPUT ASSEMBLER ---------------- //
|
||||
// This can get a little complicated, normally, vertices are loaded in
|
||||
// sequential order, with an element buffer however, you can specify the
|
||||
// indices yourself! Using an element buffer means you can reuse vertices,
|
||||
// which can lead to optimizations. If you set PrimRestart to TRUE, you can
|
||||
// utilize the _STRIP modes with special indices
|
||||
VkPipelineInputAssemblyStateCreateInfo inputAssembly{};
|
||||
inputAssembly.sType =
|
||||
VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
|
||||
inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
|
||||
inputAssembly.primitiveRestartEnable = VK_FALSE;
|
||||
|
||||
// ------------------ STAGE 2 - VERTEX SHADER ------------------ //
|
||||
// this will be revisited, right now we are hardcoding shader data, so we tell
|
||||
// it to not load anything, but that will change.
|
||||
VkPipelineShaderStageCreateInfo vertShaderStageInfo{};
|
||||
vertShaderStageInfo.sType =
|
||||
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
|
||||
vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
|
||||
vertShaderStageInfo.module = vertShaderModule;
|
||||
vertShaderStageInfo.pName = "main";
|
||||
VkPipelineVertexInputStateCreateInfo vertexInputInfo{};
|
||||
vertexInputInfo.sType =
|
||||
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
|
||||
|
||||
// ------------------- STAGE 5 - RASTERIZATION ----------------- //
|
||||
// Take Vertex shader vertices and fragmentize them for the frament shader.
|
||||
// The rasterizer also can perform depth testing, face culling, and scissor
|
||||
// testing. In addition, it can also be configured for wireframe rendering.
|
||||
VkPipelineRasterizationStateCreateInfo rasterizer{};
|
||||
rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
|
||||
// Render regardless of the near and far planes, useful for shadow maps,
|
||||
// requires GPU feature *depthClamp*
|
||||
rasterizer.depthClampEnable = VK_FALSE;
|
||||
rasterizer.rasterizerDiscardEnable = VK_FALSE;
|
||||
// MODE_FILL, fill polygons, MODE_LINE, draw wireframe, MODE_POINT, draw
|
||||
// vertices. Anything other than fill requires GPU feature *fillModeNonSolid*
|
||||
rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
|
||||
rasterizer.lineWidth = 1.0f;
|
||||
// How to cull the faces, right here we cull the back faces and tell the
|
||||
// rasterizer front facing vertices are ordered clockwise.
|
||||
rasterizer.cullMode = VK_CULL_MODE_NONE;
|
||||
rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
|
||||
// Whether or not to add depth values. e.x. for shadow maps.
|
||||
rasterizer.depthBiasEnable = VK_FALSE;
|
||||
|
||||
// ------------------ STAGE 6 - FRAGMENT SHADER ---------------- //
|
||||
VkPipelineShaderStageCreateInfo fragShaderStageInfo{};
|
||||
fragShaderStageInfo.sType =
|
||||
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
|
||||
fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
|
||||
fragShaderStageInfo.module = fragShaderModule;
|
||||
fragShaderStageInfo.pName = "main";
|
||||
|
||||
VkPipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo,
|
||||
fragShaderStageInfo};
|
||||
|
||||
// ------------------ STAGE 7 - COLOR BLENDING ----------------- //
|
||||
VkPipelineColorBlendAttachmentState colorBlendAttachment{};
|
||||
colorBlendAttachment.colorWriteMask =
|
||||
VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT |
|
||||
VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
|
||||
colorBlendAttachment.blendEnable = VK_FALSE;
|
||||
|
||||
VkPipelineColorBlendStateCreateInfo colorBlending{};
|
||||
colorBlending.sType =
|
||||
VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
|
||||
colorBlending.logicOpEnable = VK_FALSE;
|
||||
colorBlending.logicOp = VK_LOGIC_OP_COPY;
|
||||
colorBlending.attachmentCount = 1;
|
||||
colorBlending.pAttachments = &colorBlendAttachment;
|
||||
|
||||
// ---------------------- STATE CONTROLS ---------------------- //
|
||||
VkPipelineViewportStateCreateInfo viewportState{};
|
||||
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
|
||||
viewportState.viewportCount = 1;
|
||||
viewportState.scissorCount = 1;
|
||||
// Again, this will be revisited, multisampling can be very useful for
|
||||
// anti-aliasing, since it is fast, but we won't implement it for now.
|
||||
// Requires GPU feature UNKNOWN eanbled.
|
||||
VkPipelineMultisampleStateCreateInfo multisampling{};
|
||||
multisampling.sType =
|
||||
VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
|
||||
multisampling.sampleShadingEnable = VK_TRUE;
|
||||
multisampling.rasterizationSamples = DeviceControl::getPerPixelSampleCount();
|
||||
// TODO: Document!
|
||||
VkPipelineDepthStencilStateCreateInfo depthStencil{};
|
||||
depthStencil.sType =
|
||||
VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
|
||||
depthStencil.depthTestEnable = VK_TRUE;
|
||||
depthStencil.depthWriteEnable = VK_TRUE;
|
||||
depthStencil.depthCompareOp = VK_COMPARE_OP_LESS;
|
||||
depthStencil.depthBoundsTestEnable = VK_FALSE;
|
||||
depthStencil.stencilTestEnable = VK_FALSE;
|
||||
// Most of the graphics pipeline is set in stone, some of the pipeline state
|
||||
// can be modified without recreating it at runtime though! There are TONS of
|
||||
// settings, this would be another TODO to see what else we can mess with
|
||||
// dynamically, but right now we just allow dynamic size of the viewport and
|
||||
// dynamic scissor states. Scissors are pretty straightforward, they are
|
||||
// basically pixel masks for the rasterizer. Scissors describe what regions
|
||||
// pixels will be stored, it doesnt cut them after being rendered, it stops
|
||||
// them from ever being rendered in that area in the first place.
|
||||
VkPipelineDynamicStateCreateInfo dynamicState{};
|
||||
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
|
||||
dynamicState.dynamicStateCount = static_cast<uint32_t>(dynamicStates.size());
|
||||
dynamicState.pDynamicStates = dynamicStates.data();
|
||||
|
||||
VkPushConstantRange pushConstant{
|
||||
.stageFlags = VK_SHADER_STAGE_ALL,
|
||||
.offset = 0,
|
||||
.size = sizeof(Agnosia_T::GPUPushConstants),
|
||||
};
|
||||
|
||||
VkPipelineLayoutCreateInfo pipelineLayoutInfo{};
|
||||
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
|
||||
pipelineLayoutInfo.setLayoutCount = 1;
|
||||
pipelineLayoutInfo.pSetLayouts = &Buffers::getDescriptorSetLayout();
|
||||
pipelineLayoutInfo.pPushConstantRanges = &pushConstant;
|
||||
pipelineLayoutInfo.pushConstantRangeCount = 1;
|
||||
|
||||
VkRenderPass renderPass;
|
||||
VkPipelineLayout pipelineLayout;
|
||||
VkPipeline graphicsPipeline;
|
||||
DeviceControl::devicelibrary deviceLibs;
|
||||
Buffers::bufferslibrary buffers;
|
||||
|
||||
std::vector<VkFramebuffer> swapChainFramebuffers;
|
||||
|
||||
static std::vector<char> readFile(const std::string& filename) {
|
||||
std::ifstream file(filename, std::ios::ate | std::ios::binary);
|
||||
if (!file.is_open()) {
|
||||
throw std::runtime_error("failed to open file!");
|
||||
}
|
||||
|
||||
size_t fileSize = (size_t) file.tellg();
|
||||
std::vector<char> buffer(fileSize);
|
||||
|
||||
file.seekg(0);
|
||||
file.read(buffer.data(), fileSize);
|
||||
|
||||
file.close();
|
||||
|
||||
return buffer;
|
||||
}
|
||||
VkShaderModule createShaderModule(const std::vector<char>& code, VkDevice& device) {
|
||||
VkShaderModuleCreateInfo createInfo{};
|
||||
createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
|
||||
createInfo.codeSize = code.size();
|
||||
createInfo.pCode = reinterpret_cast<const uint32_t*>(code.data());
|
||||
|
||||
VkShaderModule shaderModule;
|
||||
if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create shader module!");
|
||||
}
|
||||
return shaderModule;
|
||||
if (vkCreatePipelineLayout(DeviceControl::getDevice(), &pipelineLayoutInfo,
|
||||
nullptr, &pipelineLayout) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create pipeline layout!");
|
||||
}
|
||||
|
||||
void graphicspipeline::destroyGraphicsPipeline() {
|
||||
vkDestroyPipeline(Global::device, graphicsPipeline, nullptr);
|
||||
if(Global::enableValidationLayers) std::cout << "Destroyed Graphics Pipeline safely\n" << std::endl;
|
||||
vkDestroyPipelineLayout(Global::device, pipelineLayout, nullptr);
|
||||
if(Global::enableValidationLayers) std::cout << "Destroyed Layout Pipeline safely\n" << std::endl;
|
||||
|
||||
VkPipelineRenderingCreateInfo pipelineRenderingCreateInfo{
|
||||
.sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO,
|
||||
.colorAttachmentCount = 1,
|
||||
.pColorAttachmentFormats = &DeviceControl::getImageFormat(),
|
||||
.depthAttachmentFormat = Texture::findDepthFormat(),
|
||||
};
|
||||
|
||||
// Here we combine all of the structures we created to make the final
|
||||
// pipeline!
|
||||
VkGraphicsPipelineCreateInfo pipelineInfo{
|
||||
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
|
||||
.pNext = &pipelineRenderingCreateInfo,
|
||||
.stageCount = 2,
|
||||
.pStages = shaderStages,
|
||||
.pVertexInputState = &vertexInputInfo,
|
||||
.pInputAssemblyState = &inputAssembly,
|
||||
.pViewportState = &viewportState,
|
||||
.pRasterizationState = &rasterizer,
|
||||
.pMultisampleState = &multisampling,
|
||||
.pDepthStencilState = &depthStencil,
|
||||
.pColorBlendState = &colorBlending,
|
||||
.pDynamicState = &dynamicState,
|
||||
.layout = pipelineLayout,
|
||||
.renderPass = nullptr,
|
||||
.subpass = 0,
|
||||
};
|
||||
|
||||
if (vkCreateGraphicsPipelines(DeviceControl::getDevice(), VK_NULL_HANDLE, 1,
|
||||
&pipelineInfo, nullptr,
|
||||
&graphicsPipeline) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create graphics pipeline!");
|
||||
}
|
||||
|
||||
void graphicspipeline::createGraphicsPipeline() {
|
||||
// Note to self, for some reason the working directory is not where a read file is called from, but the project folder!
|
||||
auto vertShaderCode = readFile("src/shaders/vertex.spv");
|
||||
auto fragShaderCode = readFile("src/shaders/fragment.spv");
|
||||
VkShaderModule vertShaderModule = createShaderModule(vertShaderCode, Global::device);
|
||||
VkShaderModule fragShaderModule = createShaderModule(fragShaderCode, Global::device);
|
||||
|
||||
// ------------------ STAGE 1 - INPUT ASSEMBLER ---------------- //
|
||||
// This can get a little complicated, normally, vertices are loaded in sequential order, with an element buffer however, you can specify the indices yourself!
|
||||
// Using an element buffer means you can reuse vertices, which can lead to optimizations. If you set PrimRestart to TRUE, you can utilize the _STRIP modes with special indices
|
||||
VkPipelineInputAssemblyStateCreateInfo inputAssembly{};
|
||||
inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
|
||||
inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
|
||||
inputAssembly.primitiveRestartEnable = VK_FALSE;
|
||||
|
||||
// ------------------ STAGE 2 - VERTEX SHADER ------------------ //
|
||||
// this will be revisited, right now we are hardcoding shader data, so we tell it to not load anything, but that will change.
|
||||
VkPipelineShaderStageCreateInfo vertShaderStageInfo{};
|
||||
vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
|
||||
vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
|
||||
vertShaderStageInfo.module = vertShaderModule;
|
||||
vertShaderStageInfo.pName = "main";
|
||||
VkPipelineVertexInputStateCreateInfo vertexInputInfo{};
|
||||
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
|
||||
|
||||
auto bindingDescription = Global::Vertex::getBindingDescription();
|
||||
auto attributeDescriptions = Global::Vertex::getAttributeDescriptions();
|
||||
|
||||
vertexInputInfo.vertexBindingDescriptionCount = 1;
|
||||
vertexInputInfo.pVertexBindingDescriptions = &bindingDescription;
|
||||
vertexInputInfo.vertexAttributeDescriptionCount = static_cast<uint32_t>(attributeDescriptions.size());
|
||||
vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data();
|
||||
|
||||
// ------------------- STAGE 5 - RASTERIZATION ----------------- //
|
||||
// Take Vertex shader vertices and fragmentize them for the frament shader. The rasterizer also can perform depth testing, face culling, and scissor testing.
|
||||
// In addition, it can also be configured for wireframe rendering.
|
||||
VkPipelineRasterizationStateCreateInfo rasterizer{};
|
||||
rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
|
||||
// Render regardless of the near and far planes, useful for shadow maps, requires GPU feature *depthClamp*
|
||||
rasterizer.depthClampEnable = VK_FALSE;
|
||||
rasterizer.rasterizerDiscardEnable = VK_FALSE;
|
||||
// MODE_FILL, fill polygons, MODE_LINE, draw wireframe, MODE_POINT, draw vertices. Anything other than fill requires GPU feature *fillModeNonSolid*
|
||||
rasterizer.polygonMode = VK_POLYGON_MODE_LINE;
|
||||
rasterizer.lineWidth = 2.0f;
|
||||
// How to cull the faces, right here we cull the back faces and tell the rasterizer front facing vertices are ordered clockwise.
|
||||
rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
|
||||
rasterizer.frontFace = VK_FRONT_FACE_CLOCKWISE;
|
||||
// Whether or not to add depth values. e.x. for shadow maps.
|
||||
rasterizer.depthBiasEnable = VK_FALSE;
|
||||
|
||||
// ------------------ STAGE 6 - FRAGMENT SHADER ---------------- //
|
||||
VkPipelineShaderStageCreateInfo fragShaderStageInfo{};
|
||||
fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
|
||||
fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
|
||||
fragShaderStageInfo.module = fragShaderModule;
|
||||
fragShaderStageInfo.pName = "main";
|
||||
|
||||
VkPipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo, fragShaderStageInfo};
|
||||
|
||||
// ------------------ STAGE 7 - COLOR BLENDING ----------------- //
|
||||
VkPipelineColorBlendAttachmentState colorBlendAttachment{};
|
||||
colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
|
||||
colorBlendAttachment.blendEnable = VK_FALSE;
|
||||
|
||||
VkPipelineColorBlendStateCreateInfo colorBlending{};
|
||||
colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
|
||||
colorBlending.logicOpEnable = VK_FALSE;
|
||||
colorBlending.logicOp = VK_LOGIC_OP_COPY;
|
||||
colorBlending.attachmentCount = 1;
|
||||
colorBlending.pAttachments = &colorBlendAttachment;
|
||||
|
||||
// ---------------------- STATE CONTROLS ---------------------- //
|
||||
VkPipelineViewportStateCreateInfo viewportState{};
|
||||
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
|
||||
viewportState.viewportCount = 1;
|
||||
viewportState.scissorCount = 1;
|
||||
// Again, this will be revisited, multisampling can be very useful for anti-aliasing, since it is fast, but we won't implement it for now.
|
||||
// Requires GPU feature UNKNOWN eanbled.
|
||||
VkPipelineMultisampleStateCreateInfo multisampling{};
|
||||
multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
|
||||
multisampling.sampleShadingEnable = VK_FALSE;
|
||||
multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
|
||||
// Most of the graphics pipeline is set in stone, some of the pipeline state can be modified without recreating it at runtime though!
|
||||
// There are TONS of settings, this would be another TODO to see what else we can mess with dynamically, but right now we just allow dynamic size of the viewport
|
||||
// and dynamic scissor states. Scissors are pretty straightforward, they are basically pixel masks for the rasterizer.
|
||||
// Scissors describe what regions pixels will be stored, it doesnt cut them after being rendered, it stops them from ever being rendered in that area in the first place.
|
||||
VkPipelineDynamicStateCreateInfo dynamicState{};
|
||||
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
|
||||
dynamicState.dynamicStateCount = static_cast<uint32_t>(dynamicStates.size());
|
||||
dynamicState.pDynamicStates = dynamicStates.data();
|
||||
|
||||
VkPipelineLayoutCreateInfo pipelineLayoutInfo{};
|
||||
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
|
||||
pipelineLayoutInfo.setLayoutCount = 0;
|
||||
pipelineLayoutInfo.pushConstantRangeCount = 0;
|
||||
|
||||
if (vkCreatePipelineLayout(Global::device, &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create pipeline layout!");
|
||||
}
|
||||
// Here we combine all of the structures we created to make the final pipeline!
|
||||
VkGraphicsPipelineCreateInfo pipelineInfo{};
|
||||
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
|
||||
pipelineInfo.stageCount = 2;
|
||||
pipelineInfo.pStages = shaderStages;
|
||||
pipelineInfo.pVertexInputState = &vertexInputInfo;
|
||||
pipelineInfo.pInputAssemblyState = &inputAssembly;
|
||||
pipelineInfo.pViewportState = &viewportState;
|
||||
pipelineInfo.pRasterizationState = &rasterizer;
|
||||
pipelineInfo.pMultisampleState = &multisampling;
|
||||
pipelineInfo.pColorBlendState = &colorBlending;
|
||||
pipelineInfo.pDynamicState = &dynamicState;
|
||||
pipelineInfo.layout = pipelineLayout;
|
||||
pipelineInfo.renderPass = renderPass;
|
||||
pipelineInfo.subpass = 0;
|
||||
|
||||
if (vkCreateGraphicsPipelines(Global::device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create graphics pipeline!");
|
||||
}
|
||||
vkDestroyShaderModule(Global::device, fragShaderModule, nullptr);
|
||||
vkDestroyShaderModule(Global::device, vertShaderModule, nullptr);
|
||||
|
||||
if(Global::enableValidationLayers) std::cout << "Pipeline Layout created successfully\n" << std::endl;
|
||||
}
|
||||
void graphicspipeline::createRenderPass() {
|
||||
VkAttachmentDescription colorAttachment{};
|
||||
colorAttachment.format = deviceLibs.getImageFormat();
|
||||
colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
|
||||
colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
||||
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
|
||||
colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
||||
colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
||||
colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
||||
colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
|
||||
|
||||
VkAttachmentReference colorAttachmentRef{};
|
||||
colorAttachmentRef.attachment = 0;
|
||||
colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
||||
|
||||
VkSubpassDescription subpass{};
|
||||
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
|
||||
subpass.colorAttachmentCount = 1;
|
||||
subpass.pColorAttachments = &colorAttachmentRef;
|
||||
|
||||
VkRenderPassCreateInfo renderPassInfo{};
|
||||
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
|
||||
renderPassInfo.attachmentCount = 1;
|
||||
renderPassInfo.pAttachments = &colorAttachment;
|
||||
renderPassInfo.subpassCount = 1;
|
||||
renderPassInfo.pSubpasses = &subpass;
|
||||
|
||||
if (vkCreateRenderPass(Global::device, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create render pass!");
|
||||
}
|
||||
if(Global::enableValidationLayers) std::cout << "Render pass created successfully\n" << std::endl;
|
||||
}
|
||||
void graphicspipeline::destroyRenderPass() {
|
||||
vkDestroyRenderPass(Global::device, renderPass, nullptr);
|
||||
if(Global::enableValidationLayers) std::cout << "Destroyed Render Pass Safely\n" << std::endl;
|
||||
}
|
||||
void graphicspipeline::createFramebuffers() {
|
||||
// Resize the container to hold all the framebuffers.
|
||||
int framebuffersSize = deviceLibs.getSwapChainImageViews().size();
|
||||
swapChainFramebuffers.resize(framebuffersSize);
|
||||
|
||||
for(size_t i = 0; i < framebuffersSize; i++) {
|
||||
VkImageView attachments[] = {
|
||||
deviceLibs.getSwapChainImageViews()[i]
|
||||
};
|
||||
|
||||
VkFramebufferCreateInfo framebufferInfo{};
|
||||
framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
|
||||
framebufferInfo.renderPass = renderPass;
|
||||
framebufferInfo.attachmentCount = 1;
|
||||
framebufferInfo.pAttachments = attachments;
|
||||
framebufferInfo.width = deviceLibs.getSwapChainExtent().width;
|
||||
framebufferInfo.height = deviceLibs.getSwapChainExtent().height;
|
||||
framebufferInfo.layers = 1;
|
||||
|
||||
if(vkCreateFramebuffer(Global::device, &framebufferInfo, nullptr, &swapChainFramebuffers[i]) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create framebuffer!");
|
||||
}
|
||||
}
|
||||
}
|
||||
void graphicspipeline::createCommandPool() {
|
||||
|
||||
Global::QueueFamilyIndices queueFamilyIndices = Global::findQueueFamilies(Global::physicalDevice);
|
||||
|
||||
VkCommandPoolCreateInfo poolInfo{};
|
||||
poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
|
||||
poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
|
||||
poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily.value();
|
||||
|
||||
if(vkCreateCommandPool(Global::device, &poolInfo, nullptr, &Global::commandPool) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create command pool!");
|
||||
}
|
||||
if(Global::enableValidationLayers) std::cout << "Command pool created successfully\n" << std::endl;
|
||||
}
|
||||
void graphicspipeline::destroyCommandPool() {
|
||||
vkDestroyCommandPool(Global::device, Global::commandPool, nullptr);
|
||||
}
|
||||
void graphicspipeline::createCommandBuffer() {
|
||||
Global::commandBuffers.resize(Global::MAX_FRAMES_IN_FLIGHT);
|
||||
|
||||
VkCommandBufferAllocateInfo allocInfo{};
|
||||
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
|
||||
allocInfo.commandPool = Global::commandPool;
|
||||
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
|
||||
allocInfo.commandBufferCount = (uint32_t) Global::commandBuffers.size();
|
||||
|
||||
if(vkAllocateCommandBuffers(Global::device, &allocInfo, Global::commandBuffers.data()) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to allocate command buffers");
|
||||
}
|
||||
if(Global::enableValidationLayers) std::cout << "Allocated command buffers successfully\n" << std::endl;
|
||||
}
|
||||
|
||||
void graphicspipeline::recordCommandBuffer(VkCommandBuffer commandBuffer, uint32_t imageIndex) {
|
||||
VkCommandBufferBeginInfo beginInfo{};
|
||||
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
||||
|
||||
if (vkBeginCommandBuffer(commandBuffer, &beginInfo) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to begin recording command buffer!");
|
||||
}
|
||||
|
||||
VkRenderPassBeginInfo renderPassInfo{};
|
||||
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
|
||||
renderPassInfo.renderPass = renderPass;
|
||||
renderPassInfo.framebuffer = swapChainFramebuffers[imageIndex];
|
||||
renderPassInfo.renderArea.offset = {0, 0};
|
||||
renderPassInfo.renderArea.extent = deviceLibs.getSwapChainExtent();
|
||||
|
||||
VkClearValue clearColor = {{{0.0f, 0.0f, 0.0f, 1.0f}}};
|
||||
renderPassInfo.clearValueCount = 1;
|
||||
renderPassInfo.pClearValues = &clearColor;
|
||||
|
||||
vkCmdBeginRenderPass(commandBuffer, &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);
|
||||
|
||||
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);
|
||||
VkViewport viewport{};
|
||||
viewport.x = 0.0f;
|
||||
viewport.y = 0.0f;
|
||||
viewport.width = (float) deviceLibs.getSwapChainExtent().width;
|
||||
viewport.height = (float) deviceLibs.getSwapChainExtent().height;
|
||||
viewport.minDepth = 0.0f;
|
||||
viewport.maxDepth = 1.0f;
|
||||
vkCmdSetViewport(commandBuffer, 0, 1, &viewport);
|
||||
|
||||
VkRect2D scissor{};
|
||||
scissor.offset = {0, 0};
|
||||
scissor.extent = deviceLibs.getSwapChainExtent();
|
||||
vkCmdSetScissor(commandBuffer, 0, 1, &scissor);
|
||||
|
||||
VkBuffer vertexBuffers[] = {buffers.getVertexBuffer()};
|
||||
VkDeviceSize offsets[] = {0};
|
||||
vkCmdBindVertexBuffers(commandBuffer, 0, 1, vertexBuffers, offsets);
|
||||
vkCmdBindIndexBuffer(commandBuffer, buffers.getIndexBuffer(), 0, VK_INDEX_TYPE_UINT16);
|
||||
|
||||
vkCmdDrawIndexed(commandBuffer, static_cast<uint32_t>(buffers.getIndices().size()), 1, 0, 0, 0);
|
||||
vkCmdEndRenderPass(commandBuffer);
|
||||
|
||||
if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to record command buffer!");
|
||||
}
|
||||
}
|
||||
std::vector<VkFramebuffer> graphicspipeline::getSwapChainFramebuffers() {
|
||||
return swapChainFramebuffers;
|
||||
}
|
||||
vkDestroyShaderModule(DeviceControl::getDevice(), fragShaderModule, nullptr);
|
||||
vkDestroyShaderModule(DeviceControl::getDevice(), vertShaderModule, nullptr);
|
||||
}
|
||||
|
||||
void Graphics::createCommandPool() {
|
||||
// Commands in Vulkan are not executed using function calls, you have to
|
||||
// record the ops you wish to perform to command buffers, pools manage the
|
||||
// memory used by the buffer!
|
||||
DeviceControl::QueueFamilyIndices queueFamilyIndices =
|
||||
DeviceControl::findQueueFamilies(DeviceControl::getPhysicalDevice());
|
||||
|
||||
VkCommandPoolCreateInfo poolInfo{};
|
||||
poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
|
||||
poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
|
||||
poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily.value();
|
||||
|
||||
if (vkCreateCommandPool(DeviceControl::getDevice(), &poolInfo, nullptr,
|
||||
&Buffers::getCommandPool()) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create command pool!");
|
||||
}
|
||||
}
|
||||
void Graphics::destroyCommandPool() {
|
||||
vkDestroyCommandPool(DeviceControl::getDevice(), Buffers::getCommandPool(),
|
||||
nullptr);
|
||||
}
|
||||
void Graphics::createCommandBuffer() {
|
||||
Buffers::getCommandBuffers().resize(Buffers::getMaxFramesInFlight());
|
||||
|
||||
VkCommandBufferAllocateInfo allocInfo{};
|
||||
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
|
||||
allocInfo.commandPool = Buffers::getCommandPool();
|
||||
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
|
||||
allocInfo.commandBufferCount = (uint32_t)Buffers::getCommandBuffers().size();
|
||||
|
||||
if (vkAllocateCommandBuffers(DeviceControl::getDevice(), &allocInfo,
|
||||
Buffers::getCommandBuffers().data()) !=
|
||||
VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to allocate command buffers");
|
||||
}
|
||||
}
|
||||
void Graphics::recordCommandBuffer(VkCommandBuffer commandBuffer,
|
||||
uint32_t imageIndex) {
|
||||
VkCommandBufferBeginInfo beginInfo{};
|
||||
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
||||
|
||||
if (vkBeginCommandBuffer(commandBuffer, &beginInfo) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to begin recording command buffer!");
|
||||
}
|
||||
const VkImageMemoryBarrier2 imageMemoryBarrier{
|
||||
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2,
|
||||
.pNext = nullptr,
|
||||
.srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
||||
.srcAccessMask = 0,
|
||||
.dstStageMask = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
||||
.dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT,
|
||||
.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED,
|
||||
.newLayout = VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL,
|
||||
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
|
||||
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
|
||||
.image = DeviceControl::getSwapChainImages()[imageIndex],
|
||||
.subresourceRange =
|
||||
{
|
||||
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
|
||||
.baseMipLevel = 0,
|
||||
.levelCount = 1,
|
||||
.baseArrayLayer = 0,
|
||||
.layerCount = 1,
|
||||
},
|
||||
};
|
||||
const VkDependencyInfo dependencyInfo{
|
||||
.sType = VK_STRUCTURE_TYPE_DEPENDENCY_INFO,
|
||||
.pNext = nullptr,
|
||||
.imageMemoryBarrierCount = 1,
|
||||
.pImageMemoryBarriers = &imageMemoryBarrier,
|
||||
};
|
||||
vkCmdPipelineBarrier2(commandBuffer, &dependencyInfo);
|
||||
|
||||
// ------------------- DYNAMIC RENDER INFO ---------------------- //
|
||||
|
||||
const VkRenderingAttachmentInfo colorAttachmentInfo{
|
||||
.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO,
|
||||
.imageView = Texture::getColorImageView(),
|
||||
.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
|
||||
.resolveMode = VK_RESOLVE_MODE_AVERAGE_BIT,
|
||||
.resolveImageView = DeviceControl::getSwapChainImageViews()[imageIndex],
|
||||
.resolveImageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
|
||||
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
|
||||
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
|
||||
.clearValue = {.color = {0.0f, 0.0f, 0.0f, 1.0f}},
|
||||
};
|
||||
const VkRenderingAttachmentInfo depthAttachmentInfo{
|
||||
.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO,
|
||||
.imageView = Texture::getDepthImageView(),
|
||||
.imageLayout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
|
||||
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
|
||||
.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
|
||||
.clearValue = {.depthStencil = {1.0f, 0}},
|
||||
};
|
||||
|
||||
const VkRenderingInfo renderInfo{
|
||||
.sType = VK_STRUCTURE_TYPE_RENDERING_INFO,
|
||||
.renderArea = {.offset = {0, 0},
|
||||
.extent = DeviceControl::getSwapChainExtent()},
|
||||
.layerCount = 1,
|
||||
.colorAttachmentCount = 1,
|
||||
.pColorAttachments = &colorAttachmentInfo,
|
||||
.pDepthAttachment = &depthAttachmentInfo,
|
||||
};
|
||||
|
||||
vkCmdBeginRendering(commandBuffer, &renderInfo);
|
||||
|
||||
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
|
||||
graphicsPipeline);
|
||||
VkViewport viewport{};
|
||||
viewport.x = 0.0f;
|
||||
viewport.y = 0.0f;
|
||||
viewport.width = (float)DeviceControl::getSwapChainExtent().width;
|
||||
viewport.height = (float)DeviceControl::getSwapChainExtent().height;
|
||||
viewport.minDepth = 0.0f;
|
||||
viewport.maxDepth = 1.0f;
|
||||
vkCmdSetViewport(commandBuffer, 0, 1, &viewport);
|
||||
|
||||
VkRect2D scissor{};
|
||||
scissor.offset = {0, 0};
|
||||
scissor.extent = DeviceControl::getSwapChainExtent();
|
||||
vkCmdSetScissor(commandBuffer, 0, 1, &scissor);
|
||||
int texID = 0;
|
||||
for (Model *model : Model::getInstances()) {
|
||||
|
||||
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
|
||||
pipelineLayout, 0, 1, &Buffers::getDescriptorSet(),
|
||||
0, nullptr);
|
||||
|
||||
Agnosia_T::GPUPushConstants pushConsts;
|
||||
pushConsts.vertexBuffer = model->getBuffers().vertexBufferAddress;
|
||||
pushConsts.objPosition = model->getPos();
|
||||
pushConsts.lightPos = glm::vec3(lightPos[0], lightPos[1], lightPos[2]);
|
||||
pushConsts.textureID = texID;
|
||||
|
||||
pushConsts.model =
|
||||
glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, 0.0f, 0.0f));
|
||||
|
||||
pushConsts.view =
|
||||
glm::lookAt(glm::vec3(camPos[0], camPos[1], camPos[2]),
|
||||
glm::vec3(centerPos[0], centerPos[1], centerPos[2]),
|
||||
glm::vec3(upDir[0], upDir[1], upDir[2]));
|
||||
|
||||
pushConsts.proj =
|
||||
glm::perspective(glm::radians(depthField),
|
||||
DeviceControl::getSwapChainExtent().width /
|
||||
(float)DeviceControl::getSwapChainExtent().height,
|
||||
distanceField[0], distanceField[1]);
|
||||
// GLM was created for OpenGL, where the Y coordinate was inverted. This
|
||||
// simply flips the sign.
|
||||
pushConsts.proj[1][1] *= -1;
|
||||
|
||||
vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_ALL, 0,
|
||||
sizeof(Agnosia_T::GPUPushConstants), &pushConsts);
|
||||
|
||||
vkCmdBindIndexBuffer(commandBuffer, model->getBuffers().indexBuffer.buffer,
|
||||
0, VK_INDEX_TYPE_UINT32);
|
||||
|
||||
vkCmdDrawIndexed(commandBuffer, static_cast<uint32_t>(model->getIndices()),
|
||||
1, 0, 0, 0);
|
||||
texID++;
|
||||
}
|
||||
ImGui_ImplVulkan_RenderDrawData(ImGui::GetDrawData(), commandBuffer);
|
||||
|
||||
vkCmdEndRendering(commandBuffer);
|
||||
|
||||
const VkImageMemoryBarrier2 prePresentImageBarrier{
|
||||
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2,
|
||||
.pNext = nullptr,
|
||||
.srcStageMask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT,
|
||||
.srcAccessMask = VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT,
|
||||
.dstStageMask = VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT,
|
||||
.dstAccessMask = 0,
|
||||
.oldLayout = VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL,
|
||||
.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
|
||||
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
|
||||
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
|
||||
.image = DeviceControl::getSwapChainImages()[imageIndex],
|
||||
.subresourceRange =
|
||||
{
|
||||
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
|
||||
.baseMipLevel = 0,
|
||||
.levelCount = 1,
|
||||
.baseArrayLayer = 0,
|
||||
.layerCount = 1,
|
||||
},
|
||||
};
|
||||
const VkDependencyInfo depInfo{
|
||||
.sType = VK_STRUCTURE_TYPE_DEPENDENCY_INFO,
|
||||
.pNext = nullptr,
|
||||
.imageMemoryBarrierCount = 1,
|
||||
.pImageMemoryBarriers = &prePresentImageBarrier,
|
||||
};
|
||||
|
||||
vkCmdPipelineBarrier2(Buffers::getCommandBuffers()[Render::getCurrentFrame()],
|
||||
&depInfo);
|
||||
|
||||
if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to record command buffer!");
|
||||
}
|
||||
}
|
||||
|
||||
float *Graphics::getCamPos() { return camPos; }
|
||||
float *Graphics::getLightPos() { return lightPos; }
|
||||
float *Graphics::getCenterPos() { return centerPos; }
|
||||
float *Graphics::getUpDir() { return upDir; }
|
||||
float &Graphics::getDepthField() { return depthField; }
|
||||
float *Graphics::getDistanceField() { return distanceField; }
|
||||
|
@@ -1,21 +1,23 @@
|
||||
#pragma once
|
||||
#include "../global.h"
|
||||
#include "../devicelibrary.h"
|
||||
#include "buffers.h"
|
||||
#include <fstream>
|
||||
namespace Graphics {
|
||||
class graphicspipeline {
|
||||
public:
|
||||
void createGraphicsPipeline();
|
||||
void destroyGraphicsPipeline();
|
||||
void createRenderPass();
|
||||
void destroyRenderPass();
|
||||
void createFramebuffers();
|
||||
void destroyFramebuffers();
|
||||
void createCommandPool();
|
||||
void destroyCommandPool();
|
||||
void createCommandBuffer();
|
||||
void recordCommandBuffer(VkCommandBuffer cmndBuffer, uint32_t imageIndex);
|
||||
std::vector<VkFramebuffer> getSwapChainFramebuffers();
|
||||
};
|
||||
}
|
||||
#define VK_NO_PROTOTYPES
|
||||
#include "volk.h"
|
||||
|
||||
class Graphics {
|
||||
public:
|
||||
static void createGraphicsPipeline();
|
||||
static void destroyGraphicsPipeline();
|
||||
static void createFramebuffers();
|
||||
static void destroyFramebuffers();
|
||||
static void createCommandPool();
|
||||
static void destroyCommandPool();
|
||||
static void createCommandBuffer();
|
||||
static void recordCommandBuffer(VkCommandBuffer cmndBuffer,
|
||||
uint32_t imageIndex);
|
||||
|
||||
static float *getCamPos();
|
||||
static float *getLightPos();
|
||||
static float *getCenterPos();
|
||||
static float *getUpDir();
|
||||
static float &getDepthField();
|
||||
static float *getDistanceField();
|
||||
};
|
||||
|
19
src/graphics/material.cpp
Normal file
19
src/graphics/material.cpp
Normal file
@@ -0,0 +1,19 @@
|
||||
#include "material.h"
|
||||
|
||||
Material::Material(const std::string &matID, const std::string &texPath)
|
||||
: ID(matID), texturePath(texPath) {}
|
||||
|
||||
std::string Material::getID() const { return ID; }
|
||||
std::string Material::getTexturePath() const { return texturePath; }
|
||||
|
||||
VkImage &Material::getTextureImage() { return this->textureImage; }
|
||||
VkImageView &Material::getTextureView() { return this->textureImageView; }
|
||||
VkSampler &Material::getTextureSampler() { return this->textureSampler; }
|
||||
|
||||
void Material::setTextureImage(VkImage image) { this->textureImage = image; }
|
||||
void Material::setTextureView(VkImageView imageView) {
|
||||
this->textureImageView = imageView;
|
||||
}
|
||||
void Material::setTextureSampler(VkSampler sampler) {
|
||||
this->textureSampler = sampler;
|
||||
}
|
26
src/graphics/material.h
Normal file
26
src/graphics/material.h
Normal file
@@ -0,0 +1,26 @@
|
||||
|
||||
#define VK_NO_PROTOTYPES
|
||||
#include "volk.h"
|
||||
#include <string>
|
||||
|
||||
class Material {
|
||||
protected:
|
||||
std::string ID;
|
||||
std::string texturePath;
|
||||
|
||||
VkImage textureImage;
|
||||
VkImageView textureImageView;
|
||||
VkSampler textureSampler;
|
||||
|
||||
public:
|
||||
Material(const std::string &matID, const std::string &texPath);
|
||||
std::string getID() const;
|
||||
std::string getTexturePath() const;
|
||||
VkImage &getTextureImage();
|
||||
VkImageView &getTextureView();
|
||||
VkSampler &getTextureSampler();
|
||||
|
||||
void setTextureImage(VkImage image);
|
||||
void setTextureView(VkImageView imageView);
|
||||
void setTextureSampler(VkSampler sampler);
|
||||
};
|
243
src/graphics/model.cpp
Normal file
243
src/graphics/model.cpp
Normal file
@@ -0,0 +1,243 @@
|
||||
#include "buffers.h"
|
||||
#include "model.h"
|
||||
#include <cstdint>
|
||||
#include <cstring>
|
||||
#include <unordered_map>
|
||||
|
||||
#define TINY_OBJ_IMPLEMENTATION
|
||||
#include <stdexcept>
|
||||
#include <tiny_obj_loader.h>
|
||||
#define GLM_ENABLE_EXPERIMENTAL
|
||||
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
||||
#include "../devicelibrary.h"
|
||||
#include <glm/glm.hpp>
|
||||
#include <glm/gtx/hash.hpp>
|
||||
|
||||
#define VMA_STATIC_VULKAN_FUNCTIONS 0
|
||||
#define VMA_DYNAMIC_VULKAN_FUNCTIONS 1
|
||||
#define VMA_IMPLEMENTATION
|
||||
#include "vk_mem_alloc.h"
|
||||
|
||||
std::vector<Model *> Model::instances;
|
||||
VmaAllocator _allocator;
|
||||
// chatgpt did this and the haters can WEEP fuck hash functions.
|
||||
namespace std {
|
||||
template <> struct hash<Agnosia_T::Vertex> {
|
||||
size_t operator()(Agnosia_T::Vertex const &vertex) const {
|
||||
size_t hashPos = hash<glm::vec3>()(vertex.pos);
|
||||
size_t hashColor = hash<glm::vec3>()(vertex.color);
|
||||
size_t hashUV = hash<glm::vec2>()(vertex.uv);
|
||||
size_t hashNormal = hash<glm::vec3>()(vertex.normal);
|
||||
|
||||
// Combine all hashes
|
||||
return ((hashPos ^ (hashColor << 1)) >> 1) ^ (hashUV << 1) ^
|
||||
(hashNormal << 2);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace std
|
||||
void Model::createMemoryAllocator(VkInstance vkInstance) {
|
||||
VmaVulkanFunctions vulkanFuncs{
|
||||
.vkGetInstanceProcAddr = vkGetInstanceProcAddr,
|
||||
.vkGetDeviceProcAddr = vkGetDeviceProcAddr,
|
||||
};
|
||||
VmaAllocatorCreateInfo allocInfo{
|
||||
.flags = VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT,
|
||||
.physicalDevice = DeviceControl::getPhysicalDevice(),
|
||||
.device = DeviceControl::getDevice(),
|
||||
.pVulkanFunctions = &vulkanFuncs,
|
||||
.instance = vkInstance,
|
||||
.vulkanApiVersion = VK_API_VERSION_1_3,
|
||||
|
||||
};
|
||||
vmaCreateAllocator(&allocInfo, &_allocator);
|
||||
}
|
||||
Agnosia_T::AllocatedBuffer createBuffer(size_t allocSize,
|
||||
VkBufferUsageFlags usage,
|
||||
VmaMemoryUsage memUsage) {
|
||||
// Allocate the buffer we will use for Device Addresses
|
||||
VkBufferCreateInfo bufferInfo{.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
|
||||
.pNext = nullptr,
|
||||
.size = allocSize,
|
||||
.usage = usage};
|
||||
VmaAllocationCreateInfo vmaAllocInfo{
|
||||
.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT, .usage = memUsage};
|
||||
|
||||
Agnosia_T::AllocatedBuffer newBuffer;
|
||||
if (vmaCreateBuffer(_allocator, &bufferInfo, &vmaAllocInfo, &newBuffer.buffer,
|
||||
&newBuffer.allocation, &newBuffer.info) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to allocate a buffer using VMA!");
|
||||
}
|
||||
return newBuffer;
|
||||
}
|
||||
void immediate_submit(std::function<void(VkCommandBuffer cmd)> &&function) {
|
||||
VkCommandBufferAllocateInfo allocInfo{};
|
||||
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
|
||||
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
|
||||
allocInfo.commandPool = Buffers::getCommandPool();
|
||||
allocInfo.commandBufferCount = 1;
|
||||
|
||||
VkCommandBuffer commandBuffer;
|
||||
vkAllocateCommandBuffers(DeviceControl::getDevice(), &allocInfo,
|
||||
&commandBuffer);
|
||||
|
||||
VkCommandBufferBeginInfo beginInfo{};
|
||||
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
||||
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
|
||||
|
||||
vkBeginCommandBuffer(commandBuffer, &beginInfo);
|
||||
|
||||
function(commandBuffer);
|
||||
|
||||
vkEndCommandBuffer(commandBuffer);
|
||||
|
||||
VkSubmitInfo submitInfo{};
|
||||
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &commandBuffer;
|
||||
|
||||
vkQueueSubmit(DeviceControl::getGraphicsQueue(), 1, &submitInfo,
|
||||
VK_NULL_HANDLE);
|
||||
vkQueueWaitIdle(DeviceControl::getGraphicsQueue());
|
||||
|
||||
vkFreeCommandBuffers(DeviceControl::getDevice(), Buffers::getCommandPool(), 1,
|
||||
&commandBuffer);
|
||||
}
|
||||
|
||||
Model::Model(const std::string &modelID, const Material &material,
|
||||
const std::string &modelPath, const glm::vec3 &objPos)
|
||||
: ID(modelID), material(material), objPosition(objPos),
|
||||
modelPath(modelPath) {
|
||||
instances.push_back(this);
|
||||
}
|
||||
|
||||
void Model::populateModels() {
|
||||
for (Model *model : getInstances()) {
|
||||
|
||||
std::vector<Agnosia_T::Vertex> vertices;
|
||||
// Index buffer definition, showing which points to reuse.
|
||||
std::vector<uint32_t> indices;
|
||||
tinyobj::ObjReaderConfig readerConfig;
|
||||
tinyobj::ObjReader reader;
|
||||
|
||||
if (!reader.ParseFromFile(model->modelPath, readerConfig)) {
|
||||
if (!reader.Error().empty()) {
|
||||
throw std::runtime_error(reader.Error());
|
||||
}
|
||||
if (!reader.Warning().empty()) {
|
||||
throw std::runtime_error(reader.Warning());
|
||||
}
|
||||
}
|
||||
|
||||
auto &attrib = reader.GetAttrib();
|
||||
auto &shapes = reader.GetShapes();
|
||||
auto &materials = reader.GetMaterials();
|
||||
|
||||
std::unordered_map<Agnosia_T::Vertex, uint32_t> uniqueVertices{};
|
||||
|
||||
for (const auto &shape : shapes) {
|
||||
for (const auto &index : shape.mesh.indices) {
|
||||
Agnosia_T::Vertex vertex{};
|
||||
|
||||
vertex.pos = {attrib.vertices[3 * index.vertex_index + 0],
|
||||
attrib.vertices[3 * index.vertex_index + 1],
|
||||
attrib.vertices[3 * index.vertex_index + 2]};
|
||||
|
||||
vertex.normal = {attrib.normals[3 * index.normal_index + 0],
|
||||
attrib.normals[3 * index.normal_index + 1],
|
||||
attrib.normals[3 * index.normal_index + 2]};
|
||||
// TODO: Small fix here, handle if there are no UV's unwrapped for the
|
||||
// model.
|
||||
// As of now, if it is not unwrapped, it segfaults on texCoord
|
||||
// assignment. Obviously we should always have UV's, but it
|
||||
// shouldn't crash, just unwrap in a default method.
|
||||
vertex.uv = {attrib.texcoords[2 * index.texcoord_index + 0],
|
||||
1.0f - attrib.texcoords[2 * index.texcoord_index + 1]};
|
||||
vertex.color = {1.0f, 1.0f, 1.0f};
|
||||
|
||||
if (uniqueVertices.count(vertex) == 0) {
|
||||
uniqueVertices[vertex] = static_cast<uint32_t>(vertices.size());
|
||||
vertices.push_back(vertex);
|
||||
}
|
||||
indices.push_back(uniqueVertices[vertex]);
|
||||
}
|
||||
}
|
||||
|
||||
const size_t vertexBufferSize = vertices.size() * sizeof(Agnosia_T::Vertex);
|
||||
const size_t indexBufferSize = indices.size() * sizeof(uint32_t);
|
||||
|
||||
Agnosia_T::GPUMeshBuffers newSurface;
|
||||
|
||||
// Create a Vertex Buffer here, infinitely easier than the old Vulkan
|
||||
// method!
|
||||
newSurface.vertexBuffer = createBuffer(
|
||||
vertexBufferSize,
|
||||
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT |
|
||||
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT,
|
||||
VMA_MEMORY_USAGE_GPU_ONLY);
|
||||
// Find the address of the vertex buffer!
|
||||
VkBufferDeviceAddressInfo deviceAddressInfo{
|
||||
.sType = VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO,
|
||||
.buffer = newSurface.vertexBuffer.buffer,
|
||||
};
|
||||
newSurface.vertexBufferAddress = vkGetBufferDeviceAddress(
|
||||
DeviceControl::getDevice(), &deviceAddressInfo);
|
||||
|
||||
// Create the index buffer to iterate over and check for duplicate vertices
|
||||
newSurface.indexBuffer = createBuffer(indexBufferSize,
|
||||
VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
|
||||
VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
||||
VMA_MEMORY_USAGE_GPU_ONLY);
|
||||
|
||||
Agnosia_T::AllocatedBuffer stagingBuffer = createBuffer(
|
||||
vertexBufferSize + indexBufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
||||
VMA_MEMORY_USAGE_CPU_ONLY);
|
||||
|
||||
void *data = stagingBuffer.allocation->GetMappedData();
|
||||
|
||||
// Copy the vertex buffer
|
||||
memcpy(data, vertices.data(), vertexBufferSize);
|
||||
// Copy the index buffer
|
||||
memcpy((char *)data + vertexBufferSize, indices.data(), indexBufferSize);
|
||||
|
||||
immediate_submit([&](VkCommandBuffer cmd) {
|
||||
VkBufferCopy vertexCopy{0};
|
||||
vertexCopy.dstOffset = 0;
|
||||
vertexCopy.srcOffset = 0;
|
||||
vertexCopy.size = vertexBufferSize;
|
||||
|
||||
vkCmdCopyBuffer(cmd, stagingBuffer.buffer, newSurface.vertexBuffer.buffer,
|
||||
1, &vertexCopy);
|
||||
|
||||
VkBufferCopy indexCopy{0};
|
||||
indexCopy.dstOffset = 0;
|
||||
indexCopy.srcOffset = vertexBufferSize;
|
||||
indexCopy.size = indexBufferSize;
|
||||
|
||||
vkCmdCopyBuffer(cmd, stagingBuffer.buffer, newSurface.indexBuffer.buffer,
|
||||
1, &indexCopy);
|
||||
});
|
||||
vmaDestroyBuffer(_allocator, stagingBuffer.buffer,
|
||||
stagingBuffer.allocation);
|
||||
|
||||
model->buffers = newSurface;
|
||||
model->indiceCount = indices.size();
|
||||
}
|
||||
}
|
||||
void Model::destroyTextures() {
|
||||
for (Model *model : Model::getInstances()) {
|
||||
vkDestroySampler(DeviceControl::getDevice(),
|
||||
model->getMaterial().getTextureSampler(), nullptr);
|
||||
vkDestroyImageView(DeviceControl::getDevice(),
|
||||
model->getMaterial().getTextureView(), nullptr);
|
||||
vkDestroyImage(DeviceControl::getDevice(),
|
||||
model->getMaterial().getTextureImage(), nullptr);
|
||||
}
|
||||
}
|
||||
|
||||
std::string Model::getID() { return this->ID; }
|
||||
glm::vec3 &Model::getPos() { return this->objPosition; }
|
||||
Material &Model::getMaterial() { return this->material; }
|
||||
Agnosia_T::GPUMeshBuffers Model::getBuffers() { return this->buffers; }
|
||||
uint32_t Model::getIndices() { return this->indiceCount; }
|
||||
const std::vector<Model *> &Model::getInstances() { return instances; }
|
40
src/graphics/model.h
Normal file
40
src/graphics/model.h
Normal file
@@ -0,0 +1,40 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
|
||||
#define VK_NO_PROTOTYPES
|
||||
|
||||
#include "../types.h"
|
||||
|
||||
#include "material.h"
|
||||
#include "volk.h"
|
||||
#include <glm/glm.hpp>
|
||||
#include <string>
|
||||
class Model {
|
||||
protected:
|
||||
std::string ID;
|
||||
Agnosia_T::GPUMeshBuffers buffers;
|
||||
Material material;
|
||||
glm::vec3 objPosition;
|
||||
uint32_t indiceCount;
|
||||
std::string modelPath;
|
||||
static std::vector<Model *> instances;
|
||||
|
||||
public:
|
||||
Model(const std::string &modelID, const Material &material,
|
||||
const std::string &modelPath, const glm::vec3 &opjPos);
|
||||
|
||||
static void createMemoryAllocator(VkInstance instance);
|
||||
static const std::vector<Model *> &getInstances();
|
||||
|
||||
static void populateModels();
|
||||
static void destroyTextures();
|
||||
|
||||
Agnosia_T::GPUMeshBuffers getBuffers();
|
||||
std::string getID();
|
||||
glm::vec3 &getPos();
|
||||
Material &getMaterial();
|
||||
std::string getModelPath();
|
||||
uint32_t getIndices();
|
||||
};
|
@@ -1,162 +1,186 @@
|
||||
#include "render.h"
|
||||
#include "graphicspipeline.h"
|
||||
|
||||
#include <stdexcept>
|
||||
|
||||
#include "imgui.h"
|
||||
#include "imgui_impl_vulkan.h"
|
||||
|
||||
#include "../devicelibrary.h"
|
||||
#include "../entrypoint.h"
|
||||
namespace RenderPresent {
|
||||
#include "buffers.h"
|
||||
#include "graphicspipeline.h"
|
||||
#include "render.h"
|
||||
#include "texture.h"
|
||||
|
||||
std::vector<VkSemaphore> imageAvailableSemaphores;
|
||||
std::vector<VkSemaphore> renderFinishedSemaphores;
|
||||
std::vector<VkFence> inFlightFences;
|
||||
Graphics::graphicspipeline pipeline;
|
||||
DeviceControl::devicelibrary deviceLibs;
|
||||
uint32_t currentFrame = 0;
|
||||
uint32_t currentFrame;
|
||||
std::vector<VkSemaphore> imageAvailableSemaphores;
|
||||
std::vector<VkSemaphore> renderFinishedSemaphores;
|
||||
std::vector<VkFence> inFlightFences;
|
||||
|
||||
void recreateSwapChain() {
|
||||
int width = 0, height = 0;
|
||||
glfwGetFramebufferSize(Global::window, &width, &height);
|
||||
while (width == 0 || height == 0) {
|
||||
glfwGetFramebufferSize(Global::window, &width, &height);
|
||||
glfwWaitEvents();
|
||||
}
|
||||
vkDeviceWaitIdle(Global::device);
|
||||
// Don't really wanna do this but I also don't want to create an extra class instance just to call the cleanup function.
|
||||
for(auto framebuffer : pipeline.getSwapChainFramebuffers()) {
|
||||
vkDestroyFramebuffer(Global::device, framebuffer, nullptr);
|
||||
}
|
||||
for(auto imageView : deviceLibs.getSwapChainImageViews()) {
|
||||
vkDestroyImageView(Global::device, imageView, nullptr);
|
||||
}
|
||||
vkDestroySwapchainKHR(Global::device, Global::swapChain, nullptr);
|
||||
|
||||
deviceLibs.createSwapChain(Global::window);
|
||||
deviceLibs.createImageViews();
|
||||
pipeline.createFramebuffers();
|
||||
void recreateSwapChain() {
|
||||
int width = 0, height = 0;
|
||||
glfwGetFramebufferSize(EntryApp::getWindow(), &width, &height);
|
||||
while (width == 0 || height == 0) {
|
||||
glfwGetFramebufferSize(EntryApp::getWindow(), &width, &height);
|
||||
glfwWaitEvents();
|
||||
}
|
||||
// At a high level, rendering in Vulkan consists of 5 steps:
|
||||
// Wait for the previous frame, acquire a image from the swap chain
|
||||
// record a comman d buffer which draws the scene onto that image
|
||||
// submit the recorded command buffer and present the image!
|
||||
void render::drawFrame() {
|
||||
vkDeviceWaitIdle(DeviceControl::getDevice());
|
||||
// Don't really wanna do this but I also don't want to create an extra class
|
||||
// instance just to call the cleanup function.
|
||||
|
||||
vkWaitForFences(Global::device, 1, &inFlightFences[currentFrame], VK_TRUE, UINT64_MAX);
|
||||
vkResetFences(Global::device, 1, &inFlightFences[currentFrame]);
|
||||
|
||||
uint32_t imageIndex;
|
||||
VkResult result = vkAcquireNextImageKHR(Global::device, Global::swapChain, UINT64_MAX, imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex);
|
||||
if (result == VK_ERROR_OUT_OF_DATE_KHR) {
|
||||
recreateSwapChain();
|
||||
return;
|
||||
} else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
|
||||
throw std::runtime_error("failed to acquire swap chain image!");
|
||||
}
|
||||
vkResetFences(Global::device, 1, &inFlightFences[currentFrame]);
|
||||
|
||||
vkResetCommandBuffer(Global::commandBuffers[currentFrame], /*VkCommandBufferResetFlagBits*/ 0);
|
||||
pipeline.recordCommandBuffer(Global::commandBuffers[currentFrame], imageIndex);
|
||||
|
||||
VkSubmitInfo submitInfo{};
|
||||
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
||||
|
||||
VkSemaphore waitSemaphores[] = {imageAvailableSemaphores[currentFrame]};
|
||||
VkPipelineStageFlags waitStages[] = {VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT};
|
||||
submitInfo.waitSemaphoreCount = 1;
|
||||
submitInfo.pWaitSemaphores = waitSemaphores;
|
||||
submitInfo.pWaitDstStageMask = waitStages;
|
||||
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &Global::commandBuffers[currentFrame];
|
||||
|
||||
VkSemaphore signalSemaphores[] = {renderFinishedSemaphores[currentFrame]};
|
||||
submitInfo.signalSemaphoreCount = 1;
|
||||
submitInfo.pSignalSemaphores = signalSemaphores;
|
||||
|
||||
if (vkQueueSubmit(Global::graphicsQueue, 1, &submitInfo, inFlightFences[currentFrame]) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to submit draw command buffer!");
|
||||
}
|
||||
|
||||
VkPresentInfoKHR presentInfo{};
|
||||
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
|
||||
|
||||
presentInfo.waitSemaphoreCount = 1;
|
||||
presentInfo.pWaitSemaphores = signalSemaphores;
|
||||
|
||||
VkSwapchainKHR swapChains[] = {Global::swapChain};
|
||||
presentInfo.swapchainCount = 1;
|
||||
presentInfo.pSwapchains = swapChains;
|
||||
|
||||
presentInfo.pImageIndices = &imageIndex;
|
||||
|
||||
result = vkQueuePresentKHR(Global::presentQueue, &presentInfo);
|
||||
if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR || EntryApp::getInstance().getFramebufferResized()) {
|
||||
EntryApp::getInstance().setFramebufferResized(false);
|
||||
recreateSwapChain();
|
||||
} else if (result != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to present swap chain image!");
|
||||
}
|
||||
currentFrame = (currentFrame + 1) % Global::MAX_FRAMES_IN_FLIGHT;
|
||||
}
|
||||
#pragma info
|
||||
// SEMAPHORES
|
||||
// Synchronization of execution on the GPU in Vulkan is *explicit* The Order of ops is up to us to
|
||||
// define the how we want things to run.
|
||||
// Similarly, Semaphores are used to add order between queue ops. There are 2 kinds of Semaphores; binary, and timeline.
|
||||
// We are using Binary semaphores, which can be signaled or unsignaled.
|
||||
// Semaphores are initizalized unsignaled, the way we use them to order queue operations is by providing the same semaphore in one queue op and a wait in another.
|
||||
// For example:
|
||||
// VkCommandBuffer QueueOne, QueueTwo = ...
|
||||
// VkSemaphore semaphore = ...
|
||||
// enqueue QueueOne, Signal semaphore when done, start now.
|
||||
// vkQueueSubmit(work: QueueOne, signal: semaphore, wait: none)
|
||||
// enqueue QueueTwo, wait on semaphore to start
|
||||
// vkQueueSubmit(
|
||||
// work: QueueTwo, signal: None, wait: semaphore)
|
||||
// FENCES
|
||||
// Fences are basically semaphores for the CPU! Otherwise known as the host. If the host needs to know when the GPU has finished a task, we use a fence.
|
||||
// VkCommandBuffer cmndBuf = ...
|
||||
// VkFence fence = ...
|
||||
// Start work immediately, signal fence when done.
|
||||
// vkQueueSubmit(work: cmndBuf, fence: fence)
|
||||
// vkWaitForFence(fence)
|
||||
// doStuffOnceFenceDone()
|
||||
#pragma endinfo
|
||||
|
||||
void render::createSyncObject() {
|
||||
imageAvailableSemaphores.resize(Global::MAX_FRAMES_IN_FLIGHT);
|
||||
renderFinishedSemaphores.resize(Global::MAX_FRAMES_IN_FLIGHT);
|
||||
inFlightFences.resize(Global::MAX_FRAMES_IN_FLIGHT);
|
||||
|
||||
VkSemaphoreCreateInfo semaphoreInfo{};
|
||||
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
|
||||
|
||||
VkFenceCreateInfo fenceInfo{};
|
||||
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
|
||||
fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
|
||||
|
||||
for (size_t i = 0; i < Global::MAX_FRAMES_IN_FLIGHT; i++) {
|
||||
if(vkCreateSemaphore(Global::device, &semaphoreInfo, nullptr, &imageAvailableSemaphores[i]) != VK_SUCCESS ||
|
||||
vkCreateSemaphore(Global::device, &semaphoreInfo, nullptr, &renderFinishedSemaphores[i]) != VK_SUCCESS ||
|
||||
vkCreateFence(Global::device, &fenceInfo, nullptr, &inFlightFences[i]) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create semaphores!");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
void render::destroyFenceSemaphores() {
|
||||
for (size_t i = 0; i < Global::MAX_FRAMES_IN_FLIGHT; i++) {
|
||||
vkDestroySemaphore(Global::device, renderFinishedSemaphores[i], nullptr);
|
||||
vkDestroySemaphore(Global::device, imageAvailableSemaphores[i], nullptr);
|
||||
vkDestroyFence(Global::device, inFlightFences[i], nullptr);
|
||||
}
|
||||
}
|
||||
void render::cleanupSwapChain() {
|
||||
for(auto framebuffer : pipeline.getSwapChainFramebuffers()) {
|
||||
vkDestroyFramebuffer(Global::device, framebuffer, nullptr);
|
||||
}
|
||||
for(auto imageView : deviceLibs.getSwapChainImageViews()) {
|
||||
vkDestroyImageView(Global::device, imageView, nullptr);
|
||||
}
|
||||
vkDestroySwapchainKHR(Global::device, Global::swapChain, nullptr);
|
||||
for (auto imageView : DeviceControl::getSwapChainImageViews()) {
|
||||
vkDestroyImageView(DeviceControl::getDevice(), imageView, nullptr);
|
||||
}
|
||||
vkDestroySwapchainKHR(DeviceControl::getDevice(),
|
||||
DeviceControl::getSwapChain(), nullptr);
|
||||
|
||||
DeviceControl::createSwapChain(EntryApp::getWindow());
|
||||
DeviceControl::createImageViews();
|
||||
Texture::createColorResources();
|
||||
Texture::createDepthResources();
|
||||
}
|
||||
// At a high level, rendering in Vulkan consists of 5 steps:
|
||||
// Wait for the previous frame, acquire a image from the swap chain
|
||||
// record a comman d buffer which draws the scene onto that image
|
||||
// submit the recorded command buffer and present the image!
|
||||
void Render::drawFrame() {
|
||||
vkWaitForFences(DeviceControl::getDevice(), 1, &inFlightFences[currentFrame],
|
||||
VK_TRUE, UINT64_MAX);
|
||||
|
||||
vkResetFences(DeviceControl::getDevice(), 1, &inFlightFences[currentFrame]);
|
||||
|
||||
uint32_t imageIndex;
|
||||
VkResult result = vkAcquireNextImageKHR(
|
||||
DeviceControl::getDevice(), DeviceControl::getSwapChain(), UINT64_MAX,
|
||||
imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex);
|
||||
if (result == VK_ERROR_OUT_OF_DATE_KHR) {
|
||||
recreateSwapChain();
|
||||
return;
|
||||
} else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
|
||||
throw std::runtime_error("failed to acquire swap chain image!");
|
||||
}
|
||||
|
||||
vkResetFences(DeviceControl::getDevice(), 1, &inFlightFences[currentFrame]);
|
||||
|
||||
vkResetCommandBuffer(Buffers::getCommandBuffers()[currentFrame],
|
||||
/*VkCommandBufferResetFlagBits*/ 0);
|
||||
Graphics::recordCommandBuffer(Buffers::getCommandBuffers()[currentFrame],
|
||||
imageIndex);
|
||||
VkSubmitInfo submitInfo{};
|
||||
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
||||
|
||||
VkSemaphore waitSemaphores[] = {imageAvailableSemaphores[currentFrame]};
|
||||
VkPipelineStageFlags waitStages[] = {
|
||||
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT};
|
||||
submitInfo.waitSemaphoreCount = 1;
|
||||
submitInfo.pWaitSemaphores = waitSemaphores;
|
||||
submitInfo.pWaitDstStageMask = waitStages;
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &Buffers::getCommandBuffers()[currentFrame];
|
||||
|
||||
VkSemaphore signalSemaphores[] = {renderFinishedSemaphores[currentFrame]};
|
||||
submitInfo.signalSemaphoreCount = 1;
|
||||
submitInfo.pSignalSemaphores = signalSemaphores;
|
||||
|
||||
if (vkQueueSubmit(DeviceControl::getGraphicsQueue(), 1, &submitInfo,
|
||||
inFlightFences[currentFrame]) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to submit draw command buffer!");
|
||||
}
|
||||
|
||||
VkPresentInfoKHR presentInfo{};
|
||||
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
|
||||
|
||||
presentInfo.waitSemaphoreCount = 1;
|
||||
presentInfo.pWaitSemaphores = signalSemaphores;
|
||||
|
||||
VkSwapchainKHR swapChains[] = {DeviceControl::getSwapChain()};
|
||||
presentInfo.swapchainCount = 1;
|
||||
presentInfo.pSwapchains = swapChains;
|
||||
presentInfo.pImageIndices = &imageIndex;
|
||||
|
||||
result = vkQueuePresentKHR(DeviceControl::getPresentQueue(), &presentInfo);
|
||||
|
||||
if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR ||
|
||||
EntryApp::getInstance().getFramebufferResized()) {
|
||||
EntryApp::getInstance().setFramebufferResized(false);
|
||||
recreateSwapChain();
|
||||
} else if (result != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to present swap chain image!");
|
||||
}
|
||||
currentFrame = (currentFrame + 1) % Buffers::getMaxFramesInFlight();
|
||||
}
|
||||
|
||||
#pragma info
|
||||
// SEMAPHORES
|
||||
// Synchronization of execution on the GPU in Vulkan is *explicit* The Order of
|
||||
// ops is up to us to define the how we want things to run. Similarly,
|
||||
// Semaphores are used to add order between queue ops. There are 2 kinds of
|
||||
// Semaphores; binary, and timeline. We are using Binary semaphores, which can
|
||||
// be signaled or unsignaled. Semaphores are initizalized unsignaled, the way we
|
||||
// use them to order queue operations is by providing the same semaphore in one
|
||||
// queue op and a wait in another. For example: VkCommandBuffer QueueOne,
|
||||
// QueueTwo = ... VkSemaphore semaphore = ... enqueue QueueOne, Signal semaphore
|
||||
// when done, start now. vkQueueSubmit(work: QueueOne, signal: semaphore, wait:
|
||||
// none) enqueue QueueTwo, wait on semaphore to start vkQueueSubmit(
|
||||
// work: QueueTwo, signal: None, wait: semaphore)
|
||||
// FENCES
|
||||
// Fences are basically semaphores for the CPU! Otherwise known as the host. If
|
||||
// the host needs to know when the GPU has finished a task, we use a fence.
|
||||
// VkCommandBuffer cmndBuf = ...
|
||||
// VkFence fence = ...
|
||||
// Start work immediately, signal fence when done.
|
||||
// vkQueueSubmit(work: cmndBuf, fence: fence)
|
||||
// vkWaitForFence(fence)
|
||||
// doStuffOnceFenceDone()
|
||||
#pragma endinfo
|
||||
|
||||
void Render::createSyncObject() {
|
||||
imageAvailableSemaphores.resize(Buffers::getMaxFramesInFlight());
|
||||
renderFinishedSemaphores.resize(Buffers::getMaxFramesInFlight());
|
||||
inFlightFences.resize(Buffers::getMaxFramesInFlight());
|
||||
|
||||
VkSemaphoreCreateInfo semaphoreInfo{};
|
||||
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
|
||||
|
||||
VkFenceCreateInfo fenceInfo{};
|
||||
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
|
||||
fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
|
||||
|
||||
for (size_t i = 0; i < Buffers::getMaxFramesInFlight(); i++) {
|
||||
if (vkCreateSemaphore(DeviceControl::getDevice(), &semaphoreInfo, nullptr,
|
||||
&imageAvailableSemaphores[i]) != VK_SUCCESS ||
|
||||
vkCreateSemaphore(DeviceControl::getDevice(), &semaphoreInfo, nullptr,
|
||||
&renderFinishedSemaphores[i]) != VK_SUCCESS ||
|
||||
vkCreateFence(DeviceControl::getDevice(), &fenceInfo, nullptr,
|
||||
&inFlightFences[i]) != VK_SUCCESS) {
|
||||
throw std::runtime_error("Failed to create semaphores!");
|
||||
}
|
||||
}
|
||||
}
|
||||
void Render::destroyFenceSemaphores() {
|
||||
for (size_t i = 0; i < Buffers::getMaxFramesInFlight(); i++) {
|
||||
vkDestroySemaphore(DeviceControl::getDevice(), renderFinishedSemaphores[i],
|
||||
nullptr);
|
||||
vkDestroySemaphore(DeviceControl::getDevice(), imageAvailableSemaphores[i],
|
||||
nullptr);
|
||||
vkDestroyFence(DeviceControl::getDevice(), inFlightFences[i], nullptr);
|
||||
}
|
||||
}
|
||||
void Render::cleanupSwapChain() {
|
||||
vkDestroyImageView(DeviceControl::getDevice(), Texture::getColorImageView(),
|
||||
nullptr);
|
||||
vkDestroyImage(DeviceControl::getDevice(), Texture::getColorImage(), nullptr);
|
||||
vkFreeMemory(DeviceControl::getDevice(), Texture::getColorImageMemory(),
|
||||
nullptr);
|
||||
vkDestroyImageView(DeviceControl::getDevice(), Texture::getDepthImageView(),
|
||||
nullptr);
|
||||
vkDestroyImage(DeviceControl::getDevice(), Texture::getDepthImage(), nullptr);
|
||||
vkFreeMemory(DeviceControl::getDevice(), Texture::getDepthImageMemory(),
|
||||
nullptr);
|
||||
|
||||
for (auto imageView : DeviceControl::getSwapChainImageViews()) {
|
||||
vkDestroyImageView(DeviceControl::getDevice(), imageView, nullptr);
|
||||
}
|
||||
vkDestroySwapchainKHR(DeviceControl::getDevice(),
|
||||
DeviceControl::getSwapChain(), nullptr);
|
||||
}
|
||||
uint32_t Render::getCurrentFrame() { return currentFrame; }
|
||||
|
@@ -1,13 +1,12 @@
|
||||
#pragma once
|
||||
#include "../global.h"
|
||||
|
||||
|
||||
namespace RenderPresent {
|
||||
class render {
|
||||
public:
|
||||
void drawFrame();
|
||||
void createSyncObject();
|
||||
void destroyFenceSemaphores();
|
||||
void cleanupSwapChain();
|
||||
};
|
||||
}
|
||||
#include <cstdint>
|
||||
class Render {
|
||||
public:
|
||||
static void drawFrame();
|
||||
static void createSyncObject();
|
||||
static void destroyFenceSemaphores();
|
||||
static void cleanupSwapChain();
|
||||
static float getFloatBar();
|
||||
static uint32_t getCurrentFrame();
|
||||
};
|
||||
|
444
src/graphics/texture.cpp
Normal file
444
src/graphics/texture.cpp
Normal file
@@ -0,0 +1,444 @@
|
||||
#include "../devicelibrary.h"
|
||||
#include "buffers.h"
|
||||
#include "texture.h"
|
||||
#include <iostream>
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
#define STB_IMAGE_IMPLEMENTATION
|
||||
#include <stb/stb_image.h>
|
||||
|
||||
uint32_t mipLevels;
|
||||
|
||||
VkDeviceMemory textureImageMemory;
|
||||
VkPipelineStageFlags sourceStage;
|
||||
VkPipelineStageFlags destinationStage;
|
||||
|
||||
VkImage colorImage;
|
||||
VkImageView colorImageView;
|
||||
VkDeviceMemory colorImageMemory;
|
||||
|
||||
VkImage depthImage;
|
||||
VkImageView depthImageView;
|
||||
VkDeviceMemory depthImageMemory;
|
||||
|
||||
void createImage(uint32_t width, uint32_t height, uint32_t mipLevels,
|
||||
VkSampleCountFlagBits sampleNum, VkFormat format,
|
||||
VkImageTiling tiling, VkImageUsageFlags usage,
|
||||
VkMemoryPropertyFlags properties, VkImage &image,
|
||||
VkDeviceMemory &imageMemory) {
|
||||
// This function specifies all the data in an image object, this is called
|
||||
// directly after the creation of an image object.
|
||||
VkImageCreateInfo imageInfo{};
|
||||
imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
|
||||
imageInfo.imageType = VK_IMAGE_TYPE_2D;
|
||||
imageInfo.extent.width = width;
|
||||
imageInfo.extent.height = height;
|
||||
imageInfo.extent.depth = 1;
|
||||
imageInfo.mipLevels = 1;
|
||||
imageInfo.arrayLayers = 1;
|
||||
imageInfo.format = format;
|
||||
imageInfo.tiling = tiling;
|
||||
imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
||||
imageInfo.usage = usage;
|
||||
imageInfo.samples = sampleNum;
|
||||
imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
||||
imageInfo.mipLevels = mipLevels;
|
||||
|
||||
if (vkCreateImage(DeviceControl::getDevice(), &imageInfo, nullptr, &image) !=
|
||||
VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create image!");
|
||||
}
|
||||
|
||||
VkMemoryRequirements memRequirements;
|
||||
vkGetImageMemoryRequirements(DeviceControl::getDevice(), image,
|
||||
&memRequirements);
|
||||
|
||||
VkMemoryAllocateInfo allocInfo{};
|
||||
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
||||
allocInfo.allocationSize = memRequirements.size;
|
||||
allocInfo.memoryTypeIndex =
|
||||
Buffers::findMemoryType(memRequirements.memoryTypeBits, properties);
|
||||
|
||||
if (vkAllocateMemory(DeviceControl::getDevice(), &allocInfo, nullptr,
|
||||
&imageMemory) != VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to allocate image memory!");
|
||||
}
|
||||
|
||||
vkBindImageMemory(DeviceControl::getDevice(), image, imageMemory, 0);
|
||||
}
|
||||
|
||||
VkCommandBuffer beginSingleTimeCommands() {
|
||||
// This is a neat function! This sets up a command buffer using our previously
|
||||
// set command pool to return a command buffer to execute commands!
|
||||
VkCommandBufferAllocateInfo allocInfo{};
|
||||
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
|
||||
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
|
||||
allocInfo.commandPool = Buffers::getCommandPool();
|
||||
allocInfo.commandBufferCount = 1;
|
||||
|
||||
VkCommandBuffer commandBuffer;
|
||||
vkAllocateCommandBuffers(DeviceControl::getDevice(), &allocInfo,
|
||||
&commandBuffer);
|
||||
|
||||
VkCommandBufferBeginInfo beginInfo{};
|
||||
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
||||
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
|
||||
|
||||
vkBeginCommandBuffer(commandBuffer, &beginInfo);
|
||||
|
||||
return commandBuffer;
|
||||
}
|
||||
void endSingleTimeCommands(VkCommandBuffer commandBuffer) {
|
||||
// This function takes a command buffer with the data we wish to execute and
|
||||
// submits it to the graphics queue. Afterwards, it purges the command buffer.
|
||||
vkEndCommandBuffer(commandBuffer);
|
||||
|
||||
VkSubmitInfo submitInfo{};
|
||||
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &commandBuffer;
|
||||
|
||||
vkQueueSubmit(DeviceControl::getGraphicsQueue(), 1, &submitInfo,
|
||||
VK_NULL_HANDLE);
|
||||
vkQueueWaitIdle(DeviceControl::getGraphicsQueue());
|
||||
|
||||
vkFreeCommandBuffers(DeviceControl::getDevice(), Buffers::getCommandPool(), 1,
|
||||
&commandBuffer);
|
||||
}
|
||||
|
||||
void transitionImageLayout(VkImage image, VkFormat format,
|
||||
VkImageLayout oldLayout, VkImageLayout newLayout,
|
||||
uint32_t mipLevels) {
|
||||
// This function handles transitioning image layout data from one layout to
|
||||
// another.
|
||||
VkCommandBuffer commandBuffer = beginSingleTimeCommands();
|
||||
|
||||
VkImageMemoryBarrier barrier{};
|
||||
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
||||
barrier.oldLayout = oldLayout;
|
||||
barrier.newLayout = newLayout;
|
||||
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
||||
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
||||
|
||||
barrier.image = image;
|
||||
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||
barrier.subresourceRange.baseMipLevel = 0;
|
||||
barrier.subresourceRange.levelCount = mipLevels;
|
||||
barrier.subresourceRange.baseArrayLayer = 0;
|
||||
barrier.subresourceRange.layerCount = 1;
|
||||
|
||||
if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED &&
|
||||
newLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
|
||||
barrier.srcAccessMask = 0;
|
||||
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
||||
|
||||
sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
|
||||
destinationStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
|
||||
} else if (oldLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL &&
|
||||
newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
|
||||
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
||||
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
||||
|
||||
sourceStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
|
||||
destinationStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
|
||||
} else {
|
||||
throw std::invalid_argument("unsupported layout transition!");
|
||||
}
|
||||
|
||||
vkCmdPipelineBarrier(commandBuffer, sourceStage, destinationStage, 0, 0,
|
||||
nullptr, 0, nullptr, 1, &barrier);
|
||||
|
||||
endSingleTimeCommands(commandBuffer);
|
||||
}
|
||||
void copyBufferToImage(VkBuffer buffer, VkImage image, uint32_t width,
|
||||
uint32_t height) {
|
||||
// This handles copying from the buffer to the image, specifically what
|
||||
// *parts* to copy to the image.
|
||||
VkCommandBuffer commandBuffer = beginSingleTimeCommands();
|
||||
|
||||
VkBufferImageCopy region{};
|
||||
region.bufferOffset = 0;
|
||||
region.bufferRowLength = 0;
|
||||
region.bufferImageHeight = 0;
|
||||
|
||||
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||
region.imageSubresource.mipLevel = 0;
|
||||
region.imageSubresource.baseArrayLayer = 0;
|
||||
region.imageSubresource.layerCount = 1;
|
||||
|
||||
region.imageOffset = {0, 0, 0};
|
||||
region.imageExtent = {width, height, 1};
|
||||
|
||||
vkCmdCopyBufferToImage(commandBuffer, buffer, image,
|
||||
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion);
|
||||
|
||||
endSingleTimeCommands(commandBuffer);
|
||||
}
|
||||
VkFormat findSupportedFormat(const std::vector<VkFormat> &candidates,
|
||||
VkImageTiling tiling,
|
||||
VkFormatFeatureFlags features) {
|
||||
for (VkFormat format : candidates) {
|
||||
VkFormatProperties props;
|
||||
vkGetPhysicalDeviceFormatProperties(DeviceControl::getPhysicalDevice(),
|
||||
format, &props);
|
||||
|
||||
// Do we support linear tiling?
|
||||
if (tiling == VK_IMAGE_TILING_LINEAR &&
|
||||
(props.linearTilingFeatures & features) == features) {
|
||||
return format;
|
||||
// Or do we support optimal tiling?
|
||||
} else if (tiling == VK_IMAGE_TILING_OPTIMAL &&
|
||||
(props.optimalTilingFeatures & features) == features) {
|
||||
return format;
|
||||
}
|
||||
}
|
||||
throw std::runtime_error("failed to find supported depth buffering format!");
|
||||
}
|
||||
bool hasStencilComponent(VkFormat format) {
|
||||
return format == VK_FORMAT_D32_SFLOAT_S8_UINT ||
|
||||
format == VK_FORMAT_D24_UNORM_S8_UINT;
|
||||
}
|
||||
void generateMipmaps(VkImage image, VkFormat imageFormat, int32_t textureWidth,
|
||||
int32_t textureHeight, uint32_t mipLevels) {
|
||||
// Check if image format supports linear blitting
|
||||
VkFormatProperties formatProperties;
|
||||
vkGetPhysicalDeviceFormatProperties(DeviceControl::getPhysicalDevice(),
|
||||
imageFormat, &formatProperties);
|
||||
|
||||
if (!(formatProperties.optimalTilingFeatures &
|
||||
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT)) {
|
||||
throw std::runtime_error(
|
||||
"texture image format does not support linear blitting!");
|
||||
}
|
||||
|
||||
VkCommandBuffer commandBuffer = beginSingleTimeCommands();
|
||||
|
||||
// Specify the parameters of an image memory barrier
|
||||
VkImageMemoryBarrier barrier{};
|
||||
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
||||
barrier.image = image;
|
||||
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
||||
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
||||
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||
barrier.subresourceRange.baseArrayLayer = 0;
|
||||
barrier.subresourceRange.layerCount = 1;
|
||||
barrier.subresourceRange.levelCount = 1;
|
||||
|
||||
int32_t mipWidth = textureWidth;
|
||||
int32_t mipHeight = textureHeight;
|
||||
|
||||
for (uint32_t mip = 1; mip < mipLevels; mip++) {
|
||||
barrier.subresourceRange.baseMipLevel = mip - 1;
|
||||
barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
|
||||
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
|
||||
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
||||
barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
|
||||
|
||||
vkCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT,
|
||||
VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0,
|
||||
nullptr, 1, &barrier);
|
||||
|
||||
VkImageBlit blit{};
|
||||
blit.srcOffsets[0] = {0, 0, 0};
|
||||
blit.srcOffsets[1] = {mipWidth, mipHeight, 1};
|
||||
blit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||
blit.srcSubresource.mipLevel = mip - 1;
|
||||
blit.srcSubresource.baseArrayLayer = 0;
|
||||
blit.srcSubresource.layerCount = 1;
|
||||
blit.dstOffsets[0] = {0, 0, 0};
|
||||
blit.dstOffsets[1] = {mipWidth > 1 ? mipWidth / 2 : 1,
|
||||
mipHeight > 1 ? mipHeight / 2 : 1, 1};
|
||||
blit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||
blit.dstSubresource.mipLevel = mip;
|
||||
blit.dstSubresource.baseArrayLayer = 0;
|
||||
blit.dstSubresource.layerCount = 1;
|
||||
|
||||
vkCmdBlitImage(commandBuffer, image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
||||
image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit,
|
||||
VK_FILTER_LINEAR);
|
||||
|
||||
barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
|
||||
barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
||||
barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
|
||||
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
||||
|
||||
vkCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT,
|
||||
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, nullptr,
|
||||
0, nullptr, 1, &barrier);
|
||||
|
||||
if (mipWidth > 1)
|
||||
mipWidth /= 2;
|
||||
if (mipHeight > 1)
|
||||
mipHeight /= 2;
|
||||
}
|
||||
barrier.subresourceRange.baseMipLevel = mipLevels - 1;
|
||||
barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
|
||||
barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
||||
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
||||
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
||||
|
||||
vkCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT,
|
||||
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, nullptr, 0,
|
||||
nullptr, 1, &barrier);
|
||||
|
||||
endSingleTimeCommands(commandBuffer);
|
||||
}
|
||||
// -------------------------------- Image Libraries
|
||||
// ------------------------------- //
|
||||
void Texture::createMaterialTextures(std::vector<Model *> models) {
|
||||
// Import pixels from image with data on color channels, width and height, and
|
||||
// colorspace! Its a lot of kind of complicated memory calls to bring it from
|
||||
// a file -> to a buffer -> to a image object.
|
||||
for (Model *model : models) {
|
||||
|
||||
int textureWidth, textureHeight, textureChannels;
|
||||
|
||||
stbi_uc *pixels =
|
||||
stbi_load(model->getMaterial().getTexturePath().c_str(), &textureWidth,
|
||||
&textureHeight, &textureChannels, STBI_rgb_alpha);
|
||||
|
||||
mipLevels = static_cast<uint32_t>(std::floor(
|
||||
std::log2(std::max(textureWidth, textureHeight)))) +
|
||||
1;
|
||||
|
||||
VkDeviceSize imageSize = textureWidth * textureHeight * 4;
|
||||
|
||||
if (!pixels) {
|
||||
throw std::runtime_error("Failed to load texture!");
|
||||
}
|
||||
VkBuffer stagingBuffer;
|
||||
VkDeviceMemory stagingBufferMemory;
|
||||
Buffers::createBuffer(imageSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
||||
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||
stagingBuffer, stagingBufferMemory);
|
||||
|
||||
void *data;
|
||||
vkMapMemory(DeviceControl::getDevice(), stagingBufferMemory, 0, imageSize,
|
||||
0, &data);
|
||||
memcpy(data, pixels, static_cast<size_t>(imageSize));
|
||||
vkUnmapMemory(DeviceControl::getDevice(), stagingBufferMemory);
|
||||
|
||||
stbi_image_free(pixels);
|
||||
|
||||
createImage(textureWidth, textureHeight, mipLevels, VK_SAMPLE_COUNT_1_BIT,
|
||||
VK_FORMAT_R8G8B8A8_SRGB, VK_IMAGE_TILING_OPTIMAL,
|
||||
VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
|
||||
VK_IMAGE_USAGE_TRANSFER_DST_BIT |
|
||||
VK_IMAGE_USAGE_SAMPLED_BIT,
|
||||
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
||||
model->getMaterial().getTextureImage(), textureImageMemory);
|
||||
|
||||
transitionImageLayout(model->getMaterial().getTextureImage(),
|
||||
VK_FORMAT_R8G8B8A8_SRGB, VK_IMAGE_LAYOUT_UNDEFINED,
|
||||
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, mipLevels);
|
||||
copyBufferToImage(stagingBuffer, model->getMaterial().getTextureImage(),
|
||||
static_cast<uint32_t>(textureWidth),
|
||||
static_cast<uint32_t>(textureHeight));
|
||||
|
||||
vkDestroyBuffer(DeviceControl::getDevice(), stagingBuffer, nullptr);
|
||||
vkFreeMemory(DeviceControl::getDevice(), stagingBufferMemory, nullptr);
|
||||
|
||||
generateMipmaps(model->getMaterial().getTextureImage(),
|
||||
VK_FORMAT_R8G8B8A8_SRGB, textureWidth, textureHeight,
|
||||
mipLevels);
|
||||
// Create a texture image view, which is a struct of information about the
|
||||
// image.
|
||||
model->getMaterial().setTextureView(DeviceControl::createImageView(
|
||||
model->getMaterial().getTextureImage(), VK_FORMAT_R8G8B8A8_SRGB,
|
||||
VK_IMAGE_ASPECT_COLOR_BIT, mipLevels));
|
||||
|
||||
// Create a sampler to access and parse the texture object.
|
||||
|
||||
VkSamplerCreateInfo samplerInfo{};
|
||||
samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
|
||||
// These two options define the filtering method when sampling the texture.
|
||||
// It also handles zooming in versus out, min vs mag!
|
||||
samplerInfo.magFilter = VK_FILTER_LINEAR; // TODO: CUBIC
|
||||
samplerInfo.minFilter = VK_FILTER_LINEAR; // TODO: CUBIC
|
||||
|
||||
// These options define UVW edge modes, ClampToEdge extends the last pixels
|
||||
// to the edges when larger than the UVW.
|
||||
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
||||
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
||||
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
||||
|
||||
VkPhysicalDeviceProperties properties{};
|
||||
vkGetPhysicalDeviceProperties(DeviceControl::getPhysicalDevice(),
|
||||
&properties);
|
||||
// Enable or Disable Anisotropy, and set the amount.
|
||||
samplerInfo.anisotropyEnable = VK_TRUE;
|
||||
samplerInfo.maxAnisotropy = properties.limits.maxSamplerAnisotropy;
|
||||
|
||||
// When sampling with Clamp to Border, the border color is defined here.
|
||||
samplerInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK;
|
||||
// Normalizing coordinates changes texCoords from [0, texWidth] to [0, 1].
|
||||
// This is what should ALWAYS be used, because it means you can use varying
|
||||
// texture sizes. Another TODO: Normalizing
|
||||
samplerInfo.unnormalizedCoordinates = VK_FALSE;
|
||||
// Compare texels to a value and use the output in filtering!
|
||||
// This is mainly used in percentage-closer filtering on shadow maps, this
|
||||
// will be revisted eventually...
|
||||
samplerInfo.compareEnable = VK_FALSE;
|
||||
samplerInfo.compareOp = VK_COMPARE_OP_ALWAYS;
|
||||
|
||||
// Mipmaps are basically LoD's for textures, different resolutions to load
|
||||
// based on distance. These settings simply describe how to apply
|
||||
// mipmapping.
|
||||
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
||||
samplerInfo.mipLodBias = 0.0f;
|
||||
samplerInfo.minLod = 0.0f;
|
||||
samplerInfo.maxLod = VK_LOD_CLAMP_NONE;
|
||||
|
||||
if (vkCreateSampler(DeviceControl::getDevice(), &samplerInfo, nullptr,
|
||||
&model->getMaterial().getTextureSampler()) !=
|
||||
VK_SUCCESS) {
|
||||
throw std::runtime_error("failed to create texture sampler!");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
VkFormat Texture::findDepthFormat() {
|
||||
return findSupportedFormat(
|
||||
{VK_FORMAT_D32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT,
|
||||
VK_FORMAT_D24_UNORM_S8_UINT},
|
||||
VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT);
|
||||
}
|
||||
void Texture::createColorResources() {
|
||||
VkFormat colorFormat = DeviceControl::getImageFormat();
|
||||
VkExtent2D swapChainExtent = DeviceControl::getSwapChainExtent();
|
||||
|
||||
createImage(swapChainExtent.width, swapChainExtent.height, 1,
|
||||
DeviceControl::getPerPixelSampleCount(), colorFormat,
|
||||
VK_IMAGE_TILING_OPTIMAL,
|
||||
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT |
|
||||
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
|
||||
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, colorImage,
|
||||
colorImageMemory);
|
||||
colorImageView = DeviceControl::createImageView(colorImage, colorFormat,
|
||||
VK_IMAGE_ASPECT_COLOR_BIT, 1);
|
||||
}
|
||||
void Texture::createDepthResources() {
|
||||
VkFormat depthFormat = findDepthFormat();
|
||||
VkExtent2D swapChainExtent = DeviceControl::getSwapChainExtent();
|
||||
createImage(
|
||||
swapChainExtent.width, swapChainExtent.height, 1,
|
||||
DeviceControl::getPerPixelSampleCount(), depthFormat,
|
||||
VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
|
||||
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, depthImage, depthImageMemory);
|
||||
depthImageView = DeviceControl::createImageView(depthImage, depthFormat,
|
||||
VK_IMAGE_ASPECT_DEPTH_BIT, 1);
|
||||
// Explicit transition from the layout of the image to the depth attachment is
|
||||
// unnecessary here, since that will be handled in the render pass!
|
||||
}
|
||||
// ---------------------------- Getters & Setters
|
||||
// ---------------------------------//
|
||||
uint32_t Texture::getMipLevels() { return mipLevels; }
|
||||
|
||||
VkImage &Texture::getColorImage() { return colorImage; }
|
||||
VkImageView &Texture::getColorImageView() { return colorImageView; }
|
||||
VkDeviceMemory &Texture::getColorImageMemory() { return colorImageMemory; }
|
||||
|
||||
VkImage &Texture::getDepthImage() { return depthImage; }
|
||||
VkImageView &Texture::getDepthImageView() { return depthImageView; }
|
||||
VkDeviceMemory &Texture::getDepthImageMemory() { return depthImageMemory; }
|
27
src/graphics/texture.h
Normal file
27
src/graphics/texture.h
Normal file
@@ -0,0 +1,27 @@
|
||||
#pragma once
|
||||
#include "model.h"
|
||||
|
||||
#define VK_NO_PROTOTYPES
|
||||
|
||||
#include "volk.h"
|
||||
#include <cstdint>
|
||||
class Texture {
|
||||
public:
|
||||
static const uint32_t TEXTURE_COUNT = 2;
|
||||
static void createMaterialTextures(std::vector<Model *> models);
|
||||
static void destroyTextureImage();
|
||||
static void destroyTextureSampler();
|
||||
static VkFormat findDepthFormat();
|
||||
static void createDepthResources();
|
||||
static void createColorResources();
|
||||
// ------------ Getters & Setters ------------ //
|
||||
static uint32_t getMipLevels();
|
||||
|
||||
static VkImage &getColorImage();
|
||||
static VkImageView &getColorImageView();
|
||||
static VkDeviceMemory &getColorImageMemory();
|
||||
|
||||
static VkImage &getDepthImage();
|
||||
static VkImageView &getDepthImageView();
|
||||
static VkDeviceMemory &getDepthImageMemory();
|
||||
};
|
@@ -1,5 +1,8 @@
|
||||
#include "entrypoint.h"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#define VOLK_IMPLEMENTATION
|
||||
int main() {
|
||||
EntryApp::getInstance().initialize();
|
||||
try {
|
||||
@@ -10,4 +13,3 @@ int main() {
|
||||
}
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
|
23
src/shaders/common.glsl
Normal file
23
src/shaders/common.glsl
Normal file
@@ -0,0 +1,23 @@
|
||||
#extension GL_EXT_buffer_reference : require
|
||||
#extension GL_EXT_scalar_block_layout : require
|
||||
#extension GL_EXT_nonuniform_qualifier : require
|
||||
|
||||
struct Vertex {
|
||||
vec3 pos;
|
||||
vec3 normal;
|
||||
vec3 color;
|
||||
vec2 texCoord;
|
||||
};
|
||||
|
||||
layout(buffer_reference, scalar) readonly buffer VertexBuffer{
|
||||
Vertex vertices[];
|
||||
};
|
||||
layout( push_constant, scalar ) uniform constants {
|
||||
VertexBuffer vertBuffer;
|
||||
vec3 objPos;
|
||||
vec3 lightPos;
|
||||
int textureID;
|
||||
mat4 model;
|
||||
mat4 view;
|
||||
mat4 proj;
|
||||
} PushConstants;
|
@@ -1,9 +1,22 @@
|
||||
#version 450
|
||||
#extension GL_GOOGLE_include_directive : enable
|
||||
#include "common.glsl"
|
||||
|
||||
layout(location = 0) in vec3 fragColor;
|
||||
layout(binding = 1) uniform sampler2D texSampler[];
|
||||
|
||||
|
||||
layout(location = 0) in vec3 v_norm;
|
||||
layout(location = 1) in vec3 v_pos;
|
||||
layout(location = 2) in vec2 texCoord;
|
||||
|
||||
layout(location = 0) out vec4 outColor;
|
||||
|
||||
void main() {
|
||||
outColor = vec4(fragColor, 1.0);
|
||||
vec3 diffuseColor = texture(texSampler[PushConstants.textureID], texCoord).rgb;
|
||||
vec3 ambientColor = vec3(0.05f,0.05f, 0.05f) * diffuseColor;
|
||||
float lightPower = 5;
|
||||
vec3 lightColor = vec3(1.0f, 1.0f, 1.0f);
|
||||
float cosTheta = dot(PushConstants.lightPos, v_norm);
|
||||
float sqrDist = distance(v_pos, PushConstants.lightPos)*distance(v_pos, PushConstants.lightPos);
|
||||
outColor = vec4(ambientColor + clamp(diffuseColor * lightColor * lightPower * cosTheta / sqrDist, vec3(0,0,0), vec3(1,1,1)), 1.0f);
|
||||
}
|
||||
|
@@ -1,12 +1,17 @@
|
||||
#version 450
|
||||
// inPosition and inColor are vertex attributes, per-vertex properties defined in the vertex buffer!
|
||||
// Layout assigns indices to access these inputs, dvec3 takes 2 slots so we must index it at 2. https://www.khronos.org/opengl/wiki/Layout_Qualifier_(GLSL)
|
||||
layout(location = 0) in vec2 inPosition;
|
||||
layout(location = 1) in vec3 inColor;
|
||||
#extension GL_GOOGLE_include_directive : enable
|
||||
#include "common.glsl"
|
||||
|
||||
layout(location = 0) out vec3 fragColor;
|
||||
layout(location = 0) out vec3 v_norm;
|
||||
layout(location = 1) out vec3 v_pos;
|
||||
layout(location = 2) out vec2 texCoord;
|
||||
|
||||
void main() {
|
||||
gl_Position = vec4(inPosition, 0.0, 1.0);
|
||||
fragColor = inColor;
|
||||
Vertex vertex = PushConstants.vertBuffer.vertices[gl_VertexIndex];
|
||||
|
||||
gl_Position = PushConstants.proj * PushConstants.view * PushConstants.model *
|
||||
vec4(vertex.pos + PushConstants.objPos, 1.0f);
|
||||
v_norm = vertex.normal;
|
||||
v_pos = vertex.pos;
|
||||
texCoord = vertex.texCoord;
|
||||
}
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user